Pentaho Analytics for
MongoDB Cookbook

Over 50 recipes to learn how to use Pentaho Analytics and
MongoDB to create powerful analysis and reporting solutions

Joel Latino Harris Ward |

.allitebooks.co

http://www.allitebooks.org

Pentaho Analytics for
MongoDB Cookbook

Over 50 recipes to learn how to use Pentaho Analytics
and MongoDB to create powerful analysis and reporting
solutions

Joel Latino
Harris Ward

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Pentaho Analytics for MongoDB Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015
Production reference: 1181215

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78355-327-3

www . packtpub.com

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Authors
Joel Latino

Harris Ward

Reviewers
Rio Bastian

Mark Kromer

Commissioning Editor
Usha lyer

Acquisition Editor
Nikhil Karkal

Content Development Editor
Anish Dhurat

Technical Editor
Menza Mathew

Copy Editor
Vikrant Phadke

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

[vww allitebooks.cond

http://www.allitebooks.org

About the Authors

Joel Latino was born in Ponte de Lima, Portugal, in 1989. He has been working in the IT
industry since 2010, mostly as a software developer and Bl developer.

He started his career at a Portuguese company and specialized in strategic planning,
consulting, implementation, and maintenance of enterprise software that is fully adapted
to its customers' needs.

He earned his graduate degree in informatics engineering from the School of Technology
and Management of Viana do Castelo Polytechnic Institute.

In 2014, he moved to Edinburgh, Scotland, to work for Ivy Information Systems, a highly
specialized open source Bl company in the United Kingdom.

Joel mainly focuses on open source web technology, databases, and business intelligence,
and is fascinated by mobile technologies. He is responsible for developing some plugins for
Pentaho, such as Android and Apple push notification steps, and lot of other plugins under
Ivy Information Systems.

I would like to thank my family for supporting me throughout my career
and endeavors.

Harris Ward has been working in the IT sector since 2004, initially developing websites
using LAMP and moving on to business intelligence in 2006. His first role was based in
Germany on a product called InfoZoom, where he was introduced to the world of business
intelligence. He later discovered open source business intelligence tools and dedicated the
last 9 years to not only working on developing solutions, but also working to expand the
Pentaho community with the help of other committed members.

Harris has worked as a Pentaho consultant over the past 7 years under Ambient BI. Later,
he decided to form Ivy Information Systems Scotland, a company focused on delivering more
advanced Pentaho solutions as well as developing a wide range of Pentaho plugins that you
can find in the marketplace today.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Rio Bastian is a happy software engineer. He has worked on various IT projects. He is
interested in business intelligence, data integration, web services (using WSO2 API or ESB),
and tuning SQL and Java code. He has also been a Pentaho business intelligence trainer
for several companies in Indonesia and Malaysia. Currently, Rio is working on developing
one of Garuda Indonesia airline's e-commerce channel web service systems in PT. Aero
Systems Indonesia.

In his spare time, he tries to share his experience in software development through his
personal blog at altanovela.wordpress.com. You can reach him on Skype at rio.
bastian or e-mail him at altanovelaegmail . com.

Mark Kromer has been working in the database, analytics, and business intelligence industry
for 20 years, with a focus on big data and NoSQL since 2011. As a product manager, he has
been responsible for the Pentaho MongoDB Analytics product road map for Pentaho, the graph
database strategy for DataStax, and the business intelligence road map for Microsoft's vertical
solutions. Mark is currently a big data cloud architect and is a frequent contributor to the TDWI
Bl magazine, MSDN Magazine, and SQL Server Magazine. You can keep up with his speaking
and writing schedule at http: //www.kromerbigdata.com.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print

book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@epacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content

» On demand and accessible via a web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

[vww allitebooks.cond

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents

Preface v
Chapter 1: PDI and MongoDB 1
Introduction 1
Learning basic operations with Pentaho Data Integration 2
Migrating data from the RDBMS to MongoDB 4
Loading data from MongoDB to MySQL 11
Migrating data from files to MongoDB 14
Exporting MongoDB data using the aggregation framework 18
MongoDB Map/Reduce using the User Defined Java Class step
and MongoDB Java Driver 20
Working with jobs and filtering MongoDB data using parameters
and variables 25
Chapter 2: The Thin Kettle JDBC Driver 29
Introduction 29
Using a transformation as a data service 30
Running the Carte server in a single instance 32
Running the Pentaho Data Integration server in a single instance 35
Define a connection using a SQL Client (SQuirreL SQL) 39
Chapter 3: Pentaho Instaview 45
Introduction 45
Creating an analysis view 45
Modifying Instaview transformations 48
Modifying the Instaview model 50
Exploring, saving, deleting, and opening analysis reports 55

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 4: A MongoDB OLAP Schema 59
Introduction 59
Creating a date dimension 60
Creating an Orders cube 67
Creating the customer and product dimensions 72
Saving and publishing a Mondrian schema 78
Creating a Mondrian 4 physical schema 83
Creating a Mondrian 4 cube 86
Publishing a Mondrian 4 schema 88

Chapter 5: Pentaho Reporting 91
Introduction 91
Copying the MongoDB JDBC library 92
Connecting to MongoDB using Reporting Wizard 92
Connecting to MongoDB via PDI 98
Adding a chart to a report 101
Adding parameters to a report 104
Adding a formula to a report 111
Grouping data in reports 114
Creating subreports 118
Creating a report with MongoDB via Java 122
Publishing a report to the Pentaho server 125
Running a report in the Pentaho server 128

Chapter 6: The Pentaho BI Server 131
Introduction 131
Importing Foodmart MongoDB sample data 131
Creating a new analysis view using Pentaho Analyzer 134
Creating a dashboard using Pentaho Dashboard Designer 140

Chapter 7: Pentaho Dashboards 145
Introduction 145
Copying the MongoDB JDBC library 146
Importing a sample repository 147
Using a transformation data source 147
Using a BeanShell data source 152
Using Pentaho Analyzer for MongoDB data source 155
Using a Thin Kettle data source 161
Defining dashboard layouts 164
Creating a Dashboard Table component 171
Creating a Dashboard line chart component 174

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 8: Pentaho Community Contributions 179
Introduction 179
The PDI MongoDB Delete Step 180
The PDI MongoDB GridFS Output Step 183
The PDI MongoDB Map/Reduce Output step 186
The PDI MongoDB Lookup step 189

Index 193

[vww allitebooks.cond

http://www.allitebooks.org

Preface

With an increasing interest in big data technologies, Pentaho, as a famous open source
analysis tool, and MongoDB, the most famous NoSQL database, have gained special
focus. The variety of features in Pentaho for MongoDB are end-to-end. This means from
data storage in MongoDB clusters to visualization in a dashboard, in a report by e-mail,
it's definitely a good change for the processes in enterprises. It's a powerful combination
of scalable data storage, data transformation, and analysis.

Pentaho Analytics for MongoDB Cookbook explains the features of Pentaho for MongoDB in
detail through clear and practical recipes that you can quickly apply to your solutions. Each
chapter guides you through the different components of Pentaho: data integration, OLAP,
reporting, dashboards, and analysis. This book is a guide to getting started with Pentaho and
provides all of the practical information about the connectivity of Pentaho for MongoDB.

Pentaho Installation

Pentaho is a commercial open source product, which that means there are two versions
available: Pentaho Community Edition (CE) and Pentaho Enterprise Edition (EE). To be able
to cover all the recipes of this book, please choose Pentaho EE. You can download the trial
version, available at http: //www.pentaho. com. In this book, it is mentioned if a specific
feature is available in Pentaho CE. You can get that version from http://community.
pentaho.com.

Preface

Now, we will explain the installation for Pentaho EE:

1. Download the Pentaho EE trial from http://www.pentaho.com.

2. Runthe pentaho-business-analytics-<versions.exe file for a Windows
environment or pentaho-business-analytics-<versions>.bin fora
Linux environment. You will get a Welcome window, like what is shown in the
following screenshot:

Pentaho Business Analytics Enterprise Edition Setup

@ pentcho Welcome

This wizard will guide you through the
installation and setup of the Pentaho Business
Analytics Enterprise Edition and samples.

< Back | Next > | Cancel

3. Click on Next and you will get the license agreement, as shown in this screenshot:

Pentaho Business Analytics Enterprise Edition Setup

License Agreement \l/
—

Read and accept the License Agreement before proceeding with the
installation.

PENTAHO END USER LICENSE AGREEMENT

This End User License Agreement (this “Agreement”) is made between
Pentaho Ceorperation (“Pentaho”) and the end-user of Pentaho's software (the
“Licensee”).

Licensee intends to download and use certain Pentaho products (each, a
“Product”) for evaluation purposes. If Licensee chooses, Licensee may also

T TN UM -SSR U S, VOPU U S Y P U SR | SR

. @® |l accept the agreement
Do you accept the license? _
() Ido not accept the agreement

BitRock Installer

< Back Next > Cancel

Preface

4. After carefully reading the license agreement and accepting, you will be able to
choose the setup type in the next screen, as shown in the following screenshot:

Pentaho Business Analytics Enterprise Edition Setup

Setup Type \|/
—

Choose the setup type that best suits your needs

@® Default
Installs all Pentaho applications with predefined settings.
) Custom

Choose the Pentaho applications you want
installed and customize the server settings
and password database administration
access.

BitRock Installer

< Back | Next > | Cancel

5. Inthis case, we'll choose a Default installation and click on Next. You'll be taken
to a screen to choose the folder where Pentaho will be installed, as shown in
this screenshot:

Pentaho Business Analytics Enterprise Edition Setup

Installation folder \I/
—

Specify the location in which to install the Pentaho applications.

Location: [home/latino/Pentaho|

1E

BitRock Installer

< Back Next > Cancel

Preface

6. Feel free to choose your folder path and click on Next. You'll get a screen for setting
an administrator password, like this:

£ Pentaho Business Analytics Enterprise Edition Setup

Password: \l/
—

Postgres will be installed and used to store reports, users and other
system information. Please create a password for the administrator
userid "poskgres”.

Password: wanen

Confirm Password: |ssese

BitRock Installer

| <Back || Next> Cancel

7. After typing your password, click on Next and you'll be taken to a Ready To Install
screen, as shown in the following screenshot. Click on Next to start the installation
and wait a few minutes.

£ Pentaho Business Analytics Enterprise Edition Setup

Ready To Install \l/
—

Setup is now ready to begininstalling the Pentaho applications on your
computer.

BitRock Installer

<Back || Next> || Cancel

8. After some minutes, you will see a screen saying that the installation is complete, and
you can test it by accessing http://localhost:8080/ from your web browser.

Preface

What this book covers

Chapter 1, PDI and MongoDB, introduces Pentaho Data Integration (PDI), which is an ETL tool
for extracting, loading, and transforming data from different data sources.

Chapter 2, The Thin Kettle JDBC Driver, teaches you about the JDBC driver for querying
Pentaho transformations that connect to various data sources.

Chapter 3, Pentaho Instaview, shows you how to create a quick analysis over MongoDB.

Chapter 4, A MongoDB OLAP Schema, explains how to create and publish Pentaho OLAP
schemas from MongoDB.

Chapter 5, Pentaho Reporting, focuses on the creation of printable reports using the Pentaho
Report Designer tool. This report can be exported in several formats.

Chapter 6, The Pentaho Bl Server, covers the main Pentaho EE plugins for web visualization:
Pentaho Analyzer and Pentaho Dashboards Designer.

Chapter 7, Pentaho Dashboards, focuses on the creation of complex dashboards using the
open source suite CTools.

Chapter 8, Pentaho Community Contributions, explains the functionality of some contributions
from the Pentaho community for MongoDB in Pentaho Data Integration.

What you need for this book

In this book, the software that we need to perform the recipes is:

» Pentaho Business Analytics v5.3.0
» MongoDB v2.6.9 (64-bit)

This book provides the source code and some source data for the recipes. Both types of files
are available as free downloads from http://www.packtpub.com/support.

Who this book is for

This book is primarily intended for MongoDB professionals who are looking for analysis
using Pentaho. This can be done to perform business analysis by Pentaho consultants,
Pentaho architects, and developers who want to be able to deliver solutions using Pentaho
and MongoDB. It is assumed that they already have experience of defining business
requirements and knowledge of MongoDB.

Preface

In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows.

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

This section usually consists of a detailed explanation of what happened in the previous section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

A block of code is set as follows:

[

{ $match: {"customer.name" : "Baane Mini Imports"} },
{ $group: {" _id" : {"orderNumber": "$orderNumber",
"orderDate" : "SorderDate"}, "totalSpend": { $sum:

"StotalPrice"} } }

g

Preface

Any command-line input or output is written as follows:

db.Orders.find ({"priceEach":{$gte:100}, "customer.name": "Baane Mini
Imports"}) .count ()]

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Set the Step Name
property to Select Customers."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Preface

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http: //www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will

be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

PDI and MongoDB

In this chapter, we will cover these recipes:

» Learning basic operations with Pentaho Data Integration

» Migrating data from the RDBMS to MongoDB

» Loading data from MongoDB to MySQL

» Migrating data from files to MongoDB

» Exporting MongoDB data using the aggregation framework

» MongoDB Map/Reduce using the User Defined Java Class step and MongoDB
Java Driver

» Working with jobs and filtering MongoDB data using parameters and variables

Introduction

Migrating data from an RDBMS to a NoSQL database, such as MongoDB, isn't an easy task,
especially when your RBDMS has a lot of tables. It can be a time consuming issue, and in
most cases, using a manual process is like developing a bespoke solution.

Pentaho Data Integration (or PDI, also known as Kettle) is an Extract, Transform, and

Load (ETL) tool that can be used as a solution for this problem. PDI provides a graphical
drag-and-drop development environment called Spoon. Primarily, PDI is used to create
data warehouses. However, it can also be used for other scenarios, such as migrating
data between two databases, exporting data to files with different formats (flat, CSV, JSON,
XML, and so on), loading data into databases from many different types of source data,
data cleaning, integrating applications, and so on.

The following recipes will focus on the main operations that you need to know to work with
PDI and MongoDB.

(1}

[vww allitebooks.cond

http://www.allitebooks.org

PDI and MongoDB

Learning basic operations with Pentaho

Data Integration

The following recipe is aimed at showing you the basic building blocks that you can use for
the rest of the recipes in this chapter. We recommend that you work through this simple
recipe before you tackle any of the others. If you want, PDI also contains a large selection
of sample transformations for you to open, edit, and test. These can be found in the sample
directory of PDI.

Getting ready

Before you can begin this recipe, you will need to make sure that the JAVA_HOME
environment variable is set properly. By default, PDI tries to guess the value of the JAVA_
HOME environment variable. Note that for this book, we are using Java 1.7. As soon as this is
done, you're ready to launch Spoon, the graphical development environment for PDI. To start
Spoon, you can use the appropriate scripts located at the PDI home folder. To start Spoon in
Windows, you will have to execute the spoon.bat script in the home folder of PDI. For Linux or
Mac, you will have to execute the spoon.sh bash script instead.

How to do it...

First, we need configure Spoon to be able to create transformations and/or jobs. To acclimatize
to the tool, perform the following steps:

1. Create a new empty transformation:

1. Click on the New file button from the toolbar menu and select the
Transformation item entry. You can also navigate to File | New |
Transformation from the main menu. Ctrl + N also creates a new
transformation.

2. Set a name for the transformation:

1. Open the Transformation settings dialog by pressing Ctrl + T. Alternatively,
you can right-click on the right-hand-side working area and select
Transformation settings. Or on the menu bar, select the Settings... item
entry from the Edit menu.

2. Select the Transformation tab.
3. Set Transformation Name to First Test Transformation.
4. Click on the OK button.

Chapter 1

3. Save the transformation:

1. Click on the Save current file button from the toolbar. Alternatively, from
the menu bar, go to File | Save. Or finally, use the quick option by pressing
Ctrl + S.

2. Choose the location of your transformation and give it the name
chapterl-first-transformation.

3. Click on the OK button.

4. Run a transformation using Spoon.

1. You can run the transformation by either of these ways: click on the green
play icon on the transformation toolbar and navigate to Action | Run on the
main menu or simply press F9.

2. You will get an Execute a transformation dialog. Here, you can set
parameters, variables, or arguments if they are required for running the
transformation.

3. Run the transformation by clicking on the Launch button.

5. Run the transformation in preview mode using Spoon.

1. Inthe Transformation debug dialog, select the step you want to preview the
output data.

2. After selecting the desired output step, you can preview the transformation
by either clicking on the magnify icon on the transformation toolbar, going to
Action | Preview on the main menu, or simply pressing F10.

3. You will get a Transformation debug dialog that you can use to define the
number of rows you want to see, breakpoints, and the step that you want
analyze.

4. You can click on the Configure button to define parameters, variables, or
arguments. Click on the Quick Launch button to preview the transformation.

In this recipe, we just introduced the Spoon tool, touching on the main basic points for you
to manage ETL transformations. We started by creating a transformation. We gave a name
to the transformation, First Test Transformation in this case. Then, we saved the
transformation in the filesystem with the name chapterl-first-transformation.

Finally, we ran the transformation normally and in debug mode. Understanding how to
run a transformation in debug mode is useful for future ETL developments as it helps you
understand what is happening inside of the transformation.

PDI and MongoDB

There's more...

In the PDI home folder, you will find a large selection of sample transformations and jobs
that you can open, edit, and run to better understand the functionality of the diverse steps
available in PDI.

Migrating data from the RDBMS to MongoDB

In this recipe, you will transfer data from a sample RDBMS to a MongoDB database.
The sample data is called SteelWheels and is available in the Pentaho BA server,
running on the Hypersonic Database Server.

Getting ready

Start the Pentaho BA Server by executing the appropriate scripts located in the BA Server's
home folder. It is start-pentaho. sh for Unix/Linux operating systems, and for the
Windows operating system, it is start-pentaho.bat. Also in Windows, you can go to the
Start menu and choose Pentaho Enterprise Edition, then Server Management, and finally
Start BA Server.

Start Pentaho Data Integration by executing the right scripts in the PDI home folder. It is
spoon. sh for Unix/Linux operating systems and spoon.bat for the Windows operating
system. Besides this, in Windows, you can go to the Start menu and choose Pentaho
Enterprise Edition, then Design Tools, and finally Data Integration.

Start MongoDB. If you don't have the server running as a service, you need execute the
mongod -dbpath=<data folder>command in the bin folder of MongoDB.

To make sure you have the Pentaho BA Server started, you can access the default URL,
which is http://localhost:8080/pentaho/. When you launch Spoon, you should
see a welcome screen like the one pictured here:

Chapter 1

Perspective: | I Data Integration| 8 Schedule © Instaview £ visualize [# Model Editor
2 Welcomel %

— 56 godb design-tools/d: ome/index.html

Pentaho Data Integration

Welcome Meet the Famil Credits

Get the Most
From Pentaho

Let us help you become
an ETL, Big Data Master.

Tutorials & Videos >

Getting Started Documentation Samples

How to do it...

After you have made that sure you are ready to start the recipe, perform the following steps:

1. Create a new empty transformation.

1. As was explained in the first recipe of this chapter, set the name of this
transformation to Migrate data from RDBMS to MongoDB.

2. Save the transformation with the name chapter1-rdbms-to-mongodb.

2. Select a customer's data from the SteelWheels database using Table Input step.
1. Select the Design tab in the left-hand-side view.

2. From the Input category folder, find the Table Input step and drag and
drop it into the working area in the right-hand-side view.

3. Double-click on the Table Input step to open the configuration dialog.
Set the Step Name property to Select Customers.

5. Before we can get any data from the SteelWheels Hypersonic database,
we will have to create a JDBC connection to it.

To do this, click on the New button next to the Database Connection
pulldown. This will open the Database Connection dialog.

PDI and MongoDB

Set Connection Name to SteelWheels. Next, select the Connection Type as
Hypersonic. Set Host Name to localhost, Database Name to SampleData,
Port to 9001, Username to pentaho_user, and finally Password to password.
Your setup should look similar to the following screenshot:

Database Connection

LGN Connection Name:
Advanced Steelwheels
Options I
iliai Connection Type: Settings
ooling UCTTICI L UaLauasc -~ | Host Name:
Clusterin
g Greenplum localhost ui
Gupta SQL Base
ARl Database Name:
H2 @
Hadoop Hive Samplenats
Hadoop Hive 2 Port Number:
Hypersonic 9001 *
IBM DB2 User Name:
Impala pentaho_user *
Infobright
5 Password:
Informix
R &
Ingres
Access:
Native (JDBC)
oDBC
JNDI
Test Feature L| Explore
OK Cancel

6. You can test the connection by clicking on the Test button at the bottom
of the dialog. You should get a message similar to Connection Successful.
If not, then you must double-check your connection details.

7. Click on OK to return to the Table Input step.

Now that we have a valid connection set, we are able to get a list of
customers from the SteelWheels database. Copy and paste the following
SQL into the query text area:

SELECT * FROM CUSTOMERS

9. Click on the Preview button and you will see a table of customer details.

Chapter 1

10. Your Table Input step configuration should look similar to what is shown in

the following screenshot:

" Table input

Step name [EEPETEEIE D

Connection |gtealwheels v | | Edit... | | New... | | Wizard...

sQL Get SQL select skatement...
STOMERS @

SELECT * FROM CUSTOMERS

Line 1 Column 0
Enable lazy conversion

Replace variables in script?

Insert data from step

Limitsize |9

& Help OK Preview Cancel

1

1. Click on OK to exit the Table Input configuration dialog.

3. Now, let's configure the output of the customer's data in the MongoDB database.

1.

Under the Design tab, from the Big Data category folder, find the
MongoDB Output step and drag and drop it into the working area
in the right-hand-side view.

As we want data to flow from the Table Input step to the MongoDB Output
step, we are going to create a Hop between the steps. To do this, simply
hover over the Table Input step and a popup will appear, with some options
below the step. Click on Right Arrow and then on the MongoDB Output
step. This will create a Hop between the two steps.

0]

MongoDB Output

Click on this output connector to start creation of a new hop connection between 2 steps.

3. It's time to configure the MongoDB Output step. Double-click on it.

Set Step Name to Customers Output.

5. Aswe're running a default MongoDB instance, we only have to set some

simple properties in this step. Set Hostname to localhost and Port to 27017.

(7 -

PDI and MongoDB

6.

10.

Select the Output options tab. In this tab, we can define how the data will be
inserted into MongoDB.

Set the Database property to SteelWheels. Don't worry if this database
doesn't exist in MongoDB, as it will be created automatically.

Set the Collection property to Customers. Again, don't worry if this collection
doesn't exist in MongoDB, as it will be created automatically.

Leave the Batch insert size property at 100. For performance and/or
production purposes, you can increase it if necessary. If you don't provide
any value to this field, the default value will be 100.

We are going to truncate the collection each time before we load data. In
this way, if we rerun the transformation many times, we won't get duplicate
records. Your Output options page should look like what is shown in this
screenshot:

@ & MongoDB Output

Configure connection [Output options . Mongo document fields | Create/drop indexes

Step name [cystomers Output] I

Database grealwheels v | | GetDBs
Collection ¢ ctomers + | Get collections
Batchinsertsize [4gg @

Truncate collection g

Update

Upsert

Multi-update

Modifier update

Write concern (w option) + || Get custom write concerns
w Timeout L2
Journaled writes

Read preference

Number of retries for write operations | 5 4
Delay, in seconds, between retry attempts |1 &
& Help OK Cancel
11. Now, let's define the MongoDB documents structure. Select the Mongo

12.

document fields tab.

Click on the Get fields button, and the fields list will be populated with the
SteelWheels database fields in the ETL stream.

Chapter 1

13.

By default, the column names in the SteelWheels database are in
uppercase. In MongoDB, these field names should be in camel case.
You can manually edit the names of the MongoDB document paths
in this section also. Make sure that the Use Field Name option is set
to No for each field, like this:

x MongoDB Output

Step name | cystomers Output

Configure connection | Output options [Mongo document fields ™. Create/drop indexes

v # Name Mongo document path Use field name JSON Match field for update Modifier operation Modifier policy
1, CUSTOMERNUMBER customerNumber N N N N/A
2 CUSTOMERNAME customerName N N N N/A
3! CONTACTLASTNAME contact.contactLastName N N N N/A
4! CONTACTFIRSTNAME contact.contactFirstName N N N N/A
5 PHONE contact.phone N N N N/A
6{ ADDRESSLINE1 address.addressLine1 N N N N/A
7| ADDRESSLINEZ address.addressLine2 N N N N/A
8| CITY address.city N N N N/A
9| STATE address.state N N N N/A
10 POSTALCODE address.postalCode N N N N/A
11, COUNTRY address.country N N N N/A
12| SALESREPEMPLOYEENUMBER address.salesRespEmployeeNumber N N N N/A

Get fields | | Preview document structure

@ Help OK Cancel

14.

15.

By clicking on Preview document structure, you will see an example of
what the document will look like when it is inserted into the MongoDB
Customers collection.

Click on the OK button to finish the MongoDB Output configuration.

4. The transformation design is complete. You can run it for testing purposes using the
Run button, as illustrated here:

welcome! [3% Migrate data from RDBMS to MongoDB &2
B R ¥ F BB = 100% -

Run this transformation or job

RN C

Select Customers Customers Qutput

PDI and MongoDB

As you can see, this is a basic transformation that loads data from the RDBMS database and
inserts it into a MongoDB collection. This is a very simple example of loading data from one
point to another. Not all transformations are like this. That is why PDI comes with various
steps that allow you to manipulate data along the way.

In this case, we truncate the collection each time the transformation is run. However, it is
also possible to use other combinations, such as Insert&Update or just Insert or Update
individually.

There's more...

Now that we have designed a transformation, let's look at a simple way of reusing the
MongoDB connection for future transformations.

How to reuse the properties of a MongoDB connection

If you have to create MongoDB connections manually for each transformation, you are likely to
make mistakes and typos. A good way to avoid this is to store the MongoDB connection details
in a separate .properties file on your filesystem. There is a file called kettle.properties
that is located in a hidden directory called .kett1le in your home directory. For example,

in Linux, the location will be /home/latino/.kettle. In Windows, it will be C:\Users\
latino\ .kettle. Navigate to and open this .properties file in your favorite text editor.

Then, copy and paste the following lines:

MONGODB_STEELWHEELS HOSTNAME=localhost
MONGODB_STEELWHEELS PORT=27017
MONGODB_STEELWHEELS USERNAME=
MONGODB_STEELWHEELS PASSWORD=

Save the .properties file and restart Spoon.
Now, where can we use these properties?

You will notice that when you are setting properties in certain PDI steps, you can see the

following icon:

Chapter 1

This icon denotes that we can use a variable or parameter in place of a static value. Variables
are defined using the following structure: ${MY_VARIABLE]}. You will notice that the variables
are encapsulated in ${}. If you are not sure what the name of your variable is, you can also
press Ctrl and the Spacebar; this will open a drop-down list of the available variables. You will
see the MongoDB variables that you defined in the .properties file earlier in this list. With this
in mind, we can now replace the connection details in our steps with variables as shown in
this screenshot:

L] MongoDB Output

Step name | cystomers Output

Configure connection . Output options | Mongo document fields | Create/drop indexes

Hoskt name(s) or IP address(es) | ${MONGODB_STEELWHEELS_HOSTMAME} @
Port | ¢/MONGODB_STEELWHEELS_PORT} ®
Use allreplica set members/mongos
Username | s(mMoNGODB_STEELWHEELS_USERNAME} &
Password | ¢MONGODB_STEELWHEELS_PASSWORD} ®

You can find out more about the MongoDB Output step on this documentation website:
http://wiki.pentaho.com/display/EAI/MongoDB+Output

Loading data from MongoDB to MySQL

In this recipe, we will guide you through extracting data from MongoDB and inserting it into a
MySQL database. You will create a simple transformation as you did in the last recipe, but in
reverse. You don't have to use MySQL as your database. If you want, you can use any other
database. You just need to make sure that you can connect to Pentaho Data Integration via
JDBC. However, in this book, we will use MySQL as an example.

Getting ready
Make sure you have created a MySQL database server or some other database type server

with a database called SteelWheels. Also make sure that your MongoDB instance is running
and launch Spoon.

How to do it...

After you have made sure that you have the databases set up, perform the following steps:

1. Create a new empty transformation.

1. Set the name for this transformation to Loading data from MongoDB
to MySQL.

2. Save the transformation with the name chapterl-mongodb-to-mysqgl.

s

vww allitebooks.conl

http://www.allitebooks.org

PDI and MongoDB

2. Select Customers from MongoDB using the MongoDB Input step.

3.

1.
2.

Select the Design tab in the left-hand-side view.

From the Big Data category folder, find the MongoDB Input step and drag
and drop it into the working area in the right-hand-side view.

Double-click on the MongoDB Input step to open the configuration dialog.
Set the Step Name property to Select Customers.

Select the Input options tab. Click on Get DBs and select SteelWheels from
the Database select box.

After selecting the database, you can click on the Get Collections button
and then select Customers Collection from the select box.

As we're just running one MongoDB instance, we'll keep Read preference as
primary and will not configure any Tag set specification.

Click on the Query tab. In this section, we'll define the where filter data
condition and the fields that we want to extract.

As we just want the customers from USA, we'll write the following query in the
Query expression (JSON) field: {"address.country": "USA"}.

In this recipe, we are not going to cover the MongoDB aggregation
s

10.

11.

12.

framework, so you can ignore those options for now.

Click on the Fields tab. In this tab, we'll define the output fields that we
want. By default, the Output single JSON field comes checked. This means
that each document is extracted in the JSON format with the field name
defined in the Name of JSON output field. As we want to define the fields,
we remove the selection of the Output single JSON field.

Click on the Get fields button and you will get all the fields available from
MongoDB. Remove the _id field because it isn't necessary. For deletion,
you can select the row of the _id field and press the Delete key from your
keyboard, or right-click on the row and select the Delete selected lines
option.

Click on OK to finish the MongoDB input configuration.

Let's configure the output of the MongoDB Customers data in the MySQL database.

1.

On the Design tab, from the Output category folder, find the Table Output
step and drag and drop it into the working area in the right-hand-side view.

Connect the MongoDB Input step to the Table output step by creating a hop
between them.

3.
4.
5.

Chapter 1

Double-click on the step to open the Table Output configuration dialog.
Set Step Name to Customers Output.

Click on the New button next to the Database Connection pulldown.
This will open the Database Connection dialog.

Set Connection Name to SteelWheels. Select the Connection Type as
MySQL. Set Host Name to localhost, Database Name to SteelWheels,
and Port to 3306. Then, set Username and Password to whatever you had
set them as. Your setup should look similar to the following screenshot:

@ & Dpatabase Connection

General Connection Name:
Advanced

Options

Poolin Connection Type: Settings
; Ingres © HostMName:
Clustering) .
Ingres VectorWise localhost

SteelWheels MySQL

Intersystems Cache Database Name:

Kettle thin JDBC driver steelwheels ®
KingbaseEs

LucidDB Port Number:

MS Access 3306 *
MS SQL Server User Name:

MS SQL Server (Native) root e
MaxDB (SAP DB) Password:

MonetDB @
MySQL

* & UseResult Streaming Cursor
Access:

Native (JDBC)
ODBC
JNDI

| Tesk | Featurel | Explore

OK Cancel

6.

Test this, and if all is well, click on OK to return to the Table Output step.

4. Insert this data into a MySQL table using the Table Output step:

1.

Set the Target table field to Customers. This is the name of the MySQL
table to insert data into.

As we haven't created a customer's table in the MySQL database, we can
use a PDI function that will try to generate the required SQL to create the
table and structure. Simply click on the SQL button and it will open the
Execute SQL dialog. Here, you will see the SQL that PDI will execute to
create the customers table. Click on Execute to send this SQL to MySQL
and create the table. Then, click on OK.

[}

PDI and MongoDB

3. Click on OK again to exit the Table Output configuration dialog.
The transformation is complete. You can now run it to load data
from MongoDB to MySQL.

In this transformation, we are simply selecting a collection from the MongoDB Input step
where the country field is USA. Next, we map this collection to the fields in the PDI stream.
Lastly, we insert this data into a MySQL table using the Table Output step. In the Fields
tab, we use JSONPath to select the correct data from the MongoDB collection (http://
goessner.net/articles/JsonPath/). JSONPath is like XPath for JSON documents.

Migrating data from files to MongoDB

In this recipe, we will guide you through creating a transformation that loads data from

different files in your filesystem, and then load them into a MongoDB Collection. We are
going to load data from files called orders.csv, customers.xls, and products.xml. Each
of these files contains a key that we can use to join data in PDI before we send it to the
MongoDB Output step.

Getting ready

Start Spoon and take a look at the content of the orders.csv, customers.xls, and
products.xml files. This will help you understand what the data looks like before you
start loading it into MongoDB.

How to do it...

You will need the orders.csv, customers.x1s, and products.xml files. These files will
be available at the Packt Publishing website, just in case you don't have them. Make sure that
MongoDB is up and running, and then you will be able to perform to the following steps:
1. Create a new empty transformation.
1. Set the transformation name to Migrate data from files to MongoDB.
2. Save the transformation with the name chapter1-files-to-mongodb.

2. Select data from the orders.csv file using the CSV file input step.
1. Select the Design tab in the left-hand-side view.

2. From the Input category folder, find the CSV file input step and drag and
drop it into the working area in the right-hand-side view.

3. Double-click on the step to open the CSV Input configuration dialog.

8.

Chapter 1

Set Step Name to Select Orders.

In the Filename field, click on the Browse button, navigate to the location
of the . csv file, and select the order.csv file.

Set the Delimiter field to a semicolon (;).

Now, let's define our output fields by clicking on the Get Fields button.
A Sample size dialog will appear; it is used to analyze the format data
in the CSV file. Click on OK. Then, click on Close in Scan results.

Click on OK to finish the configuration of the CSV file input.

3. Select data from the customers.xls file using the Microsoft Excel Input step.

1.
2.

8.

Select the Design tab in the left-hand-side view.

From the Input category folder, find the Microsoft Excel Input step and drag
and drop it into the working area in the right-hand-side view.

Double-click on the step to open the Microsoft Excel Input dialog.
Set Step Name to Select Customers.

On the Files tab, in the File or directory field, click on the Browse button
and choose the location of the customers.xls file in your filesystem. After
that, click on the Add button to add the file to the list of files to be processed.

Select the Sheets tab. Then, click on the Get sheetname(s)... button. You'll
be shown an Enter list dialog. Select Sheetl and click on the > button to
add a sheet to the Your selection list. Finally, click on OK.

Select the Fields tab. Then, click on the Get field from header row... button.
This will generate a list of existing fields in the spreadsheet. You will have

to make a small change; change the Type field for Customer Number from
Number to Integer. You can preview the file data by clicking on the Preview
rows button.

Click on OK to finish the configuration of the Select Customers step.

4. Select data from the products.xml file using the Get data from XML step.

1.
2.

Select the Design tab in the left-hand-side view.

From the Input category folder, find the Get data from XML step and drag
and drop it into the working area in the right-hand-side view.

Double-click on the step to open the Get data from XML dialog.
Set Step Name to Select Products.

On the File tab, in the File or directory field, click on the Browse button and
choose the location of the products.xml file in your filesystem. After that,
click on the Add button to add the file to the list of files to be processed.

Select the Content tab. Click on the Get XPath nodes button and select the
/products/product option from the list of the Available Paths dialog.

]

PDI and MongoDB

7.

Next, select the Fields tab. Click on the Get fields button and you will get a
list of available fields in the XML file. Change the types of the last three fields
(stockquantity, buyprice, and MSRP) from Number to Integer. Set the Trim
Type to Both for all fields.

5. Now, let's join the data from the three different files.

6.

7.

7.

Select the Design tab in the left-hand-side view.

From the Lookup category folder, find the Stream lookup step. Drag and
drop it onto the working area in the right-hand-side view. Double-click on
Stream lookup and change the Step name field to Lookup Customers.

We are going to need two lookup steps for this transformation. Drag and
drop another Stream Lookup step onto the design view, and set Step Name
to Lookup Products.

Create a hop between the Select Orders step and the Lookup Customers
step.

Then, create a hop from the Select Customers step to the Lookup
Customers step.

Next, create a hop from the Lookup Customers step to the Lookup
Products step.

Finally, create a hop from Select Products to the Lookup Products step.

Let's configure the Lookup Customers step. Double-click on the Lookup Customers
step and set the Lookup step field to the Select Customers option.

1.

3.

In the Keys section, set the Field and Lookup Field options to Customer
Number.

Click on the Get lookup fields button. This will populate the step with all the
available fields from the lookup source. Remove Customer Number from the
field from the list.

Click on OK to finish.

Let's configure the Lookup Products step. The process is similar to that of the
Lookup Customers step but with different values. Double-click on the Lookup
Products step and set the Lookup step field to the Select Products option.

1.

In the Keys section, set Field to Product Code and the LookupField option
to Code.

Click on the Get lookup fields button. This will populate the step with all
the available fields from the lookup source. Remove Code from the field
in the list.

Click on OK to finish.

Chapter 1

8. Now that we have the data joined correctly, we can write the data stream to a
MongoDB collection.

1.

6.

On the Design tab, from the Big Data category folder, find the MongoDB
Output step and drag and drop it into the working area in the right-hand-side
view.

Create a hop between the Lookup Products step and the MongoDB Output
step.

Double-click on the MongoDB Output step and change the Step name field
to Orders Output.

Select the Output options tab. Click on the Get DBs buttons and select
the SteelWheels option for the Database field. Set the Collection field to
Orders. Check the Truncate collection option.

Select the Mongo document fields tab. Click on the Get fields button and
you will get a list of fields from the previous step.

Configure the Mongo document output as seen in the following screenshot:

Configure connection [Output options [Mongo decument fields

v Name

Order Number
Quantity Ordered
Price Each

Order Line Number
Total Price

Order Date
Required Date
Shipped Date

9| status

10, Customer Number
11; Time

12| Customer Name
13; Contact First Name
14/ Contact Last Name
15; Phone

16, AddressLine 1

17| Address Line 2

18| City

19| state

20| Postal Code

21, Country

® N O s W N = H

22! sales Rep Employee Number

23; Credit Limit
24 Product Code
25 name

26| line

27; scale

28| vendor

29| description
30! stockquantity
31, buyprice

32 MSRP

Create/drop indexes
Mongo document path Use field name JSON Match field for update Medifier operation Medifier policy
orderNumber N N N N/A
quantityOrdered N N N N/A
priceEach N N N N/A
orderLineNumber N N N N/A
totalPrice N N N N/A
orderDate N N N N/A
requiredDate N N N N/A
shippedDate N N N N/A
status N N N N/A
customer.customerNumber N N N N/A
customer.time N N N N/A
customer.name N N N N/A
customer.contact.firstName N N N N/A
customer.contact.lastName N N N N/A
customer.contact.phone N N N N/A
customer.address.addressLine1 N N N N/A
customer.address.addressLine2 N N N N/A
customer.address.city N N N N/A
customer.address.state N N N N/A
customer.address.postalCode N N N N/A
customer.address.country N N N N/A
customer.salesRepEmployeeNumber N N N N/A
customer.creditLimit N N N N/A
product.code N N N N/A
product.name N N N N/A
product.line N N N N/A
product.scale N N N N/A
product.vendor N N N N/A
product.description N N N N/A
product.stockquantity N N N N/A
product.buyprice N N N N/A
product.msrp N N N N/A

7.

Click on OK.

[}

PDI and MongoDB

9. You can run the transformation and check out MongoDB for the new data.
Your transformation should look like the one in this screenshot:

Select Cé%stomers Select Iroducts
o MJ@? - MJ@ —{o

Select Orders Lookup Customers Lookup Products Orders Output

In this transformation, we initially get data from the Orders CSV. This first step populates the
primary data stream in PDI. Our other XLS and XML steps also collect data. We then connect
these two streams of data to the first stream using the Lookup steps and the correct keys.
When we finally have all of the data in the single stream, we can load it into the MongoDB
collection.

You can learn more about the Stream lookup step online at:

http://wiki.pentaho.com/display/EAI/Stream+Lookup

Exporting MongoDB data using the

aggregation framework

In this recipe, we will explore the use of the MongoDB aggregation framework in the MongoDB
Input Step. We will create a simple example to get data from a collection and show you how
you can take advantage of the MongoDB aggregation framework to prepare data for the PDI
stream.

Getting ready

To get ready for this recipe, you will need to start your ETL development environment
Spoon, and make sure that you have the MongoDB server running with the data from
the previous recipe.

Chapter 1

How to do it...

The following steps introduce the use of the MongoDB aggregation framework:

1. Create a new empty transformation.
1. Set the transformation to PDI using MongoDB Aggregation Framework.
2. Setthe name for this transformation to chapteril-using-mongodb-
aggregation-framework
2. Select data from the Orders collection using the MongoDB Input step.
1. Select the Design tab in the left-hand-side view.

2. From the Big Data category folder, find the MongoDB Input step and drag
and drop it into the working area in the right-hand-side view.

3. Double-click on the step to open the MongoDB Input dialog.
Set the step name to Select 'Baane Mini Imports' Orders.

5. Select the Input options tab. Click on the Get DBs button and select the
SteelWheels option for the Database field. Next, click on Get collections
and select the Orders option for the Collection field.

6. Select the Query tab and then check the Query is aggregation pipeline
option. In the text area, write the following aggregation query:

[

{ $match: {"customer.name" : "Baane Mini Imports"} },
{ $group: {" id" : {"orderNumber": "SorderNumber",
"orderDate" : "SorderDate"}, "totalSpend": { S$sum:

"StotalPrice"} } }
1
7. Uncheck the Output single JSON field option.

Select the Fields tab. Click on the Get Fields button and you will get a list
of fields returned by the query. You can preview your data by clicking on the
Preview button.

9. Click on the OK button to finish the configuration of this step.
3. We want to add a Dummy step to the stream. This step does nothing, but it will allow

us to select a step to preview our data. Add the Dummy step from the Flow category
to the workspace and name it OUTPUT.

4. Create a hop between the Select 'Baane Mini Imports' Orders step and the
OUTPUT step.

5. Select the OUTPUT dummy step and preview the data.

[}

PDI and MongoDB

The MongoDB aggregation framework allows you to define a sequence of operations

or stages that is executed in pipeline much like the Unix command-line pipeline. You can
manipulate your collection data using operations such as filtering, grouping, and sorting
before the data even enters the PDI stream.

In this case, we are using the MongoDB Input step to execute an aggregation framework
query. Technically, this does the same as db.collection.aggregate(). The query that we
execute is broken down into two parts. For the first part, we filter the data based on a
customer name. In this case, it is Baane Mini Imports. For the second part, we group
the data by order number and order date and sum the total price.

In the next recipe, we will talk about other ways in which you can aggregate data using
MongoDB Map/Reduce.

MongoDB Map/Reduce using the User

Defined Java Class step and MongoDB
Java Driver

In this recipe, we will use the MongoDB Map/Reduce on PDI. Unfortunately, PDI doesn't
provide a step for this MongoDB feature. However, PDI does provide a step called User
Defined Java Class (UDJC) that will allow you to write Java code to manipulate your data.

We are going to get the total price for all orders for a single client, which we will pass to the
transformation as a parameter. We will also get a total for all other clients in the collection.
In total, we should get two rows back.

Getting ready

To get ready for this recipe, you need to download the MongoDB driver. In this case, we are
using the mongo-java-driver-2.11.1 version. You can use the last version, but the
code in this recipe may be a bit out of date. The driver should live in the lib folder of PDI.
Then, you just need start your ETL development environment Spoon and make sure you
have the MongoDB server started with the data from the last recipe inserted.

Chapter 1

How to do it...

In this recipe, we'll program Java code and utilize the MongoDB Java driver to connect to the
MongoDB database. So, make sure you have the driver in the 1ib folder of PDI and then
perform the following steps:

1. Create a new empty transformation.

1.
2.

3.

Set the transformation name to MongoDB Map/Reduce.

On the Transformation properties and Parameters tab, create a new
parameter with the name as CUSTOMER_NAME.

Save the transformation with the name chapterl-mongodb-map-reduce.

2. From the Job category folder, find the Get Variables step and drag and drop it into the
working area in the right-side view.

1.
2.
3.

Double-click on the Get Variables step to open the configuration dialog.
Set the Step name property to Get Customer Name.

Add a row with the name as customerName, the variable as
${CUSTOMER_NAME]}, and Type set to String.

3. From the Scripting category folder, find the User Defined Java Class step and drag
and drop it into the working area in the right-hand-side view.

4. Create a hop between the Get Customer Name step and the User Defined Java
Class step.

1.

Double-click on the User Defined Java Class step to open the
configuration dialog.

In the Step name field, give a suggested name of MapReduce.

In Class code, let's define our Java code that is sent to MongoDB by a
command using the MapReduce functions and then we will get the result:

import com.mongodb.DB;

import com.mongodb.DBCollection;
import com.mongodb.DBObject;

import com.mongodb.MapReduceCommand;
import com.mongodb.MapReduceOutput;
import com.mongodb.Mongo;

private FieldHelper customerNameIn = null;

public boolean processRow (StepMetalInterface smi,
StepDatalInterface
sdi) throws KettleException

{

Object[] r = getRow() ;

s

PDI and MongoDB

if (r == null) {
setOutputDone () ;
return false;
}
if (first) {
first = false;
customerNameIn = get (Fields.In, "customerName") ;

try {
final Mongo mongo = new Mongo ("localhost", 27017) ;

final DB db = mongo.getDB ("SteelWheels") ;

final DBCollection ordersCol =
db.getCollection ("Orders") ;

final String map = "function() { "+
"var category; " +
"if (this.customer.name ==
'"tcustomerNameIn.getString(r)+"') "+
"category = '"+customerNamelIn.
getString(r)+"'; " +
"else " + "category = 'Others'; "+
"emit (category, {totalPrice: this.
totalPrice,
count: 1});}";
final String reduce = "function(key, values) { " +
"var n = { count: 0, totalPrice: 0}; " +
"for (var i = 0; i < values.length; i++) {" +
"n.count += values[i] .count; "+
"n.totalPrice += values|[i] .totalPrice; "+
} " + "return n;} ";

final MapReduceCommand cmd = new MapReduceCommand (
ordersCol, map, reduce, null,
MapReduceCommand.OutputType.INLINE, null) ;

final MapReduceOutput out = ordersCol.mapReduce (cmd) ;
get (Fields.Out, "mapReducedSON") .setValue (r,out.
toString()) ;
} catch (Exception e) {
e.printStackTrace () ;
get (Fields.Out, "mapReduceJSON") .setValue(r,"");
}
r = createOutputRow(r, data.outputRowMeta.size()) ;
putRow (data.outputRowMeta, r);
return true;

=

Q

Downloading the example code

You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www . packtpub.com/support and register to have the files

e-mailed directly to you.

Chapter 1

4. On the Fields tab, set Fieldname to mapReducelJSON and the Type property
to String. This will be the field output from the MapReduce command.

5. Click on OK to finish the configuration.

5. From the Input category folder, find the Json Input step and drag and drop it into the
working area in the right-hand-side view.

6. Create a hop between the MapReduce step and the Json Input step.

1.
2.
3.

Double-click on the JSON Input step to open the configuration dialog.

Set the Step Name property to Convert JSON.

On the File tab, check the Source is defined in a field? option. Next, select
the mapReducelJSON option in the select box of Get source from field.

On the Fields tab, we will map the JSON to Fields in the PDI stream. The
definition should be like what is shown in this screenshot:

@ & Json input

File |Content [Fields

v # Name
1 name
2 totalPrice
3| count

Step name | conyert JSON

Additional output Fields

Path
S.results[*]._id
S.results[*].value.totalPrice
S.results[*].value.count

Type

String
| BigNumber
| Integer

5. Click on OK to finish the configuration.

7. Now, let's define the fields that we want to see as the output of the transformation.
From the Transform category folder, find the Select values step and drag and drop it
into the working area in the right-side view.

Create a hop between the Convert JSON step and the Select values step.

1. Double-click on the Select Values step to open the configuration dialog.
2. Setthe Step Name property to OUTPUT.

s

PDI and MongoDB

3. Onthe Select & Alter tab, click on the Get fields to select button. This will
populate the table with all the available fields in the stream. Remove the
mapReducel)SON field; it isn't necessary anymore, since we have converted
it into individual fields in the PDI stream.

4. Click on OK to finish the configuration.
9. When you run the transformation, be sure to set the CUSTOMER_NAME parameter

in the Run dialog. This will be used by the Get Customer Name step and to filter the
map function.

—— &7

Get Customer Name MapReduce Convert JSON OUTPUT

In this example, we executed a transformation that takes CUSTOMER_NAME as a parameter.
This value is then sent to User Defined Java Class and used in the Java code within. The
code in User Defined Java Class is a simple Map and Reduce JavaScript function that we are
sending to the MongoDB server.

The output of this step is a single JSON row that needs to be parsed into fields in the PDI
Stream. To do this, we used the JSON input step and mapped the JSON string to individual
stream fields.

If you want to know more about User Defined Java Class, you can find out
more in the documentation at http://wiki.pentaho.com/display/EAI/
User+Defined+Java+Class

When we talk about map and reduce functions, it is almost mandatory to talk about Hadoop,
an open source software framework for storage and processing of datasets that uses a
MapReduce engine.

PDI provides integration with Hadoop using PDI job steps and transformation steps. You can
find more documentation about this on the Pentaho website. Personally, | recommend these
two tutorials:

» http://wiki.pentaho.com/display/BAD/Using+Pentaho+MapReduce+to+
Parse+Weblog+Data

» http://wiki.pentaho.com/display/BAD/Using+Pentaho+MapReduce+to+
Generate+an+Aggregate+Dataset

=

Chapter 1

Working with jobs and filtering MongoDB

data using parameters and variables

In this recipe, we guide you through creating two PDI jobs. One uses variables and the other
uses parameters. In a PDI process, jobs orchestrate other jobs and transformations in a
coordinated way to realize the main business process. These jobs use the transformation
created in the last recipe but with some changes, as described in this recipe.

So, in this recipe, we are going create two different jobs, which will be used to send data to a
subtransformation. The subtransformation that we will use will be a copy of the transformation
in the previous recipe.

Getting ready

To get ready for this recipe, you need to start your ETL development environment Spoon, and
make sure you have the MongoDB server started with the data inserted in the last recipes.

How to do it...

Let's start using jobs and variables. We can orchestrate the ETL to run in different ways. In this
simple case, we are just using the customer name. Perform the following steps:

1. Let's copy and paste the transformation created in the previous recipe and save it as
chapterl-mongodb-map-reduce-writelog.ktr.

2. Open that transformation using Spoon, and from the Utility category folder, find the
Write to log step. Drag and drop it into the working area in the right-side view.

1. Create a hop between the OUTPUT step and the Write to log step.
Double-click on the Write to Log step to open the configuration dialog.
Set Step Name to MapReduce.

Click on the Get Fields button.

Click on OK to finish the configuration.

ok 0N

3. Let's create a new empty job.

1. Click on the New file button from the toolbar menu and select the Job item
entry. Alternatively from menu bar, go to File | New | Job.

2. Open the Job properties dialog by pressing Ctrl + J or by right-clicking on the
right-hand-side working area and selecting Job settings.

3. Select the Job tab. Set Job Name to Job Parameters.

=]

PDI and MongoDB
4. Select the Parameters tab and add a Parameter entry with the name as
CUSTOMER_NAME. Click on OK.
5. Save the Job with the name job-parameters.
4. From the General category folder, find the START, Transformation, and Success
steps and drag and drop them into the working area in the right-side view.
1. Create a hop between the START step and the Transformation step.
Then, create a hop from the Transformation step to the Success step.
Double-click on the Transformation step to open the configuration dialog
Change the Name of job entry property to MapReduce Transf.

ok 0N

Click on the transformation button of the Transformation filename field and
select the transformation file that you copied before in your filesystem. Also
select the chapterl-mongodb-map-reduce-writelog.ktr file.

6. Select the Parameters tab. By default, the Pass all parameters values
down to the sub-transformation option is checked, which means our job
parameter will be passed to the transformation.

Click on OK to finish.
Run the job and analyze the results and check the logs on the Logging tab.
Now let's do a quick and simple example using variables:
1. Copy and paste the chapterl-mongodb-map-reduce-writelog transformation.
Save it as chapterl-mongodb-map-reduce-writelog-without-parameter.

2. Open the transformation with Spoon and remove the parameter from Transformation
properties.

3. Copy and paste the last job. Save it as job-variables.
1. Open the job with Spoon.

2. In Job properties, change the job name to Job Variables. From the
Parameters tab, remove the CUSTOMER_NAME parameter. Select the
parameter, right-click on it and select Delete selected lines, or just press
delete on your keyboard.

3. Click on OK to finish.
4. From the General category folder, find the Set variables step and drag and drop it
into the working area in the right-side view.
1. Remove the hop from between the START step and MapReduce Transf step.
2. Create a hop between the START step and the Set variables step.

Chapter 1

Then, create a hop between Set Variables and the MapReduce Transf step.
Double-click on the Set Variables step to open the configuration dialog.
Set the Step name property to Set CUSTOMER_NAME.

On Variables, create a new variable with the CUSTOMER_NAME name.
Set the value to an existing client in the database and the Scope type to
Valid in the root job.

o o &~ W

7. Click on OK to finish the configuration.

5. Onthe MapReduce Transf transformation step, change the file location for the
transformation file to the transformation without the parameter.

6. Run the job and analyze the results, checking the logs in the Logging tab.

Most ETL solutions created in Pentaho Data Integration will be sets of jobs and transformations.

Transformations are workflows with an orchestration of actions that manipulate data using
essentially input, transformation, and output steps.

Jobs are workflows with an orchestration of tasks that can be order execution failure
Or success.

Variables and parameters are extremely useful functions that we can use to create dynamic
jobs and transformations.

e

The Thin Kettle
JDBC Driver

In this chapter, we will cover the following recipes:

» Using a transformation as a data service
» Running the Carte server in a single instance
» Running the Pentaho Data Integration server in a single instance

» Defining a connection using a SQL Client (SQuirreL SQL)

Introduction

The Thin Kettle JDBC Driver provides a means for a Java-based client to query the results of a
transformation.

It is a new concept pioneered by Matt Casters, (emattcasters), the Chief Architect of Data
Integration at Pentaho and Kettle project founder. It allows any Java-based, JDBC-compliant
tool, including third-party reporting systems, to execute a query against a predefined Kettle
transformation. This works a lot like a traditional SQL query. The user connects to a thin JDBC
data source (Transformation) and sends a SQL query to the data source. The transformation is
executed based on the SQL query, and a result set is returned.

The Thin Kettle JDBC Driver is a feature that is available only in
e Pentaho Enterprise Edition since version 5.0.

s

The Thin Kettle JDBC Driver

In this chapter, we will teach you how to use the Thin Kettle JDBC Driver with the Carte and
Data Integration servers. As with the rest of the book, we will be using Pentaho Enterprise
Edition 5.4. The following diagram shows the Just in Time Blending;:

E D"n' v

@) Just in time blending @ ponicho
PDI ,‘m_a‘-;trci;
il

Source: Just in Time Blending from the Pentaho Wiki page

Using a transformation as a data service

This recipe guides you through the process of turning an existing Kettle transformation into a
data service for the Thin Kettle JDBC Driver. A data service is a configuration that allows the
user to query a transformation as if it were a table in a database.

Getting ready

To get ready for this recipe, you first need to start Spoon and the MongoDB server with the
same database from the previous chapter.

How to do it...

We are assuming that you have MongoDB with the data generated in the previous chapters and
Spoon open from the Pentaho EE version. Perform the following steps to create a data service:

1. Openthe chapterl-using-mongodb-aggregation-framework.ktr file and
save it as chapter2-using-mongodb-aggregation-framework-kettle-thin.
ktr. Change the transformation name to MongoDB Aggregation Kettle Thin.

2. Define a Data Service for this new transformation.

1. Open the Transformation settings dialog. There are two ways of doing this.
One is to press Ctrl + T, right-click on the right-hand side working area, and
select Transformation settings. The other is as follows: on the menu bar,
select the Settings... item entry from Edit menu.

Chapter 2

Select the Data Service tab.

Click on the Create new Data Service button.

Set the new virtual table to AggregationTable.

Click on the OK button.

Select the OUTPUT option of the Service step dropdown menu.

o o M wDd

3. Click on the OK button of the Transformation properties dialog and save
the transformation.

& welcome! [3¥ MongoDB Aggregation Kettle Thin 2
B> ® L P MEBEOER = [100%]|~
oy 0 {‘?/]
B, > o
Select 'Baane Mini Imports' Orders OUTPUT

As we explained in the previous chapter, this transformation will query data from a MongoDB
instance using the MongoDB Aggregation Framework.

However, in this recipe, we configured the output of this transformation to serve as a Kettle
Data Service. The configuration for this Kettle Data Service will be saved in the <user home
folder>/.pentaho/metastore/pentaho/Kettle Data Service/ folder with the
name as AggregationTable.xml in Unix/Linux operating systems and C:\Users\<user
home folder>\.pentaho\metastore\pentaho\Kettle Data Service\
AggregationTable.xml. This XML contains the metadata that describes the data service.

In the next recipes, we will guide you through running Carte and Pentaho Data Integration
Server (DI Server) in a single instance/server. You can run these platforms in a cluster, but
that isn't the goal of this book. With Carte or DI Server up and running, you will be able to list
all details of all Data Services from these documents.

In the next recipe, we will guide you through making the Carte server run, with the data
services of Thin Kettle available.

Es

vww allitebooks.conl

http://www.allitebooks.org

The Thin Kettle JDBC Driver

Running the Carte server in a single

instance

This recipe guides you through starting a Carte server on a single-instance machine. The Carte
server is a lightweight web server that enables remote execution of transformations and jobs.
It is a crucial tool for coordinating job and transformation executions in a scale-out cluster
environment.

Getting ready

To get ready for this recipe, you first need to start the MongoDB server with the same
database as that of the last chapter. You will also have to check <user home folders/.
pentaho/metastore in Unix/Linux operating systems, and in the Windows operating
system, the C:\Users\<user home folder>\.pentaho\metastore folderis
accessible to the Carte server.

How to do it...

To start the Carte Server, perform the following steps:

1. First, we will have to configure the properties of Carte Server, such as hostname,
port, and whether it is the master in the cluster environment:

1. You need create an XML file with the following content:

<slave configs>
<slaveserver>
<name>master</name>
<hostname>localhost</hostname>
<port>8082</port>
<master>Y</masters>
</slaveservers
</slave_config>

2. Save the file somewhere on your filesystem with the name
carte-config-master-8082.xml.

2. Open a command-line tool on your operating system and navigate to the <pentaho-
installation-path>/design-tools/data-integration folder.
3. Start the Carte server by executing the following command:

o For Unix/Linux operating systems: . /carte.sh <file-path>/carte-
config-master-8082.xml

o For the Windows operating system: carte.bat <file-path>/carte-
config-master-8082.xml

=

Chapter 2

You should see a message similar to Carte - Created listener for webserver
@ address: localhost:8082 once the server is ready.

Open your web browser and navigate to http://localhost:8082/.

By default, both the username and password are cluster. If you wish, you can
change the authentication details in the <pentaho-installation-paths>/
design-tools/data-integration/pwd/kettle.pwd file.

You can list the available Kettle Data Services by navigating to the http://
localhost:8082/kettle/listServices/ endpoint. You should get a result
similar to the following screenshot:

=2 | O localhost

This XML file does not appear to have any style information associated with it. T|

r<services>
—<service>
<name>AggregationTable</name>
—<row-meta>

—<value-meta>
<type>Number</type>
<storagetype>normal</storagetype>
<name=>totalSpend</name>
<length>-1</length>
<precision>-1</precision>
<origin>Select 'Baane Mini Imports' Orders</origin>
<comments/>
<conversion_Mask/>
<decimal_symbol>.</decimal_symbol>
<grouping_symbol>,</grouping_symbol>
<currency_symbol/>
<trim_type>none</trim_type>
<case_insensitive>N</case_insensitive>
<sort_descending>N</sort_descending>
<output_padding>N</output_padding>
<date_format_lenient>N</date_format_lenient>
<date_format_locale>en GB</date_format_locale>
<date_format_timezone>Europe/London</date_format_timezone>
<lenient_string_to_number>N</lenient_string_to_number=>

</value-meta>

—<value-meta>
<type>Integer</type>
<storagetype>normal</storagetype>
<name>orderNumber</name>
<length>-1</length>
<precision>-1</precision>
<origin>Select 'Baane Mini Imports' Orders</origin>
<comments/>
<conversion_Mask/>
<decimal_symbol>.</decimal_symbol>
<grouping_symbol>,</grouping_symbol=>
<currency_symbol/>
<trim_type>none</trim_type>
<case_insensitive>N</case_insensitive>
<sort_descending>N</sort_descending>
<output_padding>N</output_padding>
<date_format_lenient>N</date_format_lenient>

s

The Thin Kettle JDBC Driver

In this recipe, we created an XML file that was used to configure a single Carte instance.
We set the Carte server to run on the local machine on port 8082. We also set the Carte
instance to be the master instance.

To connect to the Carte server, we opened our web browser, navigated to the Carte

server and entered our username and password, which were configured in the <pentaho-
installation-path>/design-tools/data-integration/pwd/kettle.pwd file.
The file structure is based in a line with <username> : <passwords. By default, you can
see the last line with the password obfuscated:

cluster: OBF:1v8wluh21z7klym71z7ilugolv9g

It is advised that you configure the carte server password to something other than the default
in a production environment. It's possible to set the username and password in plain text,

but you should instead use <pentaho-installation-path>/design-tools/data-
integration/encr. sh for Unix/Linux operating systems or <pentaho-installation-
path>/design-tools/data-integration/Encr.bat for Windows operation systems
to set the password.

To set the password, you have to execute the following:

sh encr.sh -carte carteServerPassword

OBF:1lshgqluumlxmglzlolvu91ls9rlsarlrj51z0j1t331z0blrh9lsajlsbjlvvllzlulxmkl
uvklshs

Finally, we listed the available Data Services on the Carte server by executing this endpoint in
the Carte instance: http://localhost:8082/kettle/listServices/.

At the moment, we are working with jobs and transformations that are stored and executed
directly from our filesystem. However, it is possible to save and execute jobs and transformations
from centralized Kettle repositories as well. The following repository types are available for us:

» Dl repository: This is a repository that is available only on Pentaho Enterprise Edition,
and is based on the Java Content Repository (JCR), which provides version control
and referential integrity checks.

» Kettle database repository: This database repository is used to save jobs and
transformations in a relational database. You can generate this repository from
the Spoon user interface.

» Kettle file repository: This is the simplest of the repositories and is based on any
kind of folder in the filesystem.

S E

Chapter 2

Running the Pentaho Data Integration server

in a single instance

This recipe guides you through starting a Data Integration server and the simple steps
required to work with a Data Integration repository. We will add a MongoDB MapReduce
transformation to the DI repository and define a data service that runs from the server.

Getting ready

To get ready for this recipe, you first need to start the MongoDB server with the same
database as that of the last chapter. You will also have to verify that <user home
folder>/.pentaho/metastore is accessible to Data Integration server.

How to do it...

To run the DI Server, perform the following steps:

1. Thereisa ctlscript.sh script for Unix/Linux operating systems and ctlscript.bat
for Windows operating systems in the Pentaho EE suite. This allows you to control
the servers packed in the platform. We can start, stop, and restart various servers
using this script:

1. Open a command-line tool on your operating system and navigate to the
<pentaho-installation-paths/ folder.

2. Execute the ./ctlscript.sh help command to get all the available
options for managing the Pentaho suite.

3. Next, execute the . /ctlscript.sh start command and all Pentaho
services will start. As we mentioned before, it is possible to execute various
servers manually using this script. We could have run the postgres server
first (needed for the data integration server) and the Data Integration server
afterwards using . /ctlscript.sh start postgresqgl and then ./
ctlscript.sh start data-integration-server.

2. Another way of running the DI server is by executing the <pentaho-installation-
path>/server/data-integration-server/start-pentaho. sh file for Unix/
Linux operating systems and <pentaho-installation-path>/server/data-
integration-server/start-pentaho.bat for Windows operating systems.
Even in Windows, you can start the DI server from the Start menu by going to Start |
Pentaho Enterprise Edition | Server Management | Start Data Integration Server.

The Thin Kettle JDBC Driver

3. Check whether or not the DI server has started correctly by accessing http://
localhost:9080/pentaho-di in your web browser. You should get a login page
similar to what is shown in this screenshot:

= localhost: ~@| 8-

‘@) rentaho
A Hitachi Data Systems Company

Data Integration Server

1. You should see a login screen. Enter admin as the username and password
as the password.

2. You can list the available Kettle Data Services by navigating to the http://
localhost:9080/pentaho-di/kettle/listServices endpoint.

4. Openthe chapterl-mongodb-map-reduce-writelog-without-parameter.
ktr file in Spoon, save it as chapter2-mongodb-map-reduce.ktr, and change
the transformation name to MongoDB MapReduce Kettle Thin.

5. Save the transformation in the DI repository.

1. Inthe main menu, navigate to Tools | Repository and click on Connect...
or press Ctrl + R.

Click on the plus icon to add a new repository.

Once the Select the repository type opened, select the DI Repository
option. The following screenshot is seen:

Chapter 2

& | > [([__T] > (o] > == > [ﬁ
y =] (=) =
Get Customer Name MapReduce Convert JSON OUTPUT LOG

[ccpostoy comecton [O Repository Configuration

Repository:

User Name:
admin

Password:

| show this dialog at startup

+ URL:
hetp://localhost:9080/pentaho-di Test

Name:
PentahoMongoDB
Description:

Pentaho MongoDB Cookbook

| ©OK || cancel

Cancel

In the Repository configuration dialog, enter http://localhost:9080/
pentaho-di in the URL property, PentahoMongoDB in the Name property,
and Pentaho MongoDB Cookbook for the Description property. Then click
on the OK button.

In the Repository Connection dialog, use the default credentials;
the username is admin and the password is password. Click on OK.
Then, in the Close files dialog, click on the No button.

Saving your transformation will display the Transformation properties dialog.
Click on OK and then the Enter comment dialog will appear with a default
comment. Click on OK again. The comments dialog appears, because the
Data Integration Repository is based on the JRC version control.

Eis

The Thin Kettle JDBC Driver

6.

10.

Define a data service for this transformation.

1. Open the Transformation settings dialog by any of these ways: press
Ctrl + T; right-click on the right-hand side working area and select
Transformation settings; or in the main menu, select the Settings...
item entry from the Edit menu.

2. Once the Transformation properties dialog opens, select the
Data Service tab.

Click on the Create new Data Service button.

Set the new virtual table property to MapReduceTable.

Select the OUTPUT option of the Service step drop-down property.
Click on the OK button.

Save the transformation again. Because you are connected to the DI
repository, the Enter comment dialog is displayed. Enter a comment
and click on OK.

N o ok~ w

Register the new PentahoMongoDB repository with the DI server by adding the
following XML to the <pentaho-ee-installation-paths>/server/data-
integration-server/pentaho-solutions/system/kettle/slave-
server-config.xml file inside the slave config tag:

<slave configs>

<repositorys
<name>PentahoMongoDB</name>
<username>admin</username>
<password>password</password>
</repository>
</slave_config>

The MongoDB driver is not available in the full class path of the DI server, and it is
necessary to add it. Copy the MongoDB driver from <pentaho-ee-installation-
path>/design-tools/data-integration/plugins/pentaho-mongodb-
plugin/lib/mongo-java-driver-2.13.0.jar and paste it in the <pentaho-
ee-installation-paths>/server/data-integration-server/tomcat/
webapps/pentaho-di/WEB-INF/1ib folder.

Restart the Data Integration server using the. /ctlscript.sh restart data-
integration-server command.

Get the MapReduceTable service definition by navigating to the
http://localhost:9080/pentaho-di/kettle/listServices endpoint.

Chapter 2

For Windows operating systems, if you don't see your service, one
of the reasons is that you probably have the wrong value for the
KETTLE_HOME variable.

KETTLE_HOME is the home folder of the .kettle folder. Inside
the latter, you can find configurations for Pentaho Data Integration,
for example, the repositories.xml file. As the DI Server is
running as a service over the Administrator user, the KETTLE _
HOME variable has the C: \ value by default.

» There are two things that you can do to fix this:

%&‘ » Copythe repositories.xml file from your home user;
for example, copy it from C: \Users\<user home
folder>\.kettle\repositories.xml to
C:\.kettle\repositories.xml.

» Stop the DI server service and run the following command
from <pentaho-installation-path>/server/
data-integration-server/tomcat/bin

tomcaté6.exe //US//pentahoDatalntegrationServer
++JvmOptions -DKETTLE HOME=C:\Users\<user home
folders>\.kettle\repositories.xml

The user interface of the DI server looks similar to the Carte server. However, Carte is a
lightweight web server based on the Jetty server and doesn't provide enterprise features,
such as scheduling jobs or transformations. The DI server is a Tomcat-based server with
more capabilities for integration systems, for example, LDAP authentication.

In this recipe, we walked you through the steps for managing the DI server using the
ctlscript.sh script. It's worth noting that it is also possible to use the start-pentaho
and stop-pentaho scripts from the <pentaho-ee-installation-path>/server/
data-integration-server/ folder.

Define a connection using a SQL Client

(SQuirrel SQL)

In this recipe, we will guide you through the steps required to connect to your MongoDB
instance via the JDBC-based SQuirreL SQL Client. We will be using the Thin Kettle JDBC
Driver to make the connection to the MongoDB instance.

The SQuirreL SQL Client is a SQL client open source project, and it is possible to connect
to any database that provides a JDBC driver, such as Thin Kettle.

s

The Thin Kettle JDBC Driver

Getting ready

To get ready for this recipe, you first need to start the MongoDB server with the same
database as that of the last chapter. Then make sure that the Carte and DI servers are
running. Download SQL Squirrel from http://squirrel-sql.sourceforge.net
and install it in your computer by following the instructions on the website.

How to do it ...

Once we have our Carte or DI Server up and running, we can configure a SQL client to
fire some SQL queries and get some data back. Perform the following steps to configure
a Squirrel SQL client:

1. Open your Squirrel SQL Client.

2. Define a new JDBC driver. To do this, you can perform the following steps:

1.
2.

6.

Click on the Drivers tab from left side of Squirrel SQL Client.

Click on the button with the plus icon; or in the tools menu, click on
Drivers and then on New Driver.... You will see an Add Driver dialog.
This will allow you to define the Java Class Path and the Driver name
on your Squirrel SQL Client.

Set the Name property to Kettle Thin.

Set Example URL to jdbc:pdi://<server:ports>/
kettle?<option=values.

Select the Extra Class Path tab. Click on the Add button and add
the following .jar files from your <pentaho-installation-paths>/
design-tools/data-integration/1ib folder:

o kettle-core-<versions.jar

o kettle-engine-<versions>.jar

o commons-httpclient-3.1.jar

o commons-codec-1.5.jar

O commons-lang-2.6.jar

o commons-logging-1.1.1.jar

o commons-vis-<versions>-pentaho.jar
a log4j-1.2.16.jar

o scannotation-1.0.2.jar

Click on the List Drivers button.

Chapter 2

7.

8.

Select the org.pentaho.di.core.jdbc.ThinDriver option for the Class Name
property. Your setup should look similar to the following screenshot:

Click on the OK button to save the driver configuration.

3. Configure the connection for the Carte server. To do this, perform the following steps:

1.
2.

Select the Aliases tab from left side of Squirrel SQL Client.

Click on the button with a plus icon; or in the tools menu, click on Aliases
and then on New Alias....

Once the Add Alias dialog opens, set the Name property to Pentaho Carte
Server Conn.

Select the In the Driver property, select Kettle Thin option.

For the URL property, change the connection text to jdbc:pdi://
localhost:8082/kettle.

The default User Name and Password properties are both cluster.

Click on the Test button to test the connection, and you should see the
Connection successful dialog. Your setup should look similar to what is
shown in the following screenshot:

0 Add Alias

Add Alias

Name: |Pentaho Carte Server Conn |
Driver: |V Kettle Thin ||| New |
URL: idbc:pdiiflocalhost: 8082/kettle |
User Name: [cluster |
Password: [aaasas |

[Jauto logon [] Connect at Startup

ﬁ Properties

Warning - Passwords are saved in clear text

| 0K || Close || Test |

8

. Click on the OK button to save the connection configuration.

@l

The Thin Kettle JDBC Driver

With the connection defined, you can now connect to Carte using your Thin Kettle connection.
Double-click on the Pentaho Carte Server Conn connection and click on the Connect button.
You will have a new session tab opened, as shown in the following screenshot. In this session,
you can execute basic operations such as running SQL queries, listing tables, and listing
columns of a particular table.

1. Run SQL queries:
1. Select the SQL tab in the Pentaho Carte Server Conn session.
2. Write select * from AggregationTable, in the text area.

3. Execute the SQL query by any of these ways: click on Run SQL button; in the
tools menu, select Session and then click on Run SQL, or just press Ctrl +
Enter. You will get the query result as shown in the following screenshot:

SQuirreL SQL Client Version 3.5.3
File Drivers Aliases Plugins Session Windows Help

Connect to: |Pentaho Carte Server Conn |v| & || & | Active Session: |1 - Pentaho Carte Server ... |v| S
E:f %x [J 1 - Pentaho Carte Server Conn as cluster

OAEDIENE FEEEEEDDEEIGE

Pentaho Carte Server Conn

=,

PETL IEL LI

Aliases

‘| "gbjects | 8oL | Hibernate |

select * from AggregationTable

select * from AggregatilonTable

Drivers

B [e,

select * from A

Rows 4; select * from AggregationTable

Results | MetaData [Info | Overview / Charts

: totalSpend orderhumber orderDate

:|ll40.652.85 10325 2004-11-05 00:00:00.0
ifi1Le.769.68 10309 2004-10-15 00:00:00.0
AL.474.66 10158 2003-10-10 00:00:00.0
#fl1=4.702 10103 2003-01-25 00:00:00.0

2. Define a connection using Thin Kettle to Data Integration server:
1. Select the Aliases tab from the left-hand side of Squirrel SQL Client.

2. Click on the button with a plus icon. Alternatively, in the tools menu, click on
Aliases and then on New Alias....

3. Once the Add Alias dialog opens, set the Pentaho DI Server Conn name for
the Name property.

In the Driver property, select the Kettle Thin option.

5. Set the URL property to jdbc:pdi://localhost:9080/
kettle?webappname=pentaho-di.

Chapter 2
6. The default User Name and Password properties are admin and
password, respectively.

7. Click on the Test button to test the connection, and you should get a
Connection successful dialog. The connection configuration should
be similar to what is shown in the following screenshot:

Add Alias

MName: |Pentaho DI Server Conn |
Driver: |‘/ kettle Thin |v || MNew |
URL: idbc:pdiziflocalhost: 9080/kettle?webappname=pentaho-di |
User Name: [admin |
Password: [1eeanass |

[JAuto logon [] Connect at Startup

=i Properties

Warning - Passwords are saved in clear text

| oK || Close || Test |

8. Click on the OK button to save the connection configuration.

3. With the connection defined, we are able to execute SQL queries against the
connection. The steps are exactly the same as executing queries on the Carte
server, the only difference being that you are running them on the DI Server.

The driver is registered in SQuirreL using a set of Java libraries. The kettle-core-
<versions. jar file is the main library that is used to create the connection, and it
contains the org.pentaho.di.core.jdbc.ThinDriver class. The other . jar
files are dependencies of the kettle library. These Java libraries are required to make
the connection to the Carte or DI server and execute the SQL queries that we described
before. Think of the Carte or DI Server as the "Kettle Database."

This recipe uses the Squirrel SQL Client as an example. However, you can use some other
SQL client and develop a solution using this JDBC or using any reporting solution that is
JDBC-based.

&1

The Thin Kettle JDBC Driver

The Thin Kettle JDBC Driver is limited to only performing select queries. It does not have

the ability to execute inserts, updates, deletes, and so on. With the select ability, we can
support connections to Mondrian. Mondrian is a ROLAP (short for Relational Online Analytical
Processing) server used by the Pentaho BA server, which we will cover in more detail in the
next couple of chapters.

If you want to learn more about what SQL is supported by the Thin Kettle JDBC Driver, you can
consult this documentation website:

http://wiki.pentaho.com/display/EAI/JDBC+and+SQL+Reference#JDBCandSQL
Reference-SQLSupport

Pentaho Instaview

In this chapter, we will cover the following recipes:

» Creating an analysis view
» Modifying Instaview transformations
» Modifying the Instaview model

» Exploring, saving, deleting, and opening analysis reports

Introduction

Pentaho Instaview is a plugin for Pentaho data integration and is available in the Enterprise
Edition version only. This plugin is designed for the user to instantly parse, model, and analyze
data from different data sources, such as MongoDB.

Creating an analysis view

This recipe guides you through the process of parsing and profiling from a MongoDB collection
and creating an instant analysis report.

Getting ready

To get ready for this recipe, you first need to start Spoon and the MongoDB server with the
same database as that of the previous chapter.

Pentaho Instaview

How to do it...

Perform the following steps to create a simple analysis view:

1. In Spoon, change the perspective to Instaview. If you are using Windows operation
the Windows operating system, you can start Instaview from the Start menu by
selecting Pentaho Enterprise Edition | Design Tools | Instaview.

2. Click on the Create New button.

In the New Data Source dialog, select the Big Data tab. Next, select MongoDB
and click on OK.

4. Define the MongoDB connection by performing the following steps:

1. Inthe MongoDB input, select Configure Connection tab.
2. Setthe host name(s) or IP address(es) to localhost.
3. Set Port to the default port number, which is 27017.
4. Select the Input options tab.
5. Click on the Get DBs button and select the SteelWheels option for the
Database field. Click on Get collections and select the Orders option
for the Collection field.
6. Select the Fields tab.
Uncheck the Output single JSON field option;
Click on the Get fields button. After analyzing the sample documents,
remove the _id field from the list. You should get the list as shown in
the following screenshot:
s " Name Path Type Indexed values Sample: array min:max indesx Sample: Foccur/Zdocy|
1 custornerfumber S.customer.customerflumber Integer 100,100
2 code S.product.code String 100,100
3 totalPrice S.totalPrice MNumber 100,100
4 requiredDate S.requiredDate Date 100,100
5 orderDate S.orderDate Date 1004100
6 orderLineNumber S.orderLineMumber Integer 100,100
7 time S.customertime Date 100/100
8 priceEach S.priceBach Number 100,100
g shippedDate S.shippedDate Date 100,100
10 orderMumber S.orderMumber Integer 100,100
11 quantityOrdered S.quantityOrdered Integer 100,100
12 status S.status String 100,100
9. Click on OK.

=)

Chapter 3

5. After the data of the connection has been processed, you should see the interactive
analytics screen as shown in the following screenshot:

> NoFiers Unsaved Report

~ Properties
Report Options.

6. Drag and drop the Totalprice measure into the Measures area. You'll get the global
number of the total price.

7. Drag and drop the Orderdate level into the Rows area. Instantly, you'll get the total
price by order date.

Click on the Save view button.

9. Next, click on the Close button, and in the Save Datasource dialog, set MongoDB
Orders to the data source name and click on the Save button.

Pentaho Instaview is based on three main simple steps: choose the data source, auto-prepare
the data for analysis, and Pentaho interactive visualize and explore. This recipe demonstrates
all of them. However, as in any self-service or automated solution, sometimes it is necessary
to customize and optimize the solution. The next recipe is about the modifications that you
can make in Pentaho Instaview.

After the first step, choosing the data source (MongoDB, in this case), we define the connection
to our collection for the second step. As you probably noticed, the interface for defining the
connection looks similar to Spoon. This is because Pentaho Instaview creates a transformation
to be executed in order to make the data available for exploring and visualizing. In the next
recipe, we will demonstrate how you can edit this transformation.

The end result is an interactive visualization report that allows you to explore your data
quickly. However, the metadata model that was generated automatically is a little inaccurate.
Nevertheless, it's possible to change it, as is explained in one of the later recipes.

@1

Pentaho Instaview

Modifying Instaview transformations

As was mentioned in the explanation of the last recipe, Pentaho Instaview automatically creates
ETL transformations to define data flow from the source (MongoDB in this case) to the target.
Instaview gives us the ability to edit those transformations with Pentaho data integration.

This recipe guides you through editing the transformation of MongoDB Orders data source,
which was created in the last recipe, in order to get better and cleaner data from the
MongoDB database.

Getting ready

To get ready for this recipe, you first need to start Instaview with the MongoDB Orders data
source, and the MongoDB server with the same database as that of the last chapter.

How to do it...

As with any automated tool there is always something that needs to be tweaked. Perform
the following steps to make a little change to the transformation that populates data into
the analysis view:

1. In Instaview home, click on the Open Existing button.

2. Select MongoDB Orders from the Data Sources list and click on OK.

3. Click on the Configure tab.

4. Next, click on the Edit link of Data Integration section. Accept the alert about editing
the transformation by clicking on the OK button.

5. Add the order year and month to the transformation as follows:

1. Select the Design tab in the left-hand-side view of the Data Integration
perspective.

2. From the Transform category folder, find the Calculator step and drag
and drop it into the working area in the right-hand-side view.

3. Connect the Input step to the new Calculator step and then connect the
Calculator step to the Do Not Edit step.

Double-click on the Calculator step to open the configuration dialog.

5. Add a new field by clicking on New field and name it orderYearDate
as the calculation is Year of date A, and select orderDate in the column
Field A.

Chapter 3

6. Again, add a new field named orderMonthDate as the calculation is
Month of date A, and select orderDate in the column Field A.

7. Click on the OK button of the Calculator step and save the transformation.
The transformation structure should be like that shown in the following
screenshot:

@& welcome! [3¥ MongoDB Orders 2
> ® 4 F XEBEHDER B |100% -

Input Calculator Do Not Edit Qutput

6. Save the transformation and change to the Instaview perspective.
7. Click on the Run button as seen in the following screenshot:

MongoDB Orders

Configure Visualizations
MongoDB Saved Visualizations:
, [Q view 1
Click edit to modify data input settings Edit..
+| Auto run Analysis when ready [Sample Size)

@]

Pentaho Instaview

8. After the execution, the two new levels will be visible in the report. Drag and drop the
orderYearDate level into the Rows area, orderMonthDate into the Columns area,
and then drag and drop Totalprice into the Measures area. Basically, you have
a report with the total price of order by year over each month, as shown in the
following screenshot:

B ~ Layout S EHCORARECRS
» MoFilters Unsaved Report

Find: View v Orderyeardste < Ordermonthdate
~ Measure Drop Level Here 1 2 3 4 3 3
& Customernumber Orderyeardate * Totalprice Totslprice Totalprice Toralprice Totalprice Totalprice
&2 orderlinenumber Columes &4
‘J’: - - 2003 129754 140836 174505 1 73 17C
T Ordermonthdate Ordermonthdate e 2004 316577 312699 242143
&= 0rdernumber S -

Drop Level Here 2005 339543 358186 213531

& Orderyeardate
EsPriceeach Messures f
& Quantityordered
&aTotalprice Totalprice ~
~ Level (Names, Categories, etc.) Drop Measure Here

& Code

& Customernumber

&4 Orderdate

& Orderlinenumber

& Ordermonthdate

&3 Ordernumber

3 Orderyeardate

&3 priceeach

& Quantityerdered

The possibility of editing the data flow in Pentaho data integration opens many doors to
solutions that require different data sources and data processing. In this recipe, we just
changed the transformation a little to add two new fields useful for analysis reporting.

Basically, we change the transformation responsible for extracting the data for the report
analysis. This allows us to aggregate the data in years and months. This was possible using
the simple calculator step, which extracts the year or month from a specific date field in the
data stream.

Modifying the Instaview model

As you have probably noticed, Pentaho Instaview automatically generates, based on our
data, a metadata model. However, the end result in the analysis-reporting tool isn't easy to
understand as the dimensions and measures have technical names. This recipe guides us
through editing the metadata model.

Getting ready

To get ready for this recipe, you first need to start Instaview with the MongoDB Orders data
source created and modified in previous recipes, and the MongoDB server with the same
database as that of the last chapter.

SNED

Chapter 3

How to do it...

Perform the following steps to edit the Instaview model:

1. Inthe Instaview home, click on the Open Existing button.

Select MongoDB Orders from the Data Sources list and click on OK.

2
3. Click on the Configure tab.
4

Next, click on the Edit link of the Model section. Accept the alert about model editing,
by clicking on the OK button. You'll be redirected to the Model Editor perspective,
as shown in the following screenshot:

S EEEE]

MongeDB Orders &2

MNew: | Analyzer ~|Go 9

Available:
T Code

 Customernumber
) Orderdate

) Orderlinenumber
! Ordermonthdate
) Ordernumber
M Orderyeardate
) Pricesach

R Quantityordered
i Requireddate
M Shippeddate

) status

i Time

i Totalprice

$ M

% [

Perspective: [Data Integration @Instaview

Reporting

+ a @@
4 Meodel - MongeDB Orders
4 [Measures
|, Customernumber
|, Orderlinenumber
|, Ordermonthdate
|, Ordernumber
|&. Orderyeardate
|, Priceeach
|, Quantityordered
|, Totalprice
4 [Dimensions

- 1 Code

- 17 Customernumber

- 17 Orderdate

- 17 Orderlinenumber

- 17 Ordermonthdate

- 17 Ordernumber

- 17 Orderyeardate

. 17 Priceeach

- 17 Quantityordered

- 17 Requireddate

- 17 Shippeddate

- 17 Status

- 17 Time

- 17 Totalprice

1= Visualize . Model Editor | (5] Sc

Details
Model Name:

MongoDB Orders
Data Source:

instaview_20141123073646444

5. Remove the measures that don't make sense in the model. Select the
Customernumber field and click on the red square button with the white X on
the top. Do the same for the following fields: Orderlinenumber, Ordermonthdate,
Ordernumber, and Orderyeardate.

i

Pentaho Instaview

6. Rename the measures to appropriate names. Select Priceeach and in the properties in
the right-hand side, change Display Name to Price Each. Do the same for the following
measures: Quantityordered to Quantity Ordered and Totalprice to Total Price.

7. Remove the dimensions that they are measuring in the model. Select the Priceeach
field and click on the red button with the white X. Do the same for the following

dimensions: Quantityordered and Totalprice.

8. Define the hierarchy of Order Date as follows:

1. Inthe Dimensions tree expand the full tree of Orderdate, Orderyeardate,

and Ordermonthdate.

2. Drag the Orderyeardate level that has a yellow icon and drop it between
the Orderdate hierarchy and the Orderdate level.

3. Drag the Ordermonthdate level and drop between Orderyeardate
and Orderdate levels. You should get the structure as shown in the

following screenshot:

4. Remove the useless dimensions, such as Ordermonthdate and
Orderyeardate; they have a yellow exclamation icon.

4 Muodel - MongoDB Orders
a [Measures
[z, Price Each
[, Quantity Ordered
[z, Total Price
a /& Dimensicns
1 Code
. 1 Customernumber
a 1% Orderdate
4 th, Orderdate
T, Orderyeardate
T Ordermonthdate
T, Orderdate
. 17 Orderlinenumber
4 /& Ordermonthdate
/% Ordermonthdate
17 Ordernumber
a /2 Orderyeardate
A Orderyeardate
. 11 Requireddate

- 1 Shippeddate
. 17 Status
12 Time

=

Chapter 3

9. Rename the dimension, hierarchies and levels as seen in the following screenshot:

4 [§] Model - MongoDE Orders
4 [Measures

|, Price Each
|2, Quantity Ordered
|, Total Price
4 [Dimensions
P TZ, Code
4 ;lﬁ Code
= Code
4 E Custormer Murnber
4 ;lﬁ Customer Mumber
T Custerner Mumber
a 14 Order Date
4 gy, Order Date
= Vear
= Menth
T Date
4 174 Order Line Mumber
4 g, Order Line Mumber
T Order Line Mumber
P TZ, Order Mumber
4 ;lﬁ Order Mumber
% Order Mumber
a 17 Required Date
Fi ;ﬂ Required Date
T Required Date
4 TZ, Shipped Date
4 g, Shipped Date
T, Shipped Date
a TZ, Status
4 ;lﬁ Status
T Status
a 17 Time
4 o, Time

= Time

10. Define the dimension time by performing the following set of steps:

1.

ok 0N

Select the Order Date dimension and check the Time Dimension property.
Then, select the Year level and the Years option of Time Level Type.

Select the Month level and the Months option of Time Level Type.

Next, select the Date level and the Days option of Time Level Type.

Select the Required Date dimension and check the Time Dimension property.

-

Pentaho Instaview

6. Then, select the Required Date level and the Days option of Time Level Type.
7. Select the Shipped Date dimension and check the Time Dimension property.
8. Finally, select the Shipped Date level and the Days option of Time Level Type.

11. Save the analysis model by clicking on the Save button or by pressing Ctrl + S.
12. Change to the Instaview perspective.
13. Click on the Run button.

14. After the execution, you'll see new, and better, names for exploring your data. Drag
and drop the Year and Month levels into the Rows area. Then, drag and drop the
Status level into the Columns area. Finally, drag and drop the Total Price measure
into the Measures area. You should get a report like this:

~ Layout Y OmyY %o

Rows & » NoFilters Unsaved Report

Find: View v = <
Status B

T Measure Meonth ~

&sprice Each

& Quantity Ordered

& Total Price Columns &

~ Level (Names, Categories, etc.)

£ Code

&3 Customer Number

‘*“ Date Measures &5

& Month

3 Order Line Number Toral Price

&3 Order Number Drop Measure Here

3 Required Date 9 - - - 263973

3 Shipped Date 10 28711 - - - 28551 512702

& Status 1 26421

S Time 12

Syear

Cancelled Disputed In Process On Hold Resolved Shipped
Drop Level Here Year #|Momth 4| ToralPrice Total Price Total Price Total Price Tosal Price Total Price
1 - - - - 129754
2 140836
Status ~ 3 174505
Drop Level Here 4 201810
5 - - - - 192673
6 170559
7
8

325426

2003

197809

1060299
303404
316577

2 318699

] 242143

2 - - - - 206148

5 45358 - - - 228081

In this recipe, we started by removing the measures that don't make sense existing. Basically,
Pentaho Instaview defines any numeric column as a measure and all columns as dimensions.
After this change, we rename the measure to be accurate with the data that we will analyze.

After we have clarified the measures (as we did the same for dimensions), we will start by
removing dimensions that aren't necessary.

As with any OLAP solution, the date dimension is common. That's why we define the date
dimension with the right hierarchy of years, months, and days.

=

Chapter 3

Finally, we rename all dimensions and sub-attributes (hierarchies and levels). The end result
is that the exploration data is clearer to understand.

In Chapter 4, A MongoDB OLAP Schema, you can find out how to create a Mondrian schema.

Exploring, saving, deleting, and opening

analysis reports

This recipe guides you through exploring, saving, deleting, and opening analysis reports in
Instaview. These are the basic actions that can be done in Instaview, as the goal of Instaview
is to quickly explore data. These actions are simple for end users.

Getting ready

To get ready for this recipe, you first need to start Instaview with the MongoDB Orders data
source, created and modified in previous recipes, and the MongoDB server with the same
database as that of the last chapter.

How to do it...

To understand how to use Instaview, perform the following steps:

1. In Instaview home, click on the Open Existing button.

2. Select MongoDB Orders from the Data Sources list and click on OK.

3. Click on the Configure tab and then on the Run button.

4. After the execution is complete, open the analyzer, and let's explore the data:

1. Drag and drop the Year and Month levels into the Rows area. Then drag
and drop the Status level into the Columns area. Finally, drag and drop
the Total Price and Quantity Ordered measures into the Measures area.

Pentaho Instaview

2. We will be filtering the data for the year 2003 by clicking on the year arrow,
selecting Filter..., and then selecting the 2003 option. The Include list after
adding the year is shown in this screenshot:

Filter on Year 7

® Select from a list {Includes, Excludes)

T Match a specific string (Contains, Doesn’t Contain)

Choose values from list: Currently Included lz‘ :
2003 v 2003
2004
2005 >
£
»
«
Showing all 3 values 1 value selected

Parameter Mame

Cancel

3. Click on the OK button of the Filter on Year dialog.

4. Change the view to a chart by clicking on the chart icon of View As, and
select the Stacked Column option. You should get a chart like that shown
in the following screenshot:

Find: View v Ye

rdere
&Total Price
~ Level (Names, Categories, etc)

Drop Level Here

Dot Lo
None ll

Chart Options.

38000

35000

34000

32000

30,000

28000

25000

24000

22000

20,000

18,000

15,000

14000

12,000

10,000

2000

5000

4000

2000

0

O®| Y | o ewas |l |v

1 Fiter Unsaved Report

W Cancelles~Price Each

W Shipped-Quantiy Ordered

P s ' P s E e s &

Year and Wonth

5]

Chapter 3

5. Click on Save View to save your visualization.

6. Click on the Configure tab, and you will get a list of the views that you saved before
for opening again, as shown in this screenshot:

Configure Visualizations
MongoDB Saved Visualizations: X
v View 2
[a view 3
] Auto run Analysis when ready (ssmple Size)

This recipe covered the main functionalities for exploring, saving, deleting, and managing your
analysis with Pentaho Instaview.

Analysis Reporting or Pentaho Analyzer (a Pentaho BI server plugin) is a drag-and-drop
solution that allows the user to explore your data with ease. We started this recipe by creating
a simple view that showed the total price and the quantity ordered, aggregated by months for
different status. Then, we filtered the data for the year 2003 and changed the visualization
from a table to a stacked column chart.

This Analysis-Reporting tool supports different visualization types, such as tables, geomaps,
and charts with the possibility of exporting in different file types.

Pentaho Instaview

See also

In Chapter 6, The Pentaho Bl Server, which is about the Pentaho Bl server, you can find more
information about the Pentaho Analyzer plugin.

A MongoDB OLAP
Schema

In this chapter, we will cover these recipes:

» Creating a date dimension

» Creating an Orders cube

» Creating the customer and product dimensions
» Saving and publishing a Mondrian schema

» Creating a Mondrian 4 physical schema

» Creating a Mondrian 4 cube

» Publishing a Mondrian 4 schema

Introduction

In this chapter, you'll learn how to create OLAP (short for Online Analytical Processing)
schemas for Pentaho with MongoDB as a data source. OLAP is an approach to creating
multidimensional analyses. Pentaho uses the ROLAP (short for Relational Online Analytical
Processing) engine, called by Mondrian to convert MDX (short for Multidimensional
Expressions) queries into SQL queries.

If you aren't a business intelligence consultant, you probably have never heard about data
warehouse and the preceding terms. Essentially, a data warehouse is a system for storing
historical data from different data sources, so that you're prepared to use reporting systems, for
example, Pentaho and Mondrian. This is a quick and simple explanation, but it is recommended
that you carry out research about these terms, as this book is focused on using Pentaho and
MongoDB, and not business intelligence technologies.

s

A MongoDB OLAP Schema

As Mondrian is responsible for generating SQL queries and MongoDB does not support it, it's
necessary that we use a layer to convert SQL to MongoDB queries. With Pentaho, there are
three main ways to create OLAP using MongoDB. Based on your requirements or customer
requirements, you should choose one of these:

» RDBMS: Use a relational database, in preference to a column-oriented database, and
connect Mondrian on top. You need to create an ETL to get the data from MongoDB
and load it into the relational database. This is the approach that was used long
before NoSQL databases became popular.

» Thin Kettle JDBC Driver: This approach uses Pentaho Data Integration as the layer
responsible for getting the MongoDB data, based on an SQL query. Depending on the
hardware and the configurations, it is possible that you will face performance issues
with a lot of data in MongoDB. This approach is only possible with Pentaho Enterprise
Edition because the Thin Kettle JDBC Driver is available on that version only.

» Mondrian 4 and Pentaho EE native connector for MongoDB: The latest version of
Pentaho Enterprise Edition comes with Mondrian 4 and a connector for MongoDB.
This is probably the best approach based on performance—using MongoDB and
Mondrian. However, this native connection works for single collections only. This
means that you need all of the data for about one fact in a single JSON document,
because the current MongoDB versions doesn't support joins.

In summary, this chapter is divided into two main parts. One is about creating a regular cube
using the Thin Kettle JDBC Driver and Mondrian 3.x. We'll use two transformations that come in
the source code of this chapter as our Thin Kettle JDBC data services: chapter4-getdates
and chapter4-getorders. As was explained in previous chapters, you should be able to
convert those transformations into data services. It is possible, in a particular way, to use this
part to create a Mondrian schema for RDBMS, just by changing the database connection.

The second part is about the new Mondrian 4.x schema. This is done using the native
connection for MongoDB, which is available on Pentaho Enterprise Edition only.

Creating a date dimension

In this recipe, we guide you to start creating a Mondrian 3.x schema with the Schema
Workbench, using the Thin Kettle JDBC Driver as the connection. We'll first create a shared
dimension, date. A shared dimension can be referenced in different cubes. However, in this
particular case, it is not necessary to have a shared dimension because we'll have just

one cube.

Getting ready

Before you start this recipe, you need to make sure that the MongoDB server is running with the
databases created in the previous chapters, and that the Data Integration server is running.

&)

Chapter 4

How to do it...

Proceed with the following steps:

1.

Open the Schema Workbench application. On Windows, you can find it in the Start
menu. From there, go to Pentaho Enterprise Edition | Design Tools | Schema
Workbench. On Linux, you need to run a command like this:

sh <pentaho-installation-paths>/design-tools/
schema-workbench/workbench.sh

With the Schema Workbench opened, let's configure the database connection.
In this case, it will be the Data Integration server:

1. Inthe main menu, select Options and then Connection....

2. Inthe Database Connection popup, you have to define a connection name
as Pentaho MongoDB Cookbook. Select the Kettle thin JDBC driver option
for Connection Type. The Host Name parameter is localhost, Database
Name is kettle?webappname=pentaho-di, Port Number is 9080, User
Name is admin, and Password is password. Your setup should look similar
to what is shown in this screenshot:

™ Database Connection

General Connection Name:
Advanced
Options [Pentaho MongoDE Cookbook |
Pooling Connection Type: Settings
Clustering .— = Host Name:
Gupta 5QL Base —
"2 localhost
Hypersonic Database Name:
IBM DB2 | |appname=pentaho-di
Infobright =
Informix Port Number:
Ingres = [ooz0

Ingres VectorWise

Intersystems Cache User Name:

Kettle thin JDBC driver — ’@
KingbaseES)
LucidDB Password:

MS SQL Server
MS SQL Server (Native)
MaxDB (SAP DB) |

Monatng hd h

Access:

Native (JDBC)
ODBC
NDI

[ei-

A MongoDB OLAP Schema

Click on the Test button and you should get a success message box. Then click on the
OK button.

Let's start creating the OLAP schema properly:

1. Inthe main menu, go to File | New | Schema, and you should get a subwindow for
creating the new schema, as you can see here:

i Schema Workbench

Eile| Edit View Options Windows Help
New ¥ Schema

Open MDX Query

Save JDBC Explorer

Save As ...

Publish...

Exit

2. Select the Schema object and set Orders as the field name.

3. Right-click on the Schema object and select Add Dimension, as you can see in the
following screenshot:

=

Schema Workbench
File Edit VWiew Options Windows Help

5 | s]

[schema - New Schema2 (Schema2.xml) :

Q| A | | sm) vy ver) v

@ Schema 1]
Add cube ribute
Add Dimension Orders
Add Named Set n__
Add User Defined Function LETIEET

Add Virtual Cube
Add Role

Add Parameter
Add Annotations

Chapter 4

4. Add a table to the hierarchy by right-clicking and selecting Add Table, as you can see

in this screenshot:

@ Schema Workbench

=

File Edit View Options Windows Help

[*] Schema - Orders (Schema2.xml)*

@ A] A | an] g fuor] o] & on] o || [EA] Y
B xschema -| Hierarchy for 'New Di
[{3\ xNew Dimension 0 Attribute

‘jname New Hierarchy 0
A xNaw Hierarchy 0, el doki
Add Level
Add Table
Add Join
Add View

Add Inline Table

Add Annotations

Delete

i|caption

“isible

5. After selecting the table object added, select the Kettle->date option for the name

field, as shown here:

Schema Workbench

@ A || a8 v

e IS

o | ¥ | | B | Y

xSchema

A xMew Dimension 0

7 S xNew Hierarchy 0
Table: Table

Table for '"New Hier

: Attribute

‘lschema

iIname Tablel
Kettle-=date

i|alias

Kettle-=orders

(&5}

A MongoDB OLAP Schema

6.

7.

In the default hierarchy (New Hierarchy 0), right-click and select the Add Level
option, as you can see in this screenshot:

Schema Workbench
File Edit View Options Windows Help

5| =)

[¥] schema - orders (Schemaz2.xml)*

EIPREAL I IR &
B xschema = Hierarchy for 'New
3 % xNew Dimension 0 i Attribute
.r'ﬁ‘a sjname MNew Higrarchy 0
? xMNew Hierarchu ldoecrinti
Add Level
Table: d
Add Table ame
Add Join Caption
Add View ne
Add Inline Table ”Zercl
. aderClass
Add Annotations Table
Delete
“|caption
i isible

Let's define the year for this new level. Having selected the level object, set the name
field to year. Select the option year from the column field and String in the type field.
In the levelType field, select the TimeYears option, and in hideMemberlf, select the
Never option. Finally, for the caption field, set Year. You can see all of these in the
following screenshot:

B Schema Workbench

File Edit View Options Windows Help

| =]

[Schema - Orders (Schema2.xml)*

@—‘/&‘%{— ﬁﬁ“ Nﬁ_“u[ﬁf oM ‘Q:\'_

+
B xschema B Level for 'New Hierarchy 0' Hierarchy

¢ ﬁ xMNew Dimension 0 : Attribute Value
‘jname ear
¢ AR xXNew Hierarchy 0 ‘|description
‘table
“leolumn 2ar
Table: date “nameColumn

“|parentColumn
inullParentvalus
:jordinalColumn

type String
“finternalType

‘luniqueMembers O
levelType TimeYears
:|hideMemberif MNever
:lapproxRowCount

s|caption ear
“|captionColumn

‘formatter

‘isible

=

8. Add a new level and define the month, as shown here:

¢ Schema Workbench

File Edit View Options Windows Help

[¥] Schema - Orders (Schema2.xml)*

@/

A

CM‘Q;P

o | ¥

CEIERE

| vg. | ver

@ xSchema
ks ﬁ xMew Dimension 0
s .ﬁ‘h xNew Hierarchy 0

xyear

mmont

Table: date

Level for 'New Hierarchy 0/

Attribute

V.

maonth

month long label eng

String

|

TimeMonths

MNever

Maonth

Chapter 4

9. Next, add a new level and define the day, as you can see in the following screenshot:

« Schema Workbench

File Edit View Options Windows Help

@ xSchema
? ﬁ xMew Dimension 0

? A xNew Hierarchy 0

Table: date

1| Cdl]
Level for 'New Hierarch
Attribute
name day
“|description
iftable
|column date iso
nameColumn
parentColumn
nullParentvalue
ordinalColumn
tftype String
‘linternalType
o D
TimeDays
hideMemberlf MNever
approxRowCount
icaption Day
captionColumn

]

A MongoDB OLAP Schema

10. Select the hierarchy object, remove the default name (New Hierarchy 0), and select
date for the primaryKey field.

11. Next, select the dimension object, and for the name field, set date. In the type field,
select TimeDimension, as you can see in the next screenshot. Finally, in the caption
field, set Date.

Schema Workbench

File Edit View Options Windows Help
& -|s|B]8)
Schema - Orders (Schema2.xml}* :
EIEA R e e B B TR AN
B schema - Shar
3 Attribute
'}\‘ - tjname date
T A& default :|description
G ar i foreignkey
Y itype TimeDimension
month i lusagePrefix
g i|caption
rann day §fvisib|e
Table: date :

12. Select other objects that you want and you shouldn't see any more red alerts. Our
date dimension is defined.

We started with the Schema Workbench. It is an application that helps create a Mondrian
schema. First, we created a database connection, in this case using the Kettle Thin JDBC
Driver. This connection will help us during schema creation with red alert messages at the
bottom of the screen.

Then, we created a simple date dimension in the schema with one hierarchy that contains
three levels of granularity. With these three levels, when exploring the cube, we can aggregate
our measures by year, month, or day. Basically, with some plugins, such as Analysis Report
or Saiku Analytics, it's possible to explore—using a good drag-and-drop interface—the future
Orders cube while aggregating the data by year, month, or day. In this way, you will get
answers for questions such as "What is the total price for each year?" or "What is the quantity
of products ordered in January 2013?".

(&)

Chapter 4

There's more...

Here are some definitions for the main keywords related to the Mondrian schema:
» Schema: This defines a multidimensional logical model consisting of cubes,
hierarchies, and members that help map the model onto the physical model

» Cube: This is a data structure that allows fast analysis of data according to the
multiple dimensions that define a business problem

» Dimension: This is a set of hierarchies that provide information to otherwise
unordered numeric measures

» Hierarchy: This is a logical tree structure that defines parent-child relationships
in a dimension

» Level: This is a collection of members that have the same distance from the parent
of the hierarchy

» Member: This is a point within a dimension determined by a particular set of
attribute values

Creating an Orders cube

This recipe guides you through creating an Orders cube and linking the shared Date
dimension to the business fact dates, such as order date, required date, and shipped date.
We will be creating the main measures, such as the total price, the quantity ordered, and the
calculated measured average price.

Getting ready

Before you start this recipe, you need to make sure that you have the MongoDB database
created, as done in the previous chapters. The Data Integration server should be running and
you should have the schema you created in the previous recipe.

How to do it...

Proceed with the following steps:

1. Inthe Schema, right-click on it and select the Add Cube option, or you can just click
on the Add Cube icon in the tools menu of your subwindow.

&7}

A MongoDB OLAP Schema

2. Select the new cube object and set the name field to Orders and the caption field to
Orders, as you can see here:

m Schema Workbench

File Edit View Options Windows Help

N EIEIEY

Schema - Orders (Schema2.xml)*

@ A |5 v o on] & 5] oY |
@ Iﬂcube' [EN
cube ibute
? ﬁ d Add Dimension tribu orders
? 51 Add Named Set n
Add User Defined Function jCaption
Add Virtual Cube 5
Add Role
Add Parameter
Add Annotations

3. Select the Orders cube, right-click, and select Add Table. Next, select the table
object, and for the name field, select the Kettle->orders option.

4. Let's add the relation of our Date dimension to the Orders cube. Right-click on the
Orders cube and select Add Dimension Usage. In the new dimension usage object,
set the name field to orderDate. For the foreignKey field, select the orderDate
option; for the source field, select date; and for the caption field, set Order date.
The configuration should be similar to the following screenshot:

o Schema Workbench

File Edit View Options Windows Help

5 J=|ale

[¥] schema - Orders (Schema2.xml)*

Q| A | an) vy |vor) o | i) o | Y] B
@ xSchema i Dimension Us
g Attribute
? xorders E
@ ‘|name orderDate
Table: orders “fforeignkey orderDate
%’Q i|source date
Nlevel
i3 }A\ date :lusagePrefix
“|caption Order date
default £
¢ ah defau Avisible
year i
manth

&)

Chapter 4

5. Asyou did in the step before, add a new dimension usage for the required date.
The configuration should be similar to what is shown in this screenshot:

P R L R e A R)]
B xschema i 4
0 @ warders Attribute
:jIname requiredDate
Table: orders “[foreignkey requiredDate
ﬁq orderDate ;[ource date
level
ﬁq ‘|lusagePrafix
‘lcaption Required Date
? ﬁ\' date ivisible
¢ G default 5

6. Again, as you did in the step before, add a new dimension usage for the shipped
date. The configuration should be similar to the following;:

Schema Workbench

File Edit View Options Windows Help

3 EICICINES

Schema - Orders (Schema2.xml)*

Q@ A A | v fver o iy o | Y RAB
B xschema i) Dimension Usa
¢ @ xorders Attribute
ijname shippedDate
Table: orders ‘fforeignkey shippedDate
% ardarDate i|source date
ilevel
:;Q requiredDate :lusagePrefix
f;Q shippedDate :|eaption Shipped Date
L ijvisible
o }\ date i

A MongoDB OLAP Schema

Let's add some measures to the Orders:

1.

Right-click on the Orders cube and select Add Measure. In the new measure object,
set the name field to totalPrice. For the aggregator field, select the sum option, and
for the column field, select totalPrice. In datatype, select the Numeric option, and
for the caption field, set Total Price. The configuration should be similar to what is
shown in this screenshot:

£ schema Workbench

File Edit View Options Windows Help
5|
[Schema - Orders (Schema2.xml)*
@ A ||| v | uor)om | o | Y| &
B schema B Measu
: Attribute
b orders :
@ ‘Iname totalPrice
Table: orders i|description
%’Q orderDate ‘laggregator Sum
eolumn totalPrice
ﬁq requiredDate :[formatString
) i|datatype Mumeric
% shippedDate :[formatter
% :|caption Total Price
o ﬁ date ;;visible

Now, right-click on the Orders cube and select Add Measure. In the new measure
object, set the name field to quantityOrdered. For the aggregator field, select the
sum option, and for the column field, select quantityOrdered. In datatype, select the
Numeric option, and for the caption field, set Quantity Ordered. The configuration
should be similar what is shown here:

- Schema Workbench

File Edit View Options Windows Help

- <l

[¥] schema - Orders (Schema2.xml)

@ | A | A || v ver| ow

% o | % | & B S

& schema = Measure for 'or|
9 @ orders : Attribute
“name quantityOrdered
Table: orders i|description
derDat ggaqqreqator suUm
% orasruste “|column quantityOrdered
j{q requiredDate “fformatString t}_
: i|datatype Numeric
ﬁ shippedDate iformatter
% totalPrice i|caption Qlantity Ordered
% quantityOrdered visible

[

Chapter 4

3. Next, right-click on the Orders cube and select Add Calculated Member.
In the new calculated member object, set the name field to avgPriceEach.
For the caption field, set Avg Price Each, and in the formula field, set
IIF([Measures] . [totalPrice]=0,0, [Measures] . [totalPrice]/
[Measures] . [quantityOrdered]). The configuration should be similar
to what is shown in the following screenshot:

QA A v * % BB L&D 6 | m |
@ Schema - Calculated Member for 'orders' Cube
3 @ arders Attribute Value
“Iname avaPriceEach
Table: orders “|description
?T'Q orderDate caption lawg Price Each
“|dimension Measures
fq requiredDate “|hierarchy
% totalPrice g HeER
) iMisible
% quantityOrdered ifformula | formulaElem...|IF([Measures]. [quantityOrdered]=0,0, [Measures]. [totalPrice]/[Measures]. [quantityOrdered])
cM |angr\ceEach| <fformatstring

After creating the shared Date dimension, we create the proper Orders cube, where the
Orders table is the physical fact table. In this case, it isn't a table but the Orders MongoDB
collection. This cube has three date dimensions that link to the date-shared dimension.
One dimension is for describing the date when the order was placed; it is the Order Date
dimension. The next one is for describing by when the order was required; it is the Required
Date dimension. And the last one is for describing when the order was shipped; it is the
Shipped Date dimension.

This cube contains two measures and one calculated measure. One measure represents

the total price of the products, which is the Total Price measure. Basically, it is a sum of the
values in the totalPrice column in the Orders table. In other words, it is used to aggregate as
a sum the values of the totalPrice property in the Orders collection. The other measure is the
quantity of products ordered, which is the Quantity Ordered measure. Like the total price, this
aggregates as a sum the values of the quantityOrdered property in the Orders collection.

The calculated measure value is then obtained by the division of Total Price by Quantity
Ordered. In this way, we get the average price of each product ordered. As you can see,
there exists a condition for checking whether the quantity ordered is zero. This is because
sometimes, the ordered quantity can be zero. This verification exists because you can't
divide a number by zero.

7}

vww allitebooks.conl

http://www.allitebooks.org

A MongoDB OLAP Schema

Creating the customer and product

dimensions

In this recipe, we will guide you through creating degenerate customer and product
dimensions. A degenerate dimension consists of a dimension that doesn't have its own
physical table, and the data lives in the fact table. In other words, the customer and product
JSON are sub-documents within the order documents of the Orders MongoDB collection.

Getting ready

Before you start this recipe, you need to make sure you have the MongoDB databases created
in previous chapters. Also, the Data Integration server should be running, and you will need
the schema that you created in the previous recipe.

How to do it...

Proceed with the following steps:

1. Let's add the Customer dimension to the Orders cube:
1. Right-click on the Orders cube and select Add Dimension.

2. Expand the new dimension object, and in the default hierarchy created,
remove the text for the name field. For the primaryKey field, select the
customerNumber option.

Chapter 4

3. Right-click on the hierarchy and select Add Level. Select the new level object
and set the name field to country. Select the customerCountry option for
the column field and the String option for the type field. In levelType, select
the Regular option; in hideMemberlf, select the Never option; and finally for
the caption field, set Country. The configuration should be similar to this:

e Schema Workbench

File Edit View Options Windows Help

e EICTEY

Schema - Orders (SchemaZ2.xml)*

F
@A A on) v oS i) oY% B BN &
@ Schema -
¢ @ ordars : Attribute
‘Iname country
Table: orders ‘|dasscription
??fj orderDate -ltal Name of this level. |
§§ column customerCountry
?qq requiredDate ‘jnameColumn
hiopedDat ggparentCqumn
?%' shippedbate ;jnullParentValue
9 ﬁ Wew Dimension 3 ;|ardinalColumn
‘fype String
? .ﬁ'ﬁ.d.efault tlinternalType
‘lunigueMembers |
- ‘levelType Reqular
totalPrice :
% i|hideMemberlf Never
% quantityOrdered i [approxRowCount
) “lcaption Country
CM &
avgPriceEach ¢|captionColumn
o ﬂ date ‘fformatter
isible

(75}

A MongoDB OLAP Schema

4. Again, right-click on the hierarchy and select Add Level. Select the new level
object and set the name field to name. Then select the customerName
option for the column field and the String option for the type field. In
levelType, select the Regular option. In hideMemberlf, select the Never
option, and for the caption field, set Name. Now, the configuration should
look similar to what is shown in the following screenshot:

Schema Workbench

File Edit View Options Windows Help
Sl oY% HMBERN 2 &
o[-
: Attribute
lname name
Table: orders ‘|description
?{q orderDate 1o
ilealumn customerhame
ﬁg requiredDate ijnameColumn
. ‘|parentColumn
% shippedDate i|nullParent\alue
? ﬂ, New Dimension 3 i|ardinalColumn
Htype String
¢ iR default ‘linternalType
; ‘|luniqueMembers O
i levelType Reqular
N :|hideMemberif Newver
% totalPrice :|approxRowCount
) ilcaption MName
% quantityOrdered “|captionColumn
CM avgPriceEach i formatter
o_}\. date ;Evisible

Chapter 4

5. Select the dimension object and set the name field to customer. For
foreignKey, select the customerNumber option, and in the caption field, set
Customer. Thus, the configuration should be similar to what is shown here:

? ﬁ customer

(@A &]en] w]u o] 5] o] 4| BAE 2
@ Schema i
Attribute
orders i
t @ ‘name customer
Table: orders i|description
‘[foreignkey customerMumber
ﬁ% orderbate :ltype StandardDimension
ﬁ% requiredDate i|usagePrefix
. i|caption Customer]
shippedDate i
ks

iIvisible

Let's now add the Product dimension to the Orders cube:

Right-click on the Orders cube and select Add Dimension.

Expand the new dimension object, and in the default hierarchy created,
remove the text of the name field. For the primaryKey field, select the
productCode option.

A MongoDB OLAP Schema

3.

Right-click on the hierarchy and select Add Level. Next, select the new level
object and set the name field to name. Then select the productName option
for the column field and the String option for the type field. In levelType,
select the Regular option, and in hideMemberlf, select the Never option.
Finally, for the caption field, set Name. The configuration should now be

similar to what is shown in the following screenshot:

LRI o | ¥ I&dl| P55
B schema - Level for Hig
¢ @ ordars : Attribute
‘lname name
Table: orders :|description
?T{: orderDate égtable
“|eolumn productMame
ﬁ requiredDate ijnameColumn
£ : parentColumn
f ﬁ- customer i|nullParent\alue
¢ A default f|ardinalColumn
& itype String
' country slinternalType
RRA8 mame “junigueMembers O
. . ilevelType Reqular
¥ “& New Dimension 3 iJhideMemberlf Never
¢ &R default ‘|lapproxRowCaount
o §§capti0n Name
o m “|captionColumn
% totalPrice ([formatter
:jvisible
% quantityordered : v

Chapter 4

4. Select the dimension object and set the name field to product. For
foreignKey, select the productCode option, and in the caption field,
set Product. Thus, the configuration should be similar to this:

Schema Workbench

File Edit View Options Windows Help

[aalale

Schema - Orders (Schema2.xml)*

Q| A | Ao A N vor| oy K Sl s INE ARES
@ Schema e Dimension for 'orders' Cube
¢ & orders : Attribute value

name product
Table: orders description
foreignkey productCode
derDat
?{q oraervate type StandardDimension
ﬁzq requiredDate usagePrefix
caption Product
customer
v A .

? A default

+ . o]

In this recipe, we add two more dimensions: product and customer.

The customer dimension consists of one hierarchy with two levels; the first is the country and
the second is the customer name. However, it could be possible to add more levels such as
city and postal code, or create an address dimension with information about the address—the
country, city, postal code, and detailed address.

The same is possible with the product dimension, which has just one level—the product
name—and it's possible at a product line parent level. As the goal of this book is to explain
how to work with Pentaho and MongoDB, we won't cover data warehousing modulation in
too much detail.

See also

If you are looking to expand your knowledge about Mondrian schemas, you can check
out the online documentation at http://mondrian.pentaho.com/documentation/
schema . php.

A MongoDB OLAP Schema

Saving and publishing a Mondrian schema

In this recipe, we guide you through saving the Mondrian schema created in the previous
recipes in the filesystem and publishing it on the Pentaho Bl server.

In previous recipes, we just created the Mondrian OLAP schema using Schema Workbench, a
desktop tool. Since the Pentaho Bl server doesn't know anything about the created schema, it
is necessary to publish it. This means that you will be able to perform particular Bl operations
after publishing it on the Bl server, such as self-service analysis using Pentaho Analyzer
and/or Pentaho Dashboards.

After publishing the Mondrian schema on the Pentaho Bl server, you can use some plugins
available in the Pentaho marketplace, such as lvy Schema Editor (lvySE), Community Text
Editor (CTE), Pentaho Analysis Editor (PHASE), and so on.

Getting ready

Again, before you start this recipe, you need to make sure you have these things: the
MongoDB databases created in previous chapters, the Data Integration and Bl servers
running, and the schema that you created in the previous recipe.

How to do it...

Proceed with the following steps:

1. Let's save the schema in the filesystem. In the main menu, click on File and
then on Save. Choose the location that you wish and set the filename to
KetteThin.mondrian.xml.

2. Let's publish the schema on the Pentaho BI server:

1. First, you need to make sure that you have the Pentaho Bl server started.
For example, you can run the . /ctlscript.sh start main path
command in your Pentaho installation for Linux systems. For Windows,
click on the Start menu and select Start Pentaho Bl Server. Another way
in Windows is as follows: you start the Pentaho server services by going to
Control Panel | Administrative Tools | Services and then start, stop, or
restart the Pentaho service.

2. After some minutes, you will be able to access the Pentaho BI server using
the URL http://localhost:8080/pentaho for default installations.

3. Enter your username and password; for example, the username can be
admin and the password can be password.

Chapter 4

4. After you have logged on, click on the Manage Data Sources button, as you

can see in this screenshot:

File View Tools Help...

Home v

5. Inthe new Manage Data Sources dialog, click on the arrow and then select
the New Connection... option, as you can see here:

Manage Data Sources

Audit

ba-pom

JDBC

Metac

PDI Operations Mart Sample Repo Metac

pentaho_operations_mart

pentaho_operations_mart

Analy:
JDBC

Export... | |
|

New Connection...

(7]

A MongoDB OLAP Schema

6. Inthe new Database Connection dialog, set Pentaho MongoDB
Cookbook Kettle Thin for the Connection Name field. After this,

set Database Type to Generic database.

In the Custom Connection URL field, set jdbc:pdi://localhost:9080/
kettle?webappname=pentaho-di. Then in the Custom Driver Class
Name field, set org.pentaho.di.core.jdbc.ThinDriver.

In the User Name field, set admin, and in the Password field, set password,
depending on the configuration in the installation of Pentaho. The
configuration should be similar to what is shown in the following screenshot.
Then, click on the OK button.

Database Connection

Adding Databases o
admin

Chapter 4

9. Inthe main menu of the Schema Workbench, select File and then
select Publish....

10. In the new Publish Schema dialog, set http://localhost:8080/
pentaho/ in the Server URL field. In the User field, set admin, and set
password in the Password field, depending on the Pentaho installation. For
the Pentaho or JNDI Data Source field, set Pentaho MongoDB Cookbook
Kettle Thin. Then click on the Publish button. The configuration should be
similar to this:

O Publish Schema |

Pentaho Credentials
Server URL:

|http:HIocthost:BOBO}pentaho,‘] |v|

User:
[admin |
Password:

Publish Settings
Pentaho or JNDI Data Source:
[Pentaho MongoDE Cookbook Kettle Thin

[] Register XMLA Data Source

Remember these Settings

Publish H Cancel

11. After a couple of seconds, we should get a message box with a Publish
Successful message.

In this recipe, we started by creating the database connection using the Kettle Thin

JDBC driver in the Pentaho Bl server. The connection is the same as that for the Schema
Workbench, as the schema can simply work in the same connection. Otherwise, you face
the risk of data being unavailable for exploration. This is because the schema is defined
for a specific physical database structure.

s

A MongoDB OLAP Schema

Having defined the connection, we use the Schema Workbench to publish the Mondrian
schema. Basically, we choose the server URL and the credentials for publishing (these were
defined on the installation), and we define the connection name that will be used by the
schema in the Pentaho Bl server. Also, it is possible to make the schema available for XMLA
(XML for Analysis).

XMLA is a standard for data access in analytical systems such as OLAP and data mining,
based on standards such as XML, SOAP, and HTTP.

There's more...

It's possible to publish the Mondrian schema without the Schema Workbench. Basically,
you need perform the following steps:

Log in to the Pentaho Bl server.

Click on Manage Data Sources.

In the Manage Data Sources dialog, click on the arrow and then on Import Analysis....

P NP

In the Import Analysis dialog, you have to select the Mondrian schema in your
filesystem. You also have to select the connection for the correct data source,
as shown in the following screenshot:

Import Analysis

Mondrian File:
KetteThin.mondrian.xml
@ select from available data sources.
! Manually enter data source parameter values.
Data Source:

Pentaho MongoDE Cookbook Kettle Thin

[

Chapter 4

See also

There are some interesting community plugins for handling the Mondrian schema, such as
Ivy Schema Editor (lvySE) or Pentaho Analysis Editor (PHASE). You can check them out in
the Pentaho marketplace.

Creating a Mondrian 4 physical schema

In this recipe, we will guide you so that you can start creating a Mondrian 4 schema for use
with the MongoDB native connection. This feature is available only on Pentaho Enterprise
Edition. In this particular recipe, we will start by creating the physical schema. This schema
is responsible for defining the physical database. In this case, the data source, MongoDB, is
where we specify the JSONPath of the fields in the collection.

As no GUI tool exists yet for managing this different OLAP schema, we'll use a normal text
editor. However, there is a tool that helps to generate schemas automatically by editing
Mondrian 4 schemas using MongoDB and managing the olap47j .properties file thatis
responsible for storing the connections information. You can get the source code on GitHub
athttps://github.com/kromerm/MondrianMongoModel.

Getting ready

Open your favorite text editor, such as Notepad, sublime text, or any other editor. We recommend
a good one for XML syntax and indentation as the Mondrian schema is in XML.

How to do it...

Proceed with the following steps:

1. With the text editor opened, let's start by declaring the schema with the name
Mondrian4MongoDBPentahoCookbook. We write this line:
<Schema name='Mondrian4MongoDBPentahoCookbook'
quoteSgl="'false' missingLink='ignore'
metamodelVersion='4.00"'></Schema>

2. Then let's add the PhysicalSchema tag to the Schema tag. Write the following line
inside the Schema tag: <PhysicalSchema></PhysicalSchemas.

3. Add the Orders table (in this case, it is a collection, not a table) by writing this line
inside the PhysicalSchema tag: <Table name='Orders'></Table>.

&)

A MongoDB OLAP Schema

4. Finally, let's add the columns of the Orders collection by putting the following lines
inside the Table tag:

<ColumnDefs>
<CalculatedColumnDef name='orderDate' type='String's>
<ExpressionView>
<SQL dialect='generic'>
SorderDate
</SQL>
</ExpressionViews
</CalculatedColumnDef >
<CalculatedColumnDef name='requiredDate' type='String'>
<ExpressionViews>
<SQL dialect='generic'>
SrequiredDate
</SQL>
</ExpressionViews
</CalculatedColumnDef >
<CalculatedColumnDef name='customerNumber'
type='Numeric's>
<ExpressionViews
<SQL dialect='generic'>
Scustomer.customerNumber
</SQL>
</ExpressionViews
</CalculatedColumnDef >
<CalculatedColumnDef name='customerCountry'
type='String'>
<ExpressionViews
<SQL dialect='generic'>
Scustomer.address.country
</SQL>
</ExpressionViews
</CalculatedColumnDef >
<CalculatedColumnDef name='customerName' type='String'>
<ExpressionView>
<SQL dialect='generic'>
Scustomer.name
</SQL>
</ExpressionViews
</CalculatedColumnDef >
<CalculatedColumnDef name='productName' type='String's>
<ExpressionView>

=

Chapter 4

<SQL dialect='generic'>
$Sproduct .name
</SQL>
</ExpressionvViews
</CalculatedColumnDef >
<CalculatedColumnDef name='productCode' type='String'>
<ExpressionViews
<SQL dialect='generic'>
$Sproduct.code
</SQL>
</ExpressionvViews
</CalculatedColumnDef >
<CalculatedColumnDef name='totalPrice' type='Numeric's>
<ExpressionViews
<SQL dialect='generic'>
StotalPrice
</SQL>
</ExpressionvViews
</CalculatedColumnDef >
<CalculatedColumnDef name='quantityOrdered'
type='Numeric'>
<ExpressionViews
<SQL dialect='generic'>
SquantityOrdered
</SQL>
</ExpressionvViews
</CalculatedColumnDef >
</ColumnDefs>

Save this Mondrian schema for now in your filesystem with the name
MongoDBPentahoCookbook.mondrian.xml.

In this recipe, we started creating the Mondrian 4 schema with the name
Mondrian4MongoDBPentahoCookbook. The first step of creating a Mondrian 4 schema is
the physical schema. The physical schema consists of a description of tables and columns in
the database. This provides the data for dimensions and cubes in the logical schema.

In a Pentaho MongoDB native connection, the physical schema is responsible for mapping
the JSON properties in the JSON documents in the collection to represent the columns of a
table. In this specific example, we created an Orders table with the important columns for
the OLAP schema. It's important to note that the Pentaho native connection works only for
a single collection; you can't use multiple collections to join data.

&1

A MongoDB OLAP Schema

Creating a Mondrian 4 cube

This recipe shows you how to create a Mondrian 4 cube. Basically, this is the second
part, after the physical model. It is responsible for mapping the business side to the
physical schema.

Getting ready

Open the schema created in the previous recipe in your favorite text editor.

How to do it...

Proceed with the following steps:

1. Let's add the Orders cube to the schema by writing this line:

<Cube name='Orders' defaultMeasure='Total Price's></Cubes>

2. In order to add the Product dimension, it's necessary to write the following lines in
the Cube tag:

<Dimensions>

<Dimension name='Product' table='Orders' key='Product
Code' >

<Attributes>

<Attribute name='Name' keyColumn='productName'
hasHierarchy='false'/>

<Attribute name='Product Code' keyColumn=
'productCode' hasHierarchy='false'/>
</Attributes>
<Hierarchies>
<Hierarchy name='Product' hasAll='true'>
<Level attribute='Name'/>
</Hierarchy>
</Hierarchies>
</Dimension>

</Dimensions>
3. Let's add the Customer dimension with the Country and Name levels by adding
these lines to the Dimensions tag:

<Dimension name='Customer' table='Orders' key='Product
Code' >

<Attributes>

~[ee]

Chapter 4

<Attribute name='Country' keyColumn='customerCountry'
hasHierarchy='false'/>

<Attribute name='Name' keyColumn='customerName'
hasHierarchy='false'/>

<Attribute name='Product Code' keyColumns=
'customerNumber' hasHierarchy='false'/>

</Attributes>
<Hierarchiess>
<Hierarchy name='Customer' hasAll='true's>
<Level attribute='Country'/>
<Level attribute='Name'/>
</Hierarchy>
</Hierarchiess>
</Dimensions>

Now that the dimensions are declared, let's add Measures, Total Price, and Quantity
Ordered. Insert the following lines into the Cube tag and after the Dimensions tag:

<MeasureGroups>
<MeasureGroup name='Orders' table='Orders'>
<Measures>
<Measure name='Total Price' column='totalPrice'
aggregator='sum' formatString='Standard'/>

<Measure name='Quantity Ordered' column=
'quantityOrdered' aggregator='sum'
formatString="'Standard'/>

</Measures>
<DimensionLinkss>
<FactLink dimension='Product'/>
<FactLink dimension='Customer'/>
</DimensionLinks>
</MeasureGroup>
</MeasureGroups>

Finally, let's add the Avg Price Each calculated measure to the Orders cube,
writing these lines inside the Cube tag and after the MeasureGroups tag:

<CalculatedMemberss>
<CalculatedMember name='Avg Price Each'
dimension='Measures'>
<Formula>IIF ([Measures]. [Quantity Ordered]=0,0,
[Measures] . [Total Price]/[Measures]. [Quantity
Ordered]) </Formulas>

7}

A MongoDB OLAP Schema

<CalculatedMemberProperty name='MEMBER ORDINAL'
value='9"'/>
</CalculatedMember>
</CalculatedMembers>

6. Save the schema in your filesystem with the name MongoDBPentahoCookbook .
mondrian.xml.

In this second part, we created the proper logical cube with dimensions, measures, and
calculated measures.

As we did in the previous recipes for Mondrian 3.x versions, we created two dimensions:
products and customers. The product dimension has just one level, which is the name,
and the customer dimension has two levels, namely the country and the customer name.

In Mondrian 4, one of the good features compared to the Mondrian 3.x version is measure
groups. In Mondrian 3.x, cubes have only one fact physical table. If you want to create a
cube with different fact tables joined together, you need to use a virtual cube. A virtual cube
combines multiple cubes. However, this approach is no longer supported with Mondrian 4,
and you need to use measure groups.

In this example, we created only one measure group. In other scenarios, it can be necessary
to create more than one, with two measures: Total Price and Quantity Ordered.

After the measures, we created a calculated measure, as we did for Mondrian 3.x in previous
recipes, called Avg Price Each. Basically, this is Total Price divided by Quantity Ordered,
giving the average product price per order.

Publishing a Mondrian 4 schema

In this recipe, we will show you how to publish the Mondrian 4 schema on the Pentaho Bl
server, making the schema available to the Analysis Report for data exploration.

Getting ready

Make sure you have the Mondrian 4 schema that was created in the previous recipes defined
well. MongoDB must be started with the databases created in the previous chapter.

Chapter 4

How to do it...

Proceed with the following steps:

1.

In your filesystem, go to <Pentaho-installation-paths>/server/biserver-
ee/pentaho-solutions/system/ and openthe olap4j.properties file with
your favorite text editor.

Add the following lines. However, you need change the file path for the Mondrian
schema; in my case, itis /home/latino/git/pentaho-mongodb-cookbook/
source code/chapter4/. My MongoDB database has the username as root,
and the password is password. If your database doesn't require authentication,
you can remove it from the connectString. Otherwise, if your database requires
authentication, you can use the http://localhost:8080/pentaho/api/
password/encrypt endpoint to generate the encrypted password:

cookbook . name=mongoDBPentahoCookbook
cookbook.className=org.pentaho.platform.plugin.services.
connections.PentahoSystemDriver cookbook.connectStrings=
jdbc:mondrian4 :Host=1localhost ;dbname=SteelWheels;
DataServicesProvider=com.pentaho.analysis.mongo.
MongoDataServicesProvider;Catalog=/home/latino/git/
pentaho-mongodb-cookbook/source code/chapter4/
MongoDBPentahoCookbook.mondrian.xml ; username=root;
password=ENC:cGFzc3dvcemQ=

Save the file and restart the Pentaho BI server. If you open the Analysis Report,
you should see the new data source.

As you notice, publishing a Mondrian 4 schema is much more manual than the Mondrian

3.x versions; you need to edit the olap4j .properties file. The olap4j .properties file
consists of the Manage Data Sources of the Bl server for Mondrian 4. In this file, we define
the connections and the schema filesystem location. The connections are defined by a unique
connection name with the following properties, with dot (.) splitting:

>

name: This property needs to match with the Mondrian schema name:

<Schema name='Mondrian4MongoDBPentahoCookbook'
quoteSgl="'false' missingLink='ignore'
metamodelVersion='4.00"'></Schema>

className: This is the driver class name.

]

A MongoDB OLAP Schema

>

connectString: This is the olap4j connection string that contains the
following properties:

[m]

Host: This is the MongoDB instance. In this example, it is the same machine,
that's why we use localhost.

dbname: This is the MongoDB database name. In this example,
it is SteelWheels.

DataServicesProvider: This is the MongoDB native connection data
service provider.

Catalog: This is the location of the MongoDB database in the filesystem.
If you have the Mondrian schema in the Pentaho repository (based on JCR),
you should start the JCR path with ":", for example, : /public.

username: This is the username of MongoDB for the database. If the
database doesn't need authentication, you can remove this property and the
password property.

password: This is the MongoDB database password encrypted using the
following password encryption endpoint: http://localhost:8080/
pentaho/api/password/encrypt.

After we have the olap4j.properties file changed correctly, we restart the server to apply
those changes. In the Pentaho BI server, you can test the Mondrian schema by selecting
Create New and then Analysis Report.

5]

Pentaho Reporting

In this chapter, we will cover the following:

Copying the MongoDB JDBC library

Connecting to MongoDB using Reporting Wizard
Connecting to MongoDB via PDI

Adding a chart to a report

Adding parameters to a report

Adding a formula to a report

Grouping data in reports

Creating subreports

Creating a report with MongoDB via Java
Publishing a report to the Pentaho server

Running a report in the Pentaho server

Introduction

Creating printable reports for business intelligence is a keystone for any analytics solution.
There are many cases where a user needs to create complex reports in various formats as
well as print these reports so that they can distribute them to others throughout the business.

Pentaho Reports allows us to create connections to MongoDB in various ways to expose the
crucial data stored within. We can use a number of methods to get this data from MongoDB
including native connections using Pentaho Data Integration transformations that will get
the data for us, or even Java classes that will expose the MongoDB API.

i

Pentaho Reporting

Copying the MongoDB JDBC library

We will be using some scripting in these recipes, so it's important to make sure that we have
the MongoDB JDBC library copied to the correct location in the Pentaho Report Designer.

Getting ready

Make sure you have access to the filesystem from which you will be running the Pentaho
Report Designer.

How to do it...

In this section, we will be copying a select number of libraries that will allow us to make sure
that the Pentaho Report Designer can connect to MongoDB. Without these libraries we will be
unable to complete the recipes in this chapter:

1. Onyour filesystem, navigate to PentahoEE/design-tools/report-designer/
plugins/pentaho-mongodb-plugin/lib.

Copy the mongo-java-driver.xxx. jar file.

Navigate to PentahoEE/design-tools/report-designer/1lib.

Paste the mongo-java-driver.xxx.jar file.

ok w0

Restart the Pentaho Report Designer.

In this recipe, we copied the correct MongoDB libraries to the corresponding Pentaho Report
Designer folder. The library that we copied was the MongoDB JDBC library that will allow us to
make a connection to the MongoDB server.

Connecting to MongoDB using Reporting

Wizard

In this recipe, we will guide you through the steps required to simply get data in the quickest
fashion from MongoDB using a feature of the Pentaho Report Designer called the Report
Designer Wizard. This wizard helps us to define our connection to the MongoDB data source,
as well as to define a query that is to be executed to get data into our report.

Chapter 5

Getting ready

To get ready for this recipe, you first need to start the MongoDB server with the same
database as in the last chapter. You will also want to start the Pentaho Report Designer.

The Pentaho Report Designer is started in Windows as follows:

This can be done via the Windows Start menu by navigating to Start | All Programs |
Pentaho Enterprise Edition | Design Tools | Report Designer and then by clicking on
the report designer icon.

The Pentaho Report Designer is started in Linux as follows:

Open up a terminal and navigate to the PentahoEE/design-tools/report-designer
folder. Execute the report-designer bash script using . /report-designer.sh.

When the Report Designer loads, you should be presented with a Welcome screen.

How to do it...

In this section, we are going to create a simple report using the Pentaho Report Design Wizard
and the data from MongoDB:

1. Click on the Report Wizard button on the Pentaho Report splash screen:

Report

Wizard

Pentaho Reporting

2.

© o N o ok

=

Select Cobalt Template and click on Next:

Select Look and Feel

® Template

) Report Document

Maple
Jade
MNickel

Add a new data source by clicking on the plus icon in the top-right corner of
the window:

/|| @

Select MongoDB from the pop-up list of data sources.

Add a new query by clicking on the plus icon in the top-left corner of the window.
Give the Query a name like Orders.

Set the Host property to localhost.

Set the Port property to 27017.

By default, you do not need to specify a username or password for a default
MongoDB installation:

Name[Orders|]

Configure connection | Input Options | Query | Fields
Host localhost
Port 27017

[Use all replica set members

User
Password

[] Authenticate using Kerberos

Connection

Socket

10.
11.

12.
13.

14.

15.
16.

17.

Chapter 5
Select the Input Options tab.

Click on the Get DBs button to return a list of available Databases in the MongoDB
connections.

Select the SteelWheels Databases.

Click on the Get Collections button to return a list of available MongoDB collections
in the databases.

Select the Orders collections from the list:
Marme| Orders
Configure connection| Input Options | Query | Fields
Database Steelwheels v || Get DBs
Collection Orders v || Get collections
Read primary b

Click on the Query tab.

Copy and paste the following query into the Query Expression (JSON) text area:
{

Squery: {},

$orderby: {
customer.address.country:1,
customer.address.city:1,
product.line:1,

}
}

Copy and paste the following filter into the Fields Expression (JSON) input:
{

customer.address.country:1,
customer.address.city:1,
product.line:1,

[55]-

Pentaho Reporting

totalPrice:1

Name|Orders
Configure connection | Input Options | Query | Fields

Query expression (JSOM)

i
Squery: 4},
Sorderby: {
custormer.address.country:1,
custormer.address.city:1,
product.line:,
!
I

[] Queryis aggregation pipeline

Fields expression (JSON) |1, customer.address.city:1, product.line:1, totalPrice:1 }

18. Click on the Fields tab.
19. Click on the Get fields button, as shown in the following screenshot:

MName Orders

Configure connection | Input Options | Query| Fields

MName Path || Type JIndexed ... || Sample: ... ||Sample: ... |Sample:...
city S .custom... String !

line 5.product... 5tring

country §.custom... 5tring

id s _id String

EoEalFrieaYs totalPrice Number

Get Fields

5]

Chapter 5

20. Click on Preview. You should see five fields of data ordered by country, city, and then
product line:

city line country _id totalPrice =
Chatswood Classic Cars Australia 540751abe4b0ds573... 4,905.39| "
Chatswood Classic Cars Australia 540751abe4b0ds573... 4,302.08
Chatswood Classic Cars Australia 540751abed4b0ds573... 4,048
Chatswood Classic Cars Australia 540751ace4bids573... 2,078.28
Chatswood Classic Cars Australia 540751ace4b0d5573... 3,880.2

21. Click on OK to exit the Query Wizard.

Now that the query has been defined, you should return to the main Report Wizard window
with your query available to be selected.

1. Select your query from the Data Source list:

Data Source

¥ Pentaho DataIntegration

v MonioDB

£

\®

Click on Next.

Select country, city, line, and totalPrice from the available fields and add these
fields to the selected fields' area by clicking on the arrow next to the Selected box.
These are the fields we want to add to the report.

4. Change the order of these fields so that they are listed from top to bottom as country,
city, line, and totalPrice:

Available ltems:

_id
city

country
line

totalPrice

&

Groupltems |« | |~ @

Selected) = E

city
line

totalPrice

_Preview|

5. Click on Finish to exit the Report Wizard.

Pentaho Reporting

The Report Wizard allows us to simply create a query and configure it to return the correct
data in a couple of steps. Once we have the data from the query, we can then select what
fields will be included in the report. With the query and report defined in the Report Wizard,
we will be able to generate a report in the Pentaho Report Designer that will get us quickly
started. From this point, we are free to edit the generated report further using the various
tools that come with the Pentaho Report Designer.

Connecting to MongoDB via PDI

In this recipe, we will guide you through the steps required to connect to a MongoDB instance
using a Pentaho Data Integration transformation and execute that transformation in a
Pentaho Report.

Getting ready

To get ready for this recipe, you will have to make sure your MongoDB instance is running.

How to do it...

For this recipe, we are going to use a transformation that we have already developed for the
book that will return a list of orders as shown in the previous recipe. We are also going to build
this report manually instead of using the Report Wizard:

1. In Report Designer, go to File | New.

2. Click on the Data tab in the top-right corner of Report Designer.

3. Right-click on the Data item in the list and select Pentaho Data Integration:

Structure| Data

O [=c]
mdm
-}
I Jpec
Metadata
MongoDB

- dano batd = qratio
OLAP
OLAP (Advanced) v
XML
Table
Advanced v

Chapter 5

4. Just like previously in the Report Wizard, we are going to create our data source:

1. To add a new data source, click on the Plus Icon in the top-left corner of the
pop-up window.

Set the Name property of the query to Orders.
Click on the Browse button to open the select transformation dialog.

4. Browse to the chapter 5 folder and select the chapter5-getorders.ktr
transformation. (This file is provided as source code along with this book.)

5. Select the OUT step in the list of steps available in this transformation:

Marne Orders

Steps
GCet Orders

Edit Pararmeter

Preview

File |okbook/source code/chapter 5/chapters-getorders.ktr |Browse|

6. Click on Preview, as shown in the preceding screenshot. The Preview
window shows up as seen in the following screenshot:

Preview
city line country _id totalPrice =
Chatswood Classic Cars Australia 540751abe4b0d5573... 4,905.39] |
Chatswood Classic Cars Australia 540751abe4b0d5573... 4,302.08
Chatswood Classic Cars Australia 540751abe4b0ds573... 4,048
Chatswood Classic Cars Australia 540751aced4b0d5573... 2,078.28
Chatswood Classic Cars Australia 540751aced4b0d5573... 3,880.2

7. Click on OK.

s

Pentaho Reporting

We have now chosen our data source. We can see the fields that are available to us in the
Data tab of Report Designer:

Structure| Data

5] =

* O DataSets
* Pentaho Datalntegration: Pentaho O
¥ Orders

city (SEring)
line (5tring)
country (String)
_id (5tring)
totalPrice (Double)

» _fm Functions

» B Environment

» = Parameters

The next step is to get these fields into the report. To do this, we will follow these simple steps:

1.

Click and drag the country field from the Data tab and drop it into the Details band
of the report, just to make sure that the item is aligned to the top-left side of the
Details band.

Click and drag the city field to sit next to the country field in the Details band. If the
items overlap in the Details band, then the item background color will turn pink. This
is to inform you that you have overlapping items in the report.

Finally, click and drag the remaining line and totalPrice fields into the report and set
them alongside the previous fields. Once the items are in the correct position, you
should be looking at something that will be similar to the following screenshot:

o

counlry city line lotalPrice

0.3 .

Details

1.0 .

]

100

Chapter 5

4. Click on Preview and the following report appears:

Australia Chatswood Classic Cars 4 005,30
Australia Chatswood Classic Cars 4, 302 .08
Australia Chatswood Classic Cars 4, 048
Australia Chatswood Classic Cars 2,078.268
Australia Chatswood Classic Cars 3,880.2
Australia Chatswood Classic Cars 2,233 69
Australia Chatswood Classic Cars 3.933.93
Australia Chatswood Classic Cars 5.206.5
Australia Chatswood Classic Cars 3.385.9

This report simply executes a Pentaho Data Integration that connects to a MongoDB data
source to return data. Once the data is in the report, we can define what fields we want to
display from the transformation in our report.

Adding a chart to a report

In this recipe, we will guide you through the steps required to fetch data from a MongoDB
instance and render a Pentaho chart into the report. Similar to the previous recipe, we will be
using a Pentaho Data Integration transformation to get order summary data to populate the
chart. This data will consist of total order values grouped by country.

Getting ready

To get ready for this recipe, you will have to make sure your MongoDB instance is running.

How to do it...

In Report Designer, go to File | New.
Click on the Data tab in the top-right corner of Report Designer.

Right-click on the Data item in the list and select Pentaho Data Integration.

PN P

To add a new data source, click on the plus button in the top-left corner of the
pop-up window.

Pentaho Reporting

5. Setthe Name property of the query to Orders.

6. Click on the Browse button to open the Select transformation dialog.

7. Browse your file system and select the chapter5-getorders-summary.ktr
transformation, as done in the previous recipe. (This file is provided as source code
along with this book.)

8. Select the OUT step in the list of steps available in this transformation.

9. Click on Preview.

10. Click on OK.

You will notice that the Orders data is broken down into countries this time. We have used a
simple Group By step in the transformation to do this.

Now that we have our data, we can use it to populate a simple bar chart in the
Pentaho Report:

1.

Drag a chart component from the Pentaho Report Designer toolbar to the left of the
Report Header band:

Align the chart component to fit the width of the report. You will have to resize the
anchors to do this:

Bar Chart
w 8
L=
“§ 74
S
i w54
-F 3
i @4
Report Header |~ = 3-
ol 7 | |
S{EEEE -I : II | |
. ol

7 ittt ettt el et b

Category 1 Category 2 Category 3 Category 4 Category 5

2.5,

Category

30 .

|l First B Second Third|

102

Chapter 5

3. Double-click on the chart component that you placed into the Report Header band.
This will open Chart Properties.
4. Make sure you are looking at the Primary Data Source tab.
1. Set category-column to country.
2. Set value-columns to totalPrice.

3. Set auto-generated-series to true.

The following screenshot appears:

Primary DataSource | Secondany DataSource

=) 124 (&)
CategorySet Data Collector (Chart Data)
[Value

|\Marne |

country

[«

category-column
value-columns totalPrice
series-by-value [

series-by-fisld [
auto—ienerate—series true

group-by

reset-group

crosstab-column-filter

5. Click on OK.
6. Click on Preview to see the report.

If everything goes well, you will be looking at a simple chart in the Report Header band.
Before we finish up, we can set a couple of common options to make the chart look a little

more pleasing to the eye:

1. Double-click on the Chart Component
2. You should see a large list of various options on the left-hand side panel.

3. Set Chart Title to Orders by Country.

Pentaho Reporting

4. Set X Axis Label Rotation to 90.
The following screenshot shows the final output chart:

Orders by Country

[TR ¥ R ¥

Japar |
Mew Zealana
Hermay |
Foilippines
Sy ileerlanc

Rendering a chart to a report is similar to adding tabular data to a report. The only real
difference is that all the report data is rendered in a single chart component, so we place our
chart into the Report Header band. The report header band is only executed once per report.
If we were to place the chart into the Details band, then we would be seeing the same chart
for every row in the database.

Reporting charts have many options. Feel free to open the chart component and play around
with the other options available to you.

Adding parameters to a report

In this recipe, we will guide you through the steps required to pass parameters to a report
based on a MongoDB query. Using parameters in our reports means that we can filter data
from the data source so that users can find the information that they need faster than a
report with ALL data. To do this, we are going to add a parameter to the report first and then
parameterize our MongoDB query.

104

Chapter 5

Getting ready

To get ready for this recipe, you will have to make sure your MongoDB instance is running.

How to do it...

Let's start by adding a parameter to the report:

1. In Report Designer, go to File | New.
2. Click on the Data tab in the top-right corner of Report Designer.

3. Right-click on the Parameters item in the list and select Add Parameter...:

Structure| Data

0 f =

» [0 DataSets
Jw Functions

v B Environment
env::hostColonPort (Object)
env::pentahoBaseURL (Object)
env::requestURL (Object)
enviroles (Object)
envi:roles-array (Object[])
env::serverBaseURL (Object)
env::solutionRoot (Object)
env:iusername (Object)

mm

We are going to need a small data source that will populate our parameter dropdown with
values that the user can send to the MongoDB query. We can generate a data source using
a table. Let's do that now:

1. To add a new data source, click on the plus button in the top-left corner of the
pop-up window.

2. Select Table from the list of available data source types.

Pentaho Reporting
3. Click on the plus button in the top-right corner of the pop-up window to add a new
blank table query.
Set Query Name to Countries.

5. Inthe Table, click on the ID header cell and then click on the Remove column button
at the top-right side of the table. This will remove the ID field from the table and leave
only the Value field. In this case, this is all we want: a table that contains a single list
of countries.

Click on the cell below the Value header of the table and set the first row to USA.

7. Click on the Add Empty Row button at the top of the table to add a new row to the
Table data source.

Click on the cell below the USA row and set Value to UK.
9. Once completed, your table query should look like the following screenshot:

3)

@ @ Table Datasource Editor

Available Queries 0O a

Query Mame
Countries

EH EH B B

| Value (class java.lang.5tring) |
1 JUSA
2 UK

10. Click on OK to return to the Parameter Configuration popup.

Now that we have a simple table-based data source, we can configure the parameter to use
this data source to populate a filter component:

1. Setthe Name property to PARAM_COUNTRY.

2. Setthe Label property to Select Country.

3. Set the Default Value property to USA.

4. Inthe prompt section, set Display Type to Drop Down.

106

Chapter 5

5. Set Query to Countries.

6. Your parameter configuration should look like the following screenshot:

Name

Label

Value Type

Data Format

Default Value

Default Value Formula

Post-Processing Formula

Prompt
Display Type

Query

Value

Display Mame

Display Value Formula

PARAM_COUNTRY
Select Country
Sering v
jsA

Mandatory

Hidden
Crop Down v
Countries v
Value v
Value v
[Vvalidate Values

Reset to default value oninvalid selections

Use first value if default value Formula resultsin...

7. Click on OK.

At this point, we are free to preview the report. There will be no data in the report, but you
should be able to test the filter we just added. At the moment, when you are making a
selection, it is internally setting the value of PARAM_COUNTRY to whatever you choose.
The next step is to send this PARAM_COUNTRY value to a MongoDB query:

N o oo s

Click on the Data tab in the top-right corner of Report Designer.
Right-click on the data item in the list and select MongoDB.

To add a new data source, click on the Plus button in the top-left corner of the
pop-up window.

Give the Query a name like Orders.

Set the Host property to localhost.

Set the Port property to 27017.

You do not need to specify a username or password.

Pentaho Reporting

8.
9.

10.
11.

12.
13.
14.

15.

16.

17.

18.

Select the Input Options tab.

Click on the Get DBs button to return a list of available databases in the MongoDB
connections.

Select the SteelWheels database.

Click on the Get Collections button to return a list of available MongoDB collections
in the databases.

Select the Orders collections from the list.
Click on the Query tab.
Copy and paste the following query into the Query Expression (JSON) text area:

{
Squery: {},
$orderby: {
customer.address.country:1,
customer.address.city:1,
product.line:1,

}
}

Copy and paste the following filter into the Fields Expression (JSON) input:
{

customer.address.country:1,
customer.address.city:1,
product.line:1,
totalPrice:1

}

Click on the Fields tab.

Click on the Get Fields button.
Click on Preview.

You would see data from a static query similar to the one we used for Report Design Wizard.
The next step is to parameterize this query to accept the PARAM_COUNTRY value from the
report filter:

1.

108

Click on the query table and edit the query to so that it looks like the following
snippet. Note the text in bold:
{
$query: {customer.address.country:"${PARAM COUNTRY}"},
$orderby: {
customer.address.country:1,

Chapter 5

customer.address.city:1,
product.line:1,

}
}

2. Click on OK.

You will notice that we have made a small change to the query. In this case, we are going to
place the value of PARAM_COUNTY in the query. There is one last step to complete this:

1. Right-click on the Orders MongoDB query in the Data tab and click on Edit Query.

2. Click on the Edit Parameters section at the bottom of the popup.
You should see PARAM_COUNTRY listed in the Parameters table. This is the value in the
MongoDB query. We need to specify what to replace this value with. In our case, it is the
value that comes from our filter:

1. Click on the cell in Value column.

2. Set it to =[PARAM_COUNTRY].

3. Click on OK to close the Parameters popup:

Parameter | Argumentks

MName Value
PARAM COUMTRY |: [PARAM COUNTRY]

QK| | Cancel

4. Click on OK to close the MongoDB data source popup.

We're nearly there. Our parameter/filter is working in the report, and our MongoDB query has
been linked to the parameter. One final thing to do is to actually add some fields from the
MongoDB data source to the actual report layout:

1. Click and drag the country field from the Data tab and drop it into the Details band
of the report, just to make sure that the item is aligned to the top-left side of the
Details band.

2. Click and drag the city field to sit next to the country field in the Details band.
If the items overlap in the Details band, then the item background color will turn
pink. This is to inform you that you have overlapping items in the report.

Pentaho Reporting

3. Finally, click and drag the remaining line and totalPrice fields into the report and set
them alongside the previous fields. Once the items are in the correct position, you
should be looking at something that is similar to the following screenshot:

o

oty eliy Ly i totalPrice

Detals

0.5

4. Click on Preview. The following screenshot then appears:

Select Country |USA v

B Auto-Update on selection Update
UsA Allestown 5.818.4
UsA Allemtown 4.283.010
(BTN All emtown T2 24
USA All ertowen LTH
USA Al sptown T.020,54
T All sty §.191.2%
LSA All sptowry B1a2
LiSA All sptowny 2,321 .46
LiISA Al amlown £, 158,04
LiSA Allsplowny 5,566, 5
LisA All mpbowny 766714
LsA Alleobown 2.213.4

The report should render data from the MongoDB data source for The USA only. This is the
default value of our parameter filter. You can change the filter option and the report will
refresh to display only the UK data.

We add a parameter to the report that is populated by a table-based data source. This
selector will set the value of PARAM COUNTRY to whatever the user selects. The value is then
passed down to the MongoDB query that has been written to accept the parameter. When the
user makes a selection from the filter, the report is rerun and the correct data is fetched from
the MongoDB data source.

110

Chapter 5

Adding a formula to a report

In this recipe, we will guide you through the steps required to add a simple formula to your
reports. Adding a formula to a report can help you do things that might not be possible to

do directly in your query. They can also help with other cool features such as conditional
formatting. A formula in Pentaho Report Designer is similar to a formula in an Excel document.
If you understand Excel, then this section will be easy for you!

Getting ready

To get ready for this recipe, you will have to make sure your MongoDB instance is running.

How to do it...

We will start off by loading a report that was created in an earlier recipe. Don't worry if you
never completed the recipe, as we have a copy of it. Perform the following steps:
1. Goto File | Open.

2. Navigate the file system to find the chatpter5-orders-report .prpt file.
(This file is provided as source code along with this book.)

3. Click on Preview to get the following screenshot:

Australia Chatswood Classic Cars 4,905.39
Australia Chatswood Classic Cars 4 302 .08
Anstralia Chatswood Classic Cars 4 (48
Australia Chatswood Classic Cars 2,078.28
Australia Chatswood Classic Cars 3, B80.2
Anstralia Chatswood Classic Cars 2,233 69
Australia Chatswood Classic Cars 3,033.03
Australia Chatswood Classic Cars 5, 2065
Anstralia Chatswood Classic Cars 4,385 0

Pentaho Reporting

You should be looking at a simple report that lists orders placed for certain products and
countries. We are going to add a formula that will set the background color of a sales value
if it is above a certain value. This sort of formula can be useful for many reports! This will be
done as follows:

1. Click on the totalPrice field in the Details band of the report.

2. Click on the Structure tab in the top-right of Report Designer.
Below the Structure/Data panel, you will see another panel with Style and Attributes
tabs. Since we want to dynamically set the color of the field, we will add a formula to the
Style attribute:

1. Click on the Style tab.

2. Scroll down the list until you see bg-color. It will be nested within the text
style category.

3. Click on the green plus icon next to the bg-color field. This will open the formula editor:

Style | Attributes

BN

[Name JleaLue JExpr‘ -
smooth & |auto (]
embed & |False @
h-align & |LEFT]
v-align & TOP [F]
v-align-in-band | & |baseline [F]
text-wrap & wrap]
word-break & |true]
direction & |ler [F]
Eext-color] [F]

& @
line-height & |0.0]
overflow-text |©]. [F]
Erim [& |False @
trim-whitesp... | |preserve]
encoding =] [#]
character & Q |-

4. In the Formula property, you can copy and paste the following text:
=IF([totalPrice] >5000; "Red"; "Green")

Test

Then_valus

+

@ |[totalPrice]>5600

@ :“Red“

Otherwise_value @ | "Green"

* ! -~ =

Formula: Mot enough data For computation.
=IF([totalPrice]=5000;"Red"; "Green")

|m
|m

5. Click on OK.

6. Preview the report to get the following screenshot:

Chapter 5

Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia
Australia

Chatswood
Chatswood
Chatswood
Chatswood
Chatswood
Chatswood
Chatswood
Chatswood
Chatswood

Classic Cars
Classic Cars
Classic Cars
Classic Cars
Classic Cars
Classic Cars
Classic Cars
Classic Cars
Classic Cars

Pentaho Reporting

In this simple recipe, we have created a formula that allows us to manipulate the

background color of a data field. We are using an IF function to determine whether the value
of the field is over a certain value, and depending on this, we return the color we want that
field to be in. We are executing this formula in the bg-color style of the field. We could also,
for example, use the same IF function on the style that controls whether the field should be
in bold. Instead of returning a color in that example, we would return true or false (should
the field be bold or not).

We are not only limited to using a formula in a style. We could also use a formula to do other
things such as calculate a new field value. We could simply add an empty number field to a
report and set the Value attribute of that field to be something like = [FieldA] + [FieldB].
This can be useful for inline calculations.

Grouping data in reports

In this recipe, we will take you through the steps required to display raw data into groups.
This can be useful if we want to create group sum functions. In this recipe, we will order the
data into groups of counties and cities. This will then allow us to add sums for each city or
country group.

Getting ready

To get ready for this recipe, you will have to make sure your MongoDB instance is running.

How to do it...

We are going to use a PDI transformation to populate the report from a previous recipe. This
transformation will give us a list of orders by country, city, and product line:

1. In Report Designer, navigate to File | New.

2. Click on the Data tab in the top-right corner of Report Designer.

3. Right-click on the Data item in the list and select Pentaho Data Integration.

4

To add a new data source, click the plus button in the top-left corner of the
pop-up window.

o

Set the Name property of the query to Orders.
6. Click on the Browse button to open the Select transformation dialog.

7. Select the chapter5-getorders.ktr transformation.

114

Chapter 5

8. Select the OUT step in the list of steps available in this transformation.

9. Click on Preview.
10. Click on OK.

Now that we have defined the query we want, you might think the next step would be to drag
the data fields into the report. Before we do this, we are going to define our report groups.
These report groups add new report bands to the report in which we can place our data:

=

Set this value to GROUP_COUNTRY.

© ® N o oA~ WD

Click on the Structure tab in the top-right corner of Report Designer.

Select Edit Groups. This will open up the Group Configuration popup.

You will see two fields in a table. One is called Name and the other is called Fields.
Double-click on the first item in the Name column called ::group-0.

In the Fields section click on the ... button to browse the available fields in the report.
A new popup will appear. Scroll through the list of Available Fields and select country.
Click on the Right Arrow button to move the country field to the Selected Fields area.
Click on OK. The following screenshot shows the Edit Group window:

B Edit Group

Marme |GROUP_COUNTRY

Lfvailable Fields

oo
city

line .
EETE—

id

-

Selected Fields

country

Y
QK | |Cancel

Pentaho Reporting

10. We have now configured our first group. It should look like the following screenshot:

Edit Group

&+ ¥ s @

MNarne Fields
GROUP_COUNTRY
OK | | Cancel

11. Click on OK to exit the Edit Groups popup.

We may have added the group to the report; however, no new bands are visible on the report
canvas. The group exists, but by default, it is hidden from view. The next step we need to do is

show this group band on the report:

1. Inthe Structure tab, navigate and select the Group Header band:

Structure | Data
= B 3
v |£ Master Report
FPage Header
I Report Header
* {2 Group: countn
=Group Header
v {=Details Body
» 1 Details Header
= Details
== Mo Data
& Details Footer
» < Group Footer
» — Report Footer

* = Page Footer
» [Watermark

2. Inthe Attributes tab beside the Structure tab, we are looking for a property called

hide-on-canvas.

Chapter 5

3. Change the value of hide-on-canvas to false as shown in the following screenshot:

Style | Attributes

BB[Ee
Mame Value Expril~
hide-on-canvas False (] [
bype group-header
(]
(+]

data-format

roOW-50an

00

style-Format

enable-stvle-bold

eee

You will notice that a new report band will appear on the canvas called Group Header.

We are now ready to start adding our data to this report. We are going to add the country field

to the Report Header band and the rest of the data fields to the Details band:

1. Click on the Data tab in the top-right of Report Designer.

Drag the country field into the Group Header band on the report canvas.

2
3. Set the font size for this field a little bigger than the default and also set it to bold.
4. Drag the city, line, and totalPrice fields to the Details band of the report canvas:

_country

Group Header |
L]

L]

ity line totalPrice

[Tp]

=

Details -

L]

=

5. Click on Preview.

Pentaho Reporting

You should have a report that now has data grouped by country as shown in the
following screenshot:

Australia

Chatswood Classic Cars 4 G05 3%
Chatswood Classic Cars 4, 30208
Chatswood Classic Cars 4 (B
Chatswood Classic Cars 2,078 28
Chatswood Classic Cars 3, 8802
Chatswood Classic Cars 2,233 .69

In this recipe, we are simply getting ordered data from a PDI transformation and grouping it
using the Pentaho Report Designer. The Details band loops for every record that is returned
by the data source. The Group band hover has been configured only to look for each country.
Using this, we are able to drop the country field into the Group Header band and we can see
that it is only displayed once for each country in the data source.

It's also possible to created nested groups in the report. We could have added another group
to this report and looped over the city field.

Before we finish, it's also worth mentioning that without groups, we can also place items
in the Group Footer band. Similar to Group Header, this band is disabled by default, but
we can enable it in the Group Footer Attributes section. Once enabled, we could place
sum functions to give us the totals for each group or subgroup that allow us to create
much more complex reports.

Creating subreports

A subreport is a report that is embedded within the master report. There are many reasons
for which we might do this. One of the reasons would be to add a chart to a master report that
runs a different data source. It's worth mentioning that we can only run a single data source
per report. If we wanted to create a report that not only lists the orders in detail but also
displays a chart for the summary of the orders, then we would have to create a subreport.

The subreport would contain the chart for the summary, and we would include this subreport
in the master report.

Chapter 5

Getting ready

To get ready for this recipe, you will have to make sure your MongoDB instance is running.

How to do it...

We are going to use two PDI transformations to populate the report from the previous recipes.
These transformations will give us a list of orders by country, city, and product line, as well as
a summary of orders grouped by country that we will use for our chart in the subreport:

1. In Report Designer, go to File | New.

2. Click on the Data tab in the top-right corner of Report Designer.

3. Right-click on the Data item in the list and select Pentaho Data Integration.

4. To add a new data source, click on the plus button in the top-left corner of the
pop-up window.

5. Setthe Name property of the query to Orders.

6. Click on the Browse button to open the Select Transformation dialog.

7. Select the chapter5-getorders transformation.

8. Select the OUT step in the list of steps available in this transformation.
Click on Preview.

10. Click on OK.

We have mentioned before that we are also going to need the summary orders data source to
populate the chart in our subreport. We are going to add the summary orders data source to
the master report and then pass it down to the subreport to populate the chart. Let's add the
secondary data source to the master report right now:

N

© N o

Click on the Data tab in the top-right corner of Report Designer.
Right-click on the Data item in the list and select Pentaho Data Integration.

To add a new data source, click the Plus button in the top-left corner of the
pop-up window.

Set the Name property of the query to OrdersSummary.

Click on the Browse button to open the Select Transformation dialog.
Select the chapter5-getorders-summary transformation.

Select the OUT step in the list of steps available in this transformation.
Click on Preview.

Click on OK.

Pentaho Reporting

We should now be looking at a report with two data sources available. The Orders data
source has been selected by default for the master report because we added it first. The
Orders Summary data source is just sitting idle at the moment. We can tell which data
source is selected for a report if we can see the fields listed in that data source, as shown
in the following screenshot:

Structure| Data

5 ==

v @ DataSets
¥ Pentaho DataIntegration: Pentaho Data Integ
v Orders
city (5tring)
lime (String)
country (String)
_id (5tring)
totalPrice (Double)
¥ Pentaho DataIntegration: Pentaho Datalnteg
Orders surnrnary
» fu Functions
» B Environment
» = Parameters

4 L3

Let's populate the master report with data from the Orders query:

1. Click and drag the country field from the Data tab and drop it into the Details band
of the report just to make sure that the item is aligned to the top-left side of the
Details band.

2. Click and drag the city field to sit next to the country field in the Details band.
If the items overlap in the Details band, then the item background color will turn
pink. This is to inform you that you have overlapping items in the report.

3. Finally, click and drag the remaining line and totalPrice fields into the report and
set them alongside the previous fields.

120

Chapter 5

At this point, we can preview our report and it will display data for the Orders data source.
Let's move on to the subreport.

The subreport, as we have mentioned before, will contain a single chart that is populated from
the Order Summary data source in the master report. We want this Orders Summary chart

to only appear once at the top of our final report. This will give the user a breakdown of the
Orders data contained in the rest of the report:

1.

4.

Drag Sub Report Component from the toolbar on the left into the report canvas and
drop it into the Report Header band.

A popup will appear asking whether you want an inline or banded subreport. Click on
banded. This will set the subreport to take the full width of the parent band.

Another popup will appear asking you which data source you want to pass
from the master report to the subreport. Click the Orders Summary data source.

Click on OK.

After you click on OK, you should be looking at a new report tab next to the master report.
This subreport acts like any other regular report with the only difference being that it is
technically contained within the master report.

Let's add a chart to this subreport:

1.

N ok eDN

Drag a chart component from the toolbar on the left into the Report Header band
of the subreport.

Resize the Chart Component so that it has a decent width and height.
Double-click on the Chart Component in Report Header.

In the Primary Data Source tab, set the Category column property to country.
Set the Value column property to totalPrice.

Set the auto-generated-series property to true.

Click on OK.

Now that we have defined our chart and set the correct field for the data source, we can click
on the Preview Report button. If you preview in the subreport, it will actually preview the
master report.

Pentaho Reporting

You should be seeing something like the following screenshot:

F e
Australia Chatswood Classic Cars 4,905,309
Australia Chatswood Classic Cars 4, 302.08
Australia Chaltswood Classic Cars 4 [

Australia Chatswond Classic Cars 207828

Australia Chatswood Classic Cars 3,880.2

Subreports are nested within the master report. We define ALL data sources in the
master report and specify which data sources we want to use when we add subreports
to the master report.

The subreport has all the functionality of the master report. We could even go as far as to
specify a more complex subreport that contains a lower granularity of data. This subreport
would generate many rows and would then be embedded into the master report.

There is no limit to how many subreports you can add to a master report, although things
can start to get complex pretty quickly if you are not careful.

Creating a report with MongoDB via Java

There are times when we might need more control over our MongoDB data source. In cases
like these, it's possible to execute a MongoDB query using BeanShell. This allows us to call up
the MongoDB JDBC classes to execute the query manually.

122

Chapter 5

Getting ready

To get ready for this recipe, you will have to make sure your MongoDB instance is running.

How to do it...

We are going to add a new advanced data source:

1. In Report Designer, navigate to File | New.

Click on the Data tab in the top-right corner of Report Designer.

Right-click on the Datasets item in the list, select Advanced, and then Scriptable.
Select the beanshell language from the panel on the left-hand side.

Add a new value using the green plus icon.

Set the Name query to Orders.

A A A S

Copy and paste the following script into the Query window:

import com.mongodb. *;

import org.pentaho.reporting.engine.classic.core.util.
TypedTableModel;

Mongo mongo = new Mongo ("localhost", 27017) ;

db = mongo.getDB("SteelWheels") ;

orders = db.getCollection("Orders") ;

String[] columnNames = {"Country", "City", "Line", "TotalPrice"};

Class[] columnTypes = {String.class, String.class, String.class,
Double.class};

TypedTableModel model = new TypedTableModel (columnNames,
columnTypes) ;

BasicDBObject dbo = new BasicDBObject () ;
docs= orders.find(dbo) ;

while (docs.hasNext()) {
doc = docs.next () ;
model .addRow (new Object[]
doc.get ("customer") .get ("address") .get ("country"),
doc.get ("customer") .get ("address") .get ("city"),
doc.get ("product") .get ("line"),
doc.get ("totalPrice")

3N

Pentaho Reporting

docs.close () ;
return model;

Language | Queries | Global Init Script | Global Shutdewn Seript

el Available Queries Q

areew
netrexx
Jjavascript
xslt
jacl Query Name
Jython Orders
Query

-

import com.mongodb.*; =
import org.pentaho.reporting.engine.classic.core.util.TypedTableModel;

Mongo monga = new Mongo!'localhost",27017);

db = mongo.getDB("Steslwhesls") ;

orders = db.getCollection("Orders");

String[] columnNames = {"Country", "City", "Line", "TotalPrice"};

Class[] columnTypes = {String.class, String.class, String.class, Double.class};
TypedTableModel model = new TypedTableModel (columnMames, columnTypes);

@ m e e W

10 BasicDBObject dbo = new BasicDBObject();
12 docs= orders.find(dbo);

14 while (docs.hasNext()) |

15 doc = docs.nexti);

16 model .addRow (new Object[] {

17 doc . get("customer") .get("address") .get("country"),
18 doc .get("customer") .get("address") .get("city"),

18 doc.get("product”) .get({"line"),

20 doc.get("totalPrice")

2l 1

22 |y

23 docs.close();
24 return model;

Preview

OK| | Cancel

8. Click on Preview.
9. Click on OK.

You can see from the preview window that we are able to return the data directly from
MongoDB with a combination of the MongoDB Java classes and some BeanShell scripting.
We can now drag the fields from the data source into the Report Designer canvas.

1. Click and drag the country field from the Data tab and drop it into the Details band
of the report just to make sure that the item is aligned to the top-left corner of the
Details band.

2. Click and drag the city field so that it is next to the country field in the Details band.
If the items overlap in the Details band, then the item background color will turn pink.
This is to inform you that you have overlapping items in the report.

3. Finally, click and drag the remaining line and totalPrice fields into the report and set
them alongside the previous fields.

124

Chapter 5

In this recipe, we simply added a new scriptable data source to our report. We imported the
required MongoDB and Reporting libraries that include the MongoDB JDBC classes and wrote
a query that would connect to our MongoDB instance, return a result set, and then merge this
result set into an object that the Pentaho Report Designer can understand. When the query is
executed, we get back a list of fields that come from this object.

Publishing a report to the Pentaho server

Running reports in the Preview mode via Report Designer is all well and good; however, for
the solution to really be useful, we should publish it to the Pentaho server so that other users
can run our reports via a web browser.

Getting ready

To get ready for this recipe, you will have to make sure your MongoDB instance is running.

How to do it...

We are going to open a report from a previous chapter and publish it to the Pentaho server:

1. Go to File | Open.

2. Select the chaptet5-orders-report.prpt directory.

3. Click on Preview.
You should be able to simply run this report and see the Orders data. Now it's time to
publish the report:

1. Go to File | Publish or press Ctrl + Shift + P.

2. You will need to authenticate with the Pentaho server. Make sure that the
following properties are set:

1. URLissettohttp://localhost:8080/pentaho.
2. User is setto admin.

3. Password is set to password.

3. Click on OK.

Pentaho Reporting

The following screenshot shows the Login page:

Server
URL:
http://localhost:8080/pentaho v
Timeouk:

Pentaho Credentials
User:

admin
Password:
FRRRKRAK

[} Remember These Settings

QK| [Cancel

4. Inthe next pop-up window, we will choose the location where we want to save our
report and also choose the options that should be set as default:

1. Navigate to the Public | SteelWheels directory.
2. Set the Title property to Orders Report.
3. Set Output Type to HTML (Stream).

5. Click on OK.

126

Chapter 5

File Marne:
chatpets-orders-report.prpt
Title:
Orders Report

Report Description:

[|

Location:
/public/steelWheels v @ m B
Title File Name Date Modified | Description

Buyer Report (.. Buyer Report (... 26-Aug-2014 2...

Income State... Income State... 26-Aug-2014 2.

Inventory List Inventory List (... 26-Aug-2014 2... Scan-able inve...
Invoice (report) Invoice (report... 26-Aug-2014 2.,

Product Sales Product Sales.... 26-Aug-2014 2... OperationalR...

Lest test.prpt 11-Jan-20151... test

Top Custorners Top Customer... 26-Aug-2014 2... Viewthe top c...
Vendor Sales R... Vendor SalesR... 26-Aug-2014 2...

[show Hidden Files
Qutput Type:
HTML (Stream) | » | [Lock

OK | | Cancel

The report will now be published to the Pentaho server. If all goes well, you will get a
confirmation message asking whether you want to run the report now. Click on No:

Launch the published report?

é The report was published successfully. Do youwant ko launch it now?

® Mo | [¥es

To publish a report to the Pentaho server, we have to first authenticate with the Pentaho
server. If the details are correct, we can choose a location and some options for how the
report should run by default. In this case, we set the default Output Type to be HTML. The
user still has the ability to choose other Output Types during the execution of the report on
the server.

Pentaho Reporting

Running a report in the Pentaho server

In this recipe, you will learn how to run an Orders report on the Pentaho server.

Getting ready

Make sure that you have started your Pentaho BA Server using the server control scripts.
You should be able to access the server via your favorite web browser with the following URL:
http://localhost:8080/

User Console

User Name: Password

|

Login as an Evaluator

How to do it...

We are going to log in to the Bl Server to run the report.

1. Navigate to the Pentaho server login screen using your favorite web browser.
Use the following login details:
o Username: admin

o Password: password

2. Click on Browse Files on the main screen.

128

Chapter 5

3. Inthe Folder hierarchy tree, expand Public, and then click on the Steel Wheels folder.

4. In the Files section, you will see a list of reports including Orders Report.

5. Double-click on Orders Report to open it as shown in the following screenshot:

Folders

~[= Home
3 admin
3 pat
3 suzy
B3 tiffany
~ =y Public
+ B3 Pentaho Operations Mart
» 3 plugin-samples
3 Steel Wheels
@ Trash

Files

[El Buyer Report (sparkline report)

[[¥l Country Performance (heat grid)

[Departmental Spending (bubble chart

[European Sales (geo map)

[El Income Statement

B inventory List

Bl Invoice (report)

[Leading Product Lines (pivot table)
[El Orders Report

[Product Line Share by Territory
Product Performance (dashboard)
[l Product Sales

Product Sales Breakdown
Regional Sales (dashboard)

[Sales Trend (multi-chart)

Territory Sales Analysis

B test

[l Top Customers

[} Vendor Sales Report (interactive repot

File Actions

Open
Open in a new window

Run in background...

Cut
Copy
Move to Trash

Rename...

Download...

Share...
Schedule...
Add to Favorites

Properties...

Pentaho Reporting

6. Once you double-click on the report, it will open and execute in the HTML format by
default. You can run the report in PDF if you like:

Orders Report
11|
Output Type
HTML (Single Page) |
& Auto-Submit
Australia Chatswood Classic Cars 4,905.39 | L |
Australia Chatswood Classic Cars 4,302.08
Australia Chatswood Classic Cars 4,048
Australia Chatswood Classic Cars 2,078.28
Australia Chatswood Classic Cars 3,880.2
Australia Chatswood Classic Cars 2,233.69
Australia Chatswood Classic Cars 3,933.93
Australia Chatswood Classic Cars 5,296.5
Australia Chatswood Classic Cars 3,385.0
Australia Chatswood Classic Cars 2,617.16
Australia Chatswood Motorcycles 1,451
Australia Chatswood Motorcycles 1,329.9
Australia Chatswood Planes 3,710.98
Australia Chatswood Planes 1,561.5
Australia Chatswood Planes 1,210.8
Australia Chatswood Planes 2,754.7
Australia Chatswood Planes 3,186.48 -

7. Set the Output Type to PDF.

The report will execute once you have made the selection. This is the default operation of the
reports. You can uncheck the Auto Submit option if you have more parameters in your report
that you would like to set before the report is executed. After this, you can click on the View
Report button.

Once reports are published to the Pentaho server, it's a simple case of double-clicking on the
reports to execute them. You can then choose the values for the report parameters before you
execute the report a second time.

130

The Pentaho Bl Server

In this chapter, we will cover the following recipes:

» Importing Foodmart MongoDB sample data

» Creating a new analysis view using Pentaho Analyzer

» Creating a dashboard using Pentaho Dashboard Designer

Introduction

The Pentaho Community Edition, by default, comes with plugins for developing solutions
(dashboards, reports, and so on) without end user plugins. However, it's possible to find
some plugins for the target audience in the Pentaho marketplace.

Pentaho EE offers some end user plugins such as Pentaho Analyzer and Pentaho Dashboard
Designer. With these two plugins, users are able to easily create visualizations from different
data sources using a web interface. In this chapter, you will learn how to explore and create
visualizations of your MongoDB data using Pentaho Analyzer, and how to create dashboards
using Pentaho Dashboard Designer.

Importing Foodmart MongoDB sample data

In this recipe, you will learn how to import one of the most famous databases in the Pentaho
community, the Foodmart database, into MongoDB. The Foodmart database has been used
to demonstrate the diverse features available in Pentaho. The sample data for MongoDB

is available in the Pentaho EE version, and it is possible use the Pentaho MongoDB native
connection to perform an analysis on top of the database.

[vww allitebooks.cond

http://www.allitebooks.org

The Pentaho Bl Server

Getting ready

To get ready for this recipe, you will need Pentaho EE installed, and make sure that you have
the MongoDB server running with the data from the previous chapters.

How to do it...

Let's import the sample using the command line. Perform the following steps:

1.

2.

132

Importing the MongoDB Foodmart database into a Windows environment:

1.

Uncompress the ZIP file at <pentaho-installation>/server/
biserver-ee/pentaho-solutions/system/samples/mondrian-
data-foodmart-json-<versions.zip in the same location.

Create a .bat file named import .bat inside the folder with the
JSON source files. Insert the following content into the file and replace
<mongodb-path> with the location of your MongoDB server:

@echo off

for %%f in (*.json) do (

if "%%f" == "sales fact 1997 collapsed.json" (

echo "--db foodmart --collection sales --file %%~nf.json"

"<mongodb-path>\bin\mongoimport.exe" --db foodmart
--collection sales --file %%~nf.json

)

echo "--db foodmart --collection %%~nf --file %%~nf.json"
"<mongodb-path>\bin\mongoimport.exe" --db foodmart
--collection %%~nf --file %%~nf.json

)

After some minutes, you will be able to check out the Foodmart data using
Mongo shell.

Importing MongoDB Foodmart database in a Linux environment:

1.

Uncompress the ZIP file at <pentaho-installation>/server/
biserver-ee/pentaho-solutions/system/samples/mondrian-
data-foodmart-json-<versions.zip in the same location.

Create a bash script file named import . sh inside of the folder that
contains the JSON source files. Insert the following content into the file
and replace <mongodb-path> with the location of your MongoDB server:

#!/bin/bash

ls -1 *.json | sed 's/.json$//' | while read col; do case

"$Scol" in * collapsed)

echo "<mongodb-path>/bin/mongoimport -d foodmart -c sales <
Scol.json;";

Chapter 6

<mongodb-path>/bin/mongoimport -d foodmart -c sales <
$col.json;

esac

echo "<mongodb-path>/bin/mongoimport -d foodmart -c $col <
$col.json;";

<mongodb-path>/bin/mongoimport -d foodmart -c $col <
$col.json;

done

After some minutes, you will be able to check out the Foodmart data using Mongo shell. After
that, perform the following set of instructions:

1. Create a user for the new database. In Mongo shell, execute the following commands:

2.

use foodmart;
db.createUser (
{
user: "root",
pwd: "password",
roles: ["readWrite"]
}
)i

Let's enable the foodmart connection for the Pentaho native connection:

1. Gotohttp://localhost:8080/pentaho/api/password/encrypt
and submit the password of the MongoDB Foodmart database to get the
encrypted password.

Edit the <pentaho-installation>/server/biserver-ee/pentaho-
solutions/system/olap4j.properties file and uncomment the lines
for the foodmart connection, which comes by default. Replace the actual
schema file path and MongoDB connection. You should then have something
like the following lines:

foodmart .name=mongoFoodmart
foodmart.className=org.pentaho.platform.plugin.services.
connections.PentahoSystemDriver
foodmart.connectString=jdbc:mondrian4:Host=1localhost ;dbname
=foodmart ;DataServicesProvider=com.pentaho.analysis.mongo.Mo
ngoDataServicesProvider;Catalog=C:/Pentaho/server/biserver-
ee/pentaho-solutions/system/samples/FoodMart .mongo.xml;usern
ame=root ; password=ENC:cGFzc3dvcmQ

2. Restart the Pentaho Bl server, and you should be able to use Pentaho
Analyzer with the new connection.

The Pentaho Bl Server

In previous chapters, we demonstrated how to create MongoDB databases using PDI and how
to connect different Pentaho tools to MongoDB. In this particular case, we imported an actual
database with good data and used an OLAP schema with different dimensions.

Basically, the FoodMart .mongo . xml file is a schema for Mondrian 4, and by using the
Olap4j configuration and the Pentaho native connection for MongoDB, it is possible to perform
an OLAP analysis directly on top of MongoDB. Internally, the process works like this: the user
starts performing an analysis on Mondrian, and the native connection translates Mondrian
requests into MongoDB queries using the aggregation framework.

There's more...

There is a tool created by Mark Kromer that helps you create and manage MongoDB
connections for Pentaho Analyzer in the olap4j.properties file and Mondrian 4 schema
files. You can check out this open source tool, available in the Git repository, by going to
https://github.com/kromerm/MondrianMongoModel.

Creating a new analysis view using

Pentaho Analyzer

Pentaho Analyzer is an analytical visualization tool that filters and drills into data sources.

It can easily compile data into visualizations using an interactive web interface and is intuitive
for end users. This plugin is available in the Pentaho Enterprise Edition only. If you are using
the MongoDB native connection, it is possible to create intuitive and quick visualizations.

This recipe will guide you through exploring the Foodmart data imported in the previous
recipe using this analytical tool. This recipe is an overview of the main features available
in Pentaho Analyzer.

Getting ready

To get ready for this recipe, you will need the Pentaho Bl server running, and make sure you
have the MongoDB server running with the data from the previous recipe.

Chapter 6

How to do it...

After you have made sure that you are ready to start the recipe, perform the following steps to
create an analysis report:

1. From the web browser, access the Pentaho Bl server using
http://localhost:8080/pentaho.

2. After logging in, on the Home screen, click on the Create New button and then
on the Analysis Report button, as you can see in the following screenshot:

File View Tools Help

Home ~

Browse Files Getting Started

Create New Analysis Report

Manage Data Sources Interactive Report

Documentation

4 -

Dashboard

Data Source H

3. Inthe Select Data Source popup, select mongoFoodmart: Sales, as you can see in

this screenshot:

Select Data Source

Specify which data source you want to analyze. Each data source consists of
a schema and a cube in the schema. This will determine which fields you
will have available. [?

Data Sources: +

mongoFoodmark: Sales Transactions
pentaho_operations_mart: BA Operations Mart - Component
pentaho_operations_mart: BA Operations Mart - Content
pentaho_operations_mart: BA Operations Mart - User Session
pentaho_operations_mart: PDI Operations Mart - Job Entry
pentaho_operations_mark: PDI Operations Mart - Performance
pentaho_ocperations_mark: PDI Operations Mart - Step

& Auto Refresh Report

Cancel

The Pentaho Bl Server

4. You'll get an interactive report with fields in the left-hand-side bar, as you can see in
the following screenshot. You can drag and drop, using your mouse, those fields in
Rows, Columns, or indeed Measures, if that be the case.

- Laye Ol Y %o
* » NoFilters

Find: view
- customer
& Education Lavel
- Customer - Clty
@ty |
~ Customer - Country }
&3 Country Drop Measure Here *

~ Customer - Education
SE

- mer - Gender ‘
2 er .
~ Customer - Marital Status T

3 Marital Status
~ Customer - Name
© Name

~ Customer - State Province

Province
~ Customer - Yearly Income
& Yearly Income

~ Customers

5. Let's answer some business questions, such as What is my profit by country and
state? You just need to drag and drop the Country and State Province fields from the
Customers group to the Rows area. You also need to drag and drop the Profit field
from the Measures group to the Measures area, and you will instantly get the answer
to your business question, as you can see in this screenshot with the result:

136

Chapter 6

+ Layout
Rows &3

Country

Columns &3

Measures E-_-.

Profit

State Province

Drop Level Here

Drop Level Here

Drop Measure Here

[E][®] v | # o

haY

b Mo Filters

Country + | State 3 Profit
Province
CA $04,139.75

UsA OR $84,175.71
WA $155,046.24

6. Now that we have got the first answer, we can keep asking more questions, such
as "What is my profit by country and state for different product families?" Using the
same view as earlier, drag and drop the Product Family field from the Products
group to the Columns area, and you will quickly get your answer, as shown in the
following screenshot:

v Ldyout
Rows &3
Country
State Province
Drop Level Here
Columns &3
Product Family
Drop Level Here
Measures S

Profit

Drop Measure Here

~ o | | # o
b No Filters
Product Family =
Drink Food Neon-Consumable
Country * | State % Profit Profit Profit
Province
CA $8,540.97 $67,715.15 $17,883.63
USA OR $7,300.94 $60,268.36 $16,606.41
WA $13,517.07 $112,432.16 $29,997.01

The Pentaho Bl Server

7. Let's answer one more question, What is my profit by in the cities of California
for different product families? In keeping with the previous view, right-click on
the CAa state and choose Keep Only CA. Then, drag and drop the City field from
the Customers group to the Rows area and you will get your answer, as you can
see in the following screenshot:

) OjmyY | o
¥ 1 Filter

SEniny v Product Family 2
State Province e Drink Food Non-Consumable

City ~ Country # | State + | City $ Profit Profit Profit

Drop Level Here REovince

Altadena $229.27 $2,425.10 $628.91
Columns & Arcadia $220.66 $2,274.02 $558.55
Product Family v Bellflower $407.22 $2,788.08 $741.08
Drop Level Here Berkeley $26.53 $139.01 $24.10
Beverly Hills $319.13 $2,511.57 $788.07
Measures & Burbank $375.35 $2,757.79 $760.70
Profit ~ Burlingame $16.03 $179.14 $50.21
Drop Measure Here Chula Vista $330.44 $2,746.76 $664.14
Colma $10.05 $116.19 $38.13
Concord $12.51 $94.49 $26.29
Coronado $273.27 $2,147.36 $550.57
Daly City $15.84 $112.89 $24.81
Downey $457.96 $3,201.91 $713.56
El Cajon $300.62 $2,299.94 $636.51
Fremont $21.51 $148.29 $34.34
Glendale $287.85 $3,020.31 $896.19
Grossmont $267.55 $1,953.41 $412.26
Imperial Beach $221.08 $1,437.90 $389.60
La Jolla $233.95 $1,708.78 $455.64
La Mesa $216.25 $1,663.44 $441.51
Lakewood $316.02 $2,261.58 $532.18
Lomon G, 421 5 £2 42000 4c4 14

8. As there are many cities in California, it isn't possible to get any quick understanding
of the previous result. Let's convert the table into a stacked column chart in order to
get a better understanding. To do this, click on the chart icon in View As and choose
Stacked Column. You will get a quick visualization of your question, as you can see
in the next screenshot:

138

Chapter 6

~ Layout ~ - |EE v | % o viewss: (@[] v

Column

X-Axis & » 1Filter v Stacked Column
4,400 100% stacked Column
4200 Coumnine Combo
4000

Bar

Drop Level Here 3.800

Stacked Bar

Color Stack & 3.600

100% Stacked Bar

3.400
Product Family v

3.200 Line
Drop Level Here
3,000 Area
Measures i
& 2,800 P
profit v 2600 Sunburst
Drop Measure Here 2,400 Scatter
Multi-Chart € 2,200 Heat Grid
Drop Level Here 2.000 Geo Map
1,800 m Drink
1,600 = Food
Non-Consumable
1.400
1.200
1,000
800

Data Labels: | | | | Hm N |] - H.E HmE = HEE

4\06) S PSS RL PP TR
ﬁ‘\goﬂ“o“ \é\bé\% »; ROCK; « *@ ST O

Profit

S ; % ‘“G PP & O g®
% S L9 9 Tl P F
909 @ & &y /%L/ a 3@ '5‘55‘«*“4*&4“‘\ <

S
- c P S« P S0 S 1
St c> d' @ F o ?}YJ%; OSSN Q?,@'fv IS d B S 5 & &
v‘c,? g ﬁ‘? ‘> SN e"g oﬂy‘ ey S P T X ot LG OF T
N 0“ & VS St Ty S \)v‘ \’ﬁv\?‘?\’*sfg* S S &
& > Y K $ 5

Country. State Province and City

9. Let's save this view by clicking on the Save button in the top bar. In the Save popup,
enter the name California profit and save it in your user folder using the
admin user, as you can see in the following screenshot:

Save
Filename:

California profit

Location:

fhome/admin j D"

The Pentaho Bl Server

With a database and an OLAP schema on top, Pentaho Analyzer can answer multiple business
questions quickly and with an intuitive user interface. In this recipe, we just perform some
analyses of the Foodmart database, getting quick results in a dynamic table that can be
swapped with a proper chart to get a better understanding of the data. This intuitive interface
is possible with the OLAP schema, which gives the necessary metadata to the end user. The
interface will execute MDX statements onto the Mondrian engine, and then Mondrian will
translate the statements on the fly into MongoDB using aggregation pipeline queries.

There are more features available in Pentaho Analyzer; for example, it is possible get the
totals by rows or measure columns as a subtotal breaking by hierarchy.

These analysis views can easily be embedded in other systems or plugins; for example, in the
next recipe, we will embed this view in a Pentaho dashboard.

There's more...

In the Pentaho marketplace, there is an open source plugin similar to Pentaho Analyzer
named Saiku Analytics. It's a lightweight JavaScript web interface, and a backend based
on web services makes it easier to embed. Saiku also has an enterprise version, just like
Pentaho, with extra features that aren't available in the community edition.

Creating a dashboard using Pentaho

Dashboard Designer

In these days, having a tool for end users to create their own dashboards with key business
indicators using a highly graphical and intuitive visual interface is of huge value towards
improving performance in organizations.

Pentaho Dashboard Designer is a plugin that is available only in Pentaho EE. It allows users
to easily create their own dashboards. In this recipe guide, you will be able to create a quick
and simple dashboard using the Foodmart database storage in MongoDB.

Getting ready

To get ready for this recipe, you will need the Pentaho Bl server running, and make sure you
have the MongoDB server running with the data from the first recipe of this chapter.

140

Chapter 6

How to do it...

Perform the following steps to create a dashboard:

1. Onthe Home screen, click on the Create New button and then on the Dashboard
button, as you can see in this screenshot:

Fila View Tools Help

Home v

Browse Files Getting Starte

Create New Analysis Report

Manage Data Sources Interactive Report

Documentation Dashboard

Data Source

2. Inthe Templates section at the bottom, choose the 1 over 1 option.
Under Properties, enter the page title as Dashboard Sample.

4. Inthe first panel, click on the insert content dropdown and choose the File option,
as you can see here:

S~ 2
I Chart
B Data Table
@ URL

1 File

5. Inthe Select popup, select the California profit analysis view file saved in
the previous recipe.

Set the Title field of the panel as California profit.

7. Inthe second panel, import another file. In this case, it is the Orders Report file
created in the previous chapter.

The Pentaho Bl Server

8.

Set the Title field of the second panel as Orders. You should get a configuration
similar to what is shown in this screenshot:

Browse
~ & home
O admin
£ pat
£ suzy
3 tiffany
* O3 Public

Files

B california profit

)

ol Dashboard
California profit -2
» 1iter Acions +
5,000
4000
& 3000
& 2,000
r L
3
e
S &% gt @ & & @ & 5 N -
& e L P S e? & e¢ a\&* SO L & ¢\>
o ‘?"Pé‘\f‘a'&aé@’ °“f\“ﬁ & u°° S «« ¢ “'f”\ S "B}* o “\@3 “ *@‘&"‘&“ S ‘fcf}“ ey ﬁef@f
c"fo"b ve o av“o’d’aaav & O'LV¢‘ I }y, vq&*c ng, s%‘ S '8
& yL;, 4' 5 FF TEFF ST 5 e o %'a 4 L,';v ¢ v T g?}y\ﬁ, 9, ,@'.1» «,‘> I EIS S
S I gy & VR Ty
Country, State Province and Gty
Oraers E%
>hJrss
Objects THle: Parameters
= Geners! setings orders o
£ Frompss .
10 Cotforma pro efesh Intesvel) output-target table/htmlipage-mode=page
1T orders

Content:

B chatpetS-orders-report

10.

Save the dashboard by clicking on the Save button in the top bar. In the Save popup,

enter Dashboard Sample in the Filename field. Save the dashboard in the same
folder as of the previous view and click on Save.

Now let's open the dashboard in view mode. From the Home dropdown, select
Browse Files and navigate to the repository until you find the dashboard saved
earlier. Double-click on the file to open it, and you should see the dashboard as
shown in the following screenshot:

Dashboard Sample

California profit
b 1Fer

5.000

4,000

£ 2000
(1] | n []] [
; -

Orders
>ho[rea

&

& N ry & &
& & fJ\a«*L @“o#\o\f@“@ @'1z X;\d‘ft‘&@“v cs4\ & °\‘*"o°?§o~
e‘* & ,e’{o f“@'\’ v * °°i « ®‘° e‘f & »‘} ¢ @ é‘) Q& d, (‘2 fﬁf ,_;i‘q g\"\ & ’P Fd e*‘ @‘h ;A 2 A@L
a,ea,@//@"ogg &5 M5 s o ¥ v'ff’(?/ S

F 5 LV\@"V}Y\’\’&(P}‘v S F T EF S F L o W

£ F &K S a" T F S & ¥ F 51 g , TS Lv ST

I T S I o $ S I II IS L, o

K

Country, State Province and City

Australia Chatswood Classic Cars 4,905.30
Australia Chatswood Classic Cars 4,302.08
Australia Chatswood Classic Cars 4,048

Australia Chatswood Classic Cars 2,078.28
Australia Chatswood Classic Cars 38802
Australia Chatswood Classic Cars 2,233.60
Australia Chatswood Classic Cars 303393
Australia Chatswood Classic Cars 52065
Australia Chatswood Classic Cars 33859
Australia Chatswood Classic Cars 2,617.16
Australia Chatswood Motorcycles 1451

Non< Cmvsnmzble

142

Chapter 6

This recipe shows you how to create a quick dashboard using an Analyzer view and a Pentaho
report created in the previous chapter in two panels. Like Pentaho Analyzer, Pentaho Dashboard
Designer is an intuitive plugin for creating your own dashboards quickly, and like Analyzer,
Pentaho Dashboard Designer also sends direct MongoDB queries on the fly to the MongoDB
cluster. Furthermore, Pentaho Dashboard Designer supports multi-visualization source types
such as Pentaho Analyzer, charts, tables, reports, websites, and so on.

There are some more features available on Pentaho Dashboard Designer, such as drill-down
and parameters, that help you explore data in the same dashboard.

In the next chapter, we will focus on advanced dashboards using the CDF and CDE
community plugins.

Pentaho Dashboards

In this chapter, we will cover these recipes:

» Copying the MongoDB JDBC library

» Importing a sample repository

» Using a transformation data source

» Using a BeanShell data source

» Using Pentaho Analyzer for MongoDB data source
» Using a Thin Kettle data source

» Defining dashboard layouts

» Creating a Dashboard Table component

» Creating a Dashboard line chart component

Introduction

These days, we find that giving users an overview of their business in the form of dashboards
is one of the most popular forms of reporting solutions. These dashboards give the users a
high-level understanding of how their business is performing. From them, the user is likely to
further investigate whether their dashboard KPIs are looking good. A dashboard gives users
the power to understand their business with minimal time and effort.

Pentaho Dashboards

In this chapter, you will be able to create advanced and bespoke dashboards using a suite of
plugins called CTools. CTools is a suite of plugins/components for creating and maintaining
advanced dashboards in the Pentaho Bl server, available in the Pentaho Marketplace. These
can be used in Pentaho Enterprise Edition or even in Pentaho Community Edition. In the more
recent Pentaho version, CTools comes preinstalled. However, for the Pentaho EE version, you
will need to install the Pentaho Marketplace from http://community.pentaho.comand
then install the CTools plugins. Based on that, if you follow the procedure in this chapter in
Pentaho EE, install Marketplace and CTools before you start the recipes.

Copying the MongoDB JDBC library

We will be using some scripting in these recipes, so it's important to make sure that we have
the MongoDB JDBC library copied to the correct location in our Pentaho server.

Getting ready

Make sure you have access to the filesystem that is running your Pentaho server.

How to do it...

Proceed with the following steps:
1. Inyour filesystem, navigate to PentahoEE/server/biserver-ee/pentaho-
solutions/system/kettle/plugins/pentaho-mongodb-plugin/lib.
2. Copy the mongo-java-driver.xxx.jar file from the folder.

3. Navigate to PentahoEE/server/biserver-ee/tomcat/webapps/pentaho/
WEB-INF/1lib.

4. Paste the mongo-java-driver.xxx.jar file.

5. Restart your Pentaho server.

By default, it isn't possible to use the scripting/BeanShell data source in dashboards with
MongoDB database. This is because the MongoDB Java driver isn't available for the plugin.

In this recipe, we copy the driver that is available in the Kettle Bl Server plugin to the 1ib
folder of the Pentaho web app. In this way, we can use the MongoDB driver classes in the
Pentaho dashboard.

146

Chapter 7

Importing a sample repository

Developing bespoke/advanced dashboards in Pentaho isn't a job for end users. This recipe
guides you on how to upload a ZIP file that contains some layouts of dashboards and data
sources, so we don't develop dashboards from scratch. This ZIP file, called Pentaho MongoDB
Cookbook . zip, is available for download along with this book.

You can find more details on the Internet about how to build bespoke dashboards in Pentaho,
if you are interesting in learning about them in more detail.

Getting ready

Make sure that your Pentaho BI Server is running and you have logged in to the Pentaho
user console.

How to do it...

Proceed with the following steps:
1. Inthe Pentaho user console, click on Browse Files. Then click on the Public folder.
In the panel to the right, click on the Upload button.
2. Next, click on Browse.
3. Inyour filesystem, navigate to the location of the Pentaho MongoDB Cookbook.zip file.
4. Click on OK.

This recipe guided you through importing a ZIP file that contains a folder with sample
resources, which will help you in the upcoming recipes on developing dashboards.

The Pentaho BI Server from version 5.x onward doesn't use the filesystem anymore as a
content repository for end users. From this version onward, Pentaho has an implementation
of a content repository for Java, providing features of multi-tenancy and content recovery.

Using a transformation data source

Typically, developing dashboards can be useful for getting data from different sources, such as
SQL, MDX, APIs, and so on. In cases such as these, it's a good thing to know how to execute

a PDI transformation in a dashboard. With PDI transformations, you have almost unlimited
power when it comes to data loading and manipulation.

This recipe guides you through creating a PDI transformation data source for a CDE dashboard.

Pentaho Dashboards

Getting ready

To get ready for this recipe, you first need to start the MongoDB server with the same
database as that of the last chapter. You will also need to start the Pentaho BA Server
using the server control scripts. Once started, you should be able to log into the Bl Server.

How to do it...

Proceed with the following steps:

1. Inthe PUC, go to File | New | CDE Dashboard, like this:

Flley Vview Tools Help.

New 4 CDE Dashboard
Open.. Analysis Report
lanage Data Sources nteractive Report
Recer b Dashboard
Favorites » Data Source

e
Log LUut

2. Click on the Data Sources tab that is shown as selected in the following screenshot:

O A Kl

3. Expand the KETTLE Queries data source category.

4. Click on the Kettle Over KettleFromTransFile data source, as shown in the
following screenshot:

~ KETTLE Queries

kettle over kettleTransFromFile

5. Set the Name property to QUERY1.
Click on the Browse button on the Kettle Transformation File property.

148

Chapter 7

7. Navigate to Public | Pentaho MongoDB Cookbook | Transformations and select

Chapter7-getorders.ktr.
8. Click on OK, as shown here:

Choose existing file: s
e -
LY Pentaho MongoDB Cookbook
2 Dashboards i
chapteré-getorders.ktr :
chaptert-getorders-summary.ktr
chapter7-getorders.ktr I
chapter7-getorders-summary.ktr
4l pentaho-operations-mart =}
Cancel Ok
9. Set the Kettle Step Name property to OUT, like this:
Properties
MName QUERY1
/public/Pentaho MongoDB
Kettle Transformation File Cookboolk/Transformations/chaptert-
getorders.kir
Access Level Public

Parameters Transformation Step Name
Output Options 0

Output Mode Include

Columns O

Calculated Columns O

Cache Duration 3600

Cache True

Variables g]

Pentaho Dashboards

10. Click on Save As under the CDE main menu.

11. Save your dashboard in Public | Pentaho MongoDB Cookbook | Dashboards with
the name Transformation Data Source.

In these steps, we simply added a valid data source to the CDE dashboard. However, if we
were to preview this dashboard, we wouldn't see any data. This is because we haven't added
any dashboard components that use this data source. Instead, the dashboard has saved this
connection to another file, called a CDA file. This CDA file is attached to this dashboard and
contains all our data sources.

To test that this data source works, we are going to execute it directly from the accompanying
CDA file:

1. Click the Opened menu on the Pentaho user console and select Browse Files.
2. Navigate to Public | Pentaho MongoDB Cookbook | Dashboards.
3. Select the Transformation Data Source.cda file.
4. Click on Open on the right-hand side menu, as shown here:
Folders 9] Files File Actions
» 1 Home @ Transformation Data Source oo
~ = Public Transformation Data Source.cda

Open in a new window

Transformation Data b)
» (3 cde O ! Transformation Data Source.cda

o DEV

D " ~o e Cut
~ B Pentaho MongoDB Coockbook
Copy
3 Dashboards J
Move to Trash
(3 Transformations
Rename
» (3 Pentaho Operations Mart
» 7 plugin-samples Download
3 Steel Wheels
Share

T Trash .
Add to Favorites

Properties

150

Chapter 7

5. Click on the Data Access dropdown and select Data Access ID: QUERY1, as shown
in the following screenshot:

iData Access v

Dakta Access
DataAccess ID: QUERY1

The query will execute once you have selected it from the Data Access drop-down menu.
You will see the contents of the transformation that is attached to the dashboard you
defined earlier, as shown in this screenshot:

Filename: /public/Pentaho MongoDB Cookbook/Dashboards/Transformation Data Source.cda About
iDataAccess ID: QUERY1 i 1 Export as xls Query URL Cache this
R
Show 10 j elements Search:
city = line country | _id totalPrice
Allentown Classic Cars UsA 54343497e4b09fcb2f28dcaé 5818.4
Allentown Classic Cars USA 54343497e4b09fcb2f28dca? 4283.01
Allentown Classic Cars UsA 54343497e4b09fcb2f28dcal 7962.24
Allentown Classic Cars USA 54343497e4b09fcb2f28dcal 3734
Allentown Classic Cars UsA 54343497e4b09fcb2f28dd02 7020.64
Allentown Classic Cars US4 54243497e4b09cb2f28dd07 4191.25
Allentown Classic Cars usa 54343497e4b09fch2f28dd0b 813.2
Allentown Classic Cars US4 54243497e4b09fcb2f28dd0f 2321.46
Allentown Motorcycles usa 54343497e4b09fcb2f28deB1 4358.04
Allentown Motorcycles US4 54243497e4b09cb2f28deB2 5566.5
View 1to 10 of 2,996 elements 4

In this recipe, we created a new CDE dashboard and added a PDI transformation data source
into the data sources section. The data source was added by selecting a transformation that
was predefined and saved in the repository when we imported the ZIP file with the sample
resources. Once we saved the CDE dashboard, it generated an accompanying CDA file that
would store all our data sources.

To test whether the data source was working correctly, we opted to execute the query directly
from the generated CDA file. It was possible to see that the transformation was executed
successfully in the CDA file and returned a list of orders from the MongoDB database.

Pentaho Dashboards

Using a BeanShell data source

In this recipe, we are going to create a BeanShell data source, just as we did in
previous reporting recipes. This BeanShell data source, a lightweight scripting for
Java (http://www.beanshell.org), will allow us to query data from MongoDB.

Getting ready

To get ready for this recipe, you first need to start the MongoDB server with the same database
as that of the last chapter. You will also need to start the Pentaho BA Server using the server
control scripts. Once it is started, you should be able to log in to the Bl Server.

How to do it...

Proceed with the following steps:

1. Inthe PUC, navigate to File | New | CDE Dashboard.
Click on the Data Sources tab.

Expand the SCRIPTING Queries data source category.
Click on the Scriptable over Scripting data source.
Set the Name property to QUERY2.

Set the Language property to beanshell.

Click on the Query Editor button.

O N o ok W

Copy and paste the following BeanShell script:

import com.mongodb. *;

import org.pentaho.reporting.engine.classic.core.util.
TypedTableModel;

Mongo mongo = new Mongo ("localhost",27017) ;

db = mongo.getDB("SteelWheels") ;

orders = db.getCollection("Orders") ;

String[] columnNames = {"Country", "City", "Line", "TotalPrice"};

Class[] columnTypes = {String.class, String.class, String.class,
Double.class};

TypedTableModel model = new TypedTableModel (columnNames,
columnTypes) ;

BasicDBObject dbo = new BasicDBObject () ;

docs= orders.find (dbo) ;

152

Chapter 7

while (docs.hasNext()) {
doc = docs.next () ;
model .addRow (new Object[]
doc.get ("customer") .get ("address") .get ("country"),
doc.get ("customer") .get ("address") .get ("city"),
doc.get ("product") .get ("line"),
doc.get ("totalPrice")
1)
}
docs.close () ;
return model;

The following screenshot displays all the parameters:

b Weards Datasources [__Q Properties
SEppcr Dkt atices - Group SCRIPTING Queries Name QUERY2
* Community Data Access U'-i[SU’\pl x
+ MDXQueries Access Level Public
Query Import com.mongodb.* {...)
* OLAP4] Queries Parameters i] s
Output Options o
» Compound Queries Output Mode Include
_ Columns a
SEIITE Cucres Calculated Columns, a
Cache Duration 3600
MR Cache True

~ SCRIPTING Queries

scriptable over scripting

9. Click on OK.

10. Click on Save As on the CDE main menu.

11. Save your dashboard at Public | Pentaho MongoDB Cookbook | Dashboards with
the name Beanshell Data Source.

To test whether this data source works, we are going to execute the data source directly from
the accompanying CDA file:

1. Click on the Opened menu on the Pentaho user console and select Browse Files.
2. Navigate to Public | Pentaho MongoDB Cookbook | Dashboards.

Pentaho Dashboards

3. Select the Beanshell Data Source.cda file.

Folders

» B3 Home
~ = Public
» [0 cde
[DEV
~ 5 Pentaho MongoDB Cookbook
[Dashboards
3 Transformations
» B3 Pentaho Operations Mart
» B3 plugin-samples
3 Steel Wheels
I Trash

Files

@ Beanshell Data Source
@& Beanshell Data Sc-urce_cﬁ}a
[1 Beanshell Data Source.cdfde

& Transformation Data Source

& Transformation Data Source.cda

[Transformation Data Source.cdfde

Folder Actions

New Folder...
Move to Trash

Rename...

Paste

Upload...

Download...

Properties...

4. Click on Open on the right-hand side menu.

5. Next, click on the Data Access dropdown as seen in the following screenshot, and
select Data Access ID : QUERY2:

Filename: /public/Pentaho MongoDB Cookbook/Dashboards/Beanshell Data Source.cda

About

View 1 to 10 of 2,996 elements

: DataAccess ID: QUERY2 I Export as xls Query URL Cache this
N
Show 10 j elements Search:
Country - City Line TotalPrice

Australia Melbourne Motorcycles 2793.86
Australia Melbourne Motorcycles 9264.86
Australia Melbourne Planes 2082.49
Australia Melbourne Motorcycles 26749

Australia Melbourne Motorcycles 3431.75
Australia Melbourne Planes 4651.53
Australia Melbourne Motorcycles 2B4B.BE
Australia Melbourne Planes 2479.21
Australia Melbourne Motorcycles 2461.36
Australia Melbourne Vintage Cars 2094.67

Chapter 7

The query will execute once you have selected it from the Data Access drop-down menu.
You will see the contents of the beanshell query that is attached to the dashboard you
defined earlier.

In this recipe, we saw how to develop another way of extracting data from MongoDB to the
dashboard components, using the MongoDB Java driver and beanshell scripting. We started
by creating a new CDE dashboard and adding a BeanShell source to the data sources section.
Then, we defined our BeanShell script to return a selection of data directly from MongoDB,
using the MongoDB Java driver. Once we had saved the CDE dashboard, it generated an
accompanying CDA file that would store all our data sources for the same dashboard. To test
that the data source was working correctly, we opted to execute it directly from the generated
CDA file. Then, we should be able to see that the beanshell scripts are executed successfully
in the CDA file and return a list of orders from the MongoDB database.

Using Pentaho Analyzer for MongoDB

data source

In this recipe, we are going to connect to our MongoDB database using an MDX query from
Pentaho Analyzer. We are going to create a simple query using Analyzer, copy the generated
MDX, and create a data source in CDE to execute the MDX query.

Getting ready

To get ready for this recipe, you first need to start the MongoDB server with the same
database as that in the last chapter. You will also have to start the Pentaho BA Server
using the server control scripts. Once it is started, you can log in to the Bl Server.

Pentaho Dashboards

How to do it...

The first step is to create an MDX query using the Pentaho EE Analyzer:

1. Inthe PUC, navigate to File | New | Analysis Report.

2. Select the mongoDBPentahoCookBook: Orders data source from the list of available
data sources, like this:

Select Data Source

Specify which data source you want to analyze. Each data source consists of
a schema and a cube in the schema. This will determine which fields you
will have available. 7

Data Sources: +

mongoDBPentahoCookbgok: Orders
Orders: Ordes E}
pentaho_operations_marMations Mart - Component
pentaho_operations_mar® ations Mart - Content
pentaho_operations_mart: BA Operations Mark - User Session
pentaho_operations_mart: PDI Operations Mart - Job Entry

pentaho_operations_mart: PDI Operations Mart - Performance
pentaho_operations_mart: PDI Operations Mart - Step -

& Auto Refresh Report

3. Click on OK.

4. Click and drag the Country field from the Customers dimension to the analysis
report canvas.

5. Then, click and drag Total Price from the Measures dimension to the analysis
report canvas next to Country, as shown here:

156

Chapter 7

Analysis Report

Available fields (6) for: v Layout
Orders Rows &3
Find: View v Country
~¥ Customer Drop Level Here
&3 Country
Columns
& Name e
¥ Measures Drop Level Here
rg:Avg Price Each £,
rE:Quantity Ordered Measures
& Total Price Total Price
~ Product

Drop Measure Here
&3 Name

- Properties

“ ‘@V‘fsm

» No Filters

- Country = Total Price
Australia 630,623
Austria 202,063
Belgium 108,413
Canada 224079
Denmark 245,637
Finland 329,582

= France 1,110,917
Germany 220,472
Hong Kong 48,784
Ireland 57,756
Italy 403,626
Japan 188,168
MNew Zealand 535,584
Norway 307 464
Philippines 94,016
Singapore 288,488
Spain 1,215,687
Sweden 210,014
Switzerland 117,714
UK 478,880
USA 3,627,983

6. Click on the cog icon on the Analyzer toolbar.

7. Go to Administration | Log. This will open a new browser tab.

Export [

About this Report...
Report Options...

Chart QOptions...

Reset Report

Reset Column Sizes

Administration »

XML

Log
s

MDx

Clear Cache

Pentaho Dashboards

8.

Select and copy the MDX from the Message column. Make sure you select only the
MDX query, as shown in this screenshot:

/i Request |D: 60dd49f0-a261-11e4-abcB-0B0027370f32 - RUN_REPORT

s

Request ID: BOdd#BfO-a281-lle4ahc8-08002?3?0m0m e Staned: 6:06:24 PM ™ SetupAxis: 1ms ™ GeneratedMDX: 1ms = ParsedMondrian: 2ms
==+ ExecutedMondrian: 17ms " Sorted: Oms ***** Rendered: Tms *** Total: 2Bms

We now have an MDX query that we can add to our CDE Dashboard. Let's create the dashboard
and add this MDX as a data source:

1.

© o M w Db

158

In the PUC, go to File | New | CDE Dashboard.
Click on the Data Sources tab.

Expand the OLAP4J Queries data source category.
Click on the olap4j over olap4j data source.

Set the Name property to QUERY3.

Then set the Driver property to org.pentaho.platform.plugin.services.
connections.PentahoSystemDriver

Next, set the URL property to the following:

jdbc:mondriand :Host=1localhost ;dbname=SteelWheels;DataServicesPro
vider=com.pentaho.analysis.mongo.MongoDataServicesProvider;Catal
og=/home/latino/git/pentaho-mongodb-cookbook/source code/chapters/
MongoDBPentahoCookbook .mondrian.xml .

Open the Query Editor property, and copy and paste the following MDX query:

WITH

SET [*NATIVE CJ SET] AS 'FILTER([*BASE MEMBERS Customer .
Customer], NOT ISEMPTY ([Measures].[Total Price]))'’

SET [*BASE MEMBERS Measures] AS '{[Measures].[Total Price]}'

SET [*BASE MEMBERS Customer . Customer] AS ' [Customer].
[Customer] . [Country] . MEMBERS'

SET [*CJ_ROW_AXIS] AS 'GENERATE ([*NATIVE_CJ_SET], {([Customer].
[Customer] . CURRENTMEMBER) }) !

SET [*SORTED ROW AXIS] AS 'ORDER([*CJ ROW AXIS], [Customer] .
[Customer] . CURRENTMEMBER . ORDERKEY , BASC) '

Chapter 7

SELECT

[*BASE MEMBERS Measures] ON COLUMNS
, [*SORTED ROW AXIS] ON ROWS

FROM [Orders]

This is the query you generated in the Analyzer report in previous steps.

9. Click on OK.

» Wizards Datasources (B} Properties

LT SRS RE - Group OLAP2) Queries Name QUERY3
olap4j over olap4j QUERY3 Driver org.pentaha.platform.plugin.services.connections. PentahoSystemDi|

* Community Data Access
jdbczmondriand:Host=|ocalhost;dbname=SteelWheels;

URL DataServicesProvider=com.pentaho.analysis. mongo.MongeDataSel|

* MDXQueries Catalog=/home/latino/git/pentahc-mongodb-cookbook/source code.
/MongoDBPentahoCookbaok.mondrian xmi
~ OLAP4) Queries Role
Property il
denormalizedOlap4]j over olap4j -
Access "
g Public
olap4] over olap4)] h Level
Query WITH SET [*NATIVE CJ {...)
» Compound Queries Parameters o
Qutput o
b KETTLE Queries Options
Gut|?u[Include
* MQL Queries hacickes
Columns]
* SCRIPTING Queries Calculated
Columns
b SQLQueries Cache Seid
Duration -
» XPATH Queries Cache True

10. Click on Save As in the CDE Main Menu.
11. Save your dashboard by going to Public | Pentaho MongoDB Cookbook |
Dashboards, with the name MongOLAP Data Source.

To test whether this data source works, we are going to execute it directly from the
accompanying CDA file:
1. Click on the Opened menu on the Pentaho User Console and select Browse Files.
2. Navigate to Public | Pentaho MongoDB Cookbook | Dashboards.
3. Select the MongOLAP Data Source.cda file, as shown in the next screenshot.

Pentaho Dashboards

4. Click on Open on the right-hand side menu.

Folders o Files File Actions
* O Home @ Beanshell Data Source
Open
~ = Public & Beanshell Data Source.cda
OpE‘ﬁ in a new window
» B cde [J Beanshell Data Source.cdfde
Edit
B3 DEV MongOLAP Data Source
~ B Pentaho MongoDB Cookbook o IS TEBILAP DEE Source.cbda cut

[1 MongOLAP Data Source.

cda

MongOLAP Data Source.c
Move to Trash

& Transformation Data Source

[Dashboards

[3 Transformations
@& Transformation Data Source.cda Rename...
+ (3 Pentaho Operations Mart
[Transformation Data Source.cdfde
* B3 plugin-samples Download...

[Steel Wheels
Share...

@ Trash
Add to Favorites

Properties...

5. Click on the Data Access dropdown and select Data Access ID : QUERY3, as shown
in this screenshot:

Filename: /public/Pentaho MongoDB Cookbook/Dashboards/MongOLAP Data Source.cda About

:DataAccess ID: QUERY3 I Export as xls Query URL Cache this

N

Show 10 j elements Search
[Customer].[Customer].[(All}] = [Customer].[Customer].[Country] [Measures].[Total Price]
All Customers Australia 630623.1
All Customers Austria 202062.52999999337
All Customers Belgium 108412.62000000001
All Customers Canada 224078.56000000003
All Customers Denmark 245637.15000000008
All Customers Finland 329581.9100000001
All Customers France 1110916.5199999993
All Customers Germany 220472.08999999997
All Customers Hong Kong 48784.35999999939
All Customers Ireland 57756.43
View 1to 10 of 21 elements 4

The query will execute once you have selected it from the Data Access drop-down menu. You
will see the contents of the MDX query that is attached to the dashboard you defined earlier.

160

Chapter 7

In this recipe, we guided you through using Pentaho Analyzer to generate an MDX query
that you can use on a dashboard. In dashboard editor mode, you will need to add a custom
OLAP4J data source, set the driver connection URL, and set the MDX query copied from
Pentaho Analyzer. After saving the dashboard, we can execute the query from the CDA file
and see the results from the cube.

This is another way of using MongoDB connectivity—by using analysis cubes. However, this
type of connectivity is available in the Pentaho EE version only, as Pentaho Analyzer is an
enterprise plugin.

Using a Thin Kettle data source

In this recipe, we are going to execute a SQL query that will be passed down to the Thin Kettle
driver. This special driver will convert the standard SQL query into something that MongoDB can
understand. The Thin Kettle driver allows users to execute standard SQL against MongoDB.

Getting ready

To get ready for this recipe, you first need to start the MongoDB server with the same
database as that of the last chapter. You will also have to start the Pentaho BA Server
using the server control scripts. Once it is started, you can log in to the Bl Server.

How to do it...

Perform the following steps:

1. Inthe PUC, go to File | New | CDE Dashboard.

Click on the Data Sources tab.

Expand the SQL Queries data source category.

Click on the sql over sqljndi data source.

Set the Name property to QUERY4.

Then set the JNDI property to Pentaho MongoDB Cookbook Kettle Thin.

o o M wDd

Pentaho Dashboards

7. Open the Query Editor property, and copy and paste the following SQL query:

select customerCountry,
from Orders
group by customerCountry

SUM (totalPrice) as totalSales

A Datasources 3
» Legacy Datasources - Group QU Queries
sql over sgljndi QUERY4

+ Community Data Access
* MDX Queries

* OLAP4] Queries

» Compound Queries

» KETTLE Queries

* MQL Queries

» SCRIPTING Queries

sql over sqljdbe

sql over sqljndi

Properties

Name

Access Level
Indi

Query
Parameters
Gutput Options
Gutput Mode
Columns
Calculated Columns
Cache Duratien
Cache

QUERY4
Public

Pentaho MongoDB Cookbook Kettle Thin
selact customerCount (...)

1]

a

Include

a

il

3600

True

8. Click on Save As under the CDE Main Menu.

9. Save your dashboard at Public | Pentaho MongoDB Cookbook | Dashboards, with

the name Kettle Thin Data Source.

To verify that this data source works, we are going to execute it directly from the accompanying

CDA file:

1. Click on the Opened menu on the Pentaho User Console and select Browse Files.

2. Navigate to Public | Pentaho MongoDB Cookbook | Dashboards.
3. Select the Kettle Thin Data Source.cda file, as shown in the next screenshot:

162

Chapter 7

Folders = Files File Actions
* B3 Home & Beanshell Data Source
Open
~ = Public = Beanshell Data Source.cda
Open in a new window
» B3 cde [Beanshell Data Source.cdfde
Edit
B3 DEV & Kettle Thin Data Source
~ B Pentaho MongoDB Cookbook = Kettle Thin Data Sourcecdf} Cut
B9 Dashboards [Kettle Thin Data Source.cd [y —
B Transt) MongOLAP Data Source Move to Trash
ransformations
= MongOLAP Data Source.cda Rename...
+ B3 Pentaho Operations Mart
[MongOLAP Data Source.cdfde
g
» B3 plugin-samples Download...
oE . & Transformation Data Source
[Steel Wheels _
= Transformation Data Source.cda share...
U trasn [l Transformation Data Source.cdfde add to Favorites
Properties...

4. Click on Open from the right-hand side menu.
5. Click on the Data Access dropdown and select Data Access ID : QUERY4.

Filename: /public/Pentaho MongoDB Cookbook/Dashboards/Kettle Thin Data Source.cda About
i DataAccess ID: QUERY4 j 1 Export as xls Query URL Cache this
Show 10 j elements % Search:
customerCountry o | totalSales
Australia 630623.1
Austria 202062.52999999997
Belgium 108412.62000000001
Canada 224078.56000000003
Denmark 245637.15000000008
Finland 329581.9100000001
France 1110916.5199999993
Germany 220472.08999999997
Hong Kong 48784.35999999999
Ireland 57756.43
View 1 to 10 of 21 elements 12

The query will execute once you have selected it from the Data Access drop-down menu.
You will see the contents of the SQL query that is attached to the dashboard that you
defined earlier.

Pentaho Dashboards

In this recipe, we define a SQL statement that will be sent to MongoDB via the Thin Kettle
JDBC driver. This driver converts SQL into a transformation that will run on top of MongoDB.

In the background, the Kettle Thin JDBC driver (using the DI server or Carte server) generates
a transformation that will take in an SQL statement and get data from the MongoDB database.
After defining the data source in the dashboard and saving it, we're able to test this connection
by running the data source in the CDA file.

Defining dashboard layouts

The foundation of every dashboard is its layout. These can range from simple layouts with a
single chart to much more complex layouts with many nested rows and columns and many
different-sized charts, or even other components such as filters. When we create a dashboard,
we usually define the layout before we define data sources or chart components. Without a
layout, where would we place our charts? This recipe teaches you to create a simple layout
using a responsive web framework called bootstrap.

Getting ready

To get ready for this recipe, you first need to start the MongoDB server with the same
database as that of the last chapter. You will also have to start the Pentaho BA Server
using the server control scripts. Once it is started, you can log in to the Bl Server.

How to do it...

In this recipe, we are going to create a new dashboard and design a simple 2x2 layout.
This layout will allow us to add a total of four components to the dashboard, be it charts,
filters, or whatever:

1. Inthe PUC, go to File | New | CDE Dashboard.

2. Save your dashboard in Public | Pentaho MongoDB Cookbook | Dashboards with
the name 2x2 Layout, like this:

Save as...

=l home

¥ public
=l pEV

File Name: *

Title:

Description:

¥ pentaho MongoDB Cookbook

- [esmbosess

Beanshell Data Source.wcdf
Kettle Thin Data Source.wcdf
MongOLAP Data Source.wcdf

2x2 Layout @ Dashboard (") Widget

- Extra Information -

[2x2 Layout]

Cancel

Ok

3. Click on Settings
4. Set Dashboard Ty

on the CDE Main Menu.
pe to bootstrap, as shown here:

Settings: X

Title:

2x2 Layout

Author:

Description:

2x2 Layout

Style:
Clean |

Dashboard Type:
‘blueprint M

blueprint
mobile

Chapter 7

Pentaho Dashboards

5. Click on the Layout tab.

6. Then click on the Add Row button.

7. Select the row.

8. Click on the Add Column button.

9. Make sure that the row is still selected.

10. Click on the Add Column button again.

11. Select the first nested column.

12. Set the Medium Devices property to 6.

13. Then set the Height property to 300.

14. Next, set the Background Color property to #CCCCCC.

Layout Structure R [TE ML <> T [} Properties
Row Mame

Column Small Devices
Medium Devices 6
Large Devices
Bootstrap Css Class
Height 300
% BackgroundColor & [#tceccce
Corners Simple
Text Align

Css Class

15. Select the second column.

16. Set the Medium Devices property to 6.

17. Then set the Height property to 300.

18. Set the Background Color property to #BBBBBB.

19. Click on Save.
Now that we have saved our dashboard, we are going to open it in render mode to see what it
looks like:

1. Click on the Opened menu on the Pentaho User Console and select Browse Files.

2. Navigate to Public | Pentaho MongoDB Cookbook | Dashboards.

3. Select the 2x2 Layout dashboard file, as shown in the next screenshot.

4. Click on Open on the right-hand side menu.

166

Chapter 7

Q

Folders

» B3 Home
v =7 Public
» 3O cde
3 DEV
~ = Pentaho MongoDB Cookbook
[Dashboards
3 Transformations
» 3 Pentaho Operations Mart
» B3 plugin-samples
3 Steel Wheels

T Trash

Files

@ 2x2 Layout

[0 2x2 Layout.cdfde
@ Beanshell Data Source

o Beanshell Data Source.cda

[] Beanshell Data Source.cdfde
Kettle Thin Data Source

Kettle Thin Data Source.cda

[] Kettle Thin Data Source.cdfde
@ MongOLAP Data Source

» MongOLAP Data Source.cda
0 MongOLAP Data Source.cdfde
& Transformation Data Source

& Transformation Data Source.cda

[Transformation Data Source.cdfde

Open

Open In a new window

Edit

Move to Trash

Rename...

Download...

Share...
Add to Favorites

Properties...

You can see that we have created a simple two-column layout. We could technically
start adding dashboard components such as charts and filters to these two areas.
But, let's go back to the original dashboard we were editing and add some more layout.

Opeﬁed v BB

2x2 Layout

admin v

5. Select the original row with the two nested columns.

Click on the Add Row button to add a new row to the layout. This new row will
appear below the original row in the root of the dashboard structure.

7. Select the new row.

8. Click on the Add Column button.
9. Make sure that the row is still selected.
10. Click on the Add Column button again.

Pentaho Dashboards

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Select the first nested column.

Set the Medium Devices property to 6.

Then set the Height property to 300.

Set the Background Color property to #CCCCCC.
Select the second column.

Set the Medium Devices property to 6.

Next, set the Height property to 300.

Set the Background Color property to #BBBBBB.
Select the first row.

Click on the Add Spacer button. This will add a small space between the two rows.
Set the Height property of the spacer to 10.

Column

Column
Space
Row

Column

Column

Layout Structure FODEFEEEEMDMIE:<< T LX Properties

Height
BackgroundColor

Corners Simple
Text Align

Css Class

22.

Click on Save.

Now it's time to refresh the dashboard in render mode to see our latest changes.

1. Select the 2x2 Layout tab in the Pentaho User Console.
2. Right-click on the tab and select Reload Tab, as follows:
Opehed V E “ admin v

Reload Tab [}

168

Chapter 7

You will now see a simple 2x2 layout with four main panels, like this:

New CDE Dashboard < | 2x2 Layout
- S— —
3

To finish off, we will add a simple HTML component to the top-left layout column.

Select the first column in the first row of the dashboard is layout structure.
Click on the Add HTML button.

Open the HTML Editor property.

Copy and paste the following HTML:

o0 kW

<h2 style="margin-top:0px">My Dashboard</h2>

7. Click on OK. The following screenshot shows the Layout Structure window:

Layout Structure BOE &S ELR eropertes
~ Row Name =
~ Column HTML <h2 style="margin-to (..} |
Column Color o]
Space Css Class =
~ Row
Column %
Column

8. Then click on Save.

Pentaho Dashboards

Let's refresh our latest changes on the dashboard:

1. Select the 2x2 Layout tab in the Pentaho User Console.
2. Right-click on the tab and select Reload Tab.

You can see that we have added some basic HTML to our dashboard, as follows:

Opened v B B admin ~

2x2Z Layout

My Dashboard

In this recipe, we showed you how to create a new dashboard and define a layout of rows and
nested columns. It's possible to nest further rows into columns and more columns into those
rows. It is even possible to set the size of columns that add up to a total value of 12 based on
the bootstrap framework. To create a 50 on 50 layout, we set each column to a width of 6.
We could have also created a layout with four columns, each having a width of 3.

Plus, we were able to add some basic HTML to our layout. The ability to add HTML to our
layout opens the door to all sorts of possibilities in dashboard layout design.

Basically, by using the bootstrap framework, CDE, and some imagination, it is possible create
bespoke responsive dashboards that will fit in different screens types, such as desktops,
tablets, or mobile phones.

170

Chapter 7

Creating a Dashboard Table component

In this recipe, we are going to add a Table component to a dashboard so that we can render a
data source result for the user.

Getting ready

To get ready for this recipe, you first need to start the MongoDB server with the same database
as that of the last chapter. You will also need to start the Pentaho BA Server using the server
control scripts. Once it is started, you should be able to log in to the Bl Server.

How to do it...

Proceed with the following steps:

1. Inthe PUC, go to File | New | CDE Dashboard.

2. Save your dashboard in Public | Pentaho MongoDB Cookbook | Dashboards with
the name Table Component.

Click on Settings in the CDE Main Menu.
Click on the Layout tab.

Then click on the Add Row button.
Select Row.

Set the Name property to ROW1.

O N o o &~ W

Then set the Height property to 300, as shown here:

Layout Structure OODEELLEMIK < X Propertes

Row ROW1 Name ROW1
Height 300
BackgroundColor
Corners simple
Text Align

Css Class

9. Click on the Data Sources tab.

10. Expand the KETTLE Queries data source category.

11. Click on the kettle over kettleTransFromFile data source.

12. Set the Name property to QUERY1.

13. Click on the Browse button on the Kettle Transformation File property.
14. Navigate to Public | Pentaho MongoDB Cookbook | Transformations.

Pentaho Dashboards

15. Select Chapter7-getorders.ktr.
16. Click on OK.

17. Set the Kettle Step name property to OUT, like this:

b Wizards Datasources

b Legacy Datasources T
» Community Data Access
» MDX Queries

» OLAP4] Queries

» Compound Queries

¥ KETTLE Queries

kettle over kettleTransFromFile

» MQL Queries

B R

KETTLE Queries

kettle over kettleTransFromFile QUERY1

Properties

Name QUERY1

/.4 Jpublic/Pentaho MongoDB [a]

Cookbook/Transformations/chapters-
getorders.ktr

Kettle Transformation File

Access Level Public
Kettle Step name ouT
Variables i}
Parameters il
Output Options 0
Output Mode Include
Columns il
Calculated Columns 0
Cache Duration 3600
Cache True

18. Click on the Component tab.
19. Expand the Others category.
20.
21.
22.
23.

Add a Table Component.

Set the Name property to TABLE1.
Then set the Datasource property to QUERY1.
Next, set the HTML Object property to ROW1, as follows:

» Selects Components

~ Group

Analyzer Component

Query Component

Execute Prpt Component
Xaction Component

PRPT Component
Comments component
Visualization API Component

Navigation Menu Component

Text Component

Others

Bz

table Compenent TABLE1

Properties / Advanced Properties
Name TABLE1
Listeners 1}
Parameters 1]
Column Headers o
Column Types il
Datasource QUERY1
clickAction

24. Click on Save.

172

We can now preview our dashboard as follows:

Folders

» B3 Home
- = Public
» (3 cde
o DEV
~ = Pentaho MongoDB Cockbook
[Dashboards

(3 Transformations

i Files

@ 2x2 Layout

[2x2 Layout.cdfde

& Beanshell Data Source
Beanshell Data Source.cda

[1 Beanshell Data Source.cdfde

@ Kettle Thin Data Source

Kettle Thin Data Source.cda

File Actions

Open
Open in a new window

Edit
Cut

Copy

Move to Trash

[Kettle Thin Data Source.cdfde Rename...
* B3 Pentaho Operations Mart
& MongOLAP Data Source
» [J plugin-samples Download...
MongOLAP Data Source.cda
B3 Steel Wheels 0 MongOLAP Data Source.cdfde Share...
b Trash @ Table Component Add to Favorites
Table Component.cd Table Companent.wedF Properties...
[Table Component.cdfde
1. Click on the Opened menu on the Pentaho User Console and select Browse Files.
2. Navigate to Public | Pentaho MongoDB Cookbook | Dashboards.
3. Select the Table Component dashboard file.
4. Click on Opened on the right-hand side menu and the following screenshot

should appear:

File View Tools Help

Opened~ B B

Table Component

Show 10 = entries
city < line

Chatswood Classic Cars
Chatswood Classic Cars
Chatswood Classic Cars
Chatswood Classic Cars
Chatswood Classic Cars
Chatswood Classic Cars
Chatswood Classic Cars
Chatswood Classic Cars
Chatswood Classic Cars
Chatswood Classic Cars

Showing 1 to 10 of 2,996 entries

<

country 2 _id ¢
Australia 54243497e4b091ch2128dc90
Australia 54a43497e4b09fch2{28dc81
Australia 54a43497e4b09fchb2f28dc9a
Australia 54243497e4b09ch2i28e20e
Australia 54243497e4b09ich2i28e20f
Australia 54243497e4b09fch2f282210
Australia 54a43497e4b09fch2{28e212
Australia 54243497e4b09ich2i28e213
Australia 54243497e4b09fch2f28e214
Australia 54a43497e4b09fch2{28e215

admin v

Search:

totalPrice B
4905.39
4302.08

4048
2078.28
3880.2
2233.69
3933.93
5296.5
3385.9
2617.16

2 3 4 5. 300 Next

Chapter 7

Pentaho Dashboards

In this recipe, we created a simple but functional dashboard. After we had created an empty
dashboard, we created a data source based on a Pentaho Transformation. Finally, we added
a Table component to the dashboard, hooked it up with the QUERY1 data source, and placed
it on a layout row called ROW1.

These are the basics you need for 99% of your dashboards. You need a layout, data sources,
and components that execute the data sources and render the results on the dashboard layout.

Creating a Dashboard line chart component

In this recipe, we are going to add a line chart component to a dashboard. Charts play an
important role in dashboard design. There are all sorts of chart components available in
the CDE Dashboard editor, but we are only going to cover the line chart component. You will
notice that many of the charts out here have the same options (not all options, but some).

Getting ready
To get ready for this recipe, you first need to start the MongoDB server with the same database

as that of the last chapter. You will also need to start the Pentaho BA Server using the server
control scripts. Once it is started, you should be able to log in to the Bl Server.

How to do it...

Proceed with the following steps:

1. Inthe PUC, go to File | New | CDE Dashboard.

2. Save your dashboard at Public | Pentaho MongoDB Cookbook | Dashboards,
with the name Line Chart Component.

Click on Settings on the CDE Main Menu.
Click on the Layout tab.

Then click on the Add Row button.

Select Row.

Set the Name property to ROW1.

Set the Height property to 300.

© ® N o 0~

Click on the Data Sources tab.

174

10.
11.
12.
13.
14.

Expand the Kettle Queries data source category.

Click on the Kettle Over kettleTransFromFile data source.

Set the Name property to QUERY1.

Click on the Browse button of the Kettle Transformation File property.

Navigate to Public | Pentaho MongoDB Cookbook | Transformations.

Chapter 7

15. Select Chapter7-getorders-summary.ktr.

16. Click on OK.

17. Set the Kettle Step name property to OUT, like this:
selects Components [% Properties /
Others Group Charts Name
Generic .

Listeners

Datasource
Dial Chart Component Width
Protovis Component Height
CCC Area Chart HtmlObject
€CC Bar Chart Kcialis

clickAction

CCC Boxplot Chart

cccBullet Chart

compatversion

crosstabMode

CCCDot Chart legend

CCCHeat Grid seriesinRows

CCC Line Chart

timeSeries

timeSeriesFormat

€CC Metric Dot Chart

CCC Metric Line Chart

LINE1

Orders Summary
0

0

QUERY1

ROW1

False

2

True
True
False
False

%Y-%m-%d

18.
19.
20.
21.
22.
23.

Click on the Component tab.

Expand the Charts category.

Add CCC Line Chart.

Set the Name property to LINEL.

Then set the Title property to Orders Summary.
Next, set the Datasource property to QUERY1.

Pentaho Dashboards

24. Finally, set the HTML Object property to ROW1. The following screenshot
should appear:

R Components [} Properties / Advanced Properties
b CliEs ~ Group Charts Name LINE1

CCC Line Chart LINE1 Title Orders Summary
» Generic

Listeners 1}

Datasource QUERY1
Dial Chart Component Width
Protovis Component Height
CCC Area Chart HtmlObject ROW1
clickable False
CCcC Bar Chart
clickAction
CCC Boxplot Chart
compatversion 2
EETEmlE g s crosstabMode True
CCC Dot Chart legend True
CCC Heat Grid seriesinRows False
CCC Line Chart timeSeries False
timeSeriesFormat %Y-3%m-%d

CCC Metric Dot Chart

CCC Metric Line Chart

25. Click on Save. We can now preview our dashboard as follows:

Folders o Files File Actions
» (3 Home @ 22 Layout
Open
- B Public [2x2 Layoutcdfde
Open in a new window
» [3 cde @ Beanshell Data Source
Edit
& DEV & Beanshell Data Source.cda
+ B Pentaho MongoDB Cookbook [Beanshell Data Source.cdfde cut
Kettle Thin Data Source C
B3 Dashboards © opy
S . &) Kettle Thin Data Source.cda Move to Trash
ransformations
[Kettle Thin Data Source.cdfde Rename...
» B3 Pentaho Operations Mart
& Line Chart Componwt
Download...

» B3 plugin-samples

0 Line Chart Compond ReG R E e Tyl I W ¥

3 Steel Wheels

[Line Chart Component.cdfde Share...
0 Trash MongOLAP Data Source Add to Favorites
& MongOLAP Data Source.cda Properties...

[MongOLAP Data Source.cdfde

e B P Py

26. Click on the Opened menu on the Pentaho User Console and select Browse Files.
27. Navigate to Public | Pentaho MongoDB Cookbook | Dashboards.
28. Select the Line Chart Component dashboard file.

176

Chapter 7

29. Click on Opened on the left-hand side menu.

File view Tools Help.

Opened~ 7 [admin ~

Line Chart Component

Orders Summary
000,

3.500.000 -

3,000,000

2,500,000

2,000,000

1,500,000~

1,000,000

500,000

Australia Belgium Denmark - Fance - Hang Kong aly + MewZealand - Philippines Spain Switzerland usa

In this recipe, we created a simple but functional dashboard. After creating an empty dashboard,
we created a data source based on a Pentaho transformation. We finally added a line chart
component to the dashboard, hooked it up with the QUERY1 data source, and placed it on a
layout row called ROW1.

— totalPrice

Pentaho Community
Contributions

In this chapter, we will cover these recipes:

» The PDI MongoDB Delete step

» The PDI MongoDB GridFS Output step

» The PDI MongoDB Map/Reduce Output step
» The PDI MongoDB Lookup step

Introduction

Pentaho Data Integration and the Pentaho Bl server include a Marketplace plugin, where the
community (individual users/developers or companies) can submit plugins to everyone so
that they can use it.

This chapter focuses on PDI plugins related to MongoDB developed by the Pentaho
community. By default, Pentaho supports MongoDB, as was demonstrated in the first
chapter. However, there is much more functionality from MongoDB that is a gap in Pentaho
Enterprise. Pentaho Data Integration with a great pluggable architecture and a good open
source ecosystem allows developers to contribute new steps and features. Because of this,
some community members have already closed some gaps with some open source solutions
available in the Marketplace. Without these features, you'll need to develop Java code at the
User Defined Class step, or develop your own custom step to support the features.

Pentaho Community Contributions

This chapter focuses on PDI contributions. However, this doesn't mean that there doesn't exist
good plugins for the Pentaho Bl server. There are good plugins such as Saiku Analytics. Anyway!
The Pentaho Bl server is a web platform focused on administration and visualizations, and PDI
is responsible for manipulating the data in the first layer of interaction with MongoDB in most
cases.

The PDI MongoDB Delete Step

In this recipe, we will cover the functionality of the MongoDB Delete step. This step was
developed by Maas Dianto and is open source under the Apache License version 2.0. It is
available on GitHub at https://github.com/maasdi/pentaho-mongodb-delete-
plugin.

As the name suggests, this step deletes documents from a collection based on conditions
defined by the user.

Getting ready

To get ready for this recipe, you will need to start your ETL development environment
Spoon, and make sure that you have the MongoDB server running with the data from
the previous chapters.

How to do it...

Let's install and use the MongoDB Delete step in a small example by following the next steps:

1. Now let's install the MongoDB Delete step:
1. Onthe menu bar of Spoon, select Help and then Marketplace.

2. A PDI Marketplace popup will show you the list of plugins available
for installation. Search for MongoDB in the Detected Plugins field.

3. Expand the MongoDB Delete Plugin item, as you can see in the
following screenshot:

180

Chapter 8

[F 3% MongoDB Delete Plugin - not installed

ID:
Name:

Available version:

Authors:

Plugin installation path: /home/latino/Documents/pentaho-ee/design-tools/data-integration/plugins/steps

Description:
Package URL:

Documentation:
Case Tracking:
License:

License Details:

Support Level:

pentaho-mengodb-delete-plugin
MongoDB Delete Plugin
1.0.0-RELEASE

Maas Dianto

Delete document inside a MongoDB collection

https://qithub.com/maasdi/pentaho-mongodb-delete-plugin/releases/download/1.0.0-RELEASE/pentaho-mongodb-delete-
plugin-1.0.0-RELEASE.zip
https://qithub.com/maasdi/pentaho-mongodb-delete-plugin/wiki/MongoDB-Delete

https://github.com/maasdi/pentaho-mongodb-delete-plugin/issues

Apache License 2.0

For more details see:
http://www.apache.org/licenses/LICENSE-2.0.html

Community Supported

Install this plugin

2.

4.
5.
6.

Click on the Install this plugin button.
Next, click on the OK button in the alert for restarting Spoon.

Restart Spoon.

Let's delete the order of the Baane Mini Imports customer with priceEach more than
or equal to 100:

1.

»

® N o o

10.

Using the MongoDB shell, check how many documents exist. Upon running
the following query, you should get 20 as the result:

db.Orders.find ({"priceEach":{$gte:100}, "customer.name" :
"Baane Mini Imports"}) .count ()

In Spoon, create a new transformation with the name delete-mongodb-
documents.ktr.

Select the Design tab in the left-hand-side view.

From the Input category folder, find the Generate Rows step and drag and
drop it into the working area in the right-hand side view.

Double-click on the step to open the Generate Rows configuration dialog.
Set Step Name to Get Values.
Set the Limit field to 1.

In the Fields table, add the customerName field as a String type with the
value Baane Mini Imports.Inanew row, add the priceEach field as a
Number type with the value 100.

In the Big Data category folder, find the MongoDB Delete step and drag and
drop it into the working area in the right-hand-side view.

Connect the Get Values step to the MongoDB Delete step.

Pentaho Community Contributions

11. Double-click on the step to open the MongoDB Delete configuration dialog.

12. Select the Delete options tab, click on the Get Dbs button, and select
SteelWheels from the Database field. Then, click on the Get collections
button and select Orders from the Collection field.

13. Select the Delete Query tab. In the Mongo document path field, add the
priceEach and customer.name fields. The Comparator field for priceEach
is >=, and for customer.name, it is =. In incoming field 1, set priceEach
and customerName, as you can see in this screenshot:

€ MongoDB Delete

Step name | vongoDB Delete
Configure connection | Delete options | Delete Query

Use JSON query

- # Mongo document path Comparator Incoming Field 1 Incoming Field 2
1 priceEach = priceEach I
2| customer.name I= | customerName

Get fields | | Preview delete criteria

OK Cancel

| @ Help |

14. Finally, run the transformation with a structure like what is shown in the
following screenshot:

Ef——{Q

Get Values MongoDB Delete

15. If you run the same query that was executed before, you should get 0 as
the result.

182

Chapter 8

In this recipe, using the MongoDB Delete step, we delete from the SteelWheels database
all the documents in the Orders collection that have the Baane Mini Imports customer name
and whose priceEach value is more than or equal to 100. We use the Generate Rows step
just to create one row, for testing purposes.

However, PDI gives you the flexibility to read data from different data sources and then apply the
rules that you need. For example, you can read customer names from a hypersonic database
and then delete them from a MongoDB database. This is a good exercise for you to try.

The PDI MongoDB GridFS Output Step

The BJSON document size in MongoDB is limited to 16 MB. If you want to store large files
and/or different file types, you can use GridFS. There are some cases in which storing large
files may be more efficient in MongoDB than in a filesystem, for example, if the filesystem is
limited in the number of files in a directory or it's possible to access only some portions of
large files without loads all the files in the memory.

SPEC INDIA has contributed to the Pentaho community with the MongoDB GridFS Output Step
under a GPL license on GitHub at https://github.com/SPECUSA/MongoDBGridfs.

Getting ready

To get ready for this recipe, you will again need to start your ETL development environment
Spoon and make sure that you have the MongoDB server running with the data from the
previous chapters.

How to do it...

Perform the following steps to use the MongoDB GridFS Output step:

1. Let's install the MongoDB GridFS Output step:
1. From the menu bar of Spoon, select Help and then Marketplace.

2. A PDI Marketplace popup will show you the list of plugins available for
installation. Search for MongoDB in the Detected Plugins field.

Pentaho Community Contributions

3. Expand the MongoDB GridFS Output Plugin item, as you can see in the
following screenshot:

M ;E mongoDB Gridfs Output - not installed

ID: MongogridfsOutput
Name: moengoDB Gridfs Output
Available version: 1.3
Min. PDI version: 3.8
Max. PDI version: 5.1
Authors: SPECINDIA
Plugin installation path: fhome/latino/Documents/pentaho-ee/design-tools/data-integration/plugins/steps
Description: Import the any file from Folder , RDBMS to mangoDB Gridfs
Package URL: https://github.com/SPECUSA/MongoDBCridfs/raw/master/Mongoqgridfs 1.3/MongoaridfsOutput.zip

Documentation: https://qithub.com/SPECUSA/MonqoDBGridfs/raw/master/Mongoqridfs 1.3/MongoaridfsOutput/installtionGuide.doc
Case Tracking: https://qithub.com/SPECUSA/MongoDBGridfs
License: GNU General Public License

License Details: For more details see: http://www.gnu.org/licenses/
Support Level: Community Supported
Support Message: Supported by SPEC-INDIA Bl Developer Team.
Support URL: https://qithub.com/SPECUSA/MongoDBGridfs

Install this plugin

4. Click on the Install this plugin button.
5. Next, click on the OK button in the alert for restarting Spoon.
6. Restart Spoon.

2. Let'sinsertthe orders.csv file. This file is available in the source code of this
chapter, in the MongoDB files database:

1. In Spoon, create a new transformation with the name insert-order.csv-

mongodb.ktr.

N

Select the Design tab in the left-hand-side view.

From the Input category folder, find the Generate Rows step, and drag and

drop it into the working area in the right-hand-side view.
Double-click on the step to open the Generate Rows configuration dialog.
Set Step Name to Get order.csv.
Set the Limit field to 1.

N o oo s

with the location of the order.csv source file in your filesystem.

8. From the Big Data category folder, find the Mongodb GridFS Output step,
and drag and drop it into the working area in the right-hand-side view.

9. Connect the Get Values step to the Mongodb GridFS Output step.

10. Double-click on the step to open the Mongodb GridFS Output
configuration dialog.

In the Fields table, add the filePath field as a String type and set the value

Chapter 8

11. Set Step Name to Insert order.csv.

12. Next, set the Database field to files and the GridFS Bucket field to
fileBucket.

13. In the File field, select the filePath option. The configuration should look
like what is shown in this screenshot:

@ Mongodb GridFs Plugin

Step Name |jnsert order.csv

HostName ||5calhost
Port Number (37017

Database |fjleg
GridFs Bucket | fileBucket

User Name

Password

Use Blob

File filepath -
Autogenrate ID |parault —

| & Help | ok Cancel

14. Click on the OK button.

15. You will be able to run the transformation successfully. After that, you can,
using the MongoDB shell, check whether a new database called £iles exists.
To check whether the file was inserted, you can run the following query:

db.fileBucket.files.find () .pretty () ;

16. Then see the information about the new file. The transformation should look
like what is shown here:

=l - 4]

Get order.csv Insert order.csv

Pentaho Community Contributions

Basically, this recipe guides you through inserting a file into GridFS of MongoDB. However, you
can insert any other file, and as many as you wish.

Storing entire files in MongoDB isn't a usual operation to do, but in some cases, it may be a
good option for getting dynamic storage space with shards and replication.

A good exercise, if you understand the functionality of GridFS, is to create a transformation
that gets the list of all the files available in a particular folder of your filesystem, and insert
them into MongoDB.

The PDI MongoDB Map/Reduce Output step

Most aggregation operations in MongoDB are done by the Aggregation Framework, which
provides better performance, but in some cases, it is necessary that it possesses flexibility
that isn't present in it and is just possible with Map/Reduce commands.

Ivy Information Systems has contributed a plugin with two MongoDB steps—MongoDB Map/
Reduce and MongoDB Lookup—under the AGPL license. These are available on GitHub at
https://github.com/ivylabs/ivy-pdi-mongodb-steps.

Getting ready

To get ready for this recipe, you will need to start your ETL development environment
Spoon, and make sure that you have the MongoDB server running with the data from
the previous chapters.

How to do it...

Perform the following steps to create a quick sample for users with MongoDB Map/Reduce
in PDI:
1. Let's install the lvy PDI MongoDB by performing the following steps:
1. Onthe menu bar of Spoon, select Help and then Marketplace.

2. A PDI Marketplace popup will show you the list of plugins available for
installation. Search for MongoDB in the Detected Plugins field.

186

Chapter 8

3. Expand the Ivy PDI MongoDB Steps Plugin item. As you can see in the
following screenshot:

¥ X Ivy PDI MongoDB Steps - not installed
1D: IvyMongoDBSteps
Name: Ivy PDI MongoDB Steps
Available version: 1.0.0
Min. PDI version: 5.0
Authors: lvy Information Systems Ltd.
Plugin installation path: /home/latino/Decuments/pentaho-ee/design-tools/data-integration/plugins/steps
Description: Pentaho data integration plugin fer MongoDB.

Package URL: http://sourceforge.net/projects/ivylabs/files/Pentaho/Data%20Integration/PDI%20MongoDB%20Steps/1.0.0
IvwyMongoDBSteps.zip/download

Documentation: https://qithub.com/ivylabs/ivy-pdi-mongodb-steps/blob/master/README.md

Source Code: https://github.com/ivylabs/ivy-pdi-mongodb-steps/tree/1.0.0
License: AGPL

License Details: For more details see:
https://www.gnu.org/licenses/agpl-3.0.html

Support Level: Community Supported
Support Message: Supported by vy InfFormation Systems Ltd.
Support URL: http://www.ivy-is.co.uk/contact-us,

Install this plugin

4. Click on the Install this plugin button.
5. Next, click on the OK button in the alert for restarting Spoon.
6. Restart Spoon.
2. Let's make the same Map/Reduce transformation that was made in the first chapter
with User Defined Java Class to prove how much easier it is:

1. In Spoon, create a new transformation with the name mongodb-map-
reduce.ktr.

2. Under the Transformation properties and Parameters tab, create a new
parameter with the CUSTOMER_NAME name.

3. Select the Design tab in the left-hand-side view.

4. From the Big Data category folder, find the MongoDB Map/Reduce Input
step, and drag and drop it into the working area in the right-hand-side view.

5. Double-click on the step to open the MongoDB Map/Reduce Input
configuration dialog.

Set Step Name to Get data.

7. Inthe Configure connection tab, click on the Get DBs button and select
the SteelWheels option for the Database field. Then, click on the Get
collections button and select the Orders option for the Collection field.

Pentaho Community Contributions

8. Inthe Map function tab, set this JavaScript map function:

function() {
var category;
if (this.customer.name == '${CUSTOMER NAME}')
category = '${CUSTOMER NAME}';
else
category = 'Others';
emit (category, {totalPrice: this.totalPrice, count: 1});

}

9. In the Reduce function tab, set the following JavaScript reduce function:

function (key, values)
var n = { count: 0, totalPrice: 0};
for (var i = 0; i < values.length; i++) {
n.count += values[i].count;
n.totalPrice += values[i].totalPrice;

}

return n;

}

10. Then, in the Fields tab, click on the Get fields button, and you'll be able
to get new fields there: _id, count, and totalPrice. Remove the _id field.
The final configuration should look like this:

@ 3

£ MongoDB Map/Reduce Input

Step name [C.et data l

Configure connection |Map Function |Reduce Function |Fields
Output single JSON field

Name of JSON output field Y
- # Name Path Type
1] count | S.value.count | Number

2 totalPrice S.value.totalPrice Number

Get fields

® Help oK Cancel

11. Click on the OK button.

12. From the Flow category folder, find the Dummy (do nothing) step, and drag
and drop it into the working area in the right-hand-side view.

188

Chapter 8

13. Connect the Get data step to the Dummy (do nothing) step.

14. Double-click on the step to open the Dummy (do nothing)
configuration dialog.

15. Set Step Name to OUT.

16. Click on the OK button. The transformation should be similar to what is
shown in the following screenshot, and you may be able to preview the
execution transformation:

(€14 > (@)
‘ml?—l L 1< -zl
Get data ouT

Using this step for Map and Reduce is much easier than using the UJDC step, but the latter is
much flexible in the way for processing data; however, users are prone to making mistakes.

The Map and Reduce functions in MongoDB are in JavaScript, and you can get more flexibility
because the map function can create more than one key and value mapping or no mapping
at all.

This recipe was a simple example based on the last recipe of the first chapter, but using this
popular data processing paradigm, you can perform many complex queries as you like.

In the MongoDB Map/Reduce using the User Defined Java Class step and MongoDB Java
Driver recipe of the first chapter, we have explained the same functionality, but using the
User Defined Java Class step.

The PDI MongoDB Lookup step

As you know, it isn't possible to join different collections in MongoDB as it is in a typical
relational database. Sometimes, this functionality is necessary and needs to be applied
in other layers of your system. This is a gap in Pentaho Data Integration, and it was solved
in a particular way by Ivy Information Systems in the same plugin that is mentioned in the
previous recipe with the MongoDB Lookup step.

Pentaho Community Contributions

Getting ready

To get ready for this recipe, you will again need to start your ETL development environment
Spoon. Make sure you have the MongoDB server running with the data from the previous
chapters and the Ivy PDI MongoDB Steps plugin installed in the previous recipe.

How to do it...

Perform the following steps to use MongoDB Lookup:

1.
2.
3.

N o oo s

10.
11.
12.

13.

14.

In Spoon, create a new transformation with the name mongodb-lookup . ktr.
Select the Design tab in the left-hand-side view.

From the Input category folder, find the Generate Rows step, and drag and drop it
into the working area in the right-hand-side view.

Double-click on the step to open the Generate Rows dialog.
Set Step Name to Get Customer Name.
Next, set the Limit field to 1.

Add to the Fields table the name field as a String type with the value as
Euro+ Shopping Channel.

From the Big Data category folder, find the MongoDB Lookup step, and drag
and drop it into the working area in the right-hand-side view.

Connect the Get Customer Name step to the MongoDB Lookup step.
Double-click on the step to open the MongoDB Lookup configuration dialog,.
Set Step Name to Get Customer Order Details.

In the Configure connection tab, click on the Get DBs button and select the
SteelWheels option for the Database field. Then, click on the Get collections
button and select the Orders option for the Collection field.

In the Fields tab, click on the Get fields button. You should get something like
name = name by default. However, the collection name field is wrong; set it to
customer.name.

Click on the Get lookup fields button to get some of the possible fields available
for the documents. Let's keep just the line, country, postalCode, priceEach,
customerNumber, totalPrice, and orderLineNumber fields and remove the
others, as you can see in this screenshot:

190

Chapter 8

@ MongoDB Lookup

Stepname | Get customer Order Details
Configure connection |Fields

The key(s) to look up the value(s)
s # Collection field Comparator Stream field
1 customer.name = name

Values to return form the lookup collection

4 # Name MongoDB document path Default
1i line S.product.line
2 country S.customer.address.country
3: postalCode S.customer.address.postalCode
4! priceEach S.pricekach
5! cuskomerMumber S.customer.customerMNumber
6! totalPrice S.totalPrice
7 orderLineMumber S.orderLineMNumber

Do not pass the row if the lookup fails

Fail on multiple results?

Type
String
Skring
String
Number
Integer
Number
Integer

| Getlookup Ffields |

@ Help - OK [Cancel [Get fields

15. From the Flow category folder, find the Dummy (do nothing) step, and drag and

drop it into the working area in the right-hand-side view.

16. Connect the Get Customer Order Details step to the Dummy (do nothing) step.

17. Double-click on the step to open the Dummy (do nothing) configuration dialog.

18. Set Step Name to OUT.

19. Click on the OK button. The transformation should be similar to what is shown in the
following screenshot, and you may be able to preview the execution transformation

and see the results:

E >—Q

Get Customer Name Get Customer Order Details

Pentaho Community Contributions

This recipe guided you with a simple example of what you can do with the MongoDB Lookup
step. We created a row with the Generate Rows step and then made the additional data related.

There's more...

The MongoDB Lookup step is an important step for getting additional data into the stream.
A good exercise, if you understand this functionality, is to select customers' names from a
hypersonic database and making lookups to MongoDB to bring some additional data into
the stream.

192

A

aggregation framework

used, for exporting MongoDB data 18-20
analysis reports

exploring 55-57

opening 55-57

saving 55-57
analysis view

creating 45-47

creating, with Pentaho Analyzer 134-140

basic operations
learning, with PDI 2-4
BeanShell data source

URL 152
using 152-155
C

Carte server
DI repository 34
Kettle database repository 34
Kettle file repository 34
running, in single instance 32-34
URL 33
chart
adding, to report 101-104
Community Text Editor (CTE) 78
connection
defining, with SQuirreL SQL Client 39-44
CTools 146
customer dimension
creating 72-77

Index

D

dashboard
creating, with Pentaho Dashboard
Designer 140-143
layout, defining 164-174
line chart component, adding 174-177
Table component, adding 171-173
data
exporting, with aggregation framework 18-20
filtering, with parameters 25
filtering, with variables 25-27
grouping, in report 114-118
loading from MongoDB to MySQL 11-14
migration, from files to MongoDB 14-18
migrating, from RDBMS 4-10
Data Integration server
running, in single instance 35-39
data service
transformation, using as 30, 31
date
dimension, creating 60-67

F

Foodmart MongoDB sample data
importing 131-134

formula
adding, to report 111-114

Instaview
about 45
modifying 50-54
transformations, modifying 48-50

193

lvy Schema Editor (IvySE) 78, 83

J

JSONPath
URL 14

L

layout

defining, for dashboards 164-170
line chart component

adding, to dashboard 174-177

Map/Reduce
connecting, MongoDB Java Driver
used 20-24
connecting, User Defined Java Class (UDJC)
used 20-24
tutorial, URL 24
Mondrian 4 cube
creating 86-88
Mondrian 4 schema
creating 83-85
publishing 88-90
URL 83
MondrianMongoModel
URL 134
Mondrian schema
cube 67
dimension 67
hierarchy 67
level 67
member 67
publishing 78-82
saving 78-82
schema 67
URL 77
MongoDB
connecting, Reporting Wizard used 92-97
connecting, via Pentaho Data Integration
(PDI) 98-101
connection properties, reusing 10, 11
data, exporting with aggregation
framework 18, 19
data loading, to MySQL 11-14

194

data, migrating from files 14-18
MongoDB data source

Pentaho Analyzer, using 155-161
MongoDB Delete

about 180

URL 180

using, steps 180-182
MongoDB GridFS Output

URL 183

using, steps 183-186
MongoDB Java Driver

used, for connecting MongoDB

Map/Reduce 20-24

MongoDB JDBC library

about 92

copying 146
MongoDB Lookup

using, steps 189-192
MongoDB Map/Reduce Output

URL 186

using, steps 186-189
MongoDB, via Java

used, for creating report 122-125
Multidimensional Expressions (MDX) 59
MySQL

data loading, from MongoDB 11-14

0

Online Analytical Processing (OLAP) 59
Orders cube
creating 67-71

P

parameters

adding, to report 104-110

used, for filtering MongoDB data 25-27
Pentaho

Data Integration server, running in single

instance 35-39

Pentaho Analysis Editor (PHASE) 78, 83
Pentaho Analyzer

used, for creating analysis view 134-140

using, for MongoDB data source 155-161
Pentaho Dashboard Designer

used, for creating dashboard 140-143

Pentaho Data Integration (PDI)
about 1
MongoDB, connecting via 98-101
MongoDB Delete 180
MongoDB GridFS Output 183
MongoDB Lookup 189
MongoDB Map/Reduce Output 186
used, for learning basic operations 2-4
Pentaho EE 131
Pentaho Instaview. Sce Instaview
Pentaho Reports
chart, adding 101-104
creating, with MongoDB via Java 122-125
data, grouping 114-118
formula, adding 111-114
parameters, adding 104-110
publishing, to Pentaho server 125-127
running, in Pentaho server 128
Pentaho server
report, publishing to 125-130
report, running 128-130
product dimension
creating 72-77

RDBMS
data, migrating from 4-10
MongoDB connection properties,
reusing 10, 11
Relational Online Analytical
Processing (ROLAP) 59
Reporting Wizard
used, for connecting to MongoDB 92-97

S

Saiku Analytics 140
sample repository
importing 147
Spoon 180
SQuirrelL SQL Client
URL 40
used, for defining connection 39-44
Stream lookup
URL 18

subreports
about 118
creating 119-122

T

Table component
adding, to dashboard 171-174
Thin Kettle data source
using 161-163
Thin Kettle JDBC Driver 29
transformation data source
using 147-151

U

User Defined Java Class (UDJC)
about 20, 179, 187
URL 24
used, for connecting MongoDB Java
Driver 20-24
used, for connecting MongoDB
Map/Reduce 20-24

\'}

variables
used, for filtering MongoDB data 25-27

X

XML for Analysis (XML) 82

195

open source

community experience distilled

PUBLISHING

Thank you for buying
Pentaho Analytics for MongoDB Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home

to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

PHP and MongoDB

Web Development

Beginner's Guide

ISBN: 978-1-84951-362-3 Paperback: 292 pages

Combine the power of PHP and MongoDB to build
dynamic web 2.0 applications

1. Learn to build PHP-powered dynamic web
applications using MongoDB as the data backend.

PHP and MongoDB
Web Development

2. Handle user sessions, store real-time site
analytics, build location-aware web apps, and
much more, all using MongoDB and PHP.

3. Full of step-by-step instructions and practical
examples, along with challenges to test and
improve your knowledge.

Pentaho Business
Analytics Cookbook

ISBN: 978-1-78328-935-6 Paperback: 392 pages

Over 100 recipes to get you fully acquainted with the key
features of Pentaho BA 5 and increase your productivity

1. Gain insight into developing reports, cubes, and
data visualizations quickly with Pentaho.

Pental'!o Business 2. Provides an overview of Pentaho's mobile
Analytics Cookbook features.

3. Improve your knowledge of Pentaho User Console
including tips on how to extend and customize it.

Please check www.PacktPub.com for information on our titles

[open source

community experience distilled

PUBLISHING

Instant MongoDB

ISBN: 978-1-78216-970-3 Paperback: 72 pages

Get up to speed with one of the world's most popular
NoSQL database

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

S EEMINE s CRMECCY sen 2. Query in MongoDB from the Mongo shell.

MO“gODB 3. Learn about the aggregation framework and Map
Reduce support in Mongo.

4. Tips and tricks for schema designing and how
to develop high performance applications using
MongoDB.

Amol Nayak

Ruby and MongoDB
Web Development
Beginner's Guide

ISBN: 978-1-84951-502-3 Paperback: 332 pages
_— Create dynamic web applications by combining the
‘ \ power of Ruby and MongoDB
Ruby and MongoDB 1. Step-by-step instructions and practical
Web D | examples to creating web applications with Ruby
e evelopment and MongoDB.

2. Learn to design the object model in a NoSQL way.

3. Create objects in Ruby and map them to
MongoDB.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: PDI and MongoDB
	Introduction
	Learning basic operations with Pentaho Data Integration
	Migrating data from the RDBMS to MongoDB
	Loading data from MongoDB to MySQL
	Migrating data from files to MongoDB
	Exporting MongoDB data using the aggregation framework
	MongoDB Map/Reduce using the User Defined Java Class step and MongoDB Java Driver
	Working with jobs and filtering MongoDB data using parameters and variables

	Chapter 2: The Thin Kettle
JDBC Driver
	Introduction
	Using a transformation as a data service
	Running the Carte server in a single instance
	Running the Pentaho Data Integration server in a single instance
	Define a connection using a SQL Client (SQuirreL SQL)

	Chapter 3: Pentaho Instaview
	Introduction
	Creating an analysis view
	Modifying Instaview transformations
	Modifying the Instaview model
	Exploring, saving, deleting, and opening analysis reports

	Chapter 4: A MongoDB OLAP Schema
	Introduction
	Creating a date dimension
	Creating an Orders cube
	Creating the customer and product dimensions
	Saving and publishing a Mondrian schema
	Creating a Mondrian 4 physical schema
	Creating a Mondrian 4 cube
	Publishing a Mondrian 4 schema

	Chapter 5: Pentaho Reporting
	Introduction
	Copying the MongoDB JDBC library
	Connecting to MongoDB using Reporting Wizard
	Connecting to MongoDB via PDI
	Adding a chart to a report
	Adding parameters to a report
	Adding a formula to a report
	Grouping data in reports
	Creating subreports
	Creating a report with MongoDB via Java
	Publishing a report to the Pentaho server
	Running a report in the Pentaho Server

	Chapter 6: The Pentaho BI Server
	Introduction
	Importing Foodmart MongoDB sample data
	Creating a new analysis view using
Pentaho Analyzer
	Creating a dashboard using Pentaho Dashboard Designer

	Chapter 7: Pentaho Dashboards
	Introduction
	Copying the MongoDB JDBC library
	Importing a sample repository
	Using a transformation data source
	Using a BeanShell data source
	Using Pentaho Analyzer for MongoDB
data source
	Using a Thin Kettle data source
	Defining dashboard layouts
	Creating a Dashboard Table component
	Creating a Dashboard line chart component

	Chapter 8: Pentaho Community Contributions
	Introduction
	PDI MongoDB Delete Step
	PDI MongoDB GridFS Output Step
	PDI MongoDB Map/Reduce Output step
	PDI MongoDB Lookup step

	Index

