
.309 7.50 x 9.25 7.50 x 9.25

php|architect’s
Guide to
PHP 5 Migration
Practical porting techniques for
the professional developer

USA $21.99
Canada $29.99
U.K. £16.99 Net

php|architect’s
Guide to
PHP Design Patterns

Design patterns are comprehensive, well-tested solutions to common problems
that developers everywhere encounter each day. Although designed for solving
general programming issues, some of them have been successfully adapted to
the specific needs of Web development.

php|architect’s Guide to PHP Design Patterns is the first comprehensive guide
to the application of design patterns to the PHP development language.
Designed to satisfy the need of enterprise-strength development, you will find
this book both an excellent way to learn about design pattern and an
irreplaceable reference for your day-to-day programming

With coverage of more than XXX different types of patterns, including BLAH,
BLAH, BLAH, BLAH and much more, this book is the ideal resource for your
enterprise development with PHP 4 and PHP 5.

NanoBooks are excellent, in-depth resources created by the publishers of
php|architect (http://www.phparch.com), the world’s premier magazine dedicated
to PHP professionals.

NanoBooks focus on delivering high-quality content with in-depth analysis and
expertise, centered around a single, well-defined topic and without any of the fluff
of larger, more expensive books.

Shelve under PHP/Web Development/Internet Programming

From the publishers of

p
h

p
|a

rc
h

it
ec

t’s
 G

u
id

e
to

 P
H

P
 D

es
ig

n
 P

at
te

rn
s

Ja
so

n
 E

. S
w

ea
t

Stefan Priebsch

Licensed to:
Blake Hartle
hartles99him@gmail.com
User #60389

www.allitebooks.com

http://www.allitebooks.org

php|architect’s
PHP 5 Migration Guide

by Stefan Priebsch

www.allitebooks.com

http://www.allitebooks.org

php|architect’s PHP 5 Migration Guide
Contents Copyright ©2007-2008 Stefan Priebsch – All Rights Reserved
Book and cover layout, design and text Copyright ©2004-2008 Marco Tabini & Associates, Inc. – All Rights Reserved

First Edition: June 2008
ISBN: 978-0-9738621-9-5
Produced in Canada
Printed in the United States

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or
by means without the prior written permission of the publisher, excet in the case of brief quotations
embedded in critical reviews or articles.

Disclaimer
Although every effort has been made in the preparation of this book to ensure the accuracy of the
information contained therein, this book is provided ”as-is” and the publisher, the author(s), their
distributors and retailers, as well as all affiliated, related or subsidiary parties take no responsibility
for any inaccuracy and any and all damages caused, either directly or indirectly, by the use of such
information. We have endeavoured to properly provide trademark information on all companies and
products mentioned in the book by the appropriate use of capitals. However, we cannot guarantee the
accuracy of such information.

Marco Tabini & Associates, The MTA logo, php|architect, the php|architect logo, NanoBook and the
NanoBook logo are trademarks or registered trademarks of Marco Tabini & Associates, Inc.

Written by Stefan Priebsch

Published by Marco Tabini & Associates, Inc.
28 Bombay Ave.
Toronto, ON M3H 1B7
Canada

(416) 630-6202 / (877) 630-6202
info@phparch.com / www.phparch.com

Publisher Marco Tabini

Layout and Design Arbi Arzoumani

Managing Editor Elizabeth Naramore

Finance and Resource Management Emanuela Corso

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

Contents

Chapter 1 — Introduction 3
A Short History of (Internet) Time . 3

The Birth of PHP . 5
PHP 5 and the Big Migration . 8
A Look Ahead: PHP 6 . 9

Chapter 2 — Strategies 13
Migration Strategies . 13
Never Touch a Running System . 14

System Environment . 14
Program Code . 17

Always Use the Latest Version . 20
Starting from Scratch . 22

Rewriting Program Code from Scratch . 22
Rebuilding the System Environment from Scratch 24

Striking a Balance . 24

Chapter 3 — Migration Aspects 29
Important Aspects of Migration . 29
Platform . 31

Architecture . 32
Processor . 33
Instruction Set . 33
Word Length . 34

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

vi ” CONTENTS

Byte Order . 36
Mounting forms and interfaces . 37

Operating system . 37
Word Length . 40
Line Endings . 41
Access Rights . 44
Paths and File Names . 46
Temporary Files . 49
The Search Path . 50
Character Sets . 51

Databases . 54
SQL Does Not Equal SQL . 54
Program Code in the Database . 55
Data Types . 57
Character Sets . 57
Backup and Restore . 59

Web Server . 61
Apache and Apache2 . 62
Security . 63
Compiling Apache . 64
Multiple Web Servers on One System . 65

PHP . 66
Web Server Integration . 66
Compiling PHP . 71
Thread Model . 73
PHP Configuration . 74
PHP Extensions . 91
Installing Multiple PHP Versions . 98

PHP Code . 99
Third party PHP code . 99
Your Own PHP Code . 101

External Programs . 102
Interfaces to Third-Party Systems . 105
Character Encodings . 106

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ” vii

Browser . 115
Security . 115

Chapter 4 — Preparing the Migration 117
Steps to Preparing the Migration . 117
The Existing Application and Environment . 118
The Target System . 121
Planning the Migration . 124

Chapter 5 — The Migration 129
Preparations . 130

The First Test System . 131
The Second Test System . 132

Testing . 132
Finding Relevant Test Cases . 133
Creating Test Data . 134
Creating Tests . 135

Refactoring . 138
Eliminate Redundant Code . 138
Shorten Code Blocks . 140
Separate Different Concerns . 140

Migrating . 143
Fixing Existing Bugs . 144
Replacing Modules . 145
Fixing Syntax Errors . 145
Fixing All PHP Error Messages . 145
Fixing Logical Errors . 146
Normalizing the PHP Configuration . 147

Migrating the Production System . 148
Finishing the Migration . 150

Chapter 6 — After the Migration 153
What’s Next? . 153
Modular Programming . 153
Establish Coding Guidelines . 154

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

viii ” CONTENTS

Defensive Coding . 154
Do Not Be The First . 155
Continuous Refactoring . 156
Agile Migration . 156

Chapter 7 — Tools 159
Tools Make All the Difference . 159
Version Control . 159
Command Line Tools . 160

Sending HTTP Requests and Downloading Files 160
Search Files and Directories . 161
Replacing in Files . 162
Comparing Files and Directories . 162

Validating (X)HTML Files . 163
The W3C Validator . 164
HTML Tidy . 165
The Tidy PHP extension . 168

Validating CSS Files . 170
Validating XML Files . 170

xmllint . 171
PHP . 172

Static Analysis of JavaScript Files . 173
jsl . 173
JSLint . 174

Firefox Extensions . 175
Webdeveloper . 175
Firebug . 176

PHP’s Own Means . 177
The PHP Configuration . 177
Syntax Check . 179
Prepend and Append Files . 180

PEAR Components . 181
PHP_Compat . 184
PHP_Beautifier . 185

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ” ix

PHP_CodeSniffer . 188
PHP_CompatInfo . 192

Virtual Machines . 194
VMWare . 194
Installing A Virtual Machine . 195
Working With Snapshots . 197

Test Tools . 197
Unit Tests with PHPUnit . 198
System Tests with Selenium . 202

Program Analysis and Debugging . 209
Installation . 210
Useful Features . 211
Tracing . 211
Debugging . 213
Code Coverage . 216

Build Automation . 217
Installation . 217
Code Quality Assurance . 218
Test Automation . 221
Code Coverage Statistics . 222

Chapter 8 — Migrating PHP Code 225
Chapter Overview . 225
Case Sensitivity . 226

Variables . 226
Constants . 227
Magic Constants . 229
Functions and Methods . 231
Classes . 232
Files . 233

Name Conflicts . 234
Reserved Keywords . 234
Functions . 238
Classes, Interfaces and Exceptions . 239

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

x ” CONTENTS

Constants . 242
Magic Constants, Functions, and Methods 245
Variables . 246
Components and Libraries . 248

Processing Input Data . 251
Registering Global Variables . 251
Long Input Arrays . 254
Superglobal Variables . 255
Magic Quotes . 255
Accessing POST Data . 259
The Script Name in $PHP_SELF . 260

Error Handling . 261
Suppressing Errors With @ . 262
Storing the Previous Error Message . 263
Configuring Error Display . 264
New And Modified Error Messages . 265
Custom Error Handlers . 267
Exceptions . 270

References . 270
The PHP 4 Compatibility Mode . 271
Creating A Reference . 272
Passing References . 273
Returning References . 274
Passing References At Runtime . 276
Copying Objects . 278

Magic Constants . 279
Altered Behavior of PHP Functions . 280

array_merge() . 280
ip2long() . 282
strrpos() . 283
strripos() . 284
strtotime() . 285

Classes . 285
Static Methods And Dynamic Calls . 285

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CONTENTS ” xi

Abstract Private Methods . 286
Abstract Static Methods . 286
Modified Method Signature in Derived Classes 287

Objects . 289
Constructor . 289
Destructors . 291
Redefining Class Constants . 292
instanceOf instead of is_a() . 293
Name Conflicts with $this . 294
Redefining $this . 295
Comparing Objects . 296

Dynamic Calls . 297
System Calls . 297
Class Names . 298
The call_user_func() Family . 299
Dynamically Loaded Code . 302
eval() . 304

Little Beastlinesses . 304
unset() and Strings . 305
Errors When Sending HTTP Headers . 306
Date and Time Functions . 307
Modulo Division . 308
Wrong Parameter Count In Function Calls 310
Type-Converting Integer Values . 311
Empty Objects . 312
$this, Delegation, and Static Calls . 313
Outputting Objects and the Magic __toString() Method 315

PHP Extensions . 315
mysql and mysqli . 316
SPL . 316
Tidy . 317
Tokenizer . 317
XML . 317

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

xii ” CONTENTS

Index 321

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 1

Introduction

A long journey begins with the first step —(Chinese proverb)

A Short History of (Internet) Time

The roots of the Internet as we know it today, date back to 1960s. Back then, various
universities and research facilities were linked together by the so-called ARPANET
to simplify data exchange and make better use of the calculating capacities of the
connected machines. In the following years, the programming language C and the
operating system Unix were developed in separate projects. The TCP/IP protocol,
that is still the prevalent protocol on the Internet today, was not introduced until
1983. In that year, ARPANET consisted of about 400 computers.

In the year 1987 the term Internet was coined. At that time, the network com-
prised about 27,000 computers. Some services that were offered were e-mail, FTP
for file transfer, Usenet discussion forums or Telnet to access remote systems. While
these services are still used today, other services like the WAIS (Wide Area Informa-
tion Service) search or Gopher to navigate through a linked information network are
no longer significant. Still, those forgotten services were the forerunners of today’s
World Wide Web.

The true triumphal course of the Internet began 1989 with an idea of CERN em-
ployee, Tim Berners-Lee. His idea was to introduce a hypertext system. Hypertext
breaks up the linear structure of text documents. This allows for structuring the in-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

4 ” Introduction

formation in small blocks and linking them together. In contrast to reading printed
text the reader dictates his own, personal navigation path. The envisioned hypertext
system would allow navigating through a network of cross-linked documents using
a graphical user interface. The motivation for creating this system was to enable a
more efficient exchange of data, with a special emphasis on the fact that information
gets quickly outdated in research and development.

While specifying the technology, Tim Berners-Lee called his idea “Mesh,” but later
changed the name to World Wide Web. The original proposal of the Mesh of 1989
can still be found on the Internet and is an interesting read1. Today we know that
the introduction of the World Wide Web as a simple and intuitively usable user in-
terface is one of the main reasons for the Internet’s rapid growth and success. In
acknowledgement for his invention of the WWW, Tim Berners-Lee was knighted by
Queen Elizabeth II in 2004. Today he is working on the Semantic Web2, to make the
integration of different applications on the Internet easier.

In its early days the World Wide Web was primarily used to access static informa-
tion, that was stored in pre-written HTML pages. Until about 1990, the commercial
use of the Internet was even forbidden! Starting about 1993, the commercial use of
the Internet started to take off. At that time, there were about 500 Web servers on the
Internet.

In 1995 the HTML 2.0 standard was introduced, which contained the specification
of HTML forms. This was the foundation for an interactive and dynamic World Wide
Web. It was now possible to process data entered by the user and create personalized
web pages. Processing input data, of course, requires program logic, so a clever way
of coupling the form-processing programs with the Web server was needed because
until then, the Web server’s primary use was delivering static content.

To avoid re-compiling the Web server when the form processing logic changes,
the form processing software should be loosely coupled to the Web server. This
is achieved by making these programs external to the Web server. The Web server
calls the program to process the form input, passing it the form input that has been
transmitted to the server. The program creates an HTML page as the result, which

1Berners-Lee, Tim: The original proposal of the WWW, 1989, available at
http://www.w3.org/History/1989/proposal.html

2World Wide Web Consortium: W3C Semantic Web Activity, 2001, available at
http://www.w3.org/2001/sw

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Introduction ” 5

is passed back to the Web server, which in turn sends the page back to the client,
usually a Web browser. Except maybe for the answering time, it does not make any
difference to the browser whether a static or dynamic web page was requested.

This way of cooperation between a Web server and external programs was stan-
dardized as the Common Gateway Interface (CGI) in 19933. Still today, the CGI prin-
ciple is the technical foundation for almost any dynamic web page and web applica-
tion.

The big advantage of CGI is that the programs can be written in virtually any pro-
gramming language. In the early days, Perl was widely used. However, CGI programs
written in C or another compiled language are usually faster than CGI programs in an
interpreted language, since the source code need not be parsed at runtime. On the
other hand, interpreted CGI programs are easier to modify, because they are avail-
able in source code on the target system. The time-consuming compile and link
cycle is not required. Sadly, the fact that interpreted programs are so easy to change
can lead to a somewhat undisciplined way of working.

A major disadvantage of CGI programs is the complex execution environment that
is required to run them. To run and test a CGI program, you need a Web server and
a browser, otherwise you are forced to test the resulting HTML code by analyzing it.
(Today, it is not too unreasonable to test a CGI program in a simulated Web server
environment. In the last century, however, this was quite a problem, since only few
usable test tools were available.) Testing CGI programs independently from the Web
server is tedious, because you have to supply simulated GET and POST parameters
to the program.

The Birth of PHP

The first PHP version was created by Rasmus Lerdorf from Denmark, who had put
his resume online in 1994 and wanted to know who was looking at it. He wrote a
couple of Perl scripts to log access to his resume. A little later he began to rewrite
these scripts as CGI programs in C. He called the package Personal Home Page Tools
(PHP) and published it under GNU Public License (GPL) as open source software.

3University of Illinois at Urbana-Champaign: Common Gateway Interface, 2008, available at
http://hoohoo.ncsa.uiuc.edu/cgi

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

6 ” Introduction

The official announcement of PHP from 8th of June, 1995 can still be found in
the Google Group Usenet archive4. Of course, according to today’s expectations, the
scope of services PHP offered is not particularly spectacular. One has to remember,
though, that HTML forms had just been standardized in the year 1995.

In 1997, PHP version 2.0 was published as PHP/FI, with FI meaning Forms Inter-
preter. PHP 2.0 was inspired by Perl and was probably used on some 50,000 domains
on the Internet.

In the same year two students form Israel, Zeev Suraski and Andi Gutmans, be-
came aware of PHP/FI. They had the idea to rewrite the PHP parser for a university
project and in due course created a full-blown programming language that became
the official successor of PHP/FI under the name PHP 3. The original meaning of the
acronym PHP was changed to PHP: Hypertext Preprocessor.

PHP 3 was targeted at powering small to medium web sites. The PHP scripts were
interpreted line by line, which made PHP very slow for complex programs, because
every line of the source code had to be interpreted again on every program run. Op-
code caching as we know it today in PHP was not possible by design. Also, PHP 3
had no built-in session support and was thus missing important features to create
complex web applications.

Zeev and Andi rewrote the PHP core for PHP 4.0 and named borrowed the “ze”
and “nd” letters from their first names to form the name “Zend Engine”. At the same
time, they founded the company Zend that offered commercial add-on products to
the open sourced PHP. Today, Zend is based in the Silicon Valley and has an annual
revenue of over twenty million dollars.

PHP 4 was published in May 2000. The dotcom boom was at its peak, which helped
PHP to spread quickly. At the turn of the millennium, it was en vogue to have a (dy-
namic) Web site, as companies began to use the Internet as a sales and communica-
tion channel.

PHP is easy to learn and heavily oriented towards Web programming. Com-
pared to using a complex Java-based application server with hefty license fees or the
clumsy traditional CGI programming, PHP programming is very rapid, and quickly
shows results. With PHP, anybody can create a dynamic web site based on a shared
hosting server at virtually no initial cost. The large number of available documenta-

4Lerdorf, Rasmus: Announcing the Personal Home Page Tools version 1.0, 1995, available at
http://groups.google.de/group/comp.infosystems.www.authoring.cgi/msg/cc7d43454d64d133

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Introduction ” 7

tion and code samples on the Internet lower the bar for less experienced program-
mers even further.

PHP 4 has a modular architecture, which allows for extending its functionality by
extensions written in C. Today, a large number of open source extensions for PHP
are available for virtually any intended use, for example creating PDF documents,
or dynamically creating Flash animations. Through extensions, PHP supports most
Internet protocols like FTP or SSH.

Thanks to the Internet boom, many open source applications like Content Man-
agement Systems, user interfaces for servers and services, Wikis, or weblogs were
created that are still widely used today. Today, the large number of publicly avail-
able applications is a good reason to use PHP, especially because you can extend and
customize those applications.

Originally, PHP was a procedural language. In version 4, rudimentary support for
object-oriented programming (OOP) was added. The syntax was only intended to
simplify the access of complex data structures. Though OOP support was so lim-
ited in PHP 4, many developers started using OOP with PHP. The success of PHP
4 had accounted for the fact that increasingly larger applications were created with
PHP, which made the developers look for ways to make their code more modular and
maintainable.

The biggest shortcoming of OOP with PHP 4 was the fact that PHP treated objects
by copying them, instead of working with references, as one would expect when fa-
miliar with classic OOP languages like Java. In PHP, you had to make liberal use of
the & operator to force the use of references instead of creating copies. Forgetting
one single & sign often resulted in long and challenging debugging sessions.

An important precursor of object-oriented PHP programming is Stig Bakken from
Norway, who started the PEAR project back in 1999, even before PHP 4 was offi-
cially released. PEAR (PHP Extension and Application Repository) is a collection of
open source software components for PHP, inspired by CPAN (Comprehensive Perl
Archive Network). PEAR contains only object-oriented code.

Even in its early days, PEAR made use of advanced OOP concepts like destructors
and error objects as a replacement for exceptions, which were not available in PHP
back then. The PEAR project as precursor for object-oriented programming with
PHP was probably a main reason for the inclusion of proper OOP support in PHP 5.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

8 ” Introduction

PHP 5 and the Big Migration

July 13, 2004 was the day PHP 5.0 was released. PHP 5.0 was the first PHP version
with full-blown support for object-oriented programming. PHP 5.0 has exceptions,
interfaces, abstract classes, access protection for methods and members, a reflection
API and by default handles objects by reference, instead of creating copies.

In light of the new possibilities, it seemed only a matter of time until PHP 5 had
completely replaced PHP 4 in the field. But the migration did not really happen, and
PHP 5 spread only very slowly. By the end of the year 2005, more than a year after
PHP 5 had been released, about 90% of all PHP installations on the Internet still ran
on PHP 45.

One reason is the fact that a migration never goes by without problems, which
means work. Even if you run your program in an updated environment and get no
error message immediately, this does not mean that your program behaves the same
as on the original system in every situation. You will have to thoroughly test your
application in the new environment.

Most of the time, an application that was written in a certain PHP version does
not work on a new PHP version without modifications to the code. A major version
bump almost guarantees you compatibility problems, but even a bump of the minor
version number can lead to problems (There is a problem with keeping backwards
compatibility. When a new software version is created, a decision has to be made
between removing legacies and introducing incompatibilities. You hardly ever find
a compromise that satisfies every user. Regardless how you decide, there are always
users that would have decided differently.) Even if only minimal adjustments to the
code are required in the end, you still have to thoroughly analyze the code.

Hosting companies were in an especially difficult situation. Had they just switched
existing PHP 4 installations to PHP 5, a lot of customers would have experienced
trouble from one day to the next. So PHP 5 was offered as an alternative to PHP
4, requiring every customer to choose the ideal time for migration. Unfortunately,
most customers just never migrated.

Not all PHP users are shared hosting users, but the shared hosts make up for the
major part of PHP installations on the net. All users administering their own PHP

5Seguy, Damien: Statistiques de déploiement de PHP en décembre 2005, 2006, available at
http://www.nexen.net/chiffres_cles/phpversion/14847-statistiques_de_deploiement_de_php_en_decembre
_2005.php#versions

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Introduction ” 9

server can also choose the time for migration by themselves, but have even more
work, because they need to upgrade the installed PHP version first.

Since PHP 4 was so wide-spread in the last years, many developers were afraid
of making PHP 5 the minimum requirement for their applications. They kept their
software PHP 4-compatible, even when they were already developing under PHP 5.
This hinders making use of all advanced OOP concepts in PHP, of course.

In a way, this was a comfortable situation for everybody involved. Developers were
not forced to introduce OOP to their existing procedural code. Users were not forced
to use PHP 5, because most applications they used would also run on PHP 4. So why
should users bother with migrating to PHP 5 at all?

The situation, comfortable as it may have been for PHP developers and PHP users,
was not at all comfortable for the PHP core developers. For years, the were forced to
maintain PHP 4 while PHP 5 was already released, and PHP 6 was already in devel-
opment. It is a waste of sparse resources to force the PHP core developers to work on
three major versions of PHP in parallel.

Exactly three years after releasing PHP 5, on July 13th 2007, the PHP core devel-
opers announced that support of PHP 4 would be dropped by then end of the year
2007. Critical security fixes would be supplied until 8th of August 2008, the begin-
ning of the Summer Olympics in Beijing. After this day, PHP 4 users are left on their
own, if the have not migrated to PHP 5 yet.

Also in the early summer of 2007, the gophp5 initiative came to life. Under the URL
http://www.gophp5.org open source projects are encouraged to make PHP 5.2 the
minimum requirement for their software by February 5th, 2008. Hosting providers
are asked to offer PHP 5.2-based hosting by default from the same date on. gophp5
tries to break the vicious circle of users and developers forever sticking to PHP 4.

A Look Ahead: PHP 6

In fall 2005, a number of PHP core developers met in Paris to discuss the features
planned for PHP 66. A first preview version of PHP 6 was originally announced for
the end of the year 2006, and then for the end of 2007. Unfortunately, the road to

6Rethans, Derick: Minutes from PHP Developers Meeting, 2005, available at
http://www.php.net/˜derick/meeting-notes.html

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

10 ” Introduction

PHP 6 was long and rocky. The main new feature, namely full Unicode support, was
more difficult to implement than it was originally thought.

Migrating existing PHP applications to Unicode is not an easy task, because the
assumption that one character matches one byte is not valid for Unicode any more.
The built-in functions in PHP 6 take this into account, so that functions like strlen()

or substr() still work flawlessly. In most cases, though, existing code will have to be
modified to work on a Unicode-based PHP.

Some PHP core developers think that Unicode support in PHP is not required, and
thus do not support implementing Unicode features wholeheartedly. In late 2007, it
was decided to delay PHP 6 and backport all other planned features except Unicode
support to PHP 5.3. Aside from the missing Unicode support, PHP 5.3 equals PHP 6
as is was originally planned. Some of these features like the integration of the XML-
Writer and XMLReader extension were already incorporated into PHP 5.1 or PHP 5.2.
In the near future new features will probably appear in PHP 5 and PHP 6 in parallel,
as is was the case with new features in PHP 4 and PHP 5 for quite a while.

From today’s viewpoint, PHP 6 could share the same fate as PHP 5: after its release,
the new version spreads slowly, and another vicious circle arises: since PHP 6 is only
rarely used, no applications will be written for PHP 6. And since most existing appli-
cations work under PHP 5, there is no reason to migrate to PHP 6. Thus PHP 6 will
spread as slow as PHP 5 did.

Since any migration from one major version to the next requires careful planning
and unfortunately, as was said before, quite often even the migration between minor
versions can be problematic (well, otherwise you would not read this book), it is
quite understandable that PHP users are rather skeptical against new PHP versions.

Still, there is a fundamental difference between the migration from PHP 4 to PHP
5 and the migration from PHP 5 to PHP 6. The main new feature in PHP 5 was im-
proved OOP support, thus making software easier to extend and maintain. While
PHP application developers profit from OOP, the end users do not get usable fea-
tures out of it short-term.

The most important new features in PHP 6 is the Unicode support, which imme-
diately provides increased value for the end user, because the application will better
support different character sets and encodings. So there is still hope that history of
slow PHP 5-adoption will not repeat itself for PHP 6.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 2

Strategies

Whether you walk or run, the distance will always be the same. —(Chinese proverb)

Migration Strategies

There are no definitive solutions in the IT world. Like the real world, the IT world
changes constantly and rapidly. Software is extended, because new features are re-
quired. Software is optimized, because results are needed more quickly or more con-
current users must be served. Bugs or security holes are found, so the software must
be modified.

Hardware changes constantly as well. According to Moore’s Law, the number of
transistors in a microchip doubles roughly every 18 months. Every few years the
structural shape of mainboards, memory, and hard disks changes. Users expect soft-
ware to run not only on the most current hardware, but also on older systems.

It is not always easy for application developers to keep pace with this develop-
ment. Thanks to the work of operating system and driver developers, most of the
hardware changes do not directly affect application developers, but they have to
adapt to a constantly changing software environment. The more tightly an applica-
tion is integrated with the operating system, the more difficult it is to keep backwards
compatibility while supporting the latest operating system version.

System administrators have the toughest job of all. They usually are on a small
budget, but have to adapt the systems to rapidly changing business requirements.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

14 ” Strategies

Since users do not like to change their habits, system administrators must take great
care to keep continuity.

The migration of software and computer systems happens at the cut surface be-
tween developers and administrators. To be successful, it is important to gather a
holistic view of the system to migrate and its environment. Also, the users should
not be left out of the equation, since they ultimately decide wether a system is going
to be used or not.

In this chapter we will deal with basic migration strategies. For a migration, the
system administrator’s concerns and the developer’s concerns are equally impor-
tant. Also, the users and management need to be aware of the fact that no solution in
information technology is final. Migration is inherently a part of IT life. The question
is not whether another migration will ever be required, but when the next migration
will be required.

Never Touch a Running System

Anyone who was ever responsible for system administration, even if it was only their
own computer, knows the problem: right before you quit work, start the weekend or
even vacation, a small software update is required, the system configuration must be
changed, or a new application must be installed.

Even when things seem to be in order at first glance, you never know whether your
system is still going to work after the first reboot. Sometimes changing a small and
seemingly innocent setting is enough to give you a few hours of troubleshooting after
the first reboot.

Of course it is purely superstitious, but sometimes you could start believing that
a computer actually realizes that you are short on time or an important deadline
is approaching, only to cause trouble. An often-quoted golden rule (if not the one
golden rule) of information technology therefore is: never touch a running system.

System Environment

The term running system primarily refers to production systems. If a system needs
only be available during working hours, maintenance work can be done in the
evening or at the weekend. Before starting, you should plan for enough spare time

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Strategies ” 15

to get the system up and working again before it is required in production again, just
in case.

Today, many systems must be available 24x7. For some businesses, downtime
must be announced weeks in advance, requiring careful planning of system mainte-
nance work. To keep downtime short, all changes to the production system should
be tested on an identical test system, before you apply any changes to the production
system.

Unfortunately, in reality, identical test systems are not always available because
they can be quite expensive to keep if a high-capacity production system is used.
Virtualizing systems can cut the costs, but the bigger the differences between the
test system and the production system are, the more sources of trouble there are.
Maybe this is one of the reasons for the recent trend to also virtualize production
systems.

The less documentation there is available for a system, the better off you are not
to make any unnecessary, seemingly harmless changes. If, after such a change, the
system does not work as expected anymore, and you fail to put the system back into
a working state, the question is how a replacement system needs to be installed and
configured.

If the original system can still be used as a guideline to install and configure the
replacement system, it is rather easy to set up an identical or at least similar system.
If no replacement hardware is available and you have to reinstall the old system, you
never know the outcome, since you deprive yourself of any fallback position when
you erase the old system.

In any case, you need a backup of all relevant data and settings. Looking at today’s
amount of data that is being pushed around, it can be a couple of hours until the data
has been transferred to another system. The best solution is to keep the original hard
disk and reinstall the system on a new hard disk. Of course, this only works when you
have direct access to the server. It is not really an option if you use a rented server in
a remote data center.

“Never touch a running system” is often used as an excuse not to install required
updates and patches. It is always a good idea to only make changes to the system that
have a clear benefit. Before installing anything, test on another system and always
keep at least one fallback position that allows you to roll back to a working system,
in case things go really wrong.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

16 ” Strategies

Because a system is not clearly documented, and you have no idea what is going
to happen when you make changes to it, as soon as “never touch a running system”
becomes a necessity, it is very dangerous to keep waiting. The next serious problem
can cause a chain reaction, as the following example shows.

One day you decide to clean up behind your server so you figure that it might be
a clever idea to unscramble all the cords. You shut down the server and clean up.
Once you are done, you try to reboot the server, but realize that it does not work
any more, because the hard disk has died. (As a matter of fact, hard disks rarely fail
while running, but mostly when rebooting the server. This is one of the reasons why
servers are seldom rebooted and the hard disk’s power saving features are turned
off.)

You need to get a new hard disk. Unfortunately, no a hard disk with an adequate
interface is in stock. The hard disks you and your computer dealer have in stock are
not supported by your server. Since you cannot wait for a compatible hard disk to be
delivered, you have to switch to a different server hardware.

Unfortunately, the full backup of the old server cannot be installed to the replace-
ment system, because the hardware required different drivers. Since you do not want
to risk an unstable system, you decide not to install the existing backup, but to install
the new server from scratch.

After two or three failed installations, you realize that the operating system version
you were using on the old hardware does not install on the new hardware. Even if you
could complete the setup, you would never know wether the system would actually
be stable.

So, you are forced to install a more current operating system version. Installation
on the new hardware works seamlessly, so your hopes are raised, at least until you
realize that not all software components required by your application work on the
new operating system.

Since you cannot combine new versions of certain software components with
older versions of other components, because the API has changed between versions.
You need to install a current version of all software components to make them work
together.

Of course, it is bound to happen that your application does not work in the new
environment, at least not flawlessly. You have already spent hours with installing a
stable system and now are forced to get your application to work in the new environ-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Strategies ” 17

ment. Things get even worse when the errors that the new environment induces are
not immediately visible. In that case, you are likely to face a time of trouble.

You would probably want to avoid a situation like this, because you will be forced
to catch up with all shortfalls now. This is the Sword of Damocles you live under
when you’ve been living to the “never touch a running system” philosophy for too
long.

Program Code

Sometimes, the “never touch a running system” rule is also used as justification not
to change existing program code. At first glance, this philosophy is warranted, be-
cause in the first place, any modification to source code can lead to a program that
does not work any more, or does not work as expected.

Unfortunately, it is way too easy to introduce a syntax error when making even a
small modification to the source code. In a compiled language the compiler would
discover syntax errors quickly, since the code would not compile any more. PHP
has no compiler, though, so even simple syntax errors can go unnoticed until the
program is actually loaded and executed.

A good IDE will show you syntax errors as you edit the code. Even without this
feature, you should try to discover these obvious errors as early as possible. Thus,
after modifying the source code, make sure to run a syntax check. In Chapter 7 we
will learn how to run a syntax check on a PHP file at the command line.

The fact that source code has no syntax errors does not mean that the program
will work flawlessly. A PHP file that is syntactically correct can still contain errors
that will show up at runtime, for example when you try to call a non-existing method
of an object. Since the object is created at runtime, PHP cannot know at compile
time wether the called method actually exists.

Runtime errors that cause a program to stop may be annoying at first glance, but
in fact help you find an error rather quickly. Warnings and notices can also help you
discover potential errors that might show up in a completely different spot. A notice
about using an uninitialized variable can indicate a security problem in certain PHP
configurations. Ideally, PHP code should be written so that no warnings and notices
are output, at least not in the default case. In some situations, this means unnec-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

18 ” Strategies

essary effort to prevent PHP warnings, for example when connecting to a database
fails.

The biggest problem are errors in the program logic. If, for example, you subtract
the items of an invoice instead of adding them up, this is an error you can only find
by testing. PHP will not output a warning or error message, except when you have
built a plausibility check into your software that will warn you when the grand total
becomes negative.

The more complex your application becomes, the more tests you need to run to
make sure that your application does what you expect it to do. In theory, this sounds
very simple: after every change to the code, just fully test the application, and if no
test fails, you know that you have not introduced a bug or changed the application’s
behavior.

In practice, this is virtually impossible, because program code can consist of an
arbitrary level of nested statements. Full test coverage would require testing every
combination of execution branches. A program with 10 if statements executed one
after each other has not only 20 possible execution paths, but 2ˆ10=1024 theoreti-
cally possible execution paths.

A large part of these execution paths may only be theoretically possible, and it does
not make much sense to test execution paths containing code to handle rare error
conditions like a failing database or a full hard disk. The effort to create tests for these
situations is usually not worth the benefit. But even if only 10% of all theoretically
possible execution paths were to be tested, we would have to create about 100 tests
for a small application.

Due to the large number of tests that are necessary even for a small application,
tests should be automated. An automated test compares a computational result to a
pre-calculated known good value. Since human testers can easily overlook errors in
a program’s output, an automated test is not only more reliable, but cheaper, since
it can be repeated at any time, at no additional cost. Automated tests are an im-
portant precondition for changing and extending existing program code. After the
modification, rerun the test, and you will know whether your program’s behavior
has changed.

In practice, automated tests are not as widely used as they should be. Especially
for older procedural PHP code, automated tests rarely exist. Since procedural code is
less modularized than object-oriented code and thus more difficult to test. In older

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Strategies ” 19

applications that have grown over time, different concerns like presentation, pro-
gram logic and data access are not clearly separated, making unit testing (testing of
individual classes or parts of the code) rather difficult.

Instead of using unit tests, one could consider testing the application as a whole.
Of course, the environment required to test a whole application is way more com-
plex than the environment of a unit test. In addition to the database that must
be pre-populated with sensible default values, a browser is required to execute the
Javascript code if you do not want to rely on parsing the generated HTML code.

Application tests are coupled to the user interface rather tightly. Sometimes, even
cosmetic changes to the user interface make is necessary to adjust a test. Thus test-
ing an application as a whole is no replacement for unit tests, because creating and
maintaining them is just too much effort. In addition, it is difficult to test certain
edge cases.

There are different doctrines about when and how program code should be
changed. In classical software development, program code is owned by the devel-
oper who wrote it, and nobody except the owner is allowed to change the code. This
restrictive approach is probably also due to the fact that not enough automated tests
are present to assure the software quality. This leads to a “never touch a running sys-
tem” attitude towards source code. Since nobody ever changes the code, after some
time no developer is familiar with the code anymore.

The agile programming methods propose collective code ownership. Program
code is not owned by one single developer, but by the whole team of developers.
This means that any team member can change program code. That way, program-
mers do not only deal with the code they have written by themselves, but also with
other people’s code, which helps them better understand the big picture of the ap-
plication.

This agile approach only works well when automated tests are in place. The ad-
vantage of constantly changing and improving existing code is that unreadable code
and code that does not adhere to the coding guidelines will sooner or later be im-
proved. The result is an overall better code quality.

Nobody should make modifications to existing code without a good reason. How-
ever, as soon as you refrain from making changes to the code just because there are
not proper quality assurance measures in place so you cannot test the application or
parts of it, program code will start to age.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

20 ” Strategies

Program code ages, because the technology evolves. New software versions offer
new possibilities, programmers gain more experience and find better solutions than
in the past. When developers look at code they have written a couple of years ago,
they usually ask themselves whether or not they have actually written that piece of
code.

Like in system administration, you can get away with the “never touch a running
system” philosophy for a while and keep existing program code as it is. Sooner or
later, however, you will end up rewriting your application from scratch, not only be-
cause no developer knows and understands the code, but also because the code has
grown too old.

Always Use the Latest Version

No software is free of bugs, be it an operating system, an application, or embed-
ded software. Sooner or later, an error will occur. Even when a program has been
thoroughly tested, bugs may show up under certain conditions after months or even
years of running in production.

Security holes in the software are particularly annoying, because they might allow
attackers to break into a system, and steal or modify data. Security is a big issue,
especially in the web environment, because every system on the Internet is subject
to potential attacks every day and around the clock. Compared to this, computers
that are not accessible from the Internet live in relative peace.

The biggest problem for computers on the Internet are not even targeted attacks,
but the white noise of automated attacks that is omnipresent on the Internet. Ar-
bitrary systems are automatically scanned for known vulnerabilities. Sometimes, to
prepare an attack, it is even sufficient to know which software a server runs.

Another golden rule of information technology is to always use the latest version.
By using the latest version you can make sure that your system has no known vulner-
abilities. Administrators are often blamed for not using the latest software versions.
Unfortunately, things are not easy as they may seem.

We know that it’s not possible to prove that a program is correct by testing. Tests
can only prove the presence of bugs, not their absence. We have already learned that
even small programs can have a large number of execution paths, so that full test
coverage of a real application is hardly possible.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Strategies ” 21

Even when an application in isolation works flawlessly, problems can arise when
taking the execution environment into account. To guarantee that an application
always works correctly, the operating system, all installed drivers, and all shared li-
braries would have to be error-free. This is just not realistic. Typically, you ensure by
integration tests that a production system works correctly, at least on normal use of
the application.

If you install a system from scratch, you should use the latest available version of
all software components. Sometimes, however, the latest versions of different soft-
ware components do not work together. Before Apache version 2.0.40, PHP would
just not work together with Apache2, for example.

When developing software, you often have to take the risk of working with soft-
ware that has not been officially released. This allows you to release your application
as soon as the software it depends on has been officially released. Most of the time,
technical aspects like new features that you require turn the balance for using a de-
velopment version.

Using an older version of a software product also has its advantages. Older ver-
sions are better tested, and even if they have known problems, chances are good
that there is also a known workaround for them. It is usually easier to circumvent a
bug than to first prove that a certain behavior is a bug, and then find a way of cir-
cumventing it.

When a system has been deployed, time does not stand still. Sooner or later you
will face the problem of having to update a certain software component, for example
because a security issue has been found. In theory, you would have to repeat the full
integration test to make sure that your system still works as expected with the up-
dated software component. Quite often, though, software components are updated
without any proper quality assurance.

Luckily, many bug fixes are released as patches today. This shortens the period
of time until a bug fix is available, because not a full software release must be cre-
ated. Still, many bugfix patches are not tested as extensively as a full software re-
lease. Quite often, patches require another patch shortly after they have been re-
leased. Either the original problem was not properly solved, or unwanted side ef-
fects occurred. It may therefore be a good idea to wait for some time before installing
patches. You may be able to learn from other people’s experience and even skip some
patches that turn out to be unnecessary.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

22 ” Strategies

Any responsible administrator will never just blindly install a patch or an update,
but make an educated decision whether there is a real benefit that outweighs the
risks. If no critical vulnerability is present in your system, if the users’ daily work
is not affected, and if data integrity is ensured, there is nothing wrong with not in-
stalling a patch.

Many of the vulnerabilities found in PHP over time can only be exploited from
the local system. If the attacker has no shell access and cannot execute arbitrary
PHP programs, there is no real risk for the system. In a shared hosting environment,
however, such a vulnerability can be absolutely critical.

In general, any modification to a production system bears the risk of damaging
the system integrity and putting the system into an unusable state. Many admin-
istrators have had bad experiences with “always use the latest version” and have in
turn started to live the “never touch a running system” philosophy. Of course, it is
very wrong to overreact like this.

Starting from Scratch

If you have been living “never touch a running system” for too long, you will usually
pay by having to setup the whole system environment from scratch, or rewriting the
whole application from scratch.

Having to reinstall a system from scratch may not be fun, especially when you
are under time pressure because every hour of downtime causes massive costs. But
even then, after a few days of tweaking and sweating, even stubborn systems should
be back online and relatively stable.

Rewriting an application from scratch, in contrast, is not a matter of days, but
requires months or even years. In addition, it is obvious that nobody can come to
a decision about rewriting an application within a couple of hours. A decision of
such importance requires careful planning and analysis.

Rewriting Program Code from Scratch

We already know that program code ages over time. When code is being changed
and extended, the original structure and architecture slowly blurs. Code must be
regularly cleaned up by refactoring to counterbalance the aging effects.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Strategies ” 23

Never changing existing code will in most cases ultimately lead to the need to
rewrite the application from scratch because no developer knows the code any more.
If you have no good source code and development documentation, you are in trou-
ble. In that situation, the question is whether somebody should spend time on fa-
miliarizing themselves with the code and to whip it into shape, or if it is better to
rewrite from scratch. Writing new software is always risky, as many software projects
fail.

There are different approaches to rewriting a system. Besides having the option
of using new tools and methods, developers will try not to repeat the same mistakes
they made in the first place.

If you rewrite software, you can use the existing system as specification, so there
is a clear vision of how the software should look like. The danger is that developers
focus too much on making everything better. Frederick Brooks wrote about this phe-
nomenon in his legendary book The Mythical Man Month and called it the second
system effect1. Brooks realized that many teams that had successfully completed a
software project together were bound to fail in the follow-up project, because they
tried to build too much functionality into the software to make up for everything
they felt they had forgotten in the first project.

When working on existing software, you can be sure that certain functionality
is present, unless you break it while modifying the software. When starting from
scratch, there is no guarantee that the result is a working piece of software. Many
software projects, especially big ones, go through great troubles until the result is
satisfactory.

In theory, it is just a matter of calculating the cost for a new development and
compare these with the estimated costs for maintenance and extension of existing
code. In reality, this calculation it is virtually impossible. Generally, at short term
maintenance of existing software is cheaper, while in the long run a newly developed
software will probably have lower maintenance costs. In any case, a good code basis
makes maintaining and extending software easier and thus more cost-effective.

Rewriting software means new possibilities. You can get rid of old code that is
hard to maintain, and can start using existing third-party components and classes.
In addition, you can use new PHP features. Before starting to rewrite, though, you

1Brooks, Frederick: The Mythical Man Month, 1995, originally published by Addison-Wesley, Ams-
terdam, 1975

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

24 ” Strategies

try to find out whether there is an existing software that you could use instead of
writing everything from scratch. If there is no software that completely fulfills all
your needs, you can still possibly use an existing product as the starting point for
your own development. It is one of the great advantages of open source software
that you can reuse existing products. Even if you do not reuse actual code, you can
still learn from others people’s work.

To reuse existing components, you do not have rewrite your software, though.
When migrating the software or by code refactoring you can replace existing code by
another implementation, thus introducing third-party code into your application.

Rebuilding the System Environment from Scratch

Compared to the extremely sumptuous task of rewriting software, rebuilding a sys-
tem seems like a walk in the park. But since most production systems are used to
earn money, directly or indirectly, downtime is expensive.

While the decision to rewrite software usually is reached because existing soft-
ware is too tedious or expensive to maintain, it is very helpful to rebuild a system
from scratch instead of making modifications to an existing system. While you are
installing, the production system is still running, so there is no downtime. Once you
are done with setting up, configuring, and testing the new system, you can switch the
two systems, making the newly installed system the production system. If anything
goes wrong, you can switch back to the original system. By switching between the
two systems, there is virtually no downtime.

Of course, it does not always make sense to perform a full installation of a second
system, just to install one patch. For major updates when migrating a system, the
effort is definitely worthwhile. To make this approach of installing a new system
actually work, you need a good and up-to-date documentation about how to set up
the system, which software to install, and how to configure it.

Striking a Balance

In the previous sections, we have learned about basic strategies and procedures for
a migration. Like so often, in information technology it is not a good idea to fall from
one extreme into the other. You should try and strike a good balance.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Strategies ” 25

Avoid the ball to be placed in your court. It is much better to be anticipatory and
proactive. This helps you plan ahead and lets you avoid panic reactions when things
go really wrong at some point. Knowing the market trends will help you plan better
and recommend a sensible course of action.

In real IT environments, there are a lot of influencing factors, and not all of them
are technical. Besides the business environment, IT decisions are often influenced
by corporate politics.

A fixed budget is an important precondition for a successful ongoing development
of an IT environment. You would probably not want to enter a plane that has not
been serviced for months, just to cut the costs. Similarly, nobody should entrust
their data and business processes to a badly-maintained IT system.

Information technology means accepting changes as an integral part of daily life.
Not only the technology changes, but also the business requirements and, last but
not least, the persons involved.

Only if you have a solid understanding of the IT systems involved, you can accept
permanent changes and adjust to them. You need to know which software runs on
the system, how it is configured, and which dependencies there are between the var-
ious system modules. The better the documentation, the easier it becomes to make
changes.

You can learn an important lesson for system administration - and therefore the
migration of a system - from the agile development methods: work in little iterations
(or steps). This simplifies management and is more productive. Multiple small steps
will take you as far as one big step, but should problems turn up, it is easier to isolate
them. Should you really screw something up on the way, it is easier to roll back one
little step than to spend hours searching for the mistake.

A good balance between “never touch a running system” and “always use the lat-
est version” could be to update the production system every quarter of the year.
This gives you enough time for quality assurance and lets you make the necessary
changes to your software, if need be. You do not always run the latest software in
production, but can refine your testing and deployment process over time.

Should a critical update become necessary, you have a proven process that you
can rely on. Instead of pushing the necessary migration of your environment farther
and farther ahead, until you finally are forced to act, you constantly proceed in small

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

26 ” Strategies

and manageable steps. This usually gives you enough time to sort out any problems
without putting the production system into danger.

Regardless of when you migrate, you will run your application in a new environ-
ment. This usually requires some modifications of the existing PHP code, to adapt
it to the new environment. In the following chapters we will explain the course of
action. Chapter 7 introduces you to tools that will help you migrate your code, while
Chapter 8 describes in detail the potential problems that can arise when migrating
PHP code.

This book only deals with forward migration, which means adapting an existing
PHP application to work in a software environment of newer versions. In a back-
wards migration, the PHP application is adapted to working with environment of
older software versions. Though the basic procedure in both cases is similar, we will
not deal with backwards migration. It does not usually make much sense to adapt
code that was written for a recent PHP version to work under an older PHP version.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 3

Migration Aspects

“Discover a well before you are thirsty.” —(Chinese Proverb)

Important Aspects of Migration

A migration does not only affect the program code itself, but also the whole system
environment. There are a lot of aspects to keep in mind when planning and acting
out a migration. This chapter deals with the most important aspects that you have
to keep in mind when migrating a PHP environment.

These aspects are the platform, operating system, web server, database, PHP itself,
the PHP source code and some other aspects that might seem unimportant at first
glance, like system configuration, external programs, or interfaces to third-party sys-
tems. Figure 3.1 shows an overview of these components and how they interact. The
dependencies are shown by arrows.

The starting point of our consideration is the platform, meaning the computer
architecture of the application we are planning to migrate runs on. The platform-
specific operating system hides the platform details from the applications running
on it. There are some important differences between the main operating system
families. When migrating, you should know them, even if you are not planning to
switch the operating system family while migrating.

The operating system executes the various applications. For us, the two most im-
portant applications are the database and the web server. The system programs are

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

30 ” Migration Aspects

Figure 3.1

usually not overly relevant in a PHP migration, but must still be kept in mind. Luckily,
Apache and MySQL, the most widely used web server and database on PHP servers,
are available on all common operating systems. Still, there are some differences in
behavior between the platforms with these applications, especially the web server.

The web server runs PHP, which can access system programs and the database.
(Strictly speaking, this is not always correct, but depends on how PHP is integrated
with the web server.) An important part of PHP is the collection of extensions that
provide additional functionality to the PHP core. In fact, the most features of the
language are provided by extensions.

For example, the various database interfaces, regular expressions or XML func-
tionalities are PHP extensions that are bundled with PHP by default. (“Bundled by
default” does not mean these extensions are always available, since they could have
been disabled when configuring the source code). The PHP core itself offers a rather
small set of user visible features.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 31

PHP, obviously, executes PHP code. In addition to your own PHP code, you might
also use third-party PHP code in the form of libraries, components or frameworks.
Usually, you will not have to migrate third-party code, since the manufacturer should
have taken care of making their code work under recent PHP versions.

Interfaces to external systems are especially important if your application is
service-oriented, because every service client is an interface to an external system.
The advantage of service-oriented architectures is that the various services or mod-
ules of the application are decoupled, which makes maintenance much easier.

It is also easier to balance the load by distributing the services to different servers.
Compared to one monolithic system, a service-oriented architecture is much more
flexible and scalable.

In this chapter, we will take a closer look at the various aspects of a migration and
the system components involved. You will be provided with the necessary back-
ground knowledge to get a feeling for which problems you might face during migra-
tion.

Platform

Today, computers are ubiquitous. They exist not only in the form of PCs or game
consoles, but also as chip cards, super computers and most electronic devices like
MP3 players, DVD players, and even in everyday objects like elevators, exercise ma-
chines, cars, or digital watches.

All of these computers are unlike each other, but adapted to special use cases. In
principle, though, all modern computers are based on a concept for a universal pro-
grammable calculator by John von Neumann1 that dates back to 1945. The then rev-
olutionary idea was to store program and data in the same memory. This was the cor-
nerstone for the transition from hard-wired calculating machines to programmable
computers.

1von Neumann, John: First Draft of a Report on the EDVAC, 1945,
http://wps.com/projects/EDVAC/index.html

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

32 ” Migration Aspects

Architecture

The origin of today’s prevalent computer architecture is the so-called IBM compat-
ible PC, that is based on IBM model 5150. Model 5150 was IBM’s attempt to gain
a greater market share than companies like Commodore, Atari, Apple and Tandy,
which were very successful in the home computer market. The IBM 5150 was based
on Intel’s 8088 processor, a low-cost version of the 16 bit processor 8086, that Intel
had released in 1979.

The especially noteworthy fact is that IBM made the specification public, allowing
third-party vendors to build compatible computers and add-on parts. In the fol-
lowing years a big market for computers and peripheral devices emerged, which of
course was extremely beneficial for spreading the architecture.

The term IBM compatible was a main sales argument for a long time. Today, this
architecture is also called the x86 architecture, since the model numbers of Intel pro-
cessors used to end in 86 (80286, 80386, 80486). Since the 32 bit processor 80386 was
introduced in 1985, the extended 32 bit architecture is also referred to as IA32 or i386
architecture.

There are also alternative computer architectures in the PC world, but all of them
are less common than i386. An example is the Sun SPARC architecture, which is
open source today, and is mostly used on high-end workstations or servers running
a Solaris operating system.

Another example is the 68000 processor architecture. Some once famous com-
puters like Commodore Amiga, Atari ST, but also the first Apple Macintosh models
were based on this architecture. Later, IBM, Apple and Motorola jointly developed
the PowerPC architecture. Starting in the mid-nineties, all of Apple’s PowerPC’s were
based on this architecture.

Yet in 2005, Apple started using Intel processors for their Mac computers, because
Motorola had withdrawn from the PC processor market and IBM focused the further
processor development on game consoles. The majority of today’s game consoles
like Xbox 360 or Wii are based on the PowerPC architecture whereas the Personal
Computer market is dominated by the x86 architecture, or, respectively, its successor,
the IA32 architecture.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 33

Processor

The heart of a computer is the processor, as we have already seen in the last sec-
tion. The whole computer architecture is built around the processor. The operat-
ing speed of the processor is a main influence factor for the system’s overall perfor-
mance. While in 1979, a 8086 processor ran at a moderate 4.77 MHz, the processor’s
clock speed was subsequently increased up to 3 GHz.

To speed up the processor even further, it does not suffice to increase the clock
speed, since physical limits will soon be reached due to the energy consumption
and the generated heat. Thus, recently, further increase of processing speed is being
achieved by parallel processing.

Modern processors are comprised of multiple cores, effectively consisting of two
or more processors in one chip. This allows for executing multiple programs con-
currently, at least if the operating system supports this. Using a multi-core processor
only speeds up your computer when multiple programs can be executed at once, or
one program can be concurrently executed on multiple cores.

A web application that runs on a computer with two processors or cores could
benefit from running the database on one core, while running the web server on an-
other core. Due to the big number of search and sort operations required, databases
are rather processor-intensive applications, so the system’s response time should get
lower when the database runs on its own processor core.

The advantage of this solution compared to a dedicated database server is that
the fast system bus can be used for communication between the web server and
database, as opposed to the potentially slow network connection between two sys-
tems. The disadvantage is that database and web server are rivaling for the one
server’s memory, which may become a bottleneck.

Instruction Set

Unfortunately, microprocessors do not understand high level programming lan-
guages, but only a certain machine language. The machine language, also called in-
struction set, consists of very simple instructions that, for example, can read a value
from memory and put it into a processor register, or branch conditionally or uncon-
ditionally.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

34 ” Migration Aspects

Machine language has no high-level program constructs as we know them. With-
out variables, functions, or objects writing complex applications would be extremely
tedious, and the resulting unstructured programs would be very hard to read. In-
stead of programming in machine language or even Assembler, we program in high-
level languages that are converted into machine language by a compiler.

Today, all PC processors, regardless of the manufacturer, support the IA32 instruc-
tion set, that was introduced when the first 32 bit processor 30386 was released by
Intel in 1985.

After Intel, AMD is the second largest manufacturer of IA32 compatible processors.
The modern 64 bit AMD processors natively use the AMD64 instruction set, but also
support IA32, so they can execute machine code that was written for Intel processors.

In most cases, end-users do not need to care about which processor type their sys-
tem is build around. Current operating systems and thus applications work on Intel,
AMD, and any other IA32 compatible processors. However, you should try to use an
operating system that fits your processor’s architecture. Especially Linux distribu-
tions come compiled for different architectures. IA32 (sometimes also called i386)
is the lowest common denominator, whereas on modern 64 bit processors, only the
native AMD64 or IA64 versions can unlock the full potential of the system.

Word Length

An old joke says computers are dumb, because they cannot even count to two. In
fact, computers are binary, and thus work with only two states, 0 and 1. This smallest
information unit is called a bit. For historic reasons, a group of eight bits makes up
one byte. The number eight was chosen arbitrarily. Some early computers models
worked with five or six bit bytes.

A byte consisting of eight bits can represent 256 distinct states. This amount is not
sufficient for real work, of course, so a number of bytes are grouped together to form
a so-called word.

Over time, the word length of computers has increased from one byte (8 bit) to
eight bytes (64 bit). At the same time, operating systems and applications were
adapted to work with this word length and thus exhaust the processor’s full potential.

Windows 3.1 was a 16 bit operating system. Windows 95 was the first 32 bit oper-
ating system by Microsoft that was widely used. There is a 32 bit and 64 bit version of

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 35

Windows XP and Windows Vista today. The successor of Windows Vista is supposed
to be released primarily in a 64 bit version, with an additional 32 bit “legacy” version.
All current Unix-based operating systems should be available in a 32 bit and a 64 bit
version.

An operating system does not necessarily have to use the full word length of the
platform it runs on. You can install a 32 bit operating system on a 64 bit platform,
but will be wasting resources.

A main reason for increasing the word length of computers is that the word length
also determines the amount of memory the processor can address. One word is used
to address one memory cell.

With 32 bit word, you can address 2ˆ32 bytes (4 GB) of memory. For a desktop sys-
tem, that may still be sufficient, but a powerful server requires much more memory
today. Large memory is a main precondition for a server to be fast, since a disk ac-
cess is about 1,000 times slower than a memory access. Thus, a server that can keep
all relevant data in memory is very fast.

With a word length of 64 bit the processor can address 16 exabytes of memory,
which roughly equals 16 million terabytes. Even when technology continues to ad-
vance at the same pace it does today, it should be 50 years until we hit this memory
limit.

A bigger word length also increases the variable range in PHP. Numeric values like
integer and float variables are stored in one word. Thus a 32 bit signed integer has a
range from -2,147,483,648 to 2,147,483,647.

In contrast, a signed 64 bit integer has a somewhat greater range from -
9,223,372,036,854,775,808 to 9,223,372,036,854,775,807. Increasing the word length
also allows us to store float variables with more precision, since more binary digits
are available.

If an integer variable is repeatedly increased, after the largest presentable num-
ber has been surpassed, the count starts over with the smallest possible value. This
is called overflow. This happens regardless of whether the variable is signed or un-
signed.

When migrating, you should keep in mind that the overflow will occur depending
on the word length of the system you are working on. If you migrate to a system with
a different word length, the overflow will happen at a different time. If an application
uses overflows as a feature, the program behavior on the target system will differ.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

36 ” Migration Aspects

It gets even more complicated when you are migrating to a platform or an oper-
ating system with a smaller word length. Copying of binary data, for example, will
not work without actually converting the data. If the data contains values out of the
range on the target system, you will work with wrong values if you do not realize that
an overflow took place.

Since the precision of floating-point calculations also depends on the word length,
the results of calculations on systems with different word length are usually not the
same. If you use automated tests to compare the results of floating-point calcula-
tions, you might have to increase the delta that is allowed between the results, at
least if you migrate to a system with smaller word length. If you migrate to a system
with bigger word length, you can probably decrease the delta, since you work with a
higher precision.

Byte Order

Most computers today have a 32 bit or 64 bit word length. One word therefore con-
sists of four or eight bytes. In which order are these bytes stored in memory?

Obviously, there are two possibilities. You can start with the low order byte, or start
with the high order byte. The first version is called little-endian, while the second is
called big-endian. The meaning of these terms is easy to confuse: big-endian does
not mean that the high order byte is last, as the name might suggest. Big-endian
means that the highest order byte is stored first, just like we would first write down
the digit of highest place value in a decimal number.

The terms big-endian and little-endian stem from Jonathan Swift’s Gulliver’s Trav-
els, where there were two sovereigns bickering over the question whether to open an
egg at the round or the pointed end. Those who opened their eggs at the round end
were called big-endians, the others little-endians.

The byte order depends on the computer architecture. That means that when
copying binary data from one computer architecture to another, you might have to
convert it. While Sparc, PowerPC and Java use the big-endian format, Intel uses a
little-endian format. Storing a two-byte word in big-endian and little-endian byte
order is shown in Figure 3.2.

It is important to know the endianness of binary data, to correctly interpret the
stored multi-byte words. If you stick to one computer architecture, you will not have

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 37

Figure 3.2

to worry about endianness at hardware level. In some cases, though, data formats
also need to distinguish between big-endian and little-endian byte order. Multibyte
character sets like UTF-16 are an example. You need to make sure that all software
components involved know in which endianness data should be interpreted.

When transmitting data over a network, the network protocol defines endianness.
The IP protocol, for example, uses big-endian, so on Intel platforms, the byte order
is switched when storing or reading the data.

Mounting forms and interfaces

Though this book deals with software migration, we will touch on the basic problem
of hardware migration, namely the overwhelming diversity of different components
and mounting forms.

Almost every processor model has its own socket specification, requiring an ap-
propriate motherboard. Mounting forms of other system components change less
frequently, but still we are looking at a new case shape, motherboard format, or
memory module design every couple of years.

There are countless different SCSI standards with different bus width and even
more different types of sockets and plugs. Current hard disks have a SATA connector,
whereas older hard disks have an ATA connector. Modern laptops come with a PCI
Express interface that renders all your PCMCIA cards useless (I learned this lesson
the hard way).

It is not always easy to find suitable spare parts for older systems. Either they have
long delivery times, or the price is outrageous, so that you could get a much newer
component at a lower price.

Operating system

Since Apple released Mac OS X, which is Unix-based, there are basically two operat-
ing system families left in the PC world, namely Windows and Unix.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

38 ” Migration Aspects

Windows dominates the desktop computer market, while many servers, especially
on the Internet, run on Unix. Of course, there are lots of other operating systems for
mainframes or real-time operating systems as well, but throughout this book, we will
focus on the Windows and Unix families. Mac users are indirectly addressed when
Unix is mentioned, and I ask you to forgive me for not directly mentioning you.

There are way more Windows versions and editions than you might have thought.
Currently, we have Vista which comes in a Starter, Home Basic, Home Premium,
Business, Enterprise and Ultimate edition, Windows Server 2003, Windows XP in a
Home, Professional, and a Media Center edition, Windows 2000 with a Professional,
Server, Advanced Server and Datacenter Server edition, Windows NT and for reasons
of nostalgia even Windows ME, Windows 98, and Windows 95. All these versions and
editions are available in different languages, yet increasing the variety.

The predominant representative of the Unix family today is probably Linux, even
though there are alternatives like Solaris or BSD that are also widely used. In the
Linux world, there exists a plethora of different distributions, for example by SuSE
(Novell), RedHat, Debian, Ubuntu, Gentoo, Fedora, or Slackware, just to name some
of them. Each of these distributions has different versions, and sometimes even offer
a different server and a desktop edition, let aside the different support options you
can purchase.

Though changing a system environment usually does not cause too much trouble,
as long as you stick to one operating system edition, there are differences between
the various versions and editions, as you can tell just by looking at the sheer diversity
alone. Windows sometimes even tends to behave differently when installed multiple
times on identical hardware.

The plethora of Linux distributions differ greatly from each other, especially in the
way the install and manage software. While Debian and thus also Ubuntu use APT,
the advanced packaging tool, SuSE has a custom installer YAST, which is the acronym
for yet another setup tool to manage rpm packages.

The Linux Standard Base (LSB) (http://www.linux-foundation.org/en/LSB) tries to
increase compatibility between the different distributions. LSB, for example, defines
what the directory structure of a system should look like, and which programs and
libraries have to be available on any system.

A PHP application running on Linux should make as few assumptions about the
system as possible, to be portable to other Linux distributions. Unix is more stan-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 39

dardized, so it is easier to make valid assumptions which, in turn, might lock you in
to a certain vendor or version, though.

Fortunately, PHP programs are not tightly coupled to the operating system by na-
ture. With a little effort, you can create portable PHP applications that run on Win-
dows and on Unix. This makes migrating to another operating system or operat-
ing system family much easier. If the application was not written with portability in
mind, you will likely have to do more work when you are migrating.

We already know that most modern processors have more than one core. To allow
efficient use of these cores, the operating system must explicitly support multi-core
processors. All current operating systems like Unix, the SMP Linux kernel, Windows
XP and Windows Vista do support multi-core processors. On Windows, it might be
necessary to install a special driver, though.

On a multi-core architecture, the operating system shares the available computing
time between all running applications. Every application is allowed to use the pro-
cessor for a little while, then it is preempted, and another application starts using the
processor. While an application is not using the processor, it is put in a waiting state,
until it may use the processor again. If this switch is done rapidly and very quickly,
it seems to the user as if multiple applications were executed at the same time. This
way of working, as we know, is called multitasking, and each application is executed
in a so-called process or task.

The time it takes to switch between tasks, however, is unproductive time. To re-
duce the number of necessary task switches, a task can be subdivided into a num-
ber of threads. A thread is a lightweight process inside another process. All threads
within one task share the same memory.

Not every program can be executed in multiple threads (“multi-threaded”),
though. Under certain circumstances, even using a global variable can make a pro-
gram fail in a multi-threaded environment. To make a program thread-safe, careful
programming is required. The problem with programs that are not thread-safe is
that they might run flawless, but cause trouble under certain conditions. It is virtu-
ally impossible to reproduce these conditions, so it is particularly difficult to create
a test that demonstrates the problem.

The core of PHP is usually thread-safe, but can also be compiled in a non-
threadsafe way. If you are not sure how the PHP you are using has been compiled,
call the function phpinfo() and look for the line Thread Safety.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

40 ” Migration Aspects

Since Windows is multithreaded, PHP for Windows must usually be compiled
thread-safe. IIS, Apache 1.3 and the Apache 2.x series run and have always been
running multi-threaded under Windows.

Unix has been supporting multithreading for some years now as well. Using
Apache2 on Unix, you can choose between two execution models, namely the multi-
threaded Worker MPM (multi-processing module), or the single-threaded Prefork-
MPM.

Executing a thread-safe application in a non-threaded environment does work,
but will probably impose some performance penalty. If you are sure that PHP will
always be run single-threaded, you might try and compile it non-threadsafe to in-
crease performance.

The majority of commonly used PHP extensions are thread-safe as well. Some
extensions like GD or IMAP are known not to be thread-safe. For other extensions, it
is just not known for sure whether the extension is thread-safe or not. This is because
PHP extensions use external libraries, and you sometimes just do not know whether
a library is thread-safe. The author of a PHP extension has little control over exactly
which libraries are used to compile the extension, and how they are compiled.

At PHP level, the concepts of multitasking or multithreading do not exist. Every
PHP program runs in its own memory space, so PHP developers do not have to care
about thread safety problems. Still, when multiple PHP programs access external re-
sources like databases or files are executed concurrently, synchronization problems
and resulting inconsistencies similar to the problems of multithreading can arise.
The PHP programmer has to deal with these issues to make an application stable
and robust.

Word Length

An operating system is laid out to a certain word length. This means that the oper-
ating system has been compiled into a machine language of that very word length.
The underlying platform determines the maximum possible word length for the op-
erating system to use.

Most Windows operating systems contain an environment to execute code of
lesser word length. In Windows 95 you could execute old 16 bit code. Current 64
bit Windows versions contain a Win32 subsystem to execute 32 bit programs. This

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 41

allows Windows to transparently execute code of lesser word length. This is not pos-
sible in Linux, but since most code is compiled on the target system, and thus for the
available word length, this is not a problem.

The maximum word length PHP can use is determined by the operating system’s
word length, not the platform’s word length. This is evident, since PHP does not
access the hardware directly, but uses the operating system to do so.

The built-in constant PHP_INT_SIZE tells you the word length PHP is using. The
constant PHP_INT_MAX contains the maximum integer value for that word length.

Line Endings

For historic reasons, there are two characters to end a line, carriage return and new-
line. This dates back to electric typewriters. As computers spread, the manufacturers
did not agree on a ways of representing the end of a line. Today, every operating sys-
tem family uses their own line endings, as Table 3.1 shows.

Operating System Line Ending Hex Value
Windows \r\n 0x0a 0x0d

Unix \n 0x0d
Macintosh \r 0x0a

In a HTML file, it does not matter which kind end-of-line characters are used. A
browser interprets any number of whitespace characters (blanks, tabs, carriage re-
turn, line feed) as one blank. This makes it possible to indent HTML code without
screwing up the rendered page. A new line is created with a
 tag.

For PHP source code, it does also not matter which line endings you use, since
the PHP parser ignores line endings when compiling the code. If your application
contains created files, it is best to use the format of the operating system your appli-
cation is running on. You can use the constant PHP_EOL to determine the operating
system’s line ending. Thus, this constant can also be used as a simple operating sys-
tem detector.

Text files (including PHP source code) might not be displayed correctly when
opened on a different operating system, like Figure 3.3 shows. Most modern edi-
tors (except Windows Notepad, maybe) detect and handle all line endings correctly
and can convert the files on request. To redeem Windows, it should be noted that

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

42 ” Migration Aspects

Wordpad can handle Windows and Unix line endings and displays files from both
systems correctly. Figure 3.3 shows the wrong display of a file with Unix line endings
in Windows Notepad.

Figure 3.3

Unfortunately, there are not only display problems with “wrong” line endings. On
Unix, you can add a so-called shebang to a text file. That means that the first line of
the file starts with the special character combination #! followed by the full path to
a command to execute. You can use a shebang that points to the PHP executable to
start a PHP source file by calling it like an executable program.

For the following example, let us assume the following program has Windows line
endings, and the PHP interpreter is installed in /usr/local/bin/php:

#!/usr/local/bin/php

<?php

echo ’Hello World’;

?>

Directly calling the PHP interpreter with the file name as parameter works as ex-
pected:

> php test.php

Hello World

When we call the file directly, to start PHP by the shebang line, we are out of luck,
since Unix gets confused by the Windows line ending and thus cannot locate the
PHP interpreter:

> ./test.php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migration Aspects ” 43

: bad interpreter: No such file or directory

The problem with line endings is that you cannot see them and you cannot tell with-
out analyzing which line ending a file has. Some, but not all editors on Unix display
the “surplus” \r as ˆM.

If you want to be really sure about the line endings of a file, display a hex dump or,
on Windows, open the file in a hex editor:

> od -h test.php

0000000 2123 752f 7273 6c2f 636f 6c61 622f 6e69
0000020 702f 7068 0a0d 0a0d 3f3c 6870 0d70 0d0a
0000040 200a 6520 6863 206f 4827 6c65 6f6c 5720
0000060 726f 646c 3b27 0a0d 0a0d 3e3f 0a0d

The highlighted values show that this file has Windows line endings. To convert
files between Windows and Unix format, you can use the Unix command line tools
unix2dos and dos2unix as well:

> dos2unix test.php

dos2unix: converting file test.php to UNIX format ...

Unfortunately, these tools create the converted files without the execute right, so you
have to explicitly set the execute bit manually after conversion:

chmof 755 test.php

You can also use a small PHP program to convert files, which might be a good solu-
tion on Windows systems. The program reads the file, replaces the line endings by
str_replace(), then saves the file again:

<?php

$content = file_get_contents(’dos_format.txt’);
$content = str_replace("\r\n", "\n", $content);
file_put_contents(’unix_format.txt’, $content);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

44 ” Migration Aspects

?>

Never attempt to replace line endings in a binary file. This will most likely make the
file unusable.

Access Rights

Modern operating systems can be used by multiple users at once, which means the
access to system resources and especially files has to be limited in a sensible way.
Unfortunately, neither all users on a system nor all programs have only good intent.

The operating system must protect the programs and data of each user against
accidental or deliberate unauthorized access. In the file system, this protection is
provided by defining access rights to each file and directory. These access rights are
implemented differently in Unix and Windows.

While Unix users are very used to working with file access rights, Windows users
rarely modify file access rights. This is mostly due to the fact that Windows users
usually work as Administrator and thus can access every file anyway. In fact, file
access rights on Windows are more sophisticated than on Unix, but this also makes
them more difficult to understand.

Unix differentiates between three different access rights, namely read, write and
execute. These three rights can be set for each file and directory, individually for
three categories of users, namely the owner of the file, a user group the file is assigned
to, and all users.

When listing the files these rights are indicated by the letters r for read, w for write,
and x for execute. First, the user’s rights are shown, then the group’s rights, then
everybody’s access rights:

> ls -al

total 24
drwxr-xr-x 2 root root 4096 Dec 14 12:53 .
drwx------ 13 root root 4096 Dec 14 12:51 ..
-rwx------ 1 wwwrun www 62 Dec 12 19:37 index.php
-rwxr-xr-x 1 root users 5201 Nov 17 2006 library.php
-rw-r--r-- 1 root root 2127 Nov 17 2006 test.txt

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 45

In this example, the file index.php may only be read, written to, and be executed by
the owner wwwrun.

Since PHP files are loaded by the PHP interpreter, they require no execute right be
set. To run a PHP file directly by adding a shebang as we have learned in the previous
section, you must set the execute right. Since internally, each right is represented by
one bit, sometimes we will also refer to this by “setting the execute bit.”

Windows uses access control lists (ACL) to regulate file access. For each object, an
access control list defines which actions are allowed or forbidden for certain users or
groups. ACLs can be inherited, for example from a directory to the contained files.
The effective restrictions for an object are calculated from all entries of the access
control list attached to it.

ACLs are very flexible and allow a fine-grained level of access control, but are
rather difficult to understand. You will always have to look at the effective rights on
an object to know what access restrictions really are in place for it. To display access
rights, Windows uses the letters N for no access, R for read, W for write, C for create and
F for full access.

> cacls phpinfo.php

C:\www\phpinfo.php PREDEFINED\Administrators:F
NT-AUTHORITY\SYSTEM:F
MY_COMPUTER\Steve:F
PREDEFINED\User:R

In this example, the user “Steve” has full access to the file. All administrators (which
is a user group, rather than the user Administrator) and the system user, which is the
account services usually run under, also have full access to the file. In addition, all
users have read rights by default.

On Unix there are several commands to modify access rights for a file or directory
(chmod), or change the owner (chown) or the group (chgrp) a file belongs to. These
three Unix commands have a PHP equivalent which have no effect under Windows,
though no warning or error message is displayed when they are uses on Windows.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

46 ” Migration Aspects

Paths and File Names

One of the main responsibilities of an operating system is the file system adminis-
tration. In regard to the file system, the two operating system families Windows and
Unix differ in various aspects.

All common file systems use a tree structure. Starting with a root directory, each
directory can contain files or subdirectories. Every file can be identified by its abso-
lute path in the file system. Unix and Windows use a different character as directory
separator, though. While Unix uses the forward slash /, Windows uses a backslash \

.

Drives on Windows

On Unix, the whole file system is one organized in one tree. You can mount addi-
tional file systems at any point in the tree. On Windows, every volume has its own
file system tree. (Newer Windows versions also allow you to mount another volume
in the file system tree, but this feature is rarely used.) Each volume is identified by a
drive letter, followed by a colon.

Traditionally, the first hard disk is drive c:. Usually, but not always, the computer
boots from this drive. The drive letters a: and b: are reserved for the floppy disk
drives, when present. The drive letters following c: are used by additional hard disks,
partitions, or other drives like CD-ROM or DVD. Windows assigns them in an order
that is not always really comprehensible.

All systems know the concept of the current working directory, which usually is set
to an appropriate value by the running application. For PHP scripts, for example,
this is the directory where the script that is running is located. The concept of the
current working directory allows for using relative paths to address other files. These
relative paths stay the same regardless of the absolute location of the application in
the directory tree. Use of relative paths makes applications more portable to other
systems, thus you should avoid using absolute paths whenever possible.

Windows, at least at the command line, also has a current drive. Every drive has its
own current working directory. When you switch between Windows and Unix, drive
letters in path names are problematic, because Unix does not have this concept. One
could try to restrict themselves to only work on the system drive on Windows (which
usually is c:) and remove all drive letters from the path names.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 47

As soon as the program is executed on a Windows system where the web server’s
htdocs directory (or, for IIS uses, the wwwroot directory) is not located on drive c:, it
is not possible to access the temporary directories on drive c: without a drive letter.

The root directory on Unix is /, while on Windows it is \ . Unix has only one
system-wide root directory, whereas in Windows every volume has a root direc-
tory. Keep in mind that URLs have a forward slash as directory separator on
Windows as well, even in file URLs. A valid file URL on Windows would be
file://localhost/c:/windows/php.ini. For localhost, you could replace the host-
name by another forward slash after the colon.

Apparently, a file URL like this is not portable between Windows and Unix. Since
Windows has a completely different directory structure than Unix anyway, this
should not be a big problem.

Upper and Lower Case

Windows does not distinguish between upper and lower case in filenames and paths,
while Unix does. In other words, Unix is case-sensitive, while Windows is case-
insensitive. While Filename.php, FILENAME.php and FileName.php are three different
files on Unix, all possible combinations of upper and lower case in a filename re-
fer to one and the same file on Windows. This difference in file handling can cause
problems when migrating between different operating system families. We will cover
these problems in greater detail in Chapter 8.

Allowed Special Characters

Not all characters are allowed in file names. For obvious reasons, the directory sepa-
rator may not appear in a file or directory name, since this would make path names
ambiguous.

On Unix, all characters except for the forward slash and the NULL character \0 are
allowed in filenames. Certain special characters like quotes or double quotes have
to be escaped by a backslash.

Windows is more restrictive. The following special characters are not allowed in
file names:

• <
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

www.allitebooks.com

http://www.allitebooks.org

48 ” Migration Aspects

• >
• ?

• "

• :

• |

• \

• /

• *

Also, on Windows, certain reserved words may not be used in file names, like CON or
NUL. To make sure that file names are portable between Unix and Windows or any
other platform, you should use conservative names, for example limiting yourself to
alphanumeric characters, underscores and blanks. It is rather easy to add a regu-
lar expression to your program that checks whether file names consist of only these
characters. If a user uploads a file name with exotic characters, you could rename
the file and replace any non-standard character by an underscore, for example.

Current Windows versions are Unicode-based (see later in this chapter), which
means that except for the special characters listed above all Unicode characters may
be used in filenames. However, if an application is not Unicode-based, you will likely
run into trouble with exotic characters, which is another reason to stick with conser-
vative file and path names.

Especially on Windows, path and file names containing space characters can
cause problems, for example when used as parameters of command line calls. The
operating system can not tell where one file name ends and the next parameter
starts. To fix this problem, you must quote file and path names that contain spaces,
which in turn causes problems with file names containing quotes, as these quotes
inside the file name would have to be escaped.

It can make your life a little easier if you use underscores instead of space char-
acters to separate words in file names. Since in most cases you will have to work

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 49

with path names containing spaces, especially on Windows, you should consistently
quote all path names.

Windows also has the bad habit of automatically removing trailing spaces from file
names. If you copy such a file from Unix to Windows, the name implicitly changes,
which usually means that the file will not be found any more. Therefore, never use
trailing spaces in filenames.

Temporary Files

Applications do not only need the system memory they have been assigned. Some
algorithms have been especially designed to work with external data. This allows, for
example, for sorting of large data sets that would not fit into memory.

Every operating system has a temporary directory, in which users can create and
modify files. This temporary directory is not meant for long-term file storage and is
usually cleaned out every now and then. On Unix, the temporary directory for all
users is /tmp. In this directory, every user can only access and delete their own files,
so using one temporary directory for all users is not an immediate security risk.

On Windows, every user has a private temporary directory, and there is an addi-
tional, system-wide temporary directory. The environment variable %temp% contains
the path of the current user’s temporary directory:

> echo %temp%

C:\DOCUME~1\steve\LOCALS~1\Temp

Those strange names ending in ˜1 ensure backwards compatibility to the old 8.3 file
names that are a relic of DOS times. Still today, Windows sometime outputs them at
the command line. Do not use these names, but the real path instead:

C:\Documents and Settings\steve\Local Settings\Temp

The system-wide temporary directory is %windir%\temp, with the environment vari-
able %windir% containing the drive letter and path of the directory Windows has been
installed to. Usually, this is c:\windows, but a different name could have been used
as well.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

50 ” Migration Aspects

The Search Path

We already know that the file system is organized as a tree. Executable programs
are stored to various different directories. To relieve the user from memorizing the
full path to each executable program, most operating systems automatically search
different directories for a given file name if it is called without an absolute path.

The list of directories to search is called the search path. This search path is a
system-wide setting stored in an environment variable. This environment variables
is called PATH on Windows and on Unix. In both operating system families, the path
to the executable PHP program should be part of this search path, to allow for easy
execution of PHP programs at the command line.

> echo %PATH%

C:\WINDOWS\system32;C:\WINDOWS;c:\php

On Unix, the environment variable is accessed by $PATH instead of %PATH%. Please
note that the displayed path has been edited for brevity in both examples:

> echo $PATH

/sbin:/usr/local/bin:/usr/bin:/bin

Thanks to the search path, the exact location of a program need not be known to
execute it. Programs can be started from any working directory, which makes every-
day work much easier and the applications more portable to different systems. The
executable files need not be kept in the same directory on various systems, as long
as they can be found using the search path.

The individual entries of the search path must be separated by a special character.
To avoid ambiguities, this character should not occur in valid path names. Unix uses
a colon, whereas Windows uses a semicolon as path separator.

PHP has a built-in constant PATH_SEPARATOR that contains the path separator of the
operating system PHP is running on. To make a PHP program portable, you should
always use this constant rather than a hard-coded character.

The PHP search path that is configured by the php.ini setting include_path, uses
the same separator as the system search path.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 51

Character Sets

Computers process data in the form of strings mostly, so defining a character set is a
very important precondition. Just like number representations have to be standard-
ized to make different systems compatible and allow data exchange between them,
it has to be regulated which character is to be represented by which byte value. In-
ternally, every string is stored as a byte sequence.

The ASCII (American Standard Code for Information Interchange) character set
can be viewed as the mother of all modern character sets. Its origins date back to
typewriters and teleprinters. ASCII is originally a seven bit character set, which al-
lows for encoding 128 different characters, some of them non-printable. The print-
able ASCII characters are:

!"#$%&’()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^
‘abcdefghijklmnopqrstuvwxyz{|}~

Since ASCII only has 128 characters, there is no room for special characters and
the diacritic marks used in many European languages. To accommodate this, other
character sets based on ASCII were defined, that used 8 bits to encode one character.

Of course, the 256 characters that can be encoded by 8 bits are not enough to rep-
resent all special characters, especially not the complex Asian characters. Different
character sets for the various countries and cultures emerged.

Until the end of the last century, and maybe even today, the most commonly used
family of character sets was ISO-8859. This norm contains 15 character sets that all
conform to ASCII in the first 128 characters. The commonly used western character
set is ISO-8859-1, which is often also called Latin-1. Other ISO-8859 character sets
are Baltic (ISO 8859-3), Cyrillic (ISO 8859-5), Arabic (ISO-8859-6), Greek (ISO-8859-
7), Hebrew (ISO-8859-8), Turkish (ISO-8859-9), Thai (ISO-8859-11) and Celtic (ISO-
8859-14). ISO-8859-15 corresponds to ISO-8859-1, but contains the Euro sign (€) to
accommodate the new common European currency introduced in 1999.

To solve the problems arising from the use of different character sets, 1991 the
international standard Unicode was brought into being. Unicode is based on a stan-
dardized encoding of all characters known throughout the world. The first Unicode
version had 65,536 characters, which proved to be not sufficient on the longer run.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

52 ” Migration Aspects

Currently, Unicode has about 100,000 characters, with room for over a million char-
acters. There are 19 different blank characters alone in Unicode, some of which have
no width! Blank characters without width are used in Thai language, for example,
where no space is written between words.

Strictly speaking, Unicode has no characters, but code points. A code point is an
entry in the Unicode character table. The difference between a code point and a
character is that one character can be created by combining various code points.
Unicode does not only know the German umlaut character ä, for example, but also
allows to combine this character from the two code points a and the vertical colon.
Unicode contains a set of rules, to make the comparison of “built-in” code points
with combined code points possible.

The Unicode standard also contains sort criteria, rules for converting case and for
inserting line breaks, as not all languages allow inserting line breaks where blank
characters or hyphens are.

There are various possibilities to encode Unicode characters. The version that is
easiest to understand is UTF-32, which uses 4 Bytes to encode each Unicode charac-
ter. UTF-32 requires four times the memory of an ASCII representation, which is not
always desirable.

To balance length and ease of use, other variable-length encodings have been de-
veloped. The oldest one is UTF-16, which uses two bytes to encode the most com-
monly used Unicode characters, and four bytes to encode the rarely used characters.
Windows and Java use UTF-16, and also the Unicode support in PHP 6 will be based
on UTF-16.

An alternative variable-length encoding is UTF-8, which uses between one and
four bytes to encode one character. A special feature of UTF-8 is that the first 128
characters that are encoded in one byte match the ASCII character set. Therefore,
every valid ASCII string is also a valid UTF-8 string, making UTF-8 fully backwards-
compatible to ASCII.

Because of the backwards compatibility to ASCII, UTF-8 is the preferred character
encoding on the Internet. All communication protocols on the Internet are required
to support UTF-8. UTF-8 is the most space-saving Unicode encoding, since com-
pared to UTF-16 only one byte is used to encode common ASCII characters.

Windows has been Unicode-based since Windows NT, but in the early years most
applications would not support Unicode. Today, you can expect common appli-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 53

cations to fully support Unicode, but there is still a major technical problem with
Unicode support: The commonly used TrueType or OpenType fonts and also the
Postscript fonts that are frequently used in printers can contain 65,536 characters at
most. Since Unicode today has 100,000 characters, not all Unicode characters can
be contained in one font. When a character cannot be displayed, it is usually substi-
tuted by a question mark or sometimes a box character.

To successfully display a Unicode string, the used font must contain all characters
(code points, to be exactly) that occur in the string. On Windows, you can install
the Arial Unicode Font, which is distributed with certain versions of Microsoft Office
and contains about 40,000 characters. Other characters sets shipped with Windows
like Lucida Sans Unicode contain a mere 2,000 characters and can only display the
characters contained in the ISO-8859 family. The Arial Unicode font is over 22 MB in
size, so on older systems with not much available RAM, it may not always be a wise
decision to install this font.

All current Unix and Linux distributions should use UTF-8 as the default encoding.
Still, the problem that the character sets cannot display every Unicode character is
the same on these operating systems. A list of different and partially free Unicode
character sets can be found at Wikipedia.

One of the biggest problems with different character encodings is that one cannot
easily tell the encoding of a file by looking at it. For the operating system, a file is
just a sequence of bytes. It is the programmer’s responsibility to make sure a file is
interpreted correctly when it is read.

Unfortunately, many developers do not really give attention to the problems of
character encoding. An application may work fine on one system with a given con-
figuration when only using western characters. When migrating to another system,
display problems often surface because data is not encoded in the character set the
operating system and the applications expect.

Character sets and encodings are a complex topic that touches different system
components like database, operating system PHP, and the browser. Chapter 3 shows
typical problems and solutions in regard to character sets.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

54 ” Migration Aspects

Databases

Most applications today deal with larger amounts of data than anybody could have
imagined a couple of years ago. In the early 1980s a floppy disk was 5 1/4“ in size and
held 170 KB. The floppy disks uses for IBM compatible personal computers were 3,5”
in size and had a capacity of 1.44 MB. Today, floppy disk drives are rarely used, but
have been replaced by USB sticks that hold up to several Gigabytes.

Large amounts of data are usually stored in databases. Databases offer random
access to the stored data and are optimized for fast and efficient sort and search
operations. Since originally storage space was limited and expensive, databases were
designed to eliminate as much data redundancy as possible by storing data in several
tables that were linked together. This process of eliminating redundancy is called
normalization.

Today, much more storage space is available, so eliminating redundancy has be-
come less important. In many larger systems, a certain degree of data redundancy is
accepted to allow for quicker read access.

Web applications are usually read-intensive. A typical web 2.0 application like a
portal does seven to ten read accesses on one write access. Databases for web appli-
cations are therefore optimized for read access, and slower writes are being tolerated.

The speed of concurrent read accesses is mainly determined by the database’s
locking strategy. Some databases lock a table or even the whole database on write
access. Every write access must be completed before the next one can start.

Alternatively, a database can lock only the one table row that is currently being
written to. This allows for executing multiple write operations in parallel. Locking
individual table rows has a higher administration overhead than locking tables, but
allows for potentially faster write access. The amount of parallel read and write ac-
cesses to a database determines which locking strategy will ensure the best applica-
tion performance.

SQL Does Not Equal SQL

SQL is the standard query language for databases. SQL originates from the query
language SEQUEL and was standardized for the first time in 1986. The second SQL
version was standardized as SQL92 in 1992. To take object orientation more into
account, a third version of SQL was standardized in 1999 as SQL3.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 55

In 2003 and 2006 even newer versions of the SQL standards have been published,
but they are still not very relevant in the field today. Most databases today more or
less support the SQL99 standard. Unfortunately, the situation with SQL in database
is similar to the situation with HTML at the heights of the browsers wars: every ven-
dor adds proprietary extensions to the standard.

A commonly known extension to the SQL standard is the possibility of limiting the
result set of a query. In MySQL, this is achieved by a LIMIT clause: instead of skipping
over 1000 records to access records 1001 to 1010, the clause LIMIT 1001,1010 can be
appended to the query to access these records directly. The LIMIT feature was in-
vented by Rasmus Lerdorf, by the way, who had originally implemented this feature
in the MSQL database.

Proprietary extensions to the SQL standard can be very useful, but are also a means
of winning over a customer. As a developer, you should make a conscious decision
whether or not to use proprietary database features. They will help you reach your
goals more quickly, and benefit from higher performance, but take away the freedom
to quickly switch to another database vendor, should the project require this.

To keep an application portable, all SQL queries should strictly be limited to stan-
dard SQL, unless you want to abstract the SQL code for each database, which means
more effort when developing the application, but comes with the benefit of higher
performance.

When migrating, an important question to be answered is which SQL standard a
database supports and what the deviations are. Today, virtually no database is 100%
compatible to a certain SQL standard. This makes it rather hard to create database-
independent applications. When migrating, you will ultimately have to check each
and every SQL statement on the target system and make the necessary adjustments
to them.

Program Code in the Database

Databases not only store data, but can also execute program code. While from a the-
oretical point of view, it does not make a difference whether program code is being
executed in the database or at PHP level, but it can increase application performance
when code is executed in the database.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

56 ” Migration Aspects

Code running in the database can quickly access the whole database, without la-
tency of communication between the database and the application. If various appli-
cations access the database, redundant code can be avoided by moving code from
the applications to the database.

Not all programmers are in favor of executing code in the database, because this
can mean moving application logic to the database, which contradicts the separation
of the application into a presentation, logic and data access layer.

Program code in the database is also called stored procedures. Most databases
support a full procedural programming language with local variables, branches and
loops to write stored procedures. Unfortunately, these programming languages are
proprietary and not portable between databases; Oracle stored procedures are writ-
ten in PL/SQL, while stored procedures for IBM’s DB2 database are written in SQL
PL (SQL Procedural Language). Microsoft databases support T-SQL (Transact SQL),
while stored procedures for PostgreSQL must be written in PL/pgSQL. SQLite does
not support stored procedures at all. Some databases also support executing stored
procedures in alternative programming languages. Oracle, for example, allows for
executing Java code, while PostgreSQL supports various scripting languages, among
them PL/php.

MySQL has been supporting stored procedures since version 5.0. This feature is
rarely used with PHP applications today, since most PHP application were written
for older MySQL versions.

When migrating a database, the first step is to gain an overview over all stored
procedures. Each database requires a different special SQL statement to list all stored
procedures:

• DB2: SELECT * FROM syscat.routines;

• MySQL: SELECT * FROM information_schema.routines;

• Oracle: SELECT * FROM all_procedures;

• PostgreSQL: SELECT * FROM information_schema.routines;

• SQL Server: SELECT * FROM sysobjects WHERE type=’P’ and category=0

Those statements may not work with older versions of the databases. If in doubt,
consult your database documentation.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 57

Just like regular SQL statements, you will have to make sure that all stored pro-
cedures work as expected on the target system. While migrating to another version
of the same database usually is rather painless, you will probably have to rewrite all
stored procedures when you switch to another database vendor.

To ensure maximum portability of your application, you should avoid using stored
procedures. On the other hand, when you can be sure that your application will al-
ways run on a certain database, why should you not take advantage of the increased
performance of stored procedures? Keep in mind, however, that this locks you in to
the respective database vendor.

Data Types

Just like programming languages, databases use different data types as well to store
and process data efficiently. The basic data types int, float and boolean correspond
to the data types also used in programming languages. Most databases know addi-
tional datatypes like varchar, date, time, timestamp, and blobs (binary large objects)
or clobs (character large objects) to store larger amounts of data.

Not every database supports exactly the same data types or interprets them like
other databases. Time and date fields are particularly problematic. Even for basic
data types like int, you should make sure that the data type has the same range on
the target database (see Chapter 3). Floating-point numbers can have a different
precision, which can lead to different calculation results when another database is
used. If you use automated tests, some of them might fail.

The size limits of various data types like varchar, blob and clob differ between
databases as well. MySQL, for example, allowed a maximum length of 255 characters
for a varchar field until version 5.0.3, while today the limit is 65,536 characters.

Character Sets

When storing strings in the database, just like with operating systems, a decision has
to be made as to how to encode strings. If the database uses a different character
set than the application, the strings must be converted when reading from and writ-
ing to the database. This conversion needs computing time and will decrease the
database and overall system performance.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

58 ” Migration Aspects

To avoid unnecessary conversions, it is important to know which encodings are
used by the different system components. The best idea might be to use Unicode
and UTF-8 throughout. In addition to storing the strings as Unicode, you must also
make sure that the database server and database driver use the same character set.

Since UTF-8 is backwards compatible to ASCII, every ASCII string is a valid UTF-
8 string as well. This makes the transition from ASCII to ISO-8859 (which is ASCII
compatible as well) to UTF-8 deceptively easy. As long as only “regular” characters
are used, it does not matter whether you work with ASCII or UTF-8 in your applica-
tion. As soon as you start using special or exotic characters, problems will arise when
you don’t consistently use UTF-8. Please refer to the section entitled “Character Sets”
earlier in this chapter for more information.

If you use a database as a mere dumb data storage, you can avoid most problems
with character sets and encodings. Every string is stored as a binary sequence of
bytes. In this case, you cannot expect the database to sort or work on substrings
correctly. As soon as you starting working with multibyte character sets, the database
must know the encoding that is being used, otherwise it will treat strings as if one
byte would correspond to one character, which will lead to spurious results when
calculating the string length or working with substrings.

Databases also contain rules describing how to sort data. These sorting rules
are also called collation. Most databases allow setting the collation independently
from the character set to adjust to local commodities, as alphabetical sorting dif-
fers between languages and countries, for example in the way umlaut characters are
treated.

If you work with multibyte character sets that use variable-length encodings, you
cannot predict how much storage space you will need for a string. When using UTF-
8, one character can be up to four bytes in size. You may need to adjust the size of
BLOB and CLOB fields to store multibyte strings.

For every database, you must define the character set to be used. Some databases
like MySQL even allow defining the character set by table. This can help you save a
lot of memory, when you can be certain that only ASCII characters are going to be
stored in a certain table.

You should stick to the character set of each database table. If you declare a table
as UTF-8 and store ISO-8859-1 data into it, errors will occur when special characters
are used (as will be discussed later in this chapter). It is equally important to define

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 59

the character set PHP uses to send data to the database, and expects to receive data
from the database. In both cases, the encodings used need not be the same encoding
the database itself uses.

According to the SQL standard, the clause SET NAMES <character-set> must be
used to set the character set of a database connection. MySQL offers three additional
proprietary SQL clauses to define which character set to use:

SET character_set_client = <character-set>
SET character_set_connection = <character-set>
SET character_set_results = <character-set>

These statements allow you to separately define the character set used by the
database client, by the database connection and for the results returned by the
database.

Keep in mind that converting between character sets requires resources. From
that viewpoint, I would recommend working with UTF-8 data throughout all system
components, but PHP does currently not support multibyte character sets very well,
as we will see in chapter 3.9.

Backup and Restore

Reliable backups are vital in IT. Regardless of how dependable a system or may be,
when it gets destroyed by lightning, water, or vandalism, you are forced to setup a
new system and restore software, data, and configuration.

To successfully restore a system, you will need not only the backup itself, but also a
proven procedure. Too many people have already made the excruciating experience
that their backup was not fit to restore the damaged system. To avoid this, you should
try out the restore procedure as early as possible, but without pressure.

Sometimes, no data at all is written to the backup medium, or the data is incom-
plete or inconsistent. This is no problem if the old system is still available, and you
can still access the missing data, but if some days have passed between the backup
and the restore attempt, you can get into trouble rather quickly. If your hard disk is
faulty or the database became corrupted, it may take a few days until you even realize
that you have to restore a backup. You may in fact have created several generations
of unusable backups before you notice.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

60 ” Migration Aspects

A data backup is not only a safety belt protecting you in case of a catastrophe, but
also an important precondition for a migration, where, in essence, you want to run
an application with all its data on a different or updated system at a given point in
time.

Since databases are often optimized while in production, it is important to have
a backup of the current database structure, not the original database structure used
when the application was deployed. You do not want to lose all indexes and opti-
mizations you have made to the database when restoring or migrating a system.

There are two general strategies for backing up a database. Since any database
is ultimately kept in the file system, it may be tempting to just backup the binary
database files. Such a binary backup is easy to create, but has a high risk of being
inconsistent. As databases get large, the backup can take minutes to complete, and
if the database content is changed while the backup runs, the backup will be incon-
sistent and potentially unusable.

MySQL, for example, creates a directory for each database and one file for each
database table. If you backup these files one by one, the backup will not contain
changes to files that were already copied when the database changes. This may de-
stroy the referential integrity of your backup database.

To make sure a binary database backup is consistent, you should shutdown the
database. If your application must be available 24x7, you will have to backup the
database while it is running. This is called a hot backup. Some databases have spe-
cial features that allow creating consistent hot backups, for example by logging all
changes that were made to the database while the backup ran.

Another strategy is to create an export or dump of the database. A database dump,
also called SQL dump, is a text file containing all the SQL statements required to re-
create the database. Since the database export contains all data in clear text, this kind
of backup is usually more reliable than a binary backup. Even when single rows or
tables of a database are destroyed, it is possible to retrieve the rest of the data. When
a binary database backup is damaged, it can be hard, and in fact often is impossible,
to salvage or retrieve the contained data.

Make sure that you dump the database structure and the data so that your export
contains the SQL statements to create the database tables and fill them with data.
For MySQL, you can create an export using the frequently used tool phpMyAdmin
or the mysqldump utility that comes with the MySQL distribution. A backup using the

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 61

command line-tool is easier to automate with cron, at, or schtasks, depending on
the operating system.

If the database gets large, restoring it through phpMyAdmin can be problematic
due to limits in upload size or PHP script execution time. It is quicker and more
reliable to restore a database at the command line, if you have shell access.

When exporting the database, you have to make sure that the export is consistent,
since the database is exported table by table and row by row. When changes are made
to the database while it is being exported, again, the backup will be inconsistent.

Some databases or backup tools help you create consistent database exports. One
possibility to achieve this is to temporarily shut down every application accessing
the database, and thus ensure that the database is not changed. It can be sufficient
to prevent write access to the database, since read accesses are harmless. This way,
the application can still be used while its data is being exported.

To make sure that your database backup is consistent, you can shut down the
database, restart it in single user mode, export it, and then restart the database in
multi user mode. Not all databases support a single user mode, however.

It is up to you which of the two backup strategies you want to use. Personally, I pre-
fer exporting databases. Different versions of the same database are not necessarily
binary compatible. The same holds true for the same database running on different
operating systems. When you plan to migrate to a database of a different vendor, you
will probably have to export the database and convert the SQL dump to fit the new
database.

Web Server

At first sight, a web server is no complex software. It receives HTTP requests and
sends back files from the local file system. Since HTTP is stateless, the necessary
connection management is not very complex.

In reality, web servers are very complex pieces of software, optimized to run per-
manently under high load, efficiently handle peak demand, and guarantee a short
answering time even for a high number of parallel requests.

Today’s web servers do not only serve static content, but support creating dynamic
web pages utilizing languages like PHP, Perl, Python or Ruby. The client browser does

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

62 ” Migration Aspects

not really care whether a web page was delivered statically or created dynamically on
the fly.

There are many different web servers. Most of them are free software and run on
common operating systems. The most commonly used web servers are Apache and
Microsoft’s Internet Information Services (IIS). IIS is free, but not open source, and
can only be used in production in Windows Server operating systems. On regular
Windows operating systems like Windows XP, only 10 client connections are allowed
for IIS, which may be suitable for a development or test system, but not for a pro-
duction system.

Apache has a market share of about 50%, followed by IIS with a market share of
35%. Other, less frequently used web servers are Zeus, Sun Webserver or lighttpd.
Especially in conjunction with PHP, Apache is the most commonly used web server,
so we will mainly focus on migrating Apache web servers throughout this book.

Apache and Apache2

Since 2000, there are two major versions of Apache, namely Apache 1.3 and Apache2.
Apache2 currently has two minor version branches, 2.0 and 2.2, which has some in-
teresting new features like load balancing, improved caching, and support for large
files.

Apache2 is more modular than the first version. The web server itself is indepen-
dent from the operating system it runs on. This is made possible by a software ab-
straction layer, the Apache Portable Runtime (APR). This design allows for perfor-
mance optimizations on each operating system, especially on Windows.

Through so-called multi processing modules (MPM) Apache2 can run in different
modes, to better utilize the respective operating system’s capabilities. For Unix, there
are currently two multi processing modules for productive use, namely the Worker
MPM and the Prefork MPM.

The Worker MPM creates various processes to handle HTTP requests, and every
process runs multithreaded. The idea is to combine the performance of multithread-
ing with the stability of multitasking. When one Apache process crashes, other pro-
cesses are still in place to serve requests, but all requests served by other threads of
this process are affected.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 63

The prefork MPM pre-starts processes that run single-threaded. Apache 1.3 works
exactly this way, by serving every request by an isolated process. When one pro-
cess crashes, no other processes are affected, which is a stability advantage over the
worker MPM.

Windows has its own optimized MPM, the so-called winnt MPM. One control pro-
cess starts a single worker processes that serves HTTP requests in multiple threads.
This MPM takes into account that thread switches are rather fast on Windows,
whereas task switches are rather slow. To save on the slow task switches, all requests
are served by one process. Should the worker process crash, however, all requests
served by the web server are affected.

Besides the performance aspects, the big difference between both MPMs on
Unix is that worker always runs multithreaded, whereas prefork always runs single-
threaded. If PHP is installed as an Apache module, you should only use thread-safe
PHP extensions with the worker MPM. On Windows, Apache always runs multi-
threaded, so you should be cautious with non-threadsafe PHP extensions when PHP
is installed as an Apache module. We discussed thread-safety earlier in this chapter.

Web servers offer a network service, so they must be accessible from the net. To a
certain extent, this makes a web server a potential security risk, because it can per-
manently be subject to attacks. To confine the potential damage in case a web server
is compromised, a web server should run under a non-privileged user account. Of-
ten, wwwrun or daemon is used.

On Windows, Apache runs as a system service, which in turn runs under the Sys-
tem account by default. The System user is not allowed to access the network, but
can read and modify every file of the system. Should an attacker take control over
Apache on Windows, it is rather easy to make arbitrary modifications to the system.

On Unix, the user the web server is running under has only limited access rights
and cannot modify critical system files. Still, read access to system files could be
sufficient to steal a password file.

Security

Just like performance, web server security is a rather complex topic. Wether a solu-
tion is good or bad depends on various circumstances, and there is no universal so-
lution, otherwise it would probably have been integrated into the software for long.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

64 ” Migration Aspects

In addition, security and performance are usually competing goals. More security
means worse performance. For example, by adding a firewall to a system, every IP
packet going though the firewall will be analyzed, which requires computing time.

When migrating a system, it can be a good idea to neglect security issues first,
because every security measure is a potential source of errors, which makes testing
more complicated.

A basic rule to increase security of Internet servers is to run server processes with
as few rights as possible, as was already mentioned in the previous section. To fur-
ther reduce the potential damage when a process has been compromised, file system
access can be limited to certain directories. Under Unix, the chroot function can be
used to define the root directory for a process. In this directory, the system’s subdi-
rectory structure with copies of all required files must be present.

The whole accessible file system for the process is the chroot directory, also called
chroot jail. There are different views about whether chroot is a security feature, be-
cause a process can break out of its chroot jail when it gains root privileges.

Another way of increasing web server security is using CGI wrappers. Using a
CGI wrapper, processes can be executed under different user accounts to better seal
them off from each other. Configuring a CGI wrapper is not easy. All access rights
must be set correctly, or the wrapper will not work properly. Some CGI wrappers
commonly used with PHP are CGIwrap or the Apache module suExec.

Compiling Apache

An open source web server like Apache can be either installed as binary distribution
or be compiled from source. To start with, it is usually easier to use a binary distri-
bution that can be installed by a single command. These binary packages are not
optimized for your system, but created to run as many different systems as possible.

Binary distributions on Unix do often not suit special needs. If you require certain
extensions or want to optimize the web server for your system, it can be a good idea
to compile from source.

On Windows, it is virtually impossible to compile Apache from source. You should
not even bother trying, but use a binary distribution instead.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 65

Compiling the web server from source is less difficult than it may look like, and
makes you independent from your operating system vendor’s release cycles. If re-
quired, you can quickly install a newer web server version.

Apache and Apache2 are modular web servers. The web server itself offers only
a basic functionality. Additional features are added by installing extensions, the so-
called modules. This makes a web server easily customizable.

There are two ways to compile Apache modules, either as static module or as
a dynamically loadable module. The dynamically loaded modules are also called
dynamic shared objects (DSO). Static modules are faster, while dynamic modules
can be activated and deactivated by configuration settings, without re-compiling
Apache.

Multiple Web Servers on One System

When you use more than one web server on a system, they will compete for the TCP
ports 80 and 443 that are used for HTTP and HTTPS traffic. You will have to configure
the web servers to use different ports, for example 81 or 8080.

If you run a firewall on the server, you will have to open the correct ports in the
firewall. On Windows, when using a personal firewall, you will probably have to allow
the web server to listen to the respective ports.

Many PHP applications are not prepared to generate URLs that access ports other
than 80 or 443. You might have to adapt the application to use non-default ports.
Alternatively, you can configure one web server to pass through certain URLs or do-
mains to another web server. Using Apache, you could use mod_backhand to accom-
plish this.

The advantage of this approach is that the second web server is transparent to the
application. Sometimes, a very lean second web server is used just to serve static
content. This cuts down the required amount of heavy-weight web server processes
with PHP and can save lots of system resources.

To install multiple instances of Apache on one system, you have make sure that
the server’s configuration and administration files have unique names and do not
interfere with each other. You might have to adjust the start scripts as accordingly.

If you are not a real Unix expert, it is often difficult to find out which files and
directories are actually used when compiling and running your web server. If can

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

66 ” Migration Aspects

be time-saving to use two distinct systems to run the two web servers and make
configuration of each server easier. By using virtual systems (see Chapter 7), you do
not even need additional hardware to do so.

When migrating a system, I would suggest starting with one web server on one
system, to reduce the complexity of your test system. If you want to improve the
performance later, you can add a second web server for load balancing or to serve
only static content.

PHP

One of the first questions asked when migrating PHP is which PHP version the sys-
tem to migrate uses. Of course this is one of the most important aspects, but as we
will see in this chapter, the way PHP is integrated with the web server, how PHP is
configured, and which PHP extensions are used play an equally important role.

The installed PHP version can be found out in different ways, either by calling php

-v at the command line, at script runtime by calling the function phpversion() or
by reading the built-in constant PHP_VERSION or, last but not least, by looking at the
output of phpinfo().

The function version_compare() compares two version numbers in PHP’s major-
minor-patch style. This allows you to check whether a sufficient PHP version is used
right at the top of your program. It is better to quit right there with an error mes-
sage instead of getting a fatal error later because of trying to use an undefined PHP
function.

Web Server Integration

PHP can be integrated with web servers in different ways. The PHP core is web server
independent, which allows you to use PHP with most, if not all, existing web servers.
The interface that is used to integrate PHP and a web server is called server API
(SAPI).

The most important server APIs in PHP are:

• apache to run PHP as Apache 1.x module

• apache2handler to run PHP as Apache2 module
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migration Aspects ” 67

• cgi to integrate PHP and the web server through the CGI interface

• cli to run PHP at the command line

• isapi to integrate PHP with the IIS web server

To find out how PHP is integrated with the web server, you can use the built-in con-
stant PHP_SAPI, call the function php_sapi_name(), of just look at the Server API line in
the phpinfo() output.

The various methods of integrating PHP with a web server differ in performance
and in the user account and associated rights PHP scripts run as.

There are two different usage scenarios for PHP, namely a shared hosting environ-
ment, with different users having access to a server, and a dedicated server running
only one web application or a set of application that must not be isolated from each
other. Even when more than one user account is present on a dedicated server, all
users are usually considered friendly to each other. In a shared hosting environment,
the users have to be isolated from each other to prevent them from accessing each
other’s files.

PHP as Web Server Module

In dedicated servers, the most common way of using PHP is probably as an web
server module. Running PHP as a module usually yields better performance than
any other way of integrating PHP and the web server. If you use Apache, you can
either compile PHP into the web server as a static module or compile PHP separately
as a dynamically loadable module (DSO).

When PHP was compiled as a DSO, you need to explicitly load this module in the
Apache configuration file: LoadModule php5_module modules/libphp5.so.

For older operating systems or different Apache versions the LoadModule entry may
differ. The PHP manual at http://www.php.net/manual/en/install.php provides you
with detailed instructions on how to integrate PHP and the web server in different
scenarios.

On shared hosting servers, running PHP as a web server module is problematic.
Since PHP runs as part of the web server process, PHP scripts are executed with the
same access rights as the web server itself. This means that the PHP scripts of all

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.allitebooks.com

http://www.allitebooks.org

68 ” Migration Aspects

different users are executed under the same system user account, which allows every
user to access every other user’s files through PHP.

To isolate the different system users from each other at PHP level, we need to be
able to execute PHP under different user accounts. To accomplish this, PHP must be
installed as CGI or FastCGI.

Another problem lies with the files that system users upload to the server via FTP
or SFTP. Users work under a different account than the web server, so PHP cannot
write to uploaded files and directories, because they are owned by another user, un-
less, of course, the files are made world-writeable, which again is not a good idea
from a security perspective, especially with various users having access to the sys-
tem. On a dedicated server, making files world-writeable is usually not a big prob-
lem, since all users on the system can be considered friendly. On a shared hosting
server, however, world-writeable files are a recipe for disaster.

Running PHP as an Apache module is less secure “inside” the server, but more
secure on the outside, since CGI has a few security issued by design.

Let aside the better performance, installing PHP as an Apache module has other
advantages. PHP can access the HTTP headers and more request and environment
information than in a CGI setup. When a user has completed HTTP authentica-
tion, even when PHP was not involved, it is possible to read the user name from
the $_SERVER superglobal variable, for example. It is even possible to explicitly end
an Apache child process by PHP. This functionality is not available under other web
servers or in CGI mode.

What is more, PHP can only process HTTP authentication when running as an
Apache module, which allows for authenticating users not only against a flat file, but
also a database or an LDAP server through PHP.

Last but not least, configuration of an Apache module is more flexible than a CGI
module. In addition to php.ini, you can make configuration settings in httpd.conf

by using the directives php_admin_value and php_admin_flag. By using php_value and
php_flag, you can modify certain settings in .htaccess files as well, if Apache allows
.htaccess configuration. This requires the AllowOverride Apache configuration di-
rective to contain Options or be set to All in httpd.conf.

This way, many PHP configuration settings can be fine-tuned per directory. It is
not possible, though, to change security-relevant configuration settings or settings
affecting PHP startup per directory, as Apache pre-starts web server processes.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 69

PHP Over the CGI Interface

The tighter PHP is integrated with the web server, the better the performance. Start-
ing PHP takes up some computing time that adds up to the regular script compi-
lation and execution time if PHP runs in CGI mode, because a new PHP process is
started for every request. The advantage of this scenario is that each process can run
under a different user account, and thus have different access rights. Also, a crashing
PHP process does not affect the web server or any other PHP process.

These advantages of the CGI interface come at the cost of less performance, which
is especially painful when only short PHP scripts are executed, because the PHP
startup time can actually exceed the script execution time. Even if the script exe-
cution time itself is low, the start time overhead remains. Also, CGI scripts require
more memory, because every process contains the full PHP interpreter.

The big advantage of CGI is that you can run PHP programs under a different user
account, which is important on shared hosting servers, as we have already seen. Un-
less the files of each user are deliberately made accessible for the group or even all
users, each user’s PHP programs and data can be isolated from each other.

To start a CGI script, a shebang is required. The shebang specifies the path to the
interpreter required to execute a file. This adds a dependency to the directory layout
on a certain system, and is thus undesired. Luckily, PHP can be configured to run
scripts without a shebang. If you encounter scripts with a shebang with a path that is
not valid on your system, you can use a symbolic link that points to the actual PHP
interpreter. Make sure that PHP files with shebang have correct line endings. Files
with Windows line endings do not work on Unix, because the surplus character at
the end of the shebang line prevents Unix to locate the interpreter.

To configure PHP as CGI handler for Apache, you must add the following entry to
httpd.conf:

Action application/x-httpd-php "/php/php-cgi.exe"

This requires mod_action to be loaded. Also, you must call the CGI binary, not the
CLI binary, otherwise PHP will not work. The name and location of the PHP binary
will differ between systems and versions. The example was taken from a Windows
system.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

70 ” Migration Aspects

CGI scripts are usually executed by a CGI wrapper that takes care of changing the
user id for the process. If you do not use shared hosting server, you can do without a
CGI wrapper, and PHP processes run with the user id of the web server starting the
CGI processes.

When running in CGI mode, PHP cannot process HTTP authentication requests,
since there is no way of passing the required information between the web server
and PHP. This may be a main reason why most web application do not rely on HTTP
authentication, but use a HTML-based login. Please note that HTTP authentication
is generally still possible, but it is not possible for PHP to process it.

The CGI standard (http://hoohoo.ncsa.uiuc.edu/cgi) defines some environment
variables that must always be present in CGI programs. Some of the environment
variables that are available to programs when PHP runs as an Apache module are
not available in CGI mode.

PHP and the FastCGI Interface

The FastCGI standard tries to combine the best of the two worlds. By pre-starting
processes, the startup delay that slows down CGI scripts is not applicable any more.
This principle is very similar to the way Apache works, but still allows for starting
processes under different user accounts. The FastCGI performance is comparable to
the performance of an Apache module, still FastCGI will probably be a little slower
due to the looser coupling between Apache and PHP scripts.

Apache supports FastCGI through the FastCGI module. In addition, the suExec
module is used to change the user id the FastCGI processes are running under. Con-
figuring FastCGI is a rather complex issue, though. The following example shows an
example for the required settings in httpd.conf:

FastCgiWrapper .../suexec2
FastCgiServer .../php-fcgi-scripts /php-fcgi-starter -user <userid>

-group <groupid>

AddHandler php-fastcgi .php
Action php-fastcgi /cgi-bin/php-fcgi-starter

<Location /cgi-bin/php-fcgi-starter>
SetHandler fastcgi-script
Options +ExecCGI

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 71

</Location>

Executing PHP Programs

Regardless of how PHP and the web server are integrated, you must define which
files are to be parsed as PHP code. Usually, this will be all files with the extension
.php. For an Apache web server, this is configured by adding the following line to
httpd.conf:

AddType application/x-httpd-php .php

Older applications sometimes have PHP files containing functions, libraries or
classes that have the extension .inc. By this extension, the author tries to indicate
that theses files should not be called directly, but are included from other PHP files.
To make this work, the web server must be configured to also parse .inc files as PHP
code:

AddType application/x-httpd-php .php .inc

If you omit this, .inc files will be treated like regular text files and sent to the browser,
which will show the source code. Imagine a visitor of your web site seeing the source
code of a configuration file containing the database username and password!

Should you encounter PHP files not having the extension .php, you should rename
all these files. Make sure to also rename all links to these files (there shouldn’t be
any), and all include and require statements in all PHP files.

If you insist on indicating the type of a file by the name, use composite extensions
like .inc.php, .lib.php, or .class.php so that the name still end in .php will be exe-
cuted as PHP by default on any PHP-enabled web server.

Compiling PHP

If you use PHP on Windows, you will probably use a binary installation program.
It is very difficult to compile PHP on Windows, because you need certain of ver-
sions libraries and tools, and a certain compiler version. There is usually no

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

72 ” Migration Aspects

reason, however, to compile PHP yourself on Windows, since up-to-date bina-
ries are available and all PECL extensions can be downloaded as DLL files from
http://pecl4win.php.net.

On Unix, the question is whether to use a binary package or compile by yourself.
I would suggest using a binary package from your operating system vendor or Linux
distribution for starters at least if you do not compile by yourself. If you use a binary
package of a third party, you can never be sure that PHP was compiled with sensible
default settings and is optimized for your target system. (From a security perspec-
tive, installing a binary package it is also a matter of trusting its source. You can never
really know what somebody has build into a binary package. This also holds true for
operating system vendors and Linux distributions, but if you do not trust a certain
operating system, you should not use it anyway.)

Operating system vendors and Linux distributions often backport security fixes
to older software versions. From a security aspect, this is a good idea, but due to
lack of documentation you can never be really sure which changes they made to the
software.

When compiling PHP, you need certain libraries in certain versions, and, unfortu-
nately, not always the latest version of some common build tools. To compile PHP,
the parser generator Bison is required, for example. The current version of Bison is
2.3, but to compile PHP, using version 1.28, 1.35, or 1.75 is recommended. For Flex,
a tool for lexical analysis, the situation is similar: the current version is 2.5.34, but
to compile PHP version 2.5.4 is recommended. If required tools are not present in
these versions on your build system, it may be necessary to also compile them from
source.

To compile PHP from source, you need the Apache developer package unless you
have also compiled Apache from source. Without the tool apxs, you cannot compile
PHP as an Apache module. It may be a good idea to also compile the web server
from source, because this gives you better control over where its files are put on your
system. With binary packages, you sometimes do not know where they put some
of the files and why. Instead of searching your file system for the requires files, you
might consider compiling the web server from source, which also forces you to better
understand the environment.

If you compile PHP, you must choose the server API (SAPI) when configuring the
source code. This decision determines how PHP and the web server have to be inte-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 73

grated later on. If you use a binary package, the package installer will usually auto-
matically configure the web server for the chosen SAPI automatically.

Thread Model

PHP can run multithreaded or single-threaded, depending on the web server and
how PHP is integrated with the web server (as discussed earlier in this chapter). If
PHP is running as a dynamically loadable or static web server module, the thread
model the web server is running under also applies to PHP. On Windows, applica-
tions including web server always run multithreaded, whereas Unix can work single-
threaded or multi-threaded. When you use an Apache web server, the MPM you
choose determines the thread model used for Apache and thus PHP.

When PHP works in CGI mode, each process runs single-threaded, because it
serves only one request. This affects performance, but guarantees maximum sta-
bility by isolating the processes from each other. This allows you to execute non-
threadsafe software as CGI programs. The same holds true for FastCGI, where it
would thoretically even be possible to run multi-threaded FastCGI processes as well.

PHP itself is threadsafe, this means it can safely be executed in a multithreading
environment. It is not exactly known, however, which PHP extensions are threadsafe,
since it is not always clear which compiler options and external libraries were used to
compile an extension. Some of them, like GD, are known not to be threadsafe. While
you can run a non-threadsafe extension in a multithreaded environment, and may
even face no problems, under higher system load you are very likely to see strange
and hard to reproduce errors.

To safely use a non-threadsafe PHP extension, you must run PHP single-threaded,
try to find an alternative extension that is threadsafe, or use an external program in-
stead. The free software ImageMagick, for example, can be used as a replacement for
the GD extension. There is a PECL extension imagick that exposes the ImageMagick
features to PHP.

If you desperately need the functionality of a certain non-threadsafe extension,
you can consider creating a web service powered by a single-threaded PHP exten-
sion. This way, you do not reduce the stability of your main PHP installation but can
still, say, create thumbnail images with GD.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

74 ” Migration Aspects

PHP Configuration

There are many ways to configure PHP, and many configuration options. Many con-
figuration settings can be made in various places, and even at script runtime. There
are quite a few possibilities:

• At script runtime using ini_set()

• On Apache, in .htaccess files. When the Apache configuration directive
AllowOverride contains Options or is set to All, Apache looks for .htaccess

files in the directory where the called PHP program is located, and its par-
ent directories up to the directory specified by the DocumentRoot directive. The
configuration settings in all .htaccess files are applied in the order they are
found. This allows for a hierarchical, per-directory PHP configuration

• In the Apache configuration file httpd.conf. Here it is also possible to make
settings that apply to certain directories

• In the configuration file php-< .ini, where <sapi> sapi> is the SAPI used to
integrate PHP and the web server. If you want to know which SAPI PHP is
currently using, call the function php_sapi_name() or use the built-in constant
PHP_SAPI

• In the configuration file php.ini

Not all PHP settings can be changed everywhere. Security-relevant settings can-
not be changed at runtime or in a .htaccess file. Naturally, settings that affect PHP
startup can also not be changed at runtime. It is not possible, for example, to load a
PHP extension or enable dynamic loading of extensions at runtime.

The php.ini and php-<sapi>.ini files are being searched for in various locations.
PHP will load the first configuration file found according to the following rules :

• For Apache2 web servers the directive PHPIniDir can be used in httpd.conf,
specifying the directory to load the ini file from. This path must always contain
forward slashes, even on Windows, otherwise the configuration file will not be
found

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 75

• The configuration file will be loaded from the directory specified in the envi-
ronment variable $PHPRC

• On Windows, there are several registry keys that can specify the ini file
location. The registry keys allow a fine-grained level of control over
which configuration file to load for each PHP version. The registry key is
HKEY_LOCAL_MACHINE\Software\PHP<version>\IniFilePath, where <version>
can be specified in the format major, major-minor, or major-minor-patch. To
force loading a certain configuration file for all PHP versions, you can also omit
<version>

• The configuration file in the current working directory. Please note that
Apache changes the current working directory to its root directory on startup.
For security reasons, in CLI mode, no configuration file is read from the cur-
rent working directory

• The configuration file in the web server directory

• On Windows, the configuration file in the PHP directory is loaded. The PHP
directory is the directory where the PHP binary is located

• On Windows, the configuration file is loaded form the Windows directory,
which is stored in the environment variable %Windir%

• On Unix, the configuration file ultimately be loaded from the directory that
was specified in the -with-config-file switch when configuring the source
code. Usually, this directory is /etc or /etc/php

Please note that when you have changed the PHP configuration, you will have to
restart the web server, unless you work in CLI or CGI mode, where the configuration
file is re-read on every request. This is one of the factors that slow down PHP in CGI
mode, by the way.

In PHP 5.1, a configuration file in the current working directory, if present, was
used. This was an undocumented feature and removed in PHP 5.2, because of po-
tential undesired effects when by coincidence a PHP configuration file was present
in the working directory. Should your system rely on this behavior, you must move
the configuration file to another directory.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

76 ” Migration Aspects

When a PHP server runs multiple applications requiring different PHP configura-
tion, you can configure PHP individually per directory. It is not always easy to find,
which configuration is in effect in a certain directory. When migrating, make sure
that you carefully analyze the system as to which individual configurations apply to
certain applications or scripts. Chapter 7 shows how you can find out the current
value of PHP configuration settings at runtime.

Keep in mind that PHP programs executed at the command line can run in a dif-
ferent configuration than PHP programs in the web server. When working with unit
tests, you should keep in mind that your CLI configuration does not differ from your
SAPI configuration too much, otherwise the results of unit tests may not reflect the
results the same programs yield in a web server environment.

Most, though not all, PHP configuration settings are relevant for a migration. It is
not always a good idea to reuse the status quo configuration on the target system.
Instead, you should work towards running PHP in default configuration and only
change the settings that cause compatibility problems.

Tags and Separators

asp_tags
This setting is a relic of old times, when many users would use Microsoft Front-

page. Since Frontpage had problems with displaying <? and <?php tags in HTML
source code, the alternative tags <% %> were introduced, inspired by the ASP tags.
You can activate these tags with the asp_tags configuration setting, which is dis-
abled by default. This setting also defines <%= as a shortcut tag for <% echo (see
short_open_tag).

If you encounter programs using the ASP tags <% and %>, you should replace them
by <?php and ?>.

arg_separator.input
Specifies the character used to separate URL parameters. The default value is &,

and you can also specify multiple separator characters.
If other separator characters are configured here, you should consider keeping

them to make sure that your application can process all generated URLs. On the long
term, it might be a better idea to modify arg_separator.output to generate URLs with
the ampersand as separator, but this may require changes in your application code.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 77

arg_separator.output
Specifies the character used to separate URL parameters when URLs are generated

by PHP. The default value is &, though, strictly speaking, & should be used. Most
programs silently rely on using & as separator, so you should keep this value.

If your system uses a different value here, you should keep it to make sure that the
URLs your application still generates the same URLs on the target system.

short_open_tag
By default, PHP scripts start with the <?php tag. There is an alternative short form

<? which had originally been used to denote PHP sections in HTML code. Since <?
is also being used to start XML files, using the short tag can cause problems in certain
situations, because XML sections embedded into HTML would be parsed as PHP. To
make embedding PHP into templates easier, a shortcut tag <?= is defined, which is
equivalent to <? echo.

short_open_tag is set to On by default. If your scripts use the short open tag, PHP
will not be executed on your target system when short_open_tag is turned Off. You
should not use<? or<?=. If you encounter them in any script, replace them by <?php
and <?php echo, respectively.

Processing Input

always_populate_raw_post_data
If enabled, the array $HTTP_RAW_POST_DATA will be filled with the original POST

data sent to the PHP script, but only under certain circumstances (see Chapter 8
for more information). The default value is Off. If always_populate_raw_post_data
is activated on your system, check whether your application uses the variable
$HTTP_RAW_POST_DATA.

auto_detect_line_endings
When enabled, PHP will recognize line endings in Macintosh format (as we dis-

cussed earlier in this chapter) when reading from files with file() or fgets(). The
default value is Off, and instead of activating this setting, it would probably be a bet-
ter idea to convert all files with Macintosh line endings.

Since the new Mac OS X operating system is a Unix derivative, the old Macintosh
line ending should not be an issue any more today.

register_argc_argv
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

www.allitebooks.com

http://www.allitebooks.org

78 ” Migration Aspects

Determines whether the GET parameters are also passed to the PHP program in
the $argv variable (which also populates the argument count variable, $argc). The
default value is On.

If your application works with $argc and $argv, you must keep this setting On.
register_globals
This much disputed setting determines whether global variables are created for

any input PHP receives from the outside. The default value is Off. Please refer to
Chapter 8 for more information about register_globals.

register_long_arrays
When enabled, the so-called long arrays, predecessors of the superglobal vari-

ables, are created and populates with input values. Defaults to On, but is deprecated
and will be removed in future PHP versions. For more information, please refer to
Chapter 8.

variables_order
Defines which superglobal variables PHP creates. The default value is EGPCS,

which means that the superglobal arrays $_ENV, $_GET, $_POST, $_COOKIE, and $_SERVER

will be created. Most programs rely on all superglobal variables to be present, so you
should not change this setting.

This setting also determines the order in which the superglobal $_REQUEST is pop-
ulated. Changing variables_order can alter the behavior of your application, if
$_REQUEST is used, because a GET parameter could overwrite a POST parameter. It is
good practice not to rely on $_REQUEST at all; see Chapter 8 for more information.

Error Handling

display_errors
When enabled, PHP error messages are displayed as part of the generated HTML

output. While this feature is very useful on development and test systems, it should
be disabled on production servers. Please refer to the section entitled “Storing the
Previous Error Message” in Chapter 8 for more information.

error_reporting
Defines which error messages, warnings, and notices PHP displays. This setting is

very important when migrating, so there is a dedicated section in this book (entitled
“Configuring Error Display” in Chapter 8) dealing with it.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 79

track_errors
Determines whether the last error message is stored in the variable $php_errmsg.

Please refer to the section entitled “Storing the Previous Error Message” in Chapter 8
for more information.

Auto-creating HTTP Headers

default_charset
A browser must know the character set HTML pages are encoded with to correctly

display the page. To communicate the character set to the browser, the server sends
a Content-Type header. The configuration setting default_charset defines which
Content-Type header is sent to the browser by default, if the page does not create
such a header itself.

The value defaults to ISO8859-1, sometimes UTF-8 is used. Keep in mind that this
setting only determines which header will be sent to the browser, no conversions are
performed. It is the programmer’s responsibility to actually deliver the page in the
correct character set.

Make sure that this setting reflects the character set your PHP scripts are sending.
We will discuss this later in this chapter.

default_mimetype
Defines the MIME type of PHP-generated output. By default, this is text/html as

PHP usually outputs HTML pages. If you create XHTML pages (see chapter 7), you
should use text/xml instead.

You can change the MIME type at any time having your scripts send a Content-Type

header at runtime. default_mimetypedetermines the MIME type sent when your pro-
gram does not create a Content-Type header itself.

You should keep the status quo of this setting on your target system, otherwise
browsers may have problems displaying pages that do not send a Content-Type

header.

Floating Point Precision

precision
Defines the amount of digits being output for floating point values. This has noth-

ing to do with computational accuracy, but only refers to displaying the numbers.
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

80 ” Migration Aspects

The default value is 14. If you migrate to a system with different setting, it may seem
as if the application makes calculation errors, though this is not necessarily the case.
If you encounter a different value, you might be tempted to keep it so that the results
still look the same, but it is probably a better idea to switch to the default value so
that the results look the same on any default PHP installation.

serialize_precision
This value determines the precision used to serialize floating point values. The

default value is 100, and you should always keep this value. If you encounter a dif-
ferent value, calculation errors can happen when you transfer serialized data from
between different systems. The same problem can occur when you mix serialized
values of different precision.

Sending Email

sendmail_from
Defines the sender of an email on Windows systems. If the given address does not

exist and/or its MX lookup fails, the email might be rejected or marked as spam by
mail servers. Make sure you keep the existing sender address, and that a mailbox
exists for this address.

mail.force_extra_parameters
Overrides the fifth parameter passed to sendmail calls done by the mail() func-

tion. With this setting, you can force email to have a certain sender address, without
the PHP program being able to change it. This can be useful to make sure that you
actually send email that is not rejected by other mail servers.

sendmail_path
Even when no sendmail installed on a certain system, a sendmail-compatible bi-

nary to send email is usually available. You may have to adjust the default value
/usr/sbin/sendmail -t -i to your target system to be able to send email.

On test systems, it can be useful to not actually send emails, but just to store them
into a directory in the file system. You could do this by setting sendmail_path to a
program that just stores the emails instead of sending them (or sends and stores
them). This allows you to send as many test emails to any address you like, without
bothering customers or developers with them.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 81

If you use a PHP class like PEAR_Mail to send email by SMTP, changing
sendmail_path has no effect. In this case, you can modify your PHP program so that
messages are stored in the file system and sent by email, or just stored in the file sys-
tem. A constant that puts the application into test mode could determine what to
do:

<?php

define(’DEBUG’, true);

function send_mail($aRecipient, $aSubject, $aBody)
{
$mail = Mail::factory($smtp, ...)

$filename = ’/tmp/’ . uniqid();
file_put_contents($filename, ...);

if (!defined(’DEBUG’) $mail->send($aRecipient, ...);
}

?>

The advantage of this solution is that emails will also be stored when the system is
productive. You must make sure, however, that the stored emails are not accessible
over the web, and should delete the stored messages from time to time to prevent
the directory to grow too big.

Limits and Resource Limitations

allow_url_fopen
When enabled, access to remote files is possible with functions like fopen() or

file_get_contents(). The default value is On. Many programs rely on this setting,
so you should not change it, but set allow_url_include to Off to make sure that no
remote programs can be executed by include or require.

default_socket_timeout
The socket timeout in seconds, defaulting to 60. Should your application work

with reliable sockets, you can choose a lower value. As opposed to the timeout value
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

82 ” Migration Aspects

passed to fsockopen(), this value is in effect while the connection is open, and not
only for the initial socket opening.

If the value is too low, you risk wrongly terminating socket connections to slow
systems or systems under high load.

disable_classes
A list of built-in PHP classes that cannot be instantiated. As soon as a program

tries to instantiate a class contained in this list, a fatal error occurs. I would not
recommend using this setting, but reduce the number of installed PHP extensions
instead.

disable_functions
A list of built-in PHP functions that cannot be used. Some system administrators

do not allow certain PHP functions like external system calls. This does increase the
system security, but comes at the cost of less reliability: as soon as a program tries to
call a disabled function, a fatal error occurs. Since you never know in advance which
PHP functions an application is going to use in good intent, you should not restrict
PHP functionality using disable_functions.

file_uploads
Determines whether file uploads are allowed. Most web applications rely on file

uploads, so you should keep this setting enabled. If absolutely no application on
your system requires file upload, you could consider disabling this setting to increase
security.

ignore_user_abort
Defines the behavior when a client (usually a browser) terminates a HTTP connec-

tion before the PHP script has completed. The default value is Off, which means that
PHP programs are terminated when the HTTP connection is terminated. When On,
PHP programs will be allowed to complete, which can be useful to make sure that all
data has been stored consistently. This setting can also be modified at script runtime
using the ignore_user_abort() function.

You should keep the status quo of this setting on your target system to make sure
application behavior does not change.

max_input_time
Determines how long a PHP script may take to process input data. The default

value is -1, which means no time limit. If you set a limit, you always risk terminat-
ing PHP programs just because processing the input took too long. The problem is

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 83

that you can never tell whether a program just needs a little more time, or will never
terminate.

max_execution_time
This setting defines how much execution time a PHP script may use. If this time

limit is exceeded, the program is terminated. Please note that time spend with sys-
tem calls and i/o operations does not count, just the CPU time of the PHP script
itself. You can disable the time limit by calling set_time_limit(0) at runtime. It is
important to note that the web server usually also puts a time limit on processes.

The problem with this setting, again, is that terminating a program just because
it takes a lot of computing time can cause more damage than do good. On devel-
opment systems, the setting may be useful to prevent a single process from locking
up the whole system. On a live system, I would not recommend using this setting,
though, because there is a high probability of causing data inconsistencies.

memory_limit
{{memory_limit}}Determines how much memory a PHP script may use. Accu-

rately measuring a script’s memory consumption is technically not easy, but you can
at least prevent a PHP script from using the whole system memory. As soon as a
script tries to allocate more memory than specified in memory_limit, it is terminated.
Since newer PHP versions measure the memory consumption more accurately, the
default memory limit has been increased from 8 MB to 128 MB. Please note that this
does not mean that newer PHP versions require more memory.

When setting memory limit to -1, no limit is enforced. Like with all resource limita-
tions, you can either set the limit too high, so that the system is already destabilized
before the limit is reached, or too low, so that programs are terminated though noth-
ing went wrong.

I would recommend using a memory limit on a development system, which also
gives you a feeling for the memory consumption of your application, but to disable
memory limit on production systems.

post_max_size
Determines the maximum size of a POST request. Since file uploads are trans-

mitted via POST requests, post_max_size should be set to at least the value of
upload_max_filesize.

upload_max_filesize
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

84 ” Migration Aspects

Limits the size of uploaded files. The default value is 2M, which is not enough for
many of today’s applications. Since files are uploaded via POST requests, you must
also set post_max_size to an appropriate value, otherwise an upload may already be
terminated because the POST request is too large.

Another pitfall is the memory_limit setting. As soon as a PHP script uses more mem-
ory than specified in memory_limit, the script is terminated. It is therefore not possi-
ble to upload files larger than memory_limit.

open_basedir
The open_basedir directive limits file access from PHP to a certain base directory.

Strictly speaking, open_basedir is a prefix: only when beginning of the absolute path
of the file to open matches open_basedir, the operation is allowed. Otherwise, PHP
outputs an error message.

It is a good idea to set open_basedir individually for different users to limit access
to other people’s files in a CGI setup. Be warned, however, that open_basedir offers
no real security, because through PHP extensions or systems calls, it is easy to cir-
cumvent its restrictions.

Session Management

session.auto_start
Determines whether a PHP session is started automatically. The default value is

Off, and you should keep this default to avoid the overhead of initializing a session
when it is not needed.

If your application relies on automatically started sessions, you can turn this set-
ting to On or modify the program to explicitly start a session with session_start()

where appropriate.
session.bug_compat_42
PHP versions before 4.2.3 would allow you to register a session variable in the

global namespace, even when register_globals was deactivated (see Chapter 8 for
more information). This setting ensures compatibility to PHP 4.2.3 by reproducing
this behavior on newer PHP versions.

You should disable this setting and enable session.bug_compat_warn, which causes
PHP to issue a warning whenever the program relies on the old behavior. You should

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 85

then modify the code to use the superglobal array $_SESSION instead of registering a
global variable as session variable:

<?php

$a = ’test’;
$_SESSION[’a’] = $a;

?>

session.bug_compat_warn
When enables, PHP issues a warning when programs try to initialize a session vari-

able in the global namespace:

<?php

$a = ’test’;
session_register("a");

?>

When session.bug_compat_warn is enabled, this program shows the following warn-
ing:

Warning: Unknown: Your script possibly relies on a session side-effect which
existed until PHP 4.2.3. Please be advised that the session extension does
not consider global variables as a source of data, unless reg-ister_globals
is enabled. You can disable this functionality and this warning by setting
session.bug_compat_42 or session.bug_compat_warn to off, respectively. in
Unknown on line 0

The default value is On. You should always keep this setting enabled.
session.cookie_domain
Determines the domain used for the cookie with the session identifier. The default

value is the hostname of the server sending the cookie. If the name specified here
does not match the hostname or DNS name of the server, respectively, there will be
problems when setting and reading the cookie, which will prevent you from using
sessions at all.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

86 ” Migration Aspects

Files and Directories

auto_append_file
Defines a PHP script that is automatically executed after the called PHP script has

been executed. You must specify the full, absolute path to the script (see Chapter 7
for more information).

auto_prepend_file
Defines a PHP script that is automatically executed before the called PHP script is

executed. You must specify the full, absolute path to the script (see Chapter 7).
include_path
Like the system’s search path, the directories in this list are searched when PHP

files are included by include or require. When accessing files with fopen(), file(),
readfile(), or file_get_contents(), the path is also searched, but accessing sub-
directories of directories in the include path only seems to work with include and
require. The first entry should be the current working directory, which is denoted by
a dot. Like in all PHP scripts, you can use the forward slash as directory separator on
Windows and on Unix.

The character used to separate the paths (path separator) is system-dependent (as
discussed earlier in this chapter). If in doubt, have a PHP program output the built-in
constant to find out what path separator your system uses.

When migrating, you must search all directories listed in include_path for code
that your application uses. Keep in mind that the behavior of an application can
change when you reorder the entries in the include path, as different files may be
loaded.

upload_tmp_dir
Defines the directory to store uploaded files. This directory must exist and be

writeable by the system user PHP scripts are running as. The default value is the
system-wide temporary directory.

When migrating, make sure that the directory defined here does exist on the target
system. Quite often, a housekeeping script is used to delete old files in temporary
directories. You should also migrate these scripts to the target system, even if they
may not seem to be part of the PHP application.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 87

New Settings since PHP 5

allow_url_include
Since PHP supports stream wrappers, include and require can not only load files

from the local file system, but also from remote systems, for example via a protocol
like HTTP. In older PHP versions these URL wrappers could be allowed or disallowed
for all kinds of file access by enabling or disabling allow_url_fopen. Allowing an ap-
plication to use file_get_contents() on a remote URL to retrieve a web page or call
a REST service always came at the risk of executing remote code with include or re-
quire.

The problem with executing remote code that you never know what code you are
executing. Unless you are not in control of the remote system yourself, you should,
for security reasons, never execute remote code. It is better to copy the code to the
local system or set up a web service on the remote system.

By default, allow_url_include is disabled sine PHP 5.2. In my opinion, there is no
reason to ever enable this setting.

date.timezone
Defines the server’s time zone. Since PHP 5.1 a valid time zone must be set either

in php.ini or at script runtime, otherwise PHP will output an E_STRICT error when a
date function is called. For more information please refer to Chapter 8.

filter.default and filter.default_flags
This setting exists since PHP 5.2. It determines how GET, POST, and cookie in-

put are filtered. The contents of $_REQUEST are filtered as well. The default value
is unsafe_raw, which means that no filter is applied.

max_input_nesting_level
This configuration setting, available since PHP 5.2.3, closes a security hole in PHP

that allowed an attacker to crash PHP by supplying deeply nested input data. The
default value is 64, which should be sufficient for most applications.

Should you have to process input data that is nested more deeply, you must in-
crease this value.

pcre.backtrack_limit and pcre.recursion_limit
This setting was introduced in PHP 5.2.0 to prevent PHP from crashing on com-

plex or incorrect regular expressions that require too much stack memory. The de-
fault value is 100,000, but there are bug reports of PHP users that complained about

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

88 ” Migration Aspects

correct regular expressions hitting this limit. You might want to increase these limits
to 1,000,000 or 10,000,000, which you can do at runtime as well:

<?php

ini_set(’pcre.backtrack_limit’, 1000000);
ini_set(’pcre.recursion_limit’, 1000000);

?>

If the limit is too high, you risk a PHP crash because too much stack memory has
been used.

A regular expression hitting the limit is stopped. The problem is that no error mes-
sage is generated, and the regular expression just returns NULL as a result. You have
to use preg_last_error() explicitly to check whether an error occurred. The function
preg_last_error() returns an integer value matching one of the following constants:

• PREG_NO_ERROR (value 0)

• PREG_BACKTRACK_LIMIT_ERROR (value 2)

• PREG_RECURSION_LIMIT_ERROR (value 3)

For a full list of all constants and error messages defined by the preg extension please
refer to http://de.php.net/pcre. If you work with complex regular expressions or
your regular expressions process large strings, you should secure them by checking
for an error:

<?php

$text = preg_replace(’/b.*b/’, ’’, $text);

if (preg_last_error() == PREG_BACKTRACK_LIMIT_ERROR ||
preg_last_error() == PREG_RECURSION_LIMIT_ERROR)

{
throw new Exception(’Regular Expression limit reached’);

}

?>
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migration Aspects ” 89

If the exception thrown in the example is not caught, a fatal error occurs, stopping
program execution. In most cases, it is better to stop the program than to continue
using a bogus NULL value as regular expression result, which will probably sooner
or later cause a consecutive fault.

user_ini.filename
The name of a user-specific configuration file, like .htaccess, but also processed in

CGI and FastCGI mode, not only when PHP is installed as an Apache module. Allows
configuring PHP per-directory and is available from PHP 5.3. The default value is
.user.ini.

session.cookie_httponly
This setting exists since PHP 5.2 and makes the cookie that stores the session id un-

readable for Javascript running in the client browser. The so-called HttpOnly cookies
provide a better level of protection against session hijacking by stealing cookies, but
are not supported by all browsers. The default value is Off.

If you use Javascript that reads the session cookie, for example to retrieve the ses-
sion id when creating an AJAX request, your application may not work correctly any
more when you enable this setting.

Settings That Will be Removed in PHP 6

allow_call_time_pass_reference
Defines whether passing references at runtime is allowed. For compatibility rea-

sons, this setting defaults to On. If you disable allow_call_time_pass_reference, you
must check your PHP programs for E_STRICT errors indicating that references are
passed by runtime. For more information please refer to Chapter 8.

enable_dl
When enabled, PHP extensions can be loaded at runtime using the dl() function.

Though the default value is On, you should never rely on extensions this feature,
since dynamically loading extensions is only possible in certain PHP setups. Instead
of relying on dl(), you should configure your server to load all required PHP exten-
sions by default.

magic_quotes_gpc

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

90 ” Migration Aspects

When enabled, single quotes, double quotes, backslashes and the NULL character
in GET, POST and cookie input will automatically be escaped by a backslash. The de-
fault value is On. Please refer to Chapter 8 for more information about magic quotes.

magic_quotes_runtime
When enabled, quotes in data from external sources like databases and text files

will be automatically escaped by a backslash. The default value is Off. Please refer to
Chapter 8 for more information.

magic_quotes_sybase
This setting modifies the behavior of magic_quotes_gpc and

magic_quotes_runtime. When enabled, single quotes with be escaped by an-
other single quote instead of a backslash. This way of escaping complies with
the SQL standard. The default value is Off. Please refer to Chapter 8 for more
information about magic_quotes_sybase.

safe_mode
Determines whether PHP runs in the much debated Safe mode. The default value

is Off. When PHP runs in Safe Mode, file access is only allowed when the user spec-
ified in php.ini is the owner of the file. The idea is to provide a similar security like
CGI or FastCGI do by executing PHP in different user accounts.

In addition, PHP functionality can be disabled in Safe Mode. It is possible to only
allow starting of external programs in a given directory, or limit access to certain
environment variables.

Like open_basedir restrictions, the Safe Mode restrictions can be circumvented by
PHP extensions or system programs called from PHP. Since, due to these limitations,
Safe Mode does provide real security, it will be removed in PHP 6. It is better to
isolate different users from each other at the operating system level instead of giving
administrators a false sense of security through Safe Mode.

If you are migrating a system running in Safe Mode, you should disable Safe Mode
and make sure that the operating system provides a similar or better level of security.
These restrictions cannot be bypassed by PHP extensions or system programs.

Since disabling Safe Mode removes restrictions, every application working in Safe
Mode should work flawlessly when Safe Mode is disabled.

zend.ze1_compatibility_mode
This setting forces PHP 5 to work with references like PHP 4 did, in other words,

pass everything by value. It is disabled by default, and for good reason. Please re-
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migration Aspects ” 91

fer to the section entitled “The PHP 4 Compatibility Mode” in Chapter 8 for more
information.

Databases and other extensions

The various database extensions have different configuration settings that can con-
tain default values like database host name, IP address, database username, pass-
word, socket name, and port number. For reasons of brevity, we will not list these
configuration settings in detail, since they differ between databases.

The idea being putting connection information here is probably that php.ini is
located outside the www directory, so there is less danger of passwords leaking out
due to a misconfigured PHP server.

PHP Extensions

PHP is easy to extend, which is one of PHP’s great advantages. PHP extensions writ-
ten in C can add new PHP functions, classes, or constants.

PECL is a repository containing many open source PHP extensions. Unfortunately,
not all extensions are compatible with every PHP version. This is because the inter-
nal PHP API sometimes changes between versions. Consult the extension’s docu-
mentation to find out which PHP versions it is compatible with.

Not all PHP extensions can be combined with each other. The deeper an exten-
sion is integrated into PHP, the more likely conflicts with other PHP extensions are.
It does probably not work to load two different PHP debuggers, for example. The
reason is obvious: both extensions will try to use the same hooks and make the sim-
ilar modifications inside the Zend Engine. Common PHP extensions, however, can
usually be combined without problems.

As a developer, you often have to decide whether to use an extension or a PHP-level
implementation. Generally, extensions are faster because they are implemented in
C and compiled to machine code. Using an extension, however, adds a dependency
to it. Your application will not work without this PHP extension. For a default or
commonly used extension, this is not a problem, but you should make a conscious
decision before relying on an exotic extension. When your application is supposed
to work on shared hosts, you should keep the number of required extensions as small
as possible.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

92 ” Migration Aspects

PHP extensions must be enabled in php.ini and, in most cases, have their own,
additional php.ini settings. To find out which PHP extensions are used in your PHP
installation, you can use a command line command:

> php -m

[PHP Modules]
bcmath
bz2
[...]
xsl
zip
zlib

[Zend Modules]

PHP will output a list of all installed extensions (“modules”). The same list is avail-
able in the phpinfo() output, less compact, but with additional information about
extension versions and their configuration.

You can also use the function get_loaded_extensions() to output a list of installed
extensions. You can also use extension_loaded() to check at runtime whether all
extensions required by your application are present:

<?php

if (!extension_loaded(’mysqli’))
{
throw new Exception(’Missing mysqli extension’);

}

?>

It is probably better to end the program in a controlled manner when required ex-
tensions are missing, instead of risking a fatal error at runtime that might leave the
application or database in an inconsistent state.

To find out which PHP extensions an application requires, you can use the PEAR
package PEAR_CompatInfo. For more information, please refer to Chapter 7.

Loading PHP extensions at runtime is problematic, especially when PHP is run-
ning multithreaded. If, within one thread, a PHP extension would be loaded, it would

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 93

suddenly become available to all PHP programs executed in this thread, since they
share the same memory. How would you explain to your PHP script that half way
through execution, additional PHP function have suddenly become available?

You should not rely on loading extensions dynamically, but load all required ex-
tensions in php.ini. In shared hosting environments, it is usually not possible to
modify php.ini and load additional extension that your application might require.
If you need certain extensions that are not available by default, you can try to con-
vince your shared hosting provider to install these extensions. If this does not work
out, you may have to consider switching your hosting provider, or switch to a ded-
icated server, which gives you full control over the server configuration, but leaves
you responsible for the server security.

Recently, the PHP developers have started to move PHP extensions to PECL, which
makes it easier to maintain and update extensions independently from PHP. Some
extensions that used to be bundled with PHP are not distributed through PECL. To-
day, you may have to manually install certain PHP extensions from PECL that used
to be distributed with PHP. Table 3.2 lists these extensions.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

94 ” Migration Aspects

Extension in PECL since/from Remarks/Restrictions
Cyrus IMAP PHP 5.0.0 not on Windows

Crack PHP 5.0.0
CyberCash PHP 4.3.0 was bought by PayPal

DBX PHP 5.1.0
DirectIO PHP 5.1.0 only on Windows

CyberMUT PHP 4.3.0 not on Windows
filePro PHP 5.2.0

Hyperwave API PHP 5.2.0
Lotus Notes PHP 5.0.0
Mailparse PHP 4.2.0 requires mbstring

MCAL PHP 5.0.0 not on Windows
MCVE PHP 5.1.0 not on Windows

MSession PHP 5.1.3 not on Windows
Ncurses PHP 6.0.0 only on Unix

Newt 2004 not on Windows, only CGI and CLI-SAPI
PDFlib 2004 Since PHP 4.3 PDFlib >= 4.0, before that PDFlib >= 3.0

POSIX RegExp PHP 6.0.0 Use Perl-RegExp
Printer PHP 4.1.1 only on Windows
qtdom PHP 5.0.0 not on Windows
Socket PHP 5.3.0

TCP Wrappers 2003 not for Unix
vpopmail PHP 4.3.0
win32ps 2005 only on Windows

win32service 2005 only on Windows
xattr 2004 only on Unix
xdiff 2004 only on Unix
XSLT PHP 5.0.0
YAZ PHP 5.0.0

YP/NIS PHP 5.1.0 not on Windows

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 95

Other PECL extensions, though developed and maintained in the PECL project, are
bundled with PHP to make sure that they are always available in default PHP instal-
lations. These extensions are listed in table 3.3.

Table 3.4 shows an overview of PHP extensions that are no longer maintained with
possible alternatives.

Extension in PHP since/from Remarks/Restrictions
PDO PHP 5.1.0

XMLReader PHP 5.1.0
XMLWriter PHP 5.1.0

ZIP PHP 5.2.0 uses a library other than the PHP
4 ZIP extension

zlib PHP 4.3.0

Some PECL extensions are no longer maintained today. If you need old and unmain-
tained PECL extensions, you will find them in CVS which is accessible through a web
interface at http://cvs.php.net/pecl. Unless you are a PHP and C expert, though,
you will probably have a hard time making these extensions work.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

96 ” Migration Aspects

Extension Unmaintained since/from Possible Alternatives
Activescript PHP 5.0.1

Aspell PHP 4.3.0 Pspell
CCVS PHP 4.3.0 MCVE

Classkit end of 2004 Runkit
ClibPDF PHP 5.1.0 Haru, PDFLib

ctype PHP 6.0.0 Unicode
DBM PHP 5.0.0 dba

DOM XML PHP 5.0.0 DOM in PHP 5
fam PHP 5.1.0

ICAP early 2002 MCAL
Informix PHP 5.2.1 PDO_Informix
Ingres II mid-2005 ingres

IRC Gateway PHP 5.1.0
mhash PHP 5.3.0 Hash

Mimetype early 2004 fileinfo
mnogoSearch PHP 5.1.0

muscat around 2000 Xapian (http://www.xapian.org)
Object Overloading PHP 5.0.0 Native Overloading in PHP 5

Oracle PHP 5.1.0 OCI or PDO_oci
Ovrimos SQL PHP 4.4.5 bzw. 5.1.0
Payflow Pro PHP 5.1.0

Satellite CORBA around 2003 Universe (http://is.gd/u3B)
SWF PHP 5.0.0 MING

Tidy 1.0 PHP 5.0.0 Tidy 2.0 for PHP 5
w32api PHP 5.1.0 ffi

XSLT PHP 5.0.0 XSL for PHP 5
ZIP for PHP 4 mid-2003 ZIP in PECL

Installing PECL extensions is usually very easy. On Windows, you can download bi-
nary DLL files from http://pecl4win.php.net. Make sure you download the DLL for
the correct PHP version.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 97

Having downloaded the DLL, you must activate the extension in php.ini. Make
sure to specify the full, absolute path to the directory containing the DLLs:

extension_dir="c:\php\ext\"
extension=php_ssh2.dll

To avoid problems with path names that contain blanks, enclose the path in double
quotes (as discussed earlier in this chapter).

Keep in mind, that the order in which extensions are loaded does matter. You must
load the PDO extension, for example, before you can load any database-specific PDO
extension. Some extensions, like mcrypt and mhash, require additional DLLs. Unfor-
tunately, these dependencies are not always clearly documented, so sometimes an
extension just does not load or does not load properly.

On Unix, you can try installing a PECL extension using the following command:

pecl install <package name>

This does not work on every system, though. If it does not work, you have to compile
the PHP extension from source. To make this work, you might have to install some
required libraries first.

When you have installed PHP as a binary package, you also need the developer
package containing the headers files and additional tools for compiling, like phpize.
Sometimes it is easier to compile PHP from source instead of searching your system
for the various required files.

Some extensions must be activated when the source code is configured. You might
have to supply a library path for some switches.

Like you can compile PHP as a static or dynamically loadable Apache module, you
can compile PHP extensions either statically into PHP or compile them as dynam-
ically loadable extensions that must be activated in php.ini. The advantage of dy-
namically loadable extensions is that you do not have to re-compile PHP to update
an extension.

It is recommendable to statically compile the required extensions into PHP, and
leave it up to the system administrator to decide which additional extensions to acti-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

98 ” Migration Aspects

vate. Every extension takes up memory, so you should only load required extensions
to save on system resources.

When PHP is not running as a web server module, but in CGI or FastCGI mode, you
can configure PHP individually for each user. In conjunction with a service oriented
architecture, you could also create individual minimal PHP configurations for the
different services.

Keep in mind, that the PHP extensions that are activated by default can still be
disabled by -disable or -without, respectively. You should never disable those ex-
tensions, however, since most PHP applications rely on them to be present.

Some PHP extensions that use Unix-specific features do not run on Windows.
Among these are:

• Posix

• Process Control

• Readline

• Recode

• Semaphore

• Session pgSQL

The Process Control extension only works when PHP does not run as a web server
module, but only in CGI and CLI SAPI.

The shmop extension runs on Unix and Windows, but only Windows 2000 and later.
Under both operating systems, PHP must be installed as a web server module to
make shmop work. The CGI and CLI-SAPI are not supported.

Installing Multiple PHP Versions

When migrating, you might be tempted to install multiple PHP versions on one
server, to be able to test your code in different versions.

When you have installed PHP as an Apache module, you cannot run multiple PHP
version in parallel, because the symbol tables would conflict. If you are not willing

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 99

to make extensive changes to the source code of at least one PHP version, there is no
solution to this problem.

Running multiple PHP version in parallel is only possible when you run PHP in
CGI or FastCGI mode. Still, you could combine both and install one PHP version as
an Apache module, and additional PHP versions as CGI. Keep in mind, however, that
there are some differences in functionality (as discussed earlier in this chapter).

Many shared hosting providers use this approach to offer their customers to use
either PHP 4 or PHP 5. This allows every customer to select the preferred PHP ver-
sion, and the appropriate to switch between the two versions.

I would not recommend installing multiple PHP versions on one system. It is more
work to install two independent versions, and there are many sources of errors on
the way. I would recommend setting up two dedicated test systems with one PHP
version each.

PHP Code

The PHP code itself is one of the most important aspects of a migration. Chapter 8
deals with the problems you might face when migrating PHP code and, of course,
solutions for these problems.

When migrating, you will probably differentiate between your own code and third
party code.

Third party PHP code

In the early PHP years, a plethora of code snippets and examples was available on
the Internet. Much of this code, though, was not of good enough quality to be used
in professional projects. This situation has changed a lot in the last years. The PEAR
project offers a lot of reusable open source PHP components, and well-known PHP
companies like Zend or ezPublish offer free and open source frameworks and com-
ponents that offer reusable solutions to common coding problems. Even when you
do not want to use the code, there is a lot that can be learned from just studying the
sources.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

100 ” Migration Aspects

A migration can be a good reason to use more third party code. This makes your
own code base smaller, which means there is less code to maintain. You delegate
some code maintenance to the third party.

It is not always easy to decide whether to use third party code (or which one to
use). You should ask yourself the following questions before making a decision:

• Which dependencies and system requirements does the code have? Is a spe-
cial PHP configuration required? Do these requirements fit into your project?

• What is the latest version, and what is the maturity (alpha, beta, release candi-
date, stable)? Is the software still maintained, and how often are new versions
released?

• Under what license is the code? Is the code readable, obfuscated or encoded?

• How about the code quality? Does the code adhere to a coding standard? Is
the code well documented and modularized?

• How many developers work on the code? Is there a company that backs up the
development and guarantees continuity?

• Is there a roadmap, informing about the planned features? Does the roadmap
fit to your project?

• Is the API stable over longer periods of time, and are new versions backwards
compatible or will client code have to be adapted to new versions?

• Are there any open bugs? Are there many, potentially unanswered support
questions, that might indicate general problems with the code?

• How is the documentation? Is example code available?

• Who is already using the code? Are there reference projects?

When you use third party code, you add a dependency to your application. You
should therefore carefully compare the advantages and disadvantages of using third
party code. If your answers to the above questions indicate a high risk, you should
maybe refrain from using the code.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 101

When migrating, you will have to make sure that any third party code is compatible
with the target PHP version and configuration you are planning to use. You cannot
rely on promises, but still have to test the third party code on the target system. When
the API has changed, you might have to modify your application to fit to the new API
when you switch to a newer library or component version.

If you are using third-party code that is not maintained any more, the question
is whether it will still work on the target system, or how much effort it will take to
make it work on the target system. You should do some research for potential alter-
natives, but can also consider taking over the maintenance of the third party code, if
the license allows. Not all PHP code is open source code that allows derivative work,
however.

Your Own PHP Code

Programming is life-long learning. When looking at code that was written months or
years ago, there is usually much room for improvements, regardless of whether it is
your code or somebody else’s code. This is quite normal and not necessarily a sign
of bad quality.

A migration is a good occasion to improve existing code. To keep the effort and the
risks of a migration low, you should not necessarily start a general overhaul of the
code. On the other hand, existing code is not unchangeable. A migration requires
code to be adapted, otherwise you will not be able to fix the problems.

The right amount of code changes, for example by careful refactoring (see Chapter
5), can make a migration much easier, for example when duplicate code is removed
before making changes, so that less changes have to be made. This will result in
fewer errors that you have to fix or debug.

The big question how many changes to existing code will be necessary when mi-
grating is not easy to answer. I have seen projects where existing PHP 4 code ran
on PHP 5 without any change. Other projects had to make quite a lot of changes to
make their PHP 4 code work on PHP 5. I have also seen projects where migrating
from PHP 5 to PHP 5.1 or 5.1 to 5.2 had caused problems that required changes to
the code.

Many of the required code changes are not called for by the new PHP version itself,
but by changes to the PHP configuration. Projects with a strong PHP 4 history that

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

102 ” Migration Aspects

keep using a PHP 4-like PHP configuration tend to run into more problems when
migrating.

An interesting fact is that the effort that a PHP migration requires depends less on
the code quality (which is hard to measure anyway), but more on which of PHP’s
language features the code uses to which extent.

Migrating PHP code can be done with not too much effort, when you work in turn
and very disciplined. Chapter 7 introduces tools that will help you to successfully
migrate your PHP application. Chapter 8 explains the problems that can occur in
PHP code and shows possible solutions.

External Programs

It is easy and tempting to call external programs from PHP. There are lots of freely
available command line tools, and some of them offer functionality that would re-
quire quite some PHP code to implement.

There are various PHP functions like system() and exec() to call external pro-
grams. For a full list and further explanations please refer to Chapter 8.

The output of command line programs depends on the operating system, lan-
guage, and version used. You cannot expect the output to be the same across ver-
sions. What is more, the same program can behave different on another operating
system, like the ping example shows.

As we know, ping sends packets to the given target system. On Unix, ping send
packets until you quit the program, unless you specify the number of packets to send
using the -c command line switch. The result of a ping on Unix could be:

> ping -c 4 google.de

PING google.de (66.249.93.104) 56(84) bytes of data.
64 bytes from google.com (66.249.93.104): icmp_seq=1 ttl=245 time=22.6 ms
64 bytes from google.com (66.249.93.104): icmp_seq=2 ttl=245 time=22.3 ms
64 bytes from google.com (66.249.93.104): icmp_seq=3 ttl=245 time=22.2 ms
64 bytes from google.com (66.249.93.104): icmp_seq=4 ttl=245 time=22.8 ms

--- google.de ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 22.216/22.508/22.813/0.251 ms

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 103

Windows also has a ping program. On Windows, ping always sends 4 packets, but
does not understand the -c command line switch. The ping result on Windows could
look like this:

> ping google.de

Pinging google.de [216.239.59.104] with 32 bytes of data:

Reply from 216.239.59.104: bytes=32 time=82ms TTL=245
Reply from 216.239.59.104: bytes=32 time=80ms TTL=245
Reply from 216.239.59.104: bytes=32 time=82ms TTL=245
Reply from 216.239.59.104: bytes=32 time=80ms TTL=245

Ping statistics for 216.239.59.104:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times im milli-seconds:
Minimum = 80ms, Maximum = 82ms, Average = 81ms

Though both results show that Google is available, the result is different. If you do
not only rely on the return value (or error code) of an external program, you will
probably have to parse the output. So, in addition to making a system-dependent
call, you will also have to parse the result depending on the system. The language is
also an issue, because on a German Windows the output would be:

> ping google.de

Ping google.de [216.239.59.104] mit 32 Bytes Daten:

Antwort von 216.239.59.104: Bytes=32 Zeit=82ms TTL=245
Antwort von 216.239.59.104: Bytes=32 Zeit=80ms TTL=245
Antwort von 216.239.59.104: Bytes=32 Zeit=82ms TTL=245
Antwort von 216.239.59.104: Bytes=32 Zeit=80ms TTL=245

Ping-Statistik für 216.239.59.104:
Pakete: Gesendet = 4, Empfangen = 4, Verloren = 0 (0 Verlust),Ca.

Zeitangaben in Millisek.:Minimum = 80ms, Maximum = 82ms, Mittelwert =
81ms

In reality, you will not only have to parse the “success” result, but also the various
error messages.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

104 ” Migration Aspects

While you can use the forward slash as directory separator in PHP on Windows and
on Unix, any command line calls and parameters must use the backslash on Win-
dows. Keep in mind that you have to escape the backslash with another backslash
when it occurs in a string in your PHP code. When replacing backslashes slashes
by forward slashes, keep in mind that the backslash is an allowed character in path
names on Unix. You should take care to only replace on Windows, otherwise you risk
damaging your paths.

<?php

if ("\r\n" == PHP_EOL) $path = str_replace(’/’, ’\\’, $path);

?>

This program uses the built-in PHP constant PHP_EOL which contains the system’s
end of line character to detect whether it is running on Windows. Only then, forward
slashes are replaced.

If possible, do not depend on any output of external programs in your application.
Instead, try to find an alternative implementation as PHP code or a PHP extension
that reliably works cross-platform.

Special care must be taken when calling external programs with path and file
names containing blanks. If the external program expects command line parame-
ters, it cannot distinguish between a blank in a path and the separator between two
command line parameters. Put path names in double quotes, but make sure to es-
cape any quotes in the name.

Since path names can change when migrating, it is good practice to always quote
paths to keep your application portable. Also keep in mind that paths differ between
systems. On Unix, the temporary directory is /tmp, whereas on Windows it usually
is c:\windows\temp, at least when PHP runs inside a web server. When run at the
command line, the temporary directory of the current user is used. The path to this
temporary directory usually contains blanks.

Try to never use fixed paths when calling external programs, since you make your
application dependent on a certain directory structure on the target system. Use
the system search path instead (as we discussed earlier) to keep your application
portable. To have use the search path, you must execute external programs in a shell

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 105

rather than call them directly. Without a shell, the environment the external program
is executed may differ from the PHP user’s environment. This is a rather frequent
source of errors.

To execute an external program, execute rights on the executable file are required
for the user PHP is running as. You need to know which user account PHP runs under
and whether PHP runs in a chroot jail. If so, you must make sure that the program
is available in the chroot jail. On Windows, when PHP runs under Apache, it runs
in the System account, which is usually allowed to access all files on the system. IIS
runs in its own user account, so you may have to set the access rights accordingly to
allow PHP to start an external program.

Try to avoid calling external programs on production systems as far as possible.
Quite often, external programs are just used to save some lines of PHP code. In that
case, a PHP implementation allows you to get rid of another external dependency
your application has.

External programs should be replaced for testing, to make your tests less depen-
dent on the system environment. Either you replace the external program by a
dummy program that provides you with the expected answers, or you modify the
PHP source to not call the external program in test mode, but use a pre-calculated
result instead. Earlier in this chapter, we have seen code that behaves differently
when in test mode.

Replacing external programs also helps you to test certain errors conditions. Many
conditions like wrong access rights, a broken network link, or a file system that runs
our of free space are hard to test otherwise.

Interfaces to Third-Party Systems

Since Gartner Group has introduced the term “service oriented architecture” in 1996,
it has become one of the big buzzwords in IT. The idea of a service oriented archi-
tecture is to create a set of independent services instead of a monolithic software.
Basically, this is the logical consequence of modular, object-oriented thinking.

Today, most PHP applications are consumers of web services, often without the
developers even noticing. Using an RSS feed, for example, is using a web service.
Most web services are used via HTTP. Other, more complex protocols include XML-
RPC or SOAP. SOAP has become rather popular recently, because the new PHP ver-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

106 ” Migration Aspects

sions have built-in SOAP support. There are other, partly proprietary protocols to
use remote systems like Corba, or DCOM.

Typical interfaces to third-party systems are order and reservation systems, exter-
nal search engines, or payment processing systems. Quite often, APIs of services like
Flickr or YouTube are used today, for example to selectively integrate content into an
application.

You should decouple your application from third-party services when migrating,
since you probably do not want to start transactions in remote systems when test-
ing your software. You’ll probably also not want to deal with real-world credit cards
when testing software.

Many web service providers offer a test mode that is triggered by using a different
URL, for example. In test mode, often called sandbox, the remote system will behave
exactly like in a real transaction, but never execute the transaction. You should add a
switch to your application, selecting either test mode or production mode. If the test
mode is activated, remote calls are either simulated or the service’s sandbox mode is
being used.

If your test system has limited or no Internet access, you cannot reach the third-
party system. In this case, you could write a dummy web service simulating the
remote system, or have the software component using the remote service return a
pre-calculated result in test mode.

Character Encodings

In the previous sections, we have already mentioned problems with different charac-
ter encodings. Though this is an important topic, many developers do not really care
about encodings too much. As a matter of fact, many PHP applications today work
rather well with UTF-8 data read from a database. As soon as you start to modify the
data at PHP level, however, the real problems start. Character encoding problems
usually come to light as presentation problems, with weird characters showing up in
the output. Frequently, this happens when migrating a system.

A string, like a text file or HTML page, in essence is just a sequence of bytes. This
byte sequence must be interpreted to process the content it represents. There are
many different ways of encoding text, which includes PHP source code. Since one

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 107

can normally not tell the encoding of a byte sequence just by looking at the data,
developers must keep track of which encodings are used in their files.

The basics of character encoding were already covered in the section entitled
“Character Sets” in this chapter, where we also gave an overview of common encod-
ings. When UTF-8 is used, the advantage is that you will only have to use five HTML
entities, because all special characters are directly supported. Table 5.5 shows spe-
cial characters that must be encoded as HTML entities in UTF-8.

Character HTML-Entity Name
& & Ampersand
" " Double Quotes
’ ' Single quote
< < Less than sign
> > Greater than sign

To learn how to avoid typical character encoding problems, we will experiment a lit-
tle with text in different character encodings. We will use a German sentence that
does not make any sense, but contains many umlaut characters, which are non-
ASCII characters:

Süßigkeiten sind überall änderbar.

We will store this text in different encodings, namely ISO 8859-1, which is still the
default in many text editors, in UTF-8, and in UTF-16. We will use UTF-8 with and
without byte order mark (BOM), and UTF-16 in big-endian and little-endian format
(see chapter 3). While UTF-16 always contains a byte order mark, the byte order
mark in UTF-8 is superfluous, because the encoding already defines the byte order.
Still, many text editors add the byte order mark at the beginning of a UTF-8 file, to
denote UTF-8-encoded text.

15.11.2007 12:35 34 test.txt
15.11.2007 12:50 68 test_utf16.txt
15.11.2007 12:52 68 test_utf16_little_endian.txt
15.11.2007 12:37 41 test_utf8.txt
15.11.2007 12:46 38 test_utf8_ohne_bom.txt

5 File(s) 249 Bytes
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

108 ” Migration Aspects

The directory listing shows that the file length is different for the various encodings.
UTF-16 uses the most memory, since every character is encoded with at least two
bytes. In our example, UTF-8 is only a little larger than ISO 8859, because the store
text mainly consists of ASCII characters.

You will probably find the UTF-8 byte order mark annoying in PHP source code,
since is appears as ï»¿ in the output. Since this starts the output before PHP code
is even parsed, it is not possible to send HTTP headers any more (see Chapter 8 for
more information). Since the BOM appears before the first PHP tag, even turning on
output buffering will not help. You must remote the BOM from the source files. This
is not easy, because the BOM are no visible characters, so you cannot use a text editor
to remove it. You must either explicitly store the file as UTF-8 without BOM or use
a command line tool to remove the first three bytes. Figure 3.4 shows the different
character encodings as displayed in a hex editor.

Figure 3.4

To better understand the various text encodings, let us view the files in a text ed-
itor. In the top window in Figure 3.4, we can see that every character is encoded by
one byte. The second example starts with the byte order mark 0xEFBBBF, and each
character is encoded in variable length, as you can tell by looking at the umlaut char-
acters. In the ASCII view to the right, they are scrambled. Figure 3.5 shows the UTF-8
encoded file with and without byte order mark. In the bottom window, the BOM is
highlighted. In ASCII view, it appears as ï»¿.

As Figure 3.6 shows, UTF-16 encoding uses two bytes for each character. Our ex-
ample text contains no characters that require four bytes to encode. The byte order

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 109

Figure 3.5

is defined by the a 16 bit byte order mark, which is stored at the beginning of the file.
0xFFFE denotes big-endian UTF-16, whereas 0xFEFF denotes Little Endian UTF-16.

Figure 3.6

Let us now output the text that we have stored. We will start on Windows:
Only the big-endian UTF-16 file is displayed correctly, which is no surprise, as

Windows works with this encoding internally.
Figure 3.8 shows the same output on Linux. Here, only UTF-8 without byte or-

der mark is displayed correctly, since this Linux internally uses this encoding. The
output looks a little better than on Windows, because the Linux shell replaces every
non-printable character by an inverted question mark, whereas Windows displays
all kinds of strange characters.

Now let us write a little PHP script that outputs our example sentence. We will then
store this program in various encodings and experiment with different Content-Type
headers and character set conversions:

<?php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

110 ” Migration Aspects

Figure 3.7

Figure 3.8

// Stored as ISO8859-1

echo "Die Süßigkeiten sind überall änderbar.";

?>

In default configuration, PHP sends a Content-Type header announcing ISO 8859-1
encoded text. Since the source code is in this very character set, everything will work
just fine:

Die Süßigkeiten sind überall änderbar.

Now we change the Content-Type header and announce UTF-8-encoded text:
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migration Aspects ” 111

<?php

// Stored as ISO8859-1

header(’Content-Type: text/html; charset=UTF-8’);

echo "Die üßSigkeiten sind überall änderbar.";

?>

We are announcing UTF-8, but sending ISO 8859-1. PHP does not convert the data,
so the umlaut characters are not displayed correctly:

Die S??igkeiten sind ?berall ?nderbar.

We can work around the problem by actually sending UTF-8 instead of ISO 8859-1.
To convert the string we output, we use the function iconv(), which converts be-
tween different character sets:

<?php

// Stored as ISO8859-1

header(’Content-Type: text/html; charset=UTF-8’);

echo iconv("ISO-8859-1", "UTF-8", "Die Süßigkeiten sind überall änderbar.");

?>

In this example, the ISO 8859-1 string in the source code is converted to UTF-8,
which leads to correct display, since the used character set matches the headers we
send:

Die Süßigkeiten sind überall änderbar.

When we store the source file as UTF-8, we do not have to convert at PHP level:

<?php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

112 ” Migration Aspects

// Stored as UTF-8

header(’Content-Type: text/html; charset=UTF-8’);

echo "Die Süßigkeiten sind überall änderbar.";

?>

This program works with UTF-8 throughout, so again the output matches the
header, and the string is displayed correctly:

Die Süßigkeiten sind überall änderbar.

If we store the source code with a byte order mark, it will show up in the output:

ï»¿Die Süßigkeiten sind überall änderbar.

We can also convert the other way, and store UTF-8 but send ISO-8859 to the
browser:

<?php

// Stored as UTF-8

header(’Content-Type: text/html; charset=iso8859-1’);

echo iconv("UTF-8", "ISO-8859-1", ""Die Süßigkeiten sind überall änderbar.");

?>

This program will display the string correctly:

"Die Süßigkeiten sind überall änderbar.

Keep in mind that “down” converting from UTF-8 to ISO 8859 will only work when
the string contains only characters that also exist in ISO-8859. Let us try an example
with a character that does not exist in ISO-8859:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 113

<?php

// Stored as UTF-8

header(’Content-Type: text/html; charset=iso8859-1’);

var_dump("Total: Σ");

?>

Since the sum sign does not exist in ISO-8859, the conversion is not successful:

string ’Total: âˆ‘’ (length=10)

One could argue whether the conversion should fail in this case, instead of returning
nonsense characters.

Avoid converting text multiple times, which can happen by accidentally convert-
ing text that is already in the desired encoding. In the next example, we store our file
as UTF-8 and send UTF-8 to the browser, but still convert the string at runtime as if
it were ISO-8859-1:

<?php

// Stored as UTF-8

header(’Content-Type: text/html; charset=iso8859-1’);

echo iconv("ISO-8859-1", "UTF-8", "Die Süßigkeiten sind überall änderbar.");

?>

Since the string is already in UTF-8, the ASCII characters remain unchanged,
whereas all non-ASCII characters that are encoded with two bytes are interpreted
as two single ISO 8859-1 characters, and thus converted to nonsense:

Die ÃƒÂ¼ÃƒÂŸSigkeiten sind ÃƒÂ¼berall ÃƒÂ¤nderbar.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

114 ” Migration Aspects

Though PHP can deal with multi-byte string, as we have seen, the built-in string
functions like substr() assume that one character is always encoded by one byte. Let
us try our luck with calculating a substring of a UTF-8 encoded word:

<?php

// Stored as UTF-8

header(’Content-Type: text/html; charset=UTF-8’);

echo substr("üßSigkeiten", 0, 3);

?>

We would expect PHP to output three characters, but since the ü is encoded with two
bytes, the result only contains two characters:

string ’Sü’ (length=3)

As you can see, xdebug, which is responsible for counting the length of the string,
counts bytes and not characters. To avoid these errors, you must use the PHP exten-
sion mbstring, or use the string functions of the iconv extension. The advantage of
mbstring is that, when loaded, it overrides the native PHP functions and makes them
work with multi-byte strings. iconv, on the other hand, is enabled in PHP by default,
but requires to not use the native PHP string handling functions.

<?php

// Stored as UTF-8

header(’Content-Type: text/html; charset=UTF-8’);

var_dump(iconv_substr("Süßigkeiten", 0, 3, ’UTF-8’));

?>

Now the output is as expected, but again, xdebug counts bytes, not characters, so it
reports an incorrect string length.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migration Aspects ” 115

string ’Süß’ (length=5)

PHP 6, by the way, will be able to deal with multi-byte character sets out of the box.

Browser

The browser, one of the most important components of a web application was not
even displayed in the figure at the beginning of this chapter. There are various
browsers, but many of them are not very widespread. The most commonly used
browsers are Internet Explorer, Firefox, Opera, Safari, and Konqueror. Browsers send
HTTP requests to the server and render the HTML code that the server sends back.
Javascript, which in former years was often disabled for security reasons, has become
indispensable due to the AJAX boom. Today, many web sites and web applications
don’t work without Javascript.

HTML was never intended to be pixel-perfect. Different browsers may render
HTML pages differently, and also Javascript is not always guaranteed to behave iden-
tically on different browsers. Many factors like browser configuration, screen reso-
lution, color depth, installed fonts, and used font size can influence rendering of a
HTML page. All these factors are beyond our control from the PHP viewpoint, so we
will not deal with them any further.

Security

In its early days, the Internet was a friendly environment. Today, security is a very
important of every system and application, and firewalls play an important role in
most security concepts.

One or more firewalls can be placed between the browser and the server, limiting
access in various ways. If just one of the firewalls is too restrictive, your application
might not seem to work correctly. When migrating, I suggest to start in a clean and
safe environment without any firewall security, then adding security when you are
sure that your applications and services work as expected. It can be very difficult to
debug a problem caused by a firewall.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 4

Preparing the Migration

“Not the wind, but the sail determines the direction.” —(Chinese Proverb)

Steps to Preparing the Migration

This chapter deals with planning and preparing the migration. A migration is a com-
plex issue, and you can save yourself a lot of time and effort when you plan ahead
and proceed in little steps.

The first step is analyzing the existing application and environment. The various
aspects you have to keep in mind have been discussed in the previous chapter. An-
alyzing the existing PHP code will allow you to get a feeling for the code quality. The
better structured and modularized the code is, the easier it becomes to make local
modifications to the code without affecting the whole application.

The next step is to define the target system. In most cases, you will want to use the
current version of all software modules used. Sometimes, though, there are depen-
dencies between certain versions that must be taken into account.

Now you can break down the whole migration process into small steps, and priori-
tize them. Since the priority of some steps often depends on external influences, it is
not always easy to prioritize the steps. Keep in mind, that breaking down the project
into little steps is crucial, because this makes it easier to track down any problems
that you might encounter.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

118 ” Preparing the Migration

The Existing Application and Environment

In the last chapter we introduced the various software components that make up a
PHP system, and we have learned how they interact. Now it is time to a look at your
existing PHP environment and application to understand how the different compo-
nents are integrated. This information will be the basis for defining the target system
later.

While it is obvious which operating system is used, you should find out about the
exact version number and which patches, hot fixes and service packs are installed.
PHP is to a large extent independent from these operating system details, but it is
generally a good idea to use a similar operating system installation and configura-
tion on the target system, unless of course you plan to migrate to another operating
system or operating system version.

It is not always easy to find out about the operating system architecture and pro-
cessor of your system. On Windows, you can run systeminfo at the command line
to find out which processor your computer has. On Unix, use cat /proc/cpuinfo to
display information about the processor and system architecture. If you plan to mi-
grate to another operating system, choose one that is optimized for your system’s
architecture (see Chapter 3).

To find out about the MySQL version being used, call the MySQL executable at the
command line, using the switch -version:

> mysqld-nt --version

mysqld-nt Ver 5.0.27-community-nt-log for Win32 on ia32
(MySQL Community Edition (GPL))

This example shows the call and result on Windows; on Unix the executable file is
usually just called mysql. Alternatively, you can use a tool like phpMyAdmin to dis-
play information about the version and configuration of the database. Then, find
out which configuration files your databases uses. MySQL usually uses a configura-
tion file my.ini or my.cnf. Compare these to the default configuration files coming
with the MySQL distribution to find out about where the active configuration dif-
fers. When installing the target system, you will have to decide whether to keep the
default settings or use the configuration settings of your existing system.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Preparing the Migration ” 119

To find out about the web server version, and display additional information,
again call the executable file with additional command line switches. For Apache,
this is the file httpd on Unix and Apache.exe on Windows:

> Apache -v

Server version: Apache/2.0.59
Server built: Jul 27 2006 15:55:03

> Apache -V

Server version: Apache/2.0.59
Server built: Jul 27 2006 15:55:03
Server’s Module Magic Number: 20020903:12
Server loaded: APR 0.9.12, APR-UTIL 0.9.12
Compiled using: APR 0.9.12, APR-UTIL 0.9.12
Architecture: 32-bit
Server compiled with....
-D APACHE_MPM_DIR="server/mpm/winnt"
-D SERVER_CONFIG_FILE="conf/httpd.conf"
-D SUEXEC_BIN="/apache/bin/suexec"
[...]

The first call displays the server version, while the second call shows additional in-
formation about the options Apache has been compiled with. This tells you which
thread model and MPM Apache uses, and which configuration file is used.

The web server’s configuration file will tell you how PHP has been integrated into
the web server (see Chapter 3). In newer Apache versions, the configuration is often
split into various files that are included into http.conf.

For information about PHP, run this code in the web server:

<?php

phpinfo();

?>

You will not only see the exact PHP version number, but also the server API (SAPI)
PHP uses. The line Loaded Config File tells you which configuration file PHP is us-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

120 ” Preparing the Migration

ing, and the line Thread Safety tells you whether PHP is thread-safe. Normally, PHP
should be thread-safe.

The phpinfo() output also shows which PHP extensions are used and how they are
configured. To display a shorter list of PHP extensions, run

> php -m

at the command line. Keep in mind that the PHP configuration at the command line
need not be the same as the PHP configuration in the web server. PHP can not only
be configured in php.ini, but also in httpd.conf, .htaccess files and with ini_set()

at script runtime. To find out about the configuration PHP is actually running in, use
the function ini_get_all() (see Chapter 7).

Many migration problems are related to different PHP configuration of the existing
system and the target system, and some PHP applications modify the PHP configu-
ration at runtime, possibly only for certain directories.

In Chapter 3, we listed the most important PHP configuration settings. You can
compare the configuration your existing PHP runs in with the default configuration
file php.ini-recommended that comes with your PHP distribution.

The following program displays information about the user id, group and user
name of the user PHP and thus the PHP scripts are running under.

<?php

var_dump(getmyuid());
var_dump(getmygid());
var_dump(get_current_user());

?>

You should run this program in the web server and not at the command line, because
at the command line your operating system user name will be displayed.

Alternatively, you can create and save a file from a PHP program. The owner of this
file is the user executing the PHP program. In addition to the file owner, access rights
are very important, especially on Unix (see Chapter 3).

Now, search all directories in PHP’s include_path for code that is used by your ap-
plication. You will have to take this code into account when migrating the system.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Preparing the Migration ” 121

To find out about all the external dependencies of your applications, search the code
for the PHP function calls listed in Chapter 8.

Another kind of external dependencies are remote services your application might
use. To list these, you must search your code for all file access function calls and all
places where HTTP, XMLRPC, or SOAP clients are used.

There is a simple trick to get rid of include_path dependencies in your application.
Copy the contents of all directories listed in the include_path in a subdirectory of
your application’s root directory, for example lib. Then, at the beginning of your
PHP program, add:

ini_set(’include_path’, ’.’ . PATH_SEPARATOR . ’lib’.);

This will adjust include_path accordingly. Now your application has no more depen-
dencies on PHP code outside the your document root (the www, “htdocs”, or “www-
root” directory).

Now you can start analyzing which PHP extensions your application requires. A
good starting point is PHP_CompatInfo, which analyzes PHP source code and tries to
figure out which PHP extensions it requires (see Chapter 7). PHP_CompatInfo, how-
ever, does not take classes into account, but only function calls, so when the object-
oriented API of a PHP extensions is used, PHP_CompatInfo does not list the depen-
dency.

The Target System

You have now gained a first overview of your existing system. Next we will use this
information to define the target system we migrate onto.

In most cases, the latest version of all software components (operating system,
database, web server, and PHP) will be used, but in some cases when there are com-
patibility problems between certain components, you might have to choose an older
version.

You should start by listing the latest release version numbers of all used software
components. If there are no known problems in getting them to work together, this
list of versions should reflect your ideal target system. Should problems turn up later,
you might have to revisit this list and choose a different version of one or more com-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

122 ” Preparing the Migration

ponents to work around the problem. The goal is to find a set of software compo-
nents that work together in a stable and reliable way.

If your project allows it, you should use PHP as an Apache2 module. You should
not use CGI or FastCGI, except if your application is supposed to run on a shared
hosting server. If you run PHP as CGI or FastCGI for good reason, you need to have
a close look at all the file accesses of your application, and which access rights files
are created with, otherwise your application might not work correctly on the target
system.

Most PHP applications use third party code like PEAR classes, or frameworks.
When migrating, you must make sure that third party code runs on the target sys-
tem. There might be a more current version in use than the one your application is
using. If that is the case, you need to make sure that the API has not changed before
upgrading to the newer version. If the API of a component has changed, you must
adjust your code accordingly.

In Chapter 3 we learned how to output a list of PHP extensions installed on the
existing system. Compare this list with the minimum requirements PHP_CompatInfo

has created for you. Now you have to find out whether all required extensions still
exist for the current PHP version. Chapter 3 shows an overview of PHP extensions
that are no longer maintained, and lists possible alternatives.

Not all PHP extensions can be used together. It is not possible, for example, to use
xdebug with any Zend extension. If you have problems with a certain PHP extension,
you can consider replacing it by an external program or by PHP code. PHP code, of
course, will always be slower than a PHP extension.

{index target system!reducing complexity of}}Try to reduce the complexity of your
target system. At least while migrating, you should leave out all components that are
not really required. This includes PHP accelerators, optimizers, proxies, and security
measures like firewalls. This reduces the amount of possible sources of errors. It does
make your application slower and less secure, of course, but makes finding and fixing
of bugs much easier. After the migration, when the system has been stabilized, you
can add the complexity again step by step.

Let us assume that you have the following existing system:

• Windows 2000

• PHP 4.3.11
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Preparing the Migration ” 123

• Apache 1.3.39

• PHP is installed as Apache module

• the PHP extensions mysql, Session, and XML are used

• MySQL 4.0.12

• Turck MMCache 2.4.6

Windows 2000 is rather old. Since I (like many others) would not recommend using
Windows Vista in production, you should consider using Windows XP, or even better
switching to Unix. This would also save you the license cost of a Windows Server
operating system.

PHP 4.3.11 is very old. PHP 4.4 fixes a lot of problems, especially with reference
handling, so programs running on PHP 4.3 might not work properly on PHP 4.4. It
might be a good idea to upgrade PHP to 4.4 as a first step, and see how the appli-
cation behaves on a test system. This allows you to rule out differences in reference
handling as a source of errors when upgrading to PHP 5.

Apache 1.3.39 is (at the time of writing) the latest available version of the 1.3 se-
ries, but the newer 2.0 and even 2.2 series have been available for quite a while now.
Consider upgrading Apache to version 2.2.6 but keep in mind that the Apache con-
figuration has changed quite a bit since 1.3, so you will probably not be able to use
your 1.3 configuration file for Apache2 without modifications.

The mysql and Session PHP extensions are enabled in PHP 4 and 5 by default, so
there should be no problems with these. The XML extension in PHP 5, however, is
based on another library than in PHP 4, which also means that the extension API
is different in PHP 5. You will have to adapt your PHP code for the new extension
(see Chapter 8). Depending on the application, you could also consider using the
XMLReader or XMLWriter extension.

MySQL 4.0 is rather old as well. The current version is 5.0.45, which supports
stored procedures and triggers (see Chapter 3). Upgrading MySQL, however, is usu-
ally pretty seamless, so you will probably not experience considerable problems. You
will have to decide whether to use Unicode support of the database, and convert your
data accordingly (also in Chapter 3).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

124 ” Preparing the Migration

Turck MMCache is no longer under active development, as the author, Dmitry Sto-
gov, now works for Zend. Consequently, Turck MMCache is not compatible with cur-
rent PHP versions. Besides the fact that on the target system no PHP bytecode cache
should be used until you have stabilized your software and environment, it is prob-
ably a good idea to use the Alternative PHP Cache (APC) in the future. APC is open
source and developed by various well-known core PHP developers, so that compati-
bility to future PHP versions should be ensured.

Planning the Migration

To break down the migration into several smaller steps, you should now try to iden-
tify separate code modules of your application. If the code is already modular, this
is very easy. If not, try to use files, classes, commands or screens as the criteria
to break down the application into modules. Every third-party-class, -library and
-component should become a module of their own.

The goal of breaking down the application into modules is to be able to migrate the
application module by module. The better the isolation between the modules, the
easier they can be tested when migrating. If the application is not well structured,
you can consider improving the design by refactoring prior to migrating the code
(see Chapter 5).

Now list each module of your application. For each module, you can choose one
of the following three migration paths:

• Keep the existing code and solve the problems that turn up when migrating
one by one

• Clean up the code by refactoring before migrating

• Replace the module by another implementation, and test to make sure that
the application’s behavior did not change

The decision about which path to choose is not always final. Sometimes, problems
turning up while migrating the code might make you change your decision. An ex-
ample would be deciding to reimplement a module that does not work on the target
system after having spent some time trying to fix bugs without success.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Preparing the Migration ” 125

Now you must prioritize migrating the modules. If the application has several lay-
ers, you should work from bottom to top since this makes it easier to isolate any
occurring errors.

Third-party code is usually easy to migrate, since in most cases you only need to
update to the latest version. When the API has changed, either modify the applica-
tion code or write an adapter that translates the old API calls to the new API of the
third-party component. I would recommend starting to migrate libraries and third-
party components first, and test them in isolation.

Replacing implementations as mentioned above can be a useful tool to make mi-
gration easier. You can consider removing logging code, and use xdebug instead
when you need a log file (see Chapter 7). Code based on the XML extension in PHP 4
or another extension that is not maintained any more, must be rewritten for another
extension, unless you can find an alternative PHP implementation.

Migrating an application is a good reason to use more third-party code. Consider
replacing custom libraries and classes by code from mainstream frameworks. This
means that you will have to adapt your code, but reduces the amount of code you
will have to maintain in the future.

Keep in mind, however, that most current frameworks require at least PHP 5. The
same holds true for current versions of PHPUnit. If you choose to use such code, you
cannot run your application on PHP 4 any more, which is one of the reasons why you
will need two test systems, as we will see later.

When migrating your own code, you should also work bottom-up and start with
the main functionality of the application. Focus on the success cases rather than the
obscure edge cases. You will have to test edge cases at some point, but try to resist
the temptation of testing more and more edge cases at first.

Before you can start migrating the PHP code of your application, you have to de-
cide how to you want to migrate the environment. When you migrate the whole
environment in one big step, you do not know where to relate potential errors to. It
may thus be better to migrate the environment in a series of smaller steps, each of
which is can be a full migration cycle.

When you plan to migrate to another operating system, you should do so in a sep-
arate step. Chapter 3 explains the most important differences between the major
operating system families. Also as seen in Chapter 8, when you switch the database
vendor, you should do so in a separate migration step as well. Upgrading to a newer

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

126 ” Preparing the Migration

version of the same database is usually less problematic. Migrating the web server
is usually not a big issue as well, so you can migrate the web server when migrating
PHP itself.

It can be a good idea to migrate the whole environment except PHP in one step,
fix the problems that turn up, then migrate PHP and adjust the PHP configuration
on the target system. Many problems that occur while migrating are due to different
configuration rather than the different PHP version used.

I would recommend working towards running your application in a default con-
figuration (see Chapter 5), since this configuration has been tested the most and
ensures maximum portability.

To sum it up, the example system given above could be migrated using the follow-
ing steps:

• Deactivate Turck MMCache

• Migrate from Windows to Linux, still using PHP 4.3

• Migrate to MySQL 5

• Migrate to PHP 4.4 on Apache 2.2

• Migrate to PHP 5.2

• Activate APC

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 5

The Migration

“A bird does not sing because it has an answer. It sings because it has a song.”
—(Chinese Proverb)

Now we will start to migrate the PHP application. You should start by setting up
two test systems, to be able to test your application in the existing environment and
in the target environment in parallel. By comparing the test results on both test sys-
tems, you can track down possible sources of errors.

The next step is identifying relevant test cases. Start off by creating a list of main
features of your application. Usually, each feature will need several test cases, to test
the business logic for the normal case and the most important errors.

To successfully test the application, you will need test data. It is not always easy to
identify and create test data, especially when you work with sensitive data like credit
card or cell phone numbers.

Usually, there are not too many automated tests for existing applications. As you
probably will not want to repeatedly test your application by hand, you should create
automated tests.

To reduce the amount of necessary code changes, and thereby also reduce the
probability of introducing bugs while migrating the code, you might want to refac-
tor the code. In practice, you will probably not refactor code until you encounter
problems when migrating.

Migrating the code comprises several steps. First of all, you need to make sure
whether the existing code always works as expected or if there are errors under cer-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

130 ” The Migration

tain conditions. I would recommend fixing these errors first, so that you can differ-
entiate between existing errors and those introduced in the migration process.

Now is the time to replace or reimplement application modules. Sometimes, it is
less work to reimplement a module than spending hours tracking down bugs and
trying to fix them.

When you run the application (or certain parts or modules of it, respectively) on
the target system, you can encounter various problems that you have to fix one by
one. Common errors are name conflicts, case problems, and problems related to
differences between the PHP versions.

First up, you need to fix the errors that prevent the code from actually being exe-
cuted. Next, you should modify the code so that no notices, warnings, and errors are
displayed. As every PHP error message indicates a potential problem of the code, so
you are taking great risk of running into trouble later when you ignore them.

Now your application should run in the target environment without runtime er-
rors. This does not mean, however, that the application always works as expected,
or works as it does in the old environment. You must now try to find the all bugs that
do not lead to PHP errors on the target system.

Another optional, but strongly recommended step is to make your application
work in a default PHP configuration. This makes it more portable and will also make
the next migration easier.

To make sure that the application does not only work as expected on the test sys-
tem, but also on the live system, you must perform integration testing. While we
have tried to keep the test system as simple as possible, to reduce the amount of
possible error sources, you should now test the system with all components to in-
crease performance and security added to it.

The best way to migrate a live system is not to touch the existing system, but in-
stall the new environment on new hardware. Switching from the existing production
system to the newly installed system can be done in two ways: either you switch at
once, or you run both systems in parallel for a while and gradually migrate.

Preparations

To successfully migrate, you need two independent test systems. This allows you to
compare the test results on both systems. The first test system represents the existing

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

The Migration ” 131

system your application currently runs on, while the second test system represents
the target system you are migrating to.

You should never use live systems for testing, as you will have to tweak the system
configuration, which is likely to cause problems with your live application. By testing
on a live system, you risk downtime and corruption or even loss of data.

Consider using virtual machines as test systems. Virtual machines are slower than
physical hardware, but for the tests this should not really matter. An advantage of
using virtual machines is that you can store snapshots of the installed systems, and
instantly rollback to a saved snapshot if you have run into serious trouble.

The First Test System

When installing the first test system, you should leave out all unnecessary com-
plexity like PHP accelerators, caches, and security measures like firewalls, unless
of course they are required by the application. You should also not use any proxy
servers, as they do not always play nice with rapidly changing files, and sometimes
serve stale content, which can lead to hard-to-reproduce errors on the client.

If you use a virtual machine as test system, you might be able to convert the exist-
ing physical live system into a virtual machine. Some software vendors offer tools for
that. As a fallback, you can always install the test system from scratch. In that case,
make sure that you use the same versions of all software components. Any deviation
could lead to errors or result in altered behavior of the application.

If you cannot set up a test system that resembles the existing system, for example
because you have no more access to the software components that were used, you
can try cloning the existing live system. To make this work, you will need to use
identical hardware for the test system.

Cloning systems is not always an easy task. When cloning Windows, for example,
you must change the system identifier (SID), at least when you plan to run both sys-
tems in the same network. Quite often, the system configuration of the cloned sys-
tem has to be adapted, for example because the MAC address of the network adapter
has to be changed.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

132 ” The Migration

The Second Test System

The second test system is usually easier to install, as you will use the latest version
of all existing software components in most cases. Make sure to meticulously docu-
ment the installation of the test system. I would recommend reinstalling the test sys-
tem based on the documentation you have created, to make sure the documentation
is accurate. You will later have to install the live system based on this documentation,
so spending more time in getting the installation process right and documenting it
will definitively pay off on the long run.

The second test system should be kept as simple as possible. While testing, per-
formance and security are not really important. After you have installed both test
systems, you should store all source codes and binary installation files that you have
used in your version control system. This will allow you to reinstall the exact same
system at any point in the future, if need be.

Testing

Before you start testing, make sure that all PHP error messages, warnings and no-
tices are displayed. Activate the php.ini setting display_errors on the test system
(see Chapter 8 for more information) and configure PHP to display all errors by set-
ting error_reporting to the value 2147483647. This ensures that all PHP errors are
displayed, even in future PHP versions.

Now, check whether your application defines a custom error handler (see Chap-
ter 8 for more information). If it does, you should deactivate this error handler by
commenting out the set_error_handler() call, or make sure that the custom error
handler does handle and output every error message. Also, remove all @-operators
preceding function and method calls from the code, as they suppress display of error
messages.

You should consider installing the PHP extension xdebug. xdebug displays the call
stack along with every error message, and optionally even displays the current values
of local and superglobal variables (see Chapter 7 for more information). This can
greatly simplify tracking down bugs.

Configure both test systems as described and make sure that the command line
PHP configuration does not differ from the PHP configuration in the web server.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

The Migration ” 133

Current PHP versions display E_STRICT or E_DEPRECATED errors when deprecated
code constructs are used. These errors do usually not indicate to altered or even
undesired program behavior, but point out a future migration problem. If you are
short on time, you can ignore the E_STRICT errors for now. I would not recommend
doing so, though, as you only push the pending problems ahead.

Chapter 8 explains the errors that commonly occur when migrating PHP code. Use
the index of this book when you encounter an error message on migration.

Finding Relevant Test Cases

It is impossible to thoroughly test an application. As we have seen in Chapter 2, even
a small application has too many possible execution paths to test them all. What’s
more, some error conditions like lost database connections or a hard disk that ran
out of space are hard to simulate.

Focus on testing the application’s functionality rather than too many obscure error
conditions. Start by creating a list of the application’s features. For a typical (simpli-
fied) Web 2.0 application, this list could look like this:

• Login

• Logout

• Create user account

• Forgot password

• Edit user profile

• End membership

• Create article

• Edit article

We will have to test all these basic features of the application. If one of these features
does not work, the application is not usable. In the context of this example, we refer
to article as any piece of content a user generates, be it an article, a blog entry, or a
comment.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

134 ” The Migration

Most features will require multiple tests. To test the login, for example, you will
need to write at least two tests, one to make sure that login with valid credentials
work, another one to make sure that login with invalid credentials does not work.

When creating an article, there are several preconditions that must be met (and
tested). Let us assume users can only create articles when the administrator has
given them the right to do so. We further assume that articles containing a link must
be moderated, and that commenting an article must be explicitly enabled by the
article’s author.

This leads to various scenarios that need to be tested when creating an article:

• A user is allowed to create an article, and creates an article

• A user is not allowed to create an article, and tries to create an article

• A new article without links is displayed without moderation

• A new article with links must be moderated before it is displayed

• A user comments an article that allows comments

• A user tries to comment an article that disallows comments

To fully test the application, we would also have to test any other possible execution
path, or at least all the combinations allowed by the application. If, for example,
a user is not allowed to create articles, there is no question whether the comment
contains links.

In practice, you will probably try to create test cases for the six listed scenarios.
Bear in mind, however, that you are leave possible execution paths untested, which
could result in an undetected error. Should such an error show up, you should create
an additional test case.

Creating Test Data

To test software, test data is required. When testing the login process, at least one
user account with a valid password must exist. To comment an article, this article
must be present. Ideally, you can test with live data. You should never use the live
database to test, though, but create a test database from a dump of the live database.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

The Migration ” 135

If the business logic is separated from data access in your application, you can
create test data by API calls, and will not have to worry about SQL or the details of
your database structure. The advantage of this solution is that you can recreate the
test database a needed, even when the database structure has changed.

If you migrate an application without clear separation of business logic and data
access, you will have to use the application as a whole to create test data. Consider
using Selenium (see Chapter 7) to automate the creation of test data.

Keep in mind that testing with synthetic test data will usually result in different
errors than when working with live data. Live data are not always consistent and
correct, even when they fulfill all database constraints. An example would be stored
form input that has been validated by an older version of the application that might
have used less strict validation rules than the current version does.

There are also non-technical reasons why live data cannot be used for testing.
Sometimes, privacy concerns make testing with real data impossible. If third parties
are involved in the migration, there might also be legal issues with granting them
access to real customer data like credit card numbers.

In some cases, the data can be made anonymous, but this is not always easy. If the
application uses MX lookups to make sure that email addresses are valid, you cannot
use fake email addresses for testing. When the application sends SMS or ringtones,
you will probably need valid cell phone numbers, at least for end-to-end testing.
Using mock objects (see Chapter 3) does help, but does not solve the legal problems
of testing with live data.

Creating Tests

Let as assume our fictitious object-oriented Web 2.0 application has a class Article

in its business logic class. The controller CreateArticle creates an article using input
data from a Request object.

To test this part of the application, you can either create functional tests or unit
tests. Unit tests are usually easier to create and maintain, since they do not need a
complex test fixture. Functional tests require the full application with a test database
containing sensible test data. This makes functional tests more complex and more
difficult to manage.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

136 ” The Migration

The following pseudo code shows how a unit test for the test case described above
could be implemented:

<?php

function ArticleTest extends PHPUnit_Framework_TestCase
{
protected function setUp()
{
$this->user = new User(’John Doe’);
$this->user->setPassword(’*****’);
$this->user->allowComments(true);

}

public function testCreateArticleAllowed()
{
$this->article = new Article($this->user);
$this->assertTrue($this->user->has Article($this->article));

}

public function testCreateArticleForbidden()
{
$this->user->allowComments(false);

try
{
$this->article = new Article($this->user);
$this->fail(’Could create an article though disallowed’);

}

catch (CannotCreateArticleException $e) {}
}

}

?>

In this example, we assume that data storage is decoupled from the business logic so
that we do not have to deal with storing the created objects.

In the first test, we check whether a user can create an article. The assertion checks
whether the newly created article is linked to the user.

In the second test, we disallow creating an article, then try to create one. We expect
an exception to occur. Should this not be the case, the test has failed.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

The Migration ” 137

Unit tests with PHPUnit are not limited to object-oriented code. Testing a proce-
dural application requires a little more effort to set up and tear down the test envi-
ronment, but testing basically works in the same way.

The following example shows pseudo code of the first test case for a procedural
application:

<?php

function ArticleTest extends PHPUnit_Framework_TestCase
{
protected function setUp()
{
$this->dbConn = db_connect(...);
restore_database($this->dbConn, ’default_testdb.sql’);
create_user($db_conn, ’John Doe’, ’*****’, ...);

}

protected function tearDown()
{
delete_database($this->dbConn);
unset($this->dbConn);

}

public function testCreateArticle()
{
$this->assertTrue(create_article($this->dbConn, ’John Doe’));

}
}

?>

In this example, we assume that the function create_article() creates an article in
the database. The database connection is passed to the function as a parameter. The
function returns true when the article has been successfully created.

If you do not want to rely on the return value of create_article() for your test, you
can actually load the article from the database in testCreateArticleAllowed().

Before the test begins, we create the test environment in the setUp() method. By
calling restore_database(), we recreate the test database from a SQL dump that has
been created from an initialized database (see Chapter 3).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

138 ” The Migration

When the test is done, the method tearDown() is called. This method deletes the
test database (or its contents, respectively), so that we can fill it with new test data
for the next test that is executed.

You should try to avoid making unit tests dependent from the database. The
database does not only make the tests rather slow, but also prevents you from run-
ning multiple tests in parallel, except if you use a separate database for each user or
test runner.

If the SQL statements your application uses are portable, you can consider using
SQLite for testing. SQLite is an embedded database that requires no installation or
configuration. By default, SQLite is part of every PHP 5 installation.

Refactoring

If you are lucky, your existing PHP code will work on the target system without any
changes. In most cases, however, there are various problems to be solved when
migrating to a new environment. Solving these problems usually means making
changes to the PHP source code.

If the application contains similar or identical code in multiple places, you will
have to repeatedly make the same or very similar changes to the code. Since any code
change bears the risk of introducing an error, it is a good idea to try to minimize the
number of necessary changes by refactoring the code so that you only need to make
each change once.

Refactoring can help you make existing code more readable and easier to main-
tain. Keep in mind that refactoring is not adding new features. Ideally, automated
tests should be in place to make sure that the refactored code still works as expected.
In practice, most existing applications do not have automated test, so that you might
have to test manually, unless you create automated tests as you refactor.

Eliminate Redundant Code

Redundant code does increase the size of your code base and forces you to make the
same changes more than once. If you encounter identical or similar code, create a
function or method.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

The Migration ” 139

The following example shows how you can refactor redundant code to a function.
As always, the example is greatly simplified, and, as it is, would be vulnerable to an
SQL-Injection attack:

<?php

[...]

$q = $db->query(’SELECT quantity FROM data WHERE
item=\’’ . $some_item . ’\’’);

$quantity = $q->current(SQLITE_NUM);
$quantity = $quantity[0];

[...]

$q = $db->query(’SELECT quantity FROM data WHERE
item=\’’ . $_GET[’item’] . ’\’’);

$db_result = $q->current(SQLITE_NUM);
$number = $db_result[0];

[...]

?>

Let us create a function that takes the name of the article as parameter:

<?php

function get_quantity($aItem)
{
$db = new SQLiteDatabase(’report.sqlite’);
$q = $db->query(’SELECT quantity FROM data WHERE [...]
$result = $q->current(SQLITE_NUM);
return $result[0];

}

?>

Now we can replace the redundant code by a function call:

$quantity = get_quantity($_GET[’item’]);
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

140 ” The Migration

Shorten Code Blocks

Eliminating redundant code is a first important step towards a better structured ap-
plication. In the second refactoring step, you should shorten code blocks.

There are no fixed rules as to how long one code block should be. As a rule of
thumb, one function or method should fit on the screen without scrolling.

Another good rule is that every programmer must be able to understand what a
code block does within 30 seconds. If it takes longer than that, the code is too long
or not self-explaining.

Separate Different Concerns

Long code blocks usually deal with different concerns. At the application level, pre-
sentation, program logic and data storage should be separated. At the function and
method level, different functionalities like add, modify and delete should be sep-
arated. Separated concerns make programming easier, since the programmer can
focus on one single aspect.

The following example from an inventory management system mixes presenta-
tion, logic, and data access:

<?php

$q = $db->query(’SELECT * from data ORDER BY ’ . $order);
print ’<table>’;

print ’<tr><td>Item</td><td>
Barcode</td><td>
Shelf</td><td>
Quantity</td></tr>’;

while($q->valid())
{
$r = $q->current(SQLITE_ASSOC);

print ’<tr>’;
$first = true;

foreach ($r as $key => $value)
{
if ($first)

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

The Migration ” 141

{
$item = $value;
$first = false;

}

print ’<td>’ . $value . ’</td>’;

if (’quantity’ == $key) $sum += $value;
}

print ’<td> [<a href="?sort=’ . $order . ’&action=add&item=’ .
$item . ’">+]</td><td>[<a href="?sort=’ . $order .
’&action=remove&item=’ . $item . ’">-]</td>’;

print ’</tr>’;
$q->next();

}

print ’<tr><td></td><td></td><td>Total:</td><td>’ . $sum .
’</td></tr></table>’;

?>

To separate the different concerns, we encapsulate the data access in a function:

<?php

function get_data($aSort)
{
$db = new SQLiteDatabase(’report.sqlite’);

$q = $db->query(’SELECT * from data ORDER BY ’ . $aSort);

$result = array();

while($q->valid())
{
$result[] = $q->current(SQLITE_ASSOC);
$q->next();

}

return $result;
}

?>
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

142 ” The Migration

The business logic in our example is not really complex, as only the total number
of items is calculated. Nevertheless we encapsulate this business logic in another
function:

<?php

function get_total()
{
$db = new SQLiteDatabase(’report.sqlite’);

$q = $db->query(’SELECT SUM(quantity) from data’);
$result = $q->current(SQLITE_NUM);

return $result[0];
}

?>

Now we can modify the original code to use both functions. The remaining code is
only presentational, so we have clearly separated all three concerns:

<?php

print ’<table>’;

print ’<tr><td>Item</td><td>
Barcode</td><td>
Shelf</td><td>
Quantity</td></tr>’;

foreach (get_data() as $r)
{
print ’<tr>’;
$first = true;

foreach ($r as $key => $value)
{
if ($first)
{
$item = $value;
$first = false;

}
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

The Migration ” 143

print ’<td>’ . $value . ’</td>’;
}

print ’<td>[<a href="?sort=’ . $order . ’&action=add&item=’ .
$item . ’">+]</td><td>[<a href="?sort=’ . $order .
’&action=remove&item=’ . $item . ’">-]</td>’;

print ’</tr>’;
}

print ’<tr><td></td><td></td><td>Total:</td><td>’ . get_total() .
’</td></tr></table>’;

?>

Migrating

Now we are getting serious. Two test systems are available, one a mirror of the ex-
isting system, the second one a (possibly simplified) version of the target system.
Install your application in both test systems and run it. If you have no automated
tests, consider installing Selenium IDE (see Chapter 7), a Firefox plugin allowing you
to perform capture and replay testing in Firefox.

Instead of recording one big test case, you should break down the tests into a num-
ber of small test cases. You can use PHPUnit to run Selenium tests, and the build
automation tool phing (see Chapter 7) to run all tests automatically, whether they
are plain unit tests or functional Selenium tests.

In essence, migration is about answering the question, whether the application
still works as expected after changes have been made to the code. There are three
kinds of possible errors.

The first kind are syntactical errors that prevent PHP from compiling the applica-
tion’s source code to executable code. You should run a lint check (as discussed in
Chapter 7) on all PHP files of the application to make sure the PHP code still com-
piles in the target environment.

The second kind are runtime errors. As we all know, various errors can occur at
runtime, even though the code is syntactically correct. An example for a runtime
error would be trying to instantiate a non-existing class.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

144 ” The Migration

The third kind are errors in the program logic that account for spurious results.
Such errors can occur when the behavior of certain PHP constructs has changed
between releases. Since they usually do not trigger PHP error messages, they can
be hard to find.

The best way of finding these logical errors is to compare the program results of
both test systems. When working with floating point calculations, the results may
not be exactly the same, but be within a certain bandwidth. Another possibility is to
compare trace logs (see chapter 7) created on both systems.

Fixing Existing Bugs

When migrating, the first step should be to fix any existing bugs in the application.
This is not absolutely necessary, but a good idea to do, as it makes it easier for you to
find any errors related to the migration.

Test the application in the first test system, which represents the existing environ-
ment. Write unit tests so that at least the main application functionality is covered
by unit tests. Though it can be tempting to write test cases for rare edge cases, you
should put the focus on the main functionality.

If your application still runs on PHP 4, you cannot use the current version of PH-
PUnit for testing. You could use an old version of PHPUnit, at least for simple tests,
or use SimpleTest, which also runs on PHP 4.

In addition to the unit tests, you can use Selenium to test the application as whole.
Tests that were recorded with Selenium IDE can be replayed with PHPUnit, on either
of the test systems. Together with Selenium, you can use PHPUnit on a PHP 5 system
to run tests on a PHP 4 system.

Before starting with the actual migration, you should fix all pending bugs and
problems in the application. The code should not emit any errors, warnings or no-
tices at all (see Chapter 8). If you plan to replace certain modules of the application,
there is of course no need to fix anything there right now.

If you decide not to fix anything now, you should document any existing problems,
to make it possible to distinguish between these and problems that are caused by the
new environment, or have been introduced while migrating the code.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

The Migration ” 145

Replacing Modules

By now you probably have a list of modules that you want to replace with different
implementations. Now is the time to replace these modules one by one. If, at any
point in the future, you feel that you should replace another module rather than
spending time fixing bugs, do so.

When replacing components, the replacements will probably have a different API.
You can either modify the code of your application to use the new API, or write an
adapter that provides your application with the existing API, and translates these API
calls to use the new component internally. I would suggest modifying the application
code if there are only few calls to the component’s API, and write an adapter if the
component is extensively used.

Fixing Syntax Errors

The most obvious error messages when migrating are the fatal errors that occur at
compile time. If the code used to work fine in the existing environment, all problems
can be attributed to the change of the environment.

As already mentioned, run a lint check to find syntax errors (see Chapter 7 for more
information). Depending on the PHP configuration, the lint check will also display
E_STRICT errors. To automate the lint check, you can use phing and create a fileset
comprising of all PHP source files.

Fixing All PHP Error Messages

The PHP source code should compile without errors now. This does not mean, how-
ever, that the code does not output any error messages. Since every PHP message
indicates a potential problem that could subsequently lead to errors, you should not
ignore any of these messages.

There are some exceptions to the rule, though. Some PHP messages are generated
in rare edge cases, like the PHP warning that no connection to a database is possible.
In this case, preventing this message would probably not be worth the effort. Do not
use the @ operator, though, since it could suppress other and more important error
messages as well. In practice, making sure that your code does not omit any PHP
messages in the normal case should be sufficient.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

146 ” The Migration

Always process messages in the order they occur, since often one problem subse-
quently leads to more errors. Fixing the original problem will often remove not only
one, but multiple PHP messages. Remember to always rerun the tests after modify-
ing the code.

I would recommend adding an assertion to all Selenium tests that checks for any
PHP messages in the result HTML. Since you should have configured your test sys-
tems to display all messages as part of the HTML output, all PHP errors should al-
ways be displayed, thus leading to a failed test.

Fixing Logical Errors

Unfortunately, a program that does not omit any PHP errors, warnings, or notices,
does not necessarily work as expected. In various situations, like a regular expression
that is too complex, no PHP error message is displayed, though the program will
continue with a bogus result.

Compare tests on both test systems. Using Selenium, you can store each HTML
page the application has created and compare them, or create a trace log of your
Selenium tests and compare these.

You can even consider using the test results of the first test system as expected
results for the tests on the second test system. This way, you can not only compare
HTML pages, but also serialized computational results, or even database content.

Depending on the application and the data, there might be certain deviations. As
already mentioned, results of floating point calculations can differ from system to
system. In that case, set a tolerance level of 0.000000001, for example, and ignore
any deviations that are smaller. Other examples for allowed differences would be
timestamps or random data.

When migrating PHP 4 code that uses references, you should carefully test whether
the application’s behavior has not changed. Contrary to common belief, references
in PHP do not necessarily save memory, but can have the opposite effect. See Chap-
ter 8 for more information.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

The Migration ” 147

Normalizing the PHP Configuration

Your application should now work flawlessly on the target system, but still use the
PHP configuration of the existing system. If possible, you should now adapt your
application so that it runs in a default PHP configuration.

This last migration step is optional, but I would strongly recommend tak-
ing the time to go this additional mile. Try to run your application in the
php.ini-recommended configuration, which should by default be distributed with PHP
(at least on Windows). Running an application in the default configuration ensures
maximum compatibility to other PHP environments.

You should at least make your application independent from the following php.ini

settings:

• ze1_compatibility_mode

• allow_call_time_pass_reference

• register_globals

• magic_quotes_gpc

• magic_quotes_runtime

• magic_quotes_sybase

• register_long_arrays

• safe_mode

• short_open_tags

All these settings will be removed in PHP 6, so that you can complete the first step
of your migration to PHP 6 today. Refer to Chapter 3 for more information about the
individual php.ini settings listed here.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

148 ” The Migration

Migrating the Production System

When you have gained enough confidence that your application runs flawlessly in
the new environment, it is time to put the migrated application into production.

There are different approaches for this. Either you have an additional server that
replaces the existing live server, or you have to update the live system, which I would
not recommend.

When special or complex hardware is used for the live system, though, it is not
possible to buy an identical second system. When you update the live system, make
sure you have a fallback position in case the update fails. Before you start, make sure
that it is possible to restore the system backup, otherwise you might have to reinstall
the system from scratch in case the update fails.

Now you must develop an update procedure. Document each step, ideally by
working on a virtual machine with a configuration similar to the existing live sys-
tem. Store snapshots so that you can rollback to a defined state in case anything
goes wrong (see Chapter 7 for more information).

Having updated the test system, test the application in the new environment. If
no problems show up, you should repeat the whole update according to the docu-
mentation you have created, to make sure the procedure works for you.

Usually, you should not care about performance and security on the test systems,
to reduce complexity and thus the number of potential sources of errors. When mi-
grating a live system that works under high load, with a large number of users, or
with special security requirements, it may still be necessary to deal with performance
and security from day one. Sometimes there are non-technical reasons like organi-
zational or legal rules that require a certain level of security.

To make sure that the application does not only work on the test system, but also
on the live system, an integration test is required. To do this, add the required mea-
sures to increase security and performance to the second test system and test the
application again. When you use Selenium tests, it is particularly easy to just run
the tests again. There are some limitations to Selenium tests that are described in
Chapter 7.

A very important aspect to focus on in the integration test is the backup and restore
process. Without a working backup and restore process, you are sooner or later very
likely to run into trouble.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

The Migration ” 149

When updating an existing live system, you will have to accept downtime for your
application. If you cannot afford any downtime, you will have to use a second server
hardware. Another advantage of a second server is that the system on which you
run your integration test matches the live system, as opposed to running integration
tests on a test system that is similar to the live system. The latter case always bears
the risk new problems surface when you go live.

When two systems are available, there are two ways of going live. You can either
switch from the old system to the new system at a certain point. This requires trans-
ferring the data between systems. To do this, write a migration script and test it
thoroughly, before you actually go live.

As we have already seen in Chapter 3, it is not always easy to create a consistent
database backup. The same holds true for a consistent migration of all data in a
database. If some downtime is acceptable, you can create a consistent database
backup, then transfer the data to the new database or convert the existing database
accordingly.

If absolutely no downtime is acceptable, you can consider running the old and
new version of the application in parallel on the same database instance. Of course,
this will only work if you have decided to migrate the database separately from the
application itself.

The second possibility of going live with the new system is by gradual migration.
In this case, the old and new system run in parallel for a certain time. From a tech-
nical viewpoint, is it much more difficult to migrate the data from the old to the new
system, but you can migrate without downtime.

Depending on the application, you could consider directing all new customers to
the new server, while existing customers still work on the old server. You can even
offer to let the user choose when their account and data is migrated to the new server,
which makes the system unavailable for some time, but just for this one user.

Sometimes, both application versions are run in sync, which means that all user
actions in one application are replayed in the other application. In this case, every
application has their own, independent database. The advantage is that you can
continue working with just one of the servers at any time. In practice, however, it
can be extremely difficult to keep the data kept in both applications in sync.

When migrating web sites, there is a very elegant way of migrating. Keep the exist-
ing version untouched and install the new version on a second server. Then, change

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

150 ” The Migration

the DNS records to point to the new system. Until this DNS update has been propa-
gated throughout the Internet, users will either be directed to the old or new system,
but they will not experience any downtime. To speed up distribution of the updated
DNS records, you can reduce the TTL (time to live) of the DNS records prior to mak-
ing the DNS update.

This approach, though, does not work in every case. Since you cannot predict
which server a user session will be directed to, you must make sure that the data of
both servers is in sync when working with sessions.

Finishing the Migration

You are almost done. Your PHP application runs in production in the new environ-
ment. Make sure that during the first days, the developers and administrators are
always reachable. They can usually fix all the smaller problems that occur in the
first days of production rather quickly. Without proper attendance, however, a small
problems can turn into a major catastrophe.

If the system is stable and has been running for several days without problems, you
can start to relax. Keep in mind, though, that there is always the odd error that just
sits there waiting to surface at some point in the future. Depending on the applica-
tion and the frequency of usage, it can be weeks or even months until this happens.
Or, if you are lucky, it will never happen.

One of your most important tasks now is to make sure that the backup actually
works. Restore the system from the backup on a separate test system and run a full
test of the application. Do not forget to document the restore procedure, so that any
of your colleagues can restore the system in case of a catastrophe, even when you are
not available.

If you have left out complexity from the system, you can now start adding com-
plexity to the system again. Work in small steps and make one change to the system
at a time, otherwise you will not be able to determine the source of a problem. After
making a change, allow some time to see whether the system still works flawlessly,
and to straighten out potential problems. When you are sure that everything works
fine, make the next change.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 6

After the Migration

“Be not afraid of growing slowly, be afraid only of standing still.” —(Chinese
Proverb)

What’s Next?

Now that your application has been migrated, and runs smoothly in the new en-
vironment, you should allow yourself some time to reflect upon what you have
learned, and how to apply this to future projects.

There are some basic principles that you should keep in mind when program-
ming. Doing so will help you avoid common migration problems. Remember that
the question is not if another migration is due, but when it is due.

Modular Programming

Regardless of whether you are programming object-oriented, procedural, or hybrid,
a modular application is always easier to test. Modular applications also greatly sim-
plify debugging. Changes to the code tend to be local, and do not affect the rest of
the application. If the API of a module remains unchanged even though you changed
the implementation, you have reached your goal.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

154 ” After the Migration

Establish Coding Guidelines

The more developers are involved in a project, the more important coding guidelines
(and sticking to them) becomes. The goal is to have the code of a project look and
feel the same, regardless of which programmer has written it.

Coding guidelines do not only specify how source code should be formatted, but
also define naming schemes, disallow certain code constructs, and specify a set of
PHP extensions that the project relies on.

To establish coding guidelines, you do not have to reinvent the wheel. You can
reuse existing coding guidelines that are available on the Internet1. These docu-
ments are a good starting point for defining your own rules. You can ask your favorite
search engine for “php coding standard” or “php coding guidelines” and will find a
cornucopia of material.

Defensive Coding

It is really easy to write a PHP program. Writing a good PHP program that is stable
and portable to other PHP systems, is likely to run in future PHP versions, is not
always easy. Using many hacks in the code is not a sign of quality, even though some
programmers think different. There may be a time and place for innovative and crazy
hacks, but they should definitely not appear in a business application. You should
always code defensively.

It is better to check once too often whether all input and parameters are present, all
objects have the correct class, and data in the database is consistent. Of course, you
ultimately have to strike a balance, otherwise your business logic vanishes between
all the plausibility and error checks.

Often, programmers argue that their programs are optimized for speed, and thus
do not perform extensive input and parameter checking. Since a few lines of PHP
code will make the program just a few microseconds slower, you are usually better

1Examples of coding standards include Squiz.net: MySource Matrix Coding Standards, 2006,
(http://matrix.squiz.net/__data/assets/file/0008/431/coding_standards.pdf), Zend Inc.: Zend
Framework PHP Coding Standard, 2007, (http://framework.zend.com/manual/en/coding-standard.html),
or PEAR Documentation Group: Coding Standards, 2007, (http://pear.php.net/manual/de/standards.php)

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

After the Migration ” 155

off in having the application run a little slower than spending more time hunting and
fixing bugs. Developer time is more expensive than computing time.

Defensive coding also means that you should not use undocumented features.
Many migration problems occur because programmers relied on undocumented
features. It is not guaranteed that they are still available in future PHP versions, or
that PHP’s behavior is still the same. Changing the behavior of undocumented fea-
tures is not bad intent by the PHP developers, but simply a result of the fact that no
test exists for that feature, so nobody (except the one relying on the feature) will ever
notice that something has changed in a new PHP version.

Do Not Be The First

When you do bleeding edge development, you will always face technical problems
that you probably have to solve by yourself. Partially, the open source world exists
because users gain (sometimes painful) experience with a product, and then pass
their experience on to the community. When the community process works, this
experience helps to make the product better, so that everybody benefits.

If you are not forced to do bleeding edge development, though, you should stay
behind a little, so that you can benefit from the know-how and experience others
have gained. Especially in the open source environment, development processes
are very dynamic, so time schedules and feature lists should always be taken with a
grain of salt.

For example, namespaces have originally been announced for PHP 5, but did not
make it into the final release. PHP 6 has originally been announced for end of 2006,
then for end of 2007, then PHP 5.3 took its place, which originally had been an-
nounced for the beginning of 2008, but has still not been released at the time of this
writing.

Unfortunately, there are many examples of developers that relied on announced
features or preview versions, only to realize later that they would have to change
their plans. To keep the technical risk of your project low, you should consider to not
always use the latest software version, but wait to give others some time to find and
fix errors before you encounter them.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

156 ” After the Migration

Continuous Refactoring

Even the best programmers will not come up with perfect solutions and ideal soft-
ware architectures in every project. Many design problems can be accounted to the
ever-changing requirements, of course, but even in a perfect world, systems and pro-
grammers evolve.

If you read code that you have written a while ago, you will often see pieces that
could be improved. When refactoring, you change existing code to make it easier to
read and maintain, but without changing the visible behavior. By constant refactor-
ing, you can keep your code fresh, improve the design over time and thus adapt the
application to a changing environment. Do not wait until the problems accumulate,
but fix them in small steps, one at a time.

To make sure that the application still works as expected after making changes to
the code, you should use automated tests that you rerun after every code change.

Agile Migration

In recent years, more and more so-called agile methods are used in software devel-
opment. In contrast to the cumbersome and bureaucratic classical process models,
agile methods do not use many rules and formalities. The main difference between
agile methods and the V model or waterfall model is that small iterations are used.
Long concept, design, implementation and test phases are replaced by short itera-
tions. In each iteration, a relatively small set of features is developed.

This approach can also be used when migrating systems. Instead of letting a sys-
tem age over time (“never touch a running system”), you should migrate the system
in smaller steps, in defined intervals. Just like when you are programming, smaller
steps make it much easier to find the source of problems and bugs.

It can be a good idea to not use the exact same PHP version on all development
systems. That way, you will quickly find out about pending problems when the ap-
plication behaves differently on two systems. You will effectively migrate the system
while you are developing or maintaining it. This will make the next big migration
much less frightening for you.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 7

Tools

“When building a high tower, spend a lot of time at the foundation.” —Chinese
Proverb

Tools Make All the Difference

To develop software, good tools are required to be productive and to automate recur-
ring tasks. Using the right tools will greatly increase your productivity. This chapter
deals with tools you might find useful when migrating. Though there are usually
more than one tool for each task, we will focus on just one tool in this book for rea-
sons of brevity. You may feel that different tools fit into your development process
and environment more smoothly. Choose whatever works for you.

Tools are not an end in themselves. You may not need all the tools and techniques
we introduce in this chapter, but you should still take the time to read through this
chapter to familiarize yourself with the described tools and methods.

Version Control

The most important tool that no developer should ever work without is a version
control software. Even when you work on a project as the only developer, version

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

160 ” Tools

control is absolutely essential. If you already use version control, like most develop-
ers, feel free to skip this section.

Those of you that don’t use version control should start off tomorrow morning by
introducing version control. There are various products, some of them commercial,
some free software. If you are not forced to go with a commercial solution for some
political reasons, you should choose from one of the free alternatives.

The old bull of version control is CVS, which natively runs on Unix only. Subver-
sion is a newer and better version control software that runs on Unix and Windows
alike. Subversion is easy to handle, and was in fact created to be a successor to CVS.
Using Subversion is similar to working with CVS, but Subversion does not have most
of the main weaknesses of CVS.

Basically, Subversion provides one big versioned directory tree, making it much
easier than CVS to rename and move files without losing their history. Subversion
has been production-ready for quite some years now, and is successfully being used
in many projects. Under http://subversion.tigris.org/project_packages.html you
can download the Subversion source code or binaries for various operating systems.

One of the main benefits of version control is that you can roll back changes to files
at any time, putting your project in a stable and defined state again. By comparing
two versions of the same file, you can easily find out about the changes you have
made, and undo them selectively if required. Sometimes, it is better to throw away an
hour of work in a minute than to spend hours trying to fix a bug one has introduced
on the way.

Command Line Tools

An integrated development environment (IDE) or a text editor usually comes with a
powerful set of tools to automate repeated tasks when developing software. Some-
times, however, it can be useful to use tools outside the IDE.

Sending HTTP Requests and Downloading Files

The Web is based on the HTTP protocol. All browsers use HTTP to communicate
with the web servers, but sometimes it is useful to be able to send a HTTP or HTTPS
request without a browser. The command line tool wget enables to you do this, which

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 161

also allows for downloading files from the command line, or starting a program on a
web server.

The same effect, of course, can also be achieved by a short PHP script:

file_get_contents(’http://www.example.com’);

To make file_get_contents() work for remote files, you must activate
allow_url_fopen in php.ini. Since PHP 4.0.5, file_get_contents() even sup-
ports redirects. The problem with redirects, however, is that the URL of the
downloaded document does not match the URL that has originally been requested.
To overcome this limitation, you must use a full-blown HTTP client.

wget should be available by default on most Unix systems. On Windows, you can
download wget from http://users.ugent.be/˜bpuype/wget. This version of wget also
supports HTTPS.

Search Files and Directories

Especially when migrating, you will have to search one or more files for certain
strings or regular expressions. The command line tool grep allows you to search files
and even directory trees. Keep in mind that grep might fall into an endless loop when
you recursively search directories that contain symlinks to a parent directory.

On Unix, grep should be available by default. Windows users can download grep
from http://gnuwin32.sourceforge.net/packages/grep.htm. You need the two ZIP
archives grep-2.5.1a-2-bin.zip and grep-2.5.1a-2-dep.zip. Unpack both archives
in the same directory, and add the bin subdirectory to the system path.

To search files, use

> grep -r clone *

index.php: $a = clone $b;
test.php: // clone the object

This command lists all files in the current directory and its subdirectories containing
the word clone. Following each file name, an excerpt from the file is shown.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

162 ” Tools

Replacing in Files

While grep is great for searching, you cannot replace strings in the file. Automated
replacing in files is always a little dangerous, as you can easily damage files by re-
placing too much. Source code may not compile any more after a careless replace
operation. Always run a syntax check of the files after you have replaced any strings
(for more information, see the section entitled “Syntax Check” later in this chapter).

To replace strings in files at the command line, you can use sed. On Unix, sed
should be available by default, while Windows users will have to download it from
http://gnuwin32.sourceforge.net/packages/sed.htm. sed does not only support re-
placing of text, but also understands regular expressions. For complex replace oper-
ations, multiple rules can be combined to a sed program. These programs are a bit
hard to read, though.

I would therefore recommend using a text editor or the IDE to replace in files, or
write a small PHP program. You could even use the PHP function token_get_all() to
have the PHP parser tokenize the source code, making it easier to find out where to
replace.

Comparing Files and Directories

When migrating a PHP application, you will repeatedly make modifications to the
PHP source code. Sometimes, it is useful to be able to visualize the differences be-
tween to versions of a file. Every version control software contains a diff program
to compare different files. A graphical diff tool is especially handy, since differences
between the compared files are color highlighted.

Windows users can use Winmerge, available at
http://winmerge.org/downloads/index.php. Winmerge also supports compar-
ing directories, and can be configured to ignore case or whitespace differences. The
functionality can be extended by plugins, so that even certain binary file formats
can be compared. Optionally, Winmerge also recognizes blocks of code that have
been moved. This is very helpful when you have refactored the code.

Unix users can use Meld, a tool with a feature set very similar to Winmerge. Meld
is available at http://meld.sourceforge.net and is written in Python, so you do not
have to compile the source code, but need Python and Gnome libraries to run it.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 163

Figure 7.1

Validating (X)HTML Files

Web pages are written in HTML or XHTML. When a HTML is displayed in a browser,
a DOM tree is created from the parsed HTML code. This DOM tree represents the
HTML page and can be modified at runtime by Javascript.

There is not only one HTML standard. Even when we ignore really old HTML ver-
sions, there are still HTML 3.2, HTML 4.01 which comes in the three variants Strict,
Frameset, and Transitional, and the two XHTML versions 1.0 und 1.1. To make the
transition from HTML to XHTML easier, XHTML 1.0 also exists in three variants
Strict, Frameset, and Transitional, while XHTML 1.1 only exists in Strict.

A basic problem in the early days of HTML was that no means existed for telling
the browser which HTML version a given document was written in. In 1997, with
HTML 4.0, the so-called Document Type Definition (DTD) has been introduced to
tell the browser the HTML or XHTML version of the document.

When rendering HTML, browsers are extremely forgiving instead of presenting the
user with an error message. This makes the web very usable, since you can still see a

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

164 ” Tools

part of its content with older browsers, even when certain features are not available
to you.

There is a fundamental difference between HTML and XHTML. Since XHTML is
XML, a document must always be valid, otherwise the browser will not be able to
parse it. HTML documents can be parsed regardless of how many errors they con-
tain. If a browser encounters invalid XHTML, it will fall back to HTML mode to dis-
play the page.

Especially when working with XHTML, you should ensure that every page of your
site is valid.

The W3C Validator

The World Wide Web Consortium (W3C), the entity responsible for the HTML
standards, offers a free online service to validate (X)HTML pages, available at
http://validator.w3.org. You can use the validator in three ways. To validate a doc-
ument that is available on the Internet, specify its URI. For documents in private
networks, you can upload the document or paste the source code into a text field.

The document must contain a Document Type Declaration, telling the validator
which (X)HTML standard the document is supposed to conform to. The first line of
the document should be one of the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.

org/TR/html4/loose.dtd">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Strict //EN" "http://www.w3.org/TR/

html4/strict.dtd">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN" "http://www.w3.org/TR

/html4/frameset.dtd">
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/

xhtml1/DTD/xhtml1-strict.dtd">
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.

org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" "http://www.w3.org/TR

/xhtml1/DTD/xhtml1-frameset.dtd">
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/

DTD/xhtml11.dtd">

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 165

Figure 7.2

If no DTD is given, the validator will assume a HTML 4.01 document, which does
not always yield the desired results. Figure 7.2 shows the result of a validation.

HTML Tidy

The W3C Validator is a very useful tool, but Internet access is required to use it.
HTML Tidy as a local tool is an alternative to the W3C validator. HTML Tidy is free
software and available for all major operating systems. You can download it from
http:tidy.sourceforge.net/#binaries. Windows users can download a binary

distribution from http:www.paehl.com/open_source/?HTML_Tidy_for_Windows.
Tidy does not only check your (X)HTML files for errors, but also corrects common

errors automatically, and optionally even beautifies HTML code by correctly indent-
ing it. This can be particularly useful for PHP programmers, since HTML code that
has been generated by PHP is usually not very readable. When migrating, I would
advise you to work with indented HTML code, since you will sooner or later have to
look at the source code when you try to fix a bug.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

166 ” Tools

Let us first have a look at how you can fix errors in the HTML code with Tidy. Run-
ning the following code will output a list of command line options:

> tidy -help

To display a list of all possible configuration settings, use the following line of code:

> tidy -help-config

The full list with explanations is also available at the “HTML Tidy Configuration Op-
tions Quick Reference” (http://tidy.sourceforge.net/docs/quickref.html). Since
there are so many configuration settings, you should consider writing a configura-
tion file, instead of adding a long list of command line switches to each and every
Tidy call. For a first test, though, we will run Tidy in the default configuration.

Let us create a really buggy HTML page:

<html>
<h1>Heading</h2>
<p>First paragraph.
<p>Second paragraph</p>
<p>Third paragraph</p>
</html>

To have Tidy clean up this file, we start Tidy with the file name as parameter and
redirect the output to another file:

> tidy test.html > tidy_test.html

line 1 column 1 - Warning: missing <!DOCTYPE> declaration
line 2 column 1 - Warning: inserting implicit <body>
line 2 column 1 - Warning: missing </h1> before </h2>
line 2 column 16 - Warning: discarding unexpected </h2>
line 5 column 4 - Warning: is probably intended as
line 6 column 18 - Warning: discarding unexpected
line 2 column 1 - Warning: inserting missing ’title’ element
Info: Document content looks like HTML 3.2

7 warnings, 0 errors were found!
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Tools ” 167

Since the file has no DTD, Tidy has guessed the HTML standard the file adheres to.
Also, Tidy has found and corrected quite some errors. Isn’t it amazing how many
error such a small file can contain? The result will be something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<meta name="generator" content=

"HTML Tidy for Windows (vers 15 August 2007), see www.w3.org">
<title></title>
</head>
<body>
<h1>Heading</h1>
<p>First paragraph.</p>
<p>Second paragraph</p>
<p>Third paragraph</p>
</body>
</html>

If we run Tidy with the additional command line switch -indent, our HTML file
would have been indented as well:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<meta name="generator" content=

"HTML Tidy for Windows (vers 15 August 2007), see www.w3.org">
<title></title>

</head>
<body>
<h1>
Heading

</h1>
<p>
First paragraph.

</p>
<p>
Second paragraph

</p>
<p>
Third paragraph

</p>
</body>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

168 ” Tools

</html>

The Tidy PHP extension

Thanks to John Coggeshall, HTML Tidy is also available as a PHP extension. Since
PHP 5, that extension is included with PHP by default, if the configuration switch
-with-tidy has been used. There is also a Tidy extension for PHP 4, using an older
Tidy version with less functionality.

On Windows, the Tidy extension is distributed as a DLL that you must enable. This
is done by adding the following line of code to php.ini:

extension=php_tidy.dll

Make sure the extension_dir setting points to the ext subdirectory of your PHP di-
rectory, otherwise the DLL will not be found. As always, you will have to restart the
web server after modifying php.ini.

The Tidy extension adds some new functions to PHP that allows you to check and
format HTML code, but also offer you access to Tidy’s parse tree. This can be useful
to access individual HTML elements when testing.

Tidy can be used together with output buffering. When you register Tidy as a han-
dler for the output buffer, the created HTML code will automatically be cleaned up
by Tidy before it is being sent to the browser. Since the browser always receives valid
HTML code, this means that less display errors will occur.

<?php

ob_start(’ob_tidyhandler’);

?>

<p>Sloppy coded <p> illegally nested formatted HTML.

The browser will receive:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Tools ” 169

<html>
<head>
<title></title>
</head>
<body>
<p>Sloppy coded</p>
<p>illegally nested formatted HTML.
</body>
</html>

Sometimes, you might not want to modify the HTML code sent to the browser. You
can also use Tidy to just report the errors, without modifying the HTML code. To
achieve this, turn on output buffering without registering Tidy as a handler:

<?php

ob_start();

?>

At the end of your program, add the following piece of code:

<?php

$tidy = new tidy;
$tidy->parseString(ob_get_contents());

$tidy->CleanRepair();
$tidy->diagnose();

var_dump($tidy->errorBuffer);

?>

This program instantiates a Tidy object and passes it the contents of the output
buffer. By calling the CleanRepair() method, Tidy processes that HTML code. Now
we must call the diagnose() method so that we can output all error messages and an
error count:

line 1 column 1 - Warning: missing <!DOCTYPE> declaration
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

170 ” Tools

line 1 column 39 - Warning: is probably intended as
line 1 column 1 - Warning: inserting missing ’title’ element
Info: Document content looks like HTML 3.2
3 warnings, 0 errors were found!

Tidy analyzes the page, but does not modify the output buffer, so the created HTML
will still be sent to the browser. Alternatively, you can discard the output buffer and
output the HTML code Tidy has generated:

<?php

ob_end_clean();
print $tidy->value;

?>

Validating CSS Files

When tracking down display errors, you should make sure that the CSS the page is
using is valid. The W3C also provides us with a validator for CSS. This service, Jigsaw,
ensures that CSS files are syntactically correct. Just like with the HTML Validator, you
can specify a URI, upload a CSS file or paste the CSS code into a text field.

Keep in mind that CSS still needs valid (X)HTML for the page to display correctly,
so you should always also validate the HTML code.

Figure 7.3 shows the result of a CSS validation. To make the output more interest-
ing, I have put in some errors. As you can see, the validator shows the wrong selectors
including the line number with a short description of each error.

Validating XML Files

As previously pointed out, XML files must always be well-formed (which, roughly,
means syntactically correct). A well-formed XML document must have one root el-
ement, all tags must be correctly nested, and all elements with content must be en-
closed into an opening and closing tag, for example.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 171

Figure 7.3

XML parsers cannot process XML files that are not well-formed. Unfortunately,
the error messages that XML parsers provide us with are usually hard to understand.

xmllint

The command line tool xmllint checks whether XML files are well-formed. Please
note that xmllint does not check whether a given XML file adheres to a cer-
tain DTD. Think of xmllint as a syntax checker for XML. xmllint is part of
libxml2 and free software under MIT license. You can download libxml2 from
ftp://xmlsoft.org/libxml2.

Let us run xmllint on a file that contains some errors:

> xmllint test.xml
file:///test.xml:11: parser error : Opening and ending tag mismatch:

versions line 11 and version
<versions>2.0</version>

^
file:///test.xml:43: parser error : Opening and ending tag mismatch:

command line 41 and action
</action>

^
file:///test.xml:50: parser error : expected ’>’

</actions>
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

172 ” Tools

^

file:///test.xml:122: parser error : Opening and ending tag mismatch:
actions line 21 and header

</header>
^

file:///test.xml:226: parser error : Premature end of data in tag header
line 8

</package>
^

The list of error messages usually looks scary at first sight. Most errors follow-up
errors, though, that will disappear when you have fixed the initial error, so make
sure you always work your way from down the first error message, and then rerun
xmllint to see how many errors remain.

PHP

You can also use PHP to check XML whether files are well-formed. To do this, instan-
tiate the built-in class DOMDocument and either load an XML document or pass it as a
string:

<?php

$doc = new DOMDocument();
$doc->loadXML(’<root></roots>’);

?>

As you can see, that small XML snipped is not well-formed, so PHP will complain:

Warning: DOMDocument::loadXML(): expected ’>’
in Entity, line: 1 in test.php on line 3

Warning: DOMDocument::loadXML(): Extra content at the end of the document
in Entity, line: 1 in test.php on line 3

As you can see, the PHP error message much is less readable than the error messages
of xmllint.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 173

Static Analysis of JavaScript Files

JavaScript code, especially in AJAX times, is often stitched together from various
snippets and included in the HTML page itself, either by PHP or by the program-
mer. To avoid having to test the whole application in the browser just to find out
about a JavaScript error, you can use a JavaScript lint tool.

jsl

JavaScript Lint (jsl) will perform a static code analysis of JavaScript code. This means
that the code is being inspected for syntax error and various other problems without
executing it. JavaScript Lint is freely available under the Mozilla Public License. You
can download it from http://www.javascriptlint.com, either in source code or as an
executable file for Windows or Mac OS X.

Compiling JavaScript Lint on Unix is very easy:

> wget http://www.javascriptlint.com/download/jsl-0.3.0-src.tar.gz
> tar xfz jsl-0.3.0-src.tar.gz
> cd jsl-0.3.0/src
> make -f Makefile.ref

After compiling, the executable file jsl can be found in the Linux_All_DBG.OBJ sub-
directory.

Alternatively, you can check your JavaScript code online on the project website.
This only works with the JavaScript Lint default configuration, though.

When using JavaScript Lint locally, you should write a configuration file. You can
run the following to output a template configuration file:

> jsl -help:conf > lint_config

Adapt this file to your needs, then run the following:

> jsl -conf lint_config -process test.js

JavaScript Lint 0.3.0 (JavaScript-C 1.5 2004-09-24)
Developed by Matthias Miller (http://www.JavaScriptLint.com)

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

174 ” Tools

test.js
test.js(9): lint warning: missing semicolon

var getZip = function(query) {
...^

test.js(28): SyntaxError: syntax error
oACDS.queryMatchContains = ;

..................................^

1 error(s), 1 warning(s)

As you can see, JavaScript Lint detects common errors in JavaScript code. This in-
cludes a missing semicolon, missing or illegally nested curly braces, nested com-
ments, leading zeroes for numbers, which would cause them to be interpreted as
octal numbers, or a missing break statement in a case switch.

To run a lint check on JavaScript code generated by PHP, you can store the gener-
ated HTML, then remove everything except the Javascript part, and run JavaScript
Lint on the file.

JSLint

An alternative lint tool for JavaScript, JSLint by Douglas Crockford, is avail-
able at http://www.jslint.com/lint.html. This tool also offers online check right
at the web site, but you can also run JSLint locally. Since JSLint is written
in JavaScript itself, you need the Java-based JavaScript engine Rhino, which is
free software developed by the Mozilla foundation. You can download it from
http://www.mozilla.org/rhino/download.html.

Having downloaded Rhino, unpack the archive. To run Rhino, you must call Java.
Then, run JSLint inside Rhino. Last but not least, you will have to specify the file
name of the JavaScript file to check, resulting in the following command line:

> java -jar js.jar jslint.js test.js

Lint at line 7 character 23: Missing semicolon.
myDataTable = null

Lint at line 28 character 36: Expected an identifier and instead saw ’;’.
oACDS.queryMatchContains = ;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 175

Lint at line 28 character 36: Stopping, unable to continue. (34% scanned).

Firefox Extensions

Firefox should be the first choice browser for developers today. It is available on all
major platforms, and many interesting plugins are available for it. Some extensions
should not be missing on any development system.

Webdeveloper

The Webdeveloper extension by Chris Pederick is the Swiss army knife for
web developers. The easiest way to install a Firefox extension is to down-
load and save it locally. To do this, right-click the Download link on
http://chrispederick.com/work/web-developer. The file web-developer.xpi will be
downloaded. Most xpi files work across platforms. To install the extension, just drag
and drop the xpi file into your browser window.

The Webdeveloper extension will provide you with a toolbar and a context menu.
In the Disable menu, for example, you can disable certain browser features like Java
and JavaScript. In the Cookies menu, you can view, edit, delete and even create cook-
ies. In the CSS menu you can selectively deactivate CSS style sheets, change the me-
dia type of add a custom style sheet. The function View Style Information is very
useful to display all active CSS selectors for an element of the page that you select by
just clicking on it.

The Form menu allows you to modify HTML forms, which includes making pass-
word fields readable, filling in deactivated form fields, or removing the length restric-
tions on fields. To make testing easier, you can convert GET requests to POST requests
and vice versa in the Convert Form Methods menu.

Figure 7.4

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

176 ” Tools

In the Images menu, you can suppress display of images, view image information
like file size, or images size in pixels. The function Find Broken Images is really use-
ful. It makes Webdeveloper automatically check whether all images the page links to
exist.

The Information menu allows you to display additional information about page
elements by tool tips, for example the HTML ID of elements, their CSS class, anchors,
link targets, title attributes, keyboard shortcuts, or even the size of each displayed
block.

The Tools menu allows you to validate HTML and CSS, and all page links. Webde-
vloper uses the online validators described earlier in this chapter for this.

Firebug

The Firefox extension Firebug by Joe Hewitt makes debugging
JavaScript code almost fun. To install this plugin, download it from
https://addons.mozilla.org/de/firefox/addon/1843, then drag and drop it into
your browser window.

Since Firebug slows down your browser quite a bit, it is deactivated by default. You
can enable Firebug by clicking the round gray icon as shown in Figure 7.5. When
you right-click this icon, a context menu will appear that allows you to define certain
URLs Firebug should be activated for. This way, you can use Firebox for development
and testing without it getting in your way when you are surfing the Internet.

Figure 7.5

Firebug displays the HTML source code of the current page in a tree view, allowing
you to expand and collapse block as required. The same holds true for the DOM tree
that the browser creates from the HTML source code. In the CSS stylesheet display,
you can selectively enable and disable individual rules.

When you click Inspect and move the mouse pointer over a page element, Firebug
will display the relevant portion of the HTML source code, the relevant CSS rules,
additional layout information and the node in the DOM tree.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 177

By clicking on Edit, you can edit the HTML and CSS code in place and will directly
view the result in the browser window. On the Console tab, you can click Profile to
activate the JavaScript profiler, which will provide you with statistics about the com-
puting time the JavaScript calls on the page have required.

In the Option menu on the right, you can enable JavaScript warnings, CSS warn-
ings, XML errors and even XMLHTTP requests and their server responses. In the Net
tab below the menu bar, you will see an overview of the load times of each page ele-
ment. Elements that have been loaded from the browser cache will be displayed in a
different color.

PHP’s Own Means

Since you can not only run PHP in the web server, but also at the command line, PHP
is also well suited as a platform-independent script language to automate tasks.

The PHP Configuration

Configuring PHP is a far more complex issue than you might think at first glance. Be-
sides the fact that the configuration file is being searched for in various locations in
the file system (see Chapter 3), some PHP configuration settings can also be changed
at runtime and in other configuration files like httpd.conf or .htaccess. This allows
you to adapt the PHP configuration to virtual hosts, applications or even individual
directories.

It is therefore not easy to predict the PHP configuration a certain script will run
in just by looking at the configuration files. Especially when migrating this is very
important, because many migration problems are actually caused by differences in
the PHP configuration.

When your application has only one entry point, for example index.php, the con-
figuration will be the same throughout the application. If there is more than one
entry point, the application might run in different configurations depending on the
entry point. This can be a source of problems when testing the code.

To illustrate this, let us imagine the two files index.php and .htaccess in the root
directory, and the files sub.php and another .htaccess file in the subdirectory inc:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

178 ” Tools

.htaccess
index.php
inc/.htaccess
inc/sub.php

As long as sub.php is being included from index.php, the configuration settings in
.htaccess in the root directory will be in effect. If you call inc/sub.php directly, the
configuration settings in inc/.htaccess will be in effect.

Many PHP applications rely on .htaccess configuration, and contain .htaccess

files or create them during the installation process. Quite often, the Apache mod-
ule mod_rewrite is used to map search engine-friendly URLs to the actual URLs the
application uses.

Users without administrative rights can sometimes only use .htaccess files to
modify the PHP configuration, as they have no write access to php.ini and cannot
restart the web server.

Keep in mind that you will see the CLI configuration when you execute php with
the command line switch -i. If you use the browser to access a PHP script calling
phpinfo(), you will see how PHP is configured when running in the web server. This
configuration can differ from the command line configuration.

The easiest way of finding out about the current PHP configuration is to list the
configuration at script runtime. You can use the built-in functions ini_get() and
ini_get_all() to retrieve one or all configuration settings. Please note that the func-
tion get_cfg_var() will always return the configuration value that is configured in
php.ini.

ini_get_all() returns a large array like shown below:

array(230) {
["allow_call_time_pass_reference"] => array(3)
{
["global_value"] => string(0) ""
["local_value"] => string(0) ""
["access"] => int(6)

}

["allow_url_fopen"] => array(3)
{
["global_value"] => string(1) "1"
["local_value"] => string(1) "1"

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 179

["access"] => int(4)
}

[...]

As the ini_get_all() output shows, combinations of these values are also possible.
The value 6, for example, is the binary combination of the values 2 and 4. This means
that the respective setting can be changed per directory and system-wide.

This array also holds information about where individual settings can be changed.
Table 7.1 shows where the configuration settings can be changed:

Constant Value Remark
PHP_INI_USER 1 Can be modified with ini_set() at runtime

PHP_INI_PERDIR 2 Can be modified in php.ini, .htaccess, or httpd.conf
PHP_INI_SYSTEM 4 Can only be set in php.ini and httpd.conf

PHP_INI_ALL 7 Can be modified everywhere

On Windows, all PHP_INI_USER configuration settings can also be configured through
the registry. Since this is not possible on Unix, I would not recommend putting PHP
configuration settings into the registry.

Whenever possible, you should put all configuration settings into php.ini or
httpd.conf. It is also possible to make settings for a virtual host or a directory in
httpd.conf, so you do not necessarily have to use .htaccess files.

Syntax Check

Until PHP 5.0.5, PHP had a built-in function php_check_syntax(), which would check
the syntax of the PHP source code passed in as a string. This function has been re-
moved from PHP and replaced by a command line switch, making it easier for IDEs
to run syntax checks on PHP files.

By calling PHP with the -l switch, you can run a syntax check:

> php -l test.php

No syntax errors detected test.php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

180 ” Tools

This so-called lint check will not execute the code, but only check for syntax errors.
This means that only errors that occur at compile time can be detected. If you have
set error_reporting accordingly in php.ini, E_STRICT errors will also be displayed by
the lint check.

A lint check will not output any PHP runtime errors or warnings, obviously. This
makes the lint check a good initial quality assurance measure, but it does not replace
a full test of the file.

To display E_STRICT errors when syntax checking the code, you can also use an
additional command line switch:

> php -d error_reporting=8191 -l test.php

See the section titled “New And Modified Error Messages” in Chapter 8 for an expla-
nation of the value 8191.

Together with a build automation tool like phing, lint checks can be fully auto-
mated. See later in this chapter for more information.

Prepend and Append Files

The two php.ini settings auto_prepend_file and auto_append_file specify files that
PHP will automatically run prior to or after running the requested file. Make sure
whether your application relies on prepend or append files, as you will have to make
them available on the target system as well.

You must use the full, absolute path to your prepend and append files in php.ini,
otherwise PHP will try to find them relatively to the current working directory, which
may not work.

auto_prepend_file = c:/www/prepend.php
auto_append_file = c:/www/append.php

If one of the two files does not exist, PHP will output a rather cryptic warning:

Warning: Unknown: failed to open stream: No such file or directory in Unknown on
line 0

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 181

Fatal error: Unknown: Failed opening required ’prepend.php’ (include_path=’.;C:\
php\pear’) in Unknown on line 0

It is not easy to relate this error to a problem with prepend and append files, since
line 0 is mentioned. To make this error message easier to understand, you should
name the prepend and append files as shown in the example.

I would not recommend relying on prepend and append files, but rather include
the files explicitly when required. This documents the dependency in the source
code. When migrating, however, prepend and append files can sometimes be useful.
You can use them to perform additional tasks, without modifying the source code of
your application. Some useful additional tasks can be logging of activities and errors,
activating a certain PHP configuration, or forcing the application to use a certain
error or exception handler.

PEAR Components

When PHP 4 was still in development, Stig Bakken founded the PEAR (PHP Exten-
sion and Application Repository) project inspired by the CPAN (Comprehensive Perl
Archive Network). PEAR is primarily a collection of open source software compo-
nents for PHP, but also a great infrastructure for installing and managing compo-
nents, the so-called PEAR packages. Since version 1.4, which was released in 2005,
PEAR supports a channel concept that enables everybody to set up a PEAR server.
When installing a package, PEAR can automatically resolve the dependencies by
downloading and installing any additional required packages.

On Linux, PEAR should be part of every PHP installation, unless PHP has been con-
figured with the -without-pear option. On Windows, PEAR is usually not installed,
but must be installed manually. This is rather easy, because PEAR is being deployed
as a self-extracting PHP archive.

To find out whether PEAR is already installed on your system, run the following
command at the command line:

> pear version

PEAR Version: 1.6.0
PHP Version: 5.2.3

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

182 ” Tools

Zend Engine Version: 2.2.0
Running on: Windows NT MOPANI 5.1 build 2600

If you see an error message instead of output similar to the one printed above, either
PEAR is not installed or not configured properly, so that the pear command is not in
the system’s search path.

To install PEAR, download go-pear.phar from http://pear.php.net. Probably, the
source code of the file will be displayed in the browser, so you must choose Save As to
save the file locally. Please note that Internet Explorer rewrites any HTML code when
saving it, making the PHP program unusable, so either a decent browser or wget to
download go-pear.phar (as discussed earlier in this chapter).

On Windows, copy go-pear.phar to the directory containing the php.exe file and
add this directory to the system search path. To install PEAR, just execute the Phar
archive with PHP:

> php go-pear.phar

Are you installing a system-wide PEAR or a local copy?
(system|local) [system] :

Below is a suggested file layout for your new PEAR installation. To change
individual locations, type the number in front of the directory. Type ’all’
to change all of them or simply press Enter to accept these locations.

1. Installation base ($prefix) : C:\php
2. Temporary directory for processing : C:\php\tmp
3. Temporary directory for downloads : C:\php\tmp
4. Binaries directory : C:\php
5. PHP code directory ($php_dir) : C:\php\pear
6. Documentation directory : C:\php\pear\docs
7. Data directory : C:\php\pear\data
8. Tests directory : C:\php\pear\tests
9. Name of configuration file : C:\WINDOWS\pear.ini
10. Path to CLI php.exe : C:\php

The installer will ask some questions, but usually you can just accept the suggested
default values. The PEAR installer will modify php.ini and add the PEAR installation
directory to PHP’s include_path.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 183

Having completed the installation, you can run the following to list all installed
packages:

> pear list

INSTALLED PACKAGES, CHANNEL PEAR.PHP.NET:
===
PACKAGE VERSION STATE
Archive_Tar 1.3.2 stable
Console_Getopt 1.2.3 stable
PEAR 1.6.1 stable
Structures_Graph 1.0.2 stable

If PEAR is already installed on your system, or you want to update the installation
later, just run the following:

> pear upgrade PEAR

WARNING: channel "pear.php.net" has updated its protocols, use "channel-update
pear.php.net" to update

Did not download optional dependencies: pear/XML_RPC, use --alldeps to download
automatically

pear/PEAR can optionally use package "pear/XML_RPC" (version >= 1.4.0)
downloading PEAR-1.6.2.tgz ...
Starting to download PEAR-1.6.2.tgz (297,794 bytes)
..done: 297,794 bytes

upgrade ok: channel://pear.php.net/PEAR-1.6.2

After updating PEAR, you should also update the channel protocols. This is manda-
tory when you were updating from a version earlier than 1.4.0:

> pear channel-update pear.php.net

Updating channel "pear.php.net"
Update of Channel "pear.php.net" succeeded

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

184 ” Tools

PHP_Compat

PHP_Compat is a PEAR package that provides you with PHP-level implementations
of new built-in PHP functions and constants. Using PHP_Compat, you can use the
new functions available in a certain PHP version in an older PHP version.

This package is no replacement for a migration, but can help you prepare the code
for a migration, or ensure backwards compatibility of code that otherwise requires
a newer PHP version. Please note that PHP_Compat does not provide you with any
object-oriented features.

Installing PHP_Compat is very easy, since there are no dependencies to other
PEAR packages:

> pear install PHP_Compat

downloading PHP_Compat-1.5.0.tgz ...
Starting to download PHP_Compat-1.5.0.tgz (44,133 bytes)
...........done: 44,133 bytes

install ok: channel://pear.php.net/PHP_Compat-1.5.0

The easiest way to use PHP_Compat is to load all functions and constants that are
available in a certain PHP version:

<?php

require_once ’PHP/Compat.php’;

PHP_Compat::loadVersion(’5.0.0’);

?>

Alternatively, you can load individual functions:

<?php

require_once ’PHP/Compat.php’;

PHP_Compat::loadFunction(’file_get_contents’);

?>
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Tools ” 185

PHP_Beautifier

One of the biggest annoyances when programming is source code that is not consis-
tently formatted and indented. This makes the code hard to read and understand.
Any development project should set and enforce strict coding guidelines that reg-
ulate indentation, where to put whitespace, and also define a consistent naming
scheme. The goal is to write self-explanatory code that looks the same, regardless
of which team member has actually written the code.

Fortunately, we do not have to reformat existing source code manually, but can
have the computer do the job for us. The PEAR package PHP_Beautifier automati-
cally formats source code, supporting various styles that can be customized. You can
also create your own style if necessary.

PHP_Beautifier is currently available in version 0.1.13 and still a beta release,
though the package has been under development for three years now. This version
number should not keep you from using PHP_Beautifier, though. The development
continues, albeit slowly.

PHP_Beautifier requires PHP 5 to run, but can format PHP 4 and PHP 5 source
code. Installation is simple, but requires to additional command line switches be-
cause there are dependencies to other PEAR packages, and the release is not yet
marked as stable. To automatically install all dependencies, we need the -alldeps

switch, while the -force switch is required to install a beta version:

> pear install --alldeps --force PHP_Beautifier

WARNING: failed to download pear.php.net/PHP_Beautifier within preferred state "
stable", will instead download version 0.1.13, stability "beta"

downloading PHP_Beautifier-0.1.13.tgz ...
Starting to download PHP_Beautifier-0.1.13.tgz (47,528 bytes)
............done: 47,528 bytes

install ok: channel://pear.php.net/PHP_Beautifier-0.1.13

To start the application, call php_beautifier, which is a batch file on Windows and a
shell script on Unix. To see a list of all supported options, run the following code:

> php_beautifier --help
seine Liste der üuntersttzen Schalter und Optionen ausgeben:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

186 ” Tools

Usage: php_beautifier [options] <infile> <out>
<infile> and/or <out> can be ’-’, which means stdin/stdout.
you can use ? and * for batch processing
<out> can be a dir (ending with ’/’ or a real dir)

or a file (without ’/’)
multiple ins and one out = merge all files in one output

Options:
--input or -f <file> input file - default: stdin
--output or -o <out> output dir or file

- default: stdout
--indent_tabs or -t <int> indent with tabs
--indent_spaces or -s <int> indent with spaces - default
--filters or -l <fil_def> Add filter(s)
--directory_filters or -d <path> Include dirs for filters
--compress or -c <type> Compress output
--recursive or -r Search in subdir recursively
--help or -? display help/usage

(this message)

Filter definition:
--filters "Filter1(setting1=value1,setting2=value2) Filter2()"

In PHP_Beautifier, source code is formatted through filters. You can parameterize
and chain filters, or write custom filters. Existing filters are the ArrayNested filter that
indents multi-dimensional arrays, IndentStyles that supports various indentation
styles, Lowercase to convert all control structures to lower case, and NewLines that
allows you to insert new lines into the source at certain points.

For fully automated formatting, there are the Default and Pear filter. While Default

indents source code in C’s Kernighan and Ritchie style (also called K&R style), the
Pear filter will format source code to adhere to the PEAR coding guidelines.

Since PHP_Beautifier will modify your source code, you should always keep a
backup of the original files when beautifying the code, just in case something goes
wrong. Having formatted the source code, you should run at least a lint check (as
discussed earlier in this chapter) to make sure no errors were introduced.

To test PHP_Beautifier, we run it on a short piece of code that is really, really un-
formatted:

<?php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Tools ” 187

function test ($aParameter)
{
$a = 4;
$b=5;

if ($a == $aParameter)
{

var_dump(’Hello world’); }

}

?>

To format the source code, we call PHP_Beautifier at the command line and pass the
name of the file for beautify and the name of the target file as parameters:

> php_beautifier ugly.php clean.php

The result is:

<?php
function test($aParameter) {

$a = 4;
$b = 5;
if ($a == $aParameter) {

var_dump(’Hello world’);
}

}
?>

By default, PHP_Beautifier will use four blanks to indent code and put the opening
curly braces on the same line, rather than the next line. You can use additional fil-
ters to modify the result. Let us use the IndentStyles filter to have the opening curly
braces on the next line:

> php_beautifier --filters "IndentStyles(style=bsd)" ugly.php clean.php

Now the result is source code formatted in the BSD style rather than the K&R style:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

188 ” Tools

<?php
function test($aParameter)
{

$a = 4;
$b = 5;
if ($a == $aParameter)
{

var_dump(’Hello world’);
}

}
?>

To improve readability, you can have the NewLines filter insert new lines before or
after certain tokens. For a full list of tokens, see [PHP 2008-3]:

"NewLines(before=T_CLOSE_TAG:T_CLASS,after=T_OPEN_TAG)"

PHP_CodeSniffer

PHP_CodeSniffer is a PEAR package that analyzes PHP source code and detects vio-
lations of a given coding style. As we already mentioned above, every project should
have coding guidelines, and PHP_CodeSniffer is the tool that helps you enforce these
guidelines.

Among the checks PHP_CodeSniffer can perform are:

• Is the indentation correct?

• Are the line endings consistent?

• Are all constants in upper case?

• Are all method names in camel case?

PHP_CodeSniffer requires at least PHP 5.1 to run, but can process code written
for older PHP versions. While PHP_Beautifier modifies the existing source code,
PHP_CodeSniffer just outputs a list of warnings and errors, and expects the program-
mer to fix them.

Again, installation is very simple:
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Tools ” 189

> pear install PHP_CodeSniffer

downloading PHP_CodeSniffer-1.0.0.tgz ...
Starting to download PHP_CodeSniffer-1.0.0.tgz (203,616 bytes)
...done: 203,616 bytes

install ok: channel://pear.php.net/PHP_CodeSniffer-1.0.0

To start PHP_CodeSniffer, run phpcs, which is a batch file on Windows and a shell
script on Unix. Using the -help switch, you can output a list of supported command
line options:

> phpcs --help

Usage: phpcs [-nwlvi] [--report=<report>] [--standard=<standard>]
[--config-set key value] [--config-delete key] [--config-show]
[--generator=<generator>] [--extensions=<extensions>]
[--ignore=<patterns>] [--tab-width=<width>] <file> ...

-n Do not print warnings
-w Print both warnings and errors (on by default)
-l Local directory only, no recursion
-v[v][v] Print verbose output
-i Show a list of installed coding standards
--help Print this help message
--version Print version information
<file> One or more files and/or directories to check
<extensions> A comma separated list of file extensions to check

(only valid if checking a directory)
<patterns> A comma separated list of patterns that are used

to ignore directories and files
<standard> The name of the coding standard to use
<width> The number of spaces each tab represents
<generator> The name of a doc generator to use

(forces doc generation instead of checking)
<report> Print either the "full", "xml", "checkstyle",

"csv" or "summary" report
(the "full" report is printed by default)

PHP_CodeSniffer can process a file, or a while directory including its subdirectories.
You can use the -extensions switch to specify the file extensions to analyze. To ex-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

190 ” Tools

clude files or directories from the check, you can specify a pattern in the -ignore

switch. This is very useful to ignore .svn or .cvs subdirectories, for example.
Running phpcs -i will show a list of all available coding standards. Currently, there

are MySource, PEAR, PHPCS, Squiz, and Zend. By default, PHP_CodeSniffer uses the
PEAT standard that puts a strict focus on source code format.

The MySpace and Squiz coding standards are very strict and usually complain
quite a lot. They will recognize commented out code, and enforce type safe
comparisons, for example. When functions in the global namespace are found,
PHP_CodeSniffer will suggest to move them to a static class.

Let us run PHP_CodeSniffer on an example program that we coded deliberately
sloppy, so that we see some output. Let us assume that the file test.php is located in
the src subdirectory:

> phpcs --standard=Squiz src

FILE: src\test.php
--
FOUND 33 ERROR(S) AND 2 WARNING(S) AFFECTING 1091 LINE(S)
--

1 | ERROR | End of line character is invalid; expected "\n" but
found "\r\n"

2 | ERROR | You must use "/**" style comments for a file comment
20 | ERROR | Expected "if (...) {\n"; found "if (...)\n{\n"
22 | ERROR | Line indented incorrectly; expected at least 4 spaces,

found 3
27 | WARNING | Line exceeds 85 characters; contains 147 characters
38 | ERROR | Missing class doc comment
61 | ERROR | You must use "/**" style comments for a function comment
77 | ERROR | Expected "if (...) {\n"; found "if (...)\n {\n"
91 | WARNING | Equals sign not aligned with surrounding assignments;

expected 4 spaces but found 1 space
174 | ERROR | Method name "RSS::tag_open" is not in camel caps format
189 | ERROR | Break statement indented incorrectly; expected 13

spaces, found 12
198 | ERROR | Closing brace must be on a line by itself
228 | ERROR | Expected 1 space after comma in function call; 2 found
270 | ERROR | @see tag comment indented incorrectly.

Expected 4 spaces but found 1.
271 | ERROR | Missing @package tag in class comment
291 | ERROR | Parameters must appear immediately after the comment
368 | ERROR | Doc comment var "error" does not match actual variable

name "$error_code" at position 1
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Tools ” 191

398 | ERROR | Expected 1 space before variable type
443 | ERROR | The variable names for parameters $message (1) and

$code (2) do not align
529 | ERROR | Missing comment for param "$message" at position 1
598 | ERROR | Function name "XML_RPC_entity_decode" is invalid;

consider "XML_RPC_Entity_decode" instead
599 | ERROR | Space after opening parenthesis of function call

prohibited
604 | ERROR | Function name "file_get_contents" is prefixed with a

package name but does not begin with a capital letter
606 | ERROR | Perl-style comments are not allowed. Use "// Comment."

or "/* comment */" instead.
620 | ERROR | Constants must be uppercase; expected

’PLUGIN_20C’ but found ’PLUGIN_20c’
623 | ERROR | Class name must begin with a capital letter
653 | ERROR | "include" is a statement, not a function;

no parentheses are required
668 | ERROR | File is being unconditionally included;

use "require" instead
721 | ERROR | Expected "} elseif (...) {\n"; found

"}\n elseif (...) {\n"
723 | ERROR | Space before closing parenthesis of

function call prohibited
793 | ERROR | Space found before comma in function call
805 | ERROR | Closing brace indented incorrectly;

expected 0 spaces, found 1
875 | ERROR | Expected "foreach (...) {\n"; found "foreach(...) {\n"
882 | ERROR | Missing @return tag in function comment
913 | ERROR | Method name "plugin_api::remove_plugin_instance"

is not in camel caps format
--

If you want to focus less on the formatting and indentation aspect, I would recom-
mend running PHP_Beautifier first, then PHP_CodeSniffer. Since PHP_CodeSniffer
does not check for syntax errors, you should run a lint check (as discussed earlier in
this chapter) before you run the sniffer.

PHP_CodeSniffer can be extremely helpful when migrating code, since you can
write your own coding standard that will point out potentially problematic code.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

192 ” Tools

PHP_CompatInfo

The PEAR package PHP_CompatInfo allows you to find out which PHP version and
which PHP extensions are required for by a certain application.

Like all other PEAR packages, installation is simple:

> pear install PHP_CompatInfo

downloading PHP_CompatInfo-1.5.1.tgz ...
Starting to download PHP_CompatInfo-1.5.1.tgz (122,434 bytes)
..........................done: 122,434 bytes

install ok: channel://pear.php.net/PHP_CompatInfo-1.5.1

To start PHP_CompatInfo, run pci, which is a batch file on Windows and a shell script
on Unix. Again, using the -help switch, you can output a list of supported command
line options:

> pci --help

Usage: pci.php [options]

-d --dir (optional)value Parse DIR to get its
compatibility info ()

-f --file (optional)value Parse FILE to get its
compatibility info ()

-v --verbose (optional)value Set the verbose level (1)
-n --no-recurse Do not recursively parse files

when using --dir
-if --ignore-files (optional)value Data file name which contains

a list of file to ignore
(files.txt)

-id --ignore-dirs (optional)value Data file name which contains
a list of directory to ignore
(dirs.txt)

-in --ignore-functions (optional)value Data file name which contains
a list of php function to
ignore (functions.txt)

-ic --ignore-constants (optional)value Data file name which contains
a list of php constant to
ignore (constants.txt)

-ie --ignore-extensions (optional)value Data file name which contains
a list of php extension to

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 193

ignore (extensions.txt)
-iv --ignore-versions values(optional) PHP versions - functions to

exclude when parsing source
code (5.0.0)

-h --help Show this help

PHP_CompatInfo works well in the default configuration, though there are many
configuration options. Most of the options should only be required if you work with
rarely used PHP extensions. Let us try out PHP_CompatInfo:

> php compat.php -d test/src

+----------------+---------+------------+------------------+
| Path | Version | Extensions | Constants/Tokens |
+----------------+---------+------------+------------------+
[...]*	5.1.0	mysql	protected
		pcre	public
		zlib	interface
		mcrypt	
+----------------+---------+------------+------------------+

As we can see, this application requires at least PHP version 5.1, because the tokens
protected, public, and interface were found in the source code. Based on the func-
tion calls found in the code, PHP_CompatInfo has determined that the PHP exten-
sions mysql, pcre, zlib and mcrypt are required.

Please note that when the PHP source code contains syntax errors,
PHP_CompatInfo will deliver bogus results. I recommend running a lint check
before running PHP_CompatInfo (as discussed earlier in this chapter). Also, it is
important to know that all extensions that are enabled by default in PHP will not be
listed as required. Among these are the Mail extension, or SPL, for example.

PHP_CompatInfo does not take object-oriented code into account. When a pro-
gram makes use of the XMLReader extension, for example, by instantiating an object
with new XMLReader(), XMLReader will not be listed as a dependency. If your appli-
cation uses the object-oriented API of one or more PHP extensions, you cannot rely
on the output of PHP_CompatInfo any more.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

194 ” Tools

Virtual Machines

One of the big trends in computer science these days is virtualization. Virtual sys-
tems do not run on real hardware, which makes them more flexible, because they
are independent from the actual host system used. And, of course, to install virtual
machines you do not need to buy additional hardware, but can create your own test
lab by installing a set of virtual machines that you run as needed, on just one or a few
host systems.

Various virtualization products are available today, some of them are free and open
source software, some of them are commercial products. Luckily, some commercial
vendors today also offer free versions of their virtualization software.

Microsoft, for example, gives away the Windows version of VirtualPC for free. Vir-
tualPC simulates a standard PC, but officially only runs Windows operating systems
as guests, even though it should be possible to run Linux as well. VirtualPC is also
available for Macintosh computers, but not for free.

The free software XEN, developed at Cambridge University, requires either proces-
sors with virtualization support, or the operating system kernel of the guest system
has to be adapted to XEN. Obviously, this is not possible with commercial closed-
source operating systems.

Another product, Bochs, is released under LGPL and emulates x86 and IA32 pro-
cessors. With Bochs, it would be possible to install Windows on a PowerPC proces-
sor. Emulation, however, is very processor-intensive, so guest systems in Bochs are
rather slow.

Other virtualization products are Plex86 and QUEMU, which both are free. Vir-
tualBox is dual-licensed and available in a free and a commercial version. Another
commercial vendor is Parallels. One of the best known vendors of virtualization so-
lutions, however, is VMware Inc., based in Palo Alto, California.

VMWare

VMware offers various commercial and free virtualization products. VMware Work-
station, though not a free product, is a great tool for developers, that is definitely
worth its license fee. VMware Workstation is available in a Windows and a Unix ver-
sion and supports most well-known operating systems as guests. For Apple users,
there is a product called VMware Fusion, which allows you to install Windows or

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 195

Linux as guest operating systems on a Mac. Unfortunately, VMware Fusion only runs
on x86-compatible architectures.

The number of virtual machines you can create is only limited by the available
storage space. Every virtual machine uses quite some space, as its hard disk is being
represented by a file in the host computer’s file system. The number of virtual ma-
chines you can run in parallel is limited by the amount of RAM your host computer
has, because as soon as the operating system starts swapping, performance is almost
down to zero.

VMware offers to free products, namely the VMware Player and the VMWare
Server. With the player, you can run virtual machines, but you cannot create or mod-
ify them. While, at first glance, VMware server may seem to be a free alternative to
VMware Workstation, it is lacking the snapshot and cloning features that are partic-
ularly important for development.

We will have a closer look at VMware Workstation, and see how this product can
be used to replace a large hardware-based test lab. You can download the software
from http://www.vmware.com/download/ws. A free 30-day evaluation copy is available
when you register on the website and request a license key by email.

Installing A Virtual Machine

To work with a virtual machine, it has to be created first. To do this, click New in
the File menu and select Virtual Machine from the flyout menu. In most cases, you
should choose to create a typical virtual machine, except if you need it to be com-
patible to older VMware versions.

In the second step you can choose the type of the guest system. The hardware of
the virtual machine will be chosen based on what guest operating system you have
chosen. The range of supported guest systems reaches from nostalgic Windows 3.1
to experimental support for 32bit and 64bit versions of Windows Vista. In addition,
common Unix and Linux distributions are supported, as well as Sun Solaris, Novell
Netware, FreeBSD, and even MS-DOS.

After choosing a name for the virtual machine and specifying the directory where
the virtual machine is to be stored, you have to decide which type of networking to
use. VMware supports various types of networking, with bridged networking usually
being the best choice, as it allows the guest system to directly use the host system’s

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

196 ” Tools

network adapter. To all other computers in the network, the virtual machine seems
to be physically connected to the network using its own IP address.

The next step is an important decision. You must decide on the size of the virtual
hard disk. In most cases, 4 GB or 8 GB are suggested, if you use Windows Vista as the
guest system, this will not suffice. Once you have chosen the size of the hard disk,
you cannot change it any more, so it is better to be generous instead of realizing that,
after the guest system is installed and configured, there is not enough disk space to
install the required applications.

When the virtual machine has been created, click the Power On button (this is
the button with the well-known Play symbol). You will now see the BIOS self test,
probably followed by an error message that no operating system is installed. Now
you can install an operating system inside the virtual machine like you would on
real hardware.

To access CDs and DVDs, you can either use the hardware drive of the host system,
which is mapped to the drive of the virtual machine, or map the virtual machine’s
drive to an ISO image. This makes it possible to work with CDs and DVDs on virtual
machines even when the host system has no physical optical disk drive.

Figure 7.6

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 197

Working With Snapshots

One of the big advantages of VMware Workstation over other virtualization products
is the sophisticated snapshot management. At any point in time, you can store a
snapshot of the guest system which included its current state. Snapshots are much
easier to handle than full backups, and are smaller, since only changes (and not the
full hard disk) are stored in the snapshot.

With snapshots, you can rollback any changes you have made to the system im-
mediately by just restoring the last snapshot. Snapshots are ideally suited to test in-
stallations or run software tests on different operating systems and in different con-
figurations. Once you have automated your tests, you can execute them in multiple
virtual machines without additional human effort.

When migrating, I would recommend to set up a virtual machine that represents
the current system and one that represents the target system. Though virtual ma-
chines are a little slower than real hardware, the snapshot management will make
your migration much easier.

Test Tools

The most important aspect of migrating PHP code is probably testing. Only by test-
ing can you make sure that migrated code works as expected on the target system.
To do this, you can compare the test results of the old system with the test results on
the target system.

Tests must be repeated very often. In theory, you must repeat all tests after each
code modification, to make sure that you did not introduce a bug. The effort of man-
ually repeating the same tests over and over, however, is clearly not bearable, so you
must automate the tests.

In a perfect world, you would have a suite of tests that cover the whole application’s
functionality. In reality, especially for old applications, few or even no tests at all
exist. To be fair, one has to take into account that years ago the tests tools that are
available today did not exist, so the infrastructure to write sophisticated tests was
just not there.

Today, a number of great test tools exist, and a migration gives you a good reason
to get into automated testing. There are two kinds of tests. You can either test the

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

198 ” Tools

whole application, as if it was used by a human user. These kinds of tests are called
system tests or functional tests. They test the HTML user interface of the application.
It is not sufficient, though, to statically analyze the HTML code generated by the
application. As modern web application make intensive use of JavaScript on the
client side, you will also want to execute and test the JavaScipt code. That is why
system tests need a relatively complex environment, especially when you want to
test edge cases.

The second type of tests are unit tests that test parts of the application in isolation.
A part of the application can be a class, a module, or a whole layer. Unit tests require
a less complex environment and are therefore easier to handle.

To thoroughly test your code, you will have to combine both test types. It is impor-
tant to note that tests can never prove that an application is bug-free. A test can only
prove that a bug is present.

Unit Tests with PHPUnit

The first unit test tools originate in the Smalltalk world. They became famous when
Erich Gamma and Kent Beck, two of the founding fathers of Extreme Programming,
ported the software from Smalltalk to Java. Today, there is a unit test framework
for almost every programming language. They are often being referred to as xUnit
frameworks.

As we had already mentioned in chapter 2, an automated test basically means
comparing the program output with a pre-calculated value. Any deviations outside
the specified tolerances will make a test fail. The xUnit framework provides us with
an infrastructure for automated tests. You can run a number of tests, independently
from each other. The framework creates a fresh environment, the so-called fixture,
for each test.

The best known xUnit framework for PHP is PHPUnit, written by Sebastian
Bergmann. PHPUnit used to be part of the PEAR project, but is today developed
as an independent project and can be installed from PHPUnits own channel server.
Make sure that you do not install PHPUnit from the PEAR channel server:

> pear install phpunit

WARNING: "pear/PHPUnit" is deprecated in favor of
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Tools ” 199

"channel://phpunit.de/PHPUnit"

As you can see, the PHPUnit version in PEAR is outdated, but will still be installed.
The first PHPUnit version was written in PHP 4 and should not be used any more,
since the functionality is rather limited. To install the current version of PHPUnit,
you must first register the PHPUnit channel, then install the software:

> pear channel-discover pear.phpunit.de

Adding Channel "pear.phpunit.de" succeeded Dis-
covery of channel "pear.phpunit.de" succeeded

> pear install phpunit/phpunit

Did not download optional dependencies: pear/Image_GraphViz, pear/Log, use --
alldeps to download automatically

phpunit/PHPUnit can optionally use package "pear/Image_GraphViz" (version >=
1.2.1)

phpunit/PHPUnit can optionally use package "pear/Log"
phpunit/PHPUnit can optionally use PHP extension "pdo"
phpunit/PHPUnit can optionally use PHP extension "pdo_mysql" phpunit/PHPUnit
can optionally use PHP extension "pdo_sqlite" phpunit/PHPUnit can optionally
use PHP extension "xdebug" (version >= 2.0.0) downloading PHPUnit-3.1.8.tgz
...
Starting to download PHPUnit-3.1.8.tgz (116,960 bytes)
........................done: 116,960 bytes
install ok: channel://pear.phpunit.de/PHPUnit-3.1.8

You can install all optional dependencies by using the command line switch –alldeps.
This will install a number of PEAR packages that you do not need for basic testing.
Please note that PHPUnit requires PHP 5, which prevents you from running unit tests
in the existing environment when you are migrating a PHP 4 application.

PHPUnit is a command line tool. We have already learned that PHP can be con-
figured differently at the command line and inside the web server, so make sure that
the tested code does not behave differently in production just because of a different
PHP configuration.

Let us write a simple PHPUnit test:

<?php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

200 ” Tools

require_once ’PHPUnit/Framework.php’;

class FooTest extends PHPUnit_Framework_TestCase
{
public function testAdd()
{
$foo = new Foo;

$this->assertEquals(3, $foo->add(1, 2));
$this->assertEquals(2, $foo->add(-2, 4));
$this->assertEquals(1, $foo->add(0, 0));

}
}

class Foo
{
public function add($a, $b)
{
return $a + $b;

}
}

?>

By convention, the names of test classes always end in Test. The test method names
start with test. When calling PHPUnit at the command line and passing the name
of the test class as parameter, all test methods of this class will automatically be
executed. Keep in mind that the test class must load all required production code
and classes to test.

In the above example, we have deliberately made a mistake: the expected result of
adding 0 and 0 is definitely not 1. When running the tests, we expect two assertions
to pass, while one assertion should fail:

> phpunit FooTest

PHPUnit 3.2.15 by Sebastian Bergmann.

F

There was 1 failure:
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Tools ” 201

1) testAdd (FooTest)

FooTest.php:13

FAILURES!!!

Tests run: 1, Failures: 1, Errors: 0, Incomplete Tests: 0..

Time: 0 seconds

PHPUnit supports a large set of assertions. A full list is available at
http://www.phpunit.de/pocket_guide/3.2/en/api.html#api.testcase. In our exam-
ple, we test a very simple method that adds two values. For more complex code, it
is not always easy to find appropriate input values. The key to success is finding a
small set of representative test cases.

First up, always test the main functionality. It may be tempting to create test cases
for edge cases, but you can quickly get carried away in creating too many tests for
rare exceptions, rather than testing the application’s functionality.

The more unit tests exist for your application, the more confidence in your code
you will gain when they still work on the target system. Any failed test indicates a
problem that has been caused by the migration.

Most existing applications do not have unit tests. In that case, write a unit test for
every problem you encounter when migrating. The test should be written so that it
fails and exposes the bug. Then, fix the code and rerun the tests. As soon as the test
passes, you know that you have fixed the bug. Not only will you gradually build up a
set of unit tests, but you also will quickly find out when a bug that was already fixed
suddenly reappears.

Though PHPUnit is object-oriented, unit tests are not only suited for object-
oriented code. You can test procedural code as well. If the code has a many de-
pendencies on global variables, though, it can be tedious to set up an environment
for each test.

Generally, the more modular your application is, the easier testing becomes. Ide-
ally, the tested components should have no dependencies. Objects that interact with
databases, for example, can be replaced by dummy objects, the so-called mock ob-
jects.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

202 ” Tools

To automate a number of PHPUnit tests, you can use the build automation tool
phing, which is described in this Chapter.

System Tests with Selenium

A system test tests the application through its user interface. Even when all compo-
nents of the application are well tested, there is no guarantee that all components
will work together without problems. The NASA probe Climate Orbiter is a sad ex-
ample for this: after a course correction that went wrong, the probe incinerated in
the Mars atmosphere. The problem was that one software module used the metric
system, while another module used the imperial system. When passing values be-
tween these modules, they were misinterpreted, which lead to the loss of Climate
Orbiter.

Today, the best approach to testing web application is to run it in a real browser
and remote control this browser. An example for a system test of a web application
could be:

• We try to access the confidential area of a website. We expect either a login
screen or an error message to appear

• We enter invalid credentials to the login form. We expect an error message
with the question, whether the user wants to retrieve a lost password

• We enter valid credentials and expect a success message, or to view the pro-
tected page that was originally requested

• We reload the page to make sure that we still have access. We expect to see the
same page again without an error message

• We click Logout and expect to see the login form again

• We click on “Back” and reload the page. We expect to see an error message or
the login page, but not the protected page

As you can see, just as with unit tests, there are certain assertions that must be ful-
filled for each step of the test.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 203

Let us now use the free software Selenium to automate our system tests. The core
of Selenium (in due course, called Selenium Core) is written in JavaScript that is em-
bedded into a page in an IFrame and remote controls the website. This is technically
not easy, and as we will see, there are still some issues with this due to the browser’s
security restrictions.

Selenium supports most common browsers, but usually only in newer versions.
On Windows, Internet Explorer, Firefox and Opera are supported. On Linux, Kon-
queror and on Mac, Camino and Safari are supported as well. A full list of supported
browsers including version numbers is available at [Openqa 2008].

There are two versions of Selenium. The Selenium IDE is a full-blown integrated
development environment for automated tests distributed as a Firefox plugin. With
Selenium IDE, you can record your browser interaction and reply it later. You can
also add assertions to the tests to make sure the application behaves as expected.

The second Selenium product is Selenium Remote Control (Selenium RC). Sele-
nium RC is Java software and has its own web server that acts as a proxy to the web
server to test. This proxy allows you to run system tests directly from PHPUnit. Since
a proxy is used, some security restrictions of the browser, namely the same origin
policy that usually prevents JavaScript from different URLs to be executed in a page,
can be circumvented. This allows us to test remote systems.

The preferred way of using Selenium is to record tests with Selenium IDE, then use
PHPUnit to run these tests. In conjunction with a build automation tool like phing,
system tests can be fully automated.

An important precondition for system tests is a defined initial state of the applica-
tion, also called test fixture. The database must exist and be populated with sensible
default values that may depend on each test case.

To isolate the tests from each other, you should install the application in the test’s
setUp() method and put it into a defined state, for example by restoring a backup
test database, or by sending HTTP requests to login to the application.

Setting up a test environment for each system test can be tedious and makes test-
ing slow, but it is still better to automate the tests instead of running them manually
over and over again.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

204 ” Tools

Capture & Replay Tests with Selenium

To record tests, we must install Selenium IDE first. As previously men-
tioned, Selenium IDE is a Firefox plugin which you can download from
http://www.openqa.org/selenium-ide/download.action. Since you are not installing
the plugin from an official Mozilla page, you may have to add openqa.org to the list
of sites that are allowed to install software.

After restarting Firefox, the Extra menu has a new entry, Selenium IDE. Click on
this menu entry to start Selenium IDE. A new window as shown in Figure 7.7 will
open. By default, Selenium records your browser interactions. There is a small catch,
though: Selenium has not recorded the URL of the page that you were already view-
ing. You can also not type the URL into the address bar of the browser, since Sele-
nium has no read access to it. The same holds true for the Forward and Back buttons
of your browser, so you should not use them while recording tests.

Figure 7.7

Make sure that the URL you are viewing matches the Base URL in the Selenium
window. Now, click a link that takes you to the page to test. If the base URL does not
match the URL you were viewing, replaying the tests is likely to fail, as the recorded
interactions will be sent to the wrong page.

You cannot change the base URL during a test. The reason is a security feature
in JavaScript, namely the same origin policy. You can also not switch between HTTP

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 205

and HTTPS in a test, since this also counts as a change of URL, even when you access
the same page with both protocols.

To insert assertions, select them from the drop down menu and enter the required
parameters. The assertions allow you to test virtually any aspect of the HTML page
(or the DOM tree, respectively).

The button to stop recording is not easy to find. To replay a recorded test, stop the
recording, choose Run, and click the icon with the Play symbol.

Automated System Tests with the Proxy

Tests that have been recorded with Selenium IDE can be run by PHPUnit in conjunc-
tion with a Java Runtime Environment. Before we begin, you should make sure that
you have a current Java Runtime Environment (JRE) installed:

> java -version

java version "1.6.0_02"
Java(TM) SE Runtime Environment (build 1.6.0_02-b06)
Java HotSpot(TM) Client VM (build 1.6.0_02-b06, mixed mode, sharing)

When this chapter was written, Java 1.6.0_02 was the latest version. This version is
marketed by Sun as Version 6 Update 2. If you have an older Java version, you should
update it, except when working with Java-based software that specifically requires
an older Java version.

Windows users can download Java from [Sun 2008], on most Unix systems, Java
should be installed by default. If this is not the case, you can either install Java with
your system’s packet manager, or download binaries from the Sun website.

Now you can install Selenium RC. Download the software from
http://www.openqa.org/selenium-rc/download.action and unpack the zip archive.
Always use the latest available version of Selenium RC. Since Selenium RC is Java
software, no installation is required. You can directly run Selenium from the
selenium-server.jar archive that is located in the selenium-server-0.9.2 directory.
Let us start the server:

> java -jar /path/to/selenium-server-0.9.2/selenium-server.jar
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

206 ” Tools

11:35:40.953 INFO - Java: Sun Microsystems Inc. 1.6.0_02-b06
11:35:40.984 INFO - OS: Windows XP 5.1 x86
11:35:41.000 INFO - v0.9.2 [2006], with Core v0.8.3 [1879]
11:35:41.562 INFO - Version Jetty/5.1.x
11:35:41.578 INFO - Started HttpContext[/selenium-server/driver, /selenium-

server/driver]
11:35:41.593 INFO - Started HttpContext[/selenium-server,/selenium-server]
11:35:41.593 INFO - Started HttpContext[/,/]
11:35:41.734 INFO - Started SocketListener on 0.0.0.0:4444
11:35:41.734 INFO - Started org.mortbay.jetty.Server@5ac072

The Selenium server listens to port 4444, so you may have to configure your firewall
accordingly. Leave the console window open, otherwise you will end the server.

To run Selenium RC on a server without a GUI, you can use the virtual X server
xvfb to start the browsers. Keep in mind that you do not need Selenium RC to work
with Selenium IDE, but only to run tests from PHPUnit.

To do this, record a test in Selenium IDE, then save it and export it to the PHPUnit
format by choosing Export Test As in the File menu and selecting PHP - Selenium.
When this chapter was written, Selenium IDE 0.8.7 was the most recent version that
unfortunately creates PHPUnit tests for an older PHPUnit version.

You can solve this problem by patching Selenium IDE with a modified
selenium-ide.jar which you can download from my blog at [Priebsch 2007]. Copy
this file into the extensions{a6fd85ed-e919-4a43-a5af-8da18bda539f}\chrome subdi-
rectory of your Firefox profile directory. This patch has also been submitted to the
Selenium developers, so hopefully the next Selenium release will include this patch.

When exporting a test case, the class name defaults to Example. Export the test to a
file Example.php so that you can run the test directly:

phpunit Example

If the file name does not match the class name (without .php, obviously), you can
specify the file name and path as second parameter:

phpunit Example path/to/the/testfile.php

Let us have a look at a test exported from Selenium IDE:
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Tools ” 207

<?php

require_once ’PHPUnit/Extensions/SeleniumTestCase.php’;

class Example extends PHPUnit_Extensions_SeleniumTestCase
{
function setUp()
{
$this->setBrowser("*firefox");
$this->setBrowserUrl("http://localhost/");

}

function testMyTestCase()
{
$this->deleteCookie("symfony", "/");

$this->open("/symfony/web/login");
$this->assertEquals("the page title", $this->getTitle());
$this->assertTrue($this->isTextPresent("Please log in:"));

$this->type("username", "admin");
$this->type("password", "the password");
$this->click("commit");
$this->waitForPageToLoad("30000");

$this->assertEquals("the page title", $this->getTitle());
$this->assertTrue($this->isTextPresent("User: admin"));
$this->assertTrue($this->isTextPresent("There are no files"));

$this->assertEquals("the page title", $this->getTitle());
$this->assertTrue($this->isTextPresent("Select a file to upload"));
$this->assertEquals(">e-novative> dox", $this->getTitle());

$this->type("file", "C:\www\symfony\selenium\testfile.txt");
$this->click("commit");

$this->click("//a[@onclick=\"return confirm(’Delete file?’);\"]");
$this->waitForPageToLoad("30000");

$this->click("link=Edit Profile");
$this->waitForPageToLoad("30000");

$this->assertEquals("the page title", $this->getTitle());
$this->type("firstname", "first");
$this->type("lastname", "last");
$this->type("company", "company");

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

208 ” Tools

$this->type("email", "user@host.com");

$this->click("commit");
$this->waitForPageToLoad("30000");

$this->assertEquals("the page title", $this->getTitle());
}

}

?>

This example is a test of an application that has been created using the Symfony
framework. Now let us run this test in PHPUnit. First, start the Selenium RC server,
then run the tests:

> phpunit Example

PHPUnit 3.2.15 by Sebastian Bergmann.

.

Time: 10 seconds

OK (1 test)

While the test is running, a browser window appears, so you can watch the test
progress (see Figure 7.8). In our example, the test has completed successfully.

We have already mentioned that there are several general issues with Selenium
tests due to security restrictions in the browsers. It is not possible to upload a file, for
example, because the browser would have to access the local filesystem to read the
file. For a very good reason, this is not allowed.

Some of these limitations can be circumvented by running Firefox in Chrome
mode, and Internet Explorer in HTA mode. In Firefox, the Chrome mode makes file
uploads possible, for example.

To run Firefox in Chrome mode, you must modify the setUp() method of your test:

$this->setBrowser("*chrome");

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 209

Figure 7.8

Selenium does not support HTTP authentication. HTTP authentication asks for
username and password, and again it would be a serious security risk if the
browser was allowed to access the credentials by JavaScript. According to RFC 3986
(http://tools.ietf.org/html/rfc3986), username and password can also be submit-
ted via the URL. Theoretically, you could make HTTP authentication work for PH-
PUnit tests, but some modern browsers like Internet Explorer do not support RFC
3986 any more - for security reasons, as you may have guessed. Since most web ap-
plications use a HTML-based login form instead of HTTP authentication, this should
not be an issue. If your application uses HTTP authentication, you can always dis-
able it for the Selenium tests.

Program Analysis and Debugging

The PHP extension xdebug written by Derick Rethans is a Swiss army knife for PHP
developers. It supports tracing, profiling, debugging and creation of code coverage
statistics. In this section, we will focus on the features that can be useful when mi-
grating code. xdebug should be installed on every development system. It will defi-
nitely make the migration easier for you.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

210 ” Tools

Installation

The xdebug installation differs between the different operating system families. On
Unix, you can try install xdebug with the following code:

> pecl install xdebug

This command will not work on all systems, though, so you might have to compile
xdebug by yourself (please adapt the paths to your system):

> wget http://xdebug.org/link.php?url=xdebug202
> tar -xzf xdebug-2.0.2.tgz
> cd xdebug-2.0.2
> phpize
> ./configure --enable-xdebug --with-php-config=/usr/bin/php-config
> make
> cp modules/xdebug.so /usr/lib/apache2/modules/xdebug.so

Installation is even easier for Windows users. Download the correct DLL for your
PHP version from http://pecl4win.php.net/ext.php/php_xdebug.dll and activate
xdebug by adding the following entry to php.ini:

zend_extension_ts="c:\php\ext\php_xdebug.dll"

The shown entry is valid on a Windows system, on Unix you would specify the full
path to xdebug.so. Depending on the thread model of your web server (or PHP, re-
spectively), you must load xdebug either as a thread-safe or non-thread-safe exten-
sion. In the latter case, use zend_extension instead of zend_extension_ts. For more
information about thread models, see chapter 3.

Now let us check whether xdebug has been loaded correctly:

> php -m

[PHP Modules]
bcmath
bz2
[...]
xdebug

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 211

[...]
xsl
zlib

[Zend Modules]
Xdebug

As we can see, xdebug appears twice in the list, once in the PHP Module section, and
again in the Zend Module section.

Useful Features

When xdebug is activated, it provides you with some very useful small features that
you will not want to miss after you worked with them for a while.

First of all, the var_dump() output is beautified. For example, xdebug improves the
formatting, and outputs size and data type of each value. Second, along with each
error message, xdebug shows a stack trace, and can optionally display additional
information. In complex programs, a stack trace can help you to better understand
the program, since you can see which function and method lead to the error.

To protect you from crashing PHP, xdebug prevents endless recursion. As soon
as the stack depth reaches a limit that has been configured in php.ini, the program
is stopped. Please note that this feature will not protect you from endless loops,
but only from endless recursion. You can add protected against endless loops at
PHP level by introducing a counter and stopping the program one this counter has
reached a certain level. This kind of protection can be useful while developing or
migrating, but should be deactivated or removed in production code.

Tracing

For complex, object-oriented applications, it is very difficult to understand the con-
trol flow of a program. Many programs write important decisions to log files, but the
problem is that when debugging, quite often the relevant information is not in the
log file.

With xdebug, you can create a trace log of the whole application. The trace log
contains all function calls, optionally with parameters and return values. Instead
of trying to add logging commands to the application in the right spots, create a

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

212 ” Tools

full trace log and use tools like grep or your favorite IDE or text editor to find the
interesting parts of the log file.

To have xdebug write a trace log, you must add some settings to php.ini:

xdebug.auto_trace=On
xdebug.trace_output_dir=c:\log

These settings must appear after the setting that loads xdebug, otherwise they will
not be recognized. The specified log directory must exist and be writeable for the
user PHP runs as.

With these settings, xdebug will create a minimal trace log. By adding some set-
tings to php.ini, you can create a trace log with more information:

xdebug.show_mem_delta=On
xdebug.collect_params=4
xdebug.collect_return=On

Now the log file will contain information about the memory consumption, the pa-
rameters passed to each function, and the return values. Do not forget to restart
your web server once you have changed php.ini, otherwise the settings will not be
effective.

Let us have a look at the trace log of a simple recursive factorial program:

TRACE START [2007-10-26 12:30:04]
0.0133 55704 +48 -> fac($x = 7) test.php:8
0.0133 55840 +136 -> fac($x = 6) test.php:13
0.0134 56096 +256 -> fac($x = 5) test.php:13
0.0134 56352 +256 -> fac($x = 4) test.php:13
0.0134 56632 +280 -> fac($x = 3) test.php:13
0.0135 56912 +280 -> fac($x = 2) test.php:13
0.0135 57192 +280 -> fac($x = 1) ...
0.0135 57472 +280 -> fac($x = 0) ...

>=> 1
>=> 1

>=> 2
>=> 6

>=> 24
>=> 120

>=> 720
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Tools ” 213

>=> 5040
0.0140 57648 +176 -> xdebug_stop_trace()test.php:26
0.0140 57648

TRACE END [2007-10-26 12:30:04]

Since xdebug has to write one line to the log file for each function call, the application
will be really slow when tracing is enabled. Therefore you should only enable tracing
when you really need it. Never trace an application on a production system.

Debugging

As its name suggests, xdebug is a full-blown remote PHP debugger. If PHP runs in
debugging mode, you can pause the program execution at any time. As soon as an
error or exception occurs, program execution is automatically paused. When the
program is paused, you can inspect the current variable values and the call stack on
the client, and even modify variables. Then, you can choose to continue the program
or run the application step by step.

Ecplise PDT, the free PHP plugin to Eclipse, contains a debug client that supports
the Zend debugger and xdebug. Since Ecplise is Java software, it should run with-
out installation on most available systems. You can download Eclipse PDT from
http://www.eclipse.org/pdt/downloads. Choose the All-in-One package for your
platform, unless you already use Eclipse.

Now some configuration is required to set up debugging with xdebug. On the
server, we must enable the xdebug debugger and specify the DNS name or IP ad-
dress of the debug client:

xdebug.remote_enable=On
xdebug.remote_host="localhost"
xdebug.remote_port=9000
xdebug.remote_handler="dbgp"

For our example, we are using a local Apache PHP-enabled web server, so the debug
server and debug client are on the same system.

Now we must configure Eclipse PDT since by default, if is configured to use the
Zend debugger. Click Preferences in the Window menu and expand the PHP subtree

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

214 ” Tools

on the left. Now, change the PHP debugger setting to xdebug and click Apply to save
the changes.

Next, we create a debug configuration. Choose Open Debug Dialog from the Run
menu and create a new debug configuration by double-clicking PHP Web Page.

You will see a window with three tabs, namely Server, Advanced, and Common.
Make sure that xdebug is selected as Server Debugger. In the File/Project field you
must enter the path to the script you want to debug, relative to the workspace. If you
debug remotely, you will need an identical version of the source code on the server
and on the client.

To enable Eclipse to map URLs to local filenames, the URL field must show the
correct URL of the script you just entered. If the value is not correct, unselect Auto
Generate and fix it. Click Apply again to save the changes. Now, your window should
look like the one in Figure 7.9.

Figure 7.9

Now you can start a debug session by selecting the Debug entry from the Run
menu. Make sure that no firewall between the debug client and server is blocking
the communication on port 9000.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 215

Figure 7.10 shows the debug view of an example program. On the right, you see the
current variable values. At the bottom, the source code of the executed file is shown.
The line that was executed last is highlighted.

By default, Ecplise pauses program execution at the first line of a PHP script. You
can disable this feature by unselecting the setting Break at First Line in the Break-
point section of the debug configuration.

Figure 7.10

To change the value of a variable, click it and enter a new value. To set a breakpoint,
right-click a line in the source code and choose Toggle Breakpoints from the context
menu. You can also set conditional breakpoints by choosing Set Condition from the
context menu. Enter the condition as a normal PHP expression, using the program
variables as needed.

Remote debugging can be very useful to find bugs in complex software without
making any changes to the source code. This is also called non-invasive debugging.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

216 ” Tools

Code Coverage

Code coverage tells you how much of your code is being tested. A code coverage of
100% is not realistic, though, since there are usually edge cases that are very com-
plicated to test. If your application contains code to handle such edge cases, testing
this code is often not worth the effort.

On top of that, 100% code coverage does not mean that the code has been thor-
oughly tested, as the following example shows:

<?php

...

if ($a)
{
print ’1’;

} else {
print ’2’;

}

if ($b)
{
print ’1’;

} else {
print ’2’;

}

?>

This example has four possible execution paths, as table 7.2 shows. By testing the two
execution paths $a = true, $b = false and $a = false, $b = true full code coverage
is reached, though two execution paths still remain untested:

a b Result
true true 11
true false 12
false true 21
false false 22

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 217

xdebug only collects the raw code coverage statistics. To aggregate and visualize
them, you can use phing, which we will introduce in the next section.

Build Automation

When developing software, there are quite some tasks that must be repeated many
times. A good IDE will help you to automate tasks like code quality assurance, run-
ning tests, creating API documentation, or creating a software release in the form of
a .tar.gz or ZIP archive, or even a PEAR package.

It can be a good idea, though, to automate these tasks independently from the
IDE. This will enable you perform the tasks not only on one development machine,
bus also on a central build server, for example.

Since we are doing PHP, why not choose a PHP-based tool to automate builds? The
free software phing is based on Apache Ant, which is written in Java. phing just re-
quires some additional PEAR packages, XML and XSL support in PHP. No additional
runtime environment is requires, and phing can be extended in PHP, should the need
arise. Thanks to phing, build processes can be portable and work across platforms.

Installation

Installing phing is easy and works cross-platform. The phing project runs their own
PEAR channel server, so installing phing is a matter of two command line com-
mands.

To install phing, you need a working PEAR environment of version 1.4 or newer.
If an older version is present, you should upgrade PEAR as described earlier in this
chapter. First, we must make the phing channel server known to PEAR:

> pear channel-discover pear.phing.info

Adding Channel "pear.phing.info" succeeded
Discovery of channel "pear.phing.info" succeeded

Now you can install phing from this channel server. The easiest way to do this is
by adding the command line switch -alldeps. This tells the PEAR installer to auto-
matically download and install all PEAR packages phing depends on. Since there is

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

218 ” Tools

a problem with the PHPUnit installation (as discussed earlier in this chapter), you
should install PHPUnit manually before installing phing:

> pear install --alldeps phpunit/phpunit

[...]

> pear install --alldeps pear.phing.info/phing

Failed to download pear/VersionControl_SVN within preferred state "stable",
latest release is version 0.3.1, stability "alpha", use "channel://pear.php.
net/VersionControl_SVN-0.3.1" to install

WARNING: "pear/PHPUnit2" is deprecated in favor of "channel://phpunit.de/PHPUnit
"

WARNING: "pear/DB" is deprecated in favor of "pear/MDB2"
phing/phing can optionally use package "pear/VersionControl_SVN" (version >=

0.3.0alpha1)
phing/phing can optionally use package "pear/Xdebug" (version >= 2.0.0beta2)
pear/PHPUnit2 can optionally use PHP extension "xdebug"
pear/Log can optionally use PHP extension "sqlite"
downloading phing-2.3.0beta1.tgz ...
Starting to download phing-2.3.0beta1.tgz (397,990 bytes)
..done: 397,990 bytes

Code Quality Assurance

PHP is not a compiled language like C or Java. PHP scripts are compiles before they
are executed, but this happens right before the script is being executed. In the clas-
sical compiled languages, the compiler plays an important tole in quality assurance,
because you cannot just deploy source code that does not compile. In PHP, programs
are not compiled before they are executed, so you can deliver broken code and will
not even notice until the customer tries to run the code.

Fortunately, PHP can run a lint check on the source code when called with the
-l command line switch (as discussed earlier in this chapter). In conjunction with
phing, it is very easy to run a PHP lint check.

The phing build process is driven by a XML file that defines various so-called tar-
gets. The build file should be named build.xml. The individual targets can depend
on each other, which allows you, for example, to only create a release when all tests
have passed.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 219

<?xml version="1.0"?>

<project name="Test" default="build" basedir=".">
<target name="clean">
...

</target>

<target name="build" depends="clean">
...

</target>

</project>

To call phing, specify the target to execute at the command line:

> phing build

Buildfile: build.xml

www > clean:

www > build:

BUILD FINISHED

Total time: 2.6946 seconds

Inside the target, a number of tasks can be executed. Each task is being represented
by an XML tag. There are various tasks, ranging from simple file operations like copy

or rename to complex operations like running tests, generating API documentation,
or creating a compressed archive or PEAR package.

To select files to be processed, you must define a fileset. When defining filesets, you
have a great deal of flexibility, as wildcards can be used to select any combination of
individual files or whole directories. To recursively select all files with a name that
ends in .php, for example, you can use:

<fileset dir="src" id="php_files">
<include name="*.php"/>
<include name="**/*.php"/>

</fileset>
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

220 ” Tools

The two stars refer to the current directory and its subdirectories. It is a little awk-
ward that phing does not include files from the root directory src when specifying

**/*Test.php. This is why you have to add *Test.php as well.
To run a lint check on all files of a fileset, use the phplint task:

<target name="lint">
<phplint>
<fileset refid="php_files"/>

</phplint>
</target>

When called, the lint target yields the following result:

> phing lint

Buildfile: build.xml

www > lint:

[phplint] index.php: No syntax errors detected
[phplint] .php: No syntax errors detected
[...]

BUILD FINISHED

Total time: 12.3692 seconds

Code quality assurance is not limited to PHP lint checks. Using the xmllint task, you
can run a lint check on an XML file. The undocumented jslint task allows you to run
a JavaScript Lint check if the tool jsl is available.

If you use a Zend IDE, you can use the analyze task to run the Zend Code Ana-
lyzer directly from phing. Additional quality assurance can be put in place by calling
external programs with an exec task. Keep in mind that this will make your build
process dependent on external tools, though.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Tools ” 221

Test Automation

Using PHPUnit, phing supports running automated tests. The advantage of using
phing is that you can define a fileset that contains all test cases to execute, and phing
will take care of the rest. You do not have to deal with defining a TestSuite in PHPUnit.

By convention, the names of test classes always end in Test, so it is easy to define
a fileset that contains all unit tests of our application:

<fileset dir="src" id="unit_tests">
<include name="*Test.php"/>
<include name="**/*Test.php"/>

</fileset>

We assume that both source code and tests are located in the src directory and its
subdirectories. The two asterisks in the second include tag refer to all subdirecto-
ries. It is a small oddity of phing that the test files in the given root directory are not
included by this tag. That is what we need the first include tag for.

<target name="unit_tests">
<phpunit2 printsummary="true">
<batchtest>
<fileset refid="unit_tests"/>

</batchtest>
</phpunit2>

</target>

Though the phing tags are still named phpunit2, phing does work with PHPUnit3. Let
us run the tests:

> phing unit_tests

Buildfile: build.xml

www > unit_test:

[phpunit2] Tests run: 2, Failures: 0, Errors: 1, Time elapsed: 0.01 sec
[phpunit2] Tests run: 2, Failures: 1, Errors: 0, Time elapsed: 0.04 sec
[...]

BUILD FAILED
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

222 ” Tools

build.xml:305:39: One or more tests failed

Total time: 29.2344 seconds

If you add a formatter tag to the phpunit2 task, phing will write all test statistics to a
file. You can then use the phpunit2report task to create a nice HTML report from this
data.

If you use PHPUnit to run system tests as well, you should create a separate target
systemtest. Often, system tests are kept in a different directory, while unit tests are
kept in the same directory where the production code is kept.

When creating a software release, you probably want to stop the build when a test
fails. When migrating, you will probably want to run all tests to get a full report of all
the failures and errors.

The haltonfailure and haltonerror attributes of the phpunit2 task determine
whether the build is stopped, when a tests fails, or an error occurs. Both attributes
default to false. When looking at test results, be warned that one failed tests often ac-
counts for consecutive faults. You should therefore always fix the first reported error
first, then rerun all tests.

Code Coverage Statistics

Together with xdebug and PHPUnit, phing can create a code coverage statistics re-
port. The basic idea is to create code coverage statistics of the application code while
running all unit tests. We will need two filesets to do this:

<fileset dir="src" id="php">
<include name="*.php"/>
<include name="**/*.php/"/>
<exclude name="*Test.php"/>
<exclude name="**/*Test.php"/>

</fileset>

<fileset dir="src" id="tests">
<include name="*Test.php"/>
<include name="**/*Test.php"/>

</fileset>
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Tools ” 223

The first fileset contains the PHP files of the application, while the second fileset
contains all unit tests. Now we configure phing to track code coverage statistics for
the php fileset, run the unit tests, and create a report from the raw data:

<target name="code_coverage">
<mkdir dir="coverage_db"/>
<mkdir dir="coverage_result"/>

<coverage-setup database="coverage_db/coverage.db">
<fileset refid="php"/>

</coverage-setup>

<phpunit2 codecoverage="true">
<batchtest>
<fileset refid="tests"/>

</batchtest>
</phpunit2>

<coverage-report outfile="coverage_db/coverage.xml">
<report todir="coverage_result"/>

</coverage-report>

</target>

To avoid a mix-up of old and new files, you should delete the subdirectories
coverage-db and coverage-result at the beginning of the code_coverage target or
write a clean target that code_coverage depends on.

Figure 7.11

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 8

Migrating PHP Code

“Wise men learn by other men’s mistakes, fools by their own.” —(Chinese Proverb)

Chapter Overview

This chapter deals with the changes that must be made to PHP code when migrating.
New PHP versions not only contain new features, but also bugfixes that might result
in altered behavior of PHP functions or language constructs.

The PHP developers are working hard to keep backwards compatibility with older
PHP versions. Sometimes, however, it is necessary to break backwards compatibility,
for example when security problems have to be fixed.

After migrating the PHP environment, the PHP source code of the application to
be migrated must be modified. Not only must the application run without error mes-
sages, but it must also behave identically on the target platform.

As we have already seen in Chapter 3, newer PHP versions can be configured to
behave like older versions, which usually causes most trouble when migrating. The
best idea is to make your application work in the default PHP configuration. This
will save you trouble in the long run, because by keeping the existing configuration,
you just push the pending problems farther ahead.

While the individual problems mentioned in this chapter are not too severe by
themselves, ignoring them can lead to a chain of events that ultimately results in

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

226 ” Migrating PHP Code

hard to find errors. This is why you should pay attention to even small details when
migrating.

Case Sensitivity

In the third chapter, we learned that some operating systems are case sensitive, while
others are case insensitive. Windows is case insensitive, which means that it does not
distinguish between upper and lower case letters (in file names, at least). Unix is case
sensitive, which is the reason why URLs are, at least in part, case sensitive as well.

PHP has a very pragmatic approach to case sensitivity, meaning that some aspects
are case sensitive, while others are case insensitive. Fortunately, this behavior does
not depend on the operating system PHP runs on, except for the file names, where
PHP obviously relies on operating system functions, thus inheriting the operating
system’s case sensitivity here.

When working with strings, PHP is case sensitive by default, but you can force
case insensitivity by using case insensitive string handling functions like stristr()

instead of strstr(), for example. Another approach to force case insensitivity would
be to convert all strings to upper or lower case when processing them. This can be
useful when comparing strings, for example.

Variables

Variable names are always case sensitive, regardless of which operating system PHP
runs on. The following example shows that PHP treats variable names with differing
case as two distinct variables:

<?php

$test = 3;
$Test = 4;

var_dump($test);
var_dump($Test);

?>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 227

This program creates the following output:

int(3)
int(4)

You should set strict guidelines as to which case to use for variable names, otherwise
you risk inadvertently creating a new variable when you actually want to refer to an
existing variable. Such errors are usually hard to find.

In most cases, you will not have to deal with case issues when migrating PHP code.
Still, it is important to know how PHP behaves, and which problems you can expect,
especially when migrating code that you have not written by yourself.

Constants

It is interesting to observe that constants are also case-sensitive, though by conven-
tion they are usually written in upper case letters. You should stick to this convention
to make it easier to distinguish variables and constants.

The following example shows that PHP will treat constant names with differing
case as two constants:

<?php

define(’TEST’, 3);
define(’test’, 4);

var_dump(TEST);
var_dump(test);

?>

This program generates the following output:

int(3)
int(4)

When defining a constant, you can use an optional boolean parameter that forces
the constant to be case insensitive:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

228 ” Migrating PHP Code

<?php

define(’TEST’, 3, true);
define(’test’, 4, true);

var_dump(TEST);
var_dump(test);

?>

In this case PHP will issue a notice when running the above program, as you are
trying to redefine an already existing constant:

Notice: Constant test already defined in test.php on line 4

int(3)
int(3)

Unfortunately, many programmers configure PHP so that E_NOTICE errors are not dis-
played. In that case, they might not realize that the define() in line 4 had no effect
and might end up asking themselves why the constant has a wrong value at a com-
pletely different point in the program.

PHP has some built-in constants. These are case sensitive as well, which means
that you always have to capitalize them, otherwise you are referring to an undefined
constant:

<?php

var_dump(PHP_EOL);
var_dump(php_eol);

?>

This program creates the following output:

string(2) "
"
Notice: Use of undefined constant php_eol - assumed ’php_eol’ in test.php on

line 6
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 229

string(7) "php_eol"

Again, PHP shows a notice informing you that an undefined constant has been used.
This, again, shows the importance of always displaying all error messages, warnings,
and notices.

This example shows another behavior typical for PHP: whenever an undefined
constant is used, PHP creates a temporary constant at runtime. This happens, for
example, when you output a string without quoting it. In the above example, the
constant php_eol will be defined, containing the string “php_eol”.

Should you inadvertently use a temporary constant, you will really run into trouble
when a constant of the same name is defined at some point in the future. PHP will
then use the existing constant instead of creating the temporary constant, as the
following example shows:

<?php

define(’Hello’, ’Goodbye’);

var_dump(Hello);

?>

Instead of greeting you, the program will now output the following:

string(7) "Goodbye"

This is a very good example how a small and seemingly harmless problem that has
been ignored for too long can become a serious problem in the end.

As a rule of thumb, a program should by default never emit any errors, warning
or notices. Every message indicates a potential problem, that might surface when
migrating the code.

Magic Constants

PHP knows the so-called magic constants __LINE__, __FILE__, __FUNCTION__,
__CLASS__ and __METHOD__. Starting with PHP 5.3, the magic constants __DIR__ and

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

230 ” Migrating PHP Code

__NAMESPACE__ will be available. The names of magic constants always begin and end
with two underscores. Magic constants are no real constants, but hold a value that
changes depending on the execution state of the program. __LINE__, for example,
always holds the number of the currently executed line of code, and __FUNCTION__

holds the name of the currently executed function.
You can use magic constants just like normal constants, but have to keep in mind

that they are always case insensitive, as opposed to normal constants.

<?php

var_dump(__LINE__);
var_dump(__line__);

?>

This program generates the following output:

int(5)
int(6)

While __FUNCTION__, __METHOD__ and __CLASS__ always returned lower case charac-
ters in PHP 4, in PHP 5 these magic constants return the names as they have been
defined. To keep PHP 4’s behavior, use strtolower() to convert the result to lower
case characters. It is convenient to embed the magic constant into a function:

<?php

function get_current_classname()
{
return strtolower(__CLASS__);

}

?>

In the long run, though, you should consider modifying your code to not expect only
lower case characters, especially when mapping class names to file names.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 231

Functions and Methods

Function and method names in PHP are always case insensitive. This means that
PHP does not differentiate between test() and Test(), as the following example
shows:

<?php

function test()
{
var_dump(3);

}

function Test()
{
var_dump(4);

}

test();
Test();

?>

This program fails with a fatal error at compile time:

PHP Fatal error: Cannot redeclare test() (previously declared in test.php:5) in
test.php on line 11

Unfortunately, this allows for sluggish programming:

<?php

function test_function()
{
var_dump(’test function’);

}

test_function();
Test_Function();
TEST_FUNCTION();

?>
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

232 ” Migrating PHP Code

The program output shows that PHP calls the same function, regardless of the capi-
talization in the function call:

string(11) "test function"
string(11) "test function"
string(11) "test function"

Try to keep capitalization strict and consistent, even though PHP does not really en-
force it.

Classes

Just like with function and method names, PHP also treats class names in a case
insensitive way:

<?php

class ClassName
{
...

}

class className
{
...

}

$a = new ClassName;
$b = new className;

?>
</code php>

This program fails with a fatal error at compile time:

<code>
Fatal error: Cannot redeclare class className in test.php on line 8

Again, this encourages sluggish programming, because you can write class names in
varying case and still refer to the same class name:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 233

<?php

class Test
{
public function __construct()
{
var_dump(’class Test’);

}
}

$test = new test;
$test = new Test;
$test = new TEST;

?>

PHP instantiates the same class three times:

string(10) "class Test"
string(10) "class Test"
string(10) "class Test"

When mapping class names to file names, case can become an issue, since the un-
derlying operating system might be case sensitive or case insensitive. Please refer to
Chapter 3 for more information.

Files

PHP treats file names either case sensitive or case insensitive depending on the op-
erating system PHP runs on. On Unix, file names are case sensitive, while they are
case insensitive on Windows. This means that on Unix myFile.txt and myfile.txt

refers to two different files, whereas on Windows both names refer to the same file.
You should never use file names that only differ in capitalization. Though this is

possible and perfectly valid on Unix, you will run into trouble once you try to copy
these files to Windows.

When migrating from Windows to Unix, you should make sure that your applica-
tion finds all required files on the target system. This means not only checking all
include and require statements, but also any function that can be used to access a
file, like fopen() or file_get_contents().

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

234 ” Migrating PHP Code

Let us try to access an existing file test.txt from a PHP program:

<?php

$string = file_get_contents(’test.TXT’);

?>

This program will work without problems on Windows, but fail on Unix:

Warning: file_get_contents(test.TXT): failed to open stream: No such file or
directory in test.php on line 3

Also, migrating from Unix to Windows is not always without problems related to file
names, because Unix allows more special characters in file names than Windows
does. Unix basically allows every special character except the directory separator
(which is the forward slash /). Windows is more restrictive and does not allow a
number of special characters. For details please refer to Chapter 3.

When you use include, require, include_once, or require_once, also read the sec-
tion entitled “Dynamically Loaded Code” later in this chapter.

Name Conflicts

Computers are not very intelligent. A human that reads source code can resolve am-
biguities intuitively, but computers cannot. Names and identifiers must always be
unambiguous so that the computer can execute a program.

Many program languages support namespaces to make identifiers unique. Since
PHP does not support namespaces until version 5.3, there is a lot of potential for
name conflicts in existing PHP code.

Reserved Keywords

Reserved keywords solve a special purpose in PHP. When PHP translates the source
code to something executable, the tokenizer parses the code and translates source
code text into tokens. To find its way through the source code, the parser uses a
number of reserved keywords as anchor points.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 235

If a reserved keyword appears as an identifier (i.e. class, function or method name,
or constant) in the source code, the parser gets confused and fails to compile the PHP
program.

Though it is possible to define constants with a keyword as their name, because
the identifier is enclosed in quotes, accessing this constant does not work, as the
following example shows:

<?php

define(’case’, 3);

var_dump(case);

?>

The output is:

Parse error: syntax error, unexpected T_CASE, expecting ’)’ in test.php on line
5

As you can see, the error occurs in line 5, where we try to output the constant, and
not in line 3, where we have defined it.

Even a namespace does not protect you from conflicts with reserved keywords.
You can, for example, not call a method new(), even though the method name is
protected by the namespace of the class it is defined in:

<?php

class Test
{
function new()
{
...

}
}

?>

Running this program leads to a fatal error on compilation:
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

236 ” Migrating PHP Code

Parse error: syntax error, unexpected T_NEW, expecting T_STRING in test.php on
line 5

Over time, more keywords are being added to PHP. If the PHP developers choose
to use an identifier you are using as a new keyword, you will have to rename this
identifier to make your program compile again.

Reserved Keywords:

• __CLASS__, __FILE__, __FUNCTION__, __LINE__, __METHOD__

• and, array(), as

• break

• case, class, const, continue

• declare, default, die(), do

• echo(), else, elseif, empty(), enddeclare, endfor, endforeach, endif, endswitch,
endwhile, eval(), exit(), extends

• for, foreach, function

• global

• if, include(), include_once(), isset()

• list()

• new

• or

• print()

• require(), require_once(), return()

• static, switch

• unset()
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 237

• var

• while

• xor

Keywords reserved in PHP 4 only:

• cfunction

• old_function

New reserved keywords in PHP 5

• __DIR__

• __NAMESPACE__

• abstract

• catch, clone

• exception

• final

• goto

• interface, implements

• namespace

• php_user_filter, public, private, protected

• this, throw, try

• use

When parsing a PHP file fails because a keyword is used as an identifier, an error
message with a token name is displayed:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

238 ” Migrating PHP Code

Parse error: syntax error, unexpected T_FOREACH, expecting T_STRING in test.php
on line 5

Please note that the ::-operator has the rather cryptic Hebrew token
name T_PAAMAYIM_NEKUDOTAYIM. For a full list of tokens please refer to
http://www.php.net/tokens. Since the above mentioned error occurs at com-
pile time, it is rather easy to spot and fix.

To avoid name conflicts with keywords, you should prefix all class, function and
constant names. For method names, using a prefix is not very nice, though:

<?php

function fooSomething()
{
...

}

class fooTest
{
public function fooNew()
{
...

}
}

?>

So, instead of prefixing method names, you should use composite names consist-
ing of at least two words. Using a verb and a noun like doFoo(), registerFoo() or
importFoo() will also make the purpose of the method clearer.

Functions

For obvious reasons, user functions in PHP may not conflict with the names of built-
in PHP functions. The problem is that PHP extensions can register function names
as well, so you never really know which function names will be taken up by a certain
PHP installation.

Luckily, most authors of PHP extensions stick to the rule of prefixing the function
names with the extension name followed by an underscore. You should do the same

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 239

with your user functions in the global namespace: use a unique prefix to avoid name
conflicts. Choosing a prefix boils down to some guessing, though, because you can
never know which PHP extensions might be activated in the PHP installation your
application runs on. Refrain from using obvious and speaking names like imap, ldap,
odbc, or mysql, as these are very likely to be names of PHP extensions.

As we have already seen, the number of internal PHP functions will differ between
PHP installations. The following program will output a list of all existing PHP func-
tions.

<?php

var_dump(get_defined_functions());

?>

This list is split into two parts. The first, internal, shows all functions registered by the
PHP code and PHP extensions, while the second one, user, shows the user functions
defined by the PHP script. On my development system with some activated PHP
extensions, over 1500 functions are listed.

You can also list all functions registered by a certain PHP extension:

<php

var_dump(get_extension_funcs(’imap’));

?>

Classes, Interfaces and Exceptions

As we know, the support for object oriented programming in PHP was rudimentary
until the release of PHP 5. In PHP 4, objects were arrays with additional functions,
while PHP 5 supports all object-oriented concepts like objects, access modifiers, in-
terfaces, and exceptions.

Current PHP extensions use more and more object-oriented APIs, which means
that an increasing number of built-in interfaces and classes are available. All built-
in classes and interfaces are part of the global namespace, so name conflicts with

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

240 ” Migrating PHP Code

class and interface names are possible. Since the registered classes and interfaces
can differ between PHP installations, so you should use the following script to list
them:

<?php

var_dump(implode(’, ’, array_merge(get_declared_classes(),
get_declared_interfaces())));

?>

Since exceptions are objects as well, they are listed by get_declared_classes(). On
my PHP installation, the above script lists 128 names, some of which have a great
potential for name conflicts:

• ArrayObject

• Countable

• DateTime

• Directory

• DOMElement

• DOMDocument

• FindFile

• Iterator

• Reflection

• Serializable

• tidy

• Traversable

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 241

When PHP runs on Windows, the COM extension which is enabled by default registers
the classes variant, com, and dotnet.

The Standard PHP Library (SPL) defines quite a few iterators like
RecursiveIterator, FilterIterator, EmptyIterator, or AppendIterator and a hi-
erarchy of exceptions like LogicException, OutOfBoundsException, DomainException,
or RuntimeException.

When using names for iterators or exceptions you should always use a prefix as
mentioned above, or use the namespaces that became available with PHP 5.3. When
using namespaces, you have to clearly distinguish whether you are referring to a
built-in class or a class or your namespace, as the following example shows:

<?php

namespace foo;

class Exception
{
...

}

$test = new Exception;
var_dump($test);

$test = new ::Exception;
var_dump($test);

?>

In this example, we define a class Exception in our namespace foo. Since there is a
built-in class Exception in the global namespace, we should always fully qualify the
class name Exception when using it. While Exception refers to the Exception class in
our foo namespace, ::Exception refers to the built-in class Exception:

object(foo::Exception)#1 (0) {
}

object(Exception)#2 (6) {
["message":protected]=>
string(0) ""
["string":"Exception":private]=>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

242 ” Migrating PHP Code

string(0) ""
["code":protected]=>
int(0)
["file":protected]=>
string(8) "test.php"
["line":protected]=>
int(12)
["trace":"Exception":private]=>
array(0) {
}

}

Fortunately name conflicts with built-in classes are easy to find, since any attempt
to reuse an existing name will lead to a fatal error at compilation time:

Fatal error: Cannot redeclare class Exception in test.php on line 4

When running a lint check on your target system, you should find out about all
conflicting class names, and resolve any issues by renaming classes. Keep in mind,
though, that the first fatal error makes PHP stop compilation, so after you have fixed
the error you have to repeat the lint check to make sure that there are no more errors
in the same file.

When no more name conflicts occur at compile time, there is still a potential for
name conflicts at run time, for example when you use a variable name to store a
dynamically created class name. Please refer to the “Dynamic Calls” section later in
this chapter for more information.

Changing a class name in PHP code is not always easy. Sometimes, it is sufficient
to rename the class name with search and replace in all files of the application, but
when the code has external dependencies, you may also need to repeat the same
renaming other projects.

Constants

PHP itself and PHP extensions define built-in constants. Recently, PHP extensions
are using class constants more and more, but there is still a large number of con-
stants in the global namespace.

Some of the predefined constants in every PHP installation are:
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 243

• NULL

• boolean TRUE

• boolean FALSE

• the PHP version number PHP_VERSION

• the end-of-line character(s) PHP_EOL

• the Euler number M_E

• the mathematical constant M_PI

Like with functions and classes, you can never exactly tell which constants will be
available in a certain PHP installation. The following program lists all constants
available in your PHP installation:

<?php

var_dump(get_defined_constants());

?>

On my system, this program lists 1170 constants!
Unfortunately, name conflicts with built-in constants are not as easy to find as

name conflicts between functions or classes. If you try to use an already defined
constant, PHP will show a warning that you are trying to redefine an existing con-
stant:

<?php

var_dump(PHP_SAPI);
define(’PHP_SAPI’, "CGI");
var_dump(PHP_SAPI);

?>

The program generates the following output:
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

244 ” Migrating PHP Code

string(3) "cli"
Notice: Constant PHP_SAPI already defined in test.php on line 4
string(3) "cli"

An existing constant cannot be overwritten, but PHP only shows a notice, so it is
rather easy to overlook this error, especially when PHP is not configured to display
all error messages. Also, please note that a lint check will not be sufficient to display
the above notice, you will have to execute the program.

It can get even worse. If the critical define() statement is in one execution path
of the program, a single test may not be sufficient to detect the problem. You would
have to test all possible execution paths of the program, like the following example
defining a constant depending on the value of $a shows:

<?php

$a = false;

if ($a)
{
define(’PHP_EOL’, ’nonsense’);

}

var_dump(PHP_EOL);

?>

Fortunately, code like this should not occur too frequently. When migrating such
code, either move the define() out of the branch or add an else branch with another
define() statement.

PHP also allows for accessing constants by specifying their name as a string:

<?php

var_dump(constant(’PHP_EOL’));

?>

When you dynamically create constant names, to access them by constant(), you
can run into similar problems like with dynamically created class names. Since you

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 245

cannot find these names with search and replace, you must check every constant()

call in your code.
To minimize the risk of name conflicts, you should not define constants in global

namespace, but wrap a class around them, as the following example shows:

<?php

class MyConstants
{
const EOL = "\n";
const HELLO_WORLD = "Hello World";

}

var_dump(MyConstants::HELLO_WORLD);

?>

All constants are now protected by the namespace of the class MyConstants. Another
advantage of using class constants is that you can modify constants without chang-
ing existing code by creating a subclass of MyConstants.

If you run into name conflicts with constants on migration, you should consider
introducing a static class that holds all your constants. This will avoid any further
name conflicts in the future.

Magic Constants, Functions, and Methods

As we have already seen earlier in this chapter, PHP has some magic constants like
__FILE__ or __CLASS__. In addition, there are magic functions and methods as well,
that PHP automatically calls at certain points in time.

Examples for magic methods are the constructor and destructor methods
__construct() and __destruct() mentioned in the “Objects” section of this chapter.
Other magic methods include __call(), __sleep() or __clone().

All magic constructs begin with two underscores. You should never use two under-
scores for non-magic names in a PHP program. Should you find these names when
migrating, rename them throughout the whole application.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

246 ” Migrating PHP Code

Variables

Just like in all common programming languages, functions and methods have their
own scope in PHP. All variables within this scope that are not explicitly declared as
global are local variables.

A local variable is only valid inside the scope it has been defined in. Variables of
the same name can exist in other scopes without any conflicts. Let us look at an
example:

<?php

$test = ’global $test value’;
var_dump($test);

do_something();
var_dump($test);

function do_something()
{
$test = ’local $test value’;
var_dump($test);

}

?>

This program generates the following output:

string(18) "global $test value"
string(17) "local $test value"
string(18) "global $test value"

The first var_dump() call will output the global variable $test, while the second
var_dump() call inside the do_something() function refers to the local variable $test.
In the third call the value of the global variable $test is output again, since the func-
tion has already ended and the local variable $test does not exist any more.

Since functions and methods are usually not too long, name conflicts with local
variables are rare. The problem are variables in global namespace. Since the global
namespace spans multiple source files and all libraries as well, there is a big potential
for name conflicts.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 247

To list all variables registered in the global namespace, run the following program:

<?php

var_dump(array_keys($GLOBALS));

?>

Add this at the bottom of your program, for example in an append file (see Chapter
7), to make sure you actually see all defined global variables. Keep in mind that the
amount of global variables a program registers can be different depending on the
execution paths.

The solution to avoid name conflicts, again, is to prefix all global variable names.
In some configurations, though, PHP will automatically create a non-prefixed global
variable from input the script receives.

Keep in mind that also libraries that you use can define global variables. If they are
not prefixed, name conflicts between different libraries can occur.

Besides the problem of name conflicts, you should avoid using global variables at
all, because you cannot control access to then, which means that they can be over-
written at any time.

Use constants instead to store values that do not change while the program exe-
cutes. Constants, though, do not allow storing non-scalar values like arrays or ob-
jects. To work with non-scalar objects, you can create an object with non-public
members, providing only accessor methods to read, but not write the values.

You can list all variables in the current scope with

<?php

var_dump(get_defined_vars());

?>

This list includes all global variables that were imported into the scope with a global
declaration.

Depending on the PHP configuration, various associative arrays are present in the
global namespace that hold input data and environment variables. In current PHP

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

248 ” Migrating PHP Code

versions, also the so-called superglobal variables are present. The name of a su-
perglobal variable consists of capital letters and starts with an underscore (see the
section on “Superglobals” later in this chapter).

The following script provides you with a better overview of global and superglobal
variables:

<?php

var_dump(array_keys(get_defined_vars()));

?>

On my system, this program generates the following output:

Array
(

[0] => GLOBALS
[1] => argv
[2] => argc
[3] => _POST
[4] => _GET
[5] => _COOKIE
[6] => _FILES
[7] => _SERVER

)

Components and Libraries

As PHP applications grow more complex, code from different authors is integrated.
While it is rather easy to avoid name conflicts when all code has been written by the
same author, the probability of name conflicts grows when code by different authors
is integrated.

As we have already mentioned, prefix all names in global namespace to make them
unique, or use namespaces, which however raises your minimum required PHP ver-
sion to 5.3. When using namespaces, name conflicts can be resolved without mod-
ifying existing code by defining aliases, but it will probably take some time until ex-
isting libraries and components will make thorough use of namespaces.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 249

Keep in mind that library PHP code you use does not only consist of the classes
and functions that make up the public API. To reduce complexity of the public API,
there might be additional classes and functions that are hidden from public view,
yet are present and can cause potential name conflicts. Since this “private” code can
be changed without changing the public API, there is a potential for name conflicts
whenever you use a new release of a component or library.

Quite often, PHP programs load code at runtime by include or require. If a name
conflict with an existing class or function occurs, usually an error message is gener-
ated:

Fatal Error: Cannot redeclare class ...

This error does not occur right away in all cases, though. Many PHP applications
use autoload. The autoload handler is a magic function that is called when a non-
existing class is instantiated. The autoload handler then tries to load the class. The
advantage of using autoload is that you need no include statements on top of all your
PHP files, because all classes and their dependencies are automatically loaded when
they are required.

Most programmers put each class into one separate file. The autoload func-
tion must map the class name to a function name. If applications use the PEAR
naming scheme, the file name can be calculated from the class name by replac-
ing underscores with forward slashes and appending .php to the name. The
class PEAR_SomePackage_Exception, for example, would be mapped to the file name
PEAR/SomePackage/Exception.php.

When your application uses autoload, name conflicts will not always result in a
fatal error. Let us assume your application uses a class File, which is already loaded.
When some library also uses a (different) class File, autoload is not triggered be-
cause the class is already defined. Yet, an instance of the wrong File class will be
created. Since the class name matches, this error will only show when you try to call
a non-existing method or when a type hint fails:

<?php

test(new File);
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

250 ” Migrating PHP Code

function test(FileInterface $aFile)
{
...

}

?>

<?php

// Your application

interface FileInterface
{
...

}

class File implements FileInterface
{
public function load()
{
...

}
}

?>

<?php

// The library

class File
{
public function read()
{
...

}
}

?>

Depending on the execution order, this program will either work or fail. In the latter
case, you will see an error message like the following:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 251

Catchable fatal error: Argument 1 passed to test() must be an instance of
FileInterface, instance of File given, called in test.php on line 3 and
defined in test.php on line 5

In this case, PHP even tells you where the class in question has been defined. It can
get even worse, though:

Fatal error: Call to undefined method File::load() in test.php on line 4

In this case, PHP does not tell you where File has been defined, so you must search
the whole source code for any definitions of a File class. Should the “wrong” File

class have a method of the same name, but with different parameters, PHP will com-
plain about wrong or missing parameters. It can be hard to find the source of this
errors.

Processing Input Data

Every program processes input data and creates output data. PHP programs typi-
cally process HTTP requests that can transmit parameters as URL parameters, for
example. The result generated by the PHP program is usually a HTML page.

When PHP programs are executed at the command line rather than in a web
server, input data also is available in the $argv array. The variable $argc contains
the number of parameters passed to the PHP program. By definition, $argv[0] is
always the name of the called PHP script.

If PHP runs in a web server, which should be the usual case for a web application,
there are various possibilities of accessing input data.

Registering Global Variables

The history of the php.ini setting register_globals reflects, in a way, the whole his-
tory of PHP. The first PHP versions were created to be more user-friendly than CGI
programming with PERL, so accessing input data was made as easy as possible. That
is why PHP programs used to automatically create a global variable for each GET,
POST, and cookie input.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

252 ” Migrating PHP Code

<?php

// File: test.php

var_dump($page);
var_dump($user);

?>

When called via the URL test.php?page=products&user=Stefan, this program would
generate the following output:

string ’products’ (length=8)
string ’Stefan’ (length=6)

Today, you can configure whether PHP registers global variables with the php.ini

setting register_globals. Until PHP 4.2 register_globals was On by default, since
then it is recommended to keep it Off. Unfortunately, this recommendation is not
always being adhered to. Even today, some programs require register_globals to be
On. In PHP 6, register_globals will be removed.

Automatically creating global variables simplifies programming at first glance, but
as programs grow complex, disadvantages pile up. What happens if an input variable
is overwritten, just because the program uses a global variable of the same name?
How can I tell which variables a program defines, just by looking at it from the out-
side?

In conjunction with sloppy coding, register_globals can account for security
problems, as the following simplified example shows:

<?php

// File: test.php

if ($username == $usr && $password == $pwd)
{
...

if ($username == ’admin’) $admin = true;
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 253

... viel Code ...

if ($admin)
{
...

}

?>

When an attacker calls the URL test.php?admin=1, he will be treated as administra-
tor, though he is not even logged in to the system. The reason for this is the URL
parameter “admin” that leads to creation of the global $admin variable in the above
program. This security problem could easily be solved by initializing all used global
variables, or not using global variables at all, but still many PHP applications had
similar problems in the past.

There is a simple solution to make a program work with deactivated
register_globals setting. Just explicitly register the appropriate input as global vari-
ables. This can be done with the PHP function import_request_variables(), which
has been available from PHP 4.0.7. You can even specify the data sources you want
to create global variables from:

<?php

// File: test.php

import_request_variables(’GPC’);

var_dump($page);
var_dump($user);

?>

The G stands for GET data, P for POST data, and C for cookie data. The order is im-
portant, as data registered later overwrites already registered data. By changing the
order of data sources, the behavior of the application can change as well, so you
should use the value of the variables_order setting in php.ini.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

254 ” Migrating PHP Code

While using import_request_variables() is not the recommended way of solving
the register_globals problem, it can act as a quick workaround to make an older
program work in a current PHP environment.

Even in PHP 4, there have always been alternatives to using register_globals,
namely global and superglobal variables, as explained below.

Long Input Arrays

PHP registers global variables for input data from the various sources. Instead of
accessing a global variable, one accesses an array element. This makes it much easier
to separate input from variables used by the program itself.

PHP defines the following global arrays:

• $HTTP_GET_VARS

• $HTTP_POST_VARS

• $HTTP_COOKIE_VARS

• $HTTP_SERVER_VARS

• $HTTP_ENV_VARS

• $HTTP_POST_FILES

The disadvantage of using these global arrays is that they must be declared as
“global” in every scope. To overcome this limitation, the superglobal variables have
been created.

Since PHP 5.0 you should not use the long input arrays any more, since they can be
deactivated with the php.ini setting register_long_arrays. Thus it is not guaranteed
that the long arrays are always present in every PHP installation. What is more, the
long input arrays will not be available in PHP 6 any more.

Fortunately, it is not a big deal to modify a program using long input arrays. All
you have to do is to replace all occurrences of the above listed variable names by the
respective superglobal arrays (see the next section in this chapter for more informa-
tion). While doing this, you can remove all global declarations of the long arrays as
well.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 255

For performance reasons, it is recommended to disable registering the long input
arrays when you are planning to use them. This saves you some computing time on
every PHP request.

Superglobal Variables

As pointed out in the previous section, introducing the superglobal variables to PHP
was an evolutionary improvement. Since most programs access input data in vari-
ous places, it is better not to have to declare input variables as global in every scope.

PHP defines eight superglobal variables, namely $_GET, $_POST, $_COOKIE,
$_SESSION, $_REQUEST, $_ENV, $_FILES and $_SERVER.

The superglobal variable $_REQUEST combines input data from various sources.
When working with sensitive input data, you should prefer $_POST over $_GET or
$_REQUEST, because GET parameters can be manipulated very easily, and show up in
the server log files and the browser history.

Superglobal variables are the preferred way of accessing input data in PHP. If your
application uses other means of accessing input, you should consider modifying the
code to use superglobal when migrating.

An even better idea is to create a class Input that is passed the superglobals as it’s
created, and is then used throughout the application to access input data. This has
the advantage of decoupling your application from the actual HTTP request, which
makes the program much easier to test. The Input object is also a good place to
preprocess and filter input data to make sure that the application only works with
sanitized variables.

Magic Quotes

Magic quotes are another feature that has been introduced into PHP to make a pro-
grammer’s life a little easier. The idea is to automatically escape backslashes, single
and double quotes and the NULL character in strings with a backslash.

This is done to avoid problems when using the strings in SQL statements, where
a string containing an unescaped quote can easily lead to an illegal SQL statement,
and potentially even an SQL injection attack. The same problem exists when using
unescaped strings as arguments to command line calls.

The following example program illustrates the problem:
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

256 ” Migrating PHP Code

<?php

// File test.php

$sql = "SELECT * FROM test WHERE username=’" . $_GET[’username’] . "’";
var_dump($sql);

?>

When the URL test.php?username=O’Hara is called with disabled magic quotes, the
program will output:

string ’SELECT * FROM test WHERE username=’O’Hara’’ (length=42)

This SQL statement is syntactically incorrect, and can thus not be executed by the
database. Magic quotes exist to resolve this issue, but the problem is that magic
quotes are configurable, and do not behave the same on all PHP systems. An appli-
cation cannot rely on the fact that input is always escaped (or not escaped).

This means that programs relying on magic quotes are vulnerable by SQL injection
attacks if magic quotes are disabled. If, on the other hand, an application relies on
magic quotes to be turned off, and explicitly escapes special characters, backslashes
start to pile up in the strings. You may have seen web pages displaying multiple
backslashes due to sloppy PHP programming.

To make a program portable, its behavior must be made independent from the
PHP configuration. This means we have to check whether magic quotes are enabled
or disabled and escape or unescape the strings accordingly.

As already mentioned earlier in Chapter 3, the various configuration settings re-
lating to magic quotes are among the features that will be removed in PHP 6. If your
application relies on magic quotes, you must modify the code when migrating.

magic_quotes_gpc

The php.ini setting magic_quotes_gpc determines whether PHP will automatically
escape GET, POST, and cookie input. Since this escaping takes place before the actual
PHP script starts, you cannot change magic_quotes_gpc at script runtime. The default
value is On.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 257

Today most database drivers in PHP use prepared statements that automatically
take care of proper parameter escaping. This allows you to work with unescaped
data in your application, which makes outputting HTML code easier.

To make an application independent from the magic_quotes_gpc, use the function
get_magic_quotes_gpc() to check the setting at runtime. Depending on the result,
either use addslashes() or stripslashes() on the input data:

<?php

if (get_magic_quotes_gpc())
{
$_GET = unquote($_GET);
$_POST = unquote($_POST);
$_COOKIE = unquote($_COOKIE);

}

function unquote($aValue)
{
if (is_array($aValue))
{
return array_map(’unquote’, $aValue);

} else {
return stripslashes($aValue);

}
}

?>

Since stripslashes() only works on strings, but not on arrays, we have written a
function unquote() which operates on strings and arrays. This function is recursive
and can thus also handle nested arrays.

In PHP 4 magic quotes are also applied to the contents of the superglobal vari-
able $_ENV, that contains the operating system’s environment variables. You should
check whether your application works with $_ENV and if necessary, change the code
accordingly.

The setting magic_quotes_gpc will be removed in PHP 6.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

258 ” Migrating PHP Code

magic_quotes_runtime

The setting magic_quotes_runtime determines whether data read from exter-
nal sources like databases or flat files is automatically escaped. The default
value is Off. You can disable magic_quotes_runtime at script runtime by calling
set_magic_quotes_runtime(0). The function get_magic_quotes_runtime() allows you
to retrieve the current value of magic_quotes_runtime.

Since magic_quotes_runtime will also be removed in PHP 6, you can use the follow-
ing code to safely check the magic_quotes_runtime setting:

<?php

if (function_exists(’set_magic_quotes_runtime’))
{
set_magic_quotes_runtime(0);

}

?>

Whether this function will be removed in PHP 6, or just modified to always return
“false”, has not been finally decided at the time of this writing.

magic_quotes_sybase

The SQL standard requires single quotes to be escaped by another single quote. Es-
caping single quotes with a backslash is non-standard behavior, but still supported
by many databases. Early MySQL versions did not support SQL-compatible escap-
ing, but only escaping with backslashes. Though today most databases support
escaping single quotes by another single quote, database specific escaping is used
quite often.

By enabling the php.ini setting magic_quotes_sybase, the behavior of
magic_quotes_gpc changes to SQL-standard-conforming escaping of single quotes.
Double quotes, backslashes, and NULL characters will not be escaped.

Please note that the name of the configuration setting is misleading, since it does
not only apply to Sybase databases, but to all data and databases.

Just like the other configuration settings dealing with magic quotes,
magic_quotes_sybase is problematic, because you cannot rely on a certain be-

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 259

havior across different PHP installations. To disable magic_quotes_sybase at
runtime, use

<?php

ini_set(’magic_quotes_sybase’, false);

?>

To explicitly escape a string according to SQL standard, you can use the following
string replacement code:

<?

$string = str_replace(’\’, ’\’\’’’, $string);

?>

Most of the time, the database driver takes care of escaping the data nowadays, espe-
cially when prepared statements and/or PDO is being used. Most database drivers
offer functions for database-specific escaping, like mysql_real_escape_string() for
MySQL, or sqlite_escape_string() for SQLite.

If you plan to undo the magic quoting of GET, POST, and cookie data, you should do
so before turning magic_quotes_sybase off. This is because magic_quotes_sybase also
modifies the semantics of the stripslashes() function: when magic_quotes_sybase

is activated, stripslashes() will replace two single quotes with one single quote.

Accessing POST Data

As we have already learned, sensitive form data should always be transmitted by a
POST request. When uploading files from the browser to the server, POST requests
are used as well. PHP will automatically decode the binary data that is transmitted
base64-encoded. After decoding the data, the uploaded file is made available to the
PHP script in a temporary directory. Using the function move_uploaded_file(), this
file can be copied to another directory for further processing.

Usually PHP developers do not have to deal with the technical details of a POST

request. In special cases, however, it can be necessary to access the original POST
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

260 ” Migrating PHP Code

data sent by the browser. PHP will make this data available in the global vari-
able $HTTP_RAW_POST_DATA if the php.ini setting always_populate_raw_post_data is
enabled. $HTTP_RAW_POST_DATA will only be filled with the original POST data when
the mime type of the POST request was not multipart/form-data, which is exactly the
mime type of requests used to upload files.

This means that you cannot access uploaded files via $HTTP_RAW_POST_DATA. You
can always use the input stream to read the original POST data independently from
php.ini settings:

<?php

$raw_post_data = file_get_contents(’php://input’);

?>

The Script Name in $PHP_SELF

PHP programs often need to output links. Especially applications that tunnel
all requests through one single PHP script will frequently have to construct self-
referencing URLs.

In older PHP versions until PHP 4.1.0 there was a global variable $PHP_SELF con-
taining the name of the currently executed script, relative to the web server’s docu-
ment root directory. If PHP runs in CLI mode, $PHP_SELF contains the absolute path
of the currently executed PHP file.

If you need to know the full path of the currently executed script, you can use
the magic constant __FILE__, that contains the script’s full absolute path, or, starting
with PHP 5.3, “__DIR__”, that contains the directory of the running script.

Since PHP 4.1.0, $PHP_SELF is no longer available when register_globals is deacti-
vated in php.ini (as discussed previously in this chapter). You can still read the same
value from the $_SERVER superglobal variable.

If you want a quick fix without modifying the code of your application, just define
a global variable $PHP_SELF in your application when it is not yet defined:

<?php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 261

if (!isset($PHP_SELF))
{
$PHP_SELF = $_SERVER[’PHP_SELF’];

}

?>

A better solution, however, would be to replace all occurrences of $PHP_SELF in the
source code by $_SERVER[’PHP_SELF’].

Error Handling

According to Murphy’s Law, everything that can go wrong will eventually go wrong.
Though this law was originally stated back in 1949, it definitely applies to computers.
When programming, you cannot rely on everything to just work, but always have
to take into account that things can and will go wrong. There are many sources of
errors: users make wrong entries, the database contains nonsense values, the hard
disk runs out of memory, or a whole system fails. A good program should at least
handle the most common errors.

As a matter of fact, error handling can account for up to 90% of the programming
effort. Especially applications requiring lots of user input require many plausibility
checks. These include not only simple checks for mandatory inputs or field length,
but also more complex checks like validity of a domain name or an email address.

Even when all fields have been validated successfully, this does not mean that
there will be no more error when processing the data. Additional information re-
quired from the database might be missing, or the data to store may already be
present in the database.

We can distinguish between errors that occur at compile time, and errors that oc-
cur at runtime. A typical error that occurs at compile time is a syntax error:

Parse error: syntax error, unexpected $end in test.php on line 9

Basically, an error message like this tells you that the PHP parser cannot compile
the PHP source code to executable code, because the program does not follow the

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

262 ” Migrating PHP Code

grammar rules of PHP. These errors might be a little annoying, but are usually very
easy to fix.

Errors that occur at runtime are much harder to fix, since they might occur only in
certain situations, depending on the input data and the state of the program.

PHP supports custom error handlers that allow you to process any runtime errors
(see the section entitled “Returning References” later in this chapter). It is not pos-
sible, though, to handle compile-time errors with a custom error handler, since they
occur before execution of the PHP program even starts.

Suppressing Errors With @

Too many programmers configure PHP not to display all error classes, or use the
@ operator to selectively suppress the error for certain function calls. Suppressing
errors can be useful in certain situations, but as programs grow complex, ignoring
errors leads to other hard to find errors in most cases, and should thus be avoided.

Please note that the @operator suppresses even critical errors that would otherwise
end program execution. I often see code using the @ operator to suppress warnings
when non-existing files are read:

<?php

var_dump(file_get_contents(’non-existing file’));

?>

If the file does not exist in the current directory, the program issues a warning:

Warning: file_get_contents(non-existing file): failed to open stream: No such
file or directory in test.php on line 3

bool(false)

Since the file could not be read, file_get_contents() returns a boolean false. De-
pending on the program context, a missing file is not always an error, though, so
many programmers use @ to suppress the warning:

<?php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 263

var_dump(@file_get_contents(’non-existing file’));

?>

A better solution would be to first check whether the file exists with file_exists(),
and then read the file. You might even have to check whether the file is readable with
is_readable(), because an existing file need not necessarily be readable by every
user.

Removing @ in this example comes at the cost of two additional file system ac-
cesses, which can be rather slow depending on which operating system and file sys-
tem is being used.

Still, I would not recommend using @, which is rather slow, by the way, because
it uses a kind of eval internally. When you encounter @ statements in the code you
are migrating, you should remove them. This also makes debugging the code easier,
since you will probably see additional warnings or error messages when there is a
problem with your code. Keep in mind, that good code should not emit any warnings
or notices, at least by default.

On production systems, you should always disable error display by setting
display_errors to Off in php.ini. You can also do that with ini_set() at runtime,
so that your program is independent from php.ini (see Chapter 7).

Storing the Previous Error Message

To ease error handling in procedural code, PHP stores the last error messages in the
variable $php_error when track_errors is enabled in php.ini.

Though $php_errormsg is a global variable, the stored error message is only acces-
sible within the scope the error occurred in. Quite often, $php_errormsg is used to
store database error messages and later access them.

Today, PHP offers a much better mechanism to handle non-fatal errors, namely ex-
ceptions. With exceptions, you do not have to handle an error right where it occurs,
but can handle it where it makes most sense in the context of your program. Another
advantage of exceptions is that they make it very easy to attach arbitrary environ-
ment information to the actual error message. Instead of relying on $php_errormsg,

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

264 ” Migrating PHP Code

you should use exceptions instead, as track_errors is disabled in most PHP installa-
tions anyway.

When run code that relies on $php_errormsg on a PHP with track_errors disabled,
you will see error messages, as you are trying to access a non-existing variable. If you
use $GLOBALS[’php_errormsg’] instead of $php_errormsg, you will see a notice as you
are trying to access a non-existing array element. A quick workaround is to activate
track_errors at runtime:

ini_set(’track_errors’, ’On’);

In the long run, you should adapt your code to use exceptions. Please note that us-
ing exceptions does not necessarily mean that you must write object-oriented code.
You can use exceptions in procedural code just as well. For more information about
exceptions, please refer to Chapter 8.

Configuring Error Display

A great feature of PHP is that error messages are displayed as part of the HTML out-
put, because the position of the error message can help track down the error. While
this error display is extremely useful at development time, you should always sup-
press error display on production systems.

Besides the fact that does not make a good impression on the user when PHP error
messages screw up the page layout, displaying error messages can in fact be a seri-
ous security breach. Error messages do not only provide a potential attackers with
information about path and file names, but can also inspire them to SQL injection
attacks by displaying SQL statements.

You can turn on and off error display by the php.ini setting display_errors. The
setting error_reporting determines which error messages PHP will output. You
should always set error_reporting to the highest possible value to make sure that
you see all errors, warnings, and notices your application generates.

If your application does not only output HTML pages, but also other content like
images of PDF files, you should disable display_errors for these content types. Oth-
erwise, a single PHP error message will make the file unusable. Add the following
snippet of code on top of all files that generate non-HTML content to selectively
suppress error display.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 265

ini_set(’display_errors’, ’Off’);

When migrating, I would recommend also using output buffering to make sure that
no output or error messages prevent the application from sending HTTP headers
later.

New And Modified Error Messages

Any error message, warning, or notice indicates a potential migration problem.
Therefore it is not a good idea to suppress any error messages. The available types
of error messages differ between PHP versions and new versions may add additional
error classes, or reclassify existing error messages to another error class. Table 8.1
shows an overview over the PHP error classes.

In PHP 5, a new error class E_STRICT has been introduced. Error messages of this
class indicate the use of old and deprecated code constructs. This includes calling
non-static methods statically, assigning the result of a new statement by reference, or
using is_a() instead of instanceOf. Since E_STRICT error messages occur at compile
time, you cannot suppress them by setting error_reporting to a lower value at script
runtime.

Constant Value Description
E_ERROR 1 A fatal error that occurs at runtime. Program

execution ends.
E_WARNING 2 Warnings that occur at runtime and point to

potential errors in the code. This includes, for
example, the warning that a file to read has not

been found. Program execution continues.
E_PARSE 4 A parse error that occurred at runtime. Since the

script could not be compiled, it cannot be
executed

E_NOTICE 8 Indicates a potential problem at runtime. This
includes, for example, uninitialized variables.

Program execution continues.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

266 ” Migrating PHP Code

Constant Value Description
E_CORE_ERROR 16 Fatal error, encountered by the PHP

core while starting PHP. Like with
E_ERROR, program execution is

stopped.
E_CORE_WARNING 32 Warning by the PHP core while starting

PHP. Like E_WARNING, program
execution continues.

E_COMPILE_ERROR 64 A fatal error in the Zend Engine at
compile time. Like with E_ERROR,

program execution is stopped.
E_COMPILE_WARNING 128 Warning by the Zend Engine. Like with

E_WARNING, program execution
continues.

E_USER_ERROR 256 A fatal error, generated by the user by
calling trigger_error(). Like with
E_ERROR, program execution is

stopped.
E_USER_WARNING 512 A warning, generated by the user by

calling trigger_error(). Like with
E_WARNING, program execution

continues.
E_USER_NOTICE 1024 A notice generated by the user by

calling trigger_error(). Like with
E_NOTICE, program execution

continues.
E_STRICT 2048 Warnings indicating PHP code using

old and deprecated code constructs.
This error class exists since PHP 5.0.0.

E_STRICT errors occur at compile time,
the program is still executed.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 267

Constant Value Description
E_RECOVERABLE_

ERROR
4096 An error occurring at runtime, triggered

for example by a failed type hint. Since
PHP is not put into an undefined state,
program execution can continue if the

error is handled by a custom error
handler. If the error is not handled,

program execution is stopped.
Available since PHP 5.2.0.

E_ALL 8191 All error classes except E_STRICT. In
PHP 6, E_STRICT will be part of E_ALL.

PHP 5.3 will have a new error class, E_DEPRECATED. These errors are generated when
deprecated code constructs are used that will be removed in future PHP versions, for
example passing references at runtime (see the section entitled “Passing References
at Runtime” later in this chapter).

The value of error_reporting is a bit field, so you can combine the various error
classes by boolean operators.

error_reporting(E_WARNING | E_NOTICE);
error_reporting(E_ALL & ~E_WARNING);

Please note that the constants are only valid in PHP source code and php.ini. When
you configure error_reporting in httpd.conf or .htaccess, you will have to use the
numeric values instead.

If you want to make sure that all errors will be displayed in all PHP versions, use
the highest possible value 2147483647. This value sets all bits in a signed 32 bit word,
and thus ensures that all errors will be displayed, even in future PHP versions.

Please note that in older PHP versions, the value of E_ALL used to be 2047, or 6143,
respectively.

Custom Error Handlers

PHP allows writing a custom error handler to handle errors that occur at runtime.
This error handler completely replaces PHP’s internal error handling and is inde-
pendent from the php.ini setting error_reporting.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

268 ” Migrating PHP Code

The error handler is invoked on every PHP error and must handle them appropri-
ately:

<?php

set_error_handler(’error_handler’);

trigger_error(’User-generated error’, E_USER_ERROR);

function error_handler($aNumber, $aString, $aFile, $aLine)
{
var_dump($aNumber);
var_dump($aString);
var_dump($aFile);
var_dump($aLine);

}

?>

In this example program, an error is triggered, then handled by the error handler.
The program will output

int(256)
string(20) "User-generated error"
string(53) "test.php"
int(7)
still running

The error handler must differentiate between the various error classes, and is also
responsible for quitting the program when a fatal error has occurred. This implies
that custom error handlers can also be used to suppress errors, warnings, and no-
tices. When migrating, you should consider deactivating custom error handlers to
make sure that no PHP errors are suppressed.

If you use xdebug (see Chapter 7), you must use the function
xdebug_get_function_stack() to display additional information, since using a
custom error handler deactivates xdebug’s extended error display.

Sometimes, it is useful to generate certain errors to test error handler or logging
mechanisms. You can trigger an E_NOTICE by accessing an uninitialized variable:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 269

<?php

var_dump($undefined);

?>

To trigger an E_WARNING, you can use a scalar value as argument to a foreach loop:

<?php

$test = ’test’;

foreach ($test as $item) {}

?>

Triggering an E_ERROR is particularly easy, since you just have to call a non-existing
method or function:

<?php

undefined_function_name();

?>

It is also rather easy to trigger an E_STRICT error. Keep in mind, though, that E_STRICT
errors occur at compile time, and thus cannot be handled by a custom error handler
inside the PHP program.

<?php

class Test {}

$foo =& new Test;

?>

When migrating to a PHP version that adds new error classes, you must adapt your
error handler to handle these as well. The best way to ensure that all errors are han-
dled is by adding a default case to the error handler’s switch statement.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

270 ” Migrating PHP Code

Exceptions

Along with all the new object-oriented features, PHP 5 has also introduced excep-
tions. Exceptions allow the developer to handle an error not necessarily where it has
occurred, but where it fits best into the program flow. To make error handling more
efficient, exceptions allow passing arbitrary environment information along with the
actual error message.

It is not recommended to use empty exception handlers, as this is another way of
suppressing error messages:

<?php

try
{
...

}

catch (Exception $e)
{
}

?>

Ignoring errors like this is bad programming style and should be avoided. Make sure
that the code you migrate does not contain empty catch blocks. If you find empty
catch blocks, either remove them along with the try statement, or rethrow the excep-
tion so that either another catch block handles the exception or a fatal error occurs
because of an uncaught exception.

References

PHP originally was a procedural scripting language. Originally, objects in PHP 4 ex-
isted to make accessing arrays and complex data structures a little easier. Still, many
programmers started to extensively use object-orientation in PHP, causing the PHP
developers to add full support for object-oriented programming in PHP 5.

Looking back, OOP support in PHP 4 was extremely rudimentary. PHP 4 copied
objects instead of working by reference, as one intuitively might expect. To make

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 271

OOP code in PHP 4 work, one had to use & rather extensively to force PHP to create
reference instead of a copy.

PHP 5, by default, treats objects by reference. This enables us to pass around ob-
jects and create multiple references to one and the same object. As soon as an object
is not referenced any more, it will automatically be deleted.

The differences in reference handling is probably the one change between PHP 4
and PHP 5 that causes the most trouble when migrating. Basically, you will have fix
every object access in the code.

Sometimes, developers use references to save memory. The idea is to simply cre-
ate a reference instead of copying data. Due to the way PHP internally works, how-
ever, using references can have the opposite effect, as core developer Sara Golemon
explains in her blog entry1. The bottom line is that you should trust PHP to work
efficiently instead of extensively using references.

The PHP 4 Compatibility Mode

To make the migration from PHP 4 to PHP 5 easier, PHP 5 has a compatibility mode
that can be enabled by the php.ini setting zend.ze1_compatibility_mode. If enabled,
PHP 5 treats objects like PHP 4, which means that, by default, objects are copied.
The default value is Off, and probably no PHP 5 program will work properly when
the compatibility mode is enabled.

I would strongly recommend not using the compatibility mode, except perhaps for
limited amount of time when running tests. Rumors are that the compatibility mode
does not work properly anyway, since many modifications that have been made to
PHP just ignore the zend.ze1_compatibility_mode setting. If you really need PHP 4
behavior, use PHP 4.

Should you encounter code that runs in compatibility mode, you must disable
this setting, then modify the code so that the result is the same like when running in
compatibility mode.

1Golemon, Sara: You’re being lied to, 2007, http://is.gd/u3W

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

272 ” Migrating PHP Code

Creating A Reference

To create an object of a certain class, the new statement is used. It expects one argu-
ment, namely the name of the class to instantiate. It is also possible to use a variable
for the class name, making object creation in PHP very flexible.

Usually, an object (reference) created by new will be assigned to a variable:

<?php

$a = new Test;

?>

PHP 4 would actually create the object, then create a copy, and discard the original
object since no reference to it exists any more. This is unnecessary effort, thus in
PHP 4 you should explicitly create a reference:

<?php

$a =& new Test;

?>

$a now holds another reference to the new object. It is also possible to write

<?php

$a = &new Test;

?>

Explicitly creating a reference is no more necessary in PHP 5, and will result in an
E_STRICT error:

Strict Standards: Assigning the return value of new by reference is deprecated
in test.php on line 3

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 273

Please note that the code will still be executed. At first glance, it does not seem crit-
ical to copy an object right after creating it, then deleting the original. In fact, the
problem starts when in the object constructor a reference to the object itself ($this)
is passed to another object. As soon as a copy of the object is created, two instances
of the same object exists. The resulting errors can be very hard to find.

If you do not want to create a copy of the object for good reason (see the section
entitled “Copying Objects” later in this chapter), you can replace =& with = in PHP 5
without altering the program’s behavior. Please note that the modified program will
probably not work properly in PHP 4 any more.

Passing References

A function or method can have one return value at most, but can accept more than
one parameter. Since every function has its own scope, modifications made to the
parameters will not affect the outer scope. When you pass a reference to a function,
the scope isolation is breached. By modifying a variable inside a function, the value
also changes in the outer scope.

<?php

$a = array(1, 2, 3, 4);
var_dump($a);

test($a);
var_dump($a);

function test(&$a)
{
unset($a[0]);

}

?>

This program will output

array(4) {
[0] => int(1)
[1] => int(2)
[2] => int(3)

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

274 ” Migrating PHP Code

[3] => int(4)
}

array(3) {
[1] => int(2)
[2] => int(3)
[3] => int(4)

}

As we can see, the function has changed the array $a in the global scope. This is
called a side effect.

When working with objects, side effects are desired, and usually are implied when
calling a method. When working with scalar values and objects, you should only rely
on side effects when this prevents you from copying large amounts of data, or when
you need to pass back certain elements of a data structure, for example a DOM tree.

Since PHP 5 treats objects by reference, you do not have to explicitly create a ref-
erence to an object any more. In fact, you can remove any surplus address operators
(&) in the source code.

If you pass data to a function by reference, you can circumvent the limitation of
just one return value. In that case, you deliberately use a side effect to pass back data
from the function.

When references are not used to prevent copying of data, or to pass back data, you
should not use references. By isolating the different scopes from each other, you can
save a lot of time searching for bugs when inadvertently changing a reference inside
a function.

Returning References

To return a reference from a function or method, you must add an ampersand before
the function name in the function declaration:

<?php

class Test
{
protected $foo = ’foo’;

function &returnReference()
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 275

{
return $this->foo;

}
}

$test = new Test;

$var =& $test->returnReference();
$var = ’bar’;

var_dump($test);

?>

The program will output:

object(Test)#1 (1) {
["foo:protected"] => &string(3) "bar"

}

As we can see, the protected member $foo in the class Test has been changed
through the reference in $var, and without using the proper accessor method! Please
note that to make this example work, you must assign the return value by reference
as well.

Code like this is definitely not good programming style. I would strongly recom-
mend avoiding such hacks, as the code is extremely hard to read, and even harder to
debug.

It is generally only possible to pass variables by reference, not expressions. If you
try to pass an expression by reference, newer PHP versions will issue a warning:

<?php

function &return_reference()
{
return 42;

}

var_dump(return_reference());

?>
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

276 ” Migrating PHP Code

This program will output:

Notice: Only variable references should be returned by reference in test.php on
line 5

int(42)

The official PHP documentation2 contains various examples of problematic code
that (ab)uses references. In real projects, such code should be rare, but should you
encounter a reference mess when migrating, it is probably best to modify the code
to work without references.

When existing code uses references, consider replacing them with objects. Since
objects are always treated by reference, you will not have to worry about one amper-
sand more or less.

Passing References At Runtime

Older PHP versions allowed the programmer to decide at runtime whether to pass a
parameter by value or by reference:

<?php

$a = array(’imagine a lot of data here’);
var_dump($a);
test(&$a);
var_dump($a);

function test($x)
{
$x = array_merge($x, $x);

}

?>

This program looks deceptively easy. Please note that test() contains no return
statement, and the function’s return value is not re-assigned to $a.

2PHP Documentation Group: PHP: Changes in reference handling, 2008,
http://www.php.net/manual/en/migration51.references.php

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 277

Depending on the php.ini setting allow_call_time_pass_reference this program
will issue a E_WARNING at compile time, making this error impossible to suppress, even
if you use the following code at runtime:

error_reporting(E_NONE)

This warning will always be displayed when error_reporting in php.ini includes
E_WARNING:

Warning: Call-time pass-by-reference has been deprecated; If you would like to
pass it by reference, modify the declaration of [runtime function name]().

If you would like to enable call-time pass-by-reference, you can set
allow_call_time_pass_reference to true in your INI file in test.php
on line 14

The solution to this problem is not to set allow_call_time_pass_reference to Off,
because this setting will be removed in PHP 6. Move the ampersand to the function
declaration instead:

<?php

$a = array(’imagine a lot of data here’);
var_dump($a);
test($a);
var_dump($a);

function test(&$x)
{
$x = array_merge($x, $x);

}

?>

Now the parameter $x will always be passed to test() by reference, so it is clear that
any modifications you make to $x inside test() will affect the outer scope.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

278 ” Migrating PHP Code

Copying Objects

While PHP 4 copied objects by default, you must use the clone statement to create
a copy of an object in PHP 5, since an assignment with = would just create another
reference to the same object.

<?php

$a = new Test;
$b = $a;
$c = clone $a;

var_dump($a);
var_dump($b);
var_dump($c);

class Test
{
...

}

?>

The program will output the following

object(Test)#1 (0) {
}
object(Test)#1 (0) {
}
object(Test)#2 (0) {
}

As we can see, = has created another reference to $a, while clone has created a copy
of the object. If you migrate PHP 4 code or code that runs in compatibility mode (see
earlier in this chapter), you must replace every occurrence of = by a clone statement
and remove the ampersand from all =& assignments in turn.

When cloning an object, you might also have to clone all related objects, depend-
ing on the business logic. You can implement the magic method __clone() to do
this.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 279

Magic Constants

Since PHP 4.0.2 the magic constant __FILE__ contains the absolute path of the cur-
rently executed file. In older PHP versions, in some situations __FILE__ would con-
tain the relative path. Since you will probably not encounter a PHP installation older
than 4.0.2, this problem should not affect you any more.

There is another catch, though. On Windows, __FILE__ returns a path containing
backslashes as directory separator:

<?php

var_dump(__FILE__);

?>

On Unix, this program might output:

string(21) "/home/Steve/test.php"

while on Windows, the result could be:

string(30) "C:\www\migration\code\test.php"

On Windows, the path does not only contain a drive letter, but also the backslash as
directory separator. As long as you only work on Windows, this is not a problem, as
long as you escape each literal backslash with another backslash in strings.

To keep your application portable so that it also runs on Unix without modifica-
tions, you should replace the backslashes by forward slashes, so that you can rely on
paths to always contain forward slashes as directory separator.

The following example shows you can encapsulate __FILE__ in a function:

<?php

$filename = get_script_filename(__FILE__);

function get_script_filename($aFilename)
{

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

280 ” Migrating PHP Code

if ("\r\n" == PHP_EOL) return str_replace("\\","/", $aFilename);
return $aFilename;
}

?>

Instead of using __FILE__, you now use get_script_filename(). If PHP runs on
Windows, the function replaces backslashes by forward slashes. As already men-
tioned above, the literal backslash must be escaped by another backslash in the
str_replace() statement.

It is important to only replace backslashes on Windows, since backslashes are al-
lowed characters in filenames on Unix. To detect the operating system, we use a
trick. By looking at the value of the built-in constant PHP_EOL, we can quickly detect
Windows operating systems. The constant PHP_OS returns a string that is not always
easy to parse, so using PHP_EOL is a lot easier and more reliable.

Altered Behavior of PHP Functions

As PHP evolves, the behavior of some PHP functions is altered, mostly to correct
errors of the past. Though the changes do not affect every PHP program, it is a good
idea to use the wrapper functions shown below:

array_merge()

The function array_merge() merges one or more arrays. While PHP 5 expects all pa-
rameters passed to the function to actually be arrays, PHP 4 silently converts non-
array parameters to arrays:

<?php

$a = array(1, 2, 3);
$b = 4;

var_dump(array_merge($a, $b));

?>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 281

On PHP 4, this program outputs:

array(4) {
[0] => int(1)
[1] => int(2)
[2] => int(3)
[3] => int(4)

}

On PHP 5, the program issues a warning, and the result is empty:

Warning: array_merge(): Argument #2 is not an array in test.php on line 3

NULL

On PHP 4, the second parameter could even be empty, as the next example shows:

<?php

var_dump(array_merge(array(1, 2, 3), NULL));

?>

On PHP 4, this program outputs

array(3) {
[0] => int(1)
[1] => int(2)
[2] => int(3)

}

On PHP 5, again, a warning is issued and the result is empty:

Warning: array_merge(): Argument #2 is not an array in test.php on line 3

NULL

To avoid altered application behavior when migrating, you can write a wrapper func-
tion and replace all occurrences of array_merge() by a call of the wrapper function.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

282 ” Migrating PHP Code

Since array_merge() can take a variable amount of parameters, this wrapper func-
tion is a little complicated:

<?php

function array_merge_compat()
{
$num = func_num_args();

if (0 == $num) return NULL;
if (1 == $num) return func_get_arg(0);

$result = func_get_arg(0);

for ($i = 1; $i < $num; $i++)
{
$arg = func_get_arg($i);

if (NULL == $arg) continue;

if (is_array($arg))
{
$result = array_merge($result, $arg);

} else {
$result = array_merge($result, array($arg));

}
}

return $result;
}

?>

ip2long()

The function ip2long() converts an IP address given in the common format of four
numbers separated by a dot to a 32 bit number. On PHP 4, the function would return
-1 instead of false if the string passed in was no valid IP address. PHP 5 returns false
instead. So let us try to convert an invalid IP address:

<?php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 283

var_dump(ip2long(’127.0.0.’));

?>

In PHP 4, this program outputs:

int(-1)

while in PHP 5, the usual error code is returned:

bool(false)

Replace any checks for -1 in your application by a type-safe comparison with false:

<?php

if (false === ip2long(...)) ...

?>

strrpos()

The function strrpos() finds the last occurrence in a string. While PHP 4 only
searched for a single character, PHP 5 will search for the whole string instead of its
first character.

<?php

$haystack = ’hello world’;
$needle = ’lo’;

var_dump(strrpos($haystack, $needle));

?>

In PHP 4, the output is:
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

284 ” Migrating PHP Code

int(9)

In PHP 5, the output is:

int(3)

To make sure that the application’s behavior is not altered, you should secure every
call to strrpos() with a substr() statement returning the first character of the string
to search for. Again, let us write a wrapper function:

<?php

function strrpos_compat($aHaystack, $aNeedle, $aOffset = 0)
{
return strrpos($aHaystack, substr($aNeedle, 0, 1), $aOffset);

}

?>

strripos()

Similar to strrpos(), strripos() will find the last occurrence in a string, but perform
a case-insensitive search. Like with strrpos(), PHP 5 will look for the whole string,
not only the first character.

Let us write another wrapper function to make sure the application’s behavior is
not altered:

<?php

function strripos_compat($aHaystack, $aNeedle, $aOffset = 0)
{
return strripos($aHaystack, substr($aNeedle, 0, 1), $aOffset);

}

?>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 285

strtotime()

The function strtotime() tries to parse a date description in English and converts
the result to a Unix timestamp. PHP 4 would return -1 to indicate an error, while
PHP 5 will return false.

Just like with ip2long(), you should modify any checks for -1 in conjunction with
calls to strtotime() accordingly.

Classes

Over time, PHP has become more and more strict for OOP code. Depending on
which PHP version you are migrating from, errors might occur on the target system,
even though the code used to work fine on the original system.

Static Methods And Dynamic Calls

A class in PHP can not only contain members and methods bound to an object in-
stance, but also static members and methods. Static members and methods do not
require an object instance to be used. You can view static members as semi-global
variables inside a class.

Static methods are often used to group library functions together in a class. To call
a static method, you must specify the class name followed by a double colon and the
method name:

Classname::methodName();

In a static method, the special variable $this is not defined, since no object instance
exists. In older PHP versions, dynamic methods could be called statically as well:

<?php

class Test
{
public function foo()
{
...

}
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

286 ” Migrating PHP Code

}

Test::foo();

?>

Newer PHP versions will issue an E_STRICT warning:

Strict standards: Non-static method Test::foo() should not be called statically
in test.php on line 11

In PHP 6, statically calling dynamic methods will result in a fatal error.

Abstract Private Methods

In PHP versions from 5.0.0 until 5.0.4 abstract methods could be declared as private.
Since an abstract method must be implemented in a subclass, but on the other hand
a private method is not available in the subclass, abstract private methods do not
make much sense. Current PHP versions will fail with an error if you try to define an
abstract private method:

Fatal error: Abstract function Test::foo() cannot be declared private in test.
php on line 7

When you encounter this error when migrating, either move the method to the sub-
class, declare it as protected, or do not declare it as abstract.

Abstract Static Methods

In PHP 5.0 and 5.1 it was possible to declare abstract methods as static. Since a static
method is bound to a class, and an abstract method must be implemented in a sub-
class, it does not make much sense to declare an abstract method as static as well.

<?php

abstract class Test
{
abstract static function bar();

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 287

}

?>

Current PHP versions will complain with an E_STRICT error:

Strict standards: Static function Test::bar() should not be abstract in test.php
on line 5

If you encounter this error, either move the static method to the subclass, or do not
declare it as abstract.

Modified Method Signature in Derived Classes

Until PHP 5.0 it was possible to modify the signature of a method in a subclass. The
signature of a method is the number and type of its parameters, and whether param-
eters are to be passed by reference or by value.

Newer PHP versions require signatures of derived classed to be compatible to the
function signature in the base class. “Compatible” means that you can add addi-
tional parameters, for example:

<?php

class Test
{
function doSomething($aParameter)
{
return array(’one’, ’two’);

}
}

class ModifiedTest extends Test
{
function doSomething($aParameter, $aSecondParameter = ’’)
{
return array(’one’, ’two’, ’three’);

}
}

$test = new ModifiedTest;
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

288 ” Migrating PHP Code

var_dump($test->doSomething(3, 5));

?>

This program works and outputs:

array(3) {
[0]=>
string(3) "one"
[1]=>
string(3) "two"
[2]=>
string(5) "three"

}

If the method in the subclass has fewer parameters, an E_STRICT error occurs:

<?php

class Test
{
function doSomething($aParameter, $aSecondParameter = ’’)
{
return array(’one’, ’two’);

}
}

class ModifiedTest extends Test
{
function doSomething($aParameter)
{
return array(’one’, ’two’, ’three’);

}
}

$test = new ModifiedTest;
var_dump($test->doSomething(3, 5));

?>

This program will output:
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 289

Strict standards: Declaration of ModifiedTest::doSomething() should be
compatible with that of Test::doSomething() in test.php on line 19

array(3) {
[0]=>
string(3) "one"
[1]=>
string(3) "two"
[2]=>
string(5) "three"

}

Sometimes, you can avoid these error messages by changing the parameter order. If
this is not possible, consider passing certain parameters to the object constructor or
a special accessor method instead of to the method itself. This requires you to check
whether all required parameters are actually set. If this is not the case, you can throw
an exception:

$foo must be set before calling bar(). Use the setFoo() method.

This may not be good style, but sometimes helps you to avoid making changes to the
inheritance tree or the parameter order.

Objects

As “real” OOP was introduced with PHP 5, there are some differences in object han-
dling between PHP 4 and PHP 5.

Constructor

When objects are created, they must be initialized. A magic method, the constructor,
is automatically called when an object is instantiated. In PHP 5, constructor meth-
ods were named like the class:

<?php

public function Test()
{

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

290 ” Migrating PHP Code

var_dump(’Old style Test constructor’);
}

}

class myTest extends Test
{
public function myTest()
{
parent::Test();

var_dump(’Old style myTest constructor’);
}

}

$test = new myTest;

?>

This program will output:

string(26) "Old style Test constructor"
string(27) "Old style myTest constructor"

When changing the inheritance tree, calls of the parent constructor must be
changed. This is unnecessary work and rather error-prone. Since PHP 5 construc-
tors are always named __construct(), so you can always call the parent constructor
by parent::__construct(), even when the base class changes at some point in the
future.

PHP still supports the old constructors to ensure backwards compatibility. Mixing
both constructor types, however, will earn you an E_STRICT error, and only the new
constructor will be executed:

<?php

class Test
{
public function __construct()
{
var_dump(’New style Test constructor’);

}
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 291

public function Test()
{
var_dump(’Old style Test constructor’);

}
}

$test = new Test;

?>

This program will output:

Strict Standards: Redefining already defined constructor for class Test in test.
php on line 10

string(26) "New style Test constructor"

A migration is the perfect time to change your code to use all new constructors to
remove one more potential source of errors.

Destructors

Nothing lasts forever. Like anything else, PHP objects cease to exist at some point.
When this happens, another magic method, the destructor __destruct() will auto-
matically be called. The destructor is the right place to close database connections
and files, or persist the object.

PHP 4 did not support destructors, but some code like PEAR uses simulated de-
structors by registering a shutdown handler and keeping track of all instantiated ob-
jects. If you must migrate code that uses simulated destructors, you should modify
the code to use the proper magic destructor function. This may change you applica-
tion’s behavior, though, as it is not guaranteed that the destructors are called in the
same order.

In PHP 4, you could destroy objects by setting $this to NULL:

<?php

class Test
{
function destruct()

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

292 ” Migrating PHP Code

{
$this = NULL;

}
}

$test = new Test;
$test->destruct();
var_dump($test);

?>

In PHP 4, this program outputs:

NULL

In PHP 5, redefining the $this it is not allowed any more (see the section on “Name
Conflicts with $this” later in this chapter), so the result is a fatal error:

Fatal error: Cannot re-assign $this in test.php on line 7

Redefining Class Constants

In PHP 5.0, you could redefine class constants:

<?php

class Test
{
const foo = ’foo’;
const foo = ’bar’;

}

var_dump(Test::foo);

?>

Since PHP 5.1, this is a fatal error:

Fatal error: Cannot redefine class constant Test::foo in test.php on line 6
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 293

To fix this problem, remove the first declaration, or move the second declaration to
a subclass. It is still possible to change an existing declaration in a subclass, but not
in the same class.

instanceOf instead of is_a()

The function is_a() checks whether an object has a certain class, or is derived from
this class:

<?php

class Test
{
...

}

class ModifiedTest extends Test
{
...

}

$t1 = new Test;
$t2 = new ModifiedTest;

var_dump(is_a($t2, ’Test’));

?>

In PHP 5 the language construct instanceOf has been introduced, which should be
used instead of is_a(). When you use is_a() in current PHP versions, an E_STRICT

error will be displayed:

Strict standards: is_a(): Deprecated. Please use the instanceof operator in test
.php on line 18

To fix this problem, replace all occurrences of is_a() by instanceOf:

<?php

interface Testable
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

294 ” Migrating PHP Code

{
...

}

class Test implements Testable
{
...

}

class ModifiedTest extends Test
{
...

}

$t1 = new Test;
$t2 = new ModifiedTest;

var_dump($t1 instanceof Test);
var_dump($t2 instanceof Testable);

?>

Keep in mind that - contrary to the is_a() function - the class name must not be
quoted. The program will output:

bool(true)
bool(true)

Name Conflicts with $this

Inside an object instance, $this refers to the object instance. Though it is possible
to write procedural code that uses $this as a parameter, you should only use this
variable name in the object-oriented context. It will make your code much easier to
read.

<?php

$test = new Test;
$test->foo(3);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 295

class Test
{
function foo($this)
{
var_dump($this);

}
}

?>

In PHP 4, this program executes without an error and outputs

int(3)

In PHP 5, the program quits with a fatal error:

PHP Fatal error: Cannot re-assign $this in test.php on line 5

The solution to this problem is simple: rename $this to avoid the name conflict.

Redefining $this

Older PHP versions allowed redefining $this inside a method. This effectively
changed the class of the object instance:

<?php

class Something {}

class Test
{
function doTest()
{
$this = new Something;

}
}

$test = new Test;
$test->doTest();
var_dump($test);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

296 ” Migrating PHP Code

?>

In PHP 4, this program works and outputs:

object(something)(0) {
}

In PHP 5, the program quits with a fatal error:

Fatal error: Cannot re-assign $this in test.php on line 9

Instead of redefining $this, create another object with new and return a reference to
it.

Comparing Objects

There are two ways to compare objects. When using the == operator, PHP will check
whether both object have the same class and the same members. Using the strict
comparison ===, PHP will check whether both object references actually point to the
same object instance.

The non-strict comparison with == has been changed in PHP 5.2 to recursively
compare all members. When encountering circular references, PHP can fall into an
endless loop. Fortunately, this will be detected:

<?php

class Test
{
public $test;

}

$t1 = new Test;
$t2 = new Test;

$t1->test = $t2;
$t2->test = $t1;

var_dump($t1 == $t2);
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 297

?>

In PHP 5.2, this program will output the following error message:

Fatal error: Nesting level too deep - recursive dependency? in test.php on line
13

In older PHP 5 versions, or PHP 4, the program will work perfectly and output:

bool(false)

A simple solution to this problem, if the application logic allows it, is to replace == by
===. If this is not possible, you may have to create compare() method that compares
the relevant members, but avoids the endless recursion.

Dynamic Calls

PHP is a very dynamic language. Since PHP is not compiled like Java, there are vari-
ous interesting possibilities to generate names of classes or functions at runtime.

Names created at runtime are difficult to change. You cannot find them easily by
searching through the source code, thus there is a high probability of forgetting one
or more occurrences when you change a name. So when migrating, there are some
code constructs you should watch out for. They may need extra care.

System Calls

Calling external programs from PHP is very powerful, but creates a dependency of
the application to an external program. This external program must be present on
the target system, possibly in a certain path, and version and language should be
identical to make sure the output stays the same (see Chapter 3 for more informa-
tion).

There are various possibilities of executing an external program. Table 8.2 shows
an overview.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

298 ” Migrating PHP Code

PHP Command Explanation
‘ (Backtick Operator) Runs an external program, just like in Unix shell

scripts
exec() Runs an external program

passthru() Runs an external program and displays its output
shell_exec() Runs an external program in a shell and passes

back its output as a string. Running an external
program in a shell has the advantage that the

usual environment variables are available to it.
system() Runs an external program and displays its output
popen() Connects to a started process or program. The

connection can be used to read data from the
program, or send data to the program

proc_open() Like popen(), but allows a greater degree of
control over the executed program, as popen()
only allows setting the working directory and

environment variables.

When migrating, you should search your application for all of these PHP commands
and check the external dependencies they create. Since executing commands with
unescaped parameters can be risky, you should take extra caution not to open up a
security hole while migrating.

Class Names

Object-oriented applications instantiate objects at runtime. The names of the
classes to instantiate are often calculated at runtime based on user input, or the
state of the application. PHP makes this very easy by allowing you to specify the
class name as a variable in the new statement:

<?php

$class = ’Test’;
$obj = new $class;

?>
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 299

This program behaves identically to the following program:

<?php

$obj = new Test;

?>

In real-life code, to implement plugins, statements like the following are used:

<?php

$class = ’Plugin’ . $_GET[’command’] . ’Command’;
$obj = new $class;

$obj->execute();

?>

Please note that this is a minimal example without any security. The point to be
made is that by using dynamically created class names, it becomes impossible to
change the name of a class just by replacing all occurrences of the old name in the
source code. Instead, you will have to look at each new statement and figure out
which class names it uses.

Renaming a class can result in modified commands or URLs. If that happened, I
would suggest creating a wrapper class that maps the old command or URL to the
new one. This hides the renamed class from the user interface, and existing tests and
documentation will not have to be adapted.

The call_user_func() Family

The call_user_func() family of functions is another example for the very dynamic
nature of PHP. These functions allow you to call a function or method, passing the
name as a parameter. This allows you to generate the name of a function to call at
runtime, which can sometimes replace a rather long switch statement.

Another possibility is to store function or method names in variables. Also watch
out for these kinds of statements when migrating code:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

300 ” Migrating PHP Code

$function();

$object->$method();

Dynamic calls with call_user_func() and call_user_func_array(), respectively, will
always pass parameters by value. It is not possible to pass in references, thus you
cannot affect the outer scope as shown earlier in this chapter from dynamically
called functions.

To call a function, pass its name as the first parameter:

<?php

function doSomething()
{
var_dump(’doing something’);

}

call_user_func(’doSomething’);

?>

This program will output:

string(15) "doing something"

For historic reasons, the two methods call_user_method() and
call_user_method_array() to call methods exist. Since PHP 4.1, these methods
are deprecated, however.

<?php

class Test
{
public function doSomething()
{
var_dump(’doing something’);

}
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 301

$test = new Test;
call_user_method(’doSomething’, $test);

?>

This program will output:

Strict standards: Function call_user_method() is deprecated in test.php on line
12

string(15) "doing something"

You can easily fix this by replacing call_user_method() with call_user_func(). Use
an array as the first parameter, with the first element being an object reference and
the second element the name of the method to call:

<?php

class Test
{
public function doSomething()
{
var_dump(’doing something’);

}
}

$test = new Test;
call_user_func(array($test, ’doSomething’));

?>

As expected, this program will not issue an E_STRICT error any more:

string(15) "doing something"

You can call static methods as well, by using a class name instead of an object refer-
ence as the first array element:

<?php
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

302 ” Migrating PHP Code

class Test
{
public static function doSomething()
{
var_dump(’doing something’);

}
}

call_user_func(array(’Test’, ’doSomething’));

?>

If you try to call a non-static method statically, an E_STRICT error will be generated,
as we discussed earlier in this chapter.

Dynamically Loaded Code

Most PHP applications do not only consist of one source file, but of a number of files.
This makes managing the source code easier, since each file can be edited indepen-
dently from the others.

For object-oriented code, it is recommended to put each class into one file. This
allows for selective loading of classes, for example with an autoload handler.

In PHP 4, you could load function definitions by include or require multiple times
without an error. In PHP 5, trying to include or require a class or function that has
already been defined leads to a fatal error:

Fatal error: Cannot redeclare class Test in test.php on line 4

For functions, the error message will tell you in which file the function has been
previously defined:

Fatal error: Cannot redeclare test() (previously declared in test.php:3) in test
.php on line 28

If you encounter this error, you should reorganize the code so that included files only
contain code inside functions and classes, and always load them with include_once

or require_once. This way, PHP will ensure that every file is loaded only once.
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 303

Should you work with code outside functions and classes, as it is often the case
with templates, make sure not to define any functions or classes in these files. Then,
you can load the code with include and require as often as you need, without run-
ning into danger of a fatal error due to already defined functions or classes. It should
be noted that this is not really good programming style. I would recommend encap-
sulating the code in a function, load this function once, and call it multiple times.

When PHP code uses new language features like interfaces, classes must be de-
fined before they are used. Though PHP programs are compiled before they are ex-
ecuted, the parser cannot resolve this type of forward references, as the following
example shows:

<?php

class Test implements Testable
{
...

}

interface Testable
{
...

}

$test = new Test;
var_dump($test);

?>

This program works fine:

object(Test)#1 (0) {
}

Let us now move the new statement before the class definition:

<?php

$test = new Test;
var_dump($test);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

304 ” Migrating PHP Code

class Test implements Testable
{
...

}

interface Testable
{
...

}

?>

Now the program fails:

Fatal error: Class ’Test’ not found in test.php on line 2

To avoid this error, you must stick to the “define before use” rule. An easy way to do
this is to use autoload and put each class and interface into an individual file. PHP
will then take care of loading all required code in the correct order.

eval()

The eval() function allows you to execute PHP code that is stored in a string. Quite
often, the function is being referred to as “evil eval”, because executing arbitrary code
at runtime can be a big security risk.

In fact, eval() statements should not be necessary at all. You can always create a
file with the PHP code to execute, and just include this file. This does not resolve the
security issues, but you can at least avoid the risk of an attacker managing to execute
arbitrary code by injecting it into your application.

Hard-coded eval() statements have no advantage over regular PHP code. By using
output buffering, which can also be layered, you can usually solve all problems more
efficiently.

Little Beastlinesses

This chapter lists various problems that you can encounter when migrating PHP
code. In the given examples, the problems by themselves may not look too scary,

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 305

but in the context of a big applications, small problems quickly become major show-
stoppers that keep you busy with debugging for far too long.

unset() and Strings

The function unset() can delete existing variables or array elements. To delete array
elements, specify their key:

<?php

$a = array(1 => ’one’, 2 => ’two’);
unset($a[1]);
var_dump($a);

?>

This program will output:

array(1) {
[2] => string(3) "two"

}

The same syntax allows read access of single characters of a string. The string index
is also called offset in that case:

<?php

$string = ’hello world’;

var_dump($string[0]);
var_dump($string[3]);

?>

This program will output:

string(1) "h"
string(1) "l"

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

306 ” Migrating PHP Code

It has never been possible, though, to delete characters from a string using unset().
While PHP 4 had silently ignored the attempt, PHP 5 bails out with a fatal error:

<?php

$string = ’hello world’;
unset($string[0]);
var_dump($string);

?>

In PHP 4, this program outputs:

string(11) "hello world"

In PHP 5, it fails:

Fatal error: Cannot unset string offsets in test.php on line 5

To avoid this, do not use unset() on a string. You can use the following check to do
this:

if (!is_string($var)) unset($var[0]);

Errors When Sending HTTP Headers

HTML output created by PHP running in a web server consists of two parts, the HTTP
headers and the HTML body. Once a PHP script has started to create output, no more
HTTP headers can be sent, unless output buffering is used. If output was already
started, trying to send a header will result in a warning:

Warning: Cannot modify header information - headers already sent by (output
started at test.php:50) in test.php on line 43

This warning can be triggered by any PHP function that send a HTTP header. These
are:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 307

• session_start()

• setcookie()

• setrawcookie()

• header()

A single blank character, for example following the closing PHP tag ?> in an included
file, is enough to ruin your change of sending headers. Also, whitespace before the
opening PHP tag <?php or in auto prepend files, or any PHP error message, warning
or notice, will do the trick.

Output is even started when your source code is UTF-8 encoded and has a byte
order mark (see Chapter 3 for more information).

To avoid these problems, use output buffering as described earlier in this chapter.
This also has the advantage that you can discard the whole output buffer and send
an error page if a fatal error has occured. Output buffering cannot fix a UTF-8 BOM,
since it has been output before the PHP script even starts.

Date and Time Functions

When your application uses date functions, you must add the php.ini set-
ting date.timezone in php.ini, set an environment variable TZ, or add a call to
date_default_time_zone() to your script. If no timezone is set, the script will issue
a warning and try to guess the correct time zone:

<?php

var_dump(date(’dmY’));

?>

Without a timezone set in php.ini or in the environment variable TZ, this program
will output:

Strict standards: date(): It is not safe to rely on the system’s timezone
settings. Please use the date.timezone setting, the TZ
environment variable or the date_default_timezone_set()

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

308 ” Migrating PHP Code

function. In case you used any of those methods and you
are still getting this warning, you most likely
misspelled the timezone identifier. We selected
’Europe/Paris’ for ’1.0/no DST’ instead in
test.php on line 3

The same warning will be output when you try to set a non-existing timezone. The
PHP manual lists (at http://www.php.net/manual/de/timezones.php) all supported
time zones, which you can also view by calling timezone_identifiers_list(). Where
I live, I use:

date.timezone = Europe/Berlin

in php.ini, or call

date_default_time_zone(’Europe/Berlin’)

when initializing the application.

Modulo Division

As we all know, a division by zero is undefined. The Modulo operator calculates the
remainder of a division. When modulo dividing by zero, the remainder is undefined
as well. Older PHP versions just returned the error code false:

<?php

var_dump(10 % 0);

?>

If you continue the program without checking the result, hard-to-find follow-up er-
rors can occur, so newer PHP versions will issue a warning:

Warning: Division by zero in test.php on line 3

bool(false)
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 309

Take care not to mix up a numeric 0 with false:

<?php

$result = 10 % 0;

var_dump($result == 0);

?>

The program will output:

Warning: Division by zero in test.php on line 3

bool(true)

As we can see, PHP can not distinguish between 0 and false when using the == com-
parison operator. You must use the type-safe comparison operator === instead:

<?php

$result = 10 % 10;

var_dump($result == 0);
var_dump($result == false);

var_dump($result === 0);
var_dump($result === false);

?>

In this example, the remainder is 0. The program will output:

bool(true)
bool(true)
bool(true)
bool(false)

As you can see, only the type-safe comparison yields a correct result.
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

310 ” Migrating PHP Code

Wrong Parameter Count In Function Calls

A function in PHP expects a certain number of parameters. PHP also supports op-
tional parameters that have a default value in the function declaration. When the
optional parameter is not specified when calling the function, the default value is
used.

Optional parameters have to be at the end of the parameter list. Obviously, you
can not leave out the first one or two parameters and expect PHP to magically guess
whether the given value is the first, second, or third function parameter.

<?php

test(’Hello World’);
test(’Hello World’, true);
test(’Hello World’, false);

function test($aParameter, $aOptional = true)
{
var_dump($aOptional);

}

?>

In the first call, the default value true is used for the second parameter:

bool(true)
bool(true)
bool(false)

A function can have an arbitrary number of parameters. Even built-in functions use
optional parameters, so that you rarely see an error message when you specify too
few parameters in a function call. The problem is that when calling a built-in func-
tion with a wrong parameter count, a warning is issued, and the program continues
without executing the function, thus assuming NULL as return value:

<?php

var_dump(substr(’hello world’));
var_dump(substr(’hello world’, 6, 5));

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 311

var_dump(substr(’hello world’, 6, 5, 7));

?>

The program outputs:

Warning: Wrong parameter count for substr() in test.php on line 3

NULL
string(5) "world"

Warning: Wrong parameter count for substr() in test.php on line 5

NULL

The first call has not enough, the third call too many parameters. As you can see,
PHP will warn us, but continue the program. This is another example for the fact
that you should always configure PHP to display all error classes.

Type-Converting Integer Values

PHP is a dynamically typed language. Other than languages with strong typing, PHP
does not need to know the type of a variable when to creating it. PHP will interpret
the variable as a different data type according to the situation.

In some cases, automated conversion is not that easy. While it is obvious that the
string ’123’ matches the integer value 123, the question arises whether ’ 123’ and ’123
’ should also be interpreted as 123.

The various PHP versions are not equally strict when it comes to these type con-
versions. While PHP 5.0 and 5.1 will silently return false when implicit conversion of
an integer value fails, current PHP versions generate an E_NOTICE, and even convert
integers with leading or trailing whitespace. An example is the date() function that
converts a date given as Unix timestamp:

<?php

var_dump(date(’d.m.Y’, ’ 120000000000 ’));

?>
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

312 ” Migrating PHP Code

The program will output:

Notice: A non well formed numeric value encountered in test.php on line 3

string(10) "16.10.1961"

Should you see notices like this in your application, consider using trim() to remove
the extra whitespace. If PHP completely fails to convert the value to an integer, the
following warning will be issued:

Warning: date() expects parameter 2 to be long, string given in test.php
on line 3

In that case, date() will return a boolean false instead of a string.

Empty Objects

The way PHP treats empty objects has changed between PHP 4 and PHP 5. While
an object without properties was considered empty by PHP 4, PHP 5 disagrees with
that:

<?php

class Test
{
}

$test = new Test;
var_dump(empty($test));

?>

In PHP 4, this program outputs:

bool(true)

In PHP 5 the result is:
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 313

bool(false)

This difference can be explained by the fact that objects in PHP 4 were basically
arrays. Should your program rely on PHP 4’s behavior, you can add an isEmpty()

method to your object that uses reflection to check whether there are any members:

<?php

public function isEmpty()
{
$refl = new ReflectionClass($this);
return sizeof($refl->getProperties()) == 0;

}

?>

$this, Delegation, and Static Calls

In conjunction with $this and static method calls, a rather tricky error can occur:

<?php

class Test
{
public function delegate()
{
Foo::test();

}
}

class Foo
{
public function test()
{
var_dump($this);

}
}

$test = new Test;
$test->delegate();

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

314 ” Migrating PHP Code

?>

This program will output:

Strict standards: Non-static method Foo::test() should not be called statically,
assuming $this from incompatible context in C:_php_migration\Code\
this_and_static.php on line 7

object(Test)#1 (0) {
}

If you have configured PHP to not display E_STRICT errors, which is the case in most
default PHP configurations, you will sooner or later wonder why $this inside the
Foo class resolves to an object of the class Test. If you try to call another method in
Foo::test(), a fatal error will occur:

<?php

...

class Foo
{
public function test()
{
var_dump($this);
$this->doTest();

}

public function doTest() {}
}

...

?>

This program will lead to a fatal error, because the non-existing method doTest() in
Test instead of Foo is called:

Fatal error: Call to undefined method Test::doTest() in test.php on line 18
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Migrating PHP Code ” 315

Since the method test() in Foo does not know it has been called from another class,
we cannot even blame it for using $this. As we know, $this is not defined inside
static methods, since there is not object instance.

In PHP 6, it will not be possible to call non-static methods statically, as we dis-
cussed earlier in this chapter; the example presented above being the reason for this
decision.

Outputting Objects and the Magic __toString() Method

The magic __toString() method is called to convert an object to a string. This al-
lows for printing objects directly by print ’$object, instead of calling a render() or
print() method. Older PHP versions used to output the object identifier when im-
plicitly converting an object to a string. Some applications rely on this behavior to
write log files.

Until PHP 5.2 __toString() was only called when the object was directly output by
print or echo. Since PHP 5.2, the magic method __toString() is called whenever the
object is used as a string.

If no __toString() method is present, PHP will not convert the object to a string
any more, but output a catchable fatal error that can be handled by a custom error
handler:

Catchable fatal error: Object of class Test could not be converted to string in
test.php on line 16

It is forbidden to throw exceptions in a __toString() method. Trying to do so will
result in a fatal error:

Fatal error: Method Test::__toString() must not throw an exception in test.php
on line 18

PHP Extensions

Due to the large number of available PHP extensions, it is impossible to provide you
with a full overview of all changes and potential migration problems. This chapter

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

316 ” Migrating PHP Code

only lists changes in the most commonly used PHP extensions. Fortunately, migra-
tion problems with these PHP extensions are rare.

mysql and mysqli

PHP and MySQL are like a married old couple. Both are at least in part responsible
for the other’s success. Due to license issues, the MySQL client library is not being
distributed with PHP 5 any more. While this may sound shocking at first glance, it is
in reality not a big issue. You will just have to download and install the client library
by yourself. If you do not compile PHP by yourself, you will in most cases not even
notice the difference.

On Windows, the MySQL client library is available as a DLL file in the PHP directory.
Either add this directory to the system’s search path, or copy the DLL to a directory
that is contained in the search path.

The classic MySQL extension in PHP is mysql, which provides you with the mysql_

functions that are used by most existing applications that do not use database ab-
straction. The newer mysqli extension (“i” stands for improved) also depends on the
MySQL client library, and allows using new features like nested queries or Unicode
support, which is part of MySQL since version 4.1. If you do not need the new fea-
tures, you can still use the mysql extension to access MySQL databases, though.

To avoid licensing issues in the future, MySQL has created a new, open source
client library mysqlnd. mysqlnd can be used as a replacement for the old client library
libmysql and will probably be the only supported client on the long run. Due to the
large existing userbase, though, libmysql will also be supported for the next years.

SPL

Since PHP 5.2.1, the method getFilename() of the SPLFileObject class does not re-
turn the full path of a file, but only the file name. To retrieve the full name, use
the method getPathname(). If you only need the path without the filename, use
getPath().

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Migrating PHP Code ” 317

Tidy

We have already introduced the Tidy extension in Chapter 7. PHP 5 contains a newer
Tidy version than PHP 4. When migrating from PHP 4, you must adapt your code to
the new Tidy API.

Tokenizer

Before a PHP program is executed, the source code is converted to a stream of to-
kens. The Tokenizer extension allows you to access this stream of tokens. This makes
applications that analyze PHP code, like PHP_CodeSniffer described in Chapter 7,
possible.

As PHP evolves, new parser tokens are being added. Sometimes, existing tokens
are being removed, like T_ML_COMMENT, which represents multiline comments. This
token was available in PHP 4, but was never actually used, and thus has been re-
moved in PHP 5.

When migrating software using Tokenizer, make sure that you do not require
parser tokens of older PHP versions, and support the parser tokens of newer PHP
versions. A full list of parser tokens is available at [PHP 2007-9].

XML

When PHP 4 was released, XML was relatively young, thus the libraries supporting
XML were not too sophisticated yet. As a result, XML support in PHP 4 was not DOM-
compliant.

For PHP 5, the XML support has been completely rewritten. The XML extension
in PHP 5 is based on a different library than the PHP 4 extension, so their API is
different. The same holds true for the XSL extension in PHP 5.

If your application makes use of the old XML or XML extensions, you will have to
adapt the code to the new extensions. Due to the large number of differences, you
will probably have to rewrite the part of the application that handles XML.

By comparing the results of the old code and the results of the new code, you can
find out whether the application’s behavior has altered due to the change. Keep in
mind that the new DOM extension by default works with UTF-8 characters. Refer to
Chapter 3 for more information.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

318 ” Migrating PHP Code

If you only have to read XML data, you can consider using the SimpleXML exten-
sion. As soon as you want to make modifications to the DOM tree, SimpleXML is not
the best choice any more.

If you work with very complex XML documents, the XMLReader extension can be
useful. Instead of creating a DOM tree from the whole XML file, the individual XML
tags are processed on after each other. This allows for processing large amounts of
XML data while consuming less memory.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Index

Symbols
.htaccess, 74, 89, 178
.user.ini, 89
$PHPRC, 74
$PHP_SELF, 260
$_COOKIE, 78, 255
$_ENV, 78, 255, 257
$_FILES, 255
$_GET, 78, 255
$_PATH, 50
$_POST, 78, 255
$_REQUEST, 78, 255
$_SERVER, 78, 255
$_SESSION, 85, 255
$php_error, 263
$this, 285, 294, 313
%PATH%, 50
%Windir%, 74
__FILE__, 279
__toString(), 315
8 bit vs 16 bit, 34

A
abstract private methods, 286
abstract static methods, 286
access control lists, 45
access rights, 44
ACL, 45

agile migration, 156
agile programming, 19, 25
allow_call_time_pass_reference, 89, 277
allow_url_fopen, 81
allow_url_include, 81, 87
AllowOverride, 68, 74
always_populate_raw_post_data, 77
AMD64, 34
Apache, 40, 62

compiling, 64
Apache 1.3, 62
Apache Portable Runtime, 62
Apache2, 62, 122

running PHP as a module, 122
apache2handler, 66
APR, 62
APT, 38
apxs, 72
arg_separator.input, 76
arg_separator.output, 77
Arial Unicode MS, 53
ARPANET, 3
array_merge, 280
ASCII, 51, 58, 108
asp_tags, 76
Assembler, 34
auto_append_file, 86
auto_detect_line_endings, 77

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

322 ” INDEX

auto_prepend_file, 86
autoload, 304

B
backslash, 47
backslashes, 280
backup, 59
bad interpreter: No such file or directory, 43
Berners-Lee, Tim, 3
big endian, 36
Bison, 72
bit, 34
BLOB, 57, 58
Bochs, 194
BOM, 107
byte, 34
byte order, 36

C
call_user_func, 299
call_user_method, 300
case sensitivity, 47, 226

in class names, 232
in file names, 233
in functions and methods, 231

CGI, 5, 69, 122
CGI wrappers, 64
character encoding, 106
character sets, 51

in databases, 57
chroot jail, 64
class constants

redefining, 292
class names

dynamically creating, 298
errors, 302
redeclaring, 302

classes, 285
clone, 278

code blocks, 140
coding guidelines, 154
coding standards, 154
collation, 58
command line tools, 160
comparison operators, 296, 309
configuring PHP, 177
conflicting class names, 239
conflicts in class names

minimizing, 245
constants, 227, 242
constructor, 289
CPAN, 7
cpuinfo, 118
CSS

validating, 170
custom error handlers, 267
CVS, 160

D
data types, 57
database, 29
databases, 54
date functions, 307
date(), 312
date.timezone, 87
debugging, 144
default_charset, 79
default_mimetype, 79
default_socket_timeout, 81
defensive coding, 154
destructors, 291
disable_classes, 82
disable_functions, 82
display_errors, 78
DOM extension, 317
DSO, 67

E
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

INDEX ” 323

enable_dl, 89
error constants, 265
error handlers, 267
error handling, 261
error messages, 132, 181, 302

display of, 264
storing, 263

error_reporting, 78, 132, 267
errors, 130

fixing, 145
eval(), 304
exceptions, 270
external programs, 297

F
FastCGI, 70, 122
file names, 46
file_get_contents, 161
file_uploads, 82
filter.default, 87
filter.default_flags, 87
Firefox extensions, 175

Firebug, 176
Webdeveloper, 175

floating point calculations, 36
floating point precision, 79
function names, 239
functional tests, 135

G
global arrays, 254
global variables, 246, 251
grep, 161
Gutmans, Andi, 6

H
header(), 307
HTML, 4, 163

validation, 163

HTML Tidy, 165
HTTP headers, 306
HTTP requests, 160
httpd.conf, 179
hypertext, 3

I
i386 architecture, 32
IA32, 34
IA32 architecture, 32
IDE, 160
ignore_user_abort, 82
IIS, 62
include_path, 86, 120
ini_get_all, 120
input data, 251
instanceOf, 293
instruction set, 33
integer

32 bit, 35
64 bit, 35

integers, 35, 311
type-converting, 311

integration testing, 130
Internet, 3
ip2long, 282
is_a(), 293

J
Java Runtime Environment, 205
Javascript Lint, 173
Jigsaw, 170
jsl, 173, 220
JSLint, 174

L
Lerdorf, Rasums, 5
libraries, 249
libxml2, 171

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

324 ” INDEX

line endings, 41
Linux Standard Base, 38
little endian, 36
local variables, 246
LSB, 38

M
machine language, 33
magic constants, 229, 245, 279
magic methods, 245, 289, 315
magic quotes, 255
magic_quotes_gpc, 89, 256
magic_quotes_runtime, 90, 258
magic_quotes_sybase, 90, 258
mail.force_extra_parameters, 80
max_execution_time, 83
max_input_nesting_level, 87
max_input_time, 82
Meld, 162
Mesh, 4
method signature, 287
migrating the environment, 125
migration paths, 124
mock objects, 135
modular programming, 153
modularizing code, 124
modulo operator, 308
Moore’s Law, 13
mounting forms, 37
MPM, 62

prefork, 63
Worker, 62

multi-byte words, 36
multi-core architecture, 39
multi-threaded processes, 73
multi-threaded programs, 39
multibyte character sets, 58
MySQL, 118
mysql extension, 316

mysqli extension, 316

N
name conflicts, 234
namespaces, 155

O
objects, 289

comparing, 296
copying, 273, 278
empty, 312

objects by reference, 270, 273
opcode caching, 6
open_basedir, 84
operating systems, 37

Mac OS X, 37
Unix, 37
Windows, 37

P
Parallels, 194
parameter count, 310
paths, 46
pcre.backtrack_limit, 87
pcre.recursion_limit, 87
PEAR, 7, 181
PECL extensions formerly bundled with PHP,

93
PECL extensions no longer maintained, 95
Personal Home Page Tools, 5
phing, 202, 217
PHP

4.0, 6
5.0, 8
5.3, 10
6.0, 9, 10
compiling, 71
installing multiple versions, 98

PHP 4 compatibility mode, 271
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

INDEX ” 325

PHP extensions, 315
PHP extensions no longer maintained, 95
PHP Hypertext Preprocessor, 6
php-<sapi>.ini, 74
php.ini, 74, 97, 120, 132, 147, 161, 179, 254,

256, 263, 271, 277, 307
php.ini-recommended, 120
PHP/FI, 6
PHP_Beautifier, 185
php_check_syntax, 179
PHP_Codesniffer, 188
PHP_Compat, 184
PHP_CompatInfo, 121, 122, 192
php_eol, 229
phpinfo, 119
PHPUnit, 125, 137, 143, 198
platform, 29
Plex86, 194
POST data, 259
post_max_size, 83
processor, 33

getting info on Unix, 118
getting info on Windows, 118
multi-core, 33

program code
changing, 19
rewriting from scratch, 22

program logic errors, 144

Q
QUEMU, 194

R
refactoring, 129, 138, 156
reference

creating, 272
passing at runtime, 276
passing by, 273
returning, 274

register_argc_argv, 77
register_globals, 78, 251
register_long_arrays, 78
reserved keywords, 234

list of, 236
Rhino, 174
running system, 14
runtime errors, 143

S
safe_mode, 90
SAPI, 72
search path, 50
sed, 162
Selenium, 135, 143, 202
Semantic Web, 4
sendmail_from, 80
sendmail_path, 80
serialize_precision, 80
session.auto_stat, 84
session.bug_compat, 84
session.cookie_domain, 85
session.cookie_httponly, 89
session_start, 307
setcookie, 307
setrawcookie, 307
short_open_tag, 77
SimpleXML extension, 318
single threaded processes, 73
special characters, 47, 107
SPL, 241
SPL extension, 316
SQL, 54
SQL injection, 255
Standard PHP Library, 241
static methods, 285, 301
stored procedures, 56
strripos, 284
strrpos, 283

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

326 ” INDEX

strtotime, 285
Subversion, 160
superglobal variables, 254, 255
Suraski, Zeev, 6
Symfony, 208
syntactical errors, 143
system environment

rebuilding, 24
systeminfo, 118

T
target system, 121

defining, 121
temporary directory, 49
test cases, 129
test data, 134

creating, 134
test fixture, 203
test systems, 129, 131

setting up, 129
testing, 18
third party code, 99
thread safety, 39
Tidy, 165, 317

as a PHP extension, 168
time functions, 307
tokenizer extension, 317
tools, 159
track_errors, 79

U
undefined constants, 229
Unicode, 10, 48
unit tests, 137
Unix, 35
unset, 305
upload_max_filesize, 83
upload_tmp_dir, 86
user_ini.filename, 89

UTF-8, 58, 307

V
variables

global, 246
local, 246

variables_order, 78
version control, 159
virtual machines, 131, 194
VirtualBox, 194
VMWare Workstation, 194

W
W3C, 164
web server, 29, 61

integrating with PHP, 66
security, 63

web server version, 119
web servers

multiple, 65
wget, 160, 161
Windows 3.1, 34
Windows 95, 34
Windows Vista, 35
Windows XP, 35
Winmerge, 162
word, 34
word length, 34, 40

X
x86 architecture, 32
xdebug, 114, 132, 209, 268
XEN, 194
XML, 317

validating, 170
xmllint, 171
XMLReader extension, 318
xUnit, 198

Z
D

ow
nl

oa
d

fr
om

 W
ow

! e
B

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

INDEX ” 327

Zend, 6
zend.ze1_compatibility_mode, 90

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

	Introduction
	A Short History of (Internet) Time
	The Birth of PHP
	PHP 5 and the Big Migration
	A Look Ahead: PHP 6

	Strategies
	Migration Strategies
	Never Touch a Running System
	System Environment
	Program Code

	Always Use the Latest Version
	Starting from Scratch
	Rewriting Program Code from Scratch
	Rebuilding the System Environment from Scratch

	Striking a Balance

	Migration Aspects
	Important Aspects of Migration
	Platform
	Architecture
	Processor
	Instruction Set
	Word Length
	Byte Order
	Mounting forms and interfaces

	Operating system
	Word Length
	Line Endings
	Access Rights
	Paths and File Names
	Temporary Files
	The Search Path
	Character Sets

	Databases
	SQL Does Not Equal SQL
	Program Code in the Database
	Data Types
	Character Sets
	Backup and Restore

	Web Server
	Apache and Apache2
	Security
	Compiling Apache
	Multiple Web Servers on One System

	PHP
	Web Server Integration
	Compiling PHP
	Thread Model
	PHP Configuration
	PHP Extensions
	Installing Multiple PHP Versions

	PHP Code
	Third party PHP code
	Your Own PHP Code

	External Programs
	Interfaces to Third-Party Systems
	Character Encodings
	Browser
	Security

	Preparing the Migration
	Steps to Preparing the Migration
	The Existing Application and Environment
	The Target System
	Planning the Migration

	The Migration
	Preparations
	The First Test System
	The Second Test System

	Testing
	Finding Relevant Test Cases
	Creating Test Data
	Creating Tests

	Refactoring
	Eliminate Redundant Code
	Shorten Code Blocks
	Separate Different Concerns

	Migrating
	Fixing Existing Bugs
	Replacing Modules
	Fixing Syntax Errors
	Fixing All PHP Error Messages
	Fixing Logical Errors
	Normalizing the PHP Configuration

	Migrating the Production System
	Finishing the Migration

	After the Migration
	What's Next?
	Modular Programming
	Establish Coding Guidelines
	Defensive Coding
	Do Not Be The First
	Continuous Refactoring
	Agile Migration

	Tools
	Tools Make All the Difference
	Version Control
	Command Line Tools
	Sending HTTP Requests and Downloading Files
	Search Files and Directories
	Replacing in Files
	Comparing Files and Directories

	Validating (X)HTML Files
	The W3C Validator
	HTML Tidy
	The Tidy PHP extension

	Validating CSS Files
	Validating XML Files
	xmllint
	PHP

	Static Analysis of JavaScript Files
	jsl
	JSLint

	Firefox Extensions
	Webdeveloper
	Firebug

	PHP's Own Means
	The PHP Configuration
	Syntax Check
	Prepend and Append Files

	PEAR Components
	PHP_Compat
	PHP_Beautifier
	PHP_CodeSniffer
	PHP_CompatInfo

	Virtual Machines
	VMWare
	Installing A Virtual Machine
	Working With Snapshots

	Test Tools
	Unit Tests with PHPUnit
	System Tests with Selenium

	Program Analysis and Debugging
	Installation
	Useful Features
	Tracing
	Debugging
	Code Coverage

	Build Automation
	Installation
	Code Quality Assurance
	Test Automation
	Code Coverage Statistics

	Migrating PHP Code
	Chapter Overview
	Case Sensitivity
	Variables
	Constants
	Magic Constants
	Functions and Methods
	Classes
	Files

	Name Conflicts
	Reserved Keywords
	Functions
	Classes, Interfaces and Exceptions
	Constants
	Magic Constants, Functions, and Methods
	Variables
	Components and Libraries

	Processing Input Data
	Registering Global Variables
	Long Input Arrays
	Superglobal Variables
	Magic Quotes
	Accessing POST Data
	The Script Name in $PHP_SELF

	Error Handling
	Suppressing Errors With @
	Storing the Previous Error Message
	Configuring Error Display
	New And Modified Error Messages
	Custom Error Handlers
	Exceptions

	References
	The PHP 4 Compatibility Mode
	Creating A Reference
	Passing References
	Returning References
	Passing References At Runtime
	Copying Objects

	Magic Constants
	Altered Behavior of PHP Functions
	array_merge()
	ip2long()
	strrpos()
	strripos()
	strtotime()

	Classes
	Static Methods And Dynamic Calls
	Abstract Private Methods
	Abstract Static Methods
	Modified Method Signature in Derived Classes

	Objects
	Constructor
	Destructors
	Redefining Class Constants
	instanceOf instead of is_a()
	Name Conflicts with $this
	Redefining $this
	Comparing Objects

	Dynamic Calls
	System Calls
	Class Names
	The call_user_func() Family
	Dynamically Loaded Code
	eval()

	Little Beastlinesses
	unset() and Strings
	Errors When Sending HTTP Headers
	Date and Time Functions
	Modulo Division
	Wrong Parameter Count In Function Calls
	Type-Converting Integer Values
	Empty Objects
	$this, Delegation, and Static Calls
	Outputting Objects and the Magic __toString() Method

	PHP Extensions
	mysql and mysqli
	SPL
	Tidy
	Tokenizer
	XML

	Index

