
www.allitebooks.com

http://www.allitebooks.org

OpenNI Cookbook

Learn how to write NIUI-based applications and
motion-controlled games

Soroush Falahati

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

OpenNI Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1190713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-846-8

www.packtpub.com

Cover Image by Ramin Gharouni (ramin.graphix@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Soroush Falahati

Reviewers
Vinícius Godoy

Li Yang Ku

Liza Roumani

Acquisition Editor
Usha Iyer

Lead Technical Editor
Amey Varangaonkar

Technical Editors
Aparna Chand

Athira Laji

Dominic Pereira

Copy Editors
Insiya Morbiwala

Aditya Nair

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Leena Purkait

Proofreader
Stephen Copestake

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Soroush Falahati is a Microsoft MCPD certificated C# developer of Web and Windows
applications, now preparing for a new MCSD certification from Microsoft. He started
programming at the age of 13 with VB5 and then continued to VB.Net, C#, C++, C for
microcontrollers, as well as scripting languages such as PHP and JavaScript.

He is currently the owner of an e-commerce company that uses web applications and smart
phone apps as primary advantages over other competitors.

As a hobby, Soroush supports robotic teams by voluntarily training them on how to
program microcontrollers.

I would like to thank my family, who supported me at the time of writing of
this book with their patience, just as they always have been patient through
the rest of my life!

Also, I want to thank PrimeSense, which gave me access to confidential
material and helped me through the writing of this book. I would like to
especially thank Eddie Cohen, Software Team Leader, who answered
my many questions and Jeremie Kletzkine, the Director of Business
Development.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Vinícius Godoy is a computer graphics university professor at PUCPR. He is also an IT
manager of an Electronic Content Management (ECM) company in Brazil, called Sinax. His
former experience also includes building games and applications for Positivo Informática—
including building an augmented reality educational game exposed at CEBIT—and network
libraries for Siemens Enterprise Communications.

In his research, he used Kinect, OpenNI, and OpenCV to recognize Brazilian sign language
gestures. He is also a game development fan, having a popular website entirely dedicated
to the field, called Ponto V (http://www.pontov.com.br). He is mainly proficient with
the C++ and Java languages and his field of interest includes graphics synthesis, image
processing, image recognition, design patterns, Internet, and multithreading applications.

Li Yang Ku is a Computer Vision scientist and the main author of the Serious Computer
Vision Blog (http://computervisionblog.wordpress.com), one of the foremost
Computer Vision blogs. He is also the founder of EatPaper (http://www.eatpaper.org),
a free web tool for organizing publications visually.

He has worked as a researcher in HRL Laboratories, Malibu, California from 2011 to 2013.
He did AI research on multiple humanoid robots and designed one of the vision systems
for NASA's humanoid space robot, Robonaut 2, at NASA JSC, Houston. He also has broad
experience on RGBD sensor applications, such as object recognition, object tracking,
human activity classification, SLAM, and quadrotor navigation.

Li Yang Ku received his MS degree in CS from University of California, Los Angeles, and has
a BS degree in EE from National Chiao Tung University, Taiwan. He is now pursuing a Ph.D.
degree at the University of Massachusetts, Amherst.

www.allitebooks.com

http://www.allitebooks.org

Liza Roumani was born in Paris in 1989. After passing the French scientific Baccalaureate,
she decided to move to Israel.

After one year in Jerusalem University, she joined the Technion Institute of Technology
of Haifa, where she obtained a BSC degree in Electrical Engineering.

Liza Roumani is currently working at PrimeSense Company, the worldwide leader in 3D
sensors technology.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and, as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started 5

Introduction 5
Downloading and installing OpenNI 11
Downloading and installing NiTE 15
Downloading and installing the Microsoft Kinect SDK 18
Connecting Asus Xtion and PrimeSense sensors 21
Connecting Microsoft Kinect 24

Chapter 2: OpenNI and C++ 27
Introduction 27
Creating a project in Visual Studio 2010 28
OpenNI class and error handling 43
Enumerating a list of connected devices 47
Accessing video streams (depth/IR/RGB) and configuring them 53
Retrieving a list of supported video modes for depth stream 61
Selecting a specific device for accessing depth stream 68
Listening to the device connect and disconnect events 75
Opening an already recorded file (ONI file) instead of a device 81

Chapter 3: Using Low-level Data 85
Introduction 85
Configuring Visual Studio 2010 to use OpenGL 90
Initializing and preparing OpenGL 100
Reading and showing a frame from the image sensor (color/IR) 106
Reading and showing a frame from the depth sensor 124
Controlling the player when opening a device from file 150
Recording streams to file (ONI file) 161
Event-based reading of data 165

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 4: More about Low-level Outputs 171
Introduction 171
Cropping and mirroring frames right from the buffer 172
Syncing image and depth sensors to 182
read new frames from both streams at the same time 182
Overlaying the depth frame over the image frame 189
Converting the depth unit to millimetre 200
Retrieving the color of the nearest point without depth
over color registration 205
Enabling/disabling auto exposure and auto white balance 210

Chapter 5: NiTE and User Tracking 217
Introduction 217
Getting a list of all the active users 219
Identifying and coloring users' pixels in depth map 224
Reading users' bounding boxes and center of mass 233
Event-based reading of users' data 238

Chapter 6: NiTE and Hand Tracking 243
Introduction 243
Recognizing predefined hand gestures 246
Tracking hands 250
Finding the related user ID for each hand ID 259
Event-based reading of hands' data 264
Working sample for controlling the mouse by hand 269

Chapter 7: NiTE and Skeleton Tracking 277
Introduction 277
Detecting a user's pose 281
Getting a user's skeleton joints and displaying their position
in the depth map 285
Designing a simple pong game using skeleton tracking 290

Index 303

Preface
As a step towards interacting with users through the physical world, learn how to write
NIUI-based applications or motion-controlled games.

OpenNI Cookbook is here to show you how to start developing Natural Interaction UI for your
applications or games with high-level APIs while, at the same time, accessing raw data from
different sensors of different devices that are supported by OpenNI using low-level APIs.

What this book covers
Chapter 1, Getting Started, will teach you how to install OpenNI along with NiTE and shows
you how to prepare an environment for writing an OpenNI-based application.

Chapter 2, OpenNI and C++, explains how to start programming with OpenNI, from basic
steps such as creating a project in Visual Studio to initializing and accessing different
devices and sensors.

Chapter 3, Using Low-level Data, is an important chapter of this book, as we are going to cover
reading and handling output of basic sensors from each device.

Chapter 4, More about Low-level Outputs, shows how you can customize the frame data right
from the device itself, including mirroring and cropping.

Chapter 5, NiTE and User Tracking, will start using the Natural Interaction features of NiTE.
As a first step, you will learn how to detect users on the scene and their properties.

Chapter 6, NiTE and Hands Tracking, will cover topics such as recognizing and tracking
hand movements.

Chapter 7, NiTE and Skeleton Tracking, will be covering the most important features of NiTE:
skeleton tracking and recognizing users' skeleton joints.

Preface

2

What you need for this book
You need to have Visual Studio 2010 to perform the recipes given in this book. You will also
need to download OpenNI 2 and NiTE from their official websites. If you are going to use
Kinect, you may need to download the Kinect SDK from Microsoft's website as well.

Who this book is for
OpenNI Cookbook is a book for both starters and professionals in NIUI, for people who want to
write serious applications or games, and for people who want to experience and start working
with NIUI. Even OpenNI 1 and OpenNI 1.x programmers who want to move to the new versions
of OpenNI can use this book as a starting point.

This book uses C++ as its primary language; so for reading and understanding you only need
to have a basic knowledge of C or C++.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Also,
we checked if the initializing process ended without any error by creating a variable of
type openni::Status."

A block of code is set as follows:

 printf("OpenNI Version is %d.%d.%d.%d",
 OpenNI::getVersion().major,
 OpenNI::getVersion().minor,
 OpenNI::getVersion().maintenance,
 OpenNI::getVersion().build);

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "From the File menu,
select New and then New Project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

3

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Preface

4

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started

The first step before writing an application or game using OpenNI is to install OpenNI itself,
the drivers, and any other prerequisites. So in this chapter, we will cover this process and
make everything ready for writing an app using OpenNI.

In this chapter, we will cover the following recipes:

 f Downloading and installing OpenNI
 f Downloading and installing NiTE
 f Downloading and installing the Microsoft Kinect SDK
 f Connecting Asus Xtion and PrimeSense sensors
 f Connecting Microsoft Kinect

Introduction
As an introduction, it is important for you to have an idea about the technology behind the
topics just mentioned and our reasons for writing this book, as well as to know about the
different devices and middleware libraries that can be used with OpenNI.

Introduction to the "Introduction"
Motion detectors are part of our everyday life, from a simple alarm system to complicated
military radars or an earthquake warning system, all using different methods and different
sensors but for the same purpose—detecting motion in the environment.

But they were rarely used to control computers or devices until recent years. This was usually
because of the high price of capable devices and the lack of powerful software and hardware
for consumers, and maybe because end users did not need this technology. Fortunately, this
situation changed after some of the powerful players in computer technology tried to use this
idea and supported other small innovation companies in this task.

Getting Started

6

We believe that the idea of controlling computers and other devices with environment-
aware input devices is going to grow in computer industries even more in the coming years.
Computers can't rely any more on a keyboard and a mouse to learn about real environments.
Computers are going to control more and more parts of our everyday life; each time they
need to understand better our living environment. So if you are interested in being part
of this change, work through this book.

In this book, we are going to show you how to start using current devices and software to write
your own applications or games to interact with the real world.

In this chapter, we will introduce you to some usable technologies and devices, and then
introduce some of the frameworks and middleware before speaking a little about how you
can make applications or games with Natural Interactive User Interfaces (NIUI).

This way of interacting with a computer is known as 3DUI (3D User
Interaction or 3D User Interfaces), RBI (Reality based interaction), or NI
(Natural Interaction). To know more, visit http://en.wikipedia.org/
wiki/3D_user_interaction and http://en.wikipedia.org/
wiki/Natural_user_interface.

Motion-capture devices and the technologies
behind them

The keyboard and mouse are two of the most used input devices for computers; they're the
way they learn from outside of the box. But the usage of these two devices is very limited
and there is a real gap between the physical world and the computer's understanding
of the surrounding environment.

To fill this gap, different projects were raised to reconstruct 3D environments for computers
using different methods. Read more about these techniques at http://en.wikipedia.
org/wiki/Range_imaging.

For example, vSlam is one such famous project designed for robotic researchers who try to
do this using one or two RGB cameras. This project is an open source one and is available at
http://www.ros.org/wiki/vslam.

However, since most of these solutions depend on the camera's movement or detection of
similar patterns from two cameras, and then use Stereo triangulation algorithms for creating
a 3D map of the environment, they perform a high number of calculations along with using
complex algorithms. This makes them slow and their output unreliable and/or inaccurate.

Chapter 1

7

There are more expensive methods to solve these problems when high accuracy is needed.
Methods such as Laser Imaging Detection and Ranging (LIDaR) use one or more laser
beams to scan the environment. These methods are expensive and actually not a good
option for targeting end users. They are usually big in size and the mid-level models are
slow at scanning a 3D environment completely. Yet, because they use ToF (Time of Flight)
for calculating distances, they have very good accuracy and a very good range too. The
devices that use laser beams are used mainly for scanning huge objects, buildings, surfaces,
landforms (in Geology), and so on, from the ground, an airplane, or from a satellite. Read more
on http://en.wikipedia.org/wiki/Lidar.

To know more about the other types of 3D scanners, visit http://en.wikipedia.org/
wiki/3D_scanner.

In 2010, Microsoft released the Kinect device for Xbox 360 users to control their console
and games without a controller. Kinect originally uses PrimeSense's technology and its SoC
(System on Chip) to capture and analyze the depth of the environment. PrimeSense's method
of scanning the environment is based on projecting a pattern of a hundred beams of infrared
lasers to the environment and capturing these beams using a simple image CMOS sensor
(a.k.a. Active Pixel Sensor or APS) with an infrared-passing filter in front of it. PrimeSense's
SoC is then responsible for comparing the results of the captured pattern with the projected
one and creates a displacement map of the captured pattern compared to the projected
pattern. This displacement map is actually the same depth map that the device provides to
the developers later with some minor changes. This technology is called Structured-light 3D
scanning. Its accuracy, size, and error rate (below 70 millimeters in the worst possible case)
when compared to its cost makes it a reasonable choice for a consumer-targeted device.

To know more about Kinect, visit http://en.wikipedia.org/wiki/Kinect.

PrimeSense decided to release similar devices after Kinect was released. Carmine 1.08,
Carmine 1.09 (a short range version of Carmine 1.08), and Capri 1.25 (an embeddable
version) are the three devices from PrimeSense. In this book, we will call them all
PrimeSense sensors. A list of the available devices from PrimeSense can be viewed
at http://www.primesense.com/solutions/sensor/.

Before the release of PrimeSense sensors, Asus released two sensors in 2011 named Asus
Xtion (with only depth and IR output) and Asus Xtion Pro Live (with depth, color, IR, and audio
output) with PrimeSense's technology and chipset, just as with Kinect, but without some
features such as tilting, custom design, higher resolution, and frame rate compared to Kinect.
From what PrimeSense told us, the Asus Xtion series and PrimeSense's sensors both share
the same design and are almost identical.

Both of PrimeSense's sensors and the Asus Xtion series are almost twice as expensive
compared to Microsoft Kinect, yet they have a more acceptable price than the other
competitors (in the U.K., Microsoft Kinect is priced at $110).

Getting Started

8

Here is an illustration to help you understand how Kinect, Asus Xtion, and PrimeSense
sensors work:

More information about this method is available on Wikipedia at
http://en.wikipedia.org/wiki/Structured-light_3D_scanner.

After the release of Kinect, other devices aimed to give better and faster outputs to users
and yet keep the price in an acceptable range. These devices usually use ToF to scan
environments and must have better accuracy, at least in theory. SoftKinetic devices
(the DepthSense series of devices) and pmd[vision]® CamBoard nano are two of the notable
designs. Currently, there is no support for them in OpenNI and they are not very popular
compared to Kinect, Asus Xtion, and PrimeSense's sensors. Their resolution is less than what
PrimeSense-based devices can offer, but their frame rate is usually better because of a simple
calculation they use to produce a depth frame. Current devices can offer from 60 to 120
frames per second ranging from 160 x 120 to 320 x 240 resolutions, whereas Kinect, Asus
Xtion, and PrimeSense's sensor can give you up to 640 x 480 resolutions at 30 to 60 frames
per second. Also, these devices usually cost more than PrimeSense-based devices (from
250 to $690 at the time of writing this book).

Microsoft introduced Xbox One in 2013 with a new version of Kinect, known as Kinect for
Xbox One (a.k.a. Kinect 2), which uses ToF technology and custom-made CMOS for capturing
both RGB and depth data along with projecting beams of laser. From what Microsoft told
the media, it is completely made by Microsoft and, unlike the first version of Kinect, this
time there is no third-party company involved. It is unknown if this new version of Kinect is
compatible with OpenNI, but Microsoft promised a Windows SDK, which means we can
expect a custom module for OpenNI from the community at least.

You can read more about ToF-based cameras and their technologies on Wikipedia at
http://en.wikipedia.org/wiki/Time-of-flight_camera.

Chapter 1

9

Fotonic is another manufacturing company for 3D imaginary cameras. Fotonic E
series products are OpenNI-compatible TOF devices. You can check their website
(http://www.fotonic.com/) for more information.

In this book, we use Asus Xtion Pro Live and Kinect, but you can use any of PrimeSense's
sensors and it will give you the same result as Asus Xtion Pro without any headache. We
even expect the same result with any other OpenNI-compatible device (for example, Fotonic
E70 or E40).

What is OpenNI?
After having good hardware for capturing the 3D environment, it is very important to have a
good interface to communicate and read data from a device. Apart from the fact that each
device may have its own SDK, it is important for developers to use one interface for all of the
different devices.

Unfortunately, there is no unique interface for such devices now. But OpenNI, as the default
framework, and SDK, for PrimeSense-based devices (such as Kinect, PrimeSense sensors,
and Asus Xtion), have the capacity to become one.

OpenNI is an organization that is responsible for its framework with the same name. Their
framework (that we will call OpenNI in this book) is an open source project and is available for
change by any developer. The funder of this project is PrimeSense itself. This project became
very famous because of being the first framework with unofficial Kinect support when there
wasn't any reliable framework. In the current version of OpenNI, Kinect is officially supported
via the Microsoft SDK.

OpenNI, on one hand, gives device producers the ability to connect their devices to the
framework, and on the other hand gives developers the ability to work with the same API for
different devices. At the same time, other companies and individuals can develop their own
middleware and expand the API of OpenNI. Having these features gives this framework the
value that other competitions don't have.

As mentioned in the title of the book, we will use OpenNI as a way to know this field better
and to develop our applications.

What is NiTE?
NiTE is a middleware based on the OpenNI framework and was developed by PrimeSense as
an enterprise project.

NiTE gives us more information about a scene based on the information from the depth
stream of a device.

We will use NiTE in this book for accessing a user's data and body tracking as well as hand
tracking and gesture recognition.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

10

NiTE is not the only middleware; there are other middleware that you can use along with
OpenNI, such as the following:

 f Hand Grab Detector from PrimeSense for recognizing hands in the closed mode:
http://www.openni.org/files/grab-detector

 f 3D Hand Tracking Library and TipTep Skeletonizer for recognizing fingers:
http://www.openni.org/files/3d-hand-tracking-library and
http://www.openni.org/files/tiptep-skeletonizer

 f 3D Face Identification from the University of Southern California for face recognition:
http://www.openni.org/files/3d-face-identification

And a whole lot more. A list of SDKs and middleware libraries is available at OpenNI.org
(http://www.openni.org/software/?cat_slug=file-cat1).

Developing applications and games with the Natural
Interactive User Interface

With the seventh generation of video game consoles, interacting with users via motion
detection became popular, with the focus on improving gaming experience, starting with
the Nintendo Wii controller and followed by Microsoft Kinect and Sony PlayStation Move.

But gaming isn't the only subject capable of using these new ways. There are different cases
where interacting with users via natural ways is a better option than traditional ways, or at
least can be used as an improvement. Just think of how you can use it in advertising panels,
or how you can give product information to users. Or you can design an intelligent house that
is able to identify and understand a user's orders. Just look at what some of the companies
such as Samsung did with their Smart TV line of productions.

With improving the device's accuracy and usable field of view, you can expect the creation
of applications for personal computers to become reasonable too, for example, moving and
rotating a 3D model in 3D modeling apps, or helping in drawing apps, as well as the possibility
of interacting with the Windows 8 Modern interface or other similar interfaces.

As a developer, you can think of it as a 3D touch screen, and one can do lots of work with a
3D touch screen. What it needs is a little creativity and innovation to find and create ways
and ideas to use these methods to interact with users.

Yet, developing games and applications is not the only area that you can use this technology
for. There are projects already underway for creating more environment-aware indoor robots
and different indoor security systems as well as constructing and scanning an environment
completely (such as the KinectFusion project or other similar projects). It's hard to ignore and
not mention the available Motion Capture applications (for example, iPi Motion Capture™).

Chapter 1

11

As you can see, there are lots of possibilities in which you can use OpenNI, NiTE, and other
middleware libraries.

But in this book, we are not going to show you how to do anything specific to one of the
preceding categories. Instead, we are going to cover how to use OpenNI and NiTE, and
it all depends on you and how you want to use the information provided in this book.

In this chapter, we are going to introduce OpenNI and cover the process of initializing OpenNI
as well as the process of accessing different devices. The next step for you in this book is
reading RAW data from devices and using OpenNI to customize this data from a device. NiTE
can help you to convert this data to understandable information about the current scene. This
information can be used to interact with users. We are going to cover NiTE and its features in
this book too.

By using this information, you will be able to create your own body-controlled game,
an application with an NI interface, or even custom systems and projects with better
understanding of the world and with the possibility of interacting more easily and in
natural ways with users.

The main programming language with OpenNI is C, but there is a C++ wrapper with each
release. This book makes conservative use of C++ for simplicity. We used a little bit of OpenGL
using the GLUT library to visually show some of the information. So you may need to know C++
and have a little understanding about what OpenGL and 2D drawing are.

Currently, there are two official wrappers for OpenNI and NiTE: C++ and Java wrappers.
Yet there is no official wrapper for .NET, Unity, or other languages/software.

Community-maintained wrappers, at the time of writing this book, are NiWrapper.Net which
is an open source project supporting OpenNI and NiTE functionalities for .NET developers
and ZDK for Unity3D, which is a commercial project for adding OpenNI 2 and NiTE 2 support
to Unity. Of course, there are other frameworks that use OpenNI as the backend, but none of
these can be fitted in the subject of this book.

OpenNI is a multiplatform framework supporting Windows (32 bit and 64 bit; the ARM edition
is not yet available at the time of writing this book), Mac OS X, and Linux (32 bit, 64 bit, and
ARM editions). In this book, we are going to use Windows (mainly 64 bit) for projects.
But porting codes to other platforms is easily possible and it is unlikely to create
serious problems for you if you decided to do this.

Downloading and installing OpenNI
The first step to use OpenNI to develop any application or game is to install the OpenNI
framework on your development machine. In this recipe, we will show you how to install
OpenNI; actually it is as easy as 1-2-3.

Getting Started

12

How to do it...
1. Open your browser and navigate to www.openni.org/openni-sdk. The following

screen will be displayed:

2. Download the latest version of OpenNI for your platform and CPU architecture.
We recommend downloading both 32-bit (x86) and 64-bit versions of OpenNI
if you are using a 64-bit OS.

Chapter 1

13

3. Open the downloaded file; it is usually a ZIP file that can be opened by different
programs (including but not limited to WinZip, WinRar, 7Zip, and so on) and even
Windows Explorer. Then run/open the OpenNI installer from within the zipped archive:

4. Click on Install in the installer dialog:

Getting Started

14

5. Wait for the installation process to complete. If any dialog appears to ask for an
approval of drivers during the installation process, simply click on the Install button:

6. At the end of the installation, click on Finish and you are done.

How it works...
There is nothing special here; we downloaded and opened the archive file and then
executed the installer package. Also, we accepted the installation of new drivers to
the Windows catalog.

Chapter 1

15

See also
 f The Downloading and installing NiTE recipe

Downloading and installing NiTE
If you want to use high-level outputs and some advanced tracking and recognition features of
NiTE, you need to install it as well. NiTE is a middleware based on the OpenNI framework and
needs to be installed after it.

Getting ready
Before installing NiTE, you need to have OpenNI installed using the Downloading and
installing OpenNI recipe in this chapter.

How to do it...
1. Before downloading NiTE, you need to register yourself in OpenNI.org. For doing so,

please open your browser and navigate to www.openni.org/my-profile. Now fill
all the fields and click on the Submit button:

Getting Started

16

2. After the registration, if everything goes fine, you'll be able to download NiTE.
Open your browser and navigate to www.openni.org/files/nite:

3. Download NiTE using the big DOWNLOAD button at the upper-right corner and then
select your desired version of it:

4. Open the downloaded file; it is usually a ZIP file that can be opened by different
programs (including but not limited to WinZip, WinRar, 7Zip, and so on) and even
Windows Explorer. Then run/open the actual installer from within the zipped archive:

Chapter 1

17

5. Read and accept the license arguments, then click on Next and then on Install in the
installer dialog:

Getting Started

18

6. Wait for the installation to complete and, at the end of the installation, click on Finish
and you are done:

How it works...
Actually we did nothing special here either; all we did was register, download, and install NiTE
for our version of the OS and CPU architecture.

See also
 f The Downloading and installing OpenNI recipe

Downloading and installing the Microsoft
Kinect SDK

For using Kinect on Windows 7 and Windows 8, you need to install the Microsoft Kinect SDK.
This SDK lets OpenNI access Kinect for Windows and Kinect for Xbox devices.

Chapter 1

19

How to do it...
1. Open your browser and navigate to www.microsoft.com/en-us/

kinectforwindows/develop/developer-downloads.aspx:

2. Download the Kinect SDK by clicking on the center-left button named DOWNLOAD
LATEST SDK.

Please note that the current version of OpenNI (OpenNI 2.2) works
only with Version 1.6 and higher of Microsoft Kinect SDK. The current
stable version of Kinect SDK is 1.7.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

20

3. Open the installer package after it's downloaded, read and accept the license
arguments, and click on the Install button.

Please note that Microsoft Kinect SDK can only be installed
on Windows 7 and later.

4. Wait for the installation process to complete. At the end of the installation, click on
Close and you are done.

Chapter 1

21

How to do it...
Just as with the previous two recipes, we did nothing worth explaining except for downloading
and installing the Kinect SDK, Kinect Drivers, and the Kinect Runtime.

See also
 f The Downloading and installing OpenNI recipe

 f The Downloading and installing NiTE recipe

Connecting Asus Xtion and PrimeSense
sensors

After installing OpenNI, you need to connect your device to your PC. In this recipe, we will
show you how to connect and expect Windows to recognize your device. Actually, both of these
devices use only one USB port and drivers are also a part of OpenNI, so in this recipe we are
not going to do anything other than connecting and waiting.

Getting Started

22

Getting ready
Before connecting your device, you need to have OpenNI installed using the Downloading and
installing OpenNI recipe in this chapter.

How to do it...
1. Unbox your device and connect its USB cable to one of your computer's USB ports.

If any message appears on the screen about the failure of recognizing your device,
you can simply change the connected USB port and see if it makes any difference.

Please note that your device may not be compatible
with USB3. It is possible for PrimeSense and Asus
Xtion users to update their device firmware to
add support for Audio and USB3. Check out the
PrimeSense website (http://www.primesense.
com/updates/) for downloading the latest firmware.

2. Now, the following pop up will appear on your Windows notification bar:

Chapter 1

23

3. You must wait for the installation to complete or click on it to visually see the
installation steps:

4. When Ready to use is displayed, it means everything is good and you have connected
your device successfully.

5. You can check if it is successfully installed by going to Device Manager. To open
Device Manager, right-click on the My Computer icon and select Manage, then
navigate to Device Manager from the left-hand side tree. Then check if you have
the PrimeSense node installed in the right-hand side panel, as shown in the
following screenshot:

How it works...
The preceding steps are actually quite self-explanatory; we connected our device, waited for it
to be recognized by Windows, and then let automatic installation finish.

See also
 f The Downloading and installing OpenNI recipe

 f The Downloading and installing NiTE recipe

Getting Started

24

Connecting Microsoft Kinect
If you are going to use Kinect, you need to connect this device properly to your PC. In this
recipe, we are going to show you this operation. Of course, there are only a few changes
between this and the previous recipe that is about the Adapter and Power Supply Kit in
Kinect for the Xbox version of Kinect; everything else pretty much remains the same.

Getting ready
Before installing NiTE, you need to have both OpenNI and Microsoft Kinect SDK installed
using the Downloading and installing OpenNI and Downloading and installing the Microsoft
Kinect SDK recipes in this chapter.

How to do it...
1. Unbox your Kinect device and, if you are using Kinect for Xbox, connect the Kinect

Sensor Power Supply Kit to the device. This kit converts the Kinect special port to a
power and a USB port so that you can connect it to your PC. If you have Kinect for
Windows, then your device probably has this kit built in. If you don't have this kit,
you can buy it from the Microsoft Store:
www.microsoftstore.com/store/msstore/pd/Kinect-Sensor-
Power-Supply/productID.221244000/catID.50606600/
parentCategoryID.50790100/categoryID.57399200/list.true

Or you can use a short URL from tinyurl.com (tinyurl.com/kinectpowerkit):

2. Then connect its USB cable to a USB port on your computer and connect its adapter
to a power plug.

Chapter 1

25

Unlike other devices, Kinect is compatible with USB3 ports from the
very first moment.
It is because Kinect uses an internal USB2 hub that is compatible
with USB3 even when the device itself may not be. This also means
connecting Kinect to a USB hub or next to any other sensor can
make it unusable or undetectable.

3. Now the following pop up will appear on your Windows notification bar:

4. You must wait for the installation to complete or click on it to visually see the
installation steps:

5. When Ready to use is displayed, it means everything is good and you have connected
your device successfully.

Getting Started

26

6. You can check if it is successfully installed by going to Device Manager. To open
Device Manager, right-click on the My Computer icon and select Manage, then
navigate to Device Manager from the left-hand side tree. Then check if you have
the Microsoft Kinect node installed in the right-hand side panel, as shown in the
following screenshot:

How it works...
The preceding steps are actually quite self-explanatory; we connected our device, waited for it
to be recognized by Windows, and then let automatic installation finish.

See also
 f The Downloading and installing OpenNI recipe

 f The Downloading and installing NiTE recipe

 f The Downloading and installing the Microsoft Kinect SDK recipe

2
OpenNI and C++

In this chapter, we will cover:

 f Creating a project in Visual Studio 2010

 f OpenNI class and error handling

 f Enumerating a list of connected devices

 f Accessing video streams (depth/IR/RGB) and configuring them

 f Retrieving a list of supported video modes for depth stream

 f Selecting a specific device for accessing depth stream

 f Listening to the device connect and disconnect events

 f Opening an already recorded file (ONI file) instead of a device

Introduction
In this chapter, we will introduce primary datatypes of the OpenNI and the NiTE along with
some basic information about how to access and select a data stream. Then we will try to
show you some examples of events triggered by devices such as connecting or disconnecting
an OpenNI supported device from computer.

But first, let's get some background about the whole OpenNI's principle first.

The OpenNI object
OpenNI object is the starting point of everything in the framework. Using the OpenNI class we
can access a list of connected devices as well as the version of OpenNI itself. Then using this
information we can access a device object and read data.

OpenNI and C++

28

This class uses the singleton pattern, which means there is only one instance of this class and
all of its methods are static.

Also in OpenNI 2 we have the ability to register two callback functions by OpenNI object for
capturing device connected and device disconnected events.

The device object
Device object is representing the actual physical device where each device supports a
number of sensors (for example, depth, color, and IR) that can be accessed using Device
object. We need to ask for access to a device before using its sensor's output. Also using
this object, we can access some device-wide settings. Read more in Chapter 4, More about
Low-level Outputs.

The VideoStream object
Using the VideoStream object we can access the output data of color, IR, and depth sensors.
VideoStream in the new version of OpenNI supports event-based reading that gives us the
ability to register a callback function to execute when a new frame of data becomes available.

Sharing devices between applications
Unlike OpenNI 1.x, where we could share a device between two or more applications at the
same time, we can't share a sensor's output at all with OpenNI 2.x. In the new design, the first
application always locks the device; not only is there no way for the second app to change
settings of sensors, there is no way to even use the output of locked sensors in any way
as well.

VideoStream paused state
Most of the time, a sensor will not start producing data output when initialized until the
programmer asks it to start generating data using the openni:VideoStream::start()
function. Also it is possible to stop a stream from generating data using the
openni:VideoStream::stop() function.

Creating a project in Visual Studio 2010
In this recipe we will show you how to prepare a project in Visual Studio to start programming
with OpenNI 2 and NiTE 2. Using NiTE 2 is optional but it will offer following features to you::

 f The capability to track hands and recognize hand gestures

 f The capability to recognize one or more users and track their movements

Chapter 2

29

 f The capability to recognize different parts of the user's body and extract his/her
skeleton map and joint positions

Please note that you don't need NiTE if you want to simply work with depth/
IR or Image stream. But if you want to go one step forward and work with the
middleware layer, you need to install NiTE and use it.

Without NiTE, we can only use low-level data such as the output of different physical sensors
of one or more devices.

Getting ready
Download and install the free version of Visual Studio 2010 Express Edition from the
following link:

http://www.microsoft.com/visualstudio/eng/products/visual-studio-
2010-express

Please note that by using Visual Studio 2010 C++ Express you can't compile 64-bit
applications without Windows SDK. You can download Windows SDK from the following link:

http://go.microsoft.com/fwlink/?LinkID=191424

Also you can use Visual Studio 2012 Express for Windows Desktop, which supports C++, C#,
VB.net, and compiling of both 32-bit and 64-bit applications. Visual Studio 2012 Express
shares almost the same user interface as Visual Studio 2010 C++ Express and there should
be no big problem when using this recipe. Use the following link for more information and
download Visual Studio 2012 for Windows Desktop:

http://www.microsoft.com/visualstudio/eng/products/visual-studio-
express-for-windows-desktop

We are using Visual Studio 2010 Ultimate Edition but there must be no notable difference in
these steps for Visual Studio 2010 C++ Express or Visual Studio 2012 for Windows Desktop.

For OpenNI 2.1 and older, you can't use Visual Studio 2012. If you
have decided to use Visual Studio 2012 you must use OpenNI 2.2
alpha or later versions.

Also download and install OpenNI and, if needed, NiTE as shown in Chapter 1, Getting Started.

OpenNI and C++

30

How to do it...
We are going to create a project in Visual Studio 2010 and configure our project to use OpenNI
libraries and headers. First of all open Visual Studio 2010 and then follow the ensuing steps:

1. From the File menu, select New, and then New Project.

2. Select Visual C++ from the left panel and Win32 Console Application from the
right panel.

3. Enter a name in the Name field and click on OK.

4. Wait for the project creation process and after that create a 64-bit platform type for
your project by clicking on the Build menu and selecting Configuration Manager.

Chapter 2

31

.

5. From the Active solution platform dropdown, select New, and in the new dialog box
select x64 from the top dropdown, Win32 from the bottom dropdown, and click on
OK and Close.

OpenNI and C++

32

6. Right-click on the project name from the Solution Explorer window, which is usually
located at the top right, and select Properties.

Chapter 2

33

7. Select All Configurations from the top-right dropdown (the Configuration dropdown)
and Active(x64) or x64 from the top-right dropdown (Platform dropdown).

8. Locate C/C++ and expand it.

OpenNI and C++

34

9. Select the General node, edit Additional Include Directories (using the down arrow
to the right of this field), add $(OPENNI2_INCLUDE64), and, if you want to use NiTE
in your project, enter $(NITE2_INCLUDE64) too on a new line then click on OK.

10. Locate the Linker section and expand it.

Chapter 2

35

11. Select the General node, edit Additional Library Directories, then add $(OPENNI2_
LIB64), and, if you want to use NiTE in your project, enter $(NITE2_LIB64) too on
a new line then click on OK.

OpenNI and C++

36

12. Select the Input node in the same section (Linker), edit Additional Dependencies,
then add OpenNI2.lib and, if you want to use NiTE in your project, enter
NiTE2.lib too on a new line then click on OK.

13. Navigate to Build Events, expand it, select the Post-Build Event node, edit the
Command Line field from the right panel, and enter:
xcopy "%OPENNI2_REDIST64%*" "$(OutDir)" /y /s /e /i /d

Chapter 2

37

14. And if you want to use NiTE2 in your project then enter the following line too:
xcopy "%NITE2_REDIST64%*" "$(OutDir)" /y /s /e /i /d

15. Then click on OK and in the parent window click on Apply.

OpenNI and C++

38

If you are using Visual Studio 2010 Express Edition and want to compile in
64-bit, you need to follow this step; otherwise, skip it:

 f First make sure you have Windows SDK installed, then navigate to the
General category from the left panel, and edit Platform Toolset from
the right panel

 f Select Windows7.1SDK or any other version of SDK you have
installed based on your operating system and apply the settings as
shown in the following screenshot:

16. Now we must set the options needed for a 32-bit platform in case we want to
compile a 32-bit binary too (or if we only want to compile 32-bit binary). Select
All Configurations from the top-right dropdown (the Configuration dropdown)
and Win32 from the top-right dropdown (the Platform dropdown).

We will ignore the image of each part from now because settings
are much like earlier steps with small changes.

Chapter 2

39

17. Locate the C/C++ section and expand it.

18. Select the General node, edit Additional Include Directories (using the down arrow
on right of this field), then add $(OPENNI2_INCLUDE), and, if you want to use NiTE
in your project, enter $(NITE2_INCLUDE) too on a new line and then click on OK.

19. Locate the Linker section and expand it.

20. Select the General node, edit Additional Library Directories, then add $(OPENNI2_
LIB), and, if you want to use NiTE in your project, enter $(NITE2_LIB) too on a
new line and then click on OK.

21. Select Input node in the same section (Linker), edit Additional Dependencies, then
add OpenNI2.lib, and, if you want to use NiTE in your project, enter NiTE2.lib
too on a new line. Then click on OK.

22. Navigate to Build Events, expand it, select the Post-Build Event node, edit the
Command field from the right panel, and enter:
xcopy "%OPENNI2_REDIST%*" "$(OutDir)" /y /s /e /i /d

23. And if you want to use NiTE2 in your project, enter the following line too:
xcopy "%NITE2_REDIST%*" "$(OutDir)" /y /s /e /i /d

www.allitebooks.com

http://www.allitebooks.org

OpenNI and C++

40

24. Click on OK and then in the parent window click on Apply.

25. Now we need to set some of settings that are going to be used for both platforms. So
select the All Configurations option from the top-right dropdown (the Configuration
dropdown) and All Platforms from the top-right dropdown (the Platform dropdown).
Then select the Debugging node in the left panel and edit Working Directory
from the right panel. Replace its value with $(OutDir) and click on OK.

26. We are done with the Project Property window, so you can close it by clicking on OK.

27. Back in the main window of Visual Studio, we need to include OpenNI header files in
our source code too; to do this, open the main source file of your project and enter
these lines at the top of everything in the editor:

Downloading the example code:
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 2

41

// General headers
#include <stdio.h>
// OpenNI2 headers
#include <OpenNI.h>
using namespace openni;

28. If you want to use NiTE2 in your project, you need to add these lines to the top of the
main source file too:
// NiTE2 headers
#include <NiTE.h>

Build your project. This will tell you if any problem is found.

How it works...
First of all we need to create a project so that we can start coding:

 f Steps 1 to 3 are about making a new C++ project using Visual Studio; we used the
Win32 Console application because we don't want to create a visual user interface
and only want our application to be able to execute.

OpenNI and C++

42

 f Step 4 is about introducing a new configuration profile for our project and asking
Visual Studio to use x64 compiler when this profile is active; we used x86 settings
as default values for this new profile. You actually don't need it if you want to use a
32-bit version of OpenNI.

A 32-bit application can be executed in a 64-bit environment but
not vice versa. Also it doesn't matter if you are using or targeting a
32-bit or 64-bit version of OS, but you can't use a 64-bit version of
OpenNI when creating a 32-bit application.

 f Because we want to work with OpenNI framework and NiTE, we need to have
access to their APIs, so we need to show Visual Studio how to use them; steps 8
to 12 and steps 17 to 21 are about introducing the needed libraries and header files
to Visual Studio.

Unlike the OpenNI 1.x and NiTE 1.x era when there was only one
global version of OpenNI and NiTE on a system, now OpenNI 2.x
and NiTE 2.x offer the possibility to have different versions of
OpenNI and NiTE on the same system. You can even have one
version of OpenNI 1.x along with the different versions of OpenNI
2.x working together for different applications. Actually this is
because each application must have its own version of OpenNI
libraries in OpenNI 2; so we don't need to worry about version
compatibility any more. But currently we are the developers, so we
need to copy a version of OpenNI 2.x in our project too.

 f In steps 13 to 14 and 22 to 23 we asked the compiler to copy the needed OpenNI
and NiTE libraries and files to our project's output library after the compiling process
has finished successfully. This is so we can have our version of OpenNI next to the
executable file of our project.

 f Steps 27 and 28 ask the source editor to load OpenNI and NiTE header files so
we can use their APIs in our code. The last line in step 27 lets us use OpenNI's
API without writing openni:: before any class and object in that namespace
(for example, we can write Status instead of openni::Status).

Please note that steps 5 and 7 to 15 are for x64 compiling and steps
16 to 23 are needed only if you want to develop a 32-bit version of
your software. But we highly recommend doing all the steps and
then you can select the desired target CPU using the top solution
platform dropdown. Note that you need to have the same version of
OpenNI on your system before compiling.

Chapter 2

43

There's more...
You can use the OpenNI2Project - Empty Project and OpenNI2Project - Empty
Project with NiTE projects as templates for starting. These projects are available in the
Packt Publishing website for free download. Please note that when using these templates
for writing different projects you can't import two or more of them into one solution; that's
because they use the same GUID and you need to change their GUID to something unique
before importing them in one solution.

See also
 f The OpenNI class and error handling recipe

 f The Configuring Visual Studio 2010 to use OpenGL recipe in Chapter 3,
Using Low-level Data

OpenNI class and error handling
We will show how to create and initialize a context object in C++ and how to use the
openni::Status datatype to handle errors thrown by OpenNI core. We will use
openni::Status very often in the later recipes and it is a very important part
of any successful application.

In this recipe, we try to show the version number of the current OpenNI environment and then
initialize the OpenNI framework. This will ask OpenNI to search for any connected device and
load their modules and drivers.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe in this chapter.

OpenNI and C++

44

How to do it...
Have a look at the following steps:

1. Open your project and then the project's main source code file. Locate this line:
int _tmain(int argc, _TCHAR* argv[])
{

2. Write the following code snippet above the preceding line of code:
char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do
 {
 lastChar = newChar;
 newChar = getchar();
 }
 while ((newChar != '\n') && (newChar != EOF));
 return (char)lastChar;
 }

3. Locate this line again:
int _tmain(int argc, _TCHAR* argv[])
{

4. Write the following code snippet below the preceding line of code:
 printf("OpenNI Version is %d.%d.%d.%d",
 OpenNI::getVersion().major,
 OpenNI::getVersion().minor,
 OpenNI::getVersion().maintenance,
 OpenNI::getVersion().build);
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");
 Status status = STATUS_OK;
 status = OpenNI::initialize();
 if (status != STATUS_OK){
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 return 1;
 }
 printf("Completed.\r\n");

Chapter 2

45

 // Requesting device and creating sensor stream, then
 // reading data goes here

 printf("Press ENTER to exit.\r\n");

 ReadLastCharOfLine();

 OpenNI::shutdown();
 return 0;

How it works...
In the first step we defined a new method named ReadLastCharOfLine(). This function
will wait until the user presses the Enter key and will return the last character typed by the
user before Enter or 0 if nothing. We will use this function to wait for the user input or ask
the user to make a decision. In this example, we used it for preventing our application from
closing before the user command. We will not describe it line by line because this function is
not a part of our topic but it is simple and easy to understand.

In the second step we used the openni::OpenNI::getVersion() method from the
openni::OpenNI class to get the version of the used OpenNI framework. The return value
of this function is of the type openni::Version (the other name for OniVersion). Using
different fields of this structure we can access different version number categories.

 printf("OpenNI Version is %d.%d.%d.%d",
 OpenNI::getVersion().major,
 OpenNI::getVersion().minor,
 OpenNI::getVersion().maintenance,
 OpenNI::getVersion().build);

Then we used openni::OpenNI to initialize OpenNI. The initializing process includes
initializing and preloading different modules and drivers by OpenNI. We don't need to
create an object from the openni::OpenNI class because all methods are static.

 status = OpenNI::initialize();

Also, we checked if the initializing process ended without error, by creating a variable of type
openni::Status.

Status status = STATUS_OK;
 ...
if (status != STATUS_OK)

OpenNI and C++

46

openni::Status will inform us if any error exists but it can't give us more information
about this error. But on other hand OpenNI gives us a method that will return the latest
error message. This method is openni::OpenNI::getExtendedError().

 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());

If everything is ok, we can proceed to other steps including requesting and reading data from
the device or file. These parts will be discussed in later recipes. And at last when we are done
with OpenNI it is better to ask it to turn all devices down and release all resources. For doing
so we need to execute openni::OpenNI::shutdown().

 OpenNI::shutdown();

In our code we used the printf() function for printing messages and variable's values
to console.

Defining a method for displaying error message
From now on we will create and use a function in our project to handle openni::Status,
returned from different methods of OpenNI. This will help us reduce the number of conditions
in our code and improve it by making it more readable and understandable. The following is
the function that we will use in the later recipes:

bool HandleStatus(Status status)
{

Chapter 2

47

 if (status == STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

This function will return false in case of an error and will print an error message to the
console. There is nothing new to describe here.

Possible values of openni::Status
Our status variable in the previous code is of the type openni::Status. This enum has
different possible values that we will try to explain as follows:

 f openni::Status::STATUS_OK: This specifies that there is no problem or error

 f openni::Status::STATUS_ERROR: This specifies that an error has happened in
the process of execution of the requested method or function

 f openni::Status::STATUS_NOT_IMPLEMENTED: This specifies that the method or
the function you called or used is not implemented yet

 f openni::Status::STATUS_NOT_SUPPORTED: This specifies that the requested
task is not supported or not possible

 f openni::Status::STATUS_BAD_PARAMETER: This specifies that the parameter of
the method or function is incorrect, null, or irrelevant

 f openni::Status::STATUS_OUT_OF_FLOW: In other words, overflow usually
means a problem with the memory/device or stack

 f openni::Status::STATUS_NO_DEVICE: This specifies that no device is
connected and available to use

Enumerating a list of connected devices
We learned how to initialize OpenNI and how to retrieve the version number of OpenNI using
the openni::OpenNI::getVersion() method and how to ask OpenNI to read all modules
and drivers by calling openni::OpenNI::initialize() in the last recipe. In this recipe
we will get the list of all the connected devices, their hardware Uri (location), and product ID
(that can be used to identify the device).

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe in this chapter.

OpenNI and C++

48

How to do it...
Open your project and then the project's main source code file. Locate this line:

int _tmain(int argc, _TCHAR* argv[])
{

Write the following code snippet above the preceding line of code:

char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do
 {
 lastChar = newChar;
 newChar = getchar();
 }
 while ((newChar != '\n') && (newChar != EOF));
 return (char)lastChar;
 }

bool HandleStatus(Status status)
{
 if (status == STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

Locate this line again:

int _tmain(int argc, _TCHAR* argv[])
{

Write the following code snippet below the preceding line of code:

 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "" modules/drivers ...\r\n");
 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

Chapter 2

49

 openni::Array<openni::DeviceInfo> listOfDevices;
 openni::OpenNI::enumerateDevices(&listOfDevices);
 int numberOfDevices = listOfDevices.getSize();
 if (numberOfDevices > 0){
 printf("%d Device(s) are available to use.\r\n\r\n",
 numberOfDevices);
 for (int i = 0; i < numberOfDevices; i++)
 {
 openni::DeviceInfo device = listOfDevices[i];
 printf("%d. %s->%s (VID: %d | PID: %d) is connected "
 " at %s\r\n",
 i,
 device.getVendor(),
 device.getName(),
 device.getUsbVendorId(),
 device.getUsbProductId(),
 device.getUri());
 }
 }else{
 printf("No device connected to this machine.");
 }

 printf("Press ENTER to exit.\r\n");
 ReadLastCharOfLine();
 OpenNI::shutdown();
 return 0;

How it works...
In the first two steps we defined a new method named ReadLastCharOfLine(). This
function will wait until the user presses the Enter key and will return the last character typed
by the user before Enter or 0 if nothing. We will use this function to wait for user input or ask
the user to make a decision. In this example we used it for preventing our application from
closing before the user command. We will not describe it line by line because this function is
not a part of our topic.

We also defined another method named HandleStatus(). This method will check if an
openni::Status object shows an error and if so it will get the last reported error message
using openni::OpenNI::getExtendedError() and print it to the console. Then it will
wait for the user input and in the end it will return false if any error is found and true if
there was no problem. This function will help us to reduce the code we need to write in our
main program.

OpenNI and C++

50

Step four contains our main code. Just as in the last recipe we defined a variable of type
openni::Status and then used openni::OpenNI class to initialize OpenNI; the return
value of openni::OpenNI::initialize() is an openni::Status object that we sent
to HandleStatus() to find out if any error has occurred in the initializing process. And if
any error has occurred (HandleStatus() will return false in case of error), we will end the
program execution process by returning 1 (any value except 0 means an error to the OS) in the
main function.

 Status status = STATUS_OK;
 ...
 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;

After that our main part of code starts. For getting the number of connected devices we
need to send an array to OpenNI that can be filled with information of all connected devices.
Because arrays are a little messy in C++ compared to high-level languages like C# (mainly
because the size of an array is unknown) OpenNI itself tries to present a template class
named openni::Array to us. A template class lets us extend different datatypes without
rewriting code for each datatype separately. In this example we can use the openni::Array
class with any datatype including char, int and so on.

Template classes are known as Generic classes in other languages
such as C#, Java, or VB.Net.

Using an array of the openni::DeviceInfo class and by passing this array to the openn
i::OpenNI::enumerateDevices() method, we can gain access to the list of currently
connected devices.

The following is the code we used to define an array of openni::DeviceInfo using the
openni::Array class and passing it to the openni::OpenNI::enumerateDevices()
function to be filled with data.

 openni::Array<openni::DeviceInfo> listOfDevices;
 openni::OpenNI::enumerateDevices(&listOfDevices);

Then we saved the size of this array in an int variable to be used by other parts of our code.

 int numberOfDevices = listOfDevices.getSize();

Following this line we try to make sure that the size of this array or, in other words, the number
of connected devices is not 0. If there is no device connected (numberOfDevices == 0) we
will inform the user, but if not and there was one or more devices connected to the machine
then we use a loop to access each device's information one by one.

 if (numberOfDevices > 0){
 printf("%d Device(s) are available to use.\r\n\r\n",

Chapter 2

51

 numberOfDevices);
 for (int i = 0; i < numberOfDevices; i++)
 {
 ...
 }
 }else{
 printf("No device connected to this machine.");
 }

In our loop we defined a variable of type openni::DeviceInfo to store our current
openni::DeviceInfo object temporarily and then filled it with one of our array items.

openni::DeviceInfo device = listOfDevices[i];

Currently, we have no use for this information so our only goal is to show this device's
information to the user using the printf() function.

 printf("%d. %s->%s (VID: %d | PID: %d) is connected "
 "at %s\r\n",
 i,
 device.getVendor(),
 device.getName(),
 device.getUsbVendorId(),
 device.getUsbProductId(),
 device.getUri());

As you can see we used different methods of the openni::DeviceInfo class here.
The following is the description of each method's return value:

 f openni::DeviceInfo.getVendor(): It specifies that the returned value is the
name of the device driver vendor company.

 f openni::DeviceInfo.getName(): It specifies that the returned value is the
name of the device given by the device driver.

 f openni::DeviceInfo.getUsbVendorId(): It specifies that the returned value is
an int16 containing the ID number of the device driver vendor company. This value
is valuable when we want to determinate the device's company or the device's model
series. Read the There's more… section for more information.

 f openni::DeviceInfo.getUsbProductId(): It specifies that the returned value
is an int16 containing the ID number of the device given by the device driver. This
value is valuable when we want to determine the device model. Read the There's
more… section for more info.

 f openni::DeviceInfo.getUri(): The most important value here is a string
containing the hardware location of the device. We can use this value later to select
our desired device when there is more than one device available. Read the later
recipes for more information.

OpenNI and C++

52

When we are done with showing all the information to the user, we will ask him/her to press
Enter and then wait for it.

 printf("Press ENTER to exit.\r\n");
 ReadLastCharOfLine();

After pressing Enter we will shut down OpenNI and return 0, which means the program
executed successfully without any errors.

 OpenNI::shutdown();
 return 0;

There's more...

List of known Product IDs and Vendor IDs at the time of writing
of this book
The following is a list of Vendor IDs and Product IDs of known devices:

Chapter 2

53

Device Vendor ID Product ID

Asus Xtion
7463 1536
7463 1537

PimeSense Sensor

7463 512
7463 768
7463 1024
7463 1280
7463 4763
7463 8448
7463 8704
7463 63963

Kinect
1118 688
1118 685
1118 686

Kinect for Windows
1118 702
1118 703

Please note that in the current version, OpenNI returns Product IDs and
Vendor IDs of Kinect and Kinect for Windows as 0. We believe this is going
to be solved in the later versions of OpenNI.

See also
 f The Selecting a specific device for accessing depth stream recipe

 f The Listening to the device connect and disconnect events recipe

Accessing video streams (depth/IR/RGB)
and configuring them

In OpenNI 2 there is only one class that is responsible for giving us access to the output of
all video-based sensors (depth/IR/RGB) that have made our work very simple compared to
the OpenNI 1.x era, where we needed to use three different classes to access sensors. In this
recipe we will show you how to access the depth sensor and initialize it. For accessing the IR
sensor and RGB sensor we need to follow the same procedure that we will discuss more in the
How It Works… section of this recipe. We will show you how to select an output video mode for
a sensor too. Also we will show you how to ask a device to see if an output is supported or not.

OpenNI and C++

54

We will not cover other configurable properties of the openni::VideoStream class
including cropping and mirroring in this recipe; read Chapter 4, More about Low-level
Outputs about this topic.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe in this chapter.

How to do it...
Have a look at the following steps:

1. Open your project and then the project's main source code file. Locate this line:
int _tmain(int argc, _TCHAR* argv[])
{

2. Write the following code snippet above the preceding line of code:
char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do
 {
 lastChar = newChar;
 newChar = getchar();
 }
 while ((newChar != '\n') && (newChar != EOF));
 return (char)lastChar;
 }

bool HandleStatus(Status status)
{
 if (status == STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

Chapter 2

55

3. Locate this line again:
int _tmain(int argc, _TCHAR* argv[])
{

4. Write the following code snippet below the preceding line of code:
 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");
 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Press ENTER to continue.\r\n");
 ReadLastCharOfLine();

 printf("Opening any device ...\r\n");
 Device device;
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 printf("Press ENTER to continue.\r\n");
 ReadLastCharOfLine();

 printf("Checking if depth stream is supported ...\r\n");
 if (!device.hasSensor(SENSOR_DEPTH))
 {
 printf("Depth stream not supported by this device. "
 "Press ENTER to exit.\r\n");
 ReadLastCharOfLine();
 return 1;
 }

 printf("Asking device to create a depth stream ...\r\n");
 VideoStream sensor;
 status = sensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Changing sensor video mode to 640x480@30fps.\r\n");
 VideoMode depthVM;
 depthVM.setFps(30);

OpenNI and C++

56

 depthVM.setResolution(640,480);
 depthVM.setPixelFormat(PIXEL_FORMAT_DEPTH_1_MM);
 status = sensor.setVideoMode(depthVM);
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Asking sensor to start receiving data ...\r\n");
 status = sensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Press ENTER to exit.\r\n");
 ReadLastCharOfLine();
 sensor.destroy();
 device.close();
 OpenNI::shutdown();
 return 0;

How it works...
First we defined our ReadLastCharOfLine() and HandleStatus() methods just like we
did previously; read the previous recipe about that.

Then in the first line of the second step we used the openni::OpenNI::initialize()
method to initialize OpenNI and load modules and drivers. Again you can read the previous
recipe for more information.

Our main code actually started when we defined a variable of type openni:Device. Then,
using this variable we opened access to the first driver in the list of OpenNI's connected
devices. We also checked (with the HandleStatus() function) to see if this process ended
without any error message so as to continue or write the error to the console and return 1
if there was any error.

 Device device;
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;

From now, using the device variable we can request access to a depth sensor (or any
other type we want), but before that it is a good idea to check if this type of sensor is even
supported by this device or not.

 if (!device.hasSensor(SENSOR_DEPTH))
 {
 printf("Depth stream not supported by this device. "
 "Press ENTER to exit.\r\n");
 ReadLastCharOfLine();
 return 1;
 }

Chapter 2

57

Note SensorType enum in the code; currently there are three types of video sensors that we
can use or send a request for:

 f openni::SensorType::SENSOR_COLOR: RGB camera

 f openni::SensorType::SENSOR_DEPTH: Depth data

 f openni::SensorType::SENSOR_IR: IR output from IR camera

Any line after the previous condition will run only if our desired sensor type is supported by
the device. And if the sensor is supported by the device, we can request an access to this
sensor; for doing so we need to create a variable from openni::VideoStream type, ask
it to initialize for our device's depth stream, and of course if any error happens we need to
handle that.

 VideoStream sensor;
 status = sensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;

This will give us access to the depth sensor with default settings; but we want to use a specific
video mode for the output of this sensor so we need to change this configuration.

For doing so we need to create a variable of type openni::VideoMode, change it the way
we want, and then pass it to our sensor. Again we must take care of any error in this process.

 VideoMode depthVM;
 depthVM.setFps(30);
 depthVM.setResolution(640,480);
 depthVM.setPixelFormat(PIXEL_FORMAT_DEPTH_1_MM);
 status = sensor.setVideoMode(depthVM);
 if (!HandleStatus(status)) return 1;

The code will request the output with a resolution of (640,480) at 30 frames per second
and with PIXEL_FORMAT_DEPTH_1_MM pixel format. Read more about pixel formats in the
There's more… section.

When we are done with configuring our sensor, we can ask it to start receiving data. This
process includes requesting the device to start the sensor and send the required data to the
machine. We didn't have any real communication with the physical device before this part of
our code.

 status = sensor.start();
 if (!HandleStatus(status)) return 1;

OpenNI and C++

58

Then we need to read data from the sensor so as to use or display it. We don't cover this topic
here; we simply wait for the user input and then we will end our application. And of course,
we would ask sensor and device to release resources and then openni:OpenNI to
shutdown() before ending.

 ReadLastCharOfLine();
 sensor.destroy();
 device.close();
 OpenNI::shutdown();
 return 0;

There's more...
Read the How it works... section of this recipe about how to use openni::SensorType enum
to select the desired sensor when creating the openni::VideoSensor object. You also need
to select a supported openni::PixelFormat for the type of sensor you selected; for example,
you can't request for openni::PixelFormat::PIXEL_FORMAT_DEPTH_1_MM as the format
for receiving data from the color sensor. Read the next topic for more information.

You can also define different variables of type openni::VideoSensor and use more than
one sensor at a time. But you must keep in mind that creating (or in other words, requesting)
the same sensor twice will result in having the same underlying object with two wrappers; that
means any change to one will mirror to the other one.

Chapter 2

59

Also it is impossible to have both IR and color stream active; you must stop one before using
another one. It seems that this limitation comes from limited USB 2 bandwidth. Also it is
important to know that depth output is based on IR CMOS sensor so you can't have both IR
and depth active with different resolutions. You must always keep their resolutions same.
There is only one exception when using IR with 1280x1024 resolution; in this case, depth
must be in 640x480 with 30 fps. The exception is only correct when we use Asus Xtion or
PrimeSense sensors.

Pixel formats
In the current version of OpenNI (V2.2) there are ten types of pixel formats that can be used
to read data from video streams; we will describe some of them more specifically in the later
chapters (when we really need them to read data from streams), but now you can get an idea
from the following table:

Name Used for Description
openni::PixelFormat::PIXEL_
FORMAT_DEPTH_1_MM

Depth stream This is the usual way to read depth
data from the stream. The values are
in depth pixel with 1mm accuracy

openni::PixelFormat::PIXEL_
FORMAT_DEPTH_100_UM

Depth stream This is same as
openni::PixelFormat::PIXEL_
FORMAT_DEPTH_1_MM but with
0.1mm (100 micrometres) accuracy.
It is not supported by any currently
released sensor (at the time of writing
of this book),

openni::PixelFormat::PIXEL_
FORMAT_SHIFT_9_2

Depth stream It is the value of displacement between
the projected pattern and the device's
view of projected pattern to the
environment.

This is the RAW output of depth
stream. This output is used for creating
openni::PixelFormat::PIXEL_
FORMAT_DEPTH_1_MM by driver.

openni::PixelFormat::PIXEL_
FORMAT_SHIFT_9_3

Depth stream This is same as
openni::PixelFormat::PIXEL_
FORMAT_SHIFT_9_2 but with more
accuracy.

This output is used for creating
openni::PixelFormat::PIXEL_
FORMAT_DEPTH_100_UM by driver.

Not supported by any currently released
sensor (at the time of writing of this
book).

OpenNI and C++

60

Name Used for Description
openni::PixelFormat::PIXEL_
FORMAT_RGB888

Color and IR
streams

This can be used for color and IR
streams to generate data with a 24-bit
bitmap format. Usually used for color
stream as the main usable output
format and rarely used for IR, because
using Grayscale 16-bit gives us a more
detailed output when reading from the
IR stream but with less bandwidth and
memory usage.

openni::PixelFormat::PIXEL_
FORMAT_YUV422

Color stream YCbCr (commonly called as YUV422)
is a way to encode RGB data to reduce
redundancy of data by reducing the
size of an image (using YUV422) to
2/3 of RGB bitmap size. Using this
output format that is supported by
color stream, we can use less memory
to manipulate it and also the device
needs less bandwidth to send it. But
for displaying to the user, this format
is not very useable as we need to do a
number of calculations until it becomes
ready (getting it converted to RGB
value). In YUV422, the byte order is
UY1VY2.

openni::PixelFormat::PIXEL_
FORMAT_GRAY8

Color stream Grayscale 8-bit contains the average of
all three RGB values, which is displayed
as one single value. Useable when we
don't need to know colors; so we can
prevent wasting memory and bandwidth
for receiving and manipulating
unneeded data.

openni::PixelFormat::PIXEL_
FORMAT_GRAY16

IR stream Grayscale 16-bit is usable only for
reading data from the IR stream.
Grayscale 16-bit has more details than
Grayscale 8-bit (256 times more).

openni::PixelFormat::PIXEL_
FORMAT_JPEG

Not supported
yet

This is not supported by any currently
released device (at the time of writing
of this book)

It is expected to be used with color
sensor to receive JPEG directly from
the device.

openni::PixelFormat::PIXEL_
FORMAT_YUYV

Color stream This is same as
openni::PixelFormat::PIXEL_
FORMAT_YUV422 but with different
byte order. Byte order of YUYV (also
known as YUV2) is Y1UY2V.

Chapter 2

61

Known supported list of resolutions of each sensor in
different devices
The following is a list of known supported resolutions of each sensor along with their fps in
different devices:

Device Sensor Resolution Frames per second

Asus Xtion

PrimeSense Sensor

Depth
320x240 25/30/60
640x480 25/30

Image

IR

320x240 25/30/60
640x480 25/30
1280x1024 30

Kinect

Kinect for Windows

Depth
80x60 30
320x240 30
640x480 30

Image

IR

640x480 30
1280x960 12

See also
 f The Reading and showing a frame from the depth sensor recipe in Chapter 3,

Using Low-level Data

 f The Reading and showing a frame from the image sensor (color / IR) recipe in
Chapter 3, Using Low-level Data

Retrieving a list of supported video modes
for depth stream

From the previous recipe we learned that we can use different video modes for the sensor's
output, different resolutions, fps, and pixel formats. We also wrote a table of known supported
resolutions and pixel formats. But in case you want to be sure about the list of supported
types or if you have a new device and want to know the possible resolutions and pixel formats
of one of its sensors, you can easily ask device driver. OpenNI gives us this possibility to
retrieve a list of supported video modes for each sensor from the driver itself. In this recipe,
we will try to show you how to retrieve a list of supported video modes for the Depth sensor
and we will let the user select what video mode to use for our sensor.

OpenNI and C++

62

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe in this chapter.

How to do it...
Have a look at the following steps:

1. Open your project and then the project's main source code file. Locate this line:
int _tmain(int argc, _TCHAR* argv[])
{

2. Write the following code snippet above the preceding line of code:
char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);

 do
 {
 lastChar = newChar;
 newChar = getchar();
 }
 while ((newChar != '\n') && (newChar != EOF));
 return (char)lastChar;
 }

bool HandleStatus(Status status)
{
 if (status == STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

3. Locate this line again:
int _tmain(int argc, _TCHAR* argv[])
{

Chapter 2

63

4. Write the following code snippet below the preceding line of code:
 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");
 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Press ENTER to continue.\r\n");
 ReadLastCharOfLine();

 printf("Opening any device ...\r\n");
 Device device;
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 printf("Press ENTER to continue.\r\n");
 ReadLastCharOfLine();

 printf("Checking if depth stream is supported ...\r\n");
 if (false && !device.hasSensor(SENSOR_DEPTH))
 {
 printf("Depth stream not supported by this device. "
 "Press ENTER to exit.\r\n");
 ReadLastCharOfLine();
 return 1;
 }

 printf("Asking device to create a depth stream ...\r\n");
 VideoStream sensor;
 status = sensor.create(device,SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Retrieving list of possible video modes for this "
 "stream ...\r\n");
 const Array<VideoMode> *supportedVideoModes =
 &(sensor.getSensorInfo().getSupportedVideoModes());
 int numOfVideoModes = supportedVideoModes->getSize();
 if (numOfVideoModes == 0)
 {

OpenNI and C++

64

 printf("No supported video mode available, press ENTER "
 "to exit.\r\n");
 ReadLastCharOfLine();
 return 1;
 }

 for (int i = 0; i < numOfVideoModes; i++)
 {
 VideoMode vm = (*supportedVideoModes)[i];
 printf("%c. %dx%d at %dfps with %d format \r\n",
 'a' + i,
 vm.getResolutionX(),
 vm.getResolutionY(),
 vm.getFps(),
 vm.getPixelFormat());
 }
 printf("Completed.\r\n");

 int selected = 0;
 do
 {
 printf("Select your desired video mode and then press "
 "ENTER to continue.\r\n");
 selected = ReadLastCharOfLine() - 'a';
 } while (selected < 0 || selected >= numOfVideoModes);

 VideoMode vm = (*supportedVideoModes)[selected];
 printf("%dx%d at %dfps with %d format selected. "
 "Requesting video mode ... \r\n",
 vm.getResolutionX(),
 vm.getResolutionY(),
 vm.getFps(),
 vm.getPixelFormat());
 status = sensor.setVideoMode(vm);
 if (!HandleStatus(status)) return 1;

 printf("Accepted. Starting stream ...\r\n");
 status = sensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Press ENTER to exit.\r\n");
 ReadLastCharOfLine();
 sensor.destroy();
 device.close();
 OpenNI::shutdown();
 return 0;

Chapter 2

65

How it works...
We defined our ReadLastCharOfLine() and HandleStatus() methods just like we did
previously; read the previous recipes about that.

In the first line of the fourth step, we used the openni::OpenNI::initialize() method
to initialize OpenNI and load modules and drivers. Again you can read previous recipes for
more information.

Then we used the openni::Device::hasSensor() method to become sure
if accessing the depth stream is possible and if so, then we use a variable of type
openni::VideoStream to have access to the sensor's stream. These lines are just
like the ones in the previous recipe, which talk about how to access a depth stream.
Read it for a line-by-line description of code.

Our main code actually started when we defined a variable of type Array<VideoMode>*
named supportedVideoModes. We talked a lot about the openni::Array template
class in previous recipes, so I don't want to speak too much about it here.

For getting the list of supported video modes we need to call the openni::SensorInfo
::getSupportedVideoModes() method that is located in the openni::SensorInfo
class, but actually we don't have the openni::SensorInfo object associated with
our openni::VideoStream that we created previously. So we need to use one of the
openni::VideoStream methods named openni::VideoStream::getSensorInfo()
that return the associated openni::SensorInfo object for our selected sensor and then
using the return value of openni::SensorInfo::getSupportedVideoModes(), we can
put our hand on the list of supported video modes of our desired sensor:

 const Array<VideoMode> *supportedVideoModes =
 &(sensor.getSensorInfo().getSupportedVideoModes());

Then to make sure that there is at least one supported video mode, we use
openni::Array::getSize() to get the size of the returned array, and store it in a variable
of type int named numOfVideoModes. If numOfVideoModes was equal to 0, there will be
no supported video mode and we will show an error to the user and ask to press the Enter
key. Then it returns 1 so as to terminate the program execution; but if it wasn't 0, then we
can loop through this array and show its members to the user and ask him/her to select the
desired video mode.

 int numOfVideoModes = supportedVideoModes->getSize();
 if (numOfVideoModes == 0)
 {
 printf("No supported video mode available, press ENTER "
 "to exit.\r\n");
 ReadLastCharOfLine();
 return 1;
 }

OpenNI and C++

66

 for (int i = 0; i < numOfVideoModes; i++)
 {
 ...
 }

In this loop we used a variable of type openni::VideoMode to temporarily store one of
array's members , so as to show it to the user. Then using its method to return its properties
and using printf(), we displayed different properties of this video mode to the user.

 VideoMode vm = (*supportedVideoModes)[i];
 printf("%c. %dx%d at %dfps with %d format \r\n",
 'a' + i,
 vm.getResolutionX(),
 vm.getResolutionY(),
 vm.getFps(),
 vm.getPixelFormat());

You may question why we used 'a' + i here. Actually the reason behind doing this is
related to the ASCII code of characters. We know that the ASCII code for 'a' is 97 and other
characters in the table follow this number ('b' is 98 and so on); so using this code (and
keeping in mind that the value of i increases during the loop) we can print a character for
each item in the list. So we can use these characters later to recognize the user's selection.

Going more deeply into the code you can see the usage of different methods of the
openni::VideoMode class. Their names are self-describing and we don't see any
reason to describe them one by one.

You can guess now that our next move is to ask the user to input one of these characters to
show which video mode he/she selected.

 int selected = 0;
 do
 {
 printf("Select your desired video mode and then press "
 "ENTER to continue.\r\n");
 selected = ReadLastCharOfLine() - 'a';
 } while (selected < 0 || selected >= numOfVideoModes);

Chapter 2

67

As you can see we put our question and calling of ReadLastCharOfLine() method in a do
while loop; we did that because we want to make sure that the user selects a character in
the range of our options; and if he/she puts an incorrect input, we can ask him/her to do
it again.

Here we have the same point as the last part of the code; we used 'a' character again but
this time for reading the user input. As we know, the ReadLastCharOfLine() method will
return the last character typed before the user presses the Enter key. This character can be
converted to int. On the other hand, we don't need a character but we need to know the
index of the selected video mode in the array. This is achieved using a simple subtraction of
returned values of the ReadLastCharOfLine() method and the 'a' character. We can
extract the index of the selected video mode by this method. You may ask how, so read the
last 20 lines and think about the ASCII table and the order of characters again.

Anyway, using this number, which is an index of the selected video mode in our array, we can
show the user his/her chosen item and then ask the sensor to use this video mode.

 VideoMode vm = (*supportedVideoModes)[selected];
 printf("%dx%d at %dfps with %d format selected. "
 "Requesting video mode ... \r\n",
 vm.getResolutionX(),
 vm.getResolutionY(),
 vm.getFps(),
 vm.getPixelFormat());
 status = sensor.setVideoMode(vm);
 if (!HandleStatus(status)) return 1;

Then we will ask the sensor to start generating data and after that we need to read the
data, but reading the data is not part of this topic so we end it without really using the
sensor's data.

 printf("Accepted. Starting stream ...\r\n");
 status = sensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Press ENTER to exit.\r\n");

OpenNI and C++

68

 ReadLastCharOfLine();
 sensor.destroy();
 device.close();
 OpenNI::shutdown();
 return 0;

See also
 f The Reading and showing a frame from the depth sensor recipe in Chapter 3,

Using Low-level Data

Selecting a specific device for accessing
depth stream

We discussed about how to retrieve a list of connected devices but we never used this
data to select one of those devices; we always used ANY_DEVICE as the parameter for the
openni::Device::open() method without even asking ourselves what this parameter is.

Chapter 2

69

In this recipe, we will show you how to select your desired device and open it. Then create
openni::VideoStream for the depth sensor of this device.

But first let's talk about the openni::Device::open() method. Actually this method has a
parameter of type string (actually a character array) containing the hardware location (Uri) of
the desired device. We always used ANY_DEVICE as the parameter of this method until now,
but actually ANY_DEVICE is equal to null and is used only for better reading of code. When
passing null as the parameter of this method, OpenNI automatically selects the first device
in the list of loaded and recognized devices. So if we want to select our desired device we
need to use its Uri as the parameter of this method. On the other hand, we need to know our
device Uri and the only way to know it is to get the list of connected devices from OpenNI that
we did in the earlier recipe.

We will talk more about code in the later sections, but for now let's see how we can do it
in code.

Also we recommend reading the Enumerating the list of connected devices recipe of this
chapter before reading the How it works… section of this recipe.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe in this chapter.

How to do it...
Have a look at the following steps:

1. Open your project and then the main source code file. Locate this line:
int _tmain(int argc, _TCHAR* argv[])
{

2. Write the following code snippet above the preceding line of code:
char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do
 {
 lastChar = newChar;
 newChar = getchar();
 }

OpenNI and C++

70

 while ((newChar != '\n') && (newChar != EOF));
 return (char)lastChar;
 }

bool HandleStatus(Status status)
{
 if (status == STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

3. Locate this line again:
int _tmain(int argc, _TCHAR* argv[])
{

4. Write the following code snippet below the preceding line of code:

 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");
 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");
 printf("Press ENTER to continue.\r\n");
 ReadLastCharOfLine();

 printf("Retrieving list of connected devices ...\r\n");
 openni::Array<openni::DeviceInfo> listOfDevices;
 openni::OpenNI::enumerateDevices(&listOfDevices);
 int numberOfDevices = listOfDevices.getSize();
 if (numberOfDevices > 0){
 printf("%d Device(s) are available to use.\r\n\r\n",
 numberOfDevices);
 for (int i = 0; i < numberOfDevices; i++)
 {
 openni::DeviceInfo device = listOfDevices[i];
 printf("%c. %s->%s (VID: %d | PID: %d) is connected "
 "at %s\r\n", 'a' + i,
 device.getVendor(),
 device.getName(),
 device.getUsbVendorId(),
 device.getUsbProductId(),

Chapter 2

71

 device.getUri());
 }
 }else{
 printf("No device connected to this machine.");
 }

 int selected = 0;
 do
 {
 printf("Select your desired device and then press "
 "ENTER to continue.\r\n");
 selected = ReadLastCharOfLine() - 'a';
 } while (selected < 0 || selected >= numberOfDevices);

 DeviceInfo di = listOfDevices[selected];
 printf("%s->%s (VID: %d | PID: %d) Selected\r\n",
 di.getVendor(),
 di.getName(),
 di.getUsbVendorId(),
 di.getUsbProductId());

 printf("Opening device at %s ...\r\n", di.getUri());
 Device device;
 status = device.open(di.getUri());
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 printf("Press ENTER to continue.\r\n");
 ReadLastCharOfLine();

 printf("Checking if depth stream is supported ...\r\n");
 if (false && !device.hasSensor(SENSOR_DEPTH))
 {
 printf("Depth stream not supported by this device. "
 "Press ENTER to exit.\r\n");
 ReadLastCharOfLine();
 return 1;
 }
 printf("Asking device to create a depth stream ...\r\n");
 VideoStream sensor;
 status = sensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

OpenNI and C++

72

 printf("Starting stream ...\r\n");
 status = sensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Press ENTER to exit.\r\n");
 ReadLastCharOfLine();
 OpenNI::shutdown();
 sensor.destroy();
 device.close();
 return 0;

How it works...
We defined our ReadLastCharOfLine() and HandleStatus() methods just like we did
previously; read the previous recipes about that.

In the first line of the second step we used the openni::OpenNI::initialize() method
to initialize OpenNI and load modules and drivers. Again you can read the last recipes for
more information.

As you can see, most of the lines are same as in the previous recipe code but with some
major changes; we will not list video modes, but we will list all devices and ask the user to
select one of the devices to access its depth sensor.

Read the previous recipes to see how to retrieve and show the list of connected devices and
how to request data stream of the depth sensor.

As you can see we used openni::Array<openni:DeviceInfo> to create an array that
can be used as a parameter of the openni::OpenNI::enumerateDevices() method to
get the list of connected devices.

 openni::Array<openni::DeviceInfo> listOfDevices;
 openni::OpenNI::enumerateDevices(&listOfDevices);

Then we printed the name and other properties of each device along with a unique character
before the name of each device, which will help us recognize the user input later.

 openni::DeviceInfo device = listOfDevices[i];
 printf("%c. %s->%s (VID: %d | PID: %d) is connected "
 "at %s\r\n",
 'a' + i,
 device.getVendor(),
 device.getName(),
 device.getUsbVendorId(),
 device.getUsbProductId(),
 device.getUri());

Chapter 2

73

Just like in the previous recipe, we used a do while loop to read the user input.

 int selected = 0;
 do
 {
 printf("Select your desired device and then press "
 "ENTER to continue.\r\n");
 selected = ReadLastCharOfLine() - 'a';
 } while (selected < 0 || selected >= numberOfDevices);

Using the user input we can calculate the selected index in our array of devices, then we can
show the selected device to the user, and use its information to open a device.

 DeviceInfo di = listOfDevices[selected];
 printf("%s->%s (VID: %d | PID: %d) Selected\r\n",
 di.getVendor(),
 di.getName(),
 di.getUsbVendorId(),
 di.getUsbProductId());

 printf("Opening device at %s ...\r\n", di.getUri());
 Device device;
 status = device.open(di.getUri());
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

Please note that listOfDevices is an array of openni::DeviceInfo, so we can't use
this object to access sensors or other information. This object only contains information
about connected devices such as product identification and hardware Uri. But we can use the
hardware Uri of a device to initialize and open access to it. This is what we did in the code.

After that we will define a variable of type openni::VideoStream and ask it to associate to
the data stream of device's depth sensor; then we ask the variable to start generating data,
just like how we did in the Accessing video streams (depth/IR/RGB) and configuring them
recipe of this chapter.

And of course we don't want to speak about how to use the output of the
openni::VideoStream in this chapter, so we can shut OpenNI down and
terminate our application by returning 0.

 printf("Checking if depth stream is supported ...\r\n");
 if (false && !device.hasSensor(SENSOR_DEPTH))
 {
 printf("Depth stream not supported by this device. "
 "Press ENTER to exit.\r\n");
 ReadLastCharOfLine();

OpenNI and C++

74

 return 1;
 }

 printf("Asking device to create a depth stream ...\r\n");
 VideoStream sensor;
 status = sensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Starting stream ...\r\n");
 status = sensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Press ENTER to exit.\r\n");
 ReadLastCharOfLine();
 sensor.destroy();
 device.close();
 OpenNI::shutdown();
 return 0;

Chapter 2

75

See also
 f The Enumerating a list of connected devices recipe

 f The Listening to the device connect and disconnect events recipe

 f The Reading and showing a frame from the depth sensor recipe in Chapter 3,
Using Low-level Data

Listening to the device connect and
disconnect events

We learned how to get a list of connected devices from OpenNI, but here we want to use one
of the new features of OpenNI 2. OpenNI 2 lets us introduce two methods that we want to
be executed when there is any new device connected or disconnected. Using this ability we
want to define two methods and introduce them to OpenNI as a callback for these two events
(connect and disconnect). Our methods will only print a line to the console to show the user
what happened, but you can use this feature to wait until the user connects a device or warn
the user when a device is disconnected; or you can at least update the list of connected
devices without using a timer to refresh it.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe in this chapter.

How to do it...
Have a look at the following steps:

1. Open your project and then the project's main source code file. Locate this line:
int _tmain(int argc, _TCHAR* argv[])
{

2. Write the following code snippet above the preceding line of code:
char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do
 {
 lastChar = newChar;

OpenNI and C++

76

 newChar = getchar();
 }
 while ((newChar != '\n') && (newChar != EOF));
 return (char)lastChar;
 }

bool HandleStatus(Status status)
{
 if (status == STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}
 struct OurOpenNIEventMonitorer :
 public OpenNI::DeviceDisconnectedListener,
 public OpenNI::DeviceConnectedListener
 void onDeviceConnected(const DeviceInfo* device){
 printf("%d. %s->%s (VID: %d | PID: %d) Connected "
 "to %s\r\n",
 clock(),
 device->getVendor(),
 device->getName(),
 device->getUsbVendorId(),
 device->getUsbProductId(),
 device->getUri());
 }
 void onDeviceDisconnected(const DeviceInfo* device){
 printf("%d. %s->%s (VID: %d | PID: %d) Disconnected "
 "from %s\r\n",
 clock(),
 device->getVendor(),
 device->getName(),
 device->getUsbVendorId(),
 device->getUsbProductId(),
 device->getUri());
 }
};

Chapter 2

77

3. Locate this line again:
int _tmain(int argc, _TCHAR* argv[])
{

4. Write the following code snippet below the preceding line of code:
 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");
 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed. Adding listener ...\r\n");

 OurOpenNIEventMonitorer eventMonitorer;
 status =
 OpenNI::addDeviceConnectedListener(&eventMonitorer);
 if (!HandleStatus(status)) return 1;
 status =
 OpenNI::addDeviceDisconnectedListener(&eventMonitorer);
 if (!HandleStatus(status)) return 1;

 printf("Done. Listening to OpenNI's event, Press ENTER "
 "to exit.\r\n");
 ReadLastCharOfLine();
 OpenNI::shutdown();
 return 0;

 How it works...
We defined our ReadLastCharOfLine() and HandleStatus() methods just like we did
previously; you can read the previous recipes about that.

For the first time in this chapter you can see other lines next to the definition of these two
methods. Actually you can see that we defined a structure and two methods within that.

So we defined a structure named OurOpenNIEventMonitorer; but wait a minute, let's
forget this structure and speak about the procedure of listening to an event. Prior to OpenNI
2, when we wanted to listen to an event, we were required to define a function and then
introduce it to OpenNI as a callback method for that event. This procedure in OpenNI 2 is
slightly different. We don't need to introduce methods to OpenNI; instead; we must introduce
structures or classes to OpenNI as the listener for each event.

OpenNI and C++

78

That's why we defined a new structure named OurOpenNIEventMonitorer.
This structure inherits the OpenNI::DeviceDisconnectedListener and
OpenNI::DeviceConnectedListener classes. The reason for the relationship between
our new structure and these two classes is that we need to send our structure as a parameter
to the openni::OpenNI::addDeviceConnectedListener() and openni::OpenNI:
:addDeviceDisconnectedListener() methods later and these methods accept only a
parameter of these two types or their child. This is because OpenNI needs to know a way to
recognize methods and using a virtual class is the best way to do it.

Here we mean a class with virtual methods; we don't have anything named
virtual class by definition in C++ — don't confuse it with virtual base class or
pure virtual class (abstract class).

OpenNI::DeviceDisconnectedListener, OpenNI::DeviceConnectedListener,
and openni::OpenNI::DeviceStateChangedListener each contains one method:
openni::OpenNI::DeviceDisconnectedListener::onDeviceDisconnected(),
openni::OpenNI::DeviceConnectedListener::onDeviceConnected(),
and openni::OpenNI::DeviceStateChangedListener::onDeviceStateChang
ed(), respectively. These methods are virtual methods, meaning that they are changeable
by child class (or structure); so, when we inherit from these classes, we can override these
methods and write our own methods.

If you are a .Net or Java developer, you may ask how a structure can inherit a
class. Actually, in C++ there is no difference between a structure and a class
except in the default access modifier of members. So you can change the
definition of OurOpenNIEventMonitorer to class if you want. The only
reason we used structure to define OurOpenNIEventMonitorer is to
show you that you can use structures too.

 struct OurOpenNIEventMonitorer :
 public OpenNI::DeviceDisconnectedListener,
 public OpenNI::DeviceConnectedListener
{
 void onDeviceConnected(const DeviceInfo* device){
 printf("%d. %s->%s (VID: %d | PID: %d) Connected "
 "to %s\r\n",
 clock(),
 device->getVendor(),
 device->getName(),

Chapter 2

79

 device->getUsbVendorId(),
 device->getUsbProductId(),
 device->getUri());
 }
 void onDeviceDisconnected(const DeviceInfo* device){
 printf("%d. %s->%s (VID: %d | PID: %d) Disconnected "
 "from %s\r\n",
 clock(),
 device->getVendor(),
 device->getName(),
 device->getUsbVendorId(),
 device->getUsbProductId(),
 device->getUri());
 }
};

As you can see, our structure has two methods and both of them do a simple write to the
console about any change that occurs.

The clock() function is used to show the order of events. clock()
returns the number of milliseconds from the time the program execution
started in Windows and the number of milliseconds you used for CPU
time in Linux.

In the second step we initialized OpenNI using openni:OpenNI:initialize() just
like always and then we defined a variable of type OurOpenNIEventMonitorer named
eventMonitorer. We sent this newly created variable as a parameter to both openni::Op
enNI::addDeviceConnectedListener() and openni::OpenNI::addDeviceDiscon
nectedListener() methods.

 OurOpenNIEventMonitorer eventMonitorer;
 status =
 OpenNI::addDeviceConnectedListener(&eventMonitorer);
 if (!HandleStatus(status)) return 1;
 status =
 OpenNI::addDeviceDisconnectedListener(&eventMonitorer);
 if (!HandleStatus(status)) return 1;

www.allitebooks.com

http://www.allitebooks.org

OpenNI and C++

80

If the returned openni::Status shows no error, we are already listening to device events
and there is nothing to do after that except to prevent the program from terminating. The best
way to do it is to ask the user to press Enter to terminate the execution of the application.
And until that time, OpenNI will execute our methods in the OurOpenNIEventMonitorer
structure when any device connects or disconnects.

There's more...
Apart from the two events we discarded, there is another event named
DeviceChangedStatus. Also it is possible to stop listening to an event.
Read more about these two topics.

Device state changed event
There is another listener for the OpenNI class named openni::OpenNI::DeviceStateCha
ngedListener. You can inherit this class, override its openni::OpenNI::DeviceStateC
hangedListener::onDeviceStateChanged() method, and listen to this event.

You can add and remove listening to this event using the openni::OpenNI::addDeviceSt
ateChangedListener() and openni::OpenNI::removeDeviceStateChangedListe
ner() methods.

Stop listening to events
We can use the openni::OpenNI::removeDeviceConnectedListener(), openni::O
penNI::removeDeviceDisconnectedListener(), and openni::OpenNI::removeDe
viceStateChangedListener() methods to remove our structure (or class) from the list of
listeners of events. This will stop listening events. This method has the same signature as op
enni::OpenNI::addDeviceConnectedListener(), openni::OpenNI::addDeviceD
isconnectedListener(), and openni::OpenNI::addDeviceStateChangedListen
er().

Chapter 2

81

See also
 f The Event-based reading of data recipe in Chapter 3, Using Low-level Data

 f The Enumerating a list of connected devices recipe

Opening an already recorded file (ONI file)
instead of a device

Prior to the Selecting a specific device for accessing depth stream recipe of this chapter we
used ANY_DEVICE as the parameter of the openni::Device::open() method to open
the first device and access its sensors. In the Selecting a specific device for accessing depth
stream recipe of this chapter we learned that we can select what device to open by sending
its hardware Uri to the openni::OpenNI::open() method. And in this recipe, we will learn
another use of the openni::OpenNI::open() method.

You will find out how to record data from different sensors of a device to a file in the later
sections of the chapter, but now we want to show how to re-open them as an individual
device (just like when we open a physical device) and access saved data streams).

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe in this chapter.

You can find a sample file in the downloadable content of this book. Refer to the recipe's
directory for the source code and ONI file.

How to do it...
Have a look at the following steps:

1. Open your project and then the project's main source code file. Locate this line:
int _tmain(int argc, _TCHAR* argv[])
{

2. Write the following code snippet above the preceding line of code:
char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do

OpenNI and C++

82

 {
 lastChar = newChar;
 newChar = getchar();
 }
 while ((newChar != '\n') && (newChar != EOF));
 return (char)lastChar;
 }

bool HandleStatus(Status status)
{
 if (status == STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

3. Locate this line again:
int _tmain(int argc, _TCHAR* argv[])
{

4. Write the following code snippet below the preceding line of code:
 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");
 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Press ENTER to continue.\r\n");
 ReadLastCharOfLine();

 char* addressOfFile =
 "C:\\\\MultipleHands_From_OpenNIorg.oni";
 printf("Opening ONI file from %s as device ...\r\n",
 addressOfFile);
 Device device;
 status = device.open(addressOfFile);
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 printf("Press ENTER to continue.\r\n");

Chapter 2

83

 ReadLastCharOfLine();

 printf("Checking if depth stream is supported ...\r\n");
 if (false && !device.hasSensor(SENSOR_DEPTH))
 {
 printf("Depth stream not supported by this device. "
 "Press ENTER to exit.\r\n");
 ReadLastCharOfLine();
 return 1;
 }

 printf("Asking device to create a depth stream ...\r\n");
 VideoStream sensor;
 status = sensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Starting stream ...\r\n");
 status = sensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Press ENTER to exit.\r\n");
 ReadLastCharOfLine();
 sensor.destroy();
 device.close();
 OpenNI::shutdown();
 return 0;

 How it works...
We defined our ReadLastCharOfLine() and HandleStatus() methods just like we did
previously; read the previous recipes about that.

As you can see, most of the lines in the code are the same as the ones in the older recipes
such as the Accessing video stream (depth/IR/RGB) and configuring them recipe or the
Selecting a specific device for accessing depth stream recipe. There is only one minor
change in the opening device:

 char* addressOfFile =
 "C:\\\\MultipleHands_From_OpenNIorg.oni";
 printf("Opening ONI file from %s as device ...\r\n",
 addressOfFile);
 Device device;
 status = device.open(addressOfFile);

OpenNI and C++

84

As it is brightly visible, we used the address of our file instead of the hardware Uri as the
parameter of the openni::OpenNI::open() method.

There's more...
Actually ONI files are like multichannel video files that can be used later to read color, IR, or
depth data streams. Thinking from this perspective, we can guess that it is possible to change
the speed of playing, even skip some frames, and so on; and actually it is possible and the
way to do these customizations is via using the openni::PlaybackControl class. You
can read more about this class and a sample code in Chapter 3, Using Low-level Data.

See also
 f The Recording streams to file (ONI file) recipe in Chapter 3, Using Low-level Data

 f The Controlling the player when opening a device from file recipe in Chapter 3,
Using Low-level Data

3
Using Low-level Data

In this chapter, we will cover the following recipes:

 f Configuring Visual Studio 2010 to use OpenGL
 f Initializing and preparing OpenGL
 f Reading and showing a frame from the image sensor (color/IR)
 f Reading and showing a frame from the depth sensor
 f Controlling the player when opening a device from file
 f Recording streams to file (ONI file)
 f Event-based reading of data

Introduction
In the previous chapter, we learned how to initialize sensors and configure their output
in the way we want. In this chapter, we will introduce ways to read this data and show it
to the user.

This chapter is not about advanced or high-level (middleware) outputs. For now, we are going
to talk only about native OpenNI outputs: color, IR, and depth.

But before anything, we need to know about some of OpenNI's related classes.

VideoFrameRef object
Unlike the OpenNI 1.x era, where there were different classes for reading frames of data
from sensors, known as MetaData types, here we have only one class to read data from any
sensor, called openni::VideoFrameRef. This is just as in the previous chapter, where
we had the openni::VideoStream class for accessing different sensors instead of one
Generator class per sensor.

Using Low-level Data

86

But let's forget about OpenNI 1.x. We are here to talk about OpenNI 2.x. In OpenNI
2.x, you don't need different classes to access frames; the only thing you need is the
openni::VideoFrameRef class.

Every time we want to read one frame from a sensor's stream, we need to ask its
openni::VideoStream object to read that frame from the device and give us access to
it. This can be done by calling the openni::VideoStream::readFrame() method. The
return value of this method is openni::Status, which can be used to find out whether the
operation ended successfully or not. And if so, we can use the openni::VideoFrameRef
variable, which we sent to this method as a parameter before, to access the frame data.

That's it. Simple enough; but you need to know that this operation may not finish immediately
if there is no information available to read. For understanding this behavior, it is better to think
about network streams (sockets) in socket programming. In socket programming, sockets
have 2 different modes: the blocking and non-blocking modes. When you are in the blocking
mode, a read request will wait until there is some data to return. In OpenNI 2.x, we have the
same behavior. When we request to read a frame from openni::VideoStream as proxy
for the physical sensor, OpenNI will wait for a frame to become ready or it may return the last
unread frame instantly, if there was one.

Let's talk a bit more about openni::VideoFrameRef. openni::VideoFrameRef has a
number of methods that can be used to get more information about the returned frame but
the most important one is openni::VideoFrameRef::getData(). This method returns
a pointer with the undefined data type (void*) to the first pixel of the frame.

The data type of the returned data must be known before reading and processing it. To find
out what the data type of the data is, we can use the openni::VideoFrameRef::getVide
oMode() method. We can also request another data type by setting a new VideoMode class
for the sensor. Following is a list of data types for different pixel formats:

 f unsigned char: It is usable when we want to read from a frame with the
openni::PixelFormat::PIXEL_FORMAT_GRAY8 pixel format. Each pixel
in 8-bit grayscale is 1 byte (in C++ we know bytes as chars) with a range of 0-255.

 f OniDepthPixel: From its name, it is clear that this data type is the
main data type when we want to read depth data from a frame with
the openni::PixelFormat::PIXEL_FORMAT_DEPTH_1_MM or
openni::PixelFormat::PIXEL_FORMAT_DEPTH_100_UM pixel format.
OniDepthPixel is actually an unsigned short data type(also known as
UINT16 or uint16_t).

 f OniRGB888Pixel: It is a structure containing 3 unsigned char data types for
representing the color of a pixel and is used when the pixel format of a frame is
openni::PixelFormat::PIXEL_FORMAT_RGB888. Blue, green, and red are
the three values of this structure.

Chapter 3

87

 f OniGrayscale16Pixel: Just as with OniDepthPixel, this data type is only an
alias to unsigned short (also known as UINT16 or uint16_t) when the frame
has the openni::PixelFormat::PIXEL_FORMAT_GRAY16 pixel format.

 f OniYUV422DoublePixel: It is a structure containing four unsigned char data
types for representing colors of two pixels and is used when the pixel format of a
frame is openni::PixelFormat::PIXEL_FORMAT_YUV422.

After knowing the data type of the returned frame, you can increase the pointer with the size
of the returned data type and retrieve the following pixels one by one.

The most important method is openni::VideoFrameRef::getData(),
which returns a pointer with the undefined data type (void*) to the first pixel
of the frame.

One of the other useful methods is openni::VideoFrameRef::getStrideInBytes();
the return value of this method is of the int type and shows the number of bytes each row
of image has, including padding if any. To understand this better, let's review how images can
be stored in memory; going against what we know about an image as a two-dimensional array
of pixels, they are actually stored in a one-dimensional array of pixels in memory and there is
no sign where a row ends and a new row begins. The program itself must take care of that by
knowing the width and height of the image before starting to read its data. This is simple and
can be done by multiplying the image width with the size of the image's pixel format in bytes.
Each pixel holds a number of bytes in memory depending upon the image's pixel format;
for example, an image in RGB24 has 3 bytes of data per pixel in memory. So an image with
a size of 640 x 480 in RGB24 (also called RGB888) has 921600 (ImageWidth x Image
Height x SizeOfEachPixel) bytes of data and each row starts after 1920 (ImageWidth
x SizeOfEachPixel) bytes of data. This is a simple approach, but that's not always the
case. An image can have padding after each row (unused bytes) and this can break our code.
Actually, no one can be sure about padding and the size of padding except the program that
wrote this image to memory; and in this case, only OpenNI knows how we need to read data
from memory. That's why we have openni::VideoFrameRef::getStrideInBytes(). As
we had previously said, this method will return the number of bytes that you must add to the
current row's first pixel position to have the next row's first pixel; and even though this number
is equal to ImageWidth x SizeOfEachPixel most of the time, it is much safer to use this
method instead.

One of the other useful methods is openni::VideoFrameRef::get
StrideInBytes(); the return value of this method is of the int type
and it shows the number of bytes each row of the image has, including
padding if any.

Using Low-level Data

88

There are other methods too, such as the following:

 f openni::VideoFrameRef::getDataSize(): Here, the returned value is equal to
the number of bytes of the frame.

 f openni::VideoFrameRef::getSensorType(): Here, the returned value is an
openni::SensorType object showing the type of parent sensor (depth, IR, or color).

 f openni::VideoFrameRef::getWidth(): This returns the number of pixels in
each row of the frame.

 f openni::VideoFrameRef::getHeight(): This returns the number of rows of
the frame.

 f openni::VideoFrameRef::getVideoMode(): This returns an object of type
openni::VideoMode, which holds the current frame's video mode information,
including expected width, height, pixel format, and fps. But the only important value is
pixel format, because values of width and height are not trustable. It is better to use
openni::VideoFrameRef::getWidth() and openni::VideoFrameRef::get
Height() instead.

 f openni::VideoFrameRef::getTimestamp(): This returns the frame generation
time in milliseconds from the start of the sensor.

 f openni::VideoFrameRef::getFrameIndex(): This returns the index of the
returned frame from the start of the sensor.

There are plenty of other methods that we will discuss in other chapters.

For now, let's take a look at the following image to get an idea about each method's return value:

17x31 Image in memory with RGB888 Pixel Format
And 9 Bytes padding after each row

Byte

opennl::VideoFrameRef::getData()+opennl::VideoFrameRef::getStrideInBytes()

opennl::VideoFrameRef::getData() a RGB888 Pixel

op
en

nl
::V

id
eo

Fr
am

eR
ef

::g
et

H
ei

gh
t(

)

opennl::VideoFrameRef::getWidth*3(Size of Each Pixel in Byte, 3 for RGB888)
opennl::VideoFrameRef::getStrideInBytes()

opennl::VideoFrameRef::getDataSize()

IMAGE Padding

Chapter 3

89

Please note that this image has a width of 17 pixels, a height of 31 pixels, and an RGB888
(also called RGB24) pixel format, meaning that every 3 bytes is equivalent to 1 pixel. Also,
the previous sample has 9 bytes of padding after each pixel; in reality, though, it may have
no padding at all.

Back to the OpenNI object again
We already know about the openni::OpenNI object from the previous chapter. We are going
to introduce a method of openni::OpenNI here that we have never talked about before.

In the previous section, we had seen that when using openni::VideoStream::readFr
ame(), we can't be sure about the immediate response from this method. This is not a big
problem if you want to use one thread for each receiving process; for example, a thread for
receiving depth and another for receiving color frames along with a thread to get input from
the user and control the other two. In this case, two threads wait for a new frame to become
available independent of each other and the third thread. But what if you want to wait for a
new frame from two different sources (different sensors or different devices) in the same
thread? In this case, one operation may block another and this may create a big frame-rate
drop. This can become worse if you decide to receive the user's input in the same thread
too. But this is exactly what we want to do in all the recipes of this chapter. And yes, we
know writing a multithread application is good in current multicore PCs, but it is not always
necessary, especially in this case when there is no big calculation in any thread and they are
idle most of the time, waiting for a new frame; also, we don't want to make our code hard to
read or understand by using third-party libraries for performing multithread operations.

For solving this problem, we need to have a method to tell us if one of the streams has
new data to read. And we have a method with the same functionality here in OpenNI,
named openni::OpenNI::waitForAnyStream(). This method receives one or more
openni::VideoStream objects and tells you which one has any new data to read. This
method also has a time-out parameter that can be used to wait until one of the streams has
any data. For example, if you want to read from two or more openni::VideoStream objects
and want to know which one has a new frame, you can call openni::OpenNI::waitFor
AnyStream() in a loop with a high time-out value, since you don't need to do anything else
except read frames. But if you want to do something else (for example, check user input and
at the same time wait for a new frame to become ready), you can call openni::OpenNI::w
aitForAnyStream() with 0 or a very small time-out parameter. We will be doing this in the
recipes of this chapter.

Using Low-level Data

90

Configuring Visual Studio 2010 to use
OpenGL

As we need to show the result of the color, IR, and/or depth sensors to the user, we must
use an interface. Here we choose to use OpenGL to show data to the user because it is
multiplatformed and you can convert your code to other platforms easily later on, if you want
to. OpenNI's samples use OpenGL too. But you can also go for DirectX or other types of
interfaces capable of displaying 2D images, such as Graphics Device Interface (GDI).

Follow this recipe to add OpenGL to a Microsoft Visual Studio 2010 C++ project.

Getting ready
Create and configure a project using the Creating a project in Visual Studio 2010 recipe of
Chapter 2, Open NI and C++.

In this recipe we used the OpenGL Utility Toolkit to make working with OpenGL easier. You
can download the GLUT library and header files from this website or use the glut.zip file
in this chapter's downloadable content. Unfortunately, the official site offers 32-Bit binaries
only which can be downloaded at:

http://user.xmission.com/~nate/glut.html

Apart from these, GLUT is available at the following addresses for download too:

32-Bit and 64-Bit: http://www.falahati.net/opengl/glut.zip

32-Bit and 64-Bit: http://www.idfun.de/glut64/

Follow this recipe for instructions on how to install and use it.

How to do it...
We need to open our Project Property window and introduce glut libraries and headers to our
project and Visual Studio 2010 (actually to the compiler, linker, and debugger).

For doing so, open the project created in the Creating a project in Visual Studio 2010 recipe of
Chapter 2, Open NI and C++ , with Visual Studio 2010 and then carry out the following steps:

1. Create a folder somewhere and extract glut.zip there. We created a folder named
GLUT in C: and extracted the archive there but you can extract it anywhere you want
to. Then you need to change this recipe a little. Let's assume you did what we did and
used C:\GLUT as an extraction folder.

http://www.transmissionzero.co.uk/software/freeglut-devel/

Chapter 3

91

2. Right-click on the project name from the Solution Explorer window, which is usually
located at the top-right, and click on Properties.

Using Low-level Data

92

3. Select All Configurations from the top-left dropdown (the Configuration dropdown)
and x64 from the top-right dropdown (the Platform dropdown).

Chapter 3

93

4. Locate the C/C++ section and expand it. Select the General node and edit
Additional Include Directories (using the down arrow located to the right of
this field), add C:\GLUT, and then click on OK.

Using Low-level Data

94

5. Locate the Linker section and expand it. Select the General node and edit Additional
Library Directories, add C:\GLUT, and then click on OK.

Chapter 3

95

6. Select the Input node (in the same section as Linker), edit Additional Dependencies,
add glut64.lib, and then click on OK.

Using Low-level Data

96

7. Navigate to Build Events and expand it. Select the Post-Build Event node, edit
the Command Line field from the panel to the right and add xcopy "C:\GLUT\
glut64.dll" "$(OutDir)" /y /d. Then click on OK and in the parent window
click on Apply.

8. Now we must set the needed options for a 32-bit platform in case we want to
compile 32-bit binary too (or if we only want to compile 32-bit binary). Select All
Configurations from the top-left dropdown (the Configuration dropdown) and
Win32 from the top-right dropdown (the Platform dropdown). We will ignore
images for each part from now on because the settings are much like the
previous steps, with small changes.

Chapter 3

97

9. Locate the C/C++ section and expand it. Select the General node and edit
Additional Include Directories (using the down arrow located to the right of
this field), add C:\GLUT, and then click on OK.

10. Locate the Linker section and expand it. Select the General node and edit Additional
Library Directories, add C:\GLUT, and then click on OK.

11. Select the Input node (in the same section as Linker) and edit Additional
Dependencies, add glut32.lib, and then click on OK.

12. Navigate to Build Events and expand it. Select the Post-Build Event node, edit the
Command Line field from the panel to the right, and add xcopy "C:\GLUT\glut32.dll"
"$(OutDir)" /y /d.

13. Then click on OK, and in the parent window click on Apply.

14. We are done with the Project Property window, so you can close it by clicking on OK.

Using Low-level Data

98

15. Back at the Visual Studio 2010 main window, we need to include the GLUT header file
in our source code too. For doing this, open the main source file of your project and
enter the following lines at the bottom of everything else in the editor:

// GLUT headers
#include <gl/glut.h>

Build your project. This will tell you if any problem was found.

How it works...
In the glut.zip file, we have different files that we need to introduce to Visual Studio 2010
before using OpenGL.

After the extraction of this file, you can clearly see 2 .dll files: glut32.dll for using in
32-bit applications and glut64.dll for using in 64-bit applications. We need to use these
2 .dll files in our code, but first of all Visual Studio 2010 and the compiler must know the
functions and other contents of these files. Here is where we need to introduce header files in
Visual Studio 2010 (actually, the C++ compiler). We did it in steps 4 and 9, when telling Visual
Studio 2010 to search for header files in the GL directory.

Chapter 3

99

After compiling Visual Studio 2010, and especially the linker process, we need to know which
function points to which .dll file (and exactly what point in .dll). For doing so, we need to
introduce directories containing .lib and .dll files along with the name of the .lib files,
as we did it in steps 5, 6, 10, and 11.

At the end, we need to have a copy of glut32.dll or glut64.dll (depending on our
project target CPU's architecture) next to our application's executable file. For doing so, we
added a command to Visual Studio 2010's post build event in steps 7 and 12. This command
ran the xcopy application after the building of the project ended successfully, to copy one
.dll file to our project output directory.

And then, in step 14, we asked the source editor to load the GLUT header files so that we can
use its APIs in our code.

Please note that steps 3 to 7 are for x64 compiling and steps 8 to 12 are needed only if you
want to develop a 32-bit version of your software. But we highly recommend doing all the
steps so that you can select the desired target CPU using the solution platform dropdown
at the top.

There's more...
You can use the OpenNI2Project-Empty Project with GLUT and OpenNI2Project-
Empty Project with NiTE and GLUT projects as templates for starting. These
projects are available on the Packt website for download. Please note that, when using these
templates for writing different projects, you can't import two or more of them into one solution
because they use the same GUID; thus, you will need to change their GUID to something
unique before importing them into one solution.

There is no need to download and extract GLUT files for using these templates.

GLUT alternatives
As GLUT itself is a little old (development stopped in 1998), you can use freeGLUT or
OpenGLUT too. These two open source alternatives are available to replace GLUT and can be
used in almost the same way. Also, they are compatible with the code of this chapter, offer
more functionality, and have solved a number of problems with the original GLUT.

Using Low-level Data

100

Check the following websites for more information:

http://freeglut.sourceforge.net/

http://openglut.sourceforge.net/

Initializing and preparing OpenGL
If we want to use OpenGL for showing frames and other data to the user, we must know
how to implement OpenGL's main functionalities in our project. This recipe is about how to
initialize and prepare OpenGL to be used in other recipes.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe of Chapter 2, Open NI and C++. Then,
configure Visual Studio 2010 to use OpenGL using the Configuring Visual Studio 2010
to use OpenGL recipe of this chapter.

How to do it...
Open your project and then your project's main source code file.

1. Add the following lines above your source code (just below the #include lines):
int window_w = 640;
int window_h = 480;
OniRGB888Pixel* gl_texture;

void gl_KeyboardCallback(unsigned char key, int x, int y)
{
 if (key == 27) // ESC Key
 exit(1);
}

void gl_IdleCallback()
{
 glutPostRedisplay();
}

void gl_DisplayCallback()
{
 // Clear the OpenGL buffers
 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Chapter 3

101

 // Setup the OpenGL viewpoint
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glOrtho(0, window_w, window_h, 0, -1.0, 1.0);

 // UPDATING TEXTURE

 // Create the OpenGL texture map
 glTexParameteri(GL_TEXTURE_2D,
 0x8191, GL_TRUE); // 0x8191 = GL_GENERATE_MIPMAP
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, window_w, window_h,
 0, GL_RGB, GL_UNSIGNED_BYTE, gl_texture);

 glBegin(GL_QUADS);
 glTexCoord2f(0.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f);
 glVertex3f(0.0f, (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 1.0f);
 glVertex3f((float)window_w, (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 0.0f);
 glVertex3f((float)window_w, 0.0f, 0.0f);
 glEnd();

 glutSwapBuffers();
}

2. Then locate the following lines of code:
int _tmain(int argc, _TCHAR* argv[])
{

3. Write the following code snippet below the preceding lines of code:

 gl_texture = (OniRGB888Pixel*)malloc(
 window_w * window_h * sizeof(OniRGB888Pixel));
 glutInit(&argc, (char**)argv);
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
 glutInitWindowSize(window_w, window_h);
 glutCreateWindow ("OpenGL | OpenNI 2.x CookBook Sample");
 glutKeyboardFunc(gl_KeyboardCallback);
 glutDisplayFunc(gl_DisplayCallback);
 glutIdleFunc(gl_IdleCallback);
 glDisable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);
 glutMainLoop();

Using Low-level Data

102

How it works...
In the first step, we defined the size of our texture and also defined a pointer to the location
in the memory where we want to store the output texture (we will allocate the required size
in the memory later). This texture is of type OniRGB888Pixel, which is a simple 3-byte
structure (red-green-blue). Please note that, no matter what the source of data and pixel
format of OpenNI's outputs or any other outputs are, we need to convert it to RGB for
saving it temporarily in the buffer before using it for being rendered by OpenGL.

int window_w = 640;
int window_h = 480;
OniRGB888Pixel* gl_texture;

GLUT can let us capture all keyboard events from the OpenGL window by introducing a
keyboard callback function. Here, we define our custom function for handling keyboard
events from the OpenGL window.

void gl_KeyboardCallback(unsigned char key, int x, int y)
{
 if (key == 27) // ESC Key
 exit(1);
}

Currently, in this example, we only want a way to close the OpenGL window from the
keyboard and so our function is only sensitive to the Esc key. We may add more keys
later on in other recipes.

We don't want to display our output only once because our output is not just a frame (as with
a picture), but a video created from frames of data. But OpenGL doesn't do that automatically.
You may think of putting a while (true) loop or any other loop in the buffer-filling process
and this will actually work, but this is a bad idea as it will block our application as well as the
OpenGL core completely and make the application irresponsive to any outer event such as
keyboard events or Windows events. But there is a correct way too. The correct way to update
OpenGL output without blocking it is to use OpenGL's idle callback and ask GLUT to recall
the gl_DisplayCallback() function each time it becomes idle. This is possible by defining
a function and introducing it to OpenGL as the idle callback.

void gl_IdleCallback()
{
 glutPostRedisplay();
}

The glutPostRedisplay() function will call the display function once again, giving us the
ability to update and redraw the output texture.

Chapter 3

103

The next step is to define the gl_DisplayCallback() function (the one that will be called
each time OpenGL needs a new frame).

void gl_DisplayCallback()
{

In this function, we will try to clear OpenGL's buffer as well as write new data to the texture
and show it. Let's start with clearing OpenGL's buffers. This can be done with one line of code.

 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

This will clear OpenGL's depth and color buffer. Then we set the position of the camera and
the view point.

 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glOrtho(0, window_w, window_h, 0, -1.0, 1.0);

After that, we must clear and update the texture buffer. We will do it later on in other recipes
depending on what we want to show to the user.

After updating the texture, we need to tell OpenGL to show our temporary texture.

 glTexParameteri(GL_TEXTURE_2D,
 0x8191, GL_TRUE); // 0x8191 = GL_GENERATE_MIPMAP
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, window_w, window_h,
 0, GL_RGB, GL_UNSIGNED_BYTE, gl_texture);

The first line of the code snippet forces OpenGL to generate MipMap and the second line tells
it to use the texture buffer as an image texture.

0x8191 is the value of GL_GENERATE_MIPMAP. It seems that GLUT did
not define GL_GENERATE_MIPMAP; maybe because it is an extension of
OpenGL. Anyway, using a numeric value will work without any issues.

Then we must define the position of our texture. The following lines are for positioning
our texture:

 glBegin(GL_QUADS);
 glTexCoord2f(0.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f);
 glVertex3f(0.0f, (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 1.0f);
 glVertex3f((float)window_w, (float)window_h, 0.0f);

Using Low-level Data

104

 glTexCoord2f(1.0f, 0.0f);
 glVertex3f((float)window_w, 0.0f, 0.0f);
 glEnd();

After all configurations are done, we tell OpenGL to swap buffers and move the current buffer
to the front (we are using double buffering).

 glutSwapBuffers();

The next step is to initialize OpenGL and pass these functions (Idle, Display, and
Keyboard) to it. But before that, we need to allocate the required memory for our
texture in memory (RAM actually), because what we defined first was just a pointer.

 gl_texture = (OniRGB888Pixel*)malloc(
 window_w * window_h * sizeof(OniRGB888Pixel));

As you can see, we requested an allocation of 1612800 bytes here. 640 x 480 is the
resolution of our texture buffer, which contains 307200 pixels, and since each pixel
needs 3 bytes (one for each primary color), we need a total of 1612800 bytes.

Then we can go for OpenGL initializing.

 glutInit(&argc, (char**)argv);
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

This will initialize OpenGL and force it to use both the color and depth buffer as well as double
buffering. Then we need to initialize the OpenGL window.

 glutInitWindowSize(window_w, window_h);
 glutCreateWindow ("OpenGL | OpenNI 2.x CookBook Sample");

We created a window of a specific size and with a specific caption. It is now time to tell
OpenGL which functions to use:

 glutKeyboardFunc(gl_KeyboardCallback);
 glutDisplayFunc(gl_DisplayCallback);
 glutIdleFunc(gl_IdleCallback);

Then we need to enable 2D display of the texture, disable depth buffer updating, and start the
whole process of rendering.

 glDisable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);
 glutMainLoop();

The last line of the previous code snippet will put our program in an infinite loop of OpenGL.
Any code after this line will not be executed.

Chapter 3

105

The output for these lines of code is shown in the following screenshot:

See also
 f The Reading and showing a frame from the image sensor (color/IR) recipe

 f The Reading and showing a frame from the depth sensor recipe

 f The Overlaying the depth frame over the image frame recipe of Chapter 4,
More About Low-level Outputs

Using Low-level Data

106

Reading and showing a frame from the
image sensor (color/IR)

There is no doubt that the output of the image/color sensor in an RGB camera is useful.
Here, we will teach you how to read frames from this sensor and show it to the user through
OpenGL. Because showing and reading data from the IR sensor have the same procedure,
we have tried to cover both of these sensors (Color and IR) in one example.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe of Chapter 2, OpenNI and C++ and then
configure Visual Studio 2010 to use OpenGL using the Configuring Visual Studio 2010 to
use OpenGL recipe of this chapter.

How to do it...
1. Add the following lines above your source code (just below the #include lines):

int window_w = 640;
int window_h = 480;
OniRGB888Pixel* gl_texture;
VideoStream selectedSensor;
Device device;

char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do
 {
 lastChar = newChar;
 newChar = getchar();
 }
 while ((newChar != '\n')
 && (newChar != EOF));
 return (char)lastChar;
}

bool HandleStatus(Status status)
{
 if (status == STATUS_OK)

Chapter 3

107

 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

void SetActiveSensor(SensorType sensorType, Device* device)
{
 Status status = STATUS_OK;
 if (sensorType == SENSOR_DEPTH)
 {
 printf("Not supported with this example.\r\n");
 return;
 }
 printf("Checking if stream is supported ...\r\n");
 if (!device->hasSensor(sensorType))
 {
 printf("Stream not supported by this device.\r\n");
 return;
 }
 if (selectedSensor.isValid())
 {
 printf("Stop and destroy old stream.\r\n");
 selectedSensor.stop();
 selectedSensor.destroy();
 }
 printf("Asking device to create a stream ...\r\n");
 status = selectedSensor.create(*device, sensorType);
 if (!HandleStatus(status)) return;

 printf("Setting video mode to 640x480x30 RGB24 ...\r\n");
 VideoMode vmod;
 vmod.setFps(30);
 vmod.setPixelFormat(PIXEL_FORMAT_RGB888);
 vmod.setResolution(640, 480);
 status = selectedSensor.setVideoMode(vmod);
 if (!HandleStatus(status)) return;
 printf("Done.\r\n");

 printf("Starting stream ...\r\n");
 status = selectedSensor.start();
 if (!HandleStatus(status)) return;
 printf("Done.\r\n");

Using Low-level Data

108

}

void gl_KeyboardCallback(unsigned char key, int x, int y)
{
 if (key == 27) // ESC Key
 {
 selectedSensor.destroy();
 OpenNI::shutdown();
 exit(0);
 }
 else if (key == 'C' || key == 'c')
 {
 if (device.isValid())
 {
 printf("\r\n-->Setting active sensor to COLOR\r\n");
 SetActiveSensor(SENSOR_COLOR, &device);
 }
 }
 else if (key == 'I' || key == 'i')
 {
 if (device.isValid())
 {
 printf("\r\n-->Setting active sensor to IR\r\n");
 SetActiveSensor(SENSOR_IR, &device);
 }
 }
}

void gl_IdleCallback()
{
 glutPostRedisplay();
}

void gl_DisplayCallback()
{
 if (selectedSensor.isValid())
 {
 Status status = STATUS_OK;
 VideoStream* streamPointer = &selectedSensor;
 int streamReadyIndex;
 status = OpenNI::waitForAnyStream(&streamPointer, 1,
 &streamReadyIndex, 500);
 if (status == STATUS_OK && streamReadyIndex == 0)
 {

Chapter 3

109

 VideoFrameRef newFrame;
 status = selectedSensor.readFrame(&newFrame);
 if (status == STATUS_OK && newFrame.isValid())
 {
 // Clear the OpenGL buffers
 glClear (
 GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Setup the OpenGL viewpoint
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glOrtho(0, window_w, window_h, 0, -1.0, 1.0);

 // UPDATING & RESIZING TEXTURE (RGB888 TO RGB888)

 double resizeFactor = min(
 (window_w / (double)newFrame.getWidth()),
 (window_h / (double)newFrame.getHeight()));
 unsigned int texture_x = (unsigned int)(window_w -
 (resizeFactor * newFrame.getWidth())) / 2;
 unsigned int texture_y = (unsigned int)(window_h -
 (resizeFactor * newFrame.getHeight())) / 2;

 for (unsigned int y = 0;
 y < (window_h - 2 * texture_y); ++y)
 {
 OniRGB888Pixel* texturePixel = gl_texture +
 ((y + texture_y) * window_w) + texture_x;
 for (unsigned int x = 0;
 x < (window_w - 2 * texture_x);
 ++x)
 {
 OniRGB888Pixel* streamPixel =
 (OniRGB888Pixel*)(
 (char*)newFrame.getData() +
 ((int)(y / resizeFactor) *
 newFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 memcpy(texturePixel, streamPixel,
 sizeof(OniRGB888Pixel));
texturePixel += 1; // Moves variable by 3 bytes

 }

Using Low-level Data

110

 }

 // Create the OpenGL texture map
 glTexParameteri(GL_TEXTURE_2D,
 0x8191, GL_TRUE);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
 window_w, window_h, 0, GL_RGB,
 GL_UNSIGNED_BYTE, gl_texture);

 glBegin(GL_QUADS);
 glTexCoord2f(0.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f);
 glVertex3f(0.0f, (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 1.0f);
 glVertex3f((float)window_w,
 (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 0.0f);
 glVertex3f((float)window_w, 0.0f, 0.0f);
 glEnd();

 glutSwapBuffers();
 }
 }
 }
}

2. Then locate the following lines of code:
int _tmain(int argc, _TCHAR* argv[])
{

3. Write the following lines of code below the preceding lines of code:
 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");

 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Opening first device ...\r\n");
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;

Chapter 3

111

 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 printf("Initializing OpenGL ...\r\n");
 gl_texture = (OniRGB888Pixel*)malloc(
 window_w * window_h * sizeof(OniRGB888Pixel));
 glutInit(&argc, (char**)argv);
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
 glutInitWindowSize(window_w, window_h);
 glutCreateWindow ("OpenGL | OpenNI 2.x CookBook Sample");
 glutKeyboardFunc(gl_KeyboardCallback);
 glutDisplayFunc(gl_DisplayCallback);
 glutIdleFunc(gl_IdleCallback);
 glDisable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);
 printf("Starting OpenGL rendering process ...\r\n");
 SetActiveSensor(SENSOR_COLOR, &device);
 printf("Press C for color and I for IR.\r\n");
 glutMainLoop();

How it works...
Let's start with step one. As you can see, we defined a number of functions and variables
here. Lets take a look at the list of these functions and variables:

 f window_w: This variable is used as OpenGL's window width.

 f window_h: This variable is used as OpenGL's window height.

 f gl_texture: This variable is used as the texture buffer for OpenGL.

 f selectedSensor: Instead of declaring our VideoStream variable in the main
function, we defined it here to be sure we have access to it in all functions.

 f device: This is the same variable that we always declared in our main function
earlier (Chapter 2, OpenNI and C++), but this time we defined it here for the same
reason as selectedSensor.

 f ReadLastCharOfLine: You know this function from the earlier recipes in
Chapter 2, Open NI and C++. This function will wait for the user to press the Enter
key in the console and then return the character that was last entered (except the
Enter key itself). We used this function only once this time in the HandleStatus
function (the following function).

 f HandleStatus: You should be aware of this function by now. We have used
it a lot earlier and are going to use it here too. This function will check the
openni::Status variable's status; if it means error, it will show the error
that occured last and ask the user to press the Enter key to continue or exit.

Using Low-level Data

112

 f SetActiveSensor: This is one of the important functions in this example.
We defined this function to separate our code, for changing the current active
sensor, from other parts. In other words, in this function we will change the
selectedSensor variable with the desired sensor. IR and color are the
available options in this example. We will talk a bit more about this function.

 f gl_KeyboardCallback: You know this function from the previous recipe. We used
this function to check user input in the OpenGL window. In the previous recipe, we
only checked for the Esc key and the exiting code. But here we extended this function
to support more keys for different commands, such as changing the active sensor.

 f gl_IdleCallback: This function will also be familiar if you have read the previous
recipe. This function will get executed when OpenGL has nothing to do, and in this
function we ask OpenGL to run the display function again.

 f gl_DisplayCallback: This is another important function in this example. We are
going to fill the texture buffer for OpenGL for each frame from our sensor's output
here. We will talk more about this function in the following paragraph.

Let's go deeper into the SetActiveSensor, gl_KeyboardCallback, and gl_
DisplayCallback functions.

We have already mentioned SetActiveSensor in the previous list. This function is used to
change the current active sensor's VideoStream object. In other words, it will change the
selectedSensor variable to the VideoStream object of either the depth or the IR sensor
depending on its arguments.

As you can clearly see in the signature of this function, it will accept the
openni::SensorType and openni::Device variables, then try to create an
openni::VideoStream class of the specified type from the specified device,
and finally store it in selectedSensor.

void SetActiveSensor(SensorType sensorType, Device* device)
{

In the first line of this function, we defined a variable of type openni::Status, which we
used for storing the return values of OpenNI's methods (these will be checked later). After
that, we checked the value of the sensorType argument. As this example doesn't support
depth, we must be sure that the request is not for the depth sensor, and if so return, with
an error.

 Status status = STATUS_OK;
 if (sensorType == SENSOR_DEPTH)
 {
 printf("Not supported with this example.\r\n");
 return;
 }

Chapter 3

113

After this part, we have another if condition to see if the sent device is active and valid.
If not, we will return, and print an error.

 if (!device->hasSensor(sensorType))
 {
 printf("Stream not supported by this device.\r\n");
 return;
 }

Then we will check if the currently active openni::VideoStream object is valid or not. In
other words, check if we are currently showing any sensor's output to the user or not. This
condition is false when we call SetActiveSensor() for the first time but after that it
will always be true.

If this condition was true and there was an active openni::VideoStream
object already, we will stop it and release its resources. This will be done by calling
openni::VideoStream::stop() and openni::VideoStream::destroy().

 if (selectedSensor.isValid())
 {
 printf("Stop and destroy old stream.\r\n");
 selectedSensor.stop();
 selectedSensor.destroy();
 }

After that, we will try to use the same openni::VideoStream variable to request the
desired sensor's output by calling openni::VideoStream.create() with almost the
same parameters as in the main function and then check if this ended successfully or not.

 status = selectedSensor.create(*device, sensorType);
 if (!HandleStatus(status)) return;

We will then change VideoMode of the newly created stream. The main reason for doing so is
to make sure the output of this stream will be PIXEL_FORMAT_RGB888 so that we can read
both the color and IR outputs in the same way.

 VideoMode vmod;
 vmod.setFps(30);
 vmod.setPixelFormat(PIXEL_FORMAT_RGB888);
 vmod.setResolution(640, 480);
 status = selectedSensor.setVideoMode(vmod);
 if (!HandleStatus(status)) return;

And then we will start the newly created openni::VideoStream class:

 status = selectedSensor.start();
 if (!HandleStatus(status)) return;

Using Low-level Data

114

This function has nothing else. But lets see what we have in the gl_KeyboardCallback
function. Recall from the previous recipe about OpenGL and introducing callback functions
for different events of OpenGL. We know of gl_KeyboardCallback from there, as we
defined this function to receive keyboard events from OpenGL's window. There, we just
checked to see whether the Esc key was pressed and whether it ended the program or
not. But here we have extended its functionalities.

First of all, as we did earlier, we will check if the pressed key is the Esc key or not, but this time
we will release any resource held by the openni::VideoStream and openni::Device
objects, then ask openni::OpenNI to shut down, and at last terminate our program.
Carrying out these steps ensures that OpenNI ends in a correct way and releases all
devices and resources.

 if (key == 27) // ESC Key
 {
 selectedSensor.destroy();
 OpenNI::shutdown();
 exit(0);
 }

But if the pressed key was the C or c key, we need to make the color sensor active. But before
changing the active openni::VideoStream object, we need to make sure our device is
open and valid. Only then can we change the active sensor using the SetActiveSensor()
function that we had defined earlier.

 else if (key == 'C' || key == 'c')
 {
 if (device.isValid())
 {
 printf("\r\n-->Setting active sensor to COLOR\r\n");
 SetActiveSensor(SENSOR_COLOR, &device);
 }
 }

We are going to do the same thing when the I or i key is pressed, but this time for the IR sensor:

 else if (key == 'I' || key == 'i')
 {
 if (device.isValid())
 {
 printf("\r\n-->Setting active sensor to IR\r\n");
 SetActiveSensor(SENSOR_IR, &device);
 }
 }

Chapter 3

115

Now that we are done with this function, we can talk about the gl_DisplayCallback
function – the function that was last defined in step 1. In this function, we are going to fill the
texture buffer and ask OpenGL to show this buffer. You know this function from the previous
recipe and also the lines required to make a texture buffer visible in the OpenGL window. So
here we will only talk about how to fill this buffer from the sensor's output.

Right from the beginning and before anything else, we must be sure that the currently active
openni::VideoStream object is valid and related to an actual sensor (physical or file).

void gl_DisplayCallback()
{
 if (selectedSensor.isValid())
 {

If so, we need to make sure there is a frame available to read too, as we don't want our ope
nni::VideoStream::readFrame() call to block the execution of code. For doing so, we
need to use the openni::OpenNI::waitForAnyStream() method. The first argument of
this method is of the double pointer type openni::VideoStream; in other words, an array
of openni::VideoStream objects. But here we have only one openni::VideoStream
object to check, and so we saved the pointer of our openni::VideoStream object in a
variable named streamPointer and then sent the pointer of this variable to openni::O
penNI::waitForAnyStream(). This will create an array, but only with one element. The
second parameter of openni::OpenNI:waitForAnyStream() is the number of elements
in the array, which is 1 in this example, as you can clearly see. The third parameter of this
method is a pointer to the int variable to store the index of the ready stream. We defined a
variable named streamReadyIndex and sent its pointer as the third parameter. We need
to check the value of this variable later to make sure our stream is ready and we have a
frame available to read. The last argument of this method is the number of milliseconds it
will wait for a new frame to become available. We decided to put a 500 millisecond time-out
here, meaning 0.5 seconds. By selecting this number, we can be sure that our code will get
executed at least twice each second even if there is no data to read. From this, we can be
sure that our keyboard callback and OpenGL's loop can work without waiting a long time for
data availability.

The return value of this method is of type openni::Status and shows us how this process
ended; that is, with error, with time out, or maybe everything went correctly and we have a
new frame to read. If everything was fine, we can check streamReadyIndex to see which
openni::VideoStream object has new data for us. In this case, we have only one and so
can check if streamReadyIndex is equal to 0 (the index of our openni::VideoStream
object in the array). Then we can proceed to read data from it.

 Status status = STATUS_OK;
 VideoStream* streamPointer = &selectedSensor;
 int streamReadyIndex;
 status = OpenNI::waitForAnyStream(&streamPointer, 1,
 &streamReadyIndex, 500);
 if (status == STATUS_OK && streamReadyIndex == 0)
 {

Using Low-level Data

116

For reading from the sensor, we need to have access to the frame object, known as
openni::VideoFrameRef. Using this object, we can access the newly received frame data
and its properties, including height, width, and row size in bytes. But first, we need to get
openni::VideoFrameRef from openni::VideoStream by calling the openni::Vide
oStream::readFrame() method. This method accepts an argument of the type pointer
openni::VideoFrameRef and will fill that variable with a valid openni::VideoFrameRef
object. Also, the return value of this method is again of openni::Status type and indicates
if the process ended successfully or not and the returned frame is valid or not.

 VideoFrameRef newFrame;
 status = selectedSensor.readFrame(&newFrame);
 if (status == STATUS_OK && newFrame.isValid())
 {

Until now, we have made sure that we have a valid openni::VideoStream object and it has
a new frame that is valid too. Currently, we have access to this frame and all its data. It is time
to copy it to our texture buffer variable, which is called gl_texture. But before that, we need
to prepare OpenGL for it. We talked about this in the previous recipe, regarding clearing the
buffer of OpenGL and setting the position of the camera and view point of the window.

 // Clear the OpenGL buffers
 glClear (
 GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Setup the OpenGL viewpoint
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glOrtho(0, window_w, window_h, 0, -1.0, 1.0);

Now we need to copy data from the openni::VideoFrameRef object to the gl_texture
variable. This is one of the most important parts of the code.

The first step is calculating the resize factor of the resizing process by comparing the width
and height of both the newly generated frame and our texture buffer (that has the same size
as OpenGL's window). After that, you can see where we used a size for this buffer. Then, from
this resizeFactor value, we can calculate the X and Y padding required for the frame to fit
into our texture buffer when they don't have the same ratio.

 double resizeFactor = min(
 (window_w / (double)newFrame.getWidth()),
 (window_h / (double)newFrame.getHeight()));
 unsigned int texture_x = (unsigned int)(window_w -
 (resizeFactor * newFrame.getWidth())) / 2;
 unsigned int texture_y = (unsigned int)(window_h -
 (resizeFactor * newFrame.getHeight())) / 2;

Chapter 3

117

Let's show what these variables mean with the aid of a figure. Assume you have a texture
buffer with a resolution of 1280 x 1024 and a frame from the color sensor with a resolution of
640 x 480. We want to fit this frame into our texture buffer so that the user can see the entire
image without cropping. The following figure shows the values of the preceding variables in
this scenario in a visual manner:

This picture shows how variables will be in that scenario. But think about our code here. We
asked the sensor to create an output with a resolution of 640 x 480 and initialized OpenGL
with a window size of 640 x 480 and a texture buffer of the same size. So, in our code here,
the resizeFactor value is 1 and both texture_x and texture_y are 0 because the
frame will fill up all parts of the buffer, and so there is no need to calculate any of these
three variables normally.

But the reason we did this was to write a global code that can be used with any size and ratio
of the sensor's frame data and texture buffer.

Using Low-level Data

118

After doing so, we need to fill each pixel of our texture buffer. For doing that, we need to loop
through our texture buffer row by row and then pixel by pixel. This can be done with two for
loops, one for each row and another for each pixel of the texture buffer. After the first for
loop that loops through each row, we need to calculate the position of the first pixel of that
row. Then, in the second for loop, we move forward and fill the other pixels of that row too.
For filling each pixel, we need to calculate the position of the responsible pixel in the sensor's
frame data, convert each pixel, and copy it to the texture buffer.

Let's take a look at the code.

 for (unsigned int y = 0;
 y < (window_h - 2 * texture_y); ++y)
 {
 OniRGB888Pixel* texturePixel = gl_texture +
 ((y + texture_y) * window_w) + texture_x;
 for (unsigned int x = 0;
 x < (window_w - 2 * texture_x);
 ++x)
 {
 OniRGB888Pixel* streamPixel =
 (OniRGB888Pixel*)(
 (char*)newFrame.getData() +
 ((int)(y / resizeFactor) *
 newFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 memcpy(texturePixel, streamPixel,
 sizeof(OniRGB888Pixel));
 texturePixel += 1; // Moves variable by 3 bytes
 }
 }

First of all, keep in mind that all operations here are about the texture buffer except for one
line, which I will be mentioning separately.

As you can see, we have a loop starting from 0 till the end of the calculated height of the data
being copied (window_h - 2 * texture_y).

In this loop, we need to calculate the position of the first pixel of that row.

 OniRGB888Pixel* texturePixel = gl_texture +
 ((y + texture_y) * window_w) + texture_x;

We defined a pointer of type openni::OniRGB888Pixel, which is a structure of 3 bytes.
The value of this pointer (or in other words, the position of the first pixel of that row) is equal
to the sum of the position of the first pixel of the whole buffer (gl_texture), the first pixel
of the actual required row in the texture buffer ((y + texture_y) * window_w), and the
calculated horizontal padding of the image being copied (texture_x).

Chapter 3

119

Then, in the second loop, we will go to the next pixel by calling texturePixel+=1;
at the end of the for definition. Please note that adding a number to a pointer doesn't
always increase its value by 1 byte. It will increase the value by the number of bytes of
data type multiplied by your number. So texturePixel+=1; will add 3 bytes (because
openni::OniRGB888Pixel is a structure of 3 bytes) and move exactly to the next pixel.

In the body of the second loop, we have the address of the responsible pixel in the texture
buffer. Now we need to copy data from the output frame data to the texture buffer. For doing
this, we need to have the address of the related pixel in the output frame. Moreover, we want
to resize the image at the same time too. So we need to calculate the position of the related
pixel in the output frame data from the position of the pixel in the texture buffer. This can be
done easily because we know the exact resize factor. If x and y are the positions of a pixel in
the stream data, we can guess that x / resizeFactor and y / resizeFactor are the
positions of the related pixel in the texture data. Then we need to calculate the position of this
pixel in memory.

 OniRGB888Pixel* streamPixel =
 (OniRGB888Pixel*)(
 (char*)newFrame.getData() +
 ((int)(y / resizeFactor) *
 newFrame.getStrideInBytes())
) + (int)(x / resizeFactor);

This code may seem hard to understand at first, but the logic behind it is simple. newFrame.
getData() will return the position of the first pixel of the first row. As we need to calculate
the position of the yth row, we need to add the (y / resizeFactor) * newFrame.
getStrideInBytes() byte to it. Again, as we want the xth pixel of that row, we need
to add the (x / resizeFactor) pixel to it.

Note the difference between adding bytes and adding pixels. In calculating the position of
a pixel in the texture buffer, there was no word about bytes. We always used pixels because
increasing a pointer of type openni::OniRGB888Pixel would increase it by the number of
bytes held by its data type, and we need not worry about bytes as it will be done automatically
in C++. But here we need to add the number of bytes for each row in bytes and then add the
number of pixels in that row in pixels. But how can we add two different pointer types?

We do this by converting newFrame.getData() to the char pointer (in C++ we know bytes
as chars), adding ((int)(y / resizeFactor) * newFrame.getStrideInBytes())
to it, and then converting the whole part again into the openni:: OniRGB888Pixel
pointer. At the end, add (int)(x / resizeFactor) to it. This way, we can be sure
that the first addition happens in bytes and the second happens in pixels.

Using Low-level Data

120

Now that we have the position of the pixels in both places, we need to convert and copy data
from streamPixel to texturePixel but, as this time both pixel formats are RGB888 or
RGB24, we can copy data without converting it.

 memcpy(texturePixel, streamPixel,
 sizeof(OniRGB888Pixel));

It is simple enough. The only important part in the previous code is
sizeof(OniRGB888Pixel). This will return 3 because the size of the
openni::OniRGB888Pixel structure is 3; one byte per color for blue, green, and red. The
memcpy() function needs three arguments: destination pointer, source pointer, and number
of bytes to copy.

Now that we are almost done with the texture, we only need to put our texture in OpenGL and
tell it to render the scene.

 // Create the OpenGL texture map
 glTexParameteri(GL_TEXTURE_2D,
 0x8191, GL_TRUE);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
 window_w, window_h, 0, GL_RGB,
 GL_UNSIGNED_BYTE, gl_texture);

 glBegin(GL_QUADS);
 glTexCoord2f(0.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f);
 glVertex3f(0.0f, (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 1.0f);
 glVertex3f((float)window_w,
 (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 0.0f);
 glVertex3f((float)window_w, 0.0f, 0.0f);
 glEnd();

 glutSwapBuffers();

Now about steps 2 and 3.

Chapter 3

121

You know the main function. This function will be executed when our application starts.
In other words, it is the starting point of our application. So we need to put our initializing
code of OpenNI and OpenGL here.

As always, we first need to initialize OpenNI and then open a device.

 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
..
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;

Then we have to initialize OpenGL and allocate the needed space in memory for the
texture buffer.

 gl_texture = (OniRGB888Pixel*)malloc(
 window_w * window_h * sizeof(OniRGB888Pixel));

We next need to initialize OpenGL windows with GLUT and set the needed settings.

 glutInit(&argc, (char**)argv);
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
 glutInitWindowSize(window_w, window_h);
 glutCreateWindow ("OpenGL | OpenNI 2.x CookBook Sample");
 glutKeyboardFunc(gl_KeyboardCallback);
 glutDisplayFunc(gl_DisplayCallback);
 glutIdleFunc(gl_IdleCallback);
 glDisable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);

Now we need to select the color sensor as the default sensor and inform the user that he/she
can switch between the color sensor and IR sensor with the help of the keyboard.

 SetActiveSensor(SENSOR_COLOR, &device);
 printf("Press C for color and I for IR.\r\n");

Then we will start OpenGL's main rendering loop as the last step.

 glutMainLoop();

Using Low-level Data

122

After that, the SetActiveSensor, gl_KeyboardCallback, and gl_DisplayCallback
functions will control our application behavior.

The output of our application will be as shown in the following screenshot:

Chapter 3

123

After switching to the IR sensor, we will get an output resembling the following screenshot:

See also
 f The Reading and showing a frame from the depth sensor recipe

 f The Overlaying the depth frame over the image frame recipe of Chapter 4,
More About Low-level Outputs

 f The Enabling/disabling auto exposure and auto white balance recipe of Chapter 4,
More About Low-level Outputs

Using Low-level Data

124

Reading and showing a frame from the
depth sensor

Who doesn't agree that the output of the depth sensor is the most important output of OpenNI
and compatible devices? In this recipe, we will show you how to use OpenGL and OpenNI to
show OpenNI's depth sensor output to the user.

We highly recommend reading the previous recipe of this chapter, Reading and showing a
frame from the image sensor (color/IR), to have a background about how we can use OpenGL
to show a picture to the user and how we can copy a picture from OpenNI to our texture buffer
with resizing on-the-fly; especially the How it works… section, as we are not going to cover all
the lines in detail in this recipe (as we did in the previous recipe). But don't worry. This recipe
is simpler than the last one—at least at first glance!

Getting ready
Create a project in Visual Studio 2010, prepare it for working with OpenNI using the Create a
project in Visual Studio 2010 recipe of Chapter 2, Open NI and C++, and then configure Visual
Studio 2010 to use OpenGL using the Configuring Visual Studio 2010 to use OpenGL recipe of
this chapter.

How to do it...
1. Add the following lines above your source code (just below the #include lines):

int window_w = 640;
int window_h = 480;
OniRGB888Pixel* gl_texture;
VideoStream depthSensor;
Device device;

char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do
 {
 lastChar = newChar;
 newChar = getchar();
 }
 while ((newChar != '\n')
 && (newChar != EOF));

Chapter 3

125

 return (char)lastChar;
}

bool HandleStatus(Status status)
{
 if (status == STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

void gl_KeyboardCallback(unsigned char key, int x, int y)
{
 if (key == 27) // ESC Key
 {
 depthSensor.destroy();
 OpenNI::shutdown();
 exit(0);
 }
}

void gl_IdleCallback()
{
 glutPostRedisplay();
}

void gl_DisplayCallback()
{
 if (depthSensor.isValid())
 {
 Status status = STATUS_OK;
 VideoStream* streamPointer = &depthSensor;
 int streamReadyIndex;
 status = OpenNI::waitForAnyStream(&streamPointer, 1,
 &streamReadyIndex, 500);
 if (status == STATUS_OK && streamReadyIndex == 0)
 {
 VideoFrameRef newFrame;
 status = depthSensor.readFrame(&newFrame);
 if (status == STATUS_OK && newFrame.isValid())
 {
 // Clear the OpenGL buffers

Using Low-level Data

126

 glClear (
 GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Setup the OpenGL viewpoint
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glOrtho(0, window_w, window_h, 0, -1.0, 1.0);

 // UPDATING TEXTURE (DEPTH 1MM TO RGB888)
 unsigned short maxDepth = 0;
 for (int y = 0; y < newFrame.getHeight(); ++y)
 {
 DepthPixel* depthCell = (DepthPixel*)(
 (char*)newFrame.getData() +
 (y * newFrame.getStrideInBytes())
);
 for (int x = 0; x < newFrame.getWidth();
 ++x, ++depthCell)
 {
 if (maxDepth < *depthCell){
 maxDepth = *depthCell;
 }
 }
 }

 double resizeFactor = min(
 (window_w / (double)newFrame.getWidth()),
 (window_h / (double)newFrame.getHeight()));
 unsigned int texture_x = (unsigned int)(window_w -
 (resizeFactor * newFrame.getWidth())) / 2;
 unsigned int texture_y = (unsigned int)(window_h -
 (resizeFactor * newFrame.getHeight())) / 2;

 for (unsigned int y = 0;
 y < (window_h - 2 * texture_y); ++y)
 {
 OniRGB888Pixel* texturePixel = gl_texture +
 ((y + texture_y) * window_w) + texture_x;
 for (unsigned int x = 0;
 x < (window_w - 2 * texture_x);
 ++x)
 {
 DepthPixel* streamPixel =
 (DepthPixel*)(
 (char*)newFrame.getData() +

Chapter 3

127

 ((int)(y / resizeFactor) *
 newFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 if (*streamPixel != 0){
 char depthValue = ((float)*streamPixel /
 maxDepth) * 255;
 texturePixel->b = 255 - depthValue;
 texturePixel->g = 255 - depthValue;
 texturePixel->r = 255 - depthValue;
 }
 else
 {
 texturePixel->b = 0;
 texturePixel->g = 0;
 texturePixel->r = 0;
 }
texturePixel += 1; // Moves variable by 3 bytes
 }
 }

 // Create the OpenGL texture map
 glTexParameteri(GL_TEXTURE_2D,
 0x8191, GL_TRUE);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
 window_w, window_h, 0, GL_RGB,
 GL_UNSIGNED_BYTE, gl_texture);

 glBegin(GL_QUADS);
 glTexCoord2f(0.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f);
 glVertex3f(0.0f, (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 1.0f);
 glVertex3f((float)window_w,
 (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 0.0f);
 glVertex3f((float)window_w, 0.0f, 0.0f);
 glEnd();

 glutSwapBuffers();
 }
 }
 }
}

Using Low-level Data

128

2. Then locate the following lines of code:
int _tmain(int argc, _TCHAR* argv[])
{

3. Write the following lines of code below the preceding lines of code:
 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");

 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Opening first device ...\r\n");
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 printf("Checking if stream is supported ...\r\n");
 if (!device.hasSensor(SENSOR_DEPTH))
 {
 printf("Stream not supported by this device.\r\n");
 return 1;
 }

 printf("Asking device to create a depth stream ...\r\n");
 status = depthSensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;

 printf("Setting video mode to 640x480x30 Depth 1MM..\r\n");
 VideoMode vmod;
 vmod.setFps(30);
 vmod.setPixelFormat(PIXEL_FORMAT_DEPTH_1_MM);
 vmod.setResolution(640, 480);
 status = depthSensor.setVideoMode(vmod);
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Starting stream ...\r\n");
 status = depthSensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

Chapter 3

129

 printf("Initializing OpenGL ...\r\n");
 gl_texture = (OniRGB888Pixel*)malloc(
 window_w * window_h * sizeof(OniRGB888Pixel));
 glutInit(&argc, (char**)argv);
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
 glutInitWindowSize(window_w, window_h);
 glutCreateWindow ("OpenGL | OpenNI 2.x CookBook Sample");
 glutKeyboardFunc(gl_KeyboardCallback);
 glutDisplayFunc(gl_DisplayCallback);
 glutIdleFunc(gl_IdleCallback);
 glDisable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);
 printf("Starting OpenGL rendering process ...\r\n");
 glutMainLoop();

How it works...
Lets start with step one.

Just as in the previous recipe, we used the first step to define our required variables and
functions, including window_w and window_h for setting OpenGL's window size and
gl_texture to hold our texture buffer in memory, along with an openni::VideoStream
variable named depthSensor and an openni::Device variable named device to let us
access the depth sensor's data and the device from different functions.

Functions are almost the same too. You know about ReadLastCharOfLine()
and HandleStatus() from the previous recipe and even before that, we have seen
gl_KeyboardCallback(), gl_IdleCallback(), and gl_DisplayCallback(), but
there is no SetActiveSensor() anymore because we merged it with the main function.

It is clear at first glance that gl_KeyboardCallback() and gl_DisplayCallback()
changed when compared to the previous recipe. Let's start with the changes in
gl_KeyboardCallback(). As you can see, there is no check for the C or I key
anymore, as we don't need to change the active sensor output stream. This function
now supports only the Esc key for exiting.

 if (key == 27) // ESC Key
 {
 depthSensor.destroy();
 OpenNI::shutdown();
 exit(0);
 }

In the function that was last defined in step 1, gl_DisplayCallback, we will fill the texture
buffer and ask OpenGL to show this buffer, just as we did in the previous recipe, but this time
for the depth sensor.

Using Low-level Data

130

You know what we are going to do if you have read the previous recipe's How it works…
section. The only change between these two is the part about converting and filling the texture
buffer. This part starts at line 24 of the function, after the UPDATING TEXTURE line. In this
line, you can see that, instead of starting the copying process, we decided to loop through
the output frame data because we wanted to find out the upper bound of data in order to
normalize the range of colors later. As you can see, there is nothing special here. We defined
a variable named maxDepth to store the upper bound of data and then looped through the
data to find out which is a bigger value.

 unsigned short maxDepth = 0;
 for (int y = 0; y < newFrame.getHeight(); ++y)
 {
 DepthPixel* depthCell = (DepthPixel*)(
 (char*)newFrame.getData() +
 (y * newFrame.getStrideInBytes())
);
 for (int x = 0; x < newFrame.getWidth();
 ++x, ++depthCell)
 {
 if (maxDepth < *depthCell){
 maxDepth = *depthCell;
 }
 }
 }

The only notable line in this code is the one about defining the depthCell
variable. In this code, we converted newFrame.getData() to char (originally it is in type
openni::DepthPixel) because we can then increase the value of the pointer by bytes.
After that, we added the number of bytes required to move the pointer to the first pixel of the
next row and converted the entire line into the openni::DepthPixel type pointer again and
finally stored it in depthCell variable.

DepthPixel* depthCell = (DepthPixel*)(
 (char*)newFrame.getData() +
 (y * newFrame.getStrideInBytes())
);

Then, just as we did in the previous recipe, we try to calculate the resizeFactor value and
pad the frame data before copying it to the texture buffer.

 double resizeFactor = min(
 (window_w / (double)newFrame.getWidth()),
 (window_h / (double)newFrame.getHeight()));
 unsigned int texture_x = (unsigned int)(window_w -
 (resizeFactor * newFrame.getWidth())) / 2;
 unsigned int texture_y = (unsigned int)(window_h -
 (resizeFactor * newFrame.getHeight())) / 2;

Chapter 3

131

Next, we start to loop through the height of the texture and calculate the position of each
row's first pixel.

 for (unsigned int y = 0;
 y < (window_h - 2 * texture_y); ++y)
 {
 OniRGB888Pixel* texturePixel = gl_texture +
 ((y + texture_y) * window_w) + texture_x;

gl_texture is the first pixel of the texture buffer that we added the ((y + texture_y) *
window_w) pixels to (representing the number of pixels from the first row to the current row)
and then added texture_x, which represents horizontal padding.

Next we need to loop through the width of the image using another loop and increase
texturePixel by one pixel, calculate the related pixel's position in the frame data,
and then convert and copy data from there.

 for (unsigned int x = 0;
 x < (window_w - 2 * texture_x);
 ++x)
 {
 DepthPixel* streamPixel =
 (DepthPixel*)(
 (char*)newFrame.getData() +
 ((int)(y / resizeFactor) *
 newFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 if (*streamPixel != 0){
 char depthValue = ((float)*streamPixel /
 maxDepth) * 255;
 texturePixel->b = 255 - depthValue;
 texturePixel->g = 255 - depthValue;
 texturePixel->r = 255 - depthValue;
 }
 else
 {
 texturePixel->b = 0;
 texturePixel->g = 0;
 texturePixel->r = 0;
 }
 texturePixel += 1; // Moves variable by 3 bytes
 }

Using Low-level Data

132

As you can see, increasing the value of texturePixel is done before the end of
the for body; inside its body, we have a variable named streamPixel with the
openni::DepthPixel pointer type, which is going to be the related pixel in the depth
frame data. As earlier, where we converted newFrame.getData() (the address of the
first pixel of frame data) to a pointer of type char, here too, we can increase its pointer by
(y / resizeFactor) * newFrame.getStrideInBytes() bytes and again convert it
into a pointer of openni::DepthPixel type to increase it by pixels, and finally increase it
by (x / resizeFactor) pixels.

 DepthPixel* streamPixel =
 (DepthPixel*)(
 (char*)newFrame.getData() +
 ((int)(y / resizeFactor) *
 newFrame.getStrideInBytes())
) + (int)(x / resizeFactor);

Now we have both pixels but they are in two different formats. One is the depth pixel and the
other is the RGB pixel. We need to find a way to convert each depth pixel into a reasonable
RGB value.

A pixel depth can have a range of 0-65535 (it is actually an unsigned short data type), but
an RGB value (one among red, green, or blue) can be in the range of 0-255; so we can't fit our
data completely in an RGB color space. This means we are going to lose 256 levels of detail.

You may ask why we said the range of each RGB pixel is 0-255. Actually, an
RGB pixel has 3 bytes, which means it has a range of 0-16777215. But a lot
of these colors are the darker and lighter versions of each other. We want to
show our output in grayscale, which means all the bytes will have the same
value. Therefore, we have a maximum range of 0-255.

But don't forget that the openni::VideoStream::getMaxPixelValue() method returns
10000 for the depth sensor. If we consider this value as the maximum possible value of a
depth pixel, we need to fit 0-10000 in our limited 0-255 RGB range. This means we need
to lose almost 40 levels of detail, which is better than the previous one but still not a very
good option.

Chapter 3

133

In our search for finding the real range of data, we found that the PixelFormat::PIXEL_
FORMAT_DEPTH_1_MM pixel format actually has 11 bits of data, which means it has a
maximum of 2048 different values. But again, this number is not too reliable either. This is
because, firstly, PixelFormat::PIXEL_FORMAT_DEPTH_100_UM has 12 bits of data, which
means it can have up to 4096 different values; and secondly, it seems that OpenNI changes
these values a little (actually, we know that PixelFormat::PIXEL_FORMAT_SHIFT_9_2
and PixelFormat::PIXEL_FORMAT_SHIFT_9_3 are the only unchanged raw data of the
device and so we expect that). From our experiments, it seems that we can expect data in
the range of 300-4000 when using PixelFormat::PIXEL_FORMAT_DEPTH_1_MM as the
pixel format.

As you can see, all the values are unreliable and we need to calculate the upper bound of
data in each frame manually (that's what we did earlier too; read the preceding lines of this
part) and then fit our data in the 0-255 range for showing it as RGB. As we had said earlier,
the upper bound of data was normally under 4000 in our experiments, and so on average
we were going to lose more than 15 levels of detail. If you need to see other methods of
conversion and better outputs, check the There's more part of this recipe. We didn't want
to make it difficult in the main code.

Using the previously given information and the upper bound of data (we knew this), we tried to
convert (or, in other words, fit) our data into the texture buffer.

 char depthValue = ((float)*streamPixel /
 maxDepth) * 255;
 texturePixel->b = 255 - depthValue;
 texturePixel->g = 255 - depthValue;
 texturePixel->r = 255 - depthValue;

As you can see, it is a simple calculation for changing the range of data. Then we inverse
the output by writing 255 – depthValue. We do this because data is actually in the form
of near-black and far-white and we need to change it to near-white and far-black before
displaying to the user.

You may notice that, before writing the previous code snippet, we used a condition to see if
*streamPixel is equal to 0. If it is, we skipped our code and put a 0 in all the bytes of our
pixel in the texture buffer. This is because, in depth frame data, 0 means there is no data to
show; if so, we want to fill these pixels with black in the end result too.

The other parts of the code are like the previous recipes.

Now let's talk about step 3. You know the main function. This function will be executed when
our application starts. So we need to put our initializing code of OpenNI and OpenGL here.

Using Low-level Data

134

As always, we first need to initialize OpenNI and then open a device.

 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
...
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;

Then create openni::VideoStream for the depth sensor and request the desired
openni::VideoMode object. At last, start the newly created openni::VideoStream class:

 printf("Asking device to create a depth stream ...\r\n");
 status = depthSensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;

 printf("Setting video mode to 640x480x30 Depth 1MM..\r\n");
 VideoMode vmod;
 vmod.setFps(30);
 vmod.setPixelFormat(PIXEL_FORMAT_DEPTH_1_MM);
 vmod.setResolution(640, 480);
 status = depthSensor.setVideoMode(vmod);
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Starting stream ...\r\n");
 status = depthSensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

Our next task is to initialize OpenGL and allocate the required space in memory for the
texture buffer:

 gl_texture = (OniRGB888Pixel*)malloc(
 window_w * window_h * sizeof(OniRGB888Pixel));

Then initialize the OpenGL windows with GLUT and configure the required settings:

 glutInit(&argc, (char**)argv);
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
 glutInitWindowSize(window_w, window_h);
 glutCreateWindow ("OpenGL | OpenNI 2.x CookBook Sample");
 glutKeyboardFunc(gl_KeyboardCallback);
 glutDisplayFunc(gl_DisplayCallback);
 glutIdleFunc(gl_IdleCallback);
 glDisable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);

Chapter 3

135

Now we start OpenGL's main rendering loop.

 glutMainLoop();

After that, gl_KeyboardCallback and mainly the gl_DisplayCallback function will
control our application behavior.

The output of our application is shown in the following screenshot:

There's more...
There are some enhancements for this output that we will cover in this section.

Using Low-level Data

136

Histogram equalization – better details in the same color space
Using the main code, we tried to show data directly from the sensor without many changes
(except fitting it into our color space) but now we are going to use a few lines of code to
improve the result without adding more colors or changing color space. We will use a simple
histogram-equalization method.

Let's say we have an image with different colors of grayscale color space; that is, we have
different colors between white and black. But, for example, in the previous picture you can
see that a lot of these colors are similar to each other and there are a lot of other colors that
are rarely used. Using histogram equalization, we can use all of our color space by dynamically
changing the contrast of the image to show more important data with much more detail.

Let's talk about histograms. Histograms are 2D graphs for showing the distribution of colors in
an image. You can read more about image histograms on Wikipedia at:

http://en.wikipedia.org/wiki/Image_histogram

For example, for our previous image (the output of our program in the previous code), we have
the following histogram:

As you can clearly see, the majority of the colors used are in a specific range and most of the
color space is never really used. Using histogram equalization, we can change that somewhat,
to use all parts of the color space. The following is the same histogram after correction:

Chapter 3

137

Histogram equalization is a good way to increase the contrast of important parts of an image
that use very limited parts of a color space. But its main advantage reveals itself when you
are going to fit an image with a bigger color palette into a smaller one, because in addition
to showing important parts of an image more clearly, it will add more detail to the image by
converting only the useful parts of color palette into a new color space.

This is our case here too. Our depth frame data is using 16 bits for each pixel but our texture
buffer has a smaller color palette of 8 bits per pixel (as we said before, RGB is 24-bit but we
need to use only 8 bits of it for grayscale). So we can expect a huge difference.

Read more about histogram equalization on Wikipedia at:

http://en.wikipedia.org/wiki/Histogram_equalization

Enough talk; let's check it out in code now. For doing so, you need to use the same code as
in this recipe but replace the entire gl_DisplayCallback function with the following lines
of code:

void gl_DisplayCallback()
{
 if (depthSensor.isValid())
 {
 Status status = STATUS_OK;
 VideoStream* streamPointer = &depthSensor;
 int streamReadyIndex;
 status = OpenNI::waitForAnyStream(&streamPointer, 1,
 &streamReadyIndex, 500);
 if (status == STATUS_OK && streamReadyIndex == 0)
 {
 VideoFrameRef newFrame;
 status = depthSensor.readFrame(&newFrame);
 if (status == STATUS_OK && newFrame.isValid())
 {
 // Clear the OpenGL buffers
 glClear (
 GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Setup the OpenGL viewpoint
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glOrtho(0, window_w, window_h, 0, -1.0, 1.0);

 // UPDATING TEXTURE (DEPTH 1MM TO RGB888)
 int depthHistogram[65536];
 int numberOfPoints = 0;

Using Low-level Data

138

 memset(depthHistogram, 0,
 sizeof(depthHistogram));
 for (int y = 0;
 y < newFrame.getHeight(); ++y)
 {
 DepthPixel* depthCell = (DepthPixel*)(
 (char*)newFrame.getData() +
 (y * newFrame.getStrideInBytes())
);
 for (int x = 0; x < newFrame.getWidth();
 ++x, ++depthCell)
 {
 if (*depthCell != 0)
 {
 depthHistogram[*depthCell]++;
 numberOfPoints++;
 }
 }
 }

 for (int nIndex=1;
 nIndex < sizeof(depthHistogram) / sizeof(int);
 nIndex++)
 {
 depthHistogram[nIndex] +=
 depthHistogram[nIndex-1];
 }

 double resizeFactor = min(
 (window_w / (double)newFrame.getWidth()),
 (window_h / (double)newFrame.getHeight()));
 unsigned int texture_x = (unsigned int)(window_w -
 (resizeFactor * newFrame.getWidth())) / 2;
 unsigned int texture_y = (unsigned int)(window_h -
 (resizeFactor * newFrame.getHeight())) / 2;

 for (unsigned int y = 0;
 y < (window_h - 2 * texture_y); ++y)
 {
 OniRGB888Pixel* texturePixel = gl_texture +
 ((y + texture_y) * window_w) + texture_x;
 for (unsigned int x = 0;
 x < (window_w - 2 * texture_x);
 ++x, ++texturePixel)

Chapter 3

139

 {
 DepthPixel* streamPixel =
 (DepthPixel*)(
 (char*)newFrame.getData() +
 ((int)(y / resizeFactor) *
 newFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 if (*streamPixel != 0)
 {
 char depthValue =
 ((float)depthHistogram[*streamPixel] /
 numberOfPoints) * 255;
 texturePixel->b = 255 - depthValue;
 texturePixel->g = 255 - depthValue;
 texturePixel->r = 255 - depthValue;
 }
 else
 {
 texturePixel->b = 0;
 texturePixel->g = 0;
 texturePixel->r = 0;
 }
 }
 }

 // Create the OpenGL texture map
 glTexParameteri(GL_TEXTURE_2D,
 0x8191, GL_TRUE);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
 window_w, window_h, 0, GL_RGB,
 GL_UNSIGNED_BYTE, gl_texture);

 glBegin(GL_QUADS);
 glTexCoord2f(0.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f);
 glVertex3f(0.0f, (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 1.0f);
 glVertex3f((float)window_w,
 (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 0.0f);
 glVertex3f((float)window_w, 0.0f, 0.0f);
 glEnd();

www.allitebooks.com

http://www.allitebooks.org

Using Low-level Data

140

 glutSwapBuffers();
 }
 }
 }
}

As you can see, a lot of the parts are similar. We put in conditions to check if
openni::VideoStream is valid, waited for a new frame, then checked whether the
new frame is valid, and so on. After that, we cleared the OpenGL buffer, set some options,
filled texture data, provided the texture buffer to OpenGL, and swapped the buffers.

The only change here is in the filling part (as always), which starts after the UPDATING
TEXTURE (DEPTH 1MM TO RGB888) line and ends before // Create the OpenGL
texture map line.

Here, we first tried to create a histogram of 16-bit depth data using the following code snippet:

 int depthHistogram[65536];
 int numberOfPoints = 0;
 memset(depthHistogram, 0,
 sizeof(depthHistogram));
 for (int y = 0;
 y < newFrame.getHeight(); ++y)
 {
 DepthPixel* depthCell = (DepthPixel*)(
 (char*)newFrame.getData() +
 (y * newFrame.getStrideInBytes())
);
 for (int x = 0; x < newFrame.getWidth();
 ++x, ++depthCell)
 {
 if (*depthCell != 0)
 {
 depthHistogram[*depthCell]++;
 numberOfPoints++;
 }
 }
 }

In this code, we first declared a variable of type int and an array named depthHistogram
to store our histogram. Then we declared another variable named numberOfPoints to keep
the number of all valid pixels (pixels with data) of the entire data.

Chapter 3

141

Our main process starts with the first loop through the height of our depth frame data and
then we calculate the position of each row's first pixel in the next line.

 DepthPixel* depthCell = (DepthPixel*)(
 (char*)newFrame.getData() +
 (y * newFrame.getStrideInBytes())
);

Again, we converted newFrame.getData() to the char pointer and increased it
by (y * newFrame.getStrideInBytes()) bytes, then converted it back to the
openni::DepthPixel pointer, and stored it in the depthCell variable. In the next for
loop, we looped through each pixel of that row by increasing depthCell and checked
whether the value of the current pixel is greater than 0. If so, we will add 1 to the number
of points and to its position in the histogram array.

Using these 2 loops, we will analyze the whole picture and extract the distribution of colors;
in other words, we will create the image's histogram.

For histogram equalization, we need to perform two operations. First, we need to change
our histogram to a cumulative histogram and then calculate the new pixel value from
that histogram. Currently, we need to convert our histogram to a cumulative histogram
(also known as an accumulated histogram).

 for (int nIndex=1;
 nIndex < sizeof(depthHistogram) / sizeof(int);
 nIndex++)
 {
 depthHistogram[nIndex] +=
 depthHistogram[nIndex-1];
 }

Read more about cumulative histograms at:
http://en.wikipedia.org/wiki/Histogram#Cumulative_
histogram

And why we need to use it at:
http://en.wikipedia.org/wiki/Histogram_
equalization#Implementation

Now we are almost done. In the last step, we need an alternate copying process too. Just as
we did earlier, here too we have codes for the calculation of resizeFactor and paddings,
and right after that we have two loops.

 for (unsigned int y = 0;
 y < (window_h - 2 * texture_y); ++y)
 {

Using Low-level Data

142

 OniRGB888Pixel* texturePixel = gl_texture +
 ((y + texture_y) * window_w) + texture_x;
 for (unsigned int x = 0;
 x < (window_w - 2 * texture_x);
 ++x, ++texturePixel)
 {

In the second loop, we need to calculate the position of the related pixel in the depth frame
data and convert and copy it to our texture frame data. But now we want to change this
process a little.

 DepthPixel* streamPixel =
 (DepthPixel*)(
 (char*)newFrame.getData() +
 ((int)(y / resizeFactor) *
 newFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 if (*streamPixel != 0)
 {
 char depthValue =
 ((float)depthHistogram[*streamPixel] /
 numberOfPoints) * 255;
 texturePixel->b = 255 - depthValue;
 texturePixel->g = 255 - depthValue;
 texturePixel->r = 255 - depthValue;
 }
 else
 {
 texturePixel->b = 0;
 texturePixel->g = 0;
 texturePixel->r = 0;
 }

As you can see, instead of using *streamPixel in the texture buffer directly, this time
we decided to use it in the bigger formula and calculate a better value depending on the
image's histogram:

 char depthValue =
 ((float)depthHistogram[*streamPixel] /
 numberOfPoints) * 255;

This was the last step. The other parts are the same as in the main recipe's code.

Chapter 3

143

Let's take a look at the output of this new method and a comparison with the native data:

Please note the changes in the grayscale line below the images. It clearly shows you how the
image changed.

Wider color space for showing more details
Be informed that all we try to show to you here and in the last part is about how to show data;
not the data itself. We try to introduce new ways of showing data to make more details visible.
Data is always the same and contains the same details and information.

In the main code, we tried to explain to you how to show a depth frame in grayscale color
space using 256 colors. Now we want to expand our color space. There are a lot of options
for expanding a wider color space than grayscale; one of the most famous ones is using the
colors of the rainbow. This is a good option and can give us about 1536 colors, which means
we can show data with less than two times loss in detail. But it is a little complicated because
we need to work with HSV and then convert it back to RGB, but we don't want to make it that
complicated. So we use another range of colors with a lesser number of colors.

This color space can give us 1024 different colors that can show four times more detail than a
simple grayscale while still being easy to implement.

Using Low-level Data

144

Lets take a look at the following code snippet:

void gl_DisplayCallback()
{
 if (depthSensor.isValid())
 {
 Status status = STATUS_OK;
 VideoStream* streamPointer = &depthSensor;
 int streamReadyIndex;
 status = OpenNI::waitForAnyStream(&streamPointer, 1,
 &streamReadyIndex, 500);
 if (status == STATUS_OK && streamReadyIndex == 0)
 {
 VideoFrameRef newFrame;
 status = depthSensor.readFrame(&newFrame);
 if (status == STATUS_OK && newFrame.isValid())
 {
 // Clear the OpenGL buffers
 glClear (
 GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Setup the OpenGL viewpoint
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glOrtho(0, window_w, window_h, 0, -1.0, 1.0);

 // UPDATING TEXTURE (DEPTH 1MM TO RGB888)
 unsigned short maxDepth =
 depthSensor.getMinPixelValue();
 unsigned short minDepth =
 depthSensor.getMaxPixelValue();
 for (int y = 0; y < newFrame.getHeight(); ++y)
 {
 DepthPixel* depthCell = (DepthPixel*)(
 (char*)newFrame.getData() +
 (y * newFrame.getStrideInBytes())
);
 for (int x = 0; x < newFrame.getWidth();
 ++x, ++depthCell)
 {
 if (maxDepth < *depthCell)
 {
 maxDepth = *depthCell;

Chapter 3

145

 }
 if (*depthCell != 0 &&
 minDepth > *depthCell)
 {
 minDepth = *depthCell;
 }
 }
 }

 double resizeFactor = min(
 (window_w / (double)newFrame.getWidth()),
 (window_h / (double)newFrame.getHeight()));
 unsigned int texture_x = (unsigned int)(window_w -
 (resizeFactor * newFrame.getWidth())) / 2;
 unsigned int texture_y = (unsigned int)(window_h -
 (resizeFactor * newFrame.getHeight())) / 2;

 for (unsigned int y = 0;
 y < (window_h - 2 * texture_y); ++y)
 {
 OniRGB888Pixel* texturePixel = gl_texture +
 ((y + texture_y) * window_w) + texture_x;
 for (unsigned int x = 0;
 x < (window_w - 2 * texture_x);
 ++x, ++texturePixel)
 {
 DepthPixel* streamPixel =
 (DepthPixel*)(
 (char*)newFrame.getData() +
 ((int)(y / resizeFactor) *
 newFrame.getStrideInBytes())
) + (int)(x / resizeFactor);

 if (*streamPixel != 0)
 {
 float colorPaletteFactor =
 (float)1024 / maxDepth;
 int colorCode =
 (*streamPixel - minDepth) *
 colorPaletteFactor;
 texturePixel->b = (
 (colorCode > 0 && colorCode < 512)
 ? abs(colorCode - 256) : 255);
 texturePixel->g = (

Using Low-level Data

146

 (colorCode > 128 && colorCode < 640)
 ? abs(colorCode - 384) : 255);
 texturePixel->r = (
 (colorCode > 512 && colorCode < 1024)
 ? abs(colorCode - 768) : 255);
 }
 else
 {
 texturePixel->b = 0;
 texturePixel->g = 0;
 texturePixel->r = 0;
 }
 }
 }

 // Create the OpenGL texture map
 glTexParameteri(GL_TEXTURE_2D,
 0x8191, GL_TRUE);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
 window_w, window_h, 0, GL_RGB,
 GL_UNSIGNED_BYTE, gl_texture);

 glBegin(GL_QUADS);
 glTexCoord2f(0.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f);
 glVertex3f(0.0f, (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 1.0f);
 glVertex3f((float)window_w,
 (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 0.0f);
 glVertex3f((float)window_w, 0.0f, 0.0f);
 glEnd();

 glutSwapBuffers();
 }
 }
 }
}

Chapter 3

147

As you can see, there are slight changes here. The first change is in the line where we defined
a variable named minDepth and then another named maxDepth. Later, we looped through
all the pixels of data and extracted max and min values. We did the same thing in the recipe's
main code, but this time we calculated minDepth too because we wanted to use all the parts
of our color space without missing out a single color!

The next important change is in the main loop of the copying and converting process. Instead
of using values directly from the data frame, we tried to convert it in a different way for each
color of pixel (R, G, and B).

 float colorPaletteFactor =
 (float)1024 / maxDepth;
 int colorCode =
 (*streamPixel - minDepth) *
 colorPaletteFactor;
 texturePixel->b = (
 (colorCode > 0 && colorCode < 512)
 ? abs(colorCode - 256) : 255);
 texturePixel->g = (
 (colorCode > 128 && colorCode < 640)
 ? abs(colorCode - 384) : 255);
 texturePixel->r = (
 (colorCode > 512 && colorCode < 1024)
 ? abs(colorCode - 768) : 255);

In the first line, we defined a variable to calculate the color palette factor, showing how we
need to reform colors. In the second line, we tried to fit this value within our range of 0-1024
and kept it in a variable named colorCode to be used in the next lines. Now that we have
converted the value in this range, we can show it. But for showing it, we need to break it apart
into three colors (RGB) before updating the texture buffer. The next three lines are all about
converting this value into color. These lines are easy to understand and there is no need to
describe them line by line. Just keep in mind that we used the inline if statement here
((statement) ? true : false) and the abs() function, which return the absolute value
of a number regardless of its sign.

Using Low-level Data

148

Let's take a look at the output of this new function and a comparison with the native data:

As you can see, this way we can provide more details rather than by using native data or
equalizing its histogram. Check out this screenshot to know more:

It is also possible to combine the histogram-equalization method with this method for more
details, but that's your choice.

Filling shadows
First of all, there is no way to fill shadows with exact values, because the Kinect, Asus Xtion,
and PrimeSense sensors all use structured light to scan the depth of the 3D world; in this
method, the projector and receiver are at different angles. So, we always get shadows.

Chapter 3

149

There are different algorithms to fill these shadows. Frameworks such as OpenCV can do it
with very good quality. But in many cases, we can simply fill shadow pixels with their left pixel's
value. This is exactly what we are going to do here.

For saving space, we decided to show you only those parts that need to change in the main
code, instead of repeating the entire gl_DisplayCallback() function.

 for (unsigned int y = 0;
 y < (window_h - 2 * texture_y); ++y)
 {
 OniRGB888Pixel* texturePixel = gl_texture +
 ((y + texture_y) * window_w) + texture_x;
 DepthPixel lastPixel = 0;
 for (unsigned int x = 0;
 x < (window_w - 2 * texture_x);
 ++x, ++texturePixel)
 {
 DepthPixel* streamPixel =
 (DepthPixel*)(
 (char*)newFrame.getData() +
 ((int)(y / resizeFactor) *
 newFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 if (*streamPixel != 0){
 lastPixel = *streamPixel;
 }
 char depthValue = ((float)lastPixel /
 maxDepth) * 255;
 texturePixel->b = 255 - depthValue;
 texturePixel->g = 255 - depthValue;
 texturePixel->r = 255 - depthValue;
 }
 }

You need to replace two copying for loops in the main code (lines 50 to 80) with the
preceding lines of code.

Using Low-level Data

150

The difference is shown in the following screenshot:

See also
 f The Reading and showing a frame from the image sensor (color/IR) recipe

 f The Overlaying the depth frame over the image frame recipe of Chapter 4, More
About Low-level Outputs

 f The Identifying and coloring users' pixels in depth map recipe of Chapter 5, NiTE and
User Tracking

Controlling the player when opening a
device from file

In this recipe we want to introduce you to a new class, OpenNI::PlaybackControl. Using
this class, you can seek a frame as well as repeat and change the speed of playback easily.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe of Chapter 2, Open NI and C++. After that,
configure Visual Studio 2010 to use OpenGL using the Configuring Visual Studio 2010 to
use OpenGL recipe of this chapter.

Chapter 3

151

How to do it...
1. Add the following lines above your source code (just below the #include lines):

int window_w = 640;
int window_h = 480;
OniRGB888Pixel* gl_texture;
VideoStream depthSensor;
Device device;
PlaybackControl* playControl;
char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do
 {
 lastChar = newChar;
 newChar = getchar();
 }
 while ((newChar != '\n')
 && (newChar != EOF));
 return (char)lastChar;
}

bool HandleStatus(Status status)
{
 if (status == STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

void gl_KeyboardCallback(unsigned char key, int x, int y)
{
 if (key == 27) // ESC Key
 {
 depthSensor.destroy();
 device.close();
 OpenNI::shutdown();
 exit(0);
 }

Using Low-level Data

152

 else if (key == '<' || key == ',')
 {
 if ((*playControl).isValid())
 {
 (*playControl).seek(depthSensor, 0);
 printf("Restarting from beginning.\r\n");
 }
 }
 else if (key == '+' || key == '=')
 {
 if ((*playControl).isValid() &&
 (*playControl).getSpeed() < 5)
 {
 (*playControl).setSpeed(
 (*playControl).getSpeed() + 0.3);
 printf("Current Speed is %s\r\n",
 (*playControl).getSpeed());
 }
 }
 else if (key == '_' || key == '-')
 {
 if ((*playControl).isValid() &&
 (*playControl).getSpeed() > 0.3)
 {
 (*playControl).setSpeed(
 (*playControl).getSpeed() - 0.2);
 printf("Current Speed is %s\r\n",
 (*playControl).getSpeed());
 }
 }
 else if (key == 'R' || key == 'r')
 {
 if ((*playControl).isValid())
 {
 (*playControl).setRepeatEnabled(
 !(*playControl).getRepeatEnabled());
 printf("Repeating: %d.\r\n",
 (*playControl).getRepeatEnabled());
 }
 }
}

void gl_IdleCallback()
{

Chapter 3

153

 glutPostRedisplay();
}

void gl_DisplayCallback()
{
 if (depthSensor.isValid())
 {
 Status status = STATUS_OK;
 VideoStream* streamPointer = &depthSensor;
 int streamReadyIndex;
 status = OpenNI::waitForAnyStream(&streamPointer, 1,
 &streamReadyIndex, 500);
 if (status == STATUS_OK && streamReadyIndex == 0)
 {
 VideoFrameRef newFrame;
 status = depthSensor.readFrame(&newFrame);
 if (status == STATUS_OK && newFrame.isValid())
 {
 // Clear the OpenGL buffers
 glClear (
 GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Setup the OpenGL viewpoint
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glOrtho(0, window_w, window_h, 0, -1.0, 1.0);

 // UPDATING TEXTURE (DEPTH 1MM TO RGB888)
 unsigned short maxDepth =
 depthSensor.getMinPixelValue();
 for (int y = 0; y < newFrame.getHeight(); ++y)
 {
 DepthPixel* depthCell = (DepthPixel*)(
 (char*)newFrame.getData() +
 (y * newFrame.getStrideInBytes())
);
 for (int x = 0; x < newFrame.getWidth();
 ++x, ++depthCell)
 {
 if (maxDepth < *depthCell)
 {
 maxDepth = *depthCell;
 }

Using Low-level Data

154

 }
 }

 double resizeFactor = min(
 (window_w / (double)newFrame.getWidth()),
 (window_h / (double)newFrame.getHeight()));
 unsigned int texture_x = (unsigned int)(window_w -
 (resizeFactor * newFrame.getWidth())) / 2;
 unsigned int texture_y = (unsigned int)(window_h -
 (resizeFactor * newFrame.getHeight())) / 2;

 for (unsigned int y = 0;
 y < (window_h - 2 * texture_y); ++y)
 {
 OniRGB888Pixel* texturePixel = gl_texture +
 ((y + texture_y) * window_w) + texture_x;
 for (unsigned int x = 0;
 x < (window_w - 2 * texture_x);
 ++x, ++texturePixel)
 {
 DepthPixel* streamPixel =
 (DepthPixel*)(
 (char*)newFrame.getData() +
 ((int)(y / resizeFactor) *
 newFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 if (*streamPixel != 0)
 {
 char depthValue = ((float)*streamPixel /
 maxDepth) * 255;
 texturePixel->b = 255 - depthValue;
 texturePixel->g = 255 - depthValue;
 texturePixel->r = 255 - depthValue;
 }
 else
 {
 texturePixel->b = 0;
 texturePixel->g = 0;
 texturePixel->r = 0;
 }
 }
 }

 // Create the OpenGL texture map

Chapter 3

155

 glTexParameteri(GL_TEXTURE_2D,
 0x8191, GL_TRUE);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
 window_w, window_h, 0, GL_RGB,
 GL_UNSIGNED_BYTE, gl_texture);

 glBegin(GL_QUADS);
 glTexCoord2f(0.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f);
 glVertex3f(0.0f, (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 1.0f);
 glVertex3f((float)window_w,
 (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 0.0f);
 glVertex3f((float)window_w, 0.0f, 0.0f);
 glEnd();

 glutSwapBuffers();
 }
 }
 }
}

2. Then locate the following lines of code:
int _tmain(int argc, _TCHAR* argv[])
{

3. Write the following code snippet below the preceding lines of code:
 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");

 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Opening oni file ...\r\n");
 status = device.open("C:\MultipleHands_From_OpenNIorg.oni");
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 printf("Requesting play controller ...\r\n");

Using Low-level Data

156

 playControl = device.getPlaybackControl();
 printf("Done.\r\n");

 printf("Checking if stream is supported ...\r\n");
 if (!device.hasSensor(SENSOR_DEPTH))
 {
 printf("Stream not supported by this device.\r\n");
 return 1;
 }

 printf("Asking device to create a depth stream ...\r\n");
 status = depthSensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;

 printf("Starting stream ...\r\n");
 status = depthSensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Initializing OpenGL ...\r\n");
 gl_texture = (OniRGB888Pixel*)malloc(
 window_w * window_h * sizeof(OniRGB888Pixel));
 glutInit(&argc, (char**)argv);
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
 glutInitWindowSize(window_w, window_h);
 glutCreateWindow ("OpenGL | OpenNI 2.x CookBook Sample");
 glutKeyboardFunc(gl_KeyboardCallback);
 glutDisplayFunc(gl_DisplayCallback);
 glutIdleFunc(gl_IdleCallback);
 glDisable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);
 printf("Starting OpenGL rendering process ...\r\n");
 printf("Use + key to increase and"
 " - to decrease speed.\r\n");
 printf("Use Enter and Space key to pause playback.\r\n");
 printf("Use < key to restart playback.\r\n");
 printf("Toggle repeating by R key.\r\n");
 glutMainLoop();

Chapter 3

157

How it works...
As you can see, the code of the first part is pretty much as it was in the Reading and showing a
frame from the depth sensor recipe of this chapter. We defined different variables and functions,
and the body of all the functions except gl_KeyboardCallback are the same as before. Also,
we have a new variable named playControl of type openni::PlaybackControl pointer
too. Using this variable along with the gl_KeyboardCallback function, we are going to control
the playback process via keyboard events.

PlaybackControl* playControl;

Let's take a look at the body of the gl_KeyboardCallback function:

 if (key == 27) // ESC Key
 {
 depthSensor.destroy();
 device.close();
 OpenNI::shutdown();
 exit(0);
 }
 else if (key == '<' || key == ',')
 {
 if ((*playControl).isValid())
 {
 (*playControl).seek(depthSensor, 0);
 printf("Restarting from beginning.\r\n");
 }
 }
 else if (key == '+' || key == '=')
 {
 if ((*playControl).isValid() &&
 (*playControl).getSpeed() < 5)
 {
 (*playControl).setSpeed(
 (*playControl).getSpeed() + 0.3);
 printf("Current Speed is %s\r\n",
 (*playControl).getSpeed());
 }
 }
 else if (key == '_' || key == '-')
 {

Using Low-level Data

158

 if ((*playControl).isValid() &&
 (*playControl).getSpeed() > 0.3)
 {
 (*playControl).setSpeed(
 (*playControl).getSpeed() - 0.2);
 printf("Current Speed is %s\r\n",
 (*playControl).getSpeed());
 }
 }
 else if (key == 'R' || key == 'r')
 {
 if ((*playControl).isValid())
 {
 (*playControl).setRepeatEnabled(
 !(*playControl).getRepeatEnabled());
 printf("Repeating: %d.\r\n",
 (*playControl).getRepeatEnabled());
 }
 }

As you can see, the first line is a condition for exiting by the Esc key, as always. If the pressed
key was not the Esc key, we check whether it was the < or , key (they are the same key on the
keyboard usually), and if so we change the active frame to the first frame. Using this, we can
restart playback from the beginning.

 if ((*playControl).isValid())
 {
 (*playControl).seek(depthSensor, 0);
 printf("Restarting from beginning.\r\n");
 }

The first line checks if the playControl object is valid, and if so we try to use the
openni::PlaybackControl::seek() method to change the active frame to 0.
We also use the printf() function to inform the user about the operation.

If the pressed key was not < or , either, we check whether it was + or = (again, because they
are the same key on the keyboard and we don't want the user to press the Shift key); if so,
we will increase the speed of playback.

 if ((*playControl).isValid() &&
 (*playControl).getSpeed() < 5)
 {
 (*playControl).setSpeed(
 (*playControl).getSpeed() + 0.2);
 printf("Current Speed is %s\r\n",
 (*playControl).getSpeed());
 }

Chapter 3

159

Just as we did the last time, here too we check if the playControl object is valid, and if it
was we check if the current speed is lower than five times (because we don't want the user to
increase the speed too much), using openni::PlaybackControl::getSpeed() to get
the current speed; if both the conditions are true, we use openni::PlaybackControl::se
tSpeed() to set the new speed (0.2 times higher than the current speed).

Again, just as with the last time, we inform the user using the printf() function.

We now need to introduce a way to decrease the speed, and that is why we try to check
whether the pressed key was _ or –. If it was, we use the same logic as in the last part
about increasing speed, but with some simple changes. For example, instead of checking the
current speed not being higher than five times, this time we try to check if it was higher than
0.3 (because we don't want it to become lower than 0.1) and then decrease it by 0.2 times
using the openni::PlaybackControl::setSpeed() method.

 if ((*playControl).isValid() &&
 (*playControl).getSpeed() > 0.3)
 {
 (*playControl).setSpeed(
 (*playControl).getSpeed() - 0.2);
 printf("Current Speed is %s\r\n",
 (*playControl).getSpeed());
 }

If none of the keys mentioned above were pressed, we check if the pressed key is r or R; if it
was, we will toggle the repeating mode on and off.

 if ((*playControl).isValid())
 {
 (*playControl).setRepeatEnabled(
 !(*playControl).getRepeatEnabled());
 printf("Repeating: %d.\r\n",
 (*playControl).getRepeatEnabled());
 }

The logic behind the previous code is similar to that for changing the speed of playback. We
used openni::PlaybackControl::getRepeatEnabled() to get the current repeating
status, and then reversed and set it using openni::PlaybackControl::setRepeatEnab
led(). And, of course, we checked if playControl is valid before doing anything.

Using Low-level Data

160

There is nothing else important in step 1. In step 3, we tried to initialize OpenNI, as always,
opened a file as device, created depth's openni::VideoStream, and then initialized
OpenGL. The only difference here is in the comparison of the simple drawing of depth sensor
output to OpenGL, where we requested access to the openni::PlaybackControl object
of the associated device using openni::Device::getPlaybackControl(). The return
value of this method is an openni::PlaybackControl object responsible for controlling
the playback of the file. We filled our playControl variable with the return value of this
method so that we can use it later, especially in our gl_KeyboardCallback function.

 printf("Requesting play controller ...\r\n");
 playControl = device.getPlaybackControl();
 printf("Done.\r\n");

There is nothing special here. Let's take a look at the output of this application:

See also
 f The Opening an already recorded file (ONI file) instead of a device recipe of

Chapter 2, Open NI and C++

Chapter 3

161

Recording streams to file (ONI file)
We learned about playing ONI files but it was only a part of this topic. You can record ONI
files from the device's outputs yourself too. We will now introduce an openni::Recorder
class that can be used for this purpose. This recipe is easy, as adding and starting
openni::VideoStream involves nothing special.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe of Chapter 2, Open NI and C++.We don't
need OpenGL in this recipe.

How to do it...
1. Add the following lines above your source code (just below the #include lines):

char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do
 {
 lastChar = newChar;
 newChar = getchar();
 }
 while ((newChar != '\n')
 && (newChar != EOF));
 return (char)lastChar;
}

bool HandleStatus(Status status)
{
 if (status == STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

Using Low-level Data

162

2. Then locate the following lines of code:
int _tmain(int argc, _TCHAR* argv[])
{

3. Write the following code snippet below the preceding lines of code:

 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");

 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 Device device;
 printf("Opening first device ...\r\n");
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 printf("Checking if stream is supported ...\r\n");
 if (!device.hasSensor(SENSOR_DEPTH))
 {
 printf("Stream not supported by this device.\r\n");
 return 1;
 }

 printf("Asking device to create a depth stream ...\r\n");
 VideoStream depthSensor;
 status = depthSensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;

 printf("Starting stream ...\r\n");
 status = depthSensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Creating a recorder ...\r\n");
 Recorder recorder;
 status = recorder.create("C:\sample.oni");
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

Chapter 3

163

 printf("Attaching to depth sensor ...\r\n");
 status = recorder.attach(depthSensor);
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Starting recorder ...\r\n");
 status = recorder.start();
 if (!HandleStatus(status)) return 1;
 printf("Done. Now recording ...\r\n");

 ReadLastCharOfLine();
 recorder.destroy();
 depthSensor.destroy();
 device.close();
 OpenNI::shutdown();

How it works...
Step 1 only contains the definition of two of our basic functions, ReadLastCharOfLine()
for waiting for user input and HandleStatus() for recognizing the error state and printing
the error to the console. You can read more about these functions in previous chapters.

Our main code here is in step 2. As you can see, here we have the initializing process of
OpenNI, as always; we then created depth by using openni::VideoStream and started it.

The difference in this recipe, when compared to older recipes, is where we defined
a variable of type openni::Recorder with the name recorder using its
openni::Recorder::create() method. Please note that this method accepts an
argument of type string that will be used to create a file to save data. We selected C:\
sample.oni as the desired name and address for our file.

 Recorder recorder;
 status = recorder.create("C:\\sample.oni");

Then we usually need to start the recording process just as we did with
openni::VideoStream. But without attaching recorder to the depth stream,
it will save nothing. We need to use the openni::Recorder::attach() method
before starting the recording process.

 status = recorder.attach(depthSensor);

We need to repeat this line for each openni::VideoStream object that we want to store in
the recorded file.

Using Low-level Data

164

After we add all our openni::VideoStream objects, we can start the recording process.

 status = recorder.start();

Now we can either wait or use the output of openni::VideoStream objects to do
something else. But because we wanted to make this recipe shorter and easier to understand,
we decided to use the ReadLastCharOfLine() function instead of using data and waiting
for the user to press a key.

At last, as the user presses the Enter key, we will destroy the recorder and depthsensor
objects, close the device, and then shut down OpenNI. We can then return 0 to end
program execution.

The output of this program is predictable. Here is a screenshot:

See also
 f The Opening an already recorded file (ONI file) instead of a device recipe of

Chapter 2, Open NI and C++

 f The Controlling the player when opening a device from file recipe

Chapter 3

165

Event-based reading of data
In OpenNI 2.x, instead of using openni::OpenNI::waitForAnyStream(), we can use
the openni::VideoStream object's events for reading new frames of data. This is a more
standard way than creating an infinite loop around code. In this recipe, we will try to capture
this event but we are not actually going to use it in any way. Read the older recipes about how
to show and read a frame from sensors.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe of Chapter 2, Open NI and C++.We don't
need OpenGL in this recipe.

How to do it...
1. Add the following lines above your source code (just below the #include lines):

char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do
 {
 lastChar = newChar;
 newChar = getchar();
 }
 while ((newChar != '\n')
 && (newChar != EOF));
 return (char)lastChar;
}

bool HandleStatus(Status status)
{
 if (status == STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

Using Low-level Data

166

struct OurOpenNINewFrameMonitorer : public
VideoStream::NewFrameListener
{
 void onNewFrame(VideoStream& videoStream)
 {
 printf("%d. New data is available to read.\r\n",
 clock());
 }
};

2. Then locate the following lines of code:
int _tmain(int argc, _TCHAR* argv[])
{

3. Write the following code snippet below the preceding lines of code:
 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");

 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 Device device;
 printf("Opening first device ...\r\n");
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 printf("Checking if stream is supported ...\r\n");
 if (!device.hasSensor(SENSOR_DEPTH))
 {
 printf("Stream not supported by this device.\r\n");
 return 1;
 }

 printf("Asking device to create a depth stream ...\r\n");
 VideoStream depthSensor;
 status = depthSensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;

 printf("Registering callback ...\r\n");
 OurOpenNINewFrameMonitorer p;
 status = depthSensor.addNewFrameListener(&p);

Chapter 3

167

 if (!HandleStatus(status)) return 1;

 printf("Starting stream ...\r\n");
 status = depthSensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 ReadLastCharOfLine();
 depthSensor.destroy();
 device.close();
 OpenNI::shutdown();

How it works...
I would recommend reading the Listening to the device connect and disconnect events
recipe of Chapter 2, Open NI and C++, for knowing what listener classes are and how OpenNI
implements its event callback system, because we are not going to describe it here again.

In step 1 of the previous code, we have two functions for waiting for user input, checking the
openni::Status object, and printing error messages to the console, if any, just as in the last
recipe. But right after defining these two functions, we have a definition for a structure named
OurOpenNINewFrameMonitorer, which inherits from the openni:VideoStream::NewFra
meListener class. If you have read the Listening to the device connect and disconnect events
recipe of Chapter 2, OpenNI and C++, you will know that we need to define a class or structure
from a listener class and then introduce it to OpenNI to capture OpenNI's events. Because of
this logic, we defined the structure here as a child of openni::VideoStream::NewFrameLi
stener. Please note that we used the openni::VideoStream::NewFrameListener class
because we wanted to capture the openni::VideoStream object's events.

In this structure, we defined a method named onNewFrame(). The signature of this method
is very important because we want to override the internal virtual method of the parent class.

In the onNewFrame() method, we have only one line of code for printing to the console and
informing the user that there is a new frame available to be read. We don't actually want to
use this data, but just inform the user and show him/her how to use this event instead of
using the openni::OpenNI::waitForAnyStream() method.

struct OurOpenNINewFrameMonitorer : public
VideoStream::NewFrameListener
{
 void onNewFrame(VideoStream& videoStream)
 {
 printf("%d. New data is available to read.\r\n",
 clock());
 }
};

Using Low-level Data

168

In step 3, things are pretty much the same as older recipes. Just as always, we initialized
OpenNI, opened a device, and created depth by using openni::VideoStream. But there
is a slight difference here. We used the openni::VideoStream::addNewFrameListen
er() method for the first time. This method accepts an argument of type openni::VideoS
tream::NewFrameListener and passes new frames to this class. This class is an almost
empty class with only one virtual method named onNewFrame. But in step 1, we defined a
structure from this class, named OurOpenNINewFrameMonitorer, and wrote our custom
onNewFrame method. Because OurOpenNINewFrameMonitorer inherits from openni::
VideoStream::NewFrameListener, we can pass it as an argument to the openni::Vi
deoStream::addNewFrameListener() method without any problem. Whenever any new
event is raised, this is our method that will be called.

 OurOpenNINewFrameMonitorer p;
 status = depthSensor.addNewFrameListener(&p);

In the first line, we created an object from the OurOpenNINewFrameMonitorer structure
and, in the second line, we used the pointer of our new object as a parameter of the openni:
:VideoStream::addNewFrameListener() method.

Then we started the depth's openni::VideoStream stream and waited for new data or for
the user to press the Enter key to end the execution process.

 ReadLastCharOfLine();

After this line, we will destroy, close, and shut down everything, including OpenNI, and return 0
as a sign of the application's successful end.

Please note that structures and classes are almost the same thing in C++
and there is little difference when we use a structure instead of a class and
viceversa. So here you can use a class instead of defining a structure, and it
is probably a better idea. Our reason for using a structure here is only to show
you that using a structure is also possible.

Chapter 3

169

The following is the output of this code at the very beginning of the run:

4
More about Low-level

Outputs

In this chapter, we will cover the following recipes:

 f Cropping and mirroring frames right from the buffer

 f Syncing image and depth sensors to read new frames from both streams at the
same time

 f Overlaying the depth frame over the image frame

 f Converting the depth unit to millimetre

 f Retrieving the color of the nearest point without depth-over-color registration

 f Enabling/disabling auto exposure and auto white balance

Introduction
Until now we have learned how to request, read, and show outputs of sensors to a user along
with how to configure each sensor to give us the desired resolution and pixel format.

But in this chapter, we are going to show you how we can do more customization, including
cropping or mirroring the output of an image right from the device or, more importantly,
overlaying the depth frame over the image frame.

These enhancements are scattered all over the OpenNI. Here is a list of all the classes with
some information about the enhancements that are included with them.

More about Low-level Outputs

172

The openni::Device object
This class contains methods to enable and disable depth and image frame syncing and
depth-over-image registration. In other words, any enhancements that have an effect on
two or more sensors are included with this class.

The openni::VideoStream object
Methods to enable the mirroring of frame data and the cropping of a specific area in frames
are part of this class. openni::VideoStream is home to methods that are responsible for
customizing each frame of data.

The openni::CoordinateConverter class
If you want to convert the position and value of a depth pixel into the real-world position,
distance, or color of that pixel, you need to start using the openni::CoordinateConverter
class. This class is a standalone class that contains static methods for these sorts of operations.

The openni::CameraSettings object
openni::CameraSettings can be accessed by the openni::VideoStream object and
can only be used with a color sensor. This object lets you activate or deactivate the camera's
built-in features, including auto exposure and auto white balance.

Cropping and mirroring frames right from
the buffer

In this recipe, we are going to show you how we can use two features of
openni::VideoStream that give us the ability to mirror or crop frames right from the
device itself. This ability is available for all three outputs based on openni::VideoStream.

For saving more space, we decided to use the code from the Reading and showing a frame
from the image sensor (color/IR) recipe of Chapter 3, Using Low-level Data, as a template
and show you only the changes.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe of Chapter 2, OpenNI and C++. Then, configure
Visual Studio 2010 to use OpenGL with the Configuring Visual Studio 2010 to use OpenGL
recipe of Chapter 3, Using Low-level Data.

Chapter 4

173

After that, please copy the code from the Reading and showing a frame from the image
sensor (color/IR) recipe of Chapter 3, Using Low-level Data, to this project.

How to do it...
1. Add the following lines at the top of your source code (just below the Device

device; line):
#include<Math.h>
bool isInCropping = false;
bool isMouseDown = false;
int mouseDownX = 0;
int mouseDownY = 0;

void gl_MouseCallback(int button, int state, int x, int y)
{
 if (button == GLUT_LEFT_BUTTON)
 {
 if (state == GLUT_DOWN && !isMouseDown)
 {
 isMouseDown = true;
 mouseDownX = x;
 mouseDownY = y;
 }
 else if (state == GLUT_UP && isMouseDown)
 {
 isMouseDown = false;

 if (isInCropping)
 {
 printf("Cropping is still active, "
 "press R to reset it first.\r\n");
 return;
 }

 GLint m_viewport[4];
 glGetIntegerv(GL_VIEWPORT, m_viewport);

 int sizeX = ((float)window_w / m_viewport[2])
 * abs(x - mouseDownX);
 int sizeY = ((float)window_h / m_viewport[3])
 * abs(y - mouseDownY);
 int offsetX = ((float)window_w / m_viewport[2])
 * min(x, mouseDownX);

More about Low-level Outputs

174

 int offsetY = ((float)window_h / m_viewport[3])
 * min(y, mouseDownY);

 sizeX = floor((float)sizeX / 4) * 4;
 sizeY = floor((float)sizeY / 4) * 4;
 offsetX = floor((float)offsetX / 4) * 4;
 offsetY = floor((float)offsetY / 4) * 4;

 if (sizeX >= 128 && sizeY >= 128)
 {
 printf("\r\nRequest cropping from %d,%d "
 "with size of %dx%d pixel: \r\n",
 offsetX, offsetY,
 sizeX, sizeY);

 Status status;
 status = selectedSensor.setCropping(
 offsetX, offsetY,
 sizeX,
 sizeY);
 if (status != STATUS_OK)
 {
 printf("Failed. %s\r\n",
 OpenNI::getExtendedError());
 }
 else
 {
 printf("Done. Press R to reset.\r\n");
 memset(gl_texture,0,
 window_w * window_h *
 sizeof(OniRGB888Pixel));
 isInCropping = true;
 }
 }
 }
 }
}

2. Then locate the following lines of code:
void gl_KeyboardCallback(unsigned char key, int x, int y)
{

Chapter 4

175

3. Replace any code inside the body of this function with the following code snippet:
 if (key == 27) // ESC Key
 {
 selectedSensor.destroy();
 device.close();
 OpenNI::shutdown();
 exit(0);
 }
 else if (key == 'C' || key == 'c')
 {
 if (device.isValid())
 {
 printf("\r\n-->Setting active sensor to COLOR\r\n");
 SetActiveSensor(SENSOR_COLOR, &device);
 isInCropping = false;
 }
 }
 else if (key == 'I' || key == 'i')
 {
 if (device.isValid())
 {
 printf("\r\n-->Setting active sensor to IR\r\n");
 SetActiveSensor(SENSOR_IR, &device);
 isInCropping = false;
 }
 }
 else if (key == 'R' || key == 'r')
 {
 // Reset Cropping
 if (selectedSensor.isValid())
 {
 Status status;
 status = selectedSensor.setCropping(0, 0,
 selectedSensor.getVideoMode().getResolutionX(),
 selectedSensor.getVideoMode().getResolutionY());
 if (status == STATUS_OK)
 isInCropping = false;
 }
 }
 else if (key == 'M' || key == 'm')
 {

More about Low-level Outputs

176

 // Toggle Mirroring
 if (selectedSensor.isValid())
 selectedSensor.setMirroringEnabled(
 !selectedSensor.getMirroringEnabled());
 }

4. Then locate the following lines of code:
int _tmain(int argc, _TCHAR* argv[])
{

5. Replace any code inside the body of this function with the following code snippet:
 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");

 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Opening first device ...\r\n");
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 printf("Initializing OpenGL ...\r\n");
 gl_texture = (OniRGB888Pixel*)malloc(
 window_w * window_h * sizeof(OniRGB888Pixel));
 glutInit(&argc, (char**)argv);
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
 glutInitWindowSize(window_w, window_h);
 glutCreateWindow ("OpenGL | OpenNI 2.x CookBook Sample");
 glutKeyboardFunc(gl_KeyboardCallback);
 glutMouseFunc(gl_MouseCallback);
 glutDisplayFunc(gl_DisplayCallback);
 glutIdleFunc(gl_IdleCallback);
 glDisable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);
 printf("Starting OpenGL rendering process ...\r\n");
 SetActiveSensor(SENSOR_COLOR, &device);
 printf("Press C for color and I for IR.\r\n");
 printf("Use mouse to crop output and "
 "press R to reset cropping.\r\n");
 printf("By pressing M key you can toggle mirroring.\r\n");
 glutMainLoop();

 return 0;

Chapter 4

177

How it works...
In the first step we defined other variables that we need and then we defined a new function
called gl_MouseCallback() to handle all the mouse events occurring in the OpenGL
window. Let's take a look at the following code snippet:

bool isInCropping = false;
bool isMouseDown = false;
int mouseDownX = 0;
int mouseDownY = 0;

Here, we are going to use isInCropping to keep the current state of cropping because,
unfortunately, there is no way to get it from OpenNI yet. We also define another variable
named isMouseDown to keep the state of mouse's left button. mouseDownX and
mouseDownY are also used to save the position of the mouse when clicked.

Let's talk about the gl_MouseCallback() function. Here, we first need to be sure that an
event is related to the left mouse button because we have got nothing to do with the other
buttons. To do so, we need to use a simple if condition for the button argument:

 if (button == GLUT_LEFT_BUTTON)
 {

We need to handle key-down and key-up in completely different ways, so we need to use
another if condition for the state argument:

 if (state == GLUT_DOWN && !isMouseDown)
 {

If the mouse's key is down, but wasn't so before, we need to first save its state (according
to the fact that it is currently down) in our isMouseDown variable and then save its current
position using mouseDownX and mouseDownY:

 isMouseDown = true;
 mouseDownX = x;
 mouseDownY = y;

But if it is currently up but was down before:

 else if (state == GLUT_UP && isMouseDown)

We need to update its state (it is not down any more) in our isMouseDown variable again and
then make sure that we are not already in the cropping mode because we don't want to crop a
cropped preview again:

 isMouseDown = false;

 if (isInCropping)
 {

More about Low-level Outputs

178

 printf("Cropping is still active, "
 "press R to reset it first.\r\n");
 return;
 }

If we are in the cropping mode, we can ignore this event and end this function; if not, we must
continue with calculating the selected size and location.

Please note that we have the position of the mouse from the last time its button was in the
down state, because we had saved it before in the mouseDownX and mouseDownY variables.
The current position of the mouse is also available in the x and y parameters, but these
values are relative to the current size of the OpenGL window (and it is resizable when the
stretching mode is on). So first we need to calculate the window size to texture size ratio in
order to convert this number to an absolute number of pixels in the frame data. To do this, we
need to have the current sizes of the OpenGL window and the size of our texture. We have the
size of our texture from the window_w and window_h variables, but we are not sure about
the current size of the OpenGL window; so we need to use the following code:

 GLint m_viewport[4];
 glGetIntegerv(GL_VIEWPORT, m_viewport);

glGetIntegerv() is one of OpenGL's functions that returns the value of any property you
ask for. In the previous code, we want the value of GL_VIEWPORT, which is an array of four
integers showing the position and size of the OpenGL rendering area relative to the window.

Using this value along with the position of the mouse, we can calculate the location and size
of the selected area:

 int sizeX = ((float)window_w / m_viewport[2])
 * abs(x - mouseDownX);
 int sizeY = ((float)window_h / m_viewport[3])
 * abs(y - mouseDownY);
 int offsetX = ((float)window_w / m_viewport[2])
 * min(x, mouseDownX);
 int offsetY = ((float)window_h / m_viewport[3])
 * min(y, mouseDownY);

There are two other important things to note here.First, the Asus Xtion and PrimeSense
sensors refuse to accept any value not divisible by 4, so we need to make sure that both
the location and size of the selected area are divisible by 4:

 sizeX = floor((float)sizeX / 4) * 4;
 sizeY = floor((float)sizeY / 4) * 4;
 offsetX = floor((float)offsetX / 4) * 4;
 offsetY = floor((float)offsetY / 4) * 4;

Chapter 4

179

Second, the Asus Xtion and PrimeSense sensors are not going to accept a cropping request if
the size of the selected area is smaller than 128 x 128 pixels. So, we continue our code only if
the selected size is bigger than 128 x 128 pixels:

 if (sizeX >= 128 && sizeY >= 128)
 {

It seems that both the previously mentioned limitations are because of
the identical design and SOC (chip) of the devices.

Now we are ready to ask OpenNI to apply cropping to the selected area:

 Status status;
 status = selectedSensor.setCropping(
 offsetX, offsetY,
 sizeX,
 sizeY);

Although we did what we can to make the requested size and location valid, OpenNI may still
reject our request. So, we had better think of a way to check whether our requested task was
accepted or not.

VideoStream::setCropping() is the method we use to apply cropping here. This method
accepts four arguments, of which the first two are for the position of the desired area and last
two are the size of it.

 if (status != STATUS_OK)
 {
 printf("Failed. %s\r\n",
 OpenNI::getExtendedError());
 }
 else
 {
 printf("Done. Press R to reset.\r\n");
 memset(gl_texture,0,
 window_w * window_h *
 sizeof(OniRGB888Pixel));
 isInCropping = true;
 }

If the return value of VideoStream::setCropping() was not STATUS_OK, our request
would fail and we would have to write a failed message to the console. But if it was, it means
our request got completed successfully and now we can set isInCropping to true and
clean the texture buffer using the memset() function.

More about Low-level Outputs

180

Step three is about changes in gl_KeyboardCallback(); we added two new handling
codes for the M and R keys.

First, we need to reset cropping if the R or r key has been pressed. We can do this by
requesting for the cropping of the whole resolution from the 0, 0 start point. But before
requesting for this, we need to make sure that the selected openni::VideoStream
class is valid:

 else if (key == 'R' || key == 'r')
 {
 // Reset Cropping
 if (selectedSensor.isValid())
 {
 Status status;
 status = selectedSensor.setCropping(0, 0,
 selectedSensor.getVideoMode().getResolutionX(),
 selectedSensor.getVideoMode().getResolutionY());
 if (status == STATUS_OK)
 isInCropping = false;
 }
 }

Second, we add a new functionality to our application to toggle the mirroring of frames when the
M or m key is pressed. We can do this by calling the openni::VideoStream::setMirrorin
gEnabled() method to set the state of mirroring and openni::VideoStream::getMirror
ingEnabled() to get the current state of mirroring. We need both the methods to toggle it:

 else if (key == 'M' || key == 'm')
 {
 // Toggle Mirroring
 if (selectedSensor.isValid())
 selectedSensor.setMirroringEnabled(
 !selectedSensor.getMirroringEnabled());
 }

In the fifth step, we are going to make some minor changes in the main function. If you
compare this new function with the old one, you can clearly see three new lines there. Two
are only for printing some information about keyboard and mouse functionalities (M, R and
mouse) in this example:

 printf("Use mouse to crop output and "
 "press R to reset cropping.\r\n");
 printf("By pressing M key you can toggle mirroring.\r\n");

But there is an important line here about introducing gl_MouseCallback() as a mouse
event handler to OpenGL:

 glutMouseFunc(gl_MouseCallback);

Chapter 4

181

The following screenshot shows the output of our application:

See also
 f The Accessing video streams (Depth/IR/RGB) and configuring them recipe in

Chapter 2, OpenNI and C++

 f The Reading and showing a frame from the image sensor (color/IR) recipe in
Chapter 3, Using Low-level Data

More about Low-level Outputs

182

Syncing image and depth sensors to
read new frames from both streams at the
same time

A device, by default, captures and sends frames from each sensor independently. This means
there is no guarantee that both sensors capture a snapshot of the environment at the same
time, but there may be a lot of cases where you want to reduce the delay between capturing
two frames from two different sensors. For example, if you want to use both image and depth
streams to retrieve the color of an object recognized by the depth stream from the color
stream you need to read the data from both the streams; this means one stream could have
a different capture time from the other. But using frame syncing that is available for image
and depth streams, you can at least decrease this difference in capture time to the lowest
possible value.

In this recipe, we are going to show you how you can enable frame syncing and how much this
option can reduce the difference between capture times.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe of Chapter 2, Open NI and C++.

How to do it...
1. Add the following lines at the top of your source code (just below the

#include lines):
#include <conio.h>
char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do
 {
 lastChar = newChar;
 newChar = getchar();
 }
 while ((newChar != '\n')
 && (newChar != EOF));
 return (char)lastChar;
}

Chapter 4

183

bool HandleStatus(Status status)
{
 if (status == STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

2. Then locate the following lines of code:
int _tmain(int argc, _TCHAR* argv[])
{

3. Write the following code snippet below the preceding lines of code:

 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");

 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Opening first device ...\r\n");
 Device device;
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 printf("Checking if stream is supported ...\r\n");
 if (!device.hasSensor(SENSOR_DEPTH))
 {
 printf("Stream not supported by this device.\r\n");
 return 1;
 }
 VideoStream depthSensor;
 printf("Asking device to create a depth stream...\r\n");
 status = depthSensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;

 printf("Starting stream ...\r\n");
 status = depthSensor.start();

More about Low-level Outputs

184

 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Checking if stream is supported ...\r\n");
 if (!device.hasSensor(SENSOR_COLOR))
 {
 printf("Stream not supported by this device.\r\n");
 return 1;
 }
 VideoStream colorSensor;
 printf("Asking device to create a color stream...\r\n");
 status = colorSensor.create(device, SENSOR_COLOR);
 if (!HandleStatus(status)) return 1;

 printf("Starting stream ...\r\n");
 status = colorSensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Press ESC to exit, "
 "any other key to toggle Frame Sync");
 bool sync = false;
 int avgDiff = 0;
 int framesRead = 0;
 bool canceled = false;
 while (!canceled)
 {
 if (kbhit())
 {
 while (kbhit())
 if (getch() == 27)
 canceled = true;
 sync = !sync;
 status = device.setDepthColorSyncEnabled(sync);
 if (!HandleStatus(status)) return 1;
 avgDiff = 0;
 framesRead = 0;
 printf("Sync is %s\r\n", ((sync) ?
 "Activated" : "Deactivated"));
 }
 VideoFrameRef newFrame;
 status = depthSensor.readFrame(&newFrame);
 if (status == STATUS_OK &&

Chapter 4

185

 newFrame.isValid())
 {
 int diff = 0;
 printf("Depth Ready at %d\r\n",
 newFrame.getTimestamp());
 diff = newFrame.getTimestamp();
 status = colorSensor.readFrame(&newFrame);
 if (status == STATUS_OK &&
 newFrame.isValid())
 {
 diff = abs(
 (int)newFrame.getTimestamp() - diff);
 avgDiff = (
 (avgDiff * framesRead) + diff) /
 (framesRead + 1);
 framesRead++;
 printf("Color Ready at %d, "
 "Diff: %d, Avg Diff: %d\r\n",
 newFrame.getTimestamp(),
 diff, avgDiff);

 }
 }
 Sleep(100);
 }
 depthSensor.destroy();
 colorSensor.destroy();
 OpenNI::shutdown();
 return 0;

How it works...
The first step contains almost all the usual things we have in our projects, such as defining
a function for handling errors and another one for handling user inputs. The only new line of
code we can see here is the first line about adding the conio.h file to our project. This file
gives us access to some of the console interface functions, such as kbhit() and getch(),
that we are going to use in this recipe. This header file is mainly used by applications from
the MS-DOS era and is currently not available in Linux or other modern operating systems
except Windows.

#include <conio.h>

More about Low-level Outputs

186

Get more information about the conio.h file at the following link:
http://en.wikipedia.org/wiki/Conio.h

As this example is not very usable alone, I don't expect anyone to try to port it
into Linux; yet, a good alternative to this file in the Linux environment can be
found at the following link:
http://sourceforge.net/projects/linux-conioh/

Our main code starts in step 3. In this step, as always, we are going to initialize OpenNI,
open a device, and create a depth and image openni::VideoSensor class. We are
not going to describe these sections again; you can read Chapter 2, OpenNI and C++,
for more information.

After that, we defined four variables and entered into a while loop as we want to keep
reading data from openni::VideoStream classes. We need to define a variable sync
called sync to keep its value locally so we can toggle it later. Then as we want to show the
average difference between the capture times of two frames, we need to keep the number of
frames we read in one variable (named framesRead here) and the average of differences in
another variable (named avgDiff here). Also, we need another variable to check whether the
operation was canceled and whether the loop ended:

 bool sync = false;
 int avgDiff = 0;
 int framesRead = 0;
 bool canceled = false;
 while (!canceled)
 {

Then our main loop begins with checking whether any key was pressed and whether the
pressed key was the Esc key:

 if (kbhit())
 {
 while (kbhit())
 if (getch() == 27)
 canceled = true;

If it was indeed the Esc key, we change the canceled variable value to true. We use another
while loop here because the key buffer may contain multiple keys and we need to empty it
before continuing.

Chapter 4

187

If any key is pressed (no matter what key is pressed), we will toggle the sync mode using
openni::Device::setDepthColorSyncEnabled() and then set the avgDiff and
framesRead variables to 0 to reset older calculations. Also, we print a message to the
console for the user to see the current state of frame syncing:

 sync = !sync;
 status = device.setDepthColorSyncEnabled(sync);
 if (!HandleStatus(status)) return 1;
 avgDiff = 0;
 framesRead = 0;
 printf("Sync is %s\r\n", ((sync) ?
 "Activated" : "Deactivated"));

After checking for the pressed keys, we must pay attention to our frame reading operation,
which is the primary part of our code. First, we read a frame from the depth sensor using
the openni::VideoStream::readFrame() method, and if it is correct, try to save its
capture time in a variable named diff and continue to read other frames, this time from
the color sensor:

 VideoFrameRef newFrame;
 status = depthSensor.readFrame(&newFrame);
 if (status == STATUS_OK &&
 newFrame.isValid())
 {
 int diff = 0;
 printf("Depth Ready at %d\r\n",
 newFrame.getTimestamp());
 diff = newFrame.getTimestamp();
 status = colorSensor.readFrame(&newFrame);
 if (status == STATUS_OK &&
 newFrame.isValid())
 {

Then, we calculate the difference between the capture time of the color frame and depth
frame and update the avgDiff variable. Also, we increase the value of framesRead by 1:

 diff = abs(
 (int)newFrame.getTimestamp() - diff);
 avgDiff = (
 (avgDiff * framesRead) + diff) /
 (framesRead + 1);
 framesRead++;

More about Low-level Outputs

188

Now that we have all the information, we can print it on the console to show it to the user:

 printf("Color Ready at %d, "
 "Diff: %d, Avg Diff: %d\r\n",
 newFrame.getTimestamp(),
 diff, avgDiff);

Before continuing this loop, we should wait for 100 milliseconds to make sure that the printed
data on the console is readable by the user:

 Sleep(100);

This process will continue until the user presses the Esc key. Then the program will
release all the resources used by depthSensor, colorSensor and OpenNI itself;
then it will terminate.

The following screenshot shows the end result of the previous code. As you can see, there is
a huge difference (almost ten times less) when depth and color frame syncing is enabled.

See also
 f The Reading and showing a frame from the image sensor (color/IR) recipe in

Chapter 3, Using Low-level Data

 f The Reading and showing a frame from the depth sensor recipe in Chapter 3,
Using Low-level Data

 f The Overlaying the depth frame over the image frame recipe

Chapter 4

189

Overlaying the depth frame over the image
frame

The depth and color streams are from two different sensors; because of the difference in
their positions in the device, they see objects from two different angles. This makes it hard
to figure out which two pixels in these two streams are related to each other in the physical
world. Fortunately, this problem is solved by OpenNI using one of its built-in methods. Using
this feature, a programmer can expect each pixel of depth to be in the same position as its
color pair. This feature is very useful for different types of projects, including, but not limited
to, generating a color point cloud.

Here, we try to show you how to overlay the depth data over the color data using this feature
of OpenNI.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe of Chapter 2, OpenNI and C++. Then configure
Visual Studio 2010 to use OpenGL with the Configuring Visual Studio 2010 to use OpenGL
recipe of Chapter 3, Using Low-level Data.

How to do it...
1. Add the following lines at the top of your source code (just below the

#include lines):
#include <math.h>
int window_w = 640;
int window_h = 480;
OniRGB888Pixel* gl_texture;
VideoStream depthSensor;
VideoStream colorSensor;
Device device;

2. Copy the ReadLastCharOfLine() and HandleStatus() functions here from the
last recipe.

3. Add the following lines of code after the definition of HandleStatus() function that
we just copied:
void gl_KeyboardCallback(unsigned char key, int x, int y)
{
 if (key == 27) // ESC Key
 {
 depthSensor.destroy();
 colorSensor.destroy();

More about Low-level Outputs

190

 device.close();
 OpenNI::shutdown();
 exit(0);
 }
 else if (key == 'R' || key == 'r')
 {
 if (device.isValid())
 if (device.getImageRegistrationMode() ==
 IMAGE_REGISTRATION_DEPTH_TO_COLOR)
 device.setImageRegistrationMode(
 IMAGE_REGISTRATION_OFF);
 else
 device.setImageRegistrationMode(
 IMAGE_REGISTRATION_DEPTH_TO_COLOR);
 }
}

void gl_IdleCallback()
{
 glutPostRedisplay();
}

void gl_DisplayCallback()
{
 if (depthSensor.isValid())
 {
 Status status = STATUS_OK;
 VideoStream* streamPointer = &depthSensor;
 int streamReadyIndex;
 status = OpenNI::waitForAnyStream(&streamPointer, 1,
 &streamReadyIndex, 500);
 if (status == STATUS_OK && streamReadyIndex == 0)
 {
 VideoFrameRef depthFrame;
 status = depthSensor.readFrame(&depthFrame);
 VideoFrameRef colorFrame;
 if (status == STATUS_OK)
 status = colorSensor.readFrame(&colorFrame);
 if (status == STATUS_OK && depthFrame.isValid() &&
 colorFrame.isValid() &&
 depthFrame.getHeight() ==
 colorFrame.getHeight()
 && depthFrame.getWidth() ==
 colorFrame.getWidth())

Chapter 4

191

 {
 // Clear the OpenGL buffers
 glClear (
 GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Setup the OpenGL viewpoint
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glOrtho(0, window_w, window_h, 0, -1.0, 1.0);

 // UPDATING TEXTURE (DEPTH & RGB888 TO RGB888)

 unsigned short maxDepth =
 depthSensor.getMinPixelValue();
 for (int y = 0; y < depthFrame.getHeight(); ++y)
 {
 DepthPixel* depthCell = (DepthPixel*)(
 (char*)depthFrame.getData() +
 (y * depthFrame.getStrideInBytes())
);
 for (int x = 0; x < depthFrame.getWidth();
 ++x, ++depthCell)
 {
 if (maxDepth < *depthCell)
 {
 maxDepth = *depthCell;
 }
 }
 }

 double resizeFactor = min(
 (window_w/(double)depthFrame.getWidth()),
 (window_h/(double)depthFrame.getHeight()));
 unsigned int texture_x =
 (unsigned int)(window_w -
 (resizeFactor * depthFrame.getWidth())) /2;
 unsigned int texture_y =
 (unsigned int)(window_h -
 (resizeFactor * depthFrame.getHeight())) /2;

 for (unsigned int y = 0;
 y < (window_h - 2 * texture_y); ++y)
 {

More about Low-level Outputs

192

 OniRGB888Pixel* texturePixel = gl_texture +
 (y + texture_y) * window_w) +
 texture_x;
 for (unsigned int x = 0;
 x < (window_w - 2 * texture_x);
 ++x, ++texturePixel)
 {
 DepthPixel* depthPixel =
 (DepthPixel*)(
 (char*)depthFrame.getData() +
 ((int)(y / resizeFactor) *
 depthFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 RGB888Pixel* colorPixel =
 (RGB888Pixel*)(
 (char*)colorFrame.getData() +
 ((int)(y / resizeFactor) *
 colorFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 if (*depthPixel != 0)
 {
 float depthValue =
 1 - ((float)*depthPixel/maxDepth);
 texturePixel->b = ceil((double)
 (colorPixel->b * depthValue));
 texturePixel->g = ceil((double)
 (colorPixel->g * depthValue));
 texturePixel->r = ceil((double)
 (colorPixel->r * depthValue));
 }
 else
 {
 texturePixel->b = 0;
 texturePixel->g = 0;
 texturePixel->r = 0;
 }
 }
 }

 // Create the OpenGL texture map
 glTexParameteri(GL_TEXTURE_2D,
 0x8191, GL_TRUE);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
 window_w, window_h, 0, GL_RGB,

Chapter 4

193

 GL_UNSIGNED_BYTE, gl_texture);

 glBegin(GL_QUADS);
 glTexCoord2f(0.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f);
 glVertex3f(0.0f, (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 1.0f);
 glVertex3f((float)window_w,
 (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 0.0f);
 glVertex3f((float)window_w, 0.0f, 0.0f);
 glEnd();

 glutSwapBuffers();
 }
 }
 }
}

4. Then locate the following lines of code:
int _tmain(int argc, _TCHAR* argv[])
{

5. Write the following code snippet below the preceding lines of code:
 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");

 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Opening first device ...\r\n");
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 printf("Checking if stream is supported ...\r\n");
 if (!device.hasSensor(SENSOR_DEPTH))
 {
 printf("Stream not supported by this device.\r\n");
 return 1;

More about Low-level Outputs

194

 }

 printf("Asking device to create a depth stream...\r\n");
 status = depthSensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;

 VideoMode vmod;
 vmod.setFps(30);
 vmod.setPixelFormat(PIXEL_FORMAT_DEPTH_1_MM);
 vmod.setResolution(640, 480);
 status = depthSensor.setVideoMode(vmod);
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Starting stream ...\r\n");
 status = depthSensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Checking if stream is supported ...\r\n");
 if (!device.hasSensor(SENSOR_COLOR))
 {
 printf("Stream not supported by this device.\r\n");
 return 1;
 }

 printf("Asking device to create a color stream...\r\n");
 status = colorSensor.create(device, SENSOR_COLOR);
 if (!HandleStatus(status)) return 1;

 printf("Setting video mode to 640x480x30 RGB888..\r\n");
 vmod.setFps(30);
 vmod.setPixelFormat(PIXEL_FORMAT_RGB888);
 vmod.setResolution(640, 480);
 status = colorSensor.setVideoMode(vmod);
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Starting stream ...\r\n");
 status = colorSensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Enabling Depth-Image frames sync\r\n");

Chapter 4

195

 status = device.setDepthColorSyncEnabled(true);
 if (!HandleStatus(status)) return 1;

 printf("Enabling Depth to Image mapping\r\n");
 status = device.setImageRegistrationMode(
 IMAGE_REGISTRATION_DEPTH_TO_COLOR);
 if (!HandleStatus(status)) return 1;

 printf("Initializing OpenGL ...\r\n");
 gl_texture = (OniRGB888Pixel*)malloc(
 window_w * window_h * sizeof(OniRGB888Pixel));
 glutInit(&argc, (char**)argv);
 glutInitDisplayMode(
 GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
 glutInitWindowSize(window_w, window_h);
 glutCreateWindow (
 "OpenGL | OpenNI 2.x CookBook Sample");
 glutKeyboardFunc(gl_KeyboardCallback);
 glutDisplayFunc(gl_DisplayCallback);
 glutIdleFunc(gl_IdleCallback);
 glDisable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);
 printf("Starting OpenGL rendering process ...\r\n");
 printf("Press R to toggle "
 "depth to color registration.\r\n");
 glutMainLoop();

How it works...
Just as with the other recipes of Chapter 3, Using Low-level Data, that use OpenGL, this
chapter too has a number of known functions and variables, such as window_w and
window_h, to keep the size of the texture and the default size of the window, along with
gl_texture to keep the data of the generated texture and device to let us access the
device object from OpenNI. But instead of one variable of type openni::VideoStream,
we have two here, one for the depth stream and another for the color stream, because we
want to use them both.

Apart from the variables, the ReadLastCharOfLine(), HandleStatus(),
gl_KeyboardCallback(), gl_IdleCallback(), and gl_DisplayCallback()
functions are also available, just as in the previous recipes, with almost the same
code. The only major difference in the body of these functions can be seen in the
gl_KeyboardCallback() and gl_DisplayCallback() functions.

More about Low-level Outputs

196

Starting with gl_KeyboardCallback(), we can clearly see that, except checking for
the Esc key, we have another condition for the R or r key too, which is the primary code
of this recipe:

 if (device.isValid())
 if (device.getImageRegistrationMode() ==
 IMAGE_REGISTRATION_DEPTH_TO_COLOR)
 device.setImageRegistrationMode(
 IMAGE_REGISTRATION_OFF);
 else
 device.setImageRegistrationMode(
 IMAGE_REGISTRATION_DEPTH_TO_COLOR);

In the previous code, we first check if the device object is valid and, if so, we try to get
the current status of the image registration mode by calling the openni::Device::ge
tImageRegistrationMode() method. The return value of this method is of the type
openni::ImageRegistrationMode; it indicates the current active image registration
mode that now this enum has only two options: IMAGE_REGISTRATION_DEPTH_TO_COLOR
and IMAGE_REGISTRATION_OFF. Then we check if the current active mode is depth to
color, and if so, we set it to off by calling openni::Device::setImageRegistrationMo
de() with IMAGE_REGISTRATION_OFF as an argument. But if it isn't so, we set the depth to
color mode to active. In this way, we can toggle the active mode each time the user presses
the R or r key.

Then we have the gl_DisplayCallback() function. In this function, we merged code from
both the Reading and showing a frame from the image sensor (color/IR) and Reading and
showing a frame from the depth sensor recipes of Chapter 3, Using Low-level Data.

First we check if both depthSensor and colorSensor are valid. Then we wait for a frame
in the depth stream to become available and read it. Just after that, we do the same for the
color stream through the following code snippet:

 if (depthSensor.isValid() && colorSensor.isValid())
 {
 Status status = STATUS_OK;
 VideoStream* streamPointer = &depthSensor;
 int streamReadyIndex;
 status = OpenNI::waitForAnyStream(&streamPointer, 1,
 &streamReadyIndex, 500);
 if (status == STATUS_OK && streamReadyIndex == 0)
 {
 VideoFrameRef depthFrame;
 status = depthSensor.readFrame(&depthFrame);
 VideoFrameRef colorFrame;
 if (status == STATUS_OK)
 status = colorSensor.readFrame(&colorFrame);

Chapter 4

197

If everything is correct, especially if the width and height of the depth and color frames are the
same (because we don't want to calculate the resize factor twice), we can continue as follows:

 if (status == STATUS_OK &&
 depthFrame.isValid() &&
 colorFrame.isValid() &&
 depthFrame.getHeight() == colorFrame.getHeight()
 && depthFrame.getWidth() == colorFrame.getWidth())
 {

Then, just as we did in the recipes of Chapter 3, Using Low-level Data, we need to clean
OpenGL buffer and set its viewpoint and camera location here as well.

After this, we calculate the maximum available depth's value.

Then we need to calculate the resize factor and padding of our texture. You can guess from
the similarities in the process explained in the recipes to Chapter 3, Using Low-level Data, that
the next thing to do is to loop through all the pixels in the texture buffer and convert and copy
the data from the frame to it. This is true, but this time we want to create each pixel based on
two pixels from two different sources. So, we need to find a way to merge them in such a way
that it can show you how the registration mode feature is useful. So, we decided to make the
color pixels darker depending on their distance in the physical world:

 for (unsigned int y = 0;
 y < (window_h - 2 * texture_y); ++y)
 {
 OniRGB888Pixel* texturePixel = gl_texture +
 ((y + texture_y) * window_w) + texture_x;
 for (unsigned int x = 0;
 x < (window_w - 2 * texture_x);
 ++x, ++texturePixel)
 {
 DepthPixel* depthPixel =
 (DepthPixel*)(
 (char*)depthFrame.getData() +
 ((int)(y / resizeFactor) *
 depthFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 RGB888Pixel* colorPixel =
 (RGB888Pixel*)(
 (char*)colorFrame.getData() +
 ((int)(y / resizeFactor) *
 colorFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 if (*depthPixel != 0)
 {

More about Low-level Outputs

198

 float depthValue =
 1 - ((float)*depthPixel / maxDepth);
 texturePixel->b = ceil((double)
 (colorPixel->b * depthValue));
 texturePixel->g = ceil((double)
 (colorPixel->g * depthValue));
 texturePixel->r = ceil((double)
 (colorPixel->r * depthValue));
 }
 else
 {
 texturePixel->b = 0;
 texturePixel->g = 0;
 texturePixel->r = 0;
 }
 }
 }

As you can see, we have texturePixel as a pixel from our texture buffer and depthPixel
and colorPixel as related pixels from the depth and color frames. We need to merge the
data from depthPixel and colorPixel and save it in texturePixel. But first, we need
to make sure depthPixel is not 0 because, if so, the pixel is in shadow and we can leave
this pixel black. But if there is a valid value for this pixel, check how near this pixel is to the
device relative to the depth of the nearest pixel (maxDepth as we calculated before), multiply
it to each color of colorPixel, and save the result in texturePixel. With this code, we
have nearby objects with the same color that they are in colorPixel, and as they get farther
away, they become darker.

Shadow: Places that have no depth data. These places (pixels) are those
where laser projector fails to reach or where IR CMOS fails to capture..

 if (*depthPixel != 0)
 {
 float depthValue =
 1 - ((float)*depthPixel / maxDepth);
 texturePixel->b = ceil((double)
 (colorPixel->b * depthValue));
 texturePixel->g = ceil((double)
 (colorPixel->g * depthValue));
 texturePixel->r = ceil((double)
 (colorPixel->r * depthValue));
 }
 else
 {
 texturePixel->b = 0;
 texturePixel->g = 0;
 texturePixel->r = 0;
 }

Chapter 4

199

Apart from these two loops, we have nothing new in this function and everything is like
the earlier recipes. You can read more in the Initializing and preparing OpenGL recipe of
Chapter 3, Using Low-level Data.

Step 5 is about the main function. The only differences that you can see here when compared
to the earlier recipes are the new lines that we added right after defining and starting the
color and depth's openni::Videostream object to enable the frame sync feature:

 printf("Enabling Depth-Image frames sync\r\n");
 status = device.setDepthColorSyncEnabled(true);
 if (!HandleStatus(status)) return 1;

Then we enable depth to color registration:

 printf("Enabling Depth to Image mapping\r\n");
 status = device.setImageRegistrationMode(
 IMAGE_REGISTRATION_DEPTH_TO_COLOR);
 if (!HandleStatus(status)) return 1;

And of course, a printf() function call is done to print information about how to work with
this app for the user.

Let's take a look at how this app works. Note that the left-hand side picture has both
depth and image data exactly in the same place, unlike the right-hand side picture that
has significant displacement.

More about Low-level Outputs

200

See also
 f The Reading and showing a frame from the image sensor (color/IR) recipe in

Chapter 3, Using Low-level Data

 f The Reading and showing a frame from the depth sensor recipe in Chapter 3,
Using Low-level Data

 f The Syncing image and depth sensors to read new frames from both streams at
the same time recipe

Converting the depth unit to millimetre
Until now, we have used the data of the depth stream relatively without knowing its real-world
units; in this recipe, however, we are going to show you how it is possible to convert depth
data into millimetre units. This could be used for generating point cloud, calculating distance,
and so on.

First we try to find the depth value of the center pixel in the depth frame and then use
the openni::CoordinateConverter class to convert this value into a real-world
millimetre unit.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe of Chapter 2, OpenNI and C++.

How to do it...
1. Add the following lines at the top of your source code (just below the #include lines):

#include <conio.h>

2. Copy the ReadLastCharOfLine() and HandleStatus() functions here from the
last recipe.

3. Then locate the following lines of code:
int _tmain(int argc, _TCHAR* argv[])
{

4. Write the following code snippet below the preceding lines of code:
 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");

Chapter 4

201

 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Opening first device ...\r\n");
 Device device;
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 printf("Checking if stream is supported ...\r\n");
 if (!device.hasSensor(SENSOR_DEPTH))
 {
 printf("Stream not supported by this device.\r\n");
 return 1;
 }
 VideoStream depthSensor;
 printf("Asking device to create a depth stream...\r\n");
 status = depthSensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;

 printf("Starting stream ...\r\n");
 status = depthSensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Press any key to exit ...\r\n");
 while (true)
 {
 if (kbhit())
 break;
 VideoFrameRef newFrame;
 status = depthSensor.readFrame(&newFrame);
 if (status == STATUS_OK && newFrame.isValid())
 {
 DepthPixel* centerPixel =
 (DepthPixel*)((char*)newFrame.getData() +
 (newFrame.getHeight() *
 newFrame.getStrideInBytes() / 2))
 + (newFrame.getWidth() / 2);
 float wX, wY ,wZ;
 status = CoordinateConverter::convertDepthToWorld(
 depthSensor,

More about Low-level Outputs

202

 (float)(newFrame.getWidth() / 2),
 (float)(newFrame.getHeight() / 2),
 (float)(*centerPixel),
 &wX, &wY, &wZ);
 if (!HandleStatus(status)) return 1;
 printf("Center Pixel's distance is %gmm "
 "located at %gmmx%gmm\r\n",
 wZ, wX, wY);
 }
 Sleep(100);
 }
 depthSensor.destroy();
 OpenNI::shutdown();
 return 0;

How it works...
In the second step, we again defined the ReadLastCharOfLine() and HandleStatus()
functions, as we did in all the earlier recipes, to handle user inputs and OpenNI errors.
Also, we used conio.h as we had in the first step.

Our main code starts in step 4 where we begin with initializing OpenNI, opening the first
acceptable device, creating an openni::VideoStream for the depth sensor, and starting it.

Now we need to read data and, as always, a while loop is a good idea for starting this
operation. The first line of our while loop will check if any key is pressed. If so, we will
exit the loop:

 while (true)
 {
 if (kbhit())
 break;

After that, we have code for reading a new frame from the depth sensor by calling openni::V
ideoStream::readFrame() and creating a pointer to the frame's center pixel value:

 VideoFrameRef newFrame;
 status = depthSensor.readFrame(&newFrame);
 if (status == STATUS_OK && newFrame.isValid())
 {
 DepthPixel* centerPixel =
 (DepthPixel*)((char*)newFrame.getData() +
 (newFrame.getHeight() *
 newFrame.getStrideInBytes() / 2))
 + (newFrame.getWidth() / 2);

Chapter 4

203

As you can see, for calculating the position of this pixel in the buffer, we used openni::Vid
eoFrameRef::getHeight() / 2 and openni::VideoFrameRef::getWidth() / 2.
Also, we used openni::VideoFrameRef::getStrideInBytes() for getting the number
of bytes per row of pixels.

Now that we have the location and value of our preferred pixel, we can convert its data
into a millimetre unit using the openni::CoordinateConverter::convertDepth
ToWorld() method. This method accepts a number of arguments, including the depth
openni::VideoStream, the position of the pixel, the value of the pixel, and the two
pointers to be filled by the calculated values. The return value of this method is of the
type openni::Status and shows whether the operation ended successfully:

 float wX, wY ,wZ;
 status = CoordinateConverter::convertDepthToWorld(
 depthSensor,
 (float)(newFrame.getWidth() / 2),
 (float)(newFrame.getHeight() / 2),
 (float)(*centerPixel),
 &wX, &wY, &wZ);
 if (!HandleStatus(status)) return 1;
 printf("Center Pixel's distance is %gmm "
 "located at %gmmx%gmm\r\n",
 wZ, wX, wY);

We already mentioned that the position of the center pixel is openni::VideoFrameRef:
:getHeight() / 2 and openni::VideoFrameRef::getWidth() / 2 and that the
data of this pixel is stored in the centerPixel variable. We also defined three float variables
named wX, wY, and wZ for storing the position of the requested pixel in the real-world
environment. Please note that the values of wX and wY are relative to the center of
the screen and so, in our example, they are both always 0.

The value of wZ is equal to *centerPixel when the pixel format is
PIXEL_FORMAT_DEPTH_1_MM because the value of centerPixel
is actually in millimetres itself. But it is highly recommended to use this
method whenever any other pixel format is used.

In the end, we wait for 100 milliseconds and then start from the top of the loop again.

 Sleep(100);

But if any key is pressed and the loop ends, we need to release all the resources before
ending the process's execution:

 depthSensor.destroy();
 OpenNI::shutdown();

More about Low-level Outputs

204

The following screenshot shows the output of this application:

There's more...
It is possible to reverse the converting operation and convert the depth pixels to millimetre
using the openni::CoordinateConverter::convertWorldToDepth() method.
This method accepts almost the same arguments as its sibling but in a different order.
An example follows:

 float dX, dY ,dZ;
 status = CoordinateConverter::convertWorldToDepth(
 depthSensor,
 wX, wY, wZ,
 &dX, &dY, &dZ);
 if (!HandleStatus(status)) return 1;

See also
 f The Reading and showing a frame from the depth sensor recipe in Chapter 3,

Using Low-level Data

Chapter 4

205

Retrieving the color of the nearest point
without depth over color registration

Let's say we want to retrieve the color of a pixel from its depth position but don't want
to register the whole depth frame to the color frame. In this case, we can use the
openni::CoordinateConverter class to get the position of the related depth pixel
in the color frame; then, using the returned coordinates, we can get the color of this pixel.
In this recipe, we try to find the nearest pixel in the depth frame and then show the color
of this pixel from the color frame.

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe of Chapter 2, OpenNI and C++.

How to do it...
1. Add the following line at the top of your source code (just below the #include lines):

#include <conio.h>

2. Copy the ReadLastCharOfLine() and HandleStatus() functions here from the
last recipe.

3. Then locate the following lines of code:
int _tmain(int argc, _TCHAR* argv[])
{

4. Write the following code snippet below the preceding lines of code:
 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");

 status = OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Opening first device ...\r\n");
 Device device;
 status = device.open(ANY_DEVICE);
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

More about Low-level Outputs

206

 printf("Checking if stream is supported ...\r\n");
 if (!device.hasSensor(SENSOR_DEPTH))
 {
 printf("Stream not supported by this device.\r\n");
 return 1;
 }
 VideoStream depthSensor;
 printf("Asking device to create a depth stream...\r\n");
 status = depthSensor.create(device, SENSOR_DEPTH);
 if (!HandleStatus(status)) return 1;

 printf("Setting video mode to 640x480x30 Depth...\r\n");
 VideoMode vmod;
 vmod.setFps(30);
 vmod.setPixelFormat(PIXEL_FORMAT_DEPTH_1_MM);
 vmod.setResolution(640, 480);
 status = depthSensor.setVideoMode(vmod);
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Starting stream ...\r\n");
 status = depthSensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Checking if stream is supported ...\r\n");
 if (!device.hasSensor(SENSOR_COLOR))
 {
 printf("Stream not supported by this device.\r\n");
 return 1;
 }
 VideoStream colorSensor;
 printf("Asking device to create a color stream...\r\n");
 status = colorSensor.create(device, SENSOR_COLOR);
 if (!HandleStatus(status)) return 1;

 printf("Setting video mode to 640x480x30 RGB ...\r\n");
 vmod.setFps(30);
 vmod.setPixelFormat(PIXEL_FORMAT_RGB888);
 vmod.setResolution(640, 480);
 status = colorSensor.setVideoMode(vmod);
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

Chapter 4

207

 printf("Starting stream ...\r\n");
 status = colorSensor.start();
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");

 printf("Enabling Frame Sync ...\r\n");
 status = device.setDepthColorSyncEnabled(true);
 if (!HandleStatus(status)) return 1;
 printf("Press any key to exit ...\r\n");
 while (true)
 {
 if (kbhit())
 break;
 VideoFrameRef depthFrame, colorFrame;
 status = depthSensor.readFrame(&depthFrame);
 if (status == STATUS_OK && depthFrame.isValid())
 {
 DepthPixel* nearDepthPixel;
 int nearDepthX, nearDepthY;
 unsigned short maxDepth =
 depthSensor.getMinPixelValue();
 for (int y = 0; y < depthFrame.getHeight(); ++y)
 {
 DepthPixel* depthCell = (DepthPixel*)(
 (char*)depthFrame.getData() +
 (y * depthFrame.getStrideInBytes())
);
 for (int x = 0; x < depthFrame.getWidth();
 ++x, ++depthCell)
 if (maxDepth < *depthCell)
 {
 maxDepth = *depthCell;
 nearDepthPixel = depthCell;
 nearDepthX = x;
 nearDepthY = y;
 }
 }

 status = colorSensor.readFrame(&colorFrame);
 if (status == STATUS_OK && colorFrame.isValid())
 {
 int cX, cY;
 status =
 CoordinateConverter::convertDepthToColor(

More about Low-level Outputs

208

 depthSensor,
 colorSensor,
 (float)(nearDepthX),
 (float)(nearDepthY),
 (float)(*nearDepthPixel),
 &cX, &cY);
 if (!HandleStatus(status)) return 1;
 RGB888Pixel* nearColorPixel = (RGB888Pixel*)(
 (char*)colorFrame.getData() +
 (cY * colorFrame.getStrideInBytes())) +
 (cX);
 printf("Nearest Pixel's color is %d,%d,%d\r\n",
 nearColorPixel->r,
 nearColorPixel->g,
 nearColorPixel->b);
 }
 }
 Sleep(100);
 }
 depthSensor.destroy();
 OpenNI::shutdown();
 return 0;

How it works...
In the second step, we again defined the ReadLastCharOfLine() and HandleStatus()
functions, as we did in all the earlier recipes, to handle user inputs and OpenNI errors.
Also, we used conio.h as we had done in the first step.

Our main code starts in step 4 where we begin with first initializing OpenNI, then opening the
first acceptable device, then creating an openni::VideoStream for the depth sensor and
another for the color sensor, and finally starting them both.

Just before starting the process of reading the data, we enabled frame syncing to make sure that
there is the smallest possible difference between the two openni::VideoStream classes.

 status = device.setDepthColorSyncEnabled(true);
 if (!HandleStatus(status)) return 1;

Then we have a while loop again, and the first thing that we do in its body is check if any key
is pressed to exit this loop:

 while (true)
 {
 if (kbhit())
 break;

Chapter 4

209

The next step is to read a depth frame from the depth stream. If the new frame is valid,
we try to find the nearest pixel to device in it:

 status = depthSensor.readFrame(&depthFrame);
 if (status == STATUS_OK && depthFrame.isValid())
 {
 DepthPixel* nearDepthPixel;
 int nearDepthX, nearDepthY;
 unsigned short maxDepth =
 depthSensor.getMinPixelValue();
 for (int y = 0; y < depthFrame.getHeight(); ++y)
 {
 DepthPixel* depthCell = (DepthPixel*)(
 (char*)depthFrame.getData() +
 (y * depthFrame.getStrideInBytes())
);
 for (int x = 0; x < depthFrame.getWidth();
 ++x, ++depthCell)
 if (maxDepth < *depthCell)
 {
 maxDepth = *depthCell;
 nearDepthPixel = depthCell;
 nearDepthX = x;
 nearDepthY = y;
 }
 }

As you can see, we looped through all the pixels of the depth frame using two for loops,
and extracted the position and value of the nearest pixel. nearDepthX and nearDepthY
represent the position of this pixel and nearDepthPixel contains its value.

As we need to have a color frame for use later, it is time to read it:

 status = colorSensor.readFrame(&colorFrame);
 if (status == STATUS_OK && colorFrame.isValid())
 {

Now we have everything, the position and value of the nearest depth pixel as well as both the
color and depth frames. So, we can call openni::CoordinateConverter::convertDept
hToColor() to find out which pixel from the color frame is related to our nearest depth pixel.
This method accepts two openni::VideoStream as the first parameters and the position
and value of the depth pixel as the next parameters. The last two parameters are pointers to
place of related color pixel that will be filled during the execution of this method:

 int cX, cY;
 status = CoordinateConverter::convertDepthToColor(

More about Low-level Outputs

210

 depthSensor,
 colorSensor,
 (float)(nearDepthX),
 (float)(nearDepthY),
 (float)(*nearDepthPixel),
 &cX, &cY);
 if (!HandleStatus(status)) return 1;

So now we have the position of our pixel in the color frame and can display its color values to
the user:

 RGB888Pixel* nearColorPixel = (RGB888Pixel*)(
 (char*)colorFrame.getData() +
 (cY * colorFrame.getStrideInBytes())) + (cX);
 printf("Nearest Pixel's color is %d,%d,%d\r\n",
 nearColorPixel->r,
 nearColorPixel->g,
 nearColorPixel->b);

Before the end of the while loop, we have a 100-millisecond freeze and then go for the
next frames:

 Sleep(100);

And as always, before ending the application, we need to release the resources.

See also
 f The Reading and showing a frame from the depth sensor recipe in Chapter 3,

Using Low-level Data

 f The Overlaying the depth frame over the image frame recipe

 f The Converting the depth unit to millimetre recipe

Enabling/disabling auto exposure and auto
white balance

Image sensor has built-in auto exposure and auto white balance. In this recipe, we are going
to show you how we can change the image sensor's settings to change the active state of
these features.

Chapter 4

211

Getting ready
Create a project in Visual Studio 2010 and prepare it for working with OpenNI using the
Creating a project in Visual Studio 2010 recipe of Chapter 2, OpenNI and C++.

Then, copy the code from the Reading and showing a frame from the image sensor (color/IR)
recipe of Chapter 3, Using Low-level Data, to this project.

How to do it...
1. Locate the following lines of code:

void gl_KeyboardCallback(unsigned char key, int x, int y)
{

2. Replace any code inside this function with the following code snippet:
 if (key == 27) // ESC Key
 {
 selectedSensor.destroy();
 device.close();
 OpenNI::shutdown();
 exit(0);
 }
 else if (key == 'C' || key == 'c')
 {
 if (device.isValid())
 {
 printf("\r\n-->Setting active sensor to COLOR\r\n");
 SetActiveSensor(SENSOR_COLOR, &device);
 }
 }
 else if (key == 'I' || key == 'i')
 {
 if (device.isValid())
 {
 printf("\r\n-->Setting active sensor to IR\r\n");
 SetActiveSensor(SENSOR_IR, &device);
 }
 }
 else if (key == 'E' || key == 'e') // E or e key
 {
 if (selectedSensor.isValid() &&
 selectedSensor.getSensorInfo().getSensorType() ==
 SENSOR_COLOR)
 {

More about Low-level Outputs

212

 CameraSettings cs =
 *(selectedSensor.getCameraSettings());
 cs.setAutoExposureEnabled(
 !cs.getAutoExposureEnabled());
 printf("Auto Exposure %s\r\n",
 (cs.getAutoExposureEnabled() ?
 "Activated" : "Deactivated"));
 }
 }
 else if (key == 'W' || key == 'w') // W or w key
 {
 if (selectedSensor.isValid() &&
 selectedSensor.getSensorInfo().getSensorType() ==
 SENSOR_COLOR)
 {
 CameraSettings cs =
 *(selectedSensor.getCameraSettings());
 cs.setAutoWhiteBalanceEnabled(
 !cs.getAutoWhiteBalanceEnabled());
 printf("Auto White Balance %s\r\n",
 (cs.getAutoWhiteBalanceEnabled() ?
 "Activated" : "Deactivated"));
 }
 }

3. Then locate the following lines of code:
int _tmain(int argc, _TCHAR* argv[])
{

4. Add the preceding lines of code at the end of this function:
printf("Press E to toggle exposure or W to toggle white balance");

How it works...
As you can see, there are no big changes in this recipe when compared to the Reading and
showing a frame from the image sensor (color/IR) recipe of Chapter 3, Using Low-level Data,
which we used as the base for this project. The only function that needs to be changed is
gl_KeyboardCallback() that is responsible for the keyboard's key press events.

We alter this function to add two more functionalities to it: one is for toggling the camera's
auto exposure when the E or e key is pressed and the other is for toggling the camera's auto
white balance when the W or w key is pressed.

Chapter 4

213

The first part of enabling and disabling the camera's auto exposure starts with a condition
to see if selectedSensor is valid, and if it is a color stream (because this feature is only
available for color sensors). If both the conditions were correct, we need to get the current
status of the camera's auto exposure and then set it to a negative value. But both of these
operations cannot be done directly with the openni::VideoStream object. We need to have
openni::CameraSettings of our openni::VideoStream to retrieve and change this
feature. This can be done with the openni::VideoStream.getCameraSettings() method:

 CameraSettings cs =
 *(selectedSensor.getCameraSettings());

Now that we have access to openni::CameraSettings, we can toggle this feature using
the openni::CameraSettings::getAutoExposureEnabled() and openni::Camera
Settings::setAutoExposureEnabled() methods:

 cs.setAutoWhiteBalanceEnabled(
 !cs.getAutoWhiteBalanceEnabled());

Then we print the new state of the camera's auto exposure feature:

 printf("Auto Exposure %s\r\n",
 (cs.getAutoExposureEnabled() ?
 "Activated" : "Deactivated"));

We do almost the same thing for toggling the auto white balance feature too, checking
if everything is valid and the selected sensor is the color sensor, and retrieving
openni::CameraSettings of our openni::VideoStream. Then by using the openni:
:CameraSettings::getAutoWhiteBalanceEnabled() and openni::CameraSetti
ngs::setAutoWhiteBalanceEnabled() methods, we get and change the active state of
this feature:

 if (selectedSensor.isValid() &&
 selectedSensor.getSensorInfo().getSensorType() ==
 SENSOR_COLOR)
 {
 CameraSettings cs =
 *(selectedSensor.getCameraSettings());
 cs.setAutoWhiteBalanceEnabled(
 !cs.getAutoWhiteBalanceEnabled());
 printf("Auto White Balance %s\r\n",
 (cs.getAutoWhiteBalanceEnabled() ?
 "Activated" : "Deactivated"));
 }

More about Low-level Outputs

214

Some screenshots to compare the difference between the enabled and disabled states of
these two camera settings are as follows:

Chapter 4

215

There's more...
Starting with OpenNI 2.2, it is possible to set Gain and Exposure values manually. A list of
related methods to do so is as follows:

 f openni::CameraSettings::getExposure(): This method returns the current
value of Exposure in int.

 f openni::CameraSettings::setExposure(): This method sets a new value for
Exposure. It accepts an argument of the type int and returns an openni::Status
indicating the success of the operation.

 f openni::CameraSettings::getGain(): This method returns the current value
of Gain in int.

 f openni::CameraSettings::setGain(): This method sets a new value for Gain.
It accepts an argument of the type int and returns an openni::Status indicating
the success of the operation.

See also
 f The Reading and showing a frame from the image Sensor (color / IR) recipe in

Chapter 3, Using Low-level Data

5
NiTE and User Tracking

In this chapter, we will cover the following recipes:

 f Getting a list of all the active users
 f Identifying and coloring users' pixels in depth map
 f Reading users' bounding boxes and center of mass
 f Event-based reading of users' data

Introduction
Until now we talked about OpenNI and learned how to use it for accessing devices and their
raw outputs. But from this chapter onwards, we will cover NiTE, which is a middleware based
on OpenNI and more focused on natural interactions. NiTE is a product of the same team as
OpenNI and acts as middleware above the OpenNI framework with the purpose of providing
more advanced outputs as a basic natural interaction interface for developers.

In this chapter, we will show you how to use the nite::UserTracker class to get the list of
all active users in the scene and get their location and size in OpenNI's depth stream, along
with the centre of visual mass of each user.

The nite::NiTE object
nite::NiTE, just as with openni::OpenNI, is a static class and a starting point when
working with NiTE.

nite::NiTE contains three methods: nite::NiTE::initialize(),
nite::NiTE::shutdown(), and nite::NiTE::getVersion(). We are not sure what
nite::NiTE::initialize() actually does because NiTE is a closed source project; however,
one of its jobs is to call openni::OpenNI::initialize() so that developers don't need to
initialize OpenNI and NiTE separately. We can also assume that nite::NiTE::shutdown()is
used to free allocated memory and call openni::OpenNI::shutdown() at the end.

NiTE and User Tracking

218

Except for the preceding methods, we don't have any use for the nite::NiTE object.

The nite::UserTracker object
One of the important classes in NiTE is nite::UserTracker. This class is responsible for
getting any information relative to users and their bodies. nite::UserTracker works like
openni::VideoStream and has similar methods. However, it is actually not a sensor or a
direct output of any physical unit. nite::UserTracker gives us what NiTE recognized from
a depth stream of OpenNI. In this chapter, we are going to use only one of the methods of this
class; more methods of this class will be covered in the next chapter:

 f nite::UserTracker::readFrame(): This method will wait for a new frame to
become available and return the related nite::UserTrackerFrameRef object
or return the latest unread frame

The nite::UserTrackerFrameRef object
nite::UserTrackerFrameRef is the object containing any available data about
the current users. This class is used along with nite::UserTracker to give us
a user-based view of a scene captured by the depth sensor. To get access to the
latest produced nite::UserTrackerFrameRef object, you need to call the
nite::UserTracker::readFrame() method.

The nite::UserMap object
The nite::UserMap class is actually a bitmap data container or, in other words, a
big array that has width x height x 2 bytes of data and is of the same size as the depth
frame. But unlike the depth frame, there is no data about depth in these uint16 pixels of
nite::UserMap. The values in nite::UserMap are the ID of a user to whom the pixel
belongs, or the number zero if that pixel belongs to no user.

The nite::UserMap class has the following four methods:

 f nite::UserMap::getWidth(): The returned value is an int value showing
the width of nite::UserMap. This value is the same as the underlying depth
frame's width.

 f nite::UserMap::getHeight(): The returned value is an int value showing
the height of nite::UserMap. This value is the same as the underlying depth
frame's height.

 f nite::UserMap::getPixels(): This returns a pointer to the first pixel of data.

 f nite::UserMap::getStride(): The returned value is in type int and shows the
number of bytes you need to add to the first pixel of a row to get the first pixel of the
next row. Actually, it is the width of a row in bytes.

Chapter 5

219

Each nite::UserTrackerFrameRef object contains a nite::UserMap object that can be
retrieved using the nite::UserTrackerFrameRef::getUserMap() method.

The nite::UserData object
nite::UserData is a class representing a user. In another words,
nite::UserTrackerFrameRef gives you a nite::UserData object for
each user it has recognized.

nite::UserData has a number of methods; we are going to use some in this chapter.
These are as follows:

 f nite::UserData::getCenterOfMass(): This method returns a
nite::Point3f value that shows the center of visual mass (also known as
COM and center of gravity) of a user. A nite::Point3f value is a structure
of three float fields that are used to show a point in a 3D space.

 f nite::UserData::getBoundingBox(): The return type in this method is the
nite::BoundingBox object that contains two nite::Point3f fields, one for
minimum coordinates and one for maximum coordinates. These two values can be
used for calculating the 3D position and size of a user.

 f nite::UserData::getId(): This method returns an integer showing a unique ID
for this user. This ID is only guaranteed to be unique at the current time and may be
used later again for someone else.

 f nite::UserData::isLost(): This method returns a bool type value that can be
used to indicate whether this user was not visible enough, that NiTE decided to drop
him in the next frame of data.

 f nite::UserData::isNew(): This method returns a bool type value that indicates
whether this is the first appearance of a user.

 f nite::UserData::isVisible(): This method returns a bool type value that
gives us the visibility state of a user. A user can be invisible but yet not lost.

You can get access to a list (array) of all the nite::UserData objects by calling the
nite::UserTrackerFrameRef::getUsers() method.

Getting a list of all the active users
In this recipe, we are going to cover one of the most basic features of NiTE—recognizing users
in the scene based on the depth sensor's data.

Our main goal in this recipe is to present the nite::UserTracker and
nite::UserTrackerFrameRef objects and to show you a basic way to
retrieve and use them.

NiTE and User Tracking

220

Getting ready
Create a project in Visual Studio and prepare it for working with OpenNI and NiTE using the
Create a project in Visual Studio 2010 recipe in Chapter 2, OpenNI and C++.

How to do it...
1. Add the following line to the top of your source code (just below the #include lines):

#include<conio.h>

2. Add the ReadLastCharOfLine() and HandleStatus() functions from previous
recipes next to the preceding line.

3. Add the following lines next to the definition of the ReadLastCharOfLine() and
HandleStatus() functions:
bool HandleStatus(nite::Status status)
{
 return HandleStatus((openni::Status)status);
}

4. Then locate this line:
int _tmain(int argc, _TCHAR* argv[])
{

5. Then add the following lines inside the preceding function:
 Status status = STATUS_OK;
 printf("Scanning machine for devices and loading "
 "modules/drivers ...\r\n");

 status = openni::OpenNI::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Completed.\r\n");

 printf("Opening first device ...\r\n");
 openni::Device device;
 status = device.open(openni::ANY_DEVICE);
 if (!HandleStatus(status)) return 1;
 printf("%s Opened, Completed.\r\n",
 device.getDeviceInfo().getName());

 nite::Status niStatus = nite::STATUS_OK;
 niStatus = nite::NiTE::initialize();
 if (!HandleStatus(niStatus)) return 1;
 printf("Done\r\n");

 printf("Creating user tracker ...\r\n");

Chapter 5

221

 nite::UserTracker uTracker;
 niStatus = uTracker.create(&device);
 if (!HandleStatus(niStatus)) return 1;
 printf("Reading data from user tracker ...\r\n");
 while(!kbhit())
 {
 nite::UserTrackerFrameRef newFrame;
 niStatus = uTracker.readFrame(&newFrame);
 if (!HandleStatus(niStatus) ||
 !newFrame.isValid()) return 1;
 system("cls");
 const nite::Array<nite::UserData>& users =
 newFrame.getUsers();
 for (int i = 0; i < users.getSize(); ++i)
 {
 printf("User #%d %s \r\n",
 users[i].getId(),
 (users[i].isVisible()) ? "is Visible" :
 "is not Visible");
 }
 }

 nite::NiTE::shutdown();
 openni::OpenNI::shutdown();
 return 0;

How it works...
We have five steps in this recipe. In the second step, we defined our functions for checking
the returned openni::Status value (named HandleStatus()) and to read the key
inputs (named ReadLastCharOfLine()). But this time we have another function too.
This new function shares the same name as our old HandleStatus() function but with the
nite::Status argument instead of openni::Status. In this new function, we convert our
nite::Status variable to openni::Status and pass it to the main function. Conversion
is theoretically possible because they are enum values and internally integer. Other than
this, we want to check if everything is working fine in our main function. For doing so, we
need to compare nite::Status with nite::STATUS_OK and openni::Status with
openni::STATUS_OK. Because both openni::STATUS_OK and nite::STATUS_OK are
equal to 0, it's logically possible to write a single function to handle them both. We are going
to use this function in other recipes from now on.

bool HandleStatus(nite::Status status)
{
 return HandleStatus((openni::Status)status);
}

NiTE and User Tracking

222

In the next step, we initialized OpenNI, opened the first device (as usual and just like other
recipes), and then we initialized NiTE:

 nite::Status niStatus = nite::STATUS_OK;
 niStatus = nite::NiTE::initialize();
 if (!HandleStatus(niStatus)) return 1;

You don't need to call openni:OpenNI::initialize(), or define
an openni::Device variable and open the first device to use NiTE and
nite::UserTracker. Calling nite::NiTE::initialize() will
automatically call openni::OpenNI::initialize()and create a
nite::UserTracker object using nite::UserTracker::create()
without any argument, thereby, automatically opening the first device. But we
thought it is better to do it manually for the first time to show you that you can
do it this way too; if you want to select one of the devices when there is more
than one device, you actually need to do it this way.

Creating a nite::UserTracker object for our device is the next step. Refer to the
following code:

 nite::UserTracker uTracker;
 niStatus = uTracker.create(&device);
 if (!HandleStatus(niStatus)) return 1;

Then we will put our application into a while loop until a user presses any key. In this while
loop, we are going to read data (known as frames) from nite::UserTracker and show
visible and nonvisible recognized users:

 while(!_kbhit())
 {
 nite::UserTrackerFrameRef newFrame;
 niStatus = uTracker.readFrame(&newFrame);
 if (!HandleStatus(niStatus) ||
 !newFrame.isValid()) return 1;
 system("cls");
 const nite::Array<nite::UserData>& users =
 newFrame.getUsers();
 for (int i = 0; i < users.getSize(); ++i)
 {
 printf("User #%d %s \r\n",
 users[i].getId(),
 (users[i].isVisible()) ? "is Visible" :
 "is not Visible");
 }
 }

Chapter 5

223

As you can see in the preceding code, we used nite::UserTrackerFrameRef to read data
from nite::UserTracker and then used nite::UserTrackerFrameRef::getUsers()
to get an array containing all the recognized users.

Then using a simple for loop, we printed some information about each user, including their
ID and visibility status to the console.

Note that the returned value type of nite::UserTrackerFrameRef::getUsers() is
an array of nite::UserData objects. Then we used two methods of nite::UserData,
nite::UserData::getId() and nite::UserData::isVisible() to get the ID and
visibility state of each user.

That's all; following is the output of our application:

See also
 f The Identifying and coloring users' pixels in a depth map recipe

 f The Reading users' bounding boxes and center of mass recipe

 f Finding the related user ID for each hand ID in Chapter 6, NiTE and Hand Tracking

NiTE and User Tracking

224

Identifying and coloring users' pixels in
depth map

In this recipe, we are going to show you how to use nite::UserMap to get the user ID for
each pixel in the depth stream. By using this information, we can change the color of pixels
belonging to one user.

Getting ready
Create a project in Visual Studio and prepare it for working with OpenNI and NiTE using the
Create a project in Visual Studio 2010 recipe in Chapter 2, OpenNI and C++. Then configure
Visual Studio to use OpenGL using the Configuring Visual Studio 2010 to use OpenGL recipe
in Chapter 4, More about Low Level Outputs.

How to do it...
1. Add these lines to the top of your source code (just below #include lines). Here we

have defined variables to be used with OpenGL along with a nite::UserTracker
variable that is going to hold a list of users and any other information about users in
all the functions.
int window_w = 640;
int window_h = 480;
OniRGB888Pixel* gl_texture;
nite::UserTracker uTracker;

2. Add the ReadLastCharOfLine() function from previous recipes next to the
preceding lines that are used to read a user's input.

3. Add the following lines next to the definition of the ReadLastCharOfLine()
function. This function is responsible for checking whether the passed
nite::Status value indicates any failure or not:
bool HandleStatus(nite::Status status)
{
 if (status == nite::STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

Chapter 5

225

4. Then we need to add some of the usual OpenGL's functions:
gl_KeyboardCallback(), which is the OpenGL keyboard callback and is
responsible for any key press in the OpenGL window. Currently, its purpose is to check
whether the Esc key is pressed to close the application. And gl_IdleCallback(),
which tells OpenGL to render the scene again when the screen becomes idle. Copy
the following code next to the definition of the HandleStatus() function:
void gl_KeyboardCallback(unsigned char key, int x, int y)
{
 if (key == 27) // ESC Key
 {
 uTracker.destroy();
 nite::NiTE::shutdown();
 exit(0);
 }
}
void gl_IdleCallback()
{
 glutPostRedisplay();
}

5. The primary part of our code is in the gl_DisplayCallback() function that you
need to define after the gl_IdleCallback() function. Add the following lines to
the source code to do so:
void gl_DisplayCallback()
{
 if (uTracker.isValid())
 {
 nite::Status niStatus = nite::STATUS_OK;
 nite::UserTrackerFrameRef usersFrame;
 niStatus = uTracker.readFrame(&usersFrame);
 if (niStatus == nite::STATUS_OK &&
 usersFrame.isValid())
 {
 // Clear the OpenGL buffers
 glClear (
 GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Setup the OpenGL viewpoint
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glOrtho(0, window_w, window_h, 0, -1.0, 1.0);

 // UPDATING TEXTURE (DEPTH 1MM TO RGB888)

NiTE and User Tracking

226

 VideoFrameRef depthFrame =
 usersFrame.getDepthFrame();

 int depthHistogram[65536];
 int numberOfPoints = 0;
 memset(depthHistogram, 0,
 sizeof(depthHistogram));
 for (int y = 0;
 y < depthFrame.getHeight(); ++y)
 {
 DepthPixel* depthCell = (DepthPixel*)(
 (char*)depthFrame.getData() +
 (y * depthFrame.getStrideInBytes())
);
 for (int x = 0; x < depthFrame.getWidth();
 ++x, ++depthCell)
 {
 if (*depthCell != 0)
 {
 depthHistogram[*depthCell]++;
 numberOfPoints++;
 }
 }
 }

 for (int nIndex=1;
 nIndex < sizeof(depthHistogram) / sizeof(int);
 nIndex++)
 {
 depthHistogram[nIndex] +=
 depthHistogram[nIndex-1];
 }

 int colors[] = {16777215,
 14565387, 32255, 7996159, 16530175, 8373026,
 14590399, 7062435, 13951499, 55807};
 double resizeFactor = min(
 (window_w / (double)depthFrame.getWidth()),
 (window_h / (double)depthFrame.getHeight()));
 unsigned int texture_x = (unsigned int)(window_w -
 (resizeFactor * depthFrame.getWidth())) / 2;
 unsigned int texture_y = (unsigned int)(window_h -
 (resizeFactor * depthFrame.getHeight())) / 2;

Chapter 5

227

 nite::UserMap usersMap = usersFrame.getUserMap();

 for (unsigned int y = 0;
 y < (window_h - 2 * texture_y); ++y)
 {
 OniRGB888Pixel* texturePixel = gl_texture +
 ((y + texture_y) * window_w) + texture_x;
 for (unsigned int x = 0;
 x < (window_w - 2 * texture_x);
 ++x, ++texturePixel)
 {
 DepthPixel* depthPixel =
 (DepthPixel*)(
 (char*)depthFrame.getData() +
 ((int)(y / resizeFactor) *
 depthFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 nite::UserId* userPixel =
 (nite::UserId*)(
 (char*)usersMap.getPixels() +
 ((int)(y / resizeFactor) *
 usersMap.getStride())
) + (int)(x / resizeFactor);
 if (*depthPixel != 0)
 {
 float depthValue =
 (1 - ((float)depthHistogram[*depthPixel]
 / numberOfPoints));
 int userColor =
 colors[(int)*userPixel % 10];
 texturePixel->b =
 ((userColor / 65536) % 256) * depthValue;
 texturePixel->g =
 ((userColor / 256) % 256) * depthValue;
 texturePixel->r =
 ((userColor / 1) % 256) * depthValue;
 }
 else
 {
 texturePixel->b = 0;
 texturePixel->g = 0;
 texturePixel->r = 0;
 }
 }

NiTE and User Tracking

228

 }

 // Create the OpenGL texture map
 glTexParameteri(GL_TEXTURE_2D,
 0x8191, GL_TRUE); // 0x8191 = GL_GENERATE_MIPMAP
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
 window_w, window_h, 0, GL_RGB,
 GL_UNSIGNED_BYTE, gl_texture);

 glBegin(GL_QUADS);
 glTexCoord2f(0.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f);
 glVertex3f(0.0f, (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 1.0f);
 glVertex3f((float)window_w,
 (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 0.0f);
 glVertex3f((float)window_w, 0.0f, 0.0f);
 glEnd();

 glutSwapBuffers();
 }
 }
}

6. Then locate the following line:
int _tmain(int argc, _TCHAR* argv[])
{

7. Replace the code inside this function with the following code:
 nite::Status niStatus = nite::STATUS_OK;
 printf("Initializing NiTE ...\r\n");
 niStatus = nite::NiTE::initialize();

 printf("Creating a user tracker object ...\r\n");
 niStatus = uTracker.create();
 if (!HandleStatus(niStatus)) return 1;
 printf("Done.\r\n");

 printf("Initializing OpenGL ...\r\n");
 gl_texture = (OniRGB888Pixel*)malloc(
 window_w * window_h * sizeof(OniRGB888Pixel));
 glutInit(&argc, (char**)argv);
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
 glutInitWindowSize(window_w, window_h);
 glutCreateWindow ("OpenGL | OpenNI 2.x CookBook Sample");
 glutKeyboardFunc(gl_KeyboardCallback);
 glutDisplayFunc(gl_DisplayCallback);

Chapter 5

229

 glutIdleFunc(gl_IdleCallback);
 glDisable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);
 printf("Starting OpenGL rendering process ...\r\n");
 glutMainLoop();

 return 0;

How it works...
All functions are well-known if you have read the previous recipes. We just want to speak more
about our primary function in this part, which is gl_DisplayCallback().

If you look at this function, you can clearly see that we don't have the depthSensor variable
as with the previous recipes any more. We now only have a variable named uTracker. So
first of all in this function, we checked if our uTracker variable is valid and then we tried to
read a frame from it. Then we checked if the returned nite::UserTrackerFrameRef value
is valid and the reading operation has completed successfully:

 if (uTracker.isValid())
 {
 nite::Status niStatus = nite::STATUS_OK;
 nite::UserTrackerFrameRef usersFrame;
 niStatus = uTracker.readFrame(&usersFrame);
 if (niStatus == nite::STATUS_OK && usersFrame.isValid())
 {

Then we cleared the OpenGL buffer and positioned the camera as with all older recipes when
we used OpenGL. After this, we are going to calculate a histogram of the depth map. But for
doing so, we need to have access to the depth frame. Fortunately, nite::UserTrackerFra
meRef::getDepthFrame() gives us access to the related depth frame:

 VideoFrameRef depthFrame =
 usersFrame.getDepthFrame();

Note that nite::UserTracker tries to recognize users in screen using
depth stream data, so each nite::UserTrackerFrameRef object is
created from a depth openni::VideoFrameRef value. From this fact, we
can expect to have access to the underlying depth frame when working with a
user tracker frame.

We are not going to talk more about the histogram calculation process as we have already
discussed enough in the previous recipes. So let's just skip it.

NiTE and User Tracking

230

The next part is expected to be our famous double loop over all the pixels of the depth frame
and converting and copying them to the texture. But before doing it, we need to define some
variables. One is the colors array that we are going to use later to show each user in a
unique color. We defined an array of 10 colors starting with white (that means no user) and
continuing with nine colors in decimal value. From left to right: white, red, light blue, Curacao,
pink, light green, light pink, light sea green, yellow, and cyan.

 int colors[] = {16777215,
 14565387, 32255, 7996159, 16530175, 8373026,
 14590399, 7062435, 13951499, 55807};

Then we need to request our nite::UserMap object. This object lets us know which pixel
belongs to which user. So we defined a variable of type nite::UserMap named usersMap
and then filled it using nite::UserTrackerFrameRef::getUserMap():

 nite::UserMap usersMap = usersFrame.getUserMap();

After this we are going to use two for loops to loop over the width and height of the depth
frame's data as always. But this time the code in the inner loop is different (that is, the
converting and copying part). Let's take a look at the code before talking about it:

 DepthPixel* depthPixel =
 (DepthPixel*)(
 (char*)depthFrame.getData() +
 ((int)(y / resizeFactor) *
 depthFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 nite::UserId* userPixel =
 (nite::UserId*)(
 (char*)usersMap.getPixels() +
 ((int)(y / resizeFactor) *
 usersMap.getStride())
) + (int)(x / resizeFactor);
 if (*depthPixel != 0)
 {
 float depthValue =
 (1 - ((float)depthHistogram[*depthPixel]
 / numberOfPoints));
 int userColor =
 colors[(int)*userPixel % 10];
 texturePixel->b =
 ((userColor / 65536) % 256) * depthValue;
 texturePixel->g =
 ((userColor / 256) % 256) * depthValue;
 texturePixel->r =
 (userColor / 1) % 256) * depthValue;

Chapter 5

231

 }
 else
 {
 texturePixel->b = 0;
 texturePixel->g = 0;
 texturePixel->r = 0;
 }

As you can see, unlike always, here we have a userPixel variable of type
nite::UserId after our usual openni::DepthPixel variable. As you may remember,
our openni::DepthPixel variable named depthPixel is responsible for reading data
from the depth frame. Now our new userPixel variable contains the related used ID for
that pixel. We used the nite::UserMap object to extract this value:

 nite::UserId* userPixel =
 (nite::UserId*)(
 (char*)usersMap.getPixels() +
 ((int)(y / resizeFactor) *
 usersMap.getStride())
) + (int)(x / resizeFactor);

It is just like reading from a bitmap. This is because nite::UserMap is actually a bitmap
with a 16-bit-per-pixel format, storing a user's ID instead of color.

Then in the following lines, we checked whether depthPixel is 0, meaning if it is a shadow
pixel; if it isn't, we tried to use histogram data to equalize the depth value. Just after that,
we selected a color depending on the user ID from the colors array and wrote that color
to the texture:

 float depthValue =
 (1 - ((float)depthHistogram[*depthPixel]
 / numberOfPoints));
 int userColor =
 colors[(int)*userPixel % 10];
 texturePixel->b =
 ((userColor / 65536) % 256) * depthValue;
 texturePixel->g =
 ((userColor / 256) % 256) * depthValue;
 texturePixel->r =
 ((userColor / 1) % 256) * depthValue;

After these lines, there are some other OpenGL stuffs, but we have talked about them in
previous recipes.

NiTE and User Tracking

232

In the next step, which is the beginning of our program, we have the initializing process. As you
can see, there is no more openni::OpenNI::initialize() calling here. We just used
nite::NiTE::initialize(), which does the calling for us. And also we didn't select a
device this time; we just used nite::UserTracker::create() to automatically open the
first device:

 nite::Status niStatus = nite::STATUS_OK;
 printf("Initializing NiTE ...\r\n");
 niStatus = nite::NiTE::initialize();

 printf("Creating a user tracker object ...\r\n");
 niStatus = uTracker.create();
 if (!HandleStatus(niStatus)) return 1;
 printf("Done.\r\n");

The other lines are about how to configure and prepare OpenGL, starting the rendering
process that also includes reading from the nite::UserTracker.

Here is the output of our application. You can see the second user in blue color. The first user
is currently out of view, but he was visible in the color red.

Chapter 5

233

See also
 f Reading and showing a frame from the Depth Sensor in Chapter 3,

Using Low-level Data

 f The Getting a list of all the active users recipe

 f Finding the related user ID for each hand ID in Chapter 6, NiTE and Hand Tracking

Reading users' bounding boxes and center
of mass

In this recipe, we are going to expand on the preceding recipe by showing the bounding box
and the center of visual mass (COM) of a user. The bounding box of a user shows the size and
location of a user in screen and, for any user, the center of the visual mass is the center of
distribution of the pixels.

More precisely, its x position is equal to the average of all the users' pixels x position, and its y
position is equal to the average of all the users' pixels y position.

Almost the same is true about its z position, which is equal to the average of all the depth
values of users' pixels.

Getting ready
Create a project in Visual Studio and prepare it for working with OpenNI and NiTE using
the Create a project in Visual Studio 2010 recipe in Chapter 2, OpenNI and C++, and then
configure Visual Studio to use OpenGL using the Configuring Visual Studio 2010 to use
OpenGL recipe in the previous chapter.

Then copy the code from the Identifying and coloring users' pixels in the depth map recipe
from this chapter to this project.

How to do it...
1. Locate the ensuing line in the gl_DisplayCallback() function:

glEnd();

2. And add the following code next to it:
 glBegin(GL_POINTS);
 glColor3f(1.f, 0.f, 0.f);
 const nite::Array<nite::UserData>& users =
usersFrame.getUsers();
 for (int i = 0; i < users.getSize(); ++i)

NiTE and User Tracking

234

 {
 float posX, posY;
 niStatus =
 uTracker.convertJointCoordinatesToDepth(
 users[i].getCenterOfMass().x,
 users[i].getCenterOfMass().y,
 users[i].getCenterOfMass().z,
 &posX, &posY);
 if (HandleStatus(niStatus)){
 glVertex2f(
 (posX * resizeFactor) + texture_x,
 (posY * resizeFactor) + texture_y);
 }
 }
 glEnd();
 for (int i = 0; i < users.getSize(); ++i)
 {
 nite::BoundingBox userbb =
 users[i].getBoundingBox();
 float minPosX = (userbb.min.x * resizeFactor) +
 texture_x;
 float maxPosX = (userbb.max.x * resizeFactor) +
 texture_x;
 float minPosY = (userbb.min.y * resizeFactor) +
 texture_y;
 float maxPosY = (userbb.max.y * resizeFactor) +
 texture_y;
 glBegin(GL_LINE_LOOP);
 glVertex2f(minPosX, minPosY);
 glVertex2f(maxPosX, minPosY);
 glVertex2f(maxPosX, maxPosY);
 glVertex2f(minPosX, maxPosY);
 glEnd();
 }
 glColor3f(1.f, 1.f, 1.f);

3. Then locate the ensuing line in the _tmain() function:
glutMainLoop();

4. And add the following line above the preceding line:
glPointSize(10.0);

Chapter 5

235

How it works...
In the second step, we added some lines of code to show COM of all the users in screen.
This operation happens after adding the texture to the OpenGL output (we added it after
glEnd()).

As we want to draw a point for the users' COM position, we need to call glBegin(GL_POINTS)
before doing anything. And then the process is to simply loop though all the users and convert
their COM position to the depth pixel's position, and then draw a point in that position
using OpenGL:

 glBegin(GL_POINTS);
 glColor3f(1.f, 0.f, 0.f);
 for (int i = 0; i < users.getSize(); ++i)
 {
 float posX, posY;
 niStatus =
 uTracker.convertJointCoordinatesToDepth(
 users[i].getCenterOfMass().x,
 users[i].getCenterOfMass().y,
 users[i].getCenterOfMass().z,
 &posX, &posY);
 if (HandleStatus(niStatus)){
 glVertex2f(
 (posX * resizeFactor) + texture_x,
 (posY * resizeFactor) + texture_y);
 }
 }
 glEnd();

Here, we have used the glColor3f() function from OpenGL to change the active color to red.

nite::UserTracker::convertJointCoordinatesToDepth() is responsible for
converting the COM position to the depth pixel's values, which is something similar to what
the openni::CoordinateConverter::convertWorldToDepth() method does. If the
returned value of this function is nite::STATUS_OK, the conversion process is completed
without any problem, and we are able to use the posX and posY variables as the position of
COM related to the depth frame. The next step is to use glVertex2f() from OpenGL to draw
a point there:

 niStatus =
 uTracker.convertJointCoordinatesToDepth(
 users[i].getCenterOfMass().x,
 users[i].getCenterOfMass().y,
 users[i].getCenterOfMass().z,
 &posX, &posY);

NiTE and User Tracking

236

Note that these two values (coordinates of COM point) are relative to the depth frame, and we
need to calculate their position relative to the OpenGL window and its texture size:

 glVertex2f(
 (posX * resizeFactor) + texture_x,
 (posY * resizeFactor) + texture_y);

Now that we have placed all the COM points, we can start drawing rectangles for the users'
bounding boxes. Of course, we do this after calling the glEnd() function to show that we
are not interested in drawing points any more:

 glEnd();
 for (int i = 0; i < users.getSize(); ++i)
 {

Lopping over all users and extracting their bounding boxes' start and end points, and then
converting these numbers relative to our OpenGL window and its texture size, is what we are
doing here:

 nite::BoundingBox userbb =
 users[i].getBoundingBox();
 float minPosX = (userbb.min.x * resizeFactor) +
 texture_x;
 float maxPosX = (userbb.max.x * resizeFactor) +
 texture_x;
 float minPosY = (userbb.min.y * resizeFactor) +
 texture_y;
 float maxPosY = (userbb.max.y * resizeFactor) +
 texture_y;

Then we asked OpenGL to let us draw some closed lines and also requested four points for
our rectangle:

 glBegin(GL_LINE_LOOP);
 glVertex2f(minPosX, minPosY);
 glVertex2f(maxPosX, minPosY);
 glVertex2f(maxPosX, maxPosY);
 glVertex2f(minPosX, maxPosY);
 glEnd();

As you can see, we didn't convert these coordinates using nite::UserTrac
ker::convertJointCoordinatesToDepth(). We don't know if it was
a mistake in development or a feature but returned values for users' bounding
boxes are already converted to the depth frame coordinates.

Chapter 5

237

And the last line is where we changed the active color to white again:

 glColor3f(1.f, 1.f, 1.f);

This is all we did in the first two steps.

In the next two steps, we only added one line of code:

glPointSize(10.0);

This line of code tells OpenGL to draw each point with a width and height having 10 pixels.
Note that points in OpenGL are filled rectangles.

Here is the output of our application:

NiTE and User Tracking

238

There's more...
Here we learn about nite::UserTracker::convertJointCoordinatesToDepth(),
which is capable of converting any coordinates returned by the nite::UserTracker
methods (or its child classes' methods) to coordinate the related pixel in the depth frame.
Apart from this method, there is another method named nite::UserTracker::convertD
epthCoordinatesToJoint() that does the same thing but in a reverse direction. Both of
them accept five parameters and fill the last two parameters with calculated coordinates from
the first three parameters.

See also
 f Reading and showing a frame from the depth sensor in Chapter 3,

Using Low-level Data

 f The Identifying and coloring users' pixels in a depth map recipe

 f Get a user's skeleton joints and display their position in the depth map in
Chapter 7, NiTE and Skeleton Tracking

Event-based reading of users' data
You don't need to call nite::UserTracker::readFrame() and wait for it to return each
time you want to read a frame of data from nite::UserTracker. This is because NiTE
developers give us this ability to define a callback (also known as event listener) when a new
frame becomes available, just as openni::VideoStream does. In this recipe, we are going
to cover this feature and rewrite the first recipe of this chapter, this time based on events.

Getting ready
Create a project in Visual Studio and prepare it for working with OpenNI and NiTE using the
Create a project in Visual Studio 2010 recipe in Chapter 2, OpenNI and C++.

How to do it...
1. Add the ReadLastCharOfLine() function from previous recipes to the top of your

source code (just below #include lines).

2. Then add the HandleStatus() function from the previous recipe, right after the
ReadLastCharOfLine() function.

Chapter 5

239

3. Add these lines after the definition of the HandleStatus() function:
struct uTrackerNewFrameListener :
 public nite::UserTracker::NewFrameListener
{
 void onNewFrame(nite::UserTracker& utracker)
 {
 nite::Status status = nite::STATUS_OK;
 nite::UserTrackerFrameRef newFrame;
 status = utracker.readFrame(&newFrame);
 if (!HandleStatus(status) ||
 !newFrame.isValid()) return;
 system("cls");
 const nite::Array<nite::UserData>& users =
 newFrame.getUsers();
 for (int i = 0; i < users.getSize(); ++i)
 {
 printf("User #%d %s \r\n",
 users[i].getId(),
 (users[i].isVisible()) ? "is Visible" :
 is not Visible");
 }
 }
};

4. Then locate the following line:
int _tmain(int argc, _TCHAR* argv[])
{

5. Write the following code inside this function:
 nite::Status status = nite::STATUS_OK;
 printf("Initializing NiTE ...\r\n");
 status = nite::NiTE::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Done\r\n");

 printf("Creating user tracker ...\r\n");
 nite::UserTracker utracker;
 status = utracker.create();
 if (!HandleStatus(status)) return 1;
 uTrackerNewFrameListener listener;
 utracker.addNewFrameListener(&listener);

NiTE and User Tracking

240

 printf("Reading data from user tracker ...\r\n");

 ReadLastCharOfLine();

 utracker.destroy();
 nite::NiTE::shutdown();
 return 0;

How it works...
As you can see in the first step, we again have the ReadLastCharOfLine() and
HandleStatus() functions. But just after these two famous functions, in the third
step, we have the definition of a structure named uTrackerNewFrameListener.

We created this structure by inheriting the nite::UserTracker::NewFrameListener
class and overriding its onNewFrame() method. In this method, we wrote our desired code
that we want to be executed when a new nite::UserTrackerFrameRef object becomes
available to be read. If you check the first recipe of this chapter, it's doing exactly the same
thing you can see in the output (the code in the while loop), but now we moved them here.

In the second line, we read the newly available frame and then check whether this new frame
is valid:

 nite::UserTrackerFrameRef newFrame;
 status = utracker.readFrame(&newFrame);
 if (!HandleStatus(status) ||
 !newFrame.isValid()) return;

If it's valid, we clear the screen using the cls system command and then retrieve all the
recognized users in the current frame:

 system("cls");
 const nite::Array<nite::UserData>& users =
 newFrame.getUsers();

Then we loop through over all of the users and print their ID and visibility state to the console:

 printf("User #%d %s \r\n",
 users[i].getId(),
 (users[i].isVisible()) ? "is Visible" :
 "is not Visible");

Chapter 5

241

In the fourth step, we initialize NiTE and create our nite::UserTracker object. Everything
is as usual in the first 11 lines.

 nite::Status status = nite::STATUS_OK;
 printf("Initializing NiTE ...\r\n");
 status = nite::NiTE::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Done\r\n");

 printf("Creating user tracker ...\r\n");
 nite::UserTracker utracker;
 status = utracker.create();
 if (!HandleStatus(status)) return 1;

Then, as we want to listen to the nite::UserTracker events, we introduce our newly
defined structure (or class) to NiTE:

 uTrackerNewFrameListener listener;
 utracker.addNewFrameListener(&listener);

These two lines will do the entire job. Then we somehow need to make the main
thread busy or our application may exit without doing anything. To do so, we used the
ReadLastCharOfLine() function, which waits until the user presses a key. And after
pressing a key, which means that the user is not interested in our app any more, we can
destroy our nite::UserTracker object and shut nite::NiTE down:

 ReadLastCharOfLine();

 utracker.destroy();
 nite::NiTE::shutdown();
 return 0;

The output of this application is similar to the output of the first recipe:

NiTE and User Tracking

242

See also
 f Event based reading of data in Chapter 3, Using Low-level Data

 f Event-based reading of hands' data in Chapter 6, NiTE and Hand Tracking

6
NiTE and Hand Tracking

In this chapter, we will cover:

 f Recognizing predefined hand gestures
 f Tracking hands
 f Finding the related user ID for each hand ID
 f Event-based reading of hands' data
 f The working sample for controlling the mouse by hand

Introduction
In this chapter, we are going to cover every topic related to hand tracking in NiTE, from finding
hand gestures to tracking hand movements and finding which hand belongs to which user.

Unfortunately, the new version of NITE does not have some commands, such as the hand
swipe, from the old API.

The nite::HandTracker object
Just as with nite::UserTracker, which is responsible for giving us information about
users, nite::HandTracker is responsible for giving us information about hand tracking
and hand's gestures on the scene. The two main functionalities of nite::HandTracker are
recognizing hand gestures and tracking hands. Let's take a look at the important methods of
this class:

 f nite:HandTracker::startGestureDetection(): This method starts the
process of searching for a specific hand gesture in the scene. It accepts only a single
argument from the nite::GestureType enum type. This enum type has three
predefined members that are the only supported gestures by nite::HandTracker.
It is impossible to expand this functionality.

NiTE and Hand Tracking

244

 � nite::GESTURE_WAVE: This value represents the wave gesture.

 � nite::GESTURE_CLICK: This value represents the click gesture.
This is the new name of the old push gesture.

 � nite::GESTURE_HAND_RAISE: This value represents the hand
raise gesture.

 f nite::HandTracker::startHandTracking(): This method will start tracking a
point that is recognized as a hand. Arguments of this method are a nite::Point3f
value that indicates the position of the hand and you need to provide it as an
argument to this method, and a nite::HandId value that will be filled with the ID
of the hand from the method itself. The return value of this method is in the type
nite::Status and indicates the success of the method.

 f nite::HandTracker::stopGestureDetection(): By using this method, you
can suspend the search for a specific gesture.

 f nite::HandTracker::stopHandTracking(): This method can be used to abort
the event of the tracking of a hand.

 f nite::HandTracker::convertHandCoordinatesToDepth(): Just as with
nite::UserTracker::convertJointCoordinatesToDepth(), this method
lets you convert the position of the hand returned by NiTE to the number of pixels in
the depth stream frame.

 f nite::HandTracker::readFrame(): This method will wait for a new frame
and update the passed nite::HandTrackerFrameRef variable or return the
latest unread frame of data from nite::HandTracker. This is explained in the
following section.

The nite::HandTrackerFrameRef object
nite::HandTrackerFrameRef represents a frame of data from nite::HandTracker,
which contains the currently recognized gestures and hands in the scene. Here are some
important methods of this class:

 f nite::HandTrackerFrameRef::getGestures(): This returns an array of the
recognized gestures in the current scene.

 f nite::HandTrackerFrameRef::getHands(): This returns an array of the
requested hands and of those that are being tracked in the current scene.

 f nite::HandTrackerFrameRef::getDepthFrame(): This returns the underlying
depth openni::VideoFrameRef that is used by nite::HandsTracker to create
this data. This is useful if you need to access the depth frame without using an
openni::VideoStream object and if you require extra code to read data from it.

Chapter 6

245

The nite::HandData object
nite::HandData represents a real-life hand. This class contains some information about
the position and status of an under-tracking hand. Let's take a look at its important methods:

 f nite::HandData::getId(): The return value is in the type nite::HandId; this
is actually a uint16 variable and contains a unique ID for the hand.

 f nite::HandData::getPosition(): The return value of this method is in the type
nite::Point3f and contains the current position of the hand.

 f nite::HandData::isLost():The return value is a bool value, indicating that
this hand was invisible enough that NiTE decided to remove it from the next frame
of data.

 f nite::HandData::isNew(): This method returns a bool value that indicates if
this is the first frame of data that we have for this hand.

 f nite::HandData::isTouchingFov(): This method also returns a bool
value that indicates if the hand is currently touching the edge of the field of
view of a device.

 f nite::HandData::isTracking(): This is another method with a bool return
value. It indicates if the hand is visible and is under tracking.

We need to use the nite::HandTrackerFrameRef::getHands() method to retrieve a
list of active hands.

The nite::GestureData object
nite::GestureData is very similar to nite::HandData with the only difference that this
class is simpler than nite::HandData and contains less data. nite::GestureData is the
representation of a real-world gesture:

 f nite::GestureData::getCurrentPosition(): This returns a
nite::Point3f value that shows the position of where this gesture
occurs. It can be used to start the tracking of a hand.

 f nite::GestureData::getType(): This returns a nite::GestureType enum
value that shows the type of recognized gesture.

 f nite::GestureData::isComplete():This method gives you a bool value
that can be used to indicate if this gesture completed successfully or if it is still in
progress. From our observation, this is always true if the gesture is in the list of
recognized gestures.

 f nite::GestureData::isInProgress(): This is another method with a bool
return value. It indicates if the gesture has not yet completed and if it is still in
progress. But we never saw this with the true value in our experiments.

NiTE and Hand Tracking

246

Compared to skeleton tracking
The next chapter is about the tracking of a user's body and its skeleton joints. This means that
in the next chapter, we will be able to track a user's hand joints and simulate a similar result.
Now a question may pop up in your mind: what are the advantages of using HandTracker
when we can use UserTracker too? Here is the answer:

 f Unlike UserTracker that can only track a user when he/she is in a standing
position, HandTracker is able to track hands independent of the user's body.

 f HandTracker doesn't need to see users' full bodies whereas UserTracker can
only detect users with their bodies completely in the field of view. This also means
that UserTracker can't recognize a user at a distance of less than 2 metres
whereas HandTracker can recognize a user at such as distance.

 f The result of HandTracker is more accurate compared to UserTracker as it
doesn't need to track the full body.

Recognizing predefined hand gestures
In this recipe, we are going to request a search for all the three predefined hand gestures
and wait for new data. These predefined hand gestures are the Hand Raise Gesture, Click
Gesture, and Wave Gesture. Check whether any of these three hand gestures are recognized
in the scene and write this info to the console.

Getting ready
Create a project in Visual Studio and prepare it for working with OpenNI and NiTE using the
Create a project in Visual Studio 2010 recipe in Chapter 2, OpenNI and C++.

How to do it...
1. Add these lines to the top of your source code (just below the #include lines):

#include<conio.h>
char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do
 {
 lastChar = newChar;
 newChar = getchar();
 }

Chapter 6

247

 while ((newChar != '\n')
 && (newChar != EOF));
 return (char)lastChar;
}

bool HandleStatus(nite::Status status)
{
 if (status == nite::STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 openni::OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

2. Then locate the following line:
int _tmain(int argc, _TCHAR* argv[])
{

3. Replace any code inside the preceding function with the following code:

 nite::Status status = nite::STATUS_OK;
 status = nite::NiTE::initialize();
 if (!HandleStatus(status)) return 1;

 printf("Creating hand tracker ...\r\n");
 nite::HandTracker hTracker;
 status = hTracker.create();
 if (!HandleStatus(status)) return 1;
 printf("Searching for Wave, Hand Raise and "
 "Click gestures ...\r\n");
 hTracker.startGestureDetection(nite::GESTURE_WAVE);
 hTracker.startGestureDetection(nite::GESTURE_HAND_RAISE);
 hTracker.startGestureDetection(nite::GESTURE_CLICK);
 printf("Reading data from hand tracker ...\r\n");

 while(!_kbhit())
 {
 nite::HandTrackerFrameRef newFrame;
 status = hTracker.readFrame(&newFrame);
 if (!HandleStatus(status) ||
 !newFrame.isValid()) return 1;
 const nite::Array<nite::GestureData>& gestures =
 newFrame.getGestures();
 for (int i = 0; i < gestures.getSize(); ++i)

NiTE and Hand Tracking

248

 {
 printf("%s Gesture Detected @ %g,%g,%g - %s \r\n",
 (gestures[i].getType() ==
 nite::GESTURE_CLICK) ? "Click" :
 ((gestures[i].getType() ==
 nite::GESTURE_HAND_RAISE) ? "Hand Raise" :
 "Wave"),
 gestures[i].getCurrentPosition().x,
 gestures[i].getCurrentPosition().y,
 gestures[i].getCurrentPosition().z,
 (gestures[i].isInProgress()) ? "In Progress" :
 ((gestures[i].isComplete()) ? "Completed" :
 "Initializing"));
 }
 }

 nite::NiTE::shutdown();
 return 0;

How it works...
As always, we have our famous ReadLastCharOfLine() and HandleStatus() functions
in step one. They don't need any explanation.

In step two, again similar to almost all of the recipes in the previous chapter, we initialize
nite::NiTE. Then we define and create a nite::HandTracker object that will also
automatically open the first device:

 nite::HandTracker hTracker;
 status = hTracker.create();

Before reading data from our nite::HandTracker object, we should request a search for
our desired hand gestures. We request a search for all of the three available gestures here:

 hTracker.startGestureDetection(nite::GESTURE_WAVE);
 hTracker.startGestureDetection(nite::GESTURE_HAND_RAISE);
 hTracker.startGestureDetection(nite::GESTURE_CLICK);

Chapter 6

249

Then we need to read the data; for doing this, we use a while loop until the user presses a
key. Moreover, in this loop we define a nite::HandTrackerFrameRef variable, and then
using nite::HandTracker::readFrame(), we read a new frame of data. This call will
wait for new data to become available. If not any:

 nite::HandTrackerFrameRef newFrame;
 status = hTracker.readFrame(&newFrame);

The next step is to get a list of all the recognized gestures by defining an array of
nite::GestureData and calling the nite::HandTrackerFrameRef::getGestures()
method:

 const nite::Array<nite::GestureData>& gestures =
 newFrame.getGestures();

Then, loop through this list and show some information about each gesture to the user:

 printf("%s Gesture Detected @ %g,%g,%g - %s \r\n",
 (gestures[i].getType() ==
 nite::GESTURE_CLICK) ? "Click" :
 ((gestures[i].getType() ==
 nite::GESTURE_HAND_RAISE) ? "Hand Raise" :
 "Wave"),
 gestures[i].getCurrentPosition().x,
 gestures[i].getCurrentPosition().y,
 gestures[i].getCurrentPosition().z,
 (gestures[i].isInProgress()) ? "In Progress" :
 ((gestures[i].isComplete()) ? "Completed" :
 "Initializing"));

In the preceding lines of code, we printed the type of gesture, the position of the gesture,
and the state of the gesture to the console.

This is an infinite loop waiting for the user's intervention. So when a user issues a key press,
we exit the while loop and free all of the allocated memory before exiting the program:

 nite::NiTE::shutdown();
 return 0;

NiTE and Hand Tracking

250

The output of our application is as follows:

See also
 f The Tracking hands recipe

 f The Event-based reading of hands' data recipe

 f The User pose detecting recipe in Chapter 7, NiTE and Skeleton Tracking

Tracking hands
In this recipe, we are going to expand on the previous recipe and add hand tracking after
recognizing a gesture. Moreover, we will also show the location of a hand in the screen
overlying the depth frame data.

Getting ready
Create a project in Visual Studio and prepare it for working with OpenNI and NiTE using
the Create a project in Visual Studio 2010 recipe in Chapter 2, OpenNI and C++, and then
configure Visual Studio to use OpenGL using the Configuring Visual Studio 2010 to use
OpenGL recipe in Chapter 3, Using Low-level Data.

Chapter 6

251

How to do it...
1. Define the window_w, window_h, and gl_texture variables on top of your source

code, below the #include lines, just as with the other examples we wrote using
OpenGL and GLUT.

2. Add the following code right below them:
nite::HandTracker hTracker;

3. Copy ReadLastCharOfLine() and HandleStatus() from the first recipe of this
chapter and paste it here. Also, copy gl_IdleCallback() from the Initialize and
prepare OpenGL recipe in Chapter 3, Using Low-level Data.

4. Then add the following lines of code:
void gl_KeyboardCallback(unsigned char key, int x, int y)
{
 if (key == 27) // ESC Key
 {
 hTracker.destroy();
 nite::NiTE::shutdown();
 exit(0);
 }
}

5. Also, add your primary function to render the scene right after that:
void gl_DisplayCallback()
{
 if (hTracker.isValid())
 {
 nite::Status status = nite::STATUS_OK;
 nite::HandTrackerFrameRef handsFrame;
 status = hTracker.readFrame(&handsFrame);
 if (status == nite::STATUS_OK && handsFrame.isValid())
 {
 const nite::Array<nite::GestureData>& gestures =
 handsFrame.getGestures();
 for (int i = 0; i < gestures.getSize(); ++i){
 if (gestures[i].isComplete()){
 nite::HandId handId;
 hTracker.startHandTracking(
 gestures[i].getCurrentPosition(), &handId);
 }
 }

 // Clear the OpenGL buffers

NiTE and Hand Tracking

252

 glClear (
 GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Setup the OpenGL viewpoint
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glOrtho(0, window_w, window_h, 0, -1.0, 1.0);

 // UPDATING TEXTURE (DEPTH 1MM TO RGB888)
 VideoFrameRef depthFrame =
 handsFrame.getDepthFrame();
 int depthHistogram[65536];
 int numberOfPoints = 0;
 memset(depthHistogram, 0,
 sizeof(depthHistogram));
 for (int y = 0;
 y < depthFrame.getHeight(); ++y)
 {
 DepthPixel* depthCell = (DepthPixel*)(
 (char*)depthFrame.getData() +
 (y * depthFrame.getStrideInBytes())
);
 for (int x = 0; x < depthFrame.getWidth();
 ++x, ++depthCell)
 {
 if (*depthCell != 0)
 {
 depthHistogram[*depthCell]++;
 numberOfPoints++;
 }
 }
 }

 for (int nIndex=1;
 nIndex < sizeof(depthHistogram) / sizeof(int);
 nIndex++)
 {
 depthHistogram[nIndex] +=
 depthHistogram[nIndex-1];
 }

 double resizeFactor = min(
 (window_w / (double)depthFrame.getWidth()),

Chapter 6

253

 (window_h / (double)depthFrame.getHeight()));
 unsigned int texture_x = (unsigned int)(window_w -
 (resizeFactor * depthFrame.getWidth())) / 2;
 unsigned int texture_y = (unsigned int)(window_h -
 (resizeFactor * depthFrame.getHeight())) / 2;

 for (unsigned int y = 0;
 y < (window_h - 2 * texture_y); ++y)
 {
 OniRGB888Pixel* texturePixel = gl_texture +
 ((y + texture_y) * window_w) + texture_x;
 for (unsigned int x = 0;
 x < (window_w - 2 * texture_x);
 ++x, ++texturePixel)
 {
 DepthPixel* depthPixel =
 (DepthPixel*)(
 (char*)depthFrame.getData() +
 ((int)(y / resizeFactor) *
 depthFrame.getStrideInBytes())
) + (int)(x / resizeFactor);
 if (*depthPixel != 0)
 {
 float depthValue =
 ((float)depthHistogram[*depthPixel] /
 numberOfPoints) * 255;
 texturePixel->b = 255 - depthValue;
 texturePixel->g = 255 - depthValue;
 texturePixel->r = 255 - depthValue;
 }
 else
 {
 texturePixel->b = 0;
 texturePixel->g = 0;
 texturePixel->r = 0;
 }
 }
 }

 // Create the OpenGL texture map
 glTexParameteri(GL_TEXTURE_2D,
 0x8191, GL_TRUE); // 0x8191 = GL_GENERATE_MIPMAP
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
 window_w, window_h, 0, GL_RGB,

NiTE and Hand Tracking

254

 GL_UNSIGNED_BYTE, gl_texture);

 glBegin(GL_QUADS);
 glTexCoord2f(0.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f);
 glVertex3f(0.0f, (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 1.0f);
 glVertex3f((float)window_w,
 (float)window_h, 0.0f);
 glTexCoord2f(1.0f, 0.0f);
 glVertex3f((float)window_w, 0.0f, 0.0f);
 glEnd();

 glBegin(GL_POINTS);
 glColor3f(1.f, 0.f, 0.f);
 const nite::Array<nite::HandData>& hands =
 handsFrame.getHands();
 for (int i = 0; i < hands.getSize(); ++i){
 if (hands[i].isTracking()){
 float posX, posY;
 status =
 hTracker.convertHandCoordinatesToDepth(
 hands[i].getPosition().x,
 hands[i].getPosition().y,
 hands[i].getPosition().z,
 &posX, &posY);
 if (HandleStatus(status)){
 glVertex2f(
 (posX * resizeFactor) + texture_x,
 (posY * resizeFactor) + texture_y);
 }
 }
 }
 glEnd();
 glColor3f(1.f, 1.f, 1.f);

 glutSwapBuffers();
 }
 }
}

6. Then, locate the following line:
int _tmain(int argc, _TCHAR* argv[])
{

Chapter 6

255

7. Add the following function inside the preceding line:
 nite::Status status = nite::STATUS_OK;
 printf("Initializing NiTE ...\r\n");
 status = nite::NiTE::initialize();
 if (!HandleStatus(status)) return 1;

 printf("Creating a hand tracker object ...\r\n");
 status = hTracker.create();
 if (!HandleStatus(status)) return 1;
 printf("Done.\r\n");
 printf("Searching for wave gesture ...\r\n");
 status =
 uTracker.startGestureDetection(nite::GESTURE_WAVE);
 if (!HandleStatus(status)) return 1;

 printf("Initializing OpenGL ...\r\n");
 gl_texture = (OniRGB888Pixel*)malloc(
 window_w * window_h * sizeof(OniRGB888Pixel));
 glutInit(&argc, (char**)argv);
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
 glutInitWindowSize(window_w, window_h);
 glutCreateWindow ("OpenGL | OpenNI 2.x CookBook Sample");
 glPointSize(10.0);
 glutKeyboardFunc(gl_KeyboardCallback);
 glutDisplayFunc(gl_DisplayCallback);
 glutIdleFunc(gl_IdleCallback);
 glDisable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);
 printf("Starting OpenGL rendering process ...\r\n");
 glutMainLoop();

 return 0;

How it works...
In the second step, we defined our nite::HandTracker variable named hTracker to
make it accessible from any function in our application. In the third step, we have our famous
ReadLastCharOfLine() and HandleStatus() functions, which we don't think need any
extra explanation.

Then, similar to the older recipes where we worked with GLUT and OpenGL, we have the
gl_KeyboardCallback() function, which is responsible for key presses from the user,
in the same step.

NiTE and Hand Tracking

256

In the following step, we define the gl_IdleCallback() function that will ask OpenGL to
render the scene again. In this step, we will view the most important part of our app—the
gl_DisplayCallback() function. This function is responsible for assembling a scene. We
are familiar with the first two functions and their code, so here we are only going to talk about
gl_DisplayCallback().

In the initial lines of gl_DisplayCallback(), we have to check the nite::HandTracker
variable's availability. If it is available, we define and read a frame of data from
nite::HandTracker. Then we check whether the process of reading a frame
ended successfully and also check whether the returned frame is a valid object.

 if (hTracker.isValid())
 {
 nite::Status status = nite::STATUS_OK;
 nite::HandTrackerFrameRef handsFrame;
 status = hTracker.readFrame(&handsFrame);
 if (status == nite::STATUS_OK && handsFrame.isValid())
 {

For tracking a hand, we first need to locate it; one of the ways to do it is to ask the user to do
a hand gesture. We then use the position of the hand gesture to start tracking the hand. So
currently, we need to read all of the recognized gestures in the scene and request for them to
be tracked:

 const nite::Array<nite::GestureData>& gestures =
 handsFrame.getGestures();
 for (int i = 0; i < gestures.getSize(); ++i){
 if (gestures[i].isComplete()){
 nite::HandId handId;
 hTracker.startHandTracking(
 gestures[i].getCurrentPosition(), &handId);
 }
 }

As you can see, we called nite::HandTrackerFrameRef::getGesture() to get a list of
all the active gestures and then looped through all of the gestures in the array. If a gesture is
in a complete state, we will request the tracking of a hand at the position of the gesture using
nite::HandTracker::startHandTracking() and nite::GestureData::getCurre
ntPosition().

After this, we have our other usual lines of code about clearing the OpenGL buffer, creating a
texture from depth data, and so on. You can skip up till this line:

 glEnd();

Chapter 6

257

The preceding line indicates that the placing of the texture is complete. Then, we request
adding some points with the color red to the buffer:

 glBegin(GL_POINTS);
 glColor3f(1.f, 0.f, 0.f);

Then we used nite::HandTrackerFrameRef::getHands() to get an array of the
hands under tracking and looped through this array to get a hand's position using the
nite::HandData::getPosition() method. But as this position is not acceptable enough
to be used for displaying on screen, we need to convert it and calculate the correct position
relative to the depth frame resolution. The returned value is in millimetres when using Kinect,
Asus Xtion, or PrimeSense's sensors, and we need to convert it into pixels. This can be done
using the nite::HandTracker::convertHandCoordinatesToDepth() method. After
this function has been called, posX and posY will contain the correct position of the hand
relative to the depth frame. But as we need to display them in OpenGL, which is not necessary
in the same resolution of the depth frame, we need to calculate this number again relative to
the OpenGL window. Then, using the glVertex2f() function from OpenGL and the correct
position of the hand, we can ask OpenGL to draw a point there. Refer to the following code:

 const nite::Array<nite::HandData>& hands =
 handsFrame.getHands();
 for (int i = 0; i < hands.getSize(); ++i){
 if (hands[i].isTracking()){
 float posX, posY;
 status =
 hTracker.convertHandCoordinatesToDepth(
 hands[i].getPosition().x,
 hands[i].getPosition().y,
 hands[i].getPosition().z,
 &posX, &posY);
 if (HandleStatus(status)){
 glVertex2f(
 (posX * resizeFactor) + texture_x,
 (posY * resizeFactor) + texture_y);
 }
 }
 }
 glEnd();
 glColor3f(1.f, 1.f, 1.f);

As you can see in the preceding lines of code, we need to inform OpenGL about quitting the
point drawing by calling glEnd() again and then setting the color to white, as it was before.

NiTE and Hand Tracking

258

But in the next step, which includes our initialization function, the lines of code are very
similar to the preceding recipe. We initialize NiTE and create a nite::HandTracker variable
as always. Then, we request a search for the Wave gesture by calling the nite::HandTrack
er::startGestureDetection() method:

 status =
 uTracker.startGestureDetection(nite::GESTURE_WAVE);
 if (!HandleStatus(status)) return 1;

The other lines of code are about initializing and configuring the OpenGL and GLUT behaviors.

The output of our application is as follows:

Chapter 6

259

See also
 f The Recognizing predefined hand gestures recipe

 f The Event-based reading of hands' data recipe

 f The Get a user's skeleton joints and display their position in depth map recipe in
Chapter 7, NiTE and Skeleton Tracking

Finding the related user ID for each hand ID
When dealing with nite::HandTracker and nite::HandData, there is no way to find out
which hand belongs to which user. Actually, there is no direct way of finding this out in NiTE
at all. In this recipe, we will show you how it's possible to use nite::UserTracker and
nite::UserMap along with nite::HandTracker and nite::HandData to determine
the user ID of each hand.

Getting ready
Create a project in Visual Studio and prepare it for working with OpenNI and NiTE using the
Create a project in Visual Studio 2010 recipe in Chapter 2, OpenNI and C++.

How to do it...
1. Copy ReadLastCharOfLine() and HandleStatus() from the first recipe of this

chapter to the top of your source code (just below the #include lines).

2. Then, locate the following line:
int _tmain(int argc, _TCHAR* argv[])
{

3. Add the following code inside the preceding line:

 nite::Status status = nite::STATUS_OK;
 status = nite::NiTE::initialize();
 if (!HandleStatus(status)) return 1;

 printf("Creating user tracker ...\r\n");
 nite::UserTracker uTracker;
 status = uTracker.create();
 if (!HandleStatus(status)) return 1;

 printf("Creating hand tracker ...\r\n");
 nite::HandTracker hTracker;
 status = hTracker.create();

NiTE and Hand Tracking

260

 if (!HandleStatus(status)) return 1;
 printf("Searching for Hand Raise gestures ...\r\n");
 hTracker.startGestureDetection(nite::GESTURE_HAND_RAISE);

 printf("Reading data from hand/user trackers ...\r\n");

 while(!_kbhit())
 {
 nite::HandTrackerFrameRef handFrame;
 status = hTracker.readFrame(&handFrame);
 if (!HandleStatus(status) ||
 !handFrame.isValid()) return 1;
 nite::UserTrackerFrameRef userFrame;
 status = uTracker.readFrame(&userFrame);
 if (!HandleStatus(status) ||
 !userFrame.isValid()) return 1;
 nite::UserMap usersMap = userFrame.getUserMap();
 const nite::Array<nite::GestureData>& gestures =
 handFrame.getGestures();
 for (int i = 0; i < gestures.getSize(); ++i){
 if (gestures[i].isComplete()){
 nite::HandId handId;
 status = hTracker.startHandTracking(
 gestures[i].getCurrentPosition(), &handId);
 }
 }
 const nite::Array<nite::HandData>& hands =
 handFrame.getHands();
 for (int i = 0; i < hands.getSize(); ++i){
 if (hands[i].isTracking()){
 float posX, posY;
 status =
 hTracker.convertHandCoordinatesToDepth(
 hands[i].getPosition().x,
 hands[i].getPosition().y,
 hands[i].getPosition().z,
 &posX, &posY);
 if (status == nite::STATUS_OK)
 {
 nite::UserId* userId =
 (nite::UserId*)(
 (char*)usersMap.getPixels() +
 ((int)posY * usersMap.getStride())
) + (int)posX;

Chapter 6

261

 printf("User %d: Hand #%d @%g,%g,%g \r\n",
 *userId, hands[i].getId(),
 hands[i].getPosition().x,
 hands[i].getPosition().y,
 hands[i].getPosition().z);
 }
 }
 }
 }

 hTracker.destroy();
 uTracker.destroy();
 nite::NiTE::shutdown();
 return 0;

How it works...
Again in the first step, we have the two ReadLastCharOfLine() and HandleStatus()
functions that are going to be used for handling the returned nite::Status value and to
read keys from the user.

Our main code starts at the second step, which is about the main function (starting point) of
our project. In this function, we first initialize NiTE, as always, and then define and create a
nite::HandTracker object. But as we need to recognize each user in the scene as well
as each hand, we need to define and create a nite::UserTracker object too.

 nite::UserTracker uTracker;
 status = uTracker.create();
 .
 .
 .
 nite::HandTracker hTracker;
 status = hTracker.create();

Then, as we need a gesture to locate hands, we need to request a search for one. In this
recipe, we prefer using the Hand Raise gesture:

 hTracker.startGestureDetection(nite::GESTURE_HAND_RAISE);

To read data from NiTE, we need to put our application almost in an infinite loop. So we used a
while loop to wait until the user presses a key to read the data.

NiTE and Hand Tracking

262

In our while loop, we must read a frame of data from both nite::HandTracker and
nite::UserTracker. This can be done using the nite::HandTracker::readFrame()
and nite::UserTracker::readFrame() methods:

 nite::HandTrackerFrameRef handFrame;
 status = hTracker.readFrame(&handFrame);
 if (!HandleStatus(status) ||
 !handFrame.isValid()) return 1;
 nite::UserTrackerFrameRef userFrame;
 status = uTracker.readFrame(&userFrame);
 if (!HandleStatus(status) ||
 !userFrame.isValid()) return 1;

As you can clearly see, we checked whether the reading process has successfully been
completed and also checked whether the returned frame is valid before doing anything.

We will use the nite::UserMap object associated with the returned
nite::UserTrackerFrameRef object later, so keeping it in another variable
will help in enhancing the readability of our code.

 nite::UserMap usersMap = userFrame.getUserMap();

Before you start looping through the hands being tracked and find the related user IDs of
each, you need to take care of each recognized gesture by nite::HandTracker and
request hand tracking in the location of the gesture. To do this, we need to use the nite::
HandTrackerFrameRef::getGestures() method for retrieving an array of recognized
gestures and the nite::HandTracker::startHandTracking() method to start the
tracking of a hand:

 const nite::Array<nite::GestureData>& gestures =
 handFrame.getGestures();
 for (int i = 0; i < gestures.getSize(); ++i){
 if (gestures[i].isComplete()){
 nite::HandId handId;
 status = hTracker.startHandTracking(
 gestures[i].getCurrentPosition(), &handId);
 }
 }

Now is the time to loop through the list of hands being tracked and see which ones are
retrievable using the nite::HandTrackerFrameRef::getHands() method:

 const nite::Array<nite::HandData>& hands =
 handFrame.getHands();
 for (int i = 0; i < hands.getSize(); ++i){
 if (hands[i].isTracking()){

Chapter 6

263

nite::UserMap is like a depth frame, only with different values stored in each frame
instead of the depth value. So if we want to know the value of a pixel, we first need to convert
the position of the tracked hand to the position of the pixel relative to the depth frame. As we
did before, this can be done using the nite::HandTracker::convertHandCoordinates
ToDepth() method:

 float posX, posY;
 status =
 hTracker.convertHandCoordinatesToDepth(
 hands[i].getPosition().x,
 hands[i].getPosition().y,
 hands[i].getPosition

If the process of converting ends without a problem, we will have the correct coordinates
of the hand either relative to the depth frame or relative to nite::UserMap in the posX
and posY variables. Now we can use these variables to read the value of this pixel from
nite::UserMap:

 if (status == nite::STATUS_OK)
 {
 nite::UserId* userId =
 (nite::UserId*)(
 (char*)usersMap.getPixels() +
 ((int)posY * usersMap.getStride())
) + (int)posX;

After these lines of code, the userId variable contains the address of the related value that
indicates the user ID of a hand. The value of this address is either 0, which means no user
or an unknown user, or a value other than 0, which is the user ID of the user. As you can see
in the preceding lines of code, reading from a nite::UserMap object is no different than
reading from an openni::VideoFrameRef variable.

Now after having this info, we can print it to the console:

 printf("User %d: Hand #%d @%g,%g,%g \r\n",
 *userId, hands[i].getId(),
 hands[i].getPosition().x,
 hands[i].getPosition().y,
 hands[i].getPosition().z);

NiTE and Hand Tracking

264

The output of our application is as follows:

See also
 f The Getting a list of all the active users recipe in Chapter 5, NiTE and User Tracking

 f The Identifying and coloring users' pixels in depth map recipe in Chapter 5, NiTE and
User Tracking

 f The Event-based reading of hands' data recipe

Event-based reading of hands' data
In the preceding recipes, we use a while loop to read frames of data from
nite::HandTracker. This is not a good idea since this will block our application and even
the while loop itself until new data becomes available. Fortunately, NiTE has given us this
ability to introduce a class/struct with a method in it to be called when a new frame of data
becomes available. So our application can do what we want it to do and, when new data
becomes available, we can read it without busying our main application thread. In this
recipe, we will show you how to use this feature.

Getting ready
Create a project in Visual Studio and prepare it for working with OpenNI and NiTE using the
Create a project in Visual Studio 2010 recipe in Chapter 2, OpenNI and C++.

Chapter 6

265

How to do it...
1. Copy ReadLastCharOfLine() and HandleStatus()from the first recipe of

this chapter to the top of your source code (just below the #include lines).

2. Define the hTrackerNewFrameListener structure (or class) right after that
as follows:
struct hTrackerNewFrameListener :
 public nite::HandTracker::NewFrameListener
{
 void onNewFrame(nite::HandTracker& hTracker)
 {
 nite::Status status = nite::STATUS_OK;
 nite::HandTrackerFrameRef newFrame;
 status = hTracker.readFrame(&newFrame);
 if (!HandleStatus(status) ||
 !newFrame.isValid()) return;
 system("cls");
 const nite::Array<nite::GestureData>& gestures =
 newFrame.getGestures();
 for (int i = 0; i < gestures.getSize(); ++i){
 if (gestures[i].isComplete()){
 nite::HandId handId;
 status = hTracker.startHandTracking(
 gestures[i].getCurrentPosition(), &handId);
 }
 }
 const nite::Array<nite::HandData>& hands =
 newFrame.getHands();
 for (int i = 0; i < hands.getSize(); ++i){
 if (hands[i].isTracking()){
 printf("Tracking Hand #%d @ %g,%g,%g \r\n",
 hands[i].getId(),
 hands[i].getPosition().x,
 hands[i].getPosition().y,
 hands[i].getPosition().z);
 }
 }
 }
};

NiTE and Hand Tracking

266

3. Then, locate the following line:
int _tmain(int argc, _TCHAR* argv[])
{

4. Add the following code inside the preceding function:

 nite::Status status = nite::STATUS_OK;
 status = nite::NiTE::initialize();
 if (!HandleStatus(status)) return 1;

 printf("Creating hand tracker ...\r\n");
 nite::HandTracker hTracker;
 status = hTracker.create();
 if (!HandleStatus(status)) return 1;
 hTrackerNewFrameListener listener;
 hTracker.addNewFrameListener(&listener);

 hTracker.startGestureDetection(nite::GESTURE_CLICK);
 printf("Reading data from hand tracker ...\r\n");

 ReadLastCharOfLine();

 nite::NiTE::shutdown();
 openni::OpenNI::shutdown();
 return 0;

How it works...
As always, we have ReadLastCharOfLine() and HandleStatus() in the first step of this
recipe. In the next step, we declare a structure named hTrackerNewFrameListener that
has been inherited from nite::HandTracker::NewFrameListener as follows:

struct hTrackerNewFrameListener :
 public nite::HandTracker::NewFrameListener
{

nite::HandTracker::NewFrameListener itself has an empty method named
onNewFrame() that we need to override in our child structure/class so we can capture
the frame available event as follows:

 void onNewFrame(nite::HandTracker& hTracker)
 {

Chapter 6

267

In the body of this method, we first read the newly available frame from
nite::HandTracker and then clear the console using a system command:

 nite::HandTrackerFrameRef newFrame;
 status = hTracker.readFrame(&newFrame);
 if (!HandleStatus(status) ||
 !newFrame.isValid()) return;
 system("cls");

Then, we retrieve a list of recognized gestures and of the requested hands that are being
tracked where a gesture happened:

 const nite::Array<nite::GestureData>& gestures =
 newFrame.getGestures();
 for (int i = 0; i < gestures.getSize(); ++i){
 if (gestures[i].isComplete()){
 nite::HandId handId;
 status = hTracker.startHandTracking(
 gestures[i].getCurrentPosition(), &handId);
 }
 }

And at the end, we print the ID and position of each hand currently under tracking, as follows:

 const nite::Array<nite::HandData>& hands =
 newFrame.getHands();
 for (int i = 0; i < hands.getSize(); ++i){
 if (hands[i].isTracking()){
 printf("Tracking Hand #%d @ %g,%g,%g \r\n",
 hands[i].getId(),
 hands[i].getPosition().x,
 hands[i].getPosition().y,
 hands[i].getPosition().z);
 }
 }

You can change the body of this method with what you want depending on your application's
behavior. Step two has nothing more.

In the next steps, we have the initialization process; this includes the initialization of NiTE and
the creation of the nite::HandTracker variable:

 status = nite::NiTE::initialize();
 .
 .
 .
 nite::HandTracker hTracker;
 status = hTracker.create();

NiTE and Hand Tracking

268

Then we add our newly defined structure/class as a listener to nite::HandTracker,
so nite::HandTracker can call it later when a new frame becomes available.

 hTrackerNewFrameListener listener;
 hTracker.addNewFrameListener(&listener);

Also, we need to have an active search for a hand gesture because we need to locate the
position of the hands. So we need to call the nite::HandTracker::startGestureDetec
tion() method. We used the Click (also known as the push) gesture here:

 hTracker.startGestureDetection(nite::GESTURE_CLICK);

At the end, we wait until a user presses the Enter key to end the app. We do nothing more in
our main thread except just waiting. Everything happens in the other thread.

 ReadLastCharOfLine();

 nite::NiTE::shutdown();
 openni::OpenNI::shutdown();
 return 0;

The output of our application is as follows:

See also
 f Event-based reading of data in Chapter 3, Using Low-level Data
 f Event-based reading of users' data in Chapter 5, NiTE and User Tracking
 f The Working sample for controlling the mouse by hand recipe

Chapter 6

269

Working sample for controlling the mouse
by hand

As a last recipe of this chapter, we will write a working example for using nite::HandTracker.
In this recipe, we will show you how to control the position of the mouse cursor using the NiTE
hand tracker feature and how to simulate a click event.

We are going to use the Hand Raise gesture for the tracking of hands and the Click (push)
gesture for the mouse click. Also, because of the low resolution of the depth output compared
to the resolution of the monitor, which results in low accuracy of the hand tracker, we decided
to move the mouse depending on its distance with the starting point. This is similar to how
you control your mouse with a joystick.

This sample is Windows only because it uses the Microsoft
Windows API.

Getting ready
Create a project in Visual Studio and prepare it for working with OpenNI and NiTE using the
Create a project in Visual Studio 2010 recipe in Chapter 2, OpenNI and C++.

How to do it...
1. Copy ReadLastCharOfLine() and HandleStatus() from the first recipe of this

chapter to the top of your source code (just below the #include lines).

2. Then add following lines of code:
class MouseController :
 public nite::HandTracker::NewFrameListener
{
private:
 float startPosX, startPosY;
 int curX, curY;
 nite::HandId handId;
 RECT desktopRect;
public:
 MouseController(){
 startPosX = startPosY = -1;
 POINT curPos;
 if (GetCursorPos(&curPos)) {
 curX = curPos.x;
 curY = curPos.y;

NiTE and Hand Tracking

270

 }else{
 curX = curY = 0;
 }
 handId = -1;
 const HWND hDesktop = GetDesktopWindow();
 GetWindowRect(hDesktop, &desktopRect);
 }
 void onNewFrame(nite::HandTracker& hTracker){
 nite::Status status = nite::STATUS_OK;
 nite::HandTrackerFrameRef newFrame;
 status = hTracker.readFrame(&newFrame);
 if (!HandleStatus(status) ||
 !newFrame.isValid()) return;
 const nite::Array<nite::GestureData>& gestures =
 newFrame.getGestures();
 for (int i = 0; i < gestures.getSize(); ++i){
 if (gestures[i].isComplete()){
 if (gestures[i].getType() == nite::GESTURE_CLICK){
 INPUT Input = {0};
 Input.type = INPUT_MOUSE;
 Input.mi.dwFlags =
 MOUSEEVENTF_LEFTDOWN | MOUSEEVENTF_LEFTUP;
 SendInput(1, &Input, sizeof(INPUT));
 }else{
 nite::HandId handId;
 status = hTracker.startHandTracking(
 gestures[i].getCurrentPosition(), &handId);
 }
 }
 }
 const nite::Array<nite::HandData>& hands =
 newFrame.getHands();
 for (int i = hands.getSize() -1 ; i >= 0 ; --i){
 if (hands[i].isTracking()){
 if (hands[i].isNew() ||
 handId != hands[i].getId()){
 status =
 hTracker.convertHandCoordinatesToDepth(
 hands[i].getPosition().x,
 hands[i].getPosition().y,
 hands[i].getPosition().z,
 &startPosX, &startPosY);
 handId = hands[i].getId();
 if (status != nite::STATUS_OK){

Chapter 6

271

 startPosX = startPosY = -1;
 }
 }else if (startPosX >= 0 && startPosY >= 0){
 float posX, posY;
 status =
 hTracker.convertHandCoordinatesToDepth(
 hands[i].getPosition().x,
 hands[i].getPosition().y,
 hands[i].getPosition().z,
 &posX, &posY);
 if (status == nite::STATUS_OK){
 if (abs(int(posX - startPosX)) > 10)
 curX += ((posX - startPosX) - 10) / 3;
 if (abs(int(posY - startPosY)) > 10)
 curY += ((posY - startPosY) - 10) / 3;
 curX = min(curX, desktopRect.right);
 curX = max(curX, desktopRect.left);
 curY = min(curY, desktopRect.bottom);
 curY = max(curY, desktopRect.top);
 SetCursorPos(curX, curY);
 }
 }
 break;
 }
 }
 }
};

3. Then locate the following line:
int _tmain(int argc, _TCHAR* argv[])
{

4. Add the following inside this function:
 nite::Status status = nite::STATUS_OK;
 status = nite::NiTE::initialize();
 if (!HandleStatus(status)) return 1;

 printf("Creating hand tracker ...\r\n");
 nite::HandTracker hTracker;
 status = hTracker.create();
 if (!HandleStatus(status)) return 1;
 MouseController* listener = new MouseController();
 hTracker.addNewFrameListener(listener);

NiTE and Hand Tracking

272

 hTracker.startGestureDetection(nite::GESTURE_HAND_RAISE);
 hTracker.startGestureDetection(nite::GESTURE_CLICK);
 printf("Reading data from hand tracker ...\r\n");

 ReadLastCharOfLine();

 nite::NiTE::shutdown();
 openni::OpenNI::shutdown();
 return 0;

How it works...
As with other recipes, both the ReadLastCharOfLine() and HandleStatus() functions
are present here too. These functions are well known to you and don't need any explanation.

Then in the second part, just as in the previous recipe, we declared a class/struct that we are
going to use for capturing the new data available event from the nite::HandTracker object.

But the definition of this class is a little different here. Other than the onNewFrame()
method, we defined a number of variables and a constructor method for this class too.
We also changed its name to MouseController to be able to make more sense of it.

class MouseController :
 public nite::HandTracker::NewFrameListener
{
private:
 float startPosX, startPosY;
 int curX, curY;
 nite::HandId handId;
 RECT desktopRect;

As you can see, our class is still a child class of nite::HandTracker::NewFrameList
ener because we are going use it to listen to the nite::HandTracker events. Also, we
defined six variables in our class. startPosX and startPosY are going to hold the initial
position of the active hand whereas curY and curX are going to hold the position of the
mouse when in motion. The handId variable is responsible for holding the ID of the active
hand and desktopRecthold for holding the size of the desktop so that we can move our
mouse only in this area. These variables are all private variables; this means they will not be
accessible from the outside of the class. Then we have the class's constructor method that
initializes some of the preceding variables. Refer to the following code:

public:
 MouseController(){
 startPosX = startPosY = -1;
 POINT curPos;
 if (GetCursorPos(&curPos)) {
 curX = curPos.x;

Chapter 6

273

 curY = curPos.y;
 }else{
 curX = curY = 0;
 }
 handId = -1;
 const HWND hDesktop = GetDesktopWindow();
 GetWindowRect(hDesktop, &desktopRect);
 }

In the constructor, we set both startPosX and startPosY to -1 and then store the current
position of the mouse in the curX and curY variables. Then we set the handId variable to -1
to know-mark that there is no active hand currently, and retrieve the value of desktopRect
using two Windows API methods, GetDesktopWindow() and GetWindowRect().

As with the previous recipe, the most important tasks are happening in the onNewFrame()
method. This method is the one that will be called when new data becomes available in
nite::HandTracker; after that, this method will be responsible for processing this data.

As the running of this method means that new data is available, the first thing to do in its body
is to read this data. So we used the nite::HandTracker::readFrame() method to read
the data from this object:

 void onNewFrame(nite::HandTracker& hTracker){
 nite::Status status = nite::STATUS_OK;
 nite::HandTrackerFrameRef newFrame;
 status = hTracker.readFrame(&newFrame);

When working with nite::HandTracker, the first thing to do after reading the data is to
handle gestures if you expect any. We expect to have Hand Raise to detect new hands and
click gesture to perform the mouse click:

 const nite::Array<nite::GestureData>& gestures =
 newFrame.getGestures();
 for (int i = 0; i < gestures.getSize(); ++i){
 if (gestures[i].isComplete()){
 if (gestures[i].getType() == nite::GESTURE_CLICK){
 INPUT Input = {0};
 Input.type = INPUT_MOUSE;
 Input.mi.dwFlags =
 MOUSEEVENTF_LEFTDOWN | MOUSEEVENTF_LEFTUP;
 SendInput(1, &Input, sizeof(INPUT));
 }else{
 nite::HandId handId;
 status = hTracker.startHandTracking(
 gestures[i].getCurrentPosition(), &handId);
 }
 }
 }

NiTE and Hand Tracking

274

As you can see, we retrieved the list of all the gestures using nite::HandTrackerFram
eRef::getGestures() and then looped through them, searching for the ones that are
in the completed state. Then if they are the nite::GESTURE_CLICK gesture, we need to
perform a mouse click. We used the SendInput() function from the Windows API to do it
here. But if the recognized gesture wasn't of the type nite::GESTURE_CLICK, it must be a
nite::GESTURE_HAND_RAISE gesture; so, we need to request for the tracking of this newly
recognized hand using the nite::HandTracker::startHandTracking() method.

The next thing is to take care of the hands being tracked. To do so, we first need to retrieve
a list of them using the nite::HandTrackerFrameRef::getHands() method and then
loop through them. This can be done using a simple for loop as we used for the gestures.
But as we want to read this list in a reverse order, we need to use a reverse for loop.
The reason we need to read this list in the reverse order is that we always want the last
recognized hand to control the mouse:

 const nite::Array<nite::HandData>& hands =
 newFrame.getHands();
 for (int i = hands.getSize() - 1 ; i >= 0 ; --i){

Then we need to make sure that the current hand is under-tracking because we don't want
an invisible hand to control the mouse. The first hand being tracked is the one we want, so
we will break the looping there, of course, after the processing part, which we will remove
from the following code to make it clearer.

 if (hands[i].isTracking()){
 .
 .
 .
 break;
 }

Speaking of processing, in the preceding three lines of code (with periods) we have another
condition. This condition is responsible for finding out if this hand is the same one that had
control of the mouse in the last frame. If it is a new hand (either it is a newly recognized
hand or it is a newly active hand), we need to save its current position in the startPosX
and startPosY variables.

 if (hands[i].isNew() ||
 handId != hands[i].getId()){
 status =
 hTracker.convertHandCoordinatesToDepth(
 hands[i].getPosition().x,
 hands[i].getPosition().y,
 hands[i].getPosition().z,
 &startPosX, &startPosY);
 handId = hands[i].getId();
 if (status != nite::STATUS_OK){
 startPosX = startPosY = -1;
 }

Chapter 6

275

If it was the same hand, we have another condition.

Do we have the startPosX and startPosY variables already or do we not have them yet?
If we have them, we can calculate the mouse's movement. But first we need to calculate the
position of the hand relative to the depth frame.

 }else if (startPosX >= 0 && startPosY >= 0){
 float posX, posY;
 status =
 hTracker.convertHandCoordinatesToDepth(
 hands[i].getPosition().x,
 hands[i].getPosition().y,
 hands[i].getPosition().z,
 &posX, &posY);

Once the process of conversation ends, we need to calculate the new position of the mouse
depending on how the hand's position changes. But we want to define a safe area for it to be
static when small changes happen. So we calculate the new position of the mouse only if it
has moved by more than 10 pixels in our depth frame:

 if (status == nite::STATUS_OK){
 if (abs(int(posX - startPosX)) > 10)
 curX += ((posX - startPosX) - 10) / 3;
 if (abs(int(posY - startPosY)) > 10)
 curY += ((posY - startPosY) - 10) / 3;

As you can see in the preceding code, we also divided the changes by 3 because we didn't
want it to move too fast.

But before setting the position of the mouse, we need to first make sure that the new
positions are in the screen view port using the desktopRect variable:

 curX = min(curX, desktopRect.right);
 curX = max(curX, desktopRect.left);
 curY = min(curY, desktopRect.bottom);
 curY = max(curY, desktopRect.top);

After calculating everything, we can set the new position of the mouse using
SetCursorPos() from the Windows API:

 SetCursorPos(curX, curY);

NiTE and Hand Tracking

276

Step three and four are not markedly different from the previous recipe's last step. In this
step, we have the initialization process; this includes the initialization of NiTE and the creation
of the nite::HandTracker variable.

 status = nite::NiTE::initialize();
 .
 .
 .
 nite::HandTracker hTracker;
 status = hTracker.create();

Then we should add our newly defined structure/class as a listener to nite::HandTracker
so that nite::HandTracker can call it later when a new frame becomes available:

 MouseController* listener = new MouseController();
 hTracker.addNewFrameListener(listener);

Also, we need to have an active search for a hand gesture because we need to locate the
position of the hands and we also have to search for another gesture for the mouse click.
So we need to call the nite::HandTracker::startGestureDetection() method
twice for both the Click (also known as push) and Hand Raise gestures here:

 hTracker.startGestureDetection(nite::GESTURE_HAND_RAISE);
 hTracker.startGestureDetection(nite::GESTURE_CLICK);

At the end, we will wait until the user presses the Enter key to end the app. We do nothing
more in our main thread except just waiting. Everything happens in another thread.

 ReadLastCharOfLine();

 nite::NiTE::shutdown();
 openni::OpenNI::shutdown();
 return 0;

See also
 f The Tracking hands recipe

 f The Event-based reading of hands' data recipe

 f The Simple pong game using skeleton tracking recipe in Chapter 7, NiTE and
Skeleton Tracking

7
NiTE and Skeleton

Tracking

In this chapter, we will cover:

 f Detecting a user's pose

 f Getting a user's skeleton joints and displaying their position in the depth map

 f Designing a simple pong game using skeleton tracking

Introduction
The most important feature of NiTE is recognizing a user's skeleton structure and giving
developers the approximate position of each joint. In this chapter, we are going to cover this
topic in the first two recipes. Then we will show you how to use this data to create a simple,
pong-like game.

The nite::UserTracker object
We already talked about nite::UserTracker in Chapter 5, NiTE and User Tracking. In this
chapter, we will introduce some of the other methods of this class that are going to be used.

A list of the most important methods of this class is as follows:

 f nite::UserTracker::startPoseDetection(): This method starts searching
for a specific pose of a specific user. If you want to search for more than one pose for
a user, you can simply call this method multiple times with different arguments.

 f nite::UserTracker::startSkeletonTracking(): This method starts
the process of recognizing the position and orientation of the skeleton joints of
a specific user.

NiTE and Skeleton Tracking

278

 f nite::UserTracker::stopPoseDetection(): This method will stop searching
for a specific pose for a specific user. You need to call this method once for each pose
if you added multiple poses.

 f nite::UserTracker::stopSkeletonTracking(): This method will stop the
processes of recognizing a user's skeleton and that of tracking him/her.

The nite::PoseData object
nite::PoseData is responsible for one of the user's current poses. In other words, a user
can have more than one nite::PoseData object and each one will show the user's status
about that pose.

nite::PoseData has a number of methods; some of them are listed as follows:

 f nite::PoseData::getType(): The returned value of this method is of the
nite::PoseType type. nite::PoseType is an enum value that contains only
two members, nite::POSE_PSI and nite::POSE_CROSSED_HANDS

 f nite::PoseData::isEntered(): This method's return value is a bool value that
indicates if this is the first frame that this pose recognizes

 f nite::PoseData::isExited(): This method's return value is a bool type that
indicates if this is the first frame in which the user left the pose

 f nite::PoseData::isHeld(): Just as with the preceding two methods, this
method's return value is of the type bool and indicates whether a user is currently
in this pose

The nite::Skeleton object
The nite::Skeleton object is responsible for giving you access to a list of all the skeleton
joints (nite::SkeletonJoint) and lets you see the status of the user being tracked, lets
you recognize the skeleton, and enables calibration. By using this object, which has only
two methods, you can see if skeleton tracking is active and whether you can request more
information about each joint.

 f nite::Skeleton::getJoint(): This returns the nite::SkeletonJoint
object of the selected joint. This method accepts one argument that is of the type
nite::JointType enum.

 f nite::Skeleton::getState(): The return value is of the type
nite::SkeletonState enum; it shows the current state of a user's skeleton
being tracked. The members of nite::SkeletonState are as follows:

 � nite::SKELETON_NONE: There is no skeleton data available or that has
been requested

 � nite::SKELETON_CALIBRATING: This indicates that the skeleton is being
prepared, but it's not ready yet

Chapter 7

279

 � nite::SKELETON_TRACKED: The skeleton is available and can be read

 � nite::SKELETON_CALIBRATION_ERROR_NOT_IN_POSE: Usually,
there is no need for a user to be in the PSI pose for calibration in the new
version of NiTE; yet if it was needed, and NiTE found any reason to use
this pose, but the user wasn't in the PSI pose, this is what the state of the
nite::Skeleton::getState() method would be

 � nite::SKELETON_CALIBRATION_ERROR_HANDS: The calibration failed to
find the hands

 � nite::SKELETON_CALIBRATION_ERROR_HEAD: The calibration failed to
find head

 � nite::SKELETON_CALIBRATION_ERROR_LEGS: The calibration failed to
find legs

 � nite::SKELETON_CALIBRATION_ERROR_TORSO: The calibration failed to
find the torso

The nite::SkeletonJoint object
nite::SkeletonJoint gives you more information about a skeleton joint. Every recognized
skeleton joint of a user has a nite::SkeletonJoint class to store its information. You can
access each nite::SkeletonJoint object from the nite::Skeleton object. Here are
some methods of this object:

 f nite::SkeletonJoint::getOrientation(): This method gives you a
nite::Quaternion struct that shows the current orientation of a joint. The
nite::Quaternion structure contains four float fields that can be used to
find out the normal vector and radius of a rotation.

Read more about quaternions:
 f http://en.wikipedia.org/wiki/Gimbal_

lock#The_quaternion_solution

 f http://en.wikipedia.org/wiki/
Quaternions_and_spatial_rotation

 f nite::SkeletonJoint::getOrientationConfidence(): The return value
is of the float type and shows the confidence value of NiTE for returning the
Quaternion orientation. This value is between 0 and 1.

 f nite::SkeletonJoint::getPosition(): This returns a
nite::Point3fstruct value that contains three float fields
showing the position of a joint in 3D space.

NiTE and Skeleton Tracking

280

 f nite::SkeletonJoint::getPositionConfidence(): This method's return
value is of the float type and shows the confidence value of NiTE for returning the
position point. This value is between 0 and 1.

 f nite::SkeletonJoint::getType(): This method's return value is of the type
nite::JointType enum and shows the types of this joint. nite::JointType
enum contains the following members:

 � nite::JOINT_HEAD

 � nite::JOINT_NECK

 � nite::JOINT_LEFT_SHOULDER

 � nite::JOINT_RIGHT_SHOULDER

 � nite::JOINT_LEFT_ELBOW

 � nite::JOINT_RIGHT_ELBOW

 � nite::JOINT_LEFT_HAND

 � nite::JOINT_RIGHT_HAND

 � nite::JOINT_TORSO

 � nite::JOINT_LEFT_HIP

 � nite::JOINT_RIGHT_HIP

 � nite::JOINT_LEFT_KNEE

 � nite::JOINT_RIGHT_KNEE

 � nite::JOINT_LEFT_FOOT

 � nite::JOINT_RIGHT_FOOT

The nite::UserData object
nite::UserData is a class representing a user. In another words,
nite::UserTrackerFrameRef gives you a nite::UserData object for
each user it has recognized.

We already introduced some of the nite::UserData object's methods in Chapter 5, NiTE
and User Tracking. Here we are going to show you some other methods related to the subject
of this recipe as follows:

 f nite::UserData::getPose(): This method gives you access to the related
nite::PoseData object of the requested pose of a user. The only argument of this
method is a nite::PoseType enum value that lets you select your desired pose to
give you more information about it.

 f nite::UserData::getSkeleton(): This method gives you the
nite::Skeleton object of the selected user. In the next section, we will tell you
what a nite::Skeleton object is and expound on its important methods.

Chapter 7

281

Detecting a user's pose
In this recipe, we are going to show you how to request a search for a specific pose on a user
and show the status of all the users' poses.

In the current version of NiTE, there are only two predefined poses that can be tracked and
recognized: the PSI pose that was formally used as a calibration pose and the crossed hands
pose that is a newly introduced pose. What follows is an image of a PSI pose:

In the new version of NiTE, there is no practical need to find out if a user is in one of these
two predefined poses, because there is no need to be in a PSI pose for calibration and no
requirement for the crossed hands pose that we are aware of. But you can still use these
poses alone or if you want to support other third-party middleware. Also, even when it seems
there is no need for PSI poses for calibration, it is still an error to indicate that calibration
failed because of a lack of poses. So it may be used in some rare cases.

Getting ready
Create a project in Visual Studio and prepare it for working with OpenNI and NiTE using the
Create a project in Visual Studio 2010 recipe in Chapter 2, OpenNI and C++.

How to do it...
1. Add these lines at the top of your source code (just below the #include lines):

char ReadLastCharOfLine()
{
 int newChar = 0;
 int lastChar;
 fflush(stdout);
 do
 {
 lastChar = newChar;
 newChar = getchar();
 }
 while ((newChar != '\n')

NiTE and Skeleton Tracking

282

 && (newChar != EOF));
 return (char)lastChar;
}
bool HandleStatus(nite::Status status)
{
 if (status == nite::STATUS_OK)
 return true;
 printf("ERROR: #%d, %s", status,
 openni::OpenNI::getExtendedError());
 ReadLastCharOfLine();
 return false;
}

2. Then locate the following line:
int _tmain(int argc, _TCHAR* argv[])
{

3. Now add the following inside this function:
 nite::Status status = nite::STATUS_OK;
 status = nite::NiTE::initialize();
 if (!HandleStatus(status)) return 1;
 printf("Creating user tracker ...\r\n");
 nite::UserTracker uTracker;
 status = uTracker.create();
 if (!HandleStatus(status)) return 1;
 printf("Reading data from user tracker ...\r\n");
 while(!_kbhit())
 {
 nite::UserTrackerFrameRef newFrame;
 status = uTracker.readFrame(&newFrame);
 if (!HandleStatus(status) ||
 !newFrame.isValid()) return 1;
 system("cls");
 const nite::Array<nite::UserData>& users =
 newFrame.getUsers();
 for (int i = 0; i < users.getSize(); ++i)
 {
 if (users[i].isNew()){
 uTracker.startPoseDetection(
 users[i].getId(),
 nite::POSE_PSI);
 }
 printf("User #%d %s - %s \r\n",
 users[i].getId(),
 (users[i].isVisible()) ?
 "is Visible" : "is not Visible",
 (users[i].getPose(nite::POSE_PSI).isHeld()) ?

Chapter 7

283

 "In PSI Pose" : "In No Pose");
 }
 }
 uTracker.destroy();
 nite::NiTE::shutdown();
 return 0;

How it works...
This is a fairly simple recipe. As you can see in step one, we have nothing except two of
our famous functions: ReadLastCharOfLine() for reading input from the console and
HandleStatus() for checking if a nite::Status object is indicating an error.

Also, in the initial lines of step two, we have the same lines of code as given in the previous
recipes. We initialized NiTE and created a nite::UserTracker object. But just after that
we entered a while loop to read data from nite::UserTracker until a user pressed a key
in the console. In our while loop, we have the code for reading a frame of data; this can be
seen in the second line of the following code:

 nite::UserTrackerFrameRef newFrame;
 status = uTracker.readFrame(&newFrame);

And then we cleared the console by calling a system command:

 system("cls");

Then, to get the status of each user's pose information, we read the list of all the recognized
users and their properties, including their poses, by defining an array of the nite::UserData
variable and calling the nite::UserTrackerFrameRef::getUsers() method:

 const nite::Array<nite::UserData>& users =
 newFrame.getUsers();

The next step is to loop through the users using another loop:

 for (int i = 0; i < users.getSize(); ++i)

Then we can show the status of each user's pose to the user via the console; however, how
can we expect to recognize a pose when we didn't request a search for it? That's why we need
to call the nite::UserTracker::startPoseDetection() method when a new user
is recognized:

 if (users[i].isNew()){
 uTracker.startPoseDetection(
 users[i].getId(),
 nite::POSE_PSI);
 }

NiTE and Skeleton Tracking

284

As you can see in the preceding code, we checked if this user is a newly recognized user and
if so, asked for a search for the PSI pose on this user.

From what we experienced, nite::POSE_CROSSED_HANDS is not
recognizable before tracking begins, at least not in the current beta
version. You will learn more about tracking in the next recipe.

Then we are going to show the current user's active pose to the user:

 printf("User #%d %s - %s \r\n",
 users[i].getId(),
 (users[i].isVisible()) ?
 "is Visible" : "is not Visible",
 (users[i].getPose(nite::POSE_PSI).isHeld()) ?
 "In PSI Pose" : "In No Pose");

This is a little complicated because we tried to do all the things in one line. But as you can
clearly see, we used the nite::UserData::getPose() method to retrieve the status of
one of the poses of the user, and then using nite::PoseData::isHeld(), we found out
if the user is currently in this pose.

Based on these two methods, we wrote an inline if to show the name of the active pose
(the PSI pose in our case) and In No Pose if the user wasn't in the PSI pose.

The output of our application is as follows:

Chapter 7

285

See also
 f The Recognizing predefined hand gestures recipe in Chapter 6, NiTE and

Hand Tracking

 f The Getting a user's skeleton joints and displaying their position in the depth
map recipe

 f The Designing a simple pong game using skeleton tracking recipe

Getting a user's skeleton joints and
displaying their position in the depth map

In this recipe, we are going to show you how to request calibration for a user's skeleton and
for tracking a user's skeleton joints; we will then show these joints on a screen overlaying the
depth stream.

Getting ready
Create a project in Visual Studio and prepare it for working with OpenNI and NiTE using the
Create a project in Visual Studio 2010 recipe in Chapter 2, OpenNI and C++; then, configure
Visual Studio to use OpenGL using the Configuring Visual Studio 2010 to use OpenGL recipe
in Chapter 3, Using Low-level Data.

Then copy the code from the Identifying and coloring users' pixels in depth map recipe of
Chapter 5, NiTE and User Tracking to this project.

How to do it...
1. Locate the following line in the gl_DisplayCallback() function:

glEnd();

2. Add the following lines of code relative to the preceding line:
 glBegin(GL_POINTS);
 glColor3f(1.f, 0.f, 0.f);
const nite::Array<nite::UserData>&users =
usersFrame.getUsers();
 for (int i = 0; i < users.getSize(); ++i)
 {
 if (users[i].isNew())
 {
 uTracker.startSkeletonTracking(
 users[i].getId());
 }

NiTE and Skeleton Tracking

286

 nite::Skeleton user_skel = users[i].getSkeleton();
 if (user_skel.getState() ==
 nite::SKELETON_TRACKED)
 {
 for (int joint_Id = 0; joint_Id < 15;
 ++joint_Id)
 {
 float posX, posY;
 niStatus =
 uTracker.convertJointCoordinatesToDepth(
 user_skel.getJoint((nite::JointType)
 joint_Id).getPosition().x,
 user_skel.getJoint((nite::JointType)
 joint_Id).getPosition().y,
 user_skel.getJoint((nite::JointType)
 joint_Id).getPosition().z,
 &posX, &posY);
 if (HandleStatus(niStatus){
 glVertex2f(
 (posX * resizeFactor) + texture_x,
 (posY * resizeFactor) + texture_y);
 }
 }
 }
 }
 glEnd();
 glColor3f(1.f, 1.f, 1.f);

3. Then locate this line in the _tmain() function:
glutMainLoop();

4. Add the following line above the preceding line of code:

glPointSize(10.0);

How it works...
In the first step, after placing the texture in OpenGL, we informed OpenGL that we want to
draw some points with the color red:

 glBegin(GL_POINTS);
 glColor3f(1.f, 0.f, 0.f);

Chapter 7

287

Then we used an already defined variable containing a list of all the users to loop through them:

 for (int i = 0; i < users.getSize(); ++i)
 {

Now we can request the position of each recognized skeleton joint of the user and show
them to the user. But before doing so, we need to request skeleton tracking of users because
skeleton information is not available by default. If we don't request this for each user, we won't
have any data about their skeleton and skeleton joints. So we add a condition when a user is
recognized for the first time and then request skeleton tracking for that user:

 if (users[i].isNew())
 {
 uTracker.startSkeletonTracking(
 users[i].getId());
 }

Now is the time to check the user's skeleton state. To do so, we need to have
access to the related nite::Skeleton object of the user, so we used the
nite::UserData::getSkeleton() method first:

 nite::Skeleton user_skel = users[i].getSkeleton();

The first step before trying to read the position of each joint is to check whether there
is any data to show, whether the calibration process ended successfully, and whether
the user is in the tracking state now. To do this, we need to check the return value of
nite::Skeleton::getState():

 if (user_skel.getState() ==
 nite::SKELETON_TRACKED)
 {

The return value of this method is of the type nite::SkeletonState, which we talked
about before in the introduction of this chapter. You can read about the possible states there.
But here we used nite::SKELETON_TRACKED because it means the calibration process has
been completed successfully and the skeleton data is available for this user.

Please note that, if the user goes out of FOV, if NiTE fails to see the entire part of a user's body,
or if there is any other internal problem, we shouldn't expect nite::SKELETON_TRACKED as
the status.

The next step is to request each of the 15 joints from nite::JointType enum and ask for
the corresponding nite::SkeletonJoint objects that represent them. But this means lots
of coding, so we decided to place a for loop that is counting from 0 to 14 (these are values of
the nite::JointType enum members) to save some space:

 for (int joint_Id = 0; joint_Id < 15;
 ++joint_Id)
 {

NiTE and Skeleton Tracking

288

Then we can access each of these 15 joints using the nite::Skeleton::getJoint()
method and using their positions with the nite::SkeletonJoint::getPosition()
method. But the returned value is not in the unit that we need to display these points in the
depth stream, so we need to first convert them using the nite::UserTracker::convertJ
ointCoordinatesToDepth() method:

 float posX, posY;
 status =
 uTracker.convertJointCoordinatesToDepth(
 user_skel.getJoint((nite::JointType)
 joint_Id).getPosition().x,
 user_skel.getJoint((nite::JointType)
 joint_Id).getPosition().y,
 user_skel.getJoint((nite::JointType)
 joint_Id).getPosition().z,
 &posX, &posY);

As you can see, we got access to the nite::SkeletonJoint object and its position by
calling the following method:

user_skel.getJoint((nite::JointType)joint_Id).getPosition()

Then we calculated the coordinates relative to the depth stream's frame size. And in the next
step, we checked if this conversation was completed without any error. If so, we'll ask OpenGL
to draw a point there:

 if (HandleStatus(status)){
 glVertex2f(
 (posX * resizeFactor) + texture_x,
 (posY * resizeFactor) + texture_y);
 }

There is one thing that you can see in the preceding code, and that is the conversion of
posX and posY again. We did this to find out the coordinates of the points relative to the
OpenGL window.

This was the end of our code in this step. In the next two lines, we inform OpenGL that we
don't have any more points to draw and inform it to again set the active color to white:

 glEnd();
 glColor3f(1.f, 1.f, 1.f);

In the next steps, we only defined the size of each point and nothing more:

glPointSize(10.0);

Chapter 7

289

The output of our application is as follows:

See also
 f The Reading users' bounding boxes and center of mass recipe in Chapter 5, NiTE and

User Tracking

 f The Tracking hands recipe in Chapter 6, NiTE and Hand Tracking

 f The Detecting a user's pose recipe

 f The Designing a simple pong game using skeleton tracking recipe

NiTE and Skeleton Tracking

290

Designing a simple pong game using
skeleton tracking

We will use the output of skeleton tracking on a simple game to show you how we can use this
data to make the user a bigger part of the game than he was in old times. This pong-like game
is the simplest game we could think of.

Unfortunately because of the number of lines of code, we removed the How to do it... section,
but you can download the source code of this recipe from Packt Publishing's website.

Also, in the How it works... section that follows, you can read information about almost every
line of code.

How it works...
The gameplay is fairly simple; we have a pong-like ball that can interact with a user's skeleton.
It is not a great game, but it's still a game, and it is fun enough as a mini-game from a
personal perspective.

If you'll take a look at the code (the main file is OpenNI2Project.cpp), you can clearly see
that we used two new #include lines. vector helps us to define arrays with dynamic-size
behavior that we are going to use in our program to store skeleton lines, and sstream makes
working with strings easier.

After these lines, we defined a structure named PongBall. This structure is going to be our
main ball. While defining this structure, we used the following different fields:

 f PongBall::location: This is a POINTFLOAT variable and contains the position
of our ball

 f PongBall::speed: This is an integer variable indicating the speed of the
movement of our ball

 f PongBall::angle: This is a float variable and shows the direction of the
movement of our ball. We will keep this in radiant

Also, we have defined a method named PongBall::init() that fills the location and angle
variables with a random number:

 void init(int w, int h){
 srand(time(NULL));
 angle = (((float)rand() / RAND_MAX)
 * PI * 2);
 location.x = (((float)rand() / RAND_MAX)
 * (w - 40)) + 20;
 location.y = (((float)rand() / RAND_MAX)
 * (h - 40)) + 20;
 }

Chapter 7

291

We then defined a global variable from this struct named mainBall. We are going to use this
variable as a representation of our ball in the application/game.

PongBall mainBall;

Then we defined a class named Line so we can use it later for storing our lines' end points.
Actually, each skeleton line or screen bounding box is a line.

In this class, we defined two fields named Line::a and Line::b. These are the locations of
the start points and end points of our line.

We also defined a class constructor method with four parameters (X and Y for both end
points) so we can easily create instances of this class:

 Line
 (float x1, float y1, float x2, float y2)
 : a (new POINTFLOAT), b (new POINTFLOAT)
 {
 a->x = x1;
 a->y = y1;
 b->x = x2;
 b->y = y2;
 }

As this class has two pointers (for each endpoints), we need to take care of them before
destroying them to prevent a memory leak. So in the destructor of this class, we deleted
both the variables:

 ~Line()
 {
 delete a;
 delete b;
 }

This class has only one method named Line::getAngle() that can be used for giving
us the angle of segments between two points in a radiant using a simple mathematical
calculation as follows:

 float getAngle()
 {
 return atan2(
 (float)a->y - b->y, a->x - b->x);
 }

NiTE and Skeleton Tracking

292

Then in our main code, we have window_w and window_h for storing the size of the OpenGL
window as always. After that, we have the uTracker variable with a nite::UserTracker
type that is our user tracker object from NiTE. We also have a variable named lines from the
type std::vector<Line*>, which simply means a dynamic array for pointers of the Line
class. We are going to use it for storing active lines in a scene.

There are two more variables named wallScore and userScore that will be used for
storing a user's and walls' hits:

int window_w = 640;
int window_h = 480;
nite::UserTracker uTracker;
std::vector<Line*> lines;
int wallScore = 0;
int userScore = 0;

As with any other recipe you have read until now, we have our two famous functions here too.
ReadLastCharOfLine(), which is a function that reads a character from the user and waits
for the user to press the Enter key, and HandleStatus(), which is responsible for checking
the nite::Status object returned by other functions/methods.

After these two functions, we have gl_KeyboardCallback() that is responsible for
handling key presses in the OpenGL window. In this example, we are going to check only
if the pressed key was the Esc key so we can end the program:

void gl_KeyboardCallback(unsigned char key, int x, int y)
{
 if (key == 27) // ESC Key
 {
 uTracker.destroy();
 nite::NiTE::shutdown();
 exit(0);
 }
}

gl_IdleCallback() is the next function that has been defined in the source code. This
function will be executed when OpenGL is idle and has nothing to do. In this function, we will
request the re-rendering of a scene using the glutPostRedisplay() function of GLUT:

void gl_IdleCallback()
{
 glutPostRedisplay();
}

Chapter 7

293

After these two functions, we defined three functions to enable drawing in the OpenGL
window. The first one is a function named drawText() that we wrote for adding text to the
OpenGL output. In the first line of this function, we changed the active color to white and then
asked OpenGL to set the cursor to a specific pixel. Then we wrote each character from the
string to the OpenGL buffer, one by one, using the glutBitmapCharacter() function and
with the Helvetica font set to a size of 12pt:

void drawText(int x, int y, const char *string)
{
 glColor3f(255, 255, 255);
 glRasterPos2f(x, y);
 for (int i = 0; i < strlen(string); i++){
 glutBitmapCharacter(
 GLUT_BITMAP_HELVETICA_12, string[i]);
 }
}

The second function we defined is a function named drawLineBetweenJoints().
This function is going to draw a line between the two users' skeleton joints. To do this, we first
converted the real-world position of these two joints to their positions on the screen using the
nite::UserTracker::convertJointCoordinatesToDepth() method. Then we used
the OpenGL functions to draw a line between these two positions. In the end, we also added
this new line to the lines vector/array as follows:

void drawLineBetweenJoints(nite::Skeleton skel,
 nite::JointType a, nite::JointType b)
{
 float posX1, posY1, posX2, posY2;
 nite::Status status1 =
 uTracker.convertJointCoordinatesToDepth(
 skel.getJoint(a).getPosition().x,
 skel.getJoint(a).getPosition().y,
 skel.getJoint(a).getPosition().z,
 &posX1, &posY1);
 nite::Status status2 =
 uTracker.convertJointCoordinatesToDepth(
 skel.getJoint(b).getPosition().x,
 skel.getJoint(b).getPosition().y,
 skel.getJoint(b).getPosition().z,
 &posX2, &posY2);
 if (status1 == nite::STATUS_OK &&
 status2 == nite::STATUS_OK){
 glBegin(GL_LINES);
 glVertex2f(posX1,posY1);
 glVertex2f(posX2,posY2);

NiTE and Skeleton Tracking

294

 glEnd();
 lines.push_back(new Line(posX1, posY1, posX2, posY2));
 }
}

The third function is the drawCircle() function. We are going to use this function to show
the position of the user's head. This function accepts three arguments, x and y of the center
of the circle and the radius of the circle. Then we will try to find 100 points in the perimeter of
this circle and draw a line joining one point to the other:

void drawCircle(float x, float y, float r){
 glBegin(GL_LINE_LOOP);
 for(int i = 0; i < 100; i++) {
 float angle = i*2*PI/100;
 glVertex2f(x + (cos(angle) * r),
 y + (sin(angle) * r));
 }
 glEnd();
}

In our game, we also want to see if the ball is going to collide with the user's skeleton or
walls. To calculate this, we defined a function named IsSegmentsColliding(). We also
used another function named IsBetween() to check if a number is in the desired region or
not. We are going to use this function in IsSegmentsColliding() later. IsBetween() is
based on simple logic: our number must be smaller than the first bound and bigger than the
second bound, or in reverse. This is because we are not sure which one is upper bound and
which one is lower bound.

bool IsBetween (float x, float b1, float b2)
{
 return (((x >= (b1 - 0.1f)) &&
 (x <= (b2 + 0.1f))) ||
 ((x >= (b2 - 0.1f)) &&
 (x <= (b1 + 0.1f))));
}

Please note the 0.1f number in the preceding code. As you may know, float variables are
not very reliable for direct comparison because they have an error margin. So, we used this
number as a tolerance.

Chapter 7

295

In the IsSegmentsColliding() function, we need to find out if two lines cross each
other. These two lines are each a product of two points, so they are a sum of four points,
which is the same as the number of arguments for this function. After finding out if these two
lines crossed each other, we need to make sure that this point is part of the two segments
(because actually they are not a line but a segment):

bool IsSegmentsColliding(POINTFLOAT lineA,
 POINTFLOAT lineB,
 POINTFLOAT line2A,
 POINTFLOAT line2B)

The first step is to calculate the place of collision using the following two formulas to see if
these two lines have any collision at all:

()()1 2 2 1 2 2 1 1 1 2

1 2 2 1

A A A A
col

X X Y Y X Y X X Y X
X

Y X Y X
∆ ∆ − − ∆ ∆ + ∆ ∆

=
∆ ∆ −∆ ∆

col A A
col

X Y Y X X YY
X

∆ + ∆ − ∆
=

∆

Read more about these mathematical formulas on Wikipedia
(http://en.wikipedia.org/wiki/Line-line_intersection).

Before using these formulas, we need to first calculate the first line's Delta X and Delta Y and
then the second line's Delta X and Delta Y:

 float deltaX1 = lineB.x - lineA.x;
 float deltaX2 = line2B.x - line2A.x;
 float deltaY1 = lineB.y - lineA.y;
 float deltaY2 = line2B.y - line2A.y;

Then we must check if both the lines are vertical lines and/or if they are parallel because
we can't use the preceding formula for two parallel lines or two vertical lines (that are
also parallel):

 if (abs(deltaX1) < 0.01f &&
 abs(deltaX2) < 0.01f) // Both are vertical lines
 return false;
 if (abs((deltaY1 / deltaX1) -
 (deltaY2 / deltaX2)) < 0.001f) // Two parallel line
 return false;

NiTE and Skeleton Tracking

296

In the next step, we calculate the x value of the collision point:

 float xCol = (((deltaX1 * deltaX2) *
 (line2A.y - lineA.y)) -
 (line2A.x * deltaY2 * deltaX1) +
 (lineA.x * deltaY1 * deltaX2)) /
 ((deltaY1 * deltaX2) - (deltaY2 * deltaX1));

Then we calculate the y value of this point. It is important to know that, to do so, we need to
use the equation of one of these lines, and we can't do it with a vertical line. So the first thing
to do is to check if the first line is a vertical line. If it is, we need to use the equation of the
second line for calculation purposes. If it isn't, we can use the first one without a problem:

 float yCol = 0;
 if (deltaX1 < 0.01f) // L1 is a vertical line
 yCol = ((xCol * deltaY2) +
 (line2A.y * deltaX2) -
 (line2A.x * deltaY2)) / deltaX2;
 else // L1 is acceptable
 yCol = ((xCol * deltaY1) +
 (lineA.y * deltaX1) -
 (lineA.x * deltaY1)) / deltaX1;

After these two calculations, we have the position of impact. Yet we are not sure if this
position is between the two points (is part of two segments or not), so we need to use the
IsBetween() function to check if both x and y of the points are within the range of these
two segments:

 return IsBetween(xCol, lineA.x, lineB.x) &&
 IsBetween(yCol, lineA.y, lineB.y) &&
 IsBetween(xCol, line2A.x, line2B.x) &&
 IsBetween(yCol, line2A.y, line2B.y);

We also defined a function here to empty the lines array, named ClearLines():

void ClearLines(){
 for(int i = 0; i < lines.size(); ++i)
 delete lines[i];
 lines.clear();
}

In the preceding function, we first released the memory held by the Line objects and then
removed them from the array by clearing the vector.

Chapter 7

297

The next thing we need to do is to define a function for rendering a scene. As always, we
defined our gl_DisplayCallback() function. In this function, after requesting for a new
frame from nite::UserTracker, we checked whether the size of the newly returned frame
is the same as the older frames and whether it is the current size of the OpenGL window or
not. If it is different, we will change the size of the OpenGL window and update the window_h
and window_w variables:

 status = uTracker.readFrame(&usersFrame);
 if (status == nite::STATUS_OK && usersFrame.isValid())
 {
 VideoFrameRef depthFrame = usersFrame.getDepthFrame();
 if (window_w != depthFrame.getWidth() ||
 window_h != depthFrame.getHeight())
 {
 window_w = depthFrame.getWidth();
 window_h = depthFrame.getHeight();
 glutReshapeWindow(window_w, window_h);
 }

The next step is to clear the OpenGL buffer and set up the OpenGL viewpoint. And after that,
we can search for the recognized users in the screen. But just before doing this, we need to
first clear the lines array using the ClearLines() function that we defined before and
then add walls to it:

 ClearLines();
 lines.push_back(new Line(0, 0, 0, window_h));
 lines.push_back(new Line(0, 0, window_w, 0));
 lines.push_back(new Line(0, window_h,
 window_w, window_h));
 lines.push_back(new Line(window_w, 0,
 window_w, window_h));

Then we can request for the list of users as follows:

 const nite::Array<nite::UserData>& users =
 usersFrame.getUsers();

Then, we can loop through this list and request to track a user's skeleton or draw the skeleton
of users being tracked to the screen. But it is better to change the active color to something
else and set the size of lines to 5 pixels:

 glColor3f(0.f, 1.f, 0.f);
 glLineWidth(5.0);

NiTE and Skeleton Tracking

298

When a new user is detected, we will request skeleton tracking and restart the game with the
following code:

 if (users[i].isNew())
 {
 uTracker.startSkeletonTracking(
 users[i].getId());
 mainBall.init(window_w, window_h);
 wallScore = 0;
 userScore = 0;
 }

The next step is to check if the user is currently being tracked. If he/she is, we will try to draw
a line between the related skeleton joints to give it some visual representation as follows:

 nite::Skeleton user_skel = users[i].getSkeleton();
 if (user_skel.getState() ==
 nite::SKELETON_TRACKED)
 {
 drawLineBetweenJoints(user_skel,
 nite::JOINT_LEFT_HAND, nite::JOINT_LEFT_ELBOW);
 ...
 drawLineBetweenJoints(user_skel,
 nite::JOINT_LEFT_HIP,
 nite::JOINT_LEFT_SHOULDER);

We also want to draw a circle in place of the user's head:

 float posX, posY;
 status =
 uTracker.convertJointCoordinatesToDepth(
 user_skel.getJoint(nite::JOINT_HEAD)
 .getPosition().x,
 user_skel.getJoint(nite::JOINT_HEAD)
 .getPosition().y,
 user_skel.getJoint(nite::JOINT_HEAD)
 .getPosition().z,
 &posX, &posY);
 if (status == nite::STATUS_OK){
 drawCircle(posX, posY,
 (1 - (user_skel.getJoint(nite::JOINT_HEAD)
 .getPosition().z / 5000)) * 35);

Chapter 7

299

Then we need to take care of our ball, including moving it and checking for collision between it
and the defined lines. To do so, we first need to know the next position of the ball. Calculating
this position is possible with two simple mathematical functions:

 POINTFLOAT newPosition;
 newPosition.x = mainBall.speed *
 cos(mainBall.angle) + mainBall.location.x;
 newPosition.y = mainBall.speed *
 sin(mainBall.angle) + mainBall.location.y;

Then we loop through all the registered lines in the lines variable and check if the next
movement of the ball will cross any of them. If so, we need to change the direction of the ball's
movement depending on the angle of the line itself (you can read about specular reflection on
the Web):

 for (int i = 0; i < lines.size(); ++i){
 if (IsSegmentsColliding(*(lines[i]->a),
 *(lines[i]->b),
 mainBall.location,
 newPosition)){
 mainBall.angle = lines[i]->getAngle() -
 (mainBall.angle –
 lines[i]->getAngle());

We also increase the score of the wall or player(s) by one:

 if (i < 4)
 wallScore += 1;
 else
 userScore += 1;

Then we set the new location of the ball and draw it:

 mainBall.location.x +=
 mainBall.speed * cos(mainBall.angle);
 mainBall.location.y +=
 mainBall.speed * sin(mainBall.angle);
 glPointSize(10);
 glColor3f(1.f, 0.f, 0.f);
 glBegin(GL_POINTS);
 glVertex2f(mainBall.location.x,
 mainBall.location.y);
 glEnd();

NiTE and Skeleton Tracking

300

At the end, we print the number of hits by user(s) or by walls to the output:

 std::ostringstream stringStream;
 stringStream << "User(s)' Hits: " << userScore;
 const std::string tmp = stringStream.str();
 drawText(20, 20, tmp.c_str());
 stringStream.str("");
 stringStream << "Walls' Hits: " << wallScore;
 const std::string tmp2 = stringStream.str();
 drawText(120, 20, tmp2.c_str());

In our main function, we performed the same steps as always, initializing NiTE, creating a
user tracker, and registering GLUT functions. The only new lines in the _tmain() function,
compared with other related recipes, are these lines:

 mainBall.init(120, 240);
 mainBall.speed = 5;

We used these lines to initialize the position of the ball the first time. We also defined a
constant speed for the ball.

The output of our game-like experience is as follows:

Chapter 7

301

See also
 f The Working sample for controlling the mouse by hand recipe in Chapter 6, NiTE and

Hand Tracking

 f The Detecting a user's pose recipe

 f The Getting a user's skeleton joints and displaying their position in the depth
map recipe

Index
Symbols
3D Hand Tracking Library

URL 10
3D scanners

URL 7
3DUI 6
3D User Interaction. See 3DUI
3D User Interfaces. See 3DUI

A
Active Pixel Sensor. See APS
APS 7
Asus Xtion

about 7
connecting, steps for 22, 23

Asus Xtion Pro Live 7
auto exposure

disabling 210-215
enabling 210-215

C
center of gravity (COM) 219
center of mass

reading 233-238
centerPixel variable 203
ClearLines() function 297
Click Gesture 246
color space

wider 143-148
crossed hands pose 281

D
data

event-based, reading 165-168

data streams
speed, changing 84

depth frame
overlaying, over image frame

189-199
depth sensor

frame, reading 124-129
syncing 182-187

depth stream
accessing, specific device used 68-73
supported video modes list, retrieving 61-68

depth unit
converting, to millimeter 200-203

device connect
listening to 75-79

device object 28
devices

connected devices, list 47-53
resolutions 61
sharing, between applications 28

device state changed event 80
device variable 111
DirectX 90
disconnect events

listening to 75-79
drawCircle() function 294

E
error handling 43-46
event-based reading

of hands data 264-268
event listener 238
events

listening to, stopping 80

304

F
filling shadows 148, 149
float variable 290
Fotonic

about 9
URL 9

frame
from buffer, cropping 172, 174
from buffer, mirroring 172-180
from depth sensor, reading 124-135
from depth sensor, showing 124-135
from image sensor, reading 106-121
from image sensor, showing 106-121

G
gl_DisplayCallback function 112, 137
gl_DisplayCallback() function 102, 103, 149,

195, 196, 225, 297
gl_IdleCallback function 112
gl_IdleCallback() function 225, 256, 292
gl_KeyboardCallback function 112
gl_KeyboardCallback() function 195, 255
gl_MouseCallback() function 177
gl_texture variable 111, 116, 131
GLUT

about 90
alternatives 99

glutPostRedisplay() function 102
Graphics Device Interface (GDI) 90

H
hand gestures

predefined hand gestures, recognizing
246-248

hand ID
user ID, finding 259-263

handId variable 272
HandleStatus function 111
HandleStatus() function 56, 208, 221, 238,

240, 255, 261, 272
HandleStatus() method 49, 56, 65, 77
Hand Raise gesture 246, 269
hands

tracking 250-258

hands data
event-based reading 264-268

HandTracker 246

I
image frame

depth frame, overlaying over 189-199
image histograms

URL 136
image sensors

syncing 182-187
integer variable 290
introduction 5, 6
IR stream 59
isInCropping 177
isMouseDown variable 177
IsSegmentsColliding() function 295

K
Kinect

about 8
URL 7

L
Laser Imaging Detection and Ranging. See

LIDaR
LIDaR 7

M
MapGenerator class 85
memcpy() function 120
memset() function 179
MetaData types 85
method

defining, to display error message 46, 47
Microsoft Kinect

connecting 24
connecting, steps for 24-26

Microsoft Kinect SDK
downloading 18, 19
installing 20, 21

millimeter
depth unit, converting to 200-204

305

mouse
controlling, with hand 269-276

mouseDownX variable 178
mouseDownY variable 178

N
natural interactive user interface

about 6
used, for developing applications 10, 11
used, for developing games 10, 11

nearest point
color, retrieving 205

NI (Natural Interaction) 6
NiTE

about 9
downloading 15, 16
installing 17, 18

nite::GestureData::getCurrentPosition()
method 245

nite::GestureData::getType() method 245
nite::GestureData::isComplete() method 245
nite::GestureData::isInProgress() method 245
nite::GestureData object, methods

nite::GestureData::getCurrentPosition()
method 245

nite::GestureData::getType() method 245
nite::GestureData::isComplete() method 245
nite::GestureData::isInProgress() method 245

nite::HandData::getPosition() method
245, 257

nite::HandData::isLost() method 245
nite::HandData::isNew() method 245
nite::HandData::isTouchingFov() method 245
nite::HandData::isTracking() method 245
nite::HandData object, methods

nite::HandData::getId() method 245
nite::HandData::getPosition() method 245
nite::HandData::isLost() method 245
nite::HandData::isNew() method 245
nite::HandData::isTouchingFov() method 245
nite::HandData::isTracking() method 245

nite::HandTracker::convertHandCoordinatesTo
Depth() method 244, 257

nite::HandTracker::readFrame() method 244,
249, 273

nite::HandTracker::startGestureDetection()
method 258, 268

nite::HandTracker::startHandTracking()
method 244

nite::HandTracker::stopGestureDetection()
method 244

nite::HandTracker::stopHandTracking()
method 244

nite::HandTrackerFrameRef::getDepthFrame()
method 244

nite::HandTrackerFrameRef::getGestures()
method 244, 249

nite::HandTrackerFrameRef::getHands()
method 244, 274

nite::HandTrackerFrameRef object, methods
nite::HandTrackerFrameRef::getDepthFrame()

method 244
nite::HandTrackerFrameRef::getGestures()

method 244
nite::HandTrackerFrameRef::getHands()

method 244
nite::HandTrackerFrameRef variable 249
nite::HandTracker object

about 272
methods 244

nite::HandTracker object, methods
nite::HandTracker::convertHandCoordinatesTo

Depth() method 244
nite::HandTracker::readFrame() method 244
nite::HandTracker::startHandTracking()

method 244
nite::HandTracker::stopGestureDetection()

method 244
nite::HandTracker::stopHandTracking() method

244
nite:HandTracker::startGestureDetection()

method 243
nite::HandTracker variable 256
nite::NiTE::getVersion() method 217
nite::NiTE::initialize() method 217
nite::NiTE::shutdown() method 217
nite::NiTE object

about 217
methods 217

nite::NiTE object, methods
nite::NiTE::getVersion() method 217

306

nite::NiTE::initialize() method 217
nite::NiTE::shutdown() method 217

nite::PoseData::getType() method 278
nite::PoseData::isEntered() method 278
nite::PoseData::isExited() method 278
nite::PoseData::isHeld() method 278
nite::PoseData object, methods

nite::PoseData::getType() method 278
nite::PoseData::isEntered() method 278
nite::PoseData::isExited() method 278
nite::PoseData::isHeld() method 278

nite::Skeleton::getJoint() method 278
nite::Skeleton::getState() method 278
nite::SKELETON_CALIBRATING 278
nite::SKELETON_CALIBRATION_ERROR_

HANDS 279
nite::SKELETON_CALIBRATION_ERROR_HEAD

279
nite::SKELETON_CALIBRATION_ERROR_LEGS

279
nite::SKELETON_CALIBRATION_ERROR_NOT_

IN_POSE 279
nite::SKELETON_CALIBRATION_ERROR_TOR-

SO 279
nite::SkeletonJoint::getOrientationConfiden

ce() method 279
nite::SkeletonJoint::getOrientation() method

279
nite::SkeletonJoint::getPositionConfidence()

method 280
nite::SkeletonJoint::getPosition() method 279
nite::SkeletonJoint::getType() method 280
nite::SkeletonJoint object 279
nite::SkeletonJoint object, methods

nite::SkeletonJoint::getOrientationConfidence()
method 279

nite::SkeletonJoint::getOrientation() method
279

nite::SkeletonJoint::getPositionConfidence()
method 280

nite::SkeletonJoint::getPosition() method 279
nite::SkeletonJoint::getType() method 280

nite::SKELETON_NONE 278
nite::Skeleton object, methods

nite::Skeleton::getJoint() method 278
nite::Skeleton::getState() method 278

nite::SkeletonState 278

nite::SKELETON_TRACKED 279
nite::UserData::getBoundingBox() method

219
nite::UserData::getCenterOfMass() method

219
nite::UserData::getId() method 219
nite::UserData::getPose() method 280
nite::UserData::getSkeleton() method 280,

287
nite::UserData::isLost() method 219
nite::UserData::isNew() method 219
nite::UserData::isVisible() method 219
nite::UserData object

about 219
methods 280

nite::UserData object, methods
nite::UserData::getBoundingBox() method

219
nite:: UserData::getCenterOfMass() method

219
nite::UserData::getId() method 219
nite::UserData::getPose() method 280
nite::UserData::getSkeleton() method 280
nite::UserData::isLost() method 219
nite::UserData::isNew() method 219
nite::UserData::isVisible() method 219

nite::UserMap::getHeight() method 218
nite::UserMap::getPixels() method 218
nite::UserMap::getStride() method 218
nite::UserMap::getWidth() method 218
nite::UserMap class, methods

nite::UserMap::getHeight() method 218
nite::UserMap::getPixels() method 218
nite::UserMap::getStride() method 218
nite::UserMap::getWidth() method 218

nite::UserMap object 218, 230, 262
nite::UserTracker::convertJointCoordinatesToD

epth() method 293
nite::UserTracker::readFrame() method 218
nite::UserTracker::startPoseDetection()

method 277, 283
nite::UserTracker::startSkeletonTracking()

method 277
nite::UserTracker::stopPoseDetection()

method 278
nite::UserTracker::stopSkeletonTracking()

method 278

307

nite::UserTracker class 217
nite::UserTrackerFrameRef object 218, 240
nite::UserTracker object

about 218, 222, 243
nite::UserTracker::readFrame() method 218

nite::UserTracker object, methods
nite::UserTracker::startPoseDetection()

method 277
nite::UserTracker::startSkeletonTracking()

method 277
nite::UserTracker::stopPoseDetection() method

278
nite::UserTracker::stopSkeletonTracking()

method 278
nite:HandTracker::startGestureDetection()

method 243
NIUI. See natural interactive user interface
NiWrapper.Net 11

O
OniDepthPixel 86
Oni file

opening 81-83
ONI file

streams, recording to file 161-163
OniGrayscale16Pixel 87
OniRGB888Pixel 86
OniYUV422DoublePixel 87
OpenGL

preparing 100-104
OpenNI

about 9, 217
downloading 11-13
installing 13, 14

openni::CameraSettings::getExposure()
method 215

openni::CameraSettings::getGain() method
215

openni::CameraSettings::setAutoExposureEna
bled() method 213

openni::CameraSettings::setAutoWhiteBalanc
eEnabled() method 213

openni::CameraSettings::setExposure()
method 215

openni::CameraSettings::setGain() method
215

openni::CameraSettings object 172
openni::CoordinateConverter class 172, 200,

205
openni::Device::getImageRegistrationMode()

method 196
openni::Device::hasSensor() method 65
openni::Device::open() method 69
openni::DeviceInfo.getName() method 51
openni::DeviceInfo.getUri() method 51
openni::DeviceInfo.getUsbProductId() method

51
openni::DeviceInfo.getUsbVendorId() method

51
openni::DeviceInfo.getVendor() method 51
openni::Device object 172
openni::OpenNI::addDeviceConnectedListen

er() method 78
openni::OpenNI::addDeviceDisconnectedListe

ner() method 78
openni::OpenNI::enumerateDevices() method

50
openni::OpenNI::getExtendedError() 46
openni::OpenNI::getVersion() method 45
openni::OpenNI::initialize() method 47, 56,

65, 72, 217
openni::OpenNI::waitForAnyStream() 89
openni::OpenNI class 45, 50
openni::OpenNI object 89
openni::PixelFormat::PIXEL_FORMAT_

DEPTH_1_MM 60
openni::PixelFormat::PIXEL_FORMAT_

DEPTH_100_UM 60
openni::PixelFormat::PIXEL_FORMAT_GRAY8

60
openni::PixelFormat::PIXEL_FORMAT_GRAY16

60
openni::PixelFormat::PIXEL_FORMAT_JPEG

60
openni::PixelFormat::PIXEL_FORMAT_RGB888

60
openni::PixelFormat::PIXEL_FORMAT_

SHIFT_9_2 60
openni::PixelFormat::PIXEL_FORMAT_

SHIFT_9_3 60
openni::PixelFormat::PIXEL_FORMAT_YUV422

60

308

openni::PixelFormat::PIXEL_FORMAT_YUYV
60

openni::PlaybackControl::seek() method 158
openni::Recorder::attach() method 163
openni::Recorder::create() method 163
openni::Recorder class 161
openni::SensorInfo::getSupportedVideoMod

es() method 65
openni::SensorInfo object 65
openni::Status 46, 47
openni::Status::STATUS_BAD_PARAMETER 47
openni::Status::STATUS_ERROR 47
openni::Status::STATUS_NO_DEVICE 47
openni::Status::STATUS_NOT_IMPLEMENTED

47
openni::Status::STATUS_NOT_SUPPORTED 47
openni::Status::STATUS_OK 47
openni::Status::STATUS_OUT_OF_FLOW 47
openni::Status datatype 43
openni::VideoFrameRef 85, 86
openni::VideoFrameRef::getDataSize() method

88
openni::VideoFrameRef::getFrameIndex()

method 88
openni::VideoFrameRef::getHeight() method

88
openni::VideoFrameRef::getSensorType()

method 88
openni::VideoFrameRef::getStrideInBytes()

method 87
openni::VideoFrameRef::getTimestamp()

method 88
openni::VideoFrameRef::getVideoMode()

method 86, 88
openni::VideoFrameRef::getWidth() method

88
openni::VideoFrameRef object 116
openni::VideoFrameRef variable 86
openni::VideoStream

about 65
readFrame() method 86

openni::VideoStream::readFrame() method
187

openni::VideoStream::setMirroringEnabled()
method 180

openni::VideoStream class 85

openni::VideoStream.getCameraSettings()
method 213

openni::VideoStream method 65, 172
openni::VideoStream object 86, 172
openni::VideoStream objects 164
OpenNI class 43-45
OpenNI object 27, 28

P
pixel formats

OniDepthPixel 86
OniGrayscale16Pixel 87
OniRGB888Pixel 86
OniYUV422DoublePixel 87
openni::PixelFormat::PIXEL_FORMAT_

DEPTH_1_MM 59
openni::PixelFormat::PIXEL_FORMAT_

DEPTH_100_UM 59
openni::PixelFormat::PIXEL_FORMAT_GRAY8

60
openni::PixelFormat::PIXEL_FORMAT_GRAY16

60
openni::PixelFormat::PIXEL_FORMAT_JPEG 60
openni::PixelFormat::PIXEL_FORMAT_RGB888

60
openni::PixelFormat::PIXEL_FORMAT_

SHIFT_9_2 59
openni::PixelFormat::PIXEL_FORMAT_

SHIFT_9_3 59
openni::PixelFormat::PIXEL_FORMAT_YUV422

60
openni::PixelFormat::PIXEL_FORMAT_YUYV 60
unsigned char 86

playback options
changing 84

playControl object 158
player

controlling, while file opening 150-159
POINTFLOAT variable 290
PongBall::angle 290
PongBall::location 290
PongBall::speed 290
pong game

designing, skeleton tracking used 290

309

PrimeSense sensors
connecting, steps for 22, 23

printf() function 46, 199
Product IDs

list 52
project

creating, in Visual Studio 2010 28-43
PSI pose 281
push 276

R
RBI (Reality based interaction) 6
ReadLastCharOfLine() function 164, 208,

238, 240, 255, 261, 272
ReadLastCharOfLine() method 45, 56, 65, 67,

77
ReadLastCharOfLine variable 111
RGB stream 58

S
selectedSensor variable 111
sensorType argument 112
SetActiveSensor function 112
skeleton tracking

about 246
used, for designing pong game 290-300

Structured-light 3D scanning 7

T
TipTep Skeletonizer

URL 10

U
unsigned char 86
user

pose, detecting 281-284
position, displaying in depth map 285-288
skeleton joints, getting 285-288

user ID
finding, for hand ID 259-263

userId variable 263
users

active users, list 219-223
bounding box, reading 233-238

users data
event-based reading 238-241

users pixel
in depth map, coloring 224-232
in depth map, identifying 224-232

UserTracker 246
uTracker variable 229

V
Vendor IDs

list 52
video modes

supported video modes for depth stream,
retrieving 61-67

VideoStream::setCropping() method 179
VideoStream object

about 28
paused state 28

video streams
accessing 53-57

Visual Studio 2010
configuring, to use OpenGPL 90-99
project, creating in 28-43

Visual Studio 2010 Express Edition
URL, for downloading 29
URL, for installing 29

Visual Studio 2010 Ultimate Edition 29
vSlam

about 6
URL 6

W
Wave Gesture 246
while loop 264
window_h variable 111
Windows SDK

URL, for downloading 29
window_w variable 111

Thank you for buying

OpenNI Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

OpenCV Computer Vision
with Python
ISBN: 978-1-78216-392-3 Paperback: 122 pages

Learn to capture videos, manipulate images, and track
objects with Python using the OpenCV Library

1. Set up OpenCV, its Python bindings, and optional
Kinect drivers on Windows, Mac or Ubuntu

2. Create an application that tracks and
manipulates faces

3. Identify face regions using normal color images
and depth images

Kinect in Motion – Audio and
Visual Tracking by Example
ISBN: 978-1-84969-718-7 Paperback: 112 pages

A fast-paced, practical guide including examples, clear
instructions, and details for building your multimodal
user interface

1. Step-by-step examples on how to master the
essential features of Kinect technology

2. Fully-functioning code samples ready to expand
and adjust to your need

3. Compact and handy reference on how to adopt a
multimodal user interface in your application

Please check www.PacktPub.com for information on our titles

Kinect for Windows SDK
Programming Guide
ISBN: 978-1-84969-238-0 Paperback: 392 pages

Build motion-sensing applications with Microsoft's
Kinect for Windows SDK quickly and easily

1. Building application using Kinect for
Windows SDK

2. Covers the Kinect for Windows SDK v1.6

3. A practical step-by-step tutorial to make learning
easy for a beginner

4. A detailed discussion of all the APIs involved and
the explanations of their usage in detail

Augmented Reality with
Kinect
ISBN: 978-1-84969-438-4 Paperback: 120 pages

Develop your own handsfree and attractive augmented
reality applications with Microsoft Kinect

1. Understand all major Kinect API features
including image streaming, skeleton tracking
and face tracking

2. Understand the Kinect APIs with the help of
small examples

3. Develop a comparatively complete Fruit
Ninja game using Kinect and augmented
Reality techniques

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introduction
	Downloading and installing OpenNI
	Downloading and installing NiTE
	Downloading and installing the Microsoft Kinect SDK
	Connecting Asus Xtion and PrimeSense sensors
	Connecting Microsoft Kinect

	Chapter 2: OpenNI and C++
	Introduction
	Creating a project in Visual Studio 2010
	OpenNI class and error handling
	Enumerating a list of connected devices
	Accessing video streams (depth/IR/RGB)
and configuring them
	Retrieving a list of supported video modes for depth stream
	Selecting a specific device for accessing depth stream
	Listening to the device connect and disconnect events
	Opening an already recorded file (Oni file) instead of a device

	Chapter 3: Using Low-level Data
	Introduction
	Configuring Visual Studio 2010 to use OpenGL
	Initializing and preparing OpenGL
	Reading and showing a frame from the image sensor (color/IR)
	Reading and showing a frame from the depth sensor
	Controlling the player when opening a device from file
	Recording streams to file (ONI file)
	Event-based reading of data

	Chapter 4: More about Low-level Outputs
	Introduction
	Cropping and mirroring frames right from the buffer
	Syncing image and depth sensors to
	read new frames from both streams at the same time
	Overlaying the depth frame over the image frame
	Converting the depth unit to millimetre
	Retrieving the color of the nearest point without depth over color registration
	Enabling/disabling auto exposure and auto white balance

	Chapter 5: NiTE and User Tracking
	Introduction
	Getting a list of all the active users
	Identifying and coloring users' pixels in depth map
	Reading users' bounding boxes and center of mass
	Event-based reading of users' data

	Chapter 6: NiTE and Hand Tracking
	Introduction
	Recognizing predefined hand gestures
	Tracking hands
	Finding the related user ID for each hand ID
	Event-based reading of hands' data
	Working sample for controlling the mouse
by hand

	Chapter 7: NiTE and Skeleton Tracking
	Introduction
	Detecting a user's pose
	Getting a user's skeleton joints and displaying their position in the depth map
	Designing a simple pong game using skeleton tracking

	Index

