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Preface
In today's digital world, images and videos are everywhere, and with the advent of powerful 
and affordable computing devices, it has never been easier to create sophisticated imaging 
applications. Plentiful software tools and libraries manipulating images and videos are 
offered, but for anyone who wishes to develop his/her own applications, the OpenCV library is 
the tool to use.

OpenCV (Open Source Computer Vision) is an open source library containing more than 500 
optimized algorithms for image and video analysis. Since its introduction in 1999, it has 
been largely adopted as the primary development tool by the community of researchers and 
developers in computer vision. OpenCV was originally developed at Intel by a team led by 
Gary Bradski as an initiative to advance research in vision and promote the development of 
rich, vision-based CPU-intensive applications. After a series of beta releases, version 1.0 was 
launched in 2006. A second major release occurred in 2009 with the launch of OpenCV 2 that 
proposed important changes, especially the new C++ interface which we use in this book. At 
the time of writing, the latest release is 2.2 (December 2010).

This book covers many of the library's features and shows how to use them to accomplish 
specific tasks. Our objective is not to provide a complete and detailed coverage of every 
option offered by the OpenCV functions and classes, but rather to give you the elements you 
need to build your applications from the ground up. In this book we also explore fundamental 
concepts in image analysis and describe some of the important algorithms in computer vision. 

This book is an opportunity for you to get introduced to the world of image and video analysis. 
But this is just the beginning. The good news is that OpenCV continues to evolve and expand. 
Just consult the OpenCV online documentation to stay updated about what the library can do 
for you:

http://opencv.willowgarage.com/wiki/
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What this book covers
Chapter 1, Playing with Images, introduces the OpenCV library and shows you how to run 
simple applications using the MS Visual C++ and Qt development environments.

Chapter 2, Manipulating the Pixels, explains how an image can be read. It describes different 
methods for scanning an image in order to perform an operation on each of its pixels. You will 
also learn how to define region of interest inside an image.

Chapter 3, Processing Images with Classes, consists of recipes which present various object-
oriented design patterns that can help you to build better computer vision applications.

Chapter 4, Counting the Pixels with Histograms, shows you how to compute image histograms 
and how they can be used to modify an image. Different applications based on histograms are 
presented that achieve image segmentation, object detection, and image retrieval.

Chapter 5, Transforming Images with Morphological Operations, explores the concept of 
mathematical morphology. It presents different operators and how they can be used to detect 
edges, corners, and segments in images.

Chapter 6, Filtering the Images, teaches you the principle of frequency analysis and image 
filtering. It shows how low-pass and high-pass filters can be applied to images. It presents the 
two image derivative operators: the gradient and the Laplacian.

Chapter 7, Extracting Lines, Contours, and Components, focuses on the detection of 
geometric image features. It explains how to extract contours, lines, and connected 
components in an image. 

Chapter 8, Detecting and Matching Interest Points, describes various feature point detectors 
in images. It also explains how descriptors of interest points can be computed and used to 
match points between images.

Chapter 9, Estimating Projective Relations in Images, analyzes the different relations involved 
in image formation. It also explores the projective relations that exist between two images of a 
same scene. 

Chapter 10, Processing Video Sequences, provides a framework to read and write a video 
sequence and to process its frames. It also shows you how it is possible to track feature 
points from frame to frame, and how to extract the foreground objects moving in front of a 
camera.
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Who this book is for
If you are a novice C++ programer who wants to learn how to use the OpenCV library to build 
computer vision applications, then this cookbook is appropriate for you. It is also suitable 
for professional software developers wishing to be introduced to the concepts of computer 
vision programming. It can be used as a companion book in university-level computer vision 
courses. It constitutes an excellent reference for graduate students and researchers in image 
processing and computer vision. The book provides a good combination of basic to advanced 
recipes. Basic knowledge of C++ is required.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of 
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of 
the include directive."

A block of code is set as follows:

     // get the iterators
     cv::Mat_<cv::Vec3b>::const_iterator it=
                         image.begin<cv::Vec3b>();

When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

     // Converting to Lab color space 
     cv::cvtColor(image, converted, CV_BGR2Lab);
     // get the iterators of the converted image 
     cv::Mat_<cv::Vec3b>::iterator it= 

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "This value is read when the 
Process button is clicked, which also triggers the processing and displays the result".

Tips and tricks appear like this.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that 
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and 
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the 
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit 
http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you would report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report them 
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata 
submission form link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded on our website, or added to any 
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by 
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.
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We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.
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Playing with Images

In this chapter, we will cover:

ff Installing the OpenCV Library

ff Creating an OpenCV project with MS Visual C++

ff Creating an OpenCV project with Qt

ff Loading, displaying, and saving images

ff Creating a GUI application using Qt 

Introduction
This chapter will teach you the basic elements of OpenCV and will show you how to 
accomplish the most fundamental tasks: reading, displaying, and saving images. Before you 
can start with OpenCV, you need to install the library. This is a simple process that is explained 
in the first recipe of this chapter.

You also need a good development environment (IDE) to run your OpenCV applications. We 
propose two alternatives here. The first is to use the well-known Microsoft Visual Studio 
platform. The second option is to use an open source tool for C++ project development 
called Qt. Two recipes will show you how to set up a project with these two tools, but you can 
also use other C++ IDEs. In fact, in this cookbook, the tasks will be presented in a way that 
is independent of any particular environment and operating system, so you are free to use 
the one of your choice. However, be aware that you need to use the compiled version of the 
OpenCV library that is appropriate to the compiler and operating system you are using. If you 
obtain strange behaviors, or if your application crashes without apparent reasons, that could 
be a symptom of incompatibilities.

www.allitebooks.com
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Installing the OpenCV library
OpenCV is an open source library for developing computer vision applications. It can be 
used in both academic and commercial applications under a BSD license that allows you to 
freely use, distribute, and adapt it. This recipe will show you how to install the library on your 
machine.

Getting ready
When you visit the OpenCV official website at http://opencv.willowgarage.com/
wiki/, you will find the latest release of the library, the online documentation, and many 
other useful resources about OpenCV.

How to do it...
From the OpenCV website, go to the Download page that corresponds to the platform of your 
choice (Linux/Unix/Mac or Windows). From there you will be able to download the OpenCV 
package. You will then uncompress it, normally under a directory with a name corresponding 
to the library version (for example, OpenCV2.2). Once this is done, you will find a collection 
of directories, notably the doc directory containing the OpenCV documentation, the include 
directory containing all of the include files, the modules directory which contains all of 
the source files (yes, it is open source), and the samples directory containing many small 
examples to help you to get started.

If you are working under Windows with Visual Studio, you also have the option to download the 
executable installation package corresponding to your IDE and Windows platform. Executing 
this setup program will not only install the source library, but also all of the precompiled 
binaries you will need to build your applications. In that case, you are ready to start using 
OpenCV. If not, you need to take few additional steps.

In order to use OpenCV under the environment of your choice, you need to generate the library 
binary files using the appropriate C++ compiler. To build OpenCV, you need to use the CMake 
tool available at http://www.cmake.org/. CMake is another open source software tool 
designed to control the compilation process of a software system using platform-independent 
configuration files. You therefore need to download and install CMake. You can then run it 
using the command line, but it is easier to use CMake with its Graphical User Interface (GUI). 
In this latter case, all you need to do is to specify the folder containing the OpenCV library 
and the one that will contain the binaries. You then click on Configure in order to select the 
compiler of your choice (here we chose Visual Studio 2010), and you click on Configure again, 
as seen in the following screenshot:
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You are now ready to generate your makefiles and workspace files by clicking on the 
Generate button. These files will allow you to compile the library. This is the last step of the 
installation process. 

Compiling the library will make it ready to use for your development environment. If you 
selected an IDE like Visual Studio, then all you need to do is to open the top-level solution 
file that CMake has created for you. You then issue the Build Solution command. In Unix 
environments, you will use the generated makefiles by running your make utility 
command. 

If everything went well, you should now have your compiled and ready-to-use OpenCV library 
in the specified directory. This directory will contain, in addition to the directories we already 
mentioned, a bin directory containing the compiled library. You can move everything to your 
preferred location (for example, c:\OpenCV2.2) and add the bin directory to your system 
path (under Windows, this is done by opening your Control Panel. You start the System utility 
and under the Advanced tab, you will find the Environment Variables button).
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How it works...
Since version 2.2, the OpenCV library is divided into several modules. These modules are built 
in library files located in the lib directory. They are:

ff The opencv_core module that contains the core functionalities of the library, in 
particular, the basic data structures and arithmetic functions.

ff The opencv_imgproc module that contains the main image processing functions.

ff The opencv_highgui module that contains the image and video reading and 
writing functions, along with other user interface functions.

ff The opencv_features2d module that contains the feature point detectors and 
descriptors and the feature point matching framework.

ff The opencv_calib3d module that contains the camera calibration, two-view 
geometry estimation, and stereo functions.

ff The opencv_video module that contains the motion estimation, feature tracking, 
and foreground extraction functions and classes.

ff The opencv_objdetect module containing the object detection functions such as 
the face and people detectors.

The library also includes other utility modules containing machine learning functions (opencv_
ml), computational geometry algorithms (opencv_flann), contributed code (opencv_
contrib), obsolete code (opencv_legacy), and gpu accelerated code (opencv_gpu).

All of these modules have a header file associated with them (located in include directory). 
Typical OpenCV C++ code will therefore start by including the required modules. For example 
(and this is the suggested declaration style):

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>

If you see OpenCV code starting with:

 #include "cv.h"

it is because it uses the old style, before the library was restructured into modules.

There's more...
You can also access the latest code being developed from the OpenCV SVN server located at: 

https://code.ros.org/svn/opencv/trunk/opencv/

You will find that there are a large number of examples that can help you learn how to use the 
library and give you many development tips.
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Creating an OpenCV project with MS Visual 
C++

Using MS Visual C++, you can easily create OpenCV applications for Windows. You can build 
simple console application or you can create more sophisticated applications with a nice 
graphical user interface (GUI). Since it is the easiest option, we will create a simple console 
application here. We'll use Visual Studio 2010, however, the same principles also apply to 
any other versions of the Microsoft IDE since the menus and options are very similar in the 
different versions.

When you run Visual Studio for the first time, you can set it up in a way such that C++ 
becomes your default development environment. This way, when you will launch the IDE, it will 
be in Visual C++ mode. 

We assume that you have installed OpenCV under the C:\OpenCV2.2 directory as explained 
in the previous recipe.

Getting ready
When working with Visual Studio, it is important to understand the difference between a solution 
and a project. Basically, a solution is made of several projects (each project is a distinct software 
module, for example, a program and a library). This way the projects of your solution can share 
files and libraries. Usually, you create one master directory for your solution that contains all 
of your projects directories. But you can also group the solution and a project into one single 
directory. This is what you will most often do for a one-project solution. As you become more 
familiar with VC++, and build more complex applications, you should take advantage of the 
multi-project solution structure.

Also, when you compile and execute your Visual C++ projects, you can do it under two different 
configurations: Debug and Release. The Debug mode is there to help you create and debug your 
application. It is a more protected environment, for example, it will tell you if your application 
contains memory leaks or it will check at runtime if you are using certain functions properly. 
However, it generates slower executable files. This is why, once your application has been tested 
and is ready to be used, you build it under the Release mode. This will produce the executable 
that you will distribute to the users of your application. Note that it may happen that you have 
code running perfectly well in debug mode but has problems in release mode. You then need to 
do more testing in order to identify the potential sources of errors. Debug and Release modes 
are not unique to Visual C++, most IDEs also support these two modes of compilation. 
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How to do it...
We are now ready to create our first project. This is done by using the File|New Project 
| Project… menu option. You can create different project types here. Let's start with the 
simplest option which is to select a Win32 Console Application, seen in the following 
screenshot:

You need to specify where your want to create your project, and what name you want to give to 
your project. There is also an option for creating or not creating a directory for the solution (the 
bottom-right checkbox). If you check this option, an additional directory will be created (with 
the name you specify) that will contain your solution directory. If you simply leave this option 
unchecked, a solution file (extension .sln) will still be created, but this one will be contained 
within the same (single) project directory. Click on OK and then Next to go to the Application 
Settings window of the Win32 Application Wizard. As seen in the following screenshot, a 
number of options are offered there. We will simply create an empty project.
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Note that we also have unchecked the Precompiled header option which is an MS Visual 
Studio-specific feature to make the compilation process faster. Since we want to stay within 
the ANSI C++ standard, we will not use this option. If you click on Finish, your project will be 
created. It is empty for now, but we will add a main file to it soon.

But first, to be able to compile and run your future OpenCV application, you need to tell Visual 
C++ where to find the OpenCV libraries and include files. Since you will probably create several 
OpenCV projects in the future, the best option is to create a Property Sheet that you will be 
able to reuse from project to project. This is done through the Property Manager. If it is not 
already visible in your current IDE, you can access it from the View menu.
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In Visual C++ 2010, a property sheet is an XML file that describes your project settings. We 
will now create a new one by right-clicking on the Debug | Win32 node of the project, and by 
selecting the Add New Project Property Sheet option (as seen in the following screenshot): 

The new property sheet is then added once we click on Add. We now need to edit it. Simply 
double-click on the property sheet's name and select VC++ Directories, as seen here:
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Edit the Include Directories textfield and add the path to the include files of your OpenCV library:

Do the same thing with the Library Directories. This time you add the path to your OpenCV 
library files:
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It is important to note that we used the explicit path to the OpenCV library in our property 
sheet. It is generally a better practice to use an environment variable to designate the 
library location. This way, if you switch to another version of the library, you simply change 
the definition of this variable so that it points to the library's new location. Also, in the case 
of a team project, the different users might have installed the library at different locations. 
Using an environment variable would avoid needing to edit the property sheet for each user. 
Consequently, if you define the environment variable OPENCV2_DIR to be c:\OpenCV2.2, 
then the two OpenCV directories will be specified as $(OPENCV_DIR)\include and 
$(OPENCV_DIR)\lib in the property sheet.

The next step is to specify the OpenCV library files which need to be linked with your code 
in order to produce an executable application. Depending on the application, you may need 
different OpenCV modules. Since we want to reuse this property sheet in all of our projects, 
we will simply add the library modules we need to run the applications of this book. Go to the 
Input item of the Linker node, as seen in the following screenshot:

Edit the Additional Dependencies textfield and add the following list of library modules:
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Note that we specified the libraries with names ending with the letter "d". These are the 
binaries for the Debug mode. You will need to create another (almost identical) property sheet 
for the Release mode. You follow the same procedure, but you add it under the Release | 
Win32 node. This time, the library names are specified without appending a "d" at the end. 

We are now ready to create, compile, and run our first application. We add a new source file 
by using the Solution Explorer, and right-clicking the Source Files node. You select Add New 
Item… which gives you the opportunity to specify main.cpp as the name of this C++ file:

www.allitebooks.com

http://www.allitebooks.org
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You can also use the File|New|File… menu option to do this. Now, let's build a simple 
application that will display an image named img.jpg located under the default directory. 

Once you have recopied the code in the preceding figure (it will be explained later), you can 
compile it and run it using the Start green arrow in the Toolbar at the top of your screen. You 
will see your image displayed for five seconds. An example is seen here:
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If it is the case, then you have completed your first successful OpenCV application! If the 
program fails when executed, it is probably because it cannot find the image file. See the 
following section to find out how to put it in the correct directory.

How it works...
When you click on the Start Debugging button (or push F5), your project will be compiled and 
then executed. You can also just compile the project by selecting Build Solution (F7) under 
the Build menu. The first time you compile your project, a Debug directory will be created. This 
will contain the executable file (extension .exe). Similarly, you can also create the release 
version by simply selecting the Release configuration option using the drop-down menu, to 
the right of the green arrow button (or using the Configuration Manager… option under the 
Build menu). A Release directory will then be created.

When you execute a project using the Start button of Visual Studio, the default directory 
will always be the one that contains your solution file. However, if you choose to execute 
your application outside of your IDE (that is, from Windows Explorer) by double-clicking on 
your .exe file (normally the Release directory), then the default directory will become the 
one that contains the executable file. Therefore, make sure your image file is located in the 
appropriate directory before you execute this application. 

See also
The Loading, displaying, and saving images recipe later in this chapter that explains the 
OpenCV source code we have used in this task.

Creating an OpenCV project with Qt
Qt is a complete Integrated Development Environment (IDE) for C++ application that was 
originally developed by Trolltech, a Norwegian software company which was acquired in 2008 
by Nokia. It is offered under the LPGL open source license as well as under a commercial 
(and paying) license for the development of proprietary projects. It is composed of two 
separate elements: a cross-platform IDE, called Qt Creator, and a set of Qt class libraries and 
development tools. Using the Qt Software Development Kit (SDK) to develop C++ applications 
has many benefits:

ff It is an open source initiative, developed by the Qt community, that gives you access 
to the source code of the different Qt components.

ff It is cross-platform, meaning that you can develop applications that can run on 
different operating systems such as Windows, Linux, Mac OS X, and so on.

ff It includes a complete and cross-platform GUI library that follows an effective object-
oriented and event-driven model.
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ff Qt also includes several cross-platform libraries to develop multimedia, graphics, 
database, multithreading, web application, and many other interesting building 
blocks useful for designing advanced applications.

Getting ready
Qt can be downloaded from http://qt.nokia.com. It is free if you select the LPGL license. 
You should download the complete SDK. However, make sure to select the Qt libraries 
package that is appropriate for your platform. Obviously, since we are dealing with open 
source software, it is always possible to re-compile the library under the platform of your 
choice.

Here, we use Qt Creator version 1.2.1 with Qt version 4.6.3. Note that under the Projects tab 
of Qt Creator, it is possible to manage the different Qt versions that you might have installed. 
This ensures you can always compile your projects with the appropriate Qt version. 

How to do it...
When you start Qt, it will ask you if you wish to create a new project or if you want to open a 
recent one. You can also create a new project by going under the File menu and selecting the 
New… option. To replicate what we did in the previous recipe, we will select the Qt4 Console 
Application as seen in the following screenshot: 

You then specify a name and a project location as seen here:
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The following screen will ask you to select the modules you want to include in your project. 
Just keep the one selected by default and click on Next, and then Finish. An empty console 
application is then created as seen here:
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The code generated by Qt creates a QCoreApplication object and calls its exec() 
method. This is only required when your application needs an event handler to process 
the user interactions with a GUI. In our simple open and display image example, this is not 
needed. We can simply replace the generated code by the one we use in the previous task. 
The simple open and display image program would then read as follows:

In order to be able to compile this program, the OpenCV library files and header files location 
need to be specified. With Qt, this information is given in a project file (with extension .pro) 
which is a simple text file describing the project parameters. You can edit this project file in Qt 
Creator by selecting the corresponding project file as seen in the following screenshot:
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The information required to build an OpenCV application is provided by appending the 
following lines at the end of the project file:

INCLUDEPATH += C:\OpenCV2.2\include\

LIBS += -LC:\OpenCV2.2\lib \
-lopencv_core220 \
-lopencv_highgui220 \
-lopencv_imgproc220 \
-lopencv_features2d220 \
-lopencv_calib3d220

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.PacktPub.com. If you 
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.
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The program is now ready to be compiled and executed. This is accomplished by clicking the 
bottom-left green arrow (or by pressing Ctrl+R). There is also a Debug and a Release mode 
that you set up using the Build Settings of the Projects tab.

How it works...
A Qt project is described by a project file. This is a text file that declares a list of variables 
containing the relevant information required to build the project. This file is in fact processed 
by a software tool called qmake which Qt invokes when a compilation is requested. Each 
variable defined in a project file is associated with a list of values. The main variables that are 
recognized by qmake in Qt are as follows:

ff TEMPLATE: Defines the type of project (applications, library, and so on).

ff CONFIG : Specifies different options that the compiler should use when building the 
project.

ff HEADERS : Lists the header files of the project.

ff SOURCES : Lists the source files (.cpp) of the project.
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ff QT : Declares the required Qt extension modules and libraries. By default, the 
core and the GUI modules are included. If you want to exclude one of them, you  
use the -= notation.

ff INCLUDEPATH : Specifies the header file directories that should be searched.

ff LIBS : Contains the list of library files that should be linked with the project. You use 
the flag –L for directory paths and the flag –l for library names.

Several other variables are defined but the ones listed here are most commonly used.

There's more...
Many additional features can be used in qmake project files. For example, scopes can be 
defined to add declarations that apply to a specific platform:

win32 {
   # declarations for Windows 32 platforms only
}
unix {
   # declarations for Unix 32 platforms only
}

You can also use the pkg-config utility package. It is an open source tool that helps to 
use the correct compiler options and library files. When you install OpenCV with CMake, the 
unix-install contains an opencv.pc file that is read by pkg-config to determine the 
compilation parameters. A multi-platform qmake project file could then look as follows:

unix { 

    CONFIG += link_pkgconfig
    PKGCONFIG += opencv
}

Win32 {
   

INCLUDEPATH += C:\OpenCV2.2\include\

LIBS += -LC:\OpenCV2.2\lib \
-lopencv_core220 \
   -lopencv_highgui220 \
   -lopencv_imgproc220 \
   -lopencv_features2d220 \
   -lopencv_calib3d220
}
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See also
The next recipe, Loading, displaying, and saving images explains the OpenCV source code we 
used in this task.

Consult the website http://qt.nokia.com for the complete documentation about Qt, Qt 
Creator, and all of the Qt extension modules.

Loading, displaying, and saving images
The two preceding recipes taught you how to create a simple OpenCV project but we have not 
explained the OpenCV code that was used. This task will show you how to perform the most 
fundamental operations needed in the development of an OpenCV application. These include 
loading an input image from file, displaying an image on a window, and storing an output 
image on disk. 

Getting ready
Using either MS Visual Studio or Qt, create a new console application with a main function 
ready to be filled. See the first two recipes on how to proceed.

How to do it...
The first thing to do is to declare a variable that will hold the image. Under OpenCV 2, you 
define an object of class cv::Mat.

cv::Mat image;

This definition creates an image of size 0 by 0. This can be confirmed by calling the cv::Mat 
method size() that allows you to read the current size of this image. It returns a structure 
containing the height and width of the image:

std::cout << "size: " << image.size().height << " , " 
          << image.size().width << std::endl;

Next a simple call to the reading function will read an image from file, decode it, and allocate 
the memory:

image=  cv::imread("img.jpg");

You are now ready to use this image. However, you should first check if the image has been 
correctly read (an error will occur if the file is not found or if the file is corrupted, or is not a 
recognizable format). The validity of the image is tested by:

if (!image.data) { 
   // no image has been created… 
}
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The member variable data is in fact a pointer to the allocated memory block that will contain 
the image data. It is simply set to 0 when no image has been read. The first thing you might 
want to do with this image is to display it. You do it using the highgui module provided by 
OpenCV. You start by declaring the window on which you want to display images, and then you 
specify the image to be shown on this special window:

cv::namedWindow("Original Image"); // define the window
cv::imshow("Original Image", image); // show the image

Now, you would normally apply some processing to the image. OpenCV offers a wide selection 
of processing functions, and several of them are explored in this book. Let's start with a 
very simple one that will simply flip the image horizontally. Several image transformations in 
OpenCV can be performed in-place, meaning that the transformation is applied directly on the 
input image (no new image being created). This is the case of the flipping method. However, 
we can always create another matrix to hold the output result and that is what we will do:

cv::Mat result;
cv::flip(image,result,1); // positive for horizontal
                          // 0 for vertical,                     
                          // negative for both

And the result is displayed on another window:

cv::namedWindow("Output Image");
cv::imshow("Output Image", result);

Since it is a console window that will terminate at the end of the main function, we add an 
extra highgui method to wait for a user key before ending the program:

cv::waitKey(0);

You can then see both the input and output images displayed on two distinct windows. Finally, 
you will probably want to save the processed image on your disk. This is done using the 
following highgui function:

cv::imwrite("output.bmp", result);

The file extension determines which codec will be used to save the image. 

How it works...
All classes and functions defined in the C++ API of OpenCV are defined within the name space 
cv. You have two options to access them. First, precede the main function definition by the 
following declaration:

using namespace cv;



Playing with Images

28

Alternatively, prefix all OpenCV class and function names by the namespace specification that 
is cv::, as we did in this recipe.

The class cv::Mat is the data structure used to hold your images (and obviously other matrix 
data). By default, they have a zero size but you can also specify an initial size:

cv::Mat ima(240,320,CV_8U,cv::Scalar(100));

In this case, you also need to specify the type of each matrix element, here CV_8U which 
corresponds to 1-byte pixel images. Letter U means unsigned. You can also declare 
signed numbers by using the letter S. For a color image, you would specify three channels 
(CV_8UC3). You can also declare integers (signed or unsigned) of size 16 and 32 (for example, 
CV_16SC3). You also have access to 32-bit and 64-bit floating point numbers (for example, 
CV_32F).

When the cv::Mat object goes out of scope, the memory allocated is automatically released. 
This is very convenient because you avoid having problems with memory leaks. Moreover, the 
cv::Mat class implements reference counting and shallow copy such that when an image 
is assigned to another one, the image data (that is the pixels) is not copied, and both images 
will point to the same memory block. This also applies to images passed by value or returned 
by value. A reference count is kept such that the memory will be released only when all of the 
references to the image will be destructed. If you wish to create an image that will contain a new 
copy of the original image, you will use the method copyTo(). You can test this behavior by 
declaring a few extra images in the example of this project, as follows:

cv::Mat image2, image3;
image2= result; // the two images refer to the same data
result.copyTo(image3); // a new copy is created

Now if you again flip the output image and display the two additional images, you will see that 
image2 is also affected by the transformation (because it points to the same image data 
than result image) while image3 remains unchanged as it holds a copy of the image. This 
allocation model for cv::Mat objects also means that you can safely write functions (or class 
methods) that return an image:

cv::Mat function() {

   // create image
   cv::Mat ima(240,320,CV_8U,cv::Scalar(100));
   // return it
   return ima;
}

If we call this function from our main function:

   // get a gray-level image
   cv::Mat gray= function();
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The gray variable will now hold the image created by the function without extra memory 
allocation. Indeed, only a shallow copy of the image will be transferred from the returned 
cv::Mat instance to the gray image. When the ima local variable goes out of scope, this 
variable is de-allocated, but since the associated reference counter indicates that its internal 
image data is being referred by another instance (that is the gray variable) its memory block 
is not released. 

However, in the case of classes, you should be careful and not return image class attributes. 
Here is an example of an error-prone implementation:

class Test {

   // image attribute
   cv::Mat ima;

  public:

     // constructor creating a gray-level image
     Test() : ima(240,320,CV_8U,cv::Scalar(100)) {}

     // method return a class attribute, not a good idea...
     cv::Mat method() { return ima; }
};

Here, if a function calls the method of this class, it obtains a shallow copy of the image 
attributes. If later, this copy is modified, the class attribute will also be modified which can 
affect the subsequent behavior of the class (and vice versa). To avoid these kinds of errors, 
you should instead return a copy of the attribute.  

There's more...
With version 2 of the OpenCV, a new C++ interface has been introduced. Previously, C-like 
functions and structures were used (and can still be used). In particular, images were 
manipulated using the IplImage structure. This structure was inherited from the IPL library 
(that is the Intel Image Processing Library) now integrated with the IPP library (the Intel 
Integrated Performance Primitive library). If you use code and libraries that were created with 
the old C interface, you might need to manipulate those IplImage structures. Fortunately, 
there is a convenient way to convert an IplImage into a cv::Mat object.

IplImage* iplImage = cvLoadImage("c:\\img.jpg");
cv::Mat image4(iplImage,false);

The function cvLoadImage is the C-interface function to load images. The second parameter 
in the constructor of the cv::Mat object indicates that the data will not be copied (set it to 
true if you want a new copy, while false is the default value so it could have been omitted), 
that is both IplImage and image4 will share the same image data. You need to be careful 
here to not create dangling pointers. For this reason, it is safer to encapsulate the IplImage 
pointer into the reference-counting pointer class provided by OpenCV 2:

cv::Ptr<IplImage> iplImage = cvLoadImage("c:\\img.jpg");
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Otherwise, if you need to deallocate the memory pointed by your IplImage structure, you 
need to do it explicitly:

 cvReleaseImage(&iplImage);

Remember, you should avoid using this deprecate data structure. Instead, always use 
cv::Mat. 

Creating a GUI application using Qt
Qt offers a rich library to build a sophisticated GUI with a professional look. Using Qt Creator, 
the process of GUI creation is made easy. This recipe will show you how to build an OpenCV 
application with Qt that a user can control using a GUI.

Getting ready
Start Qt Creator which we will use to create our GUI application. It is also possible to create a 
GUI without this tool, but the use of a visual IDE in which the widgets can simply be dragged 
and dropped is the easiest way to build a nice looking GUI.

How to do it...
Select Create New Project… and choose Qt GUI Application as seen in the following 
screenshot:
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Give a name and a location to your project. If you then click on Next, you will see that the 
QtGUI Module is checked. Since we do not need other modules, you can click on Finish at 
this point. This will create your new project. In addition to the usual project file (.pro) and 
the main.cpp file, you see two mainwindow files defining the class that contains your GUI 
window. You will also find a file having the extension .ui, which is the one that describes the 
UI layout. In fact, if you double-click on it, you will see the current user interface as seen here:

You can drag-and-drop different widgets on it. Drop two Push Buttons as we did in the 
preceding example. You can resize them and resize the window to make it nice. You should 
also rename the button labels. Just click on the text and insert the name of your choice.
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Let's now add a signal method in order to handle the click button event. Right-click on the 
first button and select Go to slot... in the contextual menu. The list of possible signals is then 
displayed as seen in the following screenshot:

Simply select the clicked() signal. This is the one that handles the button pushed events. 
By doing this, you will be brought to the mainwindow.cpp file. You will see that a new 
method has been added. This is the slot method that is called when the click() signal is 
received:

#include "mainwindow.h"
#include "ui_mainwindow.h"
MainWindow::MainWindow(QWidget *parent)
: QMainWindow(parent), ui(new Ui::MainWindow)
{
   ui->setupUi(this);
}
MainWindow::~MainWindow()
{
   delete ui;
}
void MainWindow::on_pushButton_clicked()
{
}

In order to be able to display and then process the image, we need to define a cv::Mat class 
member variable. This is done in the header file of the MainWindow class. This header now 
reads as follows:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QtGui/QMainWindow>
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#include <QFileDialog>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

namespace Ui
{
   class MainWindow;
}
class MainWindow : public QMainWindow
{
   Q_OBJECT
public:
   MainWindow(QWidget *parent = 0);
   ~MainWindow();
private:
   Ui::MainWindow *ui;
   cv::Mat image; // the image variable
private slots:
   void on_pushButton_clicked();
};

#endif // MAINWINDOW_H

Note that we have also included the core.hpp and the highgui.hpp header files. As we 
learned in a preceding recipe, we must not forget to edit the project file in order to append the 
OpenCV library information.

OpenCV code can then be added. The first button opens the source image. This is done by 
adding the following code to the corresponding slot method:

void MainWindow::on_pushButton_clicked()
{
   QString fileName = QFileDialog::getOpenFileName(this,
        tr("Open Image"), ".", 
      tr("Image Files (*.png *.jpg *.jpeg *.bmp)"));

   image= cv::imread(fileName.toAscii().data());
   cv::namedWindow("Original Image");
   cv::imshow("Original Image", image);
}

You then create a new slot by right-clicking on the second button. This second slot will perform 
some processing on the selected input image. The following code will simply flip the image:

void MainWindow::on_pushButton_2_clicked()
{
   cv::flip(image,image,1);
   cv::namedWindow("Output Image");
   cv::imshow("Output Image", image);
}
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You can now compile and run this program and your 2-button GUI will allow you to select an 
image and process it.

The input and output images are being displayed on the two highgui windows that we 
defined.

How it works...
Under the GUI programming framework of Qt, objects communicate using signals and slots. 
Whenever a widget changes state, or an event occurs, a signal is emitted. This signal has a 
pre-defined signature, and if another object wants to receive this signal it must define a slot 
with the same signature. A slot is therefore a special class method that is automatically called 
when the signal to which it is connected is emitted. 

Signals and slots are defined as class methods but must be declared under the Qt access 
which specifies slots and signals. This is what Qt Creator did when you added a slot to your 
button, that is:

private slots:
  void on_pushButton_clicked();

Signals and slots are loosely coupled, that is, a signal does not know anything about the objects 
having slots connected to it, and a slot does not know if a signal is connected to it or not. Also, 
many slots can be connected to one signal and a slot can receive signals from many objects. 
The only requirement is that the signatures of the signal and the slot methods must match.

All classes that inherit from the QObject class can contain signals and slots. These will most 
often be subclasses of a widget class (subclass of QWidget) but any other class can define 
slots and signals. The signal-and-slot concept is, in fact, a very powerful class communication 
mechanism. It is however specific to the Qt framework.
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In Qt, the main window is an instance of the class, MainWindow. You have access to it 
through the member variable ui that is declared within the MainWindow class definition. 
In addition, each widget of the GUI is also an object. When the GUI is created, a pointer to 
each of the widget instances you have added to the main window is associated with the 
ui variable. Therefore, you can access the properties and methods of each widget in your 
program. For example, if you want the Process button to be disabled until an input image is 
selected, all you need to do is call the following method when the GUI is initialized (that is in 
the MainWindow constructor):

ui->pushButton_2->setEnabled(false);

The pointer variable pushbutton_2 corresponds here to the Process button. You then 
enable the button when an image is successfully loaded (in the Open Image button):

if (image.data) {
   ui->pushButton_2->setEnabled(true);
}

It is also worth noting that under Qt, the layout of your GUI is completely described in a XML 
file. This is the file with the .ui extension. If you go in your project directory and open the .ui 
file with a text editor, you will be able to read the XML content of this file. Several XML tags 
are defined. In the case of the example application presented in this recipe, you will find two 
widget class tags defined as QPushButton. A name is associated with these widget classes' 
tags that corresponds to the name of the pointer variable attached to the ui object. Each of 
these defines a geometry property that describes their position and size. Many other property 
tags are also defined. Qt Creator has a property tab that shows the value of the properties of 
each widget. Consequently, even if Qt Creator is the best tool to create your GUI, you can also 
edit the .ui XML file to create and modify your GUI. 

There's more...
Displaying an image directly on the GUI is relatively easy with Qt. All you need to do is add 
a label object to your window. You then assign an image to this label in order to display this 
image. Remember, you have access to the label instance via the corresponding pointer 
attribute of the ui pointer (ui->label in our example). But this image must be of type 
QImage, the Qt data structure to handle images. The conversion is relatively straightforward 
except that the order of the three color channels needs to be inverted (from BGR in our 
cv::Mat to RGB in QImage). We can use the cv::cvtColor function for this. The Process 
button of our simple GUI application can then be changed to:

void MainWindow::on_pushButton_2_clicked()
{
   cv::flip(image,image,1); // process the image

   // change color channel ordering
   cv::cvtColor(image,image,CV_BGR2RGB); 

   // Qt image
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   QImage img= QImage((const unsigned char*)(image.data), 
      image.cols,image.rows,QImage::Format_RGB888);

   // display on label
   ui->label->setPixmap(QPixmap::fromImage(img)); 
   // resize the label to fit the image
   ui->label->resize(ui->label->pixmap()->size());
}

As a result, the output image is now displayed directly on the GUI as seen here:

See also
Consult the online Qt documentation located at http://doc.trolltech.com for more 
information on the Qt GUI module and on the signals and slots mechanism.



2
Manipulating the 

Pixels

In this chapter, we will cover:

ff Accessing pixel values

ff Scanning an image with pointers

ff Scanning an image with iterators

ff Writing efficient image scanning loops

ff Scanning an image with neighbor access

ff Performing simple image arithmetic

ff Defining regions of interest

Introduction
In order to build computer vision applications, you must be able to access image content, and 
eventually modify or create images. This chapter will teach you how to manipulate the picture 
elements (a.k.a. pixels). You will learn how to scan an image and process each of its pixels. 
You will also learn how to do this efficiently since even images of modest dimensions can 
contain tens of thousands of pixels. 

Fundamentally, an image is a matrix of numerical values. This is why OpenCV 2 manipulates 
them using the cv::Mat data structure. Each element of the matrix represents one pixel. 
For a gray-level image (a "black-and-white" image), pixels are unsigned 8-bit values where 0 
corresponds to black and corresponds 255 to white. For a color image, three such values per 
pixel are required to represent the usual three primary color channels {Red, Green, Blue}. A 
matrix element is therefore made, in this case, of a triplet of values.

www.allitebooks.com
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As we saw in the previous chapter, OpenCV also allows you to create matrices (or images) 
with pixel values of different types (for example, integer (CV_8U) and floating point (CV_32F) 
numbers). These are very useful to store for example, intermediate values in some image 
processing task. Most operations can be applied on matrices of any type, others require a 
specific type, or work only with a given number of channels. Therefore, a good understanding of 
a function's or method's preconditions is essential to avoid common programming errors. 

Throughout this chapter, we use the following color image as input (see the book's website to 
view this image in color): 

Accessing pixel values
In order to access each individual element of a matrix, you just need to specify its row and 
column numbers. The corresponding element, which can be a single numerical value or a 
vector of values in the case of a multi-channel image, will be returned.

Getting ready
To illustrate the direct access to pixel values, we will create a simple function that adds salt-
and-pepper noise to an image. As the name suggests, salt-and-pepper noise is a particular 
type of noise in which some pixels are replaced by a white or a black pixel. This type of noise 
can occur in faulty communication when the value of some pixels is lost during transmission. 
In our case, we will simply randomly select a few pixels and assign them the white color. 
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How to do it...
We create a function that receives an input image. This is the image that will be modified by 
our function. To this end, we use the pass-by-reference mechanism. The second parameter is 
the number of pixels on which we want to overwrite white values:

void salt(cv::Mat &image, int n) {

   for (int k=0; k<n; k++) {

      // rand() is the MFC random number generator
      // try qrand() with Qt
      int i= rand()%image.cols;
      int j= rand()%image.rows;

      if (image.channels() == 1) { // gray-level image

         image.at<uchar>(j,i)= 255; 

      } else if (image.channels() == 3) { // color image

         image.at<cv::Vec3b>(j,i)[0]= 255; 
         image.at<cv::Vec3b>(j,i)[1]= 255; 
         image.at<cv::Vec3b>(j,i)[2]= 255; 
      }
   }
}

The function is made of a single loop that assigns n times the value 255 to randomly selected 
pixels. Here, the pixel column i and row j are selected using a random number generator. 
Note that we distinguish the two cases of gray-level and color images by checking the number 
of channels associated with each pixel. In the case of a gray-level image, the number 255 
is assigned to the single 8-bit value. For a color image, you need to assign 255 to the three 
primary color channels in order to obtain a white pixel. 

You can call this function by passing it an image you have previously opened: 

   // open the image
   cv::Mat image= cv::imread("boldt.jpg");

   // call function to add noise
   salt(image,3000);

   // display image
   cv::namedWindow("Image");
   cv::imshow("Image",image);
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The resulting image will look as follows:

How it works...
The class cv::Mat includes several methods to access the different attributes of an image. 
The public member variables cols and rows give you the number of columns and rows in 
the image. For element access, cv::Mat has the method at(int y, int x). However, the 
type returned by a method must be known at compile time, and since a cv::Mat can hold 
elements of any type, the programmer needs to specify the return type that is expected. This 
is why the at method has been implemented as a template method. So when you call it, you 
must specify the image element type as in:

         image.at<uchar>(j,i)= 255; 

It is important to note that it is the programmer's responsibility to make sure that the type 
specified matches the type contained in the matrix. The at method does not perform any type 
conversion. 

In color images, each pixel is associated with three components: the red, green, and blue 
channels. Therefore, a cv::Mat containing a color image will return a vector of three 8-bit 
values. OpenCV has a defined type for such short vectors that is called cv::Vec3b. It is a 
vector of 3 unsigned chars. This explains why the element access to the pixels of a color 
pixel is written as:

         image.at<cv::Vec3b>(j,i)[channel]= value; 

The index channel designates one of the three color channels.
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Similar vector types also exist for 2-element and 4-element vectors (cv::Vec2b and 
cv::Vec4b) and for other element types. In this later case, the last letter is replaced by s 
for short, i for int, f for float, and d for double. All of these types are defined using the 
template class cv::Vec<T,N> where T is the type and N is the number of vector elements.

There's more...
Using the at method of the cv::Mat class can sometimes be cumbersome because the 
returned type must be specified as a template argument for each call. In cases where the 
matrix type is known, it is possible to use the cv::Mat_ class which is a template subclass of 
cv::Mat. This class defines a few extra methods but no new data attributes, so that pointers 
or references to one class can be directly converted to the other class. Among the extra 
methods, there is the operator() allowing direct access to matrix elements. Therefore, if 
image is a reference to a uchar matrix, then one can write:

   cv::Mat_<uchar> im2= image; // im2 refers to image
   im2(50,100)= 0; // access to row 50 and column 100

Since the type of the cv::Mat_ elements is declared when the variable is created, the 
operator() method knows at compile-time which type to return. Other than being shorter to 
write, using the operator() method provides exactly the same result as the at method. 

See also
The Writing efficient image scanning loops recipe for a discussion on the efficiency of 
this method.

Scanning an image with pointers
In most image processing tasks, one needs to scan all pixels of the image in order to perform 
a computation. Considering the large number of pixels that will need to be visited, it is 
essential to perform this task in an efficient way. This recipe, and the next one, will show you 
different ways of implementing an image scanning loop. This recipe uses pointer arithmetic.

Getting ready
We will illustrate the image scanning process by accomplishing a simple task: reducing the 
number of colors in an image. 
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Color images are composed of 3-channel pixels. Each of these channels corresponds to the 
intensity value of one of the three primary colors (red, green, blue). Since each of these values 
is an 8-bit unsigned char, the total number of colors is 256x256x256, which is more than 
16 million colors. Consequently, to reduce the complexity of an analysis, it is sometimes 
useful to reduce the number of colors in an image. One simple way to achieve this goal is 
to simply subdivide the RGB space into cubes of equal sizes. For example, if you reduce the 
number of colors in each dimension by 8, then you would obtain a total of 32x32x32 colors. 
Each color in the original image is then assigned a new color value in the color-reduced image 
that corresponds to the value in the center of the cube to which it belongs. 

Therefore, the basic color reduction algorithm is simple. If N is the reduction factor, then 
for each pixel in the image and for each channel of this pixel, divide the value by N (integer 
division, therefore the reminder is lost). Then multiply the result by N, this will give you the 
multiple of N just below the input pixel value. Just add N/2 and you obtain the central position 
of the interval between two adjacent multiples of N. if you repeat this process for each 8-bit 
channel value, then you will obtain a total of 256/N x 256/N x 256/N possible color values.

How to do it...
The signature of our color reduction function will be as follows:

void colorReduce(cv::Mat &image, int div=64);

The user provides an image and the per-channel reduction factor. Here, the processing is 
done in-place, that is the pixel values of the input image are modified by the function. See 
the There's more… section of this recipe for a more general function signature with input and 
output arguments.

The processing is simply done by creating a double loop that goes over all pixel values:

void colorReduce(cv::Mat &image, int div=64) {

     int nl= image.rows; // number of lines
     // total number of elements per line
     int nc= image.cols * image.channels(); 
              
     for (int j=0; j<nl; j++) {

        // get the address of row j
        uchar* data= image.ptr<uchar>(j);

        for (int i=0; i<nc; i++) {

            // process each pixel ---------------------
                 
                  data[i]=    data[i]/div*div + div/2;

            // end of pixel processing ----------------
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        } // end of line                   
     }
}

This function can be tested using the following code snippet:

   // read the image
   image= cv::imread("boldt.jpg");
   // process the image
   colorReduce(image);
   // display the image
   cv::namedWindow("Image");
   cv::imshow("Image",image);

This will give you, for example, the following image (see the book's website to view this image 
in color):
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How it works...
In a color image, the first 3 bytes of the image data buffer gives the 3 color channel values of 
the upper left pixel, the next 3 bytes are the values of the second pixel of the first row, and so 
on (note that OpenCV uses, by default, BGR channel order, so blue is usually the first channel). 
An image of width W and height H would then require a memory block of WxHx3 uchars. 
However, for efficiency reasons, the length of a row can be padded with few extra pixels. This 
is because some multimedia processor chips (for example, the Intel MMX architecture) can 
process images more efficiently when their rows are multiples of 4 or 8. Obviously, these 
extra pixels are not displayed or saved, their exact values are ignored. OpenCV designates 
the length of a padded row as the keyword. Obviously, if the image has not been padded with 
extra pixels, the effective width will be equal to the real image width. The data attribute cols 
gives you the image width (that is the number of columns), and the attribute rows gives you 
the image height while the step data attribute gives you the effective width in number of 
bytes. Even if your image is of a type other than uchar, step will still give you the number of 
bytes in a row. The size of a pixel element is given by method elemSize (for example, for a 
3-channel short integer matrix (CV_16SC3), elemSize will return 6). The number of channels 
in the image is given by the nchannels method (which will be 1 for a gray-level image and 
3 for a color image). Finally, method total returns the total number of pixels (that is matrix 
entries) in the matrix. 

The number of pixel values per rows is then given by:

     int nc= image.cols * image.channels(); 

To simplify the computation of the pointer arithmetic, the cv::Mat class offers a method 
which directly gives you the address of an image row. This is the ptr method. It is a template 
method that returns the address of row number j:

        uchar* data= image.ptr<uchar>(j);

Note, that in the processing statement, we could have equivalently used pointer arithmetic to 
move from column to column. So we could have written:

        *data++= *data/div*div + div2;

There's more...
The color reduction function presented in this recipe provides just one way of accomplishing 
this task. One could also use other color reduction formulas. A more general version of the 
function would also allow the specification of distinct input and output images. The image 
scanning can also be made more efficient by taking into account the continuity of the image 
data. Finally, it is also possible to use regular low-level pointer arithmetic to scan the image 
buffer. All of these elements are discussed in the following sub-sections.
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Other color reduction formulas
In our example, color reduction is achieved by taking advantage of an integer division that 
floors the division result to the nearest lower integer:

     data[i]= data[i]/div*div + div/2;

The reduced color could have also been computed using the modulo operator which brings us 
to the nearest multiple of div (the 1D reduction factor):

     data[i]=    data[i] – data[i]%div + div/2;

But this computation is a bit slower because it requires reading each pixel value twice.

Another option would be to use bitwise operators. Indeed, if we restrict the reduction factor 
to a power of 2, that is, div=pow(2,n), then masking the first n bits of the pixel value would 
give us the nearest lower multiple of div. This mask would be computed by a simple bit shift:

     // mask used to round the pixel value
     uchar mask= 0xFF<<n; // e.g. for div=16, mask= 0xF0

The color reduction would be given by:

     data[i]=    (data[i]&mask) + div/2;

In general, bitwise operations lead to very efficient code, so they could constitute a powerful 
alternative when efficiency is a requirement. 

Having input and output arguments
In our color reduction example, the transformation is directly applied to the input image, 
which is called an in-place transformation. This way, no extra image is required to hold the 
output result, which could save on the memory usage when it is a concern. However, in some 
applications, the user wants to keep the original image intact. The user would then be forced 
to create a copy of the image before calling the function. Note that the easiest way to create 
an identical deep copy of an image is to call the clone method, for example:

   // read the image
   image= cv::imread("boldt.jpg");
   // clone the image
   cv::Mat imageClone= image.clone();
   // process the clone
   // orginal image remains untouched
   colorReduce(imageClone);
   // display the image result
   cv::namedWindow("Image Result");
   cv::imshow("Image Result",imageClone);
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This extra overload can be avoided by defining a function that gives the option to the user to 
either use or not use the in-place processing. The signature of the method would then be:

void colorReduce(const cv::Mat &image, // input image 
                 cv::Mat &result,      // output image
                 int div=64);

Note that the input image is now passed as a const reference, meaning that this image will 
not be modified by the function. When in-place processing is preferred, the same image is 
specified as input and output:

colorReduce(image,image);

If not, another cv::Mat instance can be provided, for example: 

cv::Mat result;   
colorReduce(image,result);

The key here is to first verify if the output image has an allocated data buffer with a size 
and pixel type that match the ones of the input image. Very conveniently, this check is 
encapsulated inside the create method of cv::Mat. This is the method to use when a 
matrix must be re-allocated with a new size and type. If, by chance, the matrix already has 
the size and type specified, then no operation is performed and the method simply returns 
without touching the instance. Therefore, our function should simply start with a call to 
create that builds a matrix (if necessary) of the same size and type than the input image:

     result.create(image.rows,image.cols,image.type());

Note that create always creates a continuous image, that is an image with no padding. The 
memory block allocated has a size of total()*elemSize().The looping is then done with 
two pointers:

     for (int j=0; j<nl; j++) {

        // get the addresses of input and output row j
        const uchar* data_in= image.ptr<uchar>(j);
        uchar* data_out= result.ptr<uchar>(j);

        for (int i=0; i<nc; i++) {

            // process each pixel ---------------------
                 
                  data_out[i]= data_in[i]/div*div + div/2;

            // end of pixel processing ----------------

        } // end of line                   

In the case where the same image is provided as input and output, this function becomes 
completely equivalent to the first version presented in this recipe. If another image is provided 
as output, the function will work correctly irrespective of whether the image has been or has 
not been allocated prior to the function call.
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Efficient scanning of continuous images
We previously explained that, for efficiency reasons, an image can be padded with extra pixels 
at the end of each row. However, it is interesting to note that when the image is unpadded, 
the image can be seen as a long one-dimensional array of WxH pixels. A convenient cv::Mat 
method can tell us if the image has been padded or not. It is the isContinuous method that 
returns true if the image does not include padded pixels.

In some specific processing algorithms, one can take advantage of the continuity of the image 
by processing it in one single (longer) loop. Our processing function would then be written as 
follows:

void colorReduce(cv::Mat &image, int div=64) {

     int nl= image.rows; // number of lines
     int nc= image.cols * image.channels(); 

     if (image.isContinuous()) 
     {
        // then no padded pixels
        nc= nc*nl; 
        nl= 1;  // it is now a 1D array
     }

     // this loop is executed only once
     // in case of continuous images
     for (int j=0; j<nl; j++) { 

     uchar* data= image.ptr<uchar>(j);

          for (int i=0; i<nc; i++) {

            // process each pixel ---------------------
                
                  data[i]= data[i]/div*div + div/2;

            // end of pixel processing ----------------

          } // end of line                   
     }
}

Now, when the continuity test tells us that the image does not contain padded pixels, we 
eliminate the outer loop by setting the width to 1 and the height to WxH. Note that there 
is also a reshape method that could have been used here. You would write the following in 
this case:

     if (image.isContinuous()) 
     {
        // no padded pixels
        image.reshape(1,            // new number of channels
           image.cols*image.rows) ; // new number of rows
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     }

     int nl= image.rows; // number of lines
     int nc= image.cols * image.channels(); 

The method reshape changes the matrix dimensions without requiring any memory copy or 
re-allocation. The first parameter is the new number of channels and the second one is the 
new number of rows. The number of columns is readjusted accordingly. 

In these implementations, the inner loop processes all image pixels in sequence. This 
approach is mainly advantageous when several small images are scanned simultaneously 
into the same loop.

Low-level pointer arithmetics
In the cv::Mat class, the image data is contained into a memory block of unsigned chars. 
The address of the first element of this memory block is given by the data attribute which 
returns an unsigned char pointer. So, to start your loop at the beginning of the image, you 
could have written:

uchar *data= image.data;

Moving from one row to the next could have been done by moving your row pointer using the 
effective width:

data+= image.step;  // next line

The method step gives you the total number of bytes (including the padded pixels) in a line. 
In general, you can obtain the address of the pixel at row j and column i as follows:

// address of pixel at (j,i) that is &image.at(j,i)     
data= image.data+j*image.step+i*image.elemSize();    

However, even if this would work in our example, it is not recommended to proceed this way. 
In addition to being error-prone, this approach will not work with regions of interest. Regions of 
interest are discussed at the end of this chapter.

See also
The Writing efficient image scanning loops recipe for a discussion on the efficiency of the 
scanning methods presented here.



Chapter 2

49

Scanning an image with iterators
In object-oriented programming, looping over a data collection is usually done using iterators. 
Iterators are specialized classes built to go over each element of a collection, hiding how the 
iteration over each element is specifically done for a given collection. This application of the 
information hiding principle makes scanning a collection easier. In addition, it makes it similar 
in form no matter what type of collection is used. The Standard Template Library (STL) has an 
iterator class associated with each of its collection classes. OpenCV then offers a cv::Mat 
iterator class compatible with the standard iterators found in the C++ STL.

Getting ready
In this recipe, we again use the color reduction example described in the previous recipe.

How to do it...
An iterator object for a cv::Mat instance can be obtained by first creating a 
cv::MatIterator_ object. As in the case of the cv::Mat_ subclass, the underscore 
indicates that this is a template method. Indeed, since image iterators are used to access the 
image elements, the return type must be known at compile time. The iterator is then declared 
as follows:

     cv::MatIterator_<cv::Vec3b> it;

Alternatively, you can also use the iterator type defined inside the Mat_ template class:

     cv::Mat_<cv::Vec3b>::iterator it;

You then loop over the pixels using the usual begin and end iterator methods except that 
these ones are again template methods. Consequently, our color reduction function is now 
written as follows:

void colorReduce(cv::Mat &image, int div=64) {

     // obtain iterator at initial position
     cv::Mat_<cv::Vec3b>::iterator it= 
               image.begin<cv::Vec3b>();
     // obtain end position
     cv::Mat_<cv::Vec3b>::iterator itend= 
               image.end<cv::Vec3b>();

     // loop over all pixels
     for ( ; it!= itend; ++it) {

        // process each pixel ---------------------

       (*it)[0]= (*it)[0]/div*div + div/2;
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       (*it)[1]= (*it)[1]/div*div + div/2;
       (*it)[2]= (*it)[2]/div*div + div/2;

        // end of pixel processing ----------------
     }
}

Remember that the iterator here returns a cv::Vec3b because we are processing a color 
image. Each color channel element is accessed using dereferencing operator[].

How it works...
Working with iterators, no matter what kind of collection is scanned, always follows the same 
pattern. 

First, you create your iterator object using the appropriate specialized class which is, in our 
example, cv::Mat_<cv::Vec3b>::iterator (or cv::MatIterator_<cv::Vec3b>). 

You then obtain an iterator initialized at the starting position (in our example, the upper-left 
corner of the image). This is done using a begin method. With a cv::Mat instance, you 
obtain it as image.begin<cv::Vec3b>(). You can also use arithmetic on the iterator. 
For example, if you wish to start at the second row of an image, you can initialize your 
cv::Mat iterator at image.begin<cv::Vec3b>()+image.rows. The end position of 
your collection is obtained similarly but using the end method. However, the iterator thus 
obtained is just outside your collection. This is why your iterative process must stop when it 
reaches that end position. You can also use arithmetic on this iterator, for example, if you wish 
to stop before the last row, your final iteration would stop when the iterator reaches image.
end<cv::Vec3b>()-image.rows.

Once your iterator is initialized, you create a loop that goes over all elements until the end is 
reached. A typical while loop will look like this: 

     while (it!= itend) {
        
        // process each pixel ---------------------
         …

        // end of pixel processing ----------------

        ++it;
     }

The operator++ is the one to use to move to the next element. You can also specify larger 
step size. For example it+=10 would process every 10 pixels. 



Chapter 2

51

Finally, inside the processing loop, you use the dereferencing operator* in order to access 
the current element, using which you can read (for example, element= *it;) or write (for 
example, *it= element; ). Note that it is also possible to create constant iterators that you 
use if you receive a reference to a const cv::Mat or if you wish to signify that the current 
loop does not modify the cv::Mat instance. These are declared as follows:

     cv::MatConstIterator_<cv::Vec3b> it;

or:

     cv::Mat_<cv::Vec3b>::const_iterator it;

There's more...
In this recipe, the start and end positions of the iterator were obtained using the template 
methods begin and end. As we did in the first recipe of this chapter, we could have also 
obtained them using a reference to a cv::Mat_ instance. This would avoid the need to 
specify the iterator type in the begin and end methods since this one is specified when the 
cv::Mat_ reference is created. 

     cv::Mat_<cv::Vec3b> cimage= image;
     cv::Mat_<cv::Vec3b>::iterator it= cimage.begin();
     cv::Mat_<cv::Vec3b>::iterator itend= cimage.end();

See also
The Writing efficient image scanning loops recipe for a discussion on the efficiency of iterators 
when scanning an image.

Also, if you are not familiar with the concept of iterators in object-oriented programming and 
how they have been implemented in ANSI C++, you should read a tutorial on STL iterators. 
Simply search the web with the keywords "STL Iterator" and you will find numerous references 
on the subject.

Writing efficient image scanning loops
In the previous recipes of this chapter, we have presented different ways of scanning an 
image in order to process its pixels. In this recipe, we will compare the efficiency of these 
different approaches.

When you write an image processing function, efficiency is often a concern. When you design 
your function, you will frequently need to check the computational efficiency of your code in 
order to detect any bottleneck in your processing which might slow down your program.
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However, it is important to note, that unless necessary, optimization should not be done at the 
price of reducing program clarity. Simple code is indeed always easier to debug and maintain. 
Only code portions that are critical to a program's efficiency should be heavily optimized.

How to do it...
In order to measure the execution time of a function or a portion of code, there exists a very 
convenient OpenCV function called cv::getTickCount(). This function gives you the 
number of clock cycles that occurred since the last time you started your computer. Since 
we want the execution time of a code portion given in milliseconds, we use another method, 
cv::getTickFrequency(). This gives us the number of cycles per seconds. The usual 
pattern to use in order to obtain the computational time of a given function (or portion of 
code) would then be:

double duration;
duration = static_cast<double>(cv::getTickCount());

colorReduce(image); // the function to be tested

duration = static_cast<double>(cv::getTickCount())-duration;
duration /= cv::getTickFrequency(); // the elapsed time in ms

The duration result should be averaged over several calls of the function. 

In the testing of the colorReduce function, we also implemented a version of the function 
that uses the at method for pixel access. The main loop of this implementation would then 
read simply as:

      for (int j=0; j<nl; j++) {
          for (int i=0; i<nc; i++) {

           // process each pixel ---------------------
                 
           image.at<cv::Vec3b>(j,i)[0]=
               image.at<cv::Vec3b>(j,i)[0]/div*div + div/2;
           image.at<cv::Vec3b>(j,i)[1]=    
              image.at<cv::Vec3b>(j,i)[1]/div*div + div/2;
           image.at<cv::Vec3b>(j,i)[2]=    
              image.at<cv::Vec3b>(j,i)[2]/div*div + div/2;

           // end of pixel processing ----------------

           } // end of line                   
      }
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How it works...
The execution times of the different implementations of the colorReduce function from this 
chapter are reported here. The absolute runtime numbers would differ from one machine to 
another (here we used a Pentium dual core 2.2GHz). It is rather interesting to look at their 
relative difference. Our tests report the average time to reduce the colors of an image having 
a resolution of 4288x2848 pixels. The results are summarized in the following table and are 
discussed below:

Method Average time
data[i]= data[i]/div*div + div/2; 37ms

*data++= *data/div*div + div/2; 37ms

*data++= v - v%div + div/2; 52ms

*data++= *data&mask + div/2; 35ms

colorReduce(input, output); 44ms

i<image.cols*image.channels(); 65ms

MatIterator 67ms

.at(j,i) 80ms

3-channel loop 29ms

First, we compare the three ways of computing the color reduction (rows 1-4) as presented in 
the There's more… section of the Scanning an image with pointers recipe. As expected, the 
version that uses bitwise operators is the fastest with an execution time of 35ms. The version 
that uses integer division took 37ms, while the one with modulo is at 52ms. This represents 
a difference of almost 50% between the fastest and the slowest! It is therefore important 
to take the time to identify the most efficient way of computing a result in an image loop as 
the net impact can be very significant. Note that when an output image that needs to be re-
allocated is specified instead of an in-place processing (row 5), the execution time becomes 
44ms. The extra duration represents the overhead for memory allocation.

In a loop, you should avoid repetitive computations of values that could be precomputed. This 
obviously consumes time. For example, if you replace the following inner loop of the color 
reduction function:

 int nc= image.cols * image.channels(); 
 …
      for (int i=0; i<nc; i++) {

with this one:

      for (int i=0; i<image.cols * image.channels(); i++) {
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that is a loop where you need to compute the total number of elements in a line again and 
again. You will obtain a runtime of 65ms which is 80% slower than the original version at 35ms 
(row 6).

The version of the color reduction function that uses iterators (row 7), as shown in recipe 
Scanning an image with iterators, gives slower results at 67ms. The main objective of iterators 
is to simplify the image scanning process and make it less error-prone. It is not necessarily to 
optimize this process. 

The implementation that uses the at method presented at the end of the preceding section 
is much slower (row 8). A runtime of 80ms is obtained. This method should then be used for 
random access of image pixels but never when scanning an image.  

A shorter loop with few statements is generally more efficiently executed than a longer loop 
over a single statement, even if the total number of elements processed is the same. Similarly, 
if you have N different computations to apply to a pixel, do all of them in one loop rather than 
writing N successive loops, one for each computation. You should then favor loops, doing 
more work over longer loops that do less computation. As an example, we could process all 
three channels inside the inner loop and have it iterating over the number of columns, instead 
of using the original version where the looping is over the total number of elements (that is 3 
times the number of pixels). The color reduction function would then be written as follows (this 
is the fastest version):

void colorReduce(cv::Mat &image, int div=64) {

     int nl= image.rows; // number of lines
     int nc= image.cols ; // number of columns

     // is it a continous image?
     if (image.isContinuous())  {
        // then no padded pixels
        nc= nc*nl; 
        nl= 1;  // it is now a 1D array
      }

     int n= static_cast<int>(
              log(static_cast<double>(div))/log(2.0));
     // mask used to round the pixel value
     uchar mask= 0xFF<<n; // e.g. for div=16, mask= 0xF0

     // for all pixels         
     for (int j=0; j<nl; j++) {

          // pointer to first column of line j
          uchar* data= image.ptr<uchar>(j);

          for (int i=0; i<nc; i++) {
 
            // process each pixel ---------------------
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            *data++= *data&mask + div/2;
            *data++= *data&mask + div/2;
            *data++= *data&mask + div/2;

            // end of pixel processing ----------------

          } // end of line                   
     }
}

With this modification, the execution time is now at 29ms (row 9). We also added the 
continuity test that produces one loop in case of continuous images, instead of the regular 
double loop over lines and columns. For a very large image, as the one we used in our tests, 
this optimization is not significant, but in general it is always a good practice to use this 
strategy since it can lead to significant gain in speed.

There's more…
Multi-threading is another way to increase the efficiency of your algorithms, especially since 
the advent of multi-core processors. OpenMP and the Intel Threading Building Blocks (TBB) 
are two popular APIs used in concurrent programming to create and manage your threads.

See also
Have a look at the Performing simple image arithmetic recipe for an implementation of the 
color reduction method that uses the OpenCV 2 arithmetic image operators.

Scanning an image with neighbor access
In image processing, it is common to have a processing function which computes a value at 
each pixel location based on the value of the neighboring pixels. When this neighborhood 
includes pixels of the previous and next lines, you then need to simultaneously scan several 
lines of the image. This recipe shows you how to do it.

Getting ready
To illustrate this recipe, we will apply a processing function that sharpens an image. It is based 
on the Laplacian operator (which will be discussed in Chapter 6). It is indeed a well-known 
result in image processing that if you subtract its Laplacian from an image, the image edges are 
amplified giving a sharper image. This sharpen operator is computed as follows:

sharpened_pixel= 5*current-left-right-up-down;

where left is the pixel immediately on the left of the current one, up is the corresponding 
one on the previous line, and so on.  
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How to do it...
This time, the processing cannot be accomplished in-place. Users need to provide an output 
image. The image scanning is done by using three pointers, one for the current line, one for 
the line above, and another one for the line below. Also, since each pixel computation requires 
access to the neighbors, it is not possible to compute a value for the pixels of the first and 
last row of the image as well as the pixels of the first and last column. The loop can then be 
written as follows:

void sharpen(const cv::Mat &image, cv::Mat &result) {

    // allocate if necessary
    result.create(image.size(), image.type()); 

    for (int j= 1; j<image.rows-1; j++) { // for all rows 
                                // (except first and last)

      const uchar* previous= 
         image.ptr<const uchar>(j-1); // previous row
      const uchar* current= 
         image.ptr<const uchar>(j);     // current row
      const uchar* next= 
         image.ptr<const uchar>(j+1); // next row

      uchar* output= result.ptr<uchar>(j); // output row

      for (int i=1; i<image.cols-1; i++) {

         *output++= cv::saturate_cast<uchar>(
                       5*current[i]-current[i-1]
                       -current[i+1]-previous[i]-next[i]); 
      }
   }

   // Set the unprocess pixels to 0
   result.row(0).setTo(cv::Scalar(0));
   result.row(result.rows-1).setTo(cv::Scalar(0));
   result.col(0).setTo(cv::Scalar(0));
   result.col(result.cols-1).setTo(cv::Scalar(0));
}
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If we apply this function on a gray-level version of our test image, the following sample is 
obtained:

How it works...
In order to access the neighboring pixels of the previous and next row, one must simply define 
additional pointers that are jointly incremented. You then access the pixels of these lines 
inside the scanning loop. 

In the computation of the output pixel value, the template function cv::saturate_cast is 
called on the result of the operation. This is because it often happens that a mathematical 
expression applied on pixels leads to a result that goes outside the range of the permitted 
pixel values (that is below 0 or over 255). The solution is then to bring back the values inside 
this 8-bit range. This is done by changing negative values to 0 and values over 255 to 255. 
This is exactly what the cv::saturate_cast<uchar> function is doing. In addition, if the 
input argument is a floating point number, then the result is rounded to the nearest integer. 
You can obviously use this function with other types in order to guarantee the result will 
remain within the limits defined by this type.



Manipulating the Pixels

58

Border pixels that cannot be processed because their neighborhood is not completely defined 
need to be handled separately. Here, we simply set them to 0. In other cases, it could be 
possible to perform some special computation for these pixels, but most of the time there is 
no point in spending time processing these very few pixels. In our function, these border pixels 
are set to 0 using two special methods. The first one is row and its dual col. They return a 
special cv::Mat instance composed of a single line (or a single column) as specified in a 
parameter. No copy is made here because if the elements of this 1D matrix are modified, they 
will also be modified in the original image. That is what we do when the method setTo is 
called. This method assigns a value to all elements of a matrix. Therefore the statement:

   result.row(0).setTo(cv::Scalar(0));

assigns the value 0 to all pixels of the first line of the result image. In the case of a 3-channel 
color image, you would use cv::Scalar(a,b,c) to specify the three values to assign to 
each channel of the pixel.

There's more...
When a computation is done over a pixel neighborhood, it is common to represent this with a 
kernel matrix. This kernel describes how the pixels involved in the computation are combined 
in order to obtain the desired result. For the sharpening filter used in this recipe, the kernel 
would be:

0 -1 0
-1 5 -1
0 -1 0

Unless stated otherwise, the current pixel corresponds to the center of the kernel. The value 
in each cell of the kernel represents a factor that multiplies the corresponding pixel. The result 
of the application of the kernel on a pixel is then given by the sum of all these multiplications. 
The size of the kernel corresponds to the size of the neighborhood (here, 3x3). Using this 
representation, it can be seen that, as required by the sharpening filter, the four horizontal 
and vertical neighbors of the current pixel are multiplied by -1, while the current one is 
multiplied by 5. Applying a kernel to an image is more than a convenient representation, it is 
the basis for the concept of convolution in signal processing. The kernel defines a filter that is 
applied to the image.

Since filtering is a common operation in image processing, OpenCV has defined a special 
function that performs this task: the cv::filter2D function. To use it, one just needs to 
define a kernel (in the form of a matrix). The function is then called with the image and the 
kernel, and returns the filtered image. Using this function, it is therefore easy to redefine our 
sharpening function as follows:
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void sharpen2D(const cv::Mat &image, cv::Mat &result) {

   // Construct kernel (all entries initialized to 0)
   cv::Mat kernel(3,3,CV_32F,cv::Scalar(0));
   // assigns kernel values
   kernel.at<float>(1,1)= 5.0;
   kernel.at<float>(0,1)= -1.0;
   kernel.at<float>(2,1)= -1.0;
   kernel.at<float>(1,0)= -1.0;
   kernel.at<float>(1,2)= -1.0;

   //filter the image
   cv::filter2D(image,result,image.depth(),kernel);
}

This implementation produces exactly the same result as the previous one (and with the same 
efficiency). However, with a larger kernel, it is advantageous to use the filter2D method as 
it uses, in this case, a more efficient algorithm.

See also

Chapter 6, Filtering the Images has more explanations on the concept of image filtering.

Performing simple image arithmetic
Images can be combined in different ways. Since they are regular matrices, they can be 
added, subtracted, multiplied, or divided. OpenCV offers various image arithmetic operators 
and their use is discussed in this recipe.
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Getting ready
Let's work with a second image that we will combine to our input image using an arithmetic 
operator. The following represents the second image:

How to do it...
Here we add two images. This is useful when one wants to create some special effects or 
to overlay information over an image. We do this by calling the cv::add function, or more 
precisely here, the cv::addWeighted function since we want a weighted sum, that is:

   cv::addWeighted(image1,0.7,image2,0.9,0.,result);



Chapter 2

61

The operation results in a new image as seen in the following screenshot:

How it works...
All binary arithmetic functions work the same way. Two inputs are provided and a third 
parameter specifies the output. In some cases, weights can be specified that are used as 
scalar multipliers in the operation. Each of these functions comes in several flavors.  
cv::add is a good example of a function available in many forms: 

   // c[i]= a[i]+b[i];
   cv::add(imageA,imageB,resultC); 
   // c[i]= a[i]+k;
   cv::add(imageA,cv::Scalar(k),resultC); 
   // c[i]= k1*a[1]+k2*b[i]+k3; 
   cv::addWeighted(imageA,k1,imageB,k2,k3,resultC);
   // c[i]= k*a[1]+b[i]; 
   cv::scaleAdd(imageA,k,imageB,resultC);

For some functions, you can also specify a mask: 

   // if (mask[i]) c[i]= a[i]+b[i];    
   cv::add(imageA,imageB,resultC,mask); 
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If you apply a mask, the operation is performed only on pixels for which the mask value is not 
null (the mask must be 1-channel). Have a look at the different forms of cv::subtract, 
cv::absdiff, cv::multiply, and cv::divide functions. Bit-wise operators are also 
available: cv::bitwise_and, cv::bitwise_or, cv::bitwise_xor, and cv::bitwise_
not. Operators cv::min and cv::max which find per-element maximum or minimum pixel 
value are also very useful. 

In all cases, function cv::saturate_cast (see the preceding recipe) is always used to 
make sure the results stay within the defined pixel value domain (that is to avoid overflow or 
underflow). 

The images must have the same size and type (the output image will be re-allocated if it does 
match the input size). Also, since the operation is performed per-element, one of the input 
images can be used as output.

Several operators that take a single image as input are also available: cv::sqrt, cv::pow, 
cv::abs, cv::cuberoot, cv::exp, and cv::log. In fact, there exists an OpenCV function 
for almost any operation you have to apply on your images.

There's more...
It is also possible to use the usual C++ arithmetic operator on the cv::Mat instances, or on 
the individual channels of cv::Mat instances. The two following sub-sections explain how to 
do it.

Overloaded image operators
Very conveniently, most arithmetic functions have their corresponding operator overloaded in 
OpenCV 2. Consequently, the call to cv::addWeighted can be written as:

result= 0.7*image1+0.9*image2;

which is a more compact form that is also easier to read. These two ways of writing the 
weighted sum are equivalent. In particular, function cv::saturate_cast will still be called 
in both cases. 

Most C++ operators have been overloaded. Among them the bitwise operators &, |, ^, ~, 
the min, max, and abs functions, the comparison operators <, <=, ==,!=, >, >=; these later 
returning a 8-bit binary image. You will also find the matrix multiplication m1*m2 (where 
m1 and m2 are both cv::Mat instances), matrix inversion m1.inv(), transpose m1.t(), 
determinant m1.determinant(), vector norm, v1.norm(), cross-product v1.cross(v2), 
dot product v1.dot(v2), and so on. When this makes sense, you also have the op= operator 
(for example, +=) defined. 
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In the Writing efficient image scanning loops recipe, we presented a color reduction function 
that was written using loops scanning the image pixels to perform some arithmetic operations 
on them. From what we learned here, this function could be rewritten simply using arithmetic 
operators on the input image, that is:

     image=(image&cv::Scalar(mask,mask,mask))
                  +cv::Scalar(div/2,div/2,div/2);

The use of cv::Scalar is due to the fact that we are manipulating a color image. Performing 
the same test as we did in the Writing efficient image scanning loops recipe, we obtain an 
execution time of 89ms. This is mainly because, as written, the expression requires calling two 
functions, the bitwise-and and the scalar sum (instead of performing the complete operation 
inside one image loop). Even if the resulting code is not always optimal, using the image 
operators makes the code so simple, and the programmer so productive, that you should 
consider their use in most situations.

Splitting the image channels
You'll sometimes want to process the different channels of an image independently. For 
example, you might want to perform an operation only on one channel of the image. You 
can, of course, achieve this in an image scanning loop. But you can also use the cv::split 
function that will copy the three channels of a color image into three distinct cv::Mat 
instances. Suppose we want to add our rain image to the blue channel only. The following is 
how we would proceed:

   // create vector of 3 images
   std::vector<cv::Mat> planes;
   // split 1 3-channel image into 3 1-channel images
   cv::split(image1,planes);
   // add to blue channel
   planes[0]+= image2;
   // merge the 3 1-channel images into 1 3-channel image
   cv::merge(planes,result);

The cv::merge function performs the dual operation, that is it creates a color image from 
three 1-channel image. 

Defining regions of interest
Sometimes, a processing function needs to be applied on only a portion of the image. This 
recipe will teach you how to define a region of interest inside an image.
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Getting ready
Suppose we want to combine two images of different sizes. For example, let's say we want to 
add the following small logo to our test image:

But function cv::add requires two images of same size. In this case, a region of interest 
(ROI) can be defined over which the cv::add can be applied. This will work as long as the ROI 
is of same size as our logo image. The position of the ROI will determined where in the image 
the logo will be inserted.

How to do it...
The first step consists of defining the ROI. Once defined, the ROI can be manipulated as 
a regular cv::Mat instance. The key is that the ROI points to the same data buffer as its 
parent image. Inserting the logo would then be accomplished as follows:

   // define image ROI
   cv::Mat imageROI;
   imageROI= image(cv::Rect(385,270,logo.cols,logo.rows));

   // add logo to image 
   cv::addWeighted(imageROI,1.0,logo,0.3,0.,imageROI);
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The following image is then obtained:

Since the colors of the logo are added to the colors of the image (with possible saturation also 
applied), the visual result will not always be satisfactory. For this reason, it might be better to 
simply set the pixel values of the image to the logo values where this one appears. You do this 
by copying the logo to the ROI using a mask:

   // define ROI
   imageROI= image(cv::Rect(385,270,logo.cols,logo.rows));

   // load the mask (must be gray-level)
   cv::Mat mask= cv::imread("logo.bmp",0);

   // copy to ROI with mask
   logo.copyTo(imageROI,mask);
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Then, the result image is:

How it works...
One way of defining an ROI is to use a cv::Rect instance. As the name indicates, it 
describes a rectangular region by specifying the position of the upper-left corner (the first two 
parameters of the constructor) and the size of the rectangle (width and height given in the last 
two parameters).

The ROI can also be described using row and column ranges. A range is a continuous 
sequence from a start index to an end index (excluded). The cv::Range structure is used to 
represent this concept. Therefore, an ROI can be defined from two ranges, for example, in our 
example, the ROI could have been equivalently defined as follows:

cv::Mat imageROI= image(cv::Range(270,270+logo.rows), 
                        cv::Range(385,385+logo.cols))

The operator() of cv::Mat returns another cv::Mat instance that can then be used 
in subsequence calls. Any transformation of the ROI will affect the original image in the 
corresponding area because the image and the ROI share the same image data. Since the 
definition of an ROI does not copy data, it is executed in constant time, no matter the size of 
the ROI.
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If one wants to define an ROI made of some lines of an image, the following call could be 
used:

cv::Mat imageROI= image.rowRange(start,end) ;

and similarly, for an ROI made of some image columns:

cv::Mat imageROI= image.colRange(start,end) ;

The methods row and col that were used in the recipe Scanning an image with neighbor 
access are a special case of these later methods in which the start and end index are equal in 
order to define a single-line or single-column ROI.





3
Processing Images 

with Classes

In this chapter, we will cover:

ff Using the Strategy pattern in algorithm design

ff Using a Controller to communicate with processing modules

ff Using the Singleton design pattern

ff Using the Model-View-Controller architecture to design an application

ff Converting color spaces 

Introduction
Good computer vision programs start with good programming practices. Building a bug-free 
application is just the beginning. What you really want is an application that you, and the 
programmers working with you, will be able to easily adapt and evolve as new requirements 
come in. This chapter will show you how to make best use of some of the object-oriented 
programming principles in order to build quality software programs. In particular, we will 
introduce some important design patterns that will help you build applications made of 
components that are easy to test, maintain, and reuse. 

Design pattern is a well-known concept in software engineering. Basically, a design pattern 
is a sound, reusable solution to a generic problem that occurs frequently in software design. 
Many software patterns have been introduced and well documented. Good programmers 
should build a working knowledge of these existing patterns.

This chapter also has a secondary objective. It will teach you how to play with image colors. 
The example used throughout this chapter will show you how to detect pixels of a given color, 
and the last recipe will explain how to work with different color spaces. 
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Using the Strategy pattern in algorithm 
design

The objective of the Strategy design pattern is to encapsulate an algorithm into a class. 
This way it becomes easier to replace a given algorithm by another one, or to chain several 
algorithms together in order to build a more complex process. In addition, this pattern 
facilitates the deployment of an algorithm by hiding as much of its complexity as possible 
behind an intuitive programming interface.

Getting ready
Let's say we want to build a simple algorithm that will identify all of the pixels in an image which 
have  a given color. The algorithm has then to accept an image and a color as input and returns 
a binary image showing the pixels having the specified color. The tolerance with which we want 
to accept a color will be another parameter to be specified before running the algorithm.  

How to do it...
The core process of this algorithm is quite easy to build. It is a simple scanning loop that 
goes over each pixel, comparing its color with the target color. Using what we learned in the 
previous chapter, this loop can be written as:

     // get the iterators
     cv::Mat_<cv::Vec3b>::const_iterator it=
                         image.begin<cv::Vec3b>();
     cv::Mat_<cv::Vec3b>::const_iterator itend=
                      image.end<cv::Vec3b>();
     cv::Mat_<uchar>::iterator itout= 
                        result.begin<uchar>();

     // for each pixel
     for ( ; it!= itend; ++it, ++itout) {
        

        // process each pixel ---------------------

        // compute distance from target color
        if (getDistance(*it)<minDist) {

           *itout= 255;

        } else {

           *itout= 0;
        }

        // end of pixel processing ----------------
     }
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The cv::Mat variable image refers to the input image while result refers to the binary 
output image. Therefore, the first step, consists of setting up the required iterators. The 
scanning for loop is then easy to implement. Each iteration checks if the distance between 
the current pixel color and the target color is within the tolerance defined by minDist. If that 
is the case, the value 255 (white) is then assigned to the output image, and if not, 0 (black) 
is assigned. To compute the distance between two color values, the getDistance method 
is used. There are different ways to compute this distance. One could, for example, calculate 
the Euclidean distance between the 3-vectors containing the RGB color values. In our case, 
to keep this computation simple and efficient, we simply sum the absolute difference of the 
RGB values (this is also known as the city block distance). The getDistance method is then 
simply defined as follows:

     // Computes the distance from target color.
     int getDistance(const cv::Vec3b& color) const {

        return abs(color[0]-target[0])+
               abs(color[1]-target[1])+
               abs(color[2]-target[2]);
     }

Note how we used the cv::Vec3d to hold the three unsigned chars representing the RGB 
values of a color. The variable target obviously refers to the specified target color, and as 
we will see, it is defined as a class variable in the class algorithm we are defining. Now let's 
complete the definition of the processing method. Users will provide an input image and the 
result will be returned once the image scanning is completed:

cv::Mat ColorDetector::process(const cv::Mat &image) {
   

     // re-allocate binary map if necessary
     // same size as input image, but 1-channel
     result.create(image.rows,image.cols,CV_8U);

processing loop above goes here

      ...

     return result;
}

Each time this method is called, it is important to check if the output image which will contain 
the resulting binary map needs to be re-allocated to fit the size of the input image. This is 
why we use the method create of cv::Mat. Remember, this one will only proceed to re-
allocation if the specified size and depth do not correspond to the current image structure.

Now that we have the core processing method defined, let's see what additional methods 
should be added in order to deploy this algorithm. We previously determined what input and 
output data our algorithm requires. We will therefore first define class attributes that will hold 
this data:
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class ColorDetector {

  private:

     // minimum acceptable distance
     int minDist; 

     // target color
     cv::Vec3b target; 

     // image containing resulting binary map
     cv::Mat result;

In order to create an instance of the class that encapsulates our algorithm (and that we 
have named ColorDetector), we need to define a constructor. Remember that one of 
the objectives of the Strategy design pattern is to make the algorithm deployment as easy 
as possible. The simplest constructor that can be defined is an empty one. It will create an 
instance of the class algorithm in a valid state. We then want the constructor to initialize all 
input parameters to their default values (or values that are known to generally give a good 
result). In our case, we decided that a distance of 100 is generally an acceptable tolerance. 
We also set a default target color. We chose black for no particular reason. The idea is to 
make sure we always start with predictable and valid input values:

     // empty constructor
     ColorDetector() : minDist(100) { 

        // default parameter initialization here
        target[0]= target[1]= target[2]= 0;
     }

At this point, a user who creates an instance of our class algorithm can immediately call the 
process method with a valid image and obtain a valid output. This is another objective of 
the Strategy pattern, that is, to make sure the algorithm always runs with valid parameters. 
Obviously, a user of this class will want to use his own settings. This is done by providing the 
user with the appropriate getters and setters. Let's start by the color tolerance parameter:

     // Sets the color distance threshold.
     // Threshold must be positive, 
     // otherwise distance threshold is set to 0.
     void setColorDistanceThreshold(int distance) {

        if (distance<0)
           distance=0;
        minDist= distance;
     }

     // Gets the color distance threshold
     int getColorDistanceThreshold() const {

        return minDist;
     }
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Note how we first check the validity of the input. Again, this is to make sure that our algorithm 
will never be run in an invalid state. The target color can be set similarly:

     // Sets the color to be detected
     void setTargetColor(unsigned char red, 
                          unsigned char green, 
                          unsigned char blue) {

        // BGR order
        target[2]= red;
        target[1]= green;
        target[0]= blue;
     }

     // Sets the color to be detected
     void setTargetColor(cv::Vec3b color) {

        target= color;
     }

     // Gets the color to be detected
     cv::Vec3b getTargetColor() const {

        return target;
     }

This time it is interesting to note that we have provided the user with two definitions of the 
setTagertColor method. In the first one, the three color components are specified as three 
arguments, while in the second version, a cv::Vec3b is used to hold the color values. Again, 
the objective is to facilitate the use of our class algorithm. The user simply selects the setter 
that best fit the needs. 

How it works...
Once an algorithm has been encapsulated into a class using the Strategy design pattern, it 
can be deployed by creating an instance of this class. Typically, the instance would be created 
when the program is initialized. The default value of the algorithm's parameters can be read 
and displayed. In the case of an application with a GUI, the parameter values can be read and 
set using different widgets (textfields, silders, and so on) so that a user can easily play with 
them. But before we introduce a GUI (this will be done later in this chapter), let's first write a 
simple main function that will run our color detection algorithm:

int main()
{
   // 1. Create image processor object
   ColorDetector cdetect;

   // 2. Read input image
   cv::Mat image= cv::imread("boldt.jpg");
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   if (!image.data)
      return 0; 

   // 3. Set input parameters
   cdetect.setTargetColor(130,190,230); // here blue sky

   cv::namedWindow("result");

   // 4. Process the image and display the result
   cv::imshow("result",cdetect.process(image));

   cv::waitKey();

   return 0;
}

Running this program on the color version of the image presented in the previous chapter 
produces the following output:

Obviously, the algorithm we encapsulated in this class is relatively simple (just one scanning 
loop and one tolerance parameter). The Strategy design pattern becomes really powerful 
when the algorithm to be implemented is more complex, has many steps, and includes 
several parameters.

There's more...
To compute the distance between two color vectors, we used this simple formula:

return abs(color[0]-target[0])+
       abs(color[1]-target[1])+
       abs(color[2]-target[2]);
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However, OpenCV includes a function to compute the Euclidean norm of a vector. 
Consequently, we could have computed our distance as follows:

return static_cast<int>(
   cv::norm<int,3>(cv::Vec3i(color[0]-target[0],
                             color[1]-target[1],
                             color[2]-target[2])));

A very similar result would then be obtained using this definition of the getDistance 
method. Here, we use a cv::Vec3i (a 3-vector of integers) because the result of the 
subtraction is an integer value. 

It is also interesting to recall from Chapter 2 that the OpenCV matrix and vector data 
structures include a definition of the basic arithmetic operators. For example, if you want to 
add two cv::Vec3i vectors, a and b, and assign the result to c, you can simply write:

c= a+b;

Alternatively, one could have proposed the following definition for the distance computation:

return static_cast<int>(
   cv::norm<uchar,3>(color-target);

This definition may look right at first glance, however, it is wrong. This is because, all of these 
operators always include a call to saturate_cast (see recipe Scanning an image with 
neighbor access in the previous chapter) in order to make sure that the results stay within the 
domain of the input type (here, uchar). Therefore, in cases where the target value is greater 
than the corresponding color value, the value 0 will be assigned instead of the negative value 
one would have expected. 

See also
The Policy-based class design introduced by A. Alexandrescu, is an interesting variant of the 
Strategy design pattern in which algorithms are selected at compile-time. 

The book Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma 
et al, Addison-Wesley, 1994, is one of the classic books on the subject. 

Also see the Building a GUI-based application using the Model-View-Controller pattern recipe, 
to learn how to use the Strategy pattern in an application with a GUI.
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Using a Controller to communicate with 
processing modules 

As you will be building more complex applications, you will need to create multiple algorithms 
that can be combined together in order to accomplish some advanced tasks. Consequently, 
properly setting up the application, and having all classes communicating together, will 
become more and more complex. It then becomes advantageous to centralize the control of 
the application in a single class. This is the idea behind the Controller. It is a particular object 
in an application that plays an important role and we will explore it in this recipe.

Getting ready
Create a simple dialog-based application with two buttons, one to select an image and one to 
start the processing as seen below:

Here, we use the ColorDetector class of the previous recipe.

How to do it...
The role of the Controller is first to create the classes required to execute the application. 
Here, it is only one class. In addition, we need two member variables in order to hold a 
reference to the input and output results:

class ColorDetectController {

  private:

   // the algorithm class
   ColorDetector *cdetect;
   

   cv::Mat image;   // The image to be processed
   cv::Mat result;  // The image result
   

  public:

   ColorDetectController() { 
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        //setting up the application
        cdetect= new ColorDetector();
   }

You then need to define all of the setters and getters that a user would need to control the 
application:

     // Sets the color distance threshold
     void setColorDistanceThreshold(int distance) {

        cdetect->setColorDistanceThreshold(distance);
     }

     // Gets the color distance threshold
     int getColorDistanceThreshold() const {

        return cdetect->getColorDistanceThreshold();
     }

     // Sets the color to be detected
     void setTargetColor(unsigned char red, 
        unsigned char green, unsigned char blue) {

        cdetect->setTargetColor(red,green,blue);
     }

     // Gets the color to be detected
     void getTargetColor(unsigned char &red, 
        unsigned char &green, unsigned char &blue) const {

        cv::Vec3b color= cdetect->getTargetColor();

        red= color[2];
        green= color[1];
        blue= color[0];
     }

     // Sets the input image. Reads it from file.
     bool setInputImage(std::string filename) {

        image= cv::imread(filename);

        if (!image.data)
           return false;
        else
           return true;
     }

     // Returns the current input image.
     const cv::Mat getInputImage() const {

        return image;
     }

www.allitebooks.com

http://www.allitebooks.org
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You also need a method that will be invoked to start the process:

     // Performs image processing.
     void process() {

        result= cdetect->process(image);
     }

and a method to obtain the result of the processing:

     // Returns the image result from the latest processing.
     const cv::Mat getLastResult() const {

        return result;
     }

Finally, it is important to clean up everything when the application terminates (and the 
controller is released):

     // Deletes processor objects created by the controller.
     ~ColorDetectController() {

        delete cdetect;
     }

How it works...
Using the Controller class above, a programmer can easily build an interface for an application 
that will execute your algorithm. There is no need for the programmer to understand how all of 
the classes are connected together, or to find out which methods in which class must called to 
have everything running properly. This is all done by the Controller class. The only requirement 
is to create an instance of that Controller class.

The setters and getters that are defined in the Controller are the ones that you would think 
are required to deploy your algorithm. These methods simply call the corresponding ones in 
the appropriate class. Again, the simple example here includes only one class algorithm, but 
in most cases, several class instances would be involved. Therefore, the role of the Controller 
is to redirect the request to the appropriate class and to simplify the interface to these 
classes. As an example of such simplifications, consider the methods setTargetColor and 
getTargetColor . They both use uchar to set and get the color of interest. This removes 
the necessity for the application programmer to know anything about the cv::Vec3b class. 

In some cases, the Controller also prepares the data provided by the application programmer. 
This is what we did in the case of the setInputImage method, in which the image that 
corresponds to the given filename is loaded in memory. The method returns true or false 
depending on whether the loading operation was successful or not (one could also have 
thrown an exception to handle this situation). 
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Finally, the method process is the one that runs the algorithm. This method does not 
return the result and another method must be called in order to get the result of the latest 
processing performed. 

Now, to create a very basic dialog-based application using this controller, you just add a 
ColorDetectController member variable to the dialog class (called colordetect here). 
In the case of a MFC dialog, the Open button would then look as follows:

// Callback method of "Open" button.
void OnOpen()
{
    // MFC widget to select a file of type bmp or jpg
    CFileDialog dlg(TRUE, _T("*.bmp"), NULL,
     OFN_FILEMUSTEXIST|OFN_PATHMUSTEXIST|OFN_HIDEREADONLY,
     _T("image files (*.bmp; *.jpg) 
         |*.bmp;*.jpg|All Files (*.*)|*.*||"),NULL);
 

    dlg.m_ofn.lpstrTitle= _T("Open Image");
 

    // if a filename has been selected
    if (dlg.DoModal() == IDOK) {
 

      // get the path of the selected filename
      std::string filename= dlg.GetPathName();  

      // set and display the input image
      colordetect.setInputImage(filename);
      cv::imshow("Input Image",colordetect.getInputImage());
    }
}

The second button executes the process and displays the result:

// Callback method of "Process" button.
void OnProcess()
{
   // target color is hard-coded here
   colordetect.setTargetColor(130,190,230);

   // process the input image and display result
   colordetect.process();
   cv::imshow("Output Result",colordetect.getLastResult());
}

Obviously, a more complete application would include additional widgets in order to allow the 
user to set the algorithm parameters. 
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See also
Also see the recipe Building a GUI-based Application using the Model-View-Controller pattern 
that presents a more expanded example of an application controlled by a GUI.

Using the Singleton design pattern
The Singleton is another popular design pattern that is used to facilitate access to a class 
instance and also to guarantee that only one instance of that class will exist during program 
execution. In this recipe, we use the Singleton to access a Controller object. 

Getting ready
We use the ColorDetectController class of the previous recipe. This one will be modified 
in order to obtain a Singleton class.

How to do it...
The first thing to do is to add a private static member variable which will hold the reference 
to the single class instance. Also, in order to forbid the construction of additional class 
instances, the constructor is made private:

   class ColorDetectController {

     private:

      // pointer to the singleton
       static ColorDetectController *singleton; 
       

      ColorDetector *cdetect;
   

      // private constructor
      ColorDetectController() { 

        //setting up the application
        cdetect= new ColorDetector();
      }

In addition, you can also make the copy constructor and the operator= private to make sure 
no one can create a copy of the Singleton's unique instance. The Singleton object is created 
on demand, when a user of the class asks for an instance of this class. This is done using a 
static method which creates the instance if it does not exist yet and then returns a pointer to 
this instance:

     // Gets access to Singleton instance
     static ColorDetectController *getInstance() {

        // Creates the instance at first call
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        if (singleton == 0)
         singleton= new ColorDetectController;

        return singleton;
     }

Note that this implementation of the Singleton is not thread-safe however. Therefore, it should 
not be used when concurrent threads need to access the Singleton instance. 

Finally, since the Singleton instance has been created dynamically, the user must delete it 
when it is not required anymore. Again, this is done through a static method:

     // Releases the singleton instance of this controller.
     static void destroy() {

        if (singleton != 0) {
           delete singleton;
           singleton= 0;
        }
     }

Since singleton is a static member variable, it must be defined in a .cpp file. This is done 
as follows:

#include "colorDetectController.h"

ColorDetectController *ColorDetectController::singleton=0; 

How it works...
Since the Singleton can be obtained through a public static method, all classes that include 
the Singleton class declaration have access to the Singleton object. This is particularly useful 
for a Controller object that is accessed by several widget classes of some sophisticated GUI. 
There is no need for a member variable in one of the GUI class as was needed in the previous 
recipe. The two callback methods of the dialog class would then be written as follows:

// Callback method of "Open" button.
void OnOpen()
{
    ...
 

    // if a filename has beed selected
    if (dlg.DoModal() == IDOK) {
 

      // get the path of the selected filename
      std::string filename= dlg.GetPathName(); 

      // set and display the input image
      ColorDetectController::
          getInstance()->setInputImage(filename);
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       cv::imshow("Input Image",
         ColorDetectController::
          getInstance()->getInputImage());
    }
}

// Callback method of "Process" button.
OnProcess()
{
    // target color is hard-coded here
   ColorDetectController::
      getInstance()->setTargetColor(130,190,230);

    // process the input image and display result
   ColorDetectController::getInstance()->process();
   cv::imshow("Output Result",
      ColorDetectController::getInstance()->getLastResult());
}

and when the application is closed, the Singleton instance must be released:

// Callback method of "Close" button.
void OnClose()
{
   // Releases the Singleton.
   ColorDetectController::getInstance()->destroy();
   OnOK();
}

As shown here, when a Controller is encapsulated inside a Singleton, it becomes easier to 
obtain access to this instance from any class. However, a more serious implementation of 
this application would require a more elaborate GUI. This is done in next recipe which wraps 
up the discussion on the use of patterns in application design by presenting the Model-View-
Controller architecture.

Using the Model-View-Controller 
architecture to design an application

The previous recipes let you discover three important design patterns: the Strategy, Controller, 
and Singleton patterns. This recipe introduces an architectural pattern in which these three 
patterns are used in combination with other classes. It is the Model-View-Controller, or 
MVC, that has the objective of producing an application that clearly separates the application 
logic from the user interface. In this recipe, we will use the MVC pattern to build a GUI-based 
application using Qt. However, before seeing it in action, let's give a brief description of the 
pattern. 
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Getting ready
As the name indicates, the MVC pattern involves three main components. We will now take a 
look at the role of each of them.

The Model contains the information concerning the application. It holds all of the data that is 
processed by the application. When new data is produced, it will inform the Controller, which 
in turn will ask the view to display the new results. Often, the Model will group together several 
algorithms, possibly implemented following the Strategy pattern. All of these algorithms are 
part of the Model.

The View corresponds to the user interface. It is composed of the different widgets that 
present the data to the user and allow the user to interact with the application. One of its roles 
is to send the commands issued by the user to the Controller. When new data is available, it 
refreshes itself in order to display the new information.

The Controller is the module that bridges the View and the Model together. It receives 
requests from the View and relays them to the appropriate methods in the model. It is also 
informed when the Model changes its state, and consequently asks the View to refresh in 
order to display this new information.

How to do it...
As we did in the previous recipes, we will use the ColorDetector class. This one will be 
our Model containing the application logic and underlying data. We have also implemented a 
Controller, it is the ColorDetectController class. It then becomes easy to build a more 
sophisticated GUI by choosing the most appropriate widget. For example, using Qt, one can 
build the following interface:
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The Open Image button is used to select and open an image. The color to be detected can 
be selected by pushing the Select Color button. This one opens up a Color Chooser widget 
(printed below in black and white) that makes easy the selection of the desired color:

A slider is then used to select the right threshold to be used. Then, by pushing the Process 
button, the image is processed and the result is displayed.
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How it works...
Under the MVC architecture, the user interface simply calls the Controller methods. It does 
not contain any application data and does not implement any application logic. Consequently, 
it is easy to substitute an interface with another one. Here, a color chooser widget, the 
QColorDialog, has been added and once the color selected, the appropriate Controller 
method is called from the Select Color slot:

QColor color = QColorDialog::getColor(Qt::green, this);
if (color.isValid()) {
ColorDetectController::getInstance()
   ->setTargetColor(color.red(),color.green(),color.blue());
}

The threshold is set via the QSlider widget. This value is read when the Process button is 
clicked, which also triggers the processing and displays the result:

ColorDetectController::getInstance()
   ->setColorDistanceThreshold(
        ui->verticalSlider_Threshold->value());
ColorDetectController::getInstance()->process();
cv::Mat resulting = 
   ColorDetectController::getInstance()->getLastResult();
if (!resulting.empty())
   displayMat(resulting);

In fact, the GUI library of Qt makes extensive use of the MVC pattern. It uses the concept of 
the concept of signals in order to keep all of the widgets of a GUI synchronized with the data 
model.

See also
The Qt online documentation can help you to learn more about Qt implementation of the MVC 
pattern (http://doc.qt.nokia.com).

The recipe Creating a GUI application using Qt of Chapter 1 for a brief description of the Qt 
GUI framework and its signal and slot model.

Converting color spaces
This chapter taught you how to encapsulate an algorithm into a class. This way, the algorithm 
becomes easier to use through a simplified interface. Encapsulation also permits you to 
modify an algorithm's implementation without impacting the classes that use it. This principle 
is illustrated in this recipe where we will modify the ColorDetector class algorithm in order 
to use another color space. Therefore, this recipe will be an opportunity to introduce color 
conversion with OpenCV.



Processing Images with Classes

86

Getting ready
The RGB color space (or BGR depending on which order the colors are stored) is based on the 
use of the red, green, and blue additive primary colors. These have been selected because 
when they are combined they can produce a wide gamut of different colors. In fact, the human 
visual system is also based on a trichromatic perception of colors with cone cell sensitivity 
located around the red, green, and blue spectrum. It is often the default color space in digital 
imagery because that is the way they are acquired. Captured light goes through red, green, 
and blue filters. Additionally, in digital images, the red, green, and blue channels are adjusted 
such that when combined in equal amounts, a gray-level intensity is obtained, that is, from 
black (0,0,0) to white (255,255,255).

Unfortunately, computing the distance between colors using the RGB color space is not the 
best way to measure the similarity of two given colors. Indeed, RGB is not a perceptually 
uniform color space. This means that two colors at a given distance might look very similar, 
while two other colors separated by the same distance will look very different.

To solve this problem, other color spaces having the property of being perceptually uniform 
have been introduced. In particular, the CIE L*a*b* is one such color space. By converting our 
images to this space, the Euclidean distance between an image pixel and the target color will 
then meaningfully be a measure of the visual similarity between the two colors. We will show in 
this recipe how we can modify the previous application in order to work with the CIE L*a*b*.

How to do it...
Converting between different color spaces is easily done through the use of the OpenCV 
function cv::cvtColor. Let's convert the input image to CIE L*a*b* color space at the 
beginning of the process method:

cv::Mat ColorDetector::process(const cv::Mat &image) {
   

     // re-allocate binary map if necessary
     // same size as input image, but 1-channel
     result.create(image.rows,image.cols,CV_8U);

     // re-allocate intermediate image if necessary
     converted.create(image.rows,image.cols,image.type());

     // Converting to Lab color space 
     cv::cvtColor(image, converted, CV_BGR2Lab);

     // get the iterators of the converted image 
     cv::Mat_<cv::Vec3b>::iterator it= 
                 converted.begin<cv::Vec3b>();
     cv::Mat_<cv::Vec3b>::iterator itend= 
                 converted.end<cv::Vec3b>();
     // get the iterator of the output image 
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     cv::Mat_<uchar>::iterator itout= result.begin<uchar>();

     // for each pixel
     for ( ; it!= itend; ++it, ++itout) {
     …

The variable converted contains the image after color conversion. In the ColorDetector 
class, it is defined as a class attribute:

class ColorDetector {

  private:
     // image containing color converted image
     cv::Mat converted;

We also need to convert the input target color. We do this by creating a temporary image 
containing only 1 pixel. Note that you need to keep the same signature as in the previous 
recipes, that is, the user continues to supply the target color in RGB:

     // Sets the color to be detected
     void setTargetColor(unsigned char red, 
           unsigned char green, unsigned char blue) {

         // Temporary 1-pixel image
         cv::Mat tmp(1,1,CV_8UC3);
         tmp.at<cv::Vec3b>(0,0)[0]= blue;
         tmp.at<cv::Vec3b>(0,0)[1]= green;
         tmp.at<cv::Vec3b>(0,0)[2]= red;

           // Converting the target to Lab color space 
         cv::cvtColor(tmp, tmp, CV_BGR2Lab);

         target= tmp.at<cv::Vec3b>(0,0);
     }

If the application of the preceding recipe is compiled with this modified class, it will now 
detect the pixels of the target color using the CIE L*a*b* color space.

How it works...
When an image is converted from one color space to another, a linear or non-linear 
transformation is applied on each input pixel to produce the output pixels. The pixel type of 
the output image will match the one of the input image. Even if most of the time you work 
with 8-bit pixels, you can also use color conversion with images of floats (in which case, pixel 
values are generally assumed to vary between 0 and 1.0) or with integer images (with pixel 
generally varying between 0 and 65535). But the exact domain of the pixel values depends on 
the specific color space. For example, with the CIE L*a*b* color space, the L channel varies 
between 0 and 100, while the a and b chromaticity components vary between -127 and 127.
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Most commonly used color spaces are available. It is just a question of providing the right 
mask to the OpenCV function. Among them is the YCrCb, which is the color space used in 
JPEG compression. To convert from BGR to YCrCb, the mask would be CV_BGR2YCrCb. Note 
that the representation with the three regular primary colors, red, green, and blue, is available 
in the RGB order or BRG order. 

The HSV and HLS color spaces are also interesting because they decompose the colors into 
their hue and saturation components, plus the value or luminance component, which is a 
more natural way for humans to describe colors.

You can also convert color images to gray-level. The output will be a 1-channel image:

         cv::cvtColor(color, gray, CV_BGR2Gray);

It is also possible to do the conversion in the other direction, but the 3 channels of the 
resulting color image will then be identically filled with the corresponding values in the  
gray-level image.

See also
The recipe Using the mean shift algorithm to find an object in Chapter 4 that uses the HSV 
color space in order to find an object in an image.

Many good references are available on color space theory. Among them, the following is a 
complete and up-to-date reference, The Structure and Properties of Color Spaces and the 
Representation of Color Images by E. Dubois, Morgan and Claypool, Oct. 2009. 



4
Counting the Pixels 

with Histograms

In this chapter, we will cover:

ff Computing the image histogram

ff Applying look-up tables to modify image appearance

ff Equalizing the image histogram

ff Backprojecting a histogram to detect specific image content

ff Using the mean shift algorithm to find an object

ff Retrieving similar images using histogram comparison

Introduction
An image is composed of pixels of different values (colors). The distribution of pixels 
values across the image constitutes an important characteristic of this image. This chapter 
introduces the concept of image histograms. You will learn how to compute a histogram and 
how to use it to modify the image's appearance. Histograms can also be used to characterize 
the image's content and to detect specific objects or textures in an image. Some of these 
techniques will be presented in this chapter. 

Computing the image histogram
An image is made of pixels, each of them having different values. For example, in a 1-channel 
gray-level image, each pixel has a value between 0 (black) and 255 (white). Depending on the 
picture content, you will find different amounts of each gray shade laid out inside the image. 
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A histogram is a simple table that gives the number of pixels that have a given value in an 
image (or sometime a set of images). The histogram of a gray-level image will therefore have 
256 entries (or bins). Bin 0 gives the number of pixels having value 0, bin 1 the number of 
pixels having value 1, and so on. Obviously, if you sum all of the entries of a histogram, you 
should get the total number of pixels. Histograms can also be normalized such that sum of the 
bins equals 1. In that case, each bin gives the percentage of pixels having this specific value 
in the image.

Getting started
Define a simple console project and have an image like the following ready to be used:

How to do it...
Computing a histogram with OpenCV can be easily done by using the cv::calcHist 
function. This is a general function which can compute the histogram of multiple channel 
images of any pixel value type. Let's make it simpler to use by specializing a class for the case 
of 1-channel gray-level images:

class Histogram1D {

  private:

    int histSize[1];  // number of bins
    float hranges[2]; // min and max pixel value
    const float* ranges[1];
    int channels[1];  // only 1 channel used here

  public:

   Histogram1D() {

      // Prepare arguments for 1D histogram
      histSize[0]= 256;
      hranges[0]= 0.0;
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      hranges[1]= 255.0;
      ranges[0]= hranges; 
      channels[0]= 0; // by default, we look at channel 0
   }

With the defined member variables, computing a gray-level histogram can then be 
accomplished using the following method:

   // Computes the 1D histogram.
   cv::MatND getHistogram(const cv::Mat &image) {

      cv::MatND hist;

      // Compute histogram
      cv::calcHist(&image, 
         1,           // histogram from 1 image only
         channels,  // the channel used
         cv::Mat(), // no mask is used
         hist,        // the resulting histogram
         1,           // it is a 1D histogram
         histSize,  // number of bins
         ranges     // pixel value range
      );

      return hist;
   }

Now, your program simply needs to open an image, create a Histogram1D instance, and to 
call the getHistogram method:

   // Read input image
   cv::Mat image= cv::imread("../group.jpg",
                             0); // open in b&w

   // The histogram object
   Histogram1D h;

   // Compute the histogram
   cv::MatND histo= h.getHistogram(image);

The histo object here is a simple one-dimensional array with 256 entries. Therefore, you can 
read each bin by simply looping over this array:

   // Loop over each bin
   for (int i=0; i<256; i++) 
      cout << "Value " << i << " = " << 
                   histo.at<float>(i) << endl;  
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With the image shown at the start of this chapter, some of the displayed values would read as:

...
Value 7 = 159
Value 8 = 208
Value 9 = 271
Value 10 = 288
Value 11 = 340
Value 12 = 418
Value 13 = 432
Value 14 = 472
Value 15 = 525
...

It is obviously difficult to extract any intuitive meaning from this sequence of values. For this 
reason, it is often convenient to display a histogram as a function, for example, using bar 
graphs. The following method creates such a graph:

   // Computes the 1D histogram and returns an image of it.
   cv::Mat getHistogramImage(const cv::Mat &image){

      // Compute histogram first
      cv::MatND hist= getHistogram(image);

      // Get min and max bin values
      double maxVal=0;
      double minVal=0;
      cv::minMaxLoc(hist, &minVal, &maxVal, 0, 0);

      // Image on which to display histogram
      cv::Mat histImg(histSize[0], histSize[0], 
                      CV_8U,cv::Scalar(255));

      // set highest point at 90% of nbins
      int hpt = static_cast<int>(0.9*histSize[0]);

      // Draw a vertical line for each bin 
      for( int h = 0; h < histSize[0]; h++ ) {

         float binVal = hist.at<float>(h);
         int intensity = static_cast<int>(binVal*hpt/maxVal);
          

         // This function draws a line between 2 points 
         cv::line(histImg,cv::Point(h,histSize[0]),
                          cv::Point(h,histSize[0]-intensity),
                          cv::Scalar::all(0));
      }

      return histImg;
   }
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Using this method, you can obtain an image of the histogram function in the form of a bar 
graph drawn using lines:

   // Display a histogram as an image
   cv::namedWindow("Histogram");
   cv::imshow("Histogram",
               h.getHistogramImage(image));

The result is the following image:

From this histogram, it can be seen that the image exhibits a large peak of mid-gray level values 
and a good quantity of darker pixels. These two groups mostly correspond to, respectively, the 
background and foreground of the image. This can be verified by thresholding the image at 
the transition between these two groups. A convenient OpenCV function can be used for this, 
namely, the cv::threshold function. This is the function to use when a threshold must be 
applied on an image in order to create a binary image. Here, we threshold the image at the 
minimum value just before the increase toward the high peak of the histogram (gray value 60):

   cv::Mat thresholded;
   cv::threshold(image,thresholded,60,255,cv::THRESH_BINARY);
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The resulting binary image clearly shows the background/foreground segmentation:

How it works...
Function cv::calcHist has many parameters to permit its use in many contexts. Most 
of the time, your histogram will be one of a single 1-channel or 3-channel image. However, 
the function allows you to specify a multiple-channel image distributed over several images. 
This is why an array of images is input into this function. The 6th parameter specifies 
the dimensionality of the histogram, for example, 1 for a 1D histogram. The channels to 
be considered in the histogram computation are listed in an array having the specified 
dimensionality. In our class implementation, this single channel is by default the channel  
0 (third parameter). The histogram itself is described by the number of bins in each dimension 
(seventh parameter, an array of integer) and by the minimum and maximum values in each 
dimension (eighth parameter, an array of 2-element arrays). It is also possible to define a  
non-uniform histogram in which case you need to specify the limits of each bin.

As for many OpenCV functions, a mask can be specified, indicating which pixels you want to 
include in the count (all pixels for which the mask value is 0 are then ignored). Two additional 
optional parameters can be specified, both which are Boolean values. The first one indicates if 
the histogram is uniform or not (uniform is the default). The second allows you to accumulate 
the result of several histogram computations. If this last parameter is true, then the pixel 
count of the image will be added to the current values found in the input histogram. This is 
useful when one wants to compute the histogram of a group of images.

The resulting histogram is stored in a cv::MatND instance. This is a general class used to 
manipulate N-dimensional matrices. Conveniently, this class has defined the at method for 
matrices of dimension 1, 2, and 3. This is why we were able to write:

         float binVal = hist.at<float>(h);
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when accessing each bin of the 1D histogram in the getHistogramImage method. Note 
that the values in the histogram are stored as floats. 

There's more...
The class Histogram1D presented in this recipe has simplified the cv::calcHist function 
by restricting it to 1D histogram. This is useful for gray-level images. Similarly, we can define a 
class that could be used to compute histograms of color BGR images:

class ColorHistogram {

  private:

    int histSize[3];
    float hranges[2];
    const float* ranges[3];
    int channels[3];

  public:

   ColorHistogram() {

      // Prepare arguments for a color histogram
      histSize[0]= histSize[1]= histSize[2]= 256;
      hranges[0]= 0.0;    // BRG range
      hranges[1]= 255.0;
      ranges[0]= hranges; // all channels have the same range 
      ranges[1]= hranges; 
      ranges[2]= hranges; 
      channels[0]= 0;      // the three channels 
      channels[1]= 1; 
      channels[2]= 2; 
   }

In this case, the histogram will be three-dimensional. Therefore, we need to specify a range for 
each of the three dimensions. In the case of a BGR image, the three channels have the same 
[0,255] range. With the arguments thus prepared, the color histogram is computed by the 
following method:

   cv::MatND getHistogram(const cv::Mat &image) {

      cv::MatND hist;

      // Compute histogram
      cv::calcHist(&image, 
         1,            // histogram of 1 image only
         channels,   // the channel used
         cv::Mat(),   // no mask is used
         hist,         // the resulting histogram
         3,            // it is a 3D histogram
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         histSize,   // number of bins
         ranges      // pixel value range
      );

      return hist;
   }

A three-dimensional cv::Mat instance is returned. This matrix has (256)*3 elements which 
represents more than 16 million entries. In many applications, it would be better to reduce the 
number of colors before computing such a large histogram (see Chapter 2). Alternatively, you 
can also use the cv::SparseMat data structure that is designed to represent large sparse 
matrices (that is, matrices with very few non-zero elements) without consuming too much 
memory. The cv::calcHist function has a version returning one such matrix. It is therefore 
simple to modify the previous method to use cv::SparseMatrix:

   cv::SparseMat getSparseHistogram(const cv::Mat &image) {

      cv::SparseMat hist(3,histSize,CV_32F);

      // Compute histogram
      cv::calcHist(&image, 
         1,            // histogram of 1 image only
         channels,   // the channel used
         cv::Mat(),   // no mask is used
         hist,         // the resulting histogram
         3,            // it is a 3D histogram
         histSize,   // number of bins
         ranges      // pixel value range
      );

      return hist;
   }

See also
The recipe Backprojecting a histogram to detect specific image content later in this chapter 
that will make use of color histograms in order to detect specific image content.

Applying look-up tables to modify 
image appearance

Image histograms capture the way a scene is rendered using the available pixel intensity 
values. By analyzing the distribution of the pixel values over an image, it is possible to use this 
information to modify and possibly improve an image. This recipe explains how one can use a 
simple mapping function, represented by a look-up table, to modify the pixel values of an image. 
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How to do it...
A look-up table is a simple one-to-one (or many-to-one) function that defines how pixel values 
are transformed into new values. It is a 1D array with, in the case of regular gray-level images, 
256 entries. Entry i of the table gives the new intensity value of the corresponding gray level, 
that is:

         newIntensity= lookup[oldIntensity];

Function cv::LUT in OpenCV applies a look-up table to an image in order to produce a new 
image. We can add this function to our Histogram1D class:

   cv::Mat applyLookUp(const cv::Mat& image, // input image
      const cv::Mat& lookup) { // 1x256 uchar matrix

      // the output image
      cv::Mat result;

      // apply lookup table
      cv::LUT(image,lookup,result);

      return result;
   }

How it works...
When a look-up table is applied on an image, it results in a new image where the 
pixel intensity values have been modified as prescribed by the look-up table. A simple 
transformation like this could be the following:

   // Create an image inversion table
   int dim(256);
   cv::Mat lut(1,  // 1 dimension
      &dim,       // 256 entries
      CV_8U);     // uchar

   for (int i=0; i<256; i++) {
      

      lut.at<uchar>(i)= 255-i;
   }
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This transformation simply inverts the pixel intensities, that is, intensity 0 becomes 255, 1 
becomes 254, and so on. Applying such a look-up table on an image will produce the negative 
of the original image. On the image of the previous recipe, the result is seen here:

There's more...
You can also define a look-up table that tries to improve an image's contrast. For example, if 
you observe the original histogram of the previous image shown in the first recipe, it is easy 
to notice that the full range of possible intensity values is not used (in particular, for this 
image, the brighter intensity values are not used in the image). One can therefore stretch the 
histogram in order to produce an image with an expanded contrast. The procedure is designed  
to detect the lowest (imin) and the highest (imax) intensity value with non-zero count in the 
image histogram. The intensity values can then be remapped such that the imin value is 
repositioned at intensity 0, and the imax is assigned value 255. The in-between intensities i 
are simply linearly remapped as follows:

255.0*(i-imin)/(imax-imin)+0.5);

Consequently, the complete image stretch method would look as follows:

   cv::Mat stretch(const cv::Mat &image, int minValue=0) {

      // Compute histogram first
      cv::MatND hist= getHistogram(image);

      // find left extremity of the histogram
      int imin= 0;
      for( ; imin < histSize[0]; imin++ ) {
         std::cout<<hist.at<float>(imin)<<std::endl;
         if (hist.at<float>(imin) > minValue)
            break;
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      }
      

      // find right extremity of the histogram
      int imax= histSize[0]-1;
      for( ; imax >= 0; imax-- ) {

         if (hist.at<float>(imax) > minValue)
            break;
      }
   

      // Create lookup table
      int dim(256);
      cv::Mat lookup(1,  // 1 dimension
            &dim,       // 256 entries
            CV_8U);     // uchar

      // Build lookup table
      for (int i=0; i<256; i++) {
      

         // stretch between imin and imax
         if (i < imin) lookup.at<uchar>(i)= 0;
         else if (i > imax) lookup.at<uchar>(i)= 255;
         // linear mapping
         else lookup.at<uchar>(i)= static_cast<uchar>(
                        255.0*(i-imin)/(imax-imin)+0.5);
      }

      // Apply lookup table
      cv::Mat result;
      result= applyLookUp(image,lookup);

      return result;
   }

Note the call to our applyLookUp method once this one has been computed. Also, in 
practice, it could be advantageous to not only ignore bins with 0 value, but also entries with 
negligible count, for example, less than a given value (defined here as minValue). The 
method is called as follows: 

// ignore starting and ending bins with less than 100 pixels   
cv::Mat streteched= h.stretch(image,100);



Counting the Pixels with Histograms

100

The resulting image is then seen here: 

With the following expanded histogram as seen in the following screenshot:

See also
The Equalizing the image histogram recipe shows you another way to improve the image 
contrast.
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Equalizing the image histogram
In the previous recipe, we showed how the contrast of an image can be improved by stretching 
a histogram so that it occupies the full range of available intensity values. This strategy indeed 
constitutes an easy fix which can effectively improve an image. However, in many cases, the 
visual deficiency of an image is not that it uses too narrow a range of intensities. Rather, it is 
that some intensity values are used more frequently than others. The histogram shown in the 
first recipe of this chapter is a good example of this phenomenon. The middle-gray intensities 
are indeed heavily represented, while darker and brighter pixel values are rather rare. In 
fact, one can think that a good-quality image should make equal use of all available pixel 
intensities. This is the idea behind the concept of histogram equalization, that is making the 
image histogram as flat as possible.

How to do it...
OpenCV offers an easy-to-use function that performs histogram equalization. It can be called 
as follows:

   cv::Mat equalize(const cv::Mat &image) {

      cv::Mat result;
      cv::equalizeHist(image,result);

      return result;
   }

Applied on our image, the following screenshot is the result: 



Counting the Pixels with Histograms

102

This image has the following histogram: 

Of course, the histogram cannot be perfectly flat because the look-up table is a global many-
to-one transformation. However, it can be seen that the general distribution of the histogram 
is now more uniform than the original one.

How it works...
In a perfectly uniform histogram, all bins have an equal number of pixels. This implies that 
50% of the pixels have an intensity lower than 128, 25% have an intensity lower than 64, and 
so on. This observation can be expressed using the following rule: in a uniform histogram, p% 
of the pixels must have an intensity value lower than or equal to 255*p%. This is the rule used 
to equalize a histogram: the mapping of intensity i should be at the intensity that corresponds 
to the percentage of pixels having an intensity value below i. Therefore, the required look-up 
table can be built from the following equation:

lookup.at<uchar>(i)= static_cast<uchar>(255.0*p[i]);

where p[i] is the number of pixels having an intensity lower than or equal to i. The function 
p[i] is often referred as a cumulative histogram, that is, it is a histogram that contains 
the count of pixels lower than or equal to a given intensity, instead of containing the count of 
pixels having a specific intensity value.

Generally, histogram equalization greatly improves the image's appearance. However, 
depending on the visual content, the quality of the result can vary from image to image.
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Backprojecting a histogram to detect 
specific image content

A histogram is an important characteristic of an image's content. If you look at an image area 
showing a particular texture or a particular object, then the histogram of this area can be seen 
as a function giving the probability that a given pixel belongs to this specific texture or object. 
In this recipe, you will learn how the image histogram can be advantageously used to detect 
specific image content.

How to do it...
Suppose you have an image and you wish to detect specific content inside it (for example, in 
the following screenshot, the clouds in the sky). The first thing to do is to select a region of 
interest which contains a sample of what you are looking for. This region is the one inside the 
rectangle drawn on the following test screenshot:

In our program, the region of interest is obtained as follows:

   cv::Mat imageROI;
   imageROI= image(cv::Rect(360,55,40,50)); // Cloud region

You then extract the histogram of this ROI. This is easily accomplished using the 
Histogram1D class defined in the first recipe of this chapter:

   Histogram1D h;
   cv::MatND hist= h.getHistogram(imageROI);

By normalizing this histogram, we obtain a function that gives the probability of a pixel of a 
given intensity value to belong to the defined area:

   cv::normalize(histogram,histogram,1.0);
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Backprojecting a histogram consists in replacing each pixel value in an input image by its 
corresponding probability value read in the normalized histogram.

cv::calcBackProject(&image,
      1,            // one image
      channels,     // the channels used
      histogram,    // the histogram we are backprojecting
      result,       // the resulting back projection image
      ranges,       // the range of values, for each dimension
      255.0         // a scaling factor
);

The result is the following probability map, with probabilities from bright (low probability) to 
dark (high probability) of belonging to the reference area:

If we apply a threshold on this image, we obtain the most probable "cloud" pixels:

cv::threshold(result, result, 255*threshold, 
                      255, cv::THRESH_BINARY);
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How it works...
The preceding result can be disappointing because, in addition to the clouds, other areas 
have been wrongly detected as well. It is important to understand that the probability function 
has been extracted from a simple gray-level histogram. Many other pixels in the image share 
the same intensities as the cloud pixels, and pixels of same intensity are replaced by the 
same probability value when backprojecting the histogram. One solution to improve the 
detection result would be to use color information. But in order to do this, we need to modify 
the call to cv::calBackProject.

Function cv::calBackProject is similar to the cv::calcHist function. The first 
parameter specifies the input image. You then need to list the channel numbers you wish to 
use. The histogram that is passed to the function is, this time, an input parameter. It should 
be normalized, and its dimension should match one of the channel list arrays, as well as 
one of the ranges parameters. This later is, as in cv::calcHist, an array of float arrays, 
each specifying the range (min and max values) of each channel. The resulting output is an 
image, the computed probability map. Since each pixel is replaced by the value found in the 
histogram at the corresponding bin position, the resulting image has values between 0.0 and 
1.0 (assuming a normalized histogram has been provided as input). A last parameter allows 
you to optionally rescale these values by multiplying them by a given factor.

There's more...
Let's now see how we can use color information in the histogram backprojection algorithm. 
We first define a class that encapsulates the backprojection process. First, we define the 
required attributes and initialize the data:

class ContentFinder {

  private:

   float hranges[2];
   const float* ranges[3];
   int channels[3];

   float threshold;
   cv::MatND histogram;

  public:

   ContentFinder() : threshold(-1.0f) {

      ranges[0]= hranges; // all channels have same range 
      ranges[1]= hranges; 
      ranges[2]= hranges; 
   }
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Next, we define a threshold parameter that will be used to create the binary map showing the 
detection result. If this parameter is set to a negative value, the raw probability map will be 
returned:

   // Sets the threshold on histogram values [0,1]
   void setThreshold(float t) {

      threshold= t;
   }

   // Gets the threshold
   float getThreshold() {

      return threshold;
   }

The input histogram must be normalized:

   // Sets the reference histogram
   void setHistogram(const cv::MatND& h) {

      histogram= h;
      cv::normalize(histogram,histogram,1.0);
   }

To backproject the histogram, you simply need to specify the image, the range (we assumed 
here that all channels have the same range), and the list of channels used:

   cv::Mat find(const cv::Mat& image, 
                float minValue, float maxValue, 
                int *channels, int dim) {

      cv::Mat result;

      hranges[0]= minValue;
      hranges[1]= maxValue;

      for (int i=0; i<dim; i++)
         this->channels[i]= channels[i];
         

       cv::calcBackProject(&image, 1, // input image
             channels,       // list of channels used
             histogram,    // the histogram we are using
             result,       // the resulting backprojection
             ranges,       // the range of values
             255.0         // the scaling factor
       );
      }

      // Threshold back projection to obtain a binary image
      if (threshold>0.0)
           cv::threshold(result, result, 
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                   255*threshold, 255, cv::THRESH_BINARY);

      return result;
   }

Let's now use a BGR histogram on the color version of the image we used above. This time, 
we will try to detect the blue sky area. We will first load the color image, reduce the number of 
color using the color reduction function of Chapter 2, and define the region of interest:

   ColorHistogram hc;
   // load color image
   cv::Mat color= cv::imread("../waves.jpg");
   // reduce colors
   color= hc.colorReduce(color,32);
   // blue sky area
   cv::Mat imageROI= color(cv::Rect(0,0,165,75)); 

Next, you compute the histogram and use the find method to detect the sky portion 
of the image:

   cv::MatND hist= hc.getHistogram(imageROI);

   ContentFinder finder;
   finder.setHistogram(hist);
   finder.setThreshold(0.05f);

   // Get back-projection of color histogram
   Cv::Mat result= finder.find(color);

The result of the detection on the color version of the image, of the previous section is seen 
here:
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See also
The next recipe will use the HSV color space to detect an object in an image. This is another of 
the many alternative solutions you can use in the detection of some image content.

Using the mean shift algorithm to find 
an object

The result of a histogram backprojection is a probability map that expresses the probability 
that a given image content is found at a specific image location. Suppose we now know the 
approximate location of an object in an image, the probability map can be used to find the 
exact location of the object. The most probable will be the one that maximizes this probability 
inside a given window. Therefore, if we start from an initial, location and iteratively move 
around, it should be possible to find the exact object location. This is what is accomplished by 
the mean shift algorithm.  

How to do it...
Suppose we have identified an object of interest, here, a baboon's face, as shown in the 
following color screenshot (see the book's website to see this image in color):
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This time, we will describe this object by using the hue channel of the HSV color space. This 
means we need to convert the image into an HSV one, then extract the hue channel and 
compute the 1D hue histogram of the defined ROI:

   // Read reference image
   cv::Mat image= cv::imread("../baboon1.jpg");
   // Baboon's face ROI
   cv::Mat imageROI= image(cv::Rect(110,260,35,40));
   // Get the Hue histogram
   int minSat=65;
   ColorHistogram hc;
   cv::MatND colorhist= 
            hc.getHueHistogram(imageROI,minSat);

As it can be seen, the hue histogram is obtained using a convenient method that we have 
added to our ColorHistogram class:

   // Computes the 1D Hue histogram with a mask.
   // BGR source image is converted to HSV
   // Pixels with low saturation are ignored
   cv::MatND getHueHistogram(const cv::Mat &image, 
                             int minSaturation=0) {

      cv::MatND hist;

      // Convert to HSV color space
      cv::Mat hsv;
      cv::cvtColor(image, hsv, CV_BGR2HSV);

      // Mask to be used (or not)
      cv::Mat mask;

      if (minSaturation>0) {
      

         // Spliting the 3 channels into 3 images
         std::vector<cv::Mat> v;
         cv::split(hsv,v);

         // Mask out the low saturated pixels
         cv::threshold(v[1],mask,minSaturation,255,
                                 cv::THRESH_BINARY);
      }

      // Prepare arguments for a 1D hue histogram
      hranges[0]= 0.0;
      hranges[1]= 180.0;
      channels[0]= 0; // the hue channel 

      // Compute histogram
      cv::calcHist(&hsv, 
         1,          // histogram of 1 image only
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         channels,   // the channel used
         mask,       // binary mask
         hist,       // the resulting histogram
         1,          // it is a 1D histogram
         histSize,   // number of bins
         ranges      // pixel value range
      );

      return hist;
   }

The resulting histogram is then input into our ContentFinder class instance:

   ContentFinder finder;
   finder.setHistogram(colorhist);

Let's now open a second image where we want to locate the new baboon's face position. This 
image needs to be converted to the HSV space:

   image= cv::imread("../baboon3.jpg");

   // Display image
   cv::namedWindow("Image 2");
   cv::imshow("Image 2",image);

   // Convert to HSV space
   cv::cvtColor(image, hsv, CV_BGR2HSV);

   // Split the image
   cv::split(hsv,v);

   // Identify pixels with low saturation
   cv::threshold(v[1],v[1],minSat,255,cv::THRESH_BINARY);

Next, let's obtain the backprojection of the hue channel of this image using the previously 
obtained histogram:

   // Get back-projection of hue histogram
   result= finder.find(hsv,0.0f,180.0f,ch,1);
   // Eliminate low stauration pixels
   cv::bitwise_and(result,v[1],result);

Now, from an initial rectangular area (that is, the position of the baboon's face in the initial 
image), the cv::meanShift algorithm of OpenCV will update the rect object at the new 
baboon face location:

   cv::Rect rect(110,260,35,40);
   cv::rectangle(image, rect, cv::Scalar(0,0,255));

   cv::TermCriteria criteria(cv::TermCriteria::MAX_ITER,
                             10,0.01);
   cv::meanShift(result,rect,criteria);
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The initial and new face locations are displayed in the following screenshot:

How it works...
In this example, we used the hue component of the HSV color space in order to characterize 
the object we were looking for. Therefore, the image must be converted first. The hue 
component being the first channel of the resulting image when the CV_BGR2HSV flag is used. 
This is an 8-bit component in which the hue varies from 0 to 180 (with cv::cvtColor, the 
converted image is of the same type as the source image). In order to extract the hue image, 
the 3-channel HSV image is split into three 1-channel images using the cv::split function. 
The three images are put into an std::vector instance, and the hue image is the first entry 
of the vector (that is at index 0).
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When using the hue component of a color, it is always important to take its saturation into 
account (which is the second entry of the vector). Indeed, when the saturation of a color is 
low, the hue information becomes unstable and unreliable. This is due to the fact that for 
low-saturated color, the B, G, and R components are almost equal. This makes it difficult 
to determine the exact color represented. In consequence, we decided to ignore the hue 
component of colors with low saturation. That is, they are not counted in the histogram (using 
the parameter minSat that masks out pixels with saturation below this threshold in method 
getHueHistogram) and they are eliminated from the backprojection result (using the 
cv::bitwise_and operator that eliminates all positive detection pixels having low-saturated 
colors just before calling cv::meanShift).

The mean shift algorithm is an iterative procedure which locates the local maxima of a 
probability function. It does it by finding the centroid, or weighted mean, of the data point inside 
a predefined window. The algorithm then moves the window center to the centroid location 
and repeats the procedure until the window center converges to a stable point. The OpenCV 
implementation defines two stopping criteria: a maximum number of iterations and a window 
center displacement value below which the position is considered to have converged to a stable 
point. These two criteria are stored in a cv::TermCriteria instance. The cv::meanShift 
function returns the number of iterations performed. Obviously, the quality of the result depends 
on the quality of the probability map provided, and on the given initial position. 

See also
The mean shift algorithm has been largely used for visual tracking. Chapter 10 will explore the 
problem of object tracking in more detail. 

OpenCV also offers an implementation of the CamShift algorithm that is an improved version 
of mean-shift in which the size and the orientation of the window can change.

Retrieving similar images using histogram 
comparison

Content-based image retrieval is an important problem in computer vision. It consists of 
finding a set of images presenting content similar to a given query image. Since we have 
learned that histograms constitute an effective way to characterize an image's content, it 
makes sense to think that they can be used to solve the content-based retrieval problem.

The key here is to be able to measure the similarity between two images by simply 
comparing their histograms. A measurement function which will estimate how different, 
or how similar, two histograms are will need to be defined. Various such measures have 
been proposed in the past, and OpenCV proposes few of them in its implementation of the 
cv::compareHist function. 
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How to do it...
In order to compare a reference image with a collection of images and find the ones that 
are the most similar to this query image, we created an ImageComparator class. This one 
contains a reference to a query image, and to an input image, together with their histograms 
(cv::MatND instances). In addition, since we will perform the comparison using color 
histograms, the ColorHistogram class is used:

class ImageComparator {

  private:

   cv::Mat reference;
   cv::Mat input;
   cv::MatND refH;
   cv::MatND inputH;

   ColorHistogram hist;
   int div;

  public:

   ImageComparator() : div(32) {

   }

To get a reliable similarity measure, the number of colors must be reduced. Therefore, the class 
includes a color reduction factor that will be applied to both the query and the input images:

   // Color reduction factor
   // The comparison will be made on images with
   // color space reduced by this factor in each dimension
   void setColorReduction( int factor) {

      div= factor;
   }

   int getColorReduction() {

      return div;
   }

The query image is specified using an appropriate setter that also color-reduces the image:

   void setReferenceImage(const cv::Mat& image) {

      reference= hist.colorReduce(image,div);
      refH= hist.getHistogram(reference);
   }
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Finally, a compare method compares the reference image with a given input image. The 
method returns a score indicating how similar the two images are.

   double compare(const cv::Mat& image) {

      input= hist.colorReduce(image,div);
      inputH= hist.getHistogram(input);

      return cv::compareHist(
                     refH,inputH,CV_COMP_INTERSECT);
   }
};

This class can be used to retrieve images similar to a given query image. This latter being 
initially provided to the class instance:

   ImageComparator c;
   c.setReferenceImage(image);

Here, the query image we used is the color version of the beach image shown in recipe 
Backprojecting a histogram to detect specific image content earlier in this chapter. This image 
was compared to a series of images shown below. The images are shown from the most 
similar, to the least:

How it works...
Most histogram comparison measures are based on a bin-by-bin comparison, that is, the 
neighboring bins are not used when comparing histograms' bins. Therefore, it important to 
reduce the color space before measuring the similarity of two color histograms. Other color 
spaces could be used as well.
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The call to cv::compareHist is straightforward. You just input the two histograms and the 
function returns the measured distance. The specific measurement method you want to use 
is specified using a flag. In the ImageComparator class, the intersection method is used 
(with flag CV_COMP_INTERSECT). This method simply compares, for each bin, the two values 
in each histogram, and keeps the minimum one. The similarity measure is then simply the 
sum of these minimum values. Consequently, two images having histograms with no colors 
in common would get an intersection value of 0, while two identical histograms would get a 
value equal to the total number of pixels.

The other methods available are the Chi-Square (flag CV_COMP_CHISQR) which sums the 
normalized square difference between the bins, the correlation method (flag CV_COMP_
CORREL) which is based on the normalized cross-correlation operator used in signal 
processing to measure the similarity between two signals, and the Bhattacharyya measure 
(flag CV_COMP_BHATTACHARYYA) used in statistics to estimate the similarity between two 
probabilistic distributions.

See also
The OpenCV documentation for a description of the exact formulas used in the different 
histogram comparison measures.

The Earth Mover Distance, which is also another popular histogram comparison method. The 
main advantage of this method is that it takes into account the values found in adjacent bins 
to evaluate the similarity of two histograms. It is described in the article The Earth Mover's 
Distance as a Metric for Image Retrieval by Y.i Rubner, C. Tomasi,L. J. Guibas in Int. Journal of 
Computer Vision, Vol. 40, No. 2., 2000, pp. 99-121





5
Transforming Images 

with Morphological 
Operations

In this chapter, we will cover:

ff Eroding and dilating images using morphological filters

ff Opening and closing images using morphological filters

ff Detecting edges and corners using morphological filters

ff Segmenting images using watersheds

ff Extracting foreground objects with the GrabCut algorithm

Introduction
Morphological filtering is a theory developed in the 1960s for the analysis and processing 
of discrete images. It defines a series of operators which transform an image by probing it 
with a predefined shape element. The way this shape element intersects the neighborhood 
of a pixel determines the result of the operation. This chapter presents the most important 
morphological operators. It also explores the problem of image segmentation using algorithms 
working on the image morphology.
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Eroding and dilating images using 
morphological filters

Erosion and dilation are the most fundamental morphological operators. Therefore, we will 
present them in this first recipe.

The fundamental instrument in mathematical morphology is the structuring element. A 
structuring element is simply defined as a configuration of pixels (a shape) on which an origin 
is defined (also called anchor point). Applying a morphological filter consists of probing each 
pixel of the image using this structuring element. When the origin of the structuring element 
is aligned with a given pixel, its intersection with the image defines a set of pixels on which a 
particular morphological operation is applied. In principle, the structuring element can be of 
any shape, but most often, a simple shape such as a square, circle, or diamond with the origin 
at the center is used (mainly for efficiency reasons).

Getting ready
As morphological filters usually work on binary images, we will use the binary image which 
was produced through thresholding in the first recipe of the previous chapter. However, since 
in morphology, the convention is to have foreground objects represented by high (white) 
pixel values and background by low (black) pixel values, we have negated the image. In 
morphological terms, the following image is said to be the complement of the image that was 
produced in the previous chapter:
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How to do it...
Erosion and dilation are implemented in OpenCV as simple functions which are cv::erode 
and cv::dilate. Their use is straightforward:

   // Read input image
   cv::Mat image= cv::imread("binary.bmp");

   // Erode the image
   cv::Mat eroded;  // the destination image
   cv::erode(image,eroded,cv::Mat());

   // Display the eroded image
   cv::namedWindow("Eroded Image");");
   cv::imshow("Eroded Image",eroded);

   // Dilate the image
   cv::Mat dilated;  // the destination image
   cv::dilate(image,dilated,cv::Mat());

   // Display the dilated image
   cv::namedWindow("Dilated Image");
   cv::imshow("Dilated Image",dilated);

The two images produced by these function calls are seen in the following screenshot. Erosion 
is shown first:
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Followed by the dilation result:

How it works...
As with all other morphological filters, the two filters of this recipe operate on the set of pixels 
(or neighborhood) around each pixel, as defined by the structuring element. Recall that when 
applied to a given pixel, the anchor point of the structuring element is aligned with this pixel 
location, and all pixels intersecting the structuring element are included in the current set. 
Erosion replaces the current pixel with the minimum pixel value found in the defined pixel set. 
Dilation is the complementary operator, and it replaces the current pixel with the maximum 
pixel value found in the defined pixel set. Since the input binary image contains only black (0) 
and white (255) pixels, each pixel is replaced by either a white or black pixel. 

A good way to picture the effect of these two operators is to think in terms of background 
(black) and foreground (white) objects. With erosion, if the structuring element when placed 
at a given pixel location touches the background (that is, one of the pixels in the intersecting 
set is black), then this pixel will be sent to background. While in the case of dilation, if the 
structuring element on a background pixel touches a foreground object, then this pixel will 
be assigned a white value. This explains why in the eroded image, the size of the objects has 
been reduced. Observe how some of the very small objects (that can be considered as "noisy" 
background pixels) have also been completely eliminated. Similarly, the dilated objects are 
now larger and some of the "holes" inside of them have been filled. 

By default, OpenCV uses a 3x3 square structuring element. This default structuring element 
is obtained when an empty matrix (that is cv::Mat()) is specified as the third argument in 
the function call, as it was done in the preceding example. You can also specify a structuring 
element of the size (and shape) you want by providing a matrix in which the non-zero element 
defines the structuring element. In the following example, a 7x7 structuring element is applied:
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    cv::Mat element(7,7,CV_8U,cv::Scalar(1));
   cv::erode(image,eroded,element);

The effect is obviously much more destructive in this case as seen here:

Another way to obtain the same result is to repetitively apply the same structuring element on 
an image. The two functions have an optional parameter to specify the number of repetitions:

   // Erode the image 3 times.
   cv::erode(image,eroded,cv::Mat(),cv::Point(-1,-1),3);

The origin argument cv::Point(-1,-1) means that the origin is at the center of the matrix 
(default), and it can be defined anywhere on the structuring element. The image obtained 
will be identical to the one we obtained with the 7x7 structuring element. Indeed, eroding an 
image twice is like eroding an image with a structuring element dilated with itself. This also 
applies to dilation.

Finally, since the notion of background/foreground is arbitrary, we can make the following 
observation (which is a fundamental property of the erosion/dilation operators). Eroding 
foreground objects with a structuring element can be seen as a dilation of the background 
part of the image. Or more formally:

ff The erosion of an image is equivalent to the complement of the dilation of the 
complement image.

ff The dilation of an image is equivalent to the complement of the erosion of the 
complement image.

There's more...
It is important to note that even if we applied our morphological filters on binary images here, 
these can also be applied on gray-level images with the same definitions.
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Also note that the OpenCV morphological functions support in-place processing. This means 
you can use the input image as the destination image. So you can write:

   cv::erode(image,image,cv::Mat());

OpenCV creates the required temporary image for you for this to work properly.

See also
The next recipe which applies erosion and dilation filters in cascade to produce new operators.

The Detecting edges and corners using morphological filters for the application of 
morphological filters on gray-level images.

Opening and closing images using 
morphological filters

The previous recipe introduced the two fundamental morphological operators: dilation and 
erosion. From these, other operators can be defined. The next two recipes will present some 
of them. The opening and closing operators are presented in this recipe. 

How to do it...
In order to apply higher-level morphological filters, you need to use the cv::morphologyEx 
function with the appropriate function code. For example, the following call will apply the 
closing operator:

   cv::Mat element5(5,5,CV_8U,cv::Scalar(1));
   cv::Mat closed;
   cv::morphologyEx(image,closed,cv::MORPH_CLOSE,element5);

Note that here we use a 5x5 structuring element to make the effect of the filter more 
apparent. If we input the binary image of the preceding recipe, we obtain:
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Similarly, applying the morphological opening operator will result in the following image:

This one being obtained from the following code:

   cv::Mat opened;
   cv::morphologyEx(image,opened,cv::MORPH_OPEN,element5);

How it works...
The opening and closing filters are simply defined in terms of the basic erosion and dilation 
operations:

ff Closing is defined as the erosion of the dilation of an image.

ff Opening is defined as the dilation of the erosion of an image.
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Consequently, one could compute the closing of an image using the following calls:

   // dilate original image
   cv::dilate(image,result,cv::Mat()); 
   // in-place erosion of the dilated image
   cv::erode(result,result,cv::Mat()); 

The opening would be obtained by inverting these two function calls.

While examining the result of the closing filter, it can be seen that the small holes of the white 
foreground objects have been filled. The filter also connects together several of the adjacent 
objects. Basically, any holes or gaps too small to completely contain the structuring element 
will be eliminated by the filter.

Reciprocally, the opening filter eliminated several of the small objects in the scene. All of the 
ones that were too small to contain the structuring element have been removed.

These filters are often used in object detection. The closing filter connects together objects 
erroneously fragmented into smaller pieces, while the opening filter removes the small 
blobs introduced by image noise. Therefore, it is advantageous to use them in sequence. If 
our test binary image is successively closed and opened, we obtain an image showing only 
the main objects in the scene, as shown below. You can also apply the opening filter before 
closing if you wish to prioritize noise filtering, but this can be at the price of eliminating 
some fragmented objects.

It should be noted that applying the same opening (and similarly the closing) operator on 
an image several times has no effect. Indeed, with the holes having been filled by the first 
opening, an additional application of this same filter will not produce any other changes to the 
image. In mathematical terms, these operators are said to be idempotent.
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Detecting edges and corners using 
morphological filters

Morphological filters can also be used to detect specific features in an image. In this recipe, 
we will learn how to detect lines and corners in a gray-level image. 

Getting started
In this recipe, the following image will be used:

How to do it...
Let's define a class named MorphoFeatures which will allow us to detect image features:

class MorphoFeatures {

  private:

     // threshold to produce binary image
     int threshold;
     // structuring elements used in corner detection
     cv::Mat cross;
     cv::Mat diamond;
     cv::Mat square;
     cv::Mat x;
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Detecting lines is quite easy using the appropriate filter of the cv::morphologyEx function:

cv::Mat getEdges(const cv::Mat &image) {

   // Get the gradient image
   cv::Mat result;
   cv::morphologyEx(image,result,
                         cv::MORPH_GRADIENT,cv::Mat());

   // Apply threshold to obtain a binary image
   applyThreshold(result);

   return result;
}

The binary edge image is obtained through a simple private method of the class:

void applyThreshold(cv::Mat& result) {
          

   // Apply threshold on result
   if (threshold>0)
      cv::threshold(result, result, 
                    threshold, 255, cv::THRESH_BINARY);
}

Using this class in a main function, you then obtain the edge image as follows:

// Create the morphological features instance
MorphoFeatures morpho;
morpho.setThreshold(40);

// Get the edges
cv::Mat edges;
edges= morpho.getEdges(image); 
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The result is the following image: 

The detection of corners using morphological corners is a bit more complex since it is not 
directly implemented in OpenCV. This is a good example of the use of non-square structuring 
elements. Indeed, it requires the definition of four different structuring elements shaped 
as a square, diamond, cross, and an X-shape. This is done in the constructor (all of these 
structuring elements having a fixed 5x5 dimension for simplicity):

MorphoFeatures() : threshold(-1), 
        cross(5,5,CV_8U,cv::Scalar(0)),
            diamond(5,5,CV_8U,cv::Scalar(1)), 
        square(5,5,CV_8U,cv::Scalar(1)),
        x(5,5,CV_8U,cv::Scalar(0)){
   

        

   // Creating the cross-shaped structuring element
   for (int i=0; i<5; i++) {
        

      cross.at<uchar>(2,i)= 1;
      cross.at<uchar>(i,2)= 1;                           
   }
        

   // Creating the diamond-shaped structuring element
   diamond.at<uchar>(0,0)= 0;
   diamond.at<uchar>(0,1)= 0;
   diamond.at<uchar>(1,0)= 0;
   diamond.at<uchar>(4,4)= 0;
   diamond.at<uchar>(3,4)= 0;
   diamond.at<uchar>(4,3)= 0;
   diamond.at<uchar>(4,0)= 0;
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   diamond.at<uchar>(4,1)= 0;
   diamond.at<uchar>(3,0)= 0;
   diamond.at<uchar>(0,4)= 0;
   diamond.at<uchar>(0,3)= 0;
   diamond.at<uchar>(1,4)= 0;
        

   // Creating the x-shaped structuring element
   for (int i=0; i<5; i++) {
        

     x.at<uchar>(i,i)= 1;
     x.at<uchar>(4-i,i)= 1;                           
   }     
}

In the detection of corner features, all of these structuring elements are applied in cascade to 
obtain the resulting corner map:

cv::Mat getCorners(const cv::Mat &image) {

   cv::Mat result;

   // Dilate with a cross   
   cv::dilate(image,result,cross);

   // Erode with a diamond
   cv::erode(result,result,diamond);

   cv::Mat result2;
   // Dilate with a X   
   cv::dilate(image,result2,x);

   // Erode with a square
   cv::erode(result2,result2,square);

   // Corners are obtained by differencing
   // the two closed images
   cv::absdiff(result2,result,result);

   // Apply threshold to obtain a binary image
   applyThreshold(result);

   return result;
}

In order to better visualize the result of the detection, the following method draws a circle on 
the image at each detected point on the binary map:

void drawOnImage(const cv::Mat& binary, 
                   cv::Mat& image) {
             

   cv::Mat_<uchar>::const_iterator it= 
                        binary.begin<uchar>();
   cv::Mat_<uchar>::const_iterator itend= 
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                        binary.end<uchar>();

   // for each pixel   
   for (int i=0; it!= itend; ++it,++i) {
      if (!*it)          
         cv::circle(image,
           cv::Point(i%image.step,i/image.step),
           5,cv::Scalar(255,0,0));
   }
}

Corners are then detected on an image by using the following code:

// Get the corners
cv::Mat corners;
corners= morpho.getCorners(image);

// Display the corner on the image
morpho.drawOnImage(corners,image);
cv::namedWindow("Corners on Image");
cv::imshow("Corners on Image",image);

The image of detected corners is then, as follows.
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How it works...
A good way to help understand the effect of morphological operators on a gray-level image is 
to consider an image as a topological relief in which gray-levels correspond to elevation (or 
altitude). Under this perspective, bright regions correspond to mountains, while the darker 
areas form the valleys of the terrain. Also, since edges correspond to a rapid transition 
between darker and brighter pixels, these can be pictured as abrupt cliffs. If an erosion 
operator is applied on such a terrain, the net result will be to replace each pixel by the lowest 
value in a certain neighborhood, thus reducing its height. As a result, cliffs will be "eroded" 
as the valleys expand. Dilation has the exact opposite effect, that is, cliffs will gain terrain 
over the valleys. However, in both cases, the plateaux (that is, area of constant intensity) will 
remain relatively unchanged. 

The above observations lead to a simple way of detecting the edges (or cliffs) of an image. 
This could be done by computing the difference between the dilated image and the eroded 
image. Since these two transformed images differ mostly at the edge locations, the image 
edges will be emphasized by the differentiation. This is exactly what the cv::morphologyEx 
function is doing when the cv::MORPH_GRADIENT argument is inputted. Obviously, the 
larger the structuring element is, the thicker the detected edges will be. This edge detection 
operator is also called the Beucher gradient (the next chapter will discuss the concept of 
image gradient in more detail). Note that similar results could also be obtained by simply 
subtracting the original image from the dilated one, or the eroded image from the original. The 
resulting edges would simply be thinner.

Corner detection is a bit more complex since it uses four different structuring elements. This 
operator is not implemented in OpenCV but we present it here to demonstrate how structuring 
elements of various shapes can be defined and combined. The idea is to close the image by 
dilating and eroding it with two different structuring elements. These elements are chosen 
such that they leave straight edges unchanged, but because of their respective effect, edges 
at corner points will be affected. Let's use the simple following image made of a single white 
square to better understand the effect of this asymmetrical closing operation:



Chapter 5

131

The first square is the original image. When dilated with a cross-shaped structuring element, 
the square edges are expanded, except at the corner points where the cross shape does 
not hit the square. This is the result illustrated by the middle square. This dilated image is 
then eroded by a structuring element that, this time, has a diamond shape. This erosion 
brings back most edges at their original position, but pushes the corners even further since 
they were not dilated. The left square is then obtained, which, as it can be seen, has lost 
its sharp corners. The same procedure is repeated with an X-shaped and a square-shaped 
structuring element. These two elements are the rotated version of the previous ones and 
will consequently capture the corners at a 45-degree orientation. Finally, differencing the two 
results will extract the corner features.

See also
The article, Morphological gradients by J.-F. Rivest, P. Soille, S. Beucher, ISET's symposium 
on electronic imaging science and technology, SPIE, Feb. 1992, for more on morphological 
gradient.

The article A modified regulated morphological corner detector by F.Y. Shih, C.-F. Chuang, V. 
Gaddipati, Pattern Recognition Letters, volume 26, issue 7, May 2005, for more information 
on morphological corner detection. 

Segmenting images using watersheds
The watershed transformation is a popular image processing algorithm that is used to 
quickly segment an image into homogenous regions. It relies on the idea that when the 
image is seen as a topological relief, homogeneous regions correspond to relatively flat 
basins delimitated by steep edges. As a result of its simplicity, the original version of this 
algorithm tends to over-segment the image which produces multiple small regions. This 
is why OpenCV proposes a variant of this algorithm that uses a set of predefined markers 
which guide the definition of the image segments.

How to do it...
The watershed segmentation is obtained through the use of the cv::watershed function. 
The input to this function is a 32-bit signed integer marker image in which each non-zero pixel 
represents a label. The idea is to mark some pixels of the image that are known to certainly 
belong to a given region. From this initial labeling, the watershed algorithm will determine 
the regions to which the other pixels belong. In this recipe, we will first create the marker 
image as a gray-level image, and then convert it into an image of integers. We conveniently 
encapsulated this step into a WatershedSegmenter class:

class WatershedSegmenter {

  private:
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     cv::Mat markers;

  public:

     void setMarkers(const cv::Mat& markerImage) {

      // Convert to image of ints
      markerImage.convertTo(markers,CV_32S);
     }

     cv::Mat process(const cv::Mat &image) {

      // Apply watershed
      cv::watershed(image,markers);

      return markers;
     }

The way these markers are obtained depends on the application. For example, some 
preprocessing steps might have resulted in the identification of some pixels belonging to an 
object of interest. The watershed would then be used to delimitate the complete object from 
that initial detection. In this recipe, we will simply use the binary image used throughout this 
chapter in order to identify the animals of the corresponding original image (this is the image 
shown at the beginning of Chapter 4).

Therefore, from our binary image, we need to identify pixels that certainly belong to the 
foreground (the animals) and pixels that certainly belong to the background (mainly the 
grass). Here, we will mark foreground pixels with label 255 and background pixels with label 
128 (this choice is totally arbitrary, any label number other than 255 would work). The other 
pixels, that is the ones for which the labeling is unknown, are assigned value 0. As it is now, 
the binary image includes too many white pixels belonging to various parts of the image. We 
will then severely erode this image in order to retain only pixels belonging to the important 
objects:

   // Eliminate noise and smaller objects
   cv::Mat fg;
   cv::erode(binary,fg,cv::Mat(),cv::Point(-1,-1),6);
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The result is the following image:

Note that a few pixels belonging to the background forest are still present. Let's simply keep 
them. Therefore, they will be considered to correspond to an object of interest. Similarly, we 
also select a few pixels of the background by a large dilation of the original binary image:

   // Identify image pixels without objects
   cv::Mat bg;
   cv::dilate(binary,bg,cv::Mat(),cv::Point(-1,-1),6);
   cv::threshold(bg,bg,1,128,cv::THRESH_BINARY_INV);

The resulting black pixels correspond to background pixels. This is why the thresholding 
operation immediately after the dilation assigns to these pixels the value 128. The following 
image is then obtained:
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These images are combined to form the marker image:

   // Create markers image
   cv::Mat markers(binary.size(),CV_8U,cv::Scalar(0));
   markers= fg+bg;

Note how we used the overloaded operator+ here in order to combine the images. This is 
the image that will be used as input to the watershed algorithm:

The segmentation is then obtained as follows:

   // Create watershed segmentation object
   WatershedSegmenter segmenter;

   // Set markers and process
   segmenter.setMarkers(markers);
   segmenter.process(image);

The marker image is then updated such that each zero pixel is assigned one of the input 
labels, while the pixels belonging to the found boundaries have value -1. The resulting image 
of labels is then:
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The boundary image is:

How it works...
As we did in the preceding recipe, we will use the topological map analogy in the description 
of the watershed algorithm. In order to create a watershed segmentation, the idea is to 
progressively flood the image starting at level 0. As the level of "water" progressively increases 
(to levels 1, 2, 3, and so on), catchment basins are formed. The size of these basins also 
gradually increase and, consequently, the water of two different basins will eventually merge. 
When this happens, a watershed is created in order to keep the two basins separated. 
Once the level of water has reached its maximal level, the sets of these created basins and 
watersheds form the watershed segmentation. 
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As one can expect, the flooding process initially creates many small individual basins. When 
all of these are merged, many watershed lines are created which results in an over-segmented 
image. To overcome this problem, a modification to this algorithm has been proposed in which 
the flooding process starts from a predefined set of marked pixels. The basins created from 
these markers are labeled in accordance with the values assigned to the initial marks. When 
two basins having the same label merge, no watersheds are created, thus preventing the over-
segmentation.

This is what happens when the cv::watershed function is called. The input marker image 
is updated to produce the final watershed segmentation. Users can input a marker image 
with any number of labels with pixels of unknown labeling left to value 0. The marker image 
has been chosen to be an image of a 32-bit signed integer in order to be able to define more 
than 255 labels. It also allows the special value -1, to be assigned to pixels associated with 
a watershed. This is what is returned by the cv::watershed function. To facilitate the 
displaying of the result, we have introduced two special methods. The first one returns an 
image of the labels (with watersheds at value 0). This is easily done through thresholding:

     // Return result in the form of an image
     cv::Mat getSegmentation() {
        

      cv::Mat tmp;
      // all segment with label higher than 255
      // will be assigned value 255
      markers.convertTo(tmp,CV_8U);

      return tmp;
     }

Similarly, the second method returns an image in which the watershed lines are assigned 
value 0, and the rest of the image is at 255. This time, the cv::convertTo method is used 
to achieve this result:

     // Return watershed in the form of an image
     cv::Mat getWatersheds() {
   

      cv::Mat tmp;
      // Each pixel p is transformed into
      // 255p+255 before conversion
      markers.convertTo(tmp,CV_8U,255,255);

      return tmp;
     }

The linear transformation that is applied before the conversion allows -1 pixels to be 
converted into 0 (since -1*255+255=0). 

Pixels with a value greater than 255 are assigned the value 255. This is due to the saturation 
operation that is applied when  signed integers are converted into unsigned chars.
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See also
The article The viscous watershed transform by C. Vachier, F. Meyer, Journal of Mathematical 
Imaging and Vision, volume 22, issue 2-3, May 2005, for more information on the watershed 
transform.

The next recipe which presents another image segmentation algorithm that can also segment 
an image into background and foreground objects. 

Extracting foreground objects with 
the GrabCut algorithm

OpenCV proposes an implementation of another popular algorithm for image segmentation: 
the GrabCut algorithm. This algorithm is not based on mathematical morphology, but we 
present it here since it shows some similarities in its use with the watershed segmentation 
algorithm presented in the preceding recipe. GrabCut is computationally more expensive than 
watershed, but it generally produces a more accurate result. It is the best algorithm to use 
when one wants to extract a foreground object in a still image (for example, to cut and paste 
an object from one picture to another).

How to do it...
The cv::grabCut function is easy to use. You just need to input an image and label some of 
its pixels as belonging to the background or to the foreground. Based on this partial labeling, the 
algorithm will then determine a foreground/background segmentation for the complete image. 

One way of specifying a partial foreground/background labeling for an input image is by 
defining a rectangle inside which the foreground object is included:

   // Open image
   image= cv::imread("../group.jpg");

   // define bounding rectangle
   // the pixels outside this rectangle
   // will be labeled as background 
   cv::Rect rectangle(10,100,380,180);

All pixels outside of this rectangle will then be marked as background. In addition to the input 
image and its segmentation image, calling the cv::grabCut function requires the definition 
of two matrices which will contain the models built by the algorithm:

   cv::Mat result; // segmentation (4 possible values)
   cv::Mat bgModel,fgModel; // the models (internally used)
   // GrabCut segmentation
   cv::grabCut(image,    // input image

www.allitebooks.com
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            result,      // segmentation result
            rectangle,   // rectangle containing foreground 
            bgModel,fgModel, // models
            5,           // number of iterations
            cv::GC_INIT_WITH_RECT); // use rectangle

Note how we specified that we are using the bounding rectangle mode using the cv::GC_
INIT_WITH_RECT flag as the last argument of the function (the next section will discuss the 
other available mode). The input/output segmentation image can have one of the four values: 

ff cv::GC_BGD, for pixels certainly belonging to the background (for example, pixels 
outside the rectangle in our example)

ff cv::GC_FGD, for pixels certainly belonging to the foreground (none in our example)

ff cv::GC_PR_BGD, for pixels probably belonging to the background

ff cv::GC_PR_FGD for pixels probably belonging to the foreground (that is the initial 
value for the pixels inside the rectangle in our example).

We get a binary image of the segmentation by extracting the pixels having a value equal to 
cv::GC_PR_FGD:

   // Get the pixels marked as likely foreground
   cv::compare(result,cv::GC_PR_FGD,result,cv::CMP_EQ);
   // Generate output image
   cv::Mat foreground(image.size(),CV_8UC3,
                      cv::Scalar(255,255,255));
   image.copyTo(foreground,// bg pixels are not copied
                result);   

To extract all foreground pixels, that is, with values equal to cv::GC_PR_FGD or cv::GC_
FGD, it is possible to simply check the value of the first bit:

   // checking first bit with bitwise-and
   result= result&1; // will be 1 if FG 

This is possible because these constants are defined as values 1 and 3, while the other 
two are defined as 0 and 2. In our example, the same result is obtained because the 
segmentation image does not contain cv::GC_FGD pixels (only cv::GC_BGD pixels have 
been inputted).

Finally, we obtain an image of the foreground objects (over a white background) by the 
following copy operation with mask:

   // Generate output image
   cv::Mat foreground(image.size(),CV_8UC3,
             cv::Scalar(255,255,255)); // all white image
   image.copyTo(foreground,result); // bg pixels not copied
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The resulting image is then:

How it works...
In the preceding example, the GrabCut algorithm was able to extract the foreground objects 
by simply specifying a rectangle inside which these objects (the four animals) were contained. 
Alternatively, one could also assign values cv::GC_BGD and cv::GC_FGD to some specific 
pixels of the segmentation image provided as the second argument of the cv::grabCut 
function. You would then specify GC_INIT_WITH_MASK as the input mode flag. These input 
labels could be obtained, for example, by asking a user to interactively mark a few elements of 
the image. It is also possible to combine these two input modes.

Using this input information, the GrabCut creates the background/foreground segmentation 
by proceeding as follows. Initially, a foreground label (cv::GC_PR_FGD) is tentatively assigned 
to all unmarked pixels. Based on the current classification, the algorithm groups the pixels into 
clusters of similar colors (that is K clusters for the background and K clusters for the foreground). 
The next step is to determine a background/foreground segmentation by introducing boundaries 
between foreground and background pixels. This is done through an optimization process that 
tries to connect pixels with similar labels, and that imposes a penalty for placing a boundary in 
regions of relatively uniform intensity. This optimization problem is efficiently solved using the 
Graph Cuts algorithm, a method that can find the optimal solution of a problem by representing 
it as a connected graph on which cuts are applied in order to compose an optimal configuration. 
The obtained segmentation produces new labels for the pixels. The clustering process can then 
be repeated and a new optimal segmentation is found again, and so on. Therefore, the GrabCut 
is an iterative procedure which gradually improves the segmentation result. Depending on the 
complexity of the scene, a good solution can be found in more or less iterations (in easy cases, 
one iteration can be enough!). 
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This explains the previous last argument of the function where the user can specify the 
number of iterations to apply. The two internal models maintained by the algorithm are 
passed as argument of the function (and returned) such that it is possible to call the function 
with the models of the last run again if one wishes to improve the segmentation result by 
performing additional iterations. 

See also
The article by C. Rother, V. Kolmogorov and A. Blake, GrabCut: Interactive Foreground 
Extraction using Iterated Graph Cuts in ACM Transactions on Graphics (SIGGRAPH) volume 
23, issue 3, August 2004, that describes in detail the GrabCut algorithm.



6
Filtering the Images

In this chapter, we will cover:

ff Filtering images using low-pass filters

ff Filtering images using a median filter

ff Applying directional filters to detect edges

ff Computing the Laplacian of an image

Introduction
Filtering is one of the fundamental tasks in signal and image processing. It is a process aimed 
at selectively extracting certain aspects of an image that are considered to convey important 
information in the context of a given application. Filtering removes noise in images, extracts 
interesting visual features, allows image resampling, and so on. It finds its roots in the 
general Signals and Systems theory. We will not cover this theory in details here. However, 
this chapter will present some of the important concepts related to filtering and will show 
how filters can be used in image processing applications. But first, let's begin with a brief 
explanation of the concept of frequency domain analysis. 

When we look at an image, we observe how the different gray-level (or colors) are distributed 
over the image. Images differ from each others because they have a different gray-level 
distribution. But there exists another point of view under which an image can be analyzed. We 
can look at the gray-level variations that are present in an image. Some images contain large 
areas of almost constant intensity (for example, a blue sky) while in other images, the gray-
level intensities vary rapidly over the image (for example, a busy scene crowded with many 
small objects). Therefore, observing the frequency of those variations in an image constitutes 
another way of characterizing an image. This point of view is referred to as the frequency 
domain, while characterizing an image by observing its gray-level distribution is referred to as 
the spatial domain. 
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The frequency domain analysis decomposes an image into its frequency content from the lowest 
to the highest frequencies. Low frequency corresponds to areas where the image intensities 
vary slowly, while high frequencies are generated by rapid changes in intensities. Several well-
known transformations exist, such as the Fourier transform or the Cosine transform, which can 
be used to explicitly show the frequency content of an image. Note that since an image is a 
two-dimensional entity, it is made of both vertical frequencies (that is variations in the vertical 
directions) and horizontal frequencies (variations in the horizontal directions).

Under the frequency domain analysis framework, a filter is an operation that amplifies certain 
bands of frequencies of an image while blocking (or reducing) other image frequency bands. 
A low-pass filter is therefore a filter which eliminates the high-frequency components of an 
image and reciprocally, a high-pass filter eliminates the low-pass components. This chapter 
will present some filters that are frequently used in image processing and will explain their 
effect when applied on an image.

Filtering images using low-pass filters
In this first recipe, we will present some very basic low-pass filters. In the introductory section 
of this chapter, we learned that the objective of such filters is to reduce the amplitude of the 
image variations. One simple way to achieve this goal is to replace each pixel by the average 
value of the pixels around. By doing this, the rapid intensity variations will be smoothed out 
and thus replaced by a more gradual transition. 

How to do it...
The objective of the cv::blur function is to smooth an image by replacing each pixel by the 
average pixel value computed over a rectangular neighborhood. This low-pass filter is applied 
as follows:

   cv::blur(image,result,cv::Size(5,5));

This kind of filter is also called a box filter. Here, we applied it by using a 5x5 filter in order to 
make the filter's effect more visible. When this is applied on the following image:
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The result is:

In some cases, it might be desirable to give more importance to the closer pixels in the 
neighborhood of a pixel. It is therefore possible to compute a weighted average in which 
nearby pixels are assigned a larger weight than ones further away. This can be achieved by 
using a weighted scheme that follows a Gaussian function (a "bell-shaped" function). The 
cv::GaussianBlur function applies such a filter and it is called as follows:

   cv::GaussianBlur(image,result,cv::Size(5,5),1.5);
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The result is then seen in the following image:

How it works...
A filter is said to be linear if its application corresponds to replacing a pixel by a weighted sum 
of neighboring pixels. This is the case of the box filter in which a pixel is replaced by the sum 
of all pixels in a rectangular neighborhood and divided by the size of this neighborhood (to get 
the average value). This is like multiplying each neighboring pixel by 1 over the total number 
of pixels and summing all of these values. The different weights of a filter can be represented 
using a matrix that shows the multiplying factors associated with each pixel position in the 
considered neighborhood. The central element of the matrix corresponding to the pixel on 
which the filter is currently applied. Such a matrix is sometimes called a kernel or a mask.  
For a 3x3 box filter, the corresponding kernel would be:

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

Applying a linear filter then corresponds to moving a kernel over each pixel of an image and 
multiplying each corresponding pixel by its associated weight. Mathematically, this operation 
is called a convolution. 

Looking at the output images produced in this recipe, it can be observed that the net effect 
of a low-pass filter is to blur or smooth the image. This is not surprising since this filter 
attenuates the high-frequency components that correspond to the rapid variations visible on 
an object's edge.
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In the case of a Gaussian filter, the weight associated with a pixel is proportional to its 
distance from the central pixel. Recall that the 1D Gaussian function has the following form:

The normalizing coefficient A is chosen such that the different weights sum to one. The σ 
(sigma) value controls the width of the resulting Gaussian function. The greater this value is, 
the flatter the function will be. For example, if we compute the coefficients of the 1D Gaussian 
filter for the interval [-4,…,0,…4] with σ=0.5, we obtain:

[0.0 0.0 0.00026 0.10645 0.78657 0.10645 0.00026 0.0 0.0]

While for σ=1.5 these coefficients are:

[0.00761 0.036075 0.10959 0.21345 0.26666 
 0.21345 0.10959 0.03608 0.00761 ]

Note that these values were obtained by calling the cv::getGaussianKernel function with 
the appropriate σ value:

cv::Mat gauss= cv::getGaussianKernel(9,sigma,CV_32F);

To apply a 2D Gaussian filter on an image, one can simply apply a 1D Gaussian filter on the 
image lines first (which will filter the horizontal frequencies) followed by the application of the 
same 1D Gaussian filter on the image columns (to filter the vertical frequencies). This is possible 
because the Gaussian filter is a separable filter (that is, the 2D kernel can be decomposed into 
two 1D filters). The function cv::sepFilter2D can be used to apply a general separable filter. 
It is also possible to directly apply a 2D kernel using cv::filter2D function.

With OpenCV, the Gaussian filter to be applied on an image is specified by providing to 
cv::GaussianBlur both the number of coefficients (third parameter, an odd number) 
and the value of σ (fourth parameter). You can also simply set the value of σ and let OpenCV 
determine the appropriate number of coefficients (you then input a value of 0 for the filter 
size). The opposite is also possible, where you input a size and a value of 0 for σ. The σ value 
that best fits the given size will be determined. However, it recommended that you input both 
values for a better control of the filter effect.

There's more...
Low-pass filters are also used when an image is resized. Suppose you want to reduce the size 
of an image by a factor of 2. You might think that this can simply be done by eliminating the 
even columns and rows of the image. Unfortunately, the resulting image will not look very nice. 
For example, an oblique edge in the original image will appear as a staircase on the reduced 
image. Other jagged distortions will also be visible on curves and textured parts of the image. 
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These undesirable artifacts are caused by a phenomenon called spatial aliasing that occurs 
when you try to include high-frequency components in an image that is too small to contain 
them. Indeed, smaller images (that is, images with fewer pixels) cannot represent fine textures 
and sharp edges as nicely as the higher resolution images (think of the difference between 
high-definition TV versus conventional TV). Since fine details in an image correspond to high 
frequencies, we'll need to remove those higher frequency components in an image before 
reducing its size. We learned in this recipe that this can be done through a low-pass filter. 
Consequently, to reduce the size of an image by half without adding annoying artifacts, you 
must first apply a low-pass filter to the original image and then throw away one column and 
row over two. This is exactly what the cv::pyrDown function does:

cv::Mat reducedImage;  // to contain reduced image
cv::pyrDown(image,reducedImage); // reduce image size by half

This one uses a 5x5 Gaussian filter to low-pass the image. The reciprocal cv::pyrUp function 
that doubles the size of an image also exists. Of course, if you downsize an image and then 
upsize it, you will not recover the exact original image. What was lost during the downsizing 
process cannot be recovered. These two functions are used to create image pyramids. This is 
a data structure made of stacked versions of an image at different sizes (often each level is 
half the size of the previous level) that is often built for efficient image analysis. For example, 
if one wishes to detect an object in an image, the detection can be first accomplished on 
the small image at the top of the pyramid, and as you locate the object of interest, you can 
refine the search by moving to the lower levels of the pyramid containing the higher resolution 
versions of the image.

Note that there is also a more general cv:resize function that allows you to specify the 
size you want for the resulting image. You simply call it by specifying a new size that could be 
smaller or larger than the original image:

cv::Mat resizedImage;  // to contain resized image
cv::resize(image,resizedImage,
    cv::Size(image.cols/3,image.rows/3)); // 1/3 resizing

Other options are available to specify resizing in terms of scale factors, or to select a 
particular interpolation method to be used in the resampling process.

See also
The function cv::boxFilter filters an image with a square kernel made of 1s only. It is 
similar to the mean filter but without dividing the result by the number of coefficients.

The There's more… section of the Scanning an image with neighbor Access in Chapter 2 that 
introduces the cv::filter2D function. This function lets you apply a linear filter to an image 
by inputting the kernel of your choice.
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Filtering images using a median filter
The first recipe of this chapter introduced the concept of linear filters. Non-linear filters also 
exist that can be advantageously used in image processing. One such filter is the median filter 
that we present in this recipe. 

Since median filters are particularly useful to combat salt-and-pepper noise, we will use the 
image we created in the first recipe of Chapter 2 and that is reproduced here:

How to do it...
The call to the median filtering function is done in a way similar to the other filters:

   cv::medianBlur(image,result,5);

The resulting image is then as follows:
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How it works...
Since the median filter is not a linear filter, it cannot be represented by a kernel matrix. 
However, it also operates on a pixel's neighborhood in order to determine the output pixel 
value. The pixel and its neighborhood form a set of values and, as the name suggests, the 
median filter will simply compute the median value of this set, and the current pixel is then 
replaced by this median value. 

This explains why the filter is so efficient in eliminating of the salt-and-pepper noise. Indeed, 
when an outlier black or white pixel is present in a given pixel neighborhood, it is never 
selected as the median value (being rather maximal or minimal value) so it is always replaced 
by a neighboring value. In contrast, a simple mean filter would be greatly affected by such 
noise as it can be observed in the following image that represents the mean filtered version of 
our salt-and-pepper image:

Clearly, the noisy pixels shifted the mean value of neighboring pixels. As a result, the noise is 
still visible even if it has been blurred by the mean filter. 

The median filter also has the advantage of preserving the sharpness of the edges. However, 
it washes out the textures in uniform regions (for example, the trees in the background).

Applying directional filters to detect edges
The first recipe of this chapter introduced the idea of linear filtering using kernel matrices. The 
filters used had the effect of blurring an image by removing or attenuating its high-frequency 
components. In this recipe, we will perform the opposite transformation that is amplifying 
the high-frequency content of an image. As a result, the high-pass filters introduced here will 
perform edge detection. 
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How to do it...
The filter we will use here is called the Sobel filter. It is said to be a directional filter because 
it only affects the vertical or the horizontal image frequencies depending on which kernel of 
the filter is used. OpenCV has a function that applies the Sobel operator on an image. The 
horizontal filter is called as follows:

   cv::Sobel(image,sobelX,CV_8U,1,0,3,0.4,128);

While vertical filtering is achieved by the following (and very similar) call:

   cv::Sobel(image,sobelY,CV_8U,0,1,3,0.4,128);

Several integer parameters are provided to the function and these will be explained in the 
next section. Simply note that these have been chosen to produce an 8-bit image (CV_8U) 
representation of the output.

The result of the horizontal Sobel operator is as follows:
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In this representation, a zero value corresponds to gray-level 128. Negative values are 
represented by darker pixels, while positive values are represented by brighter pixels. The 
vertical Sobel image is:

If you are familiar with photo-editing software, the preceding images may remind you of  the 
image emboss effect, and indeed this image transformation is generally based on the use of 
directional filters. 

Since its kernel contains positive and negative values, the result of the Sobel filter is generally 
computed in a 16-bit signed integer image (CV_16S). The two results (vertical and horizontal) 
are then combined to obtain the norm of the Sobel filter:

   // Compute norm of Sobel
   cv::Sobel(image,sobelX,CV_16S,1,0);
   cv::Sobel(image,sobelY,CV_16S,0,1);
   cv::Mat sobel;
   //compute the L1 norm
   sobel= abs(sobelX)+abs(sobelY);

The Sobel norm can be conveniently displayed in an image using the optional rescaling 
parameter of the convertTo method in order to obtain an image in which zero values 
correspond to white, and higher values are assigned darker gray shades:

   // Find Sobel max value
   double sobmin, sobmax;
   cv::minMaxLoc(sobel,&sobmin,&sobmax);
   // Conversion to 8-bit image
   // sobelImage = -alpha*sobel + 255
   cv::Mat sobelImage;
   sobel.convertTo(sobelImage,CV_8U,-255./sobmax,255);
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The result can be seen in the following image:

Looking at this image, it is now clear why this kind of operators are called edge detector. It 
is then possible to threshold this image in order to obtain a binary map showing the image 
contour. The following snippet creates the following image:

   cv::threshold(sobelImage, sobelThresholded, 
                      threshold, 255, cv::THRESH_BINARY);
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How it works...
The Sobel operator is a classic edge detection linear filter that is based on a simple 3x3 kernel 
which has the following structure:

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

If we view the image as a two-dimensional function, the Sobel operator can then be seen 
as a measure of the variation of the image in the vertical and horizontal directions. In 
mathematical terms, this measure is called a gradient and it is defined as a 2D vector made 
of the function's first derivatives in two orthogonal directions:

Therefore, the  Sobel operator gives an approximation of the image gradient by differencing 
pixels in the horizontal and in the vertical directions. It operates on a small window around the 
pixel of interest in order to reduce the influence of noise. The cv::Sobel function computes 
the result of the convolution of the image with a Sobel kernel. Its complete specification is as 
follows:

   cv::Sobel(image,  // input
             sobel,  // output
             image_depth,   // image type
             xorder,yorder, // kernel specification
             kernel_size,   // size of the square kernel 
             alpha, beta);  // scale and offset

You therefore decide whether you wish to have the result written in an unsigned char, a signed 
integer, or a floating point image. Of course, if the result falls outside of the domain of the 
image pixel, saturation will be applied. This is where the last two parameters can be useful. 
Before storing the result in the image, the result can be scaled (multiplied) by alpha and 
an offset beta can be added. This is how we generated, in the previous section, an image 
for which the Sobel value 0 was represented by the mid-gray level 128. Each Sobel mask 
corresponds to a derivative in one direction. Therefore, two parameters are used to specify 
the kernel that will be applied, the order of the derivative in the x and the y directions. 
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For instance, the horizontal Sobel kernel is obtained by specifying 1 and 0 for the x-order and 
y-order, and the vertical kernel will be generated with 0 and 1. Other combinations are also 
possible, but these two are the ones that will be used most often (the case of second-order 
derivative is discussed in the next recipe). Finally, it is also possible to use kernels of size 
larger than 3x3. Values 1, 3, 5, and 7 are possible choices for the kernel size. A kernel of size 
1 corresponds to a 1D Sobel filter (1x3 or 3x1).

Since the gradient is a 2D vector, it has a norm and a direction. The norm of the gradient 
vector tells you what the amplitude of the variation is and it is normally computed as a 
Euclidean norm (also called L2 norm):

However, in image processing, we generally compute this norm as the sum of the absolute 
values. This is called the L1 norm and it gives values close to the L2 norm but at a much lower 
computational cost. This is what we did in this recipe, that is:

   //compute the L1 norm
   sobel= abs(sobelX)+abs(sobelY);

The gradient vector always points in the direction of the steepest variation. For an image, this 
means that the gradient direction will be orthogonal to the edge, pointing in the darker to 
brighter direction. Gradient angular direction is given by:

Most often, for edge detection, only the norm is computed. But if you require both the norm 
and the direction, then the following OpenCV function can be used:

   // Sobel must be computed in floating points
   cv::Sobel(image,sobelX,CV_32F,1,0);
   cv::Sobel(image,sobelY,CV_32F,0,1);
   // Compute the L2 norm and direction of the gradient
   cv::Mat norm, dir;   
   cv::cartToPolar(sobelX,sobelY,norm,dir);

By default, the direction is computed in radians. Just add true as an additional argument in 
order to have them computed in degrees.
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A binary edge map has been obtained by applying a threshold on the gradient magnitude. 
Choosing the right threshold is not an obvious task. If the threshold value is too low, too many 
(thick) edges will be retained, while if we select a more severe (higher) threshold, then broken 
edges will be obtained. As an illustration of this tradeoff situation, compare the preceding 
binary edge map with the following, obtained using a higher threshold value:

One possible alternative is to use the concept of hysteresis thresholding. This will be explained 
in the next chapter where we introduce the Canny operator.

There's more...
Other gradient operators also exists. For example, the Prewitt operator defines the following 
kernels:

-1 0 1
-1 0 1
-1 0 1

-1 -1 -1
0 0 0
1 1 1
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The Roberts operator is based on these simple 2x2 kernels:

1 0
0 -1

0 1
-1 0

The Scharr operator is preferred when more accurate estimates of the gradient orientation is 
required:

 -3 0  3
-10 0 10
 -3 0  3

-3 -10 -3
0  0 0
3 10 3

Note that it is possible to use the Scharr kernels with the cv::Sobel function by calling it 
with the CV_SCHARR argument:

   cv::Sobel(image,sobelX,CV_16S,1,0, CV_SCHARR);

or, equivalently, by calling the function cv::Scharr:

   cv::Scharr(image,scharrX,CV_16S,1,0,3);

All of these directional filters try to estimate the first-order derivative of the image function. 
Therefore, high values are obtained at areas where large intensity variations in the filter 
direction are present, while flat areas produce low values. This is why filters that compute 
image derivatives are high-pass filters.

See also
The recipe Detecting edges using the Canny operator in Chapter 7 where a binary edge map 
is obtained by using two different threshold values.
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Computing the Laplacian of an image
The Laplacian is another high-pass linear filter that is based on the computation of the image 
derivatives. As it will be explained, it computes second-order derivatives to measure the 
curvature of the image function. 

How to do it...
The OpenCV function cv::Laplacian computes the Laplacian of an image. It is very similar 
to the cv::Sobel function. In fact, it uses the same basic function cv::getDerivKernels 
in order to obtain its kernel matrix. The only difference is that there is no derivative order 
parameters since these ones are by definition second order derivatives. 

For this operator, we will create a simple class that will encapsulate some useful operations 
related to the Laplacian. The basic methods are:

class LaplacianZC {

  private:

     // original image
     cv::Mat img;

     // 32-bit float image containing the Laplacian
     cv::Mat laplace;
     // Aperture size of the laplacian kernel
     int aperture;

  public:

     LaplacianZC() : aperture(3) {}

     // Set the aperture size of the kernel
     void setAperture(int a) {

        aperture= a;
     }

     // Compute the floating point Laplacian
     cv::Mat computeLaplacian(const cv::Mat& image) {

        // Compute Laplacian
        cv::Laplacian(image,laplace,CV_32F,aperture);

        // Keep local copy of the image
        // (used for zero-crossings)
        img= image.clone();

        return laplace;
     }
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The computation of the Laplacian is done here on a floating point image. To get an image of 
the result, we perform a rescaling as in the previous recipe. This rescaling is based on the 
Laplacian maximum absolute value, where value 0 is assigned gray-level 128. A method of 
our class allows this image representation to be obtained:

     // Get the Laplacian result in 8-bit image 
     // zero corresponds to gray level 128
     // if no scale is provided, then the max value will be
     // scaled to intensity 255
     // You must call computeLaplacian before calling this
     cv::Mat getLaplacianImage(double scale=-1.0) {

        if (scale<0) {
   

           double lapmin, lapmax;
           cv::minMaxLoc(laplace,&lapmin,&lapmax);

           scale= 127/ std::max(-lapmin,lapmax);
        }

        cv::Mat laplaceImage;
        laplace.convertTo(laplaceImage,CV_8U,scale,128);

        return laplaceImage;
     }

Using this class, the Laplacian image computed from a 7x7 kernel is obtained as follows:

   // Compute Laplacian using LaplacianZC class
   LaplacianZC laplacian;
   laplacian.setAperture(7);
   cv::Mat flap= laplacian.computeLaplacian(image);
   laplace= laplacian.getLaplacianImage();
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The resulting image is as follows:

How it works...
Formally, the Laplacian of a 2D function is defined as the sum of its second derivatives:

In its simplest form, it can be approximated by the following 3x3 kernel:

 0   1  0 
 1  -4  1 
0  1  0 

As for the Sobel operator, it is also possible to compute the Laplacian using larger kernels, 
and since this operator is even more sensitive to image noise, it is desirable to do so (unless 
computational efficiency is a concern). Note that the kernel values of the Laplacian always 
sum to 0. This guarantees that the Laplacian will be zero in areas of constant intensities. 
Indeed, since the Laplacian measures the curvature of the image function, it should be equal 
to 0 on flat areas.



Chapter 6

159

At first glance, the effect of the Laplacian might be difficult to interpret. From the definition 
of the kernel, it is clear that any isolated pixel value (that is a value very different from its 
neighbors) will be amplified by the operator. This is a consequence of the operator's high 
sensitivity to noise. But it is more interesting to look at the Laplacian values around an 
image edge. The presence of an edge in an image is the result of a rapid transition between 
areas of different gray-level intensities. Following the evolution of the image function along 
an edge (for example, caused by a transition from dark to bright), one can observe that the 
gray-level ascension necessarily implies a gradual transition from a positive curvature (when 
the intensity values start to rise) to a negative curvature (when the intensity is about to reach 
its high plateau). Consequently, a transition between a positive and a negative Laplacian 
value (or reciprocally) constitutes a good indicator of the presence of an edge. Another way 
to express this fact is to say that edges will be located at the zero-crossings of the Laplacian 
function. We will illustrate this idea by looking at the values of a Laplacian in a small window 
of our test image. We select one that corresponds to an edge created by the bottom part of 
the roof of one of the castle's tower. A white box has been drawn in the following image to 
show the exact location of this region of interest:
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Now looking at the Laplacian values (7x7 kernel) inside this window, we have:

If, as illustrated, you carefully follow the zero-crossings of the Laplacian (located between 
pixels of different signs), you obtain a curve which corresponds to the edge visible in the 
image window. Above, we drew dotted lines along the zero-crossings corresponding to the 
edge of the tower visible in the selected image window. This implies that, in principle, you can 
even detect the image edges at sub-pixel accuracy.

Following the zero-crossing curves in a Laplacian image is a delicate task. However, a 
simplified algorithm can be used to detect the approximate zero-crossing locations. This one 
proceeds as follows. Scan the Laplacian image and compare the current pixel with the one at 
its left. If the two pixels are of different signs, then declare a zero-crossing at the current pixel, 
if not, repeat the same test with the pixel immediately above. This algorithm is implemented 
by the following method which generates a binary image of zero-crossings:

     // Get a binary image of the zero-crossings
     // if the product of the two adjascent pixels is
     // less than threshold then this zero-crossing 
     // will be ignored
     cv::Mat getZeroCrossings(float threshold=1.0) {

        // Create the iterators
        cv::Mat_<float>::const_iterator it= 
           laplace.begin<float>()+laplace.step1();
        cv::Mat_<float>::const_iterator itend= 
           laplace.end<float>();
        cv::Mat_<float>::const_iterator itup= 
           laplace.begin<float>();

        // Binary image initialize to white
        cv::Mat binary(laplace.size(),CV_8U,cv::Scalar(255));
        cv::Mat_<uchar>::iterator itout= 
           binary.begin<uchar>()+binary.step1();
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        // negate the input threshold value
        threshold *= -1.0;

        for ( ; it!= itend; ++it, ++itup, ++itout) {

           // if the product of two adjascent pixel is
           // negative then there is a sign change
           if (*it * *(it-1) < threshold)
              *itout= 0; // horizontal zero-crossing
           else if (*it * *itup < threshold)
              *itout= 0; // vertical zero-crossing
        }

        return binary;
     }

An additional threshold is also introduced to make sure that the current Laplacian values are 
significant enough to be considered an edge. The result is the following binary map:

As you can see, the zero-crossings of the Laplacian detect all edges. No distinction is made 
between strong edges and weaker edges. We also mentioned that the Laplacian is very 
sensitive to noise. These two facts explain why so many edges are detected by the operator.
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There's more...
The contrast of an image can be enhanced by subtracting its Laplacian from it. This is 
what we did in the recipe Scanning an image with neighbor access of Chapter 2 where we 
introduced the kernel:

0 -1 0
-1 5 -1
0 -1 0

which is equal to 1 minus the Laplacian kernel (that is original image minus its Laplacian).

See also
The recipe Detecting the scale-invariant SURF features in Chapter 8 that uses the Laplacian 
in the detection of scale-invariant features. 



7
Extracting Lines, 

Contours, and 
Components

In this chapter, we will cover:

ff Detecting image contours with the Canny operator

ff Detecting lines in images with the Hough transform

ff Fitting a line to a set of points

ff Extracting the components' contours

ff Computing components' shape descriptors

Introduction
In order to perform a content-based analysis of an image, it is necessary to extract meaningful 
features from the collection of pixels that constitute the image. Contours, lines, blobs, and so 
on, are fundamental image elements that define an image's content. This chapter will teach 
you how to extract some of these important image features.
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Detecting image contours with the Canny 
operator

In the previous chapter, we learned how it is possible to detect the edges of an image. In 
particular, we showed that by applying a threshold on the gradient magnitude, a binary map 
of the main edges of an image can be obtained. Edges carry important visual information 
since they delineate the image elements. For this reason, they can be used, for example, in 
object recognition. However, simple binary edge maps suffer from two main drawbacks. First, 
the edges detected are unnecessarily thick. This means precise localization of an object 
limit cannot be done. Second, and more importantly, it is difficult to find a threshold that is 
sufficiently low to detect all important image edges of an image and that is, at the same time, 
sufficiently high to not include too many insignificant edges. This is a trade-off problem that 
the Canny algorithm tries to solve. 

How to do it...
The Canny algorithm is implemented in OpenCV by the function cv::Canny. As will be 
explained, this algorithm requires the specification of two thresholds. The call to the function 
is therefore as follows:

   // Apply Canny algorithm
   cv::Mat contours;
   cv::Canny(image,    // gray-level image
             contours, // output contours
             125,      // low threshold
             350);     // high threshold

When applied on the following image:
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The result is as follows:

Note that to obtain an image as shown in the preceding screenshot, we had to invert the black 
and white values since the normal result represents contours by non-zero pixels. The inverted 
representation, which is nicer to print on a page, is simply produced as follows: 

   cv::Mat contoursInv; // inverted image
   cv::threshold(contours,contoursInv,
                 128,   // values below this
                 255,   // becomes this
                 cv::THRESH_BINARY_INV);

How it works...
The Canny operator is generally based on the Sobel operator, although other gradient 
operators can be used. The key idea here is to use two different thresholds in order to 
determine which point should belong to a contour: a low and a high threshold. 



Extracting Lines, Contours, and Components

166

The low threshold should be chosen in a way that it includes all edge pixels that are 
considered to belong to a significant image contour. For example, using the low-threshold 
value specified in the example of the preceding section, and applying it on the result of a 
Sobel operator, the following edge map is obtained:

As it can be seen, the edges that delineate the road are very well defined. However, because 
a permissive threshold was used, more edges than what is ideally needed are also detected. 
The role of the second threshold is then to define the edges that belong to all important 
contours. It should exclude all edges considered as outliers. For example, the Sobel edge map 
corresponding to the high-threshold used in our example is:
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We now have an image containing broken edges, but the ones visible certainly belong to the 
significant contours of the scene. The Canny algorithm combines these two edge maps in order 
to produce an "optimal" map of contours. It operates by keeping only the edge points of the 
low-threshold edge map for which a continuous path of edges exists, linking that edge point to 
an edge belonging to the high-threshold edge map. Consequently, all edge points of the high-
threshold map are kept, while all isolated chains of edge points in the low-threshold map are 
removed. The solution obtained constitutes a good compromise allowing good quality contours 
to be obtained as long as appropriate threshold values are specified. This strategy, based on 
the use of two thresholds to obtain a binary map, is called hysteresis thresholding and can be 
used in any context where a binary map needs to be obtained from a thresholding operation. 
However, this is done at the cost of a higher computational complexity.

In addition, the Canny algorithm uses an extra strategy to improve the quality of the edge map. 
Prior to the application of the hysteresis thresholding, all edge points for which the gradient 
magnitude is not a maximum in the gradient direction are removed. Recall that the gradient 
orientation is always perpendicular to the edge. Therefore, the local maximum of the gradient 
in this direction corresponds to the point of maximum strength of the contour. This explains 
why thin edges are obtained in the Canny contour maps. 

See also
The classic article by J. Canny, A computational approach to edge detection, IEEE 
Transactions on Pattern Analysis and Image Understanding, vol. 18, issue 6, 1986.

Detecting lines in images with the Hough 
transform

In our human-made world, planar and linear structures abound. As a result, straight lines 
are frequently visible in images. These are meaningful features that play an important role in 
object recognition and image understanding. Therefore, it is useful to detect these particular 
features in images. The Hough transform is a classic algorithm that achieves this goal. It was 
initially developed to detect lines in images and, as we will see, it can also be extended to 
detect other simple image structures.

Getting ready
With the Hough transform, lines are represented using the following equation:
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The parameter ρ is the distance between the line and the image origin (upper-left corner), and 
θ is the angle of the perpendicular to the line. Under this representation, the lines visible in an 
image have a θ angle between 0 and π radians, while the radius ρ can have a maximum value 
that equals to the length of the image diagonal. Consider, for example, the following set of lines:

A vertical line like line 1 has a θ angle value equal to zero, while a horizontal line (for example, 
line 5) has its θ value equal to π/2. Therefore, line 3 has an angle θ equal to π/4, and line 4 is 
at approximately 0.7π. In order to be able to represent all possible lines with θ in the interval 
[0,π], the radius value can be made negative. This is the case of line 2 which has a θ value 
equal to 0.8π with a negative value for ρ.

How to do it...
OpenCV offers two implementations of the Hough transform for line detection. The basic 
version is cv::HoughLines. Its input is a binary map containing a set of points (represented 
by non-zero pixels), some of them being aligned to form lines. Usually, it is an edge map 
obtained, for example, from the Canny operator. The output of the cv::HoughLines function 
is a vector of cv::Vec2f elements, each of them being a pair of floating point values which 
represents the parameters of a detected line (ρ , θ). Here is an example of using this function 
where we first apply the Canny operator to obtain the image contours, and then detect the 
lines using the Hough transform:

   // Apply Canny algorithm
   cv::Mat contours;
   cv::Canny(image,contours,125,350);
   // Hough tranform for line detection
   std::vector<cv::Vec2f> lines;
   cv::HoughLines(test,lines,
        1,PI/180,  // step size
        80);       // minimum number of votes
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Parameters 3 and 4 correspond to the step size for the line search. In our example, the 
function will search for lines of all possible radii by step of 1 and of all possible angles by 
step of π/180. The role of the last parameter will be explained in the next section. With this 
particular choice of parameter values, fifteen lines are detected on the road image of the 
preceding recipe. In order to visualize the result of the detection, it is interesting to draw these 
lines on the original image. However, it is important, to note that this algorithm detects lines 
in an image, not line segments since the end points of each lines are not given. Consequently, 
we will draw lines that traverse the entire image. To do this, for an almost vertical line, we 
calculate its intersection with the horizontal limits of the image (that is, first and last rows) 
and draw a line between these two points. We proceed similarly with almost horizontal lines 
but using first and last columns. Lines are drawn using the cv::line function. Note that this 
function works well even with point coordinates outside the image limits. Therefore, do not 
need to check if the computed intersection points fall within the image. Lines are then drawn 
by iterating over the lines vector as follows:

   std::vector<cv::Vec2f>::const_iterator it= lines.begin();
   while (it!=lines.end()) {

      float rho= (*it)[0];   // first element is distance rho
      float theta= (*it)[1]; // second element is angle theta
      

      if (theta < PI/4. 
           || theta > 3.*PI/4.) { // ~vertical line
      

         // point of intersection of the line with first row
         cv::Point pt1(rho/cos(theta),0);        
         // point of intersection of the line with last row
         cv::Point pt2((rho-result.rows*sin(theta))/
                                  cos(theta),result.rows);
         // draw a white line
         cv::line( image, pt1, pt2, cv::Scalar(255), 1); 

      } else { // ~horizontal line

         // point of intersection of the 
         // line with first column
         cv::Point pt1(0,rho/sin(theta));        
         // point of intersection of the line with last column
         cv::Point pt2(result.cols,
                 (rho-result.cols*cos(theta))/sin(theta));
         // draw a white line
         cv::line(image, pt1, pt2, cv::Scalar(255), 1); 
      }

      ++it;
   }
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The following result is then obtained:

As it can be seen, the Hough transform simply looks for an alignment of edge pixels across the 
image. This can potentially create some false detection due to an incidental pixel alignment, 
or multiple detections when several lines pass through the same alignment of pixels. 

To overcome some of these problems, and to allow line segments to be detected (that is, with 
end points), a variant of the transform has been proposed. This is the Probabilistic Hough 
transform and it is implemented in OpenCV as function cv::HoughLinesP. We use it here to 
create our LineFinder class that encapsulates the function parameters:

class LineFinder {

  private:

     // original image
     cv::Mat img;

     // vector containing the end points 
     // of the detected lines
     std::vector<cv::Vec4i> lines;

     // accumulator resolution parameters
     double deltaRho;
     double deltaTheta;

     // minimum number of votes that a line 
     // must receive before being considered
     int minVote;

     // min length for a line
     double minLength;
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     // max allowed gap along the line
     double maxGap;

  public:

     // Default accumulator resolution is 1 pixel by 1 degree
     // no gap, no mimimum length
     LineFinder() : deltaRho(1), deltaTheta(PI/180), 
                    minVote(10), minLength(0.), maxGap(0.) {}

With the corresponding setter methods:

     // Set the resolution of the accumulator
     void setAccResolution(double dRho, double dTheta) {

        deltaRho= dRho;
        deltaTheta= dTheta;
     }

     // Set the minimum number of votes
     void setMinVote(int minv) {

        minVote= minv;
     }

     // Set line length and gap
     void setLineLengthAndGap(double length, double gap) {

        minLength= length;
        maxGap= gap;
     }

The method that performs Hough line segment detection is then simply:

     // Apply probabilistic Hough Transform
     std::vector<cv::Vec4i> findLines(cv::Mat& binary) {

        lines.clear();
        cv::HoughLinesP(binary,lines,
                        deltaRho, deltaTheta, minVote, 
                        minLength, maxGap);

        return lines;
     }

This method returns a vector of cv::Vec4i, each containing the start and end point 
coordinates of each detected segment. The detected lines can then be drawn on an image by 
the following method:

     // Draw the detected lines on an image
     void drawDetectedLines(cv::Mat &image, 
                cv::Scalar color=cv::Scalar(255,255,255)) {
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        // Draw the lines
        std::vector<cv::Vec4i>::const_iterator it2= 
                                           lines.begin();
   

        while (it2!=lines.end()) {
      

           cv::Point pt1((*it2)[0],(*it2)[1]);        
           cv::Point pt2((*it2)[2],(*it2)[3]);

           cv::line( image, pt1, pt2, color);
      

           ++it2;   
        }
     }

Now, using the same input image, lines can be detected by the following sequence:

   // Create LineFinder instance
   LineFinder finder;

   // Set probabilistic Hough parameters
   finder.setLineLengthAndGap(100,20);
   finder.setMinVote(80);

   // Detect lines and draw them
   std::vector<cv::Vec4i> lines= finder.findLines(contours);
   finder.drawDetectedLines(image);
   cv::namedWindow("Detected Lines with HoughP");
   cv::imshow("Detected Lines with HoughP",image);

Which gives the following result:
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How it works...
The objective of the Hough transform is to find all lines in a binary image that pass through a 
sufficient number of points. It proceeds by considering each individual pixel point in the input 
binary map and identifying all possible lines passing through it. When the same line passes 
through many points, it means that this line is significant enough to be considered.

The Hough transform uses a 2-dimensional accumulator in order to count how many times 
a given line is identified. The size of this accumulator is defined by the specified step 
sizes (as mentioned in the preceding section) of the (ρ, θ) parameters of the adopted line 
representation. To illustrate the functioning of the transform, let's create a 180 by 200 matrix 
(corresponding to a step size of π/180 for θ and 1 for ρ):

   // Create a Hough accumulator
   // here a uchar image; in practice should be ints
   cv::Mat acc(200,180,CV_8U,cv::Scalar(0));

This accumulator is a mapping of different (ρ, θ) values. Therefore, each entry of this matrix 
corresponds to one particular line. Now if we consider one point, let's say one at coordinate 
(50, 30), then it is possible to identify all lines passing through this point by looping over all 
possible θ angles (with a step size of π/180) and compute the corresponding (rounded) ρ value:

   // Choose a point
   int x=50, y=30;

   // loop over all angles
   for (int i=0; i<180; i++) {

      double theta= i*PI/180.;

      // find corresponding rho value 
      double rho= x*cos(theta)+y*sin(theta);
      // j corresponds to rho from -100 to 100
      int j= static_cast<int>(rho+100.5);

      std::cout << i << "," << j << std::endl;

      // increment accumulator
      acc.at<uchar>(j,i)++;
   }
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The entries of the accumulator corresponding to the computed (ρ, θ) pairs are then 
incremented, signifying that all of these lines pass through one point of the image (or, to 
say it another way, each point votes for a set of possible candidate lines). If we display the 
accumulator as an image (multiply by 100 to make the count of 1 visible), we obtain:

This curve represents the set of all lines passing through the considered point. Now, if we repeat 
the same exercise with, let's say point (30, 10), we now have the following accumulator:

As it can be seen, the two resulting curves intersect at one point. The point that corresponds 
to the line passing by these two points. The corresponding entry of the accumulator receives 
two votes, indicating that two points pass through this line. If the same process is repeated 
for all points of a binary map, then points aligned along a given line will increment a common 
entry of the accumulator many times. At the end, one just needs to identify the local maxima 
in this accumulator that receives a significant number of votes in order to detect the lines 
(that is, point alignments) in the image. The last parameter specified in the cv::HoughLines 
function corresponds to the minimum number of votes that a line must receive to be 
considered as detected. For example, if we lower this value at 60, that is:

   cv::HoughLines(test,lines,1,PI/180,60);
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Then more lines will be accepted for the example of the preceding section as seen here:

The probabilistic Hough transform adds few modifications to the basic algorithm. First, instead 
of systematically scanning the image row-by-row, points are chosen in random order in the 
binary map. Whenever an entry of the accumulator reaches the specified minimum value, the 
image is scanned along the corresponding line and all points passing through it are removed 
(even if they have not voted yet). This scanning also determines the length of the segments 
that will be accepted. For this, the algorithm defines two additional parameters. One is the 
minimum length for a segment to be accepted, and the other is the maximum pixel gap that is 
permitted to form a continuous segment. This additional step increases the complexity of the 
algorithm, but this is partly compensated by the fact that fewer points will be involved in the 
voting process as some of them are eliminated by the line scanning process. 

There's more...
The Hough transform can also be used to detect other geometrical entities. In fact, any entity 
that can be represented by a parametric equation is a good candidate for the Hough transform. 

Detecting circles
In the case of circles, the corresponding parametric equation is:
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This equation includes three parameters (the circle radius and center coordinates) which 
means that a 3-dimensional accumulator would be required. However, it is generally found 
that the Hough transform becomes less reliable as the dimensionality of its accumulator 
increases. Indeed, in this case, a large number of entries of the accumulator will be 
incremented for each point and, in consequence, the accurate localization of local peaks 
becomes more difficult. Therefore, different strategies have been proposed in order to 
overcome this problem. The one used in the OpenCV implementation of the Hough circle 
detection uses two passes. During the first pass, a 2-dimensional accumulator is used to find 
candidate circle locations. Since the gradient of points on the circumference of a circle should 
point in the direction of the radius, then, for each point, only the entries in the accumulator 
along the gradient direction are incremented (based on predefined minimum and maximum 
radius values). Once a possible circle center is detected (that is, received a predefined 
number of votes), then an 1D histogram of possible radius is built during the second pass. 
The peak value in this histogram corresponds to the radius of the detected circles. 

The function cv::HoughCircles that implements the strategy above integrates both the 
Canny detection and the Hough transform. It is called as follows:

   cv::GaussianBlur(image,image,cv::Size(5,5),1.5);
   std::vector<cv::Vec3f> circles;
   cv::HoughCircles(image, circles, CV_HOUGH_GRADIENT, 
      2,   // accumulator resolution (size of the image / 2) 
      50,  // minimum distance between two circles
      200, // Canny high threshold 
      100, // minimum number of votes 
      25, 100); // min and max radius

Note that it is always recommended to smooth the image before calling the 
cv::HoughCircles function in order to reduce the image noise that could cause several 
false circle detections. The result of the detection is given in a vector of cv::Vec3f 
instances. The first two values are the circle center and the third is the radius. The argument 
CV_HOUGH_GRADIENT was the only option available at the time of writing this book. It 
corresponds to the two-pass circle detection methods. The fourth parameter defines the 
accumulator resolution. It is a divider factor, for example, specifying a value of 2 makes the 
accumulator half the size of the image. The next parameter is the minimum distance in pixels 
between two detected circles. The other parameter corresponds to the high-threshold of the 
Canny edge detector. The low-threshold value is set at half this value. The seventh parameter 
is the minimum number of votes that a center location must receive during the first pass to 
be considered as a candidate circle for the second pass. Finally, the last two parameters are 
the minimum and maximum radius values for the circles to be detected. As can be seen, the 
function includes many parameters which make it difficult to tune. 

Once the vector of detected circles is obtained, these can be drawn on the image by iterating 
over the vector and calling the cv::circle drawing function with the found parameters:
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   std::vector<cv::Vec3f>::
          const_iterator itc= circles.begin();
   

   while (itc!=circles.end()) {
      

     cv::circle(image, 
        cv::Point((*itc)[0], (*itc)[1]), // circle centre
        (*itc)[2],       // circle radius
        cv::Scalar(255), // color 
        2);              // thickness
      

     ++itc;   
   }

Here is the result obtained on a test image with the chosen arguments:

Generalized Hough transform
For some shapes, it is difficult to find a compact parametric representation, for example, 
triangles, octagons, polygons, object profiles, and so on. However, it is still possible to use 
the Hough transform to locate these shapes in an image. The principle remains the same. A 
2-dimensional accumulator is created which represents all possible locations for the targeted 
shape. Therefore, a reference point must be defined on the shape, and each feature point 
on the image votes for possible reference point locations. Since a point can be anywhere on 
the contour of the shape, the locus of all possible reference positions will trace a shape in 
the accumulator that is the mirror of the shape of interest. Again, points that belong to the 
same shape in the image will generate a peak in the accumulator at an intersection point that 
corresponds to that shape's location. 
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This is illustrated in the following figure where the shape of interest is a triangle (shown on 
right) on which the reference is defined at the bottom-left corner. On the accumulator is shown 
a feature point that will increment all entries at the drawn locations as they correspond to 
possible positions for the reference points of a triangle passing through this feature point:

This approach is often referred to as the Generalized Hough transform. Obviously, it does not 
take into account possible scale change or rotations of the shape. This would require a search 
in higher dimension.

See also
The article Gradient-based Progressive Probabilistic Hough Transform by C. Galambos, 
J. Kittler, and J. Matas, IEE Vision Image and Signal Processing, vol. 148 no 3, pp. 158-
165, 2002. It is one of the numerous reference on the Hough transform and describes the 
probabilistic algorithm implemented in OpenCV.

The article by H.K. Yuen, J. Princen, J. Illingworth, and J Kittler, Comparative Study of Hough 
Transform Methods for Circle Finding, Image and Vision Computing, vol. 8 no 1, pp. 71-77, 
1990 that describes different strategies for circle detection using the Hough transform.

Fitting a line to a set of points
In some applications, it could be important to not only detect lines in an image, but also to 
obtain an accurate estimate of the line's position and orientation. This recipe will show you 
how to find the line that best fits a given set of points.

How to do it...
The first thing to do is to identify points in an image that seem to be aligned along a straight line. 
Let's then use one of the lines we detected in the preceding recipe. Suppose the lines detected 
using cv::HoughLinesP are contained in a std::vector called lines. To extract the set 
of points that seem to belong to, let's say, the first of these line, we can proceed as follows. We 
draw a white line on a black image and intersect it with the Canny image of contours used to 
detect our lines. This is simply achieved by the following statements:
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   int n=0; // we select line 0 
   // black image
   cv::Mat oneline(contours.size(),CV_8U,cv::Scalar(0));
   // white line
   cv::line(oneline, 
            cv::Point(lines[n][0],lines[n][1]),
            cv::Point(lines[n][2],lines[n][3]),
            cv::Scalar(255),
            5);
   // contours AND white line
   cv::bitwise_and(contours,oneline,oneline);

The result is an image containing only the points that could be associated with the specified 
line. In order to introduce some tolerance, we draw a line of a certain thickness (here 5). All 
points inside the defined neighborhood are therefore accepted. Here is the image obtained 
(inverted for better viewing): 

The coordinates of the points in this set can then be inserted in a std::vector of 
cv::Points (floating point coordinates, that is, cv::Point2f, can also be used) by the 
following double loop:

   std::vector<cv::Point> points;

   // Iterate over the pixels to obtain all point positions
   for( int y = 0; y < oneline.rows; y++ ) {    
      // row y
    

      uchar* rowPtr = oneline.ptr<uchar>(y);
    

      for( int x = 0; x < oneline.cols; x++ ) {
         // column x 
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         // if on a contour
         if (rowPtr[x]) {

            points.push_back(cv::Point(x,y));
         }
      }
    }

The best fit line is easily found by calling the OpenCV function cv::fitLine:

   cv::Vec4f line;
   cv::fitLine(cv::Mat(points),line,
               CV_DIST_L2, // distance type
               0,          // not used with L2 distance 
               0.01,0.01); // accuracy

This gives us the parameters of the line equation in the form of a unit directional vector (the 
first two values of the cv::Vec4f) and the coordinates of one point on the line (the last two 
values of the cv::Vec4f). For our example, these values are (0.83, 0.55) for the directional 
vector and (366.1, 289.1) for the point coordinates. The last two parameters specify the 
requested accuracy for the line parameters. Note that the input points contained in a 
std::vector are transferred in a cv::Mat as required by the function.

In general, the line equation will be used in the calculation of some properties (calibration is 
a good example where precise parametric representation is required). As an illustration, and 
to make sure we calculated the right line, let's draw the estimated line on the image. Here, 
we simply draw an arbitrary black segment having a length of 200 pixels and a thickness of 3 
pixels:

   int x0= line[2];        // a point on the line
   int y0= line[3];
   int x1= x0-200*line[0]; // add a vector of length 200
   int y1= y0-200*line[1]; // using the unit vector
   image= cv::imread("../road.jpg",0);
   cv::line(image,cv::Point(x0,y0),cv::Point(x1,y1),
            cv::Scalar(0),3);

The result is then seen in the following image:
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How it works...
Fitting lines to a set of points is a classic problem in mathematics. The OpenCV 
implementation proceeds by minimizing the sum of the distances from each point to the 
line. Several distance functions are proposed, and the fastest option is to use the Euclidean 
distance, specified by CV_DIST_L2. This choice corresponds to the standard least-squares 
line fitting. When outliers (that is, points not belonging to the line) might be included in the 
point set, other distance functions that give less influence to far points can be selected. The 
minimization is based on the M-estimator technique that iteratively solves a weighted least-
squares problem with weights inversely proportional to the distance from the line.

Using this function, it is also possible to fit a line to a 3D point set. The input is, in this case, a 
set of cv::Point3i or cv::Point3f and the output is a std::Vec6f.

There's more... 
The function cv::fitEllipse fits an ellipse to a set of 2D points. It returns a rotated 
rectangle (a cv::RotatedRect instance) inside which the ellipse is inscribed. In this case, 
you would write:

   cv::RotatedRect rrect= cv::fitEllipse(cv::Mat(points));
   cv::ellipse(image,rrect,cv::Scalar(0));

The function cv::ellipse is the one you would use to draw the computed ellipse. 
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Extracting the components' contours
Images generally contain representation of objects. One of the goals of image analysis is to 
identify and extract those objects. In object detection/recognition applications, the first step 
is to produce a binary image showing where certain objects of interest could be located. No 
matter how this binary map has been obtained (for example, could be from the histogram back 
projection as we did in Chapter 4, or from motion analysis as we will learn in Chapter 10), the 
next step is to then extract the objects which are contained in this collection of 1s and 0s. 
Consider for example, the image of buffaloes in binary form that we manipulated in Chapter 5 as 
seen here: 

We obtained this image from a simple thresholding operation followed by the application of 
open and close morphological filters. This recipe will show you how to extract the objects of 
such images. More specifically, we will extract the connected components, that is, shapes 
made of a set of connected pixels in a binary image.

How to do it...
OpenCV offers a simple function which extracts the contours of the connected components of 
an image. It is the cv::findContours function:

   std::vector<std::vector<cv::Point>> contours;
   cv::findContours(image, 
      contours, // a vector of contours 
      CV_RETR_EXTERNAL, // retrieve the external contours
      CV_CHAIN_APPROX_NONE); // all pixels of each contours
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The input is obviously the binary image. The output is a vector of contours, each contour being 
represented by a vector of cv::Points. This explains why the output parameter is defined as 
a std::vector of std::vectors. In addition, two flags are specified. The first one indicates 
that only the external contours are required, that is, holes in object will be ignored; (the There's 
more… section will discuss the other options). The second flag is there to specify the format 
of the contour. With the current option, the vector will list all of the points in the contour. With 
the flag CV_CHAIN_APPROX_SIMPLE, only the end points would be included for horizontal, 
vertical, or diagonal contours. Other flags would give more sophisticated chain approximation of 
the contours in order to obtain a more compact representation. With the preceding image, nine 
contours are obtained as given by contours.size(). Fortunately, there is a very convenient 
function that can draw those contours on an image (here, a white image):

   // Draw black contours on a white image
   cv::Mat result(image.size(),CV_8U,cv::Scalar(255));
   cv::drawContours(result,contours,
      -1, // draw all contours
      cv::Scalar(0), // in black
      2); // with a thickness of 2

If the third parameter of this function is a negative value, then all contours are drawn. 
Otherwise, it is possible to specify the index of the contour to be drawn. The result is seen  
in the following screenshot:

How it works...
The contours are extracted by a simple algorithm that consists of systematically scanning 
the image until a component is hit. From this starting point on the component, its contour 
is followed, marking the pixels on its border. When the contour is completed, the scanning 
resumes at the last position until a new component is found.
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The identified connected components can then be individually analyzed. For example, if some 
prior knowledge is available about the expected size of the objects of interest, it becomes 
possible to eliminate some of the components. Let's then use a minimum and a maximum 
value for the perimeter of the components. This is done by iterating over the vector of 
contours and eliminating the invalid components:

   // Eliminate too short or too long contours
   int cmin= 100;  // minimum contour length
   int cmax= 1000; // maximum contour length
   std::vector<std::vector<cv::Point>>::
              const_iterator itc= contours.begin();
   while (itc!=contours.end()) {

      if (itc->size() < cmin || itc->size() > cmax)
         itc= contours.erase(itc);
      else 
         ++itc;
   }

Note that this loop could have been made more efficiently since each erasing operation in a 
std::vector is O(N). But considering the size of this vector, this operation is not too costly. 
This time we draw the remaining contours on the original image and obtain the following 
result:

We were lucky enough to find a simple criterion that allowed us to identify all objects of 
interest in this image. In more complex situations, a more refined analysis of the components' 
properties is required. This is the object of the next recipe.
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There's more...
With the cv::findContours function, it is also possible to include all closed contours in the 
binary map, including the ones formed by holes in the components. This is done by specifying 
another flag in the function call:

   cv::findContours(image, 
      contours, // a vector of contours 
      CV_RETR_LIST, // retrieve all contours
      CV_CHAIN_APPROX_NONE); // all pixels of each contours

With this call, the following contours are obtained: 

Notice the extra contours that were added in the background forest. It is also possible to have 
these contours organized into a hierarchy. The main component is the parent, holes in it are 
its children, and if there are components inside these holes, they become the children of the 
previous children, and so on. This hierarchy is obtained by using the flag CV_RETR_TREE, as 
follows:

   std::vector<cv::Vec4i> hierarchy;
cv::findContours(image, 
      contours, // a vector of contours
      hierarchy, // hierarchical representation 
      CV_RETR_TREE, // retrieve all contours in tree format
      CV_CHAIN_APPROX_NONE); // all pixels of each contours
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In this case, each contour has a corresponding hierarchy element at the same index made 
of four integers. The first two integers give the index of the next and the previous contours 
of the same level, and the next two integers give the index of the first child and the parent of 
this contour. A negative index indicates the end of a contour list. The flag CV_RETR_CCOMP is 
similar but limits the hierarchy at two levels. 

Computing components' shape descriptors
A connected component often corresponds to the image of some object in a pictured scene. 
To identify this object, or to compare it with other image elements, it can be useful to perform 
some measurements on the component in order to extract some of its characteristics. In this 
recipe, we will look at some of the shape descriptors available in OpenCV that can be used to 
describe the shape of a connected component.

How to do it...
Many OpenCV functions are available when it comes to shape description. We will apply some 
of them on the components that we have extracted in the preceding recipe. In particular, 
we will use our vector of four contours corresponding to the four buffaloes we previously 
identified. In the following code snippets, we compute a shape descriptor on the contours 
(contours[0] to contours[3]) and draw the result (with a thickness of 2) over the image 
of the contours (with a thickness of 1). This image is shown at the end of this section.

The first one is the bounding box, applied to the bottom right component:

   // testing the bounding box 
   cv::Rect r0= cv::boundingRect(cv::Mat(contours[0]));
   cv::rectangle(result,r0,cv::Scalar(0),2);

The minimum enclosing circle is similar. It is applied on the upper-right component:

   // testing the enclosing circle 
   float radius;
   cv::Point2f center;
   cv::minEnclosingCircle(cv::Mat(contours[1]),center,radius);
   cv::circle(result,cv::Point(center),
              static_cast<int>(radius),cv::Scalar(0),2);

The polygonal approximation of a component's contour is computed as follows (on the left 
component):

   // testing the approximate polygon
   std::vector<cv::Point> poly;
   cv::approxPolyDP(cv::Mat(contours[2]),poly,
                    5,     // accuracy of the approximation
                    true); // yes it is a closed shape
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Drawing the result on an image requires more work:

   // Iterate over each segment and draw it
   std::vector<cv::Point>::const_iterator itp= poly.begin();
   while (itp!=(poly.end()-1)) {
      cv::line(result,*itp,*(itp+1),cv::Scalar(0),2);
      ++itp;
   }
   // last point linked to first point
   cv::line(result,
            *(poly.begin()),
            *(poly.end()-1),cv::Scalar(20),2);

The convex hull is another form of polygonal approximation:

   // testing the convex hull
   std::vector<cv::Point> hull;
   cv::convexHull(cv::Mat(contours[3]),hull);

Finally, the computation of the moments is another powerful descriptor:

   // testing the moments

   // iterate over all contours
   itc= contours.begin();
   while (itc!=contours.end()) {

      // compute all moments
      cv::Moments mom= cv::moments(cv::Mat(*itc++));

      // draw mass center
      cv::circle(result,
         // position of mass center converted to integer
         cv::Point(mom.m10/mom.m00,mom.m01/mom.m00),
         2,cv::Scalar(0),2); // draw black dot
   }
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The resulting image is as follows:

How it works...
The bounding box of a component is probably the most compact way to represent and 
localize a component in an image. It is defined as the upright rectangle of minimum size that 
completely contains the shape. Comparing the height and width of the box gives an indication 
about the vertical or horizontal orientation of the object (for example, to distinguish the image 
of a car from the one of a pedestrian). The minimum enclosing circle is generally used when 
only component size and location is required.

The polygonal approximation of a component is useful when one wants to manipulate a more 
compact representation that resembles the component's shape. It is created by specifying 
an accuracy parameter giving the maximal acceptable distance between a shape and its 
simplified polygon. It is the fourth parameter in the cv::approxPolyDP function. The result 
is a vector of cv::Point corresponding to the vertices of the polygon. To draw this polygon, 
we need to iterate over the vector and link each point with the next one by drawing a line 
between them.

The convex hull, or convex envelop, of a shape is the minimal convex polygon that encompass 
a shape. It can be visualized as the shape that an elastic band would take if placed around 
the component.

Moments are commonly used mathematical entities in the structural analysis of shapes. 
OpenCV has defined a data structure which encapsulates all computed moments of a shape. It 
is the object returned by the cv::moments function. We simply use this structure to obtain the 
mass center of each component that is here computed from the first three spatial moments.
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There's more...
Other structural properties can be computed using the available OpenCV functions. 
Function cv::minAreaRect computes the minimum enclosing rotated rectangle. Function 
cv::contourArea estimates the area of (number of pixel inside) a contour. Function 
cv::pointPolygonTest determines if a point is inside or outside a contour, and 
cv::matchShapes measure the resemblance between two contours.





8
Detecting and 

Matching Interest 
Points

In this chapter, we will cover:

ff Detecting Harris corners

ff Detecting FAST features

ff Detecting the scale-invariant SURF features

ff Describing SURF features

Introduction
In computer vision, the concept of interest points, also called keypoints or feature points, 
has been largely used to solve many problems in object recognition, image registration, 
visual tracking, 3D reconstruction, and more. It relies on the idea that instead of looking 
at the image as a whole, it could be advantageous to select some special points in the 
image and perform a local analysis on these ones. These approaches work well as long as a 
sufficient number of such points are detected in the images of interest and these points are 
distinguishing and stable features that can be accurately localized. This chapter will introduce 
a few interest point detectors and show you how to use them in image matching.
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Detecting Harris corners
When searching for interesting feature points in images, corners come out as an interesting 
solution. They indeed are local features that can be easily localized in an image, and in 
addition, they should abound in scenes of man-made objects (where they are produced by 
walls, doors, windows, tables, and so on). Corners are also interesting because they are two-
dimensional features that can be accurately localized (even at sub-pixel accuracy) as they 
are at the junction of two edges. This is in contrast to points located on a uniform area or on 
the contour of an object and that would be difficult to repeatedly localize precisely on other 
images of the same object.

The Harris feature detector is a classical approach to detect corners in an image. We will 
explore this operator in this recipe.

How to do it...
The basic OpenCV function for detecting Harris corners is called cv::cornerHarris and is 
straightforward to use. You call it on an input image and the result is an image of floats which 
gives the corner strength at each pixel location. A threshold is then applied on this output 
image in order to obtain a set of detected corners. This is accomplished by the following code:

   // Detect Harris Corners
   cv::Mat cornerStrength;
   cv::cornerHarris(image,cornerStrength,
                3,     // neighborhood size
                3,     // aperture size
                0.01); // Harris parameter

   // threshold the corner strengths
   cv::Mat harrisCorners;
   double threshold= 0.0001; 
   cv::threshold(cornerStrength,harrisCorners,
                 threshold,255,cv::THRESH_BINARY);
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Here is the original image:
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The result is a binary map image shown in the following screenshot which is inverted for better 
viewing (that is, we used cv::THRESH_BINARY_INV instead of cv::THRESH_BINARY to get 
the detected corners in black):

From the preceding function call, we observe that this interest point detector requires several 
parameters (these will be explained in the next section) which may make it difficult to tune. 
In addition, the corner map that is obtained contains many clusters of corner pixels which 
contradict the fact that we would like to detect well-localized points. Therefore, we will try to 
improve the corner detection method by defining our own class to detect Harris corners.

The class encapsulates the Harris parameters with their default values and corresponding 
getter and setter methods (which are not shown here):

class HarrisDetector {

  private:

     // 32-bit float image of corner strength
     cv::Mat cornerStrength;
     // 32-bit float image of thresholded corners
     cv::Mat cornerTh;
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     // image of local maxima (internal)
     cv::Mat localMax;
     // size of neighborhood for derivatives smoothing
     int neighbourhood; 
     // aperture for gradient computation
     int aperture; 
     // Harris parameter
     double k;
     // maximum strength for threshold computation
     double maxStrength;
     // calculated threshold (internal)
     double threshold;
     // size of neighborhood for non-max suppression
     int nonMaxSize; 
     // kernel for non-max suppression
     cv::Mat kernel;

  public:

     HarrisDetector() : neighbourhood(3), aperture(3), 
                        k(0.01), maxStrength(0.0), 
                        threshold(0.01), nonMaxSize(3) {
     

        // create kernel used in non-maxima suppression
        setLocalMaxWindowSize(nonMaxSize);
     }

To detect the Harris corners on an image, we proceed with two steps. First, the Harris values 
at each pixel are computed:

     // Compute Harris corners
     void detect(const cv::Mat& image) {
   

        // Harris computation
        cv::cornerHarris(image,cornerStrength,
                neighbourhood,// neighborhood size
                aperture,     // aperture size
                k);           // Harris parameter
   

        // internal threshold computation
        double minStrength; // not used
        cv::minMaxLoc(cornerStrength,
             &minStrength,&maxStrength);

        // local maxima detection
        cv::Mat dilated;  // temporary image
        cv::dilate(cornerStrength,dilated,cv::Mat());
        cv::compare(cornerStrength,dilated,
                    localMax,cv::CMP_EQ);
     }



Detecting and Matching Interest Points

196

Next, the feature points are obtained based on a specified threshold value. Since the range of 
possible values for Harris depends on the particular choices of its parameters, the threshold 
is specified as a quality level defined as a fraction of the maximal Harris value computed in 
the image:

     // Get the corner map from the computed Harris values
     cv::Mat getCornerMap(double qualityLevel) {

        cv::Mat cornerMap;

        // thresholding the corner strength
        threshold= qualityLevel*maxStrength;
        cv::threshold(cornerStrength,cornerTh,
                      threshold,255,cv::THRESH_BINARY);

        // convert to 8-bit image
        cornerTh.convertTo(cornerMap,CV_8U);
   

        // non-maxima suppression
        cv::bitwise_and(cornerMap,localMax,cornerMap);

        return cornerMap;
     }

This method returns a binary corner map of the detected features. The fact that the detection 
of the Harris features has been split into two methods allows us to test the detection with 
a different threshold (until an appropriate number of feature points are obtained) without 
needing to repeat costly computations. It is also possible to obtain the Harris features in the 
form of a std::vector of cv::Point:

     // Get the feature points from the computed Harris values
     void getCorners(std::vector<cv::Point> &points, 
                     double qualityLevel) {

        // Get the corner map
        cv::Mat cornerMap= getCornerMap(qualityLevel);
        // Get the corners
        getCorners(points, cornerMap);
     }

     // Get the feature points from the computed corner map
     void getCorners(std::vector<cv::Point> &points, 
                     const cv::Mat& cornerMap) {
           

        // Iterate over the pixels to obtain all features
        for( int y = 0; y < cornerMap.rows; y++ ) {
    

           const uchar* rowPtr = cornerMap.ptr<uchar>(y);
    

           for( int x = 0; x < cornerMap.cols; x++ ) {

              // if it is a feature point
              if (rowPtr[x]) {
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                 points.push_back(cv::Point(x,y));
              }
           } 
        }
     }

This class improves the detection of the Harris corners by adding a non-maxima suppression 
step which will be explained in the next section. The detected points can now be drawn on an 
image using the cv::circle function as demonstrated by the following method:

     // Draw circles at feature point locations on an image
     void drawOnImage(cv::Mat &image, 
        const std::vector<cv::Point> &points, 
        cv::Scalar color= cv::Scalar(255,255,255), 
        int radius=3, int thickness=2) {

        std::vector<cv::Point>::const_iterator it= 
                                       points.begin();

        // for all corners
        while (it!=points.end()) {

           // draw a circle at each corner location
           cv::circle(image,*it,radius,color,thickness);
           ++it;
        }
     }

Using this class, the detection of the Harris points is accomplished as follows:

   // Create Harris detector instance
   HarrisDetector harris;
    // Compute Harris values
   harris.detect(image);
    // Detect Harris corners
   std::vector<cv::Point> pts;
   harris.getCorners(pts,0.01);
   // Draw Harris corners
   harris.drawOnImage(image,pts);
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Which results in the following image:

How it works...
To define the notion of corners in images, Harris looks at the average directional intensity 
change in a small window around a putative interest point. If we consider a displacement 
vector (u,v), the average intensity change is given by:

The summation is over a defined neighborhood around the considered pixel (the size of this 
neighborhood corresponds to the third parameter in the cv::cornerHarris function). 
This average intensity change can then be computed in all possible directions which leads 
to the definition of a corner as a point for which the average change is high in more than 
one direction. From this definition, the Harris test is performed as follows. We first obtain the 
direction of maximal average intensity change. Next, check if the average intensity change in 
the orthogonal direction is also high. If it is the case, then we have a corner.
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Mathematically, this condition can be tested by using an approximation of the preceding 
formula using Taylor expansion:

Which is then rewritten in matrix form:

This matrix is a covariance matrix that characterizes the rate of intensity change in all directions. 
This definition involves the image's first derivatives that are often computed using the Sobel 
operator. This is the case of the OpenCV implementation, the fourth parameter of the function 
corresponding to the aperture used for the computation of the Sobel filters. It can be shown 
that the two eigenvalues of the covariance matrix gives the maximal average intensity change 
and the average intensity change for the orthogonal direction. It then follows that if these two 
eigenvalues are low, we are in a relatively homogenous region. If one eigenvalue is high and 
the other is low, we must be on an edge. Finally, if both eigenvalues are high, then we are at a 
corner location. Therefore, the condition for a point to be accepted as a corner is to have the 
smallest eigenvalue of the covariance matrix higher than a given threshold.

The original definition of the Harris corner algorithm uses some properties of the 
eigendecomposition theory in order to avoid the cost of explicitly computing the eigenvalues. 
These properties are:

ff The product of the eigenvalues of a matrix is equal to its determinant

ff The sum of the eigenvalues of a matrix is equal to the sum of the diagonal of the 
matrix (also known as the trace of the matrix)

It then follows that we can verify that two eigenvalues are high by computing the following score:

One can easily verify that this score will indeed be high only if both eigenvalues are also high. 
This is the score that is computed by the cv::cornerHarris function at each pixel location. 
The value of k is specified as the fifth parameter of the function. It could be difficult to 
determine what would be the best value for this parameter. However, in practice, it has been 
shown that a value in the range of 0.05 and 0.5 generally gives good results.
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To improve the result of the detection, the class described in the previous section adds an 
additional non-maxima suppression step. The goal here is to exclude Harris corners that are 
adjacent to others. Therefore, to be accepted, the Harris corner must not only have a score 
higher than the specified threshold, but it must also be a local maximum. This condition 
is tested by using a simple trick which consists of dilating the image of Harris score in our 
detect method:

        cv::dilate(cornerStrength,dilated,cv::Mat());

Since the dilation replaces each pixel value by the maximum in the defined neighborhood, 
then the only points that will not be modified are the local maxima That is what is verified by 
the following equality test:

        cv::compare(cornerStrength,dilated, 
                    localMax,cv::CMP_EQ);

The localMax matrix will therefore be true (that is non-zero) only at local maxima locations. 
We then use it in our getCornerMap method to suppress all non-maximal features (using the 
cv::bitwise_and function).

There's more...
Additional improvements can be made to the original Harris corner algorithm. This section 
describes another corner detector found in OpenCV which expands the Harris detector to 
make its corners more uniformly distributed across the image. As we will see, this operator 
has an implementation in the new OpenCV 2 common interface for feature detector.

Good features to track
With the advent of the floating-point processor, the mathematical simplification introduced to 
avoid the eigenvalue decomposition has become negligible, and consequently the detection 
of Harris can be made based on the explicitly computed eigenvalues. In principle, this 
modification should not significantly affect the result of the detection, but it avoids the use of 
the arbitrary k parameter.

A second modification addresses the problem of feature point clustering. Indeed, in spite of 
the introduction of the local maxima condition, interest points tend to be unevenly distributed 
across an image, showing concentrations at locations highly textured. A solution to this 
problem is to impose a minimum distance between two interest points. This can be achieved 
by the following algorithm. Starting from the point with the strongest Harris score (that is with 
the largest minimum eigenvalue), only accept interest points if they are located at at least, a 
given distance from the already accepted points. This solution is implemented in OpenCV in 
the function cv::goodFeaturesToTrack thus named because the features it detects can 
be used as a good starting set in visual tracking application. It is called as follows: 

   // Compute good features to track
   std::vector<cv::Point2f> corners;
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   cv::goodFeaturesToTrack(image,corners,
      500,   // maximum number of corners to be returned
      0.01,   // quality level
      10);   // minimum allowed distance between points

In addition to the quality-level threshold value, and the minimum tolerated distance between 
interest points, the function also uses a maximum number of points to be returned (this is 
possible since points are accepted in order of strength). The preceding function call produces 
the following result:

This approach increases the complexity of the detection since it requires the interest points 
to be sorted by their Harris score, but it also clearly improves the distribution of the points 
across the image. Note that this function also includes an optional flag to request Harris 
corners to be detected using the classical corner score definition (using covariance matrix 
determinant and trace).
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Feature detector common interface
OpenCV 2 has introduced a new common interface for its different interest point detectors. This 
interface allows easy testing of different interest point detectors within the same application. 

The interface defines a Keypoint class that encapsulates the properties of each detected 
feature point. For the Harris corners, only the position of the keypoints is relevant. The 
recipe Detecting scale-invariant SURF points will discuss the other properties that could be 
associated to a keypoint.

The cv::FeatureDetector abstract class basically imposes the existence of a detect 
operation with the following signatures:

   void detect( const Mat& image, vector<KeyPoint>& keypoints,
                const Mat& mask=Mat() ) const;

   void detect( const vector<Mat>& images,
                vector<vector<KeyPoint> >& keypoints,
                const vector<Mat>& masks=
                                   vector<Mat>() ) const;

The second method allows interest points to be detected in a vector of images. The class also 
includes other methods to read and write the detected points in a file.

The cv::goodFeaturesToTrack function has a wrapper class called 
cv::GoodFeatureToTrackDetector , which inherits from the cv::FeatureDetector 
class. It can be used in a way similar to what we did with our Harris Corners class, that is:

   // vector of keypoints
   std::vector<cv::KeyPoint> keypoints;
   // Construction of the Good Feature to Track detector 
   cv::GoodFeaturesToTrackDetector gftt(
      500,   // maximum number of corners to be returned
      0.01,   // quality level
      10);   // minimum allowed distance between points
   // point detection using FeatureDetector method
   gftt.detect(image,keypoints);

The results are the same as the one obtained before, since the same function is ultimately 
called by the wrapper.

See also
The classical article describing the Harris operator: C. Harris and M.J. Stephens, A combined 
corner and edge detector, by Alvey Vision Conference, pp. 147–152, 1988.

The article by J. Shi and C. Tomasi, Good features to track, Int. Conference on Computer Vision 
and Pattern Recognition, pp. 593-600, 1994 which introduced these features.
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The article by K. Mikolajczyk and C. Schmid, Scale and Affine invariant interest point 
detectors, International Journal of Computer Vision, vol 60, no 1, pp. 63-86, 2004, which 
proposes a multi-scale and affine-invariant Harris operator.

Detecting FAST features
The Harris operator proposed a formal mathematical definition for corners (or more generally, 
interest points) based on the rate of intensity changes in two perpendicular directions. 
Although this constitutes a sound definition, it requires the computation of the image 
derivatives which is a costly operation, especially considering the fact that interest point 
detection is often just the first step in a more complex algorithm. 

In this recipe, we present another feature point operator. This one has been specifically 
designed to allow quick detection of interest points in an image. The decision to accept or not 
to accept a keypoint being based on only a few pixel comparisons.

How to do it...
Using the OpenCV 2 common interface for feature point detection makes the deployment of 
any feature point detectors easy. The one presented in this recipe is the FAST detector. As the 
name suggests, it has been designed to be quick to compute:

   // vector of keypoints
   std::vector<cv::KeyPoint> keypoints;
   // Construction of the Fast feature detector object 
   cv::FastFeatureDetector fast(
           40); // threshold for detection  
   // feature point detection 
   fast.detect(image,keypoints);

Note that OpenCV also proposes a generic function to draw keypoints on an image:

   cv::drawKeypoints(image,    // original image
      keypoints,                // vector of keypoints
      image,                   // the output image
      cv::Scalar(255,255,255), // keypoint color
      cv::DrawMatchesFlags::DRAW_OVER_OUTIMG); //drawing flag
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By specifying the chosen drawing flag, the keypoints are drawn over the output image, thus 
producing the following result:

An interesting option is to specify a negative value for the keypoint color. In that case, a 
different random color will be selected for each drawn circle.

How it works...
As in the case of the Harris point, the FAST (Features from Accelerated Segment Test) feature 
algorithm derives from the definition of what constitutes a "corner". This time, this definition 
is based on the image intensity around a putative feature point. The decision to accept a 
keypoint is done by examining a circle of pixels centered at a candidate point. If an arc of 
contiguous points of length greater than 3/4 of the circle perimeter is found in which all pixels 
significantly differ from the intensity of the center point, then a keypoint is declared. 



Chapter 8

205

This is a simple test that can quickly be computed. Moreover, the algorithm uses an additional 
trick to further speed-up the process. Indeed, if we first test four points separated by 90o 
on the circle (for example, top, bottom, right, and left points) it can be easily shown that to 
satisfy the condition expressed above, at least three of these points must all be brighter 
or darker than the central pixel. If it is not the case, the point can immediately be rejected 
without inspecting additional points on the circumference. This is a very effective test since, in 
practice, most of the image points will be rejected by this simple 4-comparison test.

In principle, the radius of the circle of examined pixels should be a parameter of the method. 
However, it has been found that, in practice, a radius of 3 gives both good results and high 
efficiency. There are then 16 pixels to consider on the circumference of the circle as seen 
below: 

16 1 2
15 3

14 4
13 0 5
12 6

11 7
10 9 8

The four points used for the pretest are pixels 1, 5, 9, and 13.

As for Harris features, it is often better to perform non-maxima suppression on the corners 
found. Therefore, a corner strength measure needs to be defined. Several alternatives could 
have been considered, and the one that has been retained is the following. The strength of a 
corner is given by the sum of absolute difference between the central pixel and the pixels on 
the identified contiguous arc.

This algorithm results in very fast interest point detection and should then be used when 
speed is a concern. For example, this is often the case in visual tracking applications where 
several points must be tracked in a video sequence with high frame rates.

See also
The article by E. Rosten and T. Drummond, Machine learning for high-speed corner detection, 
in In European Conference on Computer Vision, pp. 430-443, 2006 that describes the FAST 
feature algorithm in detail.
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Detecting the scale-invariant SURF features
When trying to match features across different images, we are often faced with the problem 
of scale changes. That is, the different images to be analyzed can be taken at a different 
distance from the objects of interest, and consequently, these objects will be pictured 
at different sizes. If we try to match the same feature from two images using a fixed size 
neighborhood then, because of the scale change, their intensity patterns will not match.

To solve this problem, the concept of scale-invariant features has been introduced in 
computer vision. The main idea here is to have a scale factor associated with each of the 
detected feature points. In recent years, several scale-invariant features have been proposed 
and this recipe presents one of them, the SURF features. SURF stands for Speeded Up Robust 
Features, and as we will see, they are not only scale-invariant features, but they also offer the 
advantage of being computed very efficiently.

How to do it...
The OpenCV implementation of SURF features also use the cv::FeatureDetector 
interface. Therefore, the detection of these features is similar to what we demonstrated in the 
previous recipes of this chapter:

   // vector of keypoints
   std::vector<cv::KeyPoint> keypoints;
   // Construct the SURF feature detector object
   cv::SurfFeatureDetector surf(
       2500.); // threshold 
   // Detect the SURF features
   surf.detect(image,keypoints);

To draw these features, we again use the cv::drawKeypoints OpenCV function, but this 
time with another mask because we also want to show the scale factor associated with each 
feature:

   // Draw the keypoints with scale and orientation information
   cv::drawKeypoints(image,      // original image
      keypoints,               // vector of keypoints
      featureImage,            // the resulting image
      cv::Scalar(255,255,255),   // color of the points
      cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS); //flag
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The resulting image with the detected feature that is produced by the drawing function is:

As can be seen in the preceding screenshot, the size of the keypoint circles resulting from 
the use of the DRAW_RICH_KEYPOINTS flag is proportional to the computed scale of each 
feature. The SURF algorithm also associates an orientation with each feature to make them 
rotation-invariant. This orientation is illustrated by a radial line inside each drawn circle.
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If we take another picture of the same object but at a different scale, the feature detection 
results in:

By carefully observing the detected keypoints, it can be seen that the change in size of 
corresponding circles is proportional to the scale change. As an example, consider the bottom 
part of the upper-right window. In both images, a SURF feature has been detected at that 
location and the two corresponding circles (of different sizes) contain the same visual elements. 
Of course, this is not the case for all features, but as we will discover in the next chapter, the 
repeatability rate is sufficiently high to allow good matching between the two images. 
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How it works...
In Chapter 6, we learned that the image derivatives of an image can be estimated using 
Gaussian filters. Those filters make use of a σ parameter defining the aperture (size) of 
the kernel. As we saw, this σ corresponds to the variance of the Gaussian function used to 
construct the filter, and it then implicitly defines a scale at which the derivative is evaluated. 
Indeed, a filter having a larger σ value smoothed out the finer details of the image. This is why 
we can say that it operates at a coarser scale. 

Now, if we compute, for instance, the Laplacian of a given image point using Gaussian filters 
at different scales, then different values are obtained. Looking at the evolution of the filter 
response for different scale factors, we obtain a curve which eventually reaches a maximum 
value at some σ value. If we extract this maximum value for two images of the same object 
taken at two different scales, the ratio of these two σ maxima will correspond to the ratio of 
the scales at which the images were taken. This important observation is at the core of the 
scale-invariant feature extraction process. That is, scale-invariant features should be detected 
as local maxima in both the spatial space (in the image) and the scale space (as obtained 
from the derivative filters applied at different scales).

SURF implements this idea by proceeding as follows. First, to detect the features, the Hessian 
matrix is computed at each pixel. This matrix measures the local curvature of a function and 
is defined as:

The determinant of this matrix gives the strength of this curvature. The idea is therefore 
to define corners as image points with high local curvature (that is, high variation in more 
than one direction). Since it is composed of second-order derivatives, this matrix can be 
computed using Laplacian Gaussian kernels of different scale σ. This Hessian then becomes 
a function of three variables: H(x,y,σ). A scale-invariant feature is therefore declared when 
the determinant of this Hessian reaches a local maximum in both spatial and scale space 
(that is, 3x3x3 non-maxima suppression needs to be performed). However, this determinant 
must have a minimum value as specified by the first parameter in the constructor of the 
cv::SurfFeatureDetector class.
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The calculation of all of these derivatives at different scales is computationally costly. The 
objective of the SURF algorithm is to make this process as efficient as possible. This is 
achieved by using approximated Gaussian kernels involving only few integer additions. These 
have the following structure:

The kernel on the left is used to estimate the mixed second derivatives, while the right one 
estimates the second derivative in the vertical direction. A rotated version of this second 
kernel estimates the second derivative in the horizontal direction. The smallest kernels have a 
size of 9x9 pixels corresponding to σ≈1.2. Kernels of increasing size are successively applied. 
The exact amount of filter that is applied can be specified by additional parameters of the 
SURF class. By default, 12 different sizes of kernels are used (going up to size 99x99). Note 
that the fact that integral images are used guarantees that the sum inside each lob can be 
computed by using only 3 additions independently of the size of the filter.

Once the local maxima is identified, the precise position of each detected interest point is 
obtained through interpolation in both scale and image space. The result is then a set of 
feature points localized at sub-pixel accuracy and to which is associated a scale value.

There's more... 
The SURF algorithm has been developed as an efficient variant of another well-known scale-
invariant feature detector called SIFT (for Scale-Invariant Feature Transform). SIFT also detects 
features as local maxima in image and scale space, but uses the Laplacian filter response 
instead of the Hessian determinant. This Laplacian at different scales is computed using 
difference of Gaussian filters. OpenCV has a wrapper class that detects these features and it 
is called in a way similar to the SURF features:

   // vector of keypoints
   std::vector<cv::KeyPoint> keypoints;
   // Construct the SURF feature detector object
   cv::SiftFeatureDetector sift(
      0.03,  // feature threshold
      10.);  // threshold to reduce
              // sensitivity to lines
   // Detect the SURF features
   sift.detect(image,keypoints);
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The results are also very similar: 

However, since the computation of the feature point is based on floating-point kernels, it is 
generally considered to be more accurate in terms of feature localization in space and scale. 
Although, for the same reason, it is also more computationally expensive.

See also
The article SURF: Speeded Up Robust Features by H. Bay, A. Ess, T. Tuytelaars and L. Van 
Gool in Computer Vision and Image Understanding, vol. 110, No. 3, pp. 346--359, 2008 that 
describes the SURF features.

The pioneer work by D. Lowe, Distinctive Image Features from Scale Invariant Features in 
International Journal of Computer Vision, Vol. 60, No. 2, 2004, pp. 91-110, describing the 
SIFT algorithm.



Detecting and Matching Interest Points

212

Describing SURF features
The SURF algorithm, discussed in the preceding recipe, defines a location and a scale for 
each of the detected features. This scale factor can be used to define the size of a window 
around the feature point such that the defined neighborhood would include the same visual 
information no matter what scale the object to which the feature belongs has been pictured. 
In addition, the visual information included in this neighborhood can be used to characterize 
the feature point to make it distinguishable from the others. 

This recipe will show you how to describe a feature point's neighborhood using compact 
descriptors. In feature matching, feature descriptors are usually N-dimensional vectors that 
describe a feature point, ideally in a way that is invariant to change in lighting and to small 
perspective deformations. In addition, good descriptors can be compared using a simple 
distance metric (for example, Euclidean distance). Therefore, they constitute a powerful tool to 
use in feature matching algorithms.

How to do it...
The following code is a pattern similar to the one used for feature detection. OpenCV 2 
proposes a general class which defines a common interface for the extraction of the various 
feature point descriptors that are available. To follow up on the preceding recipe, here we use 
the one proposed in the SURF algorithm. Based on the std::vector of cv::Keypoint 
instances obtained from feature detection, the descriptors are obtained as follows:

   // Construction of the SURF descriptor extractor 
   cv::SurfDescriptorExtractor surfDesc;
   // Extraction of the SURF descriptors
   cv::Mat descriptors1;
   surfDesc.compute(image1,keypoints1,descriptors1);

The result is a matrix (that is, a cv::Mat instance) which will contain as many rows as 
the number of elements in the keypoint vector. Each of these rows is an N-dimensional 
descriptor vector. In the case of the SURF descriptor, by default, it has a size of 64. This vector 
characterizes the intensity pattern surrounding a feature point. The more similar the two 
feature points, the closer their descriptor vectors should be.

These descriptors are particularly useful in image matching. Suppose, for example, that two 
images of the same scene are to be matched. This can be accomplished by first detecting 
features on each image, and then extracting the descriptors of these features. Each feature 
descriptor vector in the first image is then compared to all feature descriptors in the second 
image. The pair that obtains the best score (that is, the lowest distance between the two 
vectors) is then kept as the best match for that feature. This process is repeated for all 
features in the first image. This is the most basic scheme that has been implemented in 
OpenCV as the cv::BruteForceMatcher. It is used as follows:
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   // Construction of the matcher 
   cv::BruteForceMatcher<cv::L2<float>> matcher;
   // Match the two image descriptors
   std::vector<cv::DMatch> matches;
   matcher.match(descriptors1,descriptors2, matches);

This class is a subclass of the cv::DescriptorMatcher class defining the common 
interface for different matching strategies. The result is a vector of cv::DMatch instances 
which is the structure used to represent a match pair. Essentially, the cv::DMatch data 
structure contains a first index referring to an element in the first vector of descriptors, and 
a second index referring to the matching feature in the second vector of descriptors. It also 
contains a real value representing the distance between the two matched descriptors. This 
distance value is used in the definition of operator< comparing two cv::DMatch instances.

In order to visualize the result of the matching operation, OpenCV offers a drawing function 
that produces an image made of the concatenation of the two input images and on which 
matching points are linked by a line. In the preceding recipe, we obtained 340 SURF points 
for the first image. The brute-force approach will then produce the same number of matches. 
Drawing all of these lines on an image would make the results unreadable. Therefore, we will 
only display the 25 matches with the lowest distance. This is easily accomplished by using the 
std::nth_element that positions the nth element in sorted order at the nth position, with 
all elements smaller placed before this element. Once this is done, the vector is simply purged 
of its remaining elements:

   std::nth_element(matches.begin(),    // initial position
       matches.begin()+24, // position of the sorted element
       matches.end());     // end position
   // remove all elements after the 25th
   matches.erase(matches.begin()+25, matches.end()); 

Recall that the preceding code works because the operator< has been defined in the 
cv::DMatch class. These 25 matches can then be visualized through the following call:

   cv::Mat imageMatches;
   cv::drawMatches(
     image1,keypoints1, // 1st image and its keypoints
     image2,keypoints2, // 2nd image and its keypoints
     matches,            // the matches
     imageMatches,      // the image produced
     cv::Scalar(255,255,255)); // color of the lines
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That produces the following image:

As can be seen, most of these matches correctly link a point on the left with its corresponding 
image point on the right. One can notice some errors due to the fact that the observed 
building has a symmetrical façade which makes some of the local matches ambiguous (the 
topmost match is one example of wrongly matched features). 

How it works...
Good feature descriptors must be invariant to small changes in illumination, in viewpoint, and 
to the presence of image noise. Therefore, they are often based on local intensity differences. 
This is the case of the SURF descriptors which apply the following simple kernels inside a 
larger neighborhood around a keypoint:
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The first one simply measures the local intensity difference in the horizontal direction 
(designated as dx), and the second measures this difference in the vertical direction (designated 
as dy). The size of the neighborhood used to extract the descriptor vector is defined as 20 times 
the scale factor of the feature (that is, 20σ). This square region is then split into 4x4 smaller 
square sub-regions. For each sub-region, the kernel responses dx and dy are computed at 5x5 
regularly spaced locations (the kernel size being 2σ). All of these responses are summed as 
follows in order to extract four descriptor values for each subregion:

Since there are 4x4=16 sub-regions, we have a total of 64 descriptor values. Note that in 
order to give more importance to the neighboring pixel values closer to the keypoint, the 
kernel responses are weighted by a Gaussian centered at the keypoint location (with a σ=3.3). 

The dx and dy responses are also used to estimate the orientation of the feature. These 
values are computed (with a kernel size of 4σ) within a circular neighborhood of radius 6σ 
at locations regularly spaced by intervals of σ. For a given orientation, the responses inside 
a certain angular interval (π/3) are summed, and the orientation giving the longest vector is 
defined as the dominant orientation.

With the SURF features and descriptors, scale-invariant matching can be achieved. Here  
is an example showing the 25 best matches in a match pair containing two images at 
different scales:
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There's more... 
The SIFT algorithm also defines its own descriptor. It is based on the gradient magnitude and 
orientation computed at the scale of the considered keypoint. As for the SURF descriptors, 
the scaled neighborhood of the keypoint is divided into 4x4 sub-regions. For each of these 
regions, an 8-bin histogram of gradient orientations (weighted by their magnitude and by a 
global Gaussian window centered at the keypoint) is built. Therefore, the descriptor vector is 
made of the entries of these histograms. There are 4x4 regions and 8 bins per histogram, 
which leads to a descriptor of length 128.

As for feature detection, the difference between SURF and SIFT descriptors is mainly speed 
and accuracy. Since SURF descriptors are mostly based on intensity differences, they are 
faster to compute. However, SIFT descriptors are generally considered to be more accurate in 
finding the right matching feature.

See also
The previous recipe for more on the SURF and SIFT features.



9
Estimating Projective 

Relations in Images

In this chapter, we will cover:

ff Calibrating a camera

ff Computing the fundamental matrix of an image pair

ff Matching images using random sample consensus

ff Computing a homography between two images

Introduction
Images are generally produced using a digital camera that captures a scene by projecting 
light onto an image sensor going through its lens. The fact that an image is formed through 
the projection of a 3D scene onto a 2D plane imposes the existence of important relations 
between a scene and its image, and between different images of the same scene. Projective 
geometry is the tool that is used to describe and characterize, in mathematical terms, 
the process of image formation. In this chapter, you will learn some of the fundamental 
projective relations that exist in multi-view imagery and how these can be used in computer 
vision programming. We will also pursue the discussion we initiated in the final recipe of the 
previous chapter about two-view feature matching. You will learn new strategies to improve 
the matching results. But before we start the recipes, let's explore the basic concepts related 
to scene projection and image formation.
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Image formation
Fundamentally, the process used to produce images has not changed since the beginning 
of photography. The light coming from an observed scene is captured by a camera through a 
frontal aperture and the captured light rays hit an image plane (or image sensor) located on 
the back of the camera. Additionally, a lens is used to concentrate the rays coming from the 
different scene elements. This process is illustrated by the following figure:

Here, do is the distance from the lens to the observed object, di is the distance from the lens 
to the image plane, and f is the focal length of the lens. These quantities are related by the 
so-called thin lens equation:

In computer vision, this camera model can be simplified in a number of ways. First, we can 
neglect the effect of the lens by considering a camera with an infinitesimal aperture since, in 
theory, this does not change the image. Only the central ray is therefore considered. Second, 
since most of the time we have do>>di, we can assume that the image plane is located at 
the focal distance. Finally, we can notice from the geometry of the system, that the image 
on the plane is inverted. We can obtain an identical but upright image by simply positioning 
the image plane in front of the lens. Obviously, this is not physically feasible, but from a 
mathematical point of view, this is completely equivalent. This simplified model is often 
referred to as the pin-hole camera model and it is represented as follows:
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From this model, and using the law of similar triangles, we can easily derive the basic 
projective equation:

The size (hi) of the image of an object (of height ho) is therefore inversely proportional to its 
distance (do) from the camera which is naturally true. This relation allows the position of the 
image of a 3D scene point to be predicted onto the image plane of a camera.

Calibrating a camera
From the introduction of this chapter, we learned that the essential parameters of a camera 
under the pin-hole model are its focal length and the size of the image plane (which defines 
the field of view of the camera). Also, since we are dealing with digital images, the number 
of pixels on the image plane is another important characteristic of a camera. Finally, in order 
to be able to compute the position of an image's scene point in pixel coordinates, we need 
one additional piece of information. Considering the line coming from the focal point that is 
orthogonal to the image plane, we need to know at which pixel position this line pierces the 
image plane. This point is called the principal point. It could be logical to assume that this 
principal point is at the center of the image plane, but in practice, this one might be off by few 
pixels depending at which precision the camera has been manufactured. 

Camera calibration is the process by which the different camera parameters are obtained. 
One can obviously use the specifications provided by the camera manufacturer, but for 
some tasks, such as 3D reconstruction, these specifications are not accurate enough. 
Camera calibration will proceed by showing known patterns to the camera and analyzing the 
obtained images. An optimization process will then determine the optimal parameter values 
that explain the observations. This is a complex process but made easy by the availability of 
OpenCV calibration functions.
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How to do it...
To calibrate a camera, the idea is show to this camera a set of scene points for which their 
3D position is known. You must then determine where on the image these points project. 
Obviously, for accurate results, we need to observe several of these points. One way to 
achieve this would be to take one picture of a scene with many known 3D points. A more 
convenient way would be to take several images from different viewpoints of a set of some 3D 
points. This approach is simpler but requires computing the position of each camera view, in 
addition to the computation of the internal camera parameters which fortunately is feasible.

OpenCV proposes to use a chessboard pattern to generate the set of 3D scene points 
required for calibration. This pattern creates points at the corners of each square, and since 
this pattern is flat, we can freely assume that the board is located at Z=0 with the X and Y 
axes well aligned with the grid. In this case, the calibration process simply consists of showing 
the chessboard pattern to the camera from different viewpoints. Here is one example of a 
calibration pattern image:

The nice thing is that OpenCV has a function that automatically detects the corners of this 
chessboard pattern. You simply provide an image and the size of the chessboard used 
(number of vertical and horizontal inner corner points). The function will return the position of 
these chessboard corners on the image. If the function fails to find the pattern, then it simply 
returns false:

    // output vectors of image points
    std::vector<cv::Point2f> imageCorners;
    // number of corners on the chessboard
    cv::Size boardSize(6,4);
    // Get the chessboard corners
    bool found = cv::findChessboardCorners(image, 
                                 boardSize, imageCorners);

Note that this function accepts additional parameters if one needs to tune the algorithm, 
which are not discussed here. There is also a function that draws the detected corners on the 
chessboard image with lines connecting them in sequence:
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        //Draw the corners
        cv::drawChessboardCorners(image, 
                    boardSize, imageCorners, 
                    found); // corners have been found

The image obtained is seen here:

The lines connecting the points shows the order in which the points are listed in the vector 
of detected points. Now to calibrate the camera, we need to input a set of such image points 
together with the coordinate of the corresponding 3D points. Let's encapsulate the calibration 
process in a CameraCalibrator class:

class CameraCalibrator {

    // input points:
    // the points in world coordinates
    std::vector<std::vector<cv::Point3f>> objectPoints;
    // the point positions in pixels
    std::vector<std::vector<cv::Point2f>> imagePoints;
    // output Matrices
    cv::Mat cameraMatrix;
    cv::Mat distCoeffs;
   // flag to specify how calibration is done
   int flag;
   // used in image undistortion 
    cv::Mat map1,map2; 
   bool mustInitUndistort;

  public:
   CameraCalibrator() : flag(0), mustInitUndistort(true) {};
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As mentioned previously, the 3D coordinates of the points on the chessboard pattern can be 
easily determined if we conveniently place the reference frame on the board. The method that 
accomplishes this takes a vector of the chessboard image filename as input:

// Open chessboard images and extract corner points
int CameraCalibrator::addChessboardPoints(
         const std::vector<std::string>& filelist, 
         cv::Size & boardSize) {

   // the points on the chessboard
    std::vector<cv::Point2f> imageCorners;
    std::vector<cv::Point3f> objectCorners;

   // 3D Scene Points:
   // Initialize the chessboard corners 
   // in the chessboard reference frame
   // The corners are at 3D location (X,Y,Z)= (i,j,0)
   for (int i=0; i<boardSize.height; i++) {
      for (int j=0; j<boardSize.width; j++) {

         objectCorners.push_back(cv::Point3f(i, j, 0.0f));
      }
    }

    // 2D Image points:
    cv::Mat image; // to contain chessboard image
    int successes = 0;
    // for all viewpoints
    for (int i=0; i<filelist.size(); i++) {

        // Open the image
        image = cv::imread(filelist[i],0);

        // Get the chessboard corners
        bool found = cv::findChessboardCorners(
                        image, boardSize, imageCorners);

        // Get subpixel accuracy on the corners
        cv::cornerSubPix(image, imageCorners, 
                  cv::Size(5,5), 
                  cv::Size(-1,-1), 
         cv::TermCriteria(cv::TermCriteria::MAX_ITER +
                          cv::TermCriteria::EPS, 
             30,      // max number of iterations 
             0.1));  // min accuracy

        //If we have a good board, add it to our data
        if (imageCorners.size() == boardSize.area()) {

            // Add image and scene points from one view
            addPoints(imageCorners, objectCorners);
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            successes++;
        }

    }

   return successes;
}

The first loop inputs the 3D coordinates of the chessboard, which are specified in an 
arbitrary square size unit here. The corresponding image points are the ones provided by the 
cv::findChessboardCorners function. This is done for all available viewpoints. Moreover, 
in order to obtain a more accurate image point location, the function cv::cornerSubPix 
can be used and as the name suggests, the image points will then be localized at sub-pixel 
accuracy. The termination criterion that is specified by the cv::TermCriteria object defines 
a maximum number of iterations and a minimum accuracy in sub-pixel coordinates. The first of 
these two conditions that is reached will stop the corner refinement process. 

When a set of chessboard corners has been successfully detected, these points are added to 
our vector of image and scene points:

// Add scene points and corresponding image points
void CameraCalibrator::addPoints(const std::vector<cv::Point2f>& 
imageCorners, const std::vector<cv::Point3f>& objectCorners) {

   // 2D image points from one view
   imagePoints.push_back(imageCorners);          
   // corresponding 3D scene points
   objectPoints.push_back(objectCorners);
}

The vectors contains std::vector instances. Indeed, each vector element being a vector of 
points from one view.

Once a sufficient number of chessboard images have been processed (and consequently 
a large number of 3D scene point/2D image point correspondences are available), we can 
initiate the computation of the calibration parameters:

// Calibrate the camera
// returns the re-projection error
double CameraCalibrator::calibrate(cv::Size &imageSize)
{
   // undistorter must be reinitialized
   mustInitUndistort= true;

   //Output rotations and translations
    std::vector<cv::Mat> rvecs, tvecs;

   // start calibration
   return 
     calibrateCamera(objectPoints, // the 3D points
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               imagePoints,  // the image points
               imageSize,    // image size
               cameraMatrix, // output camera matrix
               distCoeffs,   // output distortion matrix
               rvecs, tvecs, // Rs, Ts 
               flag);        // set options
}

In practice, 10 to 20 chessboard images are sufficient, but these must be taken from different 
viewpoints at different depths. The two important outputs of this function are the camera 
matrix and the distortion parameters. The camera matrix will be described in the next section. 
For now, let's consider the distortion parameters. So far, we have mentioned that with the 
pin-hole camera model, we can neglect the effect of the lens. But this is only possible if 
the lens used to capture an image does not introduce too important optical distortions. 
Unfortunately, this is often the case with lenses of lower quality or with lenses having a very 
short focal length. You may have already noticed that in the image we used for our example, 
the chessboard pattern shown is clearly distorted. The edges of the rectangular board being 
curved in the image. It can also be noticed that this distortion becomes more important as 
we move far from the center of the image. This is a typical distortion observed with fish-eye 
lens and it is called radial distortion. The lenses that are used in common digital cameras 
do not exhibit such a high degree of distortion, but in the case of the lens used here, these 
distortions cannot certainly be ignored. 

It is possible to compensate for these deformations by introducing an appropriate model. The 
idea is to represent the distortions induced by a lens by a set of mathematical equations. Once 
established, these equations can then be reverted in order to undo the distortions visible on the 
image. Fortunately, the exact parameters of the transformation that will correct the distortions 
can be obtained together with the other camera parameter during the calibration phase. Once 
this is done, any image from the newly calibrated camera can be undistorted:

// remove distortion in an image (after calibration)
cv::Mat CameraCalibrator::remap(const cv::Mat &image) {

   cv::Mat undistorted;

   if (mustInitUndistort) { // called once per calibration
    

    cv::initUndistortRectifyMap(
      cameraMatrix,  // computed camera matrix
      distCoeffs,    // computed distortion matrix
      cv::Mat(),     // optional rectification (none) 
      cv::Mat(),     // camera matrix to generate undistorted
            image.size(),  // size of undistorted
            CV_32FC1,      // type of output map
            map1, map2);   // the x and y mapping functions

    mustInitUndistort= false;
   }
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   // Apply mapping functions
   cv::remap(image, undistorted, map1, map2, 
      cv::INTER_LINEAR); // interpolation type

   return undistorted;
}

Which results in the following image:

As you can see, once the image is undistorted, we obtain a regular perspective image.

How it works...
In order to explain the result of the calibration, we need to go back to the figure in the 
introduction which describes the pin-hole camera model. More specifically, we want to 
demonstrate the relation between a point in 3D at position (X,Y,Z) and its image (x,y) on a 
camera specified in pixel coordinates. Let's redraw this figure by adding a reference frame that 
we position at the center of the projection as seen here:
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Note that the Y-axis is pointing downward to get a coordinate system compatible with the 
usual convention that places the image origin at the upper-left corner. We learned previously 
that the point (X,Y,Z) will be projected onto the image plane at (fX/Z,fY/Z). Now, if we want to 
translate this coordinate into pixels, we need to divide the 2D image position by, respectively, 
the pixel width (px) and height (py). We notice that by dividing the focal length f given in world 
units (most often meters or millimeters) by px, then we obtain the focal length expressed in 
(horizontal) pixels. Let's then define this term as fx. Similarly, fy =f/py is defined as the focal 
length expressed in vertical pixel unit. The complete projective equation is therefore:

Recall that (u0,v0) is the principal point that is added to the result in order to move the 
origin to the upper-left corner of the image. These equations can be rewritten in matrix form 
through the introduction of homogeneous coordinates in which 2D points are represented by 
3-vectors, and 3D points represented by 4-vectors (the extra coordinate is simply an arbitrary 
scale factor that need to be removed when a 2D coordinate needs to be extracted from a 
homogeneous 3-vector). Here is the projective equation rewritten:

The second matrix is a simple projection matrix. The first matrix includes all of the camera 
parameters which are called the intrinsic parameters of the camera. This 3x3 matrix is one 
of the output matrices returned by the cv::calibrateCamera function. There is also a 
function called cv::calibrationMatrixValues that returns the value of the intrinsic 
parameters given a calibration matrix. 

More generally, when the reference frame is not at the projection center of the camera, we 
will need to add a rotation (a 3x3 matrix) and a translation vector (3x1 matrix). These two 
matrices describe the rigid transformation that must be applied to the 3D points in order 
to bring them back to the camera reference frame. Therefore, we can rewrite the projection 
equation in its most general form:
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Remember that in our calibration example, the reference frame was placed on the 
chessboard. Therefore, there is a rigid transformation (rotation and translation) 
that must be computed for each view. These are in the output parameter list of the 
cv::calibrateCamera function. The rotation and translation components are often called 
the extrinsic parameters of the calibration and they are different for each view. The intrinsic 
parameters remain constant for a given camera/lens system. The intrinsic parameters of our 
test camera obtained from a calibration based on 20 chessboard images are fx=167, fy=178, 
u0=156, v0=119. These results are obtained by cv::calibrateCamera through an 
optimization process aimed at finding the intrinsic and extrinsic parameters that will minimize 
the difference between the predicted image point position, as computed from the projection 
of the 3D scene points, and the actual image point position, as observed on the image. The 
sum of this difference for all points specified during the calibration is called the re-projection 
error.

To correct the distortion, OpenCV uses a polynomial function that is applied to the image point 
in order to move them at their undistorted position. By default, 5 coefficients are used; a model 
made of 8 coefficients is also available. Once these coefficients are obtained, it is possible to 
compute 2 mapping functions (one for the x coordinate and one for the y) that will give the new 
undistorted position of an image point on a distorted image. This is computed by the function 
cv::initUndistortRectifyMap and the function cv::remap remaps all of the points of 
an input image to a new image. Note that because of the non-linear transformation, some pixels 
of the input image now fall outside the boundary of the output image. You can expand the size 
of the output image to compensate for this loss of pixels, but you will now obtain output pixels 
that have no values in the input image (they will then be displayed as black pixels). 

There's more...
When a good estimate of the camera intrinsic parameters are known, it could be 
advantageous to input them to the cv::calibrateCamera function. They will then be 
used as initial values in the optimization process. To do so, you just need to add the flag 
CV_CALIB_USE_INTRINSIC_GUESS and input these values in the calibration matrix 
parameter. It is also possible to impose a fixed value for the principal point (CV_CALIB_
FIX_PRINCIPAL_POINT), which can often be assumed to be the central pixel. You can also 
impose a fixed ratio for the focal lengths fx and fy (CV_CALIB_FIX_RATIO) in which case you 
assume pixels of square shape. 
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Computing the fundamental matrix of 
an image pair

The previous recipe showed you how to recover the projective equation of a single camera. In 
this recipe, we will explore the projective relation that exists between two images viewing the 
same scene. These two images could have been obtained by moving a camera at two different 
locations taking pictures from two viewpoints, or by using two cameras, each of them taking a 
different picture of the scene. When these two cameras are separated by a rigid baseline, we 
use the term stereovision. 

Getting ready
Let's now consider two cameras observing a given scene point as seen here: 

We learned that we can find the image x of a 3D point X by tracing a line joining this 3D point 
with the camera's center. Conversely, the image point that we observe at position x can be 
located anywhere on this line in 3D space. This implies that if we want to find the corresponding 
point of a given image point in another image, we need to search along the projection of this line 
onto the second image plane. This imaginary line is called the epipolar line of point x. It defines 
a fundamental constraint that must satisfy two corresponding points, that is, the match of a 
given point must lie on the epipolar line of this point in the other view. The exact orientation of 
this epipolar line depends on the respective position of the two cameras. In fact, the position of 
the epipolar lines characterizes the geometry of a two-view system. 

Another observation that can be made from the geometry of this two-view system is that all 
of the epipolar lines pass through the same point. This point corresponds to the projection of 
one camera center onto the other camera. This special point is called an epipole. 

Mathematically, it can be shown that the relation between an image point and its 
corresponding epipolar line can be expressed using a 3x3 matrix such as the following: 
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In projective geometry, a 2D line is also represented by a 3-vector. It corresponds to the set of 
2D points (x',y') satisfying the equation l1'x'+ l2'y'+ l3'=0 (the prime superscript denotes that 
this line belongs to the second image). Consequently, the matrix F, called the fundamental 
matrix, maps a 2D image point in one view to an epipolar line in the other view.

How to do it...
Estimating the fundamental matrix of an image pair can be done by solving a set of equations 
which involve a certain number of known matched points between the two images. The 
minimum number of such matches is seven. Using the image pair from the previous chapter, 
we can manually selected seven good matches (seen in the following screenshot). These will 
be used to compute the fundamental matrix using the cv::findFundementalMat OpenCV 
function. 
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If we have the image points in each image as cv::keypoint instance, they first need to 
be converted into cv::Point2f in order to be used with cv::findFundementalMat. An 
OpenCV function can be used to this end:

   // Convert keypoints into Point2f
   std::vector<cv::Point2f> selPoints1, selPoints2;
   cv::KeyPoint::convert(keypoints1,selPoints1,pointIndexes1);
   cv::KeyPoint::convert(keypoints2,selPoints2,pointIndexes2);

The two vectors selPoints1 and selPoints2 contain the corresponding points in the two 
images. keypoints1 and keypoints2 are the selected Keypoint instances as detected in 
the previous chapter. The call to the cv::findFundementalMat function is then as follows:

   // Compute F matrix from 7 matches
   cv::Mat fundemental= cv::findFundamentalMat(
      cv::Mat(selPoints1), // points in first image
      cv::Mat(selPoints2), // points in second image
      CV_FM_7POINT);       // 7-point method

One way to visually verify the validity of the fundamental matrix is to draw the epipolar lines 
of some selected points. Another OpenCV function allows the epipolar lines of a given set of 
points to be computed. Once these are computed, they can be drawn using the cv::line 
function. The following lines of code accomplish these two steps (that is, computing and 
drawing epipolar lines in the right image from the points in the left):

   // draw the left points corresponding epipolar 
   // lines in right image 
   std::vector<cv::Vec3f> lines1; 
   cv::computeCorrespondEpilines(
      cv::Mat(selPoints1), // image points 
      1,                   // in image 1 (can also be 2)
      fundemental, // F matrix
      lines1);     // vector of epipolar lines

   // for all epipolar lines
   for (vector<cv::Vec3f>::const_iterator it= lines1.begin();
       it!=lines1.end(); ++it) {

          // draw the line between first and last column
          cv::line(image2,
            cv::Point(0,-(*it)[2]/(*it)[1]),
            cv::Point(image2.cols,-((*it)[2]+
                      (*it)[0]*image2.cols)/(*it)[1]),
                      cv::Scalar(255,255,255));
   }
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The result is then seen in the following screenshot:

Remember that the epipole is at the intersection point of all epipolar lines, and it is the 
projection of the other camera center. This epipole is visible on the preceding image. Often, 
the epipolar lines intersect outside the image boundaries. It is at the location where the first 
camera would be visible if the two images were taken at the same instant. Observe the image 
pair and take the time to convince yourself that this indeed makes sense.
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How it works...
We explained previously that the fundamental matrix gives, for a point in one image, the 
equation of the line on which its corresponding point in the other view should be found. If the 
corresponding point of a point p (expressed in homogenous coordinates) is p', and if F is the 
fundamental matrix between the two views, then since p' lies on the epipolar line Fp, we have: 

This equation expresses the relation between two corresponding points and is known as the 
epipolar constraint. Using this equation it becomes possible to estimate the entries of the 
matrix using known matches. Since the entries of the F matrix are given up to a scale factor, 
there are only eight entries to estimate (the ninth can be arbitrarily set to 1). Each match 
contributes one equation. Therefore, with eight known matches, the matrix can be  
fully estimated by solving the resulting set of linear equations. This is what is done when  
you use the CV_FM_8POINT flag with the cv::findFundamentalMat function. Note that, 
in this case, it is possible (and preferable) to input more than eight matches. The obtained  
over-determined system of linear equations can then be solved in a mean-square sense.

To estimate the fundamental matrix, an additional constraint can also be exploited. 
Mathematically, the F matrix maps a 2D point into a 1D pencil of lines (that is, lines 
intersecting at a common point). The fact that all of these epipolar lines pass by this unique 
point (the epipole) imposes a constraint on the matrix. This constraint reduces, the number 
of matches required to estimate the fundamental matrix to seven. Unfortunately, in this case, 
the set of equations becomes non-linear with up to three possible solutions. The seven-match 
solution of the F matrix estimation can be invoked in OpenCV by using the CV_FM_7POINT 
flag. This is what we did in the example of the preceding section.

Lastly, we should mention that the choice of an appropriate set of matches in the image is 
important to obtain an accurate estimation of the fundamental matrix. In general, the matches 
should be well distributed across the image and include points at different depth in the scene. 
Otherwise, the solution will become unstable or degenerate configurations can result.

See also
The book by R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 
Cambridge University Press, 2004 is the most complete reference on projective geometry in 
computer vision.

The next recipe which presents an additional flag that can be used with the OpenCV 
fundamental matrix estimation.
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Matching images using random sample 
consensus

When two cameras observe the same scene, they see the same elements but under different 
viewpoints. We already studied the feature point matching problem in the previous chapter. 
In this recipe, we come back to this problem and we will learn how to exploit the epipolar 
constraint between two views to match image features more reliably.

The principle we will follow is simple: when we match feature points between two images, we 
only accept those matches that fall onto the corresponding epipolar lines. However, to be able 
to check this condition, the fundamental matrix must be known, and we need good matches 
to estimate this matrix. This seems to be a chicken-and-egg problem. We propose in this 
recipe a solution in which the fundamental matrix and a set of good matches will be jointly 
computed.

How to do it...
The objective is to be able to obtain a set of good matches between two views. Therefore, 
all found feature point correspondences will be validated using the epipolar constraint 
introduced in the previous recipe. We first define a class which will encapsulate the different 
elements of the solution that will be proposed:

class RobustMatcher {

  private:

     // pointer to the feature point detector object
     cv::Ptr<cv::FeatureDetector> detector;
     // pointer to the feature descriptor extractor object
     cv::Ptr<cv::DescriptorExtractor> extractor;
     float ratio; // max ratio between 1st and 2nd NN
     bool refineF; // if true will refine the F matrix
     double distance; // min distance to epipolar
     double confidence; // confidence level (probability)

  public:

     RobustMatcher() : ratio(0.65f), refineF(true),
                       confidence(0.99), distance(3.0) {     

        // SURF is the default feature
        detector= new cv::SurfFeatureDetector();
        extractor= new cv::SurfDescriptorExtractor();
     }
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Note how we used the generic cv::FeatureDetector and cv::DescriptorExtractor 
interfaces so that a user can provide any specific implementation. The SURF features and 
descriptors are used here by default, but others can be specified using the appropriate setter 
methods:

     // Set the feature detector
     void setFeatureDetector(
            cv::Ptr<cv::FeatureDetector>& detect) {

        detector= detect;
     }

     // Set the descriptor extractor
     void setDescriptorExtractor(
            cv::Ptr<cv::DescriptorExtractor>& desc) {

        extractor= desc;
     }

The main method is our match method that returns matches, detected keypoints, and the 
estimated fundamental matrix. The method proceeds in five distinct steps (explicitly identified 
in the comments of the following code) that we will now explore:

     // Match feature points using symmetry test and RANSAC
     // returns fundemental matrix
     cv::Mat match(cv::Mat& image1, 
                   cv::Mat& image2, // input images
        // output matches and keypoints 
        std::vector<cv::DMatch>& matches, 
        std::vector<cv::KeyPoint>& keypoints1,   
        std::vector<cv::KeyPoint>& keypoints2) {

      // 1a. Detection of the SURF features
      detector->detect(image1,keypoints1);
      detector->detect(image2,keypoints2);

      // 1b. Extraction of the SURF descriptors
      cv::Mat descriptors1, descriptors2;
      extractor->compute(image1,keypoints1,descriptors1);
      extractor->compute(image2,keypoints2,descriptors2);

      // 2. Match the two image descriptors

      // Construction of the matcher 
      cv::BruteForceMatcher<cv::L2<float>> matcher;

      // from image 1 to image 2
      // based on k nearest neighbours (with k=2)
      std::vector<std::vector<cv::DMatch>> matches1;
      matcher.knnMatch(descriptors1,descriptors2, 
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         matches1, // vector of matches (up to 2 per entry) 
         2);        // return 2 nearest neighbours

      // from image 2 to image 1
      // based on k nearest neighbours (with k=2)
      std::vector<std::vector<cv::DMatch>> matches2;
      matcher.knnMatch(descriptors2,descriptors1, 
         matches2, // vector of matches (up to 2 per entry) 
         2);        // return 2 nearest neighbours

      // 3. Remove matches for which NN ratio is 
      // > than threshold

      // clean image 1 -> image 2 matches
      int removed= ratioTest(matches1);
      // clean image 2 -> image 1 matches
      removed= ratioTest(matches2);

      // 4. Remove non-symmetrical matches
       std::vector<cv::DMatch> symMatches;
      symmetryTest(matches1,matches2,symMatches);

      // 5. Validate matches using RANSAC
      cv::Mat fundemental= ransacTest(symMatches, 
                  keypoints1, keypoints2, matches);

      // return the found fundemental matrix
      return fundemental;
   }

The first step is simply detecting the feature point and computing their descriptors. Next, we 
proceed to feature matching using the cv::BruteForceMatcher class as we did in the 
previous chapter. However, this time we find the two best matching points for each feature 
(and not only the best one as we did in the previous recipe). This is accomplished by the 
cv::BruteForceMatcher::knnMatch method (with k=2). Moreover, we perform this 
matching in two directions, that is, for each point in the first image we find the two best 
matches in the second image, and then we do the same thing for the feature points of the 
second image, finding their two best matches in the first image. 

Therefore, for each feature point, we have two candidate matches in the other view. These are 
the two best ones based on the distance between their descriptors. If this measured distance 
is very low for the best match, and much larger for the second best match, we can safely 
accept the first match as a good one since it is unambiguously the best choice. Reciprocally, 
if the two best matches are relatively close in distance, then there exists a possibility that we 
make an error if we select one or the other. In this case, we should reject both matches. Here, 
we perform this test in step 3 by verifying that the ratio of the distance of the best match over 
the distance of the second best match is not greater than a given threshold:
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     // Clear matches for which NN ratio is > than threshold
     // return the number of removed points 
     // (corresponding entries being cleared, 
     // i.e. size will be 0)
     int ratioTest(std::vector<std::vector<cv::DMatch>>
                                                &matches) {

      int removed=0;

        // for all matches
      for (std::vector<std::vector<cv::DMatch>>::iterator 
              matchIterator= matches.begin();
           matchIterator!= matches.end(); ++matchIterator) {

             // if 2 NN has been identified
             if (matchIterator->size() > 1) {

                // check distance ratio
                if ((*matchIterator)[0].distance/
                    (*matchIterator)[1].distance > ratio) {

                   matchIterator->clear(); // remove match
                   removed++;
                }

             } else { // does not have 2 neighbours

                matchIterator->clear(); // remove match
                removed++;
             }
      }

      return removed;
     }

A large number of ambiguous matches will be eliminated by this procedure as it can be seen 
from the following example. Here, with a low SURF threshold (=10), we initially detected 
1,600 feature points (black circles) out of which only 55 survive the ratio test (white circles):
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The white lines linking the matched points show that even if we have a large number of good 
matches, a significant number of false matches have survived. Therefore, a second test will 
be performed in order to filter our more false matches. Note that the ratio test is also applied 
to the second match set. 

We now have two relatively good match sets, one from the first image to second image and the 
other one from second image to the first one. From these sets, we will now extract the matches 
that are in agreement with both sets. This is the symmetrical matching scheme imposing that, 
for a match pair to be accepted, both points must be the best matching feature of the other:

     // Insert symmetrical matches in symMatches vector
     void symmetryTest(
        const std::vector<std::vector<cv::DMatch>>& matches1,
        const std::vector<std::vector<cv::DMatch>>& matches2,
        std::vector<cv::DMatch>& symMatches) {
         

      // for all matches image 1 -> image 2
      for (std::vector<std::vector<cv::DMatch>>::
              const_iterator matchIterator1= matches1.begin();
          matchIterator1!= matches1.end(); ++matchIterator1) {

         // ignore deleted matches
         if (matchIterator1->size() < 2) 
            continue;

         // for all matches image 2 -> image 1
         for (std::vector<std::vector<cv::DMatch>>::
           const_iterator matchIterator2= matches2.begin();
            matchIterator2!= matches2.end(); 
            ++matchIterator2) {

            // ignore deleted matches
            if (matchIterator2->size() < 2) 
               continue;

            // Match symmetry test
            if ((*matchIterator1)[0].queryIdx == 
                (*matchIterator2)[0].trainIdx  && 
                (*matchIterator2)[0].queryIdx == 
                (*matchIterator1)[0].trainIdx) {

                // add symmetrical match
                  symMatches.push_back(
                    cv::DMatch((*matchIterator1)[0].queryIdx,        
                              (*matchIterator1)[0].trainIdx,
                              (*matchIterator1)[0].distance));
                  break; // next match in image 1 -> image 2
            }
         }
      }
     }
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In our test pair, 31 matches survived this symmetry test. The last test now consists of an 
additional filtering test that will this time use the fundamental matrix in order to reject 
matches that do not obey the epipolar constraint. This test is based on the RANSAC method 
that can compute the fundamental matrix even when outliers are still present in the match set 
(this method will be explained in the following section):

     // Identify good matches using RANSAC
     // Return fundemental matrix
     cv::Mat ransacTest(
         const std::vector<cv::DMatch>& matches,
         const std::vector<cv::KeyPoint>& keypoints1, 
         const std::vector<cv::KeyPoint>& keypoints2,
         std::vector<cv::DMatch>& outMatches) {

      // Convert keypoints into Point2f   
      std::vector<cv::Point2f> points1, points2;   
      for (std::vector<cv::DMatch>::
            const_iterator it= matches.begin();
          it!= matches.end(); ++it) {

          // Get the position of left keypoints
          float x= keypoints1[it->queryIdx].pt.x;
          float y= keypoints1[it->queryIdx].pt.y;
          points1.push_back(cv::Point2f(x,y));
          // Get the position of right keypoints
          x= keypoints2[it->trainIdx].pt.x;
          y= keypoints2[it->trainIdx].pt.y;
          points2.push_back(cv::Point2f(x,y));
       }

      // Compute F matrix using RANSAC
      std::vector<uchar> inliers(points1.size(),0);
      cv::Mat fundemental= cv::findFundamentalMat(
         cv::Mat(points1),cv::Mat(points2), // matching points
          inliers,      // match status (inlier or outlier)  
          CV_FM_RANSAC, // RANSAC method
          distance,     // distance to epipolar line
          confidence);  // confidence probability
   

      // extract the surviving (inliers) matches
      std::vector<uchar>::const_iterator 
                        itIn= inliers.begin();
      std::vector<cv::DMatch>::const_iterator 
                        itM= matches.begin();
      // for all matches
      for ( ;itIn!= inliers.end(); ++itIn, ++itM) {

         if (*itIn) { // it is a valid match
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            outMatches.push_back(*itM);
         }
      }

      if (refineF) {
      // The F matrix will be recomputed with 
      // all accepted matches

         // Convert keypoints into Point2f 
         // for final F computation   
         points1.clear();
         points2.clear();
   

         for (std::vector<cv::DMatch>::
                const_iterator it= outMatches.begin();
             it!= outMatches.end(); ++it) {

             // Get the position of left keypoints              
             float x= keypoints1[it->queryIdx].pt.x;
             float y= keypoints1[it->queryIdx].pt.y;
             points1.push_back(cv::Point2f(x,y));
             // Get the position of right keypoints
             x= keypoints2[it->trainIdx].pt.x;
             y= keypoints2[it->trainIdx].pt.y;
             points2.push_back(cv::Point2f(x,y));
         }

         // Compute 8-point F from all accepted matches
         fundemental= cv::findFundamentalMat(
            cv::Mat(points1),cv::Mat(points2), // matches
            CV_FM_8POINT); // 8-point method
      }

      return fundemental;
     }

This code is a bit long because the keypoints need to be converted into cv::Point2f before 
the F matrix computation.

The complete matching process using our RobustMatcher class is initiated by the 
following calls:

   // Prepare the matcher
   RobustMatcher rmatcher;
   rmatcher.setConfidenceLevel(0.98);
   rmatcher.setMinDistanceToEpipolar(1.0);
   rmatcher.setRatio(0.65f);
   cv::Ptr<cv::FeatureDetector> pfd= 
          new cv::SurfFeatureDetector(10); 
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   rmatcher.setFeatureDetector(pfd);

   // Match the two images
   std::vector<cv::DMatch> matches;
   std::vector<cv::KeyPoint> keypoints1, keypoints2;
   cv::Mat fundemental= rmatcher.match(image1,image2,
                         matches, keypoints1, keypoints2);

It results in 23 matches that are shown in the following screenshot with their corresponding 
epipolar lines:
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How it works...
In the preceding recipe, we learned that it is possible to estimate the fundamental matrix 
associated with an image pair from a number of feature point matches. Obviously, to be 
exact, this match set must be made of only good matches. However, in a real context, it is not 
possible to guarantee that a match set obtained by comparing the descriptors of detected 
feature points will be perfectly exact. This is why a fundamental matrix estimation method 
based on the RANSAC (RANdom SAmpling Consensus) strategy has been introduced.

The RANSAC algorithm aims at estimating a given mathematical entity from a data set that 
may contain a number of outliers. The idea is to randomly select some data points from the 
set and perform the estimation only with these. The number of selected points should be 
the minimum number of points required to estimate the mathematical entity. In the case of 
the fundamental matrix, eight matched pairs is this minimum number (in fact, it could be 
seven matches, but the 8-point linear algorithm is faster to compute). Once the fundamental 
matrix is estimated from these random 8 matches, all of the other matches in the match set 
are tested against the epipolar constraint that derives from this matrix. All of the matches 
that fulfill this constraint (that is, matches for which the corresponding feature is at a short 
distance from its epipolar line) are identified. These matches form the support set of the 
computed fundamental matrix. 

The central idea behind the RANSAC algorithm is that the larger the support set is, the higher 
the probability that the computed matrix is the right one. Obviously, if one (or more) of the 
randomly selected matches is a wrong match, then the computed fundamental matrix will 
also be wrong, and its support set is expected to be small. This process is repeated a number 
of times, and at the end, the matrix with the largest support will be retained as the most 
probable one. 

Therefore, our objective is to pick eight random matches several times so that eventually 
we select eight good ones which should give us a large support set. Depending on the 
number of wrong matches in the entire data set, the probability of selecting a set of eight 
correct matches will differ. We however know that the more selections we make, the higher 
the confidence will be that we have, among those selections, at least one good match set. 
More precisely, if we assume that the match set is made of n% inliers (good matches), then 
the probability that we select eight good matches is 8n. Consequently, the probability that a 
selection contains at least one wrong match is (1-n8). If we make k selections, the probability 
of having one random set containing only good matches is 1-(1-8n)k. This is the confidence 
probability c, and we want this probability to be as high as possible since we need at least 
one good set of matches  in order to obtain the correct fundamental matrix. Therefore, when 
running the RANSAC algorithm, one needs to determine the number of selection k that needs 
to be made in order to obtain a given confidence level. 
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When using the cv::findFundamentalMat function with Ransacs, two extra parameters are 
provided. The first one is the confidence level that determines the number of iterations to 
be made. The second one is the maximum distance to the epipolar line for a point to be 
considered as an inlier. All matched pairs in which a point is at a distance from its epipolar 
line larger than the one specified will be reported as an outlier. Therefore, the function also 
returns a std::vector of char value indicating that the corresponding match has been 
identified as an outlier (0) or as an inlier (1).

The more good matches you have in your initial match set, the higher the probability that 
RANSAC will give you the correct fundamental matrix. This is why we applied several filters 
to the match set before calling the cv::findFundamentalMat function. Obviously, you 
can decide to skip one or the other of the steps that were proposed in this recipe. It is just a 
question of balancing the computational complexity, the final number of matches, and the 
required level of confidence that the obtained match set will contain only exact matches.

Computing a homography between 
two images

The second recipe of this chapter showed you how to compute the fundamental matrix of an 
image pair from a set of matches. Another mathematical entity exists that can be computed 
from match pairs: a homography. Like the fundamental matrix, the homography is a 3x3 
matrix with special properties and, as we will see in this recipe, it applies to two-view images 
in specific situations.

Getting ready
Let's consider again the projective relation between a 3D point and its image on a camera 
that we introduced in the first recipe of this chapter. Basically, we learned that this relation 
is expressed by a 3x4 matrix. Now, if we consider the special case where two views of a 
scene are separated by a pure rotation, then it can be observed that the fourth column of the 
extrinsic matrix will be made of all 0s (that is, translation is null). As a result, the projective 
relation in this special case becomes a 3x3 matrix. This matrix is called a homography and it 
implies that, under special circumstances (here, a pure rotation), the image of a point in one 
view is related to the image of the same point in another by a linear relation:
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In homogeneous coordinates, this relation holds up to a scale factor represented here by the 
scalar value s. Once this matrix is estimated, all points in one view can be transferred to the 
second view using this relation. Note that as a side effect of the homography relation for pure 
rotation, the fundamental matrix becomes undefined in this case. 

How to do it...
Suppose we have two images separated by a pure rotation. These two images can be 
matched using our RobustMatcher class, except that we skip the RANSAC validation 
step (identified as step 5 in our match method) since this one involves fundamental matrix 
estimation. Instead, we will apply a RANSAC step which will involve the estimation of a 
homography based on a match set (that obviously contains a good number of outliers). 
This is done by using the cv::findHomography function that is very similar to the 
cv::findFundementalMat function:

   // Find the homography between image 1 and image 2
   std::vector<uchar> inliers(points1.size(),0);
   cv::Mat homography= cv::findHomography(
      cv::Mat(points1), // corresponding 
      cv::Mat(points2), // points
      inliers,      // outputted inliers matches 
      CV_RANSAC,   // RANSAC method
      1.);         // max distance to reprojection point

Recall that a homography will only exist if the two images are separated by a pure rotation, 
which is the case of the following two images:
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The resulting inliers that comply with the found homography have been drawn on those 
images by the following loop:

   // Draw the inlier points
   std::vector<cv::Point2f>::const_iterator itPts=  
                                            points1.begin();
   std::vector<uchar>::const_iterator itIn= inliers.begin();
   while (itPts!=points1.end()) {

      // draw a circle at each inlier location
      if (*itIn) 
          cv::circle(image1,*itPts,3,
                    cv::Scalar(255,255,255),2);
      ++itPts;
      ++itIn;
   }

   itPts= points2.begin();
   itIn= inliers.begin();
   while (itPts!=points2.end()) {

      // draw a circle at each inlier location
      if (*itIn) 
         cv::circle(image2,*itPts,3,
                    cv::Scalar(255,255,255),2);
      ++itPts;
      ++itIn;
   }
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As explained in the preceding section, once the homography is computed, you can transfer 
image points from one image to the other. In fact, you can do this for all pixels of an image 
and the result will be to transform this image to the other view. There is an OpenCV function 
that does exactly this:

   // Warp image 1 to image 2
   cv::Mat result;
   cv::warpPerspective(image1, // input image
      result,         // output image
      homography,      // homography
      cv::Size(2*image1.cols,
                 image1.rows)); // size of output image

Once this new image is obtained, it can be appended to the other image in order to expand 
the view (since the two images are now from the same point of view):

   // Copy image 1 on the first half of full image
   cv::Mat half(result,cv::Rect(0,0,image2.cols,image2.rows));
   image2.copyTo(half); // copy image2 to image1 roi

The result is the following image:

How it works...
When two views are related by a homography, it becomes possible to determine where a given 
scene point on one image is found on the other image. This property becomes particularly 
interesting for points that fall outside the image boundaries. Indeed, since the second view 
shows a portion of the scene that is not visible in the first image, you can use the homography 
in order to expand the image by reading in the other image the color value of additional pixels. 
That is how we were able to create a new image that is an expansion of our second image in 
which extra columns were added to the right. 
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The homography computed by cv::findHomography is the one that maps points in the 
first image to points in the second image. What we need in order to transfer the points of 
image 1 to image 2 is in fact the inverse homography. This is exactly what the function 
cv::warpPerspective is doing by default, that is, it uses the inverse of the homography 
provided as input to get the color value of each point of the output image. When an output 
pixel is transferred to a point outside the input image, a black value (0) is simply assigned 
to this pixel. Note that an optional flag cv::WARP_INVERSE_MAP can be specified as 
an optional fifth argument in cv::warpPerspective if one wants to use the direct 
homography instead of the inverted one during the pixel transfer process.

There's more...
A homography also exists between two views of a plane. This can be demonstrated by looking 
again at the camera projection equation as we did for the pure rotation case. When a plane 
is observed, we can, without loss of generality, set the reference frame of the plane such 
that all of its points have a Z coordinate which equals to 0. This will also cancel one of the 
columns of the 3x4 projection matrix resulting in a 3x3 matrix: a homography. This means that 
if, for example, you have several pictures from different points of view of the flat façade of a 
building, you can compute the homography between these images and build a large mosaic of 
the façade by wrapping the images and assembling them together as we did in this recipe.

A minimum of four matched points between two views are required to compute a homography. 
The function cv::getPerspectiveTransform allows such a transformation from four 
corresponding points to be computed.
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Processing Video 

Sequences

In this chapter, we will cover:

ff Reading video sequences

ff Processing the video frames

ff Writing video sequences

ff Tracking feature points in video

ff Extracting the foreground objects in video

Introduction
Video signals constitute a rich source of visual information. They are made of a sequence 
of images, called frames, taken at regular time intervals (specified as the frame rate) and 
showing a scene in motion. With the advent of powerful computers, it is now possible to 
perform advanced visual analysis on video sequences, and sometime at rates close to, or 
even faster than, the actual video frame rate. This chapter will show you how to read, process, 
and store video sequences. 

We will see that once the individual frames of a video sequence have been extracted, the 
different image processing functions presented in this book can be applied to each of them. 
In addition, we will also look at a few algorithms that perform temporal analysis of the video 
sequence, compare adjacent frames to track objects, or cumulate image statistics over time 
in order to extract foreground objects.
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Reading video sequences
To process a video sequence, we need to be able to read each of its frames. OpenCV has put 
in place an easy-to-use framework to perform frame extraction from video files, or even from a 
USB camera. This recipe shows you how to use it. 

How to do it...
Basically, all you need to do in order to read the frames of a video sequence is to create an 
instance of the cv::VideoCapture class. You then create a loop that will extract and read 
each video frame. Here is a basic main function that simply displays the frames of a video 
sequence:

int main()
{
   // Open the video file
   cv::VideoCapture capture("../bike.avi");
   // check if video successfully opened
   if (!capture.isOpened())
      return 1;

   // Get the frame rate
   double rate= capture.get(CV_CAP_PROP_FPS);

   bool stop(false);
   cv::Mat frame; // current video frame
   cv::namedWindow("Extracted Frame");

   // Delay between each frame in ms
   // corresponds to video frame rate
   int delay= 1000/rate;

   // for all frames in video
   while (!stop) {

      // read next frame if any
      if (!capture.read(frame))
         break;

      cv::imshow("Extracted Frame",frame);

      // introduce a delay
      // or press key to stop
      if (cv::waitKey(delay)>=0)
            stop= true;
   }

   // Close the video file.
   // Not required since called by destructor
   capture.release();
 }
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A window will appear on which the video will play as seen here:

How it works...
To open a video, you simply need to specify the video filename. This can be done by providing 
the name of the file in the constructor of the cv::VideoCapture object. It is also possible to 
use the open method if the cv::VideoCapture has already been created. Once the video 
has successfully opened (this can be verified through the isOpened method), it is possible 
to start frame extraction. It is also possible to query the cv::VideoCapture object for 
information associated with the video file by using its get method with the appropriate flag. In 
the preceding example, we obtained the frame rate using the CV_CAP_PROP_FPS flag. Since 
it is a generic function, it always returns a double even if in some cases another type would be 
expected. For example, the total number of frames in the video file would be obtained (as an 
integer) as follows:

long t= static_cast<long>(
              capture.get(CV_CAP_PROP_FRAME_COUNT));

Have a look at the different flags available in the OpenCV documentation in order to find out 
what information can be obtained from the video.

There is also a set method that allows you to input some parameter to the 
cv::VideoCapture instance. For example, you can request to move to a specific frame 
using the CV_CAP_PROP_POS_FRAMES:

// goto frame 100
double position= 100.0; 
capture.set(CV_CAP_PROP_POS_FRAMES, position);
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You can also specify the position in milliseconds using CV_CAP_PROP_POS_MSEC, or 
specify the relative position inside the video using CV_CAP_PROP_POS_AVI_RATIO (with 
0.0 corresponding to the beginning of the video and 1.0 to the end). The method returns 
true if the requested parameter setting is successful. Note that the possibility to get or set 
a particular video parameter largely depends on the codec used to compress and store the 
video sequence. If you are unsuccessful with some parameters, that could be simply due to 
the specific codec you are using.

Once the video captured is successfully opened (this is verified by the isOpened method), the 
frames can be sequentially obtained by repetitively calling the read method as we did in the 
example of the previous section. One can equivalently call the overloaded reading operator: 

capture >> frame;

It is also possible to call the two basic methods:

capture.grab();
capture.retrieve(frame);

Note also how, in our example, we introduced a delay in displaying each frame. This is done 
using the cv::waitKey function. Here, we set the delay at a value that corresponds to the 
input video frame rate (if fps is the number of frames per second, then 1000/fps is the delay 
between two frames in ms). You can obviously change this value to display the video at a slower 
or faster speed. However, if you are going to display the video frames, it is important to insert 
such a delay if you want to make sure that the window has sufficient time to refresh (since it is 
a process of low priority, it will never refresh if the CPU is too busy). The cv::waitKey function 
also allows us to interrupt the reading process by pressing any key. In such a case, the function 
returns the ASCII code of the key pressed. Note that if the delay specified to the cv::waitKey 
function is 0, then it will wait indefinitely for user to press a key. This is very useful when 
someone wants to trace a process by examining the results frame by frame.

The final statement calls the release method which will close the video file. However, this 
call is not required since release is also called by the cv::VideoCapture destructor.

It is important to note that in order to open the specified video file, your computer must 
have the corresponding codec installed, otherwise cv::VideoCapture will not be able to 
understand the input file. Normally, if you are able to open your video file with a video player 
on your machine (such as the Windows Media Player), then OpenCV should also be able to 
read this file.

There's more...
You can also read the video stream capture of a camera connected to your computer (a USB 
camera for example). In this case, you simply specify an ID number (an integer) instead of a 
filename to the open function. Specifying 0 for the ID will open the default camera installed. 
In this case, the role of the cv::waitKey function to stop the processing becomes essential 
since the video stream from the camera will be infinitely read.



Chapter 10

251

See also
The recipe Writing video sequences in this chapter has more information on video codecs.

The ffmpeg.org website that presents a complete open source and cross platform solution 
for audio/video reading, recording, converting, and streaming. The OpenCV classes to 
manipulate video files are built on top of this library.

The Xvid.org website which offers an open source video codec library based on the 
MPEG-4 standard for video compression. Xvid also has a competitor called DivX which offers 
proprietary but free codec and software tools. 

Processing the video frames
In this recipe, our objective is to apply some processing function to each of the frames of a 
video sequence. We will do this by encapsulating the OpenCV video capture framework into 
our own class. Among other things, this class will allow us to specify a function that will be 
called each time a new frame is extracted.

How to do it...
What we want is to be able to specify a processing function (a callback function) that will 
be called at each frame of a video sequence. This function can be defined as receiving a 
cv::Mat instance and outputting a processed frame. Therefore, we designed it to have the 
following signature:

void processFrame(cv::Mat& img, cv::Mat& out);

As an example of such processing function, consider the following simple function that 
computes the Canny edges of an input image:

void canny(cv::Mat& img, cv::Mat& out) {

   // Convert to gray
   if (img.channels()==3)
      cv::cvtColor(img,out,CV_BGR2GRAY);
   // Compute Canny edges
   cv::Canny(out,out,100,200);
   // Invert the image
   cv::threshold(out,out,128,255,cv::THRESH_BINARY_INV);
}
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Let's then define a video processing class to which a callback function can be associated. 
Using this class, the procedure will be to create a class instance, specify an input video file, 
attach the callback function to it, and then start the process. Programmatically, these steps 
will be accomplished using our proposed class, as follows:

   // Create instance
   VideoProcessor processor;
   // Open video file
   processor.setInput("../bike.avi");
   // Declare a window to display the video
   processor.displayInput("Current Frame");
   processor.displayOutput("Output Frame");
   // Play the video at the original frame rate
   processor.setDelay(1000./processor.getFrameRate());
   // Set the frame processor callback function
   processor.setFrameProcessor(canny);
   // Start the process
   processor.run();

Now that we have defined how this class will be used, let's describe its implementation. As 
one might expect, the class includes several member variables that control the different 
aspects of the video frame processing:

class VideoProcessor {

  private:

     // the OpenCV video capture object
     cv::VideoCapture capture;
     // the callback function to be called 
     // for the processing of each frame
     void (*process)(cv::Mat&, cv::Mat&);
     // a bool to determine if the 
     // process callback will be called
     bool callIt;
     // Input display window name
     std::string windowNameInput;
     // Output display window name
     std::string windowNameOutput;
     // delay between each frame processing
     int delay;
     // number of processed frames 
     long fnumber;
     // stop at this frame number
     long frameToStop;
     // to stop the processing
     bool stop;
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  public:

     VideoProcessor() : callIt(true), delay(0), 
             fnumber(0), stop(false), frameToStop(-1) {}

The first member variable is the cv::VideoCapture object, and the second one is the 
process function pointer that will point to the callback function. This can be specified using 
the corresponding setter method:

     // set the callback function that 
     // will be called for each frame
     void setFrameProcessor(
         void (*frameProcessingCallback)
                        (cv::Mat&, cv::Mat&)) {

        process= frameProcessingCallback;
     }

And the following method is to open the video file:

     // set the name of the video file
     bool setInput(std::string filename) {

      fnumber= 0;
      // In case a resource was already 
      // associated with the VideoCapture instance
      capture.release();
      images.clear();

      // Open the video file
      return capture.open(filename);
     }

It is generally interesting to display the frames as they are processed. Two methods are 
therefore used to create the display windows:

     // to display the processed frames
     void displayInput(std::string wn) {
       

        windowNameInput= wn;
        cv::namedWindow(windowNameInput);
     }

     // to display the processed frames
     void displayOutput(std::string wn) {
       

        windowNameOutput= wn;
        cv::namedWindow(windowNameOutput);
     }

     // do not display the processed frames
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     void dontDisplay() {

        cv::destroyWindow(windowNameInput);
        cv::destroyWindow(windowNameOutput);
        windowNameInput.clear();
        windowNameOutput.clear();
     }

If either of these two methods are not called, then the corresponding frames will not be 
displayed. The main method, called run, is the one that contains the frame extraction loop:

     // to grab (and process) the frames of the sequence
     void run() {

        // current frame
        cv::Mat frame;
        // output frame
        cv::Mat output;

        // if no capture device has been set
        if (!isOpened())
           return;

        stop= false;

        while (!isStopped()) {

           // read next frame if any
           if (!readNextFrame(frame))
              break;

           // display input frame
           if (windowNameInput.length()!=0) 
              cv::imshow(windowNameInput,frame);

            // calling the process function
           if (callIt) {
              

            // process the frame
            process(frame, output);        
            // increment frame number
             fnumber++;

           } else {

            output= frame;
           }

           // display output frame
           if (windowNameOutput.length()!=0) 
              cv::imshow(windowNameOutput,output);
         

           // introduce a delay
           if (delay>=0 && cv::waitKey(delay)>=0)
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            stopIt();

           // check if we should stop
           if (frameToStop>=0 && 
                 getFrameNumber()==frameToStop)
              stopIt();
        }
     }

     // Stop the processing
     void stopIt() {

        stop= true;
     }

     // Is the process stopped?
     bool isStopped() {

        return stop;
     }

     // Is a capture device opened?
     bool isOpened() {

        capture.isOpened();
     }

     // set a delay between each frame
     // 0 means wait at each frame
     // negative means no delay
     void setDelay(int d) {
     

        delay= d;
     }

This method uses a private method that reads the frames:

     // to get the next frame 
     // could be: video file or camera
     bool readNextFrame(cv::Mat& frame) {

           return capture.read(frame);
     }

One might also wish to simply open and play the video file (without calling the callback 
function). We therefore have two methods to specify whether or not we want the callback 
function to be called:

     // process callback to be called
     void callProcess() {

        callIt= true;
     }
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     // do not call process callback
     void dontCallProcess() {

        callIt= false;
     }

Finally, the class also offers the possibility to stop at a certain frame number:

     void stopAtFrameNo(long frame) {

        frameToStop= frame;
     }

     // return the frame number of the next frame
     long getFrameNumber() {

         // get info of from the capture device
           long fnumber= static_cast<long>(
                   capture.get(CV_CAP_PROP_POS_FRAMES));
          return fnumber; 
     }

If this class is used to run the code snippet presented at the beginning of this section, 
then two windows will play the input video and the output result at the original frame rate 
(consequence of the delay introduced by the setDelay method) as seen in the following two 
samples. Here is one frame of the input video: 
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And the corresponding output frame will be as follows:

How it works...
As we did in other recipes, our objective was to create a class that encapsulates the common 
functionalities of a video processing algorithm. In this class, the video capture loop is 
implemented by the run method. It contains the frame extraction loop that first calls the 
read method of the cv::VideoCapture OpenCV class. There is a series of operations that 
are executed, but before each of them is invoked, a check is made to determine if it has been 
requested. The input window is displayed only if an input window name has been specified 
(using the displayInput method). The callback function is called only if one has been 
specified (using setFrameProcessor). The output window is displayed only if an output 
window name has been defined (using displayOutput). A delay is introduced only if one 
has been specified (using setDelay method). Finally, the current frame number is checked if 
a stop frame has been defined (using stopAtFrameNo).

The class also contains a number of getter and setter methods that are basically just a 
wrapper over the general set and get methods of the cv::VideoCapture framework.

There's more...
Our VideoProcessor class is there to facilitate the deployment of a video processing 
module. Few additional refinements can be made to it. 

Processing a sequence of images
Sometimes, the input sequence is made of a series of images individually stored in distinct 
files. Our class can be easily modified to accommodate such input. You just need to add a 
member variable that will hold a vector of image filenames and its corresponding iterator:

     // vector of image filename to be used as input
     std::vector<std::string> images; 
     // image vector iterator
     std::vector<std::string>::const_iterator itImg;
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A new setInput method is used to specify the filenames to be read:

     // set the vector of input images
     bool setInput(const std::vector<std::string>& imgs) {

      fnumber= 0;
      // In case a resource was already 
      // associated with the VideoCapture instance
      capture.release();

      // the input will be this vector of images
      images= imgs;
      itImg= images.begin();

      return true;
     }

And the isOpened method becomes:

     // Is a capture device opened?
     bool isOpened() {

        return capture.isOpened() || !images.empty();
     }

The last method that needs to be modified is the private readNextFrame method that will 
read from the video or from the vector of filenames depending which input has been specified. 
The test being if the vector of image filenames is not empty, then that is because the input is 
an image sequence. The call to setInput with a video filename clears this vector:

     // to get the next frame 
     // could be: video file; camera; vector of images
     bool readNextFrame(cv::Mat& frame) {

        if (images.size()==0)
           return capture.read(frame);

        else {

           if (itImg != images.end()) {

              frame= cv::imread(*itImg);
              itImg++;
              return frame.data != 0;

           } else {

              return false;
           }
        }
     }
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Using a frame processor class
In an object-oriented context, it may make more sense to use a frame processing class instead 
of a frame processing function. Indeed, a class would give the programmer much more flexibility 
in the definition of a video processing algorithm. We can therefore define an interface that any 
class that wishes to be used inside the VideoProcessor will need to implement:

// The frame processor interface
class FrameProcessor {

  public:
   // processing method
   virtual void process(cv:: Mat &input, cv:: Mat &output)= 0;
};

A setter method allows you to input a pointer to a FrameProcessor instance of the 
VideoProcessor framework:

     // set the instance of the class that 
     // implements the FrameProcessor interface
     void setFrameProcessor(FrameProcessor* frameProcessorPtr)
     {

        // invalidate callback function
        process= 0;
        // this is the frame processor instance 
        // that will be called
        frameProcessor= frameProcessorPtr;
        callProcess();
     }

When a frame processor class instance is specified, it invalidates any frame processing 
function that could have been set before. The same now applies if a frame processing 
function is specified instead:

     // set the callback function that will 
     // be called for each frame
     void setFrameProcessor(
        void (*frameProcessingCallback)(cv::Mat&, cv::Mat&)) {

        // invalidate frame processor class instance
        frameProcessor= 0;
        // this is the frame processor function that 
        // will be called
        process= frameProcessingCallback;
        callProcess();
     }
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And the while loop of the run method is modified to take into account this modification:

        while (!isStopped()) {

           // read next frame if any
           if (!readNextFrame(frame))
              break;

           // display input frame
           if (windowNameInput.length()!=0) 
              cv::imshow(windowNameInput,frame);

            // ** calling the process function or method **
           if (callIt) {
              

            // process the frame
            if (process) // if call back function
                process(frame, output);
            else if (frameProcessor) 
                 // if class interface instance
               frameProcessor->process(frame,output);
            // increment frame number
            fnumber++;

           } else {

            output= frame;
           }

           // display output frame
           if (windowNameOutput.length()!=0) 
              cv::imshow(windowNameOutput,output);
         

           // introduce a delay
           if (delay>=0 && cv::waitKey(delay)>=0)
            stopIt();

           // check if we should stop
           if (frameToStop>=0 && 
                getFrameNumber()==frameToStop)
              stopIt();
        }

See also
The recipe Tracking feature points in video in this chapter shows how to use the 
FrameProcessor class interface.
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Writing video sequences
In the previous recipes, we learned how to read a video file and extract its frames. This 
recipe will show you how to write frames and therefore create a video file. This will allow us 
to complete the typical video processing chain: reading an input video stream, processing its 
frames, and then storing the results in a video file.

How to do it...
Let's expand our VideoProcessor class in order to give it the ability to write video files. This 
is done using the OpenCV cv::VideoWriter class. An instance of this is therefore added as 
a member of our class (plus few other member variables):

class VideoProcessor {

  private:

...
     // the OpenCV video writer object
     cv::VideoWriter writer;
     // output filename
     std::string outputFile;
     // current index for output images
     int currentIndex;
     // number of digits in output image filename
     int digits;
     // extension of output images
     std::string extension;

An extra method is used to specify (and open) the output video file:

     // set the output video file
     // by default the same parameters than 
     // input video will be used
     bool setOutput(const std::string &filename, 
                    int codec=0, double framerate=0.0, 
                    bool isColor=true) {

        outputFile= filename;
        extension.clear();
        

        if (framerate==0.0) 
           framerate= getFrameRate(); // same as input

        char c[4];
        // use same codec as input
        if (codec==0) { 
           codec= getCodec(c);
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        }

        // Open output video
        return writer.open(outputFile, // filename
           codec,          // codec to be used 
           framerate,      // frame rate of the video
           getFrameSize(), // frame size
           isColor);       // color video?
     }

Once the video file is opened, frames can be added to it by repetitively calling the write 
method of the cv::VideoWriter class. Proceeding as we did in the preceding recipe, we 
also want to give the user the possibility to write the frames as individual images. Therefore, 
the private writeNextFrame method handles these two possible cases:

     // to write the output frame 
     // could be: video file or images
     void writeNextFrame(cv::Mat& frame) {

        if (extension.length()) { // then we write images
        

           std::stringstream ss;
           // compose the output filename
           ss << outputFile << std::setfill('0') 
               << std::setw(digits) 
               << currentIndex++ << extension;
           cv::imwrite(ss.str(),frame);

        } else { // then write to video file 
           writer.write(frame);
        }
     }

For the case where the output is made of individual image files, we need an additional  
setter method:

     // set the output as a series of image files
     // extension must be ".jpg", ".bmp" ...
     bool setOutput(const std::string &filename, // prefix
        const std::string &ext, // image file extension 
        int numberOfDigits=3,   // number of digits
        int startIndex=0) {     // start index

        // number of digits must be positive
        if (numberOfDigits<0)
           return false;

        // filenames and their common extension
        outputFile= filename;
        extension= ext;
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        // number of digits in the file numbering scheme
        digits= numberOfDigits;
        // start numbering at this index
        currentIndex= startIndex;

        return true;
     }

A new step is then added to the video capture loop of the run method:

        while (!isStopped()) {

           // read next frame if any
           if (!readNextFrame(frame))
              break;

           // display input frame
           if (windowNameInput.length()!=0) 
              cv::imshow(windowNameInput,frame);

            // calling the process function or method
           if (callIt) {
              

            // process the frame
            if (process)
                process(frame, output);
            else if (frameProcessor) 
               frameProcessor->process(frame,output);
            // increment frame number
            fnumber++;

           } else {

            output= frame;
           }

           // ** write output sequence **
           if (outputFile.length()!=0)
              writeNextFrame(output);

           // display output frame
           if (windowNameOutput.length()!=0) 
              cv::imshow(windowNameOutput,output);
         

           // introduce a delay
           if (delay>=0 && cv::waitKey(delay)>=0)
            stopIt();

           // check if we should stop
           if (frameToStop>=0 &&
                  getFrameNumber()==frameToStop)
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              stopIt();
        }
     }

A simple program that will read a video, process it, and write the result to a video file would 
then be written as follows:

   // Create instance
   VideoProcessor processor;

   // Open video file
   processor.setInput("../bike.avi");
   processor.setFrameProcessor(canny);
   processor.setOutput("../bikeOut.avi");
   // Start the process
   processor.run();

If you want the result to be saved as a series of images, then you would change the preceding 
statement by this one:

   processor.setOutput("../bikeOut",".jpg");

Using the default number of digits (3) and start index (0), this will create the files 
bikeOut000.jpg, bikeOut001.jpg, bikeOut002.jpg, and so on.

How it works...
When a video is written to a file, it is saved using a codec. A codec is a software module 
capable of encoding and decoding video streams. The codec defines both the format of the 
file and the compression scheme that is used to store the information. Obviously, a video 
that has been encoded using a given codec must be decoded with the same codec. For this 
reason, four-character codes have been introduced to uniquely identified codecs. This way, 
when a software tool needs to write a video file, it determines the codec to be used by reading 
the specified four-character code. 

As the name suggests, the four-character code is made of four ASCII characters that can also 
be converted into an integer by appending them together. Using the CV_CAP_PROP_FOURCC 
flag of the get method of an opened cv::VideoCapture instance, you can obtain this code 
of an opened video file. We can define a method in our VideoProcessor class to return the 
four-character code of an input video:

     // get the codec of input video
     int getCodec(char codec[4]) {

        // undefined for vector of images
        if (images.size()!=0) return -1;

        union { // data structure for the 4-char code
           int value;
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           char code[4]; } returned;

        // get the code
        returned.value= static_cast<int>(
                           capture.get(CV_CAP_PROP_FOURCC));

        // get the 4 characters
        codec[0]= returned.code[0];
        codec[1]= returned.code[1];
        codec[2]= returned.code[2];
        codec[3]= returned.code[3];

        // return the int value corresponding to the code
        return returned.value;
     }

The get method always returns a double that is then casted into an integer. This integer 
represents the code from which the four characters can be extracted using a union data 
structure. If we open our test video sequence, then from the following statements:

   char codec[4];
   processor.getCodec(codec);
   std::cout << "Codec: " << codec[0] << codec[1] 
             << codec[2] << codec[3] << std::endl;

We obtain: 

Codec : XVID

When a video file is written, the codec must be specified using its four-character code. This 
is the second parameter in the open method of the cv::VideoWriter class. You can use, 
for example, the same one as the input video (this is the default option in our setOutput 
method). You can also pass the value -1 and the method will pop up a window to ask you to 
select one from the list of available codec as seen here:

The list you will see on this window corresponds to the list of installed codecs on your 
machine. The code of the selected codec is then automatically sent to the open method. 
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Tracking feature points in video
This chapter is about reading, writing, and processing video sequences. The objective is to be 
able to analyze a complete video sequence. As an example, in this recipe, you will learn how to 
perform temporal analysis of the sequence in order to track feature points as they move from 
frame to frame.

How to do it...
To start the tracking process, the first thing to do is to detect feature points in an initial frame. 
You then try to track these points in the next frame. You must find where these points are now 
located in this new frame. Obviously, since we are dealing with a video sequence, there is a 
good chance that the object on which the feature points are found has moved (the motion 
can also be due to camera motion). Therefore, you must search around a point's previous 
location in order to find its new location in the next frame. This is what accomplishes the 
cv::calcOpticalFlowPyrLK function. You input two consecutive frames and a vector of 
feature points in the first image, the function returns a vector of new point locations. To track 
points over a complete sequence, you repeat this process from frame to frame. Note that as 
you follow the points across the sequence, you will unavoidably loose track of some of them 
such that the number of tracked feature points will gradually reduces. Therefore, it could be a 
good idea to detect new features from time to time. 

We will now take benefit of the framework we defined in the previous recipes and we will 
define a class that implements the FrameProcessor interface introduced in the Processing 
the video frames recipe of this chapter. The data attributes of this class include the variables 
required to perform both the detection of feature points and their tracking:

class FeatureTracker : public FrameProcessor {
   

   cv::Mat gray;         // current gray-level image
   cv::Mat gray_prev;      // previous gray-level image
   // tracked features from 0->1
   std::vector<cv::Point2f> points[2]; 
   // initial position of tracked points
   std::vector<cv::Point2f> initial;   
   std::vector<cv::Point2f> features;  // detected features
   int max_count;     // maximum number of features to detect
   double qlevel;    // quality level for feature detection
   double minDist;   // min distance between two points
   std::vector<uchar> status; // status of tracked features
   std::vector<float> err;    // error in tracking

  public:

   FeatureTracker() : max_count(500), 
                      qlevel(0.01), minDist(10.) {}
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Next, we define the process method that will be called for each frame of the sequence. 
Basically, we need to proceed as follows. First, feature points are detected if necessary. Next, 
these points are tracked. You reject points that you cannot track or you no longer want to track. 
You are now ready to handle the successfully tracked points. Finally, the current frame and its 
points become the previous frame and points for the next iteration. Here is how to do it:

   void process(cv:: Mat &frame, cv:: Mat &output) {

      // convert to gray-level image
      cv::cvtColor(frame, gray, CV_BGR2GRAY); 
      frame.copyTo(output);

      // 1. if new feature points must be added
      if(addNewPoints())
      {
         // detect feature points
         detectFeaturePoints();
         // add the detected features to 
         // the currently tracked features
         points[0].insert(points[0].end(),
                          features.begin(),features.end());
         initial.insert(initial.end(),
                        features.begin(),features.end());
      }
      

      // for first image of the sequence
      if(gray_prev.empty())
           gray.copyTo(gray_prev);
            

      // 2. track features
      cv::calcOpticalFlowPyrLK(
         gray_prev, gray, // 2 consecutive images
         points[0], // input point positions in first image
         points[1], // output point positions in the 2nd image
         status,    // tracking success
         err);      // tracking error
           

      // 2. loop over the tracked points to reject some
      int k=0;
      for( int i= 0; i < points[1].size(); i++ ) {

         // do we keep this point?
         if (acceptTrackedPoint(i)) {

            // keep this point in vector
            initial[k]= initial[i];
            points[1][k++] = points[1][i];
         }
      }
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      // eliminate unsuccesful points
        points[1].resize(k);
      initial.resize(k);

      // 3. handle the accepted tracked points
      handleTrackedPoints(frame, output);

      // 4. current points and image become previous ones
      std::swap(points[1], points[0]);
      cv::swap(gray_prev, gray);
   }

This method makes use of four other utility methods. It should be easy for you to 
change any of these methods in order to define a new behavior for your own tracker. The 
first of these methods detects the feature points. Note that we already discussed the 
cv::goodFeatureToTrack function in the first recipe of Chapter 8:

   // feature point detection
   void detectFeaturePoints() {
         

      // detect the features
      cv::goodFeaturesToTrack(gray, // the image 
         features,   // the output detected features
         max_count,  // the maximum number of features 
         qlevel,     // quality level
         minDist);   // min distance between two features
   }

The second one determines if new feature points should be detected:

   // determine if new points should be added
   bool addNewPoints() {

      // if too few points
      return points[0].size()<=10;
   }

The third one rejects some of the tracked points based on some criteria defined by the 
application. Here, we decided to reject points that do not move (in addition to those that 
cannot be tracked by the cv::calcOpticalFlowPyrLK function):

   // determine which tracked point should be accepted
   bool acceptTrackedPoint(int i) {

      return status[i] &&
         // if point has moved
         (abs(points[0][i].x-points[1][i].x)+
         (abs(points[0][i].y-points[1][i].y))>2);
   }
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Finally, the fourth method handles the tracked feature points by drawing on the current frame 
all of the tracked points with a line joining them to their initial position (that is, the position 
where they were detected the first time):

   // handle the currently tracked points
   void handleTrackedPoints(cv:: Mat &frame, 
                            cv:: Mat &output) {

      // for all tracked points
      for(int i= 0; i < points[1].size(); i++ ) {

         // draw line and circle
         cv::line(output, 
                  initial[i],  // initial position 
                  points[1][i],// new position 
                  cv::Scalar(255,255,255));
         cv::circle(output, points[1][i], 3, 
                    cv::Scalar(255,255,255),-1);
      }
   }

A simple main function to track feature points in a video sequence would then be written 
as follows:

int main()
{
   // Create video procesor instance
   VideoProcessor processor;

   // Create feature tracker instance
   FeatureTracker tracker;

   // Open video file
   processor.setInput("../bike.avi");

   // set frame processor
   processor.setFrameProcessor(&tracker);

   // Declare a window to display the video
   processor.displayOutput("Tracked Features");

   // Play the video at the original frame rate
   processor.etDelayetDelay(1000./processor.getFrameRate());

   // Start the process
   processor.run();
}
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The resulting program will show the evolution of the tracked features over time. Here are, for 
example, two such frames at two different instants. In this video, the camera is fixed. The 
young cyclist is therefore the only moving object. Here is a frame at the beginning of the video:

And few seconds later, we obtain the following frame:

How it works...
To track feature points from frame to frame, we must locate the new position of a feature 
point in the subsequent frame. If we assume that the intensity of the feature point does not 
change from one frame to the next one, we are looking for a displacement (u,v) such that:

where It  and It+1  are respectively the current frame and the one at the next instant. This 
constant intensity assumption generally holds for small displacement in images taken at two 
near by instants. We can then use the Taylor expansion in order to approximate this equation 
by an equation that involves the image derivatives:
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This later equation leads us to another equation (as a consequence of the constant intensity 
assumption):

This well-known constraint is the fundamental optical flow constraint equation. It is 
exploited by the so-called Lukas-Kanade feature tracking algorithm by making an additional 
assumption. The displacement of all points in the neighborhood of the feature point is the 
same. We can therefore impose the optical flow constraint for all of these point with a unique 
(u,v) unknown displacement. This gives us more equations than the number of unknowns 
(2), and we can therefore solve this system of equations in a mean-square sense. In practice, 
it is solved iteratively and the OpenCV implementation also offers the possibility to perform 
this estimation at different resolution to make the search more efficient and more tolerant 
to larger displacement. By default, the number of image levels is 3 and the window size 
is 15. These parameters can obviously be changed. You can also specify the termination 
criteria which define the conditions to stop the iterative search. The sixth parameter of the 
cv::calcOpticalFlowPyrLK contains the residual mean-square error that could be used 
to assess the quality of the tracking. The fifth parameter contains binary flags that tell us if 
tracking the corresponding point was considered successful or not.

The description above represents the basic principles behind the Lukas-Kanade tracker. The 
current implementation contains other optimizations and improvements to make the algorithm 
more efficient in the computation of the displacement of a large number of feature points. 

See also
The Chapter 8 of this book has a discussion on feature point detection.

The classic article by B. Lucas and T. Kanade, An iterative image registration technique with 
an application to stereo vision in Int. Joint Conference in Artificial Intelligence, pp. 674-679, 
1981, that describes the original feature point tracking algorithm.

The article by J. Shi and C. Tomasi, Good Features to Track in IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 593-600, 1994, that describes an improved version of the 
original feature point tracking algorithm.

http://www.ces.clemson.edu/~stb/klt/shi-tomasi-good-features-cvpr1994.pdf
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Extracting the foreground objects in video
When a fixed camera observes a scene, the background remains mostly unchanged. In this 
case, the interesting elements are the moving objects that evolve inside this scene. In order 
to extract those foreground objects, we need to build a model of the background, and then 
compare this model with a current frame in order to detect any foreground objects. This 
is what we will do in this recipe. Foreground extraction is a fundamental step in intelligent 
surveillance applications. 

How to do it...
If we had at our disposal an image of the background of the scene (that is, a frame containing 
no foreground objects), then it would be easy to extract the foreground of a current frame 
through a simple image difference:

   // compute difference between current image and background
   cv::absdiff(backgroundImage,currentImage,foreground);

Each pixel for which this difference is high enough would then be declared as a foreground 
pixel. However, most of the time, this background image is not readily available. Indeed, it 
could be difficult to guarantee that no foreground objects are present in a given image and 
in busy scenes, such situations might rarely occur. Moreover, the background scene often 
evolves over time because, for instance, the lighting condition might change (for example, 
from sunrise to sunset), or because new objects could be added or removed from the 
background. 

Therefore, it is necessary to dynamically build a model of the background scene. This 
can be done by observing the scene for a period of time. If we assume that most often 
the background is visible at each pixel location, then it could be a good strategy to simply 
compute the average of all of the observations. But this is not feasible for a number of 
reasons. First, this would require a large number of images to be stored before computing 
the background. Second, while we are accumulating images to compute our average image, 
no foreground extraction would be done. This solution also raises the problem of when and 
how many images should be accumulated to compute an acceptable background model. 
In addition, the images where a given pixel is observing a foreground object would have an 
impact on the computation of the average background. 

A better strategy is to dynamically build the background model by regularly updating it. This 
can be accomplished by computing what is called a running average (also called moving 
average). It is a way to compute the average value of a temporal signal which takes into 
account the latest values received. If pt is the pixel value at a given time t, and μt-1 is the 
current average value, then this average is updated using the following formula:
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The parameter α is called the learning rate and it defines the influence of the current value 
over the currently estimated average. The larger this value is, the faster the running average 
will adapt to changes in the observed values. To build a background model, one has just to 
compute a running average for every pixel of the incoming frames. The decision to declare a 
foreground pixel is then simply based on the difference between the current image and the 
background model.

Let's then build a class that implements this idea:

class BGFGSegmentor : public FrameProcessor {
   

   cv::Mat gray;         // current gray-level image
   cv::Mat background;      // accumulated background
   cv::Mat backImage;      // background image
   cv::Mat foreground;      // foreground image
   // learning rate in background accumulation
   double learningRate;    
   int threshold;         // threshold for foreground extraction

  public:

   BGFGSegmentor() : threshold(10), learningRate(0.01) {}

The main process consists then in comparing the current frame with the background model, 
and then updating this model:

   // processing method
   void process(cv:: Mat &frame, cv:: Mat &output) {

      // convert to gray-level image
      cv::cvtColor(frame, gray, CV_BGR2GRAY); 

      // initialize background to 1st frame
      if (background.empty())
         gray.convertTo(background, CV_32F);
      

      // convert background to 8U
      background.convertTo(backImage,CV_8U);

      // compute difference between image and background
      cv::absdiff(backImage,gray,foreground);

      // apply threshold to foreground image        
      cv::threshold(foreground,output,
                    threshold,255,cv::THRESH_BINARY_INV);

      // accumulate background
      cv::accumulateWeighted(gray, background, 
                             learningRate, output);
   }
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Using our video processing framework, the foreground extraction program would be built as 
follows:

int main()
{
   // Create video procesor instance
   VideoProcessor processor;

   // Create background/foreground segmentor 
   BGFGSegmentor segmentor;
   segmentor.setThreshold(25);

   // Open video file
   processor.setInput("../bike.avi");

   // set frame processor
   processor.setFrameProcessor(&segmentor);

   // Declare a window to display the video
   processor.displayOutput("Extracted Foreground");

   // Play the video at the original frame rate
   processor.setDelay(1000./processor.getFrameRate());

   // Start the process
   processor.run();
}

One  of the resulting binary foreground images that will be displayed is:
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How it works...
Computing the running average of an image is easily accomplished through the 
cv::accumulateWeighted function that applies the running average formula to each 
pixel of the image. Note that the resulting image must be a floating point image. This is why 
we had to convert the background model into a background image before comparing it with 
the current frame. A simple thresholded absolute difference (computed by cv::absdiff, 
followed by cv::threshold) extracts the foreground image. Note that we then used the 
foreground image as a mask to cv::accumulateWeighted in order to avoid the updating of 
pixels declared as foreground. This works because our foreground image is defined as being 
false (that is, 0) at foreground pixels (which also explains why the foreground objects are 
displayed as black pixels in the resulting image).

Finally, it should be noted that, for simplicity, the background model that is built by our 
program is based on the gray-level version of the extracted frames. Maintaining a color 
background would require the computation of a running average for each channel of each 
pixel. In general, this extra computation does not significantly improve the results. Rather, the 
main difficulty is to determine the appropriate value for the threshold that would give good 
results for a given video.

There's more...
The preceding simple method to extract foreground objects in a scene works well for simple 
scenes showing a relatively stable background. However, in many situations, the background 
scene might fluctuate in certain areas between different values, thus causing frequent false 
foreground detections. These might be due to, for example, a moving background object (for 
example, tree leaves) or to glaring effect (for example, on the surface of water). In order to cope 
with this problem, more sophisticated background modeling methods have been introduced.

The Mixture of Gaussian method
One of these algorithms is the Mixture of Gaussian method. It proceeds in a way similar to the 
method presented in this recipe with the following additions:

First, the method maintains more than one model per pixel (that is, more than one running 
average). This way, if a background pixel fluctuates between, let's say, two values, two running 
average are then stored. A new pixel value will be declared as foreground only if it does not 
belong to any of the maintained models.

Second, not only is the running average maintained for each model, but also the running 
variance. This one is computed as follows:
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The computed average and variance form a Gaussian model from which the probability of a 
given pixel value to belong to this Gaussian model can be estimated. This makes it easier to 
determine an appropriate threshold since it is now expressed as a probability rather than an 
absolute difference. Also, in areas where the background values have larger fluctuations, a 
greater difference will be required to declare a foreground object.

Finally, when a given Gaussian model is not hit sufficiently often, it is excluded as being part 
of the background model. Reciprocally, when a pixel value is found to be outside the currently 
maintained background models (that is it is a foreground pixel), a new Gaussian model is 
created. If in the future, if this new model becomes frequently hit, then it becomes associated 
with the background. 

This more sophisticated algorithm is obviously more complex to implement than our simple 
background/foreground segmentor. Fortunately, an OpenCV implementation exists called 
cv::BackgroundSubtractorMOG and is defined as a subclass of the more general 
cv::BackgroundSubtractor class. When used with its default parameter, this class is 
very easy to use:

int main()
{
   // Open the video file
    cv::VideoCapture capture("../bike.avi");
   // check if video successfully opened
   if (!capture.isOpened())
      return 0;

   // current video frame
   cv::Mat frame; 
   // foreground binary image
   cv::Mat foreground;

   cv::namedWindow("Extracted Foreground");

   // The Mixture of Gaussian object
   // used with all default parameters
   cv::BackgroundSubtractorMOG mog;

   bool stop(false);
   // for all frames in video
   while (!stop) {

      // read next frame if any
      if (!capture.read(frame))
         break;

      // update the background
      // and return the foreground
      mog(frame,foreground,0.01);

      // Complement the image        
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      cv::threshold(foreground,foreground,
                    128,255,cv::THRESH_BINARY_INV);

      // show foreground
      cv::imshow("Extracted Foreground",foreground);

      // introduce a delay
      // or press key to stop
      if (cv::waitKey(10)>=0)
            stop= true;
   }
}

As it can be seen, it is just a matter of creating the class instance and calling the method 
that simultaneously update the background and returns the foreground image (the extra 
parameter being the learning rate). One of the displayed segmentations would then be:

The number of possible Gaussian model per pixels constitutes one of the parameters  
of this class.

See also
The article by C. Stauffer and W.E.L. Grimson, Adaptive background mixture models for 
real-time tracking, in Conf. on Computer Vision and Pattern Recognition, 1999, for a more 
complete description of the Mixture of Gaussian algorithm.
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Lukas-Kanade feature  271

M
MainWindow class  32
mainwindow.cpp file  32
make utility command  9
mask  144
match method  234, 243
MatIterator method  53
matrices  38
matrix

individual element, accessing  38-40
matrix element  37
mean shift algorithm

about  108
object, searching with  108-112

median filters
image, filtering with  147, 148

M-estimator technique  181
minSat parameter  112
minValue method  99
Mixture of Gaussian method  275, 276, 277
model  83
Model-View-Controller. See  MVC
modules directory  8
modules, OpenCV library

about  10
opencv_calib3d  10
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opencv_core  10
opencv_features2d  10
opencv_highgui  10
opencv_imgproc  10
opencv_objdetect  10
opencv_video  10

MorphoFeatures class  125
morphological filtering  117
morphological filters

corner, detecting for image  125-131
edge, detecting for image  125-131
image, closing with  122-124
image, dilating with  118-121
image, eroding with  118-121
image, opening with  122-124

moving average. See  running average
MPEG-4 standard  251
MS Visual C++

about  11
OpenCV project, creating with  11-19

multimedia processor chips  44
multi-threading  55
MVC

application, designing with  82-85

N
nchannels method  44
neighbor access

image, scanning with  55-58
non-uniform histogram  94
normalizing coefficient  145

O
object

searching, with mean shift algorithm  108-112
object recognition  164
OpenCV

about  8
accurate estimation, obtaining for line  

position  178-181
color histogram, computing  95
contours, extracting for connected  

components  182-184
FAST features, detecting  203-205
Harris corner, detecting for images  192-201

histogram, computing with  90-94
image contours, detecting with Canny  

operator  164-167
image histograms, equalizing  101, 102
orientation, obtaining for line  

position  178-181
scale-invariant SURF features,  

detecting  206-209
shape, describing for connected  

component  186-188
URL, for official website  8

OpenCV 2  37
OPENCV2_DIR environment variable  16
OpenCV application

image, displaying on window  26-29
input image, loading from file  26-29
output image, storing on disk  26-29

opencv_calib3d module  10
opencv_contrib module  10
opencv_core module  10
opencv_features2d module  10
opencv_flann module  10
opencv_gpu module  10
opencv_highgui module  10
opencv_imgproc module  10
opencv_legacy module  10
OpenCV library

installing  8, 9
modules  10

opencv_ml module  10
opencv_objdetect module  10
opencv.pc file  25
OpenCV project

creating, MS Visual C++ used  11-19
creating, with Qt  20-25

opencv_video module  10
Open Image button  84
opening  123
opening filters  123, 124
open method  249, 265
OpenMP  55
operator++  50
operator() method  41, 66
optical flow constraint equation  271
orientation

obtaining, for line position  178-181
output arguments  45, 46
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output image
storing, on disk  26-29

overloaded image operators  62, 63

P
pass-by-reference mechanism  39
picture elements. See  pixels
pin-hole camera model  218, 224
pixels  37, 89
pixel values

about  89
accessing  38-40

pkg-config utility package  25
pointers

image, scanning with  41-44
policy-based class design  75
Prewitt operator  154
primary color channels  37
principal point  219
Probabilistic Hough transform  170
process function pointer  253
process method  79, 267
projection  217
projection matrix  226
projective geometry  217
ptr method  44

Q
QCoreApplication object  22
qmake  24
qmake project files

features  25
qmake, variables

CONFIG  24
HEADERS  24
INCLUDEPATH  25
LIBS  25
QT  25
SOURCES  24
TEMPLATE  24

QSlider widget  85
Qt

about  19, 30
benefits  19
GUI application, creating with  30-35
OpenCV project, creating with  20-25

URL, for downloading  20
Qt Console Application  20
QT variable  25

R
radial distortion  224
random sample consensus

images, matching with  233-241
RANdom SAmpling Consensus. See  RANSAC 

algorithm
range  66
ranges parameters  105
RANSAC algorithm

about  241
objective  241

RANSAC method  238
read method  250, 257
readNextFrame method  258
rect object  110
region of interest. See  ROI
Release directory  19
release method  250
re-projection error  227
reshape method  47
RGB color space  86
rigid baseline  228
rigid transformation  227
Roberts operator  155
RobustMatcher class  239, 243
ROI

about  64
defining, for image  65, 66

rows variable  40, 44
run method  254, 257, 260
running average  272

S
salt-and-pepper noise  38
samples directory  8
Scale-Invariant Feature Transform. See  SIFT
scale-invariant SURF features

detecting  206-209
scene  217
Scharr operator  155
Select Color button  84
separable filter  145
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setDelay method  256, 257
setInputImage method  78
setInput method  258
set method  249
setOutput method  265
setTagertColor method  73
setTargetColor method  78
setTo method  58
shape

describing, for connected  
component  186-188

SIFT  210, 211
SIFT algorithm  216
Signals and Systems theory  141
similar images

retrieving, histogram comparison  
used  112-115

simple image arithmetic
performing  59-62

singleton
controller object, accessing  80-82

singleton design pattern
using  80-82

Sobel operator  152, 158, 165, 199
SOURCES variable  24
spatial aliasing  146
spatial domain  141
Standard Template Library (STL)  49
Start Debugging button  19
step method  48
stereovision  228
stopAtFrameNo method  257
strategy design pattern

objectives  70
using, in algorithm design  70-74

structuring element  118
SURF algorithm  207, 209, 210, 212
SURF features

about  234
descibing  212-215

SURF threshold  236
symmetrical matching scheme  237

T
Taylor expansion  199, 270
TEMPLATE variable  24
thin lens equation  218

Threading Building Blocks (TBB)  55
threshold  192
total()*elemSize()  46
total method  44
trace  199
two color vectors

distance, computing between  74

U
union data structure  265

V
vertical Sobel image  150
video

feature points, tracking in  266-271
foreground objects, extracting in  272-275
opening  249

video file
frame rate, measuring in  249
opening  253

video frames
processing  251-257

VideoProcessor class  257, 259, 261, 264
video sequences

reading  248-250
writing  261-265

video signals  247
view  83
visual information  247

W
WatershedSegmenter class  131
watershed transformation

about  131
images, segmenting with  131-136

while loop  260
write method  262
writeNextFrame method  262

X
Xvid.org website  251

Z
zero-crossings  159
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