
www.allitebooks.com

http://www.allitebooks.org

OpenCV 2 Computer Vision
Application Programming
Cookbook

Over 50 recipes to master this library of programming
functions for real-time computer vision

Robert Laganière

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

OpenCV 2 Computer Vision Application
Programming Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: May 2011

Production Reference: 1180511

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849513-24-1

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Robert Laganière

Reviewers
Wajihullah Biaq

Luis Gomez

Vladislav Gubarev

Haikel Guemar

Xiangjun Shi

Acquisition Editor
Usha Iyer

Development Editor
Roger D'souza

Technical Editor
Kavita Iyer

Copy Editor
Neha Shetty

Project Coordinator
Srimoyee Ghoshal

Proofreader
Joel Johnson

Indexer
Tejal Daruwale

Graphics
Nilesh Mohite

Production Coordinator
Kruthika Bangera

Cover Work
Kruthika Bangera

www.allitebooks.com

http://www.allitebooks.org

About the Author

Robert Laganière is a professor at the University of Ottawa, Canada. He received his Ph.D.
degree from INRS-Telecommunications in Montreal in 1996. Dr. Laganière is a researcher in
computer vision with an interest in video analysis, intelligent visual surveillance, and image-
based modeling. He is a co-founding member of the VIVA research lab. He is also a Chief
Scientist at iWatchLife.com, a company offering a cloud-based solution for remote monitoring.
Dr. Laganière is the co-author of Object-oriented Software Engineering published by McGraw
Hill in 2001.

Visit the author's website at http://www.laganiere.name.

I wish to thank all my students at the VIVA lab. I learn so much from them.
I am also grateful to my beloved Marie-Claude, Camille, and Emma for their
continuous support.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Wajih Ullah Baig holds a Honors. Degree in Computer Science from Hamdard University,
Karachi. He works mostly with with desktop applications and has good experience working
with large-scale distributed systems. He has interest in DSP, image processing, pattern
recognition, and network programming. He has worked on a large-scale content-based video
retrieval project which is one of its kind. Currently, he is working with the Center for Advanced
Research in Engineering, Islamabad, Pakistan where he holds a position as a design engineer.

As a freelancer, he contributes work for open source projects and posts codes of his own.

I would like to thank all my friends and family for their support whilst
reviewing the book. Especially my roommate, Dara Baig!

Lluís Gómez i Bigordà holds a Masters degree in Computer Science from the Universitat
Oberta de Catalunya.

I would like to thank all my family and friends for their support while I was
reviewing this book, especially to Antonia, my daughter. I owe you one!

www.allitebooks.com

http://www.allitebooks.org

Vladislav Gubarev was born in 1987 in Baku, USSR.

He graduated from Southern Federal University (Russia) with honors. He has a Bachelor
(2007) and a Specialist (2008) diplomas of applied mathematics and computer science.

He started his career as a researcher and engineer in "Laboratory of Mathematical Methods
of Artificial Intelligence". He later became a co-founder of CVisionLab company which provides
computer vision solutions.

His areas of research interests are mostly related to image and video processing. In addition
to researcher skills, he has wide experience in software development.

Many thanks to my wife Agatha. She is an applied mathematician, software
developer, and the person who helped me a lot in reviewing this book. Also,
thanks to my colleagues—a team of great researchers and professional
developers.

Haïkel Guémar has been a free software enthusiast and a Fedora developer for a few years
now. He currently works as a senior software engineer in a startup in Lyon (France): SysFera.
Turning coffee into code, QA process, and technical coaching are part of his daily occupation.

SysFera's main product is SysFera-DS, the commercial version of the award-winning open
source grid computing middleware DIET. DIET is an innovative grid middleware that offers
seamless, robust, and high-performance access to heterogeneous computing resources.

Besides being a code monkey, Haïkel enjoys practicing kendo and watching chambara movies.

Xiangjun Shi received the M.E. degree in Computer Graphics from Zhengjian University,
China in 1989, M.S. degree in Statistics, and Ph.D. degree in Computer Science from Utah
State University in 2006. From 1989 to 1998, he was an Assistant Professor in Hangzhou
University (1989–1995) and Shantou University (1995–1998). From 1998 to 2000, he was
an Associate Professor in Shantou University. Since 2007, he has worked on the design and
development of Intelligent Video Surveillance System. His research interests include: Data
Mining, Data Cleansing, Statistical Inference/Analysis, Digital Video Mining, Computer Vision,
Pattern Recognition and Image Processing, Mathematical modeling, and Algorithm Design
and Optimization.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Playing with Images	 7

Introduction	 7
Installing the OpenCV library	 8
Creating an OpenCV project with MS Visual C++	 11
Creating an OpenCV project with Qt	 19
Loading, displaying, and saving images	 26
Creating a GUI application using Qt	 30

Chapter 2: Manipulating the Pixels	 37
Introduction	 37
Accessing pixel values	 38
Scanning an image with pointers	 41
Scanning an image with iterators	 49
Writing efficient image scanning loops	 51
Scanning an image with neighbor access	 55
Performing simple image arithmetic	 59
Defining regions of interest	 63

Chapter 3: Processing Images with Classes	 69
Introduction	 69
Using the Strategy pattern in algorithm design	 70
Using a Controller to communicate with processing modules 	 76
Using the Singleton design pattern	 80
Using the Model-View-Controller architecture to design an application	 82
Converting color spaces	 85

Chapter 4: Counting the Pixels with Histograms	 89
Introduction	 89
Computing the image histogram	 89

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Applying look-up tables to modify image appearance	 96
Equalizing the image histogram	 101
Backprojecting a histogram to detect specific image content	 103
Using the mean shift algorithm to find an object	 108
Retrieving similar images using histogram comparison	 112

Chapter 5: Transforming Images with Morphological Operations	 117
Introduction	 117
Eroding and dilating images using morphological filters	 118
Opening and closing images using morphological filters	 122
Detecting edges and corners using morphological filters	 125
Segmenting images using watersheds	 131
Extracting foreground objects with the GrabCut algorithm	 137

Chapter 6: Filtering the Images	 141
Introduction	 141
Filtering images using low-pass filters	 142
Filtering images using a median filter	 147
Applying directional filters to detect edges	 148
Computing the Laplacian of an image	 156

Chapter 7: Extracting Lines, Contours, and Components	 163
Introduction	 163
Detecting image contours with the Canny operator	 164
Detecting lines in images with the Hough transform	 167
Fitting a line to a set of points	 178
Extracting the components' contours	 182
Computing components' shape descriptors	 186

Chapter 8: Detecting and Matching Interest Points	 191
Introduction	 191
Detecting Harris corners	 192
Detecting FAST features	 203
Detecting the scale-invariant SURF features	 206
Describing SURF features	 212

Chapter 9: Estimating Projective Relations in Images	 217
Introduction	 217
Calibrating a camera	 219
Computing the fundamental matrix of an image pair	 228
Matching images using random sample consensus	 233
Computing a homography between two images	 242

iii

Table of Contents

Chapter 10: Processing Video Sequences	 247
Introduction	 247
Reading video sequences	 248
Processing the video frames	 251
Writing video sequences	 261
Tracking feature points in video	 266
Extracting the foreground objects in video	 272

Index	 279

Preface
In today's digital world, images and videos are everywhere, and with the advent of powerful
and affordable computing devices, it has never been easier to create sophisticated imaging
applications. Plentiful software tools and libraries manipulating images and videos are
offered, but for anyone who wishes to develop his/her own applications, the OpenCV library is
the tool to use.

OpenCV (Open Source Computer Vision) is an open source library containing more than 500
optimized algorithms for image and video analysis. Since its introduction in 1999, it has
been largely adopted as the primary development tool by the community of researchers and
developers in computer vision. OpenCV was originally developed at Intel by a team led by
Gary Bradski as an initiative to advance research in vision and promote the development of
rich, vision-based CPU-intensive applications. After a series of beta releases, version 1.0 was
launched in 2006. A second major release occurred in 2009 with the launch of OpenCV 2 that
proposed important changes, especially the new C++ interface which we use in this book. At
the time of writing, the latest release is 2.2 (December 2010).

This book covers many of the library's features and shows how to use them to accomplish
specific tasks. Our objective is not to provide a complete and detailed coverage of every
option offered by the OpenCV functions and classes, but rather to give you the elements you
need to build your applications from the ground up. In this book we also explore fundamental
concepts in image analysis and describe some of the important algorithms in computer vision.

This book is an opportunity for you to get introduced to the world of image and video analysis.
But this is just the beginning. The good news is that OpenCV continues to evolve and expand.
Just consult the OpenCV online documentation to stay updated about what the library can do
for you:

http://opencv.willowgarage.com/wiki/

Preface

2

What this book covers
Chapter 1, Playing with Images, introduces the OpenCV library and shows you how to run
simple applications using the MS Visual C++ and Qt development environments.

Chapter 2, Manipulating the Pixels, explains how an image can be read. It describes different
methods for scanning an image in order to perform an operation on each of its pixels. You will
also learn how to define region of interest inside an image.

Chapter 3, Processing Images with Classes, consists of recipes which present various object-
oriented design patterns that can help you to build better computer vision applications.

Chapter 4, Counting the Pixels with Histograms, shows you how to compute image histograms
and how they can be used to modify an image. Different applications based on histograms are
presented that achieve image segmentation, object detection, and image retrieval.

Chapter 5, Transforming Images with Morphological Operations, explores the concept of
mathematical morphology. It presents different operators and how they can be used to detect
edges, corners, and segments in images.

Chapter 6, Filtering the Images, teaches you the principle of frequency analysis and image
filtering. It shows how low-pass and high-pass filters can be applied to images. It presents the
two image derivative operators: the gradient and the Laplacian.

Chapter 7, Extracting Lines, Contours, and Components, focuses on the detection of
geometric image features. It explains how to extract contours, lines, and connected
components in an image.

Chapter 8, Detecting and Matching Interest Points, describes various feature point detectors
in images. It also explains how descriptors of interest points can be computed and used to
match points between images.

Chapter 9, Estimating Projective Relations in Images, analyzes the different relations involved
in image formation. It also explores the projective relations that exist between two images of a
same scene.

Chapter 10, Processing Video Sequences, provides a framework to read and write a video
sequence and to process its frames. It also shows you how it is possible to track feature
points from frame to frame, and how to extract the foreground objects moving in front of a
camera.

Preface

3

Who this book is for
If you are a novice C++ programer who wants to learn how to use the OpenCV library to build
computer vision applications, then this cookbook is appropriate for you. It is also suitable
for professional software developers wishing to be introduced to the concepts of computer
vision programming. It can be used as a companion book in university-level computer vision
courses. It constitutes an excellent reference for graduate students and researchers in image
processing and computer vision. The book provides a good combination of basic to advanced
recipes. Basic knowledge of C++ is required.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

 // get the iterators
 cv::Mat_<cv::Vec3b>::const_iterator it=
 image.begin<cv::Vec3b>();

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

 // Converting to Lab color space
 cv::cvtColor(image, converted, CV_BGR2Lab);
 // get the iterators of the converted image
 cv::Mat_<cv::Vec3b>::iterator it=

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "This value is read when the
Process button is clicked, which also triggers the processing and displays the result".

Tips and tricks appear like this.

Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit
http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

Preface

5

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Playing with Images

In this chapter, we will cover:

ff Installing the OpenCV Library

ff Creating an OpenCV project with MS Visual C++

ff Creating an OpenCV project with Qt

ff Loading, displaying, and saving images

ff Creating a GUI application using Qt

Introduction
This chapter will teach you the basic elements of OpenCV and will show you how to
accomplish the most fundamental tasks: reading, displaying, and saving images. Before you
can start with OpenCV, you need to install the library. This is a simple process that is explained
in the first recipe of this chapter.

You also need a good development environment (IDE) to run your OpenCV applications. We
propose two alternatives here. The first is to use the well-known Microsoft Visual Studio
platform. The second option is to use an open source tool for C++ project development
called Qt. Two recipes will show you how to set up a project with these two tools, but you can
also use other C++ IDEs. In fact, in this cookbook, the tasks will be presented in a way that
is independent of any particular environment and operating system, so you are free to use
the one of your choice. However, be aware that you need to use the compiled version of the
OpenCV library that is appropriate to the compiler and operating system you are using. If you
obtain strange behaviors, or if your application crashes without apparent reasons, that could
be a symptom of incompatibilities.

www.allitebooks.com

http://www.allitebooks.org

Playing with Images

8

Installing the OpenCV library
OpenCV is an open source library for developing computer vision applications. It can be
used in both academic and commercial applications under a BSD license that allows you to
freely use, distribute, and adapt it. This recipe will show you how to install the library on your
machine.

Getting ready
When you visit the OpenCV official website at http://opencv.willowgarage.com/
wiki/, you will find the latest release of the library, the online documentation, and many
other useful resources about OpenCV.

How to do it...
From the OpenCV website, go to the Download page that corresponds to the platform of your
choice (Linux/Unix/Mac or Windows). From there you will be able to download the OpenCV
package. You will then uncompress it, normally under a directory with a name corresponding
to the library version (for example, OpenCV2.2). Once this is done, you will find a collection
of directories, notably the doc directory containing the OpenCV documentation, the include
directory containing all of the include files, the modules directory which contains all of
the source files (yes, it is open source), and the samples directory containing many small
examples to help you to get started.

If you are working under Windows with Visual Studio, you also have the option to download the
executable installation package corresponding to your IDE and Windows platform. Executing
this setup program will not only install the source library, but also all of the precompiled
binaries you will need to build your applications. In that case, you are ready to start using
OpenCV. If not, you need to take few additional steps.

In order to use OpenCV under the environment of your choice, you need to generate the library
binary files using the appropriate C++ compiler. To build OpenCV, you need to use the CMake
tool available at http://www.cmake.org/. CMake is another open source software tool
designed to control the compilation process of a software system using platform-independent
configuration files. You therefore need to download and install CMake. You can then run it
using the command line, but it is easier to use CMake with its Graphical User Interface (GUI).
In this latter case, all you need to do is to specify the folder containing the OpenCV library
and the one that will contain the binaries. You then click on Configure in order to select the
compiler of your choice (here we chose Visual Studio 2010), and you click on Configure again,
as seen in the following screenshot:

Chapter 1

9

You are now ready to generate your makefiles and workspace files by clicking on the
Generate button. These files will allow you to compile the library. This is the last step of the
installation process.

Compiling the library will make it ready to use for your development environment. If you
selected an IDE like Visual Studio, then all you need to do is to open the top-level solution
file that CMake has created for you. You then issue the Build Solution command. In Unix
environments, you will use the generated makefiles by running your make utility
command.

If everything went well, you should now have your compiled and ready-to-use OpenCV library
in the specified directory. This directory will contain, in addition to the directories we already
mentioned, a bin directory containing the compiled library. You can move everything to your
preferred location (for example, c:\OpenCV2.2) and add the bin directory to your system
path (under Windows, this is done by opening your Control Panel. You start the System utility
and under the Advanced tab, you will find the Environment Variables button).

Playing with Images

10

How it works...
Since version 2.2, the OpenCV library is divided into several modules. These modules are built
in library files located in the lib directory. They are:

ff The opencv_core module that contains the core functionalities of the library, in
particular, the basic data structures and arithmetic functions.

ff The opencv_imgproc module that contains the main image processing functions.

ff The opencv_highgui module that contains the image and video reading and
writing functions, along with other user interface functions.

ff The opencv_features2d module that contains the feature point detectors and
descriptors and the feature point matching framework.

ff The opencv_calib3d module that contains the camera calibration, two-view
geometry estimation, and stereo functions.

ff The opencv_video module that contains the motion estimation, feature tracking,
and foreground extraction functions and classes.

ff The opencv_objdetect module containing the object detection functions such as
the face and people detectors.

The library also includes other utility modules containing machine learning functions (opencv_
ml), computational geometry algorithms (opencv_flann), contributed code (opencv_
contrib), obsolete code (opencv_legacy), and gpu accelerated code (opencv_gpu).

All of these modules have a header file associated with them (located in include directory).
Typical OpenCV C++ code will therefore start by including the required modules. For example
(and this is the suggested declaration style):

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>

If you see OpenCV code starting with:

 #include "cv.h"

it is because it uses the old style, before the library was restructured into modules.

There's more...
You can also access the latest code being developed from the OpenCV SVN server located at:

https://code.ros.org/svn/opencv/trunk/opencv/

You will find that there are a large number of examples that can help you learn how to use the
library and give you many development tips.

Chapter 1

11

Creating an OpenCV project with MS Visual
C++

Using MS Visual C++, you can easily create OpenCV applications for Windows. You can build
simple console application or you can create more sophisticated applications with a nice
graphical user interface (GUI). Since it is the easiest option, we will create a simple console
application here. We'll use Visual Studio 2010, however, the same principles also apply to
any other versions of the Microsoft IDE since the menus and options are very similar in the
different versions.

When you run Visual Studio for the first time, you can set it up in a way such that C++
becomes your default development environment. This way, when you will launch the IDE, it will
be in Visual C++ mode.

We assume that you have installed OpenCV under the C:\OpenCV2.2 directory as explained
in the previous recipe.

Getting ready
When working with Visual Studio, it is important to understand the difference between a solution
and a project. Basically, a solution is made of several projects (each project is a distinct software
module, for example, a program and a library). This way the projects of your solution can share
files and libraries. Usually, you create one master directory for your solution that contains all
of your projects directories. But you can also group the solution and a project into one single
directory. This is what you will most often do for a one-project solution. As you become more
familiar with VC++, and build more complex applications, you should take advantage of the
multi-project solution structure.

Also, when you compile and execute your Visual C++ projects, you can do it under two different
configurations: Debug and Release. The Debug mode is there to help you create and debug your
application. It is a more protected environment, for example, it will tell you if your application
contains memory leaks or it will check at runtime if you are using certain functions properly.
However, it generates slower executable files. This is why, once your application has been tested
and is ready to be used, you build it under the Release mode. This will produce the executable
that you will distribute to the users of your application. Note that it may happen that you have
code running perfectly well in debug mode but has problems in release mode. You then need to
do more testing in order to identify the potential sources of errors. Debug and Release modes
are not unique to Visual C++, most IDEs also support these two modes of compilation.

Playing with Images

12

How to do it...
We are now ready to create our first project. This is done by using the File|New Project
| Project… menu option. You can create different project types here. Let's start with the
simplest option which is to select a Win32 Console Application, seen in the following
screenshot:

You need to specify where your want to create your project, and what name you want to give to
your project. There is also an option for creating or not creating a directory for the solution (the
bottom-right checkbox). If you check this option, an additional directory will be created (with
the name you specify) that will contain your solution directory. If you simply leave this option
unchecked, a solution file (extension .sln) will still be created, but this one will be contained
within the same (single) project directory. Click on OK and then Next to go to the Application
Settings window of the Win32 Application Wizard. As seen in the following screenshot, a
number of options are offered there. We will simply create an empty project.

Chapter 1

13

Note that we also have unchecked the Precompiled header option which is an MS Visual
Studio-specific feature to make the compilation process faster. Since we want to stay within
the ANSI C++ standard, we will not use this option. If you click on Finish, your project will be
created. It is empty for now, but we will add a main file to it soon.

But first, to be able to compile and run your future OpenCV application, you need to tell Visual
C++ where to find the OpenCV libraries and include files. Since you will probably create several
OpenCV projects in the future, the best option is to create a Property Sheet that you will be
able to reuse from project to project. This is done through the Property Manager. If it is not
already visible in your current IDE, you can access it from the View menu.

Playing with Images

14

In Visual C++ 2010, a property sheet is an XML file that describes your project settings. We
will now create a new one by right-clicking on the Debug | Win32 node of the project, and by
selecting the Add New Project Property Sheet option (as seen in the following screenshot):

The new property sheet is then added once we click on Add. We now need to edit it. Simply
double-click on the property sheet's name and select VC++ Directories, as seen here:

Chapter 1

15

Edit the Include Directories textfield and add the path to the include files of your OpenCV library:

Do the same thing with the Library Directories. This time you add the path to your OpenCV
library files:

Playing with Images

16

It is important to note that we used the explicit path to the OpenCV library in our property
sheet. It is generally a better practice to use an environment variable to designate the
library location. This way, if you switch to another version of the library, you simply change
the definition of this variable so that it points to the library's new location. Also, in the case
of a team project, the different users might have installed the library at different locations.
Using an environment variable would avoid needing to edit the property sheet for each user.
Consequently, if you define the environment variable OPENCV2_DIR to be c:\OpenCV2.2,
then the two OpenCV directories will be specified as $(OPENCV_DIR)\include and
$(OPENCV_DIR)\lib in the property sheet.

The next step is to specify the OpenCV library files which need to be linked with your code
in order to produce an executable application. Depending on the application, you may need
different OpenCV modules. Since we want to reuse this property sheet in all of our projects,
we will simply add the library modules we need to run the applications of this book. Go to the
Input item of the Linker node, as seen in the following screenshot:

Edit the Additional Dependencies textfield and add the following list of library modules:

Chapter 1

17

Note that we specified the libraries with names ending with the letter "d". These are the
binaries for the Debug mode. You will need to create another (almost identical) property sheet
for the Release mode. You follow the same procedure, but you add it under the Release |
Win32 node. This time, the library names are specified without appending a "d" at the end.

We are now ready to create, compile, and run our first application. We add a new source file
by using the Solution Explorer, and right-clicking the Source Files node. You select Add New
Item… which gives you the opportunity to specify main.cpp as the name of this C++ file:

www.allitebooks.com

http://www.allitebooks.org

Playing with Images

18

You can also use the File|New|File… menu option to do this. Now, let's build a simple
application that will display an image named img.jpg located under the default directory.

Once you have recopied the code in the preceding figure (it will be explained later), you can
compile it and run it using the Start green arrow in the Toolbar at the top of your screen. You
will see your image displayed for five seconds. An example is seen here:

Chapter 1

19

If it is the case, then you have completed your first successful OpenCV application! If the
program fails when executed, it is probably because it cannot find the image file. See the
following section to find out how to put it in the correct directory.

How it works...
When you click on the Start Debugging button (or push F5), your project will be compiled and
then executed. You can also just compile the project by selecting Build Solution (F7) under
the Build menu. The first time you compile your project, a Debug directory will be created. This
will contain the executable file (extension .exe). Similarly, you can also create the release
version by simply selecting the Release configuration option using the drop-down menu, to
the right of the green arrow button (or using the Configuration Manager… option under the
Build menu). A Release directory will then be created.

When you execute a project using the Start button of Visual Studio, the default directory
will always be the one that contains your solution file. However, if you choose to execute
your application outside of your IDE (that is, from Windows Explorer) by double-clicking on
your .exe file (normally the Release directory), then the default directory will become the
one that contains the executable file. Therefore, make sure your image file is located in the
appropriate directory before you execute this application.

See also
The Loading, displaying, and saving images recipe later in this chapter that explains the
OpenCV source code we have used in this task.

Creating an OpenCV project with Qt
Qt is a complete Integrated Development Environment (IDE) for C++ application that was
originally developed by Trolltech, a Norwegian software company which was acquired in 2008
by Nokia. It is offered under the LPGL open source license as well as under a commercial
(and paying) license for the development of proprietary projects. It is composed of two
separate elements: a cross-platform IDE, called Qt Creator, and a set of Qt class libraries and
development tools. Using the Qt Software Development Kit (SDK) to develop C++ applications
has many benefits:

ff It is an open source initiative, developed by the Qt community, that gives you access
to the source code of the different Qt components.

ff It is cross-platform, meaning that you can develop applications that can run on
different operating systems such as Windows, Linux, Mac OS X, and so on.

ff It includes a complete and cross-platform GUI library that follows an effective object-
oriented and event-driven model.

Playing with Images

20

ff Qt also includes several cross-platform libraries to develop multimedia, graphics,
database, multithreading, web application, and many other interesting building
blocks useful for designing advanced applications.

Getting ready
Qt can be downloaded from http://qt.nokia.com. It is free if you select the LPGL license.
You should download the complete SDK. However, make sure to select the Qt libraries
package that is appropriate for your platform. Obviously, since we are dealing with open
source software, it is always possible to re-compile the library under the platform of your
choice.

Here, we use Qt Creator version 1.2.1 with Qt version 4.6.3. Note that under the Projects tab
of Qt Creator, it is possible to manage the different Qt versions that you might have installed.
This ensures you can always compile your projects with the appropriate Qt version.

How to do it...
When you start Qt, it will ask you if you wish to create a new project or if you want to open a
recent one. You can also create a new project by going under the File menu and selecting the
New… option. To replicate what we did in the previous recipe, we will select the Qt4 Console
Application as seen in the following screenshot:

You then specify a name and a project location as seen here:

Chapter 1

21

The following screen will ask you to select the modules you want to include in your project.
Just keep the one selected by default and click on Next, and then Finish. An empty console
application is then created as seen here:

Playing with Images

22

The code generated by Qt creates a QCoreApplication object and calls its exec()
method. This is only required when your application needs an event handler to process
the user interactions with a GUI. In our simple open and display image example, this is not
needed. We can simply replace the generated code by the one we use in the previous task.
The simple open and display image program would then read as follows:

In order to be able to compile this program, the OpenCV library files and header files location
need to be specified. With Qt, this information is given in a project file (with extension .pro)
which is a simple text file describing the project parameters. You can edit this project file in Qt
Creator by selecting the corresponding project file as seen in the following screenshot:

Chapter 1

23

The information required to build an OpenCV application is provided by appending the
following lines at the end of the project file:

INCLUDEPATH += C:\OpenCV2.2\include\

LIBS += -LC:\OpenCV2.2\lib \
-lopencv_core220 \
-lopencv_highgui220 \
-lopencv_imgproc220 \
-lopencv_features2d220 \
-lopencv_calib3d220

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Playing with Images

24

The program is now ready to be compiled and executed. This is accomplished by clicking the
bottom-left green arrow (or by pressing Ctrl+R). There is also a Debug and a Release mode
that you set up using the Build Settings of the Projects tab.

How it works...
A Qt project is described by a project file. This is a text file that declares a list of variables
containing the relevant information required to build the project. This file is in fact processed
by a software tool called qmake which Qt invokes when a compilation is requested. Each
variable defined in a project file is associated with a list of values. The main variables that are
recognized by qmake in Qt are as follows:

ff TEMPLATE: Defines the type of project (applications, library, and so on).

ff CONFIG : Specifies different options that the compiler should use when building the
project.

ff HEADERS : Lists the header files of the project.

ff SOURCES : Lists the source files (.cpp) of the project.

Chapter 1

25

ff QT : Declares the required Qt extension modules and libraries. By default, the
core and the GUI modules are included. If you want to exclude one of them, you
use the -= notation.

ff INCLUDEPATH : Specifies the header file directories that should be searched.

ff LIBS : Contains the list of library files that should be linked with the project. You use
the flag –L for directory paths and the flag –l for library names.

Several other variables are defined but the ones listed here are most commonly used.

There's more...
Many additional features can be used in qmake project files. For example, scopes can be
defined to add declarations that apply to a specific platform:

win32 {
 # declarations for Windows 32 platforms only
}
unix {
 # declarations for Unix 32 platforms only
}

You can also use the pkg-config utility package. It is an open source tool that helps to
use the correct compiler options and library files. When you install OpenCV with CMake, the
unix-install contains an opencv.pc file that is read by pkg-config to determine the
compilation parameters. A multi-platform qmake project file could then look as follows:

unix {

 CONFIG += link_pkgconfig
 PKGCONFIG += opencv
}

Win32 {

INCLUDEPATH += C:\OpenCV2.2\include\

LIBS += -LC:\OpenCV2.2\lib \
-lopencv_core220 \
 -lopencv_highgui220 \
 -lopencv_imgproc220 \
 -lopencv_features2d220 \
 -lopencv_calib3d220
}

Playing with Images

26

See also
The next recipe, Loading, displaying, and saving images explains the OpenCV source code we
used in this task.

Consult the website http://qt.nokia.com for the complete documentation about Qt, Qt
Creator, and all of the Qt extension modules.

Loading, displaying, and saving images
The two preceding recipes taught you how to create a simple OpenCV project but we have not
explained the OpenCV code that was used. This task will show you how to perform the most
fundamental operations needed in the development of an OpenCV application. These include
loading an input image from file, displaying an image on a window, and storing an output
image on disk.

Getting ready
Using either MS Visual Studio or Qt, create a new console application with a main function
ready to be filled. See the first two recipes on how to proceed.

How to do it...
The first thing to do is to declare a variable that will hold the image. Under OpenCV 2, you
define an object of class cv::Mat.

cv::Mat image;

This definition creates an image of size 0 by 0. This can be confirmed by calling the cv::Mat
method size() that allows you to read the current size of this image. It returns a structure
containing the height and width of the image:

std::cout << "size: " << image.size().height << " , "
 << image.size().width << std::endl;

Next a simple call to the reading function will read an image from file, decode it, and allocate
the memory:

image= cv::imread("img.jpg");

You are now ready to use this image. However, you should first check if the image has been
correctly read (an error will occur if the file is not found or if the file is corrupted, or is not a
recognizable format). The validity of the image is tested by:

if (!image.data) {
 // no image has been created…
}

Chapter 1

27

The member variable data is in fact a pointer to the allocated memory block that will contain
the image data. It is simply set to 0 when no image has been read. The first thing you might
want to do with this image is to display it. You do it using the highgui module provided by
OpenCV. You start by declaring the window on which you want to display images, and then you
specify the image to be shown on this special window:

cv::namedWindow("Original Image"); // define the window
cv::imshow("Original Image", image); // show the image

Now, you would normally apply some processing to the image. OpenCV offers a wide selection
of processing functions, and several of them are explored in this book. Let's start with a
very simple one that will simply flip the image horizontally. Several image transformations in
OpenCV can be performed in-place, meaning that the transformation is applied directly on the
input image (no new image being created). This is the case of the flipping method. However,
we can always create another matrix to hold the output result and that is what we will do:

cv::Mat result;
cv::flip(image,result,1); // positive for horizontal
 // 0 for vertical,
 // negative for both

And the result is displayed on another window:

cv::namedWindow("Output Image");
cv::imshow("Output Image", result);

Since it is a console window that will terminate at the end of the main function, we add an
extra highgui method to wait for a user key before ending the program:

cv::waitKey(0);

You can then see both the input and output images displayed on two distinct windows. Finally,
you will probably want to save the processed image on your disk. This is done using the
following highgui function:

cv::imwrite("output.bmp", result);

The file extension determines which codec will be used to save the image.

How it works...
All classes and functions defined in the C++ API of OpenCV are defined within the name space
cv. You have two options to access them. First, precede the main function definition by the
following declaration:

using namespace cv;

Playing with Images

28

Alternatively, prefix all OpenCV class and function names by the namespace specification that
is cv::, as we did in this recipe.

The class cv::Mat is the data structure used to hold your images (and obviously other matrix
data). By default, they have a zero size but you can also specify an initial size:

cv::Mat ima(240,320,CV_8U,cv::Scalar(100));

In this case, you also need to specify the type of each matrix element, here CV_8U which
corresponds to 1-byte pixel images. Letter U means unsigned. You can also declare
signed numbers by using the letter S. For a color image, you would specify three channels
(CV_8UC3). You can also declare integers (signed or unsigned) of size 16 and 32 (for example,
CV_16SC3). You also have access to 32-bit and 64-bit floating point numbers (for example,
CV_32F).

When the cv::Mat object goes out of scope, the memory allocated is automatically released.
This is very convenient because you avoid having problems with memory leaks. Moreover, the
cv::Mat class implements reference counting and shallow copy such that when an image
is assigned to another one, the image data (that is the pixels) is not copied, and both images
will point to the same memory block. This also applies to images passed by value or returned
by value. A reference count is kept such that the memory will be released only when all of the
references to the image will be destructed. If you wish to create an image that will contain a new
copy of the original image, you will use the method copyTo(). You can test this behavior by
declaring a few extra images in the example of this project, as follows:

cv::Mat image2, image3;
image2= result; // the two images refer to the same data
result.copyTo(image3); // a new copy is created

Now if you again flip the output image and display the two additional images, you will see that
image2 is also affected by the transformation (because it points to the same image data
than result image) while image3 remains unchanged as it holds a copy of the image. This
allocation model for cv::Mat objects also means that you can safely write functions (or class
methods) that return an image:

cv::Mat function() {

 // create image
 cv::Mat ima(240,320,CV_8U,cv::Scalar(100));
 // return it
 return ima;
}

If we call this function from our main function:

 // get a gray-level image
 cv::Mat gray= function();

Chapter 1

29

The gray variable will now hold the image created by the function without extra memory
allocation. Indeed, only a shallow copy of the image will be transferred from the returned
cv::Mat instance to the gray image. When the ima local variable goes out of scope, this
variable is de-allocated, but since the associated reference counter indicates that its internal
image data is being referred by another instance (that is the gray variable) its memory block
is not released.

However, in the case of classes, you should be careful and not return image class attributes.
Here is an example of an error-prone implementation:

class Test {

 // image attribute
 cv::Mat ima;

 public:

 // constructor creating a gray-level image
 Test() : ima(240,320,CV_8U,cv::Scalar(100)) {}

 // method return a class attribute, not a good idea...
 cv::Mat method() { return ima; }
};

Here, if a function calls the method of this class, it obtains a shallow copy of the image
attributes. If later, this copy is modified, the class attribute will also be modified which can
affect the subsequent behavior of the class (and vice versa). To avoid these kinds of errors,
you should instead return a copy of the attribute.

There's more...
With version 2 of the OpenCV, a new C++ interface has been introduced. Previously, C-like
functions and structures were used (and can still be used). In particular, images were
manipulated using the IplImage structure. This structure was inherited from the IPL library
(that is the Intel Image Processing Library) now integrated with the IPP library (the Intel
Integrated Performance Primitive library). If you use code and libraries that were created with
the old C interface, you might need to manipulate those IplImage structures. Fortunately,
there is a convenient way to convert an IplImage into a cv::Mat object.

IplImage* iplImage = cvLoadImage("c:\\img.jpg");
cv::Mat image4(iplImage,false);

The function cvLoadImage is the C-interface function to load images. The second parameter
in the constructor of the cv::Mat object indicates that the data will not be copied (set it to
true if you want a new copy, while false is the default value so it could have been omitted),
that is both IplImage and image4 will share the same image data. You need to be careful
here to not create dangling pointers. For this reason, it is safer to encapsulate the IplImage
pointer into the reference-counting pointer class provided by OpenCV 2:

cv::Ptr<IplImage> iplImage = cvLoadImage("c:\\img.jpg");

Playing with Images

30

Otherwise, if you need to deallocate the memory pointed by your IplImage structure, you
need to do it explicitly:

 cvReleaseImage(&iplImage);

Remember, you should avoid using this deprecate data structure. Instead, always use
cv::Mat.

Creating a GUI application using Qt
Qt offers a rich library to build a sophisticated GUI with a professional look. Using Qt Creator,
the process of GUI creation is made easy. This recipe will show you how to build an OpenCV
application with Qt that a user can control using a GUI.

Getting ready
Start Qt Creator which we will use to create our GUI application. It is also possible to create a
GUI without this tool, but the use of a visual IDE in which the widgets can simply be dragged
and dropped is the easiest way to build a nice looking GUI.

How to do it...
Select Create New Project… and choose Qt GUI Application as seen in the following
screenshot:

Chapter 1

31

Give a name and a location to your project. If you then click on Next, you will see that the
QtGUI Module is checked. Since we do not need other modules, you can click on Finish at
this point. This will create your new project. In addition to the usual project file (.pro) and
the main.cpp file, you see two mainwindow files defining the class that contains your GUI
window. You will also find a file having the extension .ui, which is the one that describes the
UI layout. In fact, if you double-click on it, you will see the current user interface as seen here:

You can drag-and-drop different widgets on it. Drop two Push Buttons as we did in the
preceding example. You can resize them and resize the window to make it nice. You should
also rename the button labels. Just click on the text and insert the name of your choice.

Playing with Images

32

Let's now add a signal method in order to handle the click button event. Right-click on the
first button and select Go to slot... in the contextual menu. The list of possible signals is then
displayed as seen in the following screenshot:

Simply select the clicked() signal. This is the one that handles the button pushed events.
By doing this, you will be brought to the mainwindow.cpp file. You will see that a new
method has been added. This is the slot method that is called when the click() signal is
received:

#include "mainwindow.h"
#include "ui_mainwindow.h"
MainWindow::MainWindow(QWidget *parent)
: QMainWindow(parent), ui(new Ui::MainWindow)
{
 ui->setupUi(this);
}
MainWindow::~MainWindow()
{
 delete ui;
}
void MainWindow::on_pushButton_clicked()
{
}

In order to be able to display and then process the image, we need to define a cv::Mat class
member variable. This is done in the header file of the MainWindow class. This header now
reads as follows:

#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QtGui/QMainWindow>

Chapter 1

33

#include <QFileDialog>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

namespace Ui
{
 class MainWindow;
}
class MainWindow : public QMainWindow
{
 Q_OBJECT
public:
 MainWindow(QWidget *parent = 0);
 ~MainWindow();
private:
 Ui::MainWindow *ui;
 cv::Mat image; // the image variable
private slots:
 void on_pushButton_clicked();
};

#endif // MAINWINDOW_H

Note that we have also included the core.hpp and the highgui.hpp header files. As we
learned in a preceding recipe, we must not forget to edit the project file in order to append the
OpenCV library information.

OpenCV code can then be added. The first button opens the source image. This is done by
adding the following code to the corresponding slot method:

void MainWindow::on_pushButton_clicked()
{
 QString fileName = QFileDialog::getOpenFileName(this,
 tr("Open Image"), ".",
 tr("Image Files (*.png *.jpg *.jpeg *.bmp)"));

 image= cv::imread(fileName.toAscii().data());
 cv::namedWindow("Original Image");
 cv::imshow("Original Image", image);
}

You then create a new slot by right-clicking on the second button. This second slot will perform
some processing on the selected input image. The following code will simply flip the image:

void MainWindow::on_pushButton_2_clicked()
{
 cv::flip(image,image,1);
 cv::namedWindow("Output Image");
 cv::imshow("Output Image", image);
}

Playing with Images

34

You can now compile and run this program and your 2-button GUI will allow you to select an
image and process it.

The input and output images are being displayed on the two highgui windows that we
defined.

How it works...
Under the GUI programming framework of Qt, objects communicate using signals and slots.
Whenever a widget changes state, or an event occurs, a signal is emitted. This signal has a
pre-defined signature, and if another object wants to receive this signal it must define a slot
with the same signature. A slot is therefore a special class method that is automatically called
when the signal to which it is connected is emitted.

Signals and slots are defined as class methods but must be declared under the Qt access
which specifies slots and signals. This is what Qt Creator did when you added a slot to your
button, that is:

private slots:
 void on_pushButton_clicked();

Signals and slots are loosely coupled, that is, a signal does not know anything about the objects
having slots connected to it, and a slot does not know if a signal is connected to it or not. Also,
many slots can be connected to one signal and a slot can receive signals from many objects.
The only requirement is that the signatures of the signal and the slot methods must match.

All classes that inherit from the QObject class can contain signals and slots. These will most
often be subclasses of a widget class (subclass of QWidget) but any other class can define
slots and signals. The signal-and-slot concept is, in fact, a very powerful class communication
mechanism. It is however specific to the Qt framework.

Chapter 1

35

In Qt, the main window is an instance of the class, MainWindow. You have access to it
through the member variable ui that is declared within the MainWindow class definition.
In addition, each widget of the GUI is also an object. When the GUI is created, a pointer to
each of the widget instances you have added to the main window is associated with the
ui variable. Therefore, you can access the properties and methods of each widget in your
program. For example, if you want the Process button to be disabled until an input image is
selected, all you need to do is call the following method when the GUI is initialized (that is in
the MainWindow constructor):

ui->pushButton_2->setEnabled(false);

The pointer variable pushbutton_2 corresponds here to the Process button. You then
enable the button when an image is successfully loaded (in the Open Image button):

if (image.data) {
 ui->pushButton_2->setEnabled(true);
}

It is also worth noting that under Qt, the layout of your GUI is completely described in a XML
file. This is the file with the .ui extension. If you go in your project directory and open the .ui
file with a text editor, you will be able to read the XML content of this file. Several XML tags
are defined. In the case of the example application presented in this recipe, you will find two
widget class tags defined as QPushButton. A name is associated with these widget classes'
tags that corresponds to the name of the pointer variable attached to the ui object. Each of
these defines a geometry property that describes their position and size. Many other property
tags are also defined. Qt Creator has a property tab that shows the value of the properties of
each widget. Consequently, even if Qt Creator is the best tool to create your GUI, you can also
edit the .ui XML file to create and modify your GUI.

There's more...
Displaying an image directly on the GUI is relatively easy with Qt. All you need to do is add
a label object to your window. You then assign an image to this label in order to display this
image. Remember, you have access to the label instance via the corresponding pointer
attribute of the ui pointer (ui->label in our example). But this image must be of type
QImage, the Qt data structure to handle images. The conversion is relatively straightforward
except that the order of the three color channels needs to be inverted (from BGR in our
cv::Mat to RGB in QImage). We can use the cv::cvtColor function for this. The Process
button of our simple GUI application can then be changed to:

void MainWindow::on_pushButton_2_clicked()
{
 cv::flip(image,image,1); // process the image

 // change color channel ordering
 cv::cvtColor(image,image,CV_BGR2RGB);

 // Qt image

Playing with Images

36

 QImage img= QImage((const unsigned char*)(image.data),
 image.cols,image.rows,QImage::Format_RGB888);

 // display on label
 ui->label->setPixmap(QPixmap::fromImage(img));
 // resize the label to fit the image
 ui->label->resize(ui->label->pixmap()->size());
}

As a result, the output image is now displayed directly on the GUI as seen here:

See also
Consult the online Qt documentation located at http://doc.trolltech.com for more
information on the Qt GUI module and on the signals and slots mechanism.

2
Manipulating the

Pixels

In this chapter, we will cover:

ff Accessing pixel values

ff Scanning an image with pointers

ff Scanning an image with iterators

ff Writing efficient image scanning loops

ff Scanning an image with neighbor access

ff Performing simple image arithmetic

ff Defining regions of interest

Introduction
In order to build computer vision applications, you must be able to access image content, and
eventually modify or create images. This chapter will teach you how to manipulate the picture
elements (a.k.a. pixels). You will learn how to scan an image and process each of its pixels.
You will also learn how to do this efficiently since even images of modest dimensions can
contain tens of thousands of pixels.

Fundamentally, an image is a matrix of numerical values. This is why OpenCV 2 manipulates
them using the cv::Mat data structure. Each element of the matrix represents one pixel.
For a gray-level image (a "black-and-white" image), pixels are unsigned 8-bit values where 0
corresponds to black and corresponds 255 to white. For a color image, three such values per
pixel are required to represent the usual three primary color channels {Red, Green, Blue}. A
matrix element is therefore made, in this case, of a triplet of values.

www.allitebooks.com

http://www.allitebooks.org

Manipulating the Pixels

38

As we saw in the previous chapter, OpenCV also allows you to create matrices (or images)
with pixel values of different types (for example, integer (CV_8U) and floating point (CV_32F)
numbers). These are very useful to store for example, intermediate values in some image
processing task. Most operations can be applied on matrices of any type, others require a
specific type, or work only with a given number of channels. Therefore, a good understanding of
a function's or method's preconditions is essential to avoid common programming errors.

Throughout this chapter, we use the following color image as input (see the book's website to
view this image in color):

Accessing pixel values
In order to access each individual element of a matrix, you just need to specify its row and
column numbers. The corresponding element, which can be a single numerical value or a
vector of values in the case of a multi-channel image, will be returned.

Getting ready
To illustrate the direct access to pixel values, we will create a simple function that adds salt-
and-pepper noise to an image. As the name suggests, salt-and-pepper noise is a particular
type of noise in which some pixels are replaced by a white or a black pixel. This type of noise
can occur in faulty communication when the value of some pixels is lost during transmission.
In our case, we will simply randomly select a few pixels and assign them the white color.

Chapter 2

39

How to do it...
We create a function that receives an input image. This is the image that will be modified by
our function. To this end, we use the pass-by-reference mechanism. The second parameter is
the number of pixels on which we want to overwrite white values:

void salt(cv::Mat &image, int n) {

 for (int k=0; k<n; k++) {

 // rand() is the MFC random number generator
 // try qrand() with Qt
 int i= rand()%image.cols;
 int j= rand()%image.rows;

 if (image.channels() == 1) { // gray-level image

 image.at<uchar>(j,i)= 255;

 } else if (image.channels() == 3) { // color image

 image.at<cv::Vec3b>(j,i)[0]= 255;
 image.at<cv::Vec3b>(j,i)[1]= 255;
 image.at<cv::Vec3b>(j,i)[2]= 255;
 }
 }
}

The function is made of a single loop that assigns n times the value 255 to randomly selected
pixels. Here, the pixel column i and row j are selected using a random number generator.
Note that we distinguish the two cases of gray-level and color images by checking the number
of channels associated with each pixel. In the case of a gray-level image, the number 255
is assigned to the single 8-bit value. For a color image, you need to assign 255 to the three
primary color channels in order to obtain a white pixel.

You can call this function by passing it an image you have previously opened:

 // open the image
 cv::Mat image= cv::imread("boldt.jpg");

 // call function to add noise
 salt(image,3000);

 // display image
 cv::namedWindow("Image");
 cv::imshow("Image",image);

Manipulating the Pixels

40

The resulting image will look as follows:

How it works...
The class cv::Mat includes several methods to access the different attributes of an image.
The public member variables cols and rows give you the number of columns and rows in
the image. For element access, cv::Mat has the method at(int y, int x). However, the
type returned by a method must be known at compile time, and since a cv::Mat can hold
elements of any type, the programmer needs to specify the return type that is expected. This
is why the at method has been implemented as a template method. So when you call it, you
must specify the image element type as in:

 image.at<uchar>(j,i)= 255;

It is important to note that it is the programmer's responsibility to make sure that the type
specified matches the type contained in the matrix. The at method does not perform any type
conversion.

In color images, each pixel is associated with three components: the red, green, and blue
channels. Therefore, a cv::Mat containing a color image will return a vector of three 8-bit
values. OpenCV has a defined type for such short vectors that is called cv::Vec3b. It is a
vector of 3 unsigned chars. This explains why the element access to the pixels of a color
pixel is written as:

 image.at<cv::Vec3b>(j,i)[channel]= value;

The index channel designates one of the three color channels.

Chapter 2

41

Similar vector types also exist for 2-element and 4-element vectors (cv::Vec2b and
cv::Vec4b) and for other element types. In this later case, the last letter is replaced by s
for short, i for int, f for float, and d for double. All of these types are defined using the
template class cv::Vec<T,N> where T is the type and N is the number of vector elements.

There's more...
Using the at method of the cv::Mat class can sometimes be cumbersome because the
returned type must be specified as a template argument for each call. In cases where the
matrix type is known, it is possible to use the cv::Mat_ class which is a template subclass of
cv::Mat. This class defines a few extra methods but no new data attributes, so that pointers
or references to one class can be directly converted to the other class. Among the extra
methods, there is the operator() allowing direct access to matrix elements. Therefore, if
image is a reference to a uchar matrix, then one can write:

 cv::Mat_<uchar> im2= image; // im2 refers to image
 im2(50,100)= 0; // access to row 50 and column 100

Since the type of the cv::Mat_ elements is declared when the variable is created, the
operator() method knows at compile-time which type to return. Other than being shorter to
write, using the operator() method provides exactly the same result as the at method.

See also
The Writing efficient image scanning loops recipe for a discussion on the efficiency of
this method.

Scanning an image with pointers
In most image processing tasks, one needs to scan all pixels of the image in order to perform
a computation. Considering the large number of pixels that will need to be visited, it is
essential to perform this task in an efficient way. This recipe, and the next one, will show you
different ways of implementing an image scanning loop. This recipe uses pointer arithmetic.

Getting ready
We will illustrate the image scanning process by accomplishing a simple task: reducing the
number of colors in an image.

Manipulating the Pixels

42

Color images are composed of 3-channel pixels. Each of these channels corresponds to the
intensity value of one of the three primary colors (red, green, blue). Since each of these values
is an 8-bit unsigned char, the total number of colors is 256x256x256, which is more than
16 million colors. Consequently, to reduce the complexity of an analysis, it is sometimes
useful to reduce the number of colors in an image. One simple way to achieve this goal is
to simply subdivide the RGB space into cubes of equal sizes. For example, if you reduce the
number of colors in each dimension by 8, then you would obtain a total of 32x32x32 colors.
Each color in the original image is then assigned a new color value in the color-reduced image
that corresponds to the value in the center of the cube to which it belongs.

Therefore, the basic color reduction algorithm is simple. If N is the reduction factor, then
for each pixel in the image and for each channel of this pixel, divide the value by N (integer
division, therefore the reminder is lost). Then multiply the result by N, this will give you the
multiple of N just below the input pixel value. Just add N/2 and you obtain the central position
of the interval between two adjacent multiples of N. if you repeat this process for each 8-bit
channel value, then you will obtain a total of 256/N x 256/N x 256/N possible color values.

How to do it...
The signature of our color reduction function will be as follows:

void colorReduce(cv::Mat &image, int div=64);

The user provides an image and the per-channel reduction factor. Here, the processing is
done in-place, that is the pixel values of the input image are modified by the function. See
the There's more… section of this recipe for a more general function signature with input and
output arguments.

The processing is simply done by creating a double loop that goes over all pixel values:

void colorReduce(cv::Mat &image, int div=64) {

 int nl= image.rows; // number of lines
 // total number of elements per line
 int nc= image.cols * image.channels();

 for (int j=0; j<nl; j++) {

 // get the address of row j
 uchar* data= image.ptr<uchar>(j);

 for (int i=0; i<nc; i++) {

 // process each pixel ---------------------

 data[i]= data[i]/div*div + div/2;

 // end of pixel processing ----------------

Chapter 2

43

 } // end of line
 }
}

This function can be tested using the following code snippet:

 // read the image
 image= cv::imread("boldt.jpg");
 // process the image
 colorReduce(image);
 // display the image
 cv::namedWindow("Image");
 cv::imshow("Image",image);

This will give you, for example, the following image (see the book's website to view this image
in color):

Manipulating the Pixels

44

How it works...
In a color image, the first 3 bytes of the image data buffer gives the 3 color channel values of
the upper left pixel, the next 3 bytes are the values of the second pixel of the first row, and so
on (note that OpenCV uses, by default, BGR channel order, so blue is usually the first channel).
An image of width W and height H would then require a memory block of WxHx3 uchars.
However, for efficiency reasons, the length of a row can be padded with few extra pixels. This
is because some multimedia processor chips (for example, the Intel MMX architecture) can
process images more efficiently when their rows are multiples of 4 or 8. Obviously, these
extra pixels are not displayed or saved, their exact values are ignored. OpenCV designates
the length of a padded row as the keyword. Obviously, if the image has not been padded with
extra pixels, the effective width will be equal to the real image width. The data attribute cols
gives you the image width (that is the number of columns), and the attribute rows gives you
the image height while the step data attribute gives you the effective width in number of
bytes. Even if your image is of a type other than uchar, step will still give you the number of
bytes in a row. The size of a pixel element is given by method elemSize (for example, for a
3-channel short integer matrix (CV_16SC3), elemSize will return 6). The number of channels
in the image is given by the nchannels method (which will be 1 for a gray-level image and
3 for a color image). Finally, method total returns the total number of pixels (that is matrix
entries) in the matrix.

The number of pixel values per rows is then given by:

 int nc= image.cols * image.channels();

To simplify the computation of the pointer arithmetic, the cv::Mat class offers a method
which directly gives you the address of an image row. This is the ptr method. It is a template
method that returns the address of row number j:

 uchar* data= image.ptr<uchar>(j);

Note, that in the processing statement, we could have equivalently used pointer arithmetic to
move from column to column. So we could have written:

 *data++= *data/div*div + div2;

There's more...
The color reduction function presented in this recipe provides just one way of accomplishing
this task. One could also use other color reduction formulas. A more general version of the
function would also allow the specification of distinct input and output images. The image
scanning can also be made more efficient by taking into account the continuity of the image
data. Finally, it is also possible to use regular low-level pointer arithmetic to scan the image
buffer. All of these elements are discussed in the following sub-sections.

Chapter 2

45

Other color reduction formulas
In our example, color reduction is achieved by taking advantage of an integer division that
floors the division result to the nearest lower integer:

 data[i]= data[i]/div*div + div/2;

The reduced color could have also been computed using the modulo operator which brings us
to the nearest multiple of div (the 1D reduction factor):

 data[i]= data[i] – data[i]%div + div/2;

But this computation is a bit slower because it requires reading each pixel value twice.

Another option would be to use bitwise operators. Indeed, if we restrict the reduction factor
to a power of 2, that is, div=pow(2,n), then masking the first n bits of the pixel value would
give us the nearest lower multiple of div. This mask would be computed by a simple bit shift:

 // mask used to round the pixel value
 uchar mask= 0xFF<<n; // e.g. for div=16, mask= 0xF0

The color reduction would be given by:

 data[i]= (data[i]&mask) + div/2;

In general, bitwise operations lead to very efficient code, so they could constitute a powerful
alternative when efficiency is a requirement.

Having input and output arguments
In our color reduction example, the transformation is directly applied to the input image,
which is called an in-place transformation. This way, no extra image is required to hold the
output result, which could save on the memory usage when it is a concern. However, in some
applications, the user wants to keep the original image intact. The user would then be forced
to create a copy of the image before calling the function. Note that the easiest way to create
an identical deep copy of an image is to call the clone method, for example:

 // read the image
 image= cv::imread("boldt.jpg");
 // clone the image
 cv::Mat imageClone= image.clone();
 // process the clone
 // orginal image remains untouched
 colorReduce(imageClone);
 // display the image result
 cv::namedWindow("Image Result");
 cv::imshow("Image Result",imageClone);

Manipulating the Pixels

46

This extra overload can be avoided by defining a function that gives the option to the user to
either use or not use the in-place processing. The signature of the method would then be:

void colorReduce(const cv::Mat &image, // input image
 cv::Mat &result, // output image
 int div=64);

Note that the input image is now passed as a const reference, meaning that this image will
not be modified by the function. When in-place processing is preferred, the same image is
specified as input and output:

colorReduce(image,image);

If not, another cv::Mat instance can be provided, for example:

cv::Mat result;
colorReduce(image,result);

The key here is to first verify if the output image has an allocated data buffer with a size
and pixel type that match the ones of the input image. Very conveniently, this check is
encapsulated inside the create method of cv::Mat. This is the method to use when a
matrix must be re-allocated with a new size and type. If, by chance, the matrix already has
the size and type specified, then no operation is performed and the method simply returns
without touching the instance. Therefore, our function should simply start with a call to
create that builds a matrix (if necessary) of the same size and type than the input image:

 result.create(image.rows,image.cols,image.type());

Note that create always creates a continuous image, that is an image with no padding. The
memory block allocated has a size of total()*elemSize().The looping is then done with
two pointers:

 for (int j=0; j<nl; j++) {

 // get the addresses of input and output row j
 const uchar* data_in= image.ptr<uchar>(j);
 uchar* data_out= result.ptr<uchar>(j);

 for (int i=0; i<nc; i++) {

 // process each pixel ---------------------

 data_out[i]= data_in[i]/div*div + div/2;

 // end of pixel processing ----------------

 } // end of line

In the case where the same image is provided as input and output, this function becomes
completely equivalent to the first version presented in this recipe. If another image is provided
as output, the function will work correctly irrespective of whether the image has been or has
not been allocated prior to the function call.

Chapter 2

47

Efficient scanning of continuous images
We previously explained that, for efficiency reasons, an image can be padded with extra pixels
at the end of each row. However, it is interesting to note that when the image is unpadded,
the image can be seen as a long one-dimensional array of WxH pixels. A convenient cv::Mat
method can tell us if the image has been padded or not. It is the isContinuous method that
returns true if the image does not include padded pixels.

In some specific processing algorithms, one can take advantage of the continuity of the image
by processing it in one single (longer) loop. Our processing function would then be written as
follows:

void colorReduce(cv::Mat &image, int div=64) {

 int nl= image.rows; // number of lines
 int nc= image.cols * image.channels();

 if (image.isContinuous())
 {
 // then no padded pixels
 nc= nc*nl;
 nl= 1; // it is now a 1D array
 }

 // this loop is executed only once
 // in case of continuous images
 for (int j=0; j<nl; j++) {

 uchar* data= image.ptr<uchar>(j);

 for (int i=0; i<nc; i++) {

 // process each pixel ---------------------

 data[i]= data[i]/div*div + div/2;

 // end of pixel processing ----------------

 } // end of line
 }
}

Now, when the continuity test tells us that the image does not contain padded pixels, we
eliminate the outer loop by setting the width to 1 and the height to WxH. Note that there
is also a reshape method that could have been used here. You would write the following in
this case:

 if (image.isContinuous())
 {
 // no padded pixels
 image.reshape(1, // new number of channels
 image.cols*image.rows) ; // new number of rows

Manipulating the Pixels

48

 }

 int nl= image.rows; // number of lines
 int nc= image.cols * image.channels();

The method reshape changes the matrix dimensions without requiring any memory copy or
re-allocation. The first parameter is the new number of channels and the second one is the
new number of rows. The number of columns is readjusted accordingly.

In these implementations, the inner loop processes all image pixels in sequence. This
approach is mainly advantageous when several small images are scanned simultaneously
into the same loop.

Low-level pointer arithmetics
In the cv::Mat class, the image data is contained into a memory block of unsigned chars.
The address of the first element of this memory block is given by the data attribute which
returns an unsigned char pointer. So, to start your loop at the beginning of the image, you
could have written:

uchar *data= image.data;

Moving from one row to the next could have been done by moving your row pointer using the
effective width:

data+= image.step; // next line

The method step gives you the total number of bytes (including the padded pixels) in a line.
In general, you can obtain the address of the pixel at row j and column i as follows:

// address of pixel at (j,i) that is &image.at(j,i)
data= image.data+j*image.step+i*image.elemSize();

However, even if this would work in our example, it is not recommended to proceed this way.
In addition to being error-prone, this approach will not work with regions of interest. Regions of
interest are discussed at the end of this chapter.

See also
The Writing efficient image scanning loops recipe for a discussion on the efficiency of the
scanning methods presented here.

Chapter 2

49

Scanning an image with iterators
In object-oriented programming, looping over a data collection is usually done using iterators.
Iterators are specialized classes built to go over each element of a collection, hiding how the
iteration over each element is specifically done for a given collection. This application of the
information hiding principle makes scanning a collection easier. In addition, it makes it similar
in form no matter what type of collection is used. The Standard Template Library (STL) has an
iterator class associated with each of its collection classes. OpenCV then offers a cv::Mat
iterator class compatible with the standard iterators found in the C++ STL.

Getting ready
In this recipe, we again use the color reduction example described in the previous recipe.

How to do it...
An iterator object for a cv::Mat instance can be obtained by first creating a
cv::MatIterator_ object. As in the case of the cv::Mat_ subclass, the underscore
indicates that this is a template method. Indeed, since image iterators are used to access the
image elements, the return type must be known at compile time. The iterator is then declared
as follows:

 cv::MatIterator_<cv::Vec3b> it;

Alternatively, you can also use the iterator type defined inside the Mat_ template class:

 cv::Mat_<cv::Vec3b>::iterator it;

You then loop over the pixels using the usual begin and end iterator methods except that
these ones are again template methods. Consequently, our color reduction function is now
written as follows:

void colorReduce(cv::Mat &image, int div=64) {

 // obtain iterator at initial position
 cv::Mat_<cv::Vec3b>::iterator it=
 image.begin<cv::Vec3b>();
 // obtain end position
 cv::Mat_<cv::Vec3b>::iterator itend=
 image.end<cv::Vec3b>();

 // loop over all pixels
 for (; it!= itend; ++it) {

 // process each pixel ---------------------

 (*it)[0]= (*it)[0]/div*div + div/2;

Manipulating the Pixels

50

 (*it)[1]= (*it)[1]/div*div + div/2;
 (*it)[2]= (*it)[2]/div*div + div/2;

 // end of pixel processing ----------------
 }
}

Remember that the iterator here returns a cv::Vec3b because we are processing a color
image. Each color channel element is accessed using dereferencing operator[].

How it works...
Working with iterators, no matter what kind of collection is scanned, always follows the same
pattern.

First, you create your iterator object using the appropriate specialized class which is, in our
example, cv::Mat_<cv::Vec3b>::iterator (or cv::MatIterator_<cv::Vec3b>).

You then obtain an iterator initialized at the starting position (in our example, the upper-left
corner of the image). This is done using a begin method. With a cv::Mat instance, you
obtain it as image.begin<cv::Vec3b>(). You can also use arithmetic on the iterator.
For example, if you wish to start at the second row of an image, you can initialize your
cv::Mat iterator at image.begin<cv::Vec3b>()+image.rows. The end position of
your collection is obtained similarly but using the end method. However, the iterator thus
obtained is just outside your collection. This is why your iterative process must stop when it
reaches that end position. You can also use arithmetic on this iterator, for example, if you wish
to stop before the last row, your final iteration would stop when the iterator reaches image.
end<cv::Vec3b>()-image.rows.

Once your iterator is initialized, you create a loop that goes over all elements until the end is
reached. A typical while loop will look like this:

 while (it!= itend) {

 // process each pixel ---------------------
 …

 // end of pixel processing ----------------

 ++it;
 }

The operator++ is the one to use to move to the next element. You can also specify larger
step size. For example it+=10 would process every 10 pixels.

Chapter 2

51

Finally, inside the processing loop, you use the dereferencing operator* in order to access
the current element, using which you can read (for example, element= *it;) or write (for
example, *it= element;). Note that it is also possible to create constant iterators that you
use if you receive a reference to a const cv::Mat or if you wish to signify that the current
loop does not modify the cv::Mat instance. These are declared as follows:

 cv::MatConstIterator_<cv::Vec3b> it;

or:

 cv::Mat_<cv::Vec3b>::const_iterator it;

There's more...
In this recipe, the start and end positions of the iterator were obtained using the template
methods begin and end. As we did in the first recipe of this chapter, we could have also
obtained them using a reference to a cv::Mat_ instance. This would avoid the need to
specify the iterator type in the begin and end methods since this one is specified when the
cv::Mat_ reference is created.

 cv::Mat_<cv::Vec3b> cimage= image;
 cv::Mat_<cv::Vec3b>::iterator it= cimage.begin();
 cv::Mat_<cv::Vec3b>::iterator itend= cimage.end();

See also
The Writing efficient image scanning loops recipe for a discussion on the efficiency of iterators
when scanning an image.

Also, if you are not familiar with the concept of iterators in object-oriented programming and
how they have been implemented in ANSI C++, you should read a tutorial on STL iterators.
Simply search the web with the keywords "STL Iterator" and you will find numerous references
on the subject.

Writing efficient image scanning loops
In the previous recipes of this chapter, we have presented different ways of scanning an
image in order to process its pixels. In this recipe, we will compare the efficiency of these
different approaches.

When you write an image processing function, efficiency is often a concern. When you design
your function, you will frequently need to check the computational efficiency of your code in
order to detect any bottleneck in your processing which might slow down your program.

Manipulating the Pixels

52

However, it is important to note, that unless necessary, optimization should not be done at the
price of reducing program clarity. Simple code is indeed always easier to debug and maintain.
Only code portions that are critical to a program's efficiency should be heavily optimized.

How to do it...
In order to measure the execution time of a function or a portion of code, there exists a very
convenient OpenCV function called cv::getTickCount(). This function gives you the
number of clock cycles that occurred since the last time you started your computer. Since
we want the execution time of a code portion given in milliseconds, we use another method,
cv::getTickFrequency(). This gives us the number of cycles per seconds. The usual
pattern to use in order to obtain the computational time of a given function (or portion of
code) would then be:

double duration;
duration = static_cast<double>(cv::getTickCount());

colorReduce(image); // the function to be tested

duration = static_cast<double>(cv::getTickCount())-duration;
duration /= cv::getTickFrequency(); // the elapsed time in ms

The duration result should be averaged over several calls of the function.

In the testing of the colorReduce function, we also implemented a version of the function
that uses the at method for pixel access. The main loop of this implementation would then
read simply as:

 for (int j=0; j<nl; j++) {
 for (int i=0; i<nc; i++) {

 // process each pixel ---------------------

 image.at<cv::Vec3b>(j,i)[0]=
 image.at<cv::Vec3b>(j,i)[0]/div*div + div/2;
 image.at<cv::Vec3b>(j,i)[1]=
 image.at<cv::Vec3b>(j,i)[1]/div*div + div/2;
 image.at<cv::Vec3b>(j,i)[2]=
 image.at<cv::Vec3b>(j,i)[2]/div*div + div/2;

 // end of pixel processing ----------------

 } // end of line
 }

Chapter 2

53

How it works...
The execution times of the different implementations of the colorReduce function from this
chapter are reported here. The absolute runtime numbers would differ from one machine to
another (here we used a Pentium dual core 2.2GHz). It is rather interesting to look at their
relative difference. Our tests report the average time to reduce the colors of an image having
a resolution of 4288x2848 pixels. The results are summarized in the following table and are
discussed below:

Method Average time
data[i]= data[i]/div*div + div/2; 37ms

*data++= *data/div*div + div/2; 37ms

*data++= v - v%div + div/2; 52ms

*data++= *data&mask + div/2; 35ms

colorReduce(input, output); 44ms

i<image.cols*image.channels(); 65ms

MatIterator 67ms

.at(j,i) 80ms

3-channel loop 29ms

First, we compare the three ways of computing the color reduction (rows 1-4) as presented in
the There's more… section of the Scanning an image with pointers recipe. As expected, the
version that uses bitwise operators is the fastest with an execution time of 35ms. The version
that uses integer division took 37ms, while the one with modulo is at 52ms. This represents
a difference of almost 50% between the fastest and the slowest! It is therefore important
to take the time to identify the most efficient way of computing a result in an image loop as
the net impact can be very significant. Note that when an output image that needs to be re-
allocated is specified instead of an in-place processing (row 5), the execution time becomes
44ms. The extra duration represents the overhead for memory allocation.

In a loop, you should avoid repetitive computations of values that could be precomputed. This
obviously consumes time. For example, if you replace the following inner loop of the color
reduction function:

 int nc= image.cols * image.channels();
 …
 for (int i=0; i<nc; i++) {

with this one:

 for (int i=0; i<image.cols * image.channels(); i++) {

Manipulating the Pixels

54

that is a loop where you need to compute the total number of elements in a line again and
again. You will obtain a runtime of 65ms which is 80% slower than the original version at 35ms
(row 6).

The version of the color reduction function that uses iterators (row 7), as shown in recipe
Scanning an image with iterators, gives slower results at 67ms. The main objective of iterators
is to simplify the image scanning process and make it less error-prone. It is not necessarily to
optimize this process.

The implementation that uses the at method presented at the end of the preceding section
is much slower (row 8). A runtime of 80ms is obtained. This method should then be used for
random access of image pixels but never when scanning an image.

A shorter loop with few statements is generally more efficiently executed than a longer loop
over a single statement, even if the total number of elements processed is the same. Similarly,
if you have N different computations to apply to a pixel, do all of them in one loop rather than
writing N successive loops, one for each computation. You should then favor loops, doing
more work over longer loops that do less computation. As an example, we could process all
three channels inside the inner loop and have it iterating over the number of columns, instead
of using the original version where the looping is over the total number of elements (that is 3
times the number of pixels). The color reduction function would then be written as follows (this
is the fastest version):

void colorReduce(cv::Mat &image, int div=64) {

 int nl= image.rows; // number of lines
 int nc= image.cols ; // number of columns

 // is it a continous image?
 if (image.isContinuous()) {
 // then no padded pixels
 nc= nc*nl;
 nl= 1; // it is now a 1D array
 }

 int n= static_cast<int>(
 log(static_cast<double>(div))/log(2.0));
 // mask used to round the pixel value
 uchar mask= 0xFF<<n; // e.g. for div=16, mask= 0xF0

 // for all pixels
 for (int j=0; j<nl; j++) {

 // pointer to first column of line j
 uchar* data= image.ptr<uchar>(j);

 for (int i=0; i<nc; i++) {

 // process each pixel ---------------------

Chapter 2

55

 *data++= *data&mask + div/2;
 *data++= *data&mask + div/2;
 *data++= *data&mask + div/2;

 // end of pixel processing ----------------

 } // end of line
 }
}

With this modification, the execution time is now at 29ms (row 9). We also added the
continuity test that produces one loop in case of continuous images, instead of the regular
double loop over lines and columns. For a very large image, as the one we used in our tests,
this optimization is not significant, but in general it is always a good practice to use this
strategy since it can lead to significant gain in speed.

There's more…
Multi-threading is another way to increase the efficiency of your algorithms, especially since
the advent of multi-core processors. OpenMP and the Intel Threading Building Blocks (TBB)
are two popular APIs used in concurrent programming to create and manage your threads.

See also
Have a look at the Performing simple image arithmetic recipe for an implementation of the
color reduction method that uses the OpenCV 2 arithmetic image operators.

Scanning an image with neighbor access
In image processing, it is common to have a processing function which computes a value at
each pixel location based on the value of the neighboring pixels. When this neighborhood
includes pixels of the previous and next lines, you then need to simultaneously scan several
lines of the image. This recipe shows you how to do it.

Getting ready
To illustrate this recipe, we will apply a processing function that sharpens an image. It is based
on the Laplacian operator (which will be discussed in Chapter 6). It is indeed a well-known
result in image processing that if you subtract its Laplacian from an image, the image edges are
amplified giving a sharper image. This sharpen operator is computed as follows:

sharpened_pixel= 5*current-left-right-up-down;

where left is the pixel immediately on the left of the current one, up is the corresponding
one on the previous line, and so on.

Manipulating the Pixels

56

How to do it...
This time, the processing cannot be accomplished in-place. Users need to provide an output
image. The image scanning is done by using three pointers, one for the current line, one for
the line above, and another one for the line below. Also, since each pixel computation requires
access to the neighbors, it is not possible to compute a value for the pixels of the first and
last row of the image as well as the pixels of the first and last column. The loop can then be
written as follows:

void sharpen(const cv::Mat &image, cv::Mat &result) {

 // allocate if necessary
 result.create(image.size(), image.type());

 for (int j= 1; j<image.rows-1; j++) { // for all rows
 // (except first and last)

 const uchar* previous=
 image.ptr<const uchar>(j-1); // previous row
 const uchar* current=
 image.ptr<const uchar>(j); // current row
 const uchar* next=
 image.ptr<const uchar>(j+1); // next row

 uchar* output= result.ptr<uchar>(j); // output row

 for (int i=1; i<image.cols-1; i++) {

 *output++= cv::saturate_cast<uchar>(
 5*current[i]-current[i-1]
 -current[i+1]-previous[i]-next[i]);
 }
 }

 // Set the unprocess pixels to 0
 result.row(0).setTo(cv::Scalar(0));
 result.row(result.rows-1).setTo(cv::Scalar(0));
 result.col(0).setTo(cv::Scalar(0));
 result.col(result.cols-1).setTo(cv::Scalar(0));
}

Chapter 2

57

If we apply this function on a gray-level version of our test image, the following sample is
obtained:

How it works...
In order to access the neighboring pixels of the previous and next row, one must simply define
additional pointers that are jointly incremented. You then access the pixels of these lines
inside the scanning loop.

In the computation of the output pixel value, the template function cv::saturate_cast is
called on the result of the operation. This is because it often happens that a mathematical
expression applied on pixels leads to a result that goes outside the range of the permitted
pixel values (that is below 0 or over 255). The solution is then to bring back the values inside
this 8-bit range. This is done by changing negative values to 0 and values over 255 to 255.
This is exactly what the cv::saturate_cast<uchar> function is doing. In addition, if the
input argument is a floating point number, then the result is rounded to the nearest integer.
You can obviously use this function with other types in order to guarantee the result will
remain within the limits defined by this type.

Manipulating the Pixels

58

Border pixels that cannot be processed because their neighborhood is not completely defined
need to be handled separately. Here, we simply set them to 0. In other cases, it could be
possible to perform some special computation for these pixels, but most of the time there is
no point in spending time processing these very few pixels. In our function, these border pixels
are set to 0 using two special methods. The first one is row and its dual col. They return a
special cv::Mat instance composed of a single line (or a single column) as specified in a
parameter. No copy is made here because if the elements of this 1D matrix are modified, they
will also be modified in the original image. That is what we do when the method setTo is
called. This method assigns a value to all elements of a matrix. Therefore the statement:

 result.row(0).setTo(cv::Scalar(0));

assigns the value 0 to all pixels of the first line of the result image. In the case of a 3-channel
color image, you would use cv::Scalar(a,b,c) to specify the three values to assign to
each channel of the pixel.

There's more...
When a computation is done over a pixel neighborhood, it is common to represent this with a
kernel matrix. This kernel describes how the pixels involved in the computation are combined
in order to obtain the desired result. For the sharpening filter used in this recipe, the kernel
would be:

0 -1 0
-1 5 -1
0 -1 0

Unless stated otherwise, the current pixel corresponds to the center of the kernel. The value
in each cell of the kernel represents a factor that multiplies the corresponding pixel. The result
of the application of the kernel on a pixel is then given by the sum of all these multiplications.
The size of the kernel corresponds to the size of the neighborhood (here, 3x3). Using this
representation, it can be seen that, as required by the sharpening filter, the four horizontal
and vertical neighbors of the current pixel are multiplied by -1, while the current one is
multiplied by 5. Applying a kernel to an image is more than a convenient representation, it is
the basis for the concept of convolution in signal processing. The kernel defines a filter that is
applied to the image.

Since filtering is a common operation in image processing, OpenCV has defined a special
function that performs this task: the cv::filter2D function. To use it, one just needs to
define a kernel (in the form of a matrix). The function is then called with the image and the
kernel, and returns the filtered image. Using this function, it is therefore easy to redefine our
sharpening function as follows:

Chapter 2

59

void sharpen2D(const cv::Mat &image, cv::Mat &result) {

 // Construct kernel (all entries initialized to 0)
 cv::Mat kernel(3,3,CV_32F,cv::Scalar(0));
 // assigns kernel values
 kernel.at<float>(1,1)= 5.0;
 kernel.at<float>(0,1)= -1.0;
 kernel.at<float>(2,1)= -1.0;
 kernel.at<float>(1,0)= -1.0;
 kernel.at<float>(1,2)= -1.0;

 //filter the image
 cv::filter2D(image,result,image.depth(),kernel);
}

This implementation produces exactly the same result as the previous one (and with the same
efficiency). However, with a larger kernel, it is advantageous to use the filter2D method as
it uses, in this case, a more efficient algorithm.

See also

Chapter 6, Filtering the Images has more explanations on the concept of image filtering.

Performing simple image arithmetic
Images can be combined in different ways. Since they are regular matrices, they can be
added, subtracted, multiplied, or divided. OpenCV offers various image arithmetic operators
and their use is discussed in this recipe.

Manipulating the Pixels

60

Getting ready
Let's work with a second image that we will combine to our input image using an arithmetic
operator. The following represents the second image:

How to do it...
Here we add two images. This is useful when one wants to create some special effects or
to overlay information over an image. We do this by calling the cv::add function, or more
precisely here, the cv::addWeighted function since we want a weighted sum, that is:

 cv::addWeighted(image1,0.7,image2,0.9,0.,result);

Chapter 2

61

The operation results in a new image as seen in the following screenshot:

How it works...
All binary arithmetic functions work the same way. Two inputs are provided and a third
parameter specifies the output. In some cases, weights can be specified that are used as
scalar multipliers in the operation. Each of these functions comes in several flavors.
cv::add is a good example of a function available in many forms:

 // c[i]= a[i]+b[i];
 cv::add(imageA,imageB,resultC);
 // c[i]= a[i]+k;
 cv::add(imageA,cv::Scalar(k),resultC);
 // c[i]= k1*a[1]+k2*b[i]+k3;
 cv::addWeighted(imageA,k1,imageB,k2,k3,resultC);
 // c[i]= k*a[1]+b[i];
 cv::scaleAdd(imageA,k,imageB,resultC);

For some functions, you can also specify a mask:

 // if (mask[i]) c[i]= a[i]+b[i];
 cv::add(imageA,imageB,resultC,mask);

Manipulating the Pixels

62

If you apply a mask, the operation is performed only on pixels for which the mask value is not
null (the mask must be 1-channel). Have a look at the different forms of cv::subtract,
cv::absdiff, cv::multiply, and cv::divide functions. Bit-wise operators are also
available: cv::bitwise_and, cv::bitwise_or, cv::bitwise_xor, and cv::bitwise_
not. Operators cv::min and cv::max which find per-element maximum or minimum pixel
value are also very useful.

In all cases, function cv::saturate_cast (see the preceding recipe) is always used to
make sure the results stay within the defined pixel value domain (that is to avoid overflow or
underflow).

The images must have the same size and type (the output image will be re-allocated if it does
match the input size). Also, since the operation is performed per-element, one of the input
images can be used as output.

Several operators that take a single image as input are also available: cv::sqrt, cv::pow,
cv::abs, cv::cuberoot, cv::exp, and cv::log. In fact, there exists an OpenCV function
for almost any operation you have to apply on your images.

There's more...
It is also possible to use the usual C++ arithmetic operator on the cv::Mat instances, or on
the individual channels of cv::Mat instances. The two following sub-sections explain how to
do it.

Overloaded image operators
Very conveniently, most arithmetic functions have their corresponding operator overloaded in
OpenCV 2. Consequently, the call to cv::addWeighted can be written as:

result= 0.7*image1+0.9*image2;

which is a more compact form that is also easier to read. These two ways of writing the
weighted sum are equivalent. In particular, function cv::saturate_cast will still be called
in both cases.

Most C++ operators have been overloaded. Among them the bitwise operators &, |, ^, ~,
the min, max, and abs functions, the comparison operators <, <=, ==,!=, >, >=; these later
returning a 8-bit binary image. You will also find the matrix multiplication m1*m2 (where
m1 and m2 are both cv::Mat instances), matrix inversion m1.inv(), transpose m1.t(),
determinant m1.determinant(), vector norm, v1.norm(), cross-product v1.cross(v2),
dot product v1.dot(v2), and so on. When this makes sense, you also have the op= operator
(for example, +=) defined.

Chapter 2

63

In the Writing efficient image scanning loops recipe, we presented a color reduction function
that was written using loops scanning the image pixels to perform some arithmetic operations
on them. From what we learned here, this function could be rewritten simply using arithmetic
operators on the input image, that is:

 image=(image&cv::Scalar(mask,mask,mask))
 +cv::Scalar(div/2,div/2,div/2);

The use of cv::Scalar is due to the fact that we are manipulating a color image. Performing
the same test as we did in the Writing efficient image scanning loops recipe, we obtain an
execution time of 89ms. This is mainly because, as written, the expression requires calling two
functions, the bitwise-and and the scalar sum (instead of performing the complete operation
inside one image loop). Even if the resulting code is not always optimal, using the image
operators makes the code so simple, and the programmer so productive, that you should
consider their use in most situations.

Splitting the image channels
You'll sometimes want to process the different channels of an image independently. For
example, you might want to perform an operation only on one channel of the image. You
can, of course, achieve this in an image scanning loop. But you can also use the cv::split
function that will copy the three channels of a color image into three distinct cv::Mat
instances. Suppose we want to add our rain image to the blue channel only. The following is
how we would proceed:

 // create vector of 3 images
 std::vector<cv::Mat> planes;
 // split 1 3-channel image into 3 1-channel images
 cv::split(image1,planes);
 // add to blue channel
 planes[0]+= image2;
 // merge the 3 1-channel images into 1 3-channel image
 cv::merge(planes,result);

The cv::merge function performs the dual operation, that is it creates a color image from
three 1-channel image.

Defining regions of interest
Sometimes, a processing function needs to be applied on only a portion of the image. This
recipe will teach you how to define a region of interest inside an image.

Manipulating the Pixels

64

Getting ready
Suppose we want to combine two images of different sizes. For example, let's say we want to
add the following small logo to our test image:

But function cv::add requires two images of same size. In this case, a region of interest
(ROI) can be defined over which the cv::add can be applied. This will work as long as the ROI
is of same size as our logo image. The position of the ROI will determined where in the image
the logo will be inserted.

How to do it...
The first step consists of defining the ROI. Once defined, the ROI can be manipulated as
a regular cv::Mat instance. The key is that the ROI points to the same data buffer as its
parent image. Inserting the logo would then be accomplished as follows:

 // define image ROI
 cv::Mat imageROI;
 imageROI= image(cv::Rect(385,270,logo.cols,logo.rows));

 // add logo to image
 cv::addWeighted(imageROI,1.0,logo,0.3,0.,imageROI);

Chapter 2

65

The following image is then obtained:

Since the colors of the logo are added to the colors of the image (with possible saturation also
applied), the visual result will not always be satisfactory. For this reason, it might be better to
simply set the pixel values of the image to the logo values where this one appears. You do this
by copying the logo to the ROI using a mask:

 // define ROI
 imageROI= image(cv::Rect(385,270,logo.cols,logo.rows));

 // load the mask (must be gray-level)
 cv::Mat mask= cv::imread("logo.bmp",0);

 // copy to ROI with mask
 logo.copyTo(imageROI,mask);

Manipulating the Pixels

66

Then, the result image is:

How it works...
One way of defining an ROI is to use a cv::Rect instance. As the name indicates, it
describes a rectangular region by specifying the position of the upper-left corner (the first two
parameters of the constructor) and the size of the rectangle (width and height given in the last
two parameters).

The ROI can also be described using row and column ranges. A range is a continuous
sequence from a start index to an end index (excluded). The cv::Range structure is used to
represent this concept. Therefore, an ROI can be defined from two ranges, for example, in our
example, the ROI could have been equivalently defined as follows:

cv::Mat imageROI= image(cv::Range(270,270+logo.rows),
 cv::Range(385,385+logo.cols))

The operator() of cv::Mat returns another cv::Mat instance that can then be used
in subsequence calls. Any transformation of the ROI will affect the original image in the
corresponding area because the image and the ROI share the same image data. Since the
definition of an ROI does not copy data, it is executed in constant time, no matter the size of
the ROI.

Chapter 2

67

If one wants to define an ROI made of some lines of an image, the following call could be
used:

cv::Mat imageROI= image.rowRange(start,end) ;

and similarly, for an ROI made of some image columns:

cv::Mat imageROI= image.colRange(start,end) ;

The methods row and col that were used in the recipe Scanning an image with neighbor
access are a special case of these later methods in which the start and end index are equal in
order to define a single-line or single-column ROI.

3
Processing Images

with Classes

In this chapter, we will cover:

ff Using the Strategy pattern in algorithm design

ff Using a Controller to communicate with processing modules

ff Using the Singleton design pattern

ff Using the Model-View-Controller architecture to design an application

ff Converting color spaces

Introduction
Good computer vision programs start with good programming practices. Building a bug-free
application is just the beginning. What you really want is an application that you, and the
programmers working with you, will be able to easily adapt and evolve as new requirements
come in. This chapter will show you how to make best use of some of the object-oriented
programming principles in order to build quality software programs. In particular, we will
introduce some important design patterns that will help you build applications made of
components that are easy to test, maintain, and reuse.

Design pattern is a well-known concept in software engineering. Basically, a design pattern
is a sound, reusable solution to a generic problem that occurs frequently in software design.
Many software patterns have been introduced and well documented. Good programmers
should build a working knowledge of these existing patterns.

This chapter also has a secondary objective. It will teach you how to play with image colors.
The example used throughout this chapter will show you how to detect pixels of a given color,
and the last recipe will explain how to work with different color spaces.

Processing Images with Classes

70

Using the Strategy pattern in algorithm
design

The objective of the Strategy design pattern is to encapsulate an algorithm into a class.
This way it becomes easier to replace a given algorithm by another one, or to chain several
algorithms together in order to build a more complex process. In addition, this pattern
facilitates the deployment of an algorithm by hiding as much of its complexity as possible
behind an intuitive programming interface.

Getting ready
Let's say we want to build a simple algorithm that will identify all of the pixels in an image which
have a given color. The algorithm has then to accept an image and a color as input and returns
a binary image showing the pixels having the specified color. The tolerance with which we want
to accept a color will be another parameter to be specified before running the algorithm.

How to do it...
The core process of this algorithm is quite easy to build. It is a simple scanning loop that
goes over each pixel, comparing its color with the target color. Using what we learned in the
previous chapter, this loop can be written as:

 // get the iterators
 cv::Mat_<cv::Vec3b>::const_iterator it=
 image.begin<cv::Vec3b>();
 cv::Mat_<cv::Vec3b>::const_iterator itend=
 image.end<cv::Vec3b>();
 cv::Mat_<uchar>::iterator itout=
 result.begin<uchar>();

 // for each pixel
 for (; it!= itend; ++it, ++itout) {

 // process each pixel ---------------------

 // compute distance from target color
 if (getDistance(*it)<minDist) {

 *itout= 255;

 } else {

 *itout= 0;
 }

 // end of pixel processing ----------------
 }

Chapter 3

71

The cv::Mat variable image refers to the input image while result refers to the binary
output image. Therefore, the first step, consists of setting up the required iterators. The
scanning for loop is then easy to implement. Each iteration checks if the distance between
the current pixel color and the target color is within the tolerance defined by minDist. If that
is the case, the value 255 (white) is then assigned to the output image, and if not, 0 (black)
is assigned. To compute the distance between two color values, the getDistance method
is used. There are different ways to compute this distance. One could, for example, calculate
the Euclidean distance between the 3-vectors containing the RGB color values. In our case,
to keep this computation simple and efficient, we simply sum the absolute difference of the
RGB values (this is also known as the city block distance). The getDistance method is then
simply defined as follows:

 // Computes the distance from target color.
 int getDistance(const cv::Vec3b& color) const {

 return abs(color[0]-target[0])+
 abs(color[1]-target[1])+
 abs(color[2]-target[2]);
 }

Note how we used the cv::Vec3d to hold the three unsigned chars representing the RGB
values of a color. The variable target obviously refers to the specified target color, and as
we will see, it is defined as a class variable in the class algorithm we are defining. Now let's
complete the definition of the processing method. Users will provide an input image and the
result will be returned once the image scanning is completed:

cv::Mat ColorDetector::process(const cv::Mat &image) {

 // re-allocate binary map if necessary
 // same size as input image, but 1-channel
 result.create(image.rows,image.cols,CV_8U);

processing loop above goes here

 ...

 return result;
}

Each time this method is called, it is important to check if the output image which will contain
the resulting binary map needs to be re-allocated to fit the size of the input image. This is
why we use the method create of cv::Mat. Remember, this one will only proceed to re-
allocation if the specified size and depth do not correspond to the current image structure.

Now that we have the core processing method defined, let's see what additional methods
should be added in order to deploy this algorithm. We previously determined what input and
output data our algorithm requires. We will therefore first define class attributes that will hold
this data:

Processing Images with Classes

72

class ColorDetector {

 private:

 // minimum acceptable distance
 int minDist;

 // target color
 cv::Vec3b target;

 // image containing resulting binary map
 cv::Mat result;

In order to create an instance of the class that encapsulates our algorithm (and that we
have named ColorDetector), we need to define a constructor. Remember that one of
the objectives of the Strategy design pattern is to make the algorithm deployment as easy
as possible. The simplest constructor that can be defined is an empty one. It will create an
instance of the class algorithm in a valid state. We then want the constructor to initialize all
input parameters to their default values (or values that are known to generally give a good
result). In our case, we decided that a distance of 100 is generally an acceptable tolerance.
We also set a default target color. We chose black for no particular reason. The idea is to
make sure we always start with predictable and valid input values:

 // empty constructor
 ColorDetector() : minDist(100) {

 // default parameter initialization here
 target[0]= target[1]= target[2]= 0;
 }

At this point, a user who creates an instance of our class algorithm can immediately call the
process method with a valid image and obtain a valid output. This is another objective of
the Strategy pattern, that is, to make sure the algorithm always runs with valid parameters.
Obviously, a user of this class will want to use his own settings. This is done by providing the
user with the appropriate getters and setters. Let's start by the color tolerance parameter:

 // Sets the color distance threshold.
 // Threshold must be positive,
 // otherwise distance threshold is set to 0.
 void setColorDistanceThreshold(int distance) {

 if (distance<0)
 distance=0;
 minDist= distance;
 }

 // Gets the color distance threshold
 int getColorDistanceThreshold() const {

 return minDist;
 }

Chapter 3

73

Note how we first check the validity of the input. Again, this is to make sure that our algorithm
will never be run in an invalid state. The target color can be set similarly:

 // Sets the color to be detected
 void setTargetColor(unsigned char red,
 unsigned char green,
 unsigned char blue) {

 // BGR order
 target[2]= red;
 target[1]= green;
 target[0]= blue;
 }

 // Sets the color to be detected
 void setTargetColor(cv::Vec3b color) {

 target= color;
 }

 // Gets the color to be detected
 cv::Vec3b getTargetColor() const {

 return target;
 }

This time it is interesting to note that we have provided the user with two definitions of the
setTagertColor method. In the first one, the three color components are specified as three
arguments, while in the second version, a cv::Vec3b is used to hold the color values. Again,
the objective is to facilitate the use of our class algorithm. The user simply selects the setter
that best fit the needs.

How it works...
Once an algorithm has been encapsulated into a class using the Strategy design pattern, it
can be deployed by creating an instance of this class. Typically, the instance would be created
when the program is initialized. The default value of the algorithm's parameters can be read
and displayed. In the case of an application with a GUI, the parameter values can be read and
set using different widgets (textfields, silders, and so on) so that a user can easily play with
them. But before we introduce a GUI (this will be done later in this chapter), let's first write a
simple main function that will run our color detection algorithm:

int main()
{
 // 1. Create image processor object
 ColorDetector cdetect;

 // 2. Read input image
 cv::Mat image= cv::imread("boldt.jpg");

Processing Images with Classes

74

 if (!image.data)
 return 0;

 // 3. Set input parameters
 cdetect.setTargetColor(130,190,230); // here blue sky

 cv::namedWindow("result");

 // 4. Process the image and display the result
 cv::imshow("result",cdetect.process(image));

 cv::waitKey();

 return 0;
}

Running this program on the color version of the image presented in the previous chapter
produces the following output:

Obviously, the algorithm we encapsulated in this class is relatively simple (just one scanning
loop and one tolerance parameter). The Strategy design pattern becomes really powerful
when the algorithm to be implemented is more complex, has many steps, and includes
several parameters.

There's more...
To compute the distance between two color vectors, we used this simple formula:

return abs(color[0]-target[0])+
 abs(color[1]-target[1])+
 abs(color[2]-target[2]);

Chapter 3

75

However, OpenCV includes a function to compute the Euclidean norm of a vector.
Consequently, we could have computed our distance as follows:

return static_cast<int>(
 cv::norm<int,3>(cv::Vec3i(color[0]-target[0],
 color[1]-target[1],
 color[2]-target[2])));

A very similar result would then be obtained using this definition of the getDistance
method. Here, we use a cv::Vec3i (a 3-vector of integers) because the result of the
subtraction is an integer value.

It is also interesting to recall from Chapter 2 that the OpenCV matrix and vector data
structures include a definition of the basic arithmetic operators. For example, if you want to
add two cv::Vec3i vectors, a and b, and assign the result to c, you can simply write:

c= a+b;

Alternatively, one could have proposed the following definition for the distance computation:

return static_cast<int>(
 cv::norm<uchar,3>(color-target);

This definition may look right at first glance, however, it is wrong. This is because, all of these
operators always include a call to saturate_cast (see recipe Scanning an image with
neighbor access in the previous chapter) in order to make sure that the results stay within the
domain of the input type (here, uchar). Therefore, in cases where the target value is greater
than the corresponding color value, the value 0 will be assigned instead of the negative value
one would have expected.

See also
The Policy-based class design introduced by A. Alexandrescu, is an interesting variant of the
Strategy design pattern in which algorithms are selected at compile-time.

The book Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma
et al, Addison-Wesley, 1994, is one of the classic books on the subject.

Also see the Building a GUI-based application using the Model-View-Controller pattern recipe,
to learn how to use the Strategy pattern in an application with a GUI.

Processing Images with Classes

76

Using a Controller to communicate with
processing modules

As you will be building more complex applications, you will need to create multiple algorithms
that can be combined together in order to accomplish some advanced tasks. Consequently,
properly setting up the application, and having all classes communicating together, will
become more and more complex. It then becomes advantageous to centralize the control of
the application in a single class. This is the idea behind the Controller. It is a particular object
in an application that plays an important role and we will explore it in this recipe.

Getting ready
Create a simple dialog-based application with two buttons, one to select an image and one to
start the processing as seen below:

Here, we use the ColorDetector class of the previous recipe.

How to do it...
The role of the Controller is first to create the classes required to execute the application.
Here, it is only one class. In addition, we need two member variables in order to hold a
reference to the input and output results:

class ColorDetectController {

 private:

 // the algorithm class
 ColorDetector *cdetect;

 cv::Mat image; // The image to be processed
 cv::Mat result; // The image result

 public:

 ColorDetectController() {

Chapter 3

77

 //setting up the application
 cdetect= new ColorDetector();
 }

You then need to define all of the setters and getters that a user would need to control the
application:

 // Sets the color distance threshold
 void setColorDistanceThreshold(int distance) {

 cdetect->setColorDistanceThreshold(distance);
 }

 // Gets the color distance threshold
 int getColorDistanceThreshold() const {

 return cdetect->getColorDistanceThreshold();
 }

 // Sets the color to be detected
 void setTargetColor(unsigned char red,
 unsigned char green, unsigned char blue) {

 cdetect->setTargetColor(red,green,blue);
 }

 // Gets the color to be detected
 void getTargetColor(unsigned char &red,
 unsigned char &green, unsigned char &blue) const {

 cv::Vec3b color= cdetect->getTargetColor();

 red= color[2];
 green= color[1];
 blue= color[0];
 }

 // Sets the input image. Reads it from file.
 bool setInputImage(std::string filename) {

 image= cv::imread(filename);

 if (!image.data)
 return false;
 else
 return true;
 }

 // Returns the current input image.
 const cv::Mat getInputImage() const {

 return image;
 }

www.allitebooks.com

http://www.allitebooks.org

Processing Images with Classes

78

You also need a method that will be invoked to start the process:

 // Performs image processing.
 void process() {

 result= cdetect->process(image);
 }

and a method to obtain the result of the processing:

 // Returns the image result from the latest processing.
 const cv::Mat getLastResult() const {

 return result;
 }

Finally, it is important to clean up everything when the application terminates (and the
controller is released):

 // Deletes processor objects created by the controller.
 ~ColorDetectController() {

 delete cdetect;
 }

How it works...
Using the Controller class above, a programmer can easily build an interface for an application
that will execute your algorithm. There is no need for the programmer to understand how all of
the classes are connected together, or to find out which methods in which class must called to
have everything running properly. This is all done by the Controller class. The only requirement
is to create an instance of that Controller class.

The setters and getters that are defined in the Controller are the ones that you would think
are required to deploy your algorithm. These methods simply call the corresponding ones in
the appropriate class. Again, the simple example here includes only one class algorithm, but
in most cases, several class instances would be involved. Therefore, the role of the Controller
is to redirect the request to the appropriate class and to simplify the interface to these
classes. As an example of such simplifications, consider the methods setTargetColor and
getTargetColor . They both use uchar to set and get the color of interest. This removes
the necessity for the application programmer to know anything about the cv::Vec3b class.

In some cases, the Controller also prepares the data provided by the application programmer.
This is what we did in the case of the setInputImage method, in which the image that
corresponds to the given filename is loaded in memory. The method returns true or false
depending on whether the loading operation was successful or not (one could also have
thrown an exception to handle this situation).

Chapter 3

79

Finally, the method process is the one that runs the algorithm. This method does not
return the result and another method must be called in order to get the result of the latest
processing performed.

Now, to create a very basic dialog-based application using this controller, you just add a
ColorDetectController member variable to the dialog class (called colordetect here).
In the case of a MFC dialog, the Open button would then look as follows:

// Callback method of "Open" button.
void OnOpen()
{
 // MFC widget to select a file of type bmp or jpg
 CFileDialog dlg(TRUE, _T("*.bmp"), NULL,
 OFN_FILEMUSTEXIST|OFN_PATHMUSTEXIST|OFN_HIDEREADONLY,
 _T("image files (*.bmp; *.jpg)
 |*.bmp;*.jpg|All Files (*.*)|*.*||"),NULL);

 dlg.m_ofn.lpstrTitle= _T("Open Image");

 // if a filename has been selected
 if (dlg.DoModal() == IDOK) {

 // get the path of the selected filename
 std::string filename= dlg.GetPathName();

 // set and display the input image
 colordetect.setInputImage(filename);
 cv::imshow("Input Image",colordetect.getInputImage());
 }
}

The second button executes the process and displays the result:

// Callback method of "Process" button.
void OnProcess()
{
 // target color is hard-coded here
 colordetect.setTargetColor(130,190,230);

 // process the input image and display result
 colordetect.process();
 cv::imshow("Output Result",colordetect.getLastResult());
}

Obviously, a more complete application would include additional widgets in order to allow the
user to set the algorithm parameters.

Processing Images with Classes

80

See also
Also see the recipe Building a GUI-based Application using the Model-View-Controller pattern
that presents a more expanded example of an application controlled by a GUI.

Using the Singleton design pattern
The Singleton is another popular design pattern that is used to facilitate access to a class
instance and also to guarantee that only one instance of that class will exist during program
execution. In this recipe, we use the Singleton to access a Controller object.

Getting ready
We use the ColorDetectController class of the previous recipe. This one will be modified
in order to obtain a Singleton class.

How to do it...
The first thing to do is to add a private static member variable which will hold the reference
to the single class instance. Also, in order to forbid the construction of additional class
instances, the constructor is made private:

 class ColorDetectController {

 private:

 // pointer to the singleton
 static ColorDetectController *singleton;

 ColorDetector *cdetect;

 // private constructor
 ColorDetectController() {

 //setting up the application
 cdetect= new ColorDetector();
 }

In addition, you can also make the copy constructor and the operator= private to make sure
no one can create a copy of the Singleton's unique instance. The Singleton object is created
on demand, when a user of the class asks for an instance of this class. This is done using a
static method which creates the instance if it does not exist yet and then returns a pointer to
this instance:

 // Gets access to Singleton instance
 static ColorDetectController *getInstance() {

 // Creates the instance at first call

Chapter 3

81

 if (singleton == 0)
 singleton= new ColorDetectController;

 return singleton;
 }

Note that this implementation of the Singleton is not thread-safe however. Therefore, it should
not be used when concurrent threads need to access the Singleton instance.

Finally, since the Singleton instance has been created dynamically, the user must delete it
when it is not required anymore. Again, this is done through a static method:

 // Releases the singleton instance of this controller.
 static void destroy() {

 if (singleton != 0) {
 delete singleton;
 singleton= 0;
 }
 }

Since singleton is a static member variable, it must be defined in a .cpp file. This is done
as follows:

#include "colorDetectController.h"

ColorDetectController *ColorDetectController::singleton=0;

How it works...
Since the Singleton can be obtained through a public static method, all classes that include
the Singleton class declaration have access to the Singleton object. This is particularly useful
for a Controller object that is accessed by several widget classes of some sophisticated GUI.
There is no need for a member variable in one of the GUI class as was needed in the previous
recipe. The two callback methods of the dialog class would then be written as follows:

// Callback method of "Open" button.
void OnOpen()
{
 ...

 // if a filename has beed selected
 if (dlg.DoModal() == IDOK) {

 // get the path of the selected filename
 std::string filename= dlg.GetPathName();

 // set and display the input image
 ColorDetectController::
 getInstance()->setInputImage(filename);

Processing Images with Classes

82

 cv::imshow("Input Image",
 ColorDetectController::
 getInstance()->getInputImage());
 }
}

// Callback method of "Process" button.
OnProcess()
{
 // target color is hard-coded here
 ColorDetectController::
 getInstance()->setTargetColor(130,190,230);

 // process the input image and display result
 ColorDetectController::getInstance()->process();
 cv::imshow("Output Result",
 ColorDetectController::getInstance()->getLastResult());
}

and when the application is closed, the Singleton instance must be released:

// Callback method of "Close" button.
void OnClose()
{
 // Releases the Singleton.
 ColorDetectController::getInstance()->destroy();
 OnOK();
}

As shown here, when a Controller is encapsulated inside a Singleton, it becomes easier to
obtain access to this instance from any class. However, a more serious implementation of
this application would require a more elaborate GUI. This is done in next recipe which wraps
up the discussion on the use of patterns in application design by presenting the Model-View-
Controller architecture.

Using the Model-View-Controller
architecture to design an application

The previous recipes let you discover three important design patterns: the Strategy, Controller,
and Singleton patterns. This recipe introduces an architectural pattern in which these three
patterns are used in combination with other classes. It is the Model-View-Controller, or
MVC, that has the objective of producing an application that clearly separates the application
logic from the user interface. In this recipe, we will use the MVC pattern to build a GUI-based
application using Qt. However, before seeing it in action, let's give a brief description of the
pattern.

Chapter 3

83

Getting ready
As the name indicates, the MVC pattern involves three main components. We will now take a
look at the role of each of them.

The Model contains the information concerning the application. It holds all of the data that is
processed by the application. When new data is produced, it will inform the Controller, which
in turn will ask the view to display the new results. Often, the Model will group together several
algorithms, possibly implemented following the Strategy pattern. All of these algorithms are
part of the Model.

The View corresponds to the user interface. It is composed of the different widgets that
present the data to the user and allow the user to interact with the application. One of its roles
is to send the commands issued by the user to the Controller. When new data is available, it
refreshes itself in order to display the new information.

The Controller is the module that bridges the View and the Model together. It receives
requests from the View and relays them to the appropriate methods in the model. It is also
informed when the Model changes its state, and consequently asks the View to refresh in
order to display this new information.

How to do it...
As we did in the previous recipes, we will use the ColorDetector class. This one will be
our Model containing the application logic and underlying data. We have also implemented a
Controller, it is the ColorDetectController class. It then becomes easy to build a more
sophisticated GUI by choosing the most appropriate widget. For example, using Qt, one can
build the following interface:

Processing Images with Classes

84

The Open Image button is used to select and open an image. The color to be detected can
be selected by pushing the Select Color button. This one opens up a Color Chooser widget
(printed below in black and white) that makes easy the selection of the desired color:

A slider is then used to select the right threshold to be used. Then, by pushing the Process
button, the image is processed and the result is displayed.

Chapter 3

85

How it works...
Under the MVC architecture, the user interface simply calls the Controller methods. It does
not contain any application data and does not implement any application logic. Consequently,
it is easy to substitute an interface with another one. Here, a color chooser widget, the
QColorDialog, has been added and once the color selected, the appropriate Controller
method is called from the Select Color slot:

QColor color = QColorDialog::getColor(Qt::green, this);
if (color.isValid()) {
ColorDetectController::getInstance()
 ->setTargetColor(color.red(),color.green(),color.blue());
}

The threshold is set via the QSlider widget. This value is read when the Process button is
clicked, which also triggers the processing and displays the result:

ColorDetectController::getInstance()
 ->setColorDistanceThreshold(
 ui->verticalSlider_Threshold->value());
ColorDetectController::getInstance()->process();
cv::Mat resulting =
 ColorDetectController::getInstance()->getLastResult();
if (!resulting.empty())
 displayMat(resulting);

In fact, the GUI library of Qt makes extensive use of the MVC pattern. It uses the concept of
the concept of signals in order to keep all of the widgets of a GUI synchronized with the data
model.

See also
The Qt online documentation can help you to learn more about Qt implementation of the MVC
pattern (http://doc.qt.nokia.com).

The recipe Creating a GUI application using Qt of Chapter 1 for a brief description of the Qt
GUI framework and its signal and slot model.

Converting color spaces
This chapter taught you how to encapsulate an algorithm into a class. This way, the algorithm
becomes easier to use through a simplified interface. Encapsulation also permits you to
modify an algorithm's implementation without impacting the classes that use it. This principle
is illustrated in this recipe where we will modify the ColorDetector class algorithm in order
to use another color space. Therefore, this recipe will be an opportunity to introduce color
conversion with OpenCV.

Processing Images with Classes

86

Getting ready
The RGB color space (or BGR depending on which order the colors are stored) is based on the
use of the red, green, and blue additive primary colors. These have been selected because
when they are combined they can produce a wide gamut of different colors. In fact, the human
visual system is also based on a trichromatic perception of colors with cone cell sensitivity
located around the red, green, and blue spectrum. It is often the default color space in digital
imagery because that is the way they are acquired. Captured light goes through red, green,
and blue filters. Additionally, in digital images, the red, green, and blue channels are adjusted
such that when combined in equal amounts, a gray-level intensity is obtained, that is, from
black (0,0,0) to white (255,255,255).

Unfortunately, computing the distance between colors using the RGB color space is not the
best way to measure the similarity of two given colors. Indeed, RGB is not a perceptually
uniform color space. This means that two colors at a given distance might look very similar,
while two other colors separated by the same distance will look very different.

To solve this problem, other color spaces having the property of being perceptually uniform
have been introduced. In particular, the CIE L*a*b* is one such color space. By converting our
images to this space, the Euclidean distance between an image pixel and the target color will
then meaningfully be a measure of the visual similarity between the two colors. We will show in
this recipe how we can modify the previous application in order to work with the CIE L*a*b*.

How to do it...
Converting between different color spaces is easily done through the use of the OpenCV
function cv::cvtColor. Let's convert the input image to CIE L*a*b* color space at the
beginning of the process method:

cv::Mat ColorDetector::process(const cv::Mat &image) {

 // re-allocate binary map if necessary
 // same size as input image, but 1-channel
 result.create(image.rows,image.cols,CV_8U);

 // re-allocate intermediate image if necessary
 converted.create(image.rows,image.cols,image.type());

 // Converting to Lab color space
 cv::cvtColor(image, converted, CV_BGR2Lab);

 // get the iterators of the converted image
 cv::Mat_<cv::Vec3b>::iterator it=
 converted.begin<cv::Vec3b>();
 cv::Mat_<cv::Vec3b>::iterator itend=
 converted.end<cv::Vec3b>();
 // get the iterator of the output image

Chapter 3

87

 cv::Mat_<uchar>::iterator itout= result.begin<uchar>();

 // for each pixel
 for (; it!= itend; ++it, ++itout) {
 …

The variable converted contains the image after color conversion. In the ColorDetector
class, it is defined as a class attribute:

class ColorDetector {

 private:
 // image containing color converted image
 cv::Mat converted;

We also need to convert the input target color. We do this by creating a temporary image
containing only 1 pixel. Note that you need to keep the same signature as in the previous
recipes, that is, the user continues to supply the target color in RGB:

 // Sets the color to be detected
 void setTargetColor(unsigned char red,
 unsigned char green, unsigned char blue) {

 // Temporary 1-pixel image
 cv::Mat tmp(1,1,CV_8UC3);
 tmp.at<cv::Vec3b>(0,0)[0]= blue;
 tmp.at<cv::Vec3b>(0,0)[1]= green;
 tmp.at<cv::Vec3b>(0,0)[2]= red;

 // Converting the target to Lab color space
 cv::cvtColor(tmp, tmp, CV_BGR2Lab);

 target= tmp.at<cv::Vec3b>(0,0);
 }

If the application of the preceding recipe is compiled with this modified class, it will now
detect the pixels of the target color using the CIE L*a*b* color space.

How it works...
When an image is converted from one color space to another, a linear or non-linear
transformation is applied on each input pixel to produce the output pixels. The pixel type of
the output image will match the one of the input image. Even if most of the time you work
with 8-bit pixels, you can also use color conversion with images of floats (in which case, pixel
values are generally assumed to vary between 0 and 1.0) or with integer images (with pixel
generally varying between 0 and 65535). But the exact domain of the pixel values depends on
the specific color space. For example, with the CIE L*a*b* color space, the L channel varies
between 0 and 100, while the a and b chromaticity components vary between -127 and 127.

Processing Images with Classes

88

Most commonly used color spaces are available. It is just a question of providing the right
mask to the OpenCV function. Among them is the YCrCb, which is the color space used in
JPEG compression. To convert from BGR to YCrCb, the mask would be CV_BGR2YCrCb. Note
that the representation with the three regular primary colors, red, green, and blue, is available
in the RGB order or BRG order.

The HSV and HLS color spaces are also interesting because they decompose the colors into
their hue and saturation components, plus the value or luminance component, which is a
more natural way for humans to describe colors.

You can also convert color images to gray-level. The output will be a 1-channel image:

 cv::cvtColor(color, gray, CV_BGR2Gray);

It is also possible to do the conversion in the other direction, but the 3 channels of the
resulting color image will then be identically filled with the corresponding values in the
gray-level image.

See also
The recipe Using the mean shift algorithm to find an object in Chapter 4 that uses the HSV
color space in order to find an object in an image.

Many good references are available on color space theory. Among them, the following is a
complete and up-to-date reference, The Structure and Properties of Color Spaces and the
Representation of Color Images by E. Dubois, Morgan and Claypool, Oct. 2009.

4
Counting the Pixels

with Histograms

In this chapter, we will cover:

ff Computing the image histogram

ff Applying look-up tables to modify image appearance

ff Equalizing the image histogram

ff Backprojecting a histogram to detect specific image content

ff Using the mean shift algorithm to find an object

ff Retrieving similar images using histogram comparison

Introduction
An image is composed of pixels of different values (colors). The distribution of pixels
values across the image constitutes an important characteristic of this image. This chapter
introduces the concept of image histograms. You will learn how to compute a histogram and
how to use it to modify the image's appearance. Histograms can also be used to characterize
the image's content and to detect specific objects or textures in an image. Some of these
techniques will be presented in this chapter.

Computing the image histogram
An image is made of pixels, each of them having different values. For example, in a 1-channel
gray-level image, each pixel has a value between 0 (black) and 255 (white). Depending on the
picture content, you will find different amounts of each gray shade laid out inside the image.

Counting the Pixels with Histograms

90

A histogram is a simple table that gives the number of pixels that have a given value in an
image (or sometime a set of images). The histogram of a gray-level image will therefore have
256 entries (or bins). Bin 0 gives the number of pixels having value 0, bin 1 the number of
pixels having value 1, and so on. Obviously, if you sum all of the entries of a histogram, you
should get the total number of pixels. Histograms can also be normalized such that sum of the
bins equals 1. In that case, each bin gives the percentage of pixels having this specific value
in the image.

Getting started
Define a simple console project and have an image like the following ready to be used:

How to do it...
Computing a histogram with OpenCV can be easily done by using the cv::calcHist
function. This is a general function which can compute the histogram of multiple channel
images of any pixel value type. Let's make it simpler to use by specializing a class for the case
of 1-channel gray-level images:

class Histogram1D {

 private:

 int histSize[1]; // number of bins
 float hranges[2]; // min and max pixel value
 const float* ranges[1];
 int channels[1]; // only 1 channel used here

 public:

 Histogram1D() {

 // Prepare arguments for 1D histogram
 histSize[0]= 256;
 hranges[0]= 0.0;

Chapter 4

91

 hranges[1]= 255.0;
 ranges[0]= hranges;
 channels[0]= 0; // by default, we look at channel 0
 }

With the defined member variables, computing a gray-level histogram can then be
accomplished using the following method:

 // Computes the 1D histogram.
 cv::MatND getHistogram(const cv::Mat &image) {

 cv::MatND hist;

 // Compute histogram
 cv::calcHist(&image,
 1, // histogram from 1 image only
 channels, // the channel used
 cv::Mat(), // no mask is used
 hist, // the resulting histogram
 1, // it is a 1D histogram
 histSize, // number of bins
 ranges // pixel value range
);

 return hist;
 }

Now, your program simply needs to open an image, create a Histogram1D instance, and to
call the getHistogram method:

 // Read input image
 cv::Mat image= cv::imread("../group.jpg",
 0); // open in b&w

 // The histogram object
 Histogram1D h;

 // Compute the histogram
 cv::MatND histo= h.getHistogram(image);

The histo object here is a simple one-dimensional array with 256 entries. Therefore, you can
read each bin by simply looping over this array:

 // Loop over each bin
 for (int i=0; i<256; i++)
 cout << "Value " << i << " = " <<
 histo.at<float>(i) << endl;

Counting the Pixels with Histograms

92

With the image shown at the start of this chapter, some of the displayed values would read as:

...
Value 7 = 159
Value 8 = 208
Value 9 = 271
Value 10 = 288
Value 11 = 340
Value 12 = 418
Value 13 = 432
Value 14 = 472
Value 15 = 525
...

It is obviously difficult to extract any intuitive meaning from this sequence of values. For this
reason, it is often convenient to display a histogram as a function, for example, using bar
graphs. The following method creates such a graph:

 // Computes the 1D histogram and returns an image of it.
 cv::Mat getHistogramImage(const cv::Mat &image){

 // Compute histogram first
 cv::MatND hist= getHistogram(image);

 // Get min and max bin values
 double maxVal=0;
 double minVal=0;
 cv::minMaxLoc(hist, &minVal, &maxVal, 0, 0);

 // Image on which to display histogram
 cv::Mat histImg(histSize[0], histSize[0],
 CV_8U,cv::Scalar(255));

 // set highest point at 90% of nbins
 int hpt = static_cast<int>(0.9*histSize[0]);

 // Draw a vertical line for each bin
 for(int h = 0; h < histSize[0]; h++) {

 float binVal = hist.at<float>(h);
 int intensity = static_cast<int>(binVal*hpt/maxVal);

 // This function draws a line between 2 points
 cv::line(histImg,cv::Point(h,histSize[0]),
 cv::Point(h,histSize[0]-intensity),
 cv::Scalar::all(0));
 }

 return histImg;
 }

Chapter 4

93

Using this method, you can obtain an image of the histogram function in the form of a bar
graph drawn using lines:

 // Display a histogram as an image
 cv::namedWindow("Histogram");
 cv::imshow("Histogram",
 h.getHistogramImage(image));

The result is the following image:

From this histogram, it can be seen that the image exhibits a large peak of mid-gray level values
and a good quantity of darker pixels. These two groups mostly correspond to, respectively, the
background and foreground of the image. This can be verified by thresholding the image at
the transition between these two groups. A convenient OpenCV function can be used for this,
namely, the cv::threshold function. This is the function to use when a threshold must be
applied on an image in order to create a binary image. Here, we threshold the image at the
minimum value just before the increase toward the high peak of the histogram (gray value 60):

 cv::Mat thresholded;
 cv::threshold(image,thresholded,60,255,cv::THRESH_BINARY);

Counting the Pixels with Histograms

94

The resulting binary image clearly shows the background/foreground segmentation:

How it works...
Function cv::calcHist has many parameters to permit its use in many contexts. Most
of the time, your histogram will be one of a single 1-channel or 3-channel image. However,
the function allows you to specify a multiple-channel image distributed over several images.
This is why an array of images is input into this function. The 6th parameter specifies
the dimensionality of the histogram, for example, 1 for a 1D histogram. The channels to
be considered in the histogram computation are listed in an array having the specified
dimensionality. In our class implementation, this single channel is by default the channel
0 (third parameter). The histogram itself is described by the number of bins in each dimension
(seventh parameter, an array of integer) and by the minimum and maximum values in each
dimension (eighth parameter, an array of 2-element arrays). It is also possible to define a
non-uniform histogram in which case you need to specify the limits of each bin.

As for many OpenCV functions, a mask can be specified, indicating which pixels you want to
include in the count (all pixels for which the mask value is 0 are then ignored). Two additional
optional parameters can be specified, both which are Boolean values. The first one indicates if
the histogram is uniform or not (uniform is the default). The second allows you to accumulate
the result of several histogram computations. If this last parameter is true, then the pixel
count of the image will be added to the current values found in the input histogram. This is
useful when one wants to compute the histogram of a group of images.

The resulting histogram is stored in a cv::MatND instance. This is a general class used to
manipulate N-dimensional matrices. Conveniently, this class has defined the at method for
matrices of dimension 1, 2, and 3. This is why we were able to write:

 float binVal = hist.at<float>(h);

Chapter 4

95

when accessing each bin of the 1D histogram in the getHistogramImage method. Note
that the values in the histogram are stored as floats.

There's more...
The class Histogram1D presented in this recipe has simplified the cv::calcHist function
by restricting it to 1D histogram. This is useful for gray-level images. Similarly, we can define a
class that could be used to compute histograms of color BGR images:

class ColorHistogram {

 private:

 int histSize[3];
 float hranges[2];
 const float* ranges[3];
 int channels[3];

 public:

 ColorHistogram() {

 // Prepare arguments for a color histogram
 histSize[0]= histSize[1]= histSize[2]= 256;
 hranges[0]= 0.0; // BRG range
 hranges[1]= 255.0;
 ranges[0]= hranges; // all channels have the same range
 ranges[1]= hranges;
 ranges[2]= hranges;
 channels[0]= 0; // the three channels
 channels[1]= 1;
 channels[2]= 2;
 }

In this case, the histogram will be three-dimensional. Therefore, we need to specify a range for
each of the three dimensions. In the case of a BGR image, the three channels have the same
[0,255] range. With the arguments thus prepared, the color histogram is computed by the
following method:

 cv::MatND getHistogram(const cv::Mat &image) {

 cv::MatND hist;

 // Compute histogram
 cv::calcHist(&image,
 1, // histogram of 1 image only
 channels, // the channel used
 cv::Mat(), // no mask is used
 hist, // the resulting histogram
 3, // it is a 3D histogram

Counting the Pixels with Histograms

96

 histSize, // number of bins
 ranges // pixel value range
);

 return hist;
 }

A three-dimensional cv::Mat instance is returned. This matrix has (256)*3 elements which
represents more than 16 million entries. In many applications, it would be better to reduce the
number of colors before computing such a large histogram (see Chapter 2). Alternatively, you
can also use the cv::SparseMat data structure that is designed to represent large sparse
matrices (that is, matrices with very few non-zero elements) without consuming too much
memory. The cv::calcHist function has a version returning one such matrix. It is therefore
simple to modify the previous method to use cv::SparseMatrix:

 cv::SparseMat getSparseHistogram(const cv::Mat &image) {

 cv::SparseMat hist(3,histSize,CV_32F);

 // Compute histogram
 cv::calcHist(&image,
 1, // histogram of 1 image only
 channels, // the channel used
 cv::Mat(), // no mask is used
 hist, // the resulting histogram
 3, // it is a 3D histogram
 histSize, // number of bins
 ranges // pixel value range
);

 return hist;
 }

See also
The recipe Backprojecting a histogram to detect specific image content later in this chapter
that will make use of color histograms in order to detect specific image content.

Applying look-up tables to modify
image appearance

Image histograms capture the way a scene is rendered using the available pixel intensity
values. By analyzing the distribution of the pixel values over an image, it is possible to use this
information to modify and possibly improve an image. This recipe explains how one can use a
simple mapping function, represented by a look-up table, to modify the pixel values of an image.

Chapter 4

97

How to do it...
A look-up table is a simple one-to-one (or many-to-one) function that defines how pixel values
are transformed into new values. It is a 1D array with, in the case of regular gray-level images,
256 entries. Entry i of the table gives the new intensity value of the corresponding gray level,
that is:

 newIntensity= lookup[oldIntensity];

Function cv::LUT in OpenCV applies a look-up table to an image in order to produce a new
image. We can add this function to our Histogram1D class:

 cv::Mat applyLookUp(const cv::Mat& image, // input image
 const cv::Mat& lookup) { // 1x256 uchar matrix

 // the output image
 cv::Mat result;

 // apply lookup table
 cv::LUT(image,lookup,result);

 return result;
 }

How it works...
When a look-up table is applied on an image, it results in a new image where the
pixel intensity values have been modified as prescribed by the look-up table. A simple
transformation like this could be the following:

 // Create an image inversion table
 int dim(256);
 cv::Mat lut(1, // 1 dimension
 &dim, // 256 entries
 CV_8U); // uchar

 for (int i=0; i<256; i++) {

 lut.at<uchar>(i)= 255-i;
 }

Counting the Pixels with Histograms

98

This transformation simply inverts the pixel intensities, that is, intensity 0 becomes 255, 1
becomes 254, and so on. Applying such a look-up table on an image will produce the negative
of the original image. On the image of the previous recipe, the result is seen here:

There's more...
You can also define a look-up table that tries to improve an image's contrast. For example, if
you observe the original histogram of the previous image shown in the first recipe, it is easy
to notice that the full range of possible intensity values is not used (in particular, for this
image, the brighter intensity values are not used in the image). One can therefore stretch the
histogram in order to produce an image with an expanded contrast. The procedure is designed
to detect the lowest (imin) and the highest (imax) intensity value with non-zero count in the
image histogram. The intensity values can then be remapped such that the imin value is
repositioned at intensity 0, and the imax is assigned value 255. The in-between intensities i
are simply linearly remapped as follows:

255.0*(i-imin)/(imax-imin)+0.5);

Consequently, the complete image stretch method would look as follows:

 cv::Mat stretch(const cv::Mat &image, int minValue=0) {

 // Compute histogram first
 cv::MatND hist= getHistogram(image);

 // find left extremity of the histogram
 int imin= 0;
 for(; imin < histSize[0]; imin++) {
 std::cout<<hist.at<float>(imin)<<std::endl;
 if (hist.at<float>(imin) > minValue)
 break;

Chapter 4

99

 }

 // find right extremity of the histogram
 int imax= histSize[0]-1;
 for(; imax >= 0; imax--) {

 if (hist.at<float>(imax) > minValue)
 break;
 }

 // Create lookup table
 int dim(256);
 cv::Mat lookup(1, // 1 dimension
 &dim, // 256 entries
 CV_8U); // uchar

 // Build lookup table
 for (int i=0; i<256; i++) {

 // stretch between imin and imax
 if (i < imin) lookup.at<uchar>(i)= 0;
 else if (i > imax) lookup.at<uchar>(i)= 255;
 // linear mapping
 else lookup.at<uchar>(i)= static_cast<uchar>(
 255.0*(i-imin)/(imax-imin)+0.5);
 }

 // Apply lookup table
 cv::Mat result;
 result= applyLookUp(image,lookup);

 return result;
 }

Note the call to our applyLookUp method once this one has been computed. Also, in
practice, it could be advantageous to not only ignore bins with 0 value, but also entries with
negligible count, for example, less than a given value (defined here as minValue). The
method is called as follows:

// ignore starting and ending bins with less than 100 pixels
cv::Mat streteched= h.stretch(image,100);

Counting the Pixels with Histograms

100

The resulting image is then seen here:

With the following expanded histogram as seen in the following screenshot:

See also
The Equalizing the image histogram recipe shows you another way to improve the image
contrast.

Chapter 4

101

Equalizing the image histogram
In the previous recipe, we showed how the contrast of an image can be improved by stretching
a histogram so that it occupies the full range of available intensity values. This strategy indeed
constitutes an easy fix which can effectively improve an image. However, in many cases, the
visual deficiency of an image is not that it uses too narrow a range of intensities. Rather, it is
that some intensity values are used more frequently than others. The histogram shown in the
first recipe of this chapter is a good example of this phenomenon. The middle-gray intensities
are indeed heavily represented, while darker and brighter pixel values are rather rare. In
fact, one can think that a good-quality image should make equal use of all available pixel
intensities. This is the idea behind the concept of histogram equalization, that is making the
image histogram as flat as possible.

How to do it...
OpenCV offers an easy-to-use function that performs histogram equalization. It can be called
as follows:

 cv::Mat equalize(const cv::Mat &image) {

 cv::Mat result;
 cv::equalizeHist(image,result);

 return result;
 }

Applied on our image, the following screenshot is the result:

Counting the Pixels with Histograms

102

This image has the following histogram:

Of course, the histogram cannot be perfectly flat because the look-up table is a global many-
to-one transformation. However, it can be seen that the general distribution of the histogram
is now more uniform than the original one.

How it works...
In a perfectly uniform histogram, all bins have an equal number of pixels. This implies that
50% of the pixels have an intensity lower than 128, 25% have an intensity lower than 64, and
so on. This observation can be expressed using the following rule: in a uniform histogram, p%
of the pixels must have an intensity value lower than or equal to 255*p%. This is the rule used
to equalize a histogram: the mapping of intensity i should be at the intensity that corresponds
to the percentage of pixels having an intensity value below i. Therefore, the required look-up
table can be built from the following equation:

lookup.at<uchar>(i)= static_cast<uchar>(255.0*p[i]);

where p[i] is the number of pixels having an intensity lower than or equal to i. The function
p[i] is often referred as a cumulative histogram, that is, it is a histogram that contains
the count of pixels lower than or equal to a given intensity, instead of containing the count of
pixels having a specific intensity value.

Generally, histogram equalization greatly improves the image's appearance. However,
depending on the visual content, the quality of the result can vary from image to image.

Chapter 4

103

Backprojecting a histogram to detect
specific image content

A histogram is an important characteristic of an image's content. If you look at an image area
showing a particular texture or a particular object, then the histogram of this area can be seen
as a function giving the probability that a given pixel belongs to this specific texture or object.
In this recipe, you will learn how the image histogram can be advantageously used to detect
specific image content.

How to do it...
Suppose you have an image and you wish to detect specific content inside it (for example, in
the following screenshot, the clouds in the sky). The first thing to do is to select a region of
interest which contains a sample of what you are looking for. This region is the one inside the
rectangle drawn on the following test screenshot:

In our program, the region of interest is obtained as follows:

 cv::Mat imageROI;
 imageROI= image(cv::Rect(360,55,40,50)); // Cloud region

You then extract the histogram of this ROI. This is easily accomplished using the
Histogram1D class defined in the first recipe of this chapter:

 Histogram1D h;
 cv::MatND hist= h.getHistogram(imageROI);

By normalizing this histogram, we obtain a function that gives the probability of a pixel of a
given intensity value to belong to the defined area:

 cv::normalize(histogram,histogram,1.0);

Counting the Pixels with Histograms

104

Backprojecting a histogram consists in replacing each pixel value in an input image by its
corresponding probability value read in the normalized histogram.

cv::calcBackProject(&image,
 1, // one image
 channels, // the channels used
 histogram, // the histogram we are backprojecting
 result, // the resulting back projection image
 ranges, // the range of values, for each dimension
 255.0 // a scaling factor
);

The result is the following probability map, with probabilities from bright (low probability) to
dark (high probability) of belonging to the reference area:

If we apply a threshold on this image, we obtain the most probable "cloud" pixels:

cv::threshold(result, result, 255*threshold,
 255, cv::THRESH_BINARY);

Chapter 4

105

How it works...
The preceding result can be disappointing because, in addition to the clouds, other areas
have been wrongly detected as well. It is important to understand that the probability function
has been extracted from a simple gray-level histogram. Many other pixels in the image share
the same intensities as the cloud pixels, and pixels of same intensity are replaced by the
same probability value when backprojecting the histogram. One solution to improve the
detection result would be to use color information. But in order to do this, we need to modify
the call to cv::calBackProject.

Function cv::calBackProject is similar to the cv::calcHist function. The first
parameter specifies the input image. You then need to list the channel numbers you wish to
use. The histogram that is passed to the function is, this time, an input parameter. It should
be normalized, and its dimension should match one of the channel list arrays, as well as
one of the ranges parameters. This later is, as in cv::calcHist, an array of float arrays,
each specifying the range (min and max values) of each channel. The resulting output is an
image, the computed probability map. Since each pixel is replaced by the value found in the
histogram at the corresponding bin position, the resulting image has values between 0.0 and
1.0 (assuming a normalized histogram has been provided as input). A last parameter allows
you to optionally rescale these values by multiplying them by a given factor.

There's more...
Let's now see how we can use color information in the histogram backprojection algorithm.
We first define a class that encapsulates the backprojection process. First, we define the
required attributes and initialize the data:

class ContentFinder {

 private:

 float hranges[2];
 const float* ranges[3];
 int channels[3];

 float threshold;
 cv::MatND histogram;

 public:

 ContentFinder() : threshold(-1.0f) {

 ranges[0]= hranges; // all channels have same range
 ranges[1]= hranges;
 ranges[2]= hranges;
 }

Counting the Pixels with Histograms

106

Next, we define a threshold parameter that will be used to create the binary map showing the
detection result. If this parameter is set to a negative value, the raw probability map will be
returned:

 // Sets the threshold on histogram values [0,1]
 void setThreshold(float t) {

 threshold= t;
 }

 // Gets the threshold
 float getThreshold() {

 return threshold;
 }

The input histogram must be normalized:

 // Sets the reference histogram
 void setHistogram(const cv::MatND& h) {

 histogram= h;
 cv::normalize(histogram,histogram,1.0);
 }

To backproject the histogram, you simply need to specify the image, the range (we assumed
here that all channels have the same range), and the list of channels used:

 cv::Mat find(const cv::Mat& image,
 float minValue, float maxValue,
 int *channels, int dim) {

 cv::Mat result;

 hranges[0]= minValue;
 hranges[1]= maxValue;

 for (int i=0; i<dim; i++)
 this->channels[i]= channels[i];

 cv::calcBackProject(&image, 1, // input image
 channels, // list of channels used
 histogram, // the histogram we are using
 result, // the resulting backprojection
 ranges, // the range of values
 255.0 // the scaling factor
);
 }

 // Threshold back projection to obtain a binary image
 if (threshold>0.0)
 cv::threshold(result, result,

Chapter 4

107

 255*threshold, 255, cv::THRESH_BINARY);

 return result;
 }

Let's now use a BGR histogram on the color version of the image we used above. This time,
we will try to detect the blue sky area. We will first load the color image, reduce the number of
color using the color reduction function of Chapter 2, and define the region of interest:

 ColorHistogram hc;
 // load color image
 cv::Mat color= cv::imread("../waves.jpg");
 // reduce colors
 color= hc.colorReduce(color,32);
 // blue sky area
 cv::Mat imageROI= color(cv::Rect(0,0,165,75));

Next, you compute the histogram and use the find method to detect the sky portion
of the image:

 cv::MatND hist= hc.getHistogram(imageROI);

 ContentFinder finder;
 finder.setHistogram(hist);
 finder.setThreshold(0.05f);

 // Get back-projection of color histogram
 Cv::Mat result= finder.find(color);

The result of the detection on the color version of the image, of the previous section is seen
here:

Counting the Pixels with Histograms

108

See also
The next recipe will use the HSV color space to detect an object in an image. This is another of
the many alternative solutions you can use in the detection of some image content.

Using the mean shift algorithm to find
an object

The result of a histogram backprojection is a probability map that expresses the probability
that a given image content is found at a specific image location. Suppose we now know the
approximate location of an object in an image, the probability map can be used to find the
exact location of the object. The most probable will be the one that maximizes this probability
inside a given window. Therefore, if we start from an initial, location and iteratively move
around, it should be possible to find the exact object location. This is what is accomplished by
the mean shift algorithm.

How to do it...
Suppose we have identified an object of interest, here, a baboon's face, as shown in the
following color screenshot (see the book's website to see this image in color):

Chapter 4

109

This time, we will describe this object by using the hue channel of the HSV color space. This
means we need to convert the image into an HSV one, then extract the hue channel and
compute the 1D hue histogram of the defined ROI:

 // Read reference image
 cv::Mat image= cv::imread("../baboon1.jpg");
 // Baboon's face ROI
 cv::Mat imageROI= image(cv::Rect(110,260,35,40));
 // Get the Hue histogram
 int minSat=65;
 ColorHistogram hc;
 cv::MatND colorhist=
 hc.getHueHistogram(imageROI,minSat);

As it can be seen, the hue histogram is obtained using a convenient method that we have
added to our ColorHistogram class:

 // Computes the 1D Hue histogram with a mask.
 // BGR source image is converted to HSV
 // Pixels with low saturation are ignored
 cv::MatND getHueHistogram(const cv::Mat &image,
 int minSaturation=0) {

 cv::MatND hist;

 // Convert to HSV color space
 cv::Mat hsv;
 cv::cvtColor(image, hsv, CV_BGR2HSV);

 // Mask to be used (or not)
 cv::Mat mask;

 if (minSaturation>0) {

 // Spliting the 3 channels into 3 images
 std::vector<cv::Mat> v;
 cv::split(hsv,v);

 // Mask out the low saturated pixels
 cv::threshold(v[1],mask,minSaturation,255,
 cv::THRESH_BINARY);
 }

 // Prepare arguments for a 1D hue histogram
 hranges[0]= 0.0;
 hranges[1]= 180.0;
 channels[0]= 0; // the hue channel

 // Compute histogram
 cv::calcHist(&hsv,
 1, // histogram of 1 image only

Counting the Pixels with Histograms

110

 channels, // the channel used
 mask, // binary mask
 hist, // the resulting histogram
 1, // it is a 1D histogram
 histSize, // number of bins
 ranges // pixel value range
);

 return hist;
 }

The resulting histogram is then input into our ContentFinder class instance:

 ContentFinder finder;
 finder.setHistogram(colorhist);

Let's now open a second image where we want to locate the new baboon's face position. This
image needs to be converted to the HSV space:

 image= cv::imread("../baboon3.jpg");

 // Display image
 cv::namedWindow("Image 2");
 cv::imshow("Image 2",image);

 // Convert to HSV space
 cv::cvtColor(image, hsv, CV_BGR2HSV);

 // Split the image
 cv::split(hsv,v);

 // Identify pixels with low saturation
 cv::threshold(v[1],v[1],minSat,255,cv::THRESH_BINARY);

Next, let's obtain the backprojection of the hue channel of this image using the previously
obtained histogram:

 // Get back-projection of hue histogram
 result= finder.find(hsv,0.0f,180.0f,ch,1);
 // Eliminate low stauration pixels
 cv::bitwise_and(result,v[1],result);

Now, from an initial rectangular area (that is, the position of the baboon's face in the initial
image), the cv::meanShift algorithm of OpenCV will update the rect object at the new
baboon face location:

 cv::Rect rect(110,260,35,40);
 cv::rectangle(image, rect, cv::Scalar(0,0,255));

 cv::TermCriteria criteria(cv::TermCriteria::MAX_ITER,
 10,0.01);
 cv::meanShift(result,rect,criteria);

Chapter 4

111

The initial and new face locations are displayed in the following screenshot:

How it works...
In this example, we used the hue component of the HSV color space in order to characterize
the object we were looking for. Therefore, the image must be converted first. The hue
component being the first channel of the resulting image when the CV_BGR2HSV flag is used.
This is an 8-bit component in which the hue varies from 0 to 180 (with cv::cvtColor, the
converted image is of the same type as the source image). In order to extract the hue image,
the 3-channel HSV image is split into three 1-channel images using the cv::split function.
The three images are put into an std::vector instance, and the hue image is the first entry
of the vector (that is at index 0).

Counting the Pixels with Histograms

112

When using the hue component of a color, it is always important to take its saturation into
account (which is the second entry of the vector). Indeed, when the saturation of a color is
low, the hue information becomes unstable and unreliable. This is due to the fact that for
low-saturated color, the B, G, and R components are almost equal. This makes it difficult
to determine the exact color represented. In consequence, we decided to ignore the hue
component of colors with low saturation. That is, they are not counted in the histogram (using
the parameter minSat that masks out pixels with saturation below this threshold in method
getHueHistogram) and they are eliminated from the backprojection result (using the
cv::bitwise_and operator that eliminates all positive detection pixels having low-saturated
colors just before calling cv::meanShift).

The mean shift algorithm is an iterative procedure which locates the local maxima of a
probability function. It does it by finding the centroid, or weighted mean, of the data point inside
a predefined window. The algorithm then moves the window center to the centroid location
and repeats the procedure until the window center converges to a stable point. The OpenCV
implementation defines two stopping criteria: a maximum number of iterations and a window
center displacement value below which the position is considered to have converged to a stable
point. These two criteria are stored in a cv::TermCriteria instance. The cv::meanShift
function returns the number of iterations performed. Obviously, the quality of the result depends
on the quality of the probability map provided, and on the given initial position.

See also
The mean shift algorithm has been largely used for visual tracking. Chapter 10 will explore the
problem of object tracking in more detail.

OpenCV also offers an implementation of the CamShift algorithm that is an improved version
of mean-shift in which the size and the orientation of the window can change.

Retrieving similar images using histogram
comparison

Content-based image retrieval is an important problem in computer vision. It consists of
finding a set of images presenting content similar to a given query image. Since we have
learned that histograms constitute an effective way to characterize an image's content, it
makes sense to think that they can be used to solve the content-based retrieval problem.

The key here is to be able to measure the similarity between two images by simply
comparing their histograms. A measurement function which will estimate how different,
or how similar, two histograms are will need to be defined. Various such measures have
been proposed in the past, and OpenCV proposes few of them in its implementation of the
cv::compareHist function.

Chapter 4

113

How to do it...
In order to compare a reference image with a collection of images and find the ones that
are the most similar to this query image, we created an ImageComparator class. This one
contains a reference to a query image, and to an input image, together with their histograms
(cv::MatND instances). In addition, since we will perform the comparison using color
histograms, the ColorHistogram class is used:

class ImageComparator {

 private:

 cv::Mat reference;
 cv::Mat input;
 cv::MatND refH;
 cv::MatND inputH;

 ColorHistogram hist;
 int div;

 public:

 ImageComparator() : div(32) {

 }

To get a reliable similarity measure, the number of colors must be reduced. Therefore, the class
includes a color reduction factor that will be applied to both the query and the input images:

 // Color reduction factor
 // The comparison will be made on images with
 // color space reduced by this factor in each dimension
 void setColorReduction(int factor) {

 div= factor;
 }

 int getColorReduction() {

 return div;
 }

The query image is specified using an appropriate setter that also color-reduces the image:

 void setReferenceImage(const cv::Mat& image) {

 reference= hist.colorReduce(image,div);
 refH= hist.getHistogram(reference);
 }

Counting the Pixels with Histograms

114

Finally, a compare method compares the reference image with a given input image. The
method returns a score indicating how similar the two images are.

 double compare(const cv::Mat& image) {

 input= hist.colorReduce(image,div);
 inputH= hist.getHistogram(input);

 return cv::compareHist(
 refH,inputH,CV_COMP_INTERSECT);
 }
};

This class can be used to retrieve images similar to a given query image. This latter being
initially provided to the class instance:

 ImageComparator c;
 c.setReferenceImage(image);

Here, the query image we used is the color version of the beach image shown in recipe
Backprojecting a histogram to detect specific image content earlier in this chapter. This image
was compared to a series of images shown below. The images are shown from the most
similar, to the least:

How it works...
Most histogram comparison measures are based on a bin-by-bin comparison, that is, the
neighboring bins are not used when comparing histograms' bins. Therefore, it important to
reduce the color space before measuring the similarity of two color histograms. Other color
spaces could be used as well.

Chapter 4

115

The call to cv::compareHist is straightforward. You just input the two histograms and the
function returns the measured distance. The specific measurement method you want to use
is specified using a flag. In the ImageComparator class, the intersection method is used
(with flag CV_COMP_INTERSECT). This method simply compares, for each bin, the two values
in each histogram, and keeps the minimum one. The similarity measure is then simply the
sum of these minimum values. Consequently, two images having histograms with no colors
in common would get an intersection value of 0, while two identical histograms would get a
value equal to the total number of pixels.

The other methods available are the Chi-Square (flag CV_COMP_CHISQR) which sums the
normalized square difference between the bins, the correlation method (flag CV_COMP_
CORREL) which is based on the normalized cross-correlation operator used in signal
processing to measure the similarity between two signals, and the Bhattacharyya measure
(flag CV_COMP_BHATTACHARYYA) used in statistics to estimate the similarity between two
probabilistic distributions.

See also
The OpenCV documentation for a description of the exact formulas used in the different
histogram comparison measures.

The Earth Mover Distance, which is also another popular histogram comparison method. The
main advantage of this method is that it takes into account the values found in adjacent bins
to evaluate the similarity of two histograms. It is described in the article The Earth Mover's
Distance as a Metric for Image Retrieval by Y.i Rubner, C. Tomasi,L. J. Guibas in Int. Journal of
Computer Vision, Vol. 40, No. 2., 2000, pp. 99-121

5
Transforming Images

with Morphological
Operations

In this chapter, we will cover:

ff Eroding and dilating images using morphological filters

ff Opening and closing images using morphological filters

ff Detecting edges and corners using morphological filters

ff Segmenting images using watersheds

ff Extracting foreground objects with the GrabCut algorithm

Introduction
Morphological filtering is a theory developed in the 1960s for the analysis and processing
of discrete images. It defines a series of operators which transform an image by probing it
with a predefined shape element. The way this shape element intersects the neighborhood
of a pixel determines the result of the operation. This chapter presents the most important
morphological operators. It also explores the problem of image segmentation using algorithms
working on the image morphology.

Transforming Images with Morphological Operations

118

Eroding and dilating images using
morphological filters

Erosion and dilation are the most fundamental morphological operators. Therefore, we will
present them in this first recipe.

The fundamental instrument in mathematical morphology is the structuring element. A
structuring element is simply defined as a configuration of pixels (a shape) on which an origin
is defined (also called anchor point). Applying a morphological filter consists of probing each
pixel of the image using this structuring element. When the origin of the structuring element
is aligned with a given pixel, its intersection with the image defines a set of pixels on which a
particular morphological operation is applied. In principle, the structuring element can be of
any shape, but most often, a simple shape such as a square, circle, or diamond with the origin
at the center is used (mainly for efficiency reasons).

Getting ready
As morphological filters usually work on binary images, we will use the binary image which
was produced through thresholding in the first recipe of the previous chapter. However, since
in morphology, the convention is to have foreground objects represented by high (white)
pixel values and background by low (black) pixel values, we have negated the image. In
morphological terms, the following image is said to be the complement of the image that was
produced in the previous chapter:

Chapter 5

119

How to do it...
Erosion and dilation are implemented in OpenCV as simple functions which are cv::erode
and cv::dilate. Their use is straightforward:

 // Read input image
 cv::Mat image= cv::imread("binary.bmp");

 // Erode the image
 cv::Mat eroded; // the destination image
 cv::erode(image,eroded,cv::Mat());

 // Display the eroded image
 cv::namedWindow("Eroded Image");");
 cv::imshow("Eroded Image",eroded);

 // Dilate the image
 cv::Mat dilated; // the destination image
 cv::dilate(image,dilated,cv::Mat());

 // Display the dilated image
 cv::namedWindow("Dilated Image");
 cv::imshow("Dilated Image",dilated);

The two images produced by these function calls are seen in the following screenshot. Erosion
is shown first:

Transforming Images with Morphological Operations

120

Followed by the dilation result:

How it works...
As with all other morphological filters, the two filters of this recipe operate on the set of pixels
(or neighborhood) around each pixel, as defined by the structuring element. Recall that when
applied to a given pixel, the anchor point of the structuring element is aligned with this pixel
location, and all pixels intersecting the structuring element are included in the current set.
Erosion replaces the current pixel with the minimum pixel value found in the defined pixel set.
Dilation is the complementary operator, and it replaces the current pixel with the maximum
pixel value found in the defined pixel set. Since the input binary image contains only black (0)
and white (255) pixels, each pixel is replaced by either a white or black pixel.

A good way to picture the effect of these two operators is to think in terms of background
(black) and foreground (white) objects. With erosion, if the structuring element when placed
at a given pixel location touches the background (that is, one of the pixels in the intersecting
set is black), then this pixel will be sent to background. While in the case of dilation, if the
structuring element on a background pixel touches a foreground object, then this pixel will
be assigned a white value. This explains why in the eroded image, the size of the objects has
been reduced. Observe how some of the very small objects (that can be considered as "noisy"
background pixels) have also been completely eliminated. Similarly, the dilated objects are
now larger and some of the "holes" inside of them have been filled.

By default, OpenCV uses a 3x3 square structuring element. This default structuring element
is obtained when an empty matrix (that is cv::Mat()) is specified as the third argument in
the function call, as it was done in the preceding example. You can also specify a structuring
element of the size (and shape) you want by providing a matrix in which the non-zero element
defines the structuring element. In the following example, a 7x7 structuring element is applied:

Chapter 5

121

 cv::Mat element(7,7,CV_8U,cv::Scalar(1));
 cv::erode(image,eroded,element);

The effect is obviously much more destructive in this case as seen here:

Another way to obtain the same result is to repetitively apply the same structuring element on
an image. The two functions have an optional parameter to specify the number of repetitions:

 // Erode the image 3 times.
 cv::erode(image,eroded,cv::Mat(),cv::Point(-1,-1),3);

The origin argument cv::Point(-1,-1) means that the origin is at the center of the matrix
(default), and it can be defined anywhere on the structuring element. The image obtained
will be identical to the one we obtained with the 7x7 structuring element. Indeed, eroding an
image twice is like eroding an image with a structuring element dilated with itself. This also
applies to dilation.

Finally, since the notion of background/foreground is arbitrary, we can make the following
observation (which is a fundamental property of the erosion/dilation operators). Eroding
foreground objects with a structuring element can be seen as a dilation of the background
part of the image. Or more formally:

ff The erosion of an image is equivalent to the complement of the dilation of the
complement image.

ff The dilation of an image is equivalent to the complement of the erosion of the
complement image.

There's more...
It is important to note that even if we applied our morphological filters on binary images here,
these can also be applied on gray-level images with the same definitions.

Transforming Images with Morphological Operations

122

Also note that the OpenCV morphological functions support in-place processing. This means
you can use the input image as the destination image. So you can write:

 cv::erode(image,image,cv::Mat());

OpenCV creates the required temporary image for you for this to work properly.

See also
The next recipe which applies erosion and dilation filters in cascade to produce new operators.

The Detecting edges and corners using morphological filters for the application of
morphological filters on gray-level images.

Opening and closing images using
morphological filters

The previous recipe introduced the two fundamental morphological operators: dilation and
erosion. From these, other operators can be defined. The next two recipes will present some
of them. The opening and closing operators are presented in this recipe.

How to do it...
In order to apply higher-level morphological filters, you need to use the cv::morphologyEx
function with the appropriate function code. For example, the following call will apply the
closing operator:

 cv::Mat element5(5,5,CV_8U,cv::Scalar(1));
 cv::Mat closed;
 cv::morphologyEx(image,closed,cv::MORPH_CLOSE,element5);

Note that here we use a 5x5 structuring element to make the effect of the filter more
apparent. If we input the binary image of the preceding recipe, we obtain:

Chapter 5

123

Similarly, applying the morphological opening operator will result in the following image:

This one being obtained from the following code:

 cv::Mat opened;
 cv::morphologyEx(image,opened,cv::MORPH_OPEN,element5);

How it works...
The opening and closing filters are simply defined in terms of the basic erosion and dilation
operations:

ff Closing is defined as the erosion of the dilation of an image.

ff Opening is defined as the dilation of the erosion of an image.

Transforming Images with Morphological Operations

124

Consequently, one could compute the closing of an image using the following calls:

 // dilate original image
 cv::dilate(image,result,cv::Mat());
 // in-place erosion of the dilated image
 cv::erode(result,result,cv::Mat());

The opening would be obtained by inverting these two function calls.

While examining the result of the closing filter, it can be seen that the small holes of the white
foreground objects have been filled. The filter also connects together several of the adjacent
objects. Basically, any holes or gaps too small to completely contain the structuring element
will be eliminated by the filter.

Reciprocally, the opening filter eliminated several of the small objects in the scene. All of the
ones that were too small to contain the structuring element have been removed.

These filters are often used in object detection. The closing filter connects together objects
erroneously fragmented into smaller pieces, while the opening filter removes the small
blobs introduced by image noise. Therefore, it is advantageous to use them in sequence. If
our test binary image is successively closed and opened, we obtain an image showing only
the main objects in the scene, as shown below. You can also apply the opening filter before
closing if you wish to prioritize noise filtering, but this can be at the price of eliminating
some fragmented objects.

It should be noted that applying the same opening (and similarly the closing) operator on
an image several times has no effect. Indeed, with the holes having been filled by the first
opening, an additional application of this same filter will not produce any other changes to the
image. In mathematical terms, these operators are said to be idempotent.

Chapter 5

125

Detecting edges and corners using
morphological filters

Morphological filters can also be used to detect specific features in an image. In this recipe,
we will learn how to detect lines and corners in a gray-level image.

Getting started
In this recipe, the following image will be used:

How to do it...
Let's define a class named MorphoFeatures which will allow us to detect image features:

class MorphoFeatures {

 private:

 // threshold to produce binary image
 int threshold;
 // structuring elements used in corner detection
 cv::Mat cross;
 cv::Mat diamond;
 cv::Mat square;
 cv::Mat x;

Transforming Images with Morphological Operations

126

Detecting lines is quite easy using the appropriate filter of the cv::morphologyEx function:

cv::Mat getEdges(const cv::Mat &image) {

 // Get the gradient image
 cv::Mat result;
 cv::morphologyEx(image,result,
 cv::MORPH_GRADIENT,cv::Mat());

 // Apply threshold to obtain a binary image
 applyThreshold(result);

 return result;
}

The binary edge image is obtained through a simple private method of the class:

void applyThreshold(cv::Mat& result) {

 // Apply threshold on result
 if (threshold>0)
 cv::threshold(result, result,
 threshold, 255, cv::THRESH_BINARY);
}

Using this class in a main function, you then obtain the edge image as follows:

// Create the morphological features instance
MorphoFeatures morpho;
morpho.setThreshold(40);

// Get the edges
cv::Mat edges;
edges= morpho.getEdges(image);

Chapter 5

127

The result is the following image:

The detection of corners using morphological corners is a bit more complex since it is not
directly implemented in OpenCV. This is a good example of the use of non-square structuring
elements. Indeed, it requires the definition of four different structuring elements shaped
as a square, diamond, cross, and an X-shape. This is done in the constructor (all of these
structuring elements having a fixed 5x5 dimension for simplicity):

MorphoFeatures() : threshold(-1),
 cross(5,5,CV_8U,cv::Scalar(0)),
 diamond(5,5,CV_8U,cv::Scalar(1)),
 square(5,5,CV_8U,cv::Scalar(1)),
 x(5,5,CV_8U,cv::Scalar(0)){

 // Creating the cross-shaped structuring element
 for (int i=0; i<5; i++) {

 cross.at<uchar>(2,i)= 1;
 cross.at<uchar>(i,2)= 1;
 }

 // Creating the diamond-shaped structuring element
 diamond.at<uchar>(0,0)= 0;
 diamond.at<uchar>(0,1)= 0;
 diamond.at<uchar>(1,0)= 0;
 diamond.at<uchar>(4,4)= 0;
 diamond.at<uchar>(3,4)= 0;
 diamond.at<uchar>(4,3)= 0;
 diamond.at<uchar>(4,0)= 0;

Transforming Images with Morphological Operations

128

 diamond.at<uchar>(4,1)= 0;
 diamond.at<uchar>(3,0)= 0;
 diamond.at<uchar>(0,4)= 0;
 diamond.at<uchar>(0,3)= 0;
 diamond.at<uchar>(1,4)= 0;

 // Creating the x-shaped structuring element
 for (int i=0; i<5; i++) {

 x.at<uchar>(i,i)= 1;
 x.at<uchar>(4-i,i)= 1;
 }
}

In the detection of corner features, all of these structuring elements are applied in cascade to
obtain the resulting corner map:

cv::Mat getCorners(const cv::Mat &image) {

 cv::Mat result;

 // Dilate with a cross
 cv::dilate(image,result,cross);

 // Erode with a diamond
 cv::erode(result,result,diamond);

 cv::Mat result2;
 // Dilate with a X
 cv::dilate(image,result2,x);

 // Erode with a square
 cv::erode(result2,result2,square);

 // Corners are obtained by differencing
 // the two closed images
 cv::absdiff(result2,result,result);

 // Apply threshold to obtain a binary image
 applyThreshold(result);

 return result;
}

In order to better visualize the result of the detection, the following method draws a circle on
the image at each detected point on the binary map:

void drawOnImage(const cv::Mat& binary,
 cv::Mat& image) {

 cv::Mat_<uchar>::const_iterator it=
 binary.begin<uchar>();
 cv::Mat_<uchar>::const_iterator itend=

Chapter 5

129

 binary.end<uchar>();

 // for each pixel
 for (int i=0; it!= itend; ++it,++i) {
 if (!*it)
 cv::circle(image,
 cv::Point(i%image.step,i/image.step),
 5,cv::Scalar(255,0,0));
 }
}

Corners are then detected on an image by using the following code:

// Get the corners
cv::Mat corners;
corners= morpho.getCorners(image);

// Display the corner on the image
morpho.drawOnImage(corners,image);
cv::namedWindow("Corners on Image");
cv::imshow("Corners on Image",image);

The image of detected corners is then, as follows.

Transforming Images with Morphological Operations

130

How it works...
A good way to help understand the effect of morphological operators on a gray-level image is
to consider an image as a topological relief in which gray-levels correspond to elevation (or
altitude). Under this perspective, bright regions correspond to mountains, while the darker
areas form the valleys of the terrain. Also, since edges correspond to a rapid transition
between darker and brighter pixels, these can be pictured as abrupt cliffs. If an erosion
operator is applied on such a terrain, the net result will be to replace each pixel by the lowest
value in a certain neighborhood, thus reducing its height. As a result, cliffs will be "eroded"
as the valleys expand. Dilation has the exact opposite effect, that is, cliffs will gain terrain
over the valleys. However, in both cases, the plateaux (that is, area of constant intensity) will
remain relatively unchanged.

The above observations lead to a simple way of detecting the edges (or cliffs) of an image.
This could be done by computing the difference between the dilated image and the eroded
image. Since these two transformed images differ mostly at the edge locations, the image
edges will be emphasized by the differentiation. This is exactly what the cv::morphologyEx
function is doing when the cv::MORPH_GRADIENT argument is inputted. Obviously, the
larger the structuring element is, the thicker the detected edges will be. This edge detection
operator is also called the Beucher gradient (the next chapter will discuss the concept of
image gradient in more detail). Note that similar results could also be obtained by simply
subtracting the original image from the dilated one, or the eroded image from the original. The
resulting edges would simply be thinner.

Corner detection is a bit more complex since it uses four different structuring elements. This
operator is not implemented in OpenCV but we present it here to demonstrate how structuring
elements of various shapes can be defined and combined. The idea is to close the image by
dilating and eroding it with two different structuring elements. These elements are chosen
such that they leave straight edges unchanged, but because of their respective effect, edges
at corner points will be affected. Let's use the simple following image made of a single white
square to better understand the effect of this asymmetrical closing operation:

Chapter 5

131

The first square is the original image. When dilated with a cross-shaped structuring element,
the square edges are expanded, except at the corner points where the cross shape does
not hit the square. This is the result illustrated by the middle square. This dilated image is
then eroded by a structuring element that, this time, has a diamond shape. This erosion
brings back most edges at their original position, but pushes the corners even further since
they were not dilated. The left square is then obtained, which, as it can be seen, has lost
its sharp corners. The same procedure is repeated with an X-shaped and a square-shaped
structuring element. These two elements are the rotated version of the previous ones and
will consequently capture the corners at a 45-degree orientation. Finally, differencing the two
results will extract the corner features.

See also
The article, Morphological gradients by J.-F. Rivest, P. Soille, S. Beucher, ISET's symposium
on electronic imaging science and technology, SPIE, Feb. 1992, for more on morphological
gradient.

The article A modified regulated morphological corner detector by F.Y. Shih, C.-F. Chuang, V.
Gaddipati, Pattern Recognition Letters, volume 26, issue 7, May 2005, for more information
on morphological corner detection.

Segmenting images using watersheds
The watershed transformation is a popular image processing algorithm that is used to
quickly segment an image into homogenous regions. It relies on the idea that when the
image is seen as a topological relief, homogeneous regions correspond to relatively flat
basins delimitated by steep edges. As a result of its simplicity, the original version of this
algorithm tends to over-segment the image which produces multiple small regions. This
is why OpenCV proposes a variant of this algorithm that uses a set of predefined markers
which guide the definition of the image segments.

How to do it...
The watershed segmentation is obtained through the use of the cv::watershed function.
The input to this function is a 32-bit signed integer marker image in which each non-zero pixel
represents a label. The idea is to mark some pixels of the image that are known to certainly
belong to a given region. From this initial labeling, the watershed algorithm will determine
the regions to which the other pixels belong. In this recipe, we will first create the marker
image as a gray-level image, and then convert it into an image of integers. We conveniently
encapsulated this step into a WatershedSegmenter class:

class WatershedSegmenter {

 private:

Transforming Images with Morphological Operations

132

 cv::Mat markers;

 public:

 void setMarkers(const cv::Mat& markerImage) {

 // Convert to image of ints
 markerImage.convertTo(markers,CV_32S);
 }

 cv::Mat process(const cv::Mat &image) {

 // Apply watershed
 cv::watershed(image,markers);

 return markers;
 }

The way these markers are obtained depends on the application. For example, some
preprocessing steps might have resulted in the identification of some pixels belonging to an
object of interest. The watershed would then be used to delimitate the complete object from
that initial detection. In this recipe, we will simply use the binary image used throughout this
chapter in order to identify the animals of the corresponding original image (this is the image
shown at the beginning of Chapter 4).

Therefore, from our binary image, we need to identify pixels that certainly belong to the
foreground (the animals) and pixels that certainly belong to the background (mainly the
grass). Here, we will mark foreground pixels with label 255 and background pixels with label
128 (this choice is totally arbitrary, any label number other than 255 would work). The other
pixels, that is the ones for which the labeling is unknown, are assigned value 0. As it is now,
the binary image includes too many white pixels belonging to various parts of the image. We
will then severely erode this image in order to retain only pixels belonging to the important
objects:

 // Eliminate noise and smaller objects
 cv::Mat fg;
 cv::erode(binary,fg,cv::Mat(),cv::Point(-1,-1),6);

Chapter 5

133

The result is the following image:

Note that a few pixels belonging to the background forest are still present. Let's simply keep
them. Therefore, they will be considered to correspond to an object of interest. Similarly, we
also select a few pixels of the background by a large dilation of the original binary image:

 // Identify image pixels without objects
 cv::Mat bg;
 cv::dilate(binary,bg,cv::Mat(),cv::Point(-1,-1),6);
 cv::threshold(bg,bg,1,128,cv::THRESH_BINARY_INV);

The resulting black pixels correspond to background pixels. This is why the thresholding
operation immediately after the dilation assigns to these pixels the value 128. The following
image is then obtained:

Transforming Images with Morphological Operations

134

These images are combined to form the marker image:

 // Create markers image
 cv::Mat markers(binary.size(),CV_8U,cv::Scalar(0));
 markers= fg+bg;

Note how we used the overloaded operator+ here in order to combine the images. This is
the image that will be used as input to the watershed algorithm:

The segmentation is then obtained as follows:

 // Create watershed segmentation object
 WatershedSegmenter segmenter;

 // Set markers and process
 segmenter.setMarkers(markers);
 segmenter.process(image);

The marker image is then updated such that each zero pixel is assigned one of the input
labels, while the pixels belonging to the found boundaries have value -1. The resulting image
of labels is then:

Chapter 5

135

The boundary image is:

How it works...
As we did in the preceding recipe, we will use the topological map analogy in the description
of the watershed algorithm. In order to create a watershed segmentation, the idea is to
progressively flood the image starting at level 0. As the level of "water" progressively increases
(to levels 1, 2, 3, and so on), catchment basins are formed. The size of these basins also
gradually increase and, consequently, the water of two different basins will eventually merge.
When this happens, a watershed is created in order to keep the two basins separated.
Once the level of water has reached its maximal level, the sets of these created basins and
watersheds form the watershed segmentation.

Transforming Images with Morphological Operations

136

As one can expect, the flooding process initially creates many small individual basins. When
all of these are merged, many watershed lines are created which results in an over-segmented
image. To overcome this problem, a modification to this algorithm has been proposed in which
the flooding process starts from a predefined set of marked pixels. The basins created from
these markers are labeled in accordance with the values assigned to the initial marks. When
two basins having the same label merge, no watersheds are created, thus preventing the over-
segmentation.

This is what happens when the cv::watershed function is called. The input marker image
is updated to produce the final watershed segmentation. Users can input a marker image
with any number of labels with pixels of unknown labeling left to value 0. The marker image
has been chosen to be an image of a 32-bit signed integer in order to be able to define more
than 255 labels. It also allows the special value -1, to be assigned to pixels associated with
a watershed. This is what is returned by the cv::watershed function. To facilitate the
displaying of the result, we have introduced two special methods. The first one returns an
image of the labels (with watersheds at value 0). This is easily done through thresholding:

 // Return result in the form of an image
 cv::Mat getSegmentation() {

 cv::Mat tmp;
 // all segment with label higher than 255
 // will be assigned value 255
 markers.convertTo(tmp,CV_8U);

 return tmp;
 }

Similarly, the second method returns an image in which the watershed lines are assigned
value 0, and the rest of the image is at 255. This time, the cv::convertTo method is used
to achieve this result:

 // Return watershed in the form of an image
 cv::Mat getWatersheds() {

 cv::Mat tmp;
 // Each pixel p is transformed into
 // 255p+255 before conversion
 markers.convertTo(tmp,CV_8U,255,255);

 return tmp;
 }

The linear transformation that is applied before the conversion allows -1 pixels to be
converted into 0 (since -1*255+255=0).

Pixels with a value greater than 255 are assigned the value 255. This is due to the saturation
operation that is applied when signed integers are converted into unsigned chars.

Chapter 5

137

See also
The article The viscous watershed transform by C. Vachier, F. Meyer, Journal of Mathematical
Imaging and Vision, volume 22, issue 2-3, May 2005, for more information on the watershed
transform.

The next recipe which presents another image segmentation algorithm that can also segment
an image into background and foreground objects.

Extracting foreground objects with
the GrabCut algorithm

OpenCV proposes an implementation of another popular algorithm for image segmentation:
the GrabCut algorithm. This algorithm is not based on mathematical morphology, but we
present it here since it shows some similarities in its use with the watershed segmentation
algorithm presented in the preceding recipe. GrabCut is computationally more expensive than
watershed, but it generally produces a more accurate result. It is the best algorithm to use
when one wants to extract a foreground object in a still image (for example, to cut and paste
an object from one picture to another).

How to do it...
The cv::grabCut function is easy to use. You just need to input an image and label some of
its pixels as belonging to the background or to the foreground. Based on this partial labeling, the
algorithm will then determine a foreground/background segmentation for the complete image.

One way of specifying a partial foreground/background labeling for an input image is by
defining a rectangle inside which the foreground object is included:

 // Open image
 image= cv::imread("../group.jpg");

 // define bounding rectangle
 // the pixels outside this rectangle
 // will be labeled as background
 cv::Rect rectangle(10,100,380,180);

All pixels outside of this rectangle will then be marked as background. In addition to the input
image and its segmentation image, calling the cv::grabCut function requires the definition
of two matrices which will contain the models built by the algorithm:

 cv::Mat result; // segmentation (4 possible values)
 cv::Mat bgModel,fgModel; // the models (internally used)
 // GrabCut segmentation
 cv::grabCut(image, // input image

www.allitebooks.com

http://www.allitebooks.org

Transforming Images with Morphological Operations

138

 result, // segmentation result
 rectangle, // rectangle containing foreground
 bgModel,fgModel, // models
 5, // number of iterations
 cv::GC_INIT_WITH_RECT); // use rectangle

Note how we specified that we are using the bounding rectangle mode using the cv::GC_
INIT_WITH_RECT flag as the last argument of the function (the next section will discuss the
other available mode). The input/output segmentation image can have one of the four values:

ff cv::GC_BGD, for pixels certainly belonging to the background (for example, pixels
outside the rectangle in our example)

ff cv::GC_FGD, for pixels certainly belonging to the foreground (none in our example)

ff cv::GC_PR_BGD, for pixels probably belonging to the background

ff cv::GC_PR_FGD for pixels probably belonging to the foreground (that is the initial
value for the pixels inside the rectangle in our example).

We get a binary image of the segmentation by extracting the pixels having a value equal to
cv::GC_PR_FGD:

 // Get the pixels marked as likely foreground
 cv::compare(result,cv::GC_PR_FGD,result,cv::CMP_EQ);
 // Generate output image
 cv::Mat foreground(image.size(),CV_8UC3,
 cv::Scalar(255,255,255));
 image.copyTo(foreground,// bg pixels are not copied
 result);

To extract all foreground pixels, that is, with values equal to cv::GC_PR_FGD or cv::GC_
FGD, it is possible to simply check the value of the first bit:

 // checking first bit with bitwise-and
 result= result&1; // will be 1 if FG

This is possible because these constants are defined as values 1 and 3, while the other
two are defined as 0 and 2. In our example, the same result is obtained because the
segmentation image does not contain cv::GC_FGD pixels (only cv::GC_BGD pixels have
been inputted).

Finally, we obtain an image of the foreground objects (over a white background) by the
following copy operation with mask:

 // Generate output image
 cv::Mat foreground(image.size(),CV_8UC3,
 cv::Scalar(255,255,255)); // all white image
 image.copyTo(foreground,result); // bg pixels not copied

Chapter 5

139

The resulting image is then:

How it works...
In the preceding example, the GrabCut algorithm was able to extract the foreground objects
by simply specifying a rectangle inside which these objects (the four animals) were contained.
Alternatively, one could also assign values cv::GC_BGD and cv::GC_FGD to some specific
pixels of the segmentation image provided as the second argument of the cv::grabCut
function. You would then specify GC_INIT_WITH_MASK as the input mode flag. These input
labels could be obtained, for example, by asking a user to interactively mark a few elements of
the image. It is also possible to combine these two input modes.

Using this input information, the GrabCut creates the background/foreground segmentation
by proceeding as follows. Initially, a foreground label (cv::GC_PR_FGD) is tentatively assigned
to all unmarked pixels. Based on the current classification, the algorithm groups the pixels into
clusters of similar colors (that is K clusters for the background and K clusters for the foreground).
The next step is to determine a background/foreground segmentation by introducing boundaries
between foreground and background pixels. This is done through an optimization process that
tries to connect pixels with similar labels, and that imposes a penalty for placing a boundary in
regions of relatively uniform intensity. This optimization problem is efficiently solved using the
Graph Cuts algorithm, a method that can find the optimal solution of a problem by representing
it as a connected graph on which cuts are applied in order to compose an optimal configuration.
The obtained segmentation produces new labels for the pixels. The clustering process can then
be repeated and a new optimal segmentation is found again, and so on. Therefore, the GrabCut
is an iterative procedure which gradually improves the segmentation result. Depending on the
complexity of the scene, a good solution can be found in more or less iterations (in easy cases,
one iteration can be enough!).

Transforming Images with Morphological Operations

140

This explains the previous last argument of the function where the user can specify the
number of iterations to apply. The two internal models maintained by the algorithm are
passed as argument of the function (and returned) such that it is possible to call the function
with the models of the last run again if one wishes to improve the segmentation result by
performing additional iterations.

See also
The article by C. Rother, V. Kolmogorov and A. Blake, GrabCut: Interactive Foreground
Extraction using Iterated Graph Cuts in ACM Transactions on Graphics (SIGGRAPH) volume
23, issue 3, August 2004, that describes in detail the GrabCut algorithm.

6
Filtering the Images

In this chapter, we will cover:

ff Filtering images using low-pass filters

ff Filtering images using a median filter

ff Applying directional filters to detect edges

ff Computing the Laplacian of an image

Introduction
Filtering is one of the fundamental tasks in signal and image processing. It is a process aimed
at selectively extracting certain aspects of an image that are considered to convey important
information in the context of a given application. Filtering removes noise in images, extracts
interesting visual features, allows image resampling, and so on. It finds its roots in the
general Signals and Systems theory. We will not cover this theory in details here. However,
this chapter will present some of the important concepts related to filtering and will show
how filters can be used in image processing applications. But first, let's begin with a brief
explanation of the concept of frequency domain analysis.

When we look at an image, we observe how the different gray-level (or colors) are distributed
over the image. Images differ from each others because they have a different gray-level
distribution. But there exists another point of view under which an image can be analyzed. We
can look at the gray-level variations that are present in an image. Some images contain large
areas of almost constant intensity (for example, a blue sky) while in other images, the gray-
level intensities vary rapidly over the image (for example, a busy scene crowded with many
small objects). Therefore, observing the frequency of those variations in an image constitutes
another way of characterizing an image. This point of view is referred to as the frequency
domain, while characterizing an image by observing its gray-level distribution is referred to as
the spatial domain.

Filtering the Images

142

The frequency domain analysis decomposes an image into its frequency content from the lowest
to the highest frequencies. Low frequency corresponds to areas where the image intensities
vary slowly, while high frequencies are generated by rapid changes in intensities. Several well-
known transformations exist, such as the Fourier transform or the Cosine transform, which can
be used to explicitly show the frequency content of an image. Note that since an image is a
two-dimensional entity, it is made of both vertical frequencies (that is variations in the vertical
directions) and horizontal frequencies (variations in the horizontal directions).

Under the frequency domain analysis framework, a filter is an operation that amplifies certain
bands of frequencies of an image while blocking (or reducing) other image frequency bands.
A low-pass filter is therefore a filter which eliminates the high-frequency components of an
image and reciprocally, a high-pass filter eliminates the low-pass components. This chapter
will present some filters that are frequently used in image processing and will explain their
effect when applied on an image.

Filtering images using low-pass filters
In this first recipe, we will present some very basic low-pass filters. In the introductory section
of this chapter, we learned that the objective of such filters is to reduce the amplitude of the
image variations. One simple way to achieve this goal is to replace each pixel by the average
value of the pixels around. By doing this, the rapid intensity variations will be smoothed out
and thus replaced by a more gradual transition.

How to do it...
The objective of the cv::blur function is to smooth an image by replacing each pixel by the
average pixel value computed over a rectangular neighborhood. This low-pass filter is applied
as follows:

 cv::blur(image,result,cv::Size(5,5));

This kind of filter is also called a box filter. Here, we applied it by using a 5x5 filter in order to
make the filter's effect more visible. When this is applied on the following image:

Chapter 6

143

The result is:

In some cases, it might be desirable to give more importance to the closer pixels in the
neighborhood of a pixel. It is therefore possible to compute a weighted average in which
nearby pixels are assigned a larger weight than ones further away. This can be achieved by
using a weighted scheme that follows a Gaussian function (a "bell-shaped" function). The
cv::GaussianBlur function applies such a filter and it is called as follows:

 cv::GaussianBlur(image,result,cv::Size(5,5),1.5);

Filtering the Images

144

The result is then seen in the following image:

How it works...
A filter is said to be linear if its application corresponds to replacing a pixel by a weighted sum
of neighboring pixels. This is the case of the box filter in which a pixel is replaced by the sum
of all pixels in a rectangular neighborhood and divided by the size of this neighborhood (to get
the average value). This is like multiplying each neighboring pixel by 1 over the total number
of pixels and summing all of these values. The different weights of a filter can be represented
using a matrix that shows the multiplying factors associated with each pixel position in the
considered neighborhood. The central element of the matrix corresponding to the pixel on
which the filter is currently applied. Such a matrix is sometimes called a kernel or a mask.
For a 3x3 box filter, the corresponding kernel would be:

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

Applying a linear filter then corresponds to moving a kernel over each pixel of an image and
multiplying each corresponding pixel by its associated weight. Mathematically, this operation
is called a convolution.

Looking at the output images produced in this recipe, it can be observed that the net effect
of a low-pass filter is to blur or smooth the image. This is not surprising since this filter
attenuates the high-frequency components that correspond to the rapid variations visible on
an object's edge.

Chapter 6

145

In the case of a Gaussian filter, the weight associated with a pixel is proportional to its
distance from the central pixel. Recall that the 1D Gaussian function has the following form:

The normalizing coefficient A is chosen such that the different weights sum to one. The σ
(sigma) value controls the width of the resulting Gaussian function. The greater this value is,
the flatter the function will be. For example, if we compute the coefficients of the 1D Gaussian
filter for the interval [-4,…,0,…4] with σ=0.5, we obtain:

[0.0 0.0 0.00026 0.10645 0.78657 0.10645 0.00026 0.0 0.0]

While for σ=1.5 these coefficients are:

[0.00761 0.036075 0.10959 0.21345 0.26666
 0.21345 0.10959 0.03608 0.00761]

Note that these values were obtained by calling the cv::getGaussianKernel function with
the appropriate σ value:

cv::Mat gauss= cv::getGaussianKernel(9,sigma,CV_32F);

To apply a 2D Gaussian filter on an image, one can simply apply a 1D Gaussian filter on the
image lines first (which will filter the horizontal frequencies) followed by the application of the
same 1D Gaussian filter on the image columns (to filter the vertical frequencies). This is possible
because the Gaussian filter is a separable filter (that is, the 2D kernel can be decomposed into
two 1D filters). The function cv::sepFilter2D can be used to apply a general separable filter.
It is also possible to directly apply a 2D kernel using cv::filter2D function.

With OpenCV, the Gaussian filter to be applied on an image is specified by providing to
cv::GaussianBlur both the number of coefficients (third parameter, an odd number)
and the value of σ (fourth parameter). You can also simply set the value of σ and let OpenCV
determine the appropriate number of coefficients (you then input a value of 0 for the filter
size). The opposite is also possible, where you input a size and a value of 0 for σ. The σ value
that best fits the given size will be determined. However, it recommended that you input both
values for a better control of the filter effect.

There's more...
Low-pass filters are also used when an image is resized. Suppose you want to reduce the size
of an image by a factor of 2. You might think that this can simply be done by eliminating the
even columns and rows of the image. Unfortunately, the resulting image will not look very nice.
For example, an oblique edge in the original image will appear as a staircase on the reduced
image. Other jagged distortions will also be visible on curves and textured parts of the image.

Filtering the Images

146

These undesirable artifacts are caused by a phenomenon called spatial aliasing that occurs
when you try to include high-frequency components in an image that is too small to contain
them. Indeed, smaller images (that is, images with fewer pixels) cannot represent fine textures
and sharp edges as nicely as the higher resolution images (think of the difference between
high-definition TV versus conventional TV). Since fine details in an image correspond to high
frequencies, we'll need to remove those higher frequency components in an image before
reducing its size. We learned in this recipe that this can be done through a low-pass filter.
Consequently, to reduce the size of an image by half without adding annoying artifacts, you
must first apply a low-pass filter to the original image and then throw away one column and
row over two. This is exactly what the cv::pyrDown function does:

cv::Mat reducedImage; // to contain reduced image
cv::pyrDown(image,reducedImage); // reduce image size by half

This one uses a 5x5 Gaussian filter to low-pass the image. The reciprocal cv::pyrUp function
that doubles the size of an image also exists. Of course, if you downsize an image and then
upsize it, you will not recover the exact original image. What was lost during the downsizing
process cannot be recovered. These two functions are used to create image pyramids. This is
a data structure made of stacked versions of an image at different sizes (often each level is
half the size of the previous level) that is often built for efficient image analysis. For example,
if one wishes to detect an object in an image, the detection can be first accomplished on
the small image at the top of the pyramid, and as you locate the object of interest, you can
refine the search by moving to the lower levels of the pyramid containing the higher resolution
versions of the image.

Note that there is also a more general cv:resize function that allows you to specify the
size you want for the resulting image. You simply call it by specifying a new size that could be
smaller or larger than the original image:

cv::Mat resizedImage; // to contain resized image
cv::resize(image,resizedImage,
 cv::Size(image.cols/3,image.rows/3)); // 1/3 resizing

Other options are available to specify resizing in terms of scale factors, or to select a
particular interpolation method to be used in the resampling process.

See also
The function cv::boxFilter filters an image with a square kernel made of 1s only. It is
similar to the mean filter but without dividing the result by the number of coefficients.

The There's more… section of the Scanning an image with neighbor Access in Chapter 2 that
introduces the cv::filter2D function. This function lets you apply a linear filter to an image
by inputting the kernel of your choice.

Chapter 6

147

Filtering images using a median filter
The first recipe of this chapter introduced the concept of linear filters. Non-linear filters also
exist that can be advantageously used in image processing. One such filter is the median filter
that we present in this recipe.

Since median filters are particularly useful to combat salt-and-pepper noise, we will use the
image we created in the first recipe of Chapter 2 and that is reproduced here:

How to do it...
The call to the median filtering function is done in a way similar to the other filters:

 cv::medianBlur(image,result,5);

The resulting image is then as follows:

Filtering the Images

148

How it works...
Since the median filter is not a linear filter, it cannot be represented by a kernel matrix.
However, it also operates on a pixel's neighborhood in order to determine the output pixel
value. The pixel and its neighborhood form a set of values and, as the name suggests, the
median filter will simply compute the median value of this set, and the current pixel is then
replaced by this median value.

This explains why the filter is so efficient in eliminating of the salt-and-pepper noise. Indeed,
when an outlier black or white pixel is present in a given pixel neighborhood, it is never
selected as the median value (being rather maximal or minimal value) so it is always replaced
by a neighboring value. In contrast, a simple mean filter would be greatly affected by such
noise as it can be observed in the following image that represents the mean filtered version of
our salt-and-pepper image:

Clearly, the noisy pixels shifted the mean value of neighboring pixels. As a result, the noise is
still visible even if it has been blurred by the mean filter.

The median filter also has the advantage of preserving the sharpness of the edges. However,
it washes out the textures in uniform regions (for example, the trees in the background).

Applying directional filters to detect edges
The first recipe of this chapter introduced the idea of linear filtering using kernel matrices. The
filters used had the effect of blurring an image by removing or attenuating its high-frequency
components. In this recipe, we will perform the opposite transformation that is amplifying
the high-frequency content of an image. As a result, the high-pass filters introduced here will
perform edge detection.

Chapter 6

149

How to do it...
The filter we will use here is called the Sobel filter. It is said to be a directional filter because
it only affects the vertical or the horizontal image frequencies depending on which kernel of
the filter is used. OpenCV has a function that applies the Sobel operator on an image. The
horizontal filter is called as follows:

 cv::Sobel(image,sobelX,CV_8U,1,0,3,0.4,128);

While vertical filtering is achieved by the following (and very similar) call:

 cv::Sobel(image,sobelY,CV_8U,0,1,3,0.4,128);

Several integer parameters are provided to the function and these will be explained in the
next section. Simply note that these have been chosen to produce an 8-bit image (CV_8U)
representation of the output.

The result of the horizontal Sobel operator is as follows:

Filtering the Images

150

In this representation, a zero value corresponds to gray-level 128. Negative values are
represented by darker pixels, while positive values are represented by brighter pixels. The
vertical Sobel image is:

If you are familiar with photo-editing software, the preceding images may remind you of the
image emboss effect, and indeed this image transformation is generally based on the use of
directional filters.

Since its kernel contains positive and negative values, the result of the Sobel filter is generally
computed in a 16-bit signed integer image (CV_16S). The two results (vertical and horizontal)
are then combined to obtain the norm of the Sobel filter:

 // Compute norm of Sobel
 cv::Sobel(image,sobelX,CV_16S,1,0);
 cv::Sobel(image,sobelY,CV_16S,0,1);
 cv::Mat sobel;
 //compute the L1 norm
 sobel= abs(sobelX)+abs(sobelY);

The Sobel norm can be conveniently displayed in an image using the optional rescaling
parameter of the convertTo method in order to obtain an image in which zero values
correspond to white, and higher values are assigned darker gray shades:

 // Find Sobel max value
 double sobmin, sobmax;
 cv::minMaxLoc(sobel,&sobmin,&sobmax);
 // Conversion to 8-bit image
 // sobelImage = -alpha*sobel + 255
 cv::Mat sobelImage;
 sobel.convertTo(sobelImage,CV_8U,-255./sobmax,255);

Chapter 6

151

The result can be seen in the following image:

Looking at this image, it is now clear why this kind of operators are called edge detector. It
is then possible to threshold this image in order to obtain a binary map showing the image
contour. The following snippet creates the following image:

 cv::threshold(sobelImage, sobelThresholded,
 threshold, 255, cv::THRESH_BINARY);

Filtering the Images

152

How it works...
The Sobel operator is a classic edge detection linear filter that is based on a simple 3x3 kernel
which has the following structure:

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

If we view the image as a two-dimensional function, the Sobel operator can then be seen
as a measure of the variation of the image in the vertical and horizontal directions. In
mathematical terms, this measure is called a gradient and it is defined as a 2D vector made
of the function's first derivatives in two orthogonal directions:

Therefore, the Sobel operator gives an approximation of the image gradient by differencing
pixels in the horizontal and in the vertical directions. It operates on a small window around the
pixel of interest in order to reduce the influence of noise. The cv::Sobel function computes
the result of the convolution of the image with a Sobel kernel. Its complete specification is as
follows:

 cv::Sobel(image, // input
 sobel, // output
 image_depth, // image type
 xorder,yorder, // kernel specification
 kernel_size, // size of the square kernel
 alpha, beta); // scale and offset

You therefore decide whether you wish to have the result written in an unsigned char, a signed
integer, or a floating point image. Of course, if the result falls outside of the domain of the
image pixel, saturation will be applied. This is where the last two parameters can be useful.
Before storing the result in the image, the result can be scaled (multiplied) by alpha and
an offset beta can be added. This is how we generated, in the previous section, an image
for which the Sobel value 0 was represented by the mid-gray level 128. Each Sobel mask
corresponds to a derivative in one direction. Therefore, two parameters are used to specify
the kernel that will be applied, the order of the derivative in the x and the y directions.

Chapter 6

153

For instance, the horizontal Sobel kernel is obtained by specifying 1 and 0 for the x-order and
y-order, and the vertical kernel will be generated with 0 and 1. Other combinations are also
possible, but these two are the ones that will be used most often (the case of second-order
derivative is discussed in the next recipe). Finally, it is also possible to use kernels of size
larger than 3x3. Values 1, 3, 5, and 7 are possible choices for the kernel size. A kernel of size
1 corresponds to a 1D Sobel filter (1x3 or 3x1).

Since the gradient is a 2D vector, it has a norm and a direction. The norm of the gradient
vector tells you what the amplitude of the variation is and it is normally computed as a
Euclidean norm (also called L2 norm):

However, in image processing, we generally compute this norm as the sum of the absolute
values. This is called the L1 norm and it gives values close to the L2 norm but at a much lower
computational cost. This is what we did in this recipe, that is:

 //compute the L1 norm
 sobel= abs(sobelX)+abs(sobelY);

The gradient vector always points in the direction of the steepest variation. For an image, this
means that the gradient direction will be orthogonal to the edge, pointing in the darker to
brighter direction. Gradient angular direction is given by:

Most often, for edge detection, only the norm is computed. But if you require both the norm
and the direction, then the following OpenCV function can be used:

 // Sobel must be computed in floating points
 cv::Sobel(image,sobelX,CV_32F,1,0);
 cv::Sobel(image,sobelY,CV_32F,0,1);
 // Compute the L2 norm and direction of the gradient
 cv::Mat norm, dir;
 cv::cartToPolar(sobelX,sobelY,norm,dir);

By default, the direction is computed in radians. Just add true as an additional argument in
order to have them computed in degrees.

Filtering the Images

154

A binary edge map has been obtained by applying a threshold on the gradient magnitude.
Choosing the right threshold is not an obvious task. If the threshold value is too low, too many
(thick) edges will be retained, while if we select a more severe (higher) threshold, then broken
edges will be obtained. As an illustration of this tradeoff situation, compare the preceding
binary edge map with the following, obtained using a higher threshold value:

One possible alternative is to use the concept of hysteresis thresholding. This will be explained
in the next chapter where we introduce the Canny operator.

There's more...
Other gradient operators also exists. For example, the Prewitt operator defines the following
kernels:

-1 0 1
-1 0 1
-1 0 1

-1 -1 -1
0 0 0
1 1 1

Chapter 6

155

The Roberts operator is based on these simple 2x2 kernels:

1 0
0 -1

0 1
-1 0

The Scharr operator is preferred when more accurate estimates of the gradient orientation is
required:

 -3 0 3
-10 0 10
 -3 0 3

-3 -10 -3
0 0 0
3 10 3

Note that it is possible to use the Scharr kernels with the cv::Sobel function by calling it
with the CV_SCHARR argument:

 cv::Sobel(image,sobelX,CV_16S,1,0, CV_SCHARR);

or, equivalently, by calling the function cv::Scharr:

 cv::Scharr(image,scharrX,CV_16S,1,0,3);

All of these directional filters try to estimate the first-order derivative of the image function.
Therefore, high values are obtained at areas where large intensity variations in the filter
direction are present, while flat areas produce low values. This is why filters that compute
image derivatives are high-pass filters.

See also
The recipe Detecting edges using the Canny operator in Chapter 7 where a binary edge map
is obtained by using two different threshold values.

Filtering the Images

156

Computing the Laplacian of an image
The Laplacian is another high-pass linear filter that is based on the computation of the image
derivatives. As it will be explained, it computes second-order derivatives to measure the
curvature of the image function.

How to do it...
The OpenCV function cv::Laplacian computes the Laplacian of an image. It is very similar
to the cv::Sobel function. In fact, it uses the same basic function cv::getDerivKernels
in order to obtain its kernel matrix. The only difference is that there is no derivative order
parameters since these ones are by definition second order derivatives.

For this operator, we will create a simple class that will encapsulate some useful operations
related to the Laplacian. The basic methods are:

class LaplacianZC {

 private:

 // original image
 cv::Mat img;

 // 32-bit float image containing the Laplacian
 cv::Mat laplace;
 // Aperture size of the laplacian kernel
 int aperture;

 public:

 LaplacianZC() : aperture(3) {}

 // Set the aperture size of the kernel
 void setAperture(int a) {

 aperture= a;
 }

 // Compute the floating point Laplacian
 cv::Mat computeLaplacian(const cv::Mat& image) {

 // Compute Laplacian
 cv::Laplacian(image,laplace,CV_32F,aperture);

 // Keep local copy of the image
 // (used for zero-crossings)
 img= image.clone();

 return laplace;
 }

Chapter 6

157

The computation of the Laplacian is done here on a floating point image. To get an image of
the result, we perform a rescaling as in the previous recipe. This rescaling is based on the
Laplacian maximum absolute value, where value 0 is assigned gray-level 128. A method of
our class allows this image representation to be obtained:

 // Get the Laplacian result in 8-bit image
 // zero corresponds to gray level 128
 // if no scale is provided, then the max value will be
 // scaled to intensity 255
 // You must call computeLaplacian before calling this
 cv::Mat getLaplacianImage(double scale=-1.0) {

 if (scale<0) {

 double lapmin, lapmax;
 cv::minMaxLoc(laplace,&lapmin,&lapmax);

 scale= 127/ std::max(-lapmin,lapmax);
 }

 cv::Mat laplaceImage;
 laplace.convertTo(laplaceImage,CV_8U,scale,128);

 return laplaceImage;
 }

Using this class, the Laplacian image computed from a 7x7 kernel is obtained as follows:

 // Compute Laplacian using LaplacianZC class
 LaplacianZC laplacian;
 laplacian.setAperture(7);
 cv::Mat flap= laplacian.computeLaplacian(image);
 laplace= laplacian.getLaplacianImage();

Filtering the Images

158

The resulting image is as follows:

How it works...
Formally, the Laplacian of a 2D function is defined as the sum of its second derivatives:

In its simplest form, it can be approximated by the following 3x3 kernel:

 0 1 0
 1 -4 1
0 1 0

As for the Sobel operator, it is also possible to compute the Laplacian using larger kernels,
and since this operator is even more sensitive to image noise, it is desirable to do so (unless
computational efficiency is a concern). Note that the kernel values of the Laplacian always
sum to 0. This guarantees that the Laplacian will be zero in areas of constant intensities.
Indeed, since the Laplacian measures the curvature of the image function, it should be equal
to 0 on flat areas.

Chapter 6

159

At first glance, the effect of the Laplacian might be difficult to interpret. From the definition
of the kernel, it is clear that any isolated pixel value (that is a value very different from its
neighbors) will be amplified by the operator. This is a consequence of the operator's high
sensitivity to noise. But it is more interesting to look at the Laplacian values around an
image edge. The presence of an edge in an image is the result of a rapid transition between
areas of different gray-level intensities. Following the evolution of the image function along
an edge (for example, caused by a transition from dark to bright), one can observe that the
gray-level ascension necessarily implies a gradual transition from a positive curvature (when
the intensity values start to rise) to a negative curvature (when the intensity is about to reach
its high plateau). Consequently, a transition between a positive and a negative Laplacian
value (or reciprocally) constitutes a good indicator of the presence of an edge. Another way
to express this fact is to say that edges will be located at the zero-crossings of the Laplacian
function. We will illustrate this idea by looking at the values of a Laplacian in a small window
of our test image. We select one that corresponds to an edge created by the bottom part of
the roof of one of the castle's tower. A white box has been drawn in the following image to
show the exact location of this region of interest:

Filtering the Images

160

Now looking at the Laplacian values (7x7 kernel) inside this window, we have:

If, as illustrated, you carefully follow the zero-crossings of the Laplacian (located between
pixels of different signs), you obtain a curve which corresponds to the edge visible in the
image window. Above, we drew dotted lines along the zero-crossings corresponding to the
edge of the tower visible in the selected image window. This implies that, in principle, you can
even detect the image edges at sub-pixel accuracy.

Following the zero-crossing curves in a Laplacian image is a delicate task. However, a
simplified algorithm can be used to detect the approximate zero-crossing locations. This one
proceeds as follows. Scan the Laplacian image and compare the current pixel with the one at
its left. If the two pixels are of different signs, then declare a zero-crossing at the current pixel,
if not, repeat the same test with the pixel immediately above. This algorithm is implemented
by the following method which generates a binary image of zero-crossings:

 // Get a binary image of the zero-crossings
 // if the product of the two adjascent pixels is
 // less than threshold then this zero-crossing
 // will be ignored
 cv::Mat getZeroCrossings(float threshold=1.0) {

 // Create the iterators
 cv::Mat_<float>::const_iterator it=
 laplace.begin<float>()+laplace.step1();
 cv::Mat_<float>::const_iterator itend=
 laplace.end<float>();
 cv::Mat_<float>::const_iterator itup=
 laplace.begin<float>();

 // Binary image initialize to white
 cv::Mat binary(laplace.size(),CV_8U,cv::Scalar(255));
 cv::Mat_<uchar>::iterator itout=
 binary.begin<uchar>()+binary.step1();

Chapter 6

161

 // negate the input threshold value
 threshold *= -1.0;

 for (; it!= itend; ++it, ++itup, ++itout) {

 // if the product of two adjascent pixel is
 // negative then there is a sign change
 if (*it * *(it-1) < threshold)
 *itout= 0; // horizontal zero-crossing
 else if (*it * *itup < threshold)
 *itout= 0; // vertical zero-crossing
 }

 return binary;
 }

An additional threshold is also introduced to make sure that the current Laplacian values are
significant enough to be considered an edge. The result is the following binary map:

As you can see, the zero-crossings of the Laplacian detect all edges. No distinction is made
between strong edges and weaker edges. We also mentioned that the Laplacian is very
sensitive to noise. These two facts explain why so many edges are detected by the operator.

Filtering the Images

162

There's more...
The contrast of an image can be enhanced by subtracting its Laplacian from it. This is
what we did in the recipe Scanning an image with neighbor access of Chapter 2 where we
introduced the kernel:

0 -1 0
-1 5 -1
0 -1 0

which is equal to 1 minus the Laplacian kernel (that is original image minus its Laplacian).

See also
The recipe Detecting the scale-invariant SURF features in Chapter 8 that uses the Laplacian
in the detection of scale-invariant features.

7
Extracting Lines,

Contours, and
Components

In this chapter, we will cover:

ff Detecting image contours with the Canny operator

ff Detecting lines in images with the Hough transform

ff Fitting a line to a set of points

ff Extracting the components' contours

ff Computing components' shape descriptors

Introduction
In order to perform a content-based analysis of an image, it is necessary to extract meaningful
features from the collection of pixels that constitute the image. Contours, lines, blobs, and so
on, are fundamental image elements that define an image's content. This chapter will teach
you how to extract some of these important image features.

Extracting Lines, Contours, and Components

164

Detecting image contours with the Canny
operator

In the previous chapter, we learned how it is possible to detect the edges of an image. In
particular, we showed that by applying a threshold on the gradient magnitude, a binary map
of the main edges of an image can be obtained. Edges carry important visual information
since they delineate the image elements. For this reason, they can be used, for example, in
object recognition. However, simple binary edge maps suffer from two main drawbacks. First,
the edges detected are unnecessarily thick. This means precise localization of an object
limit cannot be done. Second, and more importantly, it is difficult to find a threshold that is
sufficiently low to detect all important image edges of an image and that is, at the same time,
sufficiently high to not include too many insignificant edges. This is a trade-off problem that
the Canny algorithm tries to solve.

How to do it...
The Canny algorithm is implemented in OpenCV by the function cv::Canny. As will be
explained, this algorithm requires the specification of two thresholds. The call to the function
is therefore as follows:

 // Apply Canny algorithm
 cv::Mat contours;
 cv::Canny(image, // gray-level image
 contours, // output contours
 125, // low threshold
 350); // high threshold

When applied on the following image:

Chapter 7

165

The result is as follows:

Note that to obtain an image as shown in the preceding screenshot, we had to invert the black
and white values since the normal result represents contours by non-zero pixels. The inverted
representation, which is nicer to print on a page, is simply produced as follows:

 cv::Mat contoursInv; // inverted image
 cv::threshold(contours,contoursInv,
 128, // values below this
 255, // becomes this
 cv::THRESH_BINARY_INV);

How it works...
The Canny operator is generally based on the Sobel operator, although other gradient
operators can be used. The key idea here is to use two different thresholds in order to
determine which point should belong to a contour: a low and a high threshold.

Extracting Lines, Contours, and Components

166

The low threshold should be chosen in a way that it includes all edge pixels that are
considered to belong to a significant image contour. For example, using the low-threshold
value specified in the example of the preceding section, and applying it on the result of a
Sobel operator, the following edge map is obtained:

As it can be seen, the edges that delineate the road are very well defined. However, because
a permissive threshold was used, more edges than what is ideally needed are also detected.
The role of the second threshold is then to define the edges that belong to all important
contours. It should exclude all edges considered as outliers. For example, the Sobel edge map
corresponding to the high-threshold used in our example is:

Chapter 7

167

We now have an image containing broken edges, but the ones visible certainly belong to the
significant contours of the scene. The Canny algorithm combines these two edge maps in order
to produce an "optimal" map of contours. It operates by keeping only the edge points of the
low-threshold edge map for which a continuous path of edges exists, linking that edge point to
an edge belonging to the high-threshold edge map. Consequently, all edge points of the high-
threshold map are kept, while all isolated chains of edge points in the low-threshold map are
removed. The solution obtained constitutes a good compromise allowing good quality contours
to be obtained as long as appropriate threshold values are specified. This strategy, based on
the use of two thresholds to obtain a binary map, is called hysteresis thresholding and can be
used in any context where a binary map needs to be obtained from a thresholding operation.
However, this is done at the cost of a higher computational complexity.

In addition, the Canny algorithm uses an extra strategy to improve the quality of the edge map.
Prior to the application of the hysteresis thresholding, all edge points for which the gradient
magnitude is not a maximum in the gradient direction are removed. Recall that the gradient
orientation is always perpendicular to the edge. Therefore, the local maximum of the gradient
in this direction corresponds to the point of maximum strength of the contour. This explains
why thin edges are obtained in the Canny contour maps.

See also
The classic article by J. Canny, A computational approach to edge detection, IEEE
Transactions on Pattern Analysis and Image Understanding, vol. 18, issue 6, 1986.

Detecting lines in images with the Hough
transform

In our human-made world, planar and linear structures abound. As a result, straight lines
are frequently visible in images. These are meaningful features that play an important role in
object recognition and image understanding. Therefore, it is useful to detect these particular
features in images. The Hough transform is a classic algorithm that achieves this goal. It was
initially developed to detect lines in images and, as we will see, it can also be extended to
detect other simple image structures.

Getting ready
With the Hough transform, lines are represented using the following equation:

Extracting Lines, Contours, and Components

168

The parameter ρ is the distance between the line and the image origin (upper-left corner), and
θ is the angle of the perpendicular to the line. Under this representation, the lines visible in an
image have a θ angle between 0 and π radians, while the radius ρ can have a maximum value
that equals to the length of the image diagonal. Consider, for example, the following set of lines:

A vertical line like line 1 has a θ angle value equal to zero, while a horizontal line (for example,
line 5) has its θ value equal to π/2. Therefore, line 3 has an angle θ equal to π/4, and line 4 is
at approximately 0.7π. In order to be able to represent all possible lines with θ in the interval
[0,π], the radius value can be made negative. This is the case of line 2 which has a θ value
equal to 0.8π with a negative value for ρ.

How to do it...
OpenCV offers two implementations of the Hough transform for line detection. The basic
version is cv::HoughLines. Its input is a binary map containing a set of points (represented
by non-zero pixels), some of them being aligned to form lines. Usually, it is an edge map
obtained, for example, from the Canny operator. The output of the cv::HoughLines function
is a vector of cv::Vec2f elements, each of them being a pair of floating point values which
represents the parameters of a detected line (ρ , θ). Here is an example of using this function
where we first apply the Canny operator to obtain the image contours, and then detect the
lines using the Hough transform:

 // Apply Canny algorithm
 cv::Mat contours;
 cv::Canny(image,contours,125,350);
 // Hough tranform for line detection
 std::vector<cv::Vec2f> lines;
 cv::HoughLines(test,lines,
 1,PI/180, // step size
 80); // minimum number of votes

Chapter 7

169

Parameters 3 and 4 correspond to the step size for the line search. In our example, the
function will search for lines of all possible radii by step of 1 and of all possible angles by
step of π/180. The role of the last parameter will be explained in the next section. With this
particular choice of parameter values, fifteen lines are detected on the road image of the
preceding recipe. In order to visualize the result of the detection, it is interesting to draw these
lines on the original image. However, it is important, to note that this algorithm detects lines
in an image, not line segments since the end points of each lines are not given. Consequently,
we will draw lines that traverse the entire image. To do this, for an almost vertical line, we
calculate its intersection with the horizontal limits of the image (that is, first and last rows)
and draw a line between these two points. We proceed similarly with almost horizontal lines
but using first and last columns. Lines are drawn using the cv::line function. Note that this
function works well even with point coordinates outside the image limits. Therefore, do not
need to check if the computed intersection points fall within the image. Lines are then drawn
by iterating over the lines vector as follows:

 std::vector<cv::Vec2f>::const_iterator it= lines.begin();
 while (it!=lines.end()) {

 float rho= (*it)[0]; // first element is distance rho
 float theta= (*it)[1]; // second element is angle theta

 if (theta < PI/4.
 || theta > 3.*PI/4.) { // ~vertical line

 // point of intersection of the line with first row
 cv::Point pt1(rho/cos(theta),0);
 // point of intersection of the line with last row
 cv::Point pt2((rho-result.rows*sin(theta))/
 cos(theta),result.rows);
 // draw a white line
 cv::line(image, pt1, pt2, cv::Scalar(255), 1);

 } else { // ~horizontal line

 // point of intersection of the
 // line with first column
 cv::Point pt1(0,rho/sin(theta));
 // point of intersection of the line with last column
 cv::Point pt2(result.cols,
 (rho-result.cols*cos(theta))/sin(theta));
 // draw a white line
 cv::line(image, pt1, pt2, cv::Scalar(255), 1);
 }

 ++it;
 }

Extracting Lines, Contours, and Components

170

The following result is then obtained:

As it can be seen, the Hough transform simply looks for an alignment of edge pixels across the
image. This can potentially create some false detection due to an incidental pixel alignment,
or multiple detections when several lines pass through the same alignment of pixels.

To overcome some of these problems, and to allow line segments to be detected (that is, with
end points), a variant of the transform has been proposed. This is the Probabilistic Hough
transform and it is implemented in OpenCV as function cv::HoughLinesP. We use it here to
create our LineFinder class that encapsulates the function parameters:

class LineFinder {

 private:

 // original image
 cv::Mat img;

 // vector containing the end points
 // of the detected lines
 std::vector<cv::Vec4i> lines;

 // accumulator resolution parameters
 double deltaRho;
 double deltaTheta;

 // minimum number of votes that a line
 // must receive before being considered
 int minVote;

 // min length for a line
 double minLength;

Chapter 7

171

 // max allowed gap along the line
 double maxGap;

 public:

 // Default accumulator resolution is 1 pixel by 1 degree
 // no gap, no mimimum length
 LineFinder() : deltaRho(1), deltaTheta(PI/180),
 minVote(10), minLength(0.), maxGap(0.) {}

With the corresponding setter methods:

 // Set the resolution of the accumulator
 void setAccResolution(double dRho, double dTheta) {

 deltaRho= dRho;
 deltaTheta= dTheta;
 }

 // Set the minimum number of votes
 void setMinVote(int minv) {

 minVote= minv;
 }

 // Set line length and gap
 void setLineLengthAndGap(double length, double gap) {

 minLength= length;
 maxGap= gap;
 }

The method that performs Hough line segment detection is then simply:

 // Apply probabilistic Hough Transform
 std::vector<cv::Vec4i> findLines(cv::Mat& binary) {

 lines.clear();
 cv::HoughLinesP(binary,lines,
 deltaRho, deltaTheta, minVote,
 minLength, maxGap);

 return lines;
 }

This method returns a vector of cv::Vec4i, each containing the start and end point
coordinates of each detected segment. The detected lines can then be drawn on an image by
the following method:

 // Draw the detected lines on an image
 void drawDetectedLines(cv::Mat &image,
 cv::Scalar color=cv::Scalar(255,255,255)) {

Extracting Lines, Contours, and Components

172

 // Draw the lines
 std::vector<cv::Vec4i>::const_iterator it2=
 lines.begin();

 while (it2!=lines.end()) {

 cv::Point pt1((*it2)[0],(*it2)[1]);
 cv::Point pt2((*it2)[2],(*it2)[3]);

 cv::line(image, pt1, pt2, color);

 ++it2;
 }
 }

Now, using the same input image, lines can be detected by the following sequence:

 // Create LineFinder instance
 LineFinder finder;

 // Set probabilistic Hough parameters
 finder.setLineLengthAndGap(100,20);
 finder.setMinVote(80);

 // Detect lines and draw them
 std::vector<cv::Vec4i> lines= finder.findLines(contours);
 finder.drawDetectedLines(image);
 cv::namedWindow("Detected Lines with HoughP");
 cv::imshow("Detected Lines with HoughP",image);

Which gives the following result:

Chapter 7

173

How it works...
The objective of the Hough transform is to find all lines in a binary image that pass through a
sufficient number of points. It proceeds by considering each individual pixel point in the input
binary map and identifying all possible lines passing through it. When the same line passes
through many points, it means that this line is significant enough to be considered.

The Hough transform uses a 2-dimensional accumulator in order to count how many times
a given line is identified. The size of this accumulator is defined by the specified step
sizes (as mentioned in the preceding section) of the (ρ, θ) parameters of the adopted line
representation. To illustrate the functioning of the transform, let's create a 180 by 200 matrix
(corresponding to a step size of π/180 for θ and 1 for ρ):

 // Create a Hough accumulator
 // here a uchar image; in practice should be ints
 cv::Mat acc(200,180,CV_8U,cv::Scalar(0));

This accumulator is a mapping of different (ρ, θ) values. Therefore, each entry of this matrix
corresponds to one particular line. Now if we consider one point, let's say one at coordinate
(50, 30), then it is possible to identify all lines passing through this point by looping over all
possible θ angles (with a step size of π/180) and compute the corresponding (rounded) ρ value:

 // Choose a point
 int x=50, y=30;

 // loop over all angles
 for (int i=0; i<180; i++) {

 double theta= i*PI/180.;

 // find corresponding rho value
 double rho= x*cos(theta)+y*sin(theta);
 // j corresponds to rho from -100 to 100
 int j= static_cast<int>(rho+100.5);

 std::cout << i << "," << j << std::endl;

 // increment accumulator
 acc.at<uchar>(j,i)++;
 }

Extracting Lines, Contours, and Components

174

The entries of the accumulator corresponding to the computed (ρ, θ) pairs are then
incremented, signifying that all of these lines pass through one point of the image (or, to
say it another way, each point votes for a set of possible candidate lines). If we display the
accumulator as an image (multiply by 100 to make the count of 1 visible), we obtain:

This curve represents the set of all lines passing through the considered point. Now, if we repeat
the same exercise with, let's say point (30, 10), we now have the following accumulator:

As it can be seen, the two resulting curves intersect at one point. The point that corresponds
to the line passing by these two points. The corresponding entry of the accumulator receives
two votes, indicating that two points pass through this line. If the same process is repeated
for all points of a binary map, then points aligned along a given line will increment a common
entry of the accumulator many times. At the end, one just needs to identify the local maxima
in this accumulator that receives a significant number of votes in order to detect the lines
(that is, point alignments) in the image. The last parameter specified in the cv::HoughLines
function corresponds to the minimum number of votes that a line must receive to be
considered as detected. For example, if we lower this value at 60, that is:

 cv::HoughLines(test,lines,1,PI/180,60);

Chapter 7

175

Then more lines will be accepted for the example of the preceding section as seen here:

The probabilistic Hough transform adds few modifications to the basic algorithm. First, instead
of systematically scanning the image row-by-row, points are chosen in random order in the
binary map. Whenever an entry of the accumulator reaches the specified minimum value, the
image is scanned along the corresponding line and all points passing through it are removed
(even if they have not voted yet). This scanning also determines the length of the segments
that will be accepted. For this, the algorithm defines two additional parameters. One is the
minimum length for a segment to be accepted, and the other is the maximum pixel gap that is
permitted to form a continuous segment. This additional step increases the complexity of the
algorithm, but this is partly compensated by the fact that fewer points will be involved in the
voting process as some of them are eliminated by the line scanning process.

There's more...
The Hough transform can also be used to detect other geometrical entities. In fact, any entity
that can be represented by a parametric equation is a good candidate for the Hough transform.

Detecting circles
In the case of circles, the corresponding parametric equation is:

Extracting Lines, Contours, and Components

176

This equation includes three parameters (the circle radius and center coordinates) which
means that a 3-dimensional accumulator would be required. However, it is generally found
that the Hough transform becomes less reliable as the dimensionality of its accumulator
increases. Indeed, in this case, a large number of entries of the accumulator will be
incremented for each point and, in consequence, the accurate localization of local peaks
becomes more difficult. Therefore, different strategies have been proposed in order to
overcome this problem. The one used in the OpenCV implementation of the Hough circle
detection uses two passes. During the first pass, a 2-dimensional accumulator is used to find
candidate circle locations. Since the gradient of points on the circumference of a circle should
point in the direction of the radius, then, for each point, only the entries in the accumulator
along the gradient direction are incremented (based on predefined minimum and maximum
radius values). Once a possible circle center is detected (that is, received a predefined
number of votes), then an 1D histogram of possible radius is built during the second pass.
The peak value in this histogram corresponds to the radius of the detected circles.

The function cv::HoughCircles that implements the strategy above integrates both the
Canny detection and the Hough transform. It is called as follows:

 cv::GaussianBlur(image,image,cv::Size(5,5),1.5);
 std::vector<cv::Vec3f> circles;
 cv::HoughCircles(image, circles, CV_HOUGH_GRADIENT,
 2, // accumulator resolution (size of the image / 2)
 50, // minimum distance between two circles
 200, // Canny high threshold
 100, // minimum number of votes
 25, 100); // min and max radius

Note that it is always recommended to smooth the image before calling the
cv::HoughCircles function in order to reduce the image noise that could cause several
false circle detections. The result of the detection is given in a vector of cv::Vec3f
instances. The first two values are the circle center and the third is the radius. The argument
CV_HOUGH_GRADIENT was the only option available at the time of writing this book. It
corresponds to the two-pass circle detection methods. The fourth parameter defines the
accumulator resolution. It is a divider factor, for example, specifying a value of 2 makes the
accumulator half the size of the image. The next parameter is the minimum distance in pixels
between two detected circles. The other parameter corresponds to the high-threshold of the
Canny edge detector. The low-threshold value is set at half this value. The seventh parameter
is the minimum number of votes that a center location must receive during the first pass to
be considered as a candidate circle for the second pass. Finally, the last two parameters are
the minimum and maximum radius values for the circles to be detected. As can be seen, the
function includes many parameters which make it difficult to tune.

Once the vector of detected circles is obtained, these can be drawn on the image by iterating
over the vector and calling the cv::circle drawing function with the found parameters:

Chapter 7

177

 std::vector<cv::Vec3f>::
 const_iterator itc= circles.begin();

 while (itc!=circles.end()) {

 cv::circle(image,
 cv::Point((*itc)[0], (*itc)[1]), // circle centre
 (*itc)[2], // circle radius
 cv::Scalar(255), // color
 2); // thickness

 ++itc;
 }

Here is the result obtained on a test image with the chosen arguments:

Generalized Hough transform
For some shapes, it is difficult to find a compact parametric representation, for example,
triangles, octagons, polygons, object profiles, and so on. However, it is still possible to use
the Hough transform to locate these shapes in an image. The principle remains the same. A
2-dimensional accumulator is created which represents all possible locations for the targeted
shape. Therefore, a reference point must be defined on the shape, and each feature point
on the image votes for possible reference point locations. Since a point can be anywhere on
the contour of the shape, the locus of all possible reference positions will trace a shape in
the accumulator that is the mirror of the shape of interest. Again, points that belong to the
same shape in the image will generate a peak in the accumulator at an intersection point that
corresponds to that shape's location.

Extracting Lines, Contours, and Components

178

This is illustrated in the following figure where the shape of interest is a triangle (shown on
right) on which the reference is defined at the bottom-left corner. On the accumulator is shown
a feature point that will increment all entries at the drawn locations as they correspond to
possible positions for the reference points of a triangle passing through this feature point:

This approach is often referred to as the Generalized Hough transform. Obviously, it does not
take into account possible scale change or rotations of the shape. This would require a search
in higher dimension.

See also
The article Gradient-based Progressive Probabilistic Hough Transform by C. Galambos,
J. Kittler, and J. Matas, IEE Vision Image and Signal Processing, vol. 148 no 3, pp. 158-
165, 2002. It is one of the numerous reference on the Hough transform and describes the
probabilistic algorithm implemented in OpenCV.

The article by H.K. Yuen, J. Princen, J. Illingworth, and J Kittler, Comparative Study of Hough
Transform Methods for Circle Finding, Image and Vision Computing, vol. 8 no 1, pp. 71-77,
1990 that describes different strategies for circle detection using the Hough transform.

Fitting a line to a set of points
In some applications, it could be important to not only detect lines in an image, but also to
obtain an accurate estimate of the line's position and orientation. This recipe will show you
how to find the line that best fits a given set of points.

How to do it...
The first thing to do is to identify points in an image that seem to be aligned along a straight line.
Let's then use one of the lines we detected in the preceding recipe. Suppose the lines detected
using cv::HoughLinesP are contained in a std::vector called lines. To extract the set
of points that seem to belong to, let's say, the first of these line, we can proceed as follows. We
draw a white line on a black image and intersect it with the Canny image of contours used to
detect our lines. This is simply achieved by the following statements:

Chapter 7

179

 int n=0; // we select line 0
 // black image
 cv::Mat oneline(contours.size(),CV_8U,cv::Scalar(0));
 // white line
 cv::line(oneline,
 cv::Point(lines[n][0],lines[n][1]),
 cv::Point(lines[n][2],lines[n][3]),
 cv::Scalar(255),
 5);
 // contours AND white line
 cv::bitwise_and(contours,oneline,oneline);

The result is an image containing only the points that could be associated with the specified
line. In order to introduce some tolerance, we draw a line of a certain thickness (here 5). All
points inside the defined neighborhood are therefore accepted. Here is the image obtained
(inverted for better viewing):

The coordinates of the points in this set can then be inserted in a std::vector of
cv::Points (floating point coordinates, that is, cv::Point2f, can also be used) by the
following double loop:

 std::vector<cv::Point> points;

 // Iterate over the pixels to obtain all point positions
 for(int y = 0; y < oneline.rows; y++) {
 // row y

 uchar* rowPtr = oneline.ptr<uchar>(y);

 for(int x = 0; x < oneline.cols; x++) {
 // column x

Extracting Lines, Contours, and Components

180

 // if on a contour
 if (rowPtr[x]) {

 points.push_back(cv::Point(x,y));
 }
 }
 }

The best fit line is easily found by calling the OpenCV function cv::fitLine:

 cv::Vec4f line;
 cv::fitLine(cv::Mat(points),line,
 CV_DIST_L2, // distance type
 0, // not used with L2 distance
 0.01,0.01); // accuracy

This gives us the parameters of the line equation in the form of a unit directional vector (the
first two values of the cv::Vec4f) and the coordinates of one point on the line (the last two
values of the cv::Vec4f). For our example, these values are (0.83, 0.55) for the directional
vector and (366.1, 289.1) for the point coordinates. The last two parameters specify the
requested accuracy for the line parameters. Note that the input points contained in a
std::vector are transferred in a cv::Mat as required by the function.

In general, the line equation will be used in the calculation of some properties (calibration is
a good example where precise parametric representation is required). As an illustration, and
to make sure we calculated the right line, let's draw the estimated line on the image. Here,
we simply draw an arbitrary black segment having a length of 200 pixels and a thickness of 3
pixels:

 int x0= line[2]; // a point on the line
 int y0= line[3];
 int x1= x0-200*line[0]; // add a vector of length 200
 int y1= y0-200*line[1]; // using the unit vector
 image= cv::imread("../road.jpg",0);
 cv::line(image,cv::Point(x0,y0),cv::Point(x1,y1),
 cv::Scalar(0),3);

The result is then seen in the following image:

Chapter 7

181

How it works...
Fitting lines to a set of points is a classic problem in mathematics. The OpenCV
implementation proceeds by minimizing the sum of the distances from each point to the
line. Several distance functions are proposed, and the fastest option is to use the Euclidean
distance, specified by CV_DIST_L2. This choice corresponds to the standard least-squares
line fitting. When outliers (that is, points not belonging to the line) might be included in the
point set, other distance functions that give less influence to far points can be selected. The
minimization is based on the M-estimator technique that iteratively solves a weighted least-
squares problem with weights inversely proportional to the distance from the line.

Using this function, it is also possible to fit a line to a 3D point set. The input is, in this case, a
set of cv::Point3i or cv::Point3f and the output is a std::Vec6f.

There's more...
The function cv::fitEllipse fits an ellipse to a set of 2D points. It returns a rotated
rectangle (a cv::RotatedRect instance) inside which the ellipse is inscribed. In this case,
you would write:

 cv::RotatedRect rrect= cv::fitEllipse(cv::Mat(points));
 cv::ellipse(image,rrect,cv::Scalar(0));

The function cv::ellipse is the one you would use to draw the computed ellipse.

Extracting Lines, Contours, and Components

182

Extracting the components' contours
Images generally contain representation of objects. One of the goals of image analysis is to
identify and extract those objects. In object detection/recognition applications, the first step
is to produce a binary image showing where certain objects of interest could be located. No
matter how this binary map has been obtained (for example, could be from the histogram back
projection as we did in Chapter 4, or from motion analysis as we will learn in Chapter 10), the
next step is to then extract the objects which are contained in this collection of 1s and 0s.
Consider for example, the image of buffaloes in binary form that we manipulated in Chapter 5 as
seen here:

We obtained this image from a simple thresholding operation followed by the application of
open and close morphological filters. This recipe will show you how to extract the objects of
such images. More specifically, we will extract the connected components, that is, shapes
made of a set of connected pixels in a binary image.

How to do it...
OpenCV offers a simple function which extracts the contours of the connected components of
an image. It is the cv::findContours function:

 std::vector<std::vector<cv::Point>> contours;
 cv::findContours(image,
 contours, // a vector of contours
 CV_RETR_EXTERNAL, // retrieve the external contours
 CV_CHAIN_APPROX_NONE); // all pixels of each contours

Chapter 7

183

The input is obviously the binary image. The output is a vector of contours, each contour being
represented by a vector of cv::Points. This explains why the output parameter is defined as
a std::vector of std::vectors. In addition, two flags are specified. The first one indicates
that only the external contours are required, that is, holes in object will be ignored; (the There's
more… section will discuss the other options). The second flag is there to specify the format
of the contour. With the current option, the vector will list all of the points in the contour. With
the flag CV_CHAIN_APPROX_SIMPLE, only the end points would be included for horizontal,
vertical, or diagonal contours. Other flags would give more sophisticated chain approximation of
the contours in order to obtain a more compact representation. With the preceding image, nine
contours are obtained as given by contours.size(). Fortunately, there is a very convenient
function that can draw those contours on an image (here, a white image):

 // Draw black contours on a white image
 cv::Mat result(image.size(),CV_8U,cv::Scalar(255));
 cv::drawContours(result,contours,
 -1, // draw all contours
 cv::Scalar(0), // in black
 2); // with a thickness of 2

If the third parameter of this function is a negative value, then all contours are drawn.
Otherwise, it is possible to specify the index of the contour to be drawn. The result is seen
in the following screenshot:

How it works...
The contours are extracted by a simple algorithm that consists of systematically scanning
the image until a component is hit. From this starting point on the component, its contour
is followed, marking the pixels on its border. When the contour is completed, the scanning
resumes at the last position until a new component is found.

Extracting Lines, Contours, and Components

184

The identified connected components can then be individually analyzed. For example, if some
prior knowledge is available about the expected size of the objects of interest, it becomes
possible to eliminate some of the components. Let's then use a minimum and a maximum
value for the perimeter of the components. This is done by iterating over the vector of
contours and eliminating the invalid components:

 // Eliminate too short or too long contours
 int cmin= 100; // minimum contour length
 int cmax= 1000; // maximum contour length
 std::vector<std::vector<cv::Point>>::
 const_iterator itc= contours.begin();
 while (itc!=contours.end()) {

 if (itc->size() < cmin || itc->size() > cmax)
 itc= contours.erase(itc);
 else
 ++itc;
 }

Note that this loop could have been made more efficiently since each erasing operation in a
std::vector is O(N). But considering the size of this vector, this operation is not too costly.
This time we draw the remaining contours on the original image and obtain the following
result:

We were lucky enough to find a simple criterion that allowed us to identify all objects of
interest in this image. In more complex situations, a more refined analysis of the components'
properties is required. This is the object of the next recipe.

Chapter 7

185

There's more...
With the cv::findContours function, it is also possible to include all closed contours in the
binary map, including the ones formed by holes in the components. This is done by specifying
another flag in the function call:

 cv::findContours(image,
 contours, // a vector of contours
 CV_RETR_LIST, // retrieve all contours
 CV_CHAIN_APPROX_NONE); // all pixels of each contours

With this call, the following contours are obtained:

Notice the extra contours that were added in the background forest. It is also possible to have
these contours organized into a hierarchy. The main component is the parent, holes in it are
its children, and if there are components inside these holes, they become the children of the
previous children, and so on. This hierarchy is obtained by using the flag CV_RETR_TREE, as
follows:

 std::vector<cv::Vec4i> hierarchy;
cv::findContours(image,
 contours, // a vector of contours
 hierarchy, // hierarchical representation
 CV_RETR_TREE, // retrieve all contours in tree format
 CV_CHAIN_APPROX_NONE); // all pixels of each contours

Extracting Lines, Contours, and Components

186

In this case, each contour has a corresponding hierarchy element at the same index made
of four integers. The first two integers give the index of the next and the previous contours
of the same level, and the next two integers give the index of the first child and the parent of
this contour. A negative index indicates the end of a contour list. The flag CV_RETR_CCOMP is
similar but limits the hierarchy at two levels.

Computing components' shape descriptors
A connected component often corresponds to the image of some object in a pictured scene.
To identify this object, or to compare it with other image elements, it can be useful to perform
some measurements on the component in order to extract some of its characteristics. In this
recipe, we will look at some of the shape descriptors available in OpenCV that can be used to
describe the shape of a connected component.

How to do it...
Many OpenCV functions are available when it comes to shape description. We will apply some
of them on the components that we have extracted in the preceding recipe. In particular,
we will use our vector of four contours corresponding to the four buffaloes we previously
identified. In the following code snippets, we compute a shape descriptor on the contours
(contours[0] to contours[3]) and draw the result (with a thickness of 2) over the image
of the contours (with a thickness of 1). This image is shown at the end of this section.

The first one is the bounding box, applied to the bottom right component:

 // testing the bounding box
 cv::Rect r0= cv::boundingRect(cv::Mat(contours[0]));
 cv::rectangle(result,r0,cv::Scalar(0),2);

The minimum enclosing circle is similar. It is applied on the upper-right component:

 // testing the enclosing circle
 float radius;
 cv::Point2f center;
 cv::minEnclosingCircle(cv::Mat(contours[1]),center,radius);
 cv::circle(result,cv::Point(center),
 static_cast<int>(radius),cv::Scalar(0),2);

The polygonal approximation of a component's contour is computed as follows (on the left
component):

 // testing the approximate polygon
 std::vector<cv::Point> poly;
 cv::approxPolyDP(cv::Mat(contours[2]),poly,
 5, // accuracy of the approximation
 true); // yes it is a closed shape

Chapter 7

187

Drawing the result on an image requires more work:

 // Iterate over each segment and draw it
 std::vector<cv::Point>::const_iterator itp= poly.begin();
 while (itp!=(poly.end()-1)) {
 cv::line(result,*itp,*(itp+1),cv::Scalar(0),2);
 ++itp;
 }
 // last point linked to first point
 cv::line(result,
 *(poly.begin()),
 *(poly.end()-1),cv::Scalar(20),2);

The convex hull is another form of polygonal approximation:

 // testing the convex hull
 std::vector<cv::Point> hull;
 cv::convexHull(cv::Mat(contours[3]),hull);

Finally, the computation of the moments is another powerful descriptor:

 // testing the moments

 // iterate over all contours
 itc= contours.begin();
 while (itc!=contours.end()) {

 // compute all moments
 cv::Moments mom= cv::moments(cv::Mat(*itc++));

 // draw mass center
 cv::circle(result,
 // position of mass center converted to integer
 cv::Point(mom.m10/mom.m00,mom.m01/mom.m00),
 2,cv::Scalar(0),2); // draw black dot
 }

Extracting Lines, Contours, and Components

188

The resulting image is as follows:

How it works...
The bounding box of a component is probably the most compact way to represent and
localize a component in an image. It is defined as the upright rectangle of minimum size that
completely contains the shape. Comparing the height and width of the box gives an indication
about the vertical or horizontal orientation of the object (for example, to distinguish the image
of a car from the one of a pedestrian). The minimum enclosing circle is generally used when
only component size and location is required.

The polygonal approximation of a component is useful when one wants to manipulate a more
compact representation that resembles the component's shape. It is created by specifying
an accuracy parameter giving the maximal acceptable distance between a shape and its
simplified polygon. It is the fourth parameter in the cv::approxPolyDP function. The result
is a vector of cv::Point corresponding to the vertices of the polygon. To draw this polygon,
we need to iterate over the vector and link each point with the next one by drawing a line
between them.

The convex hull, or convex envelop, of a shape is the minimal convex polygon that encompass
a shape. It can be visualized as the shape that an elastic band would take if placed around
the component.

Moments are commonly used mathematical entities in the structural analysis of shapes.
OpenCV has defined a data structure which encapsulates all computed moments of a shape. It
is the object returned by the cv::moments function. We simply use this structure to obtain the
mass center of each component that is here computed from the first three spatial moments.

Chapter 7

189

There's more...
Other structural properties can be computed using the available OpenCV functions.
Function cv::minAreaRect computes the minimum enclosing rotated rectangle. Function
cv::contourArea estimates the area of (number of pixel inside) a contour. Function
cv::pointPolygonTest determines if a point is inside or outside a contour, and
cv::matchShapes measure the resemblance between two contours.

8
Detecting and

Matching Interest
Points

In this chapter, we will cover:

ff Detecting Harris corners

ff Detecting FAST features

ff Detecting the scale-invariant SURF features

ff Describing SURF features

Introduction
In computer vision, the concept of interest points, also called keypoints or feature points,
has been largely used to solve many problems in object recognition, image registration,
visual tracking, 3D reconstruction, and more. It relies on the idea that instead of looking
at the image as a whole, it could be advantageous to select some special points in the
image and perform a local analysis on these ones. These approaches work well as long as a
sufficient number of such points are detected in the images of interest and these points are
distinguishing and stable features that can be accurately localized. This chapter will introduce
a few interest point detectors and show you how to use them in image matching.

Detecting and Matching Interest Points

192

Detecting Harris corners
When searching for interesting feature points in images, corners come out as an interesting
solution. They indeed are local features that can be easily localized in an image, and in
addition, they should abound in scenes of man-made objects (where they are produced by
walls, doors, windows, tables, and so on). Corners are also interesting because they are two-
dimensional features that can be accurately localized (even at sub-pixel accuracy) as they
are at the junction of two edges. This is in contrast to points located on a uniform area or on
the contour of an object and that would be difficult to repeatedly localize precisely on other
images of the same object.

The Harris feature detector is a classical approach to detect corners in an image. We will
explore this operator in this recipe.

How to do it...
The basic OpenCV function for detecting Harris corners is called cv::cornerHarris and is
straightforward to use. You call it on an input image and the result is an image of floats which
gives the corner strength at each pixel location. A threshold is then applied on this output
image in order to obtain a set of detected corners. This is accomplished by the following code:

 // Detect Harris Corners
 cv::Mat cornerStrength;
 cv::cornerHarris(image,cornerStrength,
 3, // neighborhood size
 3, // aperture size
 0.01); // Harris parameter

 // threshold the corner strengths
 cv::Mat harrisCorners;
 double threshold= 0.0001;
 cv::threshold(cornerStrength,harrisCorners,
 threshold,255,cv::THRESH_BINARY);

Chapter 8

193

Here is the original image:

Detecting and Matching Interest Points

194

The result is a binary map image shown in the following screenshot which is inverted for better
viewing (that is, we used cv::THRESH_BINARY_INV instead of cv::THRESH_BINARY to get
the detected corners in black):

From the preceding function call, we observe that this interest point detector requires several
parameters (these will be explained in the next section) which may make it difficult to tune.
In addition, the corner map that is obtained contains many clusters of corner pixels which
contradict the fact that we would like to detect well-localized points. Therefore, we will try to
improve the corner detection method by defining our own class to detect Harris corners.

The class encapsulates the Harris parameters with their default values and corresponding
getter and setter methods (which are not shown here):

class HarrisDetector {

 private:

 // 32-bit float image of corner strength
 cv::Mat cornerStrength;
 // 32-bit float image of thresholded corners
 cv::Mat cornerTh;

Chapter 8

195

 // image of local maxima (internal)
 cv::Mat localMax;
 // size of neighborhood for derivatives smoothing
 int neighbourhood;
 // aperture for gradient computation
 int aperture;
 // Harris parameter
 double k;
 // maximum strength for threshold computation
 double maxStrength;
 // calculated threshold (internal)
 double threshold;
 // size of neighborhood for non-max suppression
 int nonMaxSize;
 // kernel for non-max suppression
 cv::Mat kernel;

 public:

 HarrisDetector() : neighbourhood(3), aperture(3),
 k(0.01), maxStrength(0.0),
 threshold(0.01), nonMaxSize(3) {

 // create kernel used in non-maxima suppression
 setLocalMaxWindowSize(nonMaxSize);
 }

To detect the Harris corners on an image, we proceed with two steps. First, the Harris values
at each pixel are computed:

 // Compute Harris corners
 void detect(const cv::Mat& image) {

 // Harris computation
 cv::cornerHarris(image,cornerStrength,
 neighbourhood,// neighborhood size
 aperture, // aperture size
 k); // Harris parameter

 // internal threshold computation
 double minStrength; // not used
 cv::minMaxLoc(cornerStrength,
 &minStrength,&maxStrength);

 // local maxima detection
 cv::Mat dilated; // temporary image
 cv::dilate(cornerStrength,dilated,cv::Mat());
 cv::compare(cornerStrength,dilated,
 localMax,cv::CMP_EQ);
 }

Detecting and Matching Interest Points

196

Next, the feature points are obtained based on a specified threshold value. Since the range of
possible values for Harris depends on the particular choices of its parameters, the threshold
is specified as a quality level defined as a fraction of the maximal Harris value computed in
the image:

 // Get the corner map from the computed Harris values
 cv::Mat getCornerMap(double qualityLevel) {

 cv::Mat cornerMap;

 // thresholding the corner strength
 threshold= qualityLevel*maxStrength;
 cv::threshold(cornerStrength,cornerTh,
 threshold,255,cv::THRESH_BINARY);

 // convert to 8-bit image
 cornerTh.convertTo(cornerMap,CV_8U);

 // non-maxima suppression
 cv::bitwise_and(cornerMap,localMax,cornerMap);

 return cornerMap;
 }

This method returns a binary corner map of the detected features. The fact that the detection
of the Harris features has been split into two methods allows us to test the detection with
a different threshold (until an appropriate number of feature points are obtained) without
needing to repeat costly computations. It is also possible to obtain the Harris features in the
form of a std::vector of cv::Point:

 // Get the feature points from the computed Harris values
 void getCorners(std::vector<cv::Point> &points,
 double qualityLevel) {

 // Get the corner map
 cv::Mat cornerMap= getCornerMap(qualityLevel);
 // Get the corners
 getCorners(points, cornerMap);
 }

 // Get the feature points from the computed corner map
 void getCorners(std::vector<cv::Point> &points,
 const cv::Mat& cornerMap) {

 // Iterate over the pixels to obtain all features
 for(int y = 0; y < cornerMap.rows; y++) {

 const uchar* rowPtr = cornerMap.ptr<uchar>(y);

 for(int x = 0; x < cornerMap.cols; x++) {

 // if it is a feature point
 if (rowPtr[x]) {

Chapter 8

197

 points.push_back(cv::Point(x,y));
 }
 }
 }
 }

This class improves the detection of the Harris corners by adding a non-maxima suppression
step which will be explained in the next section. The detected points can now be drawn on an
image using the cv::circle function as demonstrated by the following method:

 // Draw circles at feature point locations on an image
 void drawOnImage(cv::Mat &image,
 const std::vector<cv::Point> &points,
 cv::Scalar color= cv::Scalar(255,255,255),
 int radius=3, int thickness=2) {

 std::vector<cv::Point>::const_iterator it=
 points.begin();

 // for all corners
 while (it!=points.end()) {

 // draw a circle at each corner location
 cv::circle(image,*it,radius,color,thickness);
 ++it;
 }
 }

Using this class, the detection of the Harris points is accomplished as follows:

 // Create Harris detector instance
 HarrisDetector harris;
 // Compute Harris values
 harris.detect(image);
 // Detect Harris corners
 std::vector<cv::Point> pts;
 harris.getCorners(pts,0.01);
 // Draw Harris corners
 harris.drawOnImage(image,pts);

Detecting and Matching Interest Points

198

Which results in the following image:

How it works...
To define the notion of corners in images, Harris looks at the average directional intensity
change in a small window around a putative interest point. If we consider a displacement
vector (u,v), the average intensity change is given by:

The summation is over a defined neighborhood around the considered pixel (the size of this
neighborhood corresponds to the third parameter in the cv::cornerHarris function).
This average intensity change can then be computed in all possible directions which leads
to the definition of a corner as a point for which the average change is high in more than
one direction. From this definition, the Harris test is performed as follows. We first obtain the
direction of maximal average intensity change. Next, check if the average intensity change in
the orthogonal direction is also high. If it is the case, then we have a corner.

Chapter 8

199

Mathematically, this condition can be tested by using an approximation of the preceding
formula using Taylor expansion:

Which is then rewritten in matrix form:

This matrix is a covariance matrix that characterizes the rate of intensity change in all directions.
This definition involves the image's first derivatives that are often computed using the Sobel
operator. This is the case of the OpenCV implementation, the fourth parameter of the function
corresponding to the aperture used for the computation of the Sobel filters. It can be shown
that the two eigenvalues of the covariance matrix gives the maximal average intensity change
and the average intensity change for the orthogonal direction. It then follows that if these two
eigenvalues are low, we are in a relatively homogenous region. If one eigenvalue is high and
the other is low, we must be on an edge. Finally, if both eigenvalues are high, then we are at a
corner location. Therefore, the condition for a point to be accepted as a corner is to have the
smallest eigenvalue of the covariance matrix higher than a given threshold.

The original definition of the Harris corner algorithm uses some properties of the
eigendecomposition theory in order to avoid the cost of explicitly computing the eigenvalues.
These properties are:

ff The product of the eigenvalues of a matrix is equal to its determinant

ff The sum of the eigenvalues of a matrix is equal to the sum of the diagonal of the
matrix (also known as the trace of the matrix)

It then follows that we can verify that two eigenvalues are high by computing the following score:

One can easily verify that this score will indeed be high only if both eigenvalues are also high.
This is the score that is computed by the cv::cornerHarris function at each pixel location.
The value of k is specified as the fifth parameter of the function. It could be difficult to
determine what would be the best value for this parameter. However, in practice, it has been
shown that a value in the range of 0.05 and 0.5 generally gives good results.

Detecting and Matching Interest Points

200

To improve the result of the detection, the class described in the previous section adds an
additional non-maxima suppression step. The goal here is to exclude Harris corners that are
adjacent to others. Therefore, to be accepted, the Harris corner must not only have a score
higher than the specified threshold, but it must also be a local maximum. This condition
is tested by using a simple trick which consists of dilating the image of Harris score in our
detect method:

 cv::dilate(cornerStrength,dilated,cv::Mat());

Since the dilation replaces each pixel value by the maximum in the defined neighborhood,
then the only points that will not be modified are the local maxima That is what is verified by
the following equality test:

 cv::compare(cornerStrength,dilated,
 localMax,cv::CMP_EQ);

The localMax matrix will therefore be true (that is non-zero) only at local maxima locations.
We then use it in our getCornerMap method to suppress all non-maximal features (using the
cv::bitwise_and function).

There's more...
Additional improvements can be made to the original Harris corner algorithm. This section
describes another corner detector found in OpenCV which expands the Harris detector to
make its corners more uniformly distributed across the image. As we will see, this operator
has an implementation in the new OpenCV 2 common interface for feature detector.

Good features to track
With the advent of the floating-point processor, the mathematical simplification introduced to
avoid the eigenvalue decomposition has become negligible, and consequently the detection
of Harris can be made based on the explicitly computed eigenvalues. In principle, this
modification should not significantly affect the result of the detection, but it avoids the use of
the arbitrary k parameter.

A second modification addresses the problem of feature point clustering. Indeed, in spite of
the introduction of the local maxima condition, interest points tend to be unevenly distributed
across an image, showing concentrations at locations highly textured. A solution to this
problem is to impose a minimum distance between two interest points. This can be achieved
by the following algorithm. Starting from the point with the strongest Harris score (that is with
the largest minimum eigenvalue), only accept interest points if they are located at at least, a
given distance from the already accepted points. This solution is implemented in OpenCV in
the function cv::goodFeaturesToTrack thus named because the features it detects can
be used as a good starting set in visual tracking application. It is called as follows:

 // Compute good features to track
 std::vector<cv::Point2f> corners;

Chapter 8

201

 cv::goodFeaturesToTrack(image,corners,
 500, // maximum number of corners to be returned
 0.01, // quality level
 10); // minimum allowed distance between points

In addition to the quality-level threshold value, and the minimum tolerated distance between
interest points, the function also uses a maximum number of points to be returned (this is
possible since points are accepted in order of strength). The preceding function call produces
the following result:

This approach increases the complexity of the detection since it requires the interest points
to be sorted by their Harris score, but it also clearly improves the distribution of the points
across the image. Note that this function also includes an optional flag to request Harris
corners to be detected using the classical corner score definition (using covariance matrix
determinant and trace).

Detecting and Matching Interest Points

202

Feature detector common interface
OpenCV 2 has introduced a new common interface for its different interest point detectors. This
interface allows easy testing of different interest point detectors within the same application.

The interface defines a Keypoint class that encapsulates the properties of each detected
feature point. For the Harris corners, only the position of the keypoints is relevant. The
recipe Detecting scale-invariant SURF points will discuss the other properties that could be
associated to a keypoint.

The cv::FeatureDetector abstract class basically imposes the existence of a detect
operation with the following signatures:

 void detect(const Mat& image, vector<KeyPoint>& keypoints,
 const Mat& mask=Mat()) const;

 void detect(const vector<Mat>& images,
 vector<vector<KeyPoint> >& keypoints,
 const vector<Mat>& masks=
 vector<Mat>()) const;

The second method allows interest points to be detected in a vector of images. The class also
includes other methods to read and write the detected points in a file.

The cv::goodFeaturesToTrack function has a wrapper class called
cv::GoodFeatureToTrackDetector , which inherits from the cv::FeatureDetector
class. It can be used in a way similar to what we did with our Harris Corners class, that is:

 // vector of keypoints
 std::vector<cv::KeyPoint> keypoints;
 // Construction of the Good Feature to Track detector
 cv::GoodFeaturesToTrackDetector gftt(
 500, // maximum number of corners to be returned
 0.01, // quality level
 10); // minimum allowed distance between points
 // point detection using FeatureDetector method
 gftt.detect(image,keypoints);

The results are the same as the one obtained before, since the same function is ultimately
called by the wrapper.

See also
The classical article describing the Harris operator: C. Harris and M.J. Stephens, A combined
corner and edge detector, by Alvey Vision Conference, pp. 147–152, 1988.

The article by J. Shi and C. Tomasi, Good features to track, Int. Conference on Computer Vision
and Pattern Recognition, pp. 593-600, 1994 which introduced these features.

Chapter 8

203

The article by K. Mikolajczyk and C. Schmid, Scale and Affine invariant interest point
detectors, International Journal of Computer Vision, vol 60, no 1, pp. 63-86, 2004, which
proposes a multi-scale and affine-invariant Harris operator.

Detecting FAST features
The Harris operator proposed a formal mathematical definition for corners (or more generally,
interest points) based on the rate of intensity changes in two perpendicular directions.
Although this constitutes a sound definition, it requires the computation of the image
derivatives which is a costly operation, especially considering the fact that interest point
detection is often just the first step in a more complex algorithm.

In this recipe, we present another feature point operator. This one has been specifically
designed to allow quick detection of interest points in an image. The decision to accept or not
to accept a keypoint being based on only a few pixel comparisons.

How to do it...
Using the OpenCV 2 common interface for feature point detection makes the deployment of
any feature point detectors easy. The one presented in this recipe is the FAST detector. As the
name suggests, it has been designed to be quick to compute:

 // vector of keypoints
 std::vector<cv::KeyPoint> keypoints;
 // Construction of the Fast feature detector object
 cv::FastFeatureDetector fast(
 40); // threshold for detection
 // feature point detection
 fast.detect(image,keypoints);

Note that OpenCV also proposes a generic function to draw keypoints on an image:

 cv::drawKeypoints(image, // original image
 keypoints, // vector of keypoints
 image, // the output image
 cv::Scalar(255,255,255), // keypoint color
 cv::DrawMatchesFlags::DRAW_OVER_OUTIMG); //drawing flag

Detecting and Matching Interest Points

204

By specifying the chosen drawing flag, the keypoints are drawn over the output image, thus
producing the following result:

An interesting option is to specify a negative value for the keypoint color. In that case, a
different random color will be selected for each drawn circle.

How it works...
As in the case of the Harris point, the FAST (Features from Accelerated Segment Test) feature
algorithm derives from the definition of what constitutes a "corner". This time, this definition
is based on the image intensity around a putative feature point. The decision to accept a
keypoint is done by examining a circle of pixels centered at a candidate point. If an arc of
contiguous points of length greater than 3/4 of the circle perimeter is found in which all pixels
significantly differ from the intensity of the center point, then a keypoint is declared.

Chapter 8

205

This is a simple test that can quickly be computed. Moreover, the algorithm uses an additional
trick to further speed-up the process. Indeed, if we first test four points separated by 90o
on the circle (for example, top, bottom, right, and left points) it can be easily shown that to
satisfy the condition expressed above, at least three of these points must all be brighter
or darker than the central pixel. If it is not the case, the point can immediately be rejected
without inspecting additional points on the circumference. This is a very effective test since, in
practice, most of the image points will be rejected by this simple 4-comparison test.

In principle, the radius of the circle of examined pixels should be a parameter of the method.
However, it has been found that, in practice, a radius of 3 gives both good results and high
efficiency. There are then 16 pixels to consider on the circumference of the circle as seen
below:

16 1 2
15 3

14 4
13 0 5
12 6

11 7
10 9 8

The four points used for the pretest are pixels 1, 5, 9, and 13.

As for Harris features, it is often better to perform non-maxima suppression on the corners
found. Therefore, a corner strength measure needs to be defined. Several alternatives could
have been considered, and the one that has been retained is the following. The strength of a
corner is given by the sum of absolute difference between the central pixel and the pixels on
the identified contiguous arc.

This algorithm results in very fast interest point detection and should then be used when
speed is a concern. For example, this is often the case in visual tracking applications where
several points must be tracked in a video sequence with high frame rates.

See also
The article by E. Rosten and T. Drummond, Machine learning for high-speed corner detection,
in In European Conference on Computer Vision, pp. 430-443, 2006 that describes the FAST
feature algorithm in detail.

Detecting and Matching Interest Points

206

Detecting the scale-invariant SURF features
When trying to match features across different images, we are often faced with the problem
of scale changes. That is, the different images to be analyzed can be taken at a different
distance from the objects of interest, and consequently, these objects will be pictured
at different sizes. If we try to match the same feature from two images using a fixed size
neighborhood then, because of the scale change, their intensity patterns will not match.

To solve this problem, the concept of scale-invariant features has been introduced in
computer vision. The main idea here is to have a scale factor associated with each of the
detected feature points. In recent years, several scale-invariant features have been proposed
and this recipe presents one of them, the SURF features. SURF stands for Speeded Up Robust
Features, and as we will see, they are not only scale-invariant features, but they also offer the
advantage of being computed very efficiently.

How to do it...
The OpenCV implementation of SURF features also use the cv::FeatureDetector
interface. Therefore, the detection of these features is similar to what we demonstrated in the
previous recipes of this chapter:

 // vector of keypoints
 std::vector<cv::KeyPoint> keypoints;
 // Construct the SURF feature detector object
 cv::SurfFeatureDetector surf(
 2500.); // threshold
 // Detect the SURF features
 surf.detect(image,keypoints);

To draw these features, we again use the cv::drawKeypoints OpenCV function, but this
time with another mask because we also want to show the scale factor associated with each
feature:

 // Draw the keypoints with scale and orientation information
 cv::drawKeypoints(image, // original image
 keypoints, // vector of keypoints
 featureImage, // the resulting image
 cv::Scalar(255,255,255), // color of the points
 cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS); //flag

Chapter 8

207

The resulting image with the detected feature that is produced by the drawing function is:

As can be seen in the preceding screenshot, the size of the keypoint circles resulting from
the use of the DRAW_RICH_KEYPOINTS flag is proportional to the computed scale of each
feature. The SURF algorithm also associates an orientation with each feature to make them
rotation-invariant. This orientation is illustrated by a radial line inside each drawn circle.

Detecting and Matching Interest Points

208

If we take another picture of the same object but at a different scale, the feature detection
results in:

By carefully observing the detected keypoints, it can be seen that the change in size of
corresponding circles is proportional to the scale change. As an example, consider the bottom
part of the upper-right window. In both images, a SURF feature has been detected at that
location and the two corresponding circles (of different sizes) contain the same visual elements.
Of course, this is not the case for all features, but as we will discover in the next chapter, the
repeatability rate is sufficiently high to allow good matching between the two images.

Chapter 8

209

How it works...
In Chapter 6, we learned that the image derivatives of an image can be estimated using
Gaussian filters. Those filters make use of a σ parameter defining the aperture (size) of
the kernel. As we saw, this σ corresponds to the variance of the Gaussian function used to
construct the filter, and it then implicitly defines a scale at which the derivative is evaluated.
Indeed, a filter having a larger σ value smoothed out the finer details of the image. This is why
we can say that it operates at a coarser scale.

Now, if we compute, for instance, the Laplacian of a given image point using Gaussian filters
at different scales, then different values are obtained. Looking at the evolution of the filter
response for different scale factors, we obtain a curve which eventually reaches a maximum
value at some σ value. If we extract this maximum value for two images of the same object
taken at two different scales, the ratio of these two σ maxima will correspond to the ratio of
the scales at which the images were taken. This important observation is at the core of the
scale-invariant feature extraction process. That is, scale-invariant features should be detected
as local maxima in both the spatial space (in the image) and the scale space (as obtained
from the derivative filters applied at different scales).

SURF implements this idea by proceeding as follows. First, to detect the features, the Hessian
matrix is computed at each pixel. This matrix measures the local curvature of a function and
is defined as:

The determinant of this matrix gives the strength of this curvature. The idea is therefore
to define corners as image points with high local curvature (that is, high variation in more
than one direction). Since it is composed of second-order derivatives, this matrix can be
computed using Laplacian Gaussian kernels of different scale σ. This Hessian then becomes
a function of three variables: H(x,y,σ). A scale-invariant feature is therefore declared when
the determinant of this Hessian reaches a local maximum in both spatial and scale space
(that is, 3x3x3 non-maxima suppression needs to be performed). However, this determinant
must have a minimum value as specified by the first parameter in the constructor of the
cv::SurfFeatureDetector class.

Detecting and Matching Interest Points

210

The calculation of all of these derivatives at different scales is computationally costly. The
objective of the SURF algorithm is to make this process as efficient as possible. This is
achieved by using approximated Gaussian kernels involving only few integer additions. These
have the following structure:

The kernel on the left is used to estimate the mixed second derivatives, while the right one
estimates the second derivative in the vertical direction. A rotated version of this second
kernel estimates the second derivative in the horizontal direction. The smallest kernels have a
size of 9x9 pixels corresponding to σ≈1.2. Kernels of increasing size are successively applied.
The exact amount of filter that is applied can be specified by additional parameters of the
SURF class. By default, 12 different sizes of kernels are used (going up to size 99x99). Note
that the fact that integral images are used guarantees that the sum inside each lob can be
computed by using only 3 additions independently of the size of the filter.

Once the local maxima is identified, the precise position of each detected interest point is
obtained through interpolation in both scale and image space. The result is then a set of
feature points localized at sub-pixel accuracy and to which is associated a scale value.

There's more...
The SURF algorithm has been developed as an efficient variant of another well-known scale-
invariant feature detector called SIFT (for Scale-Invariant Feature Transform). SIFT also detects
features as local maxima in image and scale space, but uses the Laplacian filter response
instead of the Hessian determinant. This Laplacian at different scales is computed using
difference of Gaussian filters. OpenCV has a wrapper class that detects these features and it
is called in a way similar to the SURF features:

 // vector of keypoints
 std::vector<cv::KeyPoint> keypoints;
 // Construct the SURF feature detector object
 cv::SiftFeatureDetector sift(
 0.03, // feature threshold
 10.); // threshold to reduce
 // sensitivity to lines
 // Detect the SURF features
 sift.detect(image,keypoints);

Chapter 8

211

The results are also very similar:

However, since the computation of the feature point is based on floating-point kernels, it is
generally considered to be more accurate in terms of feature localization in space and scale.
Although, for the same reason, it is also more computationally expensive.

See also
The article SURF: Speeded Up Robust Features by H. Bay, A. Ess, T. Tuytelaars and L. Van
Gool in Computer Vision and Image Understanding, vol. 110, No. 3, pp. 346--359, 2008 that
describes the SURF features.

The pioneer work by D. Lowe, Distinctive Image Features from Scale Invariant Features in
International Journal of Computer Vision, Vol. 60, No. 2, 2004, pp. 91-110, describing the
SIFT algorithm.

Detecting and Matching Interest Points

212

Describing SURF features
The SURF algorithm, discussed in the preceding recipe, defines a location and a scale for
each of the detected features. This scale factor can be used to define the size of a window
around the feature point such that the defined neighborhood would include the same visual
information no matter what scale the object to which the feature belongs has been pictured.
In addition, the visual information included in this neighborhood can be used to characterize
the feature point to make it distinguishable from the others.

This recipe will show you how to describe a feature point's neighborhood using compact
descriptors. In feature matching, feature descriptors are usually N-dimensional vectors that
describe a feature point, ideally in a way that is invariant to change in lighting and to small
perspective deformations. In addition, good descriptors can be compared using a simple
distance metric (for example, Euclidean distance). Therefore, they constitute a powerful tool to
use in feature matching algorithms.

How to do it...
The following code is a pattern similar to the one used for feature detection. OpenCV 2
proposes a general class which defines a common interface for the extraction of the various
feature point descriptors that are available. To follow up on the preceding recipe, here we use
the one proposed in the SURF algorithm. Based on the std::vector of cv::Keypoint
instances obtained from feature detection, the descriptors are obtained as follows:

 // Construction of the SURF descriptor extractor
 cv::SurfDescriptorExtractor surfDesc;
 // Extraction of the SURF descriptors
 cv::Mat descriptors1;
 surfDesc.compute(image1,keypoints1,descriptors1);

The result is a matrix (that is, a cv::Mat instance) which will contain as many rows as
the number of elements in the keypoint vector. Each of these rows is an N-dimensional
descriptor vector. In the case of the SURF descriptor, by default, it has a size of 64. This vector
characterizes the intensity pattern surrounding a feature point. The more similar the two
feature points, the closer their descriptor vectors should be.

These descriptors are particularly useful in image matching. Suppose, for example, that two
images of the same scene are to be matched. This can be accomplished by first detecting
features on each image, and then extracting the descriptors of these features. Each feature
descriptor vector in the first image is then compared to all feature descriptors in the second
image. The pair that obtains the best score (that is, the lowest distance between the two
vectors) is then kept as the best match for that feature. This process is repeated for all
features in the first image. This is the most basic scheme that has been implemented in
OpenCV as the cv::BruteForceMatcher. It is used as follows:

Chapter 8

213

 // Construction of the matcher
 cv::BruteForceMatcher<cv::L2<float>> matcher;
 // Match the two image descriptors
 std::vector<cv::DMatch> matches;
 matcher.match(descriptors1,descriptors2, matches);

This class is a subclass of the cv::DescriptorMatcher class defining the common
interface for different matching strategies. The result is a vector of cv::DMatch instances
which is the structure used to represent a match pair. Essentially, the cv::DMatch data
structure contains a first index referring to an element in the first vector of descriptors, and
a second index referring to the matching feature in the second vector of descriptors. It also
contains a real value representing the distance between the two matched descriptors. This
distance value is used in the definition of operator< comparing two cv::DMatch instances.

In order to visualize the result of the matching operation, OpenCV offers a drawing function
that produces an image made of the concatenation of the two input images and on which
matching points are linked by a line. In the preceding recipe, we obtained 340 SURF points
for the first image. The brute-force approach will then produce the same number of matches.
Drawing all of these lines on an image would make the results unreadable. Therefore, we will
only display the 25 matches with the lowest distance. This is easily accomplished by using the
std::nth_element that positions the nth element in sorted order at the nth position, with
all elements smaller placed before this element. Once this is done, the vector is simply purged
of its remaining elements:

 std::nth_element(matches.begin(), // initial position
 matches.begin()+24, // position of the sorted element
 matches.end()); // end position
 // remove all elements after the 25th
 matches.erase(matches.begin()+25, matches.end());

Recall that the preceding code works because the operator< has been defined in the
cv::DMatch class. These 25 matches can then be visualized through the following call:

 cv::Mat imageMatches;
 cv::drawMatches(
 image1,keypoints1, // 1st image and its keypoints
 image2,keypoints2, // 2nd image and its keypoints
 matches, // the matches
 imageMatches, // the image produced
 cv::Scalar(255,255,255)); // color of the lines

Detecting and Matching Interest Points

214

That produces the following image:

As can be seen, most of these matches correctly link a point on the left with its corresponding
image point on the right. One can notice some errors due to the fact that the observed
building has a symmetrical façade which makes some of the local matches ambiguous (the
topmost match is one example of wrongly matched features).

How it works...
Good feature descriptors must be invariant to small changes in illumination, in viewpoint, and
to the presence of image noise. Therefore, they are often based on local intensity differences.
This is the case of the SURF descriptors which apply the following simple kernels inside a
larger neighborhood around a keypoint:

Chapter 8

215

The first one simply measures the local intensity difference in the horizontal direction
(designated as dx), and the second measures this difference in the vertical direction (designated
as dy). The size of the neighborhood used to extract the descriptor vector is defined as 20 times
the scale factor of the feature (that is, 20σ). This square region is then split into 4x4 smaller
square sub-regions. For each sub-region, the kernel responses dx and dy are computed at 5x5
regularly spaced locations (the kernel size being 2σ). All of these responses are summed as
follows in order to extract four descriptor values for each subregion:

Since there are 4x4=16 sub-regions, we have a total of 64 descriptor values. Note that in
order to give more importance to the neighboring pixel values closer to the keypoint, the
kernel responses are weighted by a Gaussian centered at the keypoint location (with a σ=3.3).

The dx and dy responses are also used to estimate the orientation of the feature. These
values are computed (with a kernel size of 4σ) within a circular neighborhood of radius 6σ
at locations regularly spaced by intervals of σ. For a given orientation, the responses inside
a certain angular interval (π/3) are summed, and the orientation giving the longest vector is
defined as the dominant orientation.

With the SURF features and descriptors, scale-invariant matching can be achieved. Here
is an example showing the 25 best matches in a match pair containing two images at
different scales:

Detecting and Matching Interest Points

216

There's more...
The SIFT algorithm also defines its own descriptor. It is based on the gradient magnitude and
orientation computed at the scale of the considered keypoint. As for the SURF descriptors,
the scaled neighborhood of the keypoint is divided into 4x4 sub-regions. For each of these
regions, an 8-bin histogram of gradient orientations (weighted by their magnitude and by a
global Gaussian window centered at the keypoint) is built. Therefore, the descriptor vector is
made of the entries of these histograms. There are 4x4 regions and 8 bins per histogram,
which leads to a descriptor of length 128.

As for feature detection, the difference between SURF and SIFT descriptors is mainly speed
and accuracy. Since SURF descriptors are mostly based on intensity differences, they are
faster to compute. However, SIFT descriptors are generally considered to be more accurate in
finding the right matching feature.

See also
The previous recipe for more on the SURF and SIFT features.

9
Estimating Projective

Relations in Images

In this chapter, we will cover:

ff Calibrating a camera

ff Computing the fundamental matrix of an image pair

ff Matching images using random sample consensus

ff Computing a homography between two images

Introduction
Images are generally produced using a digital camera that captures a scene by projecting
light onto an image sensor going through its lens. The fact that an image is formed through
the projection of a 3D scene onto a 2D plane imposes the existence of important relations
between a scene and its image, and between different images of the same scene. Projective
geometry is the tool that is used to describe and characterize, in mathematical terms,
the process of image formation. In this chapter, you will learn some of the fundamental
projective relations that exist in multi-view imagery and how these can be used in computer
vision programming. We will also pursue the discussion we initiated in the final recipe of the
previous chapter about two-view feature matching. You will learn new strategies to improve
the matching results. But before we start the recipes, let's explore the basic concepts related
to scene projection and image formation.

Estimating Projective Relations in Images

218

Image formation
Fundamentally, the process used to produce images has not changed since the beginning
of photography. The light coming from an observed scene is captured by a camera through a
frontal aperture and the captured light rays hit an image plane (or image sensor) located on
the back of the camera. Additionally, a lens is used to concentrate the rays coming from the
different scene elements. This process is illustrated by the following figure:

Here, do is the distance from the lens to the observed object, di is the distance from the lens
to the image plane, and f is the focal length of the lens. These quantities are related by the
so-called thin lens equation:

In computer vision, this camera model can be simplified in a number of ways. First, we can
neglect the effect of the lens by considering a camera with an infinitesimal aperture since, in
theory, this does not change the image. Only the central ray is therefore considered. Second,
since most of the time we have do>>di, we can assume that the image plane is located at
the focal distance. Finally, we can notice from the geometry of the system, that the image
on the plane is inverted. We can obtain an identical but upright image by simply positioning
the image plane in front of the lens. Obviously, this is not physically feasible, but from a
mathematical point of view, this is completely equivalent. This simplified model is often
referred to as the pin-hole camera model and it is represented as follows:

Chapter 9

219

From this model, and using the law of similar triangles, we can easily derive the basic
projective equation:

The size (hi) of the image of an object (of height ho) is therefore inversely proportional to its
distance (do) from the camera which is naturally true. This relation allows the position of the
image of a 3D scene point to be predicted onto the image plane of a camera.

Calibrating a camera
From the introduction of this chapter, we learned that the essential parameters of a camera
under the pin-hole model are its focal length and the size of the image plane (which defines
the field of view of the camera). Also, since we are dealing with digital images, the number
of pixels on the image plane is another important characteristic of a camera. Finally, in order
to be able to compute the position of an image's scene point in pixel coordinates, we need
one additional piece of information. Considering the line coming from the focal point that is
orthogonal to the image plane, we need to know at which pixel position this line pierces the
image plane. This point is called the principal point. It could be logical to assume that this
principal point is at the center of the image plane, but in practice, this one might be off by few
pixels depending at which precision the camera has been manufactured.

Camera calibration is the process by which the different camera parameters are obtained.
One can obviously use the specifications provided by the camera manufacturer, but for
some tasks, such as 3D reconstruction, these specifications are not accurate enough.
Camera calibration will proceed by showing known patterns to the camera and analyzing the
obtained images. An optimization process will then determine the optimal parameter values
that explain the observations. This is a complex process but made easy by the availability of
OpenCV calibration functions.

Estimating Projective Relations in Images

220

How to do it...
To calibrate a camera, the idea is show to this camera a set of scene points for which their
3D position is known. You must then determine where on the image these points project.
Obviously, for accurate results, we need to observe several of these points. One way to
achieve this would be to take one picture of a scene with many known 3D points. A more
convenient way would be to take several images from different viewpoints of a set of some 3D
points. This approach is simpler but requires computing the position of each camera view, in
addition to the computation of the internal camera parameters which fortunately is feasible.

OpenCV proposes to use a chessboard pattern to generate the set of 3D scene points
required for calibration. This pattern creates points at the corners of each square, and since
this pattern is flat, we can freely assume that the board is located at Z=0 with the X and Y
axes well aligned with the grid. In this case, the calibration process simply consists of showing
the chessboard pattern to the camera from different viewpoints. Here is one example of a
calibration pattern image:

The nice thing is that OpenCV has a function that automatically detects the corners of this
chessboard pattern. You simply provide an image and the size of the chessboard used
(number of vertical and horizontal inner corner points). The function will return the position of
these chessboard corners on the image. If the function fails to find the pattern, then it simply
returns false:

 // output vectors of image points
 std::vector<cv::Point2f> imageCorners;
 // number of corners on the chessboard
 cv::Size boardSize(6,4);
 // Get the chessboard corners
 bool found = cv::findChessboardCorners(image,
 boardSize, imageCorners);

Note that this function accepts additional parameters if one needs to tune the algorithm,
which are not discussed here. There is also a function that draws the detected corners on the
chessboard image with lines connecting them in sequence:

Chapter 9

221

 //Draw the corners
 cv::drawChessboardCorners(image,
 boardSize, imageCorners,
 found); // corners have been found

The image obtained is seen here:

The lines connecting the points shows the order in which the points are listed in the vector
of detected points. Now to calibrate the camera, we need to input a set of such image points
together with the coordinate of the corresponding 3D points. Let's encapsulate the calibration
process in a CameraCalibrator class:

class CameraCalibrator {

 // input points:
 // the points in world coordinates
 std::vector<std::vector<cv::Point3f>> objectPoints;
 // the point positions in pixels
 std::vector<std::vector<cv::Point2f>> imagePoints;
 // output Matrices
 cv::Mat cameraMatrix;
 cv::Mat distCoeffs;
 // flag to specify how calibration is done
 int flag;
 // used in image undistortion
 cv::Mat map1,map2;
 bool mustInitUndistort;

 public:
 CameraCalibrator() : flag(0), mustInitUndistort(true) {};

Estimating Projective Relations in Images

222

As mentioned previously, the 3D coordinates of the points on the chessboard pattern can be
easily determined if we conveniently place the reference frame on the board. The method that
accomplishes this takes a vector of the chessboard image filename as input:

// Open chessboard images and extract corner points
int CameraCalibrator::addChessboardPoints(
 const std::vector<std::string>& filelist,
 cv::Size & boardSize) {

 // the points on the chessboard
 std::vector<cv::Point2f> imageCorners;
 std::vector<cv::Point3f> objectCorners;

 // 3D Scene Points:
 // Initialize the chessboard corners
 // in the chessboard reference frame
 // The corners are at 3D location (X,Y,Z)= (i,j,0)
 for (int i=0; i<boardSize.height; i++) {
 for (int j=0; j<boardSize.width; j++) {

 objectCorners.push_back(cv::Point3f(i, j, 0.0f));
 }
 }

 // 2D Image points:
 cv::Mat image; // to contain chessboard image
 int successes = 0;
 // for all viewpoints
 for (int i=0; i<filelist.size(); i++) {

 // Open the image
 image = cv::imread(filelist[i],0);

 // Get the chessboard corners
 bool found = cv::findChessboardCorners(
 image, boardSize, imageCorners);

 // Get subpixel accuracy on the corners
 cv::cornerSubPix(image, imageCorners,
 cv::Size(5,5),
 cv::Size(-1,-1),
 cv::TermCriteria(cv::TermCriteria::MAX_ITER +
 cv::TermCriteria::EPS,
 30, // max number of iterations
 0.1)); // min accuracy

 //If we have a good board, add it to our data
 if (imageCorners.size() == boardSize.area()) {

 // Add image and scene points from one view
 addPoints(imageCorners, objectCorners);

Chapter 9

223

 successes++;
 }

 }

 return successes;
}

The first loop inputs the 3D coordinates of the chessboard, which are specified in an
arbitrary square size unit here. The corresponding image points are the ones provided by the
cv::findChessboardCorners function. This is done for all available viewpoints. Moreover,
in order to obtain a more accurate image point location, the function cv::cornerSubPix
can be used and as the name suggests, the image points will then be localized at sub-pixel
accuracy. The termination criterion that is specified by the cv::TermCriteria object defines
a maximum number of iterations and a minimum accuracy in sub-pixel coordinates. The first of
these two conditions that is reached will stop the corner refinement process.

When a set of chessboard corners has been successfully detected, these points are added to
our vector of image and scene points:

// Add scene points and corresponding image points
void CameraCalibrator::addPoints(const std::vector<cv::Point2f>&
imageCorners, const std::vector<cv::Point3f>& objectCorners) {

 // 2D image points from one view
 imagePoints.push_back(imageCorners);
 // corresponding 3D scene points
 objectPoints.push_back(objectCorners);
}

The vectors contains std::vector instances. Indeed, each vector element being a vector of
points from one view.

Once a sufficient number of chessboard images have been processed (and consequently
a large number of 3D scene point/2D image point correspondences are available), we can
initiate the computation of the calibration parameters:

// Calibrate the camera
// returns the re-projection error
double CameraCalibrator::calibrate(cv::Size &imageSize)
{
 // undistorter must be reinitialized
 mustInitUndistort= true;

 //Output rotations and translations
 std::vector<cv::Mat> rvecs, tvecs;

 // start calibration
 return
 calibrateCamera(objectPoints, // the 3D points

Estimating Projective Relations in Images

224

 imagePoints, // the image points
 imageSize, // image size
 cameraMatrix, // output camera matrix
 distCoeffs, // output distortion matrix
 rvecs, tvecs, // Rs, Ts
 flag); // set options
}

In practice, 10 to 20 chessboard images are sufficient, but these must be taken from different
viewpoints at different depths. The two important outputs of this function are the camera
matrix and the distortion parameters. The camera matrix will be described in the next section.
For now, let's consider the distortion parameters. So far, we have mentioned that with the
pin-hole camera model, we can neglect the effect of the lens. But this is only possible if
the lens used to capture an image does not introduce too important optical distortions.
Unfortunately, this is often the case with lenses of lower quality or with lenses having a very
short focal length. You may have already noticed that in the image we used for our example,
the chessboard pattern shown is clearly distorted. The edges of the rectangular board being
curved in the image. It can also be noticed that this distortion becomes more important as
we move far from the center of the image. This is a typical distortion observed with fish-eye
lens and it is called radial distortion. The lenses that are used in common digital cameras
do not exhibit such a high degree of distortion, but in the case of the lens used here, these
distortions cannot certainly be ignored.

It is possible to compensate for these deformations by introducing an appropriate model. The
idea is to represent the distortions induced by a lens by a set of mathematical equations. Once
established, these equations can then be reverted in order to undo the distortions visible on the
image. Fortunately, the exact parameters of the transformation that will correct the distortions
can be obtained together with the other camera parameter during the calibration phase. Once
this is done, any image from the newly calibrated camera can be undistorted:

// remove distortion in an image (after calibration)
cv::Mat CameraCalibrator::remap(const cv::Mat &image) {

 cv::Mat undistorted;

 if (mustInitUndistort) { // called once per calibration

 cv::initUndistortRectifyMap(
 cameraMatrix, // computed camera matrix
 distCoeffs, // computed distortion matrix
 cv::Mat(), // optional rectification (none)
 cv::Mat(), // camera matrix to generate undistorted
 image.size(), // size of undistorted
 CV_32FC1, // type of output map
 map1, map2); // the x and y mapping functions

 mustInitUndistort= false;
 }

Chapter 9

225

 // Apply mapping functions
 cv::remap(image, undistorted, map1, map2,
 cv::INTER_LINEAR); // interpolation type

 return undistorted;
}

Which results in the following image:

As you can see, once the image is undistorted, we obtain a regular perspective image.

How it works...
In order to explain the result of the calibration, we need to go back to the figure in the
introduction which describes the pin-hole camera model. More specifically, we want to
demonstrate the relation between a point in 3D at position (X,Y,Z) and its image (x,y) on a
camera specified in pixel coordinates. Let's redraw this figure by adding a reference frame that
we position at the center of the projection as seen here:

Estimating Projective Relations in Images

226

Note that the Y-axis is pointing downward to get a coordinate system compatible with the
usual convention that places the image origin at the upper-left corner. We learned previously
that the point (X,Y,Z) will be projected onto the image plane at (fX/Z,fY/Z). Now, if we want to
translate this coordinate into pixels, we need to divide the 2D image position by, respectively,
the pixel width (px) and height (py). We notice that by dividing the focal length f given in world
units (most often meters or millimeters) by px, then we obtain the focal length expressed in
(horizontal) pixels. Let's then define this term as fx. Similarly, fy =f/py is defined as the focal
length expressed in vertical pixel unit. The complete projective equation is therefore:

Recall that (u0,v0) is the principal point that is added to the result in order to move the
origin to the upper-left corner of the image. These equations can be rewritten in matrix form
through the introduction of homogeneous coordinates in which 2D points are represented by
3-vectors, and 3D points represented by 4-vectors (the extra coordinate is simply an arbitrary
scale factor that need to be removed when a 2D coordinate needs to be extracted from a
homogeneous 3-vector). Here is the projective equation rewritten:

The second matrix is a simple projection matrix. The first matrix includes all of the camera
parameters which are called the intrinsic parameters of the camera. This 3x3 matrix is one
of the output matrices returned by the cv::calibrateCamera function. There is also a
function called cv::calibrationMatrixValues that returns the value of the intrinsic
parameters given a calibration matrix.

More generally, when the reference frame is not at the projection center of the camera, we
will need to add a rotation (a 3x3 matrix) and a translation vector (3x1 matrix). These two
matrices describe the rigid transformation that must be applied to the 3D points in order
to bring them back to the camera reference frame. Therefore, we can rewrite the projection
equation in its most general form:

Chapter 9

227

Remember that in our calibration example, the reference frame was placed on the
chessboard. Therefore, there is a rigid transformation (rotation and translation)
that must be computed for each view. These are in the output parameter list of the
cv::calibrateCamera function. The rotation and translation components are often called
the extrinsic parameters of the calibration and they are different for each view. The intrinsic
parameters remain constant for a given camera/lens system. The intrinsic parameters of our
test camera obtained from a calibration based on 20 chessboard images are fx=167, fy=178,
u0=156, v0=119. These results are obtained by cv::calibrateCamera through an
optimization process aimed at finding the intrinsic and extrinsic parameters that will minimize
the difference between the predicted image point position, as computed from the projection
of the 3D scene points, and the actual image point position, as observed on the image. The
sum of this difference for all points specified during the calibration is called the re-projection
error.

To correct the distortion, OpenCV uses a polynomial function that is applied to the image point
in order to move them at their undistorted position. By default, 5 coefficients are used; a model
made of 8 coefficients is also available. Once these coefficients are obtained, it is possible to
compute 2 mapping functions (one for the x coordinate and one for the y) that will give the new
undistorted position of an image point on a distorted image. This is computed by the function
cv::initUndistortRectifyMap and the function cv::remap remaps all of the points of
an input image to a new image. Note that because of the non-linear transformation, some pixels
of the input image now fall outside the boundary of the output image. You can expand the size
of the output image to compensate for this loss of pixels, but you will now obtain output pixels
that have no values in the input image (they will then be displayed as black pixels).

There's more...
When a good estimate of the camera intrinsic parameters are known, it could be
advantageous to input them to the cv::calibrateCamera function. They will then be
used as initial values in the optimization process. To do so, you just need to add the flag
CV_CALIB_USE_INTRINSIC_GUESS and input these values in the calibration matrix
parameter. It is also possible to impose a fixed value for the principal point (CV_CALIB_
FIX_PRINCIPAL_POINT), which can often be assumed to be the central pixel. You can also
impose a fixed ratio for the focal lengths fx and fy (CV_CALIB_FIX_RATIO) in which case you
assume pixels of square shape.

Estimating Projective Relations in Images

228

Computing the fundamental matrix of
an image pair

The previous recipe showed you how to recover the projective equation of a single camera. In
this recipe, we will explore the projective relation that exists between two images viewing the
same scene. These two images could have been obtained by moving a camera at two different
locations taking pictures from two viewpoints, or by using two cameras, each of them taking a
different picture of the scene. When these two cameras are separated by a rigid baseline, we
use the term stereovision.

Getting ready
Let's now consider two cameras observing a given scene point as seen here:

We learned that we can find the image x of a 3D point X by tracing a line joining this 3D point
with the camera's center. Conversely, the image point that we observe at position x can be
located anywhere on this line in 3D space. This implies that if we want to find the corresponding
point of a given image point in another image, we need to search along the projection of this line
onto the second image plane. This imaginary line is called the epipolar line of point x. It defines
a fundamental constraint that must satisfy two corresponding points, that is, the match of a
given point must lie on the epipolar line of this point in the other view. The exact orientation of
this epipolar line depends on the respective position of the two cameras. In fact, the position of
the epipolar lines characterizes the geometry of a two-view system.

Another observation that can be made from the geometry of this two-view system is that all
of the epipolar lines pass through the same point. This point corresponds to the projection of
one camera center onto the other camera. This special point is called an epipole.

Mathematically, it can be shown that the relation between an image point and its
corresponding epipolar line can be expressed using a 3x3 matrix such as the following:

Chapter 9

229

In projective geometry, a 2D line is also represented by a 3-vector. It corresponds to the set of
2D points (x',y') satisfying the equation l1'x'+ l2'y'+ l3'=0 (the prime superscript denotes that
this line belongs to the second image). Consequently, the matrix F, called the fundamental
matrix, maps a 2D image point in one view to an epipolar line in the other view.

How to do it...
Estimating the fundamental matrix of an image pair can be done by solving a set of equations
which involve a certain number of known matched points between the two images. The
minimum number of such matches is seven. Using the image pair from the previous chapter,
we can manually selected seven good matches (seen in the following screenshot). These will
be used to compute the fundamental matrix using the cv::findFundementalMat OpenCV
function.

Estimating Projective Relations in Images

230

If we have the image points in each image as cv::keypoint instance, they first need to
be converted into cv::Point2f in order to be used with cv::findFundementalMat. An
OpenCV function can be used to this end:

 // Convert keypoints into Point2f
 std::vector<cv::Point2f> selPoints1, selPoints2;
 cv::KeyPoint::convert(keypoints1,selPoints1,pointIndexes1);
 cv::KeyPoint::convert(keypoints2,selPoints2,pointIndexes2);

The two vectors selPoints1 and selPoints2 contain the corresponding points in the two
images. keypoints1 and keypoints2 are the selected Keypoint instances as detected in
the previous chapter. The call to the cv::findFundementalMat function is then as follows:

 // Compute F matrix from 7 matches
 cv::Mat fundemental= cv::findFundamentalMat(
 cv::Mat(selPoints1), // points in first image
 cv::Mat(selPoints2), // points in second image
 CV_FM_7POINT); // 7-point method

One way to visually verify the validity of the fundamental matrix is to draw the epipolar lines
of some selected points. Another OpenCV function allows the epipolar lines of a given set of
points to be computed. Once these are computed, they can be drawn using the cv::line
function. The following lines of code accomplish these two steps (that is, computing and
drawing epipolar lines in the right image from the points in the left):

 // draw the left points corresponding epipolar
 // lines in right image
 std::vector<cv::Vec3f> lines1;
 cv::computeCorrespondEpilines(
 cv::Mat(selPoints1), // image points
 1, // in image 1 (can also be 2)
 fundemental, // F matrix
 lines1); // vector of epipolar lines

 // for all epipolar lines
 for (vector<cv::Vec3f>::const_iterator it= lines1.begin();
 it!=lines1.end(); ++it) {

 // draw the line between first and last column
 cv::line(image2,
 cv::Point(0,-(*it)[2]/(*it)[1]),
 cv::Point(image2.cols,-((*it)[2]+
 (*it)[0]*image2.cols)/(*it)[1]),
 cv::Scalar(255,255,255));
 }

Chapter 9

231

The result is then seen in the following screenshot:

Remember that the epipole is at the intersection point of all epipolar lines, and it is the
projection of the other camera center. This epipole is visible on the preceding image. Often,
the epipolar lines intersect outside the image boundaries. It is at the location where the first
camera would be visible if the two images were taken at the same instant. Observe the image
pair and take the time to convince yourself that this indeed makes sense.

Estimating Projective Relations in Images

232

How it works...
We explained previously that the fundamental matrix gives, for a point in one image, the
equation of the line on which its corresponding point in the other view should be found. If the
corresponding point of a point p (expressed in homogenous coordinates) is p', and if F is the
fundamental matrix between the two views, then since p' lies on the epipolar line Fp, we have:

This equation expresses the relation between two corresponding points and is known as the
epipolar constraint. Using this equation it becomes possible to estimate the entries of the
matrix using known matches. Since the entries of the F matrix are given up to a scale factor,
there are only eight entries to estimate (the ninth can be arbitrarily set to 1). Each match
contributes one equation. Therefore, with eight known matches, the matrix can be
fully estimated by solving the resulting set of linear equations. This is what is done when
you use the CV_FM_8POINT flag with the cv::findFundamentalMat function. Note that,
in this case, it is possible (and preferable) to input more than eight matches. The obtained
over-determined system of linear equations can then be solved in a mean-square sense.

To estimate the fundamental matrix, an additional constraint can also be exploited.
Mathematically, the F matrix maps a 2D point into a 1D pencil of lines (that is, lines
intersecting at a common point). The fact that all of these epipolar lines pass by this unique
point (the epipole) imposes a constraint on the matrix. This constraint reduces, the number
of matches required to estimate the fundamental matrix to seven. Unfortunately, in this case,
the set of equations becomes non-linear with up to three possible solutions. The seven-match
solution of the F matrix estimation can be invoked in OpenCV by using the CV_FM_7POINT
flag. This is what we did in the example of the preceding section.

Lastly, we should mention that the choice of an appropriate set of matches in the image is
important to obtain an accurate estimation of the fundamental matrix. In general, the matches
should be well distributed across the image and include points at different depth in the scene.
Otherwise, the solution will become unstable or degenerate configurations can result.

See also
The book by R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
Cambridge University Press, 2004 is the most complete reference on projective geometry in
computer vision.

The next recipe which presents an additional flag that can be used with the OpenCV
fundamental matrix estimation.

Chapter 9

233

Matching images using random sample
consensus

When two cameras observe the same scene, they see the same elements but under different
viewpoints. We already studied the feature point matching problem in the previous chapter.
In this recipe, we come back to this problem and we will learn how to exploit the epipolar
constraint between two views to match image features more reliably.

The principle we will follow is simple: when we match feature points between two images, we
only accept those matches that fall onto the corresponding epipolar lines. However, to be able
to check this condition, the fundamental matrix must be known, and we need good matches
to estimate this matrix. This seems to be a chicken-and-egg problem. We propose in this
recipe a solution in which the fundamental matrix and a set of good matches will be jointly
computed.

How to do it...
The objective is to be able to obtain a set of good matches between two views. Therefore,
all found feature point correspondences will be validated using the epipolar constraint
introduced in the previous recipe. We first define a class which will encapsulate the different
elements of the solution that will be proposed:

class RobustMatcher {

 private:

 // pointer to the feature point detector object
 cv::Ptr<cv::FeatureDetector> detector;
 // pointer to the feature descriptor extractor object
 cv::Ptr<cv::DescriptorExtractor> extractor;
 float ratio; // max ratio between 1st and 2nd NN
 bool refineF; // if true will refine the F matrix
 double distance; // min distance to epipolar
 double confidence; // confidence level (probability)

 public:

 RobustMatcher() : ratio(0.65f), refineF(true),
 confidence(0.99), distance(3.0) {

 // SURF is the default feature
 detector= new cv::SurfFeatureDetector();
 extractor= new cv::SurfDescriptorExtractor();
 }

Estimating Projective Relations in Images

234

Note how we used the generic cv::FeatureDetector and cv::DescriptorExtractor
interfaces so that a user can provide any specific implementation. The SURF features and
descriptors are used here by default, but others can be specified using the appropriate setter
methods:

 // Set the feature detector
 void setFeatureDetector(
 cv::Ptr<cv::FeatureDetector>& detect) {

 detector= detect;
 }

 // Set the descriptor extractor
 void setDescriptorExtractor(
 cv::Ptr<cv::DescriptorExtractor>& desc) {

 extractor= desc;
 }

The main method is our match method that returns matches, detected keypoints, and the
estimated fundamental matrix. The method proceeds in five distinct steps (explicitly identified
in the comments of the following code) that we will now explore:

 // Match feature points using symmetry test and RANSAC
 // returns fundemental matrix
 cv::Mat match(cv::Mat& image1,
 cv::Mat& image2, // input images
 // output matches and keypoints
 std::vector<cv::DMatch>& matches,
 std::vector<cv::KeyPoint>& keypoints1,
 std::vector<cv::KeyPoint>& keypoints2) {

 // 1a. Detection of the SURF features
 detector->detect(image1,keypoints1);
 detector->detect(image2,keypoints2);

 // 1b. Extraction of the SURF descriptors
 cv::Mat descriptors1, descriptors2;
 extractor->compute(image1,keypoints1,descriptors1);
 extractor->compute(image2,keypoints2,descriptors2);

 // 2. Match the two image descriptors

 // Construction of the matcher
 cv::BruteForceMatcher<cv::L2<float>> matcher;

 // from image 1 to image 2
 // based on k nearest neighbours (with k=2)
 std::vector<std::vector<cv::DMatch>> matches1;
 matcher.knnMatch(descriptors1,descriptors2,

Chapter 9

235

 matches1, // vector of matches (up to 2 per entry)
 2); // return 2 nearest neighbours

 // from image 2 to image 1
 // based on k nearest neighbours (with k=2)
 std::vector<std::vector<cv::DMatch>> matches2;
 matcher.knnMatch(descriptors2,descriptors1,
 matches2, // vector of matches (up to 2 per entry)
 2); // return 2 nearest neighbours

 // 3. Remove matches for which NN ratio is
 // > than threshold

 // clean image 1 -> image 2 matches
 int removed= ratioTest(matches1);
 // clean image 2 -> image 1 matches
 removed= ratioTest(matches2);

 // 4. Remove non-symmetrical matches
 std::vector<cv::DMatch> symMatches;
 symmetryTest(matches1,matches2,symMatches);

 // 5. Validate matches using RANSAC
 cv::Mat fundemental= ransacTest(symMatches,
 keypoints1, keypoints2, matches);

 // return the found fundemental matrix
 return fundemental;
 }

The first step is simply detecting the feature point and computing their descriptors. Next, we
proceed to feature matching using the cv::BruteForceMatcher class as we did in the
previous chapter. However, this time we find the two best matching points for each feature
(and not only the best one as we did in the previous recipe). This is accomplished by the
cv::BruteForceMatcher::knnMatch method (with k=2). Moreover, we perform this
matching in two directions, that is, for each point in the first image we find the two best
matches in the second image, and then we do the same thing for the feature points of the
second image, finding their two best matches in the first image.

Therefore, for each feature point, we have two candidate matches in the other view. These are
the two best ones based on the distance between their descriptors. If this measured distance
is very low for the best match, and much larger for the second best match, we can safely
accept the first match as a good one since it is unambiguously the best choice. Reciprocally,
if the two best matches are relatively close in distance, then there exists a possibility that we
make an error if we select one or the other. In this case, we should reject both matches. Here,
we perform this test in step 3 by verifying that the ratio of the distance of the best match over
the distance of the second best match is not greater than a given threshold:

Estimating Projective Relations in Images

236

 // Clear matches for which NN ratio is > than threshold
 // return the number of removed points
 // (corresponding entries being cleared,
 // i.e. size will be 0)
 int ratioTest(std::vector<std::vector<cv::DMatch>>
 &matches) {

 int removed=0;

 // for all matches
 for (std::vector<std::vector<cv::DMatch>>::iterator
 matchIterator= matches.begin();
 matchIterator!= matches.end(); ++matchIterator) {

 // if 2 NN has been identified
 if (matchIterator->size() > 1) {

 // check distance ratio
 if ((*matchIterator)[0].distance/
 (*matchIterator)[1].distance > ratio) {

 matchIterator->clear(); // remove match
 removed++;
 }

 } else { // does not have 2 neighbours

 matchIterator->clear(); // remove match
 removed++;
 }
 }

 return removed;
 }

A large number of ambiguous matches will be eliminated by this procedure as it can be seen
from the following example. Here, with a low SURF threshold (=10), we initially detected
1,600 feature points (black circles) out of which only 55 survive the ratio test (white circles):

Chapter 9

237

The white lines linking the matched points show that even if we have a large number of good
matches, a significant number of false matches have survived. Therefore, a second test will
be performed in order to filter our more false matches. Note that the ratio test is also applied
to the second match set.

We now have two relatively good match sets, one from the first image to second image and the
other one from second image to the first one. From these sets, we will now extract the matches
that are in agreement with both sets. This is the symmetrical matching scheme imposing that,
for a match pair to be accepted, both points must be the best matching feature of the other:

 // Insert symmetrical matches in symMatches vector
 void symmetryTest(
 const std::vector<std::vector<cv::DMatch>>& matches1,
 const std::vector<std::vector<cv::DMatch>>& matches2,
 std::vector<cv::DMatch>& symMatches) {

 // for all matches image 1 -> image 2
 for (std::vector<std::vector<cv::DMatch>>::
 const_iterator matchIterator1= matches1.begin();
 matchIterator1!= matches1.end(); ++matchIterator1) {

 // ignore deleted matches
 if (matchIterator1->size() < 2)
 continue;

 // for all matches image 2 -> image 1
 for (std::vector<std::vector<cv::DMatch>>::
 const_iterator matchIterator2= matches2.begin();
 matchIterator2!= matches2.end();
 ++matchIterator2) {

 // ignore deleted matches
 if (matchIterator2->size() < 2)
 continue;

 // Match symmetry test
 if ((*matchIterator1)[0].queryIdx ==
 (*matchIterator2)[0].trainIdx &&
 (*matchIterator2)[0].queryIdx ==
 (*matchIterator1)[0].trainIdx) {

 // add symmetrical match
 symMatches.push_back(
 cv::DMatch((*matchIterator1)[0].queryIdx,
 (*matchIterator1)[0].trainIdx,
 (*matchIterator1)[0].distance));
 break; // next match in image 1 -> image 2
 }
 }
 }
 }

Estimating Projective Relations in Images

238

In our test pair, 31 matches survived this symmetry test. The last test now consists of an
additional filtering test that will this time use the fundamental matrix in order to reject
matches that do not obey the epipolar constraint. This test is based on the RANSAC method
that can compute the fundamental matrix even when outliers are still present in the match set
(this method will be explained in the following section):

 // Identify good matches using RANSAC
 // Return fundemental matrix
 cv::Mat ransacTest(
 const std::vector<cv::DMatch>& matches,
 const std::vector<cv::KeyPoint>& keypoints1,
 const std::vector<cv::KeyPoint>& keypoints2,
 std::vector<cv::DMatch>& outMatches) {

 // Convert keypoints into Point2f
 std::vector<cv::Point2f> points1, points2;
 for (std::vector<cv::DMatch>::
 const_iterator it= matches.begin();
 it!= matches.end(); ++it) {

 // Get the position of left keypoints
 float x= keypoints1[it->queryIdx].pt.x;
 float y= keypoints1[it->queryIdx].pt.y;
 points1.push_back(cv::Point2f(x,y));
 // Get the position of right keypoints
 x= keypoints2[it->trainIdx].pt.x;
 y= keypoints2[it->trainIdx].pt.y;
 points2.push_back(cv::Point2f(x,y));
 }

 // Compute F matrix using RANSAC
 std::vector<uchar> inliers(points1.size(),0);
 cv::Mat fundemental= cv::findFundamentalMat(
 cv::Mat(points1),cv::Mat(points2), // matching points
 inliers, // match status (inlier or outlier)
 CV_FM_RANSAC, // RANSAC method
 distance, // distance to epipolar line
 confidence); // confidence probability

 // extract the surviving (inliers) matches
 std::vector<uchar>::const_iterator
 itIn= inliers.begin();
 std::vector<cv::DMatch>::const_iterator
 itM= matches.begin();
 // for all matches
 for (;itIn!= inliers.end(); ++itIn, ++itM) {

 if (*itIn) { // it is a valid match

Chapter 9

239

 outMatches.push_back(*itM);
 }
 }

 if (refineF) {
 // The F matrix will be recomputed with
 // all accepted matches

 // Convert keypoints into Point2f
 // for final F computation
 points1.clear();
 points2.clear();

 for (std::vector<cv::DMatch>::
 const_iterator it= outMatches.begin();
 it!= outMatches.end(); ++it) {

 // Get the position of left keypoints 
 float x= keypoints1[it->queryIdx].pt.x;
 float y= keypoints1[it->queryIdx].pt.y;
 points1.push_back(cv::Point2f(x,y));
 // Get the position of right keypoints
 x= keypoints2[it->trainIdx].pt.x;
 y= keypoints2[it->trainIdx].pt.y;
 points2.push_back(cv::Point2f(x,y));
 }

 // Compute 8-point F from all accepted matches
 fundemental= cv::findFundamentalMat(
 cv::Mat(points1),cv::Mat(points2), // matches
 CV_FM_8POINT); // 8-point method
 }

 return fundemental;
 }

This code is a bit long because the keypoints need to be converted into cv::Point2f before
the F matrix computation.

The complete matching process using our RobustMatcher class is initiated by the
following calls:

 // Prepare the matcher
 RobustMatcher rmatcher;
 rmatcher.setConfidenceLevel(0.98);
 rmatcher.setMinDistanceToEpipolar(1.0);
 rmatcher.setRatio(0.65f);
 cv::Ptr<cv::FeatureDetector> pfd=
 new cv::SurfFeatureDetector(10);

Estimating Projective Relations in Images

240

 rmatcher.setFeatureDetector(pfd);

 // Match the two images
 std::vector<cv::DMatch> matches;
 std::vector<cv::KeyPoint> keypoints1, keypoints2;
 cv::Mat fundemental= rmatcher.match(image1,image2,
 matches, keypoints1, keypoints2);

It results in 23 matches that are shown in the following screenshot with their corresponding
epipolar lines:

Chapter 9

241

How it works...
In the preceding recipe, we learned that it is possible to estimate the fundamental matrix
associated with an image pair from a number of feature point matches. Obviously, to be
exact, this match set must be made of only good matches. However, in a real context, it is not
possible to guarantee that a match set obtained by comparing the descriptors of detected
feature points will be perfectly exact. This is why a fundamental matrix estimation method
based on the RANSAC (RANdom SAmpling Consensus) strategy has been introduced.

The RANSAC algorithm aims at estimating a given mathematical entity from a data set that
may contain a number of outliers. The idea is to randomly select some data points from the
set and perform the estimation only with these. The number of selected points should be
the minimum number of points required to estimate the mathematical entity. In the case of
the fundamental matrix, eight matched pairs is this minimum number (in fact, it could be
seven matches, but the 8-point linear algorithm is faster to compute). Once the fundamental
matrix is estimated from these random 8 matches, all of the other matches in the match set
are tested against the epipolar constraint that derives from this matrix. All of the matches
that fulfill this constraint (that is, matches for which the corresponding feature is at a short
distance from its epipolar line) are identified. These matches form the support set of the
computed fundamental matrix.

The central idea behind the RANSAC algorithm is that the larger the support set is, the higher
the probability that the computed matrix is the right one. Obviously, if one (or more) of the
randomly selected matches is a wrong match, then the computed fundamental matrix will
also be wrong, and its support set is expected to be small. This process is repeated a number
of times, and at the end, the matrix with the largest support will be retained as the most
probable one.

Therefore, our objective is to pick eight random matches several times so that eventually
we select eight good ones which should give us a large support set. Depending on the
number of wrong matches in the entire data set, the probability of selecting a set of eight
correct matches will differ. We however know that the more selections we make, the higher
the confidence will be that we have, among those selections, at least one good match set.
More precisely, if we assume that the match set is made of n% inliers (good matches), then
the probability that we select eight good matches is 8n. Consequently, the probability that a
selection contains at least one wrong match is (1-n8). If we make k selections, the probability
of having one random set containing only good matches is 1-(1-8n)k. This is the confidence
probability c, and we want this probability to be as high as possible since we need at least
one good set of matches in order to obtain the correct fundamental matrix. Therefore, when
running the RANSAC algorithm, one needs to determine the number of selection k that needs
to be made in order to obtain a given confidence level.

Estimating Projective Relations in Images

242

When using the cv::findFundamentalMat function with Ransacs, two extra parameters are
provided. The first one is the confidence level that determines the number of iterations to
be made. The second one is the maximum distance to the epipolar line for a point to be
considered as an inlier. All matched pairs in which a point is at a distance from its epipolar
line larger than the one specified will be reported as an outlier. Therefore, the function also
returns a std::vector of char value indicating that the corresponding match has been
identified as an outlier (0) or as an inlier (1).

The more good matches you have in your initial match set, the higher the probability that
RANSAC will give you the correct fundamental matrix. This is why we applied several filters
to the match set before calling the cv::findFundamentalMat function. Obviously, you
can decide to skip one or the other of the steps that were proposed in this recipe. It is just a
question of balancing the computational complexity, the final number of matches, and the
required level of confidence that the obtained match set will contain only exact matches.

Computing a homography between
two images

The second recipe of this chapter showed you how to compute the fundamental matrix of an
image pair from a set of matches. Another mathematical entity exists that can be computed
from match pairs: a homography. Like the fundamental matrix, the homography is a 3x3
matrix with special properties and, as we will see in this recipe, it applies to two-view images
in specific situations.

Getting ready
Let's consider again the projective relation between a 3D point and its image on a camera
that we introduced in the first recipe of this chapter. Basically, we learned that this relation
is expressed by a 3x4 matrix. Now, if we consider the special case where two views of a
scene are separated by a pure rotation, then it can be observed that the fourth column of the
extrinsic matrix will be made of all 0s (that is, translation is null). As a result, the projective
relation in this special case becomes a 3x3 matrix. This matrix is called a homography and it
implies that, under special circumstances (here, a pure rotation), the image of a point in one
view is related to the image of the same point in another by a linear relation:

Chapter 9

243

In homogeneous coordinates, this relation holds up to a scale factor represented here by the
scalar value s. Once this matrix is estimated, all points in one view can be transferred to the
second view using this relation. Note that as a side effect of the homography relation for pure
rotation, the fundamental matrix becomes undefined in this case.

How to do it...
Suppose we have two images separated by a pure rotation. These two images can be
matched using our RobustMatcher class, except that we skip the RANSAC validation
step (identified as step 5 in our match method) since this one involves fundamental matrix
estimation. Instead, we will apply a RANSAC step which will involve the estimation of a
homography based on a match set (that obviously contains a good number of outliers).
This is done by using the cv::findHomography function that is very similar to the
cv::findFundementalMat function:

 // Find the homography between image 1 and image 2
 std::vector<uchar> inliers(points1.size(),0);
 cv::Mat homography= cv::findHomography(
 cv::Mat(points1), // corresponding
 cv::Mat(points2), // points
 inliers, // outputted inliers matches
 CV_RANSAC, // RANSAC method
 1.); // max distance to reprojection point

Recall that a homography will only exist if the two images are separated by a pure rotation,
which is the case of the following two images:

Estimating Projective Relations in Images

244

The resulting inliers that comply with the found homography have been drawn on those
images by the following loop:

 // Draw the inlier points
 std::vector<cv::Point2f>::const_iterator itPts=
 points1.begin();
 std::vector<uchar>::const_iterator itIn= inliers.begin();
 while (itPts!=points1.end()) {

 // draw a circle at each inlier location
 if (*itIn)
 cv::circle(image1,*itPts,3,
 cv::Scalar(255,255,255),2);
 ++itPts;
 ++itIn;
 }

 itPts= points2.begin();
 itIn= inliers.begin();
 while (itPts!=points2.end()) {

 // draw a circle at each inlier location
 if (*itIn)
 cv::circle(image2,*itPts,3,
 cv::Scalar(255,255,255),2);
 ++itPts;
 ++itIn;
 }

Chapter 9

245

As explained in the preceding section, once the homography is computed, you can transfer
image points from one image to the other. In fact, you can do this for all pixels of an image
and the result will be to transform this image to the other view. There is an OpenCV function
that does exactly this:

 // Warp image 1 to image 2
 cv::Mat result;
 cv::warpPerspective(image1, // input image
 result, // output image
 homography, // homography
 cv::Size(2*image1.cols,
 image1.rows)); // size of output image

Once this new image is obtained, it can be appended to the other image in order to expand
the view (since the two images are now from the same point of view):

 // Copy image 1 on the first half of full image
 cv::Mat half(result,cv::Rect(0,0,image2.cols,image2.rows));
 image2.copyTo(half); // copy image2 to image1 roi

The result is the following image:

How it works...
When two views are related by a homography, it becomes possible to determine where a given
scene point on one image is found on the other image. This property becomes particularly
interesting for points that fall outside the image boundaries. Indeed, since the second view
shows a portion of the scene that is not visible in the first image, you can use the homography
in order to expand the image by reading in the other image the color value of additional pixels.
That is how we were able to create a new image that is an expansion of our second image in
which extra columns were added to the right.

Estimating Projective Relations in Images

246

The homography computed by cv::findHomography is the one that maps points in the
first image to points in the second image. What we need in order to transfer the points of
image 1 to image 2 is in fact the inverse homography. This is exactly what the function
cv::warpPerspective is doing by default, that is, it uses the inverse of the homography
provided as input to get the color value of each point of the output image. When an output
pixel is transferred to a point outside the input image, a black value (0) is simply assigned
to this pixel. Note that an optional flag cv::WARP_INVERSE_MAP can be specified as
an optional fifth argument in cv::warpPerspective if one wants to use the direct
homography instead of the inverted one during the pixel transfer process.

There's more...
A homography also exists between two views of a plane. This can be demonstrated by looking
again at the camera projection equation as we did for the pure rotation case. When a plane
is observed, we can, without loss of generality, set the reference frame of the plane such
that all of its points have a Z coordinate which equals to 0. This will also cancel one of the
columns of the 3x4 projection matrix resulting in a 3x3 matrix: a homography. This means that
if, for example, you have several pictures from different points of view of the flat façade of a
building, you can compute the homography between these images and build a large mosaic of
the façade by wrapping the images and assembling them together as we did in this recipe.

A minimum of four matched points between two views are required to compute a homography.
The function cv::getPerspectiveTransform allows such a transformation from four
corresponding points to be computed.

10
Processing Video

Sequences

In this chapter, we will cover:

ff Reading video sequences

ff Processing the video frames

ff Writing video sequences

ff Tracking feature points in video

ff Extracting the foreground objects in video

Introduction
Video signals constitute a rich source of visual information. They are made of a sequence
of images, called frames, taken at regular time intervals (specified as the frame rate) and
showing a scene in motion. With the advent of powerful computers, it is now possible to
perform advanced visual analysis on video sequences, and sometime at rates close to, or
even faster than, the actual video frame rate. This chapter will show you how to read, process,
and store video sequences.

We will see that once the individual frames of a video sequence have been extracted, the
different image processing functions presented in this book can be applied to each of them.
In addition, we will also look at a few algorithms that perform temporal analysis of the video
sequence, compare adjacent frames to track objects, or cumulate image statistics over time
in order to extract foreground objects.

Processing Video Sequences

248

Reading video sequences
To process a video sequence, we need to be able to read each of its frames. OpenCV has put
in place an easy-to-use framework to perform frame extraction from video files, or even from a
USB camera. This recipe shows you how to use it.

How to do it...
Basically, all you need to do in order to read the frames of a video sequence is to create an
instance of the cv::VideoCapture class. You then create a loop that will extract and read
each video frame. Here is a basic main function that simply displays the frames of a video
sequence:

int main()
{
 // Open the video file
 cv::VideoCapture capture("../bike.avi");
 // check if video successfully opened
 if (!capture.isOpened())
 return 1;

 // Get the frame rate
 double rate= capture.get(CV_CAP_PROP_FPS);

 bool stop(false);
 cv::Mat frame; // current video frame
 cv::namedWindow("Extracted Frame");

 // Delay between each frame in ms
 // corresponds to video frame rate
 int delay= 1000/rate;

 // for all frames in video
 while (!stop) {

 // read next frame if any
 if (!capture.read(frame))
 break;

 cv::imshow("Extracted Frame",frame);

 // introduce a delay
 // or press key to stop
 if (cv::waitKey(delay)>=0)
 stop= true;
 }

 // Close the video file.
 // Not required since called by destructor
 capture.release();
 }

Chapter 10

249

A window will appear on which the video will play as seen here:

How it works...
To open a video, you simply need to specify the video filename. This can be done by providing
the name of the file in the constructor of the cv::VideoCapture object. It is also possible to
use the open method if the cv::VideoCapture has already been created. Once the video
has successfully opened (this can be verified through the isOpened method), it is possible
to start frame extraction. It is also possible to query the cv::VideoCapture object for
information associated with the video file by using its get method with the appropriate flag. In
the preceding example, we obtained the frame rate using the CV_CAP_PROP_FPS flag. Since
it is a generic function, it always returns a double even if in some cases another type would be
expected. For example, the total number of frames in the video file would be obtained (as an
integer) as follows:

long t= static_cast<long>(
 capture.get(CV_CAP_PROP_FRAME_COUNT));

Have a look at the different flags available in the OpenCV documentation in order to find out
what information can be obtained from the video.

There is also a set method that allows you to input some parameter to the
cv::VideoCapture instance. For example, you can request to move to a specific frame
using the CV_CAP_PROP_POS_FRAMES:

// goto frame 100
double position= 100.0;
capture.set(CV_CAP_PROP_POS_FRAMES, position);

Processing Video Sequences

250

You can also specify the position in milliseconds using CV_CAP_PROP_POS_MSEC, or
specify the relative position inside the video using CV_CAP_PROP_POS_AVI_RATIO (with
0.0 corresponding to the beginning of the video and 1.0 to the end). The method returns
true if the requested parameter setting is successful. Note that the possibility to get or set
a particular video parameter largely depends on the codec used to compress and store the
video sequence. If you are unsuccessful with some parameters, that could be simply due to
the specific codec you are using.

Once the video captured is successfully opened (this is verified by the isOpened method), the
frames can be sequentially obtained by repetitively calling the read method as we did in the
example of the previous section. One can equivalently call the overloaded reading operator:

capture >> frame;

It is also possible to call the two basic methods:

capture.grab();
capture.retrieve(frame);

Note also how, in our example, we introduced a delay in displaying each frame. This is done
using the cv::waitKey function. Here, we set the delay at a value that corresponds to the
input video frame rate (if fps is the number of frames per second, then 1000/fps is the delay
between two frames in ms). You can obviously change this value to display the video at a slower
or faster speed. However, if you are going to display the video frames, it is important to insert
such a delay if you want to make sure that the window has sufficient time to refresh (since it is
a process of low priority, it will never refresh if the CPU is too busy). The cv::waitKey function
also allows us to interrupt the reading process by pressing any key. In such a case, the function
returns the ASCII code of the key pressed. Note that if the delay specified to the cv::waitKey
function is 0, then it will wait indefinitely for user to press a key. This is very useful when
someone wants to trace a process by examining the results frame by frame.

The final statement calls the release method which will close the video file. However, this
call is not required since release is also called by the cv::VideoCapture destructor.

It is important to note that in order to open the specified video file, your computer must
have the corresponding codec installed, otherwise cv::VideoCapture will not be able to
understand the input file. Normally, if you are able to open your video file with a video player
on your machine (such as the Windows Media Player), then OpenCV should also be able to
read this file.

There's more...
You can also read the video stream capture of a camera connected to your computer (a USB
camera for example). In this case, you simply specify an ID number (an integer) instead of a
filename to the open function. Specifying 0 for the ID will open the default camera installed.
In this case, the role of the cv::waitKey function to stop the processing becomes essential
since the video stream from the camera will be infinitely read.

Chapter 10

251

See also
The recipe Writing video sequences in this chapter has more information on video codecs.

The ffmpeg.org website that presents a complete open source and cross platform solution
for audio/video reading, recording, converting, and streaming. The OpenCV classes to
manipulate video files are built on top of this library.

The Xvid.org website which offers an open source video codec library based on the
MPEG-4 standard for video compression. Xvid also has a competitor called DivX which offers
proprietary but free codec and software tools.

Processing the video frames
In this recipe, our objective is to apply some processing function to each of the frames of a
video sequence. We will do this by encapsulating the OpenCV video capture framework into
our own class. Among other things, this class will allow us to specify a function that will be
called each time a new frame is extracted.

How to do it...
What we want is to be able to specify a processing function (a callback function) that will
be called at each frame of a video sequence. This function can be defined as receiving a
cv::Mat instance and outputting a processed frame. Therefore, we designed it to have the
following signature:

void processFrame(cv::Mat& img, cv::Mat& out);

As an example of such processing function, consider the following simple function that
computes the Canny edges of an input image:

void canny(cv::Mat& img, cv::Mat& out) {

 // Convert to gray
 if (img.channels()==3)
 cv::cvtColor(img,out,CV_BGR2GRAY);
 // Compute Canny edges
 cv::Canny(out,out,100,200);
 // Invert the image
 cv::threshold(out,out,128,255,cv::THRESH_BINARY_INV);
}

Processing Video Sequences

252

Let's then define a video processing class to which a callback function can be associated.
Using this class, the procedure will be to create a class instance, specify an input video file,
attach the callback function to it, and then start the process. Programmatically, these steps
will be accomplished using our proposed class, as follows:

 // Create instance
 VideoProcessor processor;
 // Open video file
 processor.setInput("../bike.avi");
 // Declare a window to display the video
 processor.displayInput("Current Frame");
 processor.displayOutput("Output Frame");
 // Play the video at the original frame rate
 processor.setDelay(1000./processor.getFrameRate());
 // Set the frame processor callback function
 processor.setFrameProcessor(canny);
 // Start the process
 processor.run();

Now that we have defined how this class will be used, let's describe its implementation. As
one might expect, the class includes several member variables that control the different
aspects of the video frame processing:

class VideoProcessor {

 private:

 // the OpenCV video capture object
 cv::VideoCapture capture;
 // the callback function to be called
 // for the processing of each frame
 void (*process)(cv::Mat&, cv::Mat&);
 // a bool to determine if the
 // process callback will be called
 bool callIt;
 // Input display window name
 std::string windowNameInput;
 // Output display window name
 std::string windowNameOutput;
 // delay between each frame processing
 int delay;
 // number of processed frames
 long fnumber;
 // stop at this frame number
 long frameToStop;
 // to stop the processing
 bool stop;

Chapter 10

253

 public:

 VideoProcessor() : callIt(true), delay(0),
 fnumber(0), stop(false), frameToStop(-1) {}

The first member variable is the cv::VideoCapture object, and the second one is the
process function pointer that will point to the callback function. This can be specified using
the corresponding setter method:

 // set the callback function that
 // will be called for each frame
 void setFrameProcessor(
 void (*frameProcessingCallback)
 (cv::Mat&, cv::Mat&)) {

 process= frameProcessingCallback;
 }

And the following method is to open the video file:

 // set the name of the video file
 bool setInput(std::string filename) {

 fnumber= 0;
 // In case a resource was already
 // associated with the VideoCapture instance
 capture.release();
 images.clear();

 // Open the video file
 return capture.open(filename);
 }

It is generally interesting to display the frames as they are processed. Two methods are
therefore used to create the display windows:

 // to display the processed frames
 void displayInput(std::string wn) {

 windowNameInput= wn;
 cv::namedWindow(windowNameInput);
 }

 // to display the processed frames
 void displayOutput(std::string wn) {

 windowNameOutput= wn;
 cv::namedWindow(windowNameOutput);
 }

 // do not display the processed frames

Processing Video Sequences

254

 void dontDisplay() {

 cv::destroyWindow(windowNameInput);
 cv::destroyWindow(windowNameOutput);
 windowNameInput.clear();
 windowNameOutput.clear();
 }

If either of these two methods are not called, then the corresponding frames will not be
displayed. The main method, called run, is the one that contains the frame extraction loop:

 // to grab (and process) the frames of the sequence
 void run() {

 // current frame
 cv::Mat frame;
 // output frame
 cv::Mat output;

 // if no capture device has been set
 if (!isOpened())
 return;

 stop= false;

 while (!isStopped()) {

 // read next frame if any
 if (!readNextFrame(frame))
 break;

 // display input frame
 if (windowNameInput.length()!=0)
 cv::imshow(windowNameInput,frame);

 // calling the process function
 if (callIt) {

 // process the frame
 process(frame, output);
 // increment frame number
 fnumber++;

 } else {

 output= frame;
 }

 // display output frame
 if (windowNameOutput.length()!=0)
 cv::imshow(windowNameOutput,output);

 // introduce a delay
 if (delay>=0 && cv::waitKey(delay)>=0)

Chapter 10

255

 stopIt();

 // check if we should stop
 if (frameToStop>=0 &&
 getFrameNumber()==frameToStop)
 stopIt();
 }
 }

 // Stop the processing
 void stopIt() {

 stop= true;
 }

 // Is the process stopped?
 bool isStopped() {

 return stop;
 }

 // Is a capture device opened?
 bool isOpened() {

 capture.isOpened();
 }

 // set a delay between each frame
 // 0 means wait at each frame
 // negative means no delay
 void setDelay(int d) {

 delay= d;
 }

This method uses a private method that reads the frames:

 // to get the next frame
 // could be: video file or camera
 bool readNextFrame(cv::Mat& frame) {

 return capture.read(frame);
 }

One might also wish to simply open and play the video file (without calling the callback
function). We therefore have two methods to specify whether or not we want the callback
function to be called:

 // process callback to be called
 void callProcess() {

 callIt= true;
 }

Processing Video Sequences

256

 // do not call process callback
 void dontCallProcess() {

 callIt= false;
 }

Finally, the class also offers the possibility to stop at a certain frame number:

 void stopAtFrameNo(long frame) {

 frameToStop= frame;
 }

 // return the frame number of the next frame
 long getFrameNumber() {

 // get info of from the capture device
 long fnumber= static_cast<long>(
 capture.get(CV_CAP_PROP_POS_FRAMES));
 return fnumber;
 }

If this class is used to run the code snippet presented at the beginning of this section,
then two windows will play the input video and the output result at the original frame rate
(consequence of the delay introduced by the setDelay method) as seen in the following two
samples. Here is one frame of the input video:

Chapter 10

257

And the corresponding output frame will be as follows:

How it works...
As we did in other recipes, our objective was to create a class that encapsulates the common
functionalities of a video processing algorithm. In this class, the video capture loop is
implemented by the run method. It contains the frame extraction loop that first calls the
read method of the cv::VideoCapture OpenCV class. There is a series of operations that
are executed, but before each of them is invoked, a check is made to determine if it has been
requested. The input window is displayed only if an input window name has been specified
(using the displayInput method). The callback function is called only if one has been
specified (using setFrameProcessor). The output window is displayed only if an output
window name has been defined (using displayOutput). A delay is introduced only if one
has been specified (using setDelay method). Finally, the current frame number is checked if
a stop frame has been defined (using stopAtFrameNo).

The class also contains a number of getter and setter methods that are basically just a
wrapper over the general set and get methods of the cv::VideoCapture framework.

There's more...
Our VideoProcessor class is there to facilitate the deployment of a video processing
module. Few additional refinements can be made to it.

Processing a sequence of images
Sometimes, the input sequence is made of a series of images individually stored in distinct
files. Our class can be easily modified to accommodate such input. You just need to add a
member variable that will hold a vector of image filenames and its corresponding iterator:

 // vector of image filename to be used as input
 std::vector<std::string> images;
 // image vector iterator
 std::vector<std::string>::const_iterator itImg;

Processing Video Sequences

258

A new setInput method is used to specify the filenames to be read:

 // set the vector of input images
 bool setInput(const std::vector<std::string>& imgs) {

 fnumber= 0;
 // In case a resource was already
 // associated with the VideoCapture instance
 capture.release();

 // the input will be this vector of images
 images= imgs;
 itImg= images.begin();

 return true;
 }

And the isOpened method becomes:

 // Is a capture device opened?
 bool isOpened() {

 return capture.isOpened() || !images.empty();
 }

The last method that needs to be modified is the private readNextFrame method that will
read from the video or from the vector of filenames depending which input has been specified.
The test being if the vector of image filenames is not empty, then that is because the input is
an image sequence. The call to setInput with a video filename clears this vector:

 // to get the next frame
 // could be: video file; camera; vector of images
 bool readNextFrame(cv::Mat& frame) {

 if (images.size()==0)
 return capture.read(frame);

 else {

 if (itImg != images.end()) {

 frame= cv::imread(*itImg);
 itImg++;
 return frame.data != 0;

 } else {

 return false;
 }
 }
 }

Chapter 10

259

Using a frame processor class
In an object-oriented context, it may make more sense to use a frame processing class instead
of a frame processing function. Indeed, a class would give the programmer much more flexibility
in the definition of a video processing algorithm. We can therefore define an interface that any
class that wishes to be used inside the VideoProcessor will need to implement:

// The frame processor interface
class FrameProcessor {

 public:
 // processing method
 virtual void process(cv:: Mat &input, cv:: Mat &output)= 0;
};

A setter method allows you to input a pointer to a FrameProcessor instance of the
VideoProcessor framework:

 // set the instance of the class that
 // implements the FrameProcessor interface
 void setFrameProcessor(FrameProcessor* frameProcessorPtr)
 {

 // invalidate callback function
 process= 0;
 // this is the frame processor instance
 // that will be called
 frameProcessor= frameProcessorPtr;
 callProcess();
 }

When a frame processor class instance is specified, it invalidates any frame processing
function that could have been set before. The same now applies if a frame processing
function is specified instead:

 // set the callback function that will
 // be called for each frame
 void setFrameProcessor(
 void (*frameProcessingCallback)(cv::Mat&, cv::Mat&)) {

 // invalidate frame processor class instance
 frameProcessor= 0;
 // this is the frame processor function that
 // will be called
 process= frameProcessingCallback;
 callProcess();
 }

Processing Video Sequences

260

And the while loop of the run method is modified to take into account this modification:

 while (!isStopped()) {

 // read next frame if any
 if (!readNextFrame(frame))
 break;

 // display input frame
 if (windowNameInput.length()!=0)
 cv::imshow(windowNameInput,frame);

 // ** calling the process function or method **
 if (callIt) {

 // process the frame
 if (process) // if call back function
 process(frame, output);
 else if (frameProcessor)
 // if class interface instance
 frameProcessor->process(frame,output);
 // increment frame number
 fnumber++;

 } else {

 output= frame;
 }

 // display output frame
 if (windowNameOutput.length()!=0)
 cv::imshow(windowNameOutput,output);

 // introduce a delay
 if (delay>=0 && cv::waitKey(delay)>=0)
 stopIt();

 // check if we should stop
 if (frameToStop>=0 &&
 getFrameNumber()==frameToStop)
 stopIt();
 }

See also
The recipe Tracking feature points in video in this chapter shows how to use the
FrameProcessor class interface.

Chapter 10

261

Writing video sequences
In the previous recipes, we learned how to read a video file and extract its frames. This
recipe will show you how to write frames and therefore create a video file. This will allow us
to complete the typical video processing chain: reading an input video stream, processing its
frames, and then storing the results in a video file.

How to do it...
Let's expand our VideoProcessor class in order to give it the ability to write video files. This
is done using the OpenCV cv::VideoWriter class. An instance of this is therefore added as
a member of our class (plus few other member variables):

class VideoProcessor {

 private:

...
 // the OpenCV video writer object
 cv::VideoWriter writer;
 // output filename
 std::string outputFile;
 // current index for output images
 int currentIndex;
 // number of digits in output image filename
 int digits;
 // extension of output images
 std::string extension;

An extra method is used to specify (and open) the output video file:

 // set the output video file
 // by default the same parameters than
 // input video will be used
 bool setOutput(const std::string &filename,
 int codec=0, double framerate=0.0,
 bool isColor=true) {

 outputFile= filename;
 extension.clear();

 if (framerate==0.0)
 framerate= getFrameRate(); // same as input

 char c[4];
 // use same codec as input
 if (codec==0) {
 codec= getCodec(c);

Processing Video Sequences

262

 }

 // Open output video
 return writer.open(outputFile, // filename
 codec, // codec to be used
 framerate, // frame rate of the video
 getFrameSize(), // frame size
 isColor); // color video?
 }

Once the video file is opened, frames can be added to it by repetitively calling the write
method of the cv::VideoWriter class. Proceeding as we did in the preceding recipe, we
also want to give the user the possibility to write the frames as individual images. Therefore,
the private writeNextFrame method handles these two possible cases:

 // to write the output frame
 // could be: video file or images
 void writeNextFrame(cv::Mat& frame) {

 if (extension.length()) { // then we write images

 std::stringstream ss;
 // compose the output filename
 ss << outputFile << std::setfill('0')
 << std::setw(digits)
 << currentIndex++ << extension;
 cv::imwrite(ss.str(),frame);

 } else { // then write to video file 
 writer.write(frame);
 }
 }

For the case where the output is made of individual image files, we need an additional
setter method:

 // set the output as a series of image files
 // extension must be ".jpg", ".bmp" ...
 bool setOutput(const std::string &filename, // prefix
 const std::string &ext, // image file extension
 int numberOfDigits=3, // number of digits
 int startIndex=0) { // start index

 // number of digits must be positive
 if (numberOfDigits<0)
 return false;

 // filenames and their common extension
 outputFile= filename;
 extension= ext;

Chapter 10

263

 // number of digits in the file numbering scheme
 digits= numberOfDigits;
 // start numbering at this index
 currentIndex= startIndex;

 return true;
 }

A new step is then added to the video capture loop of the run method:

 while (!isStopped()) {

 // read next frame if any
 if (!readNextFrame(frame))
 break;

 // display input frame
 if (windowNameInput.length()!=0)
 cv::imshow(windowNameInput,frame);

 // calling the process function or method
 if (callIt) {

 // process the frame
 if (process)
 process(frame, output);
 else if (frameProcessor)
 frameProcessor->process(frame,output);
 // increment frame number
 fnumber++;

 } else {

 output= frame;
 }

 // ** write output sequence **
 if (outputFile.length()!=0)
 writeNextFrame(output);

 // display output frame
 if (windowNameOutput.length()!=0)
 cv::imshow(windowNameOutput,output);

 // introduce a delay
 if (delay>=0 && cv::waitKey(delay)>=0)
 stopIt();

 // check if we should stop
 if (frameToStop>=0 &&
 getFrameNumber()==frameToStop)

Processing Video Sequences

264

 stopIt();
 }
 }

A simple program that will read a video, process it, and write the result to a video file would
then be written as follows:

 // Create instance
 VideoProcessor processor;

 // Open video file
 processor.setInput("../bike.avi");
 processor.setFrameProcessor(canny);
 processor.setOutput("../bikeOut.avi");
 // Start the process
 processor.run();

If you want the result to be saved as a series of images, then you would change the preceding
statement by this one:

 processor.setOutput("../bikeOut",".jpg");

Using the default number of digits (3) and start index (0), this will create the files
bikeOut000.jpg, bikeOut001.jpg, bikeOut002.jpg, and so on.

How it works...
When a video is written to a file, it is saved using a codec. A codec is a software module
capable of encoding and decoding video streams. The codec defines both the format of the
file and the compression scheme that is used to store the information. Obviously, a video
that has been encoded using a given codec must be decoded with the same codec. For this
reason, four-character codes have been introduced to uniquely identified codecs. This way,
when a software tool needs to write a video file, it determines the codec to be used by reading
the specified four-character code.

As the name suggests, the four-character code is made of four ASCII characters that can also
be converted into an integer by appending them together. Using the CV_CAP_PROP_FOURCC
flag of the get method of an opened cv::VideoCapture instance, you can obtain this code
of an opened video file. We can define a method in our VideoProcessor class to return the
four-character code of an input video:

 // get the codec of input video
 int getCodec(char codec[4]) {

 // undefined for vector of images
 if (images.size()!=0) return -1;

 union { // data structure for the 4-char code
 int value;

Chapter 10

265

 char code[4]; } returned;

 // get the code
 returned.value= static_cast<int>(
 capture.get(CV_CAP_PROP_FOURCC));

 // get the 4 characters
 codec[0]= returned.code[0];
 codec[1]= returned.code[1];
 codec[2]= returned.code[2];
 codec[3]= returned.code[3];

 // return the int value corresponding to the code
 return returned.value;
 }

The get method always returns a double that is then casted into an integer. This integer
represents the code from which the four characters can be extracted using a union data
structure. If we open our test video sequence, then from the following statements:

 char codec[4];
 processor.getCodec(codec);
 std::cout << "Codec: " << codec[0] << codec[1]
 << codec[2] << codec[3] << std::endl;

We obtain:

Codec : XVID

When a video file is written, the codec must be specified using its four-character code. This
is the second parameter in the open method of the cv::VideoWriter class. You can use,
for example, the same one as the input video (this is the default option in our setOutput
method). You can also pass the value -1 and the method will pop up a window to ask you to
select one from the list of available codec as seen here:

The list you will see on this window corresponds to the list of installed codecs on your
machine. The code of the selected codec is then automatically sent to the open method.

Processing Video Sequences

266

Tracking feature points in video
This chapter is about reading, writing, and processing video sequences. The objective is to be
able to analyze a complete video sequence. As an example, in this recipe, you will learn how to
perform temporal analysis of the sequence in order to track feature points as they move from
frame to frame.

How to do it...
To start the tracking process, the first thing to do is to detect feature points in an initial frame.
You then try to track these points in the next frame. You must find where these points are now
located in this new frame. Obviously, since we are dealing with a video sequence, there is a
good chance that the object on which the feature points are found has moved (the motion
can also be due to camera motion). Therefore, you must search around a point's previous
location in order to find its new location in the next frame. This is what accomplishes the
cv::calcOpticalFlowPyrLK function. You input two consecutive frames and a vector of
feature points in the first image, the function returns a vector of new point locations. To track
points over a complete sequence, you repeat this process from frame to frame. Note that as
you follow the points across the sequence, you will unavoidably loose track of some of them
such that the number of tracked feature points will gradually reduces. Therefore, it could be a
good idea to detect new features from time to time.

We will now take benefit of the framework we defined in the previous recipes and we will
define a class that implements the FrameProcessor interface introduced in the Processing
the video frames recipe of this chapter. The data attributes of this class include the variables
required to perform both the detection of feature points and their tracking:

class FeatureTracker : public FrameProcessor {

 cv::Mat gray; // current gray-level image
 cv::Mat gray_prev; // previous gray-level image
 // tracked features from 0->1
 std::vector<cv::Point2f> points[2];
 // initial position of tracked points
 std::vector<cv::Point2f> initial;
 std::vector<cv::Point2f> features; // detected features
 int max_count; // maximum number of features to detect
 double qlevel; // quality level for feature detection
 double minDist; // min distance between two points
 std::vector<uchar> status; // status of tracked features
 std::vector<float> err; // error in tracking

 public:

 FeatureTracker() : max_count(500),
 qlevel(0.01), minDist(10.) {}

Chapter 10

267

Next, we define the process method that will be called for each frame of the sequence.
Basically, we need to proceed as follows. First, feature points are detected if necessary. Next,
these points are tracked. You reject points that you cannot track or you no longer want to track.
You are now ready to handle the successfully tracked points. Finally, the current frame and its
points become the previous frame and points for the next iteration. Here is how to do it:

 void process(cv:: Mat &frame, cv:: Mat &output) {

 // convert to gray-level image
 cv::cvtColor(frame, gray, CV_BGR2GRAY);
 frame.copyTo(output);

 // 1. if new feature points must be added
 if(addNewPoints())
 {
 // detect feature points
 detectFeaturePoints();
 // add the detected features to
 // the currently tracked features
 points[0].insert(points[0].end(),
 features.begin(),features.end());
 initial.insert(initial.end(),
 features.begin(),features.end());
 }

 // for first image of the sequence
 if(gray_prev.empty())
 gray.copyTo(gray_prev);

 // 2. track features
 cv::calcOpticalFlowPyrLK(
 gray_prev, gray, // 2 consecutive images
 points[0], // input point positions in first image
 points[1], // output point positions in the 2nd image
 status, // tracking success
 err); // tracking error

 // 2. loop over the tracked points to reject some
 int k=0;
 for(int i= 0; i < points[1].size(); i++) {

 // do we keep this point?
 if (acceptTrackedPoint(i)) {

 // keep this point in vector
 initial[k]= initial[i];
 points[1][k++] = points[1][i];
 }
 }

Processing Video Sequences

268

 // eliminate unsuccesful points
 points[1].resize(k);
 initial.resize(k);

 // 3. handle the accepted tracked points
 handleTrackedPoints(frame, output);

 // 4. current points and image become previous ones
 std::swap(points[1], points[0]);
 cv::swap(gray_prev, gray);
 }

This method makes use of four other utility methods. It should be easy for you to
change any of these methods in order to define a new behavior for your own tracker. The
first of these methods detects the feature points. Note that we already discussed the
cv::goodFeatureToTrack function in the first recipe of Chapter 8:

 // feature point detection
 void detectFeaturePoints() {

 // detect the features
 cv::goodFeaturesToTrack(gray, // the image
 features, // the output detected features
 max_count, // the maximum number of features
 qlevel, // quality level
 minDist); // min distance between two features
 }

The second one determines if new feature points should be detected:

 // determine if new points should be added
 bool addNewPoints() {

 // if too few points
 return points[0].size()<=10;
 }

The third one rejects some of the tracked points based on some criteria defined by the
application. Here, we decided to reject points that do not move (in addition to those that
cannot be tracked by the cv::calcOpticalFlowPyrLK function):

 // determine which tracked point should be accepted
 bool acceptTrackedPoint(int i) {

 return status[i] &&
 // if point has moved
 (abs(points[0][i].x-points[1][i].x)+
 (abs(points[0][i].y-points[1][i].y))>2);
 }

Chapter 10

269

Finally, the fourth method handles the tracked feature points by drawing on the current frame
all of the tracked points with a line joining them to their initial position (that is, the position
where they were detected the first time):

 // handle the currently tracked points
 void handleTrackedPoints(cv:: Mat &frame,
 cv:: Mat &output) {

 // for all tracked points
 for(int i= 0; i < points[1].size(); i++) {

 // draw line and circle
 cv::line(output,
 initial[i], // initial position
 points[1][i],// new position
 cv::Scalar(255,255,255));
 cv::circle(output, points[1][i], 3,
 cv::Scalar(255,255,255),-1);
 }
 }

A simple main function to track feature points in a video sequence would then be written
as follows:

int main()
{
 // Create video procesor instance
 VideoProcessor processor;

 // Create feature tracker instance
 FeatureTracker tracker;

 // Open video file
 processor.setInput("../bike.avi");

 // set frame processor
 processor.setFrameProcessor(&tracker);

 // Declare a window to display the video
 processor.displayOutput("Tracked Features");

 // Play the video at the original frame rate
 processor.etDelayetDelay(1000./processor.getFrameRate());

 // Start the process
 processor.run();
}

Processing Video Sequences

270

The resulting program will show the evolution of the tracked features over time. Here are, for
example, two such frames at two different instants. In this video, the camera is fixed. The
young cyclist is therefore the only moving object. Here is a frame at the beginning of the video:

And few seconds later, we obtain the following frame:

How it works...
To track feature points from frame to frame, we must locate the new position of a feature
point in the subsequent frame. If we assume that the intensity of the feature point does not
change from one frame to the next one, we are looking for a displacement (u,v) such that:

where It and It+1 are respectively the current frame and the one at the next instant. This
constant intensity assumption generally holds for small displacement in images taken at two
near by instants. We can then use the Taylor expansion in order to approximate this equation
by an equation that involves the image derivatives:

Chapter 10

271

This later equation leads us to another equation (as a consequence of the constant intensity
assumption):

This well-known constraint is the fundamental optical flow constraint equation. It is
exploited by the so-called Lukas-Kanade feature tracking algorithm by making an additional
assumption. The displacement of all points in the neighborhood of the feature point is the
same. We can therefore impose the optical flow constraint for all of these point with a unique
(u,v) unknown displacement. This gives us more equations than the number of unknowns
(2), and we can therefore solve this system of equations in a mean-square sense. In practice,
it is solved iteratively and the OpenCV implementation also offers the possibility to perform
this estimation at different resolution to make the search more efficient and more tolerant
to larger displacement. By default, the number of image levels is 3 and the window size
is 15. These parameters can obviously be changed. You can also specify the termination
criteria which define the conditions to stop the iterative search. The sixth parameter of the
cv::calcOpticalFlowPyrLK contains the residual mean-square error that could be used
to assess the quality of the tracking. The fifth parameter contains binary flags that tell us if
tracking the corresponding point was considered successful or not.

The description above represents the basic principles behind the Lukas-Kanade tracker. The
current implementation contains other optimizations and improvements to make the algorithm
more efficient in the computation of the displacement of a large number of feature points.

See also
The Chapter 8 of this book has a discussion on feature point detection.

The classic article by B. Lucas and T. Kanade, An iterative image registration technique with
an application to stereo vision in Int. Joint Conference in Artificial Intelligence, pp. 674-679,
1981, that describes the original feature point tracking algorithm.

The article by J. Shi and C. Tomasi, Good Features to Track in IEEE Conference on Computer
Vision and Pattern Recognition, pp. 593-600, 1994, that describes an improved version of the
original feature point tracking algorithm.

http://www.ces.clemson.edu/~stb/klt/shi-tomasi-good-features-cvpr1994.pdf

Processing Video Sequences

272

Extracting the foreground objects in video
When a fixed camera observes a scene, the background remains mostly unchanged. In this
case, the interesting elements are the moving objects that evolve inside this scene. In order
to extract those foreground objects, we need to build a model of the background, and then
compare this model with a current frame in order to detect any foreground objects. This
is what we will do in this recipe. Foreground extraction is a fundamental step in intelligent
surveillance applications.

How to do it...
If we had at our disposal an image of the background of the scene (that is, a frame containing
no foreground objects), then it would be easy to extract the foreground of a current frame
through a simple image difference:

 // compute difference between current image and background
 cv::absdiff(backgroundImage,currentImage,foreground);

Each pixel for which this difference is high enough would then be declared as a foreground
pixel. However, most of the time, this background image is not readily available. Indeed, it
could be difficult to guarantee that no foreground objects are present in a given image and
in busy scenes, such situations might rarely occur. Moreover, the background scene often
evolves over time because, for instance, the lighting condition might change (for example,
from sunrise to sunset), or because new objects could be added or removed from the
background.

Therefore, it is necessary to dynamically build a model of the background scene. This
can be done by observing the scene for a period of time. If we assume that most often
the background is visible at each pixel location, then it could be a good strategy to simply
compute the average of all of the observations. But this is not feasible for a number of
reasons. First, this would require a large number of images to be stored before computing
the background. Second, while we are accumulating images to compute our average image,
no foreground extraction would be done. This solution also raises the problem of when and
how many images should be accumulated to compute an acceptable background model.
In addition, the images where a given pixel is observing a foreground object would have an
impact on the computation of the average background.

A better strategy is to dynamically build the background model by regularly updating it. This
can be accomplished by computing what is called a running average (also called moving
average). It is a way to compute the average value of a temporal signal which takes into
account the latest values received. If pt is the pixel value at a given time t, and μt-1 is the
current average value, then this average is updated using the following formula:

Chapter 10

273

The parameter α is called the learning rate and it defines the influence of the current value
over the currently estimated average. The larger this value is, the faster the running average
will adapt to changes in the observed values. To build a background model, one has just to
compute a running average for every pixel of the incoming frames. The decision to declare a
foreground pixel is then simply based on the difference between the current image and the
background model.

Let's then build a class that implements this idea:

class BGFGSegmentor : public FrameProcessor {

 cv::Mat gray; // current gray-level image
 cv::Mat background; // accumulated background
 cv::Mat backImage; // background image
 cv::Mat foreground; // foreground image
 // learning rate in background accumulation
 double learningRate;
 int threshold; // threshold for foreground extraction

 public:

 BGFGSegmentor() : threshold(10), learningRate(0.01) {}

The main process consists then in comparing the current frame with the background model,
and then updating this model:

 // processing method
 void process(cv:: Mat &frame, cv:: Mat &output) {

 // convert to gray-level image
 cv::cvtColor(frame, gray, CV_BGR2GRAY);

 // initialize background to 1st frame
 if (background.empty())
 gray.convertTo(background, CV_32F);

 // convert background to 8U
 background.convertTo(backImage,CV_8U);

 // compute difference between image and background
 cv::absdiff(backImage,gray,foreground);

 // apply threshold to foreground image
 cv::threshold(foreground,output,
 threshold,255,cv::THRESH_BINARY_INV);

 // accumulate background
 cv::accumulateWeighted(gray, background,
 learningRate, output);
 }

Processing Video Sequences

274

Using our video processing framework, the foreground extraction program would be built as
follows:

int main()
{
 // Create video procesor instance
 VideoProcessor processor;

 // Create background/foreground segmentor
 BGFGSegmentor segmentor;
 segmentor.setThreshold(25);

 // Open video file
 processor.setInput("../bike.avi");

 // set frame processor
 processor.setFrameProcessor(&segmentor);

 // Declare a window to display the video
 processor.displayOutput("Extracted Foreground");

 // Play the video at the original frame rate
 processor.setDelay(1000./processor.getFrameRate());

 // Start the process
 processor.run();
}

One of the resulting binary foreground images that will be displayed is:

Chapter 10

275

How it works...
Computing the running average of an image is easily accomplished through the
cv::accumulateWeighted function that applies the running average formula to each
pixel of the image. Note that the resulting image must be a floating point image. This is why
we had to convert the background model into a background image before comparing it with
the current frame. A simple thresholded absolute difference (computed by cv::absdiff,
followed by cv::threshold) extracts the foreground image. Note that we then used the
foreground image as a mask to cv::accumulateWeighted in order to avoid the updating of
pixels declared as foreground. This works because our foreground image is defined as being
false (that is, 0) at foreground pixels (which also explains why the foreground objects are
displayed as black pixels in the resulting image).

Finally, it should be noted that, for simplicity, the background model that is built by our
program is based on the gray-level version of the extracted frames. Maintaining a color
background would require the computation of a running average for each channel of each
pixel. In general, this extra computation does not significantly improve the results. Rather, the
main difficulty is to determine the appropriate value for the threshold that would give good
results for a given video.

There's more...
The preceding simple method to extract foreground objects in a scene works well for simple
scenes showing a relatively stable background. However, in many situations, the background
scene might fluctuate in certain areas between different values, thus causing frequent false
foreground detections. These might be due to, for example, a moving background object (for
example, tree leaves) or to glaring effect (for example, on the surface of water). In order to cope
with this problem, more sophisticated background modeling methods have been introduced.

The Mixture of Gaussian method
One of these algorithms is the Mixture of Gaussian method. It proceeds in a way similar to the
method presented in this recipe with the following additions:

First, the method maintains more than one model per pixel (that is, more than one running
average). This way, if a background pixel fluctuates between, let's say, two values, two running
average are then stored. A new pixel value will be declared as foreground only if it does not
belong to any of the maintained models.

Second, not only is the running average maintained for each model, but also the running
variance. This one is computed as follows:

Processing Video Sequences

276

The computed average and variance form a Gaussian model from which the probability of a
given pixel value to belong to this Gaussian model can be estimated. This makes it easier to
determine an appropriate threshold since it is now expressed as a probability rather than an
absolute difference. Also, in areas where the background values have larger fluctuations, a
greater difference will be required to declare a foreground object.

Finally, when a given Gaussian model is not hit sufficiently often, it is excluded as being part
of the background model. Reciprocally, when a pixel value is found to be outside the currently
maintained background models (that is it is a foreground pixel), a new Gaussian model is
created. If in the future, if this new model becomes frequently hit, then it becomes associated
with the background.

This more sophisticated algorithm is obviously more complex to implement than our simple
background/foreground segmentor. Fortunately, an OpenCV implementation exists called
cv::BackgroundSubtractorMOG and is defined as a subclass of the more general
cv::BackgroundSubtractor class. When used with its default parameter, this class is
very easy to use:

int main()
{
 // Open the video file
 cv::VideoCapture capture("../bike.avi");
 // check if video successfully opened
 if (!capture.isOpened())
 return 0;

 // current video frame
 cv::Mat frame;
 // foreground binary image
 cv::Mat foreground;

 cv::namedWindow("Extracted Foreground");

 // The Mixture of Gaussian object
 // used with all default parameters
 cv::BackgroundSubtractorMOG mog;

 bool stop(false);
 // for all frames in video
 while (!stop) {

 // read next frame if any
 if (!capture.read(frame))
 break;

 // update the background
 // and return the foreground
 mog(frame,foreground,0.01);

 // Complement the image

Chapter 10

277

 cv::threshold(foreground,foreground,
 128,255,cv::THRESH_BINARY_INV);

 // show foreground
 cv::imshow("Extracted Foreground",foreground);

 // introduce a delay
 // or press key to stop
 if (cv::waitKey(10)>=0)
 stop= true;
 }
}

As it can be seen, it is just a matter of creating the class instance and calling the method
that simultaneously update the background and returns the foreground image (the extra
parameter being the learning rate). One of the displayed segmentations would then be:

The number of possible Gaussian model per pixels constitutes one of the parameters
of this class.

See also
The article by C. Stauffer and W.E.L. Grimson, Adaptive background mixture models for
real-time tracking, in Conf. on Computer Vision and Pattern Recognition, 1999, for a more
complete description of the Mixture of Gaussian algorithm.

Index
Symbols
1D histogram 94
2D Gaussian filter

applying, on image 145
2-dimensional accumulator 173
3-channel loop method 53
3-dimensional accumulator 176
3x3 box filter 144
3x3 matrix 242
3x4 matrix 242
5x5 Gaussian filter 146
7x7 kernel 157
.at(j,i) method 53
*data++= *data/div*div + div/2 method 53
*data++= *data&mask + div/2 method 53
*data++= v - v%div + div/2 method 53
.exe file 19
.pro extension 22
.sln extension 12
.ui extension 31

A
accurate estimation

obtaining, for line position 178-181
Add New Project Property Sheet� option 14
algorithm design

strategy design pattern, using in 70-74
anchor point 118
application

designing, Model-View-Controller architecture
used 82-85

Application Settings window 12
applyLookUp method 99
at method 40, 94

B
backprojecting function 104
begin method 50
bell-shaped function 143
Beucher gradient 130
BGR channel 44
bins 90
bitwise operators 45
bounding box 188
box filter 142
BSD license 8

C
calibration parameters

computing 223-227
calibration pattern image

example 220-227
callback function 251
camera

calibrating 219-227
camera calibration 219-227
CameraCalibrator class 221
camera model 218
CamShift algorithm 112
Canny algorithm 164
Canny edges

computing 251
Canny operator

image contours, detecting with 164-167
working 166, 167

chessboard pattern 220-227
chicken-and-egg problem 233
Chi-Square method 115
circles

detecting, Hough transform used 175, 176

280

clicked() signal 32
click() signal 32
clone method 45
closing 123
closing filters 123, 124
CMake tool

URL 8
codec 264
color histogram

computing 95
color images 42
colorReduce function 52
colorReduce(input, output) method 53
color reduction

about 45
formulas 45

color reduction algorithm 42
color reduction formulas 45
color reduction function

about 44
syntax 42

color spaces
converting 85-88

Color Chooser widget 84
ColorDetectController class 80, 83
ColorDetector class 76, 83, 85, 87
ColorHistogram class 109, 113
cols variable 40, 44
compare method 114
complete image stretch method 98, 99
computer vision applications 37
CONFIG variable 24
connected component

shape, describing for 186-188
connected components

contours, extracting for 182-184
const reference 46
content-based image retrieval 112
ContentFinder class 110
continuous images

scanning, efficiently 47
contours

extracting, for connected
components 182-184

controller
about 83
used, for communication with processing

modules 76-79
controller object

accessing, singleton used 80-82
convertTo method 150
convex hull 188
convolution 144
copyTo() method 28
core.hpp file 33
corner refinement process 223
corners 192
Cosine transform 142
covariance matrix 199
create method 46
C++ STL 49
cumulative histogram 102
cv::absdiff function 275
cv::accumulateWeighted function 275
cv::add function 60, 61
cv::addWeighted function 60, 62
cv::approxPolyDP function 188
cv::BackgroundSubtractor class 276
cv::BackgroundSubtractorMOG class 276
CV_BGR2HSV flag 111
cv::bitwise_and function 200
cv::blur function 142
cv::boxFilter function 146
cv::BruteForceMatcher class 212, 235
cv::BruteForceMatcher::knnMatch method

235
cv::calBackProject function 105
cv::calcHist function 90, 94-96, 105
cv::calcOpticalFlowPyrLK function 266, 268,

271
cv::calibrateCamera function 226, 227
cv::calibrationMatrixValues function 226
CV_CALIB_USE_INTRINSIC_GUESS flag 227
cv::Canny function 164
CV_CAP_PROP_FOURCC flag 264
CV_CAP_PROP_FPS flag 249
CV_CAP_PROP_POS_AVI_RATIO flag 250
CV_CAP_PROP_POS_FRAMES flag 249
CV_CAP_PROP_POS_MSEC flag 250
CV_CHAIN_APPROX_SIMPLE flag 183
cv::circle function 176, 197
cv::compareHist function 112, 115
cv::contourArea function 189
cv::convertTo method 136

281

cv::cornerHarris function 192, 198, 199
cv::cornerSubPix function 223
cv::cvtColor function 35, 111
cv::DescriptorExtractor interface 234
cv::DescriptorMatcher class 213
cv::dilate function 119
CV_DIST_L2 flag 181
cv::drawKeypoints function 206
cv::ellipse function 181
cv::erode function 119
cv::FeatureDetector class 202, 234
cv::FeatureDetector interface 206
cv::filter2D function 58, 145, 146
cv::findChessboardCorners function 223
cv::findContours function 182, 185
cv::findFundamentalMat function 232
cv::findFundementalMat

function 229, 230, 243
cv::findHomography function 243, 246
cv::fitEllipse function 181
cv::fitLine function 180
CV_FM_7POINT flag 232
CV_FM_8POINT flag 232
cv::GaussianBlur function 143, 145
cv::GC_INIT_WITH_RECT flag 138
cv::getDerivKernels function 156
cv::getPerspectiveTransform function 246
cv::getTickCount() function 52
cv::getTickFrequency() function 52
cv::goodFeaturesToTrack function 200, 202
cv::GoodFeatureToTrackDetector class 202
cv::goodFeatureToTrack function 268
cv::grabCut function 137, 139
cv::HoughCircles function 176
CV_HOUGH_GRADIENT argument 176
cv::HoughLine function 174
cv::HoughLines function 168
cv::HoughLinesP function 170, 178
cv::initUndistortRectifyMap function 227
cv::keypoint instance 230
cv::Laplacian function 156
cv::line function 169, 230
cvLoadImage function 29
cv::LUT function 97
cv::matchShapes function 189
cv::Mat class 40
cv::Mat() function 120

cv::Mat instance 251
cv::MatND instance 94
cv::meanShift algorithm 110
cv::meanShift function 112
cv::merge function 63
cv::minAreaRect function 189
cv::moments function 188
cv::MORPH_GRADIENT argument 130
cv::morphologyEx function 122, 126, 130
cv::Point function 121
cv::pointPolygonTest function 189
cv::pyrDown function 146
cv::pyrUp function 146
cv::remap function 227
cv*resize function 146
CV_RETR_CCOMP flag 186
CV_RETR_TREE flag 185
cv::RotatedRect instance 181
cv::saturate_cast function 57, 62
cv::saturate_cast<uchar> function 57
cv::Scalar function 63
CV_SCHARR argument 155
cv::Scharr function 155
cv::sepFilter2D function 145
cv::Sobel function 152, 155, 156
cv::SparseMat function 96
cv::SparseMatrix function 96
cv::split function 63, 111
cv::SurfFeatureDetector class 209
cv::TermCriteria object 223
cv::THRESH_BINARY 194
cv::THRESH_BINARY_INV 194
cv::threshold function 93, 275
cv::Vec2f elements 168
cv::Vec3b type 40
cv::Vec4i 171
cv::VideoCapture class 248, 257
cv::VideoCapture destructor 250
cv::VideoCapture instance 249, 264
cv::VideoCapture object 249, 253
cv::VideoWriter class 261
cv::waitKey function 250
cv::WARP_INVERSE_MAP flag 246
cv::warpPerspective function 246
cv::watershed function 131, 136

282

D
data[i]= data[i]/div*div + div/2 method 53
design pattern 69
detect method 200
detect operation 202
digital camera 217
dilation 118, 120
directional filters

applying, for edge detection 148-154
displacement vector 198
displayInput method 257
displayOutput method 257
distance

computing, between two color vectors 74
DivX 251
doc directory 8
DRAW_RICH_KEYPOINTS flag 207

E
edge detection

about 148
directional filters, applying for 148-154

edges 164
efficient image scanning loops

writing 51-55
eigendecomposition theory 199
eigenvalues 199
elemSize method 44
encapsulation 85
end method 50
epipolar constraint 232
epipolar line 228
epipole 228, 231
erosion 118, 120
Euclidean distance 181
exec() method 22
extrinsic parameters 227

F
FAST features

about 204
detecting 203-205

feature descriptors 212
feature point clustering 200

feature points 191
tracking, in video 266-271

Features from Accelerated Segment Test.
See FAST features

ffmpeg.org website 251
filter 142, 144
filtering 58, 141
find method 107
fish-eye lens 224
floating-point processor 200
focal length 218, 219
foreground extraction 272
foreground objects

extracting, in video 272-275
extracting, with GrabCut algorithm 137-139

Fourier transform 142
frame processor class

using 259, 260
FrameProcessor interface 266
frame rate

about 247
measuring, in video file 249

frames 247
frequency domain 141
frequency domain analysis framework 142
frontal aperture 218
fundamental matrix

about 229, 242
computing, of image pair 228-232

G
Gaussian filters 209
Generalized Hough transform 177, 178
Generate button 9
getCornerMap method 200
getDistance method 71, 75
getHistogramImage method 95
getHistogram method 91
getHueHistogram method 112
get method 249, 264, 265
getTargetColor method 78
GrabCut algorithm

about 137
foreground objects, extracting with 137-139

gradient 152
gradient operators 154, 155

283

gray-level image
about 37, 39
corners, detecting with morphological

filters 125-131
edges, detecting with morphological

filters 125-131
gray variable 29
GUI application

creating, Qt used 30-35

H
Harris corners

detecting, for images 192-201
Harris feature detector 192
HEADERS variable 24
Hessian matrix 209
highgui.hpp file 33
highgui method 27
histogram

about 90, 103
backprojecting, for specific image content

detection 103-107
Histogram1D class 95
Histogram1D instance 91
histogram backprojection algorithm 105,

106, 107
histogram comparison

similar images, retrieving with 112-115
histogram equalization 101
histo object 91
homogeneous coordinates 226
homography

about 242
computing, between image pair 243-245

horizontal Sobel operator 149
Hough circle detection

implementing 175, 176
Hough line segment detection 171
Hough transform

about 167
circles, detecting 175, 176
lines, detecting in images 168-175

HSV color space 109
hysteresis thresholding 154, 167

I
i<image.cols*image.channels(); method 53
image channels

splitting 63
ImageComparator class 113, 115
image contours

detecting, with Canny operator 164-167
image emboss effect 150
image formation process 218, 219
image histogram

computing, with OpenCV 90-94
image histograms

about 89
equalizing 101, 102

image pair
fundamental matrix, computing for 228-232
homography, computing for 243-245

image plane 218
image processing tasks

image, scanning with pointers 41-44
image, scanning with iterators 49, 50
image, scanning with neighbor access 55-58
pixel values, accessing 38-40
simple image arithmetic, performing 59-62

image pyramids 146
images

2D Gaussian filter, applying on 145
about 37, 89, 217
closing, morphological filters used 122-124
dilating, with morphological filters 118-121
displaying, on window 26-29
eroding, with morphological filters 118-121
filtering, low-pass filters used 142-145
filtering, median filter used 147, 148
Laplacian, computing for 156-161
lines, detecting in 168-175
look-up table, applying on 97, 98
matching, random sample consensus

used 233-241
opening, morphological filters used 122-124
ROI, defining for 65, 66
scanning, with iterators 49, 50
scanning, with neighbor access 55-58
scanning, with pointers 41-44
segmenting, with watersheds 131,-136
thresholding 93

284

image scanning loop
implementing 41-44

image sensor. See image plane 217
image sequence

processing 257, 258
imax value 98
imin value 98
include directory 8, 10
INCLUDEPATH variable 25
individual element

accessing, of matrix 38-40
infinitesimal aperture 218
in-place transformation 45
input arguments 45, 46
input image

loading, from file 26-29
installation, OpenCV library 8, 9
installing

OpenCV library 8, 9
Intel Image Processing Library. See IPL library
Intel Integrated Performance Primitive library.

See IPP library
Intel MMX architecture 44
interest points 191
intrinsic parameters 226
IplImage structure 29, 30
IPL library 29
IPP library 29
isContinuous method 47
isOpened method 249-258
iterators

about 49
image, scanning with 49, 50

K
kernel 144, 210
kernel matrix 58
Keypoint class 202
keypoints 191

L
Laplacian

about 156, 209
computing, for image 156-161

Laplacian operator 55
lens 218

lib directory 10
LIBS variable 25
LineFinder class 170
line position

accurate estimation, obtaining for 178-181
orientation, obtaining for 178-181

lines
detecting, in images with Hough

transform 168-175
localMax matrix 200
look-up table

about 97
applying, on image 97, 98

low-level pointer arithmetics 48
low-pass filters

about 145
images, filtering with 142-145

low threshold 166
Lukas-Kanade feature 271

M
MainWindow class 32
mainwindow.cpp file 32
make utility command 9
mask 144
match method 234, 243
MatIterator method 53
matrices 38
matrix

individual element, accessing 38-40
matrix element 37
mean shift algorithm

about 108
object, searching with 108-112

median filters
image, filtering with 147, 148

M-estimator technique 181
minSat parameter 112
minValue method 99
Mixture of Gaussian method 275, 276, 277
model 83
Model-View-Controller. See MVC
modules directory 8
modules, OpenCV library

about 10
opencv_calib3d 10

285

opencv_core 10
opencv_features2d 10
opencv_highgui 10
opencv_imgproc 10
opencv_objdetect 10
opencv_video 10

MorphoFeatures class 125
morphological filtering 117
morphological filters

corner, detecting for image 125-131
edge, detecting for image 125-131
image, closing with 122-124
image, dilating with 118-121
image, eroding with 118-121
image, opening with 122-124

moving average. See running average
MPEG-4 standard 251
MS Visual C++

about 11
OpenCV project, creating with 11-19

multimedia processor chips 44
multi-threading 55
MVC

application, designing with 82-85

N
nchannels method 44
neighbor access

image, scanning with 55-58
non-uniform histogram 94
normalizing coefficient 145

O
object

searching, with mean shift algorithm 108-112
object recognition 164
OpenCV

about 8
accurate estimation, obtaining for line

position 178-181
color histogram, computing 95
contours, extracting for connected

components 182-184
FAST features, detecting 203-205
Harris corner, detecting for images 192-201

histogram, computing with 90-94
image contours, detecting with Canny

operator 164-167
image histograms, equalizing 101, 102
orientation, obtaining for line

position 178-181
scale-invariant SURF features,

detecting 206-209
shape, describing for connected

component 186-188
URL, for official website 8

OpenCV 2 37
OPENCV2_DIR environment variable 16
OpenCV application

image, displaying on window 26-29
input image, loading from file 26-29
output image, storing on disk 26-29

opencv_calib3d module 10
opencv_contrib module 10
opencv_core module 10
opencv_features2d module 10
opencv_flann module 10
opencv_gpu module 10
opencv_highgui module 10
opencv_imgproc module 10
opencv_legacy module 10
OpenCV library

installing 8, 9
modules 10

opencv_ml module 10
opencv_objdetect module 10
opencv.pc file 25
OpenCV project

creating, MS Visual C++ used 11-19
creating, with Qt 20-25

opencv_video module 10
Open Image button 84
opening 123
opening filters 123, 124
open method 249, 265
OpenMP 55
operator++ 50
operator() method 41, 66
optical flow constraint equation 271
orientation

obtaining, for line position 178-181
output arguments 45, 46

286

output image
storing, on disk 26-29

overloaded image operators 62, 63

P
pass-by-reference mechanism 39
picture elements. See pixels
pin-hole camera model 218, 224
pixels 37, 89
pixel values

about 89
accessing 38-40

pkg-config utility package 25
pointers

image, scanning with 41-44
policy-based class design 75
Prewitt operator 154
primary color channels 37
principal point 219
Probabilistic Hough transform 170
process function pointer 253
process method 79, 267
projection 217
projection matrix 226
projective geometry 217
ptr method 44

Q
QCoreApplication object 22
qmake 24
qmake project files

features 25
qmake, variables

CONFIG 24
HEADERS 24
INCLUDEPATH 25
LIBS 25
QT 25
SOURCES 24
TEMPLATE 24

QSlider widget 85
Qt

about 19, 30
benefits 19
GUI application, creating with 30-35
OpenCV project, creating with 20-25

URL, for downloading 20
Qt Console Application 20
QT variable 25

R
radial distortion 224
random sample consensus

images, matching with 233-241
RANdom SAmpling Consensus. See RANSAC

algorithm
range 66
ranges parameters 105
RANSAC algorithm

about 241
objective 241

RANSAC method 238
read method 250, 257
readNextFrame method 258
rect object 110
region of interest. See ROI
Release directory 19
release method 250
re-projection error 227
reshape method 47
RGB color space 86
rigid baseline 228
rigid transformation 227
Roberts operator 155
RobustMatcher class 239, 243
ROI

about 64
defining, for image 65, 66

rows variable 40, 44
run method 254, 257, 260
running average 272

S
salt-and-pepper noise 38
samples directory 8
Scale-Invariant Feature Transform. See SIFT
scale-invariant SURF features

detecting 206-209
scene 217
Scharr operator 155
Select Color button 84
separable filter 145

287

setDelay method 256, 257
setInputImage method 78
setInput method 258
set method 249
setOutput method 265
setTagertColor method 73
setTargetColor method 78
setTo method 58
shape

describing, for connected
component 186-188

SIFT 210, 211
SIFT algorithm 216
Signals and Systems theory 141
similar images

retrieving, histogram comparison
used 112-115

simple image arithmetic
performing 59-62

singleton
controller object, accessing 80-82

singleton design pattern
using 80-82

Sobel operator 152, 158, 165, 199
SOURCES variable 24
spatial aliasing 146
spatial domain 141
Standard Template Library (STL) 49
Start Debugging button 19
step method 48
stereovision 228
stopAtFrameNo method 257
strategy design pattern

objectives 70
using, in algorithm design 70-74

structuring element 118
SURF algorithm 207, 209, 210, 212
SURF features

about 234
descibing 212-215

SURF threshold 236
symmetrical matching scheme 237

T
Taylor expansion 199, 270
TEMPLATE variable 24
thin lens equation 218

Threading Building Blocks (TBB) 55
threshold 192
total()*elemSize() 46
total method 44
trace 199
two color vectors

distance, computing between 74

U
union data structure 265

V
vertical Sobel image 150
video

feature points, tracking in 266-271
foreground objects, extracting in 272-275
opening 249

video file
frame rate, measuring in 249
opening 253

video frames
processing 251-257

VideoProcessor class 257, 259, 261, 264
video sequences

reading 248-250
writing 261-265

video signals 247
view 83
visual information 247

W
WatershedSegmenter class 131
watershed transformation

about 131
images, segmenting with 131-136

while loop 260
write method 262
writeNextFrame method 262

X
Xvid.org website 251

Z
zero-crossings 159

Thank you for buying
OpenCV 2 Computer Vision Application

Programming Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft Visual C++
Windows Applications
by Example
ISBN: 978-1-847195-56-2 Paperback: 440 pages

Code and explanation for real-world MFC C++
Applications

1.	 Learn C++ Windows programming by studying
realistic, interesting examples

2.	 A quick primer in Visual C++ for programmers
of other languages, followed by deep, thorough
examples

3.	 Example applications include a Tetris-style game,
a spreadsheet application, a drawing application,
and a word processor

OpenSceneGraph 3.0:
Beginner's Guide
ISBN: 978-1-849512-82-4 Paperback: 412 pages

Create high-performance virtual reality applications with
OpenSceneGraph, one of the best 3D graphics engines.

1.	 Gain a comprehensive view of the structure and
main functionalities of OpenSceneGraph

2.	 An ideal introduction for developing applications
using OpenSceneGraph

3.	 Develop applications around the concepts of
scene graphs and design patterns

Please check www.PacktPub.com for information on our titles

Python 2.6 Text Processing:
Beginners Guide
ISBN: 978-1-849512-12-1 Paperback: 380 pages

The easiest way to learn how to manipulate text with
Python

1.	 The easiest way to learn text processing with
Python

2.	 Deals with the most important textual data
formats you will encounter

3.	 Learn to use the most popular text processing
libraries available for Python

4.	 Packed with examples to guide you through

Inkscape 0.48 Illustrator's
Cookbook
ISBN: 978-1-849512-66-4 Paperback: 340 pages

109 recipes to create scalable vector graphics with
Inkscape

1.	 Create interesting illustrations and common web
design elements that can be used in real-life
projects

2.	 Gain a thorough understanding of all common
Inkscape tools and advanced features of Inkscape
0.48

3.	 Tips and tricks to speed up your drawing workflow

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Playing with Images
	Introduction
	Installing the OpenCV library
	Creating an OpenCV project with MS Visual C++
	Creating an OpenCV project with Qt
	Loading, displaying, and saving images
	Creating a GUI application using Qt

	Chapter 2:
Manipulating the Pixels
	Introduction
	Accessing pixel values
	Scanning an image with pointers
	Scanning an image with iterators
	Writing efficient image scanning loops
	Scanning an image with neighbor access
	Performing simple image arithmetic
	Defining regions of interest

	Chapter 3:
Processing Images with Classes
	Introduction
	Using the Strategy pattern in algorithm design
	Using a Controller to communicate with processing modules
	Using the Singleton design pattern
	Using the Model-View-Controller architecture to design an application
	Converting color spaces

	Chapter 4:
Counting the Pixels with Histograms
	Introduction
	Computing the image histogram
	Applying look-up tables to modify image appearance
	Equalizing the image histogram
	Backprojecting a histogram to detect specific image content
	Using the mean shift algorithm to find an object
	Retrieving similar images using histogram comparison

	Chapter 5:
Transforming Images with Morphological Operations
	Introduction
	Eroding and dilating images using morphological filters
	Opening and closing images using morphological filters
	Detecting edges and corners using morphological filters
	Segmenting images using watersheds
	Extracting foreground objects with the GrabCut algorithm

	Chapter 6:
Filtering the Images
	Introduction
	Filtering images using low-pass filters
	Filtering images using a median filter
	Applying directional filters to detect edges
	Computing the Laplacian of an image

	Chapter 7:
Extracting Lines, Contours and Components
	Introduction
	Detecting image contours with the Canny operator
	Detecting lines in images with the Hough transform
	Fitting a line to a set of points
	Extracting the components' contours
	Computing components' shape descriptors

	Chapter 8:
Detecting and Matching Interest Points
	Introduction
	Detecting Harris corners
	Detecting FAST features
	Detecting the scale-invariant SURF features
	Describing SURF features

	Chapter 9:
Estimating Projective Relations in Images
	Introduction
	Calibrating a camera
	Computing the fundamental matrix of an image pair
	Matching images using random sample consensus
	Computing a homography between two images

	Chapter 10:
Processing Video Sequences
	Introduction
	Reading video sequences
	Processing the video frames
	Writing video sequences
	Tracking feature points in video
	Extracting the foreground objects in video

	Index

