
M A N N I N G

Norman Maurer
Marvin Allen Wolfthal

FOREWORD BY Trustin Lee

www.allitebooks.com

http://www.allitebooks.org

Netty in Action

NORMAN MAURER

MARVIN ALLEN WOLFTHAL

M A N N I N G
SHELTER ISLAND
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Jeff Bleiel, Jennifer Stout
20 Baldwin Road Technical development editor: Mark Elston
PO Box 761 Copyeditor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Technical proofreaders: David Dossot, Neil Rutherford
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617291470
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
PART 1 NETTY CONCEPTS AND ARCHITECTURE...........................1

1 ■ Netty—asynchronous and event-driven 3

2 ■ Your first Netty application 15

3 ■ Netty components and design 32

4 ■ Transports 41

5 ■ ByteBuf 55

6 ■ ChannelHandler and ChannelPipeline 75

7 ■ EventLoop and threading model 96

8 ■ Bootstrapping 107

9 ■ Unit testing 121

PART 2 CODECS ..131
10 ■ The codec framework 133

11 ■ Provided ChannelHandlers and codecs 148

PART 3 NETWORK PROTOCOLS..171
12 ■ WebSocket 173

13 ■ Broadcasting events with UDP 187
iii

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSiv
PART 4 CASE STUDIES..201

14 ■ Case studies, part 1 203

15 ■ Case studies, part 2 226
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

contents
foreword xiii
preface xv
acknowledgments xviii
about this book xx
about the cover illustration xxv

PART 1 NETTY CONCEPTS AND ARCHITECTURE1

1 Netty—asynchronous and event-driven 3
1.1 Networking in Java 4

Java NIO 6 ■ Selectors 6

1.2 Introducing Netty 7
Who uses Netty? 8 ■ Asynchronous and event-driven 9

1.3 Netty’s core components 10
Channels 10 ■ Callbacks 10 ■ Futures 11
Events and handlers 12 ■ Putting it all together 13

1.4 Summary 14
v

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSvi
2 Your first Netty application 15
2.1 Setting up the development environment 15

Obtaining and installing the Java Development Kit 16
Downloading and installing an IDE 16 ■ Downloading and
installing Apache Maven 16 ■ Configuring the toolset 17

2.2 Netty client/server overview 17
2.3 Writing the Echo server 18

ChannelHandlers and business logic 18 ■ Bootstrapping
the server 20

2.4 Writing an Echo client 22
Implementing the client logic with ChannelHandlers 23
Bootstrapping the client 24

2.5 Building and running the Echo server and client 26
Running the build 26 ■ Running the Echo server and client 28

2.6 Summary 31

3 Netty components and design 32
3.1 Channel, EventLoop, and ChannelFuture 33

Interface Channel 33 ■ Interface EventLoop 33
Interface ChannelFuture 34

3.2 ChannelHandler and ChannelPipeline 34
Interface ChannelHandler 34 ■ Interface ChannelPipeline 35
A closer look at ChannelHandlers 37 ■ Encoders and
decoders 37 ■ Abstract class SimpleChannelInboundHandler 38

3.3 Bootstrapping 38
3.4 Summary 40

4 Transports 41
4.1 Case study: transport migration 42

Using OIO and NIO without Netty 42 ■ Using OIO and
NIO with Netty 44 ■ Non-blocking Netty version 45

4.2 Transport API 46
4.3 Included transports 49

NIO—non-blocking I/O 49 ■ Epoll—native non-blocking
transport for Linux 51 ■ OIO—old blocking I/O 51
Local transport for communication within a JVM 52
Embedded transport 53
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTS vii
4.4 Transport use cases 53
4.5 Summary 54

5 ByteBuf 55
5.1 The ByteBuf API 56
5.2 Class ByteBuf—Netty’s data container 56

How it works 56 ■ ByteBuf usage patterns 57

5.3 Byte-level operations 60
Random access indexing 60 ■ Sequential access indexing 60
Discardable bytes 61 ■ Readable bytes 61 ■ Writable bytes 62
Index management 62 ■ Search operations 63
Derived buffers 64 ■ Read/write operations 65
More operations 69

5.4 Interface ByteBufHolder 69
5.5 ByteBuf allocation 70

On-demand: interface ByteBufAllocator 70 ■ Unpooled
buffers 71 ■ Class ByteBufUtil 72

5.6 Reference counting 72
5.7 Summary 73

6 ChannelHandler and ChannelPipeline 75
6.1 The ChannelHandler family 75

The Channel lifecycle 76 ■ The ChannelHandler lifecycle 76
Interface ChannelInboundHandler 77 ■ Interface
ChannelOutboundHandler 78 ■ ChannelHandler adapters 79
Resource management 80

6.2 Interface ChannelPipeline 82
Modifying a ChannelPipeline 83 ■ Firing events 85

6.3 Interface ChannelHandlerContext 87
Using ChannelHandlerContext 88 ■ Advanced uses of
ChannelHandler and ChannelHandlerContext 91

6.4 Exception handling 92
Handling inbound exceptions 92 ■ Handling outbound
exceptions 93

6.5 Summary 95
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
7 EventLoop and threading model 96
7.1 Threading model overview 97
7.2 Interface EventLoop 98

I/O and event handling in Netty 4 99 ■ I/O operations
in Netty 3 100

7.3 Task scheduling 100
JDK scheduling API 100 ■ Scheduling tasks
using EventLoop 101

7.4 Implementation details 103
Thread management 103 ■ EventLoop/thread allocation 104

7.5 Summary 105

8 Bootstrapping 107
8.1 Bootstrap classes 108
8.2 Bootstrapping clients and connectionless protocols 109

Bootstrapping a client 110 ■ Channel and EventLoopGroup
compatibility 111

8.3 Bootstrapping servers 113
The ServerBootstrap class 113 ■ Bootstrapping a server 114

8.4 Bootstrapping clients from a Channel 115
8.5 Adding multiple ChannelHandlers during a

bootstrap 117
8.6 Using Netty ChannelOptions and attributes 118
8.7 Bootstrapping DatagramChannels 119
8.8 Shutdown 120
8.9 Summary 120

9 Unit testing 121
9.1 Overview of EmbeddedChannel 122
9.2 Testing ChannelHandlers with EmbeddedChannel 123

Testing inbound messages 124 ■ Testing outbound
messages 126

9.3 Testing exception handling 128
9.4 Summary 130
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
PART 2 CODECS ..131

10 The codec framework 133
10.1 What is a codec? 133
10.2 Decoders 134

Abstract class ByteToMessageDecoder 134 ■ Abstract class
ReplayingDecoder 136 ■ Abstract class
MessageToMessageDecoder 137 ■ Class
TooLongFrameException 138

10.3 Encoders 139
Abstract class MessageToByteEncoder 139
Abstract class MessageToMessageEncoder 141

10.4 Abstract codec classes 142
Abstract class ByteToMessageCodec 142
Abstract class MessageToMessageCodec 143
Class CombinedChannelDuplexHandler 146

10.5 Summary 147

11 Provided ChannelHandlers and codecs 148
11.1 Securing Netty applications with SSL/TLS 148
11.2 Building Netty HTTP/HTTPS applications 151

HTTP decoder, encoder, and codec 151 ■ HTTP message
aggregation 153 ■ HTTP compression 154
Using HTTPS 155 ■ WebSocket 155

11.3 Idle connections and timeouts 158
11.4 Decoding delimited and length-based protocols 160

Delimited protocols 160 ■ Length-based protocols 163

11.5 Writing big data 165
11.6 Serializing data 167

JDK serialization 167 ■ Serialization with JBoss
Marshalling 167 ■ Serialization via Protocol Buffers 169

11.7 Summary 170

PART 3 NETWORK PROTOCOLS171

12 WebSocket 173
12.1 Introducing WebSocket 174
12.2 Our example WebSocket application 174
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
12.3 Adding WebSocket support 175
Handling HTTP requests 175 ■ Handling WebSocket
frames 178 ■ Initializing the ChannelPipeline 180
Bootstrapping 182

12.4 Testing the application 183
What about encryption? 184

12.5 Summary 186

13 Broadcasting events with UDP 187
13.1 UDP basics 188
13.2 UDP broadcast 188
13.3 The UDP sample application 188
13.4 The message POJO: LogEvent 189
13.5 Writing the broadcaster 190
13.6 Writing the monitor 195
13.7 Running the LogEventBroadcaster and

LogEventMonitor 198
13.8 Summary 199

PART 4 CASE STUDIES ..201

14 Case studies, part 1 203
14.1 Droplr—building mobile services 203

How it all started 204 ■ How Droplr works 204
Creating a faster upload experience 204 ■ The technology
stack 206 ■ Performance 210 ■ Summary—standing on the
shoulders of giants 211

14.2 Firebase—a real-time data synchronization service 211
The Firebase architecture 212 ■ Long polling 213
HTTP 1.1 keep-alive and pipelining 215 ■ Control of
SslHandler 216 ■ Firebase summary 218

14.3 Urban Airship—building mobile services 218
Basics of mobile messaging 219 ■ Third-party delivery 220
Binary protocol example 220 ■ Direct to device delivery 223
Netty excels at managing large numbers of concurrent
connections 224 ■ Summary—Beyond the perimeter
of the firewall 225

14.4 Summary 225
Licensed to Thomas Snead <n.ordickan@gmail.com>

CONTENTS xi
15 Case studies, part 2 226
15.1 Netty at Facebook: Nifty and Swift 226

What is Thrift? 227 ■ Improving the state of Java
Thrift using Netty 228 ■ Nifty server design 228
Nifty asynchronous client design 231 ■ Swift: a faster
way to build Java Thrift service 233 ■ Results 233
Facebook summary 235

15.2 Netty at Twitter: Finagle 236
Twitter’s growing pains 236 ■ The birth of Finagle 236
How Finagle works 237 ■ Finagle’s abstraction 242
Failure management 243 ■ Composing services 244
The future: Netty 245 ■ Twitter summary 245

15.3 Summary 245

appendix Introduction to Maven 246

index 265
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

foreword
There was a day when people believed that web application servers would let us forget
about how we write HTTP or RPC servers. Unfortunately, this daydream did not last
long. The amount of load and the pace of the functional changes we are dealing with
continue to increase beyond the extent that a traditional three-tier architecture can
afford, and we are being forced to split our application into many pieces and distrib-
ute them into a large cluster of machines.

 Running such a large distributed system leads to two interesting problems—the
cost of operation and latency. How many machines could we save if we improved the per-
formance of a single node by 30%, or by more than 100%? How could we achieve min-
imal latency when a query from a web browser triggers dozens of internal remote
procedure calls across many different machines?

 In Netty in Action, the first-ever book about the Netty project, Norman Maurer, one
of the key contributors to Netty, gives you the definitive answers to such questions by
showing you how to build a high-performance and low-latency network applica-
tion in Netty. By the time you get to the end of this book, you’ll be able to build every
imaginable network application, from a lightweight HTTP server to a highly custom-
ized RPC server.

 What’s impressive about Netty in Action is not only that it is written by the key con-
tributor who knows every single bit of Netty, but that it also contains case studies from
several companies—Twitter, Facebook, and Firebase to name a few—that use Netty in
their production systems. I’m confident that these case studies will inspire you by
xiii

Licensed to Thomas Snead <n.ordickan@gmail.com>

FOREWORDxiv
showing you how the companies that use them were able to unleash the power of their
Netty-based applications.

 You might be astonished to learn that Netty started as my personal project back in
2001 when I was an undergraduate student (http://t.motd.kr/ko/archives/1930), and
that the project is still alive and kicking today, thanks to enthusiastic contributors like
Norman, who spent many sleepless nights devoted to the project, (http://netty.io/
community.html). I hope this book opens up another aspect of the project by inspiring
its readers to contribute and continue to “open the future of network programming.”

TRUSTIN LEE

FOUNDER OF NETTY
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://t.motd.kr/ko/archives/1930
http://netty.io/community.html
http://netty.io/community.html

preface
Looking back, I still can’t believe that I did it.

 When I started to contribute to Netty in late 2011, I would never have imagined
that I’d be writing a book about Netty and be one of the core developers of the Frame-
work itself.

 It all started when I got involved in 2009 with the Apache James project, a Java-
based mail server developed under the Apache Software Foundation.

 Apache James, like many applications, required a solid networking abstraction to
build upon. While investigating the field of projects that provide networking abstrac-
tions, I stumbled upon Netty and immediately fell in love with it. As I became more
familiar with Netty from a user’s perspective, I started to turn my gaze on improve-
ments and giving back to the community.

 Despite my first contributions being of limited scope, it became obvious very
quickly how beneficial making contributions and the related discussions with the com-
munity, especially with Trustin Lee, the founder of the project, were to my personal
growth. This experience grabbed hold of me, and I enjoyed spending my free time
becoming more engaged in the community. I found myself helping on mailing lists
and joining discussions on the IRC channel. Working on Netty began as a hobby but it
quickly evolved into a passion.

 My passion for Netty eventually led to my employment at Red Hat. This was a
dream come true, as Red Hat paid me to work on the project I had come to love. I
eventually came to know Claus Ibsen who was working on Apache Camel at the time
(and still does). Claus and I came to the realization that Netty had a solid user base
xv

Licensed to Thomas Snead <n.ordickan@gmail.com>

PREFACExvi
and good JavaDocs, but it lacked a higher level of documentation. Claus is the author
of Camel in Action (Manning Publications, 2010), and he turned me on to the idea of
writing a similar book for Netty. I thought about the idea for a few weeks, and eventu-
ally I was sold. This is how Netty in Action got off the ground.

 While writing Netty in Action, my involvement in the community continued to grow.
I eventually became the second most active contributor (after Trustin Lee) with over
1,000 commits. I found myself speaking about Netty at conferences and technical
meetups around the world. Eventually Netty opened another employment opportu-
nity at Apple Inc. where I am currently employed as a Senior Software Engineer on
the Cloud Infrastructure Engineering Team. I continue to work on Netty and make
regular contributions back to the community, while helping to drive the project.

NORMAN MAURER

CLOUD INFRASTRUCTURE ENGINEERING, APPLE

My work as a Dell Services consultant at Harvard Pilgrim Health Care in Wellesley, MA,
has focused primarily on creating reusable infrastructure components. Our goal is to
expand the common code base in a way that not only benefits the software process in
general, but also relieves application developers of responsibility for plumbing code
that can be both pesky and mundane.

 At one point it came to my attention that two related projects were working with
a third-party claims-processing system that supported only direct TCP/IP communi-
cations. One of the projects needed to reimplement in Java a somewhat under-
documented legacy COBOL module built on the vendor’s proprietary delimited format.
This module was ultimately replaced by the other project, which would use a more
recent XML-based interface to the same claims system (but still using straight sockets,
no SOAP!).

 This seemed to me an ideal opportunity to develop a common API, and an interest-
ing one at that. I knew there would be stringent throughput and availability require-
ments and also that the design was still evolving. Clearly, the underlying networking
code had to be completely decoupled from the business logic in order to support
rapid cycles of iteration.

 My research into high-performance networking frameworks for Java led me
straight to Netty. (The hypothetical project you’ll read about at the start of chapter 1
is pretty much taken from real life.) I soon became convinced that Netty’s approach,
using dynamically configurable encoders and decoders, was a perfect fit for our
needs: both projects would employ the same API, deployed with the handlers needed
for the specific data format in use. I became even more convinced when I discovered
that the vendor’s product was also based on Netty!

 Just at that time I learned that the book Netty in Action I had been hoping for was
actually in the works. I read the early drafts and soon contacted Norman with ques-
tions and a few suggestions. In the course of our conversations, we spoke often about
Licensed to Thomas Snead <n.ordickan@gmail.com>

PREFACE xvii
the need to keep the end user’s point of view in mind, and since I was currently
involved in a live Netty project, I was happy to take on this role.

 I hope that with this approach we’ve succeeded in meeting the needs of develop-
ers. If you have any suggestions on how we can make this book more useful, please
contact us at https://forums.manning.com/forums/netty-in-action.

MARVIN ALLEN WOLFTHAL

DELL SERVICES
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://forums.manning.com/forums/netty-in-action

acknowledgments
The Manning team made the work on this book a joy, and they never complained
when the joy went on a bit longer than anticipated. From Mike Stephens, who made it
happen, and Jeff Bleiel, from whom we learned something new about collaboration,
to Jennifer Stout, Andy Carroll, and Elizabeth Martin, who exhibited a level of calm
patience that we can only envy, all have upheld standards of professionalism and qual-
ity that inspire authors to do their best.

 Thanks to the people who helped to review this book, whether by reading the early
release chapters and posting corrections in the Author Online forum, or by reviewing
the manuscript at various stages during its development. You are part of it and should
be proud. Without you, the book would not be the same. Special thanks to the follow-
ing reviewers: Achim Friedland, Arash Bizhan Zadeh, Bruno Georges, Christian Bach,
Daniel Beck, Declan Cox, Edward Ribeiro, Erik Onnen, Francis Marchi, Gregor
Zurowski, Jian Jin, Jürgen Hoffmann, Maksym Prokhorenko, Nicola Grigoletti, Renato
Felix, and Yestin Johnson. Also to our excellent technical proofreaders, David Dossot
and Neil Rutherford.

 We are very grateful to and would like to acknowledge Bruno de Carvalho, Sara
Robinson, Greg Soltis, Erik Onnen, Andrew Cox, and Jeff Smick for contributing the
case studies you will find in chapters 14 and 15.

 Last but not least, thanks to all the people who support Netty and OpenSource in
general; without you, the community, this project wouldn’t have been possible. Through
the community we have met new friends, talked at conferences all over the world, and
grown both professionally and personally.
xviii

Licensed to Thomas Snead <n.ordickan@gmail.com>

ACKNOWLEDGMENTS xix
Norman Maurer

I’d like to thank my former coworker and friend Jürgen Hoffmann (aka Buddy).
Jürgen helped me find my way into the OpenSource world and showed me what cool
stuff can be built when you are brave enough to jump in. Without him there is a
chance I would have never started programming and thus never found my true profes-
sional passion.

 Another big thank you goes out to my friend Trustin Lee, founder of Netty, who
helped and encouraged me to contribute to the Netty Project in the first place and
who penned the foreword to our book. I’m honored to know you and to be able to
call you a friend! I’m confident that by continuing to work together, Netty will stay
awesome and be around for a long time!

 Also I want to thank my coauthor Marvin Wolfthal. Despite Marvin joining the
project late in its lifecycle, he helped to improve the overall structure and content by a
considerable amount. Without him, the book would not have been possible in its cur-
rent form. Which brings me to the Manning team itself, who were always helpful and
gave the right guidance to make the idea of writing a book reality.

 Thanks to my parents, Peter and Christa, for always supporting my visions and me.
 Most importantly, thanks to my wife Jasmina and my kids Mia Soleil and Ben, for

all the support they showed during the process of writing this book. Without you this
book would not have been possible.

Marvin Wolfthal

First of all, I want to thank Norman Maurer, my coauthor, for both his fine work and
his kindness. Though I came late to the project, I was made to feel as if I had been
part of it from day one.

 To my colleagues past and present at Dell Services and Harvard Pilgrim Health
Care, I offer sincere thanks for their help and encouragement. They have created that
rare environment where new ideas are not only expressed, but realized. To Deborah
Norton, Larry Rapisarda, Dave Querusio, Vijay Bhatt, Craig Bogovich, and Sharath
Krishna, special thanks for their support, and even more, their trust—I doubt many
software developers have been granted the creative opportunities I have enjoyed in
the past four years, including adding Netty to our toolkit.

 But most of all, thanks to my beloved wife, Katherine, who never lets me forget the
things that really matter.
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

about this book
Netty is a Java framework for the rapid development of high-performance network
applications. It encapsulates the complexities of network programming and makes
the most recent advances in networking and web technologies accessible to a broader
range of developers than ever before.

 Netty is more than a collection of interfaces and classes; it also defines an architec-
tural model and a rich set of design patterns. But until now, the lack of a comprehen-
sive and systematic user’s guide has been an obstacle to getting started with Netty, a
situation Netty in Action aims to remedy. Beyond explaining the details of the frame-
work components and APIs, this book will show how Netty can help you to write more
efficient, reusable, and maintainable code.

Who should read this book?
This book assumes you are comfortable with intermediate Java topics such as generics
and multithreading. Experience with advanced network programming is not required,
but familiarity with the basic Java networking APIs will prove very helpful.

 Netty uses Apache Maven as its build management tool. If you have not used
Maven, the appendix will provide the information you need to run the book’s sample
code. You’ll also be able to reuse the sample Maven configurations as starting points
for your own Netty-based projects.

Roadmap
Netty in Action has four parts and an appendix.
xx

Licensed to Thomas Snead <n.ordickan@gmail.com>

ABOUT THIS BOOK xxi
Part 1: Netty concepts and architecture

Part 1 is a detailed guide to the framework, covering its design, components, and pro-
gramming interfaces.

 Chapter 1 begins with a brief overview of the blocking and non-blocking network
APIs and the corresponding JDK interfaces. We introduce Netty as a toolkit for build-
ing highly scalable, asynchronous and event-driven networking applications. We take a
first look at the basic building blocks of the framework: channels, callbacks, futures,
events, and handlers.

 Chapter 2 explains how to configure your system for building and running with
the book’s sample code. We test it out with a simple application, a server that echoes
the messages it receives from connected clients. We introduce bootstrapping—assem-
bling and configuring all the components of an application at runtime.

 Chapter 3 begins with a discussion of the technical and architectural aspects of
Netty. The core components of the framework are introduced: Channel, EventLoop,
ChannelHandler, and ChannelPipeline. The chapter concludes with an explanation
of the differences between bootstrapping servers and clients.

 Chapter 4 discusses network transports and contrasts the use of blocking and non-
blocking transports with the JDK APIs and with Netty. We study the interface hierarchy
underlying Netty’s transport API and the transport types they support.

 Chapter 5 is devoted to the framework’s data handling API—ByteBuf, Netty’s byte
container. We describe its advantages over the JDK’s ByteBuffer, and the ways in
which the memory used by a ByteBuf can be allocated and accessed. We show how to
manage memory resources using reference counting.

 Chapter 6 focuses on the core components ChannelHandler and ChannelPipeline,
which are responsible for dispatching application processing logic and moving data
and events through the network layer. Additional topics include the role of Channel-
HandlerContext in implementing advanced use cases and the sharing of Channel-
Handlers among multiple ChannelPipelines. The chapter concludes with an illustration
of handling exceptions triggered by inbound and outbound events.

 Chapter 7 provides a general overview of threading models and covers Netty’s
threading model in detail. We examine interface EventLoop, which is the principal
component of Netty’s concurrency API, and explain its relationship with threads and
Channels. This information is essential for understanding how Netty implements asyn-
chronous, event-driven networking. We show how to perform task scheduling using
EventLoop.

 Chapter 8 explores bootstrapping in depth, starting with the Bootstrap class hier-
archy. We revisit the basic use cases as well as some special ones, such as bootstrapping
a client connection within a server application, bootstrapping datagram channels, and
adding multiple channels during the bootstrapping phase. The chapter concludes
with a discussion of how to shut down an application gracefully and release all resources
in an orderly fashion.
Licensed to Thomas Snead <n.ordickan@gmail.com>

ABOUT THIS BOOKxxii
 Chapter 9 is about unit testing ChannelHandlers, for which Netty provides a special
Channel implementation, EmbeddedChannel. The examples show how to use this class
with JUnit to test both inbound and outbound handler implementations.

Part 2: Codecs

Data conversion is one of the most common operations in network programming.
Part 2 describes the rich set of tools Netty provides to simplify this task.

 Chapter 10 begins by explaining decoders and encoders, which transform
sequences of bytes from one format to another. A ubiquitous example is converting an
unstructured byte stream to and from a protocol-specific layout. A codec, then, is a
component that combines both an encoder and a decoder in order to handle conver-
sions in both directions. We provide several examples to show how easy it is to create
custom decoders and encoders with Netty’s codec framework classes.

 Chapter 11 examines the codecs and ChannelHandlers Netty provides for a variety
of use cases. These classes include ready-to-use codecs for protocols such as SSL/TLS,
HTTP/HTTPS, WebSocket, and SPDY, and decoders that can be extended to handle
almost any delimited, variable length or fixed-length protocol. The chapter con-
cludes with a look at framework components for writing large volumes of data and
for serialization.

Part 3: Network protocols

Part 3 elaborates on several network protocols that have been touched on briefly earlier
in the book. We’ll see once again how Netty makes it easy to adopt complex APIs in your
applications without having to be concerned with their internal complexities.

 Chapter 12 shows how to use the WebSocket protocol to implement bidirectional
communications between a web server and client. The example application is a chat
room server that allows all connected users to communicate with one another in
real time.

 Chapter 13 illustrates Netty’s support for connectionless protocols with a server
and client that utilize the broadcast capabilities of the User Datagram Protocol (UDP).
As in the previous examples, we employ a set of protocol-specific support classes:
DatagramPacket and NioDatagramChannel.

Part 4: Case studies

Part 4 presents five case studies submitted by well-known companies that have used
Netty to implement mission-critical systems. These examples illustrate not only real-
world usages of the framework components we have discussed throughout the book,
but also the application of Netty’s design and architectural principles to building
highly scalable and extensible applications.

 Chapter 14 has case studies submitted by Droplr, Firebase, and Urban Airship.
 Chapter 15 has case studies submitted by Facebook and Twitter.
Licensed to Thomas Snead <n.ordickan@gmail.com>

ABOUT THIS BOOK xxiii
Appendix: Introduction to Maven

The primary goal of the appendix is to provide a basic introduction to Apache Maven
so that you can compile and run the book’s sample code listings and extend them to
create your own projects as you begin to work with Netty.

 The following topics are presented:

■ The primary goals and uses of Maven
■ Installing and configuring Maven
■ Basic Maven concepts: the POM file, artifacts, coordinates, dependencies, plu-

gins, and repositories
■ Example Maven configurations, POM inheritance, and aggregation
■ Maven’s command-line syntax

Code conventions and downloads
This book provides copious examples that show how you can make use of each of the
topics covered. Source code in listings or in text appears in a fixed-width font like
this to separate it from ordinary text. In addition, class and method names, object
properties, and other code-related terms and content in text are presented using
fixed-width font.

 Occasionally, code is italicized, as in reference.dump(). In this case reference
should not be entered literally but replaced with the content that is required.

 The book’s source code is available from the publisher’s website at www.manning.com/
books/netty-in-action and at GitHub: https://github.com/normanmaurer/netty-in-
action. It is structured as a multimodule Maven project, with a top-level POM and mod-
ules corresponding to the book’s chapters.

About the authors
Norman Maurer is one of the core developers of Netty, a member of the Apache Soft-
ware Foundation, and a contributor to many OpenSource Projects over the past years.
He’s a Senior Software Engineer for Apple, where he works on Netty and other net-
work-related projects as part of the iCloud Team.

Marvin Wolfthal has been active in many areas of software development as a devel-
oper, architect, lecturer, and author. He has been working with Java since its earliest
days and assisted Sun Microsystems in developing its first programs dedicated to pro-
moting distributed object technologies. As part of these efforts he wrote the first cross-
language programming courses using C++, Java, and CORBA for Sun Education. Since
then his primary focus has been middleware design and development, primarily for
the financial services industry. Currently a consultant with Dell Services, he is engaged
in extending methodologies that have emerged from the Java world to other areas of
enterprise computing; for example, applying the practices of Continuous Integra-
tion to database development. Marvin is also a pianist and composer whose work is
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.manning.com/books/netty-in-action
http://www.manning.com/books/netty-in-action
https://github.com/normanmaurer/netty-in-action
https://github.com/normanmaurer/netty-in-action

ABOUT THIS BOOKxxiv
published by Universal Edition, Vienna. He and his wife Katherine live in Weston, MA,
with their three feline companions Fritz, Willy, and Robbie.

Author Online
Purchase of Netty in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the authors and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/books/netty-in-action. This
page provides information on how to get on the forum once you are registered, what
kind of help is available, and the rules of conduct on the forum. It also provides links
to the source code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.manning.com/books/netty-in-action

about the cover illustration
The figure on the cover of Netty in Action is captioned “A Resident of the Luxembourg
Quarter.” The illustration is taken from a nineteenth-century collection of works by
many artists, edited by Louis Curmer and published in Paris in 1841. The title of the
collection is Les Français peints par eux-mêmes, which translates as The French People
Painted by Themselves. Each illustration is finely drawn and colored by hand and the
rich variety of drawings in the collection reminds us vividly of how culturally apart the
world’s regions, towns, villages, and neighborhoods were just 200 years ago. Isolated
from each other, people spoke different dialects and languages. In the streets or in
the countryside, it was easy to identify where they lived and what their trade or station
in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
pictures from collections such as this one.
xxv

Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 1

Netty concepts
and architecture

Netty is an advanced framework for creating high-performance network-
ing applications. In part 1 we’ll explore its capabilities in depth and demonstrate
three main points:

■ You don’t have to be a networking expert to build applications with Netty.
■ Using Netty is much easier than using the underlying Java APIs directly.
■ Netty promotes good design practices, such as keeping your application

logic decoupled from the network layer.

In chapter 1, we’ll begin with a summary of the evolution of Java networking. After
we’ve reviewed the basic concepts of asynchronous communications and event-
driven processing we’ll take a first look at Netty’s core components. You’ll be ready
to build your first Netty application in chapter 2! In chapter 3 you’ll begin your
detailed exploration of Netty, from its core network protocols (chapter 4) and
data-handling layers (chapters 5–6) to its concurrency model (chapter 7).

 We’ll conclude part 1 by putting all the pieces together, and you’ll see how to
configure the components of a Netty-based application to work together at run-
time (chapter 8) and finally, how Netty helps you to test your applications (chap-
ter 9).
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Netty—asynchronous
and event-driven
Suppose you’re just starting on a new mission-critical application for a large, impor-
tant company. In the first meeting you learn that the system must scale up to
150,000 concurrent users with no loss of performance. All eyes are on you. What do
you say?

 If you can say with confidence, “Sure, no problem,” then hats off to you. But
most of us would probably take a more cautious position, like: “Sounds doable.”
Then, as soon as we could get to a computer, we’d search for “high performance
Java networking.”

 If you run this search today, among the first results you’ll see this:

This chapter covers
■ Networking in Java
■ Introducing Netty
■ Netty’s core components

Netty: Home

netty.io/
Netty is an asynchronous event-driven network application framework for rapid
development of maintainable high performance protocol servers & clients.
3

Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

4 CHAPTER 1 Netty—asynchronous and event-driven
If you discovered Netty this way, as many have, your next steps were probably to
browse the site, download the code, peruse the Javadocs and a few blogs, and start
hacking. If you already had solid network programming experience, you probably
made good progress; otherwise, perhaps not.

 Why? High-performance systems like the one in our example require more than
first-class coding skills; they demand expertise in several complex areas: networking,
multithreading, and concurrency. Netty captures this domain knowledge in a form
that can be used even by networking neophytes. But up to now, the lack of a compre-
hensive guide has made the learning process far more difficult than need be—hence
this book.

 Our primary goal in writing it has been to make Netty accessible to the broadest
possible range of developers. This includes many who have innovative content or ser-
vices to offer but neither the time nor inclination to become networking specialists. If
this applies to you, we believe you’ll be pleasantly surprised at how quickly you’ll be
ready to create your first Netty application. At the other end of the spectrum, we aim
to support advanced practitioners who are seeking tools for creating their own net-
work protocols.

 Netty does indeed provide an extremely rich networking toolkit, and we’ll spend
most of our time exploring its capabilities. But Netty is ultimately a framework, and its
architectural approach and design principles are every bit as important as its technical
content. Accordingly, we’ll be talking about points such as

■ Separation of concerns (decoupling business and network logic)
■ Modularity and reusability
■ Testability as a first-order requirement

In this first chapter, we’ll begin with background on high-performance networking,
particularly its implementation in the Java Development Kit (JDK). With this context
in place, we’ll introduce Netty, its core concepts, and building blocks. By the end of
the chapter, you’ll be ready to tackle your first Netty-based client and server.

1.1 Networking in Java
Developers who started out in the early days of networking spent a lot of time learning
the intricacies of the C language socket libraries and dealing with their quirks on differ-
ent operating systems. The earliest versions of Java (1995–2002) introduced enough of
an object-oriented façade to hide some of the thornier details, but creating a complex
client/server protocol still required a lot of boilerplate code (and a fair amount of
peeking under the hood to get it all working smoothly).

 Those first Java APIs (java.net) supported only the so-called blocking functions
provided by the native system socket libraries. The following listing shows an unadorned
example of server code using these calls.

Licensed to Thomas Snead <n.ordickan@gmail.com>

5Networking in Java

Proces
l

beg
ServerSocket serverSocket = new ServerSocket(portNumber);
Socket clientSocket = serverSocket.accept();
BufferedReader in = new BufferedReader(
 new InputStreamReader(clientSocket.getInputStream()));
PrintWriter out =
 new PrintWriter(clientSocket.getOutputStream(), true);
String request, response;
while ((request = in.readLine()) != null) {
 if ("Done".equals(request) (
 break;
 }
 response = processRequest(request);
 out.println(response);
}

The previous listing implements one of the basic Socket API patterns. Here are the
most important points:

■ accept() blocks until a connection is established on the ServerSocket b, then
returns a new Socket for communication between the client and the server.
The ServerSocket then resumes listening for incoming connections.

■ A BufferedReader and a PrintWriter are derived from the Socket’s input and
output streams c. The former reads text from a character input stream, the lat-
ter prints formatted representations of objects to a text output stream.

■ readLine() blocks until a string terminated by a linefeed or carriage return is
read in d.

■ The client’s request is processed e.

This code will handle only one connection at a time. To manage multiple, concurrent
clients, you need to allocate a new Thread for each new client Socket, as shown in
figure 1.1.

 Let’s consider the implications of such an approach. First, at any point many threads
could be dormant, just waiting for input or output data to appear on the line. This is

Listing 1.1 Blocking I/O example

A new ServerSocket listens for connection
requests on the specified port.

accept() call
blocks until a
connection is
established.

 b

Stream objects
are derived
from those of
the Socket.

 c

sing
oop
ins.

 d

If the client has sent “Done”,
the processing loop is exited.

The request is passed to the
server’s processing method.

 e

The server’s response
is sent to the client.

The processing
loop continues.

Socket

Thread

read/write

Socket

Thread

read/write

Socket

Thread

read/write

Figure 1.1 Multiple connections
using blocking I/O
Licensed to Thomas Snead <n.ordickan@gmail.com>

6 CHAPTER 1 Netty—asynchronous and event-driven
likely to be a waste of resources. Second, each thread requires an allocation of stack
memory whose default size ranges from 64 KB to 1 MB, depending on the OS. Third,
even if a Java virtual machine (JVM) can physically support a very large number of
threads, the overhead of context-switching will begin to be troublesome long before
that limit is reached, say by the time you reach 10,000 connections.

 While this approach to concurrency might be acceptable for a small-to-moderate
number of clients, the resources needed to support 100,000 or more simultaneous
connections make it far from ideal. Fortunately, there is an alternative.

1.1.1 Java NIO

In addition to the blocking system calls underlying the code in listing 1.1, the native
socket libraries have long included non-blocking calls, which provide considerably more
control over the utilization of network resources.

■ Using setsockopt() you can configure sockets so that read/write calls will
return immediately if there is no data; that is, if a blocking call would have
blocked.1

■ You can register a set of non-blocking sockets using the system’s event notification
API2 to determine whether any of them have data ready for reading or writing.

Java support for non-blocking I/O was introduced in 2002, with the JDK 1.4 package
java.nio.

1.1.2 Selectors

Figure 1.2 shows a non-blocking design that virtually eliminates the drawbacks described
in the previous section.

 The class java.nio.channels.Selector is the linchpin of Java’s non-blocking I/
O implementation. It uses the event notification API to indicate which, among a set of
non-blocking sockets, are ready for I/O. Because any read or write operation can be

1 W. Richard Stevens, “4.3BSD returned EWOULDBLOCK if an operation on a non-blocking descriptor could
not complete without blocking,” Advanced Programming in the UNIX Environment (Addison-Wesley, 1992),
p. 364.

2 Also referred to as I/O multiplexing, this interface has evolved over the years from the original select()
and poll() calls to more performant implementations. See Sangjin Han’s “Scalable Event Multiplexing:
epoll vs. kqueue” article, www.eecs.berkeley.edu/~sangjin/2012/12/21/epoll-vs-kqueue.html.

New or non-blocking?
NIO was originally an acronym for New Input/Output, but the Java API has been around
long enough that it is no longer new. Most users now think of NIO as signifying non-
blocking I/O, whereas blocking I/O is OIO or old input/output. You may also encoun-
ter references to plain I/O.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.eecs.berkeley.edu/~sangjin/2012/12/21/epoll-vs-kqueue.html

7Introducing Netty
checked at any time for its completion status, a single thread, as shown in figure 1.2,
can handle multiple concurrent connections.

 Overall, this model provides much better resource management than the blocking
I/O model:

■ Many connections can be handled with fewer threads, and thus with far less
overhead due to memory management and context-switching.

■ Threads can be retargeted to other tasks when there is no I/O to handle.

Although many applications have been built using the Java NIO API directly, doing so
correctly and safely is far from trivial. In particular, processing and dispatching I/O
reliably and efficiently under heavy load is a cumbersome and error-prone task best
left to a high-performance networking expert—Netty.

1.2 Introducing Netty
Not so long ago the scenario we presented at the outset—supporting thousands upon
thousands of concurrent clients—would have been judged impossible. Today, as sys-
tem users we take this capability for granted, and as developers we expect the bar to
move even higher. We know there will always be demands for greater throughput and
scalability—to be delivered at lower cost.

 Don’t underestimate the importance of that last point. We’ve learned from long
and painful experience that the direct use of low-level APIs exposes complexity and
introduces a critical dependency on skills that tend to be in short supply. Hence, a
fundamental concept of object orientation: hide the complexity of underlying imple-
mentations behind simpler abstractions.

 This principle has stimulated the development of numerous frameworks that
encapsulate solutions to common programming tasks, many of them germane to
distributed systems development. It’s probably safe to assert that all professional
Java developers are familiar with at least one of these.3 For many of us they have

3 Spring is probably the best known and is actually an entire ecosystem of application frameworks addressing
object creation, batch processing, database programming, and so on.

Socket

read/write

Selector

Thread

Socket

read/write

Socket

read/write

Figure 1.2 Non-blocking I/O
using Selector
Licensed to Thomas Snead <n.ordickan@gmail.com>

8 CHAPTER 1 Netty—asynchronous and event-driven
become indispensable, enabling us to meet both our technical requirements and
our schedules.

 In the networking domain, Netty is the preeminent framework for Java.4 Harness-
ing the power of Java’s advanced APIs behind an easy-to-use API, Netty leaves you free
to focus on what really interests you—the unique value of your application.

 Before we begin our first close look at Netty, please examine the key features sum-
marized in table 1.1. Some are technical, and others are more architectural or philo-
sophical. We’ll revisit them more than once in the course of this book.

1.2.1 Who uses Netty?

Netty has a vibrant and growing user community that includes large companies such
as Apple, Twitter, Facebook, Google, Square, and Instagram, as well as popular open
source projects such as Infinispan, HornetQ, Vert.x, Apache Cassandra, and Elastic-
search, all of which have employed its powerful network abstractions in their core
code.5 Among startups, Firebase and Urban Airship are using Netty, the former for
long-lived HTTP connections and the latter for all kinds of push notifications.

 Whenever you use Twitter, you are using Finagle,6 their Netty-based framework for
inter-system communication. Facebook uses Netty in Nifty, their Apache Thrift service.

4 Netty was awarded the Duke’s Choice Award in 2011. See www.java.net/dukeschoice/2011.

Table 1.1 Netty feature summary

Category Netty features

Design Unified API for multiple transport types, both blocking and non-blocking.
Simple but powerful threading model.
True connectionless datagram socket support.
Chaining of logic components to support reuse.

Ease of use Extensive Javadoc and large example set.
No required dependencies beyond JDK 1.6+. (Some optional features may require
Java 1.7+ and/or additional dependencies.)

Performance Better throughput and lower latency than core Java APIs.
Reduced resource consumption thanks to pooling and reuse.
Minimal memory copying.

Robustness No OutOfMemoryError due to slow, fast, or overloaded connection.
Eliminates unfair read/write ratio typical of NIO applications in high-speed networks.

Security Complete SSL/TLS and StartTLS support.
Usable in restricted environments such as Applet or OSGI.

Community-driven Release early and often.

5 For a full list of known adopters see http://netty.io/wiki/adopters.html.
6 For information on Finagle see https://twitter.github.io/finagle/.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.java.net/dukeschoice/2011
http://netty.io/wiki/adopters.html
https://twitter.github.io/finagle/

9Introducing Netty
Scalability and performance are critical concerns for both companies, and both are
regular contributors to Netty.7

 In turn, Netty has benefited from these projects, enhancing both its scope and
flexibility through implementations of protocols such as FTP, SMTP, HTTP, and Web-
Socket, as well as others, both binary and text-based.

1.2.2 Asynchronous and event-driven

We’ll be using the word asynchronous a great deal, so this is a good time to clarify the
context. Asynchronous, that is, un-synchronized, events are certainly familiar. Consider
email: you may or may not get a response to a message you have sent, or you may
receive an unexpected message even while sending one. Asynchronous events can also
have an ordered relationship. You generally get an answer to a question only after you
have asked it, and you may be able to do something else while you are waiting for it.

 In everyday life, asynchrony just happens, so you may not think about it much. But
getting a computer program to work the same way presents some very special prob-
lems. In essence, a system that is both asynchronous and event-driven exhibits a particu-
lar and, to us, extremely valuable kind of behavior: it can respond to events occurring
at any time and in any order.

 This capability is critical for achieving the highest levels of scalability, defined as
“the ability of a system, network, or process to handle a growing amount of work in a
capable manner or its ability to be enlarged to accommodate that growth.”8

 What is the connection between asynchrony and scalability?

■ Non-blocking network calls free us from having to wait for the completion of an
operation. Fully asynchronous I/O builds on this feature and carries it a step
further: an asynchronous method returns immediately and notifies the user
when it is complete, directly or at a later time.

■ Selectors allow us to monitor many connections for events with many fewer
threads.

Putting these elements together, with non-blocking I/O we can handle very large
numbers of events much more rapidly and economically than would be possible with
blocking I/O. From the point of view of networking, this is key to the kind of systems
we want to build, and as you’ll see, it is also key to Netty’s design from the ground up.

 In the next section we’ll take a first look at Netty’s core components. For now,
think of them as domain objects rather than concrete Java classes. Over time, we’ll see
how they collaborate to provide notification about events that occur on the network
and make them available for processing.

7 Chapters 15 and 16 present case studies describing how some of the companies mentioned here use Netty to
solve real-world problems.

8 André B. Bondi, “Characteristics of scalability and their impact on performance,” Proceedings of the second inter-
national workshop on Software and performance—WOSP ’00 (2000), p. 195.
Licensed to Thomas Snead <n.ordickan@gmail.com>

10 CHAPTER 1 Netty—asynchronous and event-driven
1.3 Netty’s core components
In this section we’ll discuss Netty’s primary building blocks:

■ Channels
■ Callbacks
■ Futures
■ Events and handlers

These building blocks represent different types of constructs: resources, logic, and
notifications. Your applications will use them to access the network and the data that
flows through it.

 For each component, we’ll provide a basic definition and, where appropriate, a
simple code example that illustrates its use.

1.3.1 Channels

A Channel is a basic construct of Java NIO. It represents

an open connection to an entity such as a hardware device, a file, a
network socket, or a program component that is capable of performing
one or more distinct I/O operations, for example reading or writing.9

For now, think of a Channel as a vehicle for incoming (inbound) and outgoing (out-
bound) data. As such, it can be open or closed, connected or disconnected.

1.3.2 Callbacks

A callback is simply a method, a reference to which has been provided to another
method. This enables the latter to call the former at an appropriate time. Callbacks
are used in a broad range of programming situations and represent one of the most
common ways to notify an interested party that an operation has completed.

 Netty uses callbacks internally when handling events; when a callback is triggered
the event can be handled by an implementation of interface ChannelHandler. The
next listing shows an example: when a new connection has been established the
ChannelHandler callback channelActive()will be called and will print a message.

public class ConnectHandler extends ChannelInboundHandlerAdapter {
 @Override
 public void channelActive(ChannelHandlerContext ctx)
 throws Exception {
 System.out.println(
 "Client " + ctx.channel().remoteAddress() + " connected");
 }
}

9 Java Platform, Standard Edition 8 API Specification, java.nio.channels, Interface Channel, http://docs.oracle
.com/javase/8/docs/api/java/nio/channels/package-summary.html.

Listing 1.2 ChannelHandler triggered by a callback

channelActive(ChannelHandlerContext) is
called when a new connection is established.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://docs.oracle.com/javase/8/docs/api/java/nio/channels/package-summary.html
http://docs.oracle.com/javase/8/docs/api/java/nio/channels/package-summary.html

11Netty’s core components
1.3.3 Futures
A Future provides another way to notify an application when an operation has com-
pleted. This object acts as a placeholder for the result of an asynchronous operation;
it will complete at some point in the future and provide access to the result.

 The JDK ships with interface java.util.concurrent.Future, but the provided
implementations allow you only to check manually whether the operation has com-
pleted or to block until it does. This is quite cumbersome, so Netty provides its own
implementation, ChannelFuture, for use when an asynchronous operation is executed.

 ChannelFuture provides additional methods that allow us to register one or
more ChannelFutureListener instances. The listener’s callback method, operation-
Complete(), is called when the operation has completed. The listener can then deter-
mine whether the operation completed successfully or with an error. If the latter, we
can retrieve the Throwable that was produced. In short, the notification mechanism
provided by the ChannelFutureListener eliminates the need for manually checking
operation completion.

 Each of Netty’s outbound I/O operations returns a ChannelFuture; that is, none of
them block. As we said earlier, Netty is asynchronous and event-driven from the
ground up.

 Listing 1.3 shows that a ChannelFuture is returned as part of an I/O operation.
Here, connect() will return directly without blocking and the call will complete in the
background. When this will happen may depend on several factors, but this concern is
abstracted away from the code. Because the thread is not blocked waiting for the
operation to complete, it can do other work in the meantime, thus using resources
more efficiently.

Channel channel = ...;
// Does not block
ChannelFuture future = channel.connect(
 new InetSocketAddress("192.168.0.1", 25));

Listing 1.4 shows how to utilize the ChannelFutureListener. First you connect to a
remote peer. Then you register a new ChannelFutureListener with the Channel-
Future returned by the connect() call. When the listener is notified that the connec-
tion is established, you check the status b. If the operation is successful, you write
data to the Channel. Otherwise you retrieve the Throwable from the ChannelFuture.

Channel channel = ...;
// Does not block
ChannelFuture future = channel.connect(
 new InetSocketAddress("192.168.0.1", 25));
future.addListener(new ChannelFutureListener() {

Listing 1.3 Asynchronous connect

Listing 1.4 Callback in action

Asynchronous
connection to a
remote peer

Connects asynchronously
to a remote peer.

Registers a ChannelFuture-
Listener to be notified once
the operation completes.
Licensed to Thomas Snead <n.ordickan@gmail.com>

12 CHAPTER 1 Netty—asynchronous and event-driven

t

o

 @Override
 public void operationComplete(ChannelFuture future) {
 if (future.isSuccess()){
 ByteBuf buffer = Unpooled.copiedBuffer(
 "Hello",Charset.defaultCharset());
 ChannelFuture wf = future.channel()
 .writeAndFlush(buffer);

 } else {
 Throwable cause = future.cause();
 cause.printStackTrace();
 }
 }
});

Note that error handling is entirely up to you, subject, of course, to any constraints
imposed by the specific error at hand. For example, in case of a connection failure,
you could try to reconnect or establish a connection to another remote peer.

 If you’re thinking that a ChannelFutureListener is a more elaborate version of a
callback, you’re correct. In fact, callbacks and Futures are complementary mecha-
nisms; in combination they make up one of the key building blocks of Netty itself.

1.3.4 Events and handlers

Netty uses distinct events to notify us about changes of state or the status of opera-
tions. This allows us to trigger the appropriate action based on the event that has
occurred. Such actions might include

■ Logging
■ Data transformation
■ Flow-control
■ Application logic

Netty is a networking framework, so events are categorized by their relevance to
inbound or outbound data flow. Events that may be triggered by inbound data or an
associated change of state include

■ Active or inactive connections
■ Data reads
■ User events
■ Error events

An outbound event is the result of an operation that will trigger an action in the
future, which may be

■ Opening or closing a connection to a remote peer
■ Writing or flushing data to a socket

Checks
he status

of the
peration. b

If the operation is
successful, creates a
ByteBuf to hold the data.

Sends the data asynchronously
to the remote peer. Returns a
ChannelFuture.

If an error occurred,
accesses the Throwable
that describes the cause.
Licensed to Thomas Snead <n.ordickan@gmail.com>

13Netty’s core components
Every event can be dispatched to a user-implemented method of a handler class. This
is a good example of an event-driven paradigm translating directly into application
building blocks. Figure 1.3 shows how an event can be handled by a chain of such
event handlers.

 Netty’s ChannelHandler provides the basic abstraction for handlers like the ones
shown in figure 1.3. We’ll have a lot more to say about ChannelHandler in due course,
but for now you can think of each handler instance as a kind of callback to be exe-
cuted in response to a specific event.

 Netty provides an extensive set of predefined handlers that you can use out of the
box, including handlers for protocols such as HTTP and SSL/TLS. Internally, Channel-
Handlers use events and futures themselves, making them consumers of the same
abstractions your applications will employ.

1.3.5 Putting it all together

In this chapter you’ve been introduced to Netty’s approach to high-performance net-
working and to some of the primary components of its implementation. Let’s assem-
ble a big-picture view of what we’ve discussed.

FUTURES, CALLBACKS, AND HANDLERS

Netty’s asynchronous programming model is built on the concepts of Futures and
callbacks, with the dispatching of events to handler methods happening at a deeper
level. Taken together, these elements provide a processing environment that allows
the logic of your application to evolve independently of any concerns with network
operations. This is a key goal of Netty’s design approach.

 Intercepting operations and transforming inbound or outbound data on the fly
requires only that you provide callbacks or utilize the Futures that are returned by
operations. This makes chaining operations easy and efficient and promotes the
writing of reusable, generic code.

Outbound

handler

Outbound

event

Outbound

handler

Inbound

event

Inbound

handler

Inbound

event

Inbound

handler

Inbound

event

Outbound

event

Outbound

event

Figure 1.3 Inbound and outbound events flowing through a chain of ChannelHandlers
Licensed to Thomas Snead <n.ordickan@gmail.com>

14 CHAPTER 1 Netty—asynchronous and event-driven
SELECTORS, EVENTS, AND EVENT LOOPS

Netty abstracts the Selector away from the application by firing events, eliminating
all the handwritten dispatch code that would otherwise be required. Under the cov-
ers, an EventLoop is assigned to each Channel to handle all of the events, including

■ Registration of interesting events
■ Dispatching events to ChannelHandlers
■ Scheduling further actions

The EventLoop itself is driven by only one thread that handles all of the I/O events for
one Channel and does not change during the lifetime of the EventLoop. This simple
and powerful design eliminates any concern you might have about synchronization in
your ChannelHandlers, so you can focus on providing the right logic to be executed
when there is interesting data to process. As we’ll see when we explore Netty’s thread-
ing model in detail, the API is simple and compact.

1.4 Summary
In this chapter, we looked at the background of the Netty framework, including the
evolution of the Java networking API, the distinctions between blocking and non-
blocking network operations, and the advantages of asynchronous I/O for high-volume,
high-performance networking.

 We then moved on to an overview of Netty’s features, design, and benefits. These
include the mechanisms underlying Netty’s asynchronous model, including callbacks,
Futures, and their use in combination. We also touched on how events are generated
and how they can be intercepted and handled.

 Going forward, we’ll explore in much greater depth how this rich collection of
tools can be utilized to meet the specific needs of your applications.

 In the next chapter, we’ll delve into the basics of Netty’s API and programming
model, and you’ll write your first client and server.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Your first Netty application
In this chapter we’ll show you how to build a Netty-based client and server. The
applications are simple—the client sends messages to the server, and the server
echoes them back—but the exercise is important for two reasons.

 First, it will provide a test bed for setting up and verifying your development
tools and environment, which is essential if you plan to work with the book’s sam-
ple code in preparation for your own development efforts.

 Second, you’ll acquire hands-on experience with a key aspect of Netty, touched
on in the previous chapter: building application logic with ChannelHandlers. This
will prepare you for the in-depth study of the Netty API we’ll begin in chapter 3.

2.1 Setting up the development environment
To compile and run the book’s examples, the only tools you need are the JDK and
Apache Maven, both freely available for download.

This chapter covers
■ Setting up the development environment
■ Writing an Echo server and client
■ Building and testing the applications
15

Licensed to Thomas Snead <n.ordickan@gmail.com>

16 CHAPTER 2 Your first Netty application
 We’ll also assume that you’re going to want to tinker with the example code and
soon start writing your own. Although you can get by with a plain text editor, we strongly
recommend the use of an integrated development environment (IDE) for Java.

2.1.1 Obtaining and installing the Java Development Kit

Your OS may already have a JDK installed. To find out, type the following on the com-
mand line:

javac -version

If you get back javac 1.7... or 1.8... you’re all set and can skip this step.1

 Otherwise, get version 8 of the JDK from http://java.com/en/download/manual.jsp.
Be careful to download the JDK and not the Java Runtime Environment (JRE), which
can run Java applications but not compile them. An installer executable is provided
for each platform. Should you need installation instructions, you’ll find them on the
same site.

 It’s a good idea to do the following:

■ Set the environment variable JAVA_HOME to the location of your JDK installa-
tion. (On Windows, the default will be something like C:\Program Files\Java\
jdk1.8.0_60.)

■ Add %JAVA_HOME%\bin (${JAVA_HOME}/bin on Linux) to your execution path.

2.1.2 Downloading and installing an IDE

The following are the most widely used Java IDEs, all freely available:

■ Eclipse—www.eclipse.org
■ NetBeans—www.netbeans.org
■ Intellij Idea Community Edition—www.jetbrains.com

All three have full support for Apache Maven, the build tool we’ll use. NetBeans and
Intellij are distributed as installer executables. Eclipse is usually distributed as a zip
archive, although there are a number of customized versions that have self-installers.

2.1.3 Downloading and installing Apache Maven

Even if you’re already familiar with Maven, we recommend that you at least skim this
section.

 Maven is a widely used build-management tool developed by the Apache Software
Foundation (ASF). The Netty project uses it, as do this book’s examples. You don’t
need to be a Maven expert to build and run the examples, but if you want to expand
on them, we recommend reading the Maven introduction in the appendix.

1 A restricted feature set of Netty will run with JDK 1.6 but JDK 7 or higher is required for compilation, as well
as for running the latest version of Maven.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://java.com/en/download/manual.jsp
http://www.eclipse.org
http://www.netbeans.org
http://www.jetbrains.com

17Netty client/server overview
At the time of this book’s publication, the latest Maven version was 3.3.3. You can
download the appropriate tar.gz or zip file for your system from http://maven.apache
.org/download.cgi. Installation is simple: extract the contents of the archive to any
folder of your choice (we’ll call this <install_dir>). This will create the directory
<install_dir>\apache-maven-3.3.3.

 As with the Java environment,

■ Set the environment variable M2_HOME to point to <install_dir>\apache-maven-
3.3.3.

■ Add %M2_HOME%\bin (or ${M2_HOME}/bin on Linux) to your execution path.

This will enable you to run Maven by executing mvn.bat (or mvn) on the command line.

2.1.4 Configuring the toolset

If you have set the JAVA_HOME and M2_HOME system variables as recommended, you may
find that when you start your IDE it has already discovered the locations of your Java
and Maven installations. If you need to perform manual configuration, all the IDE ver-
sions we’ve listed have menu items for setting these variables under Preferences or
Settings. Please consult the documentation for details.

 This completes the setup of your development environment. In the next sections
we’ll present the details of the first Netty applications you’ll build, and we’ll get
deeper into the framework APIs. After that you’ll use the tools you’ve just set up to
build and run the Echo server and client.

2.2 Netty client/server overview
Figure 2.1 presents a high-level view of the Echo client and server you’ll be writing.
While your main focus may be writing web-based applications to be accessed by brows-
ers, you’ll definitely gain a more complete understanding of the Netty API by imple-
menting both the client and server.

 Although we’ve spoken of the client, the figure shows multiple clients connected
simultaneously to the server. The number of clients that can be supported is limited,
in theory, only by the system resources available (and any constraints that might be
imposed by the JDK version in use).

 The interaction between an Echo client and the server is very simple; after the cli-
ent establishes a connection, it sends one or more messages to the server, which in turn

Do you need to install Maven?
Eclipse and NetBeans come with an embedded Maven installation that will work fine
for our purposes out of the box. If you’ll be working in an environment that has its
own Maven repository, your administrator probably has a Maven installation package
preconfigured to work with it.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi

18 CHAPTER 2 Your first Netty application
echoes each message to the client. While this may not seem terribly useful by itself, it
exemplifies the request-response interaction that’s typical of client/server systems.

 We’ll begin this project by examining the server-side code.

2.3 Writing the Echo server
All Netty servers require the following:

■ At least one ChannelHandler—This component implements the server’s process-
ing of data received from the client—its business logic.

■ Bootstrapping—This is the startup code that configures the server. At a minimum,
it binds the server to the port on which it will listen for connection requests.

In the remainder of this section we’ll describe the logic and bootstrapping code for
the Echo server.

2.3.1 ChannelHandlers and business logic

In chapter 1 we introduced Futures and callbacks and illustrated their use in an
event-driven design. We also discussed ChannelHandler, the parent of a family of
interfaces whose implementations receive and react to event notifications. In Netty
applications, all data-processing logic is contained in implementations of these core
abstractions.

 Because your Echo server will respond to incoming messages, it will need to imple-
ment interface ChannelInboundHandler, which defines methods for acting on inbound
events. This simple application will require only a few of these methods, so it will be
sufficient to subclass ChannelInboundHandlerAdapter, which provides a default imple-
mentation of ChannelInboundHandler.

“CDE”

“CDE”

Client 2

“XYZ”

“XYZ”

Client 3

“ABC”

“ABC”

Client 1

Connection 2

Connection 1

Connection 3

Server

Figure 2.1 Echo
client and server
Licensed to Thomas Snead <n.ordickan@gmail.com>

19Writing the Echo server

that a
andler
ely

ved

ges
 The following methods interest us:

■ channelRead()—Called for each incoming message
■ channelReadComplete()—Notifies the handler that the last call made to channel-

Read() was the last message in the current batch
■ exceptionCaught()—Called if an exception is thrown during the read operation

The Echo server’s ChannelHandler implementation is EchoServerHandler, shown in
the following listing.

@Sharable
public class EchoServerHandler extends ChannelInboundHandlerAdapter {

 @Override
 public void channelRead(ChannelHandlerContext ctx, Object msg) {
 ByteBuf in = (ByteBuf) msg;
 System.out.println(
 "Server received: " + in.toString(CharsetUtil.UTF_8));
 ctx.write(in);
 }

 @Override
 public void channelReadComplete(ChannelHandlerContext ctx) {
 ctx.writeAndFlush(Unpooled.EMPTY_BUFFER)
 .addListener(ChannelFutureListener.CLOSE);
 }

 @Override
 public void exceptionCaught(ChannelHandlerContext ctx,
 Throwable cause) {
 cause.printStackTrace();
 ctx.close();
 }
}

ChannelInboundHandlerAdapter has a straightforward API, and each of its methods
can be overridden to hook into the event lifecycle at the appropriate point. Because
you need to handle all received data, you override channelRead(). In this server you
simply echo the data to the remote peer.

 Overriding exceptionCaught() allows you to react to any Throwable subtypes—
here you log the exception and close the connection. A more elaborate application
might try to recover from the exception, but in this case simply closing the connection
signals to the remote peer that an error has occurred.

Listing 2.1 EchoServerHandler

Indicates
ChannelH
can be saf
shared by
multiple
channels

Logs the
message to
the console Writes the recei

message to the
sender without
flushing the
outbound messa

Flushes pending
messages to the
remote peer and
closes the channel

Prints the exception
stack traceCloses the

channel
Licensed to Thomas Snead <n.ordickan@gmail.com>

20 CHAPTER 2 Your first Netty application
In addition to ChannelInboundHandlerAdapter, there are many ChannelHandler sub-
types and implementations to learn about, and we’ll cover these in detail in chapters 6
and 7. For now, please keep these key points in mind:

■ ChannelHandlers are invoked for different types of events.
■ Applications implement or extend ChannelHandlers to hook into the event life-

cycle and provide custom application logic.
■ Architecturally, ChannelHandlers help to keep your business logic decoupled

from networking code. This simplifies development as the code evolves in
response to changing requirements.

2.3.2 Bootstrapping the server

Having discussed the core business logic implemented by EchoServerHandler, we can
now examine the bootstrapping of the server itself, which involves the following:

■ Bind to the port on which the server will listen for and accept incoming connec-
tion requests

■ Configure Channels to notify an EchoServerHandler instance about inbound
messages

What happens if an exception isn’t caught?
Every Channel has an associated ChannelPipeline, which holds a chain of Channel-
Handler instances. By default, a handler will forward the invocation of a handler
method to the next one in the chain. Therefore, if exceptionCaught()is not imple-
mented somewhere along the chain, exceptions received will travel to the end of the
ChannelPipeline and will be logged. For this reason, your application should supply
at least one ChannelHandler that implements exceptionCaught(). (Section 6.4
discusses exception handling in detail.)

Transports
In this section you’ll encounter the term transport. In the standard, multilayered view
of networking protocols, the transport layer is the one that provides services for end-
to-end or host-to-host communications.

Internet communications are based on the TCP transport. NIO transport refers to a
transport that’s mostly identical to TCP except for server-side performance enhance-
ments provided by the Java NIO implementation.

Transports will be discussed in detail in chapter 4.
Licensed to Thomas Snead <n.ordickan@gmail.com>

21Writing the Echo server

Event

Ser

Set
ad
t

E

ler
 we
he

The following listing shows the complete code for the EchoServer class.

public class EchoServer {
 private final int port;

 public EchoServer(int port) {
 this.port = port;
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 1) {
 System.err.println(
 "Usage: " + EchoServer.class.getSimpleName() +
 " <port>");
 }
 int port = Integer.parseInt(args[0]);
 new EchoServer(port).start();
 }

 public void start() throws Exceptio3n {
 final EchoServerHandler serverHandler = new EchoServerHandler();
 EventLoopGroup group = new NioEventLoopGroup();
 try {
 ServerBootstrap b = new ServerBootstrap();
 b.group(group)
 .channel(NioServerSocketChannel.class)
 .localAddress(new InetSocketAddress(port))
 .childHandler(new ChannelInitializer<SocketChannel>(){
 @Override
 public void initChannel(SocketChannel ch)
 throws Exception {
 ch.pipeline().addLast(serverHandler);
 }
 });
 ChannelFuture f = b.bind().sync();
 f.channel().closeFuture().sync();
 } finally {
 group.shutdownGracefully().sync();
 }
 }
}

In c you create a ServerBootstrap instance. Because you’re using the NIO transport,
you specify the NioEventLoopGroup b to accept and handle new connections and the
NioServerSocketChannel d as the channel type. After this you set the local address
to an InetSocketAddress with the selected port e. The server will bind to this
address to listen for new connection requests.

Listing 2.2 EchoServer class

Sets the port
value (throws a
NumberFormat-
Exception if the
port argument is
malformed)

Calls the server’s
start() method

Creates the
LoopGroup

 b

Creates the
verBootstrap c

Specifies the use of
an NIO transport
Channel

 d

s the socket
dress using
he specified

port e

Adds an
choServerHandler

to the Channel’s
ChannelPipeline f

EchoServerHand
is @Sharable so
can always use t
same one.

Binds the server
asynchronously; sync()
waits for the bind to
complete. g

Gets the CloseFuture of the
Channel and blocks the current
thread until it’s complete h

Shuts down the
EventLoopGroup,

releasing all resources i
Licensed to Thomas Snead <n.ordickan@gmail.com>

22 CHAPTER 2 Your first Netty application
 In f you make use of a special class, ChannelInitializer. This is key. When a
new connection is accepted, a new child Channel will be created, and the Channel-
Initializer will add an instance of your EchoServerHandler to the Channel’s
ChannelPipeline. As we explained earlier, this handler will receive notifications
about inbound messages.

 Although NIO is scalable, its proper configuration, especially as regards multi-
threading, is not trivial. Netty’s design encapsulates most of the complexity, and we’ll
discuss the relevant abstractions (EventLoopGroup, SocketChannel, and Channel-
Initializer) in more detail in chapter 3.

 Next you bind the server g and wait until the bind completes. (The call to sync()
causes the current Thread to block until then.) At h, the application will wait until
the server’s Channel closes (because you call sync() on the Channel’s CloseFuture).
You can then shut down the EventLoopGroup and release all resources, including all
created threads i.

 NIO is used in this example because it’s currently the most widely used transport,
thanks to its scalability and thoroughgoing asynchrony. But a different transport
implementation could be used as well. If you wished to use the OIO transport in your
server, you’d specify OioServerSocketChannel and OioEventLoopGroup. We’ll explore
transports in greater detail in chapter 4.

 In the meantime, let’s review the important steps in the server implementation you
just completed. These are the primary code components of the server:

■ The EchoServerHandler implements the business logic.
■ The main() method bootstraps the server.

The following steps are required in bootstrapping:

■ Create a ServerBootstrap instance to bootstrap and bind the server.
■ Create and assign an NioEventLoopGroup instance to handle event processing,

such as accepting new connections and reading/writing data.
■ Specify the local InetSocketAddress to which the server binds.
■ Initialize each new Channel with an EchoServerHandler instance.
■ Call ServerBootstrap.bind() to bind the server.

At this point the server is initialized and ready to be used. In the next section we’ll
examine the code for the client application.

2.4 Writing an Echo client
The Echo client will

1 Connect to the server
2 Send one or more messages
3 For each message, wait for and receive the same message back from the server
4 Close the connection
Licensed to Thomas Snead <n.ordickan@gmail.com>

23Writing an Echo client

l
a

d
Writing the client involves the same two main code areas you saw in the server: busi-
ness logic and bootstrapping.

2.4.1 Implementing the client logic with ChannelHandlers

Like the server, the client will have a ChannelInboundHandler to process the data. In
this case, you’ll extend the class SimpleChannelInboundHandler to handle all the
needed tasks, as shown in listing 2.3. This requires overriding the following methods:

■ channelActive()—Called after the connection to the server is established
■ channelRead0()—Called when a message is received from the server
■ exceptionCaught()—Called if an exception is raised during processing

@Sharable
public class EchoClientHandler extends
 SimpleChannelInboundHandler<ByteBuf> {
 @Override
 public void channelActive(ChannelHandlerContext ctx) {
 ctx.writeAndFlush(Unpooled.copiedBuffer("Netty rocks!",
 CharsetUtil.UTF_8);
 }

 @Override
 public void channelRead0(ChannelHandlerContext ctx, ByteBuf in) {
 System.out.println(
 "Client received: " + in.toString(CharsetUtil.UTF_8));
 }

 @Override
 public void exceptionCaught(ChannelHandlerContext ctx,
 Throwable cause) {
 cause.printStrackTrace();
 ctx.close();
 }
}

First you override channelActive(), invoked when a connection has been estab-
lished. This ensures that something is written to the server as soon as possible, which
in this case is a byte buffer that encodes the string "Netty rocks!".

 Next you override the method channelRead0(). This method is called whenever
data is received. Note that the message sent by the server may be received in chunks.
That is, if the server sends 5 bytes, there’s no guarantee that all 5 bytes will be received
at once. Even for such a small amount of data, the channelRead0() method could be
called twice, first with a ByteBuf (Netty’s byte container) holding 3 bytes, and second
with a ByteBuf holding 2 bytes. As a stream-oriented protocol, TCP guarantees that
the bytes will be received in the order in which they were sent by the server.

Listing 2.3 ChannelHandler for the client

Marks this class as one
whose instances can be
shared among channels

When notified
that the channe
is active, sends
message

Logs a dump
of the receive
message

On exception, logs
the error and
closes channel
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

24 CHAPTER 2 Your first Netty application

Han
pipe
 The third method you override is exceptionCaught(). Just as in EchoServer-
Handler (listing 2.2), Throwable is logged and the channel is closed, in this case ter-
minating the connection to the server.

2.4.2 Bootstrapping the client

As you’ll see in the next listing, bootstrapping a client is similar to bootstrapping a
server, with the difference that instead of binding to a listening port the client uses
host and port parameters to connect to a remote address, here that of the Echo server.

public class EchoClient {
 private final String host;
 private final int port;

 public EchoClient(String host, int port) {
 this.host = host;
 this.port = port;
 }

 public void start() throws Exception {
 EventLoopGroup group = new NioEventLoopGroup();
 try {
 Bootstrap b = new Bootstrap();
 b.group(group)
 .channel(NioSocketChannel.class)
 .remoteAddress(new InetSocketAddress(host, port))
 .handler(new ChannelInitializer<SocketChannel>() {

SimpleChannelInboundHandler vs. ChannelInboundHandler
You may be wondering why we used SimpleChannelInboundHandler in the client
instead of the ChannelInboundHandlerAdapter used in the EchoServerHandler.
This has to do with the interaction of two factors: how the business logic processes
messages and how Netty manages resources.

In the client, when channelRead0() completes, you have the incoming message and
you’re done with it. When the method returns, SimpleChannelInboundHandler takes
care of releasing the memory reference to the ByteBuf that holds the message.

In EchoServerHandler you still have to echo the incoming message to the sender,
and the write() operation, which is asynchronous, may not complete until after
channelRead() returns (shown in listing 2.1). For this reason EchoServerHandler
extends ChannelInboundHandlerAdapter, which doesn’t release the message at
this point.

The message is released in channelReadComplete() in the EchoServerHandler
when writeAndFlush() is called (listing 2.1).

Chapters 5 and 6 will cover message resource management in detail.

Listing 2.4 Main class for the client

Creates
Bootstrap

Specifies
EventLoopGroup to
handle client events;
NIO implementation
is needed.

Channel type is
the one for NIO
transport.

Sets the
server’s

InetSocket-
Address

Adds an
EchoClient-
dler to the

line when a
Channel is

created
Licensed to Thomas Snead <n.ordickan@gmail.com>

25Writing an Echo client
 @Override
 public void initChannel(SocketChannel ch)
 throws Exception {
 ch.pipeline().addLast(
 new EchoClientHandler());
 }
 });
 ChannelFuture f = b.connect().sync();
 f.channel().closeFuture().sync();
 } finally {
 group.shutdownGracefully().sync();
 }
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 System.err.println(
 "Usage: " + EchoClient.class.getSimpleName() +
 " <host> <port>");
 return;
 }

 String host = args[0];
 int port = Integer.parseInt(args[1]);
 new EchoClient(host, port).start();
 }
}

As before, the NIO transport is used. Note that you could use different transports in
the client and server; for example, NIO transport on the server side and OIO transport
on the client side. In chapter 4 we’ll examine the factors and scenarios that would
lead you to select a specific transport for a specific use case.

 Let’s review the important points introduced in this section:

■ A Bootstrap instance is created to initialize the client.
■ An NioEventLoopGroup instance is assigned to handle the event processing,

which includes creating new connections and processing inbound and out-
bound data.

■ An InetSocketAddress is created for the connection to the server.
■ An EchoClientHandler will be installed in the pipeline when the connection is

established.
■ After everything is set up, Bootstrap.connect() is called to connect to the

remote peer.

Having finished the client, you can proceed to build the system and test it out.

Connects to the remote
peer; waits until the
connect completes

Blocks until the
Channel closes

Shuts down the thread
pools and the release
of all resources
Licensed to Thomas Snead <n.ordickan@gmail.com>

26 CHAPTER 2 Your first Netty application
2.5 Building and running the Echo server and client
In this section we’ll cover all the steps needed to compile and run the Echo server
and client.

2.5.1 Running the build

To build the Echo client and server, go to the chapter2 directory under the code sam-
ples root directory and execute the following command:

mvn clean package

This should produce something very much like the output shown in listing 2.5 (we’ve
edited out a few nonessential steps in the build).

[INFO] Scanning for projects...
[INFO] ---
[INFO] Reactor Build Order:
[INFO]
[INFO] Chapter 2. Your First Netty Application - Echo App
[INFO] Chapter 2. Echo Client
[INFO] Chapter 2. Echo Server
[INFO]
[INFO] ---
[INFO] Building Chapter 2. Your First Netty Application - 2.0-SNAPSHOT
[INFO] ---
[INFO]
[INFO] --- maven-clean-plugin:2.6.1:clean (default-clean) @ chapter2 ---
[INFO]
[INFO] ---
[INFO] Building Chapter 2. Echo Client 2.0-SNAPSHOT
[INFO] ---
[INFO]
[INFO] --- maven-clean-plugin:2.6.1:clean (default-clean)
 @ echo-client ---
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources)
 @ echo-client ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] Copying 1 resource
[INFO]
[INFO] --- maven-compiler-plugin:3.3:compile (default-compile)
 @ echo-client ---

The Echo client/server Maven project
This book’s appendix uses the configuration of the Echo client/server project to
explain in detail how multimodule Maven projects are organized. This isn’t required
reading for building and running the applications, but it’s recommended for gaining a
better understanding of the book’s examples and of the Netty project itself.

Listing 2.5 Building the Echo client and server
Licensed to Thomas Snead <n.ordickan@gmail.com>

27Building and running the Echo server and client
[INFO] Changes detected - recompiling the module!
[INFO] Compiling 2 source files to
 \netty-in-action\chapter2\Client\target\classes
[INFO]
[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources)
 @ echo-client ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] skip non existing resourceDirectory
 \netty-in-action\chapter2\Client\src\test\resources
[INFO]
[INFO] --- maven-compiler-plugin:3.3:testCompile (default-testCompile)
 @ echo-client ---
[INFO] No sources to compile
[INFO]
[INFO] --- maven-surefire-plugin:2.18.1:test (default-test)
 @ echo-client ---
[INFO] No tests to run.
[INFO]
[INFO] --- maven-jar-plugin:2.6:jar (default-jar) @ echo-client ---
[INFO] Building jar:
 \netty-in-action\chapter2\Client\target\echo-client-2.0-SNAPSHOT.jar
[INFO]
[INFO] ---
[INFO] Building Chapter 2. Echo Server 2.0-SNAPSHOT
[INFO] ---
[INFO]
[INFO] --- maven-clean-plugin:2.6.1:clean (default-clean)
 @ echo-server ---
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources)
 @ echo-server ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] Copying 1 resource
[INFO]
[INFO] --- maven-compiler-plugin:3.3:compile (default-compile)
 @ echo-server ---
[INFO] Changes detected - recompiling the module!
[INFO] Compiling 2 source files to
 \netty-in-action\chapter2\Server\target\classes
[INFO]
[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources)
 @ echo-server ---
[INFO] Using 'UTF-8' encoding to copy filtered resources.
[INFO] skip non existing resourceDirectory
 \netty-in-action\chapter2\Server\src\test\resources
[INFO]
[INFO] --- maven-compiler-plugin:3.3:testCompile (default-testCompile)
 @ echo-server ---
[INFO] No sources to compile
[INFO]
[INFO] --- maven-surefire-plugin:2.18.1:test (default-test)
 @ echo-server ---
[INFO] No tests to run.
[INFO]
[INFO] --- maven-jar-plugin:2.6:jar (default-jar) @ echo-server ---
Licensed to Thomas Snead <n.ordickan@gmail.com>

28 CHAPTER 2 Your first Netty application
[INFO] Building jar:
 \netty-in-action\chapter2\Server\target\echo-server-2.0-SNAPSHOT.jar
[INFO] ---
[INFO] Reactor Summary:
[INFO]
[INFO] Chapter 2. Your First Netty Application ... SUCCESS [0.134 s]
[INFO] Chapter 2. Echo Client SUCCESS [1.509 s]
[INFO] Chapter 2. Echo Ser........................ SUCCESS [0.139 s]
[INFO] ---
[INFO] BUILD SUCCESS
[INFO] ---
[INFO] Total time: 1.886 s
[INFO] Finished at: 2015-11-18T17:14:10-05:00
[INFO] Final Memory: 18M/216M
[INFO] ---

Here are the main steps recorded in the preceding build log:

■ Maven determines the build order: first the parent pom.xml, and then the
modules (subprojects).

■ If the Netty artifacts aren’t found in the user’s local repository, Maven will
download them from the public Maven repositories (not shown here).

■ The clean and compile phases of the build lifecycle are run.
■ The maven-jar-plugin is executed.

The Maven Reactor Summary shows that all projects have been successfully built. A
listing of the target directories in the two subprojects should now resemble the fol-
lowing listing.

Directory of nia\chapter2\Client\target
03/16/2015 09:45 PM <DIR> classes
03/16/2015 09:45 PM 5,614 echo-client-1.0-SNAPSHOT.jar
03/16/2015 09:45 PM <DIR> generated-sources
03/16/2015 09:45 PM <DIR> maven-archiver
03/16/2015 09:45 PM <DIR> maven-status

Directory of nia\chapter2\Server/target
03/16/2015 09:45 PM <DIR> classes
03/16/2015 09:45 PM 5,629 echo-server-1.0-SNAPSHOT.jar
03/16/2015 09:45 PM <DIR> generated-sources
03/16/2015 09:45 PM <DIR> maven-archiver
03/16/2015 09:45 PM <DIR> maven-status

2.5.2 Running the Echo server and client

To run the application components, you could use the Java command directly. But in
the POM file, the exec-maven-plugin is configured to do this for you (see the appen-
dix for details).

 Open two console windows side by side, one logged into the chapter2\Server direc-
tory and the other into chapter2\Client.

Listing 2.6 Build artifacts
Licensed to Thomas Snead <n.ordickan@gmail.com>

29Building and running the Echo server and client
 In the server’s console, execute this command:

mvn exec:java

You should see something like the following:

[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building Echo Server 1.0-SNAPSHOT
[INFO] --
[INFO]
[INFO] >>> exec-maven-plugin:1.2.1:java (default-cli) >
 validate @ echo-server >>>
[INFO]
[INFO] <<< exec-maven-plugin:1.2.1:java (default-cli) <
 validate @ echo-server <<<
[INFO]
[INFO] --- exec-maven-plugin:1.2.1:java (default-cli) @ echo-server ---
 nia.chapter2.echoserver.EchoServer
 started and listening for connections on /0:0:0:0:0:0:0:0:9999

The server has been started and is ready to accept connections. Now execute the same
command in the client’s console:

mvn exec:java

You should see the following:

[INFO] Scanning for projects...
[INFO]
[INFO] ---
[INFO] Building Echo Client 1.0-SNAPSHOT
[INFO] ---
[INFO]
[INFO] >>> exec-maven-plugin:1.2.1:java (default-cli) >
 validate @ echo-client >>>
[INFO]
[INFO] <<< exec-maven-plugin:1.2.1:java (default-cli) <
 validate @ echo-client <<<
[INFO]
[INFO] --- exec-maven-plugin:1.2.1:java (default-cli) @ echo-client ---
 Client received: Netty rocks!
[INFO] ---
[INFO] BUILD SUCCESS
[INFO] ---
[INFO] Total time: 2.833 s
[INFO] Finished at: 2015-03-16T22:03:54-04:00
[INFO] Final Memory: 10M/309M
[INFO] ---

And in the server console you should see this:

Server received: Netty rocks!
Licensed to Thomas Snead <n.ordickan@gmail.com>

30 CHAPTER 2 Your first Netty application
You’ll see this log statement in the server’s console every time you run the client.
 Here’s what happens:

1 As soon as the client is connected, it sends its message: Netty rocks!
2 The server reports the received message and echoes it to the client.
3 The client reports the returned message and exits.

What you’ve seen is the expected behavior; now let’s see how failures are handled.
The server should still be running, so type Ctrl-C in the server console to stop the pro-
cess. Once it has terminated, start the client again with

mvn exec:java

This shows the output you should see from the client when it’s unable to connect to
the server.

[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building Echo Client 1.0-SNAPSHOT
[INFO] --
[INFO]
[INFO] >>> exec-maven-plugin:1.2.1:java (default-cli) >
 validate @ echo-client >>>
[INFO]
[INFO] <<< exec-maven-plugin:1.2.1:java (default-cli) <
 validate @ echo-client <<<
[INFO]
[INFO] --- exec-maven-plugin:1.2.1:java (default-cli) @ echo-client ---
[WARNING]
java.lang.reflect.InvocationTargetException
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 . . .
 Caused by: java.net.ConnectException: Connection refused:
 no further information: localhost/127.0.0.1:9999
 at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
 at sun.nio.ch.SocketChannelImpl
 .finishConnect(SocketChannelImpl.java:739)
 at io.netty.channel.socket.nio.NioSocketChannel
 .doFinishConnect(NioSocketChannel.java:208)
 at io.netty.channel.nio
 .AbstractNioChannel$AbstractNioUnsafe
 .finishConnect(AbstractNioChannel.java:281)
 at io.netty.channel.nio.NioEventLoop
 .processSelectedKey(NioEventLoop.java:528)
 at io.netty.channel.nio.NioEventLoop.
 processSelectedKeysOptimized(NioEventLoop.java:468)
 at io.netty.channel.nio.NioEventLoop
 .processSelectedKeys(NioEventLoop.java:382)
 at io.netty.channel.nio.NioEventLoop

Listing 2.7 Exception handling in the Echo client
Licensed to Thomas Snead <n.ordickan@gmail.com>

31Summary
 .run(NioEventLoop.java:354)
 at io.netty.util.concurrent.SingleThreadEventExecutor$2
 .run(SingleThreadEventExecutor.java:116)
 at io.netty.util.concurrent.DefaultThreadFactory
 $DefaultRunnableDecorator.run(DefaultThreadFactory.java:137)
 . . .
[INFO] --
[INFO] BUILD FAILURE
[INFO] --
[INFO] Total time: 3.801 s
[INFO] Finished at: 2015-03-16T22:11:16-04:00
[INFO] Final Memory: 10M/309M
[INFO] --
[ERROR] Failed to execute goal org.codehaus.mojo:
 exec-maven-plugin:1.2.1:java (default-cli) on project echo-client:
 An exception occured while executing the Java class. null:
 InvocationTargetException: Connection refused:
 no further information: localhost/127.0.0.1:9999 -> [Help 1]

What happened? The client tried to connect to the server, which it expected to find
running at localhost:9999. This failed (as expected) because the server had been
stopped previously, causing a java.net.ConnectException in the client. This excep-
tion triggered the exceptionCaught()method of the EchoClientHandler, which
prints out the stack trace and closes the channel (see listing 2.3.)

2.6 Summary
In this chapter you set up your development environment and built and ran your first
Netty client and server. Although this is a simple application, it will scale to several
thousand concurrent connections—many more messages per second than a plain
vanilla socket-based Java application would be able to handle.

 In the following chapters, you’ll see many more examples of how Netty simplifies
scalability and concurrency. We’ll also go deeper into Netty’s support for the architec-
tural principle of separation of concerns. By providing the right abstractions for
decoupling business logic from networking logic, Netty makes it easy to keep pace
with rapidly evolving requirements without jeopardizing system stability.

 In the next chapter, we’ll provide an overview of Netty’s architecture. This will give
you the context for the in-depth and comprehensive study of Netty’s internals that will
follow in subsequent chapters.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Netty components
and design
In chapter 1 we presented a summary of the history and technical foundations of
high-performance network programming in Java. This provided the background
for an overview of Netty’s core concepts and building blocks.

 In chapter 2 we expanded the scope of our discussion to application develop-
ment. By building a simple client and server you learned about bootstrapping and
gained hands-on experience with the all-important ChannelHandler API. Along the
way, you also verified that your development tools were functioning properly.

 As we build on this material in the rest of the book, we’ll explore Netty from two
distinct but closely related points of view: as a class library and as a framework. Both
are essential to writing efficient, reusable, and maintainable code with Netty.

 From a high-level perspective, Netty addresses two corresponding areas of con-
cern, which we might label broadly as technical and architectural. First, its asynchro-
nous and event-driven implementation, built on Java NIO, guarantees maximum

This chapter covers
■ Technical and architectural aspects of Netty
■ Channel, EventLoop, and ChannelFuture
■ ChannelHandler and ChannelPipeline
■ Bootstrapping
32

Licensed to Thomas Snead <n.ordickan@gmail.com>

33Channel, EventLoop, and ChannelFuture
application performance and scalability under heavy load. Second, Netty embodies a
set of design patterns that decouple application logic from the network layer, simplify-
ing development while maximizing the testability, modularity, and reusability of code.

 As we study Netty’s individual components in greater detail, we’ll pay close atten-
tion to how they collaborate to support these architectural best practices. By following
the same principles, we can reap all the benefits Netty can provide. With this goal in
mind, in this chapter we’ll review the main concepts and components we’ve intro-
duced up to now.

3.1 Channel, EventLoop, and ChannelFuture
The following sections will add detail to our discussion of the Channel, EventLoop,
and ChannelFuture classes which, taken together, can be thought of as representing
Netty’s networking abstraction:

■ Channel—Sockets
■ EventLoop—Control flow, multithreading, concurrency
■ ChannelFuture—Asynchronous notification

3.1.1 Interface Channel

Basic I/O operations (bind(), connect(), read(), and write()) depend on primitives
supplied by the underlying network transport. In Java-based networking, the funda-
mental construct is class Socket. Netty’s Channel interface provides an API that greatly
reduces the complexity of working directly with Sockets. Additionally, Channel is the
root of an extensive class hierarchy having many predefined, specialized implementa-
tions, of which the following is a short list:

■ EmbeddedChannel

■ LocalServerChannel

■ NioDatagramChannel

■ NioSctpChannel

■ NioSocketChannel

3.1.2 Interface EventLoop

The EventLoop defines Netty’s core abstraction for handling events that occur during
the lifetime of a connection. We’ll discuss EventLoop in detail in chapter 7 in the con-
text of Netty’s thread-handling model. For now, figure 3.1 illustrates at a high level the
relationships among Channels, EventLoops, Threads, and EventLoopGroups.

 These relationships are:

■ An EventLoopGroup contains one or more EventLoops.
■ An EventLoop is bound to a single Thread for its lifetime.
■ All I/O events processed by an EventLoop are handled on its dedicated Thread.
■ A Channel is registered for its lifetime with a single EventLoop.
■ A single EventLoop may be assigned to one or more Channels.
Licensed to Thomas Snead <n.ordickan@gmail.com>

34 CHAPTER 3 Netty components and design
Note that this design, in which the I/O for a given Channel is executed by the same
Thread, virtually eliminates the need for synchronization.

3.1.3 Interface ChannelFuture

As we’ve explained, all I/O operations in Netty are asynchronous. Because an opera-
tion may not return immediately, we need a way to determine its result at a later time.
For this purpose, Netty provides ChannelFuture, whose addListener() method regis-
ters a ChannelFutureListener to be notified when an operation has completed
(whether or not successfully).

MORE ON CHANNELFUTURE Think of a ChannelFuture as a placeholder for the
result of an operation that’s to be executed in the future. When exactly it will
be executed may depend on several factors and thus be impossible to predict
with precision, but it is certain that it will be executed. Furthermore, all oper-
ations belonging to the same Channel are guaranteed to be executed in the
order in which they were invoked.

We’ll discuss EventLoop and EventLoopGroup in depth in chapter 7.

3.2 ChannelHandler and ChannelPipeline
Now we’ll take a more detailed look at the components that manage the flow of data
and execute an application’s processing logic.

3.2.1 Interface ChannelHandler

From the application developer’s standpoint, the primary component of Netty is the
ChannelHandler, which serves as the container for all application logic that applies

Create Channel
Register EventLoop

with Channel

Process I/O with

EventLoop during

entire lifetime

Use EventLoop
out of

EventLoopGroup

EventLoop

Channel

EventLoop

ChannelChannel

EventLoopGroup
with 4

EventLoopsEventLoop

EventLoop EventLoop

EventLoop

Figure 3.1 Channels,
EventLoops, and
EventLoopGroups
Licensed to Thomas Snead <n.ordickan@gmail.com>

35ChannelHandler and ChannelPipeline
to handling inbound and outbound data. This is possible because ChannelHandler
methods are triggered by network events (where the term “event” is used very
broadly). In fact, a ChannelHandler can be dedicated to almost any kind of action,
such as converting data from one format to another or handling exceptions thrown
during processing.

 As an example, ChannelInboundHandler is a subinterface you’ll implement fre-
quently. This type receives inbound events and data to be handled by your applica-
tion’s business logic. You can also flush data from a ChannelInboundHandler when
you’re sending a response to a connected client. The business logic of your applica-
tion will often reside in one or more ChannelInboundHandlers.

3.2.2 Interface ChannelPipeline

A ChannelPipeline provides a container for a chain of ChannelHandlers and defines
an API for propagating the flow of inbound and outbound events along the chain.
When a Channel is created, it is automatically assigned its own ChannelPipeline.

 ChannelHandlers are installed in the ChannelPipeline as follows:

■ A ChannelInitializer implementation is registered with a ServerBootstrap.
■ When ChannelInitializer.initChannel() is called, the ChannelInitializer

installs a custom set of ChannelHandlers in the pipeline.
■ The ChannelInitializer removes itself from the ChannelPipeline.

Let’s go a bit deeper into the symbiotic relationship between ChannelPipeline and
ChannelHandler to examine what happens to data when you send or receive it.

 ChannelHandler has been designed specifically to support a broad range of uses,
and you can think of it as a generic container for any code that processes events
(including data) coming and going through the ChannelPipeline. This is illustrated
in figure 3.2, which shows the derivation of ChannelInboundHandler and Channel-
OutboundHandler from ChannelHandler.

 The movement of an event through the pipeline is the work of the ChannelHandlers
that have been installed during the initialization, or bootstrapping phase of the appli-
cation. These objects receive events, execute the processing logic for which they have
been implemented, and pass the data to the next handler in the chain. The order in
which they are executed is determined by the order in which they were added. For all
practical purposes, it’s this ordered arrangement of ChannelHandlers that we refer to
as the ChannelPipeline.

<<interface>>
ChannelHandler

<<interface>>
ChannelInboundHandler

<<interface>>
ChannelOutboundHandler

Figure 3.2 ChannelHandler
class hierarchy
Licensed to Thomas Snead <n.ordickan@gmail.com>

36 CHAPTER 3 Netty components and design
Figure 3.3 illustrates the distinction between inbound and outbound data flow in a
Netty application. From the point of view of a client application, events are said to
be outbound if the movement is from the client to the server and inbound in the
opposite case.

 Figure 3.3 also shows that both inbound and outbound handlers can be installed
in the same pipeline. If a message or any other inbound event is read, it will start from
the head of the pipeline and be passed to the first ChannelInboundHandler. This han-
dler may or may not actually modify the data, depending on its specific function, after
which the data will be passed to the next ChannelInboundHandler in the chain. Finally,
the data will reach the tail of the pipeline, at which point all processing is terminated.

 The outbound movement of data (that is, data being written) is identical in con-
cept. In this case, data flows from the tail through the chain of ChannelOutbound-
Handlers until it reaches the head. Beyond this point, outbound data will reach the
network transport, shown here as a Socket. Typically, this will trigger a write operation.

Given that outbound and inbound operations are distinct, you might wonder what hap-
pens when the two categories of handlers are mixed in the same ChannelPipeline.
Although both inbound and outbound handlers extend ChannelHandler, Netty distin-
guishes implementations of ChannelInboundHandler and ChannelOutboundHandler
and ensures that data is passed only between handlers of the same directional type.

 When a ChannelHandler is added to a ChannelPipeline, it’s assigned a Channel-
HandlerContext, which represents the binding between a ChannelHandler and the

More on inbound and outbound handlers
An event can be forwarded to the next handler in the current chain by using the
ChannelHandlerContext that’s supplied as an argument to each method. Because
you’ll sometimes ignore uninteresting events, Netty provides the abstract base classes
ChannelInboundHandlerAdapter and ChannelOutboundHandlerAdapter. Each pro-
vides method implementations that simply pass the event to the next handler by call-
ing the corresponding method on the ChannelHandlerContext. You can then extend
the class by overriding the methods that interest you.

ChannelOutboundHandler ChannelOutboundHandler

ChannelInboundHandler

Socket/Transport

TailHead

ChannelPipeline

ChannelInboundHandler

Figure 3.3 ChannelPipeline with inbound and outbound ChannelHandlers
Licensed to Thomas Snead <n.ordickan@gmail.com>

37ChannelHandler and ChannelPipeline
ChannelPipeline. Although this object can be used to obtain the underlying Channel,
it’s mostly utilized to write outbound data.

 There are two ways of sending messages in Netty. You can write directly to the Channel
or write to a ChannelHandlerContext object associated with a ChannelHandler. The for-
mer approach causes the message to start from the tail of the ChannelPipeline, the lat-
ter causes the message to start from the next handler in the ChannelPipeline.

3.2.3 A closer look at ChannelHandlers

As we said earlier, there are many different types of ChannelHandlers, and the func-
tionality of each is largely determined by its superclass. Netty provides a number of
default handler implementations in the form of adapter classes, which are intended to
simplify the development of an application’s processing logic. You’ve seen that each
ChannelHandler in a pipeline is responsible for forwarding events to the next handler
in the chain. These adapter classes (and their subclasses) do this automatically, so you
can override only the methods and events you want to specialize.

Next we’ll examine three ChannelHandler subtypes: encoders, decoders, and Simple-
ChannelInboundHandler<T>, a subclass of ChannelInboundHandlerAdapter.

3.2.4 Encoders and decoders

When you send or receive a message with Netty, a data conversion takes place. An
inbound message will be decoded; that is, converted from bytes to another format, typi-
cally a Java object. If the message is outbound, the reverse will happen: it will be
encoded to bytes from its current format. The reason for both conversions is simple:
network data is always a series of bytes.

 Various types of abstract classes are provided for encoders and decoders, corre-
sponding to specific needs. For example, your application may use an intermediate
format that doesn’t require the message to be converted to bytes immediately. You’ll
still need an encoder, but it will derive from a different superclass. To determine the
appropriate one, you can apply a simple naming convention.

Why adapters?
There are a few adapter classes that reduce the effort of writing custom Channel-
Handlers to a bare minimum, because they provide default implementations of all
the methods defined in the corresponding interface.

These are the adapters you’ll call most often when creating your custom handlers:

■ ChannelHandlerAdapter
■ ChannelInboundHandlerAdapter
■ ChannelOutboundHandlerAdapter
■ ChannelDuplexHandlerAdapter
Licensed to Thomas Snead <n.ordickan@gmail.com>

38 CHAPTER 3 Netty components and design
 In general, base classes will have a name resembling ByteToMessageDecoder or
MessageToByteEncoder. In the case of a specialized type, you may find something
like ProtobufEncoder and ProtobufDecoder, provided to support Google’s proto-
col buffers.

 Strictly speaking, other handlers could do what encoders and decoders do. But just
as there are adapter classes to simplify the creation of channel handlers, all of the
encoder/decoder adapter classes provided by Netty implement either ChannelInbound-
Handler or ChannelOutboundHandler.

 You’ll find that for inbound data the channelRead method/event is overridden.
This method is called for each message that’s read from the inbound Channel. It will
then call the decode() method of the provided decoder and forward the decoded
bytes to the next ChannelInboundHandler in the pipeline.

 The pattern for outbound messages is the reverse: an encoder converts the mes-
sage to bytes and forwards them to the next ChannelOutboundHandler.

3.2.5 Abstract class SimpleChannelInboundHandler

Most frequently your application will employ a handler that receives a decoded mes-
sage and applies business logic to the data. To create such a ChannelHandler, you
need only extend the base class SimpleChannelInboundHandler<T>, where T is the
Java type of the message you want to process. In this handler you’ll override one or
more methods of the base class and obtain a reference to the ChannelHandlerContext,
which is passed as an input argument to all the handler methods.

 The most important method in a handler of this type is channelRead0(Channel-
HandlerContext,T). The implementation is entirely up to you, except for the require-
ment that the current I/O thread not be blocked. We’ll have much more to say on this
topic later.

3.3 Bootstrapping
Netty’s bootstrap classes provide containers for the configuration of an application’s
network layer, which involves either binding a process to a given port or connecting
one process to another one running on a specified host at a specified port.

 In general, we refer to the former use case as bootstrapping a server and the latter
as bootstrapping a client. This terminology is simple and convenient, but it slightly
obscures the important fact that the terms “server” and “client” denote different net-
work behaviors; namely, listening for incoming connections versus establishing connec-
tions with one or more processes.

CONNECTION-ORIENTED PROTOCOLS Please keep in mind that strictly speak-
ing the term “connection” applies only to connection-oriented protocols
such as TCP, which guarantee ordered delivery of messages between the
connected endpoints.
Licensed to Thomas Snead <n.ordickan@gmail.com>

39Bootstrapping
Accordingly, there are two types of bootstraps: one intended for clients (called simply
Bootstrap), and the other for servers (ServerBootstrap). Regardless of which proto-
col your application uses or the type of data processing it performs, the only thing that
determines which bootstrap class it uses is its function as a client or server. Table 3.1
compares the two types of bootstraps.

The first difference between the two types of bootstraps has been discussed: a Server-
Bootstrap binds to a port, because servers must listen for connections, while a Boot-
strap is used by client applications that want to connect to a remote peer.

 The second difference is perhaps more significant. Bootstrapping a client requires
only a single EventLoopGroup, but a ServerBootstrap requires two (which can be the
same instance). Why?

 A server needs two distinct sets of Channels. The first set will contain a single
ServerChannel representing the server’s own listening socket, bound to a local port.
The second set will contain all of the Channels that have been created to handle incom-
ing client connections—one for each connection the server has accepted. Figure 3.4
illustrates this model, and shows why two distinct EventLoopGroups are required.

 The EventLoopGroup associated with the ServerChannel assigns an EventLoop
that is responsible for creating Channels for incoming connection requests. Once a

Table 3.1 Comparison of Bootstrap classes

Category Bootstrap ServerBootstrap

Networking function Connects to a remote host and port Binds to a local port

Number of EventLoopGroups 1 2

EventLoopGroup
with 4

EventLoopsEventLoop

EventLoop EventLoop

Accept new

connections

Use EventLoop
from

EventLoopGroup

EventLoop

EventLoopGroup
with 4

EventLoopsEventLoop

EventLoop EventLoop

Use EventLoop
from

EventLoopGroup

EventLoop

EventLoop

ServerChannel

EventLoop

Accepted

Channel EventLoop

Accepted

Channel

Figure 3.4 Server with two EventLoopGroups
Licensed to Thomas Snead <n.ordickan@gmail.com>

40 CHAPTER 3 Netty components and design
connection has been accepted, the second EventLoopGroup assigns an EventLoop to
its Channel.

3.4 Summary
In this chapter we discussed the importance of understanding Netty from both techni-
cal and architectural standpoints. We revisited in greater detail some of the concepts
and components previously introduced, especially ChannelHandler, ChannelPipeline,
and bootstrapping.

 In particular, we discussed the hierarchy of ChannelHandlers and introduced
encoders and decoders, describing their complementary functions in converting data
to and from network byte format.

 Many of the following chapters are devoted to in-depth study of these components,
and the overview presented here should help you keep the big picture in focus.

 The next chapter will explore the network transports provided by Netty and how to
choose the one best suited to your application.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Transports
The data that flows through a network always has the same type: bytes. How these
bytes are moved around depends mostly on what we refer to as the network trans-
port, a concept that helps us to abstract away the underlying mechanics of data
transfer. Users don’t care about the details; they just want to be certain that their
bytes are reliably sent and received.

 If you have experience with network programming in Java, you may have discov-
ered at some point that you needed to support a great many more concurrent con-
nections than expected. If you then tried to switch from a blocking to a non-blocking
transport, you might have encountered problems because the two network APIs are
quite different.

 Netty, however, layers a common API over all its transport implementations,
making such a conversion far simpler than you can achieve using the JDK directly.

This chapter covers
■ OIO—blocking transport
■ NIO—asynchronous transport
■ Local transport—asynchronous

communications within a JVM
■ Embedded transport—testing your

ChannelHandlers
41

Licensed to Thomas Snead <n.ordickan@gmail.com>

42 CHAPTER 4 Transports
The resulting code will be uncontaminated by implementation details, and you won’t
need to perform extensive refactoring of your entire code base. In short, you can
spend your time doing something productive.

 In this chapter, we’ll study this common API, contrasting it with the JDK to dem-
onstrate its far greater ease of use. We’ll explain the transport implementations that
come bundled with Netty and the use cases appropriate to each. With this informa-
tion in hand, you should find it straightforward to choose the best option for your
application.

 The only prerequisite for this chapter is knowledge of the Java programming lan-
guage. Experience with network frameworks or network programming is a plus, but
not a requirement.

 We’ll start by seeing how transports work in a real-world situation.

4.1 Case study: transport migration
We’ll begin our study of transports with an application that simply accepts a connec-
tion, writes “Hi!” to the client, and closes the connection.

4.1.1 Using OIO and NIO without Netty

We’ll present blocking (OIO) and asynchronous (NIO) versions of the application that
use only the JDK APIs. The next listing shows the blocking implementation. If you’ve
ever experienced the joy of network programming with the JDK, this code will evoke
pleasant memories.

public class PlainOioServer {
 public void serve(int port) throws IOException {
 final ServerSocket socket = new ServerSocket(port);
 try {
 for (;;) {
 final Socket clientSocket = socket.accept();
 System.out.println(
 "Accepted connection from " + clientSocket);
 new Thread(new Runnable() {
 @Override
 public void run() {
 OutputStream out;
 try {
 out = clientSocket.getOutputStream();
 out.write("Hi!\r\n".getBytes(
 Charset.forName("UTF-8")));
 out.flush();
 clientSocket.close();
 }
 catch (IOException e) {
 e.printStackTrace();
 }

Listing 4.1 Blocking networking without Netty

Binds the
server to the
specified port

Accepts a
connection

Creates a new
thread to handle
the connection

Writes
message
to the
connected
client

Closes the
connection
Licensed to Thomas Snead <n.ordickan@gmail.com>

43Case study: transport migration
 finally {
 try {
 clientSocket.close();
 }
 catch (IOException ex) {
 // ignore on close
 }
 }
 }
 }).start();
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}

This code handles a moderate number of simultaneous clients adequately. But as the
application becomes popular, you notice that it isn’t scaling very well to tens of thou-
sands of concurrent incoming connections. You decide to convert to asynchronous
networking, but soon discover that the asynchronous API is completely different, so
now you have to rewrite your application.

 The non-blocking version is shown in the following listing.

public class PlainNioServer {
 public void serve(int port) throws IOException {
 ServerSocketChannel serverChannel = ServerSocketChannel.open();
 serverChannel.configureBlocking(false);
 ServerSocket ssocket = serverChannel.socket();
 InetSocketAddress address = new InetSocketAddress(port);
 ssocket.bind(address);
 Selector selector = Selector.open();
 serverChannel.register(selector, SelectionKey.OP_ACCEPT);
 final ByteBuffer msg = ByteBuffer.wrap("Hi!\r\n".getBytes());
 for (;;) {
 try {
 selector.select();
 } catch (IOException ex) {
 ex.printStackTrace();
 // handle exception
 break;
 }
 Set<SelectionKey> readyKeys = selector.selectedKeys();
 Iterator<SelectionKey> iterator = readyKeys.iterator();
 while (iterator.hasNext()) {
 SelectionKey key = iterator.next();
 iterator.remove();
 try {
 if (key.isAcceptable()) {

Listing 4.2 Asynchronous networking without Netty

Starts the
thread

Binds the
server to the
selected port

Opens the
Selector for

handling
channels

Registers the
ServerSocket

with the
Selector

to accept
connections

Waits for new events to
process; blocks until the
next incoming event

Obtains all
SelectionKey

instances that
received

events Checks if the event
is a new connection
ready to be accepted
Licensed to Thomas Snead <n.ordickan@gmail.com>

44 CHAPTER 4 Transports
 ServerSocketChannel server =
 (ServerSocketChannel)key.channel();
 SocketChannel client = server.accept();
 client.configureBlocking(false);
 client.register(selector, SelectionKey.OP_WRITE |
 SelectionKey.OP_READ, msg.duplicate());
 System.out.println(
 "Accepted connection from " + client);
 }
 if (key.isWritable()) {
 SocketChannel client =
 (SocketChannel)key.channel();
 ByteBuffer buffer =
 (ByteBuffer)key.attachment();
 while (buffer.hasRemaining()) {
 if (client.write(buffer) == 0) {
 break;
 }
 }
 client.close();
 }
 } catch (IOException ex) {
 key.cancel();
 try {
 key.channel().close();
 } catch (IOException cex) {
 // ignore on close
 }
 }
 }
 }
 }
}

As you can see, although this code does the very same thing as the preceding version,
it is quite different. If reimplementing this simple application for non-blocking I/O
requires a complete rewrite, consider the level of effort that would be required to port
something truly complex.

 With this in mind, let’s see how the application looks when implemented using
Netty.

4.1.2 Using OIO and NIO with Netty

We’ll start by writing another blocking version of the application, this time using the
Netty framework, as shown in the following listing.

public class NettyOioServer {
 public void server(int port) throws Exception {
 final ByteBuf buf = Unpooled.unreleasableBuffer(
 Unpooled.copiedBuffer("Hi!\r\n", Charset.forName("UTF-8")));
 EventLoopGroup group = new OioEventLoopGroup();

Listing 4.3 Blocking networking with Netty

Accepts client and
registers it with

the selector

Checks if the
socket is ready
for writing data

Writes data to
the connected
client

Closes the
connection
Licensed to Thomas Snead <n.ordickan@gmail.com>

45Case study: transport migration

l-
er-
ercept
nts

Cha
t

 try {
 ServerBootstrap b = new ServerBootstrap();
 b.group(group)
 .channel(OioServerSocketChannel.class)
 .localAddress(new InetSocketAddress(port))
 .childHandler(new ChannelInitializer<SocketChannel>() {
 @Override
 public void initChannel(SocketChannel ch)
 throws Exception {
 ch.pipeline().addLast(
 new ChannelInboundHandlerAdapter() {
 @Override
 public void channelActive(
 ChannelHandlerContext ctx)
 throws Exception {
 ctx.writeAndFlush(buf.duplicate())
 .addListener(
 ChannelFutureListener.CLOSE);
 }
 });
 }
 });
 ChannelFuture f = b.bind().sync();
 f.channel().closeFuture().sync();
 } finally {
 group.shutdownGracefully().sync();
 }
 }
}

Next we’ll implement the same logic with non-blocking I/O using Netty.

4.1.3 Non-blocking Netty version

The next listing is virtually identical to listing 4.3 except for the two highlighted lines.
This is all that’s required to switch from blocking (OIO) to non-blocking (NIO) transport.

public class NettyNioServer {
 public void server(int port) throws Exception {
 final ByteBuf buf = Unpooled.copiedBuffer("Hi!\r\n",
 Charset.forName("UTF-8"));
 EventLoopGroup group = new NioEventLoopGroup();
 try {
 ServerBootstrap b = new ServerBootstrap();
 b.group(group).channel(NioServerSocketChannel.class)
 .localAddress(new InetSocketAddress(port))
 .childHandler(new ChannelInitializer<SocketChannel>() {
 @Override
 public void initChannel(SocketChannel ch)
 throws Exception{
 ch.pipeline().addLast(
 new ChannelInboundHandlerAdapter() {

Listing 4.4 Asynchronous networking with Netty

Creates a
ServerBootstrap

Uses OioEventLoop-
Group to allow blocking
mode (old I/O)

Specifies
ChannelInitializer
that will be called
for each accepted

connection
Adds a Channe
InboundHandl
Adapter to int
and handle eve

Writes message to
client and adds

ChannelFutureListener to
close connection once

message is written

Binds server
to accept
connections

Releases all
resources

Uses NioEvent-
LoopGroup for
non-blocking mode

Creates
ServerBootstrap

Specifies
nnelInitializer
o be called for
each accepted

connection

Adds ChannelInbound-
HandlerAdapter to receive

events and process them
Licensed to Thomas Snead <n.ordickan@gmail.com>

46 CHAPTER 4 Transports
 @Override
 public void channelActive(
 ChannelHandlerContext ctx) throws Exception {
 ctx.writeAndFlush(buf.duplicate())
 .addListener(
 ChannelFutureListener.CLOSE);
 }
 });
 }
 });
 ChannelFuture f = b.bind().sync();
 f.channel().closeFuture().sync();
 } finally {
 group.shutdownGracefully().sync();
 }
 }
}

Because Netty exposes the same API for every transport implementation, whichever
you choose, your code remains virtually unaffected. In all cases the implementation is
defined in terms of the interfaces Channel, ChannelPipeline, and ChannelHandler.

 Having seen some of the benefits of using Netty-based transports, let’s take a closer
look at the transport API itself.

4.2 Transport API
At the heart of the transport API is interface Channel, which is used for all I/O oper-
ations. The Channel class hierarchy is shown in figure 4.1.

 The figure shows that a Channel has a ChannelPipeline and a ChannelConfig
assigned to it. The ChannelConfig holds all of the configuration settings for the
Channel and supports hot changes. Because a specific transport may have unique set-
tings, it may implement a subtype of ChannelConfig. (Please refer to the Javadocs for
the ChannelConfig implementations.)

 Since Channels are unique, declaring Channel as a subinterface of java.lang
.Comparable is intended to guarantee ordering. Thus, the implementation of
compareTo() in AbstractChannel throws an Error if two distinct Channel instances
return the same hash code.

Writes message to client
and adds ChannelFuture-

Listener to close the
connection once the

message is written

Binds server
to accept
connections

Releases all
resources

��������	
���
	�	
	� � 	�	
�

��������	
���
���� �� 	

��������	
���
��	���
 � �
���

��������	
���
��������	���

��������	
���
AbstractChannel

��	���
� ���

��������	
���
��	���

Figure 4.1 Channel interface hierarchy
Licensed to Thomas Snead <n.ordickan@gmail.com>

47Transport API
The ChannelPipeline holds all of the ChannelHandler instances that will be applied
to inbound and outbound data and events. These ChannelHandlers implement the
application’s logic for handling state changes and for data processing.

 Typical uses for ChannelHandlers include:

■ Transforming data from one format to another
■ Providing notification of exceptions
■ Providing notification of a Channel becoming active or inactive
■ Providing notification when a Channel is registered with or deregistered from

an EventLoop
■ Providing notification about user-defined events

INTERCEPTING FILTER The ChannelPipeline implements a common design
pattern, Intercepting Filter. UNIX pipes are another familiar example: com-
mands are chained together, with the output of one command connecting to
the input of the next in line.

You can also modify a ChannelPipeline on the fly by adding or removing Channel-
Handler instances as needed. This capability of Netty can be exploited to build highly
flexible applications. For example, you could support the STARTTLS1 protocol on
demand simply by adding an appropriate ChannelHandler (SslHandler) to the
ChannelPipeline whenever the protocol is requested.

 In addition to accessing the assigned ChannelPipeline and ChannelConfig, you
can make use of Channel methods, the most important of which are listed in table 4.1.

1 See STARTTLS, http://en.wikipedia.org/wiki/STARTTLS.

Table 4.1 Channel methods

Method name Description

eventLoop Returns the EventLoop that is assigned to the Channel.

pipeline Returns the ChannelPipeline that is assigned to the Channel.

isActive Returns true if the Channel is active. The meaning of active may depend
on the underlying transport. For example, a Socket transport is active once
connected to the remote peer, whereas a Datagram transport would be
active once it’s open.

localAddress Returns the local SocketAddress.

remoteAddress Returns the remote SocketAddress.

write Writes data to the remote peer. This data is passed to the
ChannelPipeline and queued until it’s flushed.

flush Flushes the previously written data to the underlying transport, such as
a Socket.

writeAndFlush A convenience method for calling write() followed by flush().
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://en.wikipedia.org/wiki/STARTTLS

48 CHAPTER 4 Transports

Crea
ByteB

that ho
the data

wr
Later on we’ll discuss the uses of all these features in detail. For now, keep in mind
that the broad range of functionality offered by Netty relies on a small number of
interfaces. This means that you can make significant modifications to application
logic without wholesale refactoring of your code base.

 Consider the common task of writing data and flushing it to the remote peer. The
following listing illustrates the use of Channel.writeAndFlush() for this purpose.

Channel channel = ...
ByteBuf buf = Unpooled.copiedBuffer("your data", CharsetUtil.UTF_8);
ChannelFuture cf = channel.writeAndFlush(buf);
cf.addListener(new ChannelFutureListener() {
 @Override
 public void operationComplete(ChannelFuture future) {
 if (future.isSuccess()) {
 System.out.println("Write successful");
 } else {
 System.err.println("Write error");
 future.cause().printStacktrace();
 }
 }
});

Netty’s Channel implementations are thread-safe, so you can store a reference to a
Channel and use it whenever you need to write something to the remote peer, even
when many threads are in use. The following listing shows a simple example of writing
with multiple threads. Note that the messages are guaranteed to be sent in order.

final Channel channel = ...
final ByteBuf buf = Unpooled.copiedBuffer("your data",
 CharsetUtil.UTF_8).retain();
Runnable writer = new Runnable() {
 @Override
 public void run() {
 channel.write(buf.duplicate());
 }
};
Executor executor = Executors.newCachedThreadPool();

// write in one thread
executor.execute(writer);

// write in another thread
executor.execute(writer);
...

Listing 4.5 Writing to a Channel

Listing 4.6 Using a Channel from many threads

tes
uf

lds
 to
ite

Writes the
data and
flushes it

Adds ChannelFuture-
Listener to receive
notification after
write completes

Write operation
completes
without error

Logs an error

Creates a ByteBuf
that holds data to
write

Creates Runnable,
which writes data
to channel

Obtains reference
to the thread pool
ExecutorHands over write

task to executor for
execution in one thread

Hands over another
write task for execution
in another thread
Licensed to Thomas Snead <n.ordickan@gmail.com>

49Included transports
4.3 Included transports
Netty comes bundled with several transports that are ready for use. Because not all of
them support every protocol, you have to select a transport that is compatible with the
protocols employed by your application. In this section we’ll discuss these relationships.

 Table 4.2 lists all of the transports provided by Netty.

We’ll discuss these transports in greater detail in the next sections.

4.3.1 NIO—non-blocking I/O

NIO provides a fully asynchronous implementation of all I/O operations. It makes use
of the selector-based API that has been available since the NIO subsystem was intro-
duced in JDK 1.4.

 The basic concept behind the selector is to serve as a registry where you request to
be notified when the state of a Channel changes. The possible state changes are

■ A new Channel was accepted and is ready.
■ A Channel connection was completed.
■ A Channel has data that is ready for reading.
■ A Channel is available for writing data.

After the application reacts to the change of state, the selector is reset and the process
repeats, running on a thread that checks for changes and responds to them accordingly.

 The constants shown in table 4.3 represent the bit patterns defined by class
java.nio.channels.SelectionKey. These patterns are combined to specify the set of
state changes about which the application is requesting notification.

Table 4.2 Netty-provided transports

Name Package Description

NIO io.netty.channel.socket.nio Uses the java.nio.channels package
as a foundation—a selector-based approach.

Epoll io.netty.channel.epoll Uses JNI for epoll() and non-blocking IO.
This transport supports features available
only on Linux, such as SO_REUSEPORT, and
is faster than the NIO transport as well as
fully non-blocking.

OIO io.netty.channel.socket.oio Uses the java.net package as a founda-
tion—uses blocking streams.

Local io.netty.channel.local A local transport that can be used to commu-
nicate in the VM via pipes.

Embedded io.netty.channel.embedded An embedded transport, which allows using
ChannelHandlers without a true net-
work-based transport. This can be quite use-
ful for testing your ChannelHandler
implementations.
Licensed to Thomas Snead <n.ordickan@gmail.com>

50 CHAPTER 4 Transports
These internal details of NIO are hidden by the user-level API common to all of Netty’s
transport implementations. Figure 4.2 shows the process flow.

Table 4.3 Selection operation bit-set

Name Description

OP_ACCEPT Requests notification when a new connection is accepted, and a Channel is created.

OP_CONNECT Requests notification when a connection is established.

OP_READ Requests notification when data is ready to be read from the Channel.

OP_WRITE Requests notification when it is possible to write more data to the Channel. This
handles cases when the socket buffer is completely filled, which usually happens
when data is transmitted more rapidly than the remote peer can handle.

Zero-copy
Zero-copy is a feature currently available only with NIO and Epoll transport. It allows
you to quickly and efficiently move data from a file system to the network without
copying from kernel space to user space, which can significantly improve perfor-
mance in protocols such as FTP or HTTP. This feature is not supported by all OSes.
Specifically it is not usable with file systems that implement data encryption or com-
pression—only the raw content of a file can be transferred. Conversely, transferring
files that have already been encrypted isn’t a problem.

Channel
Channel

Selector select(..)

Any state

changes?

Register

Registered

Channel Register

No

Yes

Channel

Execute

other

Tasks

Handle

state

changes

Register

Checks if there
were state changes

New Channel
registers
with selector

Selector handles
notification
of state changes

Previously registered
channels

Selector.select() blocks until new
state changes are received or a
configured timeout has elapsed

Executes other tasks
in the same thread in
which selector operates

Handles all
state changes

Figure 4.2 Selecting and processing state changes
Licensed to Thomas Snead <n.ordickan@gmail.com>

51Included transports
4.3.2 Epoll—native non-blocking transport for Linux

As we explained earlier, Netty’s NIO transport is based on the common abstraction for
asynchronous/non-blocking networking provided by Java. Although this ensures that
Netty’s non-blocking API will be usable on any platform, it also entails limitations,
because the JDK has to make compromises in order to deliver the same capabilities on
all systems.

 The growing importance of Linux as a platform for high-performance networking
has led to the development of a number of advanced features, including epoll, a highly
scalable I/O event-notification feature. This API, available since version 2.5.44 (2002)
of the Linux kernel, provides better performance than the older POSIX select and
poll system calls2 and is now the de facto standard for non-blocking networking on
Linux. The Linux JDK NIO API uses these epoll calls.

 Netty provides an NIO API for Linux that uses epoll in a way that’s more consistent
with its own design and less costly in the way it uses interrupts.3 Consider utilizing this
version if your applications are intended for Linux; you’ll find that performance
under heavy load is superior to that of the JDK’s NIO implementation.

 The semantics of this transport are identical to those shown in figure 4.2, and its
use is straightforward. For an example, refer to listing 4.4. To substitute epoll for NIO
in that listing, replace NioEventLoopGroup with EpollEventLoopGroup and NioServer-
SocketChannel.class with EpollServerSocketChannel.class.

4.3.3 OIO—old blocking I/O

Netty’s OIO transport implementation represents a compromise: it is accessed via the
common transport API, but because it’s built on the blocking implementation of
java.net, it’s not asynchronous. Yet it’s very well-suited to certain uses.

 For example, you might need to port legacy code that uses libraries that make
blocking calls (such as JDBC4) and it may not be practical to convert the logic to non-
blocking. Instead, you could use Netty’s OIO transport in the short term, and port
your code later to one of the pure asynchronous transports. Let’s see how it works.

 In the java.net API, you usually have one thread that accepts new connections
arriving at the listening ServerSocket. A new socket is created for the interaction with
the peer, and a new thread is allocated to handle the traffic. This is required because
any I/O operation on a specific socket can block at any time. Handling multiple sock-
ets with a single thread can easily lead to a blocking operation on one socket tying up
all the others as well.

2 See epoll(4) in the Linux manual pages, http://linux.die.net/man/4/epoll.
3 The JDK implementation is level-triggered, whereas Netty’s is edge-triggered. See the explanation on the

epoll Wikipedia page for details, http://en.wikipedia.org/wiki/Epoll - Triggering_modes.
4 JDBC documentation is available at www.oracle.com/technetwork/java/javase/jdbc/index.html.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://en.wikipedia.org/wiki/Epoll#Triggering_modes
http://linux.die.net/man/4/epoll
http://www.oracle.com/technetwork/java/javase/jdbc/index.html

52 CHAPTER 4 Transports
Given this, you may wonder how Netty can support NIO with the same API used for
asynchronous transports. The answer is that Netty makes use of the SO_TIMEOUT Socket
flag, which specifies the maximum number of milliseconds to wait for an I/O opera-
tion to complete. If the operation fails to complete within the specified interval, a
SocketTimeoutException is thrown. Netty catches this exception and continues the
processing loop. On the next EventLoop run, it will try again. This is the only way an
asynchronous framework like Netty can support OIO.5 Figure 4.3 illustrates this logic.

4.3.4 Local transport for communication within a JVM

Netty provides a local transport for asynchronous communication between clients and
servers running in the same JVM. Again, this transport supports the API common to all
Netty transport implementations.

 In this transport, the SocketAddress associated with a server Channel isn’t bound
to a physical network address; rather, it’s stored in a registry for as long as the server is
running and is deregistered when the Channel is closed. Because the transport doesn’t
accept real network traffic, it can’t interoperate with other transport implementations.
Therefore, a client wishing to connect to a server (in the same JVM) that uses this
transport must also use it. Apart from this limitation, its use is identical to that of
other transports.

5 One problem with this approach is the time required to fill in a stack trace when a SocketTimeout-
Exception is thrown, which is costly in terms of performance.

Thread Socket read(..)

Read

complete

Nothing to read

Read successful

Handle other

tasks

Handle

bytes[] Tries to read again

Handles readable bytes

Thread allocated
to Socket

Socket connected
to remote peer

Read operation
(may block)

Read complete

Executes other
tasks submitted
belonging on Socket

Figure 4.3 OIO processing logic
Licensed to Thomas Snead <n.ordickan@gmail.com>

53Transport use cases
4.3.5 Embedded transport

Netty provides an additional transport that allows you to embed ChannelHandlers as
helper classes inside other ChannelHandlers. In this fashion, you can extend the func-
tionality of a ChannelHandler without modifying its internal code.

 The key to this embedded transport is a concrete Channel implementation called,
not surprisingly, EmbeddedChannel. In chapter 9 we’ll discuss in detail how to use this
class to create unit test cases for ChannelHandler implementations.

4.4 Transport use cases
Now that we’ve looked at all the transports in detail, let’s consider the factors that go
into choosing a protocol for a specific use. As mentioned previously, not all transports
support all core protocols, which may limit your choices. Table 4.4 shows the matrix of
transports and protocols supported at the time of publication.

Although only SCTP has these specific requirements, other transports may have their
own configuration options to consider. Furthermore, a server platform will probably
need to be configured differently from a client, if only to support a higher number of
concurrent connections.

 Here are the use cases that you’re likely to encounter.

■ Non-blocking code base—If you don’t have blocking calls in your code base—or
you can limit them—it’s always a good idea to use NIO or epoll when on Linux.

Table 4.4 Transports support by network protocols

Transport TCP UDP SCTP* UDT

NIO X X X X

Epoll (Linux only) X X — —

OIO X X X X

* See the explanation of the Stream Control Transmission Protocol (SCTP) in RFC 2960 at www.ietf.org/rfc/rfc2960.txt.

Enabling SCTP on Linux
SCTP requires kernel support as well as installation of the user libraries.

For example, for Ubuntu you would use the following command:

sudo apt-get install libsctp1

For Fedora, you’d use yum:

sudo yum install kernel-modules-extra.x86_64 lksctp-tools.x86_64

Please refer to the documentation of your Linux distribution for more information
about how to enable SCTP.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.ietf.org/rfc/rfc2960.txt

54 CHAPTER 4 Transports
While NIO/epoll is intended to handle many concurrent connections, it also
works quite well with a smaller number, especially given the way it shares threads
among connections.

■ Blocking code base—As we’ve already remarked, if your code base relies heavily
on blocking I/O and your applications have a corresponding design, you’re
likely to encounter problems with blocking operations if you try to convert
directly to Netty’s NIO transport. Rather than rewriting your code to accomplish
this, consider a phased migration: start with OIO and move to NIO (or epoll if
you’re on Linux) once you have revised your code.

■ Communications within the same JVM—Communications within the same JVM with
no need to expose a service over the network present the perfect use case for
local transport. This will eliminate all the overhead of real network operations
while still employing your Netty code base. If the need arises to expose the ser-
vice over the network, you’ll simply replace the transport with NIO or OIO.

■ Testing your ChannelHandler implementations—If you want to write unit tests for
your ChannelHandler implementations, consider using the embedded transport.
This will make it easy to test your code without having to create many mock
objects. Your classes will still conform to the common API event flow, guarantee-
ing that the ChannelHandler will work correctly with live transports. You’ll find
more information about testing ChannelHandlers in chapter 9.

Table 4.5 summarizes the use cases we’ve examined.

4.5 Summary
In this chapter we studied transports, their implementation and use, and how Netty
presents them to the developer.

 We went through the transports that ship with Netty and explained their behavior.
We also looked at their minimum requirements, because not all transports work with
the same Java version and some may be usable only on specific OSes. Finally, we dis-
cussed how you can match transports to the requirements of specific use cases.

 In the next chapter, we’ll focus on ByteBuf and ByteBufHolder, Netty’s data contain-
ers. We’ll show how to use them and how to get the best performance from them.

Table 4.5 Optimal transport for an application

Application needs Recommended transport

Non-blocking code base or general starting point NIO (or epoll on Linux)

Blocking code base OIO

Communication within the same JVM Local

Testing ChannelHandler implementations Embedded
Licensed to Thomas Snead <n.ordickan@gmail.com>

ByteBuf
As we noted earlier, the fundamental unit of network data is always the byte. Java
NIO provides ByteBuffer as its byte container, but this class makes usage overly
complex and somewhat cumbersome to use.

 Netty’s alternative to ByteBuffer is ByteBuf, a powerful implementation that
addresses the limitations of the JDK API and provides a better API for network appli-
cation developers.

 In this chapter we’ll illustrate the superior functionality and flexibility of Byte-
Buf as compared to the JDK’s ByteBuffer. This will also give you a better under-
standing of Netty’s approach to data handling in general and prepare you for our
discussion of ChannelPipeline and ChannelHandler in chapter 6.

This chapter covers
■ ByteBuf—Netty’s data container
■ API details
■ Use cases
■ Memory allocation
55

Licensed to Thomas Snead <n.ordickan@gmail.com>

56 CHAPTER 5 ByteBuf
5.1 The ByteBuf API
Netty’s API for data handling is exposed through two components—abstract class
ByteBuf and interface ByteBufHolder.

 These are some of the advantages of the ByteBuf API:

■ It’s extensible to user-defined buffer types.
■ Transparent zero-copy is achieved by a built-in composite buffer type.
■ Capacity is expanded on demand (as with the JDK StringBuilder).
■ Switching between reader and writer modes doesn’t require calling ByteBuffer’s

flip() method.
■ Reading and writing employ distinct indices.
■ Method chaining is supported.
■ Reference counting is supported.
■ Pooling is supported.

Other classes are available for managing the allocation of ByteBuf instances and for
performing a variety of operations on the container and the data it holds. We’ll explore
these features as we study ByteBuf and ByteBufHolder in detail.

5.2 Class ByteBuf—Netty’s data container
Because all network communications involve the movement of sequences of bytes, an
efficient and easy-to-use data structure is an obvious necessity. Netty’s ByteBuf imple-
mentation meets and exceeds these requirements. Let’s start by looking at how it uses
indices to simplify access to the data it contains.

5.2.1 How it works

ByteBuf maintains two distinct indices: one for reading and one for writing. When
you read from a ByteBuf, its readerIndex is incremented by the number of bytes read.
Similarly, when you write to a ByteBuf, its writerIndex is incremented. Figure 5.1 shows
the layout and state of an empty ByteBuf.

 To understand the relationship between these indices, consider what would hap-
pen if you were to read bytes until the readerIndex reached the same value as the
writerIndex. At that point, you would have reached the end of readable data. Attempt-
ing to read beyond that point would trigger an IndexOutOfBoundsException, just as
when you attempt to access data beyond the end of an array.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ByteBuf with capacity of 16 bytes

readerIndex writerIndexand

start at index 0

Figure 5.1 A 16-byte ByteBuf
with its indices set to 0
Licensed to Thomas Snead <n.ordickan@gmail.com>

57Class ByteBuf—Netty’s data container
ByteBuf methods whose names begin with read or write advance the corresponding
index, whereas operations that begin with set and get do not. The latter methods
operate on a relative index that’s passed as an argument to the method.

 The maximum capacity of a ByteBuf can be specified, and attempting to move the
write index past this value will trigger an exception. (The default limit is Integer
.MAX_VALUE.)

5.2.2 ByteBuf usage patterns

While working with Netty, you’ll encounter several common usage patterns built around
ByteBuf. As we examine them, it will help to keep figure 5.1 in mind—an array of
bytes with distinct indices to control read and write access.

HEAP BUFFERS

The most frequently used ByteBuf pattern stores the data in the heap space of the
JVM. Referred to as a backing array, this pattern provides fast allocation and dealloca-
tion in situations where pooling isn’t in use. This approach, shown in listing 5.1, is well
suited to cases where you have to handle legacy data.

ByteBuf heapBuf = ...;
if (heapBuf.hasArray()) {
 byte[] array = heapBuf.array();
 int offset = heapBuf.arrayOffset() + heapBuf.readerIndex();
 int length = heapBuf.readableBytes();
 handleArray(array, offset, length);
}

NOTE Attempting to access a backing array when hasArray() returns false
will trigger an UnsupportedOperationException. This pattern is similar to
uses of the JDK’s ByteBuffer.

DIRECT BUFFERS

Direct buffer is another ByteBuf pattern. We expect that memory allocated for object
creation will always come from the heap, but it doesn’t have to—the ByteBuffer class
that was introduced in JDK 1.4 with NIO allows a JVM implementation to allocate mem-
ory via native calls. This aims to avoid copying the buffer’s contents to (or from) an
intermediate buffer before (or after) each invocation of a native I/O operation.

 The Javadoc for ByteBuffer states explicitly, “The contents of direct buffers will
reside outside of the normal garbage-collected heap.”1 This explains why direct buffers

Listing 5.1 Backing array

1 Java Platform, Standard Edition 8 API Specification, java.nio, Class ByteBuffer, http://docs.oracle.com/
javase/8/docs/api/java/nio/ByteBuffer.html.

Checks whether ByteBuf
has a backing array… …if so, gets a

reference to
the array

Calculates
the offset
of the first
byte

Gets the
number of
readable bytesCalls your method using array,

offset, and length as parameters
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html
http://docs.oracle.com/javase/8/docs/api/java/nio/ByteBuffer.html

58 CHAPTER 5 ByteBuf
are ideal for network data transfer. If your data were contained in a heap-allocated
buffer, the JVM would, in fact, copy your buffer to a direct buffer internally before
sending it through the socket.

 The primary disadvantage of direct buffers is that they’re somewhat more expen-
sive to allocate and release than are heap-based buffers. You may also encounter
another drawback if you’re working with legacy code: because the data isn’t on the
heap, you may have to make a copy, as shown next.

ByteBuf directBuf = ...;
if (!directBuf.hasArray()) {
 int length = directBuf.readableBytes();
 byte[] array = new byte[length];
 directBuf.getBytes(directBuf.readerIndex(), array);
 handleArray(array, 0, length);
}

Clearly, this involves a bit more work than using a backing array, so if you know in
advance that the data in the container will be accessed as an array, you may prefer to
use heap memory.

COMPOSITE BUFFERS

The third and final pattern uses a composite buffer, which presents an aggregated view of
multiple ByteBufs. Here you can add and delete ByteBuf instances as needed, a fea-
ture entirely absent from the JDK’s ByteBuffer implementation.

 Netty implements this pattern with a subclass of ByteBuf, CompositeByteBuf,
which provides a virtual representation of multiple buffers as a single, merged buffer.

WARNING The ByteBuf instances in a CompositeByteBuf may include both
direct and nondirect allocations. If there is only one instance, calling has-
Array() on a CompositeByteBuf will return the hasArray() value of that
component; otherwise it will return false.

To illustrate, let’s consider a message composed of two parts, header and body, to be
transmitted via HTTP. The two parts are produced by different application modules
and assembled when the message is sent out. The application has the option of reus-
ing the same message body for multiple messages. When this happens, a new header is
created for each message.

 Because we don’t want to reallocate both buffers for each message, Composite-
ByteBuf is a perfect fit; it eliminates unnecessary copying while exposing the common
ByteBuf API. Figure 5.2 shows the resulting message layout.

Listing 5.2 Direct buffer data access

Checks if ByteBuf isn’t
backed by an array. If not,
this is a direct buffer.

Gets the
number of
readable bytes

Allocates a
new array to
hold length
bytesCopies

bytes into
the arrayCalls some method with array,

offset, and length parameters
Licensed to Thomas Snead <n.ordickan@gmail.com>

59Class ByteBuf—Netty’s data container

Re
b

into
a

The following listing shows how this requirement would be implemented using the
JDK’s ByteBuffer. An array of two ByteBuffers is created to hold the message compo-
nents, and a third one is created to hold a copy of all the data.

// Use an array to hold the message parts
ByteBuffer[] message = new ByteBuffer[] { header, body };
// Create a new ByteBuffer and use copy to merge the header and body
ByteBuffer message2 =
 ByteBuffer.allocate(header.remaining() + body.remaining());
message2.put(header);
message2.put(body);
message2.flip();

The allocation and copy operations, along with the need to manage the array, make
this version inefficient as well as awkward. The next listing shows a version using
CompositeByteBuf.

CompositeByteBuf messageBuf = Unpooled.compositeBuffer();
ByteBuf headerBuf = ...; // can be backing or direct
ByteBuf bodyBuf = ...; // can be backing or direct
messageBuf.addComponents(headerBuf, bodyBuf);
.....
messageBuf.removeComponent(0); // remove the header
for (ByteBuf buf : messageBuf) {
 System.out.println(buf.toString());
}

CompositeByteBuf may not allow access to a backing array, so accessing the data in a
CompositeByteBuf resembles the direct buffer pattern, as shown next.

CompositeByteBuf compBuf = Unpooled.compositeBuffer();
int length = compBuf.readableBytes();
byte[] array = new byte[length];
compBuf.getBytes(compBuf.readerIndex(), array);
handleArray(array, 0, array.length);

Listing 5.3 Composite buffer pattern using ByteBuffer

Listing 5.4 Composite buffer pattern using CompositeByteBuf

Listing 5.5 Accessing the data in a CompositeByteBuf

ByteBuf

header

ByteBuf

body

CompositeByteBuf

Figure 5.2 CompositeByteBuf
holding a header and body

Appends ByteBuf
instances to the
CompositeByteBuf

Removes ByteBuf
at index 0 (first
component)

Loops over all the
ByteBuf instances

Gets the number of
readable bytes

Allocates a
new array
with length of
readable bytes

ads
ytes
 the
rray

Uses the array with
offset and length
parameters
Licensed to Thomas Snead <n.ordickan@gmail.com>

60 CHAPTER 5 ByteBuf
Note that Netty optimizes socket I/O operations that employ CompositeByteBuf, elim-
inating whenever possible the performance and memory usage penalties that are
incurred with the JDK’s buffer implementation.2 This optimization takes place in
Netty’s core code and is therefore not exposed, but you should be aware of its impact.

THE COMPOSITEBYTEBUF API Beyond the methods it inherits from ByteBuf,
CompositeByteBuf offers a great deal of added functionality. Refer to the
Netty Javadocs for a full listing of the API.

5.3 Byte-level operations
ByteBuf provides numerous methods beyond the basic read and write operations for
modifying its data. In the next sections we’ll discuss the most important of these.

5.3.1 Random access indexing

Just as in an ordinary Java byte array, ByteBuf indexing is zero-based: the index of the
first byte is 0 and that of the last byte is always capacity() - 1. The next listing shows
that the encapsulation of storage mechanisms makes it very simple to iterate over the
contents of a ByteBuf.

ByteBuf buffer = ...;
for (int i = 0; i < buffer.capacity(); i++) {
 byte b = buffer.getByte(i);
 System.out.println((char) b);
}

Note that accessing the data using one of the methods that takes an index argument
doesn’t alter the value of either readerIndex or writerIndex. Either can be moved
manually if necessary by calling readerIndex(index) or writerIndex(index).

5.3.2 Sequential access indexing

While ByteBuf has both reader and writer indices, the JDK’s ByteBuffer has only one,
which is why you have to call flip() to switch between read and write modes. Figure 5.3
shows how a ByteBuf is partitioned by its two indices into three areas.

2 This applies particularly to the JDK’s use of a technique known as Scatter/Gather I/O, defined as “a method of
input and output where a single system call writes to a vector of buffers from a single data stream, or, alterna-
tively, reads into a vector of buffers from a single data stream.” Robert Love, Linux System Programming
(O’Reilly, 2007).

Listing 5.6 Access data
Licensed to Thomas Snead <n.ordickan@gmail.com>

61Byte-level operations
5.3.3 Discardable bytes

The segment labeled discardable bytes in figure 5.3 contains bytes that have already
been read. They can be discarded and the space reclaimed by calling discardRead-
Bytes(). The initial size of this segment, stored in readerIndex, is 0, increasing as
read operations are executed (get* operations don’t move the readerIndex).

 Figure 5.4 shows the result of calling discardReadBytes() on the buffer shown in
figure 5.3. You can see that the space in the discardable bytes segment has become
available for writing. Note that there’s no guarantee about the contents of the writable
segment after discardReadBytes() has been called.

While you may be tempted to call discardReadBytes() frequently to maximize the writ-
able segment, please be aware that this will most likely cause memory copying because
the readable bytes (marked CONTENT in the figures) have to be moved to the start of
the buffer. We advise doing this only when it’s really needed; for example, when mem-
ory is at a premium.

5.3.4 Readable bytes

The readable bytes segment of a ByteBuf stores the actual data. The default value of a
newly allocated, wrapped, or copied buffer’s readerIndex is 0. Any operation whose

Discardable bytes
Readable bytes

(CONTENT)
Writable bytes

0 readerIndex writerIndex capacity

Bytes that have
already been read

and can be discarded

Bytes that have
not yet been read:

readable bytes

Space where more
bytes can be added:

writable bytes

Figure 5.3 ByteBuf
internal segmentation

Readable bytes

(CONTENT)

Writable bytes

(Just expanded)

readerIndex
(=0)

writerIndex
(decreased)

capacity

Bytes that have not
yet been read

(readerIndex is now 0)

Free space, augmented
by the space that

was reclaimed

Figure 5.4 ByteBuf after discarding read bytes
Licensed to Thomas Snead <n.ordickan@gmail.com>

62 CHAPTER 5 ByteBuf
name starts with read or skip will retrieve or skip the data at the current readerIndex
and increase it by the number of bytes read.

 If the method called takes a ByteBuf argument as a write target and doesn’t have a
destination index argument, the destination buffer’s writerIndex will be increased as
well; for example,

readBytes(ByteBuf dest);

If an attempt is made to read from the buffer when readable bytes have been exhausted,
an IndexOutOfBoundsException is raised.

 This listing shows how to read all readable bytes.

ByteBuf buffer = ...;
while (buffer.isReadable()) {
 System.out.println(buffer.readByte());
}

5.3.5 Writable bytes

The writable bytes segment is an area of memory with undefined contents, ready for
writing. The default value of a newly allocated buffer’s writerIndex is 0. Any opera-
tion whose name starts with write will start writing data at the current writerIndex,
increasing it by the number of bytes written. If the target of the write operation is also
a ByteBuf and no source index is specified, the source buffer’s readerIndex will be
increased by the same amount. This call would appear as follows:

writeBytes(ByteBuf dest);

If an attempt is made to write beyond the target’s capacity, an IndexOutOfBound-
Exception will be raised.

 The following listing is an example that fills the buffer with random integer values
until it runs out of space. The method writableBytes() is used here to determine
whether there is sufficient space in the buffer.

// Fills the writable bytes of a buffer with random integers.
ByteBuf buffer = ...;
while (buffer.writableBytes() >= 4) {
 buffer.writeInt(random.nextInt());
}

5.3.6 Index management

The JDK’s InputStream defines the methods mark(int readlimit) and reset().
These are used to mark the current position in the stream to a specified value and to
reset the stream to that position, respectively.

Listing 5.7 Read all data

Listing 5.8 Write data
Licensed to Thomas Snead <n.ordickan@gmail.com>

63Byte-level operations
 Similarly, you can set and reposition the ByteBuf readerIndex and writerIndex
by calling markReaderIndex(), markWriterIndex(), resetReaderIndex(), and reset-
WriterIndex(). These are similar to the InputStream calls, except that there’s no
readlimit parameter to specify when the mark becomes invalid.

 You can also move the indices to specified positions by calling readerIndex(int)
or writerIndex(int). Attempting to set either index to an invalid position will cause
an IndexOutOfBoundsException.

 You can set both readerIndex and writerIndex to 0 by calling clear(). Note that
this doesn’t clear the contents of memory. Figure 5.5 (which repeats figure 5.3) shows
how it works.

As before, the ByteBuf contains three segments. Figure 5.6 shows the ByteBuf after
clear() is called.

Calling clear() is much less expensive than discardReadBytes() because it resets
the indices without copying any memory.

5.3.7 Search operations

There are several ways to determine the index of a specified value in a ByteBuf. The
simplest of these uses the indexOf() methods. More complex searches can be exe-
cuted with methods that take a ByteBufProcessor argument. This interface defines a
single method,

boolean process(byte value)

which reports whether the input value is the one being sought.

Discardable bytes
Readable bytes

(CONTENT)
Writable bytes

0 readerIndex writerIndex capacity

Figure 5.5 Before
clear() is called

Writable bytes

0 = writerIndex = readerIndex capacity

Segment 1 is now as large as the total capacity of
the ByteBuf, so all the space is writable.

Figure 5.6 After
clear() is called
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

64 CHAPTER 5 ByteBuf
 ByteBufProcessor defines numerous convenience methods targeting common val-
ues. Suppose your application needs to integrate with so-called Flash sockets,3 which
have NULL-terminated content. Calling

forEachByte(ByteBufProcessor.FIND_NUL)

consumes the Flash data simply and efficiently, because fewer bounds checks are exe-
cuted during processing.

 This listing shows an example of searching for a carriage return character (\r).

ByteBuf buffer = ...;
int index = buffer.forEachByte(ByteBufProcessor.FIND_CR);

5.3.8 Derived buffers

A derived buffer provides a view of a ByteBuf that represents its contents in a specialized
way. Such views are created by the following methods:

■ duplicate()

■ slice()

■ slice(int, int)
■ Unpooled.unmodifiableBuffer(…)

■ order(ByteOrder)

■ readSlice(int)

Each returns a new ByteBuf instance with its own reader, writer, and marker indices.
The internal storage is shared just as in a JDK ByteBuffer. This makes a derived buffer
inexpensive to create, but it also means that if you modify its contents you are modify-
ing the source instance as well, so beware.

BYTEBUF COPYING If you need a true copy of an existing buffer, use copy()
or copy(int,int). Unlike a derived buffer, the ByteBuf returned by this call
has an independent copy of the data.

The next listing shows how to work with a ByteBuf segment using slice (int, int).

3 Flash sockets are discussed in the Flash ActionScript 3.0 Developer’s Guide, Networking and communication,
Sockets page at http://help.adobe.com/en_US/as3/dev/WSb2ba3b1aad8a27b0-181c51321220efd9d1c-8000
.html.

Listing 5.9 Using ByteBufProcessor to find \r
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://help.adobe.com/en_US/as3/dev/WSb2ba3b1aad8a27b0-181c51321220efd9d1c-8000.html
http://help.adobe.com/en_US/as3/dev/WSb2ba3b1aad8a27b0-181c51321220efd9d1c-8000.html

65Byte-level operations
Charset utf8 = Charset.forName("UTF-8");
ByteBuf buf = Unpooled.copiedBuffer("Netty in Action rocks!", utf8);
ByteBuf sliced = buf.slice(0, 14);
System.out.println(sliced.toString(utf8));
buf.setByte(0, (byte)'J');
assert buf.getByte(0) == sliced.getByte(0);

Now let’s see how a copy of a ByteBuf segment differs from a slice.

Charset utf8 = Charset.forName("UTF-8");
ByteBuf buf = Unpooled.copiedBuffer("Netty in Action rocks!", utf8);
ByteBuf copy = buf.copy(0, 14);
System.out.println(copy.toString(utf8));
buf.setByte(0, (byte)'J');
assert buf.getByte(0) != copy.getByte(0);

The two cases are identical except for the effect of modifying a slice or a copy of
the original ByteBuf. Whenever possible, use slice() to avoid the cost of copying
memory.

5.3.9 Read/write operations

As we’ve mentioned, there are two categories of read/write operations:

■ get() and set() operations that start at a given index and leave it unchanged
■ read() and write() operations that start at a given index and adjust it by the

number of bytes accessed

Table 5.1 lists the most frequently used get() methods. For a complete list, refer to
the API docs.

Listing 5.10 Slice a ByteBuf

Listing 5.11 Copying a ByteBuf

Creates a ByteBuf, which
holds bytes for given string

Creates a new slice of the
ByteBuf starting at index 0

and ending at index 14

Prints “Netty in
Action rocks!”

Updates the byte
at index 0

Succeeds because the data is
shared—modifications made to

one will be visible in the other

Creates a ByteBuf to hold the
bytes of the supplied String

Creates a copy of a segment of
the ByteBuf starting at index 0

and ending at index 14

Prints “Netty in
Action rocks!”

Updates the byte
at index 0

Succeeds because the
data isn’t shared
Licensed to Thomas Snead <n.ordickan@gmail.com>

66 CHAPTER 5 ByteBuf
Most of these operations have a corresponding set() method. These are listed in
table 5.2.

The following listing illustrates the use of get() and set() methods, showing that
they don’t alter the read and write indices.

Table 5.1 get() operations

Name Description

getBoolean(int) Returns the Boolean value at the given index

getByte(int) Returns the byte at the given index

getUnsignedByte(int) Returns the unsigned byte value at the given index as a short

getMedium(int) Returns the 24-bit medium int value at the given index

getUnsignedMedium(int) Returns the unsigned 24-bit medium int value at the given index

getInt(int) Returns the int value at the given index

getUnsignedInt(int) Returns the unsigned int value at the given index as a long

getLong(int) Returns the long value at the given index

getShort(int) Returns the short value at the given index

getUnsignedShort(int) Returns the unsigned short value at the given index as an int

getBytes(int, ...) Transfers this buffer’s data to a specified destination starting at
the given index

Table 5.2 set()operations

Name Description

setBoolean(int, boolean) Sets the Boolean value at the given index

setByte(int index, int value) Sets byte value at the given index

setMedium(int index, int value) Sets the 24-bit medium value at the given index

setInt(int index, int value) Sets the int value at the given index

setLong(int index, long value) Sets the long value at the given index

setShort(int index, int value) Sets the short value at the given index
Licensed to Thomas Snead <n.ordickan@gmail.com>

67Byte-level operations
Charset utf8 = Charset.forName("UTF-8");
ByteBuf buf = Unpooled.copiedBuffer("Netty in Action rocks!", utf8);
System.out.println((char)buf.getByte(0));
int readerIndex = buf.readerIndex();
int writerIndex = buf.writerIndex();
buf.setByte(0, (byte)'B');
System.out.println((char)buf.getByte(0));
assert readerIndex == buf.readerIndex();
assert writerIndex == buf.writerIndex();

Now let’s examine the read() operations, which act on the current readerIndex or
writerIndex. These methods are used to read from the ByteBuf as if it were a stream.
Table 5.3 shows the most commonly used methods.

Listing 5.12 get() and set() usage

Table 5.3 read()operations

Name Description

readBoolean() Returns the Boolean value at the current readerIndex
and increases the readerIndex by 1.

readByte() Returns the byte value at the current readerIndex and
increases the readerIndex by 1.

readUnsignedByte() Returns the unsigned byte value at the current reader-
Index as a short and increases the readerIndex by 1.

readMedium() Returns the 24-bit medium value at the current
readerIndex and increases the readerIndex by 3.

readUnsignedMedium() Returns the unsigned 24-bit medium value at the current
readerIndex and increases the readerIndex by 3.

readInt() Returns the int value at the current readerIndex and
increases the readerIndex by 4.

readUnsignedInt() Returns the unsigned int value at the current reader-
Index as a long and increases the readerIndex by 4.

readLong() Returns the long value at the current readerIndex and
increases the readerIndex by 8.

readShort() Returns the short value at the current readerIndex and
increases the readerIndex by 2.

Creates a new ByteBuf to hold
the bytes for the given String Prints the first

char, ‘N’

Stores the current
readerIndex and
writerIndex

Updates the byte at
index 0 with the char ‘B’

Prints the first
char, now ‘B’

Succeeds because these operations
don’t modify the indices
Licensed to Thomas Snead <n.ordickan@gmail.com>

68 CHAPTER 5 ByteBuf
Almost every read() method has a corresponding write() method, used to append
to a ByteBuf. Note that the arguments to these methods, listed in table 5.4, are the val-
ues to be written, not index values.

Listing 5.13 shows these methods in use.

readUnsignedShort() Returns the unsigned short value at the current reader-
Index as an int and increases the readerIndex by 2.

readBytes(ByteBuf | byte[]
destination,
int dstIndex [,int length])

Transfers data from the current ByteBuf starting at the cur-
rent readerIndex (for, if specified, length bytes) to a
destination ByteBuf or byte[], starting at the destina-
tion’s dstIndex. The local readerIndex is incremented
by the number of bytes transferred.

Table 5.4 Write operations

Name Description

writeBoolean(boolean) Writes the Boolean value at the current writer-
Index and increases the writerIndex by 1.

writeByte(int) Writes the byte value at the current writerIndex
and increases the writerIndex by 1.

writeMedium(int) Writes the medium value at the current writer-
Index and increases the writerIndex by 3.

writeInt(int) Writes the int value at the current writerIndex
and increases the writerIndex by 4.

writeLong(long) Writes the long value at the current writerIndex
and increases the writerIndex by 8.

writeShort(int) Writes the short value at the current writer-
Index and increases the writerIndex by 2.

writeBytes(source ByteBuf |
byte[] [,int srcIndex
,int length])

Transfers data starting at the current writerIndex
from the specified source (ByteBuf or byte[]).
If srcIndex and length are provided, reading
starts at srcIndex and proceeds for length bytes.
The current writerIndex is incremented by the
number of bytes written.

Table 5.3 read()operations (continued)

Name Description
Licensed to Thomas Snead <n.ordickan@gmail.com>

69Interface ByteBufHolder
Charset utf8 = Charset.forName("UTF-8");
ByteBuf buf = Unpooled.copiedBuffer("Netty in Action rocks!", utf8);
System.out.println((char)buf.readByte());
int readerIndex = buf.readerIndex();
int writerIndex = buf.writerIndex();
buf.writeByte((byte)'?');
assert readerIndex == buf.readerIndex();
assert writerIndex != buf.writerIndex();

5.3.10 More operations

Table 5.5 lists additional useful operations provided by ByteBuf.

5.4 Interface ByteBufHolder
We often find that we need to store a variety of property values in addition to the
actual data payload. An HTTP response is a good example; along with the content rep-
resented as bytes, there are status code, cookies, and so on.

 Netty provides ByteBufHolder to handle this common use case. ByteBufHolder
also provides support for advanced features of Netty, such as buffer pooling, where a
ByteBuf can be borrowed from a pool and also be released automatically if required.

Listing 5.13 read() and write() operations on the ByteBuf

Table 5.5 Other useful operations

Name Description

isReadable() Returns true if at least one byte can be read.

isWritable() Returns true if at least one byte can be written.

readableBytes() Returns the number of bytes that can be read.

writableBytes() Returns the number of bytes that can be written.

capacity() Returns the number of bytes that the ByteBuf can hold. After this it will try
to expand again until maxCapacity() is reached.

maxCapacity() Returns the maximum number of bytes the ByteBuf can hold.

hasArray() Returns true if the ByteBuf is backed by a byte array.

array() Returns the byte array if the ByteBuf is backed by a byte array; otherwise it
throws an UnsupportedOperationException.

Creates a ByteBuf to hold the
bytes for the given String Prints the first

char, ‘N’

Stores the current
readerIndex

Stores the current
writerIndex

Appends ‘?’
to buffer

Succeeds because writeByte()
moved the writerIndex
Licensed to Thomas Snead <n.ordickan@gmail.com>

70 CHAPTER 5 ByteBuf
 ByteBufHolder has just a handful of methods for access to the underlying data
and reference counting. Table 5.6 lists them (leaving aside those it inherits from
ReferenceCounted).

ByteBufHolder is a good choice if you want to implement a message object that stores
its payload in a ByteBuf.

5.5 ByteBuf allocation
In this section we’ll describe ways of managing ByteBuf instances.

5.5.1 On-demand: interface ByteBufAllocator

To reduce the overhead of allocating and deallocating memory, Netty implements
pooling with the interface ByteBufAllocator, which can be used to allocate instances
of any of the ByteBuf varieties we’ve described. The use of pooling is an application-
specific decision that doesn’t alter the ByteBuf API in any way.

 Table 5.7 lists the operations provided by ByteBufAllocator.

Table 5.6 ByteBufHolder operations

Name Description

content() Returns the ByteBuf held by this ByteBufHolder

copy() Returns a deep copy of this ByteBufHolder, including an unshared copy of
the contained ByteBuf’s data

duplicate() Returns a shallow copy of this ByteBufHolder, including a shared copy of the
contained ByteBuf’s data

Table 5.7 ByteBufAllocator methods

Name Description

buffer()
buffer(int initialCapacity);
buffer(int initialCapacity, int maxCapacity);

Returns a ByteBuf with heap-
based or direct data storage

heapBuffer()
heapBuffer(int initialCapacity)
heapBuffer(int initialCapacity, int
maxCapacity)

Returns a ByteBuf with heap-
based storage

directBuffer()
directBuffer(int initialCapacity)
directBuffer(int initialCapacity, int
maxCapacity)

Returns a ByteBuf with direct
storage
Licensed to Thomas Snead <n.ordickan@gmail.com>

71ByteBuf allocation
You can obtain a reference to a ByteBufAllocator either from a Channel (each of
which can have a distinct instance) or through the ChannelHandlerContext that is
bound to a ChannelHandler. The following listing illustrates both of these methods.

Channel channel = ...;
ByteBufAllocator allocator = channel.alloc();
....
ChannelHandlerContext ctx = ...;
ByteBufAllocator allocator2 = ctx.alloc();
...

Netty provides two implementations of ByteBufAllocator: PooledByteBufAllocator
and UnpooledByteBufAllocator. The former pools ByteBuf instances to improve per-
formance and minimize memory fragmentation. This implementation uses an effi-
cient approach to memory allocation known as jemalloc4 that has been adopted by a
number of modern OSes. The latter implementation doesn’t pool ByteBuf instances
and returns a new instance every time it’s called.

 Although Netty uses the PooledByteBufAllocator by default, this can be changed
easily via the ChannelConfig API or by specifying a different allocator when bootstrap-
ping your application. More details can be found in chapter 8.

5.5.2 Unpooled buffers

There may be situations where you don’t have a reference to a ByteBufAllocator. For
this case, Netty provides a utility class called Unpooled, which provides static helper

compositeBuffer()
compositeBuffer(int maxNumComponents);
compositeDirectBuffer()
compositeDirectBuffer(int maxNumComponents);
compositeHeapBuffer()
compositeHeapBuffer(int maxNumComponents);

Returns a CompositeByteBuf
that can be expanded by adding
heap-based or direct buffers up
to the specified number of
components

ioBuffer() Returns a ByteBuf that will be
used for I/O operations on a
socket

Listing 5.14 Obtaining a ByteBufAllocator reference

4 Jason Evans, “A Scalable Concurrent malloc(3) Implementation for FreeBSD” (2006), http://people.freebsd
.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf.

Table 5.7 ByteBufAllocator methods

Name Description

Gets a ByteBufAllocator
from a Channel

Gets a ByteBufAllocator from
a ChannelHandlerContext
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf

72 CHAPTER 5 ByteBuf
methods to create unpooled ByteBuf instances. Table 5.8 lists the most important of
these methods.

The Unpooled class also makes ByteBuf available to non-networking projects that can
benefit from a high-performance extensible buffer API and that don’t require other
Netty components.

5.5.3 Class ByteBufUtil

ByteBufUtil provides static helper methods for manipulating a ByteBuf. Because this
API is generic and unrelated to pooling, these methods have been implemented out-
side the allocation classes.

 The most valuable of these static methods is probably hexdump(), which prints a
hexadecimal representation of the contents of a ByteBuf. This is useful in a variety of
situations, such as logging the contents of a ByteBuf for debugging purposes. A hex
representation will generally provide a more usable log entry than would a direct rep-
resentation of the byte values. Furthermore, the hex version can easily be converted
back to the actual byte representation.

 Another useful method is boolean equals(ByteBuf, ByteBuf), which determines
the equality of two ByteBuf instances. You may find other methods of ByteBufUtil
useful if you implement your own ByteBuf subclasses.

5.6 Reference counting
Reference counting is a technique for optimizing memory use and performance by
releasing the resources held by an object when it is no longer referenced by other
objects. Netty introduced reference counting in version 4 for ByteBuf and ByteBuf-
Holder, both of which implement interface ReferenceCounted.

Table 5.8 Unpooled methods

Name Description

buffer()
buffer(int initialCapacity)
buffer(int initialCapacity, int maxCapacity)

Returns an unpooled ByteBuf
with heap-based storage

directBuffer()
directBuffer(int initialCapacity)
directBuffer(int initialCapacity, int
maxCapacity)

Returns an unpooled ByteBuf
with direct storage

wrappedBuffer() Returns a ByteBuf, which wraps
the given data.

copiedBuffer() Returns a ByteBuf, which copies
the given data
Licensed to Thomas Snead <n.ordickan@gmail.com>

73Summary
 The idea behind reference counting isn’t particularly complex; mostly it involves
tracking the number of active references to a specified object. A ReferenceCounted
implementation instance will normally start out with an active reference count of 1. As
long as the reference count is greater than 0, the object is guaranteed not to be released.
When the number of active references decreases to 0, the instance will be released. Note
that while the precise meaning of release may be implementation-specific, at the very
least an object that has been released should no longer be available for use.

 Reference counting is essential to pooling implementations, such as PooledByte-
BufAllocator, which reduces the overhead of memory allocation. Examples are shown
in the next two listings.

Channel channel = ...;
ByteBufAllocator allocator = channel.alloc();
....
ByteBuf buffer = allocator.directBuffer();
assert buffer.refCnt() == 1;
...

ByteBuf buffer = ...;
boolean released = buffer.release();
...

Trying to access a reference-counted object that’s been released will result in an
IllegalReferenceCountException.

 Note that a specific class can define its release-counting contract in its own unique
way. For example, we can envision a class whose implementation of release() always
sets the reference count to zero whatever its current value, thus invalidating all active
references at once.

WHO IS RESPONSIBLE FOR RELEASE? In general, the last party to access an
object is responsible for releasing it. In chapter 6 we’ll explain the relevance
of this conept to ChannelHandler and ChannelPipeline.

5.7 Summary
This chapter was devoted to Netty’s data containers, based on ByteBuf. We started out
by explaining the advantages of ByteBuf over the implementation provided by the
JDK. We also highlighted the APIs of the available variants and indicated which are
best suited to specific use cases.

Listing 5.15 Reference counting

Listing 5.16 Release reference-counted object

Gets ByteBufAllocator
from a channel

Allocates a ByteBuf from
the ByteBufAllocator

Checks for the expected
reference count of 1

Decrements the active references to
the object. At 0, the object is released
and the method returns true.
Licensed to Thomas Snead <n.ordickan@gmail.com>

74 CHAPTER 5 ByteBuf
 These are the main points we covered:

■ The use of distinct read and write indices to control data access
■ Different approaches to memory usage—backing arrays and direct buffers
■ The aggregate view of multiple ByteBufs using CompositeByteBuf
■ Data-access methods: searching, slicing, and copying
■ The read, write, get, and set APIs
■ ByteBufAllocator pooling and reference counting

In the next chapter, we’ll focus on ChannelHandler, which provides the vehicle for your
data-processing logic. Because ChannelHandler makes heavy use of ByteBuf, you’ll
begin to see important pieces of the overall architecture of Netty coming together.
Licensed to Thomas Snead <n.ordickan@gmail.com>

ChannelHandler and
ChannelPipeline
In the previous chapter you studied ByteBuf, Netty’s data container. As we explore
Netty’s dataflow and processing components in this chapter, we’ll build on what
you’ve learned and you’ll begin to see important elements of the framework com-
ing together.

 You already know that ChannelHandlers can be chained together in a Channel-
Pipeline to organize processing logic. We’ll examine a variety of use cases involv-
ing these classes and an important relation, ChannelHandlerContext.

 Understanding the interactions among all of these components is essential to
building modular, reusable implementations with Netty.

6.1 The ChannelHandler family
To prepare for our detailed study of ChannelHandler, we’ll spend time on some of
the underpinnings of this part of Netty’s component model.

This chapter covers
■ The ChannelHandler and ChannelPipeline

APIs
■ Detecting resource leaks
■ Exception handling
75

Licensed to Thomas Snead <n.ordickan@gmail.com>

76 CHAPTER 6 ChannelHandler and ChannelPipeline
6.1.1 The Channel lifecycle

Interface Channel defines a simple but powerful state model that’s closely related to
the ChannelInboundHandler API. The four Channel states are listed in table 6.1.

The normal lifecycle of a Channel is shown in figure 6.1. As these state changes occur,
corresponding events are generated. These are forwarded to ChannelHandlers in the
ChannelPipeline, which can then act on them.

6.1.2 The ChannelHandler lifecycle

The lifecycle operations defined by interface ChannelHandler, listed in table 6.2,
are called after a ChannelHandler has been added to, or removed from, a Channel-
Pipeline. Each method accepts a ChannelHandlerContext argument.

Netty defines the following two important subinterfaces of ChannelHandler:

■ ChannelInboundHandler—Processes inbound data and state changes of all kinds
■ ChannelOutboundHandler—Processes outbound data and allows interception

of all operations

Table 6.1 Channel lifecycle states

State Description

ChannelUnregistered The Channel was created, but isn’t registered to an EventLoop.

ChannelRegistered The Channel is registered to an EventLoop.

ChannelActive The Channel is active (connected to its remote peer). It’s now possi-
ble to receive and send data.

ChannelInactive The Channel isn’t connected to the remote peer.

Table 6.2 ChannelHandler lifecycle methods

Type Description

handlerAdded Called when a ChannelHandler is added to a ChannelPipeline

handlerRemoved Called when a ChannelHandler is removed from a ChannelPipeline

exceptionCaught Called if an error occurs in the ChannelPipeline during processing

ChannelRegistered ChannelActive

ChannelUnregistered ChannelInactive
Figure 6.1 Channel state model
Licensed to Thomas Snead <n.ordickan@gmail.com>

77The ChannelHandler family

bound-
apter
In the next sections, we’ll discuss these interfaces in detail.

6.1.3 Interface ChannelInboundHandler

Table 6.3 lists the lifecycle methods of interface ChannelInboundHandler. These are
called when data is received or when the state of the associated Channel changes. As
we mentioned earlier, these methods map closely to the Channel lifecycle.

When a ChannelInboundHandler implementation overrides channelRead(), it is respon-
sible for explicitly releasing the memory associated with pooled ByteBuf instances.
Netty provides a utility method for this purpose, ReferenceCountUtil.release(), as
shown next.

@Sharable
public class DiscardHandler extends ChannelInboundHandlerAdapter {
 @Override
 public void channelRead(ChannelHandlerContext ctx, Object msg) {

Table 6.3 ChannelInboundHandler methods

Type Description

channelRegistered Invoked when a Channel is registered to its EventLoop and
is able to handle I/O.

channelUnregistered Invoked when a Channel is deregistered from its EventLoop
and can’t handle any I/O.

channelActive Invoked when a Channel is active; the Channel is con-
nected/bound and ready.

channelInactive Invoked when a Channel leaves active state and is no longer
connected to its remote peer.

channelReadComplete Invoked when a read operation on the Channel has completed.

channelRead Invoked if data is read from the Channel.

channelWritabilityChanged Invoked when the writability state of the Channel changes.
The user can ensure writes are not done too quickly (to avoid an
OutOfMemoryError) or can resume writes when the
Channel becomes writable again. The Channel method
isWritable() can be called to detect the writability of the
channel. The threshold for writability can be set via
Channel.config().setWriteHighWaterMark() and
Channel.config().setWriteLowWaterMark().

userEventTriggered Invoked when ChannelnboundHandler.fireUser-
EventTriggered() is called because a POJO was passed
through the ChannelPipeline.

Listing 6.1 Releasing message resources

Extends
ChannelIn
HandlerAd
Licensed to Thomas Snead <n.ordickan@gmail.com>

78 CHAPTER 6 ChannelHandler and ChannelPipeline
 ReferenceCountUtil.release(msg);
 }
}

Netty logs unreleased resources with a WARN-level log message, making it fairly simple
to find offending instances in the code. But managing resources in this way can be
cumbersome. A simpler alternative is to use SimpleChannelInboundHandler. The next
listing is a variation of listing 6.1 that illustrates this.

@Sharable
public class SimpleDiscardHandler
 extends SimpleChannelInboundHandler<Object> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 Object msg) {
 // No need to do anything special
 }
}

Because SimpleChannelInboundHandler releases resources automatically, you shouldn’t
store references to any messages for later use, as these will become invalid.

 Section 6.1.6 provides a more detailed discussion of reference handling.

6.1.4 Interface ChannelOutboundHandler

Outbound operations and data are processed by ChannelOutboundHandler. Its meth-
ods are invoked by Channel, ChannelPipeline, and ChannelHandlerContext.

 A powerful capability of ChannelOutboundHandler is to defer an operation or
event on demand, which allows for sophisticated approaches to request handling. If
writing to the remote peer is suspended, for example, you can defer flush operations
and resume them later.

 Table 6.4 shows all of the methods defined locally by ChannelOutboundHandler
(leaving out those inherited from ChannelHandler).

Listing 6.2 Using SimpleChannelInboundHandler

Table 6.4 ChannelOutboundHandler methods

Type Description

bind(ChannelHandlerContext,
SocketAddress,ChannelPromise)

Invoked on request to bind the
Channel to a local address

connect(ChannelHandlerContext,
SocketAddress,SocketAddress,ChannelPromise)

Invoked on request to connect the
Channel to the remote peer

disconnect(ChannelHandlerContext,
ChannelPromise)

Invoked on request to disconnect the
Channel from the remote peer

close(ChannelHandlerContext,ChannelPromise) Invoked on request to close the
Channel

Discards received
message

Extends
SimpleChannel-
InboundHandler

No need for any explicit
release of resources
Licensed to Thomas Snead <n.ordickan@gmail.com>

79The ChannelHandler family
CHANNELPROMISE VS. CHANNELFUTURE Most of the methods in Channel-
OutboundHandler take a ChannelPromise argument to be notified when the
operation completes. ChannelPromise is a subinterface of ChannelFuture that
defines the writable methods, such as setSuccess() or setFailure(), thus
making ChannelFuture immutable.

Next we’ll look at classes that simplify the task of writing ChannelHandlers.

6.1.5 ChannelHandler adapters

You can use the classes ChannelInboundHandlerAdapter and ChannelOutbound-
HandlerAdapter as starting points for your own ChannelHandlers. These adapters
provide basic implementations of ChannelInboundHandler and ChannelOutbound-
Handler respectively. They acquire the methods of their common superinterface,
ChannelHandler, by extending the abstract class ChannelHandlerAdapter. The result-
ing class hierarchy is shown in figure 6.2.

 ChannelHandlerAdapter also provides the utility method isSharable(). This
method returns true if the implementation is annotated as Sharable, indicating that
it can be added to multiple ChannelPipelines (as discussed in section 2.3.1).

deregister(ChannelHandlerContext,
ChannelPromise)

Invoked on request to deregister the
Channel from its EventLoop

read(ChannelHandlerContext) Invoked on request to read more
data from the Channel

flush(ChannelHandlerContext) Invoked on request to flush queued
data to the remote peer through the
Channel

write(ChannelHandlerContext,Object,
ChannelPromise)

Invoked on request to write data
through the Channel to the
remote peer

Table 6.4 ChannelOutboundHandler methods

Type Description

<<interface>>
ChannelHandler

<<interface>>
ChannelInboundHandler

<<interface>>
ChannelOutboundHandler

ChannelHandlerAdapter

ChannelInboundHandlerAdapter ChannelOutboundHandlerAdapter

Figure 6.2 ChannelHandlerAdapter class hierarchy
Licensed to Thomas Snead <n.ordickan@gmail.com>

80 CHAPTER 6 ChannelHandler and ChannelPipeline
The method bodies provided in ChannelInboundHandlerAdapter and Channel-
OutboundHandlerAdapter call the equivalent methods on the associated Channel-
HandlerContext, thereby forwarding events to the next ChannelHandler in the pipeline.

 To use these adapter classes in your own handlers, simply extend them and over-
ride the methods you want to customize.

6.1.6 Resource management

Whenever you act on data by calling ChannelInboundHandler.channelRead() or
ChannelOutboundHandler.write(), you need to ensure that there are no resource
leaks. As you may remember from the previous chapter, Netty uses reference counting
to handle pooled ByteBufs. So it’s important to adjust the reference count after you
have finished using a ByteBuf.

 To assist you in diagnosing potential problems, Netty provides class Resource-
LeakDetector, which will sample about 1% of your application’s buffer allocations to
check for memory leaks. The overhead involved is very small.

 If a leak is detected, a log message similar to the following will be produced:

LEAK: ByteBuf.release() was not called before it's garbage-collected. Enable
advanced leak reporting to find out where the leak occurred. To enable
advanced leak reporting, specify the JVM option
'-Dio.netty.leakDetectionLevel=ADVANCED' or call
ResourceLeakDetector.setLevel().

Netty currently defines the four leak detection levels, as listed in table 6.5.

The leak-detection level is defined by setting the following Java system property to one
of the values in the table:

java -Dio.netty.leakDetectionLevel=ADVANCED

If you relaunch your application with the JVM option you’ll see the recent locations of
your application where the leaked buffer was accessed. The following is a typical leak
report generated by a unit test:

Table 6.5 Leak-detection levels

Level Description

DISABLED Disables leak detection. Use this only after extensive testing.

SIMPLE Reports any leaks found using the default sampling rate of 1%. This is the default
level and is a good fit for most cases.

ADVANCED Reports leaks found and where the message was accessed. Uses the default sam-
pling rate.

PARANOID Like ADVANCED except that every access is sampled. This has a heavy impact on
performance and should be used only in the debugging phase.
Licensed to Thomas Snead <n.ordickan@gmail.com>

81The ChannelHandler family
Running io.netty.handler.codec.xml.XmlFrameDecoderTest
15:03:36.886 [main] ERROR io.netty.util.ResourceLeakDetector - LEAK:

ByteBuf.release() was not called before it's garbage-collected.
Recent access records: 1
#1: io.netty.buffer.AdvancedLeakAwareByteBuf.toString(
 AdvancedLeakAwareByteBuf.java:697)
io.netty.handler.codec.xml.XmlFrameDecoderTest.testDecodeWithXml(
 XmlFrameDecoderTest.java:157)
io.netty.handler.codec.xml.XmlFrameDecoderTest.testDecodeWithTwoMessages(
 XmlFrameDecoderTest.java:133)
...

How do you use this diagnostic tool to prevent leaks when you implement Channel-
InboundHandler.channelRead() and ChannelOutboundHandler.write()? Let’s exam-
ine the case where your channelRead() operation consumes an inbound message;
that is, without passing it on to the next ChannelInboundHandler by calling Channel-
HandlerContext.fireChannelRead(). This listing shows how to release the message.

@Sharable
public class DiscardInboundHandler extends ChannelInboundHandlerAdapter {
 @Override
 public void channelRead(ChannelHandlerContext ctx, Object msg) {
 ReferenceCountUtil.release(msg);
 }
}

CONSUMING INBOUND MESSAGES THE EASY WAY Because consuming inbound
data and releasing it is such a common task, Netty provides a special Channel-
InboundHandler implementation called SimpleChannelInboundHandler. This
implementation will automatically release a message once it’s consumed by
channelRead0().

On the outbound side, if you handle a write() operation and discard a message,
you’re responsible for releasing it. The next listing shows an implementation that dis-
cards all written data.

@Sharable
public class DiscardOutboundHandler
 extends ChannelOutboundHandlerAdapter {
 @Override
 public void write(ChannelHandlerContext ctx,
 Object msg, ChannelPromise promise) {
 ReferenceCountUtil.release(msg);
 promise.setSuccess();
 }
}

Listing 6.3 Consuming and releasing an inbound message

Listing 6.4 Discarding and releasing outbound data

Extends
ChannelInboundHandlerAdapterReleases resource by using

ReferenceCountUtil.release()

Extends
ChannelOutboundHandlerAdapter

Releases resource by using
ReferenceCountUtil.release(…)

Notifies ChannelPromise
that data was handled
Licensed to Thomas Snead <n.ordickan@gmail.com>

82 CHAPTER 6 ChannelHandler and ChannelPipeline
It’s important not only to release resources but also to notify the ChannelPromise.
Otherwise a situation might arise where a ChannelFutureListener has not been noti-
fied about a message that has been handled.

 In sum, it is the responsibility of the user to call ReferenceCountUtil.release() if
a message is consumed or discarded and not passed to the next ChannelOutbound-
Handler in the ChannelPipeline. If the message reaches the actual transport layer, it
will be released automatically when it’s written or the Channel is closed.

6.2 Interface ChannelPipeline
If you think of a ChannelPipeline as a chain of ChannelHandler instances that inter-
cept the inbound and outbound events that flow through a Channel, it’s easy to see
how the interaction of these ChannelHandlers can make up the core of an applica-
tion’s data and event-processing logic.

 Every new Channel that’s created is assigned a new ChannelPipeline. This associa-
tion is permanent; the Channel can neither attach another ChannelPipeline nor
detach the current one. This is a fixed operation in Netty’s component lifecycle and
requires no action on the part of the developer.

 Depending on its origin, an event will be handled by either a ChannelInbound-
Handler or a ChannelOutboundHandler. Subsequently it will be forwarded to the next
handler of the same supertype by a call to a ChannelHandlerContext implementation.

Figure 6.3 illustrates a typical ChannelPipeline layout with both inbound and out-
bound ChannelHandlers and illustrates our earlier statement that a ChannelPipeline

ChannelHandlerContext
A ChannelHandlerContext enables a ChannelHandler to interact with its Channel-
Pipeline and with other handlers. A handler can notify the next ChannelHandler
in the ChannelPipeline and even dynamically modify the ChannelPipeline it
belongs to.

ChannelHandlerContext has a rich API for handling events and performing I/O oper-
ations. Section 6.3 will provide more information on ChannelHandlerContext.

Outbound

handler

Outbound

handler

Inbound

handler

Inbound

handler

Inbound

handler

ChannelPipeline

Figure 6.3 ChannelPipeline and ChannelHandlers
Licensed to Thomas Snead <n.ordickan@gmail.com>

83Interface ChannelPipeline
is primarily a series of ChannelHandlers. ChannelPipeline also provides methods for
propagating events through the ChannelPipeline itself. If an inbound event is trig-
gered, it’s passed from the beginning to the end of the ChannelPipeline. In figure
6.3, an outbound I/O event will start at the right end of the ChannelPipeline and
proceed to the left.

As the pipeline propagates an event, it determines whether the type of the next
ChannelHandler in the pipeline matches the direction of movement. If not, the
ChannelPipeline skips that ChannelHandler and proceeds to the next one, until it
finds one that matches the desired direction. (Of course, a handler might implement
both ChannelInboundHandler and ChannelOutboundHandler interfaces.)

6.2.1 Modifying a ChannelPipeline

A ChannelHandler can modify the layout of a ChannelPipeline in real time by add-
ing, removing, or replacing other ChannelHandlers. (It can remove itself from the
ChannelPipeline as well.) This is one of the most important capabilities of the Channel-
Handler, so we’ll take a close look at how it’s done. The relevant methods are listed in
table 6.6.

ChannelPipeline relativity
You might say that from the point of view of an event traveling through the Channel-
Pipeline, the starting end depends on whether the event is inbound or outbound.
But Netty always identifies the inbound entry to the ChannelPipeline (the left side
in figure 6.3) as the beginning and the outbound entry (the right side) as the end.

When you’ve finished adding your mix of inbound and outbound handlers to a
ChannelPipeline using the ChannelPipeline.add*() methods, the ordinal of
each ChannelHandler is its position from beginning to end as we just defined them.
Thus, if you number the handlers in figure 6.3 from left to right, the first Channel-
Handler seen by an inbound event will be 1; the first handler seen by an outbound
event will be 5.

Table 6.6 ChannelHandler methods for modifying a ChannelPipeline

Name Description

addFirst
addBefore
addAfter
addLast

Adds a ChannelHandler to the ChannelPipeline

remove Removes a ChannelHandler from the ChannelPipeline

replace Replaces a ChannelHandler in the ChannelPipeline with another
ChannelHandler
Licensed to Thomas Snead <n.ordickan@gmail.com>

84 CHAPTER 6 ChannelHandler and ChannelPipeline
This listing shows these methods in use.

ChannelPipeline pipeline = ..;
FirstHandler firstHandler = new FirstHandler();
pipeline.addLast("handler1", firstHandler);
pipeline.addFirst("handler2", new SecondHandler());
pipeline.addLast("handler3", new ThirdHandler());
...
pipeline.remove("handler3");
pipeline.remove(firstHandler);
pipeline.replace("handler2", "handler4", new FourthHandler());

You’ll see later on that this ability to reorganize ChannelHandlers with ease lends itself
to the implementation of extremely flexible logic.

In addition to these operations, there are others for accessing ChannelHandlers either
by type or by name. These are listed in table 6.7.

Listing 6.5 Modify the ChannelPipeline

ChannelHandler execution and blocking
Normally each ChannelHandler in the ChannelPipeline processes events that are
passed to it by its EventLoop (the I/O thread). It’s critically important not to block
this thread as it would have a negative effect on the overall handling of I/O.

Sometimes it may be necessary to interface with legacy code that uses blocking APIs.
For this case, the ChannelPipeline has add() methods that accept an Event-
ExecutorGroup. If an event is passed to a custom EventExecutorGroup, it will be
handled by one of the EventExecutors contained in this EventExecutorGroup and
thus be removed from the EventLoop of the Channel itself. For this use case Netty
provides an implementation called DefaultEventExecutorGroup.

Creates a FirstHandler
instance

Adds this instance to the
ChannelPipeline as “handler1”

Adds an instance of a
SecondHandler to the
ChannelPipeline in the
first slot, as “handler2”.
It will be placed before
the existing “handler1”.

Adds a ThirdHandler instance
to the ChannelPipeline in the
last slot as “handler3”.

Removes “handler3”
by name.

Removes the FirstHandler by reference
(it’s unique, so its name is not needed).

Replaces the SecondHandler (“handler2”)
with a FourthHandler: “handler4”.
Licensed to Thomas Snead <n.ordickan@gmail.com>

85Interface ChannelPipeline
6.2.2 Firing events

The ChannelPipeline API exposes additional methods for invoking inbound and
outbound operations. Table 6.8 lists the inbound operations, which notify Channel-
InboundHandlers of events occurring in the ChannelPipeline.

Table 6.7 ChannelPipeline operations for accessing ChannelHandlers

Name Description

get Returns a ChannelHandler by type or name

context Returns the ChannelHandlerContext bound to a ChannelHandler

names Returns the names of all the ChannelHandlers in the ChannelPipeline

Table 6.8 ChannelPipeline inbound operations

Method name Description

fireChannelRegistered Calls channelRegistered(ChannelHandlerContext)
on the next ChannelInboundHandler in the
ChannelPipeline

fireChannelUnregistered Calls channelUnregistered(ChannelHandler-
Context) on the next ChannelInboundHandler in the
ChannelPipeline

fireChannelActive Calls channelActive(ChannelHandlerContext) on the
next ChannelInboundHandler in the ChannelPipeline

fireChannelInactive Calls channelInactive(ChannelHandlerContext)
on the next ChannelInboundHandler in the
ChannelPipeline

fireExceptionCaught Calls exceptionCaught(ChannelHandlerContext,
Throwable) on the next ChannelHandler in the
ChannelPipeline

fireUserEventTriggered Calls userEventTriggered(ChannelHandler-
Context, Object) on the next ChannelInbound-
Handler in the ChannelPipeline

fireChannelRead Calls channelRead(ChannelHandlerContext,
Object msg) on the next ChannelInboundHandler
in the ChannelPipeline

fireChannelReadComplete Calls channelReadComplete(ChannelHandler-
Context) on the next ChannelStateHandler in the
ChannelPipeline
Licensed to Thomas Snead <n.ordickan@gmail.com>

86 CHAPTER 6 ChannelHandler and ChannelPipeline
On the outbound side, handling an event will cause some action to be taken on the
underlying socket. Table 6.9 lists the outbound operations of the ChannelPipeline API.

In summary,

■ A ChannelPipeline holds the ChannelHandlers associated with a Channel.
■ A ChannelPipeline can be modified dynamically by adding and removing

ChannelHandlers as needed.
■ ChannelPipeline has a rich API for invoking actions in response to inbound

and outbound events.

Table 6.9 ChannelPipeline outbound operations

Method name Description

bind Binds the Channel to a local address. This will call bind(Channel-
HandlerContext, SocketAddress, ChannelPromise) on the next
ChannelOutboundHandler in the ChannelPipeline.

connect Connects the Channel to a remote address. This will call
connect(ChannelHandlerContext, SocketAddress,
ChannelPromise) on the next ChannelOutboundHandler in the
ChannelPipeline.

disconnect Disconnects the Channel. This will call disconnect(Channel-
HandlerContext, ChannelPromise) on the next Channel-
OutboundHandler in the ChannelPipeline.

close Closes the Channel. This will call close(ChannelHandlerContext,
ChannelPromise) on the next ChannelOutboundHandler in the
ChannelPipeline.

deregister Deregisters the Channel from the previously assigned EventExecutor
(the EventLoop). This will call deregister(ChannelHandler-
Context, ChannelPromise) on the next ChannelOutbound-
Handler in the ChannelPipeline.

flush Flushes all pending writes of the Channel. This will call flush(Channel-
HandlerContext) on the next ChannelOutboundHandler in the
ChannelPipeline.

write Writes a message to the Channel. This will call write(Channel-
HandlerContext, Object msg, ChannelPromise) on the next
ChannelOutboundHandler in the ChannelPipeline.
Note: this does not write the message to the underlying Socket, but only
queues it. To write it to the Socket, call flush() or writeAndFlush().

writeAndFlush This is a convenience method for calling write() then flush().

read Requests to read more data from the Channel. This will call
read(ChannelHandlerContext) on the next ChannelOutbound-
Handler in the ChannelPipeline.
Licensed to Thomas Snead <n.ordickan@gmail.com>

87Interface ChannelHandlerContext
6.3 Interface ChannelHandlerContext
A ChannelHandlerContext represents an association between a ChannelHandler and
a ChannelPipeline and is created whenever a ChannelHandler is added to a Channel-
Pipeline. The primary function of a ChannelHandlerContext is to manage the inter-
action of its associated ChannelHandler with others in the same ChannelPipeline.

 ChannelHandlerContext has numerous methods, some of which are also present
on Channel and on ChannelPipeline itself, but there is an important difference. If
you invoke these methods on a Channel or ChannelPipeline instance, they propagate
through the entire pipeline. The same methods called on a ChannelHandlerContext
will start at the current associated ChannelHandler and propagate only to the next
ChannelHandler in the pipeline that is capable of handling the event.

 Table 6.10 summarizes the ChannelHandlerContext API.

Table 6.10 The ChannelHandlerContext API

Method name Description

bind Binds to the given SocketAddress and returns a
ChannelFuture

channel Returns the Channel that is bound to this instance

close Closes the Channel and returns a ChannelFuture

connect Connects to the given SocketAddress and returns a
ChannelFuture

deregister Deregisters from the previously assigned EventExecutor and
returns a ChannelFuture

disconnect Disconnects from the remote peer and returns a
ChannelFuture

executor Returns the EventExecutor that dispatches events

fireChannelActive Triggers a call to channelActive() (connected) on the next
ChannelInboundHandler

fireChannelInactive Triggers a call to channelInactive() (closed) on the next
ChannelInboundHandler

fireChannelRead Triggers a call to channelRead() (message received) on the
next ChannelInboundHandler

fireChannelReadComplete Triggers a channelWritabilityChanged event to the next
ChannelInboundHandler

handler Returns the ChannelHandler bound to this instance

isRemoved Returns true if the associated ChannelHandler was
removed from the ChannelPipeline

name Returns the unique name of this instance
Licensed to Thomas Snead <n.ordickan@gmail.com>

88 CHAPTER 6 ChannelHandler and ChannelPipeline
When using the ChannelHandlerContext API, please keep the following points in mind:

■ The ChannelHandlerContext associated with a ChannelHandler never changes,
so it’s safe to cache a reference to it.

■ ChannelHandlerContext methods, as we explained at the start of this section,
involve a shorter event flow than do the identically named methods available on
other classes. This should be exploited where possible to provide maximum
performance.

6.3.1 Using ChannelHandlerContext

In this section we’ll discuss the use of ChannelHandlerContext and the behaviors of
methods available on ChannelHandlerContext, Channel, and ChannelPipeline. Fig-
ure 6.4 shows the relationships among them.

pipeline Returns the associated ChannelPipeline

read Reads data from the Channel into the first inbound buffer; trig-
gers a channelRead event if successful and notifies the han-
dler of channelReadComplete

write Writes a message via this instance through the pipeline

Table 6.10 The ChannelHandlerContext API (continued)

Method name Description

ChannelHandler

ChannelPipeline

ChannelHandlerContext

Channel ChannelHandler

ChannelHandlerContext

ChannelHandler

ChannelHandlerContext

Channel bound to
ChannelPipeline

ChannelPipeline bound to Channel
containing ChannelHandlers

ChannelHandler

ChannelHandlerContext created when adding
ChannelHandler to ChannelPipeline

Figure 6.4 The relationships among Channel, ChannelPipeline, ChannelHandler, and
ChannelHandlerContext
Licensed to Thomas Snead <n.ordickan@gmail.com>

89Interface ChannelHandlerContext
In the following listing you acquire a reference to the Channel from a Channel-
HandlerContext. Calling write() on the Channel causes a write event to flow all the
way through the pipeline.

ChannelHandlerContext ctx = ..;
Channel channel = ctx.channel();
channel.write(Unpooled.copiedBuffer("Netty in Action",
 CharsetUtil.UTF_8));

The next listing shows a similar example, but writing this time to a ChannelPipeline.
Again, the reference is retrieved from the ChannelHandlerContext.

ChannelHandlerContext ctx = ..;
ChannelPipeline pipeline = ctx.pipeline();
pipeline.write(Unpooled.copiedBuffer("Netty in Action",
 CharsetUtil.UTF_8));

As you can see in figure 6.5, the flows in listings 6.6 and 6.7 are identical. It’s impor-
tant to note that although the write() invoked on either the Channel or the Channel-
Pipeline operation propagates the event all the way through the pipeline, the
movement from one handler to the next at the ChannelHandler level is invoked on
the ChannelHandlerContext.

Listing 6.6 Accessing the Channel from a ChannelHandlerContext

Listing 6.7 Accessing the ChannelPipeline from a ChannelHandlerContext

Gets a reference to the
Channel associated with the
ChannelHandlerContext

Writes buffer
via the Channel

Gets a reference to the
ChannelPipeline associated with
the ChannelHandlerContext

Writes the buffer via
the ChannelPipeline

ChannelHandler

ChannelPipeline

ChannelHandlerContext

Channel ChannelHandler

ChannelHandlerContext

ChannelHandler

ChannelHandlerContext

Event passed to first ChannelHandler in ChannelPipeline

ChannelHandler passes event to next
ChannelHandler in ChannelPipeline
using assigned ChannelHandlerContext

ChannelHandler passes event to next
ChannelHandler in ChannelPipeline
using assigned ChannelHandlerContext

Figure 6.5 Event propagation via the Channel or the ChannelPipeline
Licensed to Thomas Snead <n.ordickan@gmail.com>

90 CHAPTER 6 ChannelHandler and ChannelPipeline
Why would you want to propagate an event starting at a specific point in the Channel-
Pipeline?

■ To reduce the overhead of passing the event through ChannelHandlers that are
not interested in it

■ To prevent processing of the event by handlers that would be interested in
the event

To invoke processing starting with a specific ChannelHandler, you must refer to the
ChannelHandlerContext that’s associated with the ChannelHandler before that one.
This ChannelHandlerContext will invoke the ChannelHandler that follows the one with
which it’s associated.

 The following listing and figure 6.6 illustrate this use.

ChannelHandlerContext ctx = ..;
ctx.write(Unpooled.copiedBuffer("Netty in Action", CharsetUtil.UTF_8));

As shown in figure 6.6, the message flows through the ChannelPipeline starting at the
next ChannelHandler, bypassing all the preceding ones.

 The use case we just described is a common one, and it’s especially useful for call-
ing operations on a specific ChannelHandler instance.

Listing 6.8 Calling ChannelHandlerContext write()

Gets a reference to a
ChannelHandlerContext

write() sends the buffer to the
next ChannelHandler

ChannelHandler

ChannelPipeline

ChannelHandlerContext

Channel ChannelHandler

ChannelHandlerContext

ChannelHandler

ChannelHandlerContext

This ChannelHandler is the last one,
so Event moves out of ChannelPipeline

ChannelHandlerContext
method invoked

Event is passed to
next ChannelHandler

Figure 6.6 Event flow for operations triggered via the ChannelHandlerContext
Licensed to Thomas Snead <n.ordickan@gmail.com>

91Interface ChannelHandlerContext
6.3.2 Advanced uses of ChannelHandler and ChannelHandlerContext

As you saw in listing 6.6, you can acquire a reference to the enclosing Channel-
Pipeline by calling the pipeline() method of a ChannelHandlerContext. This enables
runtime manipulation of the pipeline’s ChannelHandlers, which can be exploited to
implement sophisticated designs. For example, you could add a ChannelHandler to a
pipeline to support a dynamic protocol change.

 Other advanced uses can be supported by caching a reference to a Channel-
HandlerContext for later use, which might take place outside any ChannelHandler
methods and could even originate from a different thread. This listing shows this pat-
tern being used to trigger an event.

public class WriteHandler extends ChannelHandlerAdapter {
 private ChannelHandlerContext ctx;
 @Override
 public void handlerAdded(ChannelHandlerContext ctx) {
 this.ctx = ctx;
 }
 public void send(String msg) {
 ctx.writeAndFlush(msg);
 }
}

Because a ChannelHandler can belong to more than one ChannelPipeline, it can be
bound to multiple ChannelHandlerContext instances. A ChannelHandler intended
for this use must be annotated with @Sharable; otherwise, attempting to add it to
more than one ChannelPipeline will trigger an exception. Clearly, to be safe for use
with multiple concurrent channels (that is, connections), such a ChannelHandler
must be thread-safe.

 This listing shows a correct implementation of this pattern.

@Sharable
public class SharableHandler extends ChannelInboundHandlerAdapter {
 @Override
 public void channelRead(ChannelHandlerContext ctx, Object msg) {
 System.out.println("Channel read message: " + msg);
 ctx.fireChannelRead(msg);
 }
}

The preceding ChannelHandler implementation meets all the requirements for inclu-
sion in multiple pipelines; namely, it’s annotated with @Sharable and doesn’t hold any
state. Conversely, the code in listing 6.11 will cause problems.

Listing 6.9 Caching a ChannelHandlerContext

Listing 6.10 A sharable ChannelHandler

Stores reference
to ChannelHandler-
Context for later use

Sends message using
previously stored
ChannelHandlerContext

Annotates
with
@Sharable

Log method calls and
forwards to next
ChannelHandler
Licensed to Thomas Snead <n.ordickan@gmail.com>

92 CHAPTER 6 ChannelHandler and ChannelPipeline
@Sharable
public class UnsharableHandler extends ChannelInboundHandlerAdapter {
 private int count;
 @Override
 public void channelRead(ChannelHandlerContext ctx, Object msg) {
 count++;
 System.out.println("channelRead(...) called the "
 + count + " time");
 ctx.fireChannelRead(msg();
 }
}

The problem with this code is that it has state; namely the instance variable count,
which tracks the number of method invocations. Adding an instance of this class to
the ChannelPipeline will very likely produce errors when it’s accessed by concurrent
channels. (Of course, this simple case could be corrected by making channelRead()
synchronized.)

 In summary, use @Sharable only if you’re certain that your ChannelHandler is
thread-safe.

WHY SHARE A CHANNELHANDLER? A common reason for installing a single
ChannelHandler in multiple ChannelPipelines is to gather statistics across
multiple Channels.

This concludes our discussion of ChannelHandlerContext and its relationship to
other framework components. Next we’ll look at exception handling.

6.4 Exception handling
Exception handling is an important part of any substantial application, and it can be
approached in a variety of ways. Accordingly, Netty provides several options for han-
dling exceptions thrown during inbound or outbound processing. This section will
help you understand how to design the approach that best suits your needs.

6.4.1 Handling inbound exceptions

If an exception is thrown during processing of an inbound event, it will start to flow
through the ChannelPipeline starting at the point in the ChannelInboundHandler
where it was triggered. To handle such an inbound exception, you need to override
the following method in your ChannelInboundHandler implementation.

public void exceptionCaught(
 ChannelHandlerContext ctx, Throwable cause) throws Exception

The following listing shows a simple example that closes the Channel and prints the
exception’s stack trace.

Listing 6.11 Invalid usage of @Sharable

Annotates
with
@Sharable

Increments the
count field

Logs method call and
forwards to next
ChannelHandler
Licensed to Thomas Snead <n.ordickan@gmail.com>

93Exception handling
public class InboundExceptionHandler extends ChannelInboundHandlerAdapter {
 @Override
 public void exceptionCaught(ChannelHandlerContext ctx,
 Throwable cause) {
 cause.printStackTrace();
 ctx.close();
 }
}

Because the exception will continue to flow in the inbound direction (just as with all
inbound events), the ChannelInboundHandler that implements the preceding logic is
usually placed last in the ChannelPipeline. This ensures that all inbound exceptions
are always handled, wherever in the ChannelPipeline they may occur.

 How you should react to an exception is likely to be quite specific to your applica-
tion. You may want to close the Channel (and connections) or you may attempt to
recover. If you don’t implement any handling for inbound exceptions (or don’t con-
sume the exception), Netty will log the fact that the exception wasn’t handled.

 To summarize,

■ The default implementation of ChannelHandler.exceptionCaught() forwards
the current exception to the next handler in the pipeline.

■ If an exception reaches the end of the pipeline, it’s logged as unhandled.
■ To define custom handling, you override exceptionCaught(). It’s then your

decision whether to propagate the exception beyond that point.

6.4.2 Handling outbound exceptions

The options for handling normal completion and exceptions in outbound operations
are based on the following notification mechanisms:

■ Every outbound operation returns a ChannelFuture. The ChannelFuture-
Listeners registered with a ChannelFuture are notified of success or error
when the operation completes.

■ Almost all methods of ChannelOutboundHandler are passed an instance of
ChannelPromise. As a subclass of ChannelFuture, ChannelPromise can also be
assigned listeners for asynchronous notification. But ChannelPromise also has
writable methods that provide for immediate notification:

ChannelPromise setSuccess();
ChannelPromise setFailure(Throwable cause);

Adding a ChannelFutureListener is a matter of calling addListener(ChannelFuture-
Listener) on a ChannelFuture instance, and there are two ways to do this. The one
most commonly used is to invoke addListener() on the ChannelFuture that is returned
by an outbound operation (for example write()).

Listing 6.12 Basic inbound exception handling
Licensed to Thomas Snead <n.ordickan@gmail.com>

94 CHAPTER 6 ChannelHandler and ChannelPipeline
 The following listing uses this approach to add a ChannelFutureListener that will
print the stack trace and then close the Channel.

ChannelFuture future = channel.write(someMessage);
future.addListener(new ChannelFutureListener() {
 @Override
 public void operationComplete(ChannelFuture f) {
 if (!f.isSuccess()) {
 f.cause().printStackTrace();
 f.channel().close();
 }
 }
});

The second option is to add a ChannelFutureListener to the ChannelPromise that is
passed as an argument to the ChannelOutboundHandler methods. The code shown
next will have the same effect as the previous listing.

public class OutboundExceptionHandler extends ChannelOutboundHandlerAdapter {
 @Override
 public void write(ChannelHandlerContext ctx, Object msg,
 ChannelPromise promise) {
 promise.addListener(new ChannelFutureListener() {
 @Override
 public void operationComplete(ChannelFuture f) {
 if (!f.isSuccess()) {
 f.cause().printStackTrace();
 f.channel().close();
 }
 }
 });
 }
}

Why choose one approach over the other? For detailed handling of an exception,
you’ll probably find it more appropriate to add the ChannelFutureListener when
calling the outbound operation, as shown in listing 6.13. For a less specialized approach
to handling exceptions, you might find the custom ChannelOutboundHandler imple-
mentation shown in listing 6.14 to be simpler.

Listing 6.13 Adding a ChannelFutureListener to a ChannelFuture

Listing 6.14 Adding a ChannelFutureListener to a ChannelPromise

ChannelPromise writable methods
By calling setSuccess() and setFailure() on ChannelPromise, you can make the
status of an operation known as soon as the ChannelHandler method returns to
the caller.
Licensed to Thomas Snead <n.ordickan@gmail.com>

95Summary
 What happens if your ChannelOutboundHandler itself throws an exception? In this
case, Netty itself will notify any listeners that have been registered with the corre-
sponding ChannelPromise.

6.5 Summary
In this chapter we took a close look at Netty’s data processing component, Channel-
Handler. We discussed how ChannelHandlers are chained together and how they
interact with the ChannelPipeline as ChannelInboundHandlers and ChannelOut-
boundHandlers.

 The next chapter will focus on Netty’s codec abstraction, which makes writing pro-
tocol encoders and decoders much easier than using the underlying ChannelHandler
implementations directly.
Licensed to Thomas Snead <n.ordickan@gmail.com>

EventLoop and
threading model
Simply stated, a threading model specifies key aspects of thread management in the
context of an OS, programming language, framework, or application. How and
when threads are created obviously has a significant impact on the execution of
application code, so developers need to understand the trade-offs associated with
different models. This is true whether they choose the model themselves or acquire
it implicitly via the adoption of a language or framework.

 In this chapter we’ll examine Netty’s threading model in detail. It’s powerful
but easy to use and, as usual with Netty, aims to simplify your application code and
maximize performance and maintainability. We’ll also discuss the experiences that
led to the choice of the current model.

 If you have a good general understanding of Java’s concurrency API (java
.util.concurrent), you should find the discussion in this chapter straightfor-
ward. If you’re new to these concepts or need to refresh your memory, Java

This chapter covers
■ Threading model overview
■ Event loop concept and implementation
■ Task scheduling
■ Implementation details
96

Licensed to Thomas Snead <n.ordickan@gmail.com>

97Threading model overview
Concurrency in Practice by Brian Goetz, et al. (Addison-Wesley Professional, 2006) is
an excellent resource.

7.1 Threading model overview
In this section we’ll introduce threading models in general and then discuss Netty’s
past and present threading models, reviewing the benefits and limitations of each.

 As we pointed out at the start of the chapter, a threading model specifies how code is
going to be executed. Because we must always guard against the possible side effects of
concurrent execution, it’s important to understand the implications of the model being
applied (there are single-thread models as well). Ignoring these matters and merely
hoping for the best is tantamount to gambling—with the odds definitely against you.

 Because computers with multiple cores or CPUs are commonplace, most modern
applications employ sophisticated multithreading techniques to make efficient use of
system resources. By contrast, our approach to multithreading in the early days of Java
wasn’t much more than creating and starting new Threads on demand to execute con-
current units of work, a primitive approach that works poorly under heavy load. Java 5
then introduced the Executor API, whose thread pools greatly improved performance
through Thread caching and reuse.

 The basic thread pooling pattern can be described as:

■ A Thread is selected from the pool’s free list and assigned to run a submitted
task (an implementation of Runnable).

■ When the task is complete, the Thread is returned to the list and becomes avail-
able for reuse.

This pattern is illustrated in figure 7.1.

ThreadThreadThreadThreadThread
Thread

Thread
Thread

Thread

ThreadThreadThread
Thread

FreeThreads

Gets free

Thread and

executes

Thread

Runnable

Executor:execute(...)

User calls

method Executor implementation

(Thread-Pool)

A task to execute.

The task is passed
to the thread pool.

An available Thread is pulled from the pool and the task is
executed. When the task is complete, the Thread is returned
to the free list and is available to be reused.

List of free Threads.

Figure 7.1 Executor execution logic
Licensed to Thomas Snead <n.ordickan@gmail.com>

98 CHAPTER 7 EventLoop and threading model
Pooling and reusing threads is an improvement over creating and destroying a thread
with each task, but it doesn’t eliminate the cost of context switching, which quickly
becomes apparent as the number of threads increases and can be severe under heavy
load. In addition, other thread-related problems can arise during the lifetime of a project
simply because of the overall complexity or concurrency requirements of an application.

 In short, multithreading can be complex. In the next sections we’ll see how Netty
helps to simplify it.

7.2 Interface EventLoop
Running tasks to handle events that occur during the lifetime of a connection, a basic
function of any networking framework. The corresponding programming construct is
often referred to as an event loop, a term Netty adopts with interface io.netty.channel
.EventLoop.

 The basic idea of an event loop is illustrated in the following listing, where each
task is an instance of Runnable (as in figure 7.1).

while (!terminated) {
 List<Runnable> readyEvents = blockUntilEventsReady();
 for (Runnable ev: readyEvents) {
 ev.run();
 }
}

Netty’s EventLoop is part of a collaborative design that employs two fundamental APIs:
concurrency and networking. First, the package io.netty.util.concurrent builds
on the JDK package java.util.concurrent to provide thread executors. Second, the
classes in the package io.netty.channel extend these in order to interface with
Channel events. The resulting class hierarchy is seen in figure 7.2.

 In this model, an EventLoop is powered by exactly one Thread that never changes,
and tasks (Runnable or Callable) can be submitted directly to EventLoop implemen-
tations for immediate or scheduled execution. Depending on the configuration and
the available cores, multiple EventLoops may be created in order to optimize resource
use, and a single EventLoop may be assigned to service multiple Channels.

 Note that Netty’s EventLoop, while it extends ScheduledExecutorService, defines
only one method, parent().1 This method, shown in the following code snippet, is
intended to return a reference to the EventLoopGroup to which the current Event-
Loop implementation instance belongs.

public interface EventLoop extends EventExecutor, EventLoopGroup {
 @Override
 EventLoopGroup parent();
}

Listing 7.1 Executing tasks in an event loop

1 This method overrides the EventExecutor method EventExecutorGroup parent().

Blocks until there
are events that are
ready to runLoops over and

runs all the events
Licensed to Thomas Snead <n.ordickan@gmail.com>

99Interface EventLoop
EVENT/TASK EXECUTION ORDER Events and tasks are executed in FIFO (first-
in-first-out) order. This eliminates the possibility of data corruption by guar-
anteeing that byte contents are processed in the correct order.

7.2.1 I/O and event handling in Netty 4

As we described in detail in chapter 6, events triggered by I/O operations flow through a
ChannelPipeline that has one or more installed ChannelHandlers. The method calls
that propagate these events can then be intercepted by the ChannelHandlers and the
events processed as required.

 The nature of an event usually determines how it is to be handled; it may transfer
data from the network stack into your application, do the reverse, or do something
entirely different. But event-handling logic must be generic and flexible enough to
handle all possible use cases. Therefore, in Netty 4 all I/O operations and events are han-
dled by the Thread that has been assigned to the EventLoop.

<<interface>>
Executor

java.util.concurrent

<<interface>>
ExecutorService

<<interface>>
EventExecutorGroup

<<interface>>
EventExecutor

<<interface>>
EventLoopGroup

<<interface>>
EventLoop

SingleThreadEventLoop

ThreadPerChannelEventLoop

io.netty.channel

AbstractExecutorService

AbstractEventExecutor

SingleThreadEventExecutor

io.netty.util.concurrent

<<interface>>
ScheduledExecutorService

Figure 7.2 EventLoop class hierarchy
Licensed to Thomas Snead <n.ordickan@gmail.com>

100 CHAPTER 7 EventLoop and threading model
 This differs from the model that was used in Netty 3. In the next section we’ll dis-
cuss the earlier model and why it was replaced.

7.2.2 I/O operations in Netty 3

The threading model used in previous releases guaranteed only that inbound (previ-
ously called upstream) events would be executed in the so-called I/O thread (corre-
sponding to Netty 4’s EventLoop). All outbound (downstream) events were handled
by the calling thread, which might be the I/O thread or any other. This seemed a good
idea at first but was found to be problematical because of the need for careful syn-
chronization of outbound events in ChannelHandlers. In short, it wasn’t possible to
guarantee that multiple threads wouldn’t try to access an outbound event at the same
time. This could happen, for example, if you fired simultaneous downstream events
for the same Channel by calling Channel.write() in different threads.

 Another negative side effect occurred when an inbound event was fired as a result
of an outbound event. When Channel.write() causes an exception, you need to
generate and fire an exceptionCaught event. But in the Netty 3 model, because this
is an inbound event, you wound up executing code in the calling thread, then hand-
ing the event over to the I/O thread for execution, with a consequent additional con-
text switch.

 The threading model adopted in Netty 4 resolves these problems by handling
everything that occurs in a given EventLoop in the same thread. This provides a simpler
execution architecture and eliminates the need for synchronization in the Channel-
Handlers (except for any that might be shared among multiple Channels).

 Now that you understand the role of the EventLoop, let’s see how tasks are sched-
uled for execution.

7.3 Task scheduling
Occasionally you’ll need to schedule a task for later (deferred) or periodic execution.
For example, you might want to register a task to be fired after a client has been con-
nected for five minutes. A common use case is to send a heartbeat message to a
remote peer to check whether the connection is still alive. If there is no response, you
know you can close the channel.

 In the next sections, we’ll show you how to schedule tasks with both the core Java
API and Netty’s EventLoop. Then, we’ll examine the internals of Netty’s implementa-
tion and discuss its advantages and limitations.

7.3.1 JDK scheduling API

Before Java 5, task scheduling was built on java.util.Timer, which uses a back-
ground Thread and has the same limitations as standard threads. Subsequently, the
JDK provided the package java.util.concurrent, which defines the interface
ScheduledExecutorService. Table 7.1 shows the relevant factory methods of java
.util.concurrent.Executors.
Licensed to Thomas Snead <n.ordickan@gmail.com>

101Task scheduling

Although there are not many choices,2 those provided are sufficient for most use cases.
The next listing shows how to use ScheduledExecutorService to run a task after a
60-second delay.

ScheduledExecutorService executor =
 Executors.newScheduledThreadPool(10);

ScheduledFuture<?> future = executor.schedule(
 new Runnable() {
 @Override
 public void run() {
 System.out.println("60 seconds later");
 }
}, 60, TimeUnit.SECONDS);
...
executor.shutdown();

Although the ScheduledExecutorService API is straightforward, under heavy load it
can introduce performance costs. In the next section we’ll see how Netty provides the
same functionality with greater efficiency.

7.3.2 Scheduling tasks using EventLoop

The ScheduledExecutorService implementation has limitations, such as the fact that
extra threads are created as part of pool management. This can become a bottleneck
if many tasks are aggressively scheduled. Netty addresses this by implementing sched-
uling using the channel’s EventLoop, as shown in the following listing.

Table 7.1 The java.util.concurrent.Executors factory methods

Methods Description

newScheduledThreadPool(
 int corePoolSize)

newScheduledThreadPool(
 int corePoolSize,
 ThreadFactorythreadFactory)

Creates a ScheduledThreadExecutor-
Service that can schedule commands to run
after a delay or to execute periodically. It uses the
argument corePoolSize to calculate the num-
ber of threads.

newSingleThreadScheduledExecutor()

newSingleThreadScheduledExecutor(
 ThreadFactorythreadFactory)

Creates a ScheduledThreadExecutor-
Service that can schedule commands to run
after a delay or to execute periodically. It uses one
thread to execute the scheduled tasks.

2 The only concrete implementation of this interface provided by the JDK is java.util.concurrent
.ScheduledThreadPoolExecutor.

Listing 7.2 Scheduling a task with a ScheduledExecutorService

Creates a ScheduledExecutorService
with a pool of 10 threads

Creates a Runnable to
schedule for later execution

The message to be
printed by the task

Schedules task to run
60 seconds from now

Shuts down ScheduledExecutorService
to release resources once the task
is complete
Licensed to Thomas Snead <n.ordickan@gmail.com>

102 CHAPTER 7 EventLoop and threading model
Channel ch = ...
ScheduledFuture<?> future = ch.eventLoop().schedule(
 new Runnable() {
 @Override
 public void run() {
 System.out.println("60 seconds later");
 }
}, 60, TimeUnit.SECONDS);

After 60 seconds have elapsed, the Runnable instance will be executed by the Event-
Loop assigned to the channel. To schedule a task to be executed every 60 seconds, use
scheduleAtFixedRate(), as shown next.

Channel ch = ...
ScheduledFuture<?> future = ch.eventLoop().scheduleAtFixedRate(
 new Runnable() {
 @Override
 public void run() {
 System.out.println("Run every 60 seconds");
 }
}, 60, 60, TimeUnit.Seconds);

As we noted earlier, Netty’s EventLoop extends ScheduledExecutorService (see fig-
ure 7.2), so it provides all of the methods available with the JDK implementation,
including schedule() and scheduleAtFixedRate(), used in the preceding examples.
The complete list of all the operations can be found in the Javadocs for Scheduled-
ExecutorService.3

 To cancel or check the state of an execution, use the ScheduledFuture that’s returned
for every asynchronous operation. This listing shows a simple cancellation operation.

ScheduledFuture<?> future = ch.eventLoop().scheduleAtFixedRate(...);
// Some other code that runs...
boolean mayInterruptIfRunning = false;
future.cancel(mayInterruptIfRunning);

Listing 7.3 Scheduling a task with EventLoop

Listing 7.4 Scheduling a recurring task with EventLoop

3 Java Platform, Standard Edition 8 API Specification, java.util.concurrent, Interface ScheduledExecutorService,
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ScheduledExecutorService.html.

Listing 7.5 Canceling a task using ScheduledFuture

Creates a Runnable to
schedule for later execution

The code
to run

Schedule to run 60
seconds from now

Creates a Runnable to
schedule for later execution

This will run until
the ScheduledFuture
is canceled.

Schedule to run in 60 seconds
and every 60 seconds thereafter

Schedules task
and obtains

the returned
ScheduledFuture.

Cancels the
task, which
prevents it from
running again.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ScheduledExecutorService.html

103Implementation details
These examples illustrate the performance gain that can be achieved by taking advan-
tage of Netty’s scheduling capabilities. These depend, in turn, on the underlying thread-
ing model, which we’ll examine next.

7.4 Implementation details
This section examines in greater detail the principal elements of Netty’s threading
model and scheduling implementation. We’ll also mention limitations to be aware of,
as well as areas of ongoing development.

7.4.1 Thread management

The superior performance of Netty’s threading model hinges on determining the
identity of the currently executing Thread; that is, whether or not it is the one assigned
to the current Channel and its EventLoop. (Recall that the EventLoop is responsible
for handling all events for a Channel during its lifetime.)

 If the calling Thread is that of the EventLoop, the code block in question is exe-
cuted. Otherwise, the EventLoop schedules a task for later execution and puts it in an
internal queue. When the EventLoop next processes its events, it will execute those in
the queue. This explains how any Thread can interact directly with the Channel with-
out requiring synchronization in the ChannelHandlers.

 Note that each EventLoop has its own task queue, independent of that of any other
EventLoop. Figure 7.3 shows the execution logic used by EventLoop to schedule tasks.
This is a critical component of Netty’s threading model.

 We stated earlier the importance of not blocking the current I/O thread. We’ll say
it again in another way: “Never put a long-running task in the execution queue,
because it will block any other task from executing on the same thread.” If you must
make blocking calls or execute long-running tasks, we advise the use of a dedicated

The task to be executed
in the EventLoop.

After the task is passed to the
execute methods, a check is
performed to detect if the
calling thread is the one
assigned to the EventLoop.

If the thread is the same, you
are in the EventLoop and the
task can be executed directly.

The thread is not that of the EventLoop, so queue the task to
be executed when the EventLoop processes its events again.

Task In ?EventLoop

Channel.eventLoop().execute(Task)

Task

Task

Execute!

Queue!

Yes

No

Figure 7.3 EventLoop execution logic
Licensed to Thomas Snead <n.ordickan@gmail.com>

104 CHAPTER 7 EventLoop and threading model
EventExecutor. (See the sidebar “ChannelHandler execution and blocking” in sec-
tion 6.2.1.)

 Leaving aside such a limit case, the threading model in use can strongly affect the
impact of queued tasks on overall system performance, as can the event-processing
implementation of the transport employed. (And as we saw in chapter 4, Netty makes
it easy to switch transports without modifying your code base.)

7.4.2 EventLoop/thread allocation

The EventLoops that service I/O and events for Channels are contained in an Event-
LoopGroup. The manner in which EventLoops are created and assigned varies accord-
ing to the transport implementation.

ASYNCHRONOUS TRANSPORTS

Asynchronous implementations use only a few EventLoops (and their associated
Threads), and in the current model these may be shared among Channels. This allows
many Channels to be served by the smallest possible number of Threads, rather than
assigning a Thread per Channel.

 Figure 7.4 displays an EventLoopGroup with a fixed size of three EventLoops (each
powered by one Thread). The EventLoops (and their Threads) are allocated directly
when the EventLoopGroup is created to ensure that they will be available when needed.

 The EventLoopGroup is responsible for allocating an EventLoop to each newly cre-
ated Channel. In the current implementation, using a round-robin approach achieves
a balanced distribution, and the same EventLoop may be assigned to multiple Channels.
(This may change in future versions.)

ChannelChannelChannelChannelChannelChannelChannel

ChannelChannelChannelChannelChannelChannelChannel

ChannelChannelChannelChannelChannelChannelChannel

All EventLoops are
allocated by this
EventLoopGroup.
Three EventLoops
are in use.

Each EventLoop handles
all events and tasks for all
the channels assigned to it.
Each EventLoop is associated
with one Thread.

The EventLoopGroup assigns an
EventLoop to each newly created
Channel. For the lifetime of each
Channel, all operations are
executed by the same Thread.

EventLoopGroup
with 3

EventLoops

EventLoop

EventLoop

EventLoop

Figure 7.4 EventLoop allocation for non-blocking transports (such as NIO and AIO)
Licensed to Thomas Snead <n.ordickan@gmail.com>

105Summary
Once a Channel has been assigned an EventLoop, it will use this EventLoop (and the
associated Thread) throughout its lifetime. Keep this in mind, because it frees you
from worries about thread safety and synchronization in your ChannelHandler
implementations.

 Also, be aware of the implications of EventLoop allocation for ThreadLocal use.
Because an EventLoop usually powers more than one Channel, ThreadLocal will be
the same for all associated Channels. This makes it a poor choice for implementing a
function such as state tracking. However, in a stateless context it can still be useful for
sharing heavy or expensive objects, or even events, among Channels.

BLOCKING TRANSPORTS

The design for other transports such as OIO (old blocking I/O) is a bit different, as
illustrated in figure 7.5.

Here one EventLoop (and its Thread) is assigned to each Channel. You may have
encountered this pattern if you’ve developed applications that use the blocking I/O
implementation in the java.io package.

 But just as before, it is guaranteed that the I/O events of each Channel will be han-
dled by only one Thread—the one that powers the Channel’s EventLoop. This is another
example of Netty’s consistency of design, and it is one that contributes strongly to
Netty’s reliability and ease of use.

7.5 Summary
In this chapter you learned about threading models in general and Netty’s thread-
ing model in particular, whose performance and consistency advantages we discussed
in detail.

 You saw how to execute your own tasks in the EventLoop (I/O Thread) just as the
framework itself does. You learned how to schedule tasks for deferred execution, and

EventLoopGroup
(unbound)

ChannelEventLoop

ChannelEventLoop

ChannelEventLoop

All EventLoops are allocated
by this EventLoopGroup.
Each new channel will get a
new EventLoop.

The EventLoop assigned to
the Channel will execute
all events and tasks.

Channel bound to
the EventLoop.

Figure 7.5 EventLoop allocation of blocking transports (such as OIO)
Licensed to Thomas Snead <n.ordickan@gmail.com>

106 CHAPTER 7 EventLoop and threading model
we examined the question of scalability under heavy load. You also saw how to verify
whether a task has executed and how to cancel it.

 This information, augmented by our study of the framework’s implementation
details, will help you to maximize your application’s performance while simplifying its
code base. For more information about thread pools and concurrent programming in
general, we recommend Java Concurrency in Practice by Brian Goetz. His book will give
you a deeper understanding of even the most complex multithreading use cases.

 We’ve reached an exciting point—in the next chapter we’ll discuss bootstrapping,
the process of configuring and connecting all of Netty’s components to bring your
application to life.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Bootstrapping
Having studied ChannelPipelines, ChannelHandlers, and codec classes in depth,
your next question is probably, “How do all these pieces add up to a working
application?”

 The answer? “Bootstrapping.” Up to now, we’ve used the term somewhat vaguely,
and the time has come to define it more precisely. Simply stated, bootstrapping an
application is the process of configuring it to run—though the details of the process
may not be as simple as its definition, especially in network applications.

 Consistent with its approach to application architecture, Netty handles boot-
strapping in a way that insulates your application, whether client or server, from the
network layer. As you’ll see, all of the framework components are connected and
enabled in the background. Bootstrapping is the missing piece of the puzzle we’ve
been assembling; when you put it in place, your Netty application will be complete.

This chapter covers
■ Bootstrapping clients and servers
■ Bootstrapping clients from within a Channel
■ Adding ChannelHandlers
■ Using ChannelOptions and attributes
107

Licensed to Thomas Snead <n.ordickan@gmail.com>

108 CHAPTER 8 Bootstrapping
8.1 Bootstrap classes
The bootstrapping class hierarchy consists of an abstract parent class and two concrete
bootstrap subclasses, as shown in figure 8.1.

 Rather than thinking of the concrete classes as server and client bootstraps, it’s help-
ful to keep in mind the distinct application functions they’re intended to support.
Namely, a server devotes a parent channel to accepting connections from clients and
creating child channels for conversing with them, whereas a client will most likely
require only a single, non-parent channel for all network interactions. (As we’ll see, this
applies also to connectionless transports such as UDP, because they don’t require a
channel for each connection.)

 Several of the Netty components we’ve studied in previous chapters participate in
the bootstrapping process, and some of these are used in both clients and servers.
The bootstrapping steps common to both application types are handled by Abstract-
Bootstrap, whereas those that are specific to clients or servers are handled by Boot-
strap or ServerBootstrap, respectively.1

 In the rest of this chapter we’ll explore these two classes in detail, beginning with
the less complex, Bootstrap.

1 Java Platform, Standard Edition 8 API Specification, java.lang, Interface Cloneable, http://docs.oracle.com/
javase/8/docs/api/java/lang/Cloneable.html.

Why are the bootstrap classes Cloneable?
You’ll sometimes need to create multiple channels that have similar or identical set-
tings. To support this pattern without requiring a new bootstrap instance to be created
and configured for each channel, AbstractBootstrap has been marked Cloneable.1

Calling clone() on an already configured bootstrap will return another bootstrap
instance that’s immediately usable.

Note that this creates only a shallow copy of the bootstrap’s EventLoopGroup, so
the latter will be shared among all of the cloned channels. This is acceptable, as the
cloned channels are often short-lived, a typical case being a channel created to make
an HTTP request.

<<interface>>
Cloneable

AbstractBootstrap

Bootstrap ServerBootstrap
Figure 8.1 Bootstrapping
class hierarchy
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://docs.oracle.com/javase/8/docs/api/java/lang/Cloneable.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Cloneable.html

109Bootstrapping clients and connectionless protocols
The full declaration of AbstractBootstrap is

public abstract class AbstractBootstrap
 <B extends AbstractBootstrap<B,C>,C extends Channel>

In this signature, the subclass B is a type parameter to the superclass, so that a refer-
ence to the runtime instance can be returned to support method chaining (so-called
fluent syntax).

 The subclasses are declared as follows:

public class Bootstrap
 extends AbstractBootstrap<Bootstrap,Channel>

and

public class ServerBootstrap
 extends AbstractBootstrap<ServerBootstrap,ServerChannel>

8.2 Bootstrapping clients and connectionless protocols
Bootstrap is used in clients or in applications that use a connectionless protocol.
Table 8.1 gives an overview of the class, many of whose methods are inherited from
AbstractBootstrap.

Table 8.1 The Bootstrap API

Name Description

Bootstrap group(EventLoopGroup) Sets the EventLoopGroup that will handle all
events for the Channel.

Bootstrap channel(
 Class<? extends C>)
Bootstrap channelFactory(
 ChannelFactory<? extends C>)

channel() specifies the Channel implementa-
tion class. If the class doesn’t provide a default con-
structor, you can call channelFactory() to
specify a factory class to be called by bind().

Bootstrap localAddress(
 SocketAddress)

Specifies the local address to which the Channel
should be bound. If not provided, a random one will
be created by the OS. Alternatively, you can specify
the localAddress with bind() or
connect().

<T> Bootstrap option(
 ChannelOption<T> option,
 T value)

Sets a ChannelOption to apply to the
ChannelConfig of a newly created Channel.
These options will be set on the Channel by
bind() or connect(), whichever is called first.
This method has no effect after Channel creation.
The ChannelOptions supported depend on the
Channel type used.
Refer to section 8.6 and to the API docs of the
ChannelConfig for the Channel type used.
Licensed to Thomas Snead <n.ordickan@gmail.com>

110 CHAPTER 8 Bootstrapping
The next section presents a step-by-step explanation of client bootstrapping. We’ll also
discuss the matter of maintaining compatibility when choosing among the available
component implementations.

8.2.1 Bootstrapping a client

The Bootstrap class is responsible for creating channels for clients and for applica-
tions that utilize connectionless protocols, as illustrated in figure 8.2.

<T> Bootstrap attr(
 Attribute<T> key, T value)

Specifies an attribute of a newly created Channel.
These are set on the Channel by bind() or
connect(), depending on which is called first.
This method has no effect after Channel creation.
Please refer to section 8.6.

Bootstrap handler(ChannelHandler) Sets the ChannelHandler that’s added to the
ChannelPipeline to receive event notification.

Bootstrap clone() Creates a clone of the current Bootstrap with the
same settings as the original.

Bootstrap remoteAddress(
 SocketAddress)

Sets the remote address. Alternatively, you can
specify it with connect().

ChannelFuture connect() Connects to the remote peer and returns a
ChannelFuture, which is notified once the con-
nection operation is complete.

ChannelFuture bind() Binds the Channel and returns a Channel-
Future, which is notified once the bind operation
is complete, after which Channel.connect()
must be called to establish the connection.

Table 8.1 The Bootstrap API (continued)

Name Description

Bootstrap will create a new
Channel after bind() has been
called, after which connect() is
called to establish the connection.

Bootstrap will create a new channel
when connect() is called.

The new Channel

Bootstrap

Channel

bind(...)

connect(...)

Channel

Figure 8.2
Bootstrapping process
Licensed to Thomas Snead <n.ordickan@gmail.com>

111Bootstrapping clients and connectionless protocols

Creat
Boots
to cr

con
new c

chan

l
The code in the following listing bootstraps a client that uses the NIO TCP transport.

EventLoopGroup group = new NioEventLoopGroup();
Bootstrap bootstrap = new Bootstrap();
bootstrap.group(group)
 .channel(NioSocketChannel.class)
 .handler(new SimpleChannelInboundHandler<ByteBuf>() {
 @Override
 protected void channeRead0(
 ChannelHandlerContext channelHandlerContext,
 ByteBuf byteBuf) throws Exception {
 System.out.println("Received data");
 }
 });
ChannelFuture future = bootstrap.connect(
 new InetSocketAddress("www.manning.com", 80));
future.addListener(new ChannelFutureListener() {
 @Override
 public void operationComplete(ChannelFuture channelFuture)
 throws Exception {
 if (channelFuture.isSuccess()) {
 System.out.println("Connection established");
 } else {
 System.err.println("Connection attempt failed");
 channelFuture.cause().printStackTrace();
 }
 }
 });

This example uses the fluent syntax mentioned earlier; the methods (except connect())
are chained by the reference to the Bootstrap instance that each one returns.

8.2.2 Channel and EventLoopGroup compatibility

The following directory listing is from the package io.netty.channel. You can see
from the package names and the matching class-name prefixes that there are related
EventLoopGroup and Channel implementations for both the NIO and OIO transports.

channel
├───nio
│ NioEventLoopGroup
├───oio
│ OioEventLoopGroup
└───socket
 ├───nio
 │ NioDatagramChannel

Listing 8.1 Bootstrapping a client

Listing 8.2 Compatible EventLoopGroups and Channels

es a
trap
eate
and
nect
lient
nels

Sets the EventLoopGroup
that provides EventLoops for
processing Channel events

Specifies the Channe
implementation to
be used

Sets the handler
for Channel events
and data

Connects to the
remote host
Licensed to Thomas Snead <n.ordickan@gmail.com>

112 CHAPTER 8 Bootstrapping

Cre
a

Boots
to cr

new c
chan
 │ NioServerSocketChannel
 │ NioSocketChannel
 └───oio
 OioDatagramChannel
 OioServerSocketChannel
 OioSocketChannel

This compatibility must be maintained; you can’t mix components having different
prefixes, such as NioEventLoopGroup and OioSocketChannel. The following listing
shows an attempt to do just that.

EventLoopGroup group = new NioEventLoopGroup();
Bootstrap bootstrap = new Bootstrap();
bootstrap.group(group)
 .channel(OioSocketChannel.class)
 .handler(new SimpleChannelInboundHandler<ByteBuf>() {
 @Override
 protected void channelRead0(
 ChannelHandlerContext channelHandlerContext,
 ByteBuf byteBuf) throws Exception {
 System.out.println("Received data");
 }
 });
ChannelFuture future = bootstrap.connect(
 new InetSocketAddress("www.manning.com", 80));
future.syncUninterruptibly();

This code will cause an IllegalStateException because it mixes incompatible
transports:

Exception in thread "main" java.lang.IllegalStateException:
incompatible event loop type: io.netty.channel.nio.NioEventLoop at
io.netty.channel.AbstractChannel$AbstractUnsafe.register(
AbstractChannel.java:571)

Listing 8.3 Incompatible Channel and EventLoopGroup

More on IllegalStateException
When bootstrapping, before you call bind() or connect() you must call the following
methods to set up the required components.

■ group()
■ channel() or channnelFactory()
■ handler()

Failure to do so will cause an IllegalStateException. The handler() call is par-
ticularly important because it’s needed to configure the ChannelPipeline.

ates
new
trap
eate
lient
nels

Specifies an NIO EventLoopGroup
implementation

Specifies an
OIO Channel
implementation
class

Sets a handler for
channel I/O events
and data

Tries to connect to
the remote peer
Licensed to Thomas Snead <n.ordickan@gmail.com>

113Bootstrapping servers
8.3 Bootstrapping servers
We’ll begin our overview of server bootstrapping with an outline of the ServerBootstrap
API. We’ll then examine the steps involved in bootstrapping servers, and several related
topics, including the special case of bootstrapping a client from a server channel.

8.3.1 The ServerBootstrap class

Table 8.2 lists the methods of ServerBootstrap.

Table 8.2 Methods of the ServerBootstrap class

Name Description

group Sets the EventLoopGroup to be used by the ServerBootstrap. This
EventLoopGroup serves the I/O of the ServerChannel and accepted
Channels.

channel Sets the class of the ServerChannel to be instantiated.

channelFactory If the Channel can’t be created via a default constructor, you can provide a
ChannelFactory.

localAddress Specifies the local address the ServerChannel should be bound to. If not
specified, a random one will be used by the OS. Alternatively, you can specify
the localAddress with bind() or connect().

option Specifies a ChannelOption to apply to the ChannelConfig of a newly
created ServerChannel. Those options will be set on the Channel by
bind() or connect(), depending on which is called first. Setting or chang-
ing a ChannelOption after those methods have been called has no effect.
Which ChannelOptions are supported depends on the channel type used.
Refer to the API docs for the ChannelConfig you’re using.

childOption Specifies a ChannelOption to apply to a Channel’s ChannelConfig
when the channel has been accepted. Which ChannelOptions are supported
depends on the channel type used. Please refer to the API docs for the
ChannelConfig you’re using.

attr Specifies an attribute on the ServerChannel. Attributes will be set on the
channel by bind(). Changing them after calling bind() has no effect.

childAttr Applies an attribute to accepted Channels. Subsequent calls have no effect.

handler Sets the ChannelHandler that’s added to the ChannelPipeline of the
ServerChannel. See childHandler() for a more frequently used approach.

childHandler Sets the ChannelHandler that’s added to the ChannelPipeline of
accepted Channels. The difference between handler() and child-
Handler() is that the former adds a handler that’s processed by the accepting
ServerChannel, whereas childHandler() adds a handler that’s processed
by an accepted Channel, which represents a socket bound to a remote peer.

clone Clones the ServerBootstrap for connecting to a different remote peer with
settings identical to those of the original ServerBootstrap.

bind Binds the ServerChannel and returns a ChannelFuture, which is notified
once the connection operation is complete (with the success or error result).
Licensed to Thomas Snead <n.ordickan@gmail.com>

114 CHAPTER 8 Bootstrapping

Creat
Ser

Boots

the
implem

to
The next section explains the details of server bootstrapping.

8.3.2 Bootstrapping a server

You may have noticed that table 8.2 lists several methods not present in table 8.1:
childHandler(), childAttr(), and childOption(). These calls support operations
that are typical of server applications. Specifically, ServerChannel implementations
are responsible for creating child Channels, which represent accepted connections.
Thus ServerBootstrap, which bootstraps ServerChannels, provides these methods to
simplify the task of applying settings to the ChannelConfig member of an accepted
Channel.

 Figure 8.3 shows a ServerBootstrap creating a ServerChannel on bind(), and the
ServerChannel managing a number of child Channels.

The code in this listing implements the server bootstrapping shown in figure 8.3.

NioEventLoopGroup group = new NioEventLoopGroup();
ServerBootstrap bootstrap = new ServerBootstrap();
bootstrap.group(group)
 .channel(NioServerSocketChannel.class)
 .childHandler(new SimpleChannelInboundHandler<ByteBuf>() {
 @Override
 protected void channelRead0(ChannelHandlerContext ctx,
 ByteBuf byteBuf) throws Exception {
 System.out.println("Received data");
 }
 });

Listing 8.4 Bootstrapping a server

A new Channel is created
by the ServerChannel when
a connection is accepted.

A ServerChannel is created
when bind() is called.

ServerBootstrap ServerChannel

Channel Channel Channel Channel

bind(...)

Figure 8.3 ServerBootstrap and ServerChannel

es a
ver-
trap

Sets the EventLoopGroup
that provides EventLoops for
processing Channel events

Specifies
 Channel
entation
 be used

Sets a ChannelInboundHandler
for I/O and data for the

accepted channels
Licensed to Thomas Snead <n.ordickan@gmail.com>

115Bootstrapping clients from a Channel

ith
ured
ChannelFuture future = bootstrap.bind(new InetSocketAddress(8080));
future.addListener(new ChannelFutureListener() {
 @Override
 public void operationComplete(ChannelFuture channelFuture)
 throws Exception {
 if (channelFuture.isSuccess()) {
 System.out.println("Server bound");
 } else {
 System.err.println("Bound attempt failed");
 channelFuture.cause().printStackTrace();
 }
 }
});

8.4 Bootstrapping clients from a Channel
Suppose your server is processing a client request that requires it to act as a client to
a third system. This can happen when an application, such as a proxy server, has to
integrate with an organization’s existing systems, such as web services or databases. In
such cases you’ll need to bootstrap a client Channel from a ServerChannel.

 You could create a new Bootstrap as described in section 8.2.1, but this is not the
most efficient solution, as it would require you to define another EventLoop for the new
client Channel. This would produce additional threads, necessitating context switching
when exchanging data between the accepted Channel and the client Channel.

 A better solution is to share the EventLoop of the accepted Channel by passing it to
the group() method of the Bootstrap. Because all Channels assigned to an EventLoop
use the same thread, this avoids the extra thread creation and related context-switching
mentioned previously. This sharing solution is illustrated in figure 8.4.

Binds the
channel w
the config
bootstrap

ServerBootstrap

ServerBootstrap creates a new
ServerChannel when bind() is called.

ServerChannel accepts new connections
and creates child channels to serve them.

New Channel
connected to
the remote peer.

Channel created for an
accepted connection.

ServerChannelbind(...)

Bootstrap ChannelChannel connect(...)

EventLoop Bootstrap created by the Channel
will create a new Channel when
connect() is called.

EventLoop shared between the Channel created by the
ServerChannel and the Channel created by connect().

Figure 8.4 EventLoop shared between channels
Licensed to Thomas Snead <n.ordickan@gmail.com>

116 CHAPTER 8 Bootstrapping

Spec

implem
to

l
ation

a

Implementing EventLoop sharing involves setting the EventLoop by calling the group()
method, as shown in the following listing.

ServerBootstrap bootstrap = new ServerBootstrap();
bootstrap.group(new NioEventLoopGroup(), new NioEventLoopGroup())
 .channel(NioServerSocketChannel.class)
 .childHandler(
 new SimpleChannelInboundHandler<ByteBuf>() {
 ChannelFuture connectFuture;
 @Override
 public void channelActive(ChannelHandlerContext ctx)
 throws Exception {
 Bootstrap bootstrap = new Bootstrap();
 bootstrap.channel(NioSocketChannel.class).handler(
 new SimpleChannelInboundHandler<ByteBuf>() {
 @Override
 protected void channelRead0(
 ChannelHandlerContext ctx, ByteBuf in)
 throws Exception {
 System.out.println("Received data");
 }
 });
 bootstrap.group(ctx.channel().eventLoop());
 connectFuture = bootstrap.connect(
 new InetSocketAddress("www.manning.com", 80));
 }

 @Override
 protected void channelRead0(
 ChannelHandlerContext channelHandlerContext,
 ByteBuf byteBuf) throws Exception {
 if (connectFuture.isDone()) {
 // do something with the data
 }
 }
 });
ChannelFuture future = bootstrap.bind(new InetSocketAddress(8080));
future.addListener(new ChannelFutureListener() {
 @Override
 public void operationComplete(ChannelFuture channelFuture)
 throws Exception {
 if (channelFuture.isSuccess()) {
 System.out.println("Server bound");
 } else {
 System.err.println("Bind attempt failed");
 channelFuture.cause().printStackTrace();
 }
 }
});

Listing 8.5 Bootstrapping a server

Creates a ServerBootstrap
to create SocketChannels
and bind them

Sets the EventLoopGroups that
provide EventLoops for processing
Channel events

ifies the
Channel
entation
 be used

Sets a ChannelInbound-
Handler for I/O and data
for accepted channels

Creates a
Bootstrap to

connect to
remote host

Specifies
the channe
implement

Sets a
handler for
inbound I/O

Uses the same
EventLoop as the

one assigned to
the accepted

channel

Connects
to remote
peer

When the connection
is complete performs
some data operation
(such as proxying)

Binds the
channel vi
configured
Bootstrap
Licensed to Thomas Snead <n.ordickan@gmail.com>

117Adding multiple ChannelHandlers during a bootstrap

Bi
to

addr
The topic we’ve discussed in this section and the solution presented reflect a general
guideline in coding Netty applications: reuse EventLoops wherever possible to reduce
the cost of thread creation.

8.5 Adding multiple ChannelHandlers during a bootstrap
In all of the code examples we’ve shown, we’ve called handler() or childHandler()
during the bootstrap process to add a single ChannelHandler. This may be sufficient
for simple applications, but it won’t meet the needs of more complex ones. For exam-
ple, an application that has to support multiple protocols will have many Channel-
Handlers, the alternative being a large and unwieldy class.

 As you’ve seen repeatedly, you can deploy as many ChannelHandlers as you require
by chaining them together in a ChannelPipeline. But how can you do this if you can
set only one ChannelHandler during the bootstrapping process?

 For exactly this use case, Netty supplies a special subclass of ChannelInbound-
HandlerAdapter,

public abstract class ChannelInitializer<C extends Channel>
 extends ChannelInboundHandlerAdapter

which defines the following method:

protected abstract void initChannel(C ch) throws Exception;

This method provides an easy way to add multiple ChannelHandlers to a Channel-
Pipeline. You simply provide your implementation of ChannelInitializer to the
bootstrap, and once the Channel is registered with its EventLoop your version of init-
Channel() is called. After the method returns, the ChannelInitializer instance
removes itself from the ChannelPipeline.

 The following listing defines the class ChannelInitializerImpl and registers it
using the bootstrap’s childHandler(). You can see that this apparently complex oper-
ation is quite straightforward.

ServerBootstrap bootstrap = new ServerBootstrap();
bootstrap.group(new NioEventLoopGroup(), new NioEventLoopGroup())
 .channel(NioServerSocketChannel.class)
 .childHandler(new ChannelInitializerImpl());
ChannelFuture future = bootstrap.bind(new InetSocketAddress(8080));
future.sync();

Listing 8.6 Bootstrapping and using ChannelInitializer

Creates a ServerBootstrap
to create and bind new
Channels

Sets the EventLoopGroup that
provides EventLoops for processing
Channel events

Specifies the Channel implementation

Registers an instance of ChannelInitializerImpl
to set up the ChannelPipeline

nds
 an
ess
Licensed to Thomas Snead <n.ordickan@gmail.com>

118 CHAPTER 8 Bootstrapping

handle
Channe
final class ChannelInitializerImpl extends ChannelInitializer<Channel> {
 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(new HttpClientCodec());
 pipeline.addLast(new HttpObjectAggregator(Integer.MAX_VALUE));
 }
}

If your application makes use of numerous ChannelHandlers, define your own Channel-
Initializer to install them in the pipeline.

8.6 Using Netty ChannelOptions and attributes
Manually configuring every channel when it’s created could become quite tedious.
Fortunately, you don’t have to. Instead, you can use option() to apply ChannelOptions
to a bootstrap. The values you provide will be applied automatically to all Channels
created in the bootstrap. The ChannelOptions available include low-level connection
details such as keep-alive or timeout properties and buffer settings.

 Netty applications are often integrated with an organization’s proprietary software,
and components such as Channel may even be utilized outside the normal Netty lifecy-
cle. In the event that some of the usual properties and data aren’t available, Netty
offers the AttributeMap abstraction, a collection provided by the channel and boot-
strap classes, and AttributeKey<T>, a generic class for inserting and retrieving attri-
bute values. With these tools, you can safely associate any kind of data item with both
client and server Channels.

 Consider, for example, a server application that tracks the relationship between
users and Channels. This can be accomplished by storing the user’s ID as an attribute
of a Channel. A similar technique could be used to route messages to users based on
their ID or to shut down a channel if there is low activity.

 The next listing shows how you can use ChannelOptions to configure a Channel
and an attribute to store an integer value.

final AttributeKey<Integer> id = new AttributeKey<Integer>("ID");
Bootstrap bootstrap = new Bootstrap();
bootstrap.group(new NioEventLoopGroup())
.channel(NioSocketChannel.class)
.handler(
 new SimpleChannelInboundHandler<ByteBuf>() {

Listing 8.7 Using attributes

Custom implementation of ChannelInitializerImpl
to set up the ChannelPipeline

Adds the
required
rs to the
lPipeline

Creates an AttributeKey to
identify the attribute

Creates a Bootstrap to create client
channels and connect them

Sets the EventLoopGroup
that provides EventLoops for
processing Channel events

Specifies
the Channel
implementation

Sets a ChannelInboundHandler to
handle I/O and data for the channel
Licensed to Thomas Snead <n.ordickan@gmail.com>

119Bootstrapping DatagramChannels

St
th

attri

the
implem

s

 @Override
 public void channelRegistered(ChannelHandlerContext ctx)
 throws Exception {
 Integer idValue = ctx.channel().attr(id).get();
 // do something with the idValue
 }

 @Override
 protected void channelRead0(
 ChannelHandlerContext channelHandlerContext,
 ByteBuf byteBuf) throws Exception {
 System.out.println("Received data");
 }
 }
);
bootstrap.option(ChannelOption.SO_KEEPALIVE,true)
 .option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000);
bootstrap.attr(id, 123456);
ChannelFuture future = bootstrap.connect(
 new InetSocketAddress("www.manning.com", 80));
future.syncUninterruptibly();

8.7 Bootstrapping DatagramChannels
The previous bootstrap code examples used a SocketChannel, which is TCP-based, but
a Bootstrap can be used for connectionless protocols as well. Netty provides various
DatagramChannel implementations for this purpose. The only difference is that you
don’t call connect() but only bind(), as shown next.

Bootstrap bootstrap = new Bootstrap();
bootstrap.group(new OioEventLoopGroup()).channel(
 OioDatagramChannel.class).handler(
 new SimpleChannelInboundHandler<DatagramPacket>(){
 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 DatagramPacket msg) throws Exception {
 // Do something with the packet
 }
 }
);
ChannelFuture future = bootstrap.bind(new InetSocketAddress(0));
future.addListener(new ChannelFutureListener() {
 @Override
 public void operationComplete(ChannelFuture channelFuture)
 throws Exception {
 if (channelFuture.isSuccess()) {
 System.out.println("Channel bound");
 } else {
 System.err.println("Bind attempt failed");

Listing 8.8 Using Bootstrap with DatagramChannel

Retrieves the
attribute with the
AttributeKey and
its value

Sets the ChannelOptions
that will be set on the
created channels on
connect() or bind()ores

e id
bute

Connects to the remote
host with the configured
Bootstrap

Creates a Bootstrap to
create and bind new
datagram channels

Sets the EventLoopGroup that provides
EventLoops for processing Channel events

Specifies
 Channel
entation

Sets a Channel-
InboundHandler to
handle I/O and data
for the channel

Calls bind()
because the
protocol is
connectionles
Licensed to Thomas Snead <n.ordickan@gmail.com>

120 CHAPTER 8 Bootstrapping
 channelFuture.cause().printStackTrace();
 }
 }
});

8.8 Shutdown
Bootstrapping gets your application up and running, but sooner or later you’ll need
to shut it down gracefully. You could, of course, just let the JVM handle everything on
exiting, but this wouldn’t meet the definition of graceful, which refers to releasing
resources cleanly. There isn’t much magic needed to shut down a Netty application,
but there are a few things to keep in mind.

 Above all, you need to shut down the EventLoopGroup, which will handle any
pending events and tasks and subsequently release all active threads. This is a matter
of calling EventLoopGroup.shutdownGracefully(). This call will return a Future,
which is notified when the shutdown completes. Note that shutdownGracefully() is
also an asynchronous operation, so you’ll need to either block until it completes or
register a listener with the returned Future to be notified of completion.

 The following listing meets the definition of a graceful shutdown.

EventLoopGroup group = new NioEventLoopGroup();
Bootstrap bootstrap = new Bootstrap();
bootstrap.group(group)
 .channel(NioSocketChannel.class);
...
Future<?> future = group.shutdownGracefully();
// block until the group has shutdown
future.syncUninterruptibly();

Alternatively, you can call Channel.close() explicitly on all active channels before
calling EventLoopGroup.shutdownGracefully(). But in all cases, remember to shut
down the EventLoopGroup itself.

8.9 Summary
In this chapter you learned how to bootstrap Netty server and client applications,
including those that use connectionless protocols. We covered a number of special
cases, including bootstrapping client channels in server applications and using a
ChannelInitializer to handle the installation of multiple ChannelHandlers during
bootstrapping. You saw how to specify configuration options on channels and how to
attach information to a channel using attributes. Finally, you learned how to shut
down an application gracefully to release all resources in an orderly fashion.

 In the next chapter we’ll examine the tools Netty provides to help you test your
ChannelHandler implementations.

Listing 8.9 Graceful shutdown

Creates the EventLoop-
Group that handles I/O

Creates a Bootstrap
and configures it

shutdownGracefully() releases
resources and closes all
Channels currently in use
Licensed to Thomas Snead <n.ordickan@gmail.com>

Unit testing
ChannelHandlers are the critical elements of a Netty application, so testing them
thoroughly should be a standard part of your development process. Best practices
dictate that you test not only to prove that your implementation is correct, but also
to make it easy to isolate problems that crop up as code is modified. This type of
testing is called unit testing.

 Although there’s no universal definition of unit testing, most practitioners
agree on the fundamentals. The basic idea is to test your code in the smallest possi-
ble chunks, isolated as much as possible from other code modules and from run-
time dependencies such as databases and networks. If you can verify through
testing that each unit works correctly by itself, it will be much easier to find the cul-
prit when something goes awry.

 In this chapter we’ll study a special Channel implementation, EmbeddedChannel,
that Netty provides specifically to facilitate unit testing of ChannelHandlers.

This chapter covers
■ Unit testing
■ Overview of EmbeddedChannel
■ Testing ChannelHandlers with

EmbeddedChannel
121

Licensed to Thomas Snead <n.ordickan@gmail.com>

122 CHAPTER 9 Unit testing
 Because the code module or unit being tested is going to be executed outside its
normal runtime environment, you need a framework or harness within which to run
it. In our examples we’ll use JUnit 4 as our testing framework, so you’ll need a basic
understanding of its use. If it’s new to you, have no fear; though powerful it’s simple,
and you’ll find all the information you need on the JUnit website (www.junit.org).

 You may find it useful to review the previous chapters on ChannelHandler and
codecs, as these will provide the material for our examples.

9.1 Overview of EmbeddedChannel
You already know that ChannelHandler implementations can be chained together in a
ChannelPipeline to build up your application’s business logic. We explained previ-
ously that this design supports the decomposition of potentially complex processing
into small and reusable components, each of which handles a well-defined task or
step. In this chapter we’ll show you how it simplifies testing as well.

 Netty provides what it calls an embedded transport for testing ChannelHandlers. This
transport is a feature of a special Channel implementation, EmbeddedChannel, which
provides a simple way to pass events through the pipeline.

 The idea is straightforward: you write inbound or outbound data into an Embedded-
Channel and then check whether anything reached the end of the ChannelPipeline.
In this way you can determine whether messages were encoded or decoded and whether
any ChannelHandler actions were triggered.

 The relevant methods of EmbeddedChannel are listed in table 9.1.

Table 9.1 Special EmbeddedChannel methods

Name Responsibility

writeInbound(
 Object... msgs)

Writes an inbound message to the EmbeddedChannel. Returns
true if data can be read from the EmbeddedChannel via
readInbound().

readInbound() Reads an inbound message from the EmbeddedChannel. Anything
returned traversed the entire ChannelPipeline. Returns null if
nothing is ready to read.

writeOutbound(
 Object... msgs)

Writes an outbound message to the EmbeddedChannel. Returns
true if something can now be read from the EmbeddedChannel
via readOutbound().

readOutbound() Reads an outbound message from the EmbeddedChannel. Anything
returned traversed the entire ChannelPipeline. Returns null if
nothing is ready to read.

finish() Marks the EmbeddedChannel as complete and returns true if
either inbound or outbound data can be read. This will also call
close() on the EmbeddedChannel.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.junit.org

123Testing ChannelHandlers with EmbeddedChannel
Inbound data is processed by ChannelInboundHandlers and represents data read from
the remote peer. Outbound data is processed by ChannelOutboundHandlers and repre-
sents data to be written to the remote peer. Depending on the ChannelHandler you’re
testing, you’ll use the *Inbound() or *Outbound() pairs of methods, or perhaps both.

 Figure 9.1 shows how data flows through the ChannelPipeline using the methods of
EmbeddedChannel. You can use writeOutbound() to write a message to the Channel and
pass it through the ChannelPipeline in the outbound direction. Subsequently you can
read the processed message with readOutbound() to determine whether the result is as
expected. Similarly, for inbound data you use writeInbound() and readInbound().

 In each case, messages are passed through the ChannelPipeline and processed by
the relevant ChannelInboundHandlers or ChannelOutboundHandlers. If the message
isn’t consumed, you can use readInbound() or readOutbound() as appropriate to read
the messages out of the Channel after processing them.

 Let’s take a closer look at both scenarios and see how they apply to testing your
application logic.

9.2 Testing ChannelHandlers with EmbeddedChannel
In this section we’ll explain how to test a ChannelHandler with EmbeddedChannel.

JUnit assertions
The class org.junit.Assert provides many static methods for use in tests. A failed
assertion will cause an exception to be thrown and will terminate the currently exe-
cuting test. The most efficient way to import these assertions is by way of an import
static statement:

import static org.junit.Assert.*;

Once you have done this you can call the Assert methods directly:

assertEquals(buf.readSlice(3), read);

Outbound

handler

Inbound

handler

read
Inbound(...)

read
Outbound(...)

write
Inbound(...)

write
Outbound(...)

Inbound

handler

ChannelPipeline

EmbeddedChannel

Figure 9.1 EmbeddedChannel data flow
Licensed to Thomas Snead <n.ordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

124 CHAPTER 9 Unit testing
9.2.1 Testing inbound messages

Figure 9.2 represents a simple ByteToMessageDecoder implementation. Given sufficient
data, this will produce frames of a fixed size. If not enough data is ready to read, it will
wait for the next chunk of data and check again whether a frame can be produced.

As you can see from the frames on the right side of the figure, this particular decoder
produces frames with a fixed size of 3 bytes. Thus it may require more than one event
to provide enough bytes to produce a frame.

 Finally, each frame will be passed to the next ChannelHandler in the Channel-
Pipeline.

 The implementation of the decoder is shown in the following listing.

public class FixedLengthFrameDecoder extends ByteToMessageDecoder {
 private final int frameLength;

 public FixedLengthFrameDecoder(int frameLength) {
 if (frameLength <= 0) {
 throw new IllegalArgumentException(
 "frameLength must be a positive integer: " + frameLength);
 }
 this.frameLength = frameLength;
 }

 @Override
 protected void decode(ChannelHandlerContext ctx, ByteBuf in,
 List<Object> out) throws Exception {
 while (in.readableBytes() >= frameLength) {
 ByteBuf buf = in.readBytes(frameLength);
 out.add(buf);
 }
 }
}

Now let’s create a unit test to make sure this code works as expected. As we pointed
out earlier, even in simple code, unit tests help to prevent problems that might occur
if the code is refactored in the future and to diagnose them if they do.

Listing 9.1 FixedLengthFrameDecoder

A BC DEFG HI ABCFixedLengthFrameDecoder DEF GHI

Figure 9.2 Decoding via FixedLengthFrameDecoder

Extends ByteToMessageDecoder to
handle inbound bytes and decode

them to messages

Specifies the length of the
frames to be produced

Checks if
enough bytes
can be read to
produce the
next frame

Reads a new
frame out of
the ByteBuf

Adds the frame to
the List of decoded
messages
Licensed to Thomas Snead <n.ordickan@gmail.com>

125Testing ChannelHandlers with EmbeddedChannel

 This listing shows a test of the preceding code using EmbeddedChannel.

public class FixedLengthFrameDecoderTest {
 @Test
 public void testFramesDecoded() {
 ByteBuf buf = Unpooled.buffer();
 for (int i = 0; i < 9; i++) {
 buf.writeByte(i);
 }
 ByteBuf input = buf.duplicate();
 EmbeddedChannel channel = new EmbeddedChannel(
 new FixedLengthFrameDecoder(3));
 // write bytes
 assertTrue(channel.writeInbound(input.retain()));
 assertTrue(channel.finish());

 // read messages
 ByteBuf read = (ByteBuf) channel.readInbound();
 assertEquals(buf.readSlice(3), read);
 read.release();

 read = (ByteBuf) channel.readInbound();
 assertEquals(buf.readSlice(3), read);
 read.release();

 read = (ByteBuf) channel.readInbound();
 assertEquals(buf.readSlice(3), read);
 read.release();

 assertNull(channel.readInbound());
 buf.release();
 }

 @Test
 public void testFramesDecoded2() {
 ByteBuf buf = Unpooled.buffer();
 for (int i = 0; i < 9; i++) {
 buf.writeByte(i);
 }
 ByteBuf input = buf.duplicate();

 EmbeddedChannel channel = new EmbeddedChannel(
 new FixedLengthFrameDecoder(3));
 assertFalse(channel.writeInbound(input.readBytes(2)));
 assertTrue(channel.writeInbound(input.readBytes(7)));

 assertTrue(channel.finish());
 ByteBuf read = (ByteBuf) channel.readInbound();
 assertEquals(buf.readSlice(3), read);
 read.release();

 read = (ByteBuf) channel.readInbound();
 assertEquals(buf.readSlice(3), read);
 read.release();

Listing 9.2 Testing the FixedLengthFrameDecoder

Annotated with @Test so
JUnit will execute the method

The first test method:
testFramesDecoded()

Creates a ByteBuf
and stores 9 bytes

Creates an Embedded-
Channel and adds a
FixedLengthFrameDecoder
to be tested with a frame
length of 3 bytes

Writes
data to the
Embedded-

Channel

Marks the
Channel
finished Reads the produced

messages and
verifies that there
are 3 frames (slices)
with 3 bytes each

The second test method:
testFramesDecoded2()

Returns false
because a

complete frame
is not ready to

be read.
Licensed to Thomas Snead <n.ordickan@gmail.com>

126 CHAPTER 9 Unit testing
 read = (ByteBuf) channel.readInbound();
 assertEquals(buf.readSlice(3), read);
 read.release();

 assertNull(channel.readInbound());
 buf.release();
 }
}

The method testFramesDecoded() verifies that a ByteBuf containing 9 readable
bytes is decoded into 3 ByteBufs, each containing 3 bytes. Notice how the ByteBuf is
populated with 9 readable bytes in one call of writeInbound(). After this, finish()
is executed to mark the EmbeddedChannel complete. Finally, readInbound() is called
to read exactly three frames and a null from the EmbeddedChannel.

 The method testFramesDecoded2() is similar, with one difference: the inbound
ByteBufs are written in two steps. When writeInbound(input.readBytes(2)) is called,
false is returned. Why? As stated in table 9.1, writeInbound() returns true if a subse-
quent call to readInbound() would return data. But the FixedLengthFrameDecoder
will produce output only when three or more bytes are readable. The rest of the test is
identical to testFramesDecoded().

9.2.2 Testing outbound messages

Testing the processing of outbound messages is similar to what you’ve just seen. In the
next example we’ll show how you can use EmbeddedChannel to test a Channel-
OutboundHandler in the form of an encoder, a component that transforms one mes-
sage format to another. You’ll study encoders and decoders in great detail in the next
chapter, so for now we’ll just mention that the handler we’re testing, AbsInteger-
Encoder, is a specialization of Netty’s MessageToMessageEncoder that converts nega-
tive-valued integers to absolute values.

 The example will work as follows:

■ An EmbeddedChannel that holds an AbsIntegerEncoder will write outbound
data in the form of 4-byte negative integers.

■ The decoder will read each negative integer from the incoming ByteBuf and
will call Math.abs() to get the absolute value.

■ The decoder will write the absolute value of each integer to the Channel-
HandlerPipeline.

Figure 9.3 shows the logic.

–1 –2 –3 –4 –5 AbsIntegerEncoder 1 2 3 4 5

Figure 9.3 Encoding via AbsIntegerEncoder
Licensed to Thomas Snead <n.ordickan@gmail.com>

127Testing ChannelHandlers with EmbeddedChannel

The next listing implements this logic, illustrated in figure 9.3. The encode() method
writes the produced values to a List.

public class AbsIntegerEncoder extends
 MessageToMessageEncoder<ByteBuf> {
 @Override
 protected void encode(ChannelHandlerContext channelHandlerContext,
 ByteBuf in, List<Object> out) throws Exception {
 while (in.readableBytes() >= 4) {
 int value = Math.abs(in.readInt());
 out.add(value);
 }
 }
}

The next listing tests the code using EmbeddedChannel.

public class AbsIntegerEncoderTest {
 @Test
 public void testEncoded() {
 ByteBuf buf = Unpooled.buffer();
 for (int i = 1; i < 10; i++) {
 buf.writeInt(i * -1);
 }

 EmbeddedChannel channel = new EmbeddedChannel(
 new AbsIntegerEncoder());
 assertTrue(channel.writeOutbound(buf));
 assertTrue(channel.finish());

 // read bytes
 for (int i = 1; i < 10; i++) {
 assertEquals(i, channel.readOutbound());
 }
 assertNull(channel.readOutbound());
 }
}

Here are the steps executed in the code:

B Writes negative 4-byte integers to a new ByteBuf.

c Creates an EmbeddedChannel and assigns an AbsIntegerEncoder to it.

d Calls writeOutbound() on the EmbeddedChannel to write the ByteBuf.

e Marks the channel finished.

f Reads all the integers from the outbound side of the EmbeddedChannel and ver-
ifies that only absolute values were produced.

Listing 9.3 AbsIntegerEncoder

Listing 9.4 Testing the AbsIntegerEncoder

Extends MessageToMessageEncoder to
encode a message to another format

Checks if there
are enough
bytes to encode

Reads the next int out of the
input ByteBuf and calculates
the absolute value

Writes the int to
the List of encoded
messages

Creates a ByteBuf
and writes 9
negative ints

 b

Creates an
EmbeddedChannel
and installs an
AbsIntegerEncoder
to be tested

 c

Writes the
ByteBuf and
asserts that
readOutbound()
will produce data d

Marks the
channel
finished e

Reads the produced
messages and asserts
that they contain
absolute values f
Licensed to Thomas Snead <n.ordickan@gmail.com>

128 CHAPTER 9 Unit testing
9.3 Testing exception handling
Applications usually have additional tasks to execute beyond transforming data. For
example, you may need to handle malformed input or an excessive volume of data.
In the next example we’ll throw a TooLongFrameException if the number of bytes
read exceeds a specified limit. This is an approach often used to guard against
resource exhaustion.

 In figure 9.4 the maximum frame size has been set to 3 bytes. If the size of a
frame exceeds that limit, its bytes are discarded and a TooLongFrameException is
thrown. The other ChannelHandlers in the pipeline can either handle the exception
in exceptionCaught() or ignore it.

The implementation is shown in the following listing.

public class FrameChunkDecoder extends ByteToMessageDecoder {
 private final int maxFrameSize;

 public FrameChunkDecoder(int maxFrameSize) {
 this.maxFrameSize = maxFrameSize;
 }

 @Override
 protected void decode(ChannelHandlerContext ctx, ByteBuf in,
 List<Object> out) throws Exception {
 int readableBytes = in.readableBytes();
 if (readableBytes > maxFrameSize) {
 // discard the bytes
 in.clear();
 throw new TooLongFrameException();
 }
 ByteBuf buf = in.readBytes(readableBytes);
 out.add(buf);
 }
}

Again, we’ll test the code using EmbeddedChannel.

Listing 9.5 FrameChunkDecoder

A BC DEFG HI A BC TooLongFrameException HIFrameChunkDecoder

Figure 9.4 Decoding via FrameChunkDecoder

Extends ByteTo-
MessageDecoder
to decode
inbound bytes
to messages

Specifies the maximum
allowable size of the
frames to be produced

Discards the frame if it’s
too large and throws a
TooLongFrameException…

…otherwise, reads
the new frame
from the ByteBuf

Adds the frame to
the List of decoded
messages
Licensed to Thomas Snead <n.ordickan@gmail.com>

129Testing exception handling
public class FrameChunkDecoderTest {
 @Test
 public void testFramesDecoded() {
 ByteBuf buf = Unpooled.buffer();
 for (int i = 0; i < 9; i++) {
 buf.writeByte(i);
 }
 ByteBuf input = buf.duplicate();

 EmbeddedChannel channel = new EmbeddedChannel(
 new FrameChunkDecoder(3));

 assertTrue(channel.writeInbound(input.readBytes(2)));
 try {
 channel.writeInbound(input.readBytes(4));
 Assert.fail();
 } catch (TooLongFrameException e) {
 // expected exception
 }
 assertTrue(channel.writeInbound(input.readBytes(3)));
 assertTrue(channel.finish());

 // Read frames
 ByteBuf read = (ByteBuf) channel.readInbound();
 assertEquals(buf.readSlice(2), read);
 read.release();

 read = (ByteBuf) channel.readInbound();
 assertEquals(buf.skipBytes(4).readSlice(3), read);
 read.release();
 buf.release();
 }
}

At first glance this looks quite similar to the test in listing 9.2, but it has an interest-
ing twist; namely, the handling of the TooLongFrameException. The try/catch block
used here is a special feature of EmbeddedChannel. If one of the write* methods
produces a checked Exception, it will be thrown wrapped in a RuntimeException.1

This makes it easy to test whether an Exception was handled during processing of
the data.

 The testing approach illustrated here can be used with any ChannelHandler imple-
mentation that throws an Exception.

Listing 9.6 Testing FrameChunkDecoder

1 Note that if the class implements exceptionCaught() and handles the exception, then it will not be caught
by the catch block.

Creates a ByteBuf
and writes 9
bytes to it

Creates an Embedded-
Channel and installs
a FixedLengthFrame-
Decoder with a
frame size of 3

Writes 2
bytes to it

and asserts
that they

produced a
new frame

Writes a 4-byte
frame and catches
the expected TooLong-
FrameException

If the exception
isn’t thrown

this assertion
is reached and

the test fails.

Writes the
remaining 2

bytes and
asserts a

valid frame

Marks the
channel finished

Reads the produced
messages and
verifies the values
Licensed to Thomas Snead <n.ordickan@gmail.com>

130 CHAPTER 9 Unit testing
9.4 Summary
Unit testing with a test harness such as JUnit is an extremely effective way to guarantee
the correctness of your code and enhance its maintainability. In this chapter you
learned how to use the testing tools provided by Netty to test your custom Channel-
Handlers.

 In the next chapters we’ll focus on writing real-world applications with Netty. We
won’t be presenting any further examples of test code, so we hope you’ll keep in mind
the importance of the testing approach we’ve demonstrated here.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 2

Codecs

A network sees data as just a sequence of raw bytes. Our applications, how-
ever, structure these bytes in a way that has meaning as information. Converting
data to and from the network byte stream is one of the most common program-
ming tasks. You may, for example, need to work with a standard format or proto-
col such as FTP or Telnet, implement a proprietary binary protocol defined by a
third party, or extend a legacy message format created by your own organization.

 Components that handle the conversion of application data to and from a
network format are called encoders and decoders, respectively, and a single com-
ponent with both capabilities is referred to as a codec. Netty provides a range of
tools for creating all of these, from prebuilt classes specialized for well-known
protocols such as HTTP and base64 to generic message transformation codecs
that you can customize for your specific needs.

 Chapter 10 provides an introduction to encoders and decoders. You’ll learn
about Netty’s basic codec classes by studying some typical use cases. As you learn
how these classes fit into the overall framework, you’ll find that they are built on
the same APIs you’ve already studied, so you’ll be able to use them right away.

 In chapter 11 you’ll explore some of the encoders and decoders Netty pro-
vides to handle more specialized scenarios. The section on WebSocket is of par-
ticular interest, and it will prepare you for the detailed discussion of advanced
network protocols in part 3.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

The codec framework
Just as many standard architectural patterns are supported by dedicated frame-
works, common data-processing patterns are often good candidates for targeted
implementations, which can save developers considerable time and effort.

 This certainly applies to the subject of this chapter: encoding and decoding, or
the conversion of data from one protocol-specific format to another. These tasks
are handled by components commonly called codecs. Netty provides components
that simplify the creation of custom codecs for a broad range of protocols. For
example, if you’re building a Netty-based mail server, you’ll find Netty’s codec sup-
port invaluable for implementing the POP3, IMAP, and SMTP protocols.

10.1 What is a codec?
Every network application has to define how raw bytes transferred between peers
are to be parsed and converted to—and from—the target program’s data format.
This conversion logic is handled by a codec, which consists of an encoder and a
decoder, each of which transforms a stream of bytes from one format to another.
What distinguishes them?

This chapter covers
■ An overview of decoders, encoders and codecs
■ Netty’s codec classes
133

Licensed to Thomas Snead <n.ordickan@gmail.com>

134 CHAPTER 10 The codec framework
 Think of a message as a structured sequence of bytes having meaning for a specific
application—its data. An encoder converts that message to a format suitable for trans-
mission (most likely a byte stream); the corresponding decoder converts the network
stream back to the program’s message format. An encoder, then, operates on outbound
data and a decoder handles inbound data.

 With this background information in mind, let’s examine the classes Netty pro-
vides for implementing both kinds of components.

10.2 Decoders
In this section we’ll survey Netty’s decoder classes and present concrete examples of
when and how you might use them. These classes cover two distinct use cases:

■ Decoding bytes to messages—ByteToMessageDecoder and ReplayingDecoder
■ Decoding one message type to another—MessageToMessageDecoder

Because decoders are responsible for transforming inbound data from one format to
another, it won’t surprise you to learn that Netty’s decoders implement Channel-
InboundHandler.

 When would you use a decoder? Simple: whenever you need to transform inbound
data for the next ChannelInboundHandler in the ChannelPipeline. Furthermore,
thanks to the design of ChannelPipeline, you can chain together multiple decoders
to implement arbitrarily complex transformation logic, a prime example of how Netty
supports code modularity and reuse.

10.2.1 Abstract class ByteToMessageDecoder

Decoding from bytes to messages (or to another sequence of bytes) is such a common
task that Netty provides an abstract base class for it: ByteToMessageDecoder. Since you
can’t know whether the remote peer will send a complete message all at once, this
class buffers inbound data until it’s ready for processing. Table 10.1 explains its two
most important methods.

Table 10.1 ByteToMessageDecoder API

Method Description

decode(
 ChannelHandlerContext ctx,
 ByteBuf in,
 List<Object> out)

This is the only abstract method you have to implement.
decode() is called with a ByteBuf containing
incoming data and a List to which decoded messages
are added. This call is repeated until it is determined
that no new items have been added to the List or no
more bytes are readable in the ByteBuf. Then, if the
List is not empty, its contents are passed to the next
handler in the pipeline.

decodeLast(
 ChannelHandlerContext ctx,
 ByteBuf in,
 List<Object> out)

The default implementation provided by Netty simply
calls decode(). This method is called once, when the
Channel goes inactive. Override the method to provide
special handling.
Licensed to Thomas Snead <n.ordickan@gmail.com>

135Decoders

For an example of how to use this class, suppose you receive a byte stream containing
simple ints, each to be handled separately. In this case, you’ll read each int from the
inbound ByteBuf and pass it to the next ChannelInboundHandler in the pipeline. To
decode the byte stream, you’ll extend ByteToMessageDecoder. (Note that the primi-
tive int will be autoboxed to an Integer when it is added to the List.)

 The design is illustrated in figure 10.1.

Four bytes at a time are read from the inbound ByteBuf, decoded to an int, and
added to a List. When no more items are available to add to the List, its contents will
be sent to the next ChannelInboundHandler.

 This listing shows the code for ToIntegerDecoder.

public class ToIntegerDecoder extends ByteToMessageDecoder {
 @Override
 public void decode(ChannelHandlerContext ctx, ByteBuf in,
 List<Object> out) throws Exception {
 if (in.readableBytes() >= 4) {
 out.add(in.readInt());
 }
 }
}

Although ByteToMessageDecoder makes this pattern simple to implement, you might
find it a bit annoying to have to verify that the input ByteBuf has enough data for
you to call readInt(). In the next section we’ll discuss ReplayingDecoder, a special
decoder that eliminates this step, at the cost of a small amount of overhead.

Listing 10.1 Class ToIntegerDecoder extends ByteToMessageDecoder

ChannelInboundHandler

Integer

List Integerof decoded sinbound ByteBuf

1 2 3 4

read

ChannelPipeline

ToIntegerDecoder

add

decode()

Figure 10.1 ToIntegerDecoder

Extends ByteTo-
MessageDecoder
to decode bytes
to a specific
formatChecks if there

are at least 4
bytes readable
(length of an int)Reads an int from the inbound

ByteBuf and adds it to the List
of decoded messages
Licensed to Thomas Snead <n.ordickan@gmail.com>

136 CHAPTER 10 The codec framework

id>
tes
10.2.2 Abstract class ReplayingDecoder

ReplayingDecoder extends ByteToMessageDecoder and frees us from having to call
readableBytes() (as in listing 10.1). It accomplishes this by wrapping the incoming
ByteBuf with a custom ByteBuf implementation, ReplayingDecoderBuffer, that exe-
cutes the call internally.

 The full declaration of this class is

public abstract class ReplayingDecoder<S> extends ByteToMessageDecoder

The parameter S specifies the type to be used for state management, where Void indi-
cates that none is to be performed. The following listing shows a reimplementation of
ToIntegerDecoder based on ReplayingDecoder.

public class ToIntegerDecoder2 extends ReplayingDecoder<Void> {
 @Override
 public void decode(ChannelHandlerContext ctx, ByteBuf in,
 List<Object> out) throws Exception {
 out.add(in.readInt());
 }
}

As before, ints extracted from the ByteBuf are added to the List. If insufficient bytes
are available, this implementation of readInt() throws an Error that will be caught
and handled in the base class. The decode() method will be called again when more
data is ready for reading. (See the description of decode() in table 10.1.)

 Please take note of these aspects of ReplayingDecoderBuffer:

■ Not all ByteBuf operations are supported. If an unsupported method is called,
an UnsupportedOperationException will be thrown.

■ ReplayingDecoder is slightly slower than ByteToMessageDecoder.

If you compare listings 10.1 and 10.2, it’s apparent that the latter is simpler. The exam-
ple itself is very basic, so keep in mind that in a real-life, more complex situation the
difference between using one or the other base classes might be significant. Here’s a

Reference counting in codecs
As we mentioned in chapters 5 and 6, reference counting requires special attention.
In the case of encoders and decoders, the procedure is quite simple: once a mes-
sage has been encoded or decoded, it will automatically be released by a call to
ReferenceCountUtil.release(message). If you need to keep a reference for later
use you can call ReferenceCountUtil.retain(message). This increments the ref-
erence count, preventing the message from being released.

Listing 10.2 Class ToIntegerDecoder2 extends ReplayingDecoder

Extends
Replaying-
Decoder<Vo
to decode by
to messagesThe incoming

ByteBuf is a
Replaying-

DecoderBuffer.
Reads an int from the inbound
ByteBuf and adds it to the List

of decoded messages
Licensed to Thomas Snead <n.ordickan@gmail.com>

137Decoders
simple guideline: use ByteToMessageDecoder if it doesn’t introduce excessive com-
plexity; otherwise, use ReplayingDecoder.

10.2.3 Abstract class MessageToMessageDecoder

In this section we’ll explain how to convert between message formats (for example,
from one type of POJO to another) using the abstract base class

public abstract class MessageToMessageDecoder<I>
 extends ChannelInboundHandlerAdapter

The parameter I specifies the type of the input msg argument to decode(), which is
the only method you have to implement. Table 10.2 shows the details of this method.

In this example, we’ll write an IntegerToStringDecoder decoder that extends Message-
ToMessageDecoder<Integer>. Its decode() method will convert the Integer argument
to its String representation and will have the following signature:

public void decode(ChannelHandlerContext ctx,
 Integer msg, List<Object> out) throws Exception

As before, the decoded String will be added to the outgoing List and forwarded to
the next ChannelInboundHandler.

 The design is illustrated in figure 10.2.

More decoders
The following classes handle more complex use cases:

■ io.netty.handler.codec.LineBasedFrameDecoder—This class, used inter-
nally by Netty, uses end-of-line control characters (\n or \r\n) to parse the mes-
sage data.

■ io.netty.handler.codec.http.HttpObjectDecoder—A decoder for HTTP
data.

You’ll find additional encoder and decoder implementations for special use cases in
the subpackages of io.netty.handler.codec. Please consult the Netty Javadoc for
more information.

Table 10.2 MessageToMessageDecoder API

Method Description

decode(
 ChannelHandlerContext ctx,
 I msg,
 List<Object> out)

Called for each inbound message to be decoded to
another format. The decoded messages are then
passed to the next ChannelInboundHandler
in the pipeline.
Licensed to Thomas Snead <n.ordickan@gmail.com>

138 CHAPTER 10 The codec framework
The following listing is the implementation of IntegerToStringDecoder.

public class IntegerToStringDecoder extends
 MessageToMessageDecoder<Integer> {
 @Override
 public void decode(ChannelHandlerContext ctx, Integer msg
 List<Object> out) throws Exception {
 out.add(String.valueOf(msg));
 }
}

10.2.4 Class TooLongFrameException

As Netty is an asynchronous framework, you’ll need to buffer bytes in memory until
you’re able to decode them. Consequently, you mustn’t allow your decoder to buffer
enough data to exhaust available memory. To address this common concern, Netty
provides a TooLongFrameException, which is intended to be thrown by decoders if a
frame exceeds a specified size limit.

 To avoid this you can set a threshold of a maximum number of bytes which, if
exceeded, will cause a TooLongFrameException to be thrown (and caught by Channel-
Handler.exceptionCaught()). It will then be up to the user of the decoder to decide
how to handle the exception. Some protocols, such as HTTP, may allow you to return a
special response. In other cases, the only option may be to close the connection.

Listing 10.3 Class IntegerToStringDecoder

HttpObjectAggregator
For a more complex example, please examine the class io.netty.handler.codec
.http.HttpObjectAggregator, which extends MessageToMessageDecoder<Http-
Object>.

ChannelInboundHandler

StringInteger

List Stringsof decodedinbound Integer

read

ChannelPipeline

IntegerToStringDecoder

add

decode()

Figure 10.2 IntegerToStringDecoder

Extends MessageToMessage-
Decoder<Integer>

Converts the Integer message
to its String representation and
adds it to the output List
Licensed to Thomas Snead <n.ordickan@gmail.com>

139Encoders
 Listing 10.4 shows how a ByteToMessageDecoder can make use of TooLongFrame-
Exception to notify other ChannelHandlers in the ChannelPipeline about the occur-
rence of a frame-size overrun. Note that this kind of protection is especially important
if you are working with a protocol that has a variable frame size.

public class SafeByteToMessageDecoder extends ByteToMessageDecoder {
 private static final int MAX_FRAME_SIZE = 1024;
 @Override
 public void decode(ChannelHandlerContext ctx, ByteBuf in,
 List<Object> out) throws Exception {
 int readable = in.readableBytes();
 if (readable > MAX_FRAME_SIZE) {
 in.skipBytes(readable);
 throw new TooLongFrameException("Frame too big!");
 }
 // do something
 ...
 }
}

So far we’ve examined common use cases for decoders and the abstract base classes
Netty provides for building them. But decoders are only one side of the coin. On the
other side are encoders, which transform messages to a format suitable for outgoing
transmission. These encoders complete the codec API and they’ll be our next topic.

10.3 Encoders
Reviewing our earlier definition, an encoder implements ChannelOutboundHandler
and transforms outbound data from one format to another, the reverse of the decoder
functions we’ve just studied. Netty provides a set of classes to help you to write encod-
ers with the following capabilities:

■ Encoding from messages to bytes
■ Encoding from messages to messages

We’ll start our examination of these classes with the abstract base class MessageTo-
ByteEncoder.

10.3.1 Abstract class MessageToByteEncoder

Earlier we looked at how to convert bytes to messages using ByteToMessageDecoder.
We’ll do the reverse now with MessageToByteEncoder. Table 10.3 shows the API.

Listing 10.4 TooLongFrameException

Extends ByteToMessageDecoder
to decode bytes to messages

Checks if the buffer has more than
MAX_FRAME_SIZE bytes

Skips all readable bytes, throws
TooLongFrameException and notifies

ChannelHandlers
Licensed to Thomas Snead <n.ordickan@gmail.com>

140 CHAPTER 10 The codec framework
You may have noticed that this class has only one method, while decoders have two.
The reason is that decoders often need to produce a last message after the Channel has
closed (hence the decodeLast() method). This is clearly not the case for an encoder—
there is no sense in producing a message after the connection has been closed.

 Figure 10.3 shows a ShortToByteEncoder that receives a Short instance as a mes-
sage, encodes it to a Short primitive, and writes it to a ByteBuf, which is then for-
warded to the next ChannelOutboundHandler in the pipeline. Every outgoing Short
will take up two bytes in the ByteBuf.

The implementation of ShortToByteEncoder is shown in the following listing.

public class ShortToByteEncoder extends MessageToByteEncoder<Short> {
 @Override
 public void encode(ChannelHandlerContext ctx, Short msg, ByteBuf out)
 throws Exception {
 out.writeShort(msg);
 }
}

Table 10.3 MessageToByteEncoder API

Method Description

encode(
 ChannelHandlerContext ctx,
 I msg,
 ByteBuf out)

The encode method is the only abstract method you
need to implement. It’s called with the outbound
message (of type I) that this class will encode to a
ByteBuf. The ByteBuf is then forwarded to the
next ChannelOutboundHandler in the pipeline.

Listing 10.5 Class ShortToByteEncoder

ChannelOutboundHandler

Short

outbound Short outbound ByteBuf

1 2

ChannelPipeline

ShortToByteEncoder

write

encode()

Figure 10.3 ShortToByteEncoder

Extends
MessageToByteEncoder

Writes Short
into ByteBuf
Licensed to Thomas Snead <n.ordickan@gmail.com>

141Encoders
Netty provides several specializations of MessageToByteEncoder upon which you can
base your own implementations. The class WebSocket08FrameEncoder provides a good
practical example. You’ll find it in the package io.netty.handler.codec.http
.websocketx.

10.3.2 Abstract class MessageToMessageEncoder

You’ve already seen how to decode inbound data from one message format to another.
To complete the picture, we’ll show how to encode from one message to another for
outbound data. The encode() method of MessageToMessageEncoder provides this
capability, as described in table 10.4.

To demonstrate, listing 10.6 extends MessageToMessageEncoder with an IntegerTo-
StringEncoder. The design is shown in figure 10.4.

As shown in the next listing, the encoder adds a String representation of each out-
bound Integer to the List.

Table 10.4 MessageToMessageEncoder API

Name Description

encode(
 ChannelHandlerContext ctx,
 I msg,
 List<Object> out)

This is the only method you need to implement.
Each message written with write() is passed
to encode() to be encoded to one or more out-
bound messages. These are then forwarded to
the next ChannelOutboundHandler in
the pipeline.

ChannelInboundHandler

StringInteger

List Stringsof decodedoutbound Integer

read

ChannelPipeline

IntegerToStringEncoder

add

encode()

Figure 10.4 IntegerToStringEncoder
Licensed to Thomas Snead <n.ordickan@gmail.com>

142 CHAPTER 10 The codec framework
public class IntegerToStringEncoder
 extends MessageToMessageEncoder<Integer> {
 @Override
 public void encode(ChannelHandlerContext ctx, Integer msg
 List<Object> out) throws Exception {
 out.add(String.valueOf(msg));
 }
}

For an interesting specialized use of MessageToMessageEncoder, look at the class
io.netty.handler.codec.protobuf.ProtobufEncoder, which handles data formats
defined by Google’s Protocol Buffers specification.

10.4 Abstract codec classes
Although we’ve been discussing decoders and encoders as distinct entities, you’ll
sometimes find it useful to manage transformations of both inbound and outbound
data and messages in one class. Netty’s abstract codec classes are useful for this pur-
pose, as each bundles together a decoder/encoder pair to handle both types of the
operations we’ve been studying. As you might suspect, these classes implement both
ChannelInboundHandler and ChannelOutboundHandler.

 Why would we not use these composite classes all the time in preference to separate
decoders and encoders? Because keeping the two functions separate wherever possible
maximizes code reusability and extensibility, a basic principle of Netty’s design.

 As we look at the abstract codec classes we’ll compare and contrast them with the
corresponding single decoders and encoders.

10.4.1 Abstract class ByteToMessageCodec

Let’s examine a case where we need to decode bytes to some kind of message, perhaps
a POJO, and then encode it again. ByteToMessageCodec will handle this for us, as it
combines a ByteToMessageDecoder and the reverse, a MessageToByteEncoder. The
important methods are listed in table 10.5.

Listing 10.6 Class IntegerToStringEncoder

Table 10.5 ByteToMessageCodec API

Method name Description

decode(
 ChannelHandlerContext ctx,
 ByteBuf in,
 List<Object>)

This method is called as long as bytes are available to
be consumed. It converts the inbound ByteBuf to
the specified message format and forwards to the
next ChannelInboundHandler in the pipeline.

decodeLast(
 ChannelHandlerContext ctx,
 ByteBuf in,
 List<Object> out)

The default implementation of this method delegates
to decode(). It is called only once, when the
Channel goes inactive. For special handling it can
be overridden.

Extends
MessageToMessageEncoder

Converts the Integer
to a String and adds
it to the List
Licensed to Thomas Snead <n.ordickan@gmail.com>

143Abstract codec classes
Any request/response protocol could be a good candidate for using the ByteTo-
MessageCodec. For example, in an SMTP implementation, the codec would read
incoming bytes and decode them to a custom message type, say SmtpRequest. On the
receiving side, when a response is created, an SmtpResponse will be produced, which
will be encoded back to bytes for transmission.

10.4.2 Abstract class MessageToMessageCodec

In section 9.2.2 you saw an example of MessageToMessageEncoder extended to con-
vert one message format to another. With MessageToMessageCodec we can make the
round trip with a single class. MessageToMessageCodec is a parameterized class,
defined as follows:

public abstract class MessageToMessageCodec<INBOUND_IN,OUTBOUND_IN>

The important methods are listed in table 10.6.

The decode() method transforms an INBOUND_IN message to an OUTBOUND_IN type and
encode() does the reverse. It may help to think of INBOUND_IN messages as the type sent
over the wire, and OUTBOUND_IN messages as the type processed by the application.

 Although this codec may seem somewhat esoteric, the use case it handles is fairly
common: converting data back and forth between two distinct messaging APIs. We
often encounter this pattern when we have to interoperate with an API that uses a leg-
acy or proprietary message format.

encode(
 ChannelHandlerContext ctx,
 I msg,
 ByteBuf out)

This method is called for each message (of type I) to
be encoded and written to an outbound ByteBuf.

Table 10.6 Methods of MessageToMessageCodec

Method name Description

protected abstract decode(
 ChannelHandlerContext ctx,
 INBOUND_IN msg,
 List<Object> out)

This method is called with messages of type
INBOUND_IN. It decodes them to messages of
type OUTBOUND_IN, which are forwarded to the
next ChannelInboundHandler in the
ChannelPipeline.

protected abstract encode(
 ChannelHandlerContext ctx,
 OUTBOUND_IN msg,
 List<Object> out)

This method is called for each message of type
OUTBOUND_IN. These are encoded to messages
of type INBOUND_IN and forwarded to the next
ChannelOutboundHandler in the pipeline.

Table 10.5 ByteToMessageCodec API

Method name Description
Licensed to Thomas Snead <n.ordickan@gmail.com>

144 CHAPTER 10 The codec framework

Listing 10.7 shows how such a conversation might take place. Our WebSocketConvert-
Handler parameterizes MessageToMessageCodec with an INBOUND_IN type of WebSocket-
Frame and an OUTBOUND_IN type of MyWebSocketFrame, the latter being a static nested
class of WebSocketConvertHandler itself.

public class WebSocketConvertHandler extends
 MessageToMessageCodec<WebSocketFrame,
 WebSocketConvertHandler.MyWebSocketFrame> {
 @Override
 protected void encode(ChannelHandlerContext ctx,
 WebSocketConvertHandler.MyWebSocketFrame msg,
 List<Object> out) throws Exception {
 ByteBuf payload = msg.getData().duplicate().retain();
 switch (msg.getType()) {
 case BINARY:
 out.add(new BinaryWebSocketFrame(payload));
 break;
 case TEXT:
 out.add(new TextWebSocketFrame(payload));
 break;
 case CLOSE:
 out.add(new CloseWebSocketFrame(true, 0, payload));
 break;
 case CONTINUATION:
 out.add(new ContinuationWebSocketFrame(payload));
 break;
 case PONG:
 out.add(new PongWebSocketFrame(payload));
 break;
 case PING:
 out.add(new PingWebSocketFrame(payload));
 break;
 default:
 throw new IllegalStateException(
 "Unsupported websocket msg " + msg);
 }
 }

 @Override
 protected void decode(ChannelHandlerContext ctx, WebSocketFrame msg,
 List<Object> out) throws Exception {
 ByteBuf payload = msg.getData().duplicate().retain();

WebSocket protocol
The following example of MessageToMessageCodec references WebSocket, a recent
protocol that enables full bidirectional communications between web browsers and
servers. We’ll discuss Netty’s support for WebSockets at length in chapter 11.

Listing 10.7 Using MessageToMessageCodec

Encodes a MyWebSocket-
Frame to a specified
WebSocketFrame subtype

Instantiates a
WebSocketFrame
of the specified
subtype

Decodes a WebSocketFrame
to a MyWebSocketFrame
and sets the FrameType
Licensed to Thomas Snead <n.ordickan@gmail.com>

145Abstract codec classes
 if (msg instanceof BinaryWebSocketFrame) {
 out.add(new MyWebSocketFrame(
 MyWebSocketFrame.FrameType.BINARY, payload));
 } else
 if (msg instanceof CloseWebSocketFrame) {
 out.add(new MyWebSocketFrame (
 MyWebSocketFrame.FrameType.CLOSE, payload));
 } else
 if (msg instanceof PingWebSocketFrame) {
 out.add(new MyWebSocketFrame (
 MyWebSocketFrame.FrameType.PING, payload));
 } else
 if (msg instanceof PongWebSocketFrame) {
 out.add(new MyWebSocketFrame (
 MyWebSocketFrame.FrameType.PONG, payload));
 } else
 if (msg instanceof TextWebSocketFrame) {
 out.add(new MyWebSocketFrame (
 MyWebSocketFrame.FrameType.TEXT, payload));
 } else
 if (msg instanceof ContinuationWebSocketFrame) {
 out.add(new MyWebSocketFrame (
 MyWebSocketFrame.FrameType.CONTINUATION, payload));
 } else
 {
 throw new IllegalStateException(
 "Unsupported websocket msg " + msg);
 }
 }

 public static final class MyWebSocketFrame {
 public enum FrameType {
 BINARY,
 CLOSE,
 PING,
 PONG,
 TEXT,
 CONTINUATION
 }
 private final FrameType type;
 private final ByteBuf data;

 public WebSocketFrame(FrameType type, ByteBuf data) {
 this.type = type;
 this.data = data;
 }

 public FrameType getType() {
 return type;
 }

 public ByteBuf getData() {
 return data;
 }
 }
}

Declares the OUTBOUND_IN
type used by WebSocket-
ConvertHandler

Defines the type of the
WebSocketFrame that owns
the wrapped payload
Licensed to Thomas Snead <n.ordickan@gmail.com>

146 CHAPTER 10 The codec framework

-
r

10.4.3 Class CombinedChannelDuplexHandler

As we mentioned earlier, combining a decoder and an encoder may have an impact
on reusability. However, there is a way to avoid this penalty without sacrificing the con-
venience of deploying a decoder and an encoder as a single unit. The solution is pro-
vided by CombinedChannelDuplexHandler, declared as

public class CombinedChannelDuplexHandler
 <I extends ChannelInboundHandler,
 O extends ChannelOutboundHandler>

This class acts as a container for a ChannelInboundHandler and a ChannelOutbound-
Handler (the class parameters I and O). By providing types that extend a decoder class
and an encoder class, respectively, we can implement a codec without having to extend
the abstract codec classes directly. We’ll illustrate this in the following example.

 First, examine ByteToCharDecoder in this listing. Notice that the implementation
extends ByteToMessageDecoder because it reads chars from a ByteBuf.

public class ByteToCharDecoder extends ByteToMessageDecoder {
 @Override
 public void decode(ChannelHandlerContext ctx, ByteBuf in,
 List<Object> out) throws Exception {
 while (in.readableBytes() >= 2) {
 out.add(in.readChar());
 }
 }
}

Here decode() extracts 2 bytes at a time from the ByteBuf and writes them to the
List as chars, which will be autoboxed as Character objects.

 This listing has CharToByteEncoder, which converts Characters back to bytes. This
class extends MessageToByteEncoder because it needs to encode char messages into a
ByteBuf. This is done by writing directly into the ByteBuf.

public class CharToByteEncoder extends
 MessageToByteEncoder<Character> {
 @Override
 public void encode(ChannelHandlerContext ctx, Character msg,
 ByteBuf out) throws Exception {
 out.writeChar(msg);
 }
}

Listing 10.8 Class ByteToCharDecoder

Listing 10.9 Class CharToByteEncoder

Extends ByteTo
MessageDecode

Adds one or more
Character objects to
the outgoing List

Extends
MessageToByteEncoder

Decodes a Character to a
char and writes it into
the outbound ByteBuf
Licensed to Thomas Snead <n.ordickan@gmail.com>

147Summary
Now that we have a decoder and encoder, we’ll combine them to build up a codec.
This listing shows how this is done.

public class CombinedByteCharCodec extends
 CombinedChannelDuplexHandler<ByteToCharDecoder, CharToByteEncoder> {
 public CombinedByteCharCodec() {
 super(new ByteToCharDecoder(), new CharToByteEncoder());
 }
}

As you can see, it may be simpler and more flexible in some cases to combine imple-
mentations in this way than to use one of the codec classes. It may also come down to
a matter of personal preference.

10.5 Summary
In this chapter we studied the use of the Netty codec API to write decoders and
encoders. You learned why using this API is preferable to using the ChannelHandler
API directly.

 You saw how the abstract codec classes provide support for handling decoding and
encoding in one implementation. If you need greater flexibility or wish to reuse exist-
ing implementations, you also have the option of combining them without needing to
extend any of the abstract codec classes.

 In the next chapter, we’ll discuss the ChannelHandler implementations and codecs
that are part of the Netty framework itself and that you can utilize to handle specific
protocols and tasks.

Listing 10.10 CombinedChannelDuplexHandler<I,O>

Parameterizes CombinedByteCharCodec
by the decoder and encoder

implementations

Passes the delegate
instances to the parent
Licensed to Thomas Snead <n.ordickan@gmail.com>

Provided
ChannelHandlers

and codecs
Netty provides codecs and handlers for numerous common protocols that you can
use literally out of the box, reducing time and effort you would otherwise spend on
fairly tedious matters. In this chapter we’ll explore these tools and their benefits,
which include support for SSL/TLS and WebSocket, as well as for simply squeezing
better performance out of HTTP with data compression.

11.1 Securing Netty applications with SSL/TLS
Data privacy is a matter of great concern today, and as developers we need to be
prepared to address it. At a minimum we should be familiar with encryption proto-
cols such as SSL and TLS,1 which are layered on top of other protocols to implement

This chapter covers
■ Securing Netty applications with SSL/TLS
■ Building Netty HTTP/HTTPS applications
■ Handling idle connections and timeouts
■ Decoding delimited and length-based protocols
■ Writing big data

1 The Transport Layer Security (TLS) Protocol, version 1.2, http://tools.ietf.org/html/rfc5246.
148

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://tools.ietf.org/html/rfc5246

149Securing Netty applications with SSL/TLS
data security. We have all encountered these protocols when accessing secure web-
sites, but they are also used in applications that are not HTTP-based, such as Secure
SMTP (SMTPS) mail services and even relational database systems.

 To support SSL/TLS, Java provides the package javax.net.ssl, whose classes SSL-
Context and SSLEngine make it quite straightforward to implement decryption and
encryption. Netty leverages this API by way of a ChannelHandler implementation
named SslHandler, which employs an SSLEngine internally to do the actual work.

Figure 11.1 shows data flow using SslHandler.

Listing 11.1 shows how an SslHandler is added to a ChannelPipeline using a Channel-
Initializer. Recall that ChannelInitializer is used to set up the ChannelPipeline
once a Channel is registered.

Netty’s OpenSSL/SSLEngine implementation
Netty also provides an SSLEngine implementation that uses the OpenSSL toolkit
(www.openssl.org). This class, OpenSslEngine, offers better performance than the
SSLEngine implementation supplied by the JDK.

Netty applications (clients and servers) can be configured to use OpenSslEngine by
default if the OpenSSL libraries are available. If not, Netty will fall back to the JDK
implementation. For detailed instructions on configuring OpenSSL support, please
see the Netty documentation at http://netty.io/wiki/forked-tomcat-native.html#wiki-
h2-1.

Note that the SSL API and data flow are identical whether you use the JDK’s SSL-
Engine or Netty’s OpenSslEngine.

Encrypted

Encrypted

Decrypted
INBOUND

OUTBOUND
Plain

SslHandler

Encrypted inbound data is
intercepted by the SslHandler

The SslHandler decrypts the
data and directs it inbound

Outbound data is passed
through the SslHandler

The SslHandler encrypts the
data and passes it outbound

Figure 11.1 Data flow through SslHandler for decryption and encryption
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.openssl.org
http://netty.io/wiki/forked-tomcat-native.html#wiki-h2-1
http://netty.io/wiki/forked-tomcat-native.html#wiki-h2-1

150 CHAPTER 11 Provided ChannelHandlers and codecs

r
public class SslChannelInitializer extends ChannelInitializer<Channel>{
 private final SslContext context;
 private final boolean startTls;

 public SslChannelInitializer(SslContext context,
 boolean startTls) {
 this.context = context;
 this.startTls = startTls;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 SSLEngine engine = context.newEngine(ch.alloc());
 ch.pipeline().addFirst("ssl",
 new SslHandler(engine, startTls));
 }
}

In most cases the SslHandler will be the first ChannelHandler in the ChannelPipeline.
This ensures that encryption will take place only after all other ChannelHandlers have
applied their logic to the data.

 The SslHandler has some useful methods, as shown in table 11.1. For example,
during the handshake phase, the two peers validate each other and agree upon an
encryption method. You can configure SslHandler to modify its behavior or provide
notification once the SSL/TLS handshake is complete, after which all data will be
encrypted. The SSL/TLS handshake will be executed automatically.

Listing 11.1 Adding SSL/TLS support

Table 11.1 SslHandler methods

Name Description

setHandshakeTimeout (long,TimeUnit)
setHandshakeTimeoutMillis (long)
getHandshakeTimeoutMillis()

Sets and gets the timeout after which
the handshake ChannelFuture
will be notified of failure.

setCloseNotifyTimeout (long,TimeUnit)
setCloseNotifyTimeoutMillis (long)
getCloseNotifyTimeoutMillis()

Sets and gets the timeout after which
the close notification will be triggered
and the connection will close. This
also results in notifying the
ChannelFuture of failure.

handshakeFuture() Returns a ChannelFuture that
will be notified when the handshake
is complete. If the handshake was
previously executed, returns a
ChannelFuture that contains the
result of the previous handshake.

Passes in the
SslContext to use

If true, the first message
written is not encrypted
(clients should set to true)

For each
SslHandler
instance,
obtains a new
SSLEngine from
the SslContext
using the
ByteBufAllocato
of the Channel

Adds the SslHandler
to the pipeline as
the first handler
Licensed to Thomas Snead <n.ordickan@gmail.com>

151Building Netty HTTP/HTTPS applications
11.2 Building Netty HTTP/HTTPS applications
HTTP/HTTPS is one of the most common protocol suites, and with the success of
smartphones it’s more widely used with each passing day because it has become practi-
cally obligatory for any company to have a mobile-accessible website. These protocols
are used in other ways too. WebService APIs exported by many organizations for com-
munications with their business partners are generally based on HTTP(S).

 Next we’ll look at the ChannelHandlers that Netty provides so you can use HTTP
and HTTPS without having to write custom codecs.

11.2.1 HTTP decoder, encoder, and codec

HTTP is based on a request/response pattern: the client sends an HTTP request to the
server, and the server sends back an HTTP response. Netty provides a variety of encoders
and decoders to simplify working with this protocol. Figures 11.2 and 11.3 show the
methods for producing and consuming HTTP requests and responses, respectively.

 As shown in figures 11.2 and 11.3, an HTTP request/response may consist of more
than one data part, and it always terminates with a LastHttpContent part. The Full-
HttpRequest and FullHttpResponse messages are special subtypes that represent a
complete request and response, respectively. All types of HTTP messages (FullHttp-
Request, LastHttpContent, and those shown in listing 11.2) implement the Http-
Object interface.

close()
close(ChannelPromise)
close(ChannelHandlerContext,ChannelPromise)

Sends the close_notify to
request close and destroy the under-
lying SslEngine.

Table 11.1 SslHandler methods

Name Description

The first part of the HTTP
request contains headers

HttpContent contains data
and may be followed by one
or more HttpContent parts

HttpRequest HttpContent HttpContent

FullHttpRequest

LastHttpContent

The full HTTP request

LastHttpContent marks the end
of the HTTP request and may
also contain trailing headers

Figure 11.2 HTTP request component parts
Licensed to Thomas Snead <n.ordickan@gmail.com>

152 CHAPTER 11 Provided ChannelHandlers and codecs
Table 11.2 gives an overview of the HTTP decoders and encoders that handle and pro-
duce these messages.

The class HttpPipelineInitializer in the next listing shows how simple it is to add
HTTP support to your application—merely add the correct ChannelHandlers to the
ChannelPipeline.

public class HttpPipelineInitializer extends ChannelInitializer<Channel> {
 private final boolean client;

 public HttpPipelineInitializer(boolean client) {
 this.client = client;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();

Table 11.2 HTTP decoders and encoders

Name Description

HttpRequestEncoder Encodes HttpRequest, HttpContent, and
LastHttpContent messages to bytes.

HttpResponseEncoder Encodes HttpResponse, HttpContent, and
LastHttpContent messages to bytes.

HttpRequestDecoder Decodes bytes into HttpRequest, HttpContent, and
LastHttpContent messages.

HttpResponseDecoder Decodes bytes into HttpResponse, HttpContent, and
LastHttpContent messages.

Listing 11.2 Adding support for HTTP

The full HTTP response

HttpContent contains data
and may be followed by one
or more HttpContent parts

The first part of the HTTP
response contains headers

LastHttpContent marks the end
of the HTTP response and may
also contain trailing headers

HttpResponse HttpContent HttpContent

FullHttpResponse

LastHttpContent

Figure 11.3 HTTP response component parts
Licensed to Thomas Snead <n.ordickan@gmail.com>

153Building Netty HTTP/HTTPS applications
 if (client) {
 pipeline.addLast("decoder", new HttpResponseDecoder());
 pipeline.addLast("encoder", new HttpRequestEncoder());
 } else {
 pipeline.addLast("decoder", new HttpRequestDecoder());
 pipeline.addLast("encoder", new HttpResponseEncoder());
 }
 }
}

11.2.2 HTTP message aggregation

After the initializer has installed the handlers in the ChannelPipeline you can oper-
ate on the different HttpObject messages. But because HTTP requests and responses
can be composed of many parts, you’ll need to aggregate them to form complete mes-
sages. To eliminate this cumbersome task, Netty provides an aggregator that merges
message parts into FullHttpRequest and FullHttpResponse messages. This way you
always see the full message contents.

 There’s a slight cost to this operation because the message segments need to be
buffered until complete messages can be forwarded to the next ChannelInbound-
Handler. The trade-off is that you don’t need to worry about message fragmentation.

 Introducing this automatic aggregation is a matter of adding another Channel-
Handler to the pipeline. This listing shows how this is done.

public class HttpAggregatorInitializer extends ChannelInitializer<Channel> {
 private final boolean isClient;

 public HttpAggregatorInitializer(boolean isClient) {
 this.isClient = isClient;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 if (isClient) {
 pipeline.addLast("codec", new HttpClientCodec());
 } else {
 pipeline.addLast("codec", new HttpServerCodec());
 }
 pipeline.addLast("aggregator",
 new HttpObjectAggregator(512 * 1024));
 }
}

Listing 11.3 Automatically aggregating HTTP message fragments

If client, adds HttpResponseDecoder
to handle responses from the server

If client, adds HttpRequestEncoder
to send requests to the server

If server, adds HttpRequestDecoder to
receive requests from the client

If server, adds HttpResponseEncoder
to send responses to the client

If client, adds
HttpClientCodec

If server, adds
HttpServerCodec

Adds HttpObjectAggregator
with a max message size of
512 KB to the pipeline
Licensed to Thomas Snead <n.ordickan@gmail.com>

154 CHAPTER 11 Provided ChannelHandlers and codecs
11.2.3 HTTP compression

When using HTTP, it’s advisable to employ compression to reduce the size of transmit-
ted data as much as possible. Although compression does have some cost in CPU
cycles, it’s generally a good idea, especially for text data.

 Netty provides ChannelHandler implementations for compression and decompres-
sion that support both gzip and deflate encodings.

An example is shown in the following listing.

public class HttpCompressionInitializer extends ChannelInitializer<Channel> {
 private final boolean isClient;

 public HttpCompressionInitializer(boolean isClient) {
 this.isClient = isClient;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 if (isClient) {
 pipeline.addLast("codec", new HttpClientCodec());
 pipeline.addLast("decompressor",
 new HttpContentDecompressor());
 } else {
 pipeline.addLast("codec", new HttpServerCodec());
 pipeline.addLast("compressor",
 new HttpContentCompressor());
 }
 }
}

HTTP request header
The client can indicate supported encryption modes by supplying the following
header:

 GET /encrypted-area HTTP/1.1
 Host: www.example.com
 Accept-Encoding: gzip, deflate

Note, however, that the server isn’t obliged to compress the data it sends.

Listing 11.4 Automatically compressing HTTP messages

If client, adds
HttpClientCodec

If client, adds
HttpContent-
Decompressor
to handle
compressed
content from
the server

If server,
adds Http-
ServerCodec

If server, adds Http-
ContentCompressor to
compress the data (if
the client supports it)
Licensed to Thomas Snead <n.ordickan@gmail.com>

155Building Netty HTTP/HTTPS applications

11.2.4 Using HTTPS

The following listing shows that enabling HTTPS is only a matter of adding an Ssl-
Handler to the mix.

public class HttpsCodecInitializer extends ChannelInitializer<Channel> {
 private final SslContext context;
 private final boolean isClient;

 public HttpsCodecInitializer(SslContext context, boolean isClient) {
 this.context = context;
 this.isClient = isClient;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 SSLEngine engine = context.newEngine(ch.alloc());
 pipeline.addFirst("ssl", new SslHandler(engine));

 if (isClient) {
 pipeline.addLast("codec", new HttpClientCodec());
 } else {
 pipeline.addLast("codec", new HttpServerCodec());
 }
 }
}

The preceding code is a good example of how Netty’s architectural approach turns
reuse into leverage. Simply by adding a ChannelHandler to the ChannelPipeline you
can provide a new capability, even one as significant as encryption.

11.2.5 WebSocket

Netty’s extensive toolkit for HTTP-based applications includes support for some of its
most advanced features. In this section we’ll explore WebSocket, a protocol standard-
ized by the Internet Engineering Task Force (IETF) in 2011.

Compression and dependencies
If you’re using JDK 6 or earlier, you’ll need to add JZlib (www.jcraft.com/jzlib/) to the
CLASSPATH to support compression.

For Maven, add the following dependency:

 <dependency>
 <groupId>com.jcraft</groupId>
 <artifactId>jzlib</artifactId>
 <version>1.1.3</version>
 </dependency>

Listing 11.5 Using HTTPS

Adds SslHandler
to the pipeline
to use HTTPS

If client, adds
HttpClient-
Codec

If server, adds
HttpServerCodec
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.jcraft.com/jzlib/

156 CHAPTER 11 Provided ChannelHandlers and codecs
 WebSocket addresses a longstanding problem: how to publish information in real
time given that the underlying protocol, HTTP, is a sequence of request-response
interactions. AJAX provides some improvement, but the flow of data is still driven by
requests from the client side. There have been other more-or-less clever approaches,2

but in the end they have remained workarounds with limited scalability.
 The WebSocket specification and its implementations represent an attempt at a

more effective solution. Simply stated, a WebSocket provides “a single TCP connec-
tion for traffic in both directions ... Combined with the WebSocket API ... it provides
an alternative to HTTP polling for two-way communication from a web page to a
remote server.”3

 That is, WebSockets provide a true bidirectional exchange of data between client
and server. We won’t go into too much detail about the internals, but we should men-
tion that though the earliest implementations were limited to text data, this is no lon-
ger the case; a WebSocket can now be used for any data, much like a normal socket.

 Figure 11.4 gives a general idea of the WebSocket protocol. In this scenario the
communication starts as plain HTTP and upgrades to bidirectional WebSocket.

To add WebSocket support to your application, you include the appropriate client-
side or server-side WebSocket ChannelHandler in the pipeline. This class will handle
the special message types defined by WebSocket, known as frames. As shown in table 11.3,
WebSocketFrames can be classed as data or control frames.

2 Comet is one example, http://en.wikipedia.org/wiki/Comet_%28programming%29.
3 RFC 6455, The WebSocket Protocol, http://tools.ietf.org/html/rfc6455.

Connection protocol upgraded to WebSocket

Client (HTTP)
communication
with server

Server (HTTP)
communication
with client

Client issues WebSocket
handshake via HTTP(S) and
waits for acknowledgment.

Client

HTTP

WebSocket

handshake

WebSocket

Server

Figure 11.4 WebSocket protocol
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://en.wikipedia.org/wiki/Comet_%28programming%29
http://tools.ietf.org/html/rfc6455

157Building Netty HTTP/HTTPS applications

“

Because Netty is principally a server-side technology, we’ll focus here on creating a
WebSocket server.4 Listing 11.6 presents a simple example using WebSocketServer-
ProtocolHandler. This class handles the protocol upgrade handshake as well as the
three control frames—Close, Ping, and Pong. Text and Binary data frames will be
passed along to the next handlers (implemented by you) for processing.

public class WebSocketServerInitializer extends ChannelInitializer<Channel>{
 @Override
 protected void initChannel(Channel ch) throws Exception {
 ch.pipeline().addLast(
 new HttpServerCodec(),
 new HttpObjectAggregator(65536),
 new WebSocketServerProtocolHandler("/websocket"),
 new TextFrameHandler(),
 new BinaryFrameHandler(),
 new ContinuationFrameHandler());
 }

 public static final class TextFrameHandler extends
 SimpleChannelInboundHandler<TextWebSocketFrame> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 TextWebSocketFrame msg) throws Exception {
 // Handle text frame
 }
 }

Table 11.3 WebSocketFrame types

Name Description

BinaryWebSocketFrame Data frame: binary data

TextWebSocketFrame Data frame: text data

ContinuationWebSocketFrame Data frame: text or binary data that belongs to a previous
BinaryWebSocketFrame or TextWebSocketFrame

CloseWebSocketFrame Control frame: a CLOSE request, close status code, and
a phrase

PingWebSocketFrame Control frame: requests a PongWebSocketFrame

PongWebSocketFrame Control frame: responds to a PingWebSocketFrame
request

4 For client-side examples, refer to the examples included in the Netty source code, https://github.com/netty/
netty/tree/4.0/example/src/main/java/io/netty/example/http/websocketx/client.

Listing 11.6 Supporting WebSocket on the server

Provides aggregated
HttpRequests for the
handshakeHandles

the upgrade
handshake if
the endpoint
requested is
/websocket”

TextFrame-
Handler handles
TextWebSocket-
Frames

BinaryFrame-
Handler handles
BinaryWebSocket-
Frames

ContinuationFrame-
Handler handles
ContinuationWeb-
SocketFrames
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/netty/netty/tree/4.0/example/src/main/java/io/netty/example/http/websocketx/client
https://github.com/netty/netty/tree/4.0/example/src/main/java/io/netty/example/http/websocketx/client

158 CHAPTER 11 Provided ChannelHandlers and codecs
 public static final class BinaryFrameHandler extends
 SimpleChannelInboundHandler<BinaryWebSocketFrame> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 BinaryWebSocketFrame msg) throws Exception {
 // Handle binary frame
 }
 }

 public static final class ContinuationFrameHandler extends
 SimpleChannelInboundHandler<ContinuationWebSocketFrame> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 ContinuationWebSocketFrame msg) throws Exception {
 // Handle continuation frame
 }
 }
}

For a more extensive example, please see chapter 12, which explores in depth the
design of a real-time WebSocket application.

11.3 Idle connections and timeouts
So far our discussion has focused on Netty’s support for the HTTP variants HTTPS
and WebSocket via specialized codecs and handlers. These technologies can make
your web applications more effective, usable, and secure, provided that you manage
your network resources efficiently. So let’s talk about the primary concern, connec-
tion management.

 Detecting idle connections and timeouts is essential to freeing resources in a
timely manner. This is such a common task that Netty provides several Channel-
Handler implementations just for this purpose. Table 11.4 gives an overview of these.

Secure WebSocket
To add security to WebSocket, simply insert the SslHandler as the first Channel-
Handler in the pipeline.

Table 11.4 ChannelHandlers for idle connections and timeouts

Name Description

IdleStateHandler Fires an IdleStateEvent if the connection idles too long.
You can then handle the IdleStateEvent by overriding
userEventTriggered() in your ChannelInboundHandler.

ReadTimeoutHandler Throws a ReadTimeoutException and closes the Channel when
no inbound data is received for a specified interval. The
ReadTimeoutException can be detected by overriding
exceptionCaught() in your ChannelHandler.
Licensed to Thomas Snead <n.ordickan@gmail.com>

159Idle connections and timeouts

ler

t
d

th

Im
u
T
to
Let’s take a closer look at IdleStateHandler, the one most used in practice. Listing 11.7
shows how to get notification if no data has been received or sent for 60 seconds,
using the common method of sending a heartbeat message to the remote peer; if
there is no response the connection is closed.

public class IdleStateHandlerInitializer extends ChannelInitializer<Channel>
{

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(
 new IdleStateHandler(0, 0, 60, TimeUnit.SECONDS));
 pipeline.addLast(new HeartbeatHandler());
 }

 public static final class HeartbeatHandler
 extends ChannelStateHandlerAdapter {
 private static final ByteBuf HEARTBEAT_SEQUENCE =
 Unpooled.unreleasableBuffer(Unpooled.copiedBuffer(
 "HEARTBEAT", CharsetUtil.ISO_8859_1));

 @Override
 public void userEventTriggered(ChannelHandlerContext ctx,
 Object evt) throws Exception {
 if (evt instanceof IdleStateEvent) {
 ctx.writeAndFlush(HEARTBEAT_SEQUENCE.duplicate())
 .addListener(
 ChannelFutureListener.CLOSE_ON_FAILURE);
 } else {
 super.userEventTriggered(ctx, evt);
 }
 }
 }
}

This example illustrates how to employ IdleStateHandler to test whether the remote
peer is still alive and to free up resources by closing the connection if it is not.

 IdleStateHandler B will call userEventTriggered() with an IdleStateEvent if
the connection has not received or sent data for 60 seconds. HeartbeatHandler imple-
ments userEventTriggered(). If this method detects an IdleStateEvent it sends the

WriteTimeoutHandler Throws a WriteTimeoutException and closes the Channel
when no inbound data is received for a specified interval. The
WriteTimeoutException can be detected by overriding
exceptionCaught() in your ChannelHandler.

Listing 11.7 Sending heartbeats

Table 11.4 ChannelHandlers for idle connections and timeouts

Name Description

IdleStateHand
sends an
IdleStateEven
when triggere

 b
Adds a

Heartbeat-
Handler to
e pipeline

plements
serEvent-
riggered()
 send the
heartbeat

The heartbeat
to send to the
remote peer

Sends the
heartbeat and

closes the
connection if
the send fails c

Not an IdleStateEvent,
so pass it to the next
handler
Licensed to Thomas Snead <n.ordickan@gmail.com>

160 CHAPTER 11 Provided ChannelHandlers and codecs
heartbeat message and adds a ChannelFutureListener that closes the connection if
the send operation fails c.

11.4 Decoding delimited and length-based protocols
As you work with Netty, you’ll encounter delimited and length-based protocols that
require decoders. The next sections explain the implementations that Netty provides
to handle these cases.

11.4.1 Delimited protocols

Delimited message protocols use defined characters to mark the beginning or end of a
message or message segment, often called a frame. This is true of many protocols for-
mally defined by RFC documents, such as SMTP, POP3, IMAP, and Telnet.5 And, of
course, private organizations often have their own proprietary formats. Whatever pro-
tocol you work with, the decoders listed in table 11.5 will help you to define custom
decoders that can extract frames delimited by any sequence of tokens.

Figure 11.5 shows how frames are handled when delimited by the end-of-line sequence
\r\n (carriage return + line feed).

5 The RFCs for these protocols can be found on the IETF site: SMTP at www.ietf.org/rfc/rfc2821.txt, POP3 at
www.ietf.org/rfc/rfc1939.txt, IMAP at http://tools.ietf.org/html/rfc3501, and Telnet at http://tools.ietf.org/
search/rfc854.

Table 11.5 Decoders for handling delimited and length-based protocols

Name Description

DelimiterBasedFrameDecoder A generic decoder that extracts frames using any user-pro-
vided delimiter.

LineBasedFrameDecoder A decoder that extracts frames delimited by the line-endings
\n or \r\n. This decoder is faster than Delimiter-
BasedFrameDecoder.

Byte stream First frame Second frame

ABC DEF\r\n \r\n ABC\r\n DEF\r\n

Byte stream Frames

Figure 11.5 Frames delimited by line endings
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://www.ietf.org/rfc/rfc2821.txt
http://www.ietf.org/rfc/rfc1939.txt
http://tools.ietf.org/html/rfc3501
http://tools.ietf.org/search/rfc854
http://tools.ietf.org/search/rfc854

161Decoding delimited and length-based protocols

Th
F

The following listing shows how you can use LineBasedFrameDecoder to handle the
case shown in figure 11.5.

public class LineBasedHandlerInitializer extends ChannelInitializer<Channel>
{

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(new LineBasedFrameDecoder(64 * 1024));
 pipeline.addLast(new FrameHandler());
 }

 public static final class FrameHandler
 extends SimpleChannelInboundHandler<ByteBuf> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 ByteBuf msg) throws Exception {
 // Do something with the data extracted from the frame
 }
 }
}

If you’re working with frames delimited by something other than line endings, you
can use the DelimiterBasedFrameDecoder in a similar fashion, specifying the specific
delimiter sequence to the constructor.

 These decoders are tools for implementing your own delimited protocols. As an
example, we’ll use the following protocol specification:

■ The incoming data stream is a series of frames, each delimited by a line feed (\n).
■ Each frame consists of a series of items, each delimited by a single space character.
■ The contents of a frame represent a command, defined as a name followed by a

variable number of arguments.

Our custom decoder for this protocol will define the following classes:

■ Cmd—Stores the contents of the frame (a command) in one ByteBuf for the
name and another for the arguments.

■ CmdDecoder—Retrieves a line from the overridden decode() method and con-
structs a Cmd instance from its contents.

■ CmdHandler—Receives the decoded Cmd object from the CmdDecoder and per-
forms some processing on it.

■ CmdHandlerInitializer—For simplicity, we’ll define the preceding classes as
nested classes of a specialized ChannelInitializer that will install the handlers
in the pipeline.

Listing 11.8 Handling line-delimited frames

e LineBased-
rameDecoder

forwards
extracted

frames to the
next handler

Adds the
FrameHandler
to receive the
frames

Passes in the contents
of a single frame
Licensed to Thomas Snead <n.ordickan@gmail.com>

162 CHAPTER 11 Provided ChannelHandlers and codecs

T

As you can see in the next listing, the key to this decoder is to extend LineBased-
FrameDecoder.

public class CmdHandlerInitializer extends ChannelInitializer<Channel> {
 final byte SPACE = (byte)' ';
 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(new CmdDecoder(64 * 1024));
 pipeline.addLast(new CmdHandler());
 }

 public static final class Cmd {
 private final ByteBuf name;
 private final ByteBuf args;

 public Cmd(ByteBuf name, ByteBuf args) {
 this.name = name;
 this.args = args;
 }

 public ByteBuf name() {
 return name;
 }

 public ByteBuf args() {
 return args;
 }
 }

 public static final class CmdDecoder extends LineBasedFrameDecoder {
 public CmdDecoder(int maxLength) {
 super(maxLength);
 }

 @Override
 protected Object decode(ChannelHandlerContext ctx, ByteBuf buffer)
 throws Exception {
 ByteBuf frame = (ByteBuf) super.decode(ctx, buffer);
 if (frame == null) {
 return null;
 }
 int index = frame.indexOf(frame.readerIndex(),
 frame.writerIndex(), SPACE);
 return new Cmd(frame.slice(frame.readerIndex(), index),
 frame.slice(index + 1, frame.writerIndex()));
 }
 }

 public static final class CmdHandler
 extends SimpleChannelInboundHandler<Cmd> {

Listing 11.9 Using a ChannelInitializer as a decoder installer

Adds a CmdDecoder
to extract a Cmd
object and forwards
it to the next
handler

Adds a CmdHandler to
receive and process
the Cmd objects

The Cmd
POJO

Extracts
a frame

delimited by
an end-of-line

sequence from
the ByteBuf

Null is returned
if there is no
frame in the
input.

Finds the
index of the first
space character.

he command name
precedes it, the

arguments follow.

New Cmd object
instantiated with slices
that hold the command

name and arguments
Licensed to Thomas Snead <n.ordickan@gmail.com>

163Decoding delimited and length-based protocols
 @Override
 public void channelRead0(ChannelHandlerContext ctx, Cmd msg)
 throws Exception {
 // Do something with the command
 }
 }
}

11.4.2 Length-based protocols

A length-based protocol defines a frame by encoding its length in a header segment of
the frame, rather than by marking its end with a special delimiter. Table 11.6 lists the
two decoders Netty provides for handling this type of protocol.

Figure 11.6 shows the operation of a FixedLengthFrameDecoder that has been con-
structed with a frame length of 8 bytes.

You’ll frequently encounter protocols where the frame size encoded in the message
header is not a fixed value. To handle such variable-length frames you’ll use the
LengthFieldBasedFrameDecoder, which determines the frame length from the header
field and extracts the specified number of bytes from the data stream.

 Figure 11.7 shows an example where the length field in the header is at offset 0
and has a length of 2 bytes.

 The LengthFieldBasedFrameDecoder provides several constructors to cover a vari-
ety of header configuration cases. Listing 11.10 shows the use of a constructor whose

Table 11.6 Decoders for length-based protocols

Name Description

FixedLengthFrameDecoder Extracts frames of a fixed size, specified when the con-
structor is called.

LengthFieldBasedFrameDecoder Extracts frames based on a length value encoded in a
field in the frame header; the offset and length of the field
are specified in the constructor.

Processes the Cmd
object passed through
the pipeline

Byte stream Four extracted frames of 8 bytes each

32 bytes 8 bytes 8 bytes 8 bytes 8 bytes

Before decode After decode

Figure 11.6 Decoding a frame length of 8 bytes
Licensed to Thomas Snead <n.ordickan@gmail.com>

164 CHAPTER 11 Provided ChannelHandlers and codecs
three arguments are maxFrameLength, lengthFieldOffset, and lengthFieldLength.
In this case, the length of the frame is encoded in the frame’s first 8 bytes.

public class LengthBasedInitializer extends ChannelInitializer<Channel> {
 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(
 new LengthFieldBasedFrameDecoder(64 * 1024, 0, 8));
 pipeline.addLast(new FrameHandler());
 }

 public static final class FrameHandler
 extends SimpleChannelInboundHandler<ByteBuf> {
 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 ByteBuf msg) throws Exception {
 // Do something with the frame
 }
 }
}

You’ve now seen the codecs Netty provides to support protocols that define the struc-
ture of byte streams by specifying either delimiters or the length (fixed or variable) of
a protocol frame. You’ll find numerous uses for these codecs, as a great many com-
mon protocols fall into one or the other categories.

Listing 11.10 Decoder for the command and the handler

Length “0x000C” (12)
is encoded in the first
2 bytes of the frame.

The last 12 bytes
have the contents.

The extracted frame
with the contents and
without the header.

Length

0x000C

Actual Content

“HELLO. WORLD”

Actual Content

“HELLO. WORLD”

Before decode (14 bytes) After decode (12 bytes)

Figure 11.7 Message with variable frame size encoded in the header

LengthFieldBasedFrameDecoder for
messages that encode frame length

in the first 8 bytes

Adds a
FrameHandler
to handle
each frame

Processes the
frame data
Licensed to Thomas Snead <n.ordickan@gmail.com>

165Writing big data
11.5 Writing big data
Writing big chunks of data efficiently is a special problem in asynchronous frame-
works because of the possibility of network saturation. Because the write operations
are non-blocking, they return on completion and notify the ChannelFuture even if
all the data hasn’t been written out. When this occurs, if you don’t stop writing you
risk running out of memory. So when writing large masses of data, you need to be
prepared to handle cases where a slow connection to a remote peer can cause delays
in freeing memory. Let’s consider the case of writing the contents of a file to the
network.

 In our discussion of transports (see section 4.2) we mentioned the zero-copy fea-
ture of NIO, which eliminates copying steps in moving the contents of a file from the
file system to the network stack. All of this happens in Netty’s core, so all that’s
required is that the application use an implementation of interface FileRegion,
defined in the Netty API documentation as “a region of a file that is sent via a Channel
that supports zero-copy file transfer.”

 This listing shows how you can transmit a file’s contents using zero-copy by creat-
ing a DefaultFileRegion from a FileInputStream and writing it to a Channel.

FileInputStream in = new FileInputStream(file);
FileRegion region = new DefaultFileRegion(
 in.getChannel(), 0, file.length());
channel.writeAndFlush(region).addListener(
 new ChannelFutureListener() {
 @Override
 public void operationComplete(ChannelFuture future)
 throws Exception {
 if (!future.isSuccess()) {
 Throwable cause = future.cause();
 // Do something
 }
 }
});

This example applies only to the direct transmission of a file’s contents, excluding any
processing of the data by the application. In cases where you need to copy the data
from the file system into user memory, you can use ChunkedWriteHandler, which pro-
vides support for writing a large data stream asynchronously without incurring high
memory consumption.

 The key is interface ChunkedInput, where the parameter B is the type returned
by the method readChunk(). Four implementations of this interface are provided, as
listed in table 11.7. Each one represents a data stream of indefinite length to be con-
sumed by a ChunkedWriteHandler.

Listing 11.11 Transferring file contents with FileRegion

Creates a
FileInputStream

Creates a new Default-
FileRegion for the full
length of the file

Sends the DefaultFile-
Region and registers a
ChannelFutureListener

Handles
failure
Licensed to Thomas Snead <n.ordickan@gmail.com>

166 CHAPTER 11 Provided ChannelHandlers and codecs

r
ta

ut

Listing 11.12 illustrates the use of ChunkedStream, the implementation most often used
in practice. The class shown is instantiated with a File and an SslContext. When init-
Channel() is called, it initializes the channel with the chain of handlers shown.

 When the channel becomes active, the WriteStreamHandler will write data from the
file chunk by chunk as a ChunkedStream. The data will be encrypted by the SslHandler
before being transmitted.

public class ChunkedWriteHandlerInitializer
 extends ChannelInitializer<Channel> {
 private final File file;
 private final SslContext sslCtx;

 public ChunkedWriteHandlerInitializer(File file, SslContext sslCtx) {
 this.file = file;
 this.sslCtx = sslCtx;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(new SslHandler(sslCtx.createEngine());
 pipeline.addLast(new ChunkedWriteHandler());
 pipeline.addLast(new WriteStreamHandler());
 }

 public final class WriteStreamHandler
 extends ChannelInboundHandlerAdapter {

 @Override
 public void channelActive(ChannelHandlerContext ctx)
 throws Exception {
 super.channelActive(ctx);
 ctx.writeAndFlush(
 new ChunkedStream(new FileInputStream(file)));
 }
 }
}

CHUNKED INPUT To use your own ChunkedInput implementation install a
ChunkedWriteHandler in the pipeline.

Table 11.7 ChunkedInput implementations

Name Description

ChunkedFile Fetches data from a file chunk by chunk, for use when your platform doesn’t
support zero-copy or you need to transform the data

ChunkedNioFile Similar to ChunkedFile except that it uses FileChannel

ChunkedStream Transfers content chunk by chunk from an InputStream

ChunkedNioStream Transfers content chunk by chunk from a ReadableByteChannel

Listing 11.12 Transferring file contents with ChunkedStream

Adds an SslHandler to
the ChannelPipeline

Adds a
Chunked-
WriteHandle
to handle da
passed in as
ChunkedInp

WriteStreamHandler
starts to write the file
data once the connection
is established.

channelActive()
writes the file data
using Chunked-
Input when the
connection is
established.
Licensed to Thomas Snead <n.ordickan@gmail.com>

167Serializing data
In this section we discussed how to transfer files efficiently by using the zero-copy feature
and how to write large data without risking OutOfMemoryErrors by using Chunked-
WriteHandler. In the next section we’ll examine several approaches to serializing POJOs.

11.6 Serializing data
The JDK provides ObjectOutputStream and ObjectInputStream for serializing and
deserializing primitive data types and graphs of POJOs over the network. The API isn’t
complex and can be applied to any object that implements java.io.Serializable. But
it’s also not terribly efficient. In this section we’ll see what Netty has to offer.

11.6.1 JDK serialization
If your application has to interact with peers that use ObjectOutputStream and
ObjectInputStream, and compatibility is your primary concern, then JDK serialization
is the right choice.6 Table 11.8 lists the serialization classes that Netty provides for
interoperating with the JDK.

11.6.2 Serialization with JBoss Marshalling

If you are free to make use of external dependencies, JBoss Marshalling is ideal: It’s up
to three times faster than JDK Serialization and more compact. The overview on the
JBoss Marshalling homepage7 defines it this way:

JBoss Marshalling is an alternative serialization API that fixes many of
the problems found in the JDK serialization API while remaining fully
compatible with java.io.Serializable and its relatives, and adds several
new tunable parameters and additional features, all of which are pluggable

6 See “Java Object Serialization” in Oracle’s Java SE documentation, http://docs.oracle.com/javase/8/docs/
technotes/guides/serialization/.

Table 11.8 JDK serialization codecs

Name Description

CompatibleObjectDecoder Decoder for interoperating with non-Netty peers that use JDK
serialization.

CompatibleObjectEncoder Encoder for interoperating with non-Netty peers that use JDK
serialization.

ObjectDecoder Decoder that uses custom serialization for decoding on top of
JDK serialization; it provides a speed improvement when external
dependencies are excluded. Otherwise the other serialization
implementations are preferable.

ObjectEncoder Encoder that uses custom serialization for encoding on top of JDK
serialization; it provides a speed improvement when external
dependencies are excluded. Otherwise the other serialization
implementations are preferable.

7 “About JBoss Marshalling,” www.jboss.org/jbossmarshalling.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://docs.oracle.com/javase/8/docs/technotes/guides/serialization/
http://docs.oracle.com/javase/8/docs/technotes/guides/serialization/
http://www.jboss.org/jbossmarshalling

168 CHAPTER 11 Provided ChannelHandlers and codecs
via factory configuration (externalizers, class/instance lookup tables, class
resolution, and object replacement, to name a few).

Netty supports JBoss Marshalling with the two decoder/encoder pairs shown in
table 11.9. The first set is compatible with peers that use only JDK Serialization. The
second, which provides maximum performance, is for use with peers that use JBoss
Marshalling.

The following listing shows how to use MarshallingDecoder and MarshallingEncoder.
Again, it’s mostly a matter of configuring the ChannelPipeline appropriately.

public class MarshallingInitializer extends ChannelInitializer<Channel> {
 private final MarshallerProvider marshallerProvider;
 private final UnmarshallerProvider unmarshallerProvider;

 public MarshallingInitializer(
 UnmarshallerProvider unmarshallerProvider,
 MarshallerProvider marshallerProvider) {
 this.marshallerProvider = marshallerProvider;
 this.unmarshallerProvider = unmarshallerProvider;
 }

 @Override
 protected void initChannel(Channel channel) throws Exception {
 ChannelPipeline pipeline = channel.pipeline();
 pipeline.addLast(new MarshallingDecoder(unmarshallerProvider));
 pipeline.addLast(new MarshallingEncoder(marshallerProvider));
 pipeline.addLast(new ObjectHandler());
 }

 public static final class ObjectHandler
 extends SimpleChannelInboundHandler<Serializable> {
 @Override
 public void channelRead0(
 ChannelHandlerContext channelHandlerContext,
 Serializable serializable) throws Exception {
 // Do something
 }
 }
}

Table 11.9 JBoss Marshalling codecs

Name Description

CompatibleMarshallingDecoder
CompatibleMarshallingEncoder

For compatibility with peers that use JDK serialization.

MarshallingDecoder
MarshallingEncoder

For use with peers that use JBoss Marshalling. These
classes must be used together.

Listing 11.13 Using JBoss Marshalling

Adds a Marshalling-
Decoder to convert
ByteBufs to POJOs

Adds a
Marshalling-

Encoder to
convert

POJOs to
ByteBufs

Adds an
ObjectHandler
for normal
POJOs that
implement
Serializable
Licensed to Thomas Snead <n.ordickan@gmail.com>

169Serializing data
11.6.3 Serialization via Protocol Buffers

The last of Netty’s solutions for serialization is a codec that utilizes Protocol Buffers,8 a
data interchange format developed by Google and now open source. The code can be
found at https://github.com/google/protobuf.

 Protocol Buffers encodes and decodes structured data in a way that’s compact and
efficient. It has bindings for many programming languages, making it a good fit for
cross-language projects. Table 11.10 shows the ChannelHandler implementations Netty
supplies for protobuf support.

Here again, using protobuf is a matter of adding the right ChannelHandler to the
ChannelPipeline, as shown in listing 11.14.

public class ProtoBufInitializer extends ChannelInitializer<Channel> {
 private final MessageLite lite;

 public ProtoBufInitializer(MessageLite lite) {
 this.lite = lite;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(new ProtobufVarint32FrameDecoder());
 pipeline.addLast(new ProtobufEncoder());
 pipeline.addLast(new ProtobufDecoder(lite));
 pipeline.addLast(new ObjectHandler());
 }

 public static final class ObjectHandler
 extends SimpleChannelInboundHandler<Object> {

8 Protocol Buffers are described at https://developers.google.com/protocol-buffers/?hl=en.

Table 11.10 Protobuf codec

Name Description

ProtobufDecoder Decodes a message using protobuf

ProtobufEncoder Encodes a message using protobuf

ProtobufVarint32FrameDecoder Splits received ByteBufs dynamically by the value of the
Google Protocol “Base 128 Varints”a integer length field in
the message

a. See Google’s Protocol Buffers Encoding developer guide, https://developers.google.com/protocol-buffers/docs/encoding.

Listing 11.14 Using protobuf

Adds Protobuf-
Varint32Frame-
Decoder to
break down
frames

Adds
Protobuf-

Encoder
to handle

encoding of
messages Adds ProtobufDecoder

to decode messages

Adds ObjectHandler to
handle the decoded
messages
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/?hl=en
https://github.com/google/protobuf

170 CHAPTER 11 Provided ChannelHandlers and codecs
 @Override
 public void channelRead0(ChannelHandlerContext ctx, Object msg)
 throws Exception {
 // Do something with the object
 }
 }
}

In this section we explored the different serialization options supported by Netty’s
specialized decoders and encoders: standard JDK serialization, JBoss Marshalling, and
Google’s Protocol Buffers.

11.7 Summary
The codecs and handlers provided by Netty can be combined and extended to imple-
ment a very broad range of processing scenarios. Furthermore, they are proven and
robust components that have been employed in many large systems.

 Note that we’ve covered only the most common examples; the API documents pro-
vide more extensive coverage.

 In the next chapter we’ll study another advanced protocol that has been devel-
oped to improve the performance and responsiveness of web applications: Web-
Socket. Netty provides the tools you’ll need to quickly and easily take advantage of its
powerful capabilities.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 3

Network protocols

WebSocket is an advanced network protocol that has been developed to
improve the performance and responsiveness of web applications. We’ll explore
Netty’s support for each of them by writing a sample application.

 In chapter 12 you’ll learn how to implement bidirectional data transmission
using WebSocket by building a chat room server where multiple browser clients
can communicate in real time. You’ll also see how to switch from HTTP to the
WebSocket protocol in your applications by detecting whether the client sup-
ports it.

 We’ll conclude part 3 with a study of Netty’s support for the User Datagram
Protocol (UDP) in chapter 13. Here you’ll build a broadcasting server and moni-
tor client that can be adapted to many practical uses.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

WebSocket
If you follow recent developments in web technologies you are likely to come across
the phrase real-time web, and if you have had experience with real-time applications
in engineering domains, you may be a little skeptical about what this term implies.

 So let’s clarify at the outset that this is not about so-called hard real-time Quality
of Service (QoS), where the delivery of computation results within a specified time
interval is guaranteed. The request/response design of HTTP alone makes that
highly problematic, as evidenced by the fact that none of the approaches devised in
the past have provided a satisfactory solution.

 And while there has been some academic discussion about formally defining
the semantics of timed web services,1 universally accepted definitions don’t appear to

This chapter covers
■ The concept of a real-time web
■ The WebSocket protocol
■ Building a WebSocket-based chat room server

with Netty

1 “Real-time Web Services Orchestration and Choreography,” http://ceur-ws.org/Vol-601/EOMAS10_
paper13.pdf.
173

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://ceur-ws.org/Vol-601/EOMAS10_paper13.pdf
http://ceur-ws.org/Vol-601/EOMAS10_paper13.pdf

174 CHAPTER 12 WebSocket
be on the horizon. So for now we’ll accept the following non-authoritative description
from Wikipedia as adequate:

The real-time web is a network web using technologies and practices that
enable users to receive information as soon as it is published by its
authors, rather than requiring that they or their software check a source
periodically for updates.

In short, a full-blown real-time web may not be just around the corner, but the idea
behind it is fueling a growing expectation of almost instantaneous access to informa-
tion. The WebSocket2 protocol we’ll discuss in this chapter is a well-supported step in
that direction.

12.1 Introducing WebSocket
The WebSocket protocol was designed from the ground up to provide a practical
solution to the problem of bidirectional data transmission on the web, allowing client
and server to transmit messages at any time and, consequently, requiring them to
handle message receipt asynchronously. (Most recent browsers support WebSocket
as the client-side API of HTML5.)

 Netty’s support for WebSocket includes all of the principal implementations in
use, so adopting it in your next application is straightforward. As usual with Netty, you
can make complete use of the protocol without having to worry about its internal
implementation details. We’ll demonstrate this by creating a real-time chat applica-
tion built on WebSocket.

12.2 Our example WebSocket application
Our example application will demonstrate real-time functionality by using the Web-
Socket protocol to implement a browser-based chat application such as you may
have encountered in the text-messaging feature of Facebook. We’ll take it further by
enabling multiple users to communicate with each other simultaneously.

 Figure 12.1 illustrates the application logic:

1 A client sends a message.
2 The message is broadcast to all other connected clients.

This is just how you would expect a chat room to work: everyone can talk to everyone
else. In our example we’ll implement only the server side, the client being a browser
that accesses the chat room via a web page. As you’ll see in the next few pages, Web-
Socket makes writing this server simple.

2 IETF RFC 6455, The WebSocket Protocol, http://tools.ietf.org/html/rfc6455.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://tools.ietf.org/html/rfc6455

175Adding WebSocket support
12.3 Adding WebSocket support
A mechanism known as the upgrade handshake3 is used to switch from standard HTTP
or HTTPS protocol to WebSocket. Thus, an application that uses WebSocket will
always start with HTTP/S and then perform the upgrade. When precisely this hap-
pens is specific to the application; it may be at startup or when a specific URL has
been requested.

 Our application adopts the following convention: If the URL requested ends with /ws
we’ll upgrade the protocol to WebSocket. Otherwise the server will use basic HTTP/S.
After the connection has been upgraded, all data will be transmitted using WebSocket.
Figure 12.2 illustrates the server logic, which, as always in Netty, will be implemented
by a set of ChannelHandlers. We’ll describe them in the next sections as we explain
the techniques used to handle the HTTP and WebSocket protocols.

12.3.1 Handling HTTP requests

First we’ll implement the component that handles HTTP requests. This component
will serve the page that provides access to the chat room and display messages sent by

3 Mozilla Developer Network, “Protocol upgrade mechanism,” https://developer.mozilla.org/en-US/docs/
HTTP/Protocol_upgrade_mechanism.

Client Hi there

Client Hi there

Client Hi there

WebSockets

Client connects to the server
and is part of the chat.

Messages are sent
bidirectionally.

The server handles
all the clients.

Chat messages are exchanged
via WebSockets.

Server

Figure 12.1 WebSocket application logic
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://developer.mozilla.org/en-US/docs/HTTP/Protocol_upgrade_mechanism
https://developer.mozilla.org/en-US/docs/HTTP/Protocol_upgrade_mechanism

176 CHAPTER 12 WebSocket
connected clients. Listing 12.1 has the code for this HttpRequestHandler, which
extends SimpleChannelInboundHandler for FullHttpRequest messages. Notice how
the implementation of channelRead0() forwards any requests for the URI /ws.

public class HttpRequestHandler
 extends SimpleChannelInboundHandler<FullHttpRequest> {
 private final String wsUri;
 private static final File INDEX;

 static {
 URL location = HttpRequestHandler.class
 .getProtectionDomain()
 .getCodeSource().getLocation();
 try {
 String path = location.toURI() + "index.html";
 path = !path.contains("file:") ? path : path.substring(5);
 INDEX = new File(path);
 } catch (URISyntaxException e) {
 throw new IllegalStateException(
 "Unable to locate index.html", e);
 }
 }

 public HttpRequestHandler(String wsUri) {
 this.wsUri = wsUri;
 }

Listing 12.1 HTTPRequestHandler

Chat room client. Client sends HTTP
request (for a standard
or /ws URI).

Chat room server.

Server responds to
request for URI /,
which will transmit
index.html.

Server handles the
WebSockets upgrade
if the URI /ws
is accessed.

After the upgrade completes,
the server sends messages
via WebSockets.

WebSockets

ServerClient

Serve via

WebSockets

Serve via

HTTP

Serve via

HTTP

/

/ws

WebSocket

handshake via HTTP

HTTP

Figure 12.2 Server logic

Extends Simple-
ChannelInbound-
Handler to
handle FullHttp-
Request
messages
Licensed to Thomas Snead <n.ordickan@gmail.com>

177Adding WebSocket support

Ch
tml

e
ed,

e

,

 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 FullHttpRequest request) throws Exception {
 if (wsUri.equalsIgnoreCase(request.getUri())) {
 ctx.fireChannelRead(request.retain());
 } else {
 if (HttpHeaders.is100ContinueExpected(request)) {
 send100Continue(ctx);
 }
 RandomAccessFile file = new RandomAccessFile(INDEX, "r");
 HttpResponse response = new DefaultHttpResponse(
 request.getProtocolVersion(), HttpResponseStatus.OK);
 response.headers().set(
 HttpHeaders.Names.CONTENT_TYPE,
 "text/plain; charset=UTF-8");
 boolean keepAlive = HttpHeaders.isKeepAlive(request);
 if (keepAlive) {
 response.headers().set(
 HttpHeaders.Names.CONTENT_LENGTH, file.length());
 response.headers().set(HttpHeaders.Names.CONNECTION,
 HttpHeaders.Values.KEEP_ALIVE);
 }
 ctx.write(response);
 if (ctx.pipeline().get(SslHandler.class) == null) {
 ctx.write(new DefaultFileRegion(
 file.getChannel(), 0, file.length()));
 } else {
 ctx.write(new ChunkedNioFile(file.getChannel()));
 }
 ChannelFuture future = ctx.writeAndFlush(
 LastHttpContent.EMPTY_LAST_CONTENT);
 if (!keepAlive) {
 future.addListener(ChannelFutureListener.CLOSE);
 }
 }
 }

 private static void send100Continue(ChannelHandlerContext ctx) {
 FullHttpResponse response = new DefaultFullHttpResponse(
 HttpVersion.HTTP_1_1, HttpResponseStatus.CONTINUE);
 ctx.writeAndFlush(response);
 }

 @Override
 public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause)
 throws Exception {
 cause.printStackTrace();
 ctx.close();
 }
}

If the HTTP request references the URI /ws, HttpRequestHandler calls retain() on
the FullHttpRequest and forwards it to the next ChannelInboundHandler B by calling
fireChannelRead(msg). The call to retain() is needed because after channelRead()

If a WebSocket
upgrade is
requested,
increments

the reference
count (retain)
and passes it

to the next
annelInbound-

Handler b

Handles 100
Continue
requests in
conformity
with HTTP 1.1

 c

Reads
index.h

If keepaliv
is request
adds the
required
headers

Writes the
HttpResponse

to the client

 d

Writes
index.html

to the client e
Writes and
flushes the
LastHttp-
Content to
the client

 f

If keepaliv
is not
requested
closes the
Channel
after the
write
completes g
Licensed to Thomas Snead <n.ordickan@gmail.com>

178 CHAPTER 12 WebSocket
completes, it will call release() on the FullHttpRequest to release its resources.
(Please refer to our discussion of SimpleChannelInboundHandler in chapter 6.)

 If the client sends the HTTP 1.1 header Expect: 100-continue, HttpRequest-
Handler sends a 100 Continue c response. HttpRequestHandler writes an Http-
Response d back to the client after the headers are set. This is not a FullHttpResponse
as it’s only the first part of the response. Also, writeAndFlush() is not called here.
This is done at the end.

 If neither encryption nor compression is required, the greatest efficiency can be
achieved by storing the contents of index.html e in a DefaultFileRegion. This will
utilize zero-copy to perform the transmission. For this reason you check to see if there
is an SslHandler in the ChannelPipeline. Alternatively, you use ChunkedNioFile.

 HttpRequestHandler writes a LastHttpContent f to mark the end of the response.
If keepalive isn’t requested g, HttpRequestHandler adds a ChannelFutureListener to
the ChannelFuture of the last write and closes the connection. This is where you call
writeAndFlush() to flush all previously written messages.

 This represents the first part of the chat server, which manages pure HTTP requests
and responses. Next we’ll handle the WebSocket frames, which transmit the actual
chat messages.

WEBSOCKET FRAMES WebSockets transmit data in frames, each of which rep-
resents a part of a message. A complete message may consist of many frames.

12.3.2 Handling WebSocket frames

The WebSocket RFC, published by the IETF, defines six frames; Netty provides a
POJO implementation for each of them. Table 12.1 lists the frame types and describes
their use.

Our chat application will use the following frame types:

■ CloseWebSocketFrame

■ PingWebSocketFrame

Table 12.1 WebSocketFrame types

Frame type Description

BinaryWebSocketFrame Contains binary data

TextWebSocketFrame Contains text data

ContinuationWebSocketFrame Contains text or binary data that belongs to a previous
BinaryWebSocketFrame or TextWebSocketFrame

CloseWebSocketFrame Represents a CLOSE request and contains a close status
code and a phrase

PingWebSocketFrame Requests the transmission of a PongWebSocketFrame

PongWebSocketFrame Sent as a response to a PingWebSocketFrame
Licensed to Thomas Snead <n.ordickan@gmail.com>

179Adding WebSocket support

i
th
wa

H
Hand

Cha

m

ed

s
■ PongWebSocketFrame

■ TextWebSocketFrame

TextWebSocketFrame is the only one we actually need to handle. In conformity with
the WebSocket RFC, Netty provides a WebSocketServerProtocolHandler to manage
the others.

 The following listing shows our ChannelInboundHandler for TextWebSocketFrames,
which will also track all the active WebSocket connections in its ChannelGroup.

public class TextWebSocketFrameHandler
 extends SimpleChannelInboundHandler<TextWebSocketFrame> {
 private final ChannelGroup group;

 public TextWebSocketFrameHandler(ChannelGroup group) {
 this.group = group;
 }

 @Override
 public void userEventTriggered(ChannelHandlerContext ctx,
 Object evt) throws Exception {
 if (evt == WebSocketServerProtocolHandler
 .ServerHandshakeStateEvent.HANDSHAKE_COMPLETE) {
 ctx.pipeline().remove(HttpRequestHandler.class);
 group.writeAndFlush(new TextWebSocketFrame(
 "Client " + ctx.channel() + " joined"));
 group.add(ctx.channel());

 } else {
 super.userEventTriggered(ctx, evt);
 }
 }

 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 TextWebSocketFrame msg) throws Exception {
 group.writeAndFlush(msg.retain());
 }
}

The TextWebSocketFrameHandler has a very small set of responsibilities. When the
WebSocket handshake with the new client has completed successfully B, it notifies all
connected clients by writing to all the Channels in the ChannelGroup, then it adds the
new Channel to the ChannelGroup c.

 If a TextWebSocketFrame is received d, it calls retain() on it and uses write-
AndFlush() to transmit it to the ChannelGroup so that all connected WebSocket
Channels will receive it.

Listing 12.2 Handling text frames

Extends SimpleChannelInboundHandler
and handle TextWebSocketFrame

messages

Overrides
userEvent-
Triggered() to
handle custom
events

If the event
ndicates that
e handshake
s successful,
removes the
ttpRequest-
ler from the
nnelPipeline
because no

further HTTP
essages will
be received.

Notifies all connect
WebSocket clients
that new Client ha
connected

 b

Adds the new
WebSocket Channel
to the ChannelGroup
so it will receive all
messages c

Increments the
reference count of the
message and writes it
to all connected clients
in the ChannelGroup

 d
Licensed to Thomas Snead <n.ordickan@gmail.com>

180 CHAPTER 12 WebSocket
 As before, calling retain() is required because the reference count of TextWeb-
SocketFrame will be decremented when channelRead0() returns. Because all opera-
tions are asynchronous, writeAndFlush() might complete later and it must not access
a reference that has become invalid.

 Because Netty handles most of the remaining functionality internally, the only
thing left to do now is to initialize the ChannelPipeline for each new Channel that is
created. For this we’ll need a ChannelInitializer.

12.3.3 Initializing the ChannelPipeline

As you have learned, to install ChannelHandlers in the ChannelPipeline you extend
ChannelInitializer and implement initChannel(). The following listing shows the
code for the resulting ChatServerInitializer.

public class ChatServerInitializer extends ChannelInitializer<Channel> {
 private final ChannelGroup group;

 public ChatServerInitializer(ChannelGroup group) {
 this.group = group;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 ChannelPipeline pipeline = ch.pipeline();
 pipeline.addLast(new HttpServerCodec());
 pipeline.addLast(new ChunkedWriteHandler());
 pipeline.addLast(new HttpObjectAggregator(64 * 1024));
 pipeline.addLast(new HttpRequestHandler("/ws"));
 pipeline.addLast(new WebSocketServerProtocolHandler("/ws"));
 pipeline.addLast(new TextWebSocketFrameHandler(group));
 }
}

The call to initChannel() sets up the ChannelPipeline of the newly registered
Channel by installing all the required ChannelHandlers. These are summarized in
table 12.2, along with their individual responsibilities.

Listing 12.3 Initializing the ChannelPipeline

Table 12.2 ChannelHandlers for the WebSocket chat server

ChannelHandler Responsibility

HttpServerCodec Decodes bytes to HttpRequest, HttpContent,
and LastHttpContent. Encodes HttpRequest,
HttpContent, and LastHttpContent to bytes.

ChunkedWriteHandler Writes the contents of a file.

Extends
ChannelInitializer

Adds all needed
ChannelHandlers
to the Channel-
Pipeline
Licensed to Thomas Snead <n.ordickan@gmail.com>

181Adding WebSocket support
Netty’s WebSocketServerProtocolHandler handles all mandated WebSocket frame
types and the upgrade handshake itself. If the handshake is successful, the required
ChannelHandlers are added to the pipeline, and those that are no longer needed
are removed.

The state of the pipeline before the upgrade is illustrated in figure 12.3. This repre-
sents the ChannelPipeline just after it has been initialized by the ChatServer-
Initializer.

 When the upgrade is completed, the WebSocketServerProtocolHandler replaces
the HttpRequestDecoder with a WebSocketFrameDecoder and the HttpResponse-
Encoder with a WebSocketFrameEncoder. To maximize performance it will then remove
any ChannelHandlers that aren’t required for WebSocket connections. These would
include the HttpObjectAggregator and HttpRequestHandler shown in figure 12.3.

 Figure 12.4 shows the ChannelPipeline after these operations have completed.
Note that Netty currently supports four versions of the WebSocket protocol, each with
its own implementation classes. The selection of the correct version of WebSocket-

HttpObjectAggregator Aggregates an HttpMessage and its following
HttpContents into a single FullHttpRequest
or FullHttpResponse (depending on whether
it’s being used to handle requests or responses).
With this installed, the next ChannelHandler
in the pipeline will receive only full HTTP requests.

HttpRequestHandler Handles FullHttpRequests (those not sent to a
/ws URI).

WebSocketServerProtocolHandler As required by the WebSocket specification, handles the
WebSocket upgrade handshake, PingWebSocket-
Frames, PongWebSocketFrames, and
CloseWebSocketFrames.

TextWebSocketFrameHandler Handles TextWebSocketFrames and handshake-
completion events

Table 12.2 ChannelHandlers for the WebSocket chat server (continued)

ChannelHandler Responsibility

WebSocket
Server

Protocol
Handler

Http
Response
Encoder

ChannelPipeline

Http
Request
Decoder

Http
Object

Aggregator

Http
Request
Handler

Text
WebSocket
Frame

Handler

Figure 12.3 ChannelPipeline before WebSocket upgrade
Licensed to Thomas Snead <n.ordickan@gmail.com>

182 CHAPTER 12 WebSocket

FrameDecoder and WebSocketFrameEncoder are performed automatically, depending
on what the client (here the browser) supports.4

12.3.4 Bootstrapping

The final piece of the picture is the code that bootstraps the server and installs the
ChatServerInitializer. This will be handled by the ChatServer class, as shown here.

public class ChatServer {
 private final ChannelGroup channelGroup =
 new DefaultChannelGroup(ImmediateEventExecutor.INSTANCE);
 private final EventLoopGroup group = new NioEventLoopGroup();
 private Channel channel;

 public ChannelFuture start(InetSocketAddress address) {
 ServerBootstrap bootstrap = new ServerBootstrap();
 bootstrap.group(group)
 .channel(NioServerSocketChannel.class)
 .childHandler(createInitializer(channelGroup));
 ChannelFuture future = bootstrap.bind(address);
 future.syncUninterruptibly();
 channel = future.channel();
 return future;
 }

 protected ChannelInitializer<Channel> createInitializer(
 ChannelGroup group) {
 return new ChatServerInitializer(group);
 }

 public void destroy() {
 if (channel != null) {
 channel.close();
 }
 channelGroup.close();
 group.shutdownGracefully();
 }

4 In this example we assume that version 13 of the WebSockets protocol is used, so WebSocketFrameDecoder13
and WebSocketFrameEncoder13 are shown in the figure.

Listing 12.4 Bootstrapping the server

WebSocket
Frame
Encoder

13

WebSocket
Frame
Decoder

13

ChannelPipeline

WebSocket
Server
Protocol
Handler

Text
WebSocket
Frame

Handler

Figure 12.4 ChannelPipeline after WebSocket upgrade

Creates
Default-
Channel-
Group that
will hold all
connected
WebSocket
channels

Bootstraps
the server

Creates the
ChatServer-
Initializer

Handles server
shutdown and
releases all
resources
Licensed to Thomas Snead <n.ordickan@gmail.com>

183Testing the application
 public static void main(String[] args) throws Exception {
 if (args.length != 1) {
 System.err.println("Please give port as argument");
 System.exit(1);
 }
 int port = Integer.parseInt(args[0]);
 final ChatServer endpoint = new ChatServer();
 ChannelFuture future = endpoint.start(
 new InetSocketAddress(port));
 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 endpoint.destroy();
 }
 });
 future.channel().closeFuture().syncUninterruptibly();
 }
}

That completes the application itself. Now let’s test it.

12.4 Testing the application
The example code in the chapter12 directory has everything you need to build and
run the server. (If you haven’t yet set up your development environment including
Apache Maven, please refer to the instructions in chapter 2.)

 We’ll use the following Maven command to build and start the server:

mvn -PChatServer clean package exec:exec

The project file pom.xml is configured to start the server on port 9999. To use a differ-
ent port, you can either edit the value in the file or override it with a System property:

mvn -PChatServer -Dport=1111 clean package exec:exec

The following listing shows the main output of the command (inessential lines have
been deleted).

$ mvn -PChatServer clean package exec:exec

[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building ChatServer 1.0-SNAPSHOT
[INFO] --
...
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ netty-in-action ---
[INFO] Building jar: target/chat-server-1.0-SNAPSHOT.jar
[INFO]
[INFO] --- exec-maven-plugin:1.2.1:exec (default-cli) @ chat-server ---
Starting ChatServer on port 9999

Listing 12.5 Compile and start the ChatServer
Licensed to Thomas Snead <n.ordickan@gmail.com>

184 CHAPTER 12 WebSocket
You can access the application by pointing your browser to http://localhost:9999. Fig-
ure 12.5 shows the UI in the Chrome browser.

 The figure shows two connected clients. The first is connected using the interface
at the top. The second client is connected via the Chrome browser’s command line at
the bottom. You’ll notice that there are messages sent from both clients, and each
message is displayed to both.

 This is a very simple demonstration of how WebSocket enables real-time communi-
cation in a browser.

12.4.1 What about encryption?

In a real-life scenario, you’d soon be asked to add encryption to this server. With Netty
this is just a matter of adding an SslHandler to the ChannelPipeline and configuring
it. The following listing shows how this can be done by extending our ChatServer-
Initializer to create a SecureChatServerInitializer.

public class SecureChatServerInitializer extends ChatServerInitializer {
 private final SslContext context;

 public SecureChatServerInitializer(ChannelGroup group,
 SslContext context) {

Listing 12.6 Adding encryption to the ChannelPipeline

Figure 12.5 WebSocket ChatServer demonstration

Extends
ChatServerInitializer

to add encryption
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://localhost:9999

185Testing the application

r
 super(group);
 this.context = context;
 }

 @Override
 protected void initChannel(Channel ch) throws Exception {
 super.initChannel(ch);
 SSLEngine engine = context.newEngine(ch.alloc());
 ch.pipeline().addFirst(new SslHandler(engine));
 }
}

The final step is to adapt the ChatServer to use the SecureChatServerInitializer
so as to install the SslHandler in the pipeline. This gives us the SecureChatServer
shown here.

public class SecureChatServer extends ChatServer {
 private final SslContext context;

 public SecureChatServer(SslContext context) {
 this.context = context;
 }

 @Override
 protected ChannelInitializer<Channel> createInitializer(
 ChannelGroup group) {
 return new SecureChatServerInitializer(group, context);
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 1) {
 System.err.println("Please give port as argument");
 System.exit(1);
 }
 int port = Integer.parseInt(args[0]);
 SelfSignedCertificate cert = new SelfSignedCertificate();
 SslContext context = SslContext.newServerContext(
 cert.certificate(), cert.privateKey());

 final SecureChatServer endpoint = new SecureChatServer(context);
 ChannelFuture future = endpoint.start(new InetSocketAddress(port));
 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 endpoint.destroy();
 }
 });
 future.channel().closeFuture().syncUninterruptibly();
 }
}

Listing 12.7 Adding encryption to the ChatServer

Calls the
parent’s
initChannel()

Adds the
SslHandler to the
ChannelPipeline

SecureChatServer
extends ChatServer to
support encryption

Returns the
previously
created
SecureChat-
ServerInitialize
to enable
encryption
Licensed to Thomas Snead <n.ordickan@gmail.com>

186 CHAPTER 12 WebSocket
That’s all that’s needed to enable SSL/TLS encryption of all communications. As
before, you can use Apache Maven to run the application. It will also retrieve any
needed dependencies.

$ mvn -PSecureChatServer clean package exec:exec
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building ChatServer 1.0-SNAPSHOT
[INFO] --
...
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ netty-in-action ---
[INFO] Building jar: target/chat-server-1.0-SNAPSHOT.jar
[INFO]
[INFO] --- exec-maven-plugin:1.2.1:exec (default-cli) @ chat-server ---
Starting SecureChatServer on port 9999

Now you can access the SecureChatServer from its HTTPS URL: https://localhost:9999.

12.5 Summary
In this chapter you learned how to use Netty’s WebSocket implementation to manage
real-time data in a web application. We covered the supported data types and dis-
cussed the limitations you may encounter. Although it may not be possible to use
WebSocket in all cases, it should be clear that it represents an important advance in
technologies for the web.

Listing 12.8 Starting the SecureChatServer
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://localhost:9999

Broadcasting
events with UDP
Most of the examples you’ve seen so far have used connection-based protocols such
as TCP. In this chapter we’ll focus on a connectionless protocol, User Datagram
Protocol (UDP), which is often used when performance is critical and some packet
loss can be tolerated.1

 We’ll start with an overview of UDP, its characteristics and limitations. Follow-
ing that we’ll describe this chapter’s sample application, which will demonstrate
how to use the broadcasting capabilities of UDP. We’ll also make use of an encoder
and a decoder to handle a POJO as the broadcast message format. By the end of
the chapter, you’ll be ready to make use of UDP in your own applications.

This chapter covers
■ An overview of UDP
■ A sample broadcasting application

1 One of the best-known UDP-based protocols is the Domain Name Service (DNS), which maps fully quali-
fied names to numeric IP addresses.
187

Licensed to Thomas Snead <n.ordickan@gmail.com>

188 CHAPTER 13 Broadcasting events with UDP
13.1 UDP basics
Connection-oriented transports (like TCP) manage the establishment of a connection
between two network endpoints, the ordering and reliable transmission of messages
sent during the lifetime of the connection, and finally, orderly termination of the con-
nection. By contrast, in a connectionless protocol like UDP, there’s no concept of a dura-
ble connection and each message (a UDP datagram) is an independent transmission.

 Furthermore, UDP doesn’t have the error-correcting mechanism of TCP, where
each peer acknowledges the packets it receives and unacknowledged packets are
retransmitted by the sender.

 By analogy, a TCP connection is like a telephone conversation, where a series of
ordered messages flows in both directions. UDP, conversely, resembles dropping a
bunch of postcards in a mailbox. You can’t know the order in which they will arrive at
their destination, or even if they all will arrive.

 These aspects of UDP may strike you as serious limitations, but they also explain
why it’s so much faster than TCP: all overhead of handshaking and message manage-
ment has been eliminated. Clearly, UDP is a good fit for applications that can handle
or tolerate lost messages, unlike those that handle financial transactions.

13.2 UDP broadcast
All of our examples so far have utilized a transmission mode called unicast,2 defined as
the sending of messages to a single network destination identified by a unique address.
This mode is supported by both connected and connectionless protocols.

 UDP provides additional transmission modes for sending a message to multiple
recipients:

■ Multicast—Transmission to a defined group of hosts
■ Broadcast—Transmission to all of the hosts on a network (or a subnet)

The example application in this chapter will demonstrate the use of UDP broadcast by
sending messages that can be received by all the hosts on the same network. For this
purpose we’ll use the special limited broadcast or zero network address 255.255.255.255.
Messages sent to this address are destined for all the hosts on the local network
(0.0.0.0) and are never forwarded to other networks by routers.

 Next we’ll discuss the design of the application.

13.3 The UDP sample application
Our example application will open a file and broadcast each line as a message to a
specified port via UDP. If you’re familiar with UNIX-like OSes, you may recognize this
as a very simplified version of the standard syslog utility. UDP is a perfect fit for such an
application because the occasional loss of a line of a log file can be tolerated, given

2 See http://en.wikipedia.org/wiki/Unicast.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://en.wikipedia.org/wiki/Unicast

189The message POJO: LogEvent
that the file itself is stored in the file system. Furthermore, the application provides
the very valuable capability of effectively handling a large volume of data.

 What about the receiver? With UDP broadcast, you can create an event monitor to
receive the log messages simply by starting up a listener program on a specified port.
Note that this ease of access raises a potential security concern, which is one reason
why UDP broadcast tends not to be used in insecure environments. For the same rea-
son, routers often block broadcast messages, restricting them to the network where
they originate.

PUBLISH/SUBSCRIBE Applications like syslog are typically classified as publish/
subscribe: a producer or service publishes the events, and multiple clients
subscribe to receive them.

Figure 14.1 presents a high-level view of the overall system, which consists of a broad-
caster and one or more event monitors. The broadcaster listens for new content to
appear, and when it does, transmits it as a broadcast message via UDP.

All event monitors listening on the UDP port receive the broadcast messages.
 To keep things simple, we won’t be adding authentication, verification, or encryp-

tion to our sample application. But it would not be difficult to incorporate these fea-
tures to make this a robust, usable utility.

 In the next section we’ll start to explore the design and implementation details of
the broadcaster component.

13.4 The message POJO: LogEvent
In messaging applications, data is often represented by a POJO, which may hold con-
figuration or processing information in addition to the actual message content. In this
application we’ll handle a message as an event, and because the data comes from a log
file, we’ll call it LogEvent. Listing 14.1 shows the details of this simple POJO.

Listen for new
file content

Listen for
UDP

message

Event-monitor

Listen for
UDP

message

Event-monitor

Listen for
UDP

message

Event-monitor

Listen for
UDP

message

Event-monitor

Broadcaster listens for
new file content.

Events are broadcast
via UDP.

The event monitor listens for and displays the content.
Figure 13.1 Broadcast
system overview
Licensed to Thomas Snead <n.ordickan@gmail.com>

190 CHAPTER 13 Broadcasting events with UDP
public final class LogEvent {
 public static final byte SEPARATOR = (byte) ':';
 private final InetSocketAddress source;
 private final String logfile;
 private final String msg;
 private final long received;

 public LogEvent(String logfile, String msg) {
 this(null, -1, logfile, msg);
 }

 public LogEvent(InetSocketAddress source, long received,
 String logfile, String msg) {
 this.source = source;
 this.logfile = logfile;
 this.msg = msg;
 this.received = received;
 }

 public InetSocketAddress getSource() {
 return source;
 }

 public String getLogfile() {
 return logfile;
 }

 public String getMsg() {
 return msg;
 }

 public long getReceivedTimestamp() {
 return received;
 }
}

With the message component defined, we can implement the application’s broadcast-
ing logic. In the next section we’ll examine the Netty framework classes that are used
to encode and transmit LogEvent messages.

13.5 Writing the broadcaster
Netty provides a number of classes to support the writing of UDP applications. The
primary ones we’ll be using are the message containers and Channel types listed in
table 14.1.

Listing 13.1 LogEvent message

Table 13.1 Netty UDP classes used in broadcaster

Name Description

interface AddressedEnvelope
 <M, A extends SocketAddress>
 extends ReferenceCounted

Defines a message that wraps another mes-
sage with sender and recipient addresses. M
is the message type; A is the address type.

Constructor for
an outgoing
message

Constructor for
an incoming
message

Returns the InetSocket-
Address of the source that
sent the LogEvent

Returns the name of the
log file for which the
LogEvent was sent

Returns the
message contents

Returns the time at
which the LogEvent
was received
Licensed to Thomas Snead <n.ordickan@gmail.com>

191Writing the broadcaster
Netty’s DatagramPacket is a simple message container used by DatagramChannel imple-
mentations to communicate with remote peers. Like the postcards we referred to in
our earlier analogy, it carries the address of the recipient (and optionally, the sender)
as well as the message payload itself.

 To convert EventLog messages to DatagramPackets, we’ll need an encoder. But
there’s no need to write our own from scratch. We’ll extend Netty’s MessageToMessage-
Encoder, which we used in chapters 9 and 10.

 Figure 14.2 shows the broadcasting of three log entries, each one via a dedicated
DatagramPacket.

class DefaultAddressedEnvelope
 <M, A extends SocketAddress>
 implements AddressedEnvelope<M,A>

Provides a default implementation of
interface AddressedEnvelope.

class DatagramPacket
 extendsDefaultAddressedEnvelope
 <ByteBuf, InetSocketAddress>
 implements ByteBufHolder

Extends DefaultAddressedEnvelope
to use ByteBuf as the message data con-
tainer.

interface DatagramChannel
 extends Channel

Extends Netty's Channel abstraction to
support UDP multicast group management.

class NioDatagramChannnel
 extends AbstractNioMessageChannel
 implements DatagramChannel

Defines a Channel type that can send and
receive AddressedEnvelope messages.

Table 13.1 Netty UDP classes used in broadcaster (continued)

Name Description

Mar 24 21:00:38 dev-linux dhclient: DHCPREQUEST of ...

Mar 24 21:00:38 dev-linux dhclient: DHCPACK of ...

Mar 24 21:00:38 dev-linux dhclient: bound to.

Logfile

Mar 24 21:00:38 dev-linux dhclient:

DHCPREQUEST of ...

DatagramPacket

Mar 24 21:00:38 dev-linux dhclient:

DHCPACK of ...

DatagramPacket

Mar 24 21:00:38 dev-linux dhclient:

bound to 192.168.0. ...

DatagramPacket

The log file A single entry in the log file

A DatagramPacket holding
a single log entry

Figure 13.2 Log entries sent via DatagramPackets
Licensed to Thomas Snead <n.ordickan@gmail.com>

192 CHAPTER 13 Broadcasting events with UDP

-

 to be
fied
s

Figure 14.3 represents a high-level view of the ChannelPipeline of the LogEvent-
Broadcaster, showing how LogEvents flow through it.

 As you’ve seen, all data to be transmitted is encapsulated in LogEvent messages.
The LogEventBroadcaster writes these to the channel, sending them through the
ChannelPipeline where they’re converted (encoded) into DatagramPacket messages.
Finally, they are broadcast via UDP and picked up by remote peers (monitors).

 The next listing shows our customized version of MessageToMessageEncoder, which
performs the conversion just described.

public class LogEventEncoder extends MessageToMessageEncoder<LogEvent> {
 private final InetSocketAddress remoteAddress;

 public LogEventEncoder(InetSocketAddress remoteAddress) {
 this.remoteAddress = remoteAddress;
 }

 @Override
 protected void encode(ChannelHandlerContext channelHandlerContext,
 LogEvent logEvent, List<Object> out) throws Exception {
 byte[] file = logEvent.getLogfile().getBytes(CharsetUtil.UTF_8);
 byte[] msg = logEvent.getMsg().getBytes(CharsetUtil.UTF_8);
 ByteBuf buf = channelHandlerContext.alloc()
 .buffer(file.length + msg.length + 1);
 buf.writeBytes(file);
 buf.writeByte(LogEvent.SEPARATOR);
 buf.writeBytes(msg);
 out.add(new DatagramPacket(buf, remoteAddress));
 }
}

With LogEventEncoder implemented, we’re ready to bootstrap the server, which includes
setting various ChannelOptions and installing the needed ChannelHandlers in the
pipeline. This will be done by the main class, LogEventBroadcaster, shown next.

Listing 13.2 LogEventEncoder

DatagramPacket

ChannelPipeline

Remote

peer

LogEventEncoder LogEvent
Remote

peer

Remote

peer

Local

Figure 13.3 LogEventBroadcaster: ChannelPipeline and LogEvent flow

LogEventEncoder
creates Datagram
Packet messages
sent to the speci
InetSocketAddres

Writes the filename
to the ByteBufAdds a

SEPARATOR

Writes the log
message to the
ByteBuf

Adds a new DatagramPacket with the
data and destination address to the

list of outbound messages
Licensed to Thomas Snead <n.ordickan@gmail.com>

193Writing the broadcaster

he
-

ess)

public class LogEventBroadcaster {
 private final EventLoopGroup group;
 private final Bootstrap bootstrap;
 private final File file;

 public LogEventBroadcaster(InetSocketAddress address, File file) {
 group = new NioEventLoopGroup();
 bootstrap = new Bootstrap();
 bootstrap.group(group).channel(NioDatagramChannel.class)
 .option(ChannelOption.SO_BROADCAST, true)
 .handler(new LogEventEncoder(address));
 this.file = file;
 }

 public void run() throws Exception {
 Channel ch = bootstrap.bind(0).sync().channel();
 long pointer = 0;
 for (;;) {
 long len = file.length();
 if (len < pointer) {
 // file was reset
 pointer = len;
 } else if (len > pointer) {
 // Content was added
 RandomAccessFile raf = new RandomAccessFile(file, "r");
 raf.seek(pointer);
 String line;
 while ((line = raf.readLine()) != null) {
 ch.writeAndFlush(new LogEvent(null, -1,
 file.getAbsolutePath(), line));
 }
 pointer = raf.getFilePointer();
 raf.close();
 }
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 Thread.interrupted();
 break;
 }
 }
 }

 public void stop() {
 group.shutdownGracefully();
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 throw new IllegalArgumentException();
 }

Listing 13.3 LogEventBroadcaster

Bootstraps t
NioDatagram
Channel
(connectionl

Sets the
SO_BROADCAST
socket option

Binds the
channel

Starts the main
processing loop

If necessary, sets the file pointer
to the last byte of the file

Sets the current
file pointer so

nothing old is sent
For each log entry,
writes a LogEvent
to the channel

Stores the current
position within the file

Sleeps for 1 second. If
interrupted, exits the
loop; else restarts it.
Licensed to Thomas Snead <n.ordickan@gmail.com>

194 CHAPTER 13 Broadcasting events with UDP
 LogEventBroadcaster broadcaster = new LogEventBroadcaster(
 new InetSocketAddress("255.255.255.255",
 Integer.parseInt(args[0])), new File(args[1]));
 try {
 broadcaster.run();
 }
 finally {
 broadcaster.stop();
 }
 }
}

This completes the broadcaster component of the application. For initial testing you
can use the netcat program. On UNIX/Linux systems you should find it installed as nc.
A version for Windows is available at http://nmap.org/ncat.

 netcat is perfect for basic testing of this application; it just listens on a specified
port and prints all data received to standard output. Set it to listen for UDP data on
port 9999 as follows:

$ nc -l -u 9999

Now we need to start our LogEventBroadcaster. Listing 14.4 shows how to compile
and run the broadcaster using mvn. The configuration in pom.xml points to a file that
is frequently updated, /var/log/messages (assuming a UNIX/Linux environment),
and sets the port to 9999. The entries in the file will be broadcast to that port via UDP
and printed to the console on which you started netcat.

$ chapter14> mvn clean package exec:exec LogEventBroadcaster
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building UDP Broadcast 1.0-SNAPSHOT
[INFO] --
...
...
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ netty-in-action ---
[INFO] Building jar: target/chapter14-1.0-SNAPSHOT.jar
[INFO]
[INFO] --- exec-maven-plugin:1.2.1:exec (default-cli) @ netty-in-action –
 LogEventBroadcaster running

To change the file and port values, specify them as System properties when invoking
mvn. The next listing shows how to set the logfile to /var/log/mail.log and the port
to 8888.

Listing 13.4 Compile and start the LogEventBroadcaster

Creates and starts a new
LogEventBroadcaster

instance
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://nmap.org/ncat

195Writing the monitor
$ chapter14> mvn clean package exec:exec -PLogEventBroadcaster /
-Dlogfile=/var/log/mail.log –Dport=8888 –....
....
[INFO]
[INFO] --- exec-maven-plugin:1.2.1:exec (default-cli) @ netty-in-action –
 LogEventBroadcaster running

When you see LogEventBroadcaster running, you’ll know it started up successfully. If
there are errors, an exception message will be printed. Once the process is running, it
will broadcast any new log messages that are added to the logfile.

 Using netcat is adequate for testing purposes but it would not be suitable for a pro-
duction system. This brings us to the second part of our application—the broadcast
monitor we’ll implement in the next section.

13.6 Writing the monitor
Our goal is to replace netcat with a more complete event consumer, which we’ll call
EventLogMonitor. This program will

1 Receive UDP DatagramPackets broadcast by the LogEventBroadcaster
2 Decode them to LogEvent messages
3 Write the LogEvent messages to System.out

As before, the logic will be implemented by custom ChannelHandlers—for our decoder
we’ll extend MessageToMessageDecoder. Figure 14.4 depicts the ChannelPipeline of
the LogEventMonitor and shows how LogEvents will flow through it.

The first decoder in the pipeline, LogEventDecoder, is responsible for decoding incom-
ing DatagramPackets to LogEvent messages (a typical setup for any Netty application
that transforms inbound data). The following listing shows the implementation.

public class LogEventDecoder extends MessageToMessageDecoder<DatagramPacket> {

 @Override
 protected void decode(ChannelHandlerContext ctx,
 DatagramPacket datagramPacket, List<Object> out) throws Exception {

Listing 13.5 Compile and start the LogEventBroadcaster

Listing 13.6 LogEventDecoder

DatagramPacket

ChannelPipeline

LogEventDecoder LogEventHandlerLogEvent
Remote

peer

Figure 13.4 LogEventMonitor
Licensed to Thomas Snead <n.ordickan@gmail.com>

196 CHAPTER 13 Broadcasting events with UDP

G
to
D

 ByteBuf data = datagramPacket.data();
 int idx = data.indexOf(0, data.readableBytes(),
 LogEvent.SEPARATOR);
 String filename = data.slice(0, idx)
 .toString(CharsetUtil.UTF_8);
 String logMsg = data.slice(idx + 1,
 data.readableBytes()).toString(CharsetUtil.UTF_8);

 LogEvent event = new LogEvent(datagramPacket.remoteAddress(),
 System.currentTimeMillis(), filename, logMsg);
 out.add(event);
 }
}

The job of the second ChannelHandler is to perform some processing on the LogEvent
messages created by the first. In this case, it will simply write them to System.out. In a
real-world application you might aggregate them with events originating from a differ-
ent log file or post them to a database. This listing, which shows the LogEventHandler,
illustrates the basic steps to follow.

public class LogEventHandler
 extends SimpleChannelInboundHandler<LogEvent> {

 @Override
 public void exceptionCaught(ChannelHandlerContext ctx,
 Throwable cause) throws Exception {
 cause.printStackTrace();
 ctx.close();
 }

 @Override
 public void channelRead0(ChannelHandlerContext ctx,
 LogEvent event) throws Exception {
 StringBuilder builder = new StringBuilder();
 builder.append(event.getReceivedTimestamp());
 builder.append(" [");
 builder.append(event.getSource().toString());
 builder.append("] [");
 builder.append(event.getLogfile());
 builder.append("] : ");
 builder.append(event.getMsg());
 System.out.println(builder.toString());
 }
}

The LogEventHandler prints the LogEvents in an easy-to-read format that consists of
the following:

■ The received timestamp in milliseconds
■ The InetSocketAddress of the sender, which consists of the IP address and port

Listing 13.7 LogEventHandler

ets a reference
 the data in the
atagramPacket

(a ByteBuf)

Gets the index of
the SEPARATOR

Extracts the
filename

Extracts
the log

message

Constructs a new LogEvent
object and adds it to the list

Extends Simple-
ChannelInbound-
Handler to handle
LogEvent messages

On exception, prints
the stack trace and
closes the channel

Creates a
StringBuilder and
builds up the output

Prints out the
LogEvent data
Licensed to Thomas Snead <n.ordickan@gmail.com>

197Writing the monitor
■ The absolute name of the file the LogEvent was generated from
■ The actual log message, which represents one line in the log file

Now we need to install our handlers in the ChannelPipeline, as seen in figure 14.4.
This listing shows how it is done by the LogEventMonitor main class.

public class LogEventMonitor {
 private final EventLoopGroup group;
 private final Bootstrap bootstrap;

 public LogEventMonitor(InetSocketAddress address) {
 group = new NioEventLoopGroup();
 bootstrap = new Bootstrap();
 bootstrap.group(group)
 .channel(NioDatagramChannel.class)
 .option(ChannelOption.SO_BROADCAST, true)
 .handler(new ChannelInitializer<Channel>() {
 @Override
 protected void initChannel(Channel channel)
 throws Exception {
 ChannelPipeline pipeline = channel.pipeline();
 pipeline.addLast(new LogEventDecoder());
 pipeline.addLast(new LogEventHandler());
 }
 })
 .localAddress(address);
 }

 public Channel bind() {
 return bootstrap.bind().sync().channel();
 }

 public void stop() {
 group.shutdownGracefully();
 }

 public static void main(String[] main) throws Exception {
 if (args.length != 1) {
 throw new IllegalArgumentException(
 "Usage: LogEventMonitor <port>");
 }
 LogEventMonitor monitor = new LogEventMonitor(
 new InetSocketAddress(args[0]));
 try {
 Channel channel = monitor.bind();
 System.out.println("LogEventMonitor running");
 channel.closeFuture().sync();
 } finally {
 monitor.stop();
 }
 }
}

Listing 13.8 LogEventMonitor

Bootstraps the
NioDatagramChannel

Sets the
SO_BROADCAST
socket option

Adds the
Channel-
Handlers
to the
Channel-
Pipeline

Binds the channel.
Note that Datagram-
Channel is
connectionless.

Constructs a
new LogEvent-
Monitor
Licensed to Thomas Snead <n.ordickan@gmail.com>

198 CHAPTER 13 Broadcasting events with UDP
13.7 Running the LogEventBroadcaster and LogEventMonitor
As before, we’ll use Maven to run the application. This time you’ll need to open two
console windows, one for each of the programs. Each will keep running until you stop
it with Ctrl-C.

 First you need to start the LogEventBroadcaster. Because you’ve already built the
project, the following command will suffice (using the default values):

$ chapter14> mvn exec:exec -PLogEventBroadcaster

As before, this will broadcast the log messages via UDP.
 Now, in a new window, build and start the LogEventMonitor to receive and display

the broadcast messages.

$ chapter13> mvn clean package exec:exec -PLogEventMonitor
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building UDP Broadcast 1.0-SNAPSHOT
[INFO] --
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ netty-in-action ---
[INFO] Building jar: target/chapter14-1.0-SNAPSHOT.jar
[INFO]
[INFO] --- exec-maven-plugin:1.2.1:exec (default-cli) @ netty-in-action ---
LogEventMonitor running

When you see LogEventMonitor running, you’ll know it started up successfully. If
there is an error, an exception message will be printed.

 The console will display any events as they are added to the log file, as shown next.
The format of the messages is that created by the LogEventHandler.

1364217299382 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 13:55:08
dev-linux dhclient: DHCPREQUEST of 192.168.0.50 on eth2 to 192.168.0.254
port 67

1364217299382 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 13:55:08
dev-linux dhclient: DHCPACK of 192.168.0.50 from 192.168.0.254

1364217299382 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 13:55:08
dev-linux dhclient: bound to 192.168.0.50 -- renewal in 270 seconds.

1364217299382 [/192.168.0.38:63182] [[/var/log/messages] : Mar 25 13:59:38
dev-linux dhclient: DHCPREQUEST of 192.168.0.50 on eth2 to 192.168.0.254
port 67

1364217299382 [/192.168.0.38:63182] [/[/var/log/messages] : Mar 25 13:59:38
dev-linux dhclient: DHCPACK of 192.168.0.50 from 192.168.0.254

1364217299382 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 13:59:38
dev-linux dhclient: bound to 192.168.0.50 -- renewal in 259 seconds.

Listing 13.9 Compiling and starting the LogEventBroadcaster

Listing 13.10 LogEventMonitor output
Licensed to Thomas Snead <n.ordickan@gmail.com>

199Summary
1364217299383 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 14:03:57
dev-linux dhclient: DHCPREQUEST of 192.168.0.50 on eth2 to 192.168.0.254
port 67

1364217299383 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 14:03:57
dev-linux dhclient: DHCPACK of 192.168.0.50 from 192.168.0.254

1364217299383 [/192.168.0.38:63182] [/var/log/messages] : Mar 25 14:03:57
dev-linux dhclient: bound to 192.168.0.50 -- renewal in 285 seconds.

If you don’t have access to a UNIX syslog, you can create a custom file and supply con-
tent manually to see the application in action. The steps shown next use UNIX com-
mands, starting with touch to create an empty file.

$ touch ~/mylog.log

Now start up the LogEventBroadcaster again and point it to the file by setting the sys-
tem property:

$ chapter14> mvn exec:exec -PLogEventBroadcaster -Dlogfile=~/mylog.log

Once the LogEventBroadcaster is running, you can manually add messages to the file
to see the broadcast output in the LogEventMonitor console. Use echo and redirect
the output to the file as shown here:

$ echo 'Test log entry' >> ~/mylog.log

You can start as many instances of the monitor as you like; each will receive and dis-
play the same messages.

13.8 Summary
In this chapter we provided an introduction to connectionless protocols using UDP as
an example. We built a sample application that converts log entries to UDP datagrams
and broadcasts them to be picked up by subscribed monitor clients. Our implementa-
tion made use of a POJO to represent the log data and a custom encoder to convert
from this message format to Netty’s DatagramPacket. The example illustrates the ease
with which a Netty UDP application can be developed and extended to support spe-
cialized uses.

 In the next two chapters we’ll look at case studies presented by users from well-
known companies who have built industrial-strength applications with Netty.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Part 4

Case studies

This final part of the book presents case studies of mission-critical systems
that five well-known companies have implemented with Netty. Chapter 14 is
about projects at Droplr, Firebase, and Urban Airship. Chapter 15 discusses work
done at Facebook and Twitter.

 The projects described range from core infrastructure components to mobile
services and new network protocols, including two for executing remote proce-
dure calls (RPC). In all cases, you’ll see that these organizations have adopted
Netty to achieve the same performance and architectural benefits that you’ve
studied throughout the book.
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

Case studies, part 1
In this chapter we’ll present the first of two sets of case studies contributed by com-
panies that have used Netty extensively in their internal infrastructure. We hope
that these examples of how others have utilized the framework to solve real-world
problems will broaden your understanding of what you can accomplish with Netty.

NOTE The author or authors of each study were directly involved in the
project they discuss.

14.1 Droplr—building mobile services

Bruno de Carvalho, Lead Architect

At Droplr we use Netty at the heart of our infrastructure, in everything from our
API servers to auxiliary services.

This chapter covers
■ Droplr
■ Firebase
■ Urban Airship
203

Licensed to Thomas Snead <n.ordickan@gmail.com>

204 CHAPTER 14 Case studies, part 1
 This is a case study on how we moved from a monolithic and sluggish LAMP1 appli-
cation to a modern, high-performance and horizontally distributed infrastructure,
implemented atop Netty.

14.1.1 How it all started

When I joined the team, we were running a LAMP application that served both as the
front end for users and as an API for the client applications—among which, my
reverse-engineered, third-party Windows client, windroplr.

 Windroplr went on to become Droplr for Windows, and I, being mostly an infrastruc-
ture guy, eventually got a new challenge: completely rethink Droplr’s infrastructure.

 By then Droplr had established itself as a working concept, so the goals were pretty
standard for a 2.0 version:

■ Break the monolithic stack into multiple horizontally scalable components
■ Add redundancy to avoid downtime
■ Create a clean API for clients
■ Make it all run on HTTPS

Josh and Levi, the founders, asked me to “make it fast, whatever it takes.”
 I knew those words meant more than making it slightly faster or even a lot faster.

“Whatever it takes” meant a full order of magnitude faster. And I knew then that Netty
would eventually play an important role in this endeavor.

14.1.2 How Droplr works

Droplr has an extremely simple workflow: drag a file to the app’s menu bar icon and
Droplr uploads the file. When the upload completes, Droplr copies a short URL to the
file—the drop—to the clipboard.

 That’s it. Frictionless, instant sharing.
 Behind the scenes, drop metadata is stored in a database—creation date, name,

number of downloads, and so on—and the files are stored on Amazon S3.

14.1.3 Creating a faster upload experience

The upload flow for Droplr’s first version was woefully naïve:

1 Receive upload
2 Upload to S3

3 Create thumbnails if it’s an image
4 Reply to client applications

A closer look at this flow quickly reveals two choke points on steps 2 and 3. No matter
how fast the upload from the client to our servers, the creation of a drop would always

1 An acronym for a typical application technology stack; originally Linux, Apache Web Server, MySQL, and
PHP.
Licensed to Thomas Snead <n.ordickan@gmail.com>

205Droplr—building mobile services
go through an annoying hiatus after the actual upload completed, until the successful
response was received—because the file would still need to be uploaded to S3 and
have its thumbnails generated.

 The larger the file, the longer the hiatus. For very large files the connection would
eventually time out waiting for the okay from the server. Back then Droplr could offer
uploads of only up to 32 MB per file because of this very problem.

 There were two distinct approaches to cut down upload times:

■ Approach A, optimistic and apparently simpler (figure 15.1):
– Fully receive the file
– Save to the local filesystem and immediately return success to client
– Schedule an upload to S3 some time in the future

■ Approach B, safe but complex (figure 15.2):
– Pipe the upload from the client directly to S3, in real time (streaming)

THE OPTIMISTIC AND APPARENTLY SIMPLER APPROACH

Returning a short URL after receiving the file creates an expectation—one could even
go as far as calling it an implicit contract—that the file is immediately available at that

Post

Put

Local

S3
Figure 14.1 Approach A,
optimistic and apparently simpler

Post

Put

S3 Figure 14.2 Approach B, safe
but complex
Licensed to Thomas Snead <n.ordickan@gmail.com>

206 CHAPTER 14 Case studies, part 1
URL. But there is no guarantee that the second stage of the upload (actually pushing
the file to S3) will ultimately succeed, and the user could end up with a broken link
that might get posted on Twitter or sent to an important client. This is unacceptable,
even if it happens on one in every hundred thousand uploads.

 Our current numbers show that we have an upload failure rate slightly below
0.01% (1 in every 10,000), the vast majority being connection timeouts between client
and server before the upload actually completes.

 We could try to work around it by serving the file from the machine that received it
until it is finally pushed to S3, but this approach is in itself a can of worms:

■ If the machine fails before a batch of files is completely uploaded to S3, the files
would be forever lost.

■ There would be synchronization issues across the cluster (“Where is the file for
this drop?”).

■ Extra, complex logic would be required to deal with edge cases, and this keeps
creating more edge cases.

Thinking through all the pitfalls with every workaround, I quickly realized that it’s a
classic hydra problem—for each head you chop off, two more appear in its place.

THE SAFE BUT COMPLEX APPROACH

The other option required low-level control over the whole process. In essence, we
had to be able to

■ Open a connection to S3 while receiving the upload from the client.
■ Pipe data from the client connection to the S3 connection.
■ Buffer and throttle both connections:

– Buffering is required to keep a steady flow between both client-to-server and
server-to-S3 legs of the upload.

– Throttling is required to prevent explosive memory consumption in case the
server-to-S3 leg of the upload becomes slower than the client-to-server leg.

■ Cleanly roll everything back on both ends if things went wrong.

It seems conceptually simple, but it’s hardly something your average webserver can
offer. Especially when you consider that in order to throttle a TCP connection, you
need low-level access to its socket.

 It also introduced a new challenge that would ultimately end up shaping our final
architecture: deferred thumbnail creation.

 This meant that whichever technology stack the platform ended up being built
upon, it had to offer not only a few basic things like incredible performance and sta-
bility but also the flexibility to go bare metal (read: down to the bytes) if required.

14.1.4 The technology stack

When kick-starting a new project for a webserver, you’ll end up asking yourself, “Okay,
so what frameworks are the cool kids using these days?” I did too.
Licensed to Thomas Snead <n.ordickan@gmail.com>

207Droplr—building mobile services
 Going with Netty wasn’t a no-brainer; I explored plenty of frameworks, having in
mind three factors that I considered to be paramount:

■ It had to be fast. I wasn’t about to replace a low-performance stack with another
low-performance stack.

■ It had to scale. Whether it had 1 or 10,000 connections, each server instance
would have to be able to sustain throughput without crashing or leaking mem-
ory over time.

■ It had to offer low-level data control. Byte-level reads, TCP congestion control,
the works.

Factors 1 and 2 pretty much excluded any noncompiled language. I’m a sucker for
Ruby and love lightweight frameworks like Sinatra and Padrino, but I knew the kind
of performance I was looking for couldn’t be achieved by building on these blocks.

 Factor 2, on its own, meant that whatever the solution, it couldn’t rely on blocking
I/O. By this point in the book, you certainly understand why non-blocking I/O was
the only option.

 Factor 3 was trickier. It meant finding the perfect balance between a framework
that would offer low-level control of the data it received, but at the same time would
be fast to develop with and build upon. This is where language, documentation, com-
munity, and other success stories come into play.

 At this point I had a strong feeling Netty was my weapon of choice.

THE BASICS: A SERVER AND A PIPELINE

The server is merely a ServerBootstrap built with an NioServerSocketChannel-
Factory, configured with a few common handlers and an HTTP RequestController
at the end, as shown here.

pipelineFactory = new ChannelPipelineFactory() {
 @Override
 public ChannelPipeline getPipeline() throws Exception {
 ChannelPipeline pipeline = Channels.pipeline();
 pipeline.addLast("idleStateHandler", new IdleStateHandler(...));
 pipeline.addLast("httpServerCodec", new HttpServerCodec());
 pipeline.addLast("requestController",
 new RequestController(...));
 return pipeline;
 }
};

The RequestController is the only custom Droplr code in the pipeline and is proba-
bly the most complex part of the whole webserver. Its role is to handle initial request
validations and, if all is well, route the request to the appropriate request handler. A
new instance is created for every established client connection and lives for as long as
that connection remains active.

Listing 14.1 Setting up the ChannelPipeline

IdleStateHandler
shuts down inactive

connections

HttpServerCodec converts
incoming bytes to

HttpRequests and outgoing
HttpResponses to bytes

Adds a
RequestController

to the pipeline
Licensed to Thomas Snead <n.ordickan@gmail.com>

208 CHAPTER 14 Case studies, part 1
 The request controller is responsible for

■ Handling load peaks 
■ HTTP pipeline management 
■ Setting up a context for request handling
■ Spawning new request handlers 
■ Feeding request handlers 
■ Handling internal and external errors 

Here is a quick rundown of the relevant parts of the RequestController.

public class RequestController
 extends IdleStateAwareChannelUpstreamHandler {

 @Override
 public void channelIdle(ChannelHandlerContext ctx,
 IdleStateEvent e) throws Exception {
 // Shut down connection to client and roll everything back.
 }

 @Override public void channelConnected(ChannelHandlerContext ctx,
 ChannelStateEvent e) throws Exception {
 if (!acquireConnectionSlot()) {
 // Maximum number of allowed server connections reached,
 // respond with 503 service unavailable
 // and shutdown connection.
 } else {
 // Set up the connection's request pipeline.
 }
 }

 @Override public void messageReceived(ChannelHandlerContext ctx,
 MessageEvent e) throws Exception {
 if (isDone()) return;

 if (e.getMessage() instanceof HttpRequest) {
 handleHttpRequest((HttpRequest) e.getMessage());
 } else if (e.getMessage() instanceof HttpChunk) {
 handleHttpChunk((HttpChunk)e.getMessage());
 }
 }
}

As explained previously in this book, you should never execute non-CPU-bound code
on Netty’s I/O threads—you’ll be stealing away precious resources from Netty and
thus affecting the server’s throughput.

 For this reason, both the HttpRequest and HttpChunk may hand off the execution
to the request handler by switching over to a different thread. This happens when the

Listing 14.2 The RequestController

The gist of
Droplr’s
server request
validation

If there’s an active handler for the
current request and it accepts

chunks, it then passes on the chunk.
Licensed to Thomas Snead <n.ordickan@gmail.com>

209Droplr—building mobile services
request handlers aren’t CPU-bound, whether because they access the database or per-
form logic that’s not confined to local memory or CPU.

 When thread-switching occurs, it’s imperative that all the blocks of code execute in
serial fashion; otherwise we’d risk, for an upload, having HttpChunk n-1 being pro-
cessed after HttpChunk n and thus corrupting the body of the file. (We’d be swapping
how bytes were laid out in the uploaded file.) To cope with this, I created a custom
thread-pool executor that ensures all tasks sharing a common identifier will be exe-
cuted serially.

 From here on, the data (requests and chunks) ventures out of the realms of Netty
and Droplr.

 I’ll explain briefly how the request handlers are built for the sake of shedding
some light on the bridge between the RequestController—which lives in Netty-
land—and the handlers—Droplr-land. Who knows, maybe this will help you architect
your own server!

THE REQUEST HANDLERS

Request handlers provide Droplr’s functionality. They’re the endpoints behind URIs
such as /account or /drops. They’re the logic cores—the server’s interpreters of cli-
ents’ requests.

 Request handler implementations are where the framework actually becomes
Droplr’s API server.

THE PARENT INTERFACE

Each request handler, whether directly or through a subclass hierarchy, is a realization
of the interface RequestHandler.

 In its essence, the RequestHandler interface represents a stateless handler for
requests (instances of HttpRequest) and chunks (instances of HttpChunk). It’s an
extremely simple interface with a couple of methods to help the request controller
perform and/or decide how to perform its duties, such as:

■ Is the request handler stateful or stateless? Does it need to be cloned from a
prototype or can the prototype be used to handle the request?

■ Is the request handler CPU or non-CPU bound? Can it execute on Netty’s
worker threads or should it be executed in a separate thread pool?

■ Roll back current changes.
■ Clean up any used resources.

This interface is all the RequestController knows about actions. Through its very
clear and concise interface, the controller can interact with stateful and stateless, CPU-
bound and non-CPU-bound handlers (or combinations of these) in an isolated and
implementation-agnostic fashion.

HANDLER IMPLEMENTATIONS

The simplest realization of RequestHandler is AbstractRequestHandler, which repre-
sents the root of a subclass hierarchy that becomes ever more specific until it reaches
Licensed to Thomas Snead <n.ordickan@gmail.com>

210 CHAPTER 14 Case studies, part 1
the actual handlers that provide all of Droplr’s functionality. Eventually it leads to the
stateful implementation SimpleHandler, which executes in a non-IO-worker thread
and is therefore not CPU-bound. SimpleHandler is ideal for quickly implementing
endpoints that do the typical tasks of reading in JSON, hitting the database, and then
writing out some JSON.

THE UPLOAD REQUEST HANDLER

The upload request handler is the crux of the whole Droplr API server. It was the action
that shaped the design of the webserver module—the frameworky part of the server—
and it’s by far the most complex and tuned piece of code in the whole stack.

 During uploads, the server has dual behaviors:

■ On one side, it acts as a server for the API clients that are uploading the files.
■ On the other side, it acts as client to S3 to push the data it receives from the

API clients.

To act as a client, the server uses an HTTP client library that is also built with Netty.2

This asynchronous library exposes an interface that perfectly matches the needs of
the server. It begins executing an HTTP request and allows data to be fed to it as it
becomes available, and this greatly reduces the complexity of the client facade of the
upload request handler.

14.1.5 Performance

After the initial version of the server was complete, I ran a batch of performance tests.
The results were nothing short of mind blowing. After continuously increasing the
load in disbelief, I saw the new server peak at 10~12x faster uploads over the old LAMP
stack—a full order of magnitude faster—and it could handle over 1000x more concur-
rent uploads, for a total of nearly 10 k concurrent uploads (running on a single EC2
large instance).

 The following factors contributed to this:

■ It was running in a tuned JVM.
■ It was running in a highly tuned custom stack, created specifically to address

this problem, instead of an all-purpose web framework.
■ The custom stack was built with Netty using NIO (selector-based model), which

meant it could scale to tens or even hundreds of thousands of concurrent con-
nections, unlike the one-process-per-client LAMP stack.

■ There was no longer the overhead of receiving a full file and then uploading it
to S3 in two separate phases. The file was now streamed directly to S3.

2 You can find the HTTP client library at https://github.com/brunodecarvalho/http-client.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/brunodecarvalho/http-client

211Firebase—a real-time data synchronization service
■ Because the server was now streaming files,
– It was not spending time on I/O operations, writing to temporary files and

later reading them in the second stage of the upload.
– It was using less memory for each upload, which meant more parallel uploads

could take place.
■ Thumbnail generation became an asynchronous post-process.

14.1.6 Summary—standing on the shoulders of giants

All of this was possible thanks to Netty’s incredibly well-designed API and performant
nonblocking I/O architecture.

 Since the launch of Droplr 2.0 in December 2011, we’ve had virtually zero down-
time at the API level. A couple of months ago we interrupted a year-and-a-half clean
run of 100% infrastructure uptime due to a scheduled full-stack upgrade (databases,
OS, major server and daemons codebase upgrade) that took just under an hour.

 The servers soldier on, day after day, taking hundreds—sometimes thousands—
of concurrent requests per second, all the while keeping both memory and CPU use
to levels so low it’s hard to believe they’re actually doing such an incredible amount
of work:

■ CPU use rarely ever goes above 5%.
■ Memory footprint can’t be accurately described as the process starts with 1 GB

of preallocated memory, with the JVM configured to grow up to 2 GB if neces-
sary, and not a single time in the past two years has this happened.

Anyone can throw more machines at any given problem, but Netty helped Droplr
scale intelligently, and keep the server bills pretty low.

14.2 Firebase—a real-time data synchronization service

Sara Robinson, VP of Developer Happiness

Greg Soltis, VP of Cloud Architecture

Real-time updates are an integral part of the user experience in modern applications.
As users come to expect this behavior, more and more applications are pushing data
changes to users in real time. Real-time data synchronization is difficult to achieve
with the traditional three-tiered architecture, which requires developers to manage
their own ops, servers, and scaling. By maintaining real-time, bidirectional communi-
cation with the client, Firebase provides an immediately intuitive experience allowing
developers to synchronize application data across diverse clients in a few minutes—all
without any backend work, servers, ops, or scaling required.

 Implementing this presented a difficult technical challenge, and Netty was the
optimal solution in building the underlying framework for all network communi-
cations in Firebase. This study will provide an overview of Firebase’s architecture,
Licensed to Thomas Snead <n.ordickan@gmail.com>

212 CHAPTER 14 Case studies, part 1
and then examine three ways Firebase uses Netty to power its real-time synchroni-
zation service:

■ Long polling
■ HTTP 1.1 keep-alive and pipelining
■ Control of SSL handler

14.2.1 The Firebase architecture

Firebase allows developers to get an application up and running using a two-tiered
architecture. Developers simply include the Firebase library and write client-side
code. The data is exposed to the developer’s code as JSON and is cached locally. The
library handles synchronizing this local cache with the master copy, which is stored
on Firebase’s servers. Changes made to any data are synchronized in real time to
potentially hundreds of thousands of clients connected to Firebase. The interaction
between multiple clients across platforms and devices and Firebase is depicted in fig-
ure 15.3.

Firebase servers take incoming data updates and immediately synchronize them to all
of the connected clients that have registered interest in the changed data. To enable
real-time notification of state changes, clients maintain an active connection to Fire-
base at all times. This connection may range from an abstraction over a single Netty
channel to an abstraction over multiple channels or even multiple, concurrent
abstractions if the client is in the middle of switching transport types.

 Because clients can connect to Firebase in a variety of ways, it’s important to keep
the connection code modular. Netty’s Channel abstraction is a fantastic building block
for integrating new transports into Firebase. In addition, the pipeline-and-handler
pattern makes it simple to keep transport-specific details isolated and provide a com-
mon message stream abstraction to the application code. Similarly, this greatly simpli-
fies adding support for new protocols. Firebase added support for a binary transport
simply by adding a few new handlers to the pipeline. Netty’s speed, level of abstrac-
tion, and fine-grained control made it an excellent framework for implementing real-
time connections between the client and server.

Figure 14.3 Firebase architecture
Licensed to Thomas Snead <n.ordickan@gmail.com>

213Firebase—a real-time data synchronization service
14.2.2 Long polling

Firebase uses both long polling and WebSocket transports. The long-polling transport
is highly reliable across all browsers, networks, and carriers; the WebSocket-based
transport is faster but not always available due to limitations of browsers/clients. Ini-
tially, Firebase connects using long polling and then upgrades to WebSockets if possi-
ble. For the minority of Firebase traffic that doesn’t support WebSockets, Firebase
uses Netty to implement a custom library for long polling tuned to be highly perfor-
mant and responsive.

 The Firebase library logic deals with bidirectional streams of messages with notifica-
tions when either side closes the stream. Although this is relatively simple to implement
on top of TCP or WebSockets, it presents a challenge when dealing with a long-polling
transport. The two properties that must be enforced for the long-polling case are

■ Guaranteed in-order delivery of messages
■ Close notifications

GUARANTEED IN-ORDER DELIVERY OF MESSAGES

In-order delivery for long polling can be achieved by having only a single request out-
standing at a given time. Because the client won’t send another request until it
receives a response from its last request, it can guarantee that its previous messages
were received and that it’s safe to send more. Similarly, on the server side, there won’t
be a new request outstanding until the client has received the previous response.
Therefore, it’s always safe to send everything that’s buffered up in between requests.
However, this leads to a major drawback. Using the single-request technique, both the
client and server spend a significant amount of time buffering up messages. If the cli-
ent has new data to send but already has an outstanding request, for example, it must
wait for the server to respond before sending the new request. This could take a long
time if there’s no data available on the server.

 A more performant solution is to tolerate more requests being in flight concur-
rently. In practice, this can be achieved by swapping the single-request pattern for the
at-most-two-requests pattern. This algorithm has two parts:

■ Whenever a client has new data to send, it sends a new request unless two are
already in flight.

■ Whenever the server receives a request from a client, if it already has an open
request from the client, it immediately responds to the first even if there is
no data.

This provides an important improvement over the single-request pattern: both the cli-
ent’s and server’s buffer time are bound to at most a single network round-trip.

 Of course, this increase in performance doesn’t come without a price; it results in
a commensurate increase in code complexity. The long-polling algorithm no longer
guarantees in-order delivery, but a few ideas from TCP can ensure that messages are
delivered in order. Each request sent by the client includes a serial number, incre-
mented for each request. In addition, each request includes metadata about the
Licensed to Thomas Snead <n.ordickan@gmail.com>

214 CHAPTER 14 Case studies, part 1
number of messages in the payload. If a message spans multiple requests, the portion
of the message contained in this payload is included in the metadata.

 The server maintains a ring buffer of incoming message segments and processes
them as soon as they’re complete and no incomplete messages are ahead of them.
Downstream is easier because the long-polling transport responds to an HTTP GET
request and doesn’t have the same restrictions on payload size. In this case, a serial
number is included and is incremented once for each response. The client can pro-
cess all messages in the list as long as it has received all responses up to the given serial
number. If it hasn’t, it buffers the list until it receives the outstanding responses.

CLOSE NOTIFICATIONS

The second property enforced in the long-polling transport is close notification. In
this case, having the server be aware that the transport has closed is significantly more
important than having the client recognize the close. The Firebase library used by cli-
ents queues up operations to be run when a disconnect occurs, and those operations
can have an impact on other still-connected clients. So it’s important to know when a
client has actually gone away. Implementing a server-initiated close is relatively simple
and can be achieved by responding to the next request with a special protocol-level
close message.

 Implementing client-side close notifications is trickier. The same close notification
can be used, but there are two things that can cause this to fail: the user can close the
browser tab, or the network connection could disappear. The tab-closure case is han-
dled with an iframe that fires a request containing the close message on page unload.
The second case is dealt with via a server-side timeout. It’s important to pick your
timeout values carefully, because the server is unable to distinguish a slow network
from a disconnected client. That is to say, there’s no way for the server to know that a
request was actually delayed for a minute, rather than the client losing its network
connection. It’s important to choose an appropriate timeout that balances the cost of
false positives (closing transports for clients on slow networks) against how quickly the
application needs to be aware of disconnected clients.

 Figure 15.4 demonstrates how the Firebase long-polling transport handles differ-
ent types of requests.

 In this diagram, each long-poll request indicates different types of scenarios. Ini-
tially, the client sends a poll (poll 0) to the server. Some time later, the server receives
data from elsewhere in the system that is destined for this client, so it responds to poll
0 with the data. As soon as the poll returns, the client sends a new poll (poll 1),
because it currently has none outstanding. A short time later, the client needs to send
data to the server. Since it only has a single poll outstanding, it sends a new one (poll 2)
that includes the data to be delivered. Per the protocol, as soon as the server has two
simultaneous polls from the same client, it responds to the first one. In this case, the
server has no data available for the client, so it sends back an empty response. The cli-
ent also maintains a timeout and will send a second poll when it fires, even if it has no
Licensed to Thomas Snead <n.ordickan@gmail.com>

215Firebase—a real-time data synchronization service
additional data to send. This insulates the system from failures due to browsers timing
out slow requests.

14.2.3 HTTP 1.1 keep-alive and pipelining

With HTTP 1.1 keep-alive, multiple requests can be sent on one connection to a server.
This allows for pipelining—new requests can be sent without waiting for a response
from the server. Implementing support for pipelining and keep-alive is typically
straightforward, but it gets significantly more complex when mixed with long polling.

 If a long-polling request is immediately fol-
lowed by a REST (Representational State Trans-
fer) request, there are some considerations that
need to be taken into account to ensure the
browser performs properly. A channel may mix
asynchronous messages (long-poll requests) with
synchronous messages (REST requests). When a
synchronous request comes in on one channel,
Firebase must synchronously respond to all pre-
ceding requests in that channel in order. For exam-
ple, if there’s an outstanding long-poll request, the
long-polling transport needs to respond with a no-
op before handling the REST request.

 Figure 15.5 illustrates how Netty lets Firebase
respond to multiple request types in one socket.

 If the browser has more than one connection
open and is using long polling, it will reuse the
connection for messages from both of those open

Client

poll 0

Response 0

(Carrying the data

from the server)

Response 1 (No data)

poll 1

poll 2 (Containingdata sent fromthe client

Server

Data for client is available

Data from client is sent

for processing

Figure 14.4 Long polling

Client
long poll 0

REST

long poll 1

long poll 0

REST

Server

Figure 14.5 Network diagram
Licensed to Thomas Snead <n.ordickan@gmail.com>

216 CHAPTER 14 Case studies, part 1
tabs. Given long-polling requests, this is difficult and requires proper management of
a queue of HTTP requests. Long-polling requests can be interrupted, but proxied
requests can’t. Netty made serving multiple request types easy:

■ Static HTML pages—Cached content that can be returned with no processing;
examples include a single-page HTML app, robots.txt, and crossdomain.xml.

■ REST requests—Firebase supports traditional GET, POST, PUT, DELETE, PATCH, and
OPTIONS requests.

■ WebSocket—A bidirectional connection between a browser and a Firebase server
with its own framing protocol.

■ Long polling—These are similar to HTTP GET requests but are treated differently
by the application.

■ Proxied requests—Some requests can’t be handled by the server that receives
them. In that case, Firebase proxies the request to the correct server in its clus-
ter, so that end users don’t have to worry about where data is located. These are
like the REST requests, but the proxying server treats them differently.

■ Raw bytes over SSL—A simple TCP socket running Firebase’s own framing proto-
col and optimized handshaking.

Firebase uses Netty to set up its pipeline to decode an incoming request and then
reconfigure the remainder of the pipeline appropriately. In some cases, like WebSockets
and raw bytes, once a particular type of request has been assigned a channel, it will
stay that way for its entire duration. In other cases, like the various HTTP requests, the
assignment must be made on a per-message basis. The same channel could handle
REST requests, long-polling requests, and proxied requests.

14.2.4 Control of SslHandler

Netty’s SslHandler class is an example of how Firebase uses Netty for fine-grained
control of its network communications. When a traditional web stack uses an HTTP
server like Apache or Nginx to pass requests to the app, incoming SSL requests have
already been decoded when they’re received by the application code. With a multi-
tenant architecture, it’s difficult to assign portions of the encrypted traffic to the
tenant of the application using a specific service. This is complicated by the fact that
multiple applications could use the same encrypted channel to talk to Firebase (for
instance, the user might have two Firebase applications open in different tabs). To
solve this, Firebase needs enough control in handling SSL requests before they are
decoded.

 Firebase charges customers based on bandwidth. However, the account to be
charged for a message is typically not available before the SSL decryption has been
performed, because it’s contained in the encrypted payload. Netty allows Firebase to
intercept traffic at multiple points in the pipeline, so the counting of bytes can start as
soon as byes come in off the wire. After the message has been decrypted and processed
by Firebase’s server-side logic, the byte count can be assigned to the appropriate account.
Licensed to Thomas Snead <n.ordickan@gmail.com>

217Firebase—a real-time data synchronization service
In building this feature, Netty provided control for handling network communica-
tions at every layer of the protocol stack, and also allowed for very accurate billing,
throttling, and rate limiting, all of which had significant business implications.

 Netty made it possible to intercept all inbound and outbound messages and to
count bytes with a small amount of Scala code.

case class NamespaceTag(namespace: String) 

class NamespaceBandwidthHandler extends ChannelDuplexHandler {
 private var rxBytes: Long = 0
 private var txBytes: Long = 0
 private var nsStats: Option[NamespaceStats] = None

 override def channelRead(ctx: ChannelHandlerContext, msg: Object) {
 msg match {
 case buf: ByteBuf => { 
 rxBytes += buf.readableBytes(
 tryFlush(ctx)
 }
 case _ => { }
 }
 super.channelRead(ctx, msg)
 }

 override def write(ctx: ChannelHandlerContext, msg: Object,
 promise: ChannelPromise) {
 msg match { 
 case buf: ByteBuf => {
 txBytes += buf.readableBytes()
 tryFlush(ctx)
 super.write(ctx, msg, promise)
 } 
 case tag: NamespaceTag => {
 updateTag(tag.namespace, ctx)
 }
 case _ => { 
 super.write(ctx, msg, promise)
 }
 }
 }

 private def tryFlush(ctx: ChannelHandlerContext) {
 nsStats match {
 case Some(stats: NamespaceStats) => {
 stats.logOutgoingBytes(txBytes.toInt)
 txBytes = 0 
 stats.logIncomingBytes(rxBytes.toInt)
 rxBytes = 0
 }
 case None => { 
 // no-op, we don't have a namespace
 }
 }
 }

Listing 14.3 Setting up the ChannelPipeline

When a message
comes in, counts the
number of bytes

When there is an
outbound message,
counts those bytes as well

If a tag is received, ties
this channel to an
account, remembers the
account, and assigns the
current byte counts to it.

If there’s already a tag
for the namespace the
channel belongs to,
assigns the bytes to
that account and
resets the counters
Licensed to Thomas Snead <n.ordickan@gmail.com>

218 CHAPTER 14 Case studies, part 1
 private def updateTag(ns: String, ctx: ChannelHandlerContext) {
  val (_, isLocalNamespace) = NamespaceOwnershipManager.getOwner(ns)
 if (isLocalNamespace) {
 nsStats = NamespaceStatsListManager.get(ns)
 tryFlush(ctx)
 } else {
 // Non-local namespace, just flush the bytes
 txBytes = 0
 rxBytes = 0
 }
 }
}

14.2.5 Firebase summary

Netty plays an indispensable role in the server architecture of Firebase’s real-time data
synchronization service. It allows support for a heterogeneous client ecosystem, which
includes a variety of browsers, along with clients that are completely controlled by
Firebase. With Netty, Firebase can handle tens of thousands of messages per second
on each server. Netty is especially awesome for several reasons:

■ It’s fast. It took only a few days to develop a prototype, and was never a produc-
tion bottleneck.

■ It’s positioned well in the abstraction layer. Netty provides fine-grained control
where necessary and allows for customization at every step of the control flow.

■ It supports multiple protocols over the same port. HTTP, WebSockets, long polling,
and standalone TCP.

■ Its GitHub repo is top-notch. Well-written javadocs make it frictionless to develop
against.

■ It has a highly active community. The community is very responsive on issue main-
tenance and seriously considers all feedback and pull requests. In addition, the
team provides great and up-to-date example code. Netty is an excellent, well-
maintained framework and it has been essential in building and scaling Fire-
base’s infrastructure. Real-time data synchronization in Firebase wouldn’t be
possible without Netty’s speed, control, abstraction, and extraordinary team.

14.3 Urban Airship—building mobile services

Erik Onnen, Vice President of Architecture

As smartphone use grows across the globe at unprecedented rates, a number of ser-
vice providers have emerged to assist developers and marketers toward the end of
providing amazing end-user experiences. Unlike their feature phone predecessors,
smartphones crave IP connectivity and seek it across a number of channels (3G, 4G,
WiFi, WiMAX, and Bluetooth). As more and more of these devices access public net-
works via IP-based protocols, the challenges of scale, latency, and throughput become
more and more daunting for back-end service providers.

If the count isn’t
applicable to this
machine, ignores it and
resets the counters
Licensed to Thomas Snead <n.ordickan@gmail.com>

219Urban Airship—building mobile services
 Thankfully, Netty is well suited to many of the concerns faced by this thundering
herd of always-connected mobile devices. This chapter will detail several practical appli-
cations of Netty in scaling a mobile developer and marketer platform, Urban Airship.

14.3.1 Basics of mobile messaging

Although marketers have long used SMS as a channel to reach mobile devices, a more
recent functionality called push notifications is rapidly becoming the preferred mecha-
nism for messaging smartphones. Push notifications commonly use the less expensive
data channel and the price per message is a fraction of the cost of SMS. The through-
put of push notifications is commonly two to three orders of magnitude higher than
SMS, making it an ideal channel for breaking news. Most importantly, push notifica-
tions give users device-driven control of the channel. If a user dislikes the messaging
from an application, the user can disable notifications for an application or outright
delete the application.

 At a very high level, the interaction between a device and push notification behav-
ior is similar to the depiction in figure 15.6.

At a high level, when an application developer wants to send push notifications to a
device, the developer must plan to store information about the device and its applica-
tion installation.3 Commonly, an application installation will execute code to retrieve
a platform-specific identifier and report that identifier back to a centralized service
where the identifier is persisted. Later, logic external to the application installation
will initiate a request to deliver a message to the device.

 Once an application installation has registered its identifier with a back-end ser-
vice, the delivery of a push message can in turn take two paths. In the first path, a
message can be delivered directly to the application itself, with the application main-
taining a direct connection to a back-end service. In the second and more common

3 Some mobile OSes allow a form of push notifications called local notifications that would not follow this
approach.

API

Core
services

3rd party
adapter

Public
network

Device
messaging

channel
Figure 14.6 High-level
mobile messaging platform
integration
Licensed to Thomas Snead <n.ordickan@gmail.com>

220 CHAPTER 14 Case studies, part 1
approach, an application will rely on a third party to deliver the message to the appli-
cation on behalf of a back-end service. At Urban Airship, both approaches to deliver-
ing push notifications are used, and both leverage Netty extensively.

14.3.2 Third-party delivery

In the case of third-party push delivery, every push notification platform provides a
different API for developers to deliver messages to application installations. These
APIs differ in terms of their protocol (binary vs. text), authentication (OAuth, X.509,
and so on), and capabilities. Each approach has its own unique challenges for integra-
tion as well as for achieving optimal throughput.

 Despite the fact that the fundamental purpose of each of these providers is to
deliver a notification to an application, each takes a different approach with signifi-
cant implications for system integrators. For example, Apple Push Notification Service
(APNS) defines a strictly binary protocol; other providers base their service on some
form of HTTP, all with subtle variations that affect how to best achieve maximum
throughput. Thankfully, Netty is an amazingly flexible tool and it significantly helps
smoothing over the differences between the various protocols.

 The following sections will provide examples of how Urban Airship uses Netty to
integrate with two of the listed providers.

14.3.3 Binary protocol example

Apple’s APNS is a binary protocol with a specific, network byte-ordered payload. Send-
ing an APNS notification involves the following sequence of events:

1 Connect a TCP socket to APNS servers over an SSLv3 connection, authenticated
with an X.509 certificate.

2 Format a binary representation of a push message structured according to the
format defined by Apple.4

3 Write the message to the socket.
4 Read from the socket if you’re ready to determine any error codes associated

with a sent message.
5 In the case of an error, reconnect the socket and continue from step 2.

As part of formatting the binary message, the producer of the message is required to
generate an identifier that’s opaque to the APNS system. In the event of an invalid
message (incorrect formatting, size, or device information, for example), the identi-
fier will be returned to the client in the error response message of step 4.

4 For information on APNS: http://docs.aws.amazon.com/sns/latest/dg/mobile-push-apns.html, http://bit.ly/
189mmpG.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://docs.aws.amazon.com/sns/latest/dg/mobile-push-apns.html
http://bit.ly/189mmpG
http://bit.ly/189mmpG

221Urban Airship—building mobile services
 At face value the protocol seems straightforward, but there are nuances to success-
fully addressing all of the preceding concerns, in particular on the JVM:

■ The APNS specification dictates that certain payload values should be sent in
big-endian ordering (for example, token length).

■ Step 3 in the previous sequence requires one of two solutions. Because the JVM
will not allow reading from a closed socket even if data exists in the output buf-
fer, you have two options:
– After a write, perform a blocking read with a timeout on the socket. This has

multiple disadvantages:
– The amount of time to block waiting for an error is non-deterministic. An

error may occur in milliseconds or seconds.
– As socket objects can’t be shared across multiple threads, writes to the

socket must immediately block while waiting for errors. This has dramatic
implications for throughput. If a single message is delivered in a socket
write, no additional messages can go out on that socket until the read tim-
eout has occurred. When you’re delivering tens of millions of messages, a
three-second delay between messages isn’t acceptable.

– Relying on a socket timeout is an expensive operation. It results in an
exception being thrown and several unnecessary system calls.

– Use asynchronous I/O. In this model, neither reads nor writes block. This
allows writers to continue sending messages to APNS while at the same time
allowing the OS to inform user code when data is ready to be read.

Netty makes addressing all of these concerns trivial while at the same time delivering
amazing throughput.

 First, let’s see how Netty simplifies packing a binary APNS message with correct
endian ordering.

public final class ApnsMessage {
 private static final byte COMMAND = (byte) 1;
 public ByteBuf toBuffer() {
 short size = (short) (1 + // Command
 4 + // Identifier
 4 + // Expiry
 2 + // DT length header
 32 + //DS length
 2 + // body length header
 body.length);

 ByteBuf buf = Unpooled.buffer(size).order(ByteOrder.BIG_ENDIAN);
 buf.writeByte(COMMAND);
 buf.writeInt(identifier);
 buf.writeInt(expiryTime);

Listing 14.4 ApnsMessage implementation

An APNS message always
starts with a command 1
byte in size, so that value
is coded as a constant.

Messages size varies,
so for efficiency it is
calculated before the
ByteBuf is created.

At creation the ByteBuf
is sized exactly and the
endianness for APNS is

specified.

Various values are
inserted into the buffer
from state maintained
elsewhere in the class.
Licensed to Thomas Snead <n.ordickan@gmail.com>

222 CHAPTER 14 Case studies, part 1

t

 buf.writeShort((short) deviceToken.length);
 buf.writeBytes(deviceToken);
 buf.writeShort((short) body.length);
 buf.writeBytes(body);
 return buf;
 }
}

Some important notes on the implementation:

B The length property of a Java array is always an integer. However, the APNS proto-
col requires a 2-byte value. In this case, the length of the payload has been vali-
dated elsewhere, so casting to a short is safe at this location. Note that without
explicitly constructing the ByteBuf to be big endian, subtle bugs could occur
with values of types short and int.

c Unlike the standard java.nio.ByteBuffer, it’s not necessary to flip the buffer
and worry about its position—Netty’s ByteBuf handles read and write position
management automatically.

In a small amount of code, Netty has made trivial the act of creating a properly for-
matted APNS message. Because this message is now packed into a ByteBuf, it can
easily be written directly to a Channel connected to APNS when the message is ready
for sending.

 Connecting to APNS can be accomplished via multiple mechanisms, but at its most
basic, a ChannelInitializer that populates the ChannelPipeline with an SslHandler
and a decoder is required.

public final class ApnsClientPipelineInitializer
 extends ChannelInitializer<Channel> {
 private final SSLEngine clientEngine;

 public ApnsClientPipelineFactory(SSLEngine engine) {
 this.clientEngine = engine;
 }

 @Override
 public void initChannel(Channel channel) throws Exception {
 final ChannelPipeline pipeline = channel.pipeline();
 final SslHandler handler = new SslHandler(clientEngine);
 handler.setEnableRenegotiation(true);
 pipeline.addLast("ssl", handler);
 pipeline.addLast("decoder", new ApnsResponseDecoder());
 }
}

Listing 14.5 Setting up the ChannelPipeline

The deviceToken
field in this class
(not shown) is a
Java byte[]. b

When the buffer is
ready, it is simply
returned. c

An X.509
authenticated
request requires a
javax.net.ssl.SSL-
Engine instance.

Constructs
a Netty

SslHandler

APNS will attemp
to renegotiate
SSL shortly after
connection,
need to allow
renegotiation.

This class extends Netty’s
ByteToMessageDecoder and handles cases where

APNS returns an error code and disconnects.
Licensed to Thomas Snead <n.ordickan@gmail.com>

223Urban Airship—building mobile services
It’s worth noting how easy Netty makes negotiating an X.509 authenticated connec-
tion in conjunction with asynchronous I/O. In early prototypes of APNS code at Urban
Airship without Netty, negotiating an asynchronous X.509 authenticated connection
required over 80 lines of code and a thread pool simply to connect. Netty hides all the
complexity of the SSL handshake, the authentication, and most importantly the encryp-
tion of cleartext bytes to cipher text and the key renegotiation that comes along with
using SSL. These incredibly tedious, error prone, and poorly documented APIs in the
JDK are hidden behind three lines of Netty code.

 At Urban Airship, Netty plays a role in all connectivity to numerous third-party
push notification services including APNS and Google’s GCM. In every case, Netty is
flexible enough to allow explicit control over exactly how integration takes place from
higher-level HTTP connectivity behavior down to basic socket-level settings such as
TCP keep-alive and socket buffer sizing.

14.3.4 Direct to device delivery

The previous section provides insight into how Urban Airship integrates with a third
party for message delivery. In referring to figure 15.1, note that two paths exist for
delivering messages to a device. In addition to delivering messages through a third
party, Urban Airship has experience serving directly as a channel for message deliv-
ery. In this capacity, individual devices connect directly to Urban Airship’s infrastruc-
ture, bypassing third-party providers. This approach brings a distinctly different set
of challenges:

■ Socket connections from mobile devices are often short-lived. Mobile devices frequently
switch between different types of networks depending on various conditions. To
back-end providers of mobile services, devices constantly reconnect and experi-
ence short but frequent periods of connectivity.

■ Connectivity across platforms is irregular. From a network perspective, tablet devices
tend to behave differently than mobile phones, and mobile phones behave dif-
ferently than desktop computers.

■ Frequency of mobile phone updates to back-end providers is certain to increase. Mobile
phones are increasingly used for daily tasks, producing significant amounts of
general network traffic but also analytics data for back-end providers.

■ Battery and bandwidth can’t be ignored. Unlike a traditional desktop environment,
mobile phones tend to operate on limited data plans. Service providers must
honor the fact that end users have limited battery life and they use expensive,
limited bandwidth. Abuse of either will frequently result in the uninstallation of
an application, the worst possible outcome for a mobile developer.

■ All aspects of infrastructure will need to scale massively. As mobile device popularity
increases, more application installations result in more connections to a mobile
services infrastructure. Each of the previous elements in this list are further
complicated by the sheer scale and growth of mobile devices.
Licensed to Thomas Snead <n.ordickan@gmail.com>

224 CHAPTER 14 Case studies, part 1
Over time, Urban Airship learned several critical lessons as connections from mobile
devices continued to grow:

■ The diversity of mobile carriers can have a dramatic effect on device connectivity.
■ Many carriers don’t allow TCP keep-alive functionality. Given that, many carriers

will aggressively cull idle TCP sessions.
■ UDP isn’t a viable channel for messaging to mobile devices because many carri-

ers disallow it.
■ The overhead of SSLv3 is an acute pain for short-lived connections.

Given the challenges of mobile growth and the lessons learned by Urban Airship,
Netty was a natural fit for implementing a mobile messaging platform for reasons
highlighted in the following sections.

14.3.5 Netty excels at managing large numbers of concurrent connections

As mentioned in the previous section, Netty makes supporting asynchronous I/O on
the JVM trivial. Because Netty operates on the JVM, and because the JVM on Linux
ultimately uses the Linux epoll facility to manage interest in socket file descriptors,
Netty makes it possible to accommodate the rapid growth of mobile by allowing
developers to easily accept large numbers of open sockets—close to 1 million TCP
connections per single Linux process. At numbers of this scale, service providers can
keep costs low, allowing a large number of devices to connect to a single process on a
physical server.5

 In controlled testing and with configuration options optimized to use small
amounts of memory, a Netty-based service was able to accommodate slightly less than
1 million connections (approximately 998,000). In this case, the limit was fundamen-
tally the Linux kernel imposing a hard-coded limit of 1 million file handles per pro-
cess. Had the JVM itself not held a number of sockets and file descriptors for JAR files,
the server would likely have been capable of handling even more connections, all on a
4 GB heap. Leveraging this efficiency, Urban Airship has successfully sustained over 20
million persistent TCP socket connections to its infrastructure for message delivery, all
on a handful of servers.

 It’s worth noting that while in practice a single Netty-based service is capable of
handling nearly a million inbound TCP socket connections, doing so is not necessarily
pragmatic or advisable. As with all things in distributed computing, hosts will fail, pro-
cesses will need to be restarted, and unexpected behavior will occur. As a result of
these realities, proper capacity planning means considering the consequences of a sin-
gle process failing.

5 Note the distinction of a physical server in this case. Although virtualization offers many benefits, leading cloud
providers were regularly unable to accommodate more than 200,000–300,000 concurrent TCP connections
to a single virtual host. With connections at or above this scale, expect to use bare metal servers and expect to
pay close attention to the NIC (Network Interface Card) vendor.
Licensed to Thomas Snead <n.ordickan@gmail.com>

225Summary
14.3.6 Summary—Beyond the perimeter of the firewall

We’ve demonstrated two everyday uses of Netty at the perimeter of the Urban Airship
network. Netty works exceptionally well for these purposes, but it has also found a
home as scaffolding for many other components inside Urban Airship.

INTERNAL RPC FRAMEWORK

Netty has been the centerpiece of an internal RPC framework that has consistently
evolved inside Urban Airship. Today, this framework processes hundreds of thousands
of requests per second with very low latency and exceptional throughput. Nearly every
API request fielded by Urban Airship processes through multiple back-end services
with Netty at the core of all of those services.

LOAD AND PERFORMANCE TESTING

Netty has been used at Urban Airship for several different load- and performance-test-
ing frameworks. For example, to simulate millions of device connections in testing the
previously described device-messaging service, Netty was used in conjunction with a
Redis (http://redis.io/) instance to test end-to-end message throughput with a mini-
mal client-side footprint.

ASYNCHRONOUS CLIENTS FOR COMMONLY SYNCHRONOUS PROTOCOLS

For some internal uses, Urban Airship has been experimenting with Netty to create
asynchronous clients for typically synchronous protocols, including services like
Apache Kafka (http://kafka.apache.org/) and Memcached (http://memcached.org/).
Netty’s flexibility easily allows us to craft clients that are asynchronous in nature but
that can be converted back and forth between truly asynchronous or synchronous
implementations without requiring upstream code changes.

 All in all, Netty has been a cornerstone of Urban Airship as a service. The authors
and community are fantastic and have produced a truly first-class framework for any-
thing requiring networking on the JVM.

14.4 Summary
This chapter aimed at providing insight into real-world use of Netty and how it has
helped companies to solve significant networking problems. It’s worth noting how in
all cases Netty was leveraged not only as a code framework, but also as an essential
component of development and architectural best practices.

 In the next chapter we’ll present case studies contributed by Facebook and Twitter
describing open source projects that evolved from Netty-based code originally devel-
oped to address internal needs.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://redis.io/
http://kafka.apache.org/
http://memcached.org/

Case studies, part 2
In this chapter we’ll see how Facebook and Twitter, two of the most popular social
networks, are using Netty. Each has exploited Netty’s flexible and generic design
to build frameworks and services that meet requirements for extreme scalability
and extensibility.

 The case studies presented here were written by the engineers responsible for
the design and implementation of the solutions described.

15.1 Netty at Facebook: Nifty and Swift1

Andrew Cox, Software Engineer at Facebook

At Facebook we use Netty in several of our back-end services (for handling messaging
traffic from mobile phone apps, for HTTP clients, and so on), but our fastest-growing

This chapter covers
■ Facebook case study
■ Twitter case study

1 The views expressed in this section are those of the author and do not necessarily reflect the views of the
author’s employer.
226

Licensed to Thomas Snead <n.ordickan@gmail.com>

227Netty at Facebook: Nifty and Swift
usage is via two new frameworks we’ve developed for building Thrift services in Java:
Nifty and Swift.

15.1.1 What is Thrift?

Thrift is a framework for building services and clients that communicate via remote
procedure calls (RPC). It was originally developed at Facebook2 to meet our require-
ments for building services that can handle certain types of interface mismatches
between client and server. This comes in very handy because services and their clients
usually can’t all be upgraded simultaneously.

 Another important feature of Thrift is that it’s available for a wide variety of lan-
guages. This enables teams at Facebook to choose the right language for the job, with-
out worrying about whether they’ll be able to find client code for interacting with
other services. Thrift has grown to become one of the primary means by which our
back-end services at Facebook communicate with one another, and it’s also used for
non-RPC serialization tasks, because it provides a common, compact storage format
that can be read from a wide selection of languages for later processing.

 Since its development at Facebook, Thrift has been open sourced as an Apache
project (http://thrift.apache.org/), where it continues to grow to fill the needs of ser-
vice developers, not only at Facebook but also at other companies, including Evernote
and last.fm,3 and on major open source projects such as Apache Cassandra and HBase.

 These are the major components of Thrift:

■ Thrift Interface Definition Language (IDL)—Used to define your services and com-
pose any custom types that your services will send and receive

■ Protocols—Used to control encoding/decoding elements of data into a common
binary format (such as Thrift binary protocol or JSON)

■ Transports—Provides a common interface for reading/writing to different
media (such as TCP socket, pipe, memory buffer)

■ Thrift compiler—Parses Thrift IDL files to generate stub code for the server and
client interfaces, and serialization/deserialization code for the custom types
defined in IDL

■ Server implementation—Handles accepting connections, reading requests from
those connections, dispatching calls to an object that implements the interface,
and sending the responses back to clients

■ Client implementation—Translates method calls into requests and sends them to
the server

2 A now-ancient whitepaper from the original Thrift developers can be found at http://thrift.apache.org/static/
files/thrift-20070401.pdf.

3 Find more examples at http://thrift.apache.org.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://thrift.apache.org/static/files/thrift-20070401.pdf
http://thrift.apache.org/static/files/thrift-20070401.pdf
http://thrift.apache.org/
http://thrift.apache.org

228 CHAPTER 15 Case studies, part 2
15.1.2 Improving the state of Java Thrift using Netty

The Apache distribution of Thrift has been ported to about twenty different lan-
guages, and there are also separate frameworks compatible with Thrift built for other
languages (Twitter’s Finagle for Scala is a great example). Several of these languages
receive at least some use at Facebook, but the most common ones used for writing
Thrift services here at Facebook are C++ and Java.

 When I arrived at Facebook, we were already well underway with the development
of a solid, high-performance, asynchronous Thrift implementation in C++, built
around libevent. From libevent, we get cross-platform abstractions over the OS APIs
for asynchronous I/O, but libevent isn’t any easier to use than, say, raw Java NIO. So
we’ve also built abstractions on top of that, such as asynchronous message channels,
and we make use of chained buffers from Folly4 to avoid copies as much as possible.
This framework also has a client implementation that supports asynchronous calls
with multiplexing, and a server implementation that supports asynchronous request
handling. (The server can start an asynchronous task to handle a request and return
immediately, then invoke a callback or set a Future later when the response is ready.)

 Meanwhile, our Java Thrift framework received a lot less attention, and our load-
testing tools showed that Java performance lagged well behind C++. There were
already Java Thrift frameworks built on NIO, and asynchronous NIO-based clients were
available as well. But the clients didn’t support pipelining or multiplexing requests,
and the servers didn’t support asynchronous request handling. Because of these miss-
ing features, Java Thrift service developers here at Facebook were running into prob-
lems that had been already solved in C++, and it became a source of frustration.

 We could have built a similar custom framework on top of NIO and based our new
Java Thrift implementation on that, as we had done for C++. But experience showed
us that this was a ton of work to get right, and as it happened, the framework we
needed was already out there, just waiting for us to make use of it: Netty.

 We quickly put together a server implementation and mashed the names “Netty”
and “Thrift” together to come up with “Nifty,” the name for the new server. It was
immediately impressive how much less code was needed to get Nifty working, com-
pared to everything we needed to achieve the same results in C++.

 Next we put together a simple load-tester Thrift server using Nifty and used our
load-testing tools to compare it to existing servers. The results were clear: Nifty out-
performed the other NIO servers, and it was in the same ballpark as our newest C++
Thrift server. Using Netty was going to improve performance!

15.1.3 Nifty server design

Nifty (https://github.com/facebook/nifty) is an open source, Apache-licensed Thrift
client/server implementation built on top of the Apache Thrift library. It’s designed

4 Folly is Facebook’s open-source C++ common library: https://www.facebook.com/notes/facebook-engineer-
ing/folly-the-facebook-open-source-library/10150864656793920.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://www.facebook.com/notes/facebook-engineering/folly-the-facebook-open-source-library/10150864656793920
https://www.facebook.com/notes/facebook-engineering/folly-the-facebook-open-source-library/10150864656793920
https://github.com/facebook/nifty

229Netty at Facebook: Nifty and Swift
so that moving from any other Java Thrift server implementation should be painless:
you can reuse the same Thrift IDL files, the same Thrift code generator (packaged
with the Apache Thrift library), and the same service interface implementation. The
only thing that really needs to change is your server startup code (Nifty setup follows a
slightly different style from that of the traditional Thrift server implementations in
Apache Thrift).

NIFTY ENCODER/DECODER

The default Nifty server handles either plain messages or framed messages (with a 4-
byte prefix). It does this by using a custom Netty frame decoder that looks at the first
few bytes to determine how to decode the rest. Then, when a complete message is
found, the decoder wraps the message content along with a field that indicates the
type of message. The server later refers to this field to encode the response in the
same format.

 Nifty also supports plugging in your own custom codec. For example, some of our
services use a custom codec to read extra information from headers that clients insert
before each message (containing optional metadata, client capabilities, and so on).
The decoder could also easily be extended to handle other types of message trans-
ports, such as HTTP.

ORDERING RESPONSES ON THE SERVER

Initial versions of Java Thrift used OIO sockets, and servers maintained one thread per
active connection. With this setup, each request was read, processed, and answered, all
on the same thread, before the next response was read. This guaranteed that responses
would always be returned in the order in which the corresponding requests arrived.

 Newer asynchronous I/O server implementations were built that didn’t need one
thread per connection, and these servers could handle more simultaneous connec-
tions, but clients still mainly used synchronous I/O, so the server could count on not
receiving the next request until after it had sent the current response. This request/
execution flow is shown in figure 16.1.

Send request 1

Read request 1

Respond request 1

Process request 1

Synchronous client Server I/O thread Server processing

thread

Receive response 1

Send request 2

Read request 2

Respond request 2

Process request 2

Receive response 2

Wait

Wait

Figure 15.1 Synchronous
request/response flow
Licensed to Thomas Snead <n.ordickan@gmail.com>

230 CHAPTER 15 Case studies, part 2
Initial pseudo-asynchronous usages of clients started happening when a few Thrift
users took advantage of the fact that for a generated client method foo(), methods
send_foo() and recv_foo() were also exposed separately. This allows Thrift users to
send several requests (whether on several clients, or on the same client) and then call
the corresponding receive methods to start waiting for and collecting the results.

 In this new scenario, the server may read multiple requests from a single client
before it has finished processing the first. In an ideal world, we could assure all asyn-
chronous Thrift clients that pipeline requests can handle the responses to those
requests in whatever order they arrive. In the world we live in, though, newer clients
can handle this, whereas older asynchronous Thrift clients may write multiple requests
but must receive the responses in order.

 This kind of problem is solved by using the Netty 4 EventExecutor or Ordered-
MemoryAwareThreadPoolExcecutor in Netty 3.x, which guarantee sequential process-
ing for all incoming messages on a connection, without forcing all of those messages
to run on the same executor thread.

 Figure 16.2 shows how pipelined requests are handled in the correct order, which
means the response for the first request will be returned, and then the response for
the second, and so on.

Nifty has special requirements though: we aim to serve each client with the best
response ordering that it can handle. We’d like to allow the handlers for multiple
pipelined requests from a single connection to be processed in parallel, but then we
couldn’t control the order in which these handlers would finish.

 Instead we use a solution that involves buffering responses; if the client requires in-
order responses, we’ll buffer later responses until all the earlier ones are also avail-
able, and then we’ll send them together, in the required order. See figure 16.3.

 Of course, Nifty includes asynchronous channels (usable through Swift) that do
support out-of-order responses. When using a custom transport that allows the client

Send request 1

Read request 1

Respond request 1

Process request 1

Pipelined async client Server I/O thread Server processing

thread #1

Server processing

thread #2

Receive response 1

Send request 2

Read request 2

Respond request 2

Receive response 2

Process request 2

Figure 15.2 Request/response flow for sequential processing of pipelined requests
Licensed to Thomas Snead <n.ordickan@gmail.com>

231Netty at Facebook: Nifty and Swift
to notify the server of this client capability, the server is relieved of the burden of buff-
ering responses, and it will send them back in whatever order the requests finish.

15.1.4 Nifty asynchronous client design

Nifty client development is mostly focused on asynchronous clients. Nifty actually does
provide a Netty implementation of Thrift’s synchronous transport interface, but its
use is pretty limited because it doesn’t provide much win over a standard socket trans-
port from Thrift. Because of this, the user should use the asynchronous clients when-
ever possible.

PIPELINING

The Thrift library has its own NIO-based asynchronous client implementation, but
one feature we wanted was request pipelining. Pipelining is the ability to send multi-
ple requests on the same connection without waiting for a response. If the server
has idle worker threads, it can process these requests in parallel, but even if all
worker threads are busy, pipelining can still help in other ways. The server will
spend less time waiting for something to read, and the client may be able to send
multiple small requests together in a single TCP packet, thus better utilizing network
bandwidth.

 With Netty, pipelining just works. Netty does all the hard work of managing the
state of the various NIO selection keys, and Nifty can focus on encoding requests and
decoding responses.

MULTIPLEXING

As our infrastructure has grown, we’ve started to see a lot of connections building up
on our servers. Multiplexing—sharing connections for all the Thrift clients connecting

Send request 1

Read request 1

Buffer response 2

Respond request 1

Process request 2

Pipelined async client Server I/O thread Server processing

thread #1

Server processing

thread #2

Receive response 1

Send request 2

Read request 2

Respond request 2

Receive response 2

Process request 1

Figure 15.3 Request/response flow for parallel processing of pipelined requests
Licensed to Thomas Snead <n.ordickan@gmail.com>

232 CHAPTER 15 Case studies, part 2
from a single source—can help to mitigate this. But multiplexing over a client connec-
tion that requires ordered responses presents a problem: one client on the connection
may incur extra latency because its response must come after the responses for other
requests sharing the connection.

 The basic solution is pretty simple: Thrift already sends a sequence identifier with
every message, so to support out-of-order responses we just need the client channels
to keep a map from sequence ID to response handler, instead of using a queue.

 The catch is that in standard synchronous Thrift clients, the protocol is responsi-
ble for extracting the sequence identifier from the message, and the protocol calls the
transport, but never the other way around.

 That simple flow (shown in figure 16.4) works
fine for a synchronous client, where the protocol
can wait on the transport to actually receive the
response, but for an asynchronous client the con-
trol flow gets a bit more complicated. The client
call is dispatched to the Swift library, which first
asks the protocol to encode the request into a
buffer, and then passes that encoded request buf-
fer to the Nifty channel to be written out. When
the channel receives a response from the server,
it notifies the Swift library, which again uses the
protocol to decode the response buffer. This is
the flow shown in figure 16.5.

Client stub code

Client call

Synchronous client

Transport (Socket)

Protocol

Transport

Protocol

Request Response

Figure 15.4 Multiplexing/transport
layers

Client call

Channel write

Caller code Nifty channel code

Swift libraryProtocol

Client callback

Channel read

Swift libraryProtocol

Protocol

Figure 15.5 Dispatching
Licensed to Thomas Snead <n.ordickan@gmail.com>

233Netty at Facebook: Nifty and Swift
15.1.5 Swift: a faster way to build Java Thrift service

The other key part of our new Java Thrift framework is called Swift. It uses Nifty as its
I/O engine, but the service specifications can be represented directly in Java using
annotations, giving Thrift service developers the ability to work purely in Java. When
your service starts up, the Swift runtime gathers information about all the services and
types via a combination of reflection and interpreting Swift annotations. From that
information, it can build the same kind of model that the Thrift compiler builds when
parsing Thrift IDL files. Then it uses this model to run the server and client directly
(without any generated server or client stub code) by generating new classes from
byte code used for serializing/deserializing the custom types.

 Skipping the normal Thrift code generation also makes it easier to add new features
without having to change the IDL compiler, so a lot of our new features (such as asyn-
chronous clients) are supported in Swift first. If you’re interested, take a look at the
introductory information on Swift’s GitHub page (https://github.com/facebook/swift).

15.1.6 Results

In the following sections we’ll quantify some of the outcomes we’ve seen from our
work with Netty.

PERFORMANCE COMPARISONS

One measurement of Thrift server performance is a benchmark of no-ops. This
benchmark uses long-running clients that continuously make Thrift calls to a server
that sends back an empty response. Although this measurement isn’t a realistic perfor-
mance estimation of most actual Thrift services, it’s a good measure of the maximum
potential of a Thrift service, and improving this benchmark does generally mean a
reduction in the amount of CPU used by the framework itself.

 As shown in table 16.1, Nifty outperforms all of the other NIO Thrift server imple-
mentations (TNonblockingServer, TThreadedSelectorServer, and TThreadPoolServer)
on this benchmark. It even easily beats our previous Java server implementation (a pre-
Nifty server implementation we used internally, based on plain NIO and direct buffers).

Table 15.1 Benchmark results for different implementations

Thrift server implementation No-op requests/second

TNonblockingServer 1,~68,000

TThreadedSelectorServer 1,188,000

TThreadPoolServer 1,867,000

Older Java server (using NIO and direct buffers) 1,367,000

Nifty 1,963,000

Older libevent-based C++ server 1,895,000

Next-gen libevent-based C++ server 1,150,000
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/facebook/swift

234 CHAPTER 15 Case studies, part 2
The only Java server we tested that can compete with Nifty is TThreadPoolServer. This
server uses raw OIO and runs each connection on a dedicated thread. This gives it an
edge when handling a lower number of connections; however, you can easily run into
scaling problems with OIO when your server needs to handle a very large number of
simultaneous connections.

 Nifty even beats the previous C++ server implementation that was most prominent
when we started development on Nifty, and although it falls a bit short compared to
our next-gen C++ server framework, it’s at least in the same ballpark.

EXAMPLE STABILITY ISSUES

Before Nifty, many of our major Java services at Facebook used an older, custom NIO-
based Thrift server implementation that works similarly to Nifty. That implementation
is an older codebase that had more time to mature, but because its asynchronous I/O
handling code was built from scratch, and because Nifty is built on the solid founda-
tion of Netty’s asynchronous I/O framework, it has had many fewer problems.

 One of our custom message queuing services had been built using the older frame-
work, and it started to suffer from a kind of socket leak. A lot of connections were sit-
ting around in CLOSE_WAIT state, meaning the server had received a notification that
the client had closed the socket, but the server never reciprocated by making its own
call to close the socket. This left the sockets in a kind of CLOSE_WAIT limbo.

 The problem happened very slowly; across the entire pool of machines handling
this service, there might be millions of requests per second, but usually only one socket
on one server would enter this state in an hour. It wasn’t an urgent issue because it took
a long time before a server needed a restart at that rate, but it also complicated track-
ing down the cause. Extensive digging through the code didn’t help much either: ini-
tially several places looked suspicious, but everything ultimately checked out and we
didn’t locate the problem.

 Eventually we migrated the service onto Nifty. The conversion—including testing
in a staging environment—took less than a day and the problem has since disap-
peared. We haven’t really seen any such problems in Nifty.

 This is just one example of the kind of subtle bug that can show up when using
NIO directly, and it’s similar to bugs we’ve had to solve in our C++ Thrift framework
time and time again to stabilize it. But I think it’s a great example of how using Netty
has helped us take advantage of the years of stability fixes it has received.

IMPROVING TIMEOUT HANDLING FOR C++
Netty has also helped us indirectly by lending suggestions for improvements to our
C++ framework. An example of this is the hashed wheel timer. Our C++ framework
uses timeout events from libevent to drive client and server timeouts, but adding sepa-
rate timeouts for every request proves to be prohibitively expensive, so we’d been
using what we called timeout sets. The idea here was that a client connection to a
particular service usually has the same receive timeout for every call made from that
client, so we’d maintain only one real timer event for a set of timeouts that share the
same duration. Every new timeout was guaranteed to fire after existing timeouts
Licensed to Thomas Snead <n.ordickan@gmail.com>

235Netty at Facebook: Nifty and Swift
scheduled for that set, so when each timeout expired or was canceled, we’d schedule
only the next timeout.

 However, our users occasionally wanted to supply per-call timeouts, with differ-
ent timeout values for different requests on the same connection. In this scenario,
the benefits of using a timeout set are lost, so we tried using individual timer events.
We started to see performance problems when many timeouts were scheduled at
once. We knew that Nifty doesn’t run into this problem, despite the fact that it
doesn’t use timeout sets—Netty solves this problem with its HashedWheelTimer.5 So
with inspiration from Netty, we put together a hashed wheel timer for our C++
Thrift framework as well, and it has resolved the performance issue with variable
per-request timeouts.

FUTURE IMPROVEMENTS ON NETTY 4
Nifty is currently running on Netty 3, which has been great for us so far, but we have a
Netty 4 port ready that we’ll be moving to very soon, now that v4 has been finalized.
We are eagerly looking forward to some of the benefits the Netty 4 API will offer us.

 One example of how we plan to make better use of Netty 4 is achieving better con-
trol over which thread manages a given connection. We hope to use this feature to
allow server handler methods to start asynchronous client calls from the same I/O
thread the server call is running on. This is something that specialized C++ servers are
already able to take advantage of (for example, a Thrift request router).

 Extending from that example, we also look forward to being able to build better
client connection pools that are able to migrate existing pooled connections to the
desired I/O worker thread, which wasn’t possible in v3.

15.1.7 Facebook summary

With the help of Netty, we’ve been able to build a better Java server framework that
nearly matches the performance of our fastest C++ Thrift server framework. We’ve
migrated several of our existing major Java services onto Nifty already, solving some
pesky stability and performance problems, and we’ve even started to feed back some
ideas from Netty, and from the development of Nifty and Swift, into improving aspects
of C++ Thrift.

 On top of that, Netty has been a pleasure to work with and has made a lot of new
features, like built-in SOCKS support for Thrift clients, simple to add.

 But we’re not done yet. We’ve got plenty of performance tuning work to do, as well
as plenty of other improvements planned for the future. If you’re interested in Thrift
development using Java, be sure to keep an eye out!

5 For more information about class HashedWheelTimer see http://netty.io/4.0/api/io/netty/util/Hashed-
WheelTimer.html.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://netty.io/4.0/api/io/netty/util/HashedWheelTimer.html
http://netty.io/4.0/api/io/netty/util/HashedWheelTimer.html

236 CHAPTER 15 Case studies, part 2
15.2 Netty at Twitter: Finagle

Jeff Smick, Software engineer at Twitter

Finagle is Twitter’s fault-tolerant, protocol-agnostic RPC framework built atop Netty.
All of the core services that make up Twitter’s architecture are built on Finagle, from
back ends serving user information, tweets, and timelines to front-end API endpoints
handling HTTP requests.

15.2.1 Twitter’s growing pains

Twitter was originally built as a monolithic Ruby on Rails application, semi-affectionately
called The Monorail. As Twitter started to experience massive growth, the Ruby run-
time and Rails framework started to become a bottleneck. From a compute stand-
point, Ruby was relatively inefficient with resources. From a development standpoint,
The Monorail was becoming difficult to maintain. Modifications to code in one area
would opaquely affect another area. Ownership of different aspects of the code was
unclear. Small changes unrelated to core business objects required a full deploy. Core
business objects didn’t expose clear APIs, which increased the brittleness of internal
structures and the likelihood of incidents.

 We decided to split The Monorail into distinct services with clear owners and clear
APIs allowing for faster iteration and easier maintenance. Each core business object
would be maintained by a specific team and be served by its own service. There was
precedent within the company for developing on the JVM—a few core services had
already been moved out of The Monorail and had been rebuilt in Scala. Our opera-
tions teams had a background in JVM services and knew how to operationalize them.
Given that, we decided to build all new services on the JVM using either Java or Scala.
Most services decided on Scala as their JVM language of choice.

15.2.2 The birth of Finagle

In order to build out this new architecture, we needed a performant, fault-tolerant,
protocol-agnostic, asynchronous RPC framework. Within a service-oriented architec-
ture, services spend most of their time waiting for responses from other upstream ser-
vices. Using an asynchronous library allows services to concurrently process requests
and take full advantage of the hardware. Although Finagle could have been built
directly on top of NIO, Netty had already solved many of the problems we would have
encountered, and it provided a clean, clear API.

 Twitter is built atop several open source protocols, primarily HTTP, Thrift, Mem-
cached, MySQL, and Redis. Our network stack would need to be flexible enough
that it could speak any of these protocols and extensible enough that we could
easily add more. Netty isn’t tied to any particular protocol. Adding to it is as simple
as creating the appropriate ChannelHandlers. This extensibility has led to many
Licensed to Thomas Snead <n.ordickan@gmail.com>

237Netty at Twitter: Finagle
community-driven protocol implementations including SPDY,6 PostrgreSQL, Web-
Sockets, IRC, and AWS.

 Netty’s connection management and protocol agnosticism provided an excellent
base from which Finagle could be built. But we had a few other requirements Netty
couldn’t satisfy out of the box, as those requirements were more high-level. Clients
needed to connect and load balance across a cluster of servers. All services needed
to export metrics (request rates, latencies, and so on) that provide valuable data for
debugging service behavior. With a service-oriented architecture, a single request
may go through dozens of services, making debugging performance issues nearly
impossible without a Dapper-inspired tracing framework.7 Finagle was built to solve
these problems.

15.2.3 How Finagle works

Internally Finagle is very modular. Components are written independently and then
stacked together. Each component can be swapped in or out, depending on the pro-
vided configuration. For instance, tracers all implement the same interface, so a
tracer can be created to send tracing data to a local file, hold it in memory and expose
a read endpoint, or write it out to the network.

 At the bottom of a Finagle stack is a Transport. This class is a representation of a
stream of objects that can be asynchronously read from and written to. Transports are
implemented as Netty ChannelHandlers and inserted into the end of a Channel-
Pipeline. Messages come in from the wire where Netty picks them up, runs them
through the ChannelPipeline where they’re interpreted by a codec, and then sent to
the Finagle Transport. From there Finagle reads the message off the Transport and
sends it through its own stack.

 For client connections, Finagle maintains a pool of transports across which it can
load-balance. Depending on the semantics of the provided connection pool, Finagle
will either request a new connection from Netty or reuse an existing one. When a new
connection is requested, a Netty ChannelPipeline is created based on the client’s
codec. Extra ChannelHandlers are added to the ChannelPipeline for stats, logging,
and SSL. The connection is then handed to a channel transport that Finagle can write
to and read from.

 On the server side, a Netty server is created and then given a ChannelPipeline-
Factory that manages the codec, stats, timeouts, and logging. The last Channel-
Handler in a server’s ChannelPipeline is a Finagle bridge. The bridge will watch for
new incoming connections and create a new Transport for each one. The Transport

6 For more information about SPDY see https://github.com/twitter/finagle/tree/master/finagle-spdy. About
PostgreSQL: https://github.com/mairbek/finagle-postgres. About WebSockets: https://github.com/sprsquish/
finagle-websocket. About IRC: https://github.com/sprsquish/finagle-irc. About AWS: https://github.com/
sclasen/finagle-aws.

7 Info on Dapper can be found at http://research.google.com/pubs/pub36356.html. The tracing framework
is Zipkin, found at https://github.com/twitter/zipkin.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/twitter/finagle/tree/master/finagle-spdy
https://github.com/mairbek/finagle-postgres
https://github.com/sprsquish/finagle-websocket
https://github.com/sprsquish/finagle-websocket
https://github.com/sprsquish/finagle-irc
https://github.com/sclasen/finagle-aws
https://github.com/sclasen/finagle-aws
http://research.google.com/pubs/pub36356.html
https://github.com/twitter/zipkin

238 CHAPTER 15 Case studies, part 2
wraps the new channel before it’s handed to a server implementation. Messages are
then read out of the ChannelPipeline and sent to the implemented server instance.

 Figure 16.6 shows the relationship between the Finagle client and server.

NETTY/FINAGLE BRIDGE

This listing shows a static ChannelFactory with default options.

object Netty3Transporter { 
 val channelFactory: ChannelFactory =
 new NioClientSocketChannelFactory(
 Executor, 1 /*# boss threads*/, WorkerPool, DefaultTimer
){
 // no-op; unreleasable
 override def releaseExternalResources() = ()
 }
 val defaultChannelOptions: Map[String, Object] = Map(
 "tcpNoDelay" -> java.lang.Boolean.TRUE,
 "reuseAddress" -> java.lang.Boolean.TRUE
)
}

This ChannelFactory bridges a Netty channel with a Finagle Transport (stats code
has been removed here for brevity). When invoked via apply, this will create a new

Listing 15.1 Setting up the ChannelFactory

The Finagle client, which is powered
by the Finagle Transport, which

abstracts Netty away from the user

The client ChannelPipeline
with all ChannelHandlers

The Finagle server, created for each
connection and provided with a

transport for I/O

F
in

a
g
le

 c
lie

n
t

ChannelPipeline

S
S

L

S
ta

ts

C
o
d
e
c S
S

L

S
ta

ts

C
o
d
e
c

ChannelPipeline Finagle Transport

Finagle server

Finagle Transport

The server ChannelPipeline
with all ChannelHandlers

Figure 15.6 Netty use

Creates a Channel-
Factory instance

Sets options used
for new Channels
Licensed to Thomas Snead <n.ordickan@gmail.com>

239Netty at Twitter: Finagle

Cr

Cr
Pr
n

Channel and Transport. A Future is returned that is fulfilled when the Channel has
either connected or failed to connect.

 The next listing shows the ChannelConnector, which connects a Channel to a
remote host.

private[netty3] class ChannelConnector[In, Out](
 newChannel: () => Channel, 
 newTransport: Channel => Transport[In, Out] 
) extends (SocketAddress => Future[Transport[In, Out]]) {
 def apply(addr: SocketAddress): Future[Transport[In, Out]] = {
 require(addr != null)
 val ch = try newChannel() catch {
 case NonFatal(exc) => return Future.exception(exc)
 }
 // Transport is now bound to the channel; this is done prior to
 // it being connected so we don't lose any messages.
 val transport = newTransport(ch)
 val connectFuture = ch.connect(addr)
 val promise = new Promise[Transport[In, Out]]
 promise setInterruptHandler { case _cause =>
 // Propagate cancellations onto the netty future.
 connectFuture.cancel()
 }
 connectFuture.addListener(new ChannelFutureListener {
 def operationComplete(f: ChannelFuture) {
 if (f.isSuccess) {
 promise.setValue(transport)
 } else if (f.isCancelled) {
 promise.setException(
 WriteException(new CancelledConnectionException))
 } else {
 promise.setException(WriteException(f.getCause))
 }
 }
 })
 promise onFailure { _ => Channels.close(ch)
 }
 }
}

This factory is provided a ChannelPipelineFactory, which is a channel factory and
transport factory. The factory is invoked via the apply method. Once invoked, a new
ChannelPipeline is created (newPipeline). That pipeline is used by the Channel-
Factory to create a new Channel, which is then configured with the provided options
(newConfiguredChannel). The configured channel is passed to a ChannelConnector
as an anonymous factory. The connector is invoked and Future[Transport] is returned.

Listing 15.2 Connecting to a remote host

If Channel
creation fails,
the exception
is wrapped in
a Future and
returned.

eates a new
Transport

with the
Channel.

Connects the
remote host
asynchronously.

eates a new
omise to be
otified once
the connect

attempt is
finished.

Handles the
completion of
the connect-
Future by
fulfilling the
created promise.
Licensed to Thomas Snead <n.ordickan@gmail.com>

240 CHAPTER 15 Case studies, part 2
 The following listing shows the details.8

case class Netty3Transporter[In, Out](
 pipelineFactory: ChannelPipelineFactory,
 newChannel: ChannelPipeline => Channel =
 Netty3Transporter.channelFactory.newChannel(_),
 newTransport: Channel => Transport[In, Out] =
 new ChannelTransport[In, Out](_),
 // various timeout/ssl options
) extends (
 (SocketAddress, StatsReceiver) => Future[Transport[In, Out]]
){
 private def newPipeline(
 addr: SocketAddress,
 statsReceiver: StatsReceiver
)={
 val pipeline = pipelineFactory.getPipeline()
 // add stats, timeouts, and ssl handlers
 pipeline
 }
 private def newConfiguredChannel(
 addr: SocketAddress,
 statsReceiver: StatsReceiver
)={ 
 val ch = newChannel(newPipeline(addr, statsReceiver))
 ch.getConfig.setOptions(channelOptions.asJava) 
 ch
 }
 def apply(
 addr: SocketAddress,
 statsReceiver: StatsReceiver
): Future[Transport[In, Out]] = {
 val conn = new ChannelConnector[In, Out](
 () => newConfiguredChannel(addr, statsReceiver),
 newTransport, statsReceiver)
 conn(addr)
 }
}

Finagle servers use Listeners to bind themselves to a given address. In this case the
listener is provided a ChannelPipelineFactory, a ChannelFactory, and various
options (excluded here for brevity). Listener is invoked with an address to bind to
and a Transport to communicate over. A Netty ServerBootstrap is created and con-
figured. Then an anonymous ServerBridge factory is created and passed to a Channel-
PipelineFactory, which is given to the bootstrapped server. Finally the server is
bound to the given address.

Listing 15.3 Netty3-based transport

8 Finagle source code is at https://github.com/twitter/finagle.

Creates a
ChannelPipeline
and adds the
needed handlers

Creates a
ChannelConnector,
which is used
internally
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/twitter/finagle

241Netty at Twitter: Finagle

rt
 Now let’s look at the Netty-based implementation of the Listener.

case class Netty3Listener[In, Out](
 pipelineFactory: ChannelPipelineFactory,
 channelFactory: ServerChannelFactory
 bootstrapOptions: Map[String, Object], ... // stats/timeouts/ssl config
) extends Listener[In, Out] {
 def newServerPipelineFactory(
 statsReceiver: StatsReceiver, newBridge: () => ChannelHandler
) = new ChannelPipelineFactory {
 def getPipeline() = {
 val pipeline = pipelineFactory.getPipeline()
 ... // add stats/timeouts/ssl
 pipeline.addLast("finagleBridge", newBridge())
 pipeline
 }
 }
 def listen(addr: SocketAddress)(
 serveTransport: Transport[In, Out] => Unit
): ListeningServer =
 new ListeningServer with CloseAwaitably {
 val newBridge = () => new ServerBridge(serveTransport, ...)
 val bootstrap = new ServerBootstrap(channelFactory)
 bootstrap.setOptions(bootstrapOptions.asJava)
 bootstrap.setPipelineFactory(
 newServerPipelineFactory(scopedStatsReceiver, newBridge))
 val ch = bootstrap.bind(addr)
 }
} }

When a new channel is opened, the bridge creates a new ChannelTransport and
hands it back to the Finagle server. This listing shows the code needed.9

class ServerBridge[In, Out](
 serveTransport: Transport[In, Out] => Unit,
) extends SimpleChannelHandler { 
 override def channelOpen(
 ctx: ChannelHandlerContext,
 e: ChannelStateEvent
){
 val channel = e.getChannel
 val transport = new ChannelTransport[In, Out](channel)
 serveTransport(transport)
 super.channelOpen(ctx, e)
 }

Listing 15.4 Netty-based Listener

Listing 15.5 Bridging Netty and Finagle

9 The complete source is at https://github.com/twitter/finagle.

Creates a
ChannelPipeline-
Factory

Adds the
Bridge into the
ChannelPipeline

Creates a
ChannelTranspo
to bridge to
Finagle when a
new Channel is
opened
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://github.com/twitter/finagle

242 CHAPTER 15 Case studies, part 2
 override def exceptionCaught(
 ctx: ChannelHandlerContext,
 e: ExceptionEvent
) { // log exception and close channel }
}

15.2.4 Finagle’s abstraction

Finagle’s core concept is a simple function (functional programming is the key here)
from Request to Future of Response.

type Service[Req, Rep] = Req => Future[Rep] 

This simplicity allows for very powerful composition. Service is a symmetric API rep-
resenting both the client and the server. Servers implement the service interface. The
server can be used concretely for testing, or Finagle can expose it on a network inter-
face. Clients are provided an implemented service that’s either virtual or a concrete
representation of a remote server.

 For example, we can create a simple HTTP server by implementing a service that
takes an HttpReq and returns a Future[HttpRep] representing an eventual response.

val s: Service[HttpReq, HttpRep] = new Service[HttpReq, HttpRep] {
 def apply(req: HttpReq): Future[HttpRep] =
 Future.value(HttpRep(Status.OK, req.body))
}
Http.serve(":80", s)

A client is then provided a symmetric representation of that service.

val client: Service[HttpReq, HttpRep] = Http.newService("twitter.com:80")?
val f: Future[HttpRep] = client(HttpReq("/"))?
f map { rep => processResponse(rep) } 

This example exposes the server on port 80 of all interfaces and consumes from twit-
ter.com port 80.

 We can also choose not to expose the server and instead use it directly.

server(HttpReq("/")) map { rep => processResponse(rep) }

Here the client code behaves the same way but doesn’t require a network connection.
This makes testing clients and servers very simple and straightforward.

 Clients and servers provide application-specific functionality. But there’s a need
for application-agnostic functionality as well. Timeouts, authentication, and statics are
a few examples. Filters provide an abstraction for implementing application-agnostic
functionality.

 Filters receive a request and a service with which it is composed:

type Filter[Req, Rep] = (Req, Service[Req, Rep]) => Future[Rep]
Licensed to Thomas Snead <n.ordickan@gmail.com>

243Netty at Twitter: Finagle
Filters can be chained together before being applied to a service:

recordHandletime andThen
traceRequest andThen
collectJvmStats andThen
myService

This allows for clean abstractions of logic and good separation of concerns. Inter-
nally, Finagle heavily uses filters, which help to enhance modularity and reusability.
They’ve proved valuable for testing as they can be unit-tested in isolation with mini-
mal mocking.

 Filters can modify both the data and type of requests and responses. Figure 16.7
shows a request making its way through a filter chain into a service and back out.

We might use type modification for implementing authentication.

val auth: Filter[HttpReq, AuthHttpReq, HttpRes, HttpRes] =?
 { (req, svc) => authReq(req) flatMap { authReq => svc(authReq) } }

val authedService: Service[AuthHttpReq, HttpRes] = ...
val service: Service[HttpReq, HttpRes] =?
 auth andThen authedService

Here we have a service that requires an AuthHttpReq. To satisfy the requirement, a fil-
ter is created that can receive an HttpReq and authenticate it. The filter is then com-
posed with the service yielding a new service that can take an HttpReq and produce an
HttpRes. This allows us to test the authenticating filter in isolation from the service.

15.2.5 Failure management

We operate under the assumption of failure; hardware will fail, networks will become
congested, network links fail. Libraries capable of extremely high throughput and
extremely low latency are meaningless if the systems they’re running on or are com-
municating with fail. To that end, Finagle is set up to manage failures in a principled
way. It trades some throughput and latency for better failure management.

 Finagle can balance load across a cluster of hosts implicitly using latency as a
heuristic. Finagle clients locally track load on every host it knows about by counting
the number of outstanding requests being dispatched to a single host. Given that,
Finagle will dispatch new requests to hosts with the lowest load and, implicitly, the
lowest latency.

FilterUser

ReqIn

RepOut
Filter

ReqOut/ReqIn

RepIn/RepOut
Service

ReqOut/Req

RepIn/Rep

Figure 15.7 Request/response flow
Licensed to Thomas Snead <n.ordickan@gmail.com>

244 CHAPTER 15 Case studies, part 2

Create
Fil

authen
inco
req
 Failed requests will cause Finagle to close the connection to the failing host and
remove it from the load balancer. In the background, Finagle will continuously try to
reconnect. The host will be re-added to the load balancer only after Finagle can rees-
tablish a connection. Service owners are then free to shut down individual hosts with-
out negatively impacting downstream clients.

15.2.6 Composing services

Finagle’s service-as-a-function philosophy allows for simple but expressive code. For
example, a user making a request for their home timeline touches a number of ser-
vices, the core of which are the authentication service, timeline service, and tweet ser-
vice. These relationships can be expressed succinctly.

val timelineSvc = Thrift.newIface[TimelineService](...)
val tweetSvc = Thrift.newIface[TweetService](...) 
val authSvc = Thrift.newIface[AuthService](...)

val authFilter = Filter.mk[Req, AuthReq, Res, Res] { (req, svc) =>
 authSvc.authenticate(req) flatMap svc(_)
}

val apiService = Service.mk[AuthReq, Res] { req =>
 timelineSvc(req.userId) flatMap {tl =>
 val tweets = tl map tweetSvc.getById(_)
 Future.collect(tweets) map tweetsToJson(_)
 }
}

Http.serve(":80", authFilter andThen apiService)

Here we create clients for the timeline service, tweet service, and authentication ser-
vice. A filter is created for authenticating raw requests. Finally our service is imple-
mented, combined with the auth filter, and exposed on port 80.

 When a request is received, the auth filter will attempt to authenticate it. A fail-
ure will be returned immediately without ever affecting the core service. Upon suc-
cessful authentication, the AuthReq will be sent to the API service. The service will
use the attached userId to look up the user’s timeline via the timeline service. A list
of tweet IDs is returned and then iterated over. Each ID is then used to request the
associated tweet. Finally, the list of tweet requests is collected and converted into a
JSON response.

 As you can see, the flow of data is defined, and we leave the concurrency to Fina-
gle. We don’t have to manage thread pools or worry about race conditions. The code
is clear and safe.

Listing 15.6 Composing services via Finagle

Creates a client
for each service

s new
ter to
ticate
ming
uests

Creates a service to
convert an authenticated
timeline request to a
JSON response

Starts a new HTTP
server on port 80 using
the authenticating filter
and our service
Licensed to Thomas Snead <n.ordickan@gmail.com>

245Summary
15.2.7 The future: Netty

We’ve been working closely with the Netty maintainers to improve on parts of Netty
from which both Finagle and the wider community can benefit.10 Recently, the inter-
nal structure of Finagle has been updated to be more modular, paving the way for an
upgrade to Netty 4.

15.2.8 Twitter summary

Finagle has yielded excellent results. We’ve managed to dramatically increase the
amount of traffic we can serve while reducing latencies and hardware requirements.
For instance, after moving our API endpoints from the Ruby stack onto Finagle, we
saw latencies drop from hundreds of milliseconds to tens while reducing the number
of machines required from triple to single digits. Our new stack has enabled us to
reach new records in throughput. As of this writing, our record tweets per second is
143,199.11 That number would have been unthinkable on our old architecture.

 Finagle was born out of a need to set Twitter up to scale out to billions of users across
the entire globe at a time when keeping the service up for just a few million was a daunt-
ing task. Using Netty as a base, we were able to quickly design and build Finagle to man-
age our scaling challenges. Finagle and Netty handle every request Twitter sees.

15.3 Summary
This chapter provides insight into how large companies such as Facebook and Twitter
build software using Netty to guarantee the highest levels of performance and flexibility.

■ Facebook’s Nifty project shows how Netty was used to replace an existing Thrift
implementation by providing custom protocol encoders and decoders.

■ Twitter’s Finagle shows how you can build your own high-performance frame-
work on top of Netty and enhance it with features such as load-balancing and
failover.

We hope the case studies presented here will serve as sources of information and also
inspiration as you build your next-generation masterpiece.

10 “Netty 4 at Twitter: Reduced GC Overhead,” https://blog.twitter.com/2013/netty-4-at-twitter-reduced-gc-
overhead.

11 “New Tweets per second record, and how!” https://blog.twitter.com/2013/new-tweets-per-second-record-
and-how.
Licensed to Thomas Snead <n.ordickan@gmail.com>

https://blog.twitter.com/2013/netty-4-at-twitter-reduced-gc-overhead
https://blog.twitter.com/2013/netty-4-at-twitter-reduced-gc-overhead
https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
https://blog.twitter.com/2013/new-tweets-per-second-record-and-how

appendix
Introduction to Maven

This appendix provides a basic introduction to Apache Maven (http://maven
.apache.org/what-is-maven.html). After reading it, you should be able to jumpstart
your own projects by reusing configurations from the book’s samples.

 Maven is a powerful tool and amply repays study. If you wish to learn more,
you’ll find the official documentation at http://maven.apache.org and an excellent
set of freely available books in PDF format at www.sonatype.com/resources/books.

 The first section presents basic Maven concepts. In the second, we’ll illustrate
these concepts using examples from the book’s sample projects.

A.1 What is Maven?
Maven is a tool for managing Java projects, but not the kind used for resource plan-
ning and scheduling. Rather, it handles the tasks involved in managing a physical proj-
ect, such as compilation, testing, packaging, documentation, and distribution.

 Maven consists of the following:

■ A set of conventions addressing dependency management, directory layouts, and build
workflows. Standardizing on these conventions can greatly simplify develop-
ment. For example, a common directory layout makes it much easier for
developers to come up to speed on an unfamiliar project.

■ An XML schema for project configuration: the Project Object Model or POM.1 Every
Maven project has a POM file,2 named pom.xml by default, containing all the
configuration information needed by Maven to manage the project.

■ A plugin architecture that delegates the execution of project tasks to external compo-
nents. This simplifies the update and extension of Maven’s capabilities.

1 The Maven Project, “What is a POM?,” http://maven.apache.org/guides/introduction/introduction-to-
the-pom.html.

2 http://maven.apache.org/ref/3.2.5/maven-model/maven.html has a detailed descrption of the POM.
246

Licensed to Thomas Snead <n.ordickan@gmail.com>

http://maven.apache.org/what-is-maven.html
http://maven.apache.org/what-is-maven.html
http://maven.apache.org
http://www.sonatype.com/resources/books
http://maven.apache.org/guides/introduction/introduction-to-the-pom.html
http://maven.apache.org/guides/introduction/introduction-to-the-pom.html
http://maven.apache.org/ref/3.2.5/maven-model/maven.html

247What is Maven?
Building and testing our sample projects requires the use of only a subset of Maven’s
features. These are the ones we’ll discuss in this appendix, leaving aside some that
would certainly be required by projects intended for production deployment. The
topics we’ll cover include the following:

■ Basic concepts: artifacts, coordinates, and dependencies
■ Key elements and uses of the Maven project descriptor (pom.xml)
■ The Maven build lifecycle and plugins

A.1.1 Installing and configuring Maven

You can download the appropriate Maven tar.gz or zip file for your system from
http://maven.apache.org/download.cgi. Installation is simple: extract the contents of
the archive to any folder of your choice (we’ll call this <install_dir>). This will create
the directory <install_dir>\apache-maven-3.3.3.3

 Then,

■ Set the environment variable M2_HOME to point to <install_dir>\apache-maven-
3.3.3. This environment variable tells Maven where to find its configuration file,
conf\settings.xml.

■ Add %M2_HOME%\bin (or ${M2_HOME}/bin on Linux) to your execution path,
after which you can run Maven by executing mvn on the command line.

You shouldn’t need to modify the default settings to compile and run the sample proj-
ects. The first time you execute mvn, it will create your local repository4 and download
numerous JAR files needed for basic operation from the central Maven repository.
Finally, it will download the dependencies needed to build the current project
(including the Netty JARs). Details on customizing settings.xml can be found at
http://maven.apache.org/settings.html.

A.1.2 Basic Maven concepts

In the following sections we’ll explain the most important concepts of Maven. Famil-
iarity with these will enable you to understand the main elements of a POM file.

STANDARD DIRECTORY LAYOUTS

Maven defines a standard project directory layout.5 Not all of its elements are required
in every type of project and many can be overridden in the POM file if necessary.
Table A.1 shows a basic WAR project, which differs from that of a JAR project by the
presence of the directory src/main/webapp. When Maven builds the project, the con-
tents of this directory (which contains the WEB-INF directory) will be placed at the

3 At the time of this book’s publication, the current Maven version was 3.3.3.
4 By default this is the directory .m2/repository under your HOME directory on the current OS.
5 Advantages of the Standard Directory Layout, http://maven.apache.org/guides/introduction/introduction-

to-the-standard-directory-layout.html
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://maven.apache.org/download.cgi
http://maven.apache.org/settings.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

248 APPENDIX Introduction to Maven
root of the WAR file. The placeholder at the base of this tree, ${project.basedir}, is
a standard Maven property that identifies the root directory of the current project.

POM OUTLINE

This listing is an outline of a POM file from one of our sample projects. Only the top-level
schema elements used are shown. Several of these are containers for other elements.

<project>
 <groupId/>
 <artifactId/>
 <version/>
 <packaging/>
 <properties/>
 <dependencies/>
 <build/>
 <profiles/>
</project>

We’ll discuss these elements in more detail in the remainder of this section.

ARTIFACT

Any object that can be uniquely identified by Maven’s coordinate system (see the dis-
cussion of GAV coordinates that follows) is a Maven artifact. Mostly, artifacts are the
files produced by building a Maven project; for example, a JAR. But a POM file that
contains only definitions used by other POMs (which does not itself produce an arti-
fact) is also a Maven artifact.

Table A.1 Basic project directory layout

Folder Description

${project.basedir}
|---\src
 |---\main
 |---\java
 |---\resources
 |---\webapp
 |---\test
 |---\java
 |---\resources
|---\target

Project root
Source root
Program source
Java sources
Properties files, XML schema, etc.
Web application resources
Test source root
Java sources, such as JUnit test classes
Properties files, XML schema, etc.
Files created by the build process

Listing A.1 POM outline

The root
element

Values that uniquely
define a Maven project

The type of artifact
produced by the project;
the default is jar

Symbols
referenced
in the POMOther Maven

projects
needed to
build the
current one

Configuration
of tasks
that will be
executed to
build the
project

Named configurations
that customize the

POM for different
use cases
Licensed to Thomas Snead <n.ordickan@gmail.com>

249What is Maven?
 The type of a Maven artifact is specified by the <packaging> element of its POM
file. The most frequently used values are pom, jar, ear, war, and maven-plugin.

POM FILE USE CASES

A POM file can be used in the following ways:

■ Default—To build an artifact
■ Parent—To provide a single source of configuration information to be inherited

by child projects —projects that declare this POM file as their <parent>
■ Aggregator—To build a group of projects, declared as <modules>, residing in

directories after the current one, each with its own POM

A POM file serving as a parent or aggregator will have a <packaging> value of pom.
Note that a single POM file may serve both functions.

GAV COORDINATES

The POM defines five elements, referred to as coordinates, that identify Maven artifacts.
The acronym GAV refers to the initials of the three coordinates that must always be
specified: <groupId>, <artifactId>, and <version>.

 The coordinates which follow are listed in the order in which they would appear in
a full coordinate expression.

1 <groupId> is a universally unique identifier for a project or group of projects.
This is often the fully qualified Java package name used in the Java source code.
Examples: io.netty, com.google.

2 <artifactId> identifies an artifact that is distinct with respect to a <groupId>.
Examples: netty-all, netty-handler.

3 <type> refers to the type of the primary artifact associated with the project (cor-
responding to the <packaging> value in the artifact’s POM). Its default value is
jar. Examples: pom, jar, war, ear.

4 <version> identifies a version of an artifact. Examples: 1.1, 2.0-SNAPSHOT,6

4.0.31.Final.
5 <classifier> is used to distinguish artifacts that belong to the same POM but

that were built differently from one another. Examples: javadoc, sources, jdk16,
jdk17.

A full coordinate expression has the following format:

artifactId:groupId:packaging:version:classifier

The following GAV coordinates identify the JAR containing all of Netty’s components.

io.netty:netty-all:4.0.31.Final

6 See the “Snapshots and releases” discussion later in this section for more information about SNAPSHOT
artifacts.
Licensed to Thomas Snead <n.ordickan@gmail.com>

250 APPENDIX Introduction to Maven
A POM file must declare the coordinates of the artifact it manages. A project with the
following coordinates,

<groupId>io.netty</groupId>
<artifactId>netty-all</artifactId>
<version>4.0.31.Final</version>
<packaging>jar</packaging>

will produce an artifact whose name has the following format:

<artifactId>-<version>.<packaging>

In this case, it would produce this artifact:

netty-all-4.0.31.Final.jar

DEPENDENCIES

A project’s dependencies are the external artifacts required to compile and execute it.
In most cases, a dependency of your project will have its own dependencies. We refer
to these as transitive dependencies of your project. A complex project can have a deep
tree of dependencies; Maven provides a variety of facilities for understanding and
managing it.7

 A Maven <dependency>8 is declared in the <dependencies> element of the POM.

<dependencies>
 <dependency>
 <groupId/>
 <artifactId/>
 <version/>
 <type/>
 <scope/>
 <systemPath/>
 </dependency>
 ...
</dependencies>

The GAV coordinates are always required in a <dependency> declaration.9 The <type>
and <scope> elements are required for values other than the defaults jar and compile,
respectively.

 The next code example is an extract from the top-level POM for our sample projects.
Note the first entry, which declares a dependency on the Netty JAR referenced earlier.

7 For example, on the command-line, execute “mvn dependency:tree” inside one of the project directories that
has a POM file.

8 Managing dependencies, http://maven.apache.org/guides/introduction/introduction-to-dependency-
mechanism.html.

9 See the following “Dependency management” section.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

251What is Maven?
<dependencies>
 <dependency>
 <groupId>io.netty<groupId>
 <artifactId>netty-all</artifactId>
 <version>4.0.31.Final</version>
 </dependency>
 <dependency>
 <groupId>nia</groupId>
 <artifactId>util</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>com.google.protobuf</groupId>
 <artifactId>protobuf-java</artifactId>
 <version>2.5.0</version>
 </dependency>
 <dependency>
 <groupId>org.eclipse.jetty.npn</groupId>
 <artifactId>npn-api</artifactId>=
 <version>1.1.0.v20120525</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
</dependencies>

The <scope> element can have the following values:

■ compile—Needed for compilation and execution (default)
■ runtime—Needed for execution only
■ optional—Not seen as a transitive dependency by other projects that reference

the artifact produced by this project
■ provided—Not to be included in the WEB-INF/lib directory of the WAR file pro-

duced by this POM
■ test—Needed for compilation and execution of tests only
■ import—This is discussed in the following “Dependency Management” section

The <systemPath> element is used to refer to an absolute location in the filesystem.
 Maven’s approach to managing project dependencies, which includes a repository

protocol for storing and retrieving them, has revolutionized the way in which JAR files
are shared across projects, effectively eliminating the problems that often arise when
each developer on a project maintains a private lib directory.

DEPENDENCY MANAGEMENT

The <dependencyManagement> element of a POM contains <dependency> declarations
that can be used by other projects. Child projects of such a POM will inherit these dec-
larations automatically. Other projects can import them by using the import value of
the <scope> element (discussed in a moment).
Licensed to Thomas Snead <n.ordickan@gmail.com>

252 APPENDIX Introduction to Maven
 A project that references a <dependencyManagement> element can use the depen-
dencies it declares without specifying their <version> coordinates. If a <version> is
subsequently changed in that <dependencyManagement>, it will be picked up by all
POMs that reference it.

 In the following example, the version of Netty used is defined in the <properties>
section of the POM and referenced in <dependencyManagement>.

<properties>
 <netty.version>4.0.31</netty.version>
 ...
 ...
</properties>
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.netty</groupId>
 <artifactId>netty-all</artifactId>
 <version>${netty.version}</version>
 </dependency>
 </dependencies>
 ...
</dependencyManagement>

The dependency <scope> element has a special import value for this use: it imports
the contents of the <dependencyManagement> element of an external POM (not declared
as <parent>) into the <dependencyManagement> element of the current POM.

BUILD LIFECYCLES

A Maven build lifecycle is a well-defined process for building and distributing an arti-
fact. There are three built-in build lifecycles: clean, default, and site. We’ll discuss only
the first two of these, used for cleaning and distributing a project, respectively.

 A build lifecycle consists of a series of phases. The following is a partial list of the
phases of the default build lifecycle:

■ validate—Checks whether the project is correct and all necessary information
is available

■ process-sources—Processes the source code; for example, to filter any values
■ compile—Compiles the source code of the project
■ process-test-resources—Copies and processes the resources into the test

destination directory
■ test-compile—Compiles the test source code into the test destination directory
■ test—Tests the compiled source code using a suitable unit testing framework
■ package—Packages the compiled code in its distributable format, such as a JAR
■ integration-test—Processes and deploys the package into an environment

where integration tests can be run
■ verify—Runs any checks to verify the package is valid and meets quality criteria
Licensed to Thomas Snead <n.ordickan@gmail.com>

253What is Maven?
■ install—Installs the package in the local repository, where it can be refer-
enced as a dependency by other locally built projects

■ deploy—Uploads the final artifact to a remote repository for sharing with other
developers and projects

Executing one of these phases will invoke all preceding phases. For example,

mvn package

will execute validate, compile, and test, and will then assemble the artifact and place
it in the project’s target directory.

 Executing

mvn clean install

will first remove all the results created by the previous build. Then it will run all of
the default phases up to and including placing the artifact in your local repository
file system.

 Although our sample projects can be built with these simple commands, any seri-
ous work with Maven requires a detailed understanding of the lifecycle phases.10

PLUGINS

Although Maven coordinates execution of all the build lifecycle phases, it doesn’t
implement them directly. Rather, it delegates them to plugins,11 which are artifacts of
type maven-plugin (packaged as JAR files). The Apache Maven project provides plug-
ins for all of the tasks defined by the standard build lifecycles; many more are pro-
duced by third parties to handle custom tasks of all kinds.

 A plugin may have multiple internal steps, or goals, which can also be invoked indi-
vidually. In a JAR project, for example, the default lifecycle is handled by the maven-
jar-plugin, which maps the various phases of the build to its own goals and those of
other plugins, as shown in table A.2.

10 “Introduction to the Build Lifecycle,” http://maven.apache.org/guides/introduction/introduction-to-the-
lifecycle.html.

11 “Available Plugins,” http://maven.apache.org/plugins/index.html.

Table A.2 Phases, plugins, and goals

Phase plugin:goal

process-resources resources:resources

compile compiler:compiler

process-test-resources resources:testResources

test-compile compiler:testCompile
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
http://maven.apache.org/plugins/index.html

254 APPENDIX Introduction to Maven
In our sample projects we use the following third-party plugin to execute our projects
from the command line. Note that the declaration of a plugin, which is packaged as a
JAR, uses the same GAV coordinates as those of a <dependency>.

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.2.1</version>
</plugin>

PLUGIN MANAGEMENT

Like <dependencyManagement>, <pluginManagement> declares information that can
be used by other POMs as shown in the next listing. But this is true only for child POMs,
as there is no import declaration for plugins. As with dependencies, the <version>
coordinate is inherited.

<build>
 <pluginManagement>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.2</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.2.1</version>
 </plugin>
 </plugins>
 </pluginManagement>
</build>

Listing A.3 shows how a child of the POM fragment in listing A.2 could use the par-
ent’s <pluginManagement> configuration, referencing only the plugins it requires for
its build. The child can also override any plugin configurations it needs to customize.

test surefire:test

package jar:jar

install install:install

deploy deploy:deploy

Listing A.2 PluginManagement

Table A.2 Phases, plugins, and goals (continued)

Phase plugin:goal
Licensed to Thomas Snead <n.ordickan@gmail.com>

255What is Maven?
<build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>

PROFILES

A profile (defined within <profiles>) is a customized set of POM elements that can
be enabled (activated) automatically or manually to alter the behavior of the POM.
For example, you can define a profile that will set build parameters depending on the
JDK version, OS, or target deployment environment (such as development, test, or
production).

 A profile is referenced explicitly with the command-line -P flag. The following
example would activate a profile that customizes the POM for JDK 1.6.

mvn -P jdk16 clean install

REPOSITORIES

A Maven artifact repository12 may be remote or local.

■ A remote repository is a service from which Maven downloads dependencies
referenced in POM files. If you have upload permission, then these dependencies

About Maven plugins
When declaring plugins produced by the Maven project, the groupId (org.apache
.maven.plugins) may be omitted, as seen in the declaration of the maven-compiler-
plugin in listing A.2. Furthermore, artifactIds beginning with “maven” are reserved
for use by the Maven project. For example, a third party may provide a plugin with an
artifactId of exec-maven-plugin but not maven-exec-plugin.

The POM defines a format for plugin configurations to which most plugins adhere.

Refer to Maven’s “Guide to Configuring Plug-ins” (http://maven.apache.org/guides/
mini/guide-configuring-plugins.html) for more information. This will help you to set up
any plugins you want to use in your projects.

Listing A.3 Plugin inheritance

12 See http://maven.apache.org/guides/introduction/introduction-to-repositories.html.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://maven.apache.org/guides/mini/guide-configuring-plugins.html
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://org.apache.maven.plugins
http://org.apache.maven.plugins
http://maven.apache.org/guides/mini/guide-configuring-plugins.html

256 APPENDIX Introduction to Maven
may include artifacts produced by your own projects. A vast number of open
source Maven projects (including Netty) post their artifacts to publicly accessi-
ble Maven repositories.

■ A local repository is a local directory that contains artifacts downloaded from
remote repositories as well as artifacts you have built and installed on your local
machine. It’s normally placed under your home directory:

C:\Users\maw\.m2\repository

The physical directory structure of a Maven repository uses the GAV coordinates much
as the Java compiler uses package names. For example, after Maven has downloaded
the following dependency,

<dependency>
 <groupId>io.netty</groupId>
 <artifactId>netty-all</artifactId>
 <version>4.0.31.Final</version>
</dependency>

you’ll find the following in your local repository:

.m2\repository
|---\io
 |---\netty
 |---\netty-all
 |---\4.0.31.Final
 netty-all-4.0.31.Final.jar
 netty-all-4.0.31.Final.jar.sha1
 netty-all-4.0.31.Final.pom
 netty-all-4.0.31.Final.pom.sha1
 _maven.repositories

SNAPSHOTS AND RELEASES

Remote repositories generally define separate areas for artifacts that are under devel-
opment and those that are stable or production releases. These are referred to as
Snapshot and Release repositories, respectively.

 An artifact with a <version> value ending in -SNAPSHOT will be treated as one that
has not yet been released. Such an artifact can be uploaded to the repository repeat-
edly with the same <version> value. Each time it will be assigned a unique timestamp.
When it is retrieved by a project, the latest instance will be downloaded.

 An artifact <version> without a -SNAPSHOT suffix is treated as a release version.
Usually, the repository policy allows a specific release version to be uploaded only
once.

 When you build a project that has a SNAPSHOT dependency, Maven will check to
see whether there is a copy in the local repository. If there is not, it will attempt to
retrieve it from the designated remote repository, in which case it will receive the
artifact with the latest timestamp. If the artifact does exist locally and the current
build is the first of the day, by default Maven will attempt to update the local copy.
Licensed to Thomas Snead <n.ordickan@gmail.com>

257POM examples
This behavior can be configured using settings in Maven’s configuration file (set-
tings.xml) or with command-line flags.

A.2 POM examples
In this section we’ll present POM examples to illustrate the topics discussed in the pre-
vious section.

A.2.1 A project POM

The following listing shows a POM that creates a JAR file for a simple Netty project.

<?xml version="1.0" encoding="ISO-8859-15"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>
 <artifactId>myproject</artifactId>
 <version>1.0-SNAPSHOT</version>

 <packaging>jar</packaging>

 <name>My Jar Project</name>

 <dependencies>
 <dependency>
 <groupId>io.netty</groupId>
 <artifactId>netty-all</artifactId>
 <version>4.0.31.Final</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.2</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

The artifact created by this POM will be a JAR file containing the classes compiled from
the project’s Java source code. The Netty JAR declared as a dependency will be added
to the CLASSPATH during compilation.

Listing A.4 Standalone pom.xml

The project’s GAV
coordinates

The artifact produced by this project
will be a JAR file (the default).

This POM declares only the
Netty JAR as a dependency;
a typical Maven project will
have many dependencies.

The <build>
section declares
the plugins that
will execute the
build tasks. We
have customized
only the compiler
plugin; for others
we accept the
defaults.
Licensed to Thomas Snead <n.ordickan@gmail.com>

258 APPENDIX Introduction to Maven
 The following are the basic Maven commands you would use with this POM:

■ To create the JAR file in the project’s build directory (“target”):

mvn package

■ To store the JAR file in the local repository:

mvn install

■ To post the JAR file to the global repository (if one has been defined):

mvn deploy

A.2.2 POM inheritance and aggregation

As we mentioned earlier, a POM can be used in several ways. Here we’ll discuss its uses
as a parent or aggregator.

POM INHERITANCE
A POM file may contain information to be inherited (and possibly overridden) by
child projects.

POM AGGREGATION
An aggregator POM builds one or more subprojects that reside in directories below
that of the POM. The subprojects, or <modules>, are identified by their directory
names:

<modules>
 <module>Server</module>
 <module>Client</module>
</modules>

When building subprojects, Maven creates a reactor that calculates any dependencies
existing among them to determine the order in which they have to be built. Note that
an aggregator POM may or may not be the parent of the projects it declares as mod-
ules. (Each subproject may declare a different POM as its <parent>.)

 The POM for the Echo client/server project in chapter 2 is both a parent and an
aggregator.13 The chapter2 directory, under the sample code root directory, has the
contents shown in the next listing.

13 It is also a child of the nia-samples-parent POM above it, whose <dependencyManagement> it inherits and
passes to its own child projects.
Licensed to Thomas Snead <n.ordickan@gmail.com>

259POM examples

A <
v

ove
th

line

pr
Pro

i
chi
chapter2
 |---pom.xml
 |---\Client
 |---pom.xml
 |---\src
 |---\main
 |---\java
 |---\nia
 |---\chapter2
 |---\echoclient
 EchoClient.java
 EchoClientHandler.java
 |---\Server
 |---pom.xml
 |---\src
 |---\main
 |---\java
 |---\nia
 |---\chapter2
 |---\echoserver
 EchoServer.java
 EchoServerHandler.java

The packaging type of the root-level POM, shown in listing A.6, is <pom>, which signi-
fies that it doesn’t itself produce an artifact. Rather, it provides configuration informa-
tion to projects that declare it as <parent>, such as the Client and Server projects. It’s
also an aggregator, which means you can build its <modules> by running mvn install
in the chapter2 directory.

<project>
 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>nia</groupId>
 <artifactId>nia-samples-parent</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>

 <artifactId>chapter2</artifactId>
 <packaging>pom</packaging>
 <name>2. Echo Client and Server</name>

 <modules>
 <module>Client</module>
 <module>Server</module>
 </modules>

 <properties>
 <echo-server.hostname>localhost</echo-server.hostname>
 <echo-server.port>9999</echo-server.port>
 </properties>

Listing A.5 chapter2 directory tree

Listing A.6 Parent and aggregator POM: echo-parent

The parent/
aggregator POM

Client
module

Server
module

<parent> declares
the samples-parent
POM as the parent
of this POM.

<modules> declares the
directories under the parent
POM that contain Maven
projects to be built by this POM.

property>
alue can be
rridden on

e command
 by using a

Java system
operty (-D).
perties are

nherited by
ld projects.
Licensed to Thomas Snead <n.ordickan@gmail.com>

260 APPENDIX Introduction to Maven
 <dependencies>
 <dependency>
 <groupId>io.netty</groupId>
 <artifactId>netty-all</artifactId>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 </plugin>
 <plugin>
 <artifactId>maven-failsafe-plugin</artifactId>
 </plugin>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
</project>

Thanks to Maven’s support for inheritance, the Server and Client POMs don’t have
very much work to do. The following listing shows the Server POM. (The Client POM is
virtually identical.)

<project>
 <parent>
 <groupId>nia</groupId>
 <artifactId>chapter2</artifactId>
 <version>1.0-SNAPSHOT</version>
 </parent>

 <artifactId>echo-server</artifactId>

 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>run-server</id>
 <goals>
 <goal>java</goal>
 </goals>
 </execution>
 </executions>
 <configuration>

Listing A.7 Echo-server POM

The parent's
<dependencies>
element is inherited
by child projects.

The parent's
<plugins>
element is
inherited
by child
projects.

<parent>
declares the
parent POM.

<artifactId> must be
declared as it is unique
to the subproject.
<groupId> and
<version> , if not
defined, are inherited
from the parent POM.

The exec-maven-
plugin executes
arbitrary
commands from
the Maven
command line;
here we use it to
run the Echo
server.
Licensed to Thomas Snead <n.ordickan@gmail.com>

261Maven command-line

-

nds

ere
 the
 <mainClass>nia.echo.EchoServer</mainClass>
 <arguments>
 <argument>${echo-server.port}</argument>
 </arguments>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

This POM is very small because it inherits so much information from its parent and
grandparent POMs (and there is even a great-grandparent POM, the Maven Super-
POM). Note, for example, the use of the ${echo-server.port} property, inherited
from the parent POM.

 The POM executed by Maven after all inherited information is assembled and all
active profiles are applied is referred to as the “effective POM.” To see it, run the fol-
lowing Maven command in the same directory as any POM file:

mvn help:effective-pom

A.3 Maven command-line
The syntax of the mvn command is as follows:

mvn [options] [<goal(s)>] [<phase(s)>]

For details on its usage, as well as more information on many of the topics we have dis-
cussed in this appendix, Sonatype’s “Maven: The Complete Reference” is a good
resource.14

 Table A.3 shows the mvn command-line options, which can be displayed by executing

mvn --help

14 See http://books.sonatype.com/mvnref-book/pdf/mvnref-pdf.pdf.

Table A.3 mvn command-line arguments

Option Description

-am,--also-make If project list is specified, also build projects
required by the list

-amd,--also-make-dependents If project list is specified, also build projects
that depend on projects on the list

-B,--batch-mode Run in non-interactive (batch) mode

-b,--builder <arg> The id of the build strategy to use

-C,--strict-checksums Fail the build if checksums don't match

The exec-maven
plugin executes
arbitrary comma
from the Maven
command line; h
we use it to run
Echo server.
Licensed to Thomas Snead <n.ordickan@gmail.com>

http://books.sonatype.com/mvnref-book/pdf/mvnref-pdf.pdf

262 APPENDIX Introduction to Maven
-c,--lax-checksums Warn if checksums don't match

-cpu,--check-plugin-updates Ineffective, only kept for backward compatibility

-D,--define <arg> Define a system property

-e,--errors Produce execution error messages

-emp,--encrypt-master-password <arg> Encrypt master security password

-ep,--encrypt-password <arg> Encrypt server password

-f,--file <arg> Force the use of an alternate POM file (or direc-
tory with pom.xml)

-fae,--fail-at-end Only fail the build afterwards; allow all non-
impacted builds to continue

-ff,--fail-fast Stop at first failure in reactorized builds

-fn,--fail-never NEVER fail the build, regardless of project
result

-gs,--global-settings <arg> Alternate path for the global settings file

-h,--help Display help information

-l,--log-file <arg> Log file to where all build output will go

-llr,--legacy-local-repository Use Maven 2 Legacy Local Repository behav-
ior; that is, no use of _remote.reposi-
tories. Can also be activated by using
-Dmaven.legacyLocalRepo=true.

-N,--non-recursive Do not recurse into subprojects

-npr,--no-plugin-registry Ineffective, only kept for backward compatibility

-npu,--no-plugin-updates Ineffective, only kept for backward compatibility

-nsu,--no-snapshot-updates Suppress SNAPSHOT updates

-o,--offline Work offline

-P,--activate-profiles <arg> Comma-delimited list of profiles to activate

-pl,--projects <arg> Comma-delimited list of specified reactor
projects to build instead of all projects. A
project can be specified by [groupId]
:artifactId or by its relative path.

-q,--quiet Quiet output - only show errors

-rf,--resume-from <arg> Resume reactor from specified project

-s,--settings <arg> Alternate path for the user settings file

Table A.3 mvn command-line arguments (continued)

Option Description
Licensed to Thomas Snead <n.ordickan@gmail.com>

263Summary
A.4 Summary
In this appendix we presented an introduction to Apache Maven, covering its basic
concepts and principal use cases. We illustrated these by drawing on examples from
the book’s sample projects.

 Our goals are to help you to better understand how the projects are built and to
provide a starting point for independent development.

-T,--threads <arg> Thread count, for instance 2.0C where C is
core multiplied

-t,--toolchains <arg> Alternate path for the user toolchains file

-U,--update-snapshots Forces a check for missing releases and
updated snapshots on remote repositories

-up,--update-plugins Ineffective, only kept for backward compatibility

-V,--show-version Display version information WITHOUT stopping
build

-v,--version Display version information

-X,--debug Produce execution debug output

Table A.3 mvn command-line arguments (continued)

Option Description
Licensed to Thomas Snead <n.ordickan@gmail.com>

Licensed to Thomas Snead <n.ordickan@gmail.com>

index
Symbols

@Sharable annotation 91–92

A

AbstractBootstrap class 108
AbstractRequestHandler 209
adapter classes 37
addAfter() method 83
addBefore() method 83
addFirst() method 83
addLast() method 83
addListener() method 34, 93
AddressedEnvelope class 190
ADVANCED level 80
Apache Kafka 225
APNS (Apple Push Notification

Service) 220
array() method 69
ASF (Apache Software

Foundation) 16
asynchronous programming 9
asynchronous transports

104–105
attr() method 110, 113

B

backing arrays 57
big data support 165–167
BinaryWebSocketFrame

class 157, 178
bind() method 78, 86–87, 110,

112–113, 119
blocking transports 105

Bootstrap classes 38–40
bootstrapping

adding multiple Channel-
Handlers during
bootstrap 117–118

classes for 108–109
clients

Channel and EventLoop-
Group compatibility
111–112

from Channel 115–117
overview 109–111

DatagramChannel 119
defined 18
servers 113–115
shutdown and 120
using ChannelOptions and

attributes 118–119
broadcast transmissions,

UDP 188
buffer() method 70, 72
ByteBuf API

ByteBuf class
composite buffer

pattern 58–60
direct buffer pattern 57–58
heap buffer pattern 57
overview 56–57

ByteBufAllocator
interface 70–71

ByteBufHolder interface
69–70

ByteBufUtil class 72
byte-level operations

derived buffers 64–65
discardable bytes 61

index management 62–63
random access indexing 60
read operations 65–68
readable bytes 61–62
search operations 63–64
sequential access

indexing 60–61
writable bytes 62
write operations 65–68

overview 56
reference counting 72–74
Unpooled class 71–72

ByteToMessageCodec class
142–143

ByteToMessageDecoder
class 134–136

C

callbacks 10–13
capacity() method 69
Channel interface 33–34,

46–47
compatibility with

bootstrapping 111–112
lifecycle states 76

channel() method 87, 109,
113

channelActive state 76
channelActive() method 10, 23,

77
ChannelConfig interface 46
channelFactory() method 113
ChannelFuture interface 11, 34,

79, 93
ChannelFutureListener 94
265

Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX266
ChannelHandler interface 10,
13, 18–20, 34–35, 37

adapters 79–80
adding multiple during

bootstrap 117–118
Channel lifecycle states 76
ChannelHandler lifecycle

methods 76–77
ChannelInboundHandler

interface 77–78
ChannelOutboundHandler

interface 78–79
resource management 80–82

ChannelHandlerContext
interface 82, 91

advanced usage of 91–92
overview 87–90

ChannelHandlers
big data support 165–167
decoders

delimited protocols
160–163

length-based
protocols 163–164

HTTP support
compression 154–155
decoders and encoders

for 151–152
message aggregation 153

HTTPS support 155
idle connections 158–160
serializing data

with JBoss Marshalling
167–168

with JDK 167
with Protocol Buffers

169–170
SSL/TLS support 148–151
timeouts 158–160
unit testing

inbound messages 124–126
outbound messages

126–127
WebSocket support 155–158

channelInactive state 76
channelInactive() method 77
ChannelInboundHandler

interface 18, 35–36,
77–78

ChannelInboundHandler-
Adapter class 24, 36, 79,
117

ChannelOptions 118–119
ChannelOutboundHandler

interface 36, 78–79

ChannelOutboundHandler-
Adapter class 36, 79

ChannelPipeline interface 20,
35–37, 46–47

firing events 85–86
methods for modifying

83–84
overview 82–83

ChannelPromise interface 79,
94

channelRead() method 19, 77
channelRead0() method 23
channelReadComplete()

method 19, 24, 77
channelRegistered() method 77
channels 10
channelUnregistered()

method 77
channelWritabilityChanged()

method 77
childAttr() method 113
childHandler() method 113
childOption() method 113
ChunkedInput interface

165–166
ChunkedWriteHandler 180
clear() method 63
clients

bootstrapping
Channel and EventLoop-

Group compatibility
111–112

from Channel 115–117
overview 109–111

building 26–28
Echo client

bootstrapping client
24–25

SimpleChannelInbound-
Handler class 23–24

overview 17–18
running 28–31

clone() method 108, 110, 113
close() method 78, 86–87, 151
CloseWebSocketFrame

class 157, 178
codecs

abstract codec classes
ByteToMessageCodec

class 142–143
CombinedChannelDuplex-

Handler class 146
general discussion 142
MessageToMessageCodec

class 143–145

decoders
ByteToMessageDecoder

class 134–136
MessageToMessage-

Decoder class 137–138
overview 134
ReplayingDecoder

class 136–137
TooLongFrameException

class 138–139
defined 133–134
encoders

MessageToByteEncoder
class 139–141

MessageToMessage-
Encoder class 141–142

overview 139
CombinedChannelDuplex-

Handler class 146
CompatibleMarshallingDecoder

168
CompatibleMarshallingEncoder

168
CompatibleObjectDecoder 167
CompatibleObjectEncoder 167
composite buffer pattern

58–60
compositeBuffer() method 71
CompositeByteBuf class 58–59
compression, HTTP

support 154–155
connect() method 78, 86–87,

110, 112
content() method 70
context() method 85
ContinuationWebSocketFrame

class 157, 178
copiedBuffer() method 72
copy() method 70

D

DatagramChannel class 119,
191

DatagramPacket class 191
decode() method 134, 137, 142,

146
decodeLast() method 134, 142
decoders

ByteToMessageDecoder
class 134–136

defined 134
for delimited protocols

160–163
for HTTP support 151–152
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 267
decoders (continued)
for length-based

protocols 163–164
MessageToMessageDecoder

class 137–138
overview 37–38, 134
ReplayingDecoder class

136–137
TooLongFrameException

class 138–139
DefaultAddressedEnvelope

class 191
delimited protocols 160–163
DelimiterBasedFrameDecoder

class 160–161
dependencies, in Maven

250–252
deregister() method 79,

86–87
derived buffers 64–65
development environment

configuring Java location 17
general discussion 15–16
installing Apache Maven

16–17
installing IDE 16
installing JDK 16

direct buffer pattern 57–58
directBuffer() method 70, 72
DISABLED level 80
discardable bytes 61
discardReadBytes() method 61
disconnect() method 78, 86–87
Droplr case study

creating faster uploads 204
overview 203, 211
performance 210
technology stack

handler implementations
209

overview 206–207
parent interface 209
request handlers 209
server and pipeline

207–209
upload request handler

210
duplicate() method 70

E

Echo client
bootstrapping client 24–25
SimpleChannelInbound-

Handler class 23–24

Echo server
bootstrapping server 20–22
ChannelHandler interfaces

18–20
Eclipse 16
embedded transport 53, 122
EmbeddedChannel interface,

unit testing and 122–123
encode() method 127, 140–141,

143
encoders

defined 134
for HTTP support 151–152
MessageToByteEncoder

class 139–141
MessageToMessageEncoder

class 141–142
overview 37–38, 139

encryption, adding to Web-
Socket support 184

epoll transport 51
equals() method 72
EventExecutor 230
EventLoop interface 33–34

in Netty 3 100
in Netty 4 99–100
overview 98–99
task scheduling using

101–103
eventLoop() method 47
EventLoopGroup 39, 104,

111–112
events and handlers 12, 14
exception handling

inbound exceptions 92–93
outbound exceptions 93
unit testing 128–129

exceptionCaught() method
19–20, 23–24, 31, 76,
93

executor() method 87

F

Facebook case study
Nifty client design

multiplexing 231–232
pipelining 231

Nifty server design 228–231
overview 235
results

future improvements on
Netty 4 235

improving timeout
handling 234–235

performance comparisons
233–234

stability issues 234
Swift 233
Thrift

defined 227
improving using Netty 228

FileRegion interface 165
finish() method 122
Firebase case study

HTTP 1.1 keep-alive 215–216
long polling 213–215
overview 211–212, 218
SSL handler control 216–218

fireChannelActive() method
85, 87

fireChannelInactive()
method 85, 87

fireChannelRead() method
85, 87

fireChannelReadComplete()
method 85, 87

fireChannelRegistered()
method 85

fireChannelUnregistered()
method 85

fireExceptionCaught()
method 85

fireUserEventTriggered()
method 85

FixedLengthFrameDecoder
class 163

flip() method 60
flush() method 47, 79, 86
frames, WebSocket 178
futures 11–13

G

get() method 65, 85
getCloseNotifyTimeoutMillis()

method 150
getHandshakeTimeoutMillis()

method 150
group() method 109, 113

H

handler() method 87, 112–113
handlerAdded() method 76
handlerRemoved() method 76
handshakeFuture() method 150
hasArray() method 58, 69
heap buffer pattern 57
heapBuffer() method 70
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX268
hexdump() method 72
HTTP 1.1 keep-alive 215–216
HTTP support

compression 154–155
decoders and encoders

for 151–152
message aggregation 153

HttpObjectAggregator 138, 181
HttpObjectDecoder 137
HttpRequestDecoder 152
HttpRequestEncoder 152
HttpRequestHandler 181
HttpResponseDecoder 152
HttpResponseEncoder 152
HTTPS support 155
HttpServerCodec 180

I

IDE (integrated development
environment), installing 16

IDL (Interface Definition
Language) 227

idle connections 158–160
IdleStateHandler class

158–159
IETF (Internet Engineering

Task Force) 155, 178
IllegalReferenceCount-

Exception 73
IllegalStateException 112
inbound exceptions 92–93
inbound messages, unit

testing 124–126
IndexOutOfBound-

Exception 62
IndexOutOfBounds-

Exception 56
initChannel() method 117
InputStream class 62
installation

Apache Maven 16–17
IDE 16
JDK 16
Maven 247

integrated development envi-
ronment. See IDE

Intellij Idea Community
Edition 16

Interface Definition Language.
See IDL

Internet Engineering Task
Force. See IETF

ioBuffer() method 71
isActive() method 47

isReadable() method 69
isRemoved() method 87
isSharable() method 79
isWritable() method 69

J

Java Development Kit. See JDK
(Java Development Kit)

Java Virtual Machine. See JVM
Java, networking in

Java NIO 6
overview 4–6

JAVA_HOME variable 16
JBoss Marshalling, serialization

using 167–168
JDK (Java Development Kit) 4

installing 16
scheduling API 100–101
serialization using 167

JUnit 122
Assertions 123

JVM (Java Virtual Machine) 6,
52

JZlib 155

L

length-based protocols
163–164

LengthFieldBasedFrame-
Decoder class 163

libevent 228
LineBasedFrameDecoder

class 137, 160–161
localAddress() method 47, 109,

113

M

mark() method 62
markReaderIndex() method 63
markWriterIndex() method 63
MarshallingDecoder 168
MarshallingEncoder 168
Maven

artifacts 248–249
build lifecycles 252–253
command-line

arguments 261–263
dependencies 250–252
directory layout 247–248
GAV coordinates 249–250
installing 247
overview 246–247

plugins 253–254
POM examples

aggregation 258–261
inheritance 258
project POM 257–258

POM file use cases 249
POM outline 248
profiles 255
repositories 255–256
snapshots 256–257

maxCapacity() method 69
Memcached 225, 236
messages, encoders and

decoders 37–38
MessageToByteEncoder

139–141
MessageToMessageCodec

143–145
MessageToMessageDecoder

137–138
MessageToMessageEncoder

126, 141–142, 192
multicast transmissions 188
MySQL 236

N

name() method 87
names() method 85
NetBeans 16
netcat 194
Netty

architecture 32
as asynchronous and event-

driven framework 9
callbacks 10–13
channels 10
events and handlers 12–14
futures 11–13
overview 7–8
real-world usage 8–9
selectors 14

newScheduledThreadPool()
method 101

newSingleThreadScheduled-
Executor() method 101

NIO (non-blocking I/O)
49–50

overview 6
selectors 6–7

NIO transport 20
NioDatagramChannnel

class 191
NioServerSocketChannel-

Factory 207
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX 269
O

ObjectDecoder 167
ObjectEncoder 167
ObjectInputStream class 167
ObjectOutputStream class 167
OIO (old blocking I/O) 51–52
OpenSSL 149
OpenSslEngine class 149
operationComplete()

method 11
option() method 109, 113,

118
OrderedMemoryAwareThread-

PoolExcecutor 230
outbound exceptions 93
outbound messages, unit

testing 126–127

P

PARANOID level 80
performance, Droplr case

study 210
PingWebSocketFrame class 157,

178
pipeline() method 47, 88, 91
POJO (Plain Old Java Object)

189–190
POM files, Maven

aggregation 258–261
inheritance 258
outline for 248
project POM 257–258
use cases for 249

PongWebSocketFrame class
157, 178

ProtobufDecoder 169
ProtobufEncoder 169
ProtobufVarint32Frame-

Decoder 169
Protocol Buffers, serialization

using 169–170

Q

QoS (Quality of Service) 173

R

random access indexing 60
read() method 67, 79, 86, 88
readableBytes() method 69
readerIndex 56, 60–61
readInbound() method 122

readOutbound() method
122–123

ReadTimeoutHandler class 158
Redis 236
reference counting 72–74, 136
remoteAddress() method 47,

110
remove() method 83
replace() method 83
ReplayingDecoder class

136–137
reset() method 62
retain() method 179
RPC (remote procedure

calls) 201, 227
RuntimeException 129

S

scalability, asynchronous pro-
gramming and 9

scheduleAtFixedRate()
method 102

ScheduledExecutorService
API 101

SCTP (Stream Control Transmis-
sion Protocol) 53

security, SSL/TLS support
148–151

selectors
in Java NIO 6–7
overview 14

sequential access indexing
60–61

serialization
with JBoss Marshalling

167–168
with JDK 167
with Protocol Buffers

169–170
ServerBootstrap class 39, 113
servers

bootstrapping 113–115
building 26–28
Echo server

bootstrapping server 20–22
ChannelHandler

interfaces 18–20
overview 17–18
running 28–31

set() methods 66
setCloseNotifyTimeout()

method 150
setCloseNotifyTimeoutMillis()

method 150

setFailure() method 94
setHandshakeTimeout()

method 150
setHandshakeTimeoutMillis()

method 150
setSuccess() method 94
shutdown 120
shutdownGracefully()

method 120
SIMPLE level 80
SimpleChannelInbound-

Handler 24, 78
SimpleChannelInbound-

Handler class 23–24, 38
SimpleHandler 210
slice() method 64
SocketTimeoutException 52
SSL support 148–151
SSLContext class 149
SSLEngine class 149
SslHandler 184
SslHandler class 150, 155, 158,

216
Stream Control Transmission

Protocol. See SCTP

T

task scheduling
JDK scheduling API 100–101
using EventLoop

interface 101–103
TCP (Transmission Control

Protocol) 53, 188
TextWebSocketFrame class 157,

178
TextWebSocketFrameHandler

181
threading model

asynchronous transports
104–105

blocking transports 105
EventLoop interface

in Netty 3 100
in Netty 4 99–100
overview 98–99

overview 97–98
task scheduling

JDK scheduling API
100–101

using EventLoop
interface 101–103

thread management 103–104
Thrift 236
timeouts 158–160
Licensed to Thomas Snead <n.ordickan@gmail.com>

INDEX270
TLS support 148–151
TooLongFrameException

class 138–139
transitive dependencies 250
transport layers, defined 20
transports

API overview 46–48
embedded transport 53
epoll 51
examples using

non-blocking Netty version
45–46

using I/O and NIO with
Netty 44–45

using I/O and NIO without
Netty 42–44

local transport for communi-
cation within JVM 52

NIO 49–50
OIO 51–52
overview 49
use cases for 53–54

Twitter case study
failure management 243–244
Finagle

abstraction of 242–243
composing services 244
overview 236–241

overview 236–245

U

UDP (User Datagram
Protocol) 53

broadcast transmissions 188
broadcaster for 190–195
example application for

188–189, 198

monitor for 195–197
overview 188
using POJO messages

189–190
UDT (UDP-based Data Transfer

Protocol) 53
unicast transmissions 188
unit testing

EmbeddedChannel
interface 122–123

exception handling
128–129

general discussion 121–122
inbound messages 124–126
outbound messages

126–127
Unpooled class 71–72
UnsupportedOperation-

Exception 136
Urban Airship case study

binary protocol
example 220–223

direct to device delivery
223–224

large numbers of concurrent
connections 224

overview 218–220, 225
third-party delivery 220

User Datagram Protocol. See
UDP

userEventTriggered()
method 77

W

WebSocket
defined 216
Droplr case study 213

example application 174,
183–184

general discussion 173–174
implementing support for

adding encryption 184
bootstrapping server

182–183
handling HTTP

requests 175–178
handling WebSocket

frames 178–180
initializing Channel-

Pipeline 180–182
overview 175

WebSocket protocol 144,
155–158

WebSocketFrameDecoder
182

WebSocketFrameEncoder
182

WebSocketServerProtocol-
Handler 157, 181

wrappedBuffer() method 72
writableBytes() method 69
write methods() 68
write() method 47, 79, 86, 88
writeAndFlush() method 24,

47–48, 86
writeInbound() method 122
writeOutbound() method

122–123
writerIndex 56, 60, 62
WriteTimeoutHandler class

159

Z

zero-copy feature 50
Licensed to Thomas Snead <n.ordickan@gmail.com>

Maurer ● Wolfthal

N
etty is a Java-based networking framework that manages
complex networking, multithreading, and concurrency
for your applications. And Netty hides the boilerplate

and low-level code, keeping your business logic separate and
easier to reuse. With Netty, you get an easy-to-use API, leaving
you free to focus on what’s unique to your application.

Netty in Action introduces the Netty framework and shows you
how to incorporate it into your Java network applications. You
will discover how to write highly scalable applications without
getting into low-level APIs. The book teaches you to think in
an asynchronous way as you work through its many hands-on
examples and helps you master the best practices of building
large-scale network apps.

What’s Inside
● Netty from the ground up
● Asynchronous, event-driven programming
● Implementing services using different protocols
● Covers Netty 4.x

This book assumes readers are comfortable with Java and basic
network architecture.

Norman Maurer is a senior software engineer at Apple and a
core developer of Netty. Marvin Wolfthal is a Dell Services
consultant who has implemented mission-critical enterprise
systems using Netty.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/netty-in-action

$54.99 / Can $63.99 [INCLUDING eBOOK]

Netty IN ACTION

JAVA

M A N N I N G

“The fi rst-ever book on
Netty ... shows how to

build a high-performance,
low-latency network

 application.”
—From the Foreword by

Trustin Lee, Founder of Netty

“High-performance Java
network stacks—covered from
concepts to best practices.”—Christian Bach

Grid Trading Platform

“The most comprehensive
content for getting

 the most out of Netty.”
—Jürgen Hoffmann, Red Hat

“An excellent overview of
the Netty framework. Highly

recommended to anyone
doing performance-sensitive
network I/O work in Java.”—Yestin Johnson, Impact Radius

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	Roadmap
	Part 1: Netty concepts and architecture
	Part 2: Codecs
	Part 3: Network protocols
	Part 4: Case studies
	Appendix: Introduction to Maven

	Code conventions and downloads
	About the authors
	Author Online

	about the cover illustration
	Part 1—Netty concepts and architecture
	1 Netty—asynchronous and event-driven
	1.1 Networking in Java
	1.1.1 Java NIO
	1.1.2 Selectors

	1.2 Introducing Netty
	1.2.1 Who uses Netty?
	1.2.2 Asynchronous and event-driven

	1.3 Netty’s core components
	1.3.1 Channels
	1.3.2 Callbacks
	1.3.3 Futures
	1.3.4 Events and handlers
	1.3.5 Putting it all together

	1.4 Summary

	2 Your first Netty application
	2.1 Setting up the development environment
	2.1.1 Obtaining and installing the Java Development Kit
	2.1.2 Downloading and installing an IDE
	2.1.3 Downloading and installing Apache Maven
	2.1.4 Configuring the toolset

	2.2 Netty client/server overview
	2.3 Writing the Echo server
	2.3.1 ChannelHandlers and business logic
	2.3.2 Bootstrapping the server

	2.4 Writing an Echo client
	2.4.1 Implementing the client logic with ChannelHandlers
	2.4.2 Bootstrapping the client

	2.5 Building and running the Echo server and client
	2.5.1 Running the build
	2.5.2 Running the Echo server and client

	2.6 Summary

	3 Netty components and design
	3.1 Channel, EventLoop, and ChannelFuture
	3.1.1 Interface Channel
	3.1.2 Interface EventLoop
	3.1.3 Interface ChannelFuture

	3.2 ChannelHandler and ChannelPipeline
	3.2.1 Interface ChannelHandler
	3.2.2 Interface ChannelPipeline
	3.2.3 A closer look at ChannelHandlers
	3.2.4 Encoders and decoders
	3.2.5 Abstract class SimpleChannelInboundHandler

	3.3 Bootstrapping
	3.4 Summary

	4 Transports
	4.1 Case study: transport migration
	4.1.1 Using OIO and NIO without Netty
	4.1.2 Using OIO and NIO with Netty
	4.1.3 Non-blocking Netty version

	4.2 Transport API
	4.3 Included transports
	4.3.1 NIO—non-blocking I/O
	4.3.2 Epoll—native non-blocking transport for Linux
	4.3.3 OIO—old blocking I/O
	4.3.4 Local transport for communication within a JVM
	4.3.5 Embedded transport

	4.4 Transport use cases
	4.5 Summary

	5 ByteBuf
	5.1 The ByteBuf API
	5.2 Class ByteBuf—Netty’s data container
	5.2.1 How it works
	5.2.2 ByteBuf usage patterns

	5.3 Byte-level operations
	5.3.1 Random access indexing
	5.3.2 Sequential access indexing
	5.3.3 Discardable bytes
	5.3.4 Readable bytes
	5.3.5 Writable bytes
	5.3.6 Index management
	5.3.7 Search operations
	5.3.8 Derived buffers
	5.3.9 Read/write operations
	5.3.10 More operations

	5.4 Interface ByteBufHolder
	5.5 ByteBuf allocation
	5.5.1 On-demand: interface ByteBufAllocator
	5.5.2 Unpooled buffers
	5.5.3 Class ByteBufUtil

	5.6 Reference counting
	5.7 Summary

	6 ChannelHandler and ChannelPipeline
	6.1 The ChannelHandler family
	6.1.1 The Channel lifecycle
	6.1.2 The ChannelHandler lifecycle
	6.1.3 Interface ChannelInboundHandler
	6.1.4 Interface ChannelOutboundHandler
	6.1.5 ChannelHandler adapters
	6.1.6 Resource management

	6.2 Interface ChannelPipeline
	6.2.1 Modifying a ChannelPipeline
	6.2.2 Firing events

	6.3 Interface ChannelHandlerContext
	6.3.1 Using ChannelHandlerContext
	6.3.2 Advanced uses of ChannelHandler and ChannelHandlerContext

	6.4 Exception handling
	6.4.1 Handling inbound exce ptions
	6.4.2 Handling outbound exceptions

	6.5 Summary

	7 EventLoop and threading model
	7.1 Threading model overview
	7.2 Interface EventLoop
	7.2.1 I/O and event handling in Netty 4
	7.2.2 I/O operations in Netty 3

	7.3 Task scheduling
	7.3.1 JDK scheduling API
	7.3.2 Scheduling tasks using EventLoop

	7.4 Implementation details
	7.4.1 Thread management
	7.4.2 EventLoop/thread allocation

	7.5 Summary

	8 Bootstrapping
	8.1 Bootstrap classes
	8.2 Bootstrapping clients and connectionless protocols
	8.2.1 Bootstrapping a client
	8.2.2 Channel and EventLoopGroup compatibility

	8.3 Bootstrapping servers
	8.3.1 The ServerBootstrap class
	8.3.2 Bootstrapping a server

	8.4 Bootstrapping clients from a Channel
	8.5 Adding multiple ChannelHandlers during a bootstrap
	8.6 Using Netty ChannelOptions and attributes
	8.7 Bootstrapping DatagramChannels
	8.8 Shutdown
	8.9 Summary

	9 Unit testing
	9.1 Overview of EmbeddedChannel
	9.2 Testing ChannelHandlers with EmbeddedChannel
	9.2.1 Testing inbound messages
	9.2.2 Testing outbound messages

	9.3 Testing exception handling
	9.4 Summary

	Part 2—Codecs
	10 The codec framework
	10.1 What is a codec?
	10.2 Decoders
	10.2.1 Abstract class ByteToMessageDecoder
	10.2.2 Abstract class ReplayingDecoder
	10.2.3 Abstract class MessageToMessageDecoder
	10.2.4 Class TooLongFrameException

	10.3 Encoders
	10.3.1 Abstract class MessageToByteEncoder
	10.3.2 Abstract class MessageToMessageEncoder

	10.4 Abstract codec classes
	10.4.1 Abstract class ByteToMessageCodec
	10.4.2 Abstract class MessageToMessageCodec
	10.4.3 Class CombinedChannelDuplexHandler

	10.5 Summary

	11 Provided ChannelHandlers and codecs
	11.1 Securing Netty applications with SSL/TLS
	11.2 Building Netty HTTP/HTTPS applications
	11.2.1 HTTP decoder, encoder, and codec
	11.2.2 HTTP message aggregation
	11.2.3 HTTP compression
	11.2.4 Using HTTPS
	11.2.5 WebSocket

	11.3 Idle connections and timeouts
	11.4 Decoding delimited and length-based protocols
	11.4.1 Delimited protocols
	11.4.2 Length-based protocols

	11.5 Writing big data
	11.6 Serializing data
	11.6.1 JDK serialization
	11.6.2 Serialization with JBoss Marshalling
	11.6.3 Serialization via Protocol Buffers

	11.7 Summary

	Part 3—Network protocols
	12 WebSocket
	12.1 Introducing WebSocket
	12.2 Our example WebSocket application
	12.3 Adding WebSocket support
	12.3.1 Handling HTTP requests
	12.3.2 Handling WebSocket frames
	12.3.3 Initializing the ChannelPipeline
	12.3.4 Bootstrapping

	12.4 Testing the application
	12.4.1 What about encryption?

	12.5 Summary

	13 Broadcasting events with UDP
	13.1 UDP basics
	13.2 UDP broadcast
	13.3 The UDP sample application
	13.4 The message POJO: LogEvent
	13.5 Writing the broadcaster
	13.6 Writing the monitor
	13.7 Running the LogEventBroadcaster and LogEventMonitor
	13.8 Summary

	Part 4—Case studies
	14 Case studies, part 1
	14.1 Droplr—building mobile services
	14.1.1 How it all started
	14.1.2 How Droplr works
	14.1.3 Creating a faster upload experience
	14.1.4 The technology stack
	14.1.5 Performance
	14.1.6 Summary—standing on the shoulders of giants

	14.2 Firebase—a real-time data synchronization service
	14.2.1 The Firebase architecture
	14.2.2 Long polling
	14.2.3 HTTP 1.1 keep-alive and pipelining
	14.2.4 Control of SslHandler
	14.2.5 Firebase summary

	14.3 Urban Airship—building mobile services
	14.3.1 Basics of mobile messaging
	14.3.2 Third-party delivery
	14.3.3 Binary protocol example
	14.3.4 Direct to device delivery
	14.3.5 Netty excels at managing large numbers of concurrent connections
	14.3.6 Summary—Beyond the perimeter of the firewall

	14.4 Summary

	15 Case studies, part 2
	15.1 Netty at Facebook: Nifty and Swift
	15.1.1 What is Thrift?
	15.1.2 Improving the state of Java Thrift using Netty
	15.1.3 Nifty server design
	15.1.4 Nifty asynchronous client design
	15.1.5 Swift: a faster way to build Java Thrift service
	15.1.6 Results
	15.1.7 Facebook summary

	15.2 Netty at Twitter: Finagle
	15.2.1 Twitter’s growing pains
	15.2.2 The birth of Finagle
	15.2.3 How Finagle works
	15.2.4 Finagle’s abstraction
	15.2.5 Failure management
	15.2.6 Composing services
	15.2.7 The future: Netty
	15.2.8 Twitter summary

	15.3 Summary

	Appendix—Introduction to Maven
	A.1 What is Maven?
	A.1.1 Installing and configuring Maven
	A.1.2 Basic Maven concepts

	A.2 POM examples
	A.2.1 A project POM
	A.2.2 POM inheritance and aggregation

	A.3 Maven command-line
	A.4 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	Z

	Back cover

