vww allitebooks.conl

http://www.allitebooks.org

Microsoft Dynamics NAV 2009
Application Design

Design and extend complete applications using
Microsoft Dynamics NAV 2009

Mark Brummel

enTerprise
PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Microsoft Dynamics NAV 2009 Application Design

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2010
Production Reference: 1040610

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-84968-096-7
www . packtpub.com

Cover Image by Tina Negus (tina_manthorpe@sky .com)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Author
Mark Brummel

Reviewers
Daniel Rimmelzwaan

Max Traxinger
Jeremy Vyska

Eric Wauters

Acquisition Editor
Rashmi Phadnis

Development Editor
Mayuri Kokate

Technical Editors
Neha Damle

Bhavesh D. Bhasin

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Poorvi Nair

Proofreader
Lesley Harrison

Indexer
Rekha Nair

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

[vww allitebooks.cond

http://www.allitebooks.org

Foreword

The history of the Dynamics NAV application started with a small accounting
product called "PC-Plus" back in 1984. The idea was to create an application suitable
for bookkeepers who had no knowledge of computers. It was done by copying

real life artifacts like paper journals, orders, and invoices and it even had a copy

of a Canon table calculator! "PC-Plus" was an overnight success - but soon a huge
demand for customizations and verticals started developing. After the "PC-Plus"
team developed a vertical for auto repair shops called "Auto-Plus", they realized
that if they had to create all the functionality themselves, their business would never
scale. Therefore, they got the idea to create a product including a base application
and a set of tools suitable for others to build exactly the functionality they wanted.
That was the start of Dynamics NAV as we know it today.

Over the years, the base application evolved. When "PC-Plus" was created, people
loved it for its core G/L functionality —but soon the same people wanted the
same simple solution to help run more of their business and eventually manage
their entire business. This meant that the Dynamics NAV application grew from
being all about finance management to cover manufacturing, distribution, service
management, projects and CRM and is today a fully-fledged ERP solution. Even
though the application has grown, it is still simple and consistent, which makes it
possible for a single developer to overview it, understand it, and build exactly the
necessary functionality.

Michael Nielsen

Director of Engineering, Dynamics NAV,
Microsoft Development Center Copenhagen — Denmark

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Mark Brummel is an all-round Microsoft Dynamics NAV specialist. He started
in 1997 as an end user but quickly moved to the other side of the table. For ten
years he has worked for resellers where designing and maintaining add-on systems
was his specialization. Some of these add-on systems exceed the standard product
when it comes to size and complexity. He has also been coaching colleagues and
troubleshooting 'impossible' problems as a part of day-to-day work. Mark has
trained most of the experienced NAV developers for the NAV 2009 product in The
Netherlands and Belgium and he has been hired by almost every NAV reseller in
the Benelux.

Mark works as a freelancer. His main focus area is to help out end users in
implementations all over the world.

Mark was the first world wide to use the NAV 2009 (CTP3) product in a production
system feeding back valuable information to Microsoft. Today, he is still involved in
projects to provide input for future versions and test new CTP releases.

A special project has been performance tuning of the Dynamics NAV product on
SQL Server. From 2007 to 2009, he was involved in the development of the 'SQL
Perform Tools' as business partner of SQL Perform Benelux. As a unique specialist,
he has done break through research in improving the performance of Dynamics
NAYV on SQL Server.

In his spare time, Mark maintains his blog on www. brummelds.com. This blog
contains a wide range of articles about both the Microsoft Dynamics NAV and SQL
Server product. He is also a frequent speaker at Microsoft events and a writer for
independent Dynamics NAV websites and user groups. In 2006, Mark was rewarded
by Microsoft with the Most Valuable Professional award for his contribution to the
online and offline communities. In 2007 and 2009 he also reviewed "Programming
Microsoft Dynamics NAV" and "Programming Microsoft Dynamics NAV 2009".

[vww allitebooks.cond

http://www.allitebooks.org

Acknowledgement

Just before I was asked to write this book, I sold my company and went back to
freelancing in order to spend more time with my wife Dionel and kids Josephine (6),
Wesley (4) and Saskia (1'2). Therefore, I would like to thank them for allowing me
this great opportunity and challenge. Writing this book has taken the better part of
weekends, evenings, and vacations for a period of almost half a year. I will never
forget this period where daddy is writing a book and Josephine asking, "What is
your book about dad?" (in Dutch of course) and me finding it difficult to explain.

I would also like to thank Packt Publishing for giving me the opportunity to write
a book about the application that I love so much. The people at Packt were very
helpful and patient in helping me explore the life of an author and my continuous
efforts in changing the outline and number of chapters and pages.

I'have tried my best to write a book about the real intention of what Microsoft
Dynamics NAV is. NAV is more than ERP and more than a Development
Environment. It is about simplicity and being able to create applications using a
unique structure and way of thinking.

Many people have helped to get this book at the great level it is. First of all, the
technical reviewers, Daniel Rimmelzwaan, Matt Traxinger, Jeremy Vyska, and
Eric Wauters who have done an excellent job in improving my efforts in writing.
I would like to thank Andrew Good for his help with Chapter 5, Production.

The examples for implementing Microsoft Dynamics NAV in vertical industries in
Chapters 5 and 6 are taken from real implementations and I would like to thank
these companies for taking the time and effort to answer my questions:

e Arseus: Karel Jutte

e Bakery 't Stoepje: Sjacco Nel

e Bosman Medical Supplies: Renate Lukassen

e Rev'it Sport: Bas Stijntjes, Theo van Geel, and Peter Kuypers

e Wildkamp: Albert Smit and Gerard Nijlant

[vww allitebooks.cond

http://www.allitebooks.org

I would like to thank all the people who helped me during the first thirty three
years of my life. Leaving school when I was 18, I studied at the university of life
(sometimes the hard way) with the help of many who guided me in my personal
and business life. Amongst all these people are of course my wife Dionel, my
parents, great parents, brother Rene and sister Anna, and my parents-in-law.

Special thanks go to David and Karen Studebaker. I met them in 2006 at Tech-Ed in
Boston, USA. They have been of invaluable help in bringing structure in my business
and personal life.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Daniel Rimmelzwaan was born and raised in The Netherlands, and moved to the
USA at the end of 1999 to be with his new American wife. In Holland, he worked as
a Microsoft Access and VBA developer. When looking for a job as a VB developer in
the USA, he was introduced to Navision by a "VB Recruiter", and was intrigued by
the simplicity of its development tools. He decided to accept a job offer as a Navision
Developer, with the firm intention to continue looking for a 'real' developer job.

More than 10 years later, a long stint at a Microsoft partner, a few years as a
freelancer, and now back in the partner channel, Daniel is still working with

NAV. He currently works for Archerpoint, one of the largest and most experienced
Microsoft Dynamics NAV partners in the USA, and he is enjoying his career more
than ever.

Daniel has had the opportunity to work in a wide variety of roles such as Developer,
Analyst, Designer, Team Lead, Project Manager, Consultant, and more. Although
he has a very versatile experience with all things related to NAV, his main focus

is custom development, with a bias toward helping his customers solve NAV
performance issues on SQL Server.

Ever since he started working with NAV, Daniel has been an active member of

the online communities for NAV, such as mibuso.com, dynamicsuser .net, and

the online forums managed by Microsoft. For his contributions to these online
communities, Daniel received his first of five consecutive Microsoft Most Valuable
Professional Awards in July 2005, which was just the second year that the MVP
Award was given out for NAV. The MVP Award is given out by Microsoft to
independent members of technology communities around the world, and recognizes
people that share their knowledge with other members of the community.

Daniel lives with his wife and two kids in Michigan in the USA.

[vww allitebooks.cond

http://www.allitebooks.org

Matt Traxinger graduated from the Georgia Institute of Technology in 2005
with a B.S. in Computer Science, specializing in Human Computer Interaction
and Cognitive Science. After college, he took a job as an add-on developer using
a language he was unfamiliar with for a product he had never heard of: Navision.
It turned out to be a great decision.

In the following years, Matt learned all areas of the product and earned Microsoft
Certified Business Solutions Professional certifications in both technical and
functional areas of NAV. He continues to stay current with new releases of the
product and is certified in multiple areas for versions 4.0, 5.0, and 2009.

Currently Matt works in Norcross, GA, for Canvas Systems, one of the largest
resellers of new and refurbished computer equipment as an in-house NAV
Developer and Business Analyst. He supports multiple offices in the United States
as well as locations in the United Kingdom and the Netherlands.

Matt is also writing the NAV Development Cookbook for Packt Publishing which
should be released later this year. In his spare time, you can find him on the online
communities Mibuso.com and DynamicsUser .net under the name MattTrax,
helping others learn more about the Dynamics NAV software.

Jeremy Vyska started his career in Microsoft Dynamics NAV in 2000. Since

then, he has worked with, implemented, and customized almost every functional

area of Dynamics NAV. He has fulfilled many business process roles relating to
Dynamics NAV, including technical sales, requirements gathering, project planning,
implementation, training, support, and of course, development. He has overseen teams
of staff working on a project, as well as co-ordinating of independent resources.

Jeremy has also specialized in add-on and vertical development, which is a different
skill-set than typical client development. Optimizations and maintainability are even
more critical in those products, since partners may need to implement and customize
the solution. He has been on the development and PM teams of at least half a dozen
such solutions that are actively in the market space today, most notably Serenic
Software on their premiere NAV-based solution for non-profits and NGO's.

Currently, Jeremy runs Small Square Services (founded in 2009), providing a wide
variety of services to the worldwide Microsoft Dynamics NAV Partner Channel and
supporting customers throughout the northeast US.

[vww allitebooks.cond

http://www.allitebooks.org

Eric Wauters is one of the founding partners of iFacto Business Solutions www.
ifacto.be. With nine years of technical expertise, he is an everyday inspiration to
its development team. As development manager, he continually acts upon iFacto's
technical readiness and guarantees that he and iFacto are always on top of the

latest Microsoft Dynamics NAV developments. Apart from that, Eric is also very
active in Microsoft Dynamics NAV community-life where he tries to solve technical
issues and thrives to share his knowledge with other Dynamics NAV enthusiasts.
Surely, a lot amongst you will have read some of Eric's posts on Mibuso.com,
Dynamicsusers.net or his own blog www.waldo.be which he invariably signs with
"waldo". In 2008, he co-founded the Belgian Dynamics Community, a platform for all
Belgian Dynamics NAV users, consultants and partners, enabling knowledge sharing
and networking. His proven track record entitled him to be awarded in 2007, 2008,
2009, and 2010 as MVP (Microsoft Most Valuable Professional).

Table of Contents

Preface 1
Chapter 1: Introduction to Microsoft Dynamics NAV 9
Versions and history 9
What is this book about 10
Setup versus customization 1
The beauty of simplicity 12
Horizontal versus vertical solutions 12
Open source 12
Structure of this book 12
The Role Tailored concept 13
The building blocks 15
Tables as user interface and business logic 16
Dynamics NAV in throughout supply chain 19
Some basics 20
Number series 20
Extended text 21
Navigate 22
Setup tables 23
Posting groups 24
Pricing 25
Dimensions 26
Data model principles 27
Master data 27
Journals 28
The general ledger 29
Balancing 31
Flow fields and flow filters 33
More journals and entries 34
Posting Schema 36

Sub and detailed entries 36

Table of Contents

Documents—combining the journals into processes 37
Document structure 38
Document transactions 38

Other structures 38
Relationship management 39
Jobs 39
Manufacturing 40

Summary 40
Chapter 2: A Sample Application 41
Fit-gap analysis 42

Designing a Squash Court application 42

Look, learn, and love 42
Drawing the table and posting schema 43
The Project approach 43
Interfacing with the standard application 43

Getting started 44

Creating squash players 44
CreateVendor versus CreateCustomer 46
Reverse engineering 48

Designing a journal 57

Squash Court master data 57

Chapter objects 58

Reservations 59

The Journal 62
Reservation 63
Invoicing 63

Time calculation 65

Price calculation 67
Squash prices 67
Price calc mgt. codeunit 68
Inherited data 69

Dimensions 70
Master data 71
Journal 72

The posting process 74
Check line 75
Post line 76

Invoicing 78

Invoice document 78
Sales header 79
Sales line 80
Dialog 81

Posting process 82
Analyse the object 83

Lii]

Table of Contents

Making the change 86
Navigate 88
FindRecords 88
ShowRecords 89
Testing 89
Summary 920
Chapter 3: Financial Management 91
Chart of accounts 92
Posting accounts 92
The entry tables 95
Sub accounting 95
General journals 96
Entry application 99
Posting groups 101
Dimensions 104
Budgeting 105
Creating budget entries 106
Accounting periods 107
Closing dates 109
Currencies 109
Consolidation 110
VAT statement 112
Data analysis 112
General Ledger 112
Account schedules 114
Analysis by dimensions 115
The setup 116
Customizing financial management 119
Sales line description to G/L entries 120
Extra fields in the G/L entries 124
Integrating with financial management 125
Creating a G/L transaction 126
The C/AL code 126
Advanced entries 128
Look, learn, and love 129
Summary 130
Chapter 4: Relationship Management 131
How companies work 131
Contacts 132
Salutation codes 135
Alternative addresses 136
Create as 137
Duplicates 137

[iii]

Table of Contents

Search

Profiles
Automatic profiles

Interactions
Automatic interactions
Finished interactions
To-do's
Workflow
Sales stages
Creating an opportunity

Segments
Add contacts
Refine/Reduce contacts
Segment criteria
Mailing groups
Log segment
Campaigns
Pricing
Segments
Activate

Outlook integration
E-mail logging
The setup
Customizing relationship management

Salutation formula types
Add the option
Support the formula
The GetSalutation function
Set up the salutation formula
Test the solution

Customer and vendor numbering
Disabling direct creation of customers and vendors

Sharing contact information across companies
Share tables
Business relations
C/AL code modifications
Number series
Final steps
Alternative approaches

Add contacts to segments
Expand report
Implement criteria filters
Test solution

Summary

138

139
140

142
145
145

146
148
150
151

157
158
159
159
160
161

161
162
163
163

164
164

164
166

166
167
167
168
169
170

170
171

171
171
172
173
174
175
175

176
176
178
179

180

[iv]

Table of Contents

Chapter 5: Production 183
What is production? 184
History of production 184
Production methodologies 184
Raw materials 185
Basic production principles 185
Bill of materials 185
MRP 185
GIGO 186
MPS 186
Item costing 186
Item tracking 186
Quality control 186
Energy and waste 187
APICS 187
Getting started 187
Assembling 188
The table and posting schema 188
The items 189
ltem costing 189
Item tracking 190
The bill of materials 192
Calculate standard cost 193
Creating the inventory 194
Adjusting cost item entries 194
Posting inventory cost to G/L 195
Check, check, and double check 196
Recalculating standard unit cost 196
BOM journal 196
Check costing (again) 198
Recalculating unit cost (again) 199
Standard cost worksheet 200
ltem revaluation journal 201
The result 201
Item costing in ten steps 202
Manufacturing 203
The table and posting schema 203
The items, machines, and work centers 204
Capacity 205
Production bill of materials 206
Routing 206
Testing and low level code 207
Simulation, sales orders, or inventory 208
Calculating MPS and MRP 209
Inventory profile offsetting 211
Calculating a plan 212

[v]

Table of Contents

Production order workflow 213
Purchase orders 214
Finishing production 215
Specialized production 216
Jobs 216
Kitting 216
Sales process 218
Kitting in Microsoft Dynamics NAV "7" 219
Vertical industry implementation 219
Fashion 219
Bill of materials 220
Shipping worksheet 220
Automotive 220
Tooling and amortization 220
ltem tracking 221
Medicines 221
Lot numbers and expiration dates 221
Quality control 221
Food 222
Zero inventory 222
Ordering schedules 222
Furniture 223
Calculations 223
Inventory 224
Summary 224
Chapter 6: Trade 225
The process 226
Wholesale versus retail 226
Sales and purchasing 226
Transaction mirroring 228
Sales 229
Orders 230
Quote and blanket order to order 230
Creating a new sales order 231
Sales header 231
Sales lines 232
Sales line fields 233
Validation flow 233
VAT calculation 237
Invoicing 237
Prepayments 238
Combined invoicing 238
Credit Memo and Return Orders 240
Purchasing 240
Resources 240

[vil

Table of Contents

Drop shipments

Document releasing and approval process

Status

Releasing a document

Manual versus automatic releasing
Document approval

Deleting sales and purchase documents

Data deletion
Deletion of shipments and invoices

Document tables and row level locking

Range locks in documents
UpdateVATOnLines
Inventory management
Items
Locations
Variants
Example
Stock keeping units
Example
Creating SKU function
Sales pricing
Item ledger entry application
Iltem application C/AL routine
Requirements
Value entries
Direct cost
Value entries and general ledger entries
Transfer orders
Example
Requisition journals
Reordering policy
Extending reordering policy
Virtual inventory
Warehouse management
Warehouse strategy levels
Location setup
Warehouse employees
Bin code | level 1
Example
Bin content
Receipt and shipment | level 2
Warehouse request
Limitations
Put-Away and Pick | level 3
Warehouse request
Warehouse activities

240
243
243
243
244
245
245
245
246
246
247
247
248
249
250
251
251
252
252
253
254
254
254
256
257
257
257
258
259
260
261
261
261
262
262
263
263
264
264
265
266
266
267
268
269
269

[vii]

Table of Contents

Level 2 and level 3 comparison 269
Receipt + use put-away worksheet | level 4 270
Whse.- activity register versus whse.-activity-post 271
Directed put-away and pick | level 5 271
Zones and default bins 271

Bin calculation 272
Implementing and customizing warehouse management 274
Reservations 274
Scenario 274
Check-avail. period calc. 275
Always versus optional reservation 276
Reservation entries 277
Creating a reservation 278
Order tracking policy 280
Example 281
Replenishment 282
Trade in vertical industries 283
Fashion 283
Sales orders 283
Reservations 284
Automotive 284
Vehicle Information 284
Parts management 285
Pharmaceuticals/medicines 285
Medication card 285
Contribution invoicing 286
Food 286
Assortment 286
Fast order entry 287
Furniture 287
Variant configuring 288
One-off items 288
Summary 289
Chapter 7: Storage and Logistics 291
How to read this chapter 292
Chapter objects 292
The process 293
Using standard features 294
Defining the modules 294
Storage 295
Logistics 295
Invoicing 295
The storage application 295
Documents 297

[viii]

Table of Contents

Look, learn, and love
Journal
Documents
Master data

Designing the table and posting schema

Sharing tables
Getting started
Opening balance
Products
Warehouse
Regions
Shelves
Registration worksheet
Storage documents
Receipt
Put-away
Shipment
Picks
The logistics application

Designing the table and posting schema

Getting started
Shipments
Routes
Route optimizer
Route follow up

Incidents
Follow up

The invoicing application
Process
Income and expense
Invoicing
Sales Line
Codeunit Sales-Post (80)

Pricing methodology
Storage prices
Calculation
Result

Periodic invoicing
Processing the buffer

Combined invoicing
Add-on flexibility

Value added logistics

Item tracking

Third and fourth party logistics
Summary

297
297
297
298

298
299

299

300

300
301
301
302

302

303
303
304
307
308

31

312

313
313
313
315
317

318
318

319

320

320

322
322
322

323
324
324
326

326
328

330

330

330

331

332

332

[ix]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 8: Consulting 335
The process 336
Fits 337
Gaps 337
Resource groups 337
Time registration 337
ltem calculation 337
Issue registration 337
Getting started 338
How many jobs 338
Job card 339
Job task and planning lines 341
Job journal 342
Job examples 343
Chapter objects 343

1| The new implementation 343

2 | The infrastructure 345

3 | The upgrade 347

4 | The support team 348
Time sheets 348
Data and transaction model 348
Purchasing 350
ltem costing versus work in progress 351
Invoicing 351
Calculating Work in Progress 353
Example 353
WIP post to general ledger 354
Changing jobs 355
Quantity budgeting 355
Resource groups 356
Calculations 358
Issue registration 361
Time sheet 362
Registration 364
Summary 365
Chapter 9: Interfacing 367
Interface types 368
Import and export 368
Manual 368
Data pulling 369
Data pushing 369
Event driven versus timer driven 369
Interfacing technologies 369

File

369

Table of Contents

Automation Control and OCX
OoCX
Automation Control
Events
.NET
Automation wrappers
ODBC/ADO
Reading from Microsoft Dynamics NAV
Writing to Microsoft Dynamics NAV
Talking to other databases
SQL Server interfacing
C/FRONT

Microsoft Message Queue
NAS
Web services
Consuming web services in NAV
Exposing a NAV web service
Consuming a Microsoft Dynamics NAV web service
Client add-ins
Standard application interfaces
Dataport
XMLPort
Office integration
Word and Excel integration
Word Automation
Advanced Excel integration
Outlook integration
Outlook part
ExtendedDatatype property
Mail and SMTP mail Codeunits
Outlook synchronization
Exchange integration
SharePoint
BizTalk
Client Add-ins
Interface methodologies
The scenario
The design
The mapping
The gaps
What if it does not work
The scenario
The interface type
The interface technology
Logging
The design

370
370
370
371
371
371

371
372
373
374

374

375

375
376

376
376
377
377

378

378
378
379

380
380
381

382

384
385
385
386
386
387

388

389

390

392

392

392
392
393
394

394
395
395
396
396

[xi]

Table of Contents

The solution 397
Testing 404
Viewing the results 405
Interfacing into the future 407
SharePoint client in Microsoft Dynamics
NAV Il7ll 408
Microsoft Dynamics CRM 408
Windows Azure 408
Summary 409
Chapter 10: Application Design 411
Application lifecycle 411
Design to use 412
Forms 413
Pages 414
Role centers 416
Reports 419
Design to maintain 419
Naming 419
Quantity versus quality 421
Transformation tool 422
Design to support 423
Second level support 424
Design to upgrade 425
Has Microsoft changed my (referenced) object 425
Some redesign examples 425
Documentation 427
Split operational and financial information 427
Design to perform 427
OLTP versus OLAP 428
Fast transaction posting 428
Job queue 430
Date compression and cleanup 430
Locks, blocks, and deadlocks 432
Impact on development 436
Design to analyze 436
Report design 437
Version and object management 437
What is a version 438
Version numbering 438
Combining versions 438
Creating a version 439
Tracking object changes 439
Development methodology 440
A sample approach 440
Fit/gap analysis 441

[xii]

Table of Contents

Prototyping 441
Development 442
Implementation 444
Maintenance and support 444
The project 445
Standard, customized, or both 445
Add-on products 445
Customizing 446
Total cost of ownership 446
Roadmap to success 447
Summary 447
Appendix: Installation Guide 449
Licensing 449
Installing Microsoft Dynamics NAV 449
Changing the license 450
Restart service tier 451
Installing the objects 451
Importing a FOB file 452
Installing the dynamic link library files 453
Register NavMaps.dll 454
Register VEControl.dll 454
Index 455

[xiii]

Preface

In 1997, the company I worked for was looking for a replacement for their
MS-DOS-based software package. We were very fortunate in finding Navision
Financials 1.1 as a software package that supported the upcoming Windows
platform, and was flexible enough to be implemented supporting our demands.

Even though the standard functionality was nowhere near what we have today,
the structure of the application's design was simple and solid and has not changed
since then.

In the years after that more companies embraced Navision as their answer to the
changing demands in the market, and many vertical solutions that exist today
started their life cycle. With the acquisition of Navision by Microsoft the interest
of new partners grew in to the channel we know today.

The add-on solutions catalogue now has 620 pages with 548 solutions from
208 partners in 36 countries, making Microsoft Dynamics NAV a very popular
development platform to create business software.

Microsoft Dynamics NAV offers a unique development experience that can only be
fully used once you understand how the standard application parts are designed.

When properly licensed, everyone can change how the application works. With
this great possibility comes great responsibility as this means that we can also easily
break important business logic.

This results in a unique need for a designer of applications that run inside Microsoft
Dynamics NAV to know more about the application without going into deep
functional details.

Preface

The balance in this book will be between learning and understanding how the
standard application features of Microsoft Dynamics NAV are designed, and
learning how to use this knowledge when designing our own solutions. The area
between understanding the application's functionality and its technical design is
very thin.

In this book, we will make changes to the standard application and also create
new solutions.

We will also discuss how Microsoft Dynamics NAV can interface with
other applications.

What this book covers

Chapter 1, Introduction to Microsoft Dynamics NAV, will introduce you to Microsoft
Dynamics NAV. We will talk briefly about the history of the application and talk about
the concepts. We will cover some of the basics such as Number Series and Navigation.
Then we will discuss the Data Model principles used by Microsoft Dynamics NAV
using Master Data, Journals, and Ledger Entries covered by Documents.

Chapter 2, A Sample Application, will implement the theory we learned in the first
chapter to make a sample application. The goal of this chapter is to better understand
how Journals and Ledger entries work throughout the system and how to create
your own Journal application. You will learn how to reverse engineer the standard
application to learn from it and apply this to our own customizations. We will
integrate the application with Relationship Management and Sales in Microsoft
Dynamics NAV, and extend Navigation and Dimensions for our solution.

Chapter 3, Financial Management, will explore how the Financial Management part

of the application can be used and how it is designed. You will learn important
concepts such as VAT, Posting Groups, Closing Dates, Entry Application, and
Financial Data Analysis. We will make some changes in the core application by
adding new information to the General Ledger, and learn how to integrate Financial
Management into our add-on solution.

Chapter 4, Relationship Management, will help us to analyze the sales data in our
system and be more productive towards our customers. We will explore the unique
design of this part of the application and integrate this with the sample application
we created in Chapter 2.

[2]

Preface

Chapter 5, Production, will show us how to set up Microsoft Dynamics NAV for
Production companies. We will discuss the BOM Journal, Manufacturing, and
Kitting. Item Costing and Item Tracking are key elements when using this part of the
application. We will look at the Planning Worksheet and how to create Production
orders using Make-to-Order and Make-to-Stock policies. We will reverse engineer
the Inventory Profile Offsetting codeunit and see how this leads to a planning and
Purchase Orders. At the end of this chapter we will look at ten ways to customize
Production for vertical industries.

Chapter 6, Trade, will discuss the relationship between Sales, Inventory Management,
and Purchasing, and how Warehousing can be involved using different levels of
complexity. We will learn how Reservation Entries are used in the system from a
technical perspective.

Chapter 7, Storage and Logistics, will design and build a solution for planning routes
for shipments, a feature that is not available in Microsoft Dynamics NAV. We will
design a solution that can be used by trading companies not only for their own
shipments but also for storage companies. The solution is seamlessly integrated with
the Dynamics NAV product. We will extend the journal knowledge we learned in
Chapter 2 and Chapter 3 with new document structures we learned in Chapter 5

and Chapter 6.

Chapter 8, Consulting, will discuss how to implement the Job functionality using four
example jobs, and extend jobs with an issue registration and timesheet application
using resource groups and calculations.

Chapter 9, Interfacing, will discuss how to design a rock solid business to business
interface. We will show what technologies are available to use for interfacing and
how these technologies are implemented in the standard product. We will discuss

all the built-in interfaces with other Microsoft applications such as Office, SharePoint,
BizTalk, and Exchange.

Chapter 10, Application Design, will focus on the concepts of application design and
how they apply to Microsoft Dynamics NAV. We will focus on Design to Use,
Maintain, Support, Upgrade, Perform, and Analyze. This includes concepts for User
Interface, Version Management, and the Development Methodology.

[31]

Preface

What you need for this book

To successfully follow the examples in this book you will need the following:

e The Microsoft Dynamics NAV 2009 product CD to install the application.

e Ideally you should have a full developers license. This can be obtained by
being registering as a Microsoft Dynamics NAV partner. Alternatively,
most of the example code can be explored using a demo license which can
be downloaded from MSDN.

e Microsoft Office and SQL Server Management Studio for the interface
examples in Chapter 9.

The appendix describes how to install these prerequisites.

Who this book is for

Basically, this book is for:

e NAV consultants and developers
e Designers of business applications
e Application Managers and End Users

e Business Owners and influencers

This book assumes that you have a basic understanding of business management
systems and application development, with a working knowledge of Microsoft
Dynamics NAV or another ERP system.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We need to reverse engineer this code
in order to see what we need to create for our CreateSquashPlayer function."

A block of code is set as follows:

IF Type = Type::Company THEN
ContComp := Rec

ELSE
ContComp .GET(*'Company No.'™);

[4]

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

No. - OnvValidate()

IF "No." <> xRec."No." THEN BEGIN
SquashSetup.GET;
NoSeriesMgt. TestManual (SquashSetup."Squash Player Nos.");
"No. Series" = "%;

END;

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Now
we are in the Action Designer and we can search for the Create as part."

& Warnings or important notes appear in a box like this.
i

!

Q Tips and tricks appear like this.

Where to find the Screens in this book

Most of the screens in the book were created using the Role Tailored Client
introduced with Microsoft Dynamics NAV 2009. Wherever possible or necessary
the Role Center that was used is mentioned. Some chapters had new or modified
Role Centers.

To find a screen, type the name into the search window in the upper right corner of
the Role Center (as shown in the following screenshot). This will tell you where in
the application's menus the screen can be found:

[51]

[vww allitebooks.cond

http://www.allitebooks.org

Preface

Screenshots

All the screenshots in this book were taken from the Role Tailored Client which
was introduced with Microsoft Dynamics NAV 2009.

For most of the images the Action Pane and FactBox Pane were turned off to save
space. This can be done using the Customize option on each page.

How to read the application schemas

Most of the chapters in this book have application schemas to clarify the flow of data
through the system. They are specially designed for this book.

-, 1 -, - E——

r- fi
i F - Fage
Table Ghject C':'F‘;'E et 41 i~ £
{i0ject Mumber) eporl 4 '
10bjact Mumbe) e

., o . A —

To read the schemas follow the arrows. Wherever possible the functional areas are
grouped using boxes. Some schemas might have more starting and ending points
as this is how the application is designed. Multiple master data tables are processed
using normalized business logic.

Number and date punctuation

This book was written by a Dutch author, which means that all the number and date
formatting is done in Dutch formats, for example, 1.000,00 instead of 1,000.00 and
18-10-10 for October 18th 2010.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

[6]

Preface

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www. packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

: Downloading the example code for the book
~ Visit https://www.packtpub.com//sites/default/files/
downloads/0967EN_Code.zip to directly download the example code.

The downloadable files contain instructions on how to use them.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions

of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www. packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

[71

Preface

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[8]

Introduction to Microsoft
Dynamics NAV

Once Upon a Time; this is how fairytales often start and even though the story of
Microsoft Dynamics NAV is anything but a fairytale, it sure has some magic.

With more than 1,350,000 seats and 75,000 installations it is one of the most popular
ERP packages in the mid market. In this book, we will go through the magic of

the Dynamics NAV application. We'll see how Dynamics NAV will give better
information on how our business is doing and better insight into where the processes
can be optimized or need to be changed.

In this chapter, we'll discuss the basic principles of the Microsoft Dynamics NAV
application, how it's structured and why. After reading this chapter, you will have a
better understanding of what to expect when implementing and designing Microsoft
Dynamics NAV.

Versions and history

At the time of publishing this book, Microsoft Dynamics NAV 2009 (6.0) SP1 is the
most recent version of the product. When the Windows version was first introduced
in 1995, the product was called Navision Financials 1.0. The Danish software
company that originally developed the product, Navision Software A/S, was not
yet acquired by Microsoft and it was a revolution. It was a full Windows product
and had all the basic functionality that small companies needed. It is important to
understand that the original version was targeted at smaller companies.

Since then, we have had many (20+) versions. All new versions contained new
functionality and with that, the product has gotten more mature and more suitable
for bigger companies. This was especially empowered with the support of the
Microsoft SQL Server platform allowing more concurrent users to work in the same
application areas.

Introduction to Microsoft Dynamics NAV

Until version 5.0, the technology of the product did not change. The original
intention of Microsoft was to release a new technology platform together with the
new functional changes. This turned out to be a very difficult task so they decided to
split the improvements into two releases. Version 5.0 contains new functionality and
improvements, whilst version 2009 or 6.0 which is the technical release number, is a
technology release.

The technical challenge was to migrate from the old C++ platform to .NET and to
move from a two tier to a three tier technology. This was also the first release with
a drastic change in the user interface. Microsoft Dynamics NAV 2009 contains an
entirely new user interface, the "Role Tailored Client", built new from the ground
up — the existing ("Classic") user interface is the same with no changes. During
this migration process, all application functionality was frozen although small
improvements and bug fixes were made in 2009 SP1.

This book supports functionality from both the 5.0 and 2009 release even though we

decided to use the new 2009 interface for all user interface screenshots and pages for
the development examples. As the development environment is only available in the
classic client, we have taken these screenshots from there.

What is this book about

The title of the book is "Microsoft Dynamics NAV 2009 Application Design".
What does Application Design mean? And what does it mean in Microsoft
Dynamics NAV 2009?

Microsoft Dynamics NAV 2009 is a very complete ERP package, but unlike

other ERP packages it has a design capable of providing an open structure and a
development platform. The idea is to provide 80% of the solution out of the box

and allow the other 20% to be designed by qualified business application developers.

The partner channel is a unique part of Microsoft Dynamics NAV. From the first
moment that Navision was introduced, company management decided that it would
only make sense to have an indirect selling model and to let the resellers (called
partners) have the availability to change the product and add new functionality.

This book is about both the 80% and the 20%. We'll see that the percentages differ
as per the industry where it is applied. Some industries have close to a 100% fit
while others have a need for 80% development.

So there is a thin line in this book between using the standard application and
designing changes and expanding the product. Although this is not a development
book, we'll dive into code and objects in almost every chapter.

[10]

Chapter 1

To understand the code it should be enough to read this chapter but if you want to
know more we highly recommend reading "Programming Microsoft Dynamics NAV
2009" written by David Studebaker and also published by Packt.

This book is not a manual for Microsoft Dynamics NAV 2009. It should give a clear
idea of how the structure of the application is laid out and about its possibilities. We
do not want to replace or rewrite the Microsoft Documentation but rather want to
provide ideas you might not have thought about.

Setup versus customization

In Microsoft Dynamics NAYV, the line between implementing and developing is
very thin. Where you would do a lot of setup in other ERP packages, you'll see
that it often makes more sense in Dynamics NAV to make a change with the
Development Tools.

The standard package is very complete in its functionality but does not support

all industries. It is more a framework for Partners to work with. In this book, we
will explain this framework and what philosophy it is built on. Understanding this
philosophy is critical to knowing how to expand the functionality.

But, expanding the functionality means customizing the application. Do end-users in
2009 still want customized applications? Mostly they will say they don't want their
software customized, but in the next breath, they will say that the software should
change to match their way of doing business, and that they should not have to
change their business to fit the software.

This is why Microsoft pushes their Partners to create horizontal and vertical
solutions on top of the standard product and release these solutions as products with
their own versions like it was part of the standard applications. This way of using
the partner channel is a unique concept that has proven to be very successful and has
made Microsoft Dynamics NAV useable in almost any industry.

Most companies, however, have such a unique way of working that they will always
require more or less customized solutions. The total cost of ownership depends on
the level of customizations and how these customizations are designed.

The key is knowing when to do setup and when to do a customization. Only a
solid understanding of the application will help you determine which is correct.

After reading this book, you will know how to design your application best to have
a good balance between cost of ownership and functionality.

[11]

Introduction to Microsoft Dynamics NAV

The beauty of simplicity

As discussed earlier, the application is designed to be expanded and changed by
external partners. When this Partner program was created, a decision was made that
partners could only do a good job if the application was completely open for them
to add and change. This philosophy is very important to understand when you first
start implementing or changing Microsoft Dynamics NAV.

Partners can change all business logic in the application. They can add new fields to
tables and create their own tables. The only thing they cannot do is delete fields from
the tables in the base application.

As you can see, Microsoft Dynamics NAV is an extremely flexible and open product
with a lot of freedom. But with freedom comes responsibilities. In Dynamics NAV,
you are responsible for the housekeeping in your system.

Horizontal versus vertical solutions

Because of this open system, partners have created thousands of smaller and

larger changes to the system. Some of these changes were bundled into new
functional pieces and called "add-ons". These add-ons are often solutions that
change Dynamics NAV into a product for a specific industry rather than a generic
ERP system. Other add-ons are specific features that can be used in all industries
like EDI or Workflow. Microsoft calls the industry specific add-ons verticals and the
generic add-ons horizontals.

Open source

Even though Dynamics NAV has an open source for their partners, it does not come
fully equipped with a development environment like most developers are used to.
It has a customization tool that lets you customize the application like you would
customize another ERP system with settings. This customization tool is a basic tool
that is nice to work with but misses some development features such as version
control and intellisense. This makes it more difficult to keep track of your changes.

Structure of this book

This book will cover most functional elements of Dynamics NAV in a number

of vertical industries. We will do this in a supply chain matrix. The specific
industries we will look at are fashion, automotive, medicines, food, and furniture.
For production and trade we will look at the general process and we will see how
consultancy and distribution companies help in this process.

[12]

Chapter 1

The following image shows how this book is structured:

g ™
Financial Management | Chapter 3 @\D

- vy

. N O Production | Chapter 5 ; N

Raw Materials & Manufacturing

Fashion Automotive Medci% Food

Wholesale & Retail

Distribution
Chapter 7
Consultancy & Jobs
Chapter 8

&

Trade | Chapter 6

Relationship Management | Chapter 4

For all these industries we will look at what parts of the standard product can be
utilized and where we need vertical solutions. We'll discuss how these vertical
solutions will interface with the standard package or maybe even change the
behavior of the standard product.

Two parts of the product however are so general in their use and usability for
all industries that we'll discuss them in their own chapter. These are Financial
Management and Relationship Management.

To emphasize the strength of the vertical concept, we'll design and create a vertical
solution for a distribution company.

Now we will look at some of the basic concepts of the application.

The Role Tailored concept

With the NAV 2009 release, Microsoft marketing decided to introduce the concept of
Role Tailored ERP. Until now, most ERP systems were module driven, which means
that the application has an area for finance, CRM, sales, purchasing, and so on. The
access to the individual modules was separated. A purchaser needs to switch to sales
in order to see the sales orders.

[13]

Introduction to Microsoft Dynamics NAV

Most people in a company have specialized tasks that the ERP system should
support. In a classic ERP interface, the users would have to decide themselves
which parts they need. This has changed.

i Role Center - Microsoft Dynamics NAV. 0 8 8 0 =) [
uuv ",\ CRONUS International Ltd. » Home » |
A Microsoft Dynamics NAV # Actions - B Reports

Home Role Center
Dottt sl i ~ u My Vendors ~

4 [E Purchase Orders

pending Cont Pre-arrival Follow-up on Purchase Orders Vendor No. Phone No. Name
T Pending Confirmation 01254796 Progressive Home Furnishings
T :a':a"z DE"C"E':_d e e 10000 London Postmaster
T To Send or Confirm n [] New Purchase Order 20000 AR Day Property Management
T Upcoming Orders TeSend Upcom... Edit Purchase Journal 30000 CoolWood Technologies
T Outstanding Purchase O orConf.. Orders
Mot invoiced 31147896 Houtindustrie Bruynsma
7 Not Invoice)
Post Arrival Follow-up 38458653 IVERKA POHISTVO d.0.0.
T Partially Invoiced
B PurchaseQuates @1 . Nt idEEb
Navigate (] way ttems -
[Purchase Blanket Orders 1 [. Mew Purchase Return Order
5 Purchase Invices] S”“ﬁﬂ'" :u,(hase Ttem No. Description Unit Price
urcha... eturn ...

I [Purchase Return Orders L Bioidls R
= Purchase Credit Memos Purchase Orders - Autharize for Payment 70000 Side Panel 30,70
S Soles Orders 1972-W SAPPORO Whiteboard, b... 974,80
= Vendors 70010 Wooden Door 52,10
= hems 5 L]

Not Partially
[E Nenstock ltems Invoiced Invoiced
[Stockkeeping Units
[Z Purchase Analysis Reports e
) “I' Mlicrosoft Outlook -
=l Tnuentnns Anahsic Rennrts

This is a "purchaser's" Role Center. As you can see, all the information needed by this
person in the organization is in one place and usable in a workflow-like way. Also,
the Sales Orders are accessible from the main menu. It is completely different to the
menu found in version 5.0 or before

Purchase [TT] Main Menu EIIEI
ERE] Planning] :
-.[==) Items PurcHasES &
Vendors General Ledger i e
-.[Z Requisition Worksheets ey i L e
Recurring Req. Worksheet e * Yendors * Reports

-..[== Order Planning LContact Management ! o * Documents
= Production Forecasts ® Purchase Joumals

Purchase Orders : ° | = Payment Joumnals o Posted Invaices
RESisale Dides ww_jlnvanlory I * Posted Credit Memos
.= Blanket Sales Orders e i * Requisition Work sheets
=3 Planned Production Orders i i : gll;il::t i * Regsters
=3 Firm Planned Prod. Orders = * Navigate

3 = Orders
Fived Assets
Transfer Orders _._..:._...__.._.1 * |nvoices

* Posted Receipts

m

{3 Reports Human Fes. & Payrol ! * Credit Memos M SE‘-UD- e
-5 Documents ~ Perindic Activities
(-3 Setup

-7 Order P i

= Order Processing Help

Vendors

Cantarte

[14]

Chapter 1

However, the Role Tailored concept is not new. Dynamics NAV partners have been
implementing it for many years. In the classic menu, it was extremely easy to create
new menus and most companies implemented their own menus per role. When the
'Microsoft Outlook' style Menu Suites where introduced in version 4.0, end users
could create shortcut Menu Suites and these also quickly became role centers. You
can clearly see that the role tailored concept is like coming home for Dynamics NAV.

The building blocks

To understand the development examples in this book, we will discuss some of the
basic building blocks of Microsoft Dynamics NAV 2009.

& Object Designer o[| (]
H Table Name M.. Version List Date Time BLOBSize C..
= Payment Terms NAVW15.00 05-11-08 12:00:00 2708 ¥ -
Form i} 4 Currency NAVW16.00 05-11-08 12:00:00 17960 ¥
] Report] 5 Finance Charge Terms MNAVW 15,00 05-11-08 12:00:00 3508 ¥
] & Customer Price Group MNAVW 15,00 05-11-08 12:00:00 1524 ¥
+#+ Dataport a3 7 Standard Text NAVW 16,00 05-11-08 12:00:00 1552 ¥
&) XMLpart] 8 Language NAVW15.00.01 14-08-09 12:00:00 3008 ¢
7 i} 9 Country/Region NAVW16.00 05-11-08 12:00:00 2296 ¥
#4 Codeunit 8 10 Shipment Method NAYW 16,00 05-1108 12:00:00 2 v
My Menusuite] 13 Salesperson /Purchaser NAVW 16,00.01 14-08-09 12:00:00 12112 ¥
] 14 Location MNAVW16.00.01 14-08-09 12:00:00 47064 ¥
FPage] 15 G/ Account NAVW 16,00 05-11-08 12:00:00 29052 ¥
i} 17 G/LEntry NAVW16.00 05-11-08 12:00:00 11768 ¥
i} 18 Customer NAVW16.00.01 14-08-09 12:00:00 73556 ¥ -
Mew] l Design J l Run] l Help

Like all database applications, it starts with tables. They contain all the information
displayed in a structured way. It is important to understand that the tables of
Microsoft Dynamics NAV are not completely normalized. The tables are structured
in the way the user interface works. This makes it easy for non- technical people to
understand the data model. We'll discuss the unique structure of the application in
the next chapter.

Tables, however, not only contain data, they contain business logic as well. As they are
structured like the functionality in the database, tables contain simple functions like
address validation, and more complex functions for VAT and discount calculation.

Whenever functionality gets more complex or can be shared across the application, it
is better to move them to the Codeunit object. These are containers of business logic
for a special purpose.

[15]

Introduction to Microsoft Dynamics NAV

For the user interface there are three object types: Forms, reports, and pages.

The first and latter are intended for user input. Reports are originally intended to
be printed on paper but with the current status of technology, they are more and
more used as information dashboards combining management information with
drill-through possibilities.

Forms and pages are tightly linked to each other. Each form object has a page object
with the same number and name. The form object is used in the 'Classic Client' only
whilst the pages are used in the 'Role Tailored Client'.

The report object is used in both interfaces but has two layouts —a black and white
layout for the Classic client and a RDLC layout for the Role Tailored client that
supports colors and graphs.

As the tables are structured in the way the application works, the forms and pages
are bound to one table. For people new to this concept, it sometimes takes a while
to get used to this.

The Menu Suite defines the way the navigation is structured when people leave their
Role Centers, or when using the Classic Client which does not support Role Centers.

The last two object types are external interfacing objects. Data ports and XML ports
make it possible to import and export data in and out of the system.

For this book, the table and page objects are the most important to understand. Most
of this book, however, can also be applied to older versions but then forms should be
applied wherever this book addresses pages.

Tables as user interface and business logic

The table object in Microsoft Dynamics NAV is very important. As it is not
normalized, it contains a lot of information about how the database works.

For example the Job Card (88) is built on one table, the Job (167). This table
contains all fields required for this screen.

[16]

Chapter 1

| H JobTasklines i PostWIPfo G/L

Process

DEERFIELD, 8 WP - Setting up Eight Work Areas

i Edit - Job Card - DEERF[ELD_J}“WP %mng up&ght Wnil:k Areas

- Planning Lines

~ | | Job Details - No. of Prices

[WIP and Recognition

General A
No.: DEERFIELD, & Bill-to City: Gloucester - Job No.: DEERFIELD, 8 WP
— Resource: 0
Description: Setting up Eight Work A... Bill-to Country/Region Code: GB - Ttem: 0
Bill-to Customer No.: 40000 - Bill-to Contact: Mr. Kevin Wright G/L Account: 0
Bill-to Contact No.: - Search Description: SETTING UP EIGHT WO... Notes A
Bill-to Name: Deerfield Graphics Com... Person Responsible: MARY - Click here to create a new note.
Bill-to Address: 10 Deerfield Road Blocked: -
Bill-to Address 2: Last Date Modified: 27-1-2011
Bill-to Post Code: GL1 8HM -
[Post'mg 25 1
Job Posting Group: SETTING UP - Status: Order - i
WIP Method: Cost Value - Allow Schedule/Contract Lines:
[Duration o3 1
Creation Date: 9-12-2010 Ending Date: 4-2-2011 -
Starting Date: 17-1-2011 -
[Fareign Trade ~ 1
Currency Code: - Exch. Calculation (Cost): Fixed LCY -
Invoice Currency Code: - Exch. Calculation (Price): Fixed FCY -

In a traditional development environment this screen would have a transaction

GetJobData and UpdateJobData. These transactions would read the information
from the database, map them to the screen, and save the information in the database
if the user if finished. However, in Microsoft Dynamics NAV, all fields that are
displayed in the interface are stored in one table. This makes it possible for the screen
to have built-in triggers to get the data and update the database.

[17]

Introduction to Microsoft Dynamics NAV

The table object then contains the business logic required for this document. Let's
have a look at some of the fields in this table.

{= Table 167 Job - Table Designer [=] (]

E.. Field Ma. Field Mame Data Type Length Description

bV 51 Bill-to City Text 50 -
v 63 County Text 30
v &4 Bill-to Post Code Code 20
v 66 Mo, Series Code 10
v 67 Bill-to Country/Region Code Code 10
4 68 Bill-to Name 2 Text 50 E
v 1000 WIP Method Option 3
v 1001 Currency Code Code 10
v 1002 Bill-to Contact Mo. Code 20
v 1003 Bill-to Contact Text 50
v 1004 Planning Date Filter Date bt

In this table you will see see a lot of fields that are required for a Job like WIP
Method, Currency Code, and so on. But when we click on the C/AL Code icon
and focus on Currency Code we get this.

A Y e 36 (W)
C/AL Code (Fg)I—

Currency Code - Onvalidate()
IF "Currency Code"™ <> xRec.'Currency Code" THEN
IF NOT JobLedgEntryExist THEN
CurrencyUpdatePlanningLines
ELSE
ERROR(Text000,FIELDCAPTION('Currency Code'),TABLECAPTION);

It contains business logic that gets executed every time something happens with this
field. In this case, the currency factor is recalculated and updated in the Sales Lines.

So, the tables in Microsoft Dynamics NAV are not just data containers, they are the
foundation for both the business logic and the application workflow.

[18]

Chapter 1

Dynamics NAV in throughout supply chain

The Dynamics NAV product is used almost everywhere in the business supply
chain. This is mainly because it is a highly customizable ERP system. Dynamics NAV
is used in the classical supply chain companies like manufacturing plants, wholesale
companies, and in retail with or without many changes. But with an add-on, the
product is also used in transportation companies or in the recycling industry.

In order to understand this better, it is important to know how companies work.
A company is a person or a group of persons using materials and resources to
deliver a product or a service to other companies or end consumers. A group of
companies working together is called a supply chain. Dynamics NAV can be used
in all these companies although it is traditionally used in companies with 5 to 250
concurrent users.

In order to serve this process, Dynamics NAV has a list of basic modules:

¢ Financial management: Traditionally, financial management was used
in companies to comply with federal regulations of bookkeeping. For
entrepreneurs starting their business, this is usually the part they least like.
However, good bookkeeping can give a clear view on the company's well
being and support strategic decisions with good financial information.

¢ Inventory: Every company that grows will reach a certain point where it is
no longer possible to handle inventory without a system. Keeping too much
inventory is expensive. A good inventory system can help you keep your
stock management as efficient as possible.

¢ Relationship management: When it comes to people, a company is not only
dealing with customers and vendors. RM will help you keep track of every
company and person your company is dealing with.

e Sales: The sales process is usually the place where businesses make money.
The system will help you keep track of orders that your customers place.

e Purchasing: The purchasing department is usually split in two pieces. One
piece is the purchasing of goods the company needs for itself. This facility
management can grow into a business of its own at large companies. The
other purchasing part is buying the materials and resources you need for
your sales process. For some trading companies, this can even be a drop
shipment process where you never have the purchased goods in house.

e Warehouse management: Warehouses are getting bigger and bigger, making
the need for a system that supports the picking and put-away process even
greater. This is usually tightly connected to the sales and purchasing process.

[19]

Introduction to Microsoft Dynamics NAV

¢ Manufacturing: When you make products yourself, you need a system
that helps you create a new item from one or more purchased materials
and resources.

e Jobs: In some companies the process of delivering a service is so complex
that it requires its own administration process. Time and billing is usually
a very important process for these companies.

e Service management: This supports the service process handling warranty
and necessary periodical maintenance of your items.

Some basics

Microsoft Dynamics NAV has some basic structures that are reused throughout
the application and are necessary to understand before you read the rest of this book.

Number series

Databases need unique records. The application has two ways of making
this happen.

Some tables have automatic incremental numbering that cannot be influenced.
These are often accounting tables that have auditable purposes. Examples of
these tables are G/L entries, G/L registers, and VAT entries.

The other way is using a flexible alphanumeric code. In some setup tables, users
are free to create their own numbers, like in the location table, but most of the
time, number series functionality is used. These can be influenced by the end user
depending on their access rights. Let's have a closer look at those:

)
i View - No. Series (] D [

Related Information =

Description Starting No. | Ending Mo. | LastDate.. LastMo.U.. Default Mos. Manual Mos. Date Order

| BANK BO10 B990 il Ell 0
] BOM Journal B000OL B01000] 3

BIML-REC ~ Recurring BOM Journal B01001 B02000 = - E
CaMP Campaign CP000L CP9993 E i
CONT Contact CT000001 CT100000 1-1-2010 CT000141 B
CUST Custormer 00010 99990 B
EMP Employee E00LO E9990 =]
FA Fixed Asset FA000010 FA993930 FADD0030 (=]
FAJML-.. Fixed Asset Journal FOO001 FO1000 =]

[20]

Chapter 1

Users can define their own numbering, usually starting with an alphanumeric
character. Numbering can be done automatically, manually, or in a combination.
Numbers can have a starting date and incremental number. This way you can
number your Sales Invoices SI11-0001. SI means Sales Invoice. 11 means 2011 and
0001 is the incremental number.

Number series can be linked to each other making it possible to have a different
number series for national and international customers.

Extended text

Most master data tables in Microsoft Dynamics NAV have two description fields but
it is possible to add extra text.

The text can be defined for all languages in the system and valid for a specific period.

We can enable or disable using the text for most documents available in the system, so
we can have a long text for the Sales Quote and a shorter text for the Sales Invoice.

Ay Edit - Bxtended Text - 766BC-A CONTOSO Conference System 1

766BC-A CONTOSO Conference System 1

General -
Language Code: - Starting Date: -

All Language Codes: Ending Date: -

Lines ~

Text =

The conference package contains

one table, twelve black chairs,

and one whiteboard.

Sales A |
Sales Quote: Sales Credit Memo:
Sales Blanket Order: Reminder:
Sales Order: Finance Charge Memo:
Sales Invoice: Prepmt. Sales Invoice:
Sales Return Order: Prepmt. Sales Credit Memo:
Purchases v
Service v

[21]

Introduction to Microsoft Dynamics NAV

Navigate

The main reason Microsoft Dynamics NAV consultants like you to use numbers as
SI11-0001 is the Navigate functionality. This functionality makes it possible to find
all information in the database linked to this document. If you were to call your Sales
Invoice 110001 and your Purchase Invoice the same, the system would not be able to
find the correct information.

Ay Edit - Navigate

Process

| General

Document MNo.: 103006

Posting Date: 15-01-11]

| Source L

Document Type: Posted Sales Invoice
Source Type: Customer
Source Mo 42147258
Source Mame: BYT-KOMPLET s.r.o.

[Document Entry -~ I
Ta_b|e|\|ame _NoofRec A
Posted Sales Invoice
G/L Entry
VAT Entry
Cust. Ledger Entry

Detailed Cust. Ledg. Entry

I N

Value Entry

“[General l ‘External liﬂnTﬂl—- ‘

When Navigating on Posted Sales Invoice 103006 in the CRONUS Demo database,
we get all the information that is linked to this number.

Navigation shows both documents and entries. Using the Show option, we can drill
down into the records and go even deeper into the information.

[22]

Chapter 1

Setup tables

An ERP application can be used in many different ways and to make it work in the
way we want, we need to set it up correctly. We already discussed that Dynamics
NAYV has far less setup work required than other ERP packages and is more likely
to be changed but nonetheless, there is setup work to do.

Every part of the application has its own setup table. There are also some
application-wide or cross application setup tables. During the implementation,
we need to make sure to touch all of these tables. Changing these setups after the
implementation should be done with great care.

This list shows all Microsoft Dynamics NAV setup tables grouped by type.

Specific setup tables

Application wide setup tables

General ledger setup

Sales & receivables setup
Purchases & payables setup
Inventory setup

Resources setup

Jobs setup

Marketing setup

Human resources setup
Production schedule setup
FA setup

Nonstock item setup
Warehouse setup

Service mgt. setup

Manufacturing setup

Source code setup
Change log setup

SMTP mail setup
Approval setup

Job queue setup

Online map setup
Interaction template setup
Employee portal setup
Notification setup

Order promising setup

BizTalk management setup

[23]

Introduction to Microsoft Dynamics NAV

When we open a setup from the application, we see several options, including the
numbering we discussed earlier.

T EE)
& Edit - General Ledger Setup il & 2 i e C * il il =
General Ledger Setup
General £3
Allow Posting From: | - EMU Currency: H
Allow Posting Toe - LCY Code: GBP
Register Time: [l Pmt. Disc. Excl. VAT:
Local Address Format: Post Code+City - Adjust for Payment Disc.: =
Unrealized VAT:
Local Cont. Addr. Format: After Company Name » nreslize o
Prepayment Unrealized VAT: [l
Inv. Rounding Precision (LCY): 0,01 i
Max. VAT Difference Allowed: 0,00
Inv. Rounding Type (LCY): Mearest
9 Type (LEV) T VAT Rounding Type: Mearest -
Allow G/L Acc. Deletion Before: - i -
Bill-to/Sell-to VAT Calc.: Bill-to/Pay-to No. -
Check G/L A t Usage:
& ceount Hsage O Print VAT specification in LCY: 7]
Numbering “~
Bank Account Nos: BANK .
Dimensions w
Repaorting hd
Application v

Posting groups
Microsoft Dynamics NAYV is very flexible in its posting to the General Ledger. This is
set up in posting groups. These form a matrix which is filtered out by the application.

Most application areas have one or more posting group tables:

e Customer posting group

e Vendor posting group

¢ Inventory posting group

e Job posting group

¢ Gen. Business posting group
¢ Gen. Product posting group

e Bank account posting group

e VAT business posting group

[24]

Chapter 1

e VAT product posting group
e FA posting group

We'll discuss posting groups in more detail in Chapter 3,
& Financial Management.

Pricing
When it comes to pricing and discounts, Microsoft Dynamics NAV has a very
simple, yet effective way of calculating prices.

All sales and purchase prices are stored in four simple tables.

e 7002—Sales Price

e 7004 —Sales Line Discount

e 7012 —Purchase Price

e 7014 —Purchase Line Discount

The system finds the appropriate price by filtering down in these tables. The
narrower the filter, the more likely the price is applied.

4 Edit - Sales Prices Ry G R Ll—wz Cl
General

Sales TypeFilter: Mone - Starting Date Filter: |

Sales Code Filter: Currency Code Filter: -

Itern No. Filter: v
Sales Type Sales Code Item Mo, Unit of Meas... Minimum Quant... Unit Price Starting Date Ending Date
All Customers ~ 1936-5 0,00 143,90 21-1-2011
All Custorners 1972-W 0,00 843345 1-1-2011

For example: The normal price of item 1972-W on the item card is 974,80 but from
1-1-2011 it is 843,345.

The filtering is done in Codeunits Sales Price Calc. Mgt. (7000) and Purch. Price Calc.
Mgt. (7010). We'll discuss this structure in Chapter 2, An Example Application where
we will also create such a structure for our own application.

[25]

vww allitebooks.conl

http://www.allitebooks.org

Introduction to Microsoft Dynamics NAV

Dimensions

Throughout the application, an unlimited number of dimensions can be used to
analyze the data. These dimensions are inherited from master data tables.

Ay Edit - General Ledger Setup # F * ﬂ “ e
% Actio
General Ledger Setup
| General v
Numbering v
Dimensions -
Global Dimension 1 Code: DEPARTMENT Shortcut Dimension 4 Code: AREA -
Global Dimension 2 Code: PROJECT Shortcut Dimension 5 Code: BUSINESSGROUP -
Sherteut Dimension 1 Code: DEPARTMENT Shortcut Dimension 6 Code: SALESCAMPAIGN -
Shortcut Dimension 2 Code: PROJECT
i i Shortcut Dimension 7 Code: -
Shortcut Dimension 3 Code: CUSTOMERGROUP -
Shortcut Dimension 8 Code: -
Reporting v
Application

The application has two global dimensions that are directly posted into each
transaction. Six other dimensions can be defined as shortcut dimensions to be
directly used in journals and documents. An unlimited number of additional
dimensions can be added but need to be accessed with additional effort.

_d Edit - Sales Order - 101005 - John Haddock Insurance Co. S i [E=REE>)
’ Actions - kE Related Information - ¢
101005 - John Haddock Insurance Co.
General # =~ * | Customer Sales Hi... A
Nou: 101005 Document Date: 13-1-2011 - Customer No: 30000
Quotes: 0
Sell-to Customer No.: 30000 - Requested Delivery Date: - Pl P 0
Sell-to Customer Name: John Haddock Insurance Co. External Document o.: Orders: 5
Sell-to City: Manchester - Salesperson Code: Ps - Ll o
Return Ordlers: 0
Posting Date: 28-1-2011 - Status: Released o P G
Order Date: 13-1-2011 - Pstd. Shipmen... 5
. Pstd. Invoices: 2
(%) Show more fields Pstd. Return R... 0
5| | pstd. Credit M... 0
Lines Fooa
|| Department Code Project Code Customergroup Code Ares Code Businessgroup Code Salescampai.. Shortcut Di.. Shortcut Di. = |§ esling Dot 249
7 TSALES MEDIUM 30 HOME i RI=lkic 1820-5
3 Availability: 3

This screenshot shows how Global and Shortcut Dimensions can be used in a
Sales Document.

[26]

Chapter 1

As discussed earlier, Microsoft Dynamics NAV has built-in OLAP possibilities. It
allows us to create cubes to be analyzed within the application or in SQL Server
analysis services. .

(o " —
My View - Ana[yfis View List .

’ Actions ~

| ® Edit Analysis View

® Update

Process

|| Analysis View List ~ 7 | - | Code)
: Sorting: Code = %l‘ Mo filters applied
Mame L. \lastDate.. Dimension.. Dimension.. Dimension.. Dimension...
Campaign Analysis (Retail) [7] 14-8-2009 SALESCA.. AREA BUSINESS... SALESPERS...
CUSTOMER Custormner Group Analysis 7] 14-8-2000 AREA CUSTOME...
DEPTEXP Departmental Expenses 14-5-2009 DEPARTM...
REVENUE Sales Revenue 14-8-2009 AREA DEPARTM... PROJECT

Although the cubes can be updated real time during posting, it is highly
recommended to update them periodically in a batch. Also, the number of
dimensions has an impact on the performance of the system.

Data model principles

Microsoft Dynamics NAV has some specific data model principles that are very
important to understand before you can create your own structure. The building
blocks are layered and reused and rely on each other in order to secure data integrity.

Master data

The data model starts with master data. There are three types or levels of master
data. They are all used in transactions. We differentiate helpers, core, and umbrella
master data.

Examples of helper master data are Currencies, Locations, and Payment terms.
They often do not use a number series but allow us to create our own unique codes.

Examples of core master data are G/L Accounts, Customers, Vendors, Items,
Resources, and Fixed assets. They are numbered using number series and have
their own journal structure.

Umbrella master data consists of data tables such as Contacts, Jobs, and Production
orders. They allow us to group other master data and documents.

[27]

Introduction to Microsoft Dynamics NAV

The combination of all above combine the information allows us to quickly analyse
the created data.

Journals

Every transaction starts with a journal. Each journal can contain a number of sub
transactions that are treated by the system as one. This way the system is able to
check, for example, if the integrity of the system is maintained after the transaction
is completed.

This diagram shows how a journal is structured. PK means Primary Key which is
the unique identifier of the table.

lournal Template Journal Batch Register
PK | Mame PK |Journal Template Name PK | Entry No.
PK | Name
Description —» From Entry No.
Source Code Description To Entry No.
Reason Code Source Code Creation Date
Reason Code Source Code

User ID
lournal Batch Name

1

lournal Line Entry
PK [lournal Template Mame PK |Entry No.
PK |lournal Batch Name
PK |Line No. Mo,
—— | Quantity
Mo, Amount
Ciuantity lournal Batch Mame
Amount lournal Template Name
Entry Mo, Source Code
Source Code Reason Code
Reason Code

Every journal can contain one or more templates with one or more batches, allowing
multiple users to have multiple templates and batches. A journal line has a source
number field that refers to, for example, the G/L Account number or the Item
number we are changing. When we post the journal, the changes are stored in the
entry table and a register is maintained for all the lines for the journal allowing
auditors to check if the transactions are consistent.

[28]

Chapter 1

The general ledger

To see how this works in the application we can best go to the Chart of Accounts
and the General Journals.

4 Chart of Accounts - Micrasoft Dynamics NAY

@) » Departments » Financial Management » General Ledger » Chart of Accounts

Indent Chart of Accounts B Detail Trial Balance
8 Depriment Z8 G/ Register M Trial Balance
%! Departments =
| . 7 Financial Management I 7 /L Register
General Ledger [Report
Cash Management Chart of Accounts =
Recsnal Sorting: Mo, * f1i No filters applied
Payables
Fixed Assets No. Name L. A.. Totaling Net Change Balance
Inventory 1000 BALAMNCE SHEET B. H
b Periodic Activities g2 S BoIES
b @ Sales & Marketing 1003 Fixed Assets B.. | B..
I 4 Purchase 1005 Tangible Fixed Assets B f:Bi
b Bl Warehouse 1100 Land and Buildings B. B.
b |#% Manufacturing 1110 Land and Buildings B)P 1.479.480,60 1.479.480,60
i 1120 Increases during the Year B.. P. 147,73 147,73
[} Resource Planning 1130 Decreases during the Year B.. P.
v Eji Service 1140 Accum, Depreciation, Buildings B.. P. -526.620,38
3% Human Resources 1190 Land and Buildings, Total B.. E. 1100.1190 953.007,95
i Administration

Posting Date

Document...

1140 A.:cum_: ermclahcn, Buildings

mation -

Document.. G/L Accou... Description

| C31-12-2009 START 1140 Opening Entry -340.556,22 G/l Account]
C31-12-2009 START 1140 Opening Entry -6292495 G/L Account 6
31-12-2010 00-12A 1140 Depreciation 2010 -62.324.37 G/L Account 2342
31-12-2010 00-12A 1140 Depreciation 2010 -60.814,84 G/L Account 2346

Bal. Accou...

B...

If we select G/L Account 1140 and drill down, we see the details of this record.

[29]

Introduction to Microsoft Dynamics NAV

These are created through journals, so let's open a journal.

1 Edit - General Journal - DEFAULT
ione + {1 Related Int

b S
Postand .

* Print

rmation. T

Dimensions

2 Apply Entries

Standard Journals
“# Save as Standard Journal

Process

DEFAULT

ch Name:

Document No. Acc.. Gen. Bus. Po... Gen.P.. Amount Bal Account.. Bal Account.. E*

Posting Date D..
2812011
2812011
28-1-2011
28-1-2011
2812011
28-1-2011
28-1-2011
2812011
28-1-2011
28-1-2011

00001
500001
600001
600001
500002
600002
600002
500002
500002
600002

Account Type
G/L Account
G/L Account
G/L Account
Bank Account
G/L Account
6/L Account
G/L Account
G/L Account
G/L Account
G/L Account

1220
8210
8210

WW..

5710
5750
8510
5710
5750
8510

Description
Packing Machine 2011

Boxes for Packing Machine 2011
Glue for Packing Machine 2011
Materials for Packing Machine 2011
Invoice ne. 156786 for Gasoline 2011
Tnvoice no. 156786 for Gasaline 2011
Tnvoice no. 156786 for Gasaline 2011
Invoice ne. 156786 for Gasoline 2011
Invoice no. 156786 for Gasoline 2011
Tnvoice no. 156786 for Gasaline 2011

Gen. Posting...
Purchase
Purchase

Purchase

Purchase

Purchase

MNATIOMNAL
MATIONAL
NATIONAL

NATIONAL

MNATIONAL

MISC
MISC
MISC

11097
2462
775

163,34
1241

620
2275
580
280

4]

G/L Account
G/L Account
G/L Account
G/L Account
G/L Account
G/L Account
G/L Account
G/L Account
G/L Account
G/L Account

Account Name
Increases during the Vear

Bal. Account Name

Balance

11097

Total Balance
0,00

This journal contains two documents on the same posting date and the balance is zero.
When we post this journal, the system will create the ledger entries and a register.

| i View - G/L Registers

- B

FE Reverse Register &, Maintenanceledger | B Detail Trial Balance
o e BE: Bank Accountledger By VAT Entries B Trial Balance by Period
Ledger Ledger Ledger B Fived Asset Ledger 78 G/L Register
Proc Report
G/L Registers - Type i = | No. - @ I
Sorting: No. v %[No filters applied
No. Crestion D... UserID Source Code Jounal Bat.. FromEntry.. ToEntryNo. FromVAT.. ToVATEn.. e
17 6-4-2010 MARK PURCHASES 2784 2785 884 884
118 6-4-2010 MARK PURCHASES 2786 2787 885 885
119 3-4-2010 MARK PURCHASES 2788 2790 386 836
! 120 8-4-2010 MARK PURCHASES 2791 2793 887 887
: 121 8-4-2010 MARK SALES 2794 279 888 888
| 11-4-2010 MARK GENJNL DEFAULT |§T?97 2816 : (B [
[~ Select - General Le - 1220 Increases during the Year b
Sd__:g & Actions - [Related Information -
] Document N... /L Account... Description Amount Bal. Adgunt.
600001 1220 Packing Machine 2011 BETE G/l Accolng
600001 5630 Packing Machine 2011 2219 G/l Account
G0000L 8210 Boxes for Packing Machin... 1970 G/L Account
600001 5630 Boxes for Packing Machin... 492 G/L Account
600001 8210 Glue for Packing Machine ... 2220 G/L Account
600001 5630 Glue for Packing Machine ... 555 G/L Account
600001 5310 Materials for Packing Mac.. 16334 G/L Account
600002 5710 Invoice no, 156786 for Gas... 1241 G/L Account
600002 5750 Invoice no. 156786 for Gas... 620 G/L Account
600002 2510 Invoice no. 156786 for Gas... 1820 G/L Account |
. 600002 5630 Invoice no, 196786 for Gas.. 455 G/L Account | 2807 , r
ok [cancel

[30]

Chapter 1

This is the basic building block for Dynamics NAV. Everything in Dynamics NAV is
built on top of a journal, registers, and entries.

r.

Gl Account }>5IFT GjL EIILr'}
l [Talle agh (Tabde 13

w
— - F

I R

Gen. Journal Line GiL Register
l 7able 8} (Fable 223
Balancing

In any ERP system, totaling and balancing is crucial, whether you are totaling
the general ledger, customer payments or inventory, it is important to know the
balance of each Account, Customer, or Item.

Traditionally, this requires calculating these balances and deciding a place to
store the totals and subtotals. Not in Dynamics NAV. The system has built-in
technology that will handle balancing and totaling for you, without effort and
cost of performance.

This built-in technology is called Sum Index Flow Technology, SIFT in short.
For Dynamics NAV it is the key feature to its success.

The way it works is that, as a developer, you define your totaling on an index level.
By associating the totaling fields with a key, the system knows that it has to maintain
the totals for you.

In the original proprietary database, this technique was built-in and invisible for
the user but in the SQL Server database, we can see how it works.

[31]

Introduction to Microsoft Dynamics NAV

If we go into the CRONUS database and open the G/L Entry table with its keys ,we
see this information.

Table 17 G/L Entry - Keys [l ===
E.. Key SumIndexFields
¥ Entry No. -
» |¥ G/L Account MNo.,Posting Date E] Amount,Debit Amount, Credit ...
¥ G/l Account No.,Global Dimension 1 Code,Global Dimension 2 Code,Posting Date Amount,Debit Amount, Credit ...
¥ GfL Account Mo, Business Unit Code,Posting Date Amount,Debit Amount,Credit ...
¥ GjL Account Mo, Business Unit Code, Global Dimension 1 Code, Global Dimension 2 Code,Posting Date Amount,Debit Amount,Credit ...
¥ Document Mo.,Posting Date
¥ Transaction Mo.
¥ IC Partner Code
v GjL Account No.,Job No. Posting Date Amount

Let's take key number two as an example. The key contains the fields G/L Account
number and Posting Date. If we take a closer look at the SumIndexFields column,
we see the following fields listed.

Field List [E=HHoR|™>
Field
Amount -
Debit Amount
Credit Amount

Additional-Currency Amount
Add. -Currency Debit Amount
Add.-Currency Credit Amount

| (%]

[K] [Cancel] [Help I

Notice that these are all fields of type decimal. This is mandatory for
Sumindexfields.

R From the SQL Server Management studio you can see the generated data
~ from the SumlndexField definition. Each key with a SumIndexField
Q generates a view in the database. In older versions (prior to 5 SP 1) the
SumIndexFields are saved in tables.

[32]

Chapter 1

So now we know that we do not have to worry about maintaining the totals, we can
spend our time on what's really important.

Flow fields and flow filters

As discussed earlier, screens in Microsoft Dynamics NAV are built directly on one
table. These table definitions contain all fields including the totals. However, these
totals are not real database fields.

This can be illustrated by comparing the table definition in Microsoft Dynamics
NAYV to the table definition in the SQL Server.

BRUMMELDS05.200._.td_$G L Account Table 15 G/L Account - Table Designer E"E
Column Name Data Type Allow Mulls
? MNo_ varchar(20) E..FieldMo. Field Name Data Type Length
Name varchar(30) Ldhg 1| Mg. Code 2
v 2 Mame Text 30
[Search Name] varchar(30) v 3 Search Name Code 0
[Account Type] int v 4 Account Type Option
[Global Dimension 1C... varchar(20) v & Global Dimension 1 Code Code i
[Global Dimension 2 C... wvarchar(20) v 7 Global Dimension 2 Code Code 20
Income Balance int v 9 Income/Balance Option
Deb‘t_c_re it nt v 10 Debit/Credit Option
v 11 Mo. 2 Code 20
Me_3] varchar(20) v 12 Comment Boolean
Blocked tinyint v 13 Blocked Boolean
[Direct Posting] tinyint v 14 Direct Posting Boolean
[Reconciliation Account] tinyint v 16 Recondiiation Account Boolean
[New Page] tinyint v 17 Mew Page Boolean
[No__ of Elank Lines) int v 18 Mo. of Blank Lines Integer
v 19 Indentation Integer
Indentatien int v 26 Last Date Modified Date
[Last Date Modified] datetime v 28 Date Filter Date
Totaling v 29 Global Dimension 1 Filter Code 20
[Consol_Translation ... v 30 Global Dimension 2 Filter Code 20
[Consol_Debit Acc_] varchar (20} v 31 Balance at Date Dedmal
[Consol_ Credit Acc_] varchar(20) i 32 Net Change Decmal
- v 33 Budgeted Amount Decimal
[Gen_Posting Type] int 2 34 Totaling Text 50
[Gen_Bus_Posting Gr... varchar(10}) W 35 Budget Filter Code 10
[Gen_Prod_Posting ... wvarchar(10) v 36 Balance Decmal
Picture image v 37 Budget at Date Decimal
[Automatic Ext_Texts] tinyint v 39 Cansol. Translation Method Option
v 40 Consol. Debit Acc, Code 20
[Tax Area Coce] varchar(20) v 41 Consol, Credit Acc, Code 20
[Tax Liable] tinyint v 42 Business Unit Filter Code 10
[Tax Grouo Codel varchar(10 v 43 Gen. Posting Tune Ontion

The fields Date Filter (28) to Budgeted Amount (33) are not actual fields in the
database. They are helper fields to show data on screens.

Flow filters can have seven types; Sum, Average, Exist, Count, Min, Max, and Lookup
and contain a Query to the database. For example, Balance at Date (31) shows:

Sum('G/L Entry™.Amount
WHERE (G/L Account No.=FIELD(No.),

G/L Account No.=FIELD(FILTER(Totaling)),

[33]

Introduction to Microsoft Dynamics NAV

Business Unit Code=FIELD(Business Unit Filter),

Global Dimension 1 Code=FIELD(Global Dimension 1 Filter),
Global Dimension 2 Code=FIELD(Global Dimension 2 Filter),
Posting Date=FIELD(UPPERLIMIT(Date Filter))))

This creates the Sum of the field Amount in the G/L Entry table (17) filtering on G/L
Account, G/L Account No., Business Unit Code, Global Dimension 1 & 2 Code, and
Posting Date.

Some of these filters are actual fields in the G/L Account table, but others are Flow
filters. Non-existing fields that can be used as a runtime filter to limit the result of
the Query.

We will use and discuss more of these Flow filters and Flow fields in this book.

More journals and entries

So now that we know how a journal works, it might be interesting to build a posting
diagram of Dynamics NAV. Dynamics NAV has a number of journals, registers, and
entries built on top of each other.

These are the most important journals, registers and entries:

Journals Gen. Journal Line (81)
Item Journal Line (83)
Res. Journal Line (207)

Job Journal Line (210)
Registers G/L Register (45)

Item Register (46)
Resource Register (240)
Job Register (241)

[34]

Chapter 1

Entries G/L Entry (17)
Cust. Ledger Entry (21)
Vendor Ledger Entry (25)
Item Ledger Entry (32)
Job Ledger Entry (169)
Res. Ledger Entry (203)
VAT Entry (254)
Bank Account Ledger Entry (271)

Please notice that when you look in the database you'll find more of these tables, but
these are the main building blocks.

Each journal is responsible for creating its own entries but may run another journal if
that is required. For example, an Item Journal may generate G/L entries if required
using a General Journal and a Job Journal may create Item Ledger Entries using the
Item Journal.

We already discussed the G/L Entry table which is used to store the basic financial
information. This is the basic administration table.

The other entry tables are sub ledger tables. They store redundant information but
have extra information for their specific use. A total of a sub ledger should always
balance with the G/L. We'll see how that works in Chapter 3, Financial Management.

e The Customer and Vendor ledger entry tables are used to store specific
information about the accounts receivables. They are linked to Customer
and Vendor master data tables.

e The VAT Entry table stores specific information to make registration easier.
Most companies do monthly or quarterly VAT registrations with one or
more governmental agencies.

VAT is different in many countries and could be different from what this
book describes in localized country systems.

e The Bank Account entries should show exactly what transactions were
carried out on our bank accounts.

The logistical part of the ERP package is handled by the Item Journal. Every item
that is purchased, produced, or sold is handled though this journal. Services are
handled through the Resource journal. A 'Resource' can either be a person or a
piece of equipment, for example a lift.

[35]

Introduction to Microsoft Dynamics NAV

The Job journal is an umbrella overlaying the entire application. It allows you to
group transactions making it easier to analyze cost and profit for larger projects.

Posting Schema

When we combine all this information in a schema, we can create the following basic
Microsoft Dynamics NAV posting schema.

b
General lournal (Ledgar Entries
lr" '\ § Ty /_— ™ . Y /_— Ty
Gen. Journal Line Gen. Jril.-Post GJL Register GfL Entr Cust. Ledger Entr
-FL - | Line — L > ¥ . Ledg W
{Tabile Ba} Mable 55) (Table 13} (Tabde 1)
({Codeunit 12}
)
l.
'd
Item Jowmal
l(' " 7 " s et e it re "y
) Itern Jnl.-Post q Vendor Ledger
i I |
‘_k tem l_ourr-al Line Ling ter-_1 Reg[ster 1 term Ledger_EnLr-; b Eritry
{Tabie By} Mahle 451 Tahle 323
(Cadeunit 2z (Table zg}
», j
ps
Resource Journal
~ = T = - ~ o~ = e ™~
Res. lournal Line Res. JP"'PML Resource Register Res. Ledger Entry WAT Entry
T [Table 207) = [able 1501 D [Table 1) -] (Table 255)
i e 2o :L:\dcl.nl‘}l.ﬂ atne 250 atrle 1) abde 268
)
p
I Job Journal
(~
Joh Javrnal Line JDbJI.]" =t Job Register Job Ledger Entry e
_) — Line — _ - Ledger Entry
{Table 2za) N (Table zc1) {Table 26g) .
T edeuinit $013) {Takike 271)
/

Y,

Here you can clearly see what journal is responsible for creating what entry. An
entry table is always maintained by one process.

The General Journal is the heart of the application where the basic financial
information is created in the ledger entries. All the basic information is in the G/L
entry table which is grouped in the G/L Register which is always balanced. The
Customer, Vendor, VAT, and Bank Account Ledger entries are sub tables that
always refer to a G/L register. We can never create one of these entries without
touching this part of the application.

Sub and detailed entries

When an entry is created, its basic structure should not be changed for audit ability.
This is why most entries in Microsoft Dynamics NAV have sub- or detailed entries.

[36]

Chapter 1

The Customer and Vendor Ledger Entry have details for application, unrealized loss
and gain, various discounts, and corrections. This way we are able to keep track of
what happens with an entry without changing the original information.

I
Custamer

e I..-'—;_"\._ S
Detailed Cust.
. SIFT---...| |EHE= e }—.‘ Ledg. Entry ‘
l [Table 18y [Table 22y i
(Tabla 179}
. » X », .

hi /J
I'H__ ™y) ™y
Gen. Journal Line G/ Register
| [Table Ba) {Talhle yci
o

"y

The Item Ledger Entries a have wide variety of sub entries depending on what you
are doing with the items.

One of the most important tables in Microsoft Dynamics NAV is the Value Entry
table. Each Item Ledger Entry has one or more of these. This table is the 'soft bridge
between the inventory and the financial part of the application.

Warehouse entries enable moving items within our organization without touching
the basic inventory or financial application.

Documents—combining the journals into
processes

The journal and entry tables make it possible for us to do the basic balancing in our
company but people in companies are not used to working with journals.

Traditionally, companies work with documents. This was also the case before ERP
applications were introduced. A sales representative would travel through the
country with a paper order block and then come back to the back office. The back
office then ships the orders with shipping documents and invoices.

Microsoft Dynamics NAV supports working with documents. Traditionally, we
divide the documents in sales and purchasing documents but the later versions
of Microsoft Dynamics NAV also have warehouse documents. Other supported
documents are reminders and service documents.

[37]

Introduction to Microsoft Dynamics NAV

Document structure

A document in Microsoft Dynamics NAV always has a header and lines. The header
contains the basic information about the transaction like shipment dates, addresses,
and payment terms.

The lines contain information about what is sold or purchased. This can be a variety
of G/L accounts, items, and resources.

A document can have different stages depending on the type of the transaction. A
quote is a typical starting point in the sales or purchasing process. When a quote is
approved it can be promoted to an order which is then shipped and invoiced. The
process can be also reversed via a return order resulting in a credit memo.

a -~

Quote Crler
iTahle 3E) (Table 35}
". r N x p¥
¥

T T

Cambined
Irvaice
(Table)

A x_ r,

Shiprment

(Table 110§

A

Pasted Invoice
[Tabla 412}

Document transactions

Transactions in the database can be started via documents. When a document is
processed the necessary journals are automatically populated. For example, when an
order is shipped the goods leave the warehouse, thus an Item Journal is created and
posted to handle this. When the invoice is posted, a General Journal is generated to
create G/L Entries and a Customer or Vendor Ledger Entries.

Other structures

The previously discussed structure with journals and documents is by far the most
important transaction structure. But Microsoft Dynamics NAV has other structures
as well.

The three most important other structures are CRM, Jobs, and Manufacturing.
These structures are all 'umbrella' structures for other processes.

[38]

Chapter 1

Relationship management

Microsoft Dynamics NAV RM helps you to maintain master data and analyze
transactional data. It is both at the very start of the data process and at the end.

We have already seen the Customer, Vendor, and Bank master data records. But
what if a Vendor is also a customer or vice versa. We don't want to maintain the

same data twice. We might also want to keep extra information of our customers
and vendors like contact persons and their interests. We'll see more of that in the

RM chapter later.

There is also a need to analyze the data we have created with the document and

journal structure.

—— -
"

Contact Contact
Company Person
(Table gagal {Table soq0)
., ., A
' ’ et
Ld t Y
¥ i e i
Customer Wendor Bank
[Talle 28) (Tabla 23] [Talle 230)
-, *, .,

Jobs

Sometimes a project can be more comprehensive than just a purchase and/or a
sales document. A project can take from several weeks to over a year and requires

multiple documents.

The job structure in Dynamics NAV allows you to handle this. Every document and
journal transaction can be attached to a job making it easy to analyze profit and loss,

and even schedule your jobs.

[39]

Introduction to Microsoft Dynamics NAV

The jobs module also allows you to do a calculation before you start the project and
balance this calculation throughout the process.

" S ¢ ",

Jab Jah Task Job Planning Line
(Table 167y £Tabl= 1001) [Talle 200
4 A
— A
f
t w
Iy S
Sales Purchase
Docwment Document
(Table 351 [Tahle 38)
o ., ,

Manufacturing
When you produce your own items, you have different needs in your ERP process
than when you only purchase the items you sell.

The manufacturing module of Microsoft Dynamics NAV allows you to handle
this process. Basically what it does is create an item out of one of the other items

and resources.

. o ")
Pr%d:ctinn Prod, Order Line Oulpul Journal
B rder) (Table csaby [Tahle &3)
1Tabile 5405
| A e

Ty .)
Consumption Prod. Crder
Journal Component
[Tabl= &3) {Tabl= 54n7)

. A . y

Summary

In this chapter, we have covered the basic structure of Microsoft Dynamics NAV.

We talked about the design philosophy, application objects, and the unique table
structure. We discussed the role tailored concept and its reflection to older versions
of the product. We talked about some basic functions of the product-like number
series and application setup. Very important is the basic posting structure and the
way SIFT works. We discussed how the document structure is overlaying the journal
structure and how the umbrella structure is on top of that. In the next chapter, we
will look at a sample industry application and its effect on the standard functionality.

[40]

A Sample Application

Let's create a structure of our own in Microsoft Dynamics NAV. To do this we must
think of something that is not already available in the standard package but can be
built on top of it.

For our example application we will run a squash court. Running a squash court is
simple to understand but something we cannot do without changing and expanding
the product. In order to define our changes we first need to make a fit-gap analysis.

After this chapter you will have a better understanding of how to reuse the
framework of the Microsoft Dynamics NAV application. We will show how to
reverse engineer the application and study its functionality by going into the
application code.

For this example, some new and changed objects are required. The Appendix
describes where to find the objects, and how to install and activate them.

In the first part we will look at how to reverse engineer the standard application to
look and learn how it works, and how to reuse the structures in our own solutions.

In the second part of the chapter we will learn how to use the journals and entries
in a custom application.

Lastly, we will look at how to integrate our solution with the standard application,
in our case Sales Invoicing.

A Sample Application

Fit-gap analysis

When we do a fit-gap analysis we look at the company's processes and define what
we can and cannot do with the standard package. When a business process can be

handled with the standard software we call this a Fit. When it cannot be done it's a
Gap, we can fill a gap by developing a solution or purchasing an add-on.

But even when something could be done with standard software features, it does
not necessarily mean that doing this is wise. The standard application should be
used for what it was designed for. Using standard features for something else might
work in the current version but if it changes in a new version it might no longer fit.
For this reason it is better to design something new instead of wrongly using the
standard features.

Designing a Squash Court application

The basic process of a squash court company is renting the courts to squash players;
both members and non-members. There is a reservation and invoicing process
handling different rates for members and non-members.

Although this could be implemented using items to represent squash courts and
customers to represent players this would be a typical example of using standard
features wrongly. Instead of doing this we will look at how items and customers
are designed and use this to create a new Squash Court application.

Look, learn, and love

To determine the design for this application we will first look at the parts of the
standard application (we could have used) to learn how they work. We will use
this knowledge in our own design.

In Microsoft Dynamics NAV, customer and vendor master data are maintained using
Relationship Management (RM). For our solution we will create a new master data
for squash players being the business part of application. This will also be integrated
with RM.

To design the Squash Court we will look at the design of items in the standard
package. The Squash Court will be the product part of our application having a
journal to create reservation entries, which we can invoice.

For this invoicing process we will use and integrate with the Sales part of Microsoft
Dynamics NAV.

[42]

Chapter 2

Drawing the table and posting schema

After we have decided what the design of our application will be, we can draw the
tables and post the routines as we did in the previous chapter. This will clarify the
design for others and guide us through the development process.

If'a Relaticnship Managerment .-‘/ Sales ™
-~ - — _
CustVendBank i |
Contact Update CGm’;;:'ﬁi:f_:ness - Custormer
(Tald | (Table 18]
P Codeunit [gogsh iTakl= so5ab L)
/I
- L - _\"\\.“
{ Squash Application
—_— — -
Sguash Court Squash Player - Squaéh Ledger | . Sales Line
fTabile 1z3 602 {Table 121 e6501]) (Tahi mp!ll’:.-q{.l = Tahle 37)
shleaz3cghy
.
ry
—
b4
£] o F
Squash Journal Line Sguash .'Inl'- Squash Register Sales-Post
(Table 1z35c6706) st Line (Table 12345607 ¢Codeurit Baj
L Cwnit. 133405705}

The objects in Relationship Management and Sales are standard objects that we will
possibly need to modify. The objects for the Squash Application are new objects but
based on similar objects in the standard application.

The Project approach

In order to keep track of our project we'll cut the changes into smaller tasks.
The first task will be to do the changes in Relationship Management to be able
to create a squash player from a contact. The second task is to create squash
courts. The reservation and invoice processes are tasks three and four.

Interfacing with the standard application

In our schema we can see that we have two processes where we need to touch the
standard Microsoft Dynamics NAV processes, which are Relationship Management
and Sales.

[43]

A Sample Application

Getting started

In the first part of the design process we will look at how to reverse engineer the
standard application in order to learn and reuse the knowledge in our own solution.

Creating squash players

For our squash players administration we will use the data from the Contact table.
In the standard product it is possible to create a customer or vendor with the contact
data. We require the same functionality to create squash players so let's have a look
at how this is done by Microsoft.

Open the contact card and try to find this function (as shown in the
following screenshot):

_ iy Edit - Contact Card - CTO00082 - Comacycle

Contact Card

Ep | View Ctrl+Shift+V
_____ Edit Ctrl+Shift+E
| \‘_| Mew Ctrl+N
x Delete Ctrl+Del

Launch Web Source
il Create Interact Print Cover Sheet e
Contact Card Place
*3 Refresh F5 Link with existing 4 Vendor ode: MO -
% Clear Filter Ctrl+Shift+A Contact Search Bank COMACYCLE
Send Tn | S

We want a function like this for our squash players. So let's get in and see what it
does. For this we need to design the page and look at the actions. The page number
in this case is 5050 which we can find by clicking on About This Page in the upright
corner of the page as shown in the following screenshot:

m- 3~

H Contact Cover Shest @ Microsoft Dynamics NAV Help
i = Wi

About This Page Ctrl+Alt+F1

I About Microsoft Dynamics NAY

[44]

Chapter 2

This option can be useful for finding information about the fields that are not on

the page, the filters or the source table:

f Actions -

Page Information

Page:

Page Type:
Page Mode:
SourceTable:

Rec:

Table Fields
Source Expressions

FlowFilter Fields

About This Page: Edit - Contact Card - CTO00082 - Comacycle

About This Page: Edit - Contact Card - CTO00082 - Comacycle

Contact (5050)

Contact Card (5050)
ListPlus

Edit

CT000082 Comacycle

To open the page we need to open the Object Designer (Shift F12) in the Classic
client as shown in the following screenshot:

oot imarcs NARE 8

File Edit View Toois Window Help

e Work Date...
20 %
[T Language...
Object Designer Shift+F12
Designer Ctri+F2

ZE U 0000 0 &

Here in the Object Designer we can find page 5050, Contact Card, as shown:

i Object Designer [= & ==
3 Table F... [Name M..Version List Date Time BLOE Size C.
o _‘E‘ 1025 Job LIANLE OO0 0] 14-08-09 12:00:00 113392 v oa
= Form y = ¥ NAVW16.00.01,Chapter... 31-12-09 13:26:36 57008 ¥
] Report =) S05T Contact Card suptorm AV 16,00 05-11-08 12:00:00 10960 ¥
i = t ¥ MAVW16.00.01,Chapter... 06-01-10 21:27:58 23920 ¥
+3 Dataport = ct Statistics AVW16.00.01 14-08-09 12:00:00 7228 ¥
¥MLport = pany Details 5.00.01 14-08-09 12:00:00 9660 ¥
= = MName Details 0,01 14-08-09 12:00:00 9900 ¥
4 Codeunit = 56 Contact Alt. Address Card NAVY16.00.01 14-08-03 12:00:00 16996 ¥
[MenuSuite = 5057 Contact Alt. Address List MAVW16.00.01 14-08-09 12:00:00 12908 ¥ |_|
- | 5058 Alt. Addr. Date Ranges MAVW 16,01 14-08-09 12:00:00 5680 ¥
|: = 5059 Contact Alt. Addr. Date R... MNAVW16.00.0 14-08-09 12:00:00 6376 ¥
al | = 5060 Business Relations MAVW16.00.01 14-08-09 12:00:00 6744 ¥
= 1 = 5061 Contact Business Relations MNAVW16.00.01 14-08-09 12:00:00 5708 ¥ -
[New][Run] [Help

[45]

A Sample Application

We are looking for the Actions on this page. They are kind of difficult to find if you
are unfamiliar with the Page Designer. To open the Actions, the cursor should be on
the blank line below the last populated line. Then press the right mouse button and
Actions or select Actions from the View drop down menu:

Page 5050 Contar l =0
Mame Hopg e i Type SubType SourceExpr
<Mo. of Job Eesponsibilities> Field "Mo. of Job Responsibilities’ =
<Organizatic ial Level Code> Field "Organizational Level Code’
<Excude frg I| Segment: Field "Exclude from Segment”
<Control 1907 | Group Group
<Currency (Ide> Field "Currency Code™
<Territory C de= Field "Territory Code™
<VAT Regist P :lh'on No.> Field "WAT Registration Na.”
<Control 13000 007> Container FactBoxArea
<Control1900 e j3207> Part E|
<Control1905 Properties §7507= Part |
D T A R R g VA Container ContentArea i
4 m 3
(e 3 [e]

Now we are in the Action Designer and we can search for the Create as part.

Action Designer IEI@
MNarme Caption Type SubType
<Action105= Create as ActionGroup -
<Action 106> Customer Action
<Action107: Vendar Action
<Action 1083 Bank Action
<Action109> Tink with exisang ActionGroup

To see what it does we need to go into the C/AL code by pressing F9 or by selecting
C/AL Code from the View drop down menu as shown in the following screenshot:

SB %00 8 PHNom s@@

C/AL Code (F9)

CreateVendor versus CreateCustomer

In Microsoft Dynamics NAV there is a small difference between creating a customer
and a vendor from a contact. When creating a customer the system will ask us to
select a customer template. The vendor option does not have this. Because of this
simplicity we will look at and learn from the Vendor function in this chapter.

[46]

Chapter 2

The customer and vendor table are almost identical in structure and fields are
numbered similar in both tables. This is called transaction mirroring between sales
and purchasing, which we will discuss further in Chapter 6, Trade. We will mirror
our new table in a similar way to the other Microsoft Dynamics NAV tables.

The C/AL code in the Action tells us that while pushing the menu option, the
function CreateVendor in the contact table is started. To copy this feature we need
to create a new function CreateSquashPlayer. Let's keep this in mind while we
dive further into this code.

e

Action Designer [= ===
MName Caption Type SubType
<Action105:= Create as ActionGroup -
» <Action106 = Customer Action
<Action107> Vendor Action
<Action108:= Bank Action
«<Action1100522000 = =
<Action109> Page 5050 Contact Card - C/AL Editor
<Action110> iKaction1@6> — OnAction()
<Action111= CreateCustomer {ChooseCustomerTemplate);
<Action112>
<Action146> <Action187> - OnAction()
---------------- Createlendor;
<Action153>
<Action77>> <hAction188> - OnAction(}
< Action190000000&6 > CreateBankAccount;

Open the Contact table (no. 5050), and search the function CreateVendor. You can
find functions in a table by going into the C/ AL code (F9) from anywhere in the table
designer, and use the Find (Ctrl+F) function as shown in the following screenshot:

o

SR XNBRE 8 AED @ @00 W

Find {Ctrl+

[47]

A Sample Application

Reverse engineering

We need to reverse engineer this code in order to see what we need to create for our
CreateSquashPlayer function. We will look at each part of the C/ AL code in order
to decide whether we need it or not.

Table 5050 Contact - C/AL Editor (===
CreateUendor(} &
TESTFIELD("'Company Ho.");

RMSetup.GET;
RHSetup .TESTFIELD{"Bus. Rel. Code for Uendors");

CLEAR(Vend); Find
Uend.SetInsertFromCont
Uend . INSERT{TRUE); Fndwhat CreateVendor| g
Uend.SetInsertFromCont
MatchCase, F Find Mext
IF Type = Type::Compan Find Previous
ContComp := Rec

ELSE Closs

ContComp .GET{""Compan
p (P Replace...

il

ContBusRel."Contact Hd
ContBusRel."Business R

Help

-
1

What does this piece of code do?

TESTFIELD(*"Company No.');

This tests the current record for a valid Company No. If this fails we cannot continue
and the end user get's a runtime error.

RMSetup.GET;
RMSetup.TESTFIELD(*'Bus. Rel. Code for Vendors™);

This reads the marketing setup table from the system and tests whether the
Bus. Rel. Code for Vendors is valid. We need a new code for squash
players here, which will be added as a new field to the setup table.

CLEAR(Vend);
Vend.SetlnsertFromContact(TRUE);
Vend. INSERT(TRUE) ;
Vend.SetlnsertFromContact(FALSE);

Here, the vendor table is cleared and a function is called within that table, then a new
record is inserted in the database while activating the necessary business logic. Then
the same function is called again with another parameter. Since the vendor table is
what we are copying we will write down that we might need a similar function as
SetInsertFromContact.

[48]

Chapter 2

IF Type = Type::Company THEN
ContComp := Rec

ELSE
ContComp.GET(*'Company No.');

This code checks whether the current contact is a company. If so it populates the
variable ContComp with this record. If not it populates ContComp with the company
our current contact is related to.

ContBusRel .""Contact No."™ := ContComp."No.";

ContBusRel .""Business Relation Code"™ := RMSetup."Bus. Rel. Code for
Vendors';

ContBusRel."Link to Table" := ContBusRel."Link to Table'"::Vendor;
ContBusRel .""No." := Vend.'No.";

ContBusRel . INSERT(TRUE) ;

The ContBusRel refers to the table, Contact Business Relation (5054), and is a linking
table in the Microsoft Dynamics NAV data model. Technically a contact can be
connected to multiple customers and vendors although this does not make sense.
This table is populated here. Let's write down that we need to look into this table and
see if it needs changes.

UpdateCustVendBank.UpdateVendor (ContComp,ContBusRel);

UpdateCustVendBank is an external code unit that is used with the function,
UpdateVendor, we might need a copy of this function for our Squash players.

MESSAGE (Text009,Vend.TABLECAPTION,Vend.""No."");

This throws a message box for the end-user stating that the record was created with
a new number.

Now we have a number of things on our to-do list:

1. Create a master data table which looks like the vendor table.
2. We need to copy the CreateVendor function.

3. Look at the contact business relation table and the UpdateCustVendBank
(5055) code unit.

Let's look at the latter to learn something important before we start with the first.

UpdateVendor()
WITH Vend DO BEGIN
GET(ContBusRel .""No."™);
XRecRef.GETTABLE(Vend);
NoSerie := "No. Series";
PurchaserCode := Vend.'"Purchaser Code";

[49]

A Sample Application

TRANSFERFIELDS(Cont) ;
"No." := ContBusRel."No."
"No. Series" := NoSerie;
Vend."Purchaser Code" :=
MODIFY;
RecRef.GETTABLE(Vend);

PurchaserCode;

ChangelLogMgt.LogModification(RecRef,xRecRef);

END;

This code synchronizes the contact table with the vendor table. It does that by using
the TRANSFERFIELDS function. This function transfers all fields with the same number

from one table to another. This means that we cannot be creative with our field
numbering. For example, in the contact table the Name field has number 2. If we

were to use a different number for the Name field then TRANSFERFIELDS would not

copy the information.

Using this information our table should look like this:

Table 123456701 Squash Player - Table Designer

E.. Field No. Field Name

1 Mo

2 Mame

3 Search Name

4 Name 2

5 Address

6 Address 2

7 City

3 Phane Mo,

15 Territory Code

16 Global Dimension 1 Code
17 Global Dimension 2 Code

»

Data Type Length
Code
Text
Code
Text
Text
Text
Text
Text
Code
Code
Code

50
30
30
50
50
30
30

SHSS

Description

19 Member

Boolean

(({-{{((({{{(((

22 Currency Code
24 Language Code

Code
Code

[E=3 EoH =5

I

-

Notice that we use field 19 for our Squash Player specific field. This is because field

19 was used for Budgeted Amount in the vendor table. We can therefore safely
assume that Microsoft will not use field 19 in the contact table in the future.

An alternative approach for this, if we want to be even safer, is to add the fields that

are specific to our solution as fields in our add-on number series. In our case that

would be 123.456.700.

[50]

Chapter 2

You can copy and paste fields from one table to another table.
M Note that table relations and C/ AL code in the OnVal idate and
Q OnLookup trigger is copied as well. If the table we want to create is
similar to an existing table we could also use the Save As option from
the File drop-down menu.

The next step is to add some business logic to the table. We want this table to
use number series functionality just like the vendor table. This requires some
standard steps:

1. Create the Setup table: A number series is defined in a setup table. As the
Squash Court module will be quite sophisticated, we'll create our own.

Table 123456700 Squash Setup - Table Designer [][=[]
E..Field Mo. Field Name Data Type Length Description
v 1 Primary Key Code 10 -
v 2 Squash Player Mos, Code 10
b v 3 Squash Court Mos, Code 10

A setup table always has a single Primary Key field (as shown in the
previous screenshot) and the necessary setup fields. This table is designed
to only have one single record.

2. Create a link to the number series: Our Squash Player table is now required
to have a link to the number series. We can copy this field from the vendor
table and can make a table relation to the No. Series table (as shown in the
following screenshot):

Table 123456701 Squash Player - Table Designer No. Series - Properties o ==
E..FieldNo. Field Name Data Type Length O |Property Value
v 22 Currency Code Code 10 NotBlank <No= =
v 24 Language Code Code 10 MNumeric <No
v 35 Country/Region Code Code 10 Charallowed <Undefined=
v 37 Blocked Boolean DateFormula <No>
v 45 Bill-to Customer No. Code 20 valuesallowed <
v @4 Fax No. Text 30 50L Data Type <Undefined>
v 91 Post Code Code 20 TableRelation "No. Series” |
v 92 County U= 30 | [VaidsteTableRelaton Ves> |
i v 107 Mo. Series Code 10 I TestTableRelation = &
_— ExtendedDatatype lL| X
1]

[51]

A Sample Application

3 Add the C/AL Business Logic: Now we can add the business logic to our
table, but first we need to define the variables that are required. These are
our new SquashSetup table and the number series management codeunit.

File Edit [View | Tools Window Help

eld = "It e s E6@ ®

Toolbar...

Hide Column

Show Column...

Toolbox

Properties Shift+F4
Color

Font

Field Menu

C/AL Symbol Menu F5
C/AL Code Fa

C/AL Globals

We can define the variables in the specially created C/AL Globals menu
(as shown in the screenshot):

e)

Table 123456701 Squash Player - C/AL Globals = | B[]
Variables |Text Constants | Functions
Mame DataType Subtype Length
SguashSetup Record Sgquash Setup &
MNoSeriesMagt Codeunit MoSeriesManagement

M It is highly recommended that you use the Microsoft naming standard,
Q which allows you to copy and paste a lot of code and makes it easier
for others to read your code.

Number Series require three pieces of code. This code makes sure that the business
logic of the Number Series functionality is always followed:

1. The Onlnsert Trigger: This code goes into the Onlnsert trigger. It populates
the No. field with the next value of the Number Series.
Onlnsert()
IF "No."™ = "" THEN BEGIN
SquashSetup -GET;
SquashSetup.TESTFIELD("'Squash Player Nos.'™);

[52]

Chapter 2

NoSeriesMgt. InitSeries(SquashSetup.'Squash Player Nos.",
XRec."No. Series',0D,"No.","No. Series");
END;

2. The Onvalidate Trigger of the No. field: The Onvalidate code of the No.
field tests when a user manually enters a value if that is allowed.
No. - OnValidate()
IF "No."™ <> xRec."No." THEN BEGIN
SquashSetup.GET;
NoSeriesMgt.TestManual (SquashSetup."Squash Player Nos.");
"No. Series'" = "";
END;

3. Create a new AssistEdit function: Lastly, we create a new function. This
is always called AssistEdit. This is for readability and others reading your
code afterwards. The code is used in the page or form and allows users to
switch between linked number series.

AssistEdit() : Boolean

SquashSetup.GET;

SquashSetup.TESTFIELD("'Squash Player Nos.'™);

IF NoSeriesMgt.SelectSeries(SquashSetup.'Squash Player Nos.",
XRec."No. Series","No. Series")

THEN BEGIN
NoSeriesMgt._SetSeries(*'No."");
EXIT(TRUE);

END;

When the number series are in place we can make the necessary changes in the
Contact Business Relation table.

In this table we need to add the possibility to link squash players to contacts. This
is done in the properties window of the Table Designer that can be accessed by
pressing Shift +F4 or by using the Properties option from the View drop-down
menu (as shown in the following screenshot):

[53]

A Sample Application

First we add the Squash player option to the Link to Table field (as shown in the
following screenshot):

e

Table 5054 Contact Business Relation - Table Designer [= (==

E..FieldNo. Field Name Data Type Length Option String
v 1 Contact MNo. Code 20 »
v 2 Business Relation Code Code 10

(284 3 Link to Table Option ,Customer,Vendor,Bank Account,...
v 4 No. Code 20

Link to Table - Properties [| -= =
Property Value
A el i <Undefined > -
OptionString ,Customer,Vendor, Bank Account,
phonCapaon TCUstomer, Vendor Bank ACCOUMNT,, ., qua ayer

OptionCaptionML EMU=",Customer,Vendor,Bank Account,,,,,Squash Player™ *

Options are converted to SQL Integer data types. Make sure to add
some blank options so when Microsoft releases other functionality
we are not impacted. Changing the integer value of an existing
option field requires a lot of work.

Then we create a table relation with our new table (as shown in the following

screenshot):
Table 5054 Contact Business Relation - Table Designer [=[E =]
E.. Field Mo. Field Name Data Type Length Option Siring
v 1 Contact Mo. Code 20
v 2 Business Relation Code Code 10
v 3 Link to Table Option ,Customer Vendor Bank Account,...
ke 4 Mo. Code 20
v 5 Business Relation Description Text 30
v 6 Contact Name Text Lal
Mo. - Properties = (=][22
Table Relation E@ Value
Condition Table Field Mo i
Link to Table=CONST{Customer) Customer - Mo
Link to Table=CONST(Vendor) Vendor :E:j:ﬁne‘j>
Link to Table=CONST(Bank Ac... Bank Account
P | Link to Table=CONST(Squash ... Squash Player 3] “=
| indefinad
k/.. | IF (Link to Table=CONST(Customer)) Cust. .. E]'* |
Tl

The next step is to expand the Codeunit CustVendBank-Update with a new
function UpdateSquashPlayer (as shown in the following screenshot). This is

a copy of the function UpdateVendor we discussed earlier. We can add functions
in the Globals menu.

[54]

Chapter 2

There are two ways to copy a function. We can create a new function manually and
copy the C/ AL code and variables, or we can select a function from the list and use
copy and paste and then rename the function:

Codeunit 5055 CustVendBank-Update - C/AL Globals [===

| Variables IText Constants | Functions

MName Locals
-

UpdateCustomer
UpdateVendor
UpdateBankAccount

» UpdateSquashPlayer|

Ry When you add the —line to the function others can see
Q that it is not a Microsoft function. You can also include the
project name like —Squash.

This code also requires a new global variable, SquashPlayer:

UpdateSquashPlayer()

WITH SquashPlayer DO BEGIN
GET(ContBusRel ."'No.");
XRecRef.GETTABLE(SquashPlayer);
NoSerie := "No. Series'';
TRANSFERFIELDS(Cont);

"No." := ContBusRel."No.'";

"No. Series'" := NoSerie;

MODIFY;

RecRef._GETTABLE(SquashPlayer);

ChangeLogMgt.LogModification(RecRef,xRecRef);
END;

[55]

A Sample Application

The final piece of preparation work is to add the Bus. Rel. Code for Squash Players
field to the Marketing Setup table as shown in the following screenshot:

Table 5079 Marketing Setup - Table Designer P | = |]
S s . Bus. Rel. Code for Squash PI. - Properties = @
v 57 Queue Folder Store ID BLOB Property Value
v 58 Queue Folder Entry ID BLOB NotBlank <No> s
v 59 Storage Folder Mame Text 250 Numeric <No>
v 60 Storage Folder Store ID BLOB Charallowed <lndefined:=
v 61 Storage Folder Entry ID BLOB DateFormula <MNox
v 62 Time Interval (Sec.) Integer Valuesallowed <=
v 63 Index Mode Option SOL Data Type <Undefined>
v 64 Delimiters Text 250 TableRelation "Business Relah’on'l E]lE
v 67 Defailt To-dn Date Calmjlation DateFor ﬁ:m SteTablelelaton =Ves |
Code 10

| »|¥ 123456700 Bus. Rel. Code for Squash Fl.

| TestTableRelation <Yes
Extende <MNogle >

h\lQ
With all this preparation work we can now finally go ahead and make our function
in the contact table (5050) that we can call from the user interface.

We use the same numbering in our fields as in our objects. This makes
it easier in the future to see what belongs to what if more functionality
is added.

CreateSquashPlayer()
TESTFIELD(Type, Type::Person);

RMSetup .GET;
RMSetup.TESTFIELD("'Bus. Rel. Code for Squash PI.™);

CLEAR(SquashPlayer);
SquashPlayer . INSERT(TRUE) ;

ContBusRel .""Contact No." := Cont."No.";
ContBusRel ."Business Relation Code™ :=
RMSetup."Bus. Rel. Code for Squash PI.";
ContBusRel."Link to Table™ :=
ContBusRel."Link to Table'"::"Squash Player";
ContBusRel .""No." := SquashPlayer."No.";
ContBusRel . INSERT(TRUE) ;

UpdateCustVendBank.UpdateSquashPlayer(Cont,ContBusRel);
MESSAGE (Text009, SquashPlayer . TABLECAPTION, SquashPlayer.""No.");
Please note that we do not need the SetInsertFromContact function. This function

enables users to create a new Vendor first and Create a Contact using the Vendor
information. We do not want to support this method in our application.

[56]

Chapter 2

Now we can add the function to the page and test our functionality:

_y Edit - Contact Card - CT200057 - Alan Brewer

’ Actions ~ | \elated Information - % Reports ~
| Contact Card

tes E Contact Cover Sheet

Ep | View Ctrl+Shift+V
= i Ctrl+Shift+E
= Mew Ctrl+ N

| 7C Delete Ctrl+Del A
-}l Create Interact Print Cover Sheet Py
Comtoct ot oce
#4 Refresh F5 Link with existing r Vendor GB M
“% ClearFilter Ctrl+Shift+A Contact Search Bank ALAN BREWER
Send To b T Apply Template... Squash Player =]
€] Previous Ctrl+PgUp ey e oo (| Salesperson Code: .AH =
B Next Ctrl+PgDn rewer Microsoft Dynamics NAV. 00 M
@ Print Page... Ctrl+P -
priimthon Street i) The 5QPL000042 record of the Squash Player has been created.
Address 2:
Post Code: MO2 4RT
City: Manchester -

Designing a journal
Now it is time to start on the product part of the Squash Application. In this part we

will no longer reverse engineer in detail. We will learn how to search in the standard
functionality and reuse parts in our own software.

For this part we will look at resources in Microsoft Dynamics NAV. Resources
are similar to use products as Items but far less complex making it easier to look
and learn.

Squash Court master data

Our company has 12 courts that we want to register in Microsoft Dynamics NAV.
This master data is comparable to resources so we'll go ahead and copy this
functionality. Resources are not attached to umbrella data like the vendor/squash
player tables. We need the number series again so we'll add a new number series to
our squash setup table.

[57]

A Sample Application

The Squash Court table should look like this after creation:

Table 123456702 Squash Court - Table Designer [= = |2
E.. Field Mo, Field Name Data Type Length Description
v 1 Mao. Code 20 -
v 2 Description Text 50
v 3 Search Description Code 50
b v 107 Mao. Series Code 10

Chapter objects

With this chapter some objects are required. A description of how to import these
objects can be found in the Appendix.

 ly Object Designer [E=3 ol FX=)|
3 Table T... 1D MName M. . Version List Date Time BLOB Size C..
i = 99008544 Outbnd. Product Cat. Wo... MAVW16.00.01 14-08-09 12:00:00 22092 ¥ -
== Form = 45670 ¥ Chapter2-4 02-01-10 21:10:15 9696 ¥
=] Report F‘@ 123456701 v Chapter24 21:43:49 27172 ¥
1 L= 123456702 Sq ful v Chapter2-4 20:51:51 20980 v
+3+ Dataport = 123456703 Squash Journal Templates ¥ Chapter2-4 12:00:00 14260 +
) XMLport = 123456704 Squash Journal Template List ¥ Chapter2-4 17-12-01 10480 +
o = 123456705 Sguash Activities ¥ Chapter2-4 02-01-10 7038 ¥
4 Codeunit = 123456706 Squash Journal ¥ Chapter2-4 02-01-10 36036 ¥
Fn MenuSuite = 123456707 Squash Inl. Batches ¥ Chapter2-4 28-12-09 11084 +
i = 123456708 Squash Registers ¥ Chapter2-4 08-06-01 9416 ¥ L
= 123455709 Recurring Squash Jnl, v Chapter2-4 02-01-10 34700 v ||
Al = 123456710 Squash Players v Chapter2-4 18-04-10 10668 ¥ -
New) [pesgn JJ[g Jfi bep |
| et |

After the import process is completed make sure that your current database is the
default database for the role tailored client and run Page 123456701, Squash Setup.

M View - Squash Setup

f Actions ~
Squash Setup
View Ctrl+Shift+V |
2| Edi Ctrl+Shift+E 257
=] MNotes - Squash Court Nos: SQCOURT -

| Links Chrl+L

Initialise Squash Application

Squash Setup Window

o EL | D (=

[58]

Chapter 2

From this page select the action Initialise Squash Application. This will execute the
C/AL code in the InitSquashApp function of this page, which will prepare demo
data for us to play with. The objects are prepared and tested in a Microsoft Dynamics
NAV 2009 SP1 W1 database.

Reservations

When running a squash court we want to be able to keep track of reservations.
Looking at standard Dynamics NAV functionality it might be a good idea to
create Squash player Journal. The Journal can create entries for reservations that
can be invoiced.

A journal needs the object structure. The journal is prepared in the objects delivered
with this chapter. Creating a new journal from scratch is a lot of work and can easily
lead to making mistakes. It is easier and safer to copy an existing Journal structure
from the standard application that is similar to the journal we need for our design.

In our example we have copied the Resource Journals.

. Object Designer F=3 ol T

3 Table T...ID Name M.. Version List Time: BLOB Size C..

i + 8 123456703 Squash Journal Template Chapter2-4 21:33:02 7294 ¥ &
Form + (B 123456705 Squash Journal Batch Chapter2-4 05-11-08 12:00:00 6316 ¥
£ Rt + (B 123456706 Squash Journal Line Chapter2-4 18-04-10 16:07:29 24852 ¥
+ 8 123456707 Squash Register Chapter2-4 05-11-08 12:00:00 1380 ¥
+{+ Datapert + 8 123456709 Squash Ledger Entry Chapter2-4 02-01-10 17:44:31 4928 ¥
[XMLport + | E 123456701 Squash Journal - Test Chapter2-4 02-01-10 22:54:13 38885 v
o + |3 123456702 Squash Register Chapter2-4 31-12-09 10:59:43 13692 ¥
#4 Codeunit v | B 123456701 SquashInlManagement Chapter2-4 31-12-09 14:26:53 15864 ¥
i MenuSuite + |0 123456702 Squash Inl.-Check Line Chapter2-4 02-01-10 17:44:53 10172 #
+ |0 123456703 Squash Inl.-Post Line Chapter2-4 02-01-10 19:51:48 15280 ¥
Epage v | 123456704 Sguash Inl.Post Batch Chapter2-4 02-01-10 22:54:30 27152 ¥
+ |0 123456705 Squash Inl.-Post Chapter2-4 28-12-09 21:12:24 4564 ¥
v | ¥ 123456706 Squash Inl.-Post-+Print Chapter2-4 28-12-09 21129 5284 ¥
+ | 123456707 Squash Inl.-B.Post Chapter2-4 28-12-09 21:12:33 4596 ¥
+ |0 123456708 Squash Inl.-B.Post+Print Chapter2-4 28-12-09 21:12:38 4868 ¥

. | 123456709 Squash Req.-Show Ledger Chapter2-4 28-12-09 21:12:56 1144 ¥ |5
+ |3 123456702 Squash Ledger Entries Chapter2-4 02-01-10 20:51:51 20980 v
=] 123456703 Squash Journal Templates Chapter2-4 17-12-01 12:00:00 14260 ¥
+ B 123456704 Squash Journal Template List Chapter2-4 17-12-01 12:00:00 10480 +
+ = 123456706 Squash Journal Chapter2-4 02-01-10 20:46:15 36036 ¥
+ = 123456707 Squash Inl. Batches Chapter2-4 28-12-09 21:40:50 11084 +
+ = 123456708 Squash Registers Chapter2-4 08-06-01 12:00:00 2416 ¥
+ |3 123456709 Recurring Squash Inl. Chapter2-4 02-01-10 21:09:43 34700 ¥

M You can export these objects to text format, and then rename

Q and renumber the objects to be reused easily. The squash journal
objects are renumbered and renamed from the resource journal.

[59]

A Sample Application

As explained in Chapter 1, Introduction to Microsoft Dynamics NAV, all journals have
the same structure. The template, batch and register tables are almost always the
same, whereas the journal line and ledger entry table contain function specific fields.
Let's have a look at all of them one by one.

Journal Template
The Journal Template has several fields as shown in the following screenshot:

Table 123456703 Squash Journal Template - Table Designer EIE

E.. Field Mo. Field Mame Data Type Length Description

b Mame Code 10 »
v 2 Description Text a0
v 5 TestReport ID Integer
v & Form ID Integer
v 7 Posting Report ID Integer
v & Force Posting Report Boolean
v 10 Source Code Code 10
v 11 Reason Code Code 10
v 12 Recurring Boolean
v 13 Test Report Mame Text 80
v 14 Form Mame Text 80
v 15 Posting Report Name Text a0
v 16 Mo. Series Code 10
v 17 Paosting Mo. Series Code 10 b

Lets discuss these fields in more detail:

e Name: This is the unique name. It is possible to define as many Templates
as required but usually one Template per Form ID and one for Recurring
will do. If you want journals with different source codes you need to have
more templates.

e Description: A readable and understandable description of its purpose.

e Test Report ID: All Templates have a test report that allows the user to
check for posting errors.

e Form ID: For some journals, more Ul objects are required. For example,
the General Journals have a special form for bank and cash.

e Posting Report ID: This report is printed when a user selects Post and Print.
o Force Posting Report: Use this option when a posting report is mandatory.

e Source Code: Here you can enter a Trail Code for all the postings done via
this Journal.

[60]

Chapter 2

Reason Code: This functionality is similar to source sodes.

Recurring: Whenever you post lines from a recurring journal, new lines
are automatically created with a posting date defined in the recurring
date formula.

No. Series: When you use this feature the Document No. in the Journal Line
is automatically populated with a new number from this Number Series.

Posting No. Series: Use this feature for recurring journals.

Journal Batch
Journal Batch has various fields as shown in the following screenshot:

Tahle 123456705 Squash Journal Batch - Table Designer ==]

E.. Field Mo, Field Name Data Type Length Description
v 1 Journal Template Name Code 10 -
v 2 Name Code 10
v 3 Description Text 50
w 4 Reason Code Code 10
v 5 MNo. Series Code 10
v & Posting No. Series Code 10

¥ 22 Recurring Boolean -

Lets discuss these fields in more detail:

Journal Template Name: The name of the Journal Template this batch
refers to

Name : Each batch should have a unique code
Description: A readable and explaining description for this batch

Reason Code: When populated, this Reason Code will overrule the
Reason Code from the Journal Template

No. Series: When populated this No. Series will overrule the No. Series
from the Journal Template

Posting No. Series: When populated this Posting No. Series will overrule
the Posting No. Series from the Journal Template

[61]

A Sample Application

Register

The Register table has various fields as shown in the following screenshot:

Field Mame
1 Mo,
2 From Enfry MNo.
3 ToEnfry No.
4 Creation Date
5 Source Code
& User ID
7 Journal Batch Name

E.. Field Mo.

A R L T

Table 123456707 Squash Register - Table Designer

Data Type Length
Integer

Integer

Integer

Date

Code

Code

Code

10

10

Description

=1 Hol 5

Lets discuss these fields in more detail:

e No.: This field is automatically and incrementally populated for each
transaction with this journal. There are no gaps between the numbers.

e From Entry No.: A reference to the first Ledger Entry created is with

this transaction.

e To Entry No.: A reference to the last Ledger Entry is created with

this transaction.

e Creation Date: Always populated with the real date when the

transaction was posted.

e User ID: The ID of the end user who has posted the transaction.

The Journal

The journal line has a number of mandatory fields that are required for all journals
and some fields that are required for its designed functionality.

In our case the journal should create a reservation which then can be invoiced.
This requires some information to be populated in the lines.

[62]

Chapter 2

Reservation

The reservation process is a logistical process that requires us to know the number
of the Squash Court, the date, and the time of the reservation. We also need to know
how long the players want to play. To check the reservation it might also be useful
to store the number of the Squash Player.

Invoicing

For the invoicing part we need to know the price we need to invoice. It might also be
useful to store the cost to see our profit. For the system to figure out the proper G/L
Account for the turnover we also need to define a General Product Posting Group.
We will see more of how that works later in Chapter 3, Financial Managemenet.

Table 123456706 Squash Journal Line - Table Designer [| =] =]

E.. Field No. Field Mame Data Type Length Description
v 1 Journal Template Name Code 10 -
v 2 Line Mo, Integer
v 3 Entry Type Option E
v 4 Document Mo, Code 20
v 5 Posting Date Date
v & Squash Player Mo, Code 20
v 7 Squash Court Mo. Code 20
v & Description Text 50
v 9 Reservation Date Date
v 10 From Time Time

b v 11 To Time Time hd

Help

¢ Journal Template Name: This is a reference to the current journal template.

e Line No. : Each journal has virtually unlimited number of lines; this number is
automatically incremented by 10000 allowing lines to be created in between.

¢ Entry Type: Reservation or invoice.

¢ Document No.: This number can be used to give to the squash player as a
reservation number. When the entry type is invoice, it is the invoice number.

e Posting Date: Posting date is usually the reservation date but when the entry
type is invoice it might be the date of the invoice which might differ from the
posting date in the general ledger.

e Squash Player No.: A reference to the squash player who has made
the reservation.

[63]

A Sample Application

e Squash Court No.: A reference to the squash court.

e Description: This is automatically updated with the number of the squash
court, reservation date and times, but can be changed by the user.

¢ Reservation Date: The actual date of the reservation.

e From Time: The starting time of the reservation. We allow only whole or
half hours.

e To Time: The ending time of the reservation. We only allow whole and half
hours. This is automatically populated when people enter a quantity.

¢ Quantity: The number of hours playing time. We only allow units of 0.5 to be
entered here. This is automatically calculated when the times are populated.

e Unit Cost: The cost to run a Squash Court for one hour.
e Total Cost: The cost for this reservation.

e Unit Price: The invoice price for this reservation per hour. This depends
on whether or not the squash player is a member or not.

e Total Price: The total invoice price for this reservation.

e Shortcut Dimension Code 1 & 2: A reference to the dimensions used for
this transaction.

e Applies-to Entry No.: When a reservation is invoiced, this is the reference
to the squash entry no. of the reservation.

e Source Code: Inherited from the journal batch or template and used when
posting the transaction.

e Chargeable: When this option is used, there will not be an invoice for
the reservation.

e Journal Batch Name: A reference to the journal batch that is used for
this transaction.

e Reason Code: Inherited from the journal batch or template, and used when
posting the transaction.

e Recurring Method: When the journal is a recurring journal you can use this
field to determine whether the amount field is blanked after posting the lines.

e Recurring Frequency: This field determines the new posting date after the
recurring lines are posted.

¢ Gen. Bus. Posting Group: The combination of general business and
product posting group determines the G/L cccount for turnover when
we invoice the reservation. The Gen. Bus. Posting Group is inherited
from the bill-to customer.

[64]

Chapter 2

¢ Gen. Prod. Posting Group: This will be inherited from the squash player.

e External Document No.: When a squash player wants us to note a reference
number we can store it here.

e Posting No. Series: When the journal template has a posting no. series it is
populated here to be used when posting.

e Bill-to Customer No.: This determines who is paying for the reservation.
We will inherit this from the squash player.

So now we have a place to enter reservations but we have something to do before
we can start doing this.

Some fields were determined to be inherited and calculated:

o The time field needs calculation to avoid people entering wrong values
e The Unit Price should be calculated

e The Unit Cost, Posting groups, and Bill-to Customer No. need to
be inherited

e Asfinal cherry on top, we will look at implementing dimensions

Time calculation

As it comes to the times we want only to allow specific start and end times. Our
Squash Court can be used in blocks of half an hour. The quantity field should be
calculated based on the entered times and vice versa.

To have the most flexible solution possible we will create a new table with allowed
starting and ending times. This table will have two fields; Reservation Time and
Duration as shown in the following screenshot:

-

Table 123456708 Reservation Time - Table Designer (== =]
E..Field No. Field Name Data Type Lenagth Description
(3 1 Reservation Time Time
v 2 Duration Decimal
Table 123456708 Reservation Time - Keys [= =]
E.. Key SumIndexFields
» | ¥ Reservation Time [_1[1] Duration -

Duration will be a decimal field that we will promote to a Sum Index Field. This will
enable us to use SIFT to calculate the Quantity.

[65]

[vww allitebooks.cond

http://www.allitebooks.org

A Sample Application

When populated the table will look like this:

Reservation Time - Table [=]
Reservati... Duration
3:00:00 0,50 -
3:30:00 0,50
9:00:00 0,50 =
9:30:00 0,50

The time fields in the squash journal table will now get a table relation with this
table. This prevents a user from entering values that are not in the table thus
allowing only valid starting and ending times. This is all done without any C/AL
code and flexible when times change later.

I Reservation Time Reservation Time ' 8:45:00' does not exist.

Batch Name: DEFAULT v
Posting Date Entry Type D.. Reservation.. SquashPlay.. Squash Cour.. Description Bill-to Custo... From Time
9 27-1-2011 Reservation 18-4-2010 SQPLO00001 SQCRTO01 Squash Court1 01121212

Now we need some code that calculates the quantity based on the user's input:

From Time - OnValidate()
CalcQty;

To Time - OnValidate()
CalcQty;

CalcQtyQ
IF (C*From Time" <> OT) AND (“'To Time" <> OT) THEN BEGIN

IF "To Time"™ <= "From Time" THEN
FIELDERROR(*'To Time™);

ResTime.SETRANGE(''Reservation Time"™, "From Time",
"To Time");

ResTime.FIND("+");

ResTime .NEXT(-1);

ResTime.SETRANGE(''Reservation Time"™, "From Time",
ResTime.""Reservation Time');

ResTime.CALCSUMS(Duration);

VALIDATE(Quantity, ResTime.Duration);

END;

[66]

Chapter 2

When a user enters a value in the From Time or To Time the function CalcQty is
executed. This checks if both fields have a value and then checks whether To Time
is larger than From Time.

Then we place a filter on the Reservation Time table. When a user now makes a
reservation from 8:00 to 9:00 there are three records in the filter making the result

of the CALCSUMS (Total of all records) of duration 1,5. Therefore we find the previous
reservation time and use that.

This example shows how easy it is to use built in Microsoft Dynamics NAV
functionality like table relations and CALCSUMS instead of complex time calculations
which we could have also used.

Price calculation

As discussed in Chapter 1, Microsoft Dynamics NAV has a special technique to
determine prices. Prices are stored in a table with all possible parameters as fields
and by filtering down on these fields the best price is determined. If required with
extra logic to find the lowest (or highest) price if more prices are found.

To look, learn, and love this part of the standard application we have used table
Sales Price (7002) and Sales Price Calc. Mgt. (7000) even though we only need a small
part of this functionality. This mechanism of price calculation is used throughout

the application and offers a normalized way of calculating sales prices. A similar
construction is used for purchase prices with table purchase price (7012) and Purch.
Price calc. Mgt. (7010).

Squash prices

In our case we have already determined that we have a special rate for members, but
let's say we have also a special rate for daytime and evening in winter and summer.

This could make our table look like this:

Table 123456710 Squash Price - Table Designer =N ===

E.. Field No. Field Mame Data Type Length Description
v 1 Sguash Court Mo, Code 20 -
v 2 Starting Date Date
v 3 Unit Price Decimal
v 4 Member Boolean
v 5 Ending Time Time

b v & Ending Date Date

We can make special prices for members on dates for winter and summer and make
a price only valid until a certain time. We can also make a special price for a court.

[67]

A Sample Application

This table could be creatively expanded with all kinds of codes until we end up
with table sales price (7002) in the standard product which was the template for
our example.

Price calc mgt. codeunit

To calculate the price we need a codeunit similar to the standard product. This
codeunit is called with a squash journal line record and stores all valid prices in
a buffer table and then finds the lowest price if there is an overlap:

FindSquashPrice()

WITH FromSquashPrice DO BEGIN
SETFILTER("Ending Date', "%1]|>=%2",0D,StartingDate);
SETRANGE("'Starting Date'",0D,StartingDate);

ToSquashPrice.RESET;
ToSquashPrice.DELETEALL;

SETRANGE(Member, IsMember);

SETRANGE("Ending Time", 0T);
SETRANGE(*'Squash Court No."™, "");
CopySquashPriceToSquashPrice(FromSquashPrice,ToSquashPrice);

SETRANGE("Ending Time", 0T);
SETRANGE(*'Squash Court No.", CourtNo);
CopySquashPriceToSquashPrice(FromSquashPrice, ToSquashPrice);

SETRANGE("'Squash Court No.", "%);
IF StartingTime <> OT THEN BEGIN
SETFILTER("Ending Time", "%1]>=%2",000001T,StartingTime);
CopySquashPriceToSquashPrice(FromSquashPrice,
ToSquashPrice);
END;

SETRANGE(''Squash Court No.", CourtNo);
IF StartingTime <> OT THEN BEGIN
SETFILTER("Ending Time", "%1]|>=%2",000001T,StartingTime);
CopySquashPriceToSquashPrice(FromSquashPrice,
ToSquashPrice);
END;
END;

If there is no price in the filter it uses the unit price from the Squash Court.

CalcBestUnitPrice()

WITH SquashPrice DO BEGIN
FoundSquashPrice := FINDSET;
IF FoundSquashPrice THEN BEGIN

[68]

Chapter 2

BestSquashPrice := SquashPrice;

REPEAT

IF SquashPrice."Unit Price" <
BestSquashPrice.""Unit Price"”

THEN
BestSquashPrice := SquashPrice;
UNTIL NEXT = O;
END;
END;

// No price found in agreement

IF BestSquashPrice."Unit Price” = 0 THEN
BestSquashPrice.""Unit Price" := SquashCourt."Unit Price";

SquashPrice := BestSquashPrice;

Inherited data

To use the journal for the product part of the application we want to inherit some of
the fields from the master data tables. In order to make that possible we need to copy
and paste these fields from other tables to our master data table and populate it.

In our example we can copy and paste the fields from the Resource table (156).
We also need to add code to the Onval idate triggers in the Journal Line table.

Table 123456702 Squash Court - Table Designer

E.. Field Mo. Field Name

v 1 Mo.

v 2 Description

v 3 Search Description

v 16 Global Dimension 1 Code
v 17 Global Dimension 2 Code
v 21 Unit Cost

v 24 Unit Price

v 51 Gen. Prod. Pasting Group
v 58 VAT Prod. Posting Group
W

» 107 Mo. Series

Data Type Length
Code
Text
Code
Code
Code
Dedmal
Dedmal
Code
Code
Code

50
a0

==

Description

(=5 [ECE =)

The Squash Court table for example is expanded with the fields Unit Code, Unit
Price, Gen. Prod. Posting Group, and VAT Prod. Posting Group (as shown in the

previous screenshot)

[69]

A Sample Application

We can now add code to the Onval idate of the Squash Court No. field in the
journal line table:

Squash Court No. - OnValidate()
IF SquashCourt._GET("'Squash Court No.') THEN BEGIN

Description := SquashCourt.Description;

"Unit Cost" := SquashCourt."Unit Cost";

"Gen. Prod. Posting Group'" := SquashCourt."Gen. Prod. Posting
Group™;

FindSquashPlayerPrice;

END;

Please note that unit price is used in the squash price calc. mgt. codeunit that is
executed from the function FindSquashPlayerPrice.

Dimensions

In Microsoft Dynamics NAV, dimensions are defined in master data and posted
to the ledger entries to be used in analysis view entries.

In Chapter 3,we will discuss how to analyse the data generated by dimensions.

In between that journey they move around a lot in different tables:

Table 348 | Dimension: Here the main dimension codes are defined.

Table 349 | Dimension Value: Here each dimension can have an unlimited
number of values.

Table 350 | Dimension Combination: In this table we can block certain
combinations of dimension codes.

Table 351 | Dimension Value Combination: In this table we can block
certain combinations of dimension values. If this table is populated,
the value limited is populated in the dimension combination table for
these dimensions.

Table 352 | Default Dimension: This table is populated for all master data
that has dimensions defined.

Table 354 | Default Dimension Priority: When more than one master-data
record in one transaction have the same dimensions, it is possible here to
set priorities.

Table 355 | Ledger Entry Dimension: This is the history table for posted
dimensions in ledger entries.

Table 356 | Journal Line Dimension: This is a buffer table for dimensions
in unposted journal lines.

[70]

Chapter 2

e Table 357 | Document Dimension: This is a buffer table for dimensions in
unposted documents.

e Table 358 | Production Document Dimension: This table saves dimensions
especially for production orders.

e Table 359 | Posted Document Dimension: This is the history table for posted
dimensions in posted documents.

e Codeunit 408 | DimensionManagement: This codeunit is the single point in
the application where all dimension movement is done.

In our application dimensions are moved from the squash player, squash court, and
customer table via the squash journal line to the squash ledger entries. When we create
an invoice we move the dimensions from the ledger entries to the sales line table.

Master data

To connect dimensions to master data we first need to allow this changing codeunit
408 dimension management.

SetupObjectNoList()
TablelDArray[1] := DATABASE::"Salesperson/Purchaser™;

TablelDArray[2] := DATABASE::"G/L Account";
TablelDArray[3] := DATABASE: :Customer;
TablelDArray[22] := DATABASE::"Service ltem Group';
TablelDArray[23] := DATABASE::"Service ltem";

//* Squash Application
TablelDArray[49] := DATABASE::"Squash Player";
TablelDArray[50] := DATABASE::"'Squash Court";
//* Squash Application

Object.SETRANGE(Type,Object.Type: :Table);

FOR Index := 1 TO ARRAYLEN(TablelDArray) DO BEGIN

The variable TablelDArray has a default number of 23 dimensions. We have
changed this to 50.

Al

~ By leaving gaps we allow Microsoft to add master data tables
in the future without us having to change our code

[71]

A Sample Application

Without this change, the system would return an error message when we tried to
use dimensions.

lilr:dil Table ID must not be 123456701 in Default Dimension Table ID="123456701",Mo.=",Dimension Code="". (Select Refr...

Next change is to add the Global Dimension fields to the master data tables.
They can be copied and pasted from other master data tables (as shown in the
following screenshot):

Table 123456701 Squash Player - Table Designer =] | (R
E|. Field Mo, Field Name Data Type Length escription
b 16 Global Dimension 1 Code Code 20 -
“ 17 Global Dimension 2 Code Code 20
b 19 Member Boolean
v 22 Currency Code Code 10

When these fields are validated the function Val idateShortcutDimCode is executed.

ValidateShortcutDimCode()

DimMgt.ValidateDimValueCode(FieldNumber,ShortcutDimCode);

DimMgt.SaveDefaul tDim(DATABASE: :"'Squash Player',"No.",
FieldNumber,ShortcutDimCode) ;

MODIFY;

Journal

When we use the master data records in the Journal table, the dimensions are copied
from the default dimension table to the journal line dimension table. This is done
using this piece of code that is called from the Onval idate of each master data
reference field:

CreateDim()

TablelD[1] := Typel;

No[1] := No1l;

TablelD[2] := Type2;

No[2] := No2;

TablelD[3] := Type3;

No[3] := No3;

""Shortcut Dimension 1 Code™ := "7;
""Shortcut Dimension 2 Code™ := "7;

DimMgt.GetDefaultDim(
TablelD,No,"Source Code",
"Shortcut Dimension 1 Code","Shortcut Dimension 2 Code');

[72]

Chapter 2

IF "Line No." <> 0 THEN
DimMgt.UpdatednlLineDefaultDim(
DATABASE: :""Squash Journal Line","Journal Template Name",
"Journal Batch Name'","Line No.",0,
"Shortcut Dimension 1 Code","Shortcut Dimension 2 Code");

To decide which dimensions to inherit we should first analyze which master data is
used in our journal that is using default dimensions.

Squash Court No. - OnValidate()

CreateDim(
DATABASE: :""Squash Court'","Squash Court No.",
DATABASE: :""Squash Player","Squash Player No.",
DATABASE: :Customer,"Bill-to Customer No.");

In our case Table[1] is Squash Player, Table[2] is Squash Court, and Table[3] is
Customer. The dimension management codeunit makes sure everything is copied.
We can use standard Microsoft Dynamics NAV functions.

Posting

When we post a journal using codeunit squash jnl.-post line (123456703) the
dimensions are first copied into a posting buffer table.

RunWithCheck()

SquashJnlLine.COPY(SquashJdnlLine2);

TempJdnlLineDim.RESET;

TempJdnlLineDim.DELETEALL;

DimMgt.CopyJdnlLineDimToJdnlLineDim(TempJdnlLineDim2,
TempJnlLineDim);

Code;

SquashJdnlLine2 := SquashJnlLine;

Then after we have created the ledger entry and know the number, the ledger entry
dimensions are created. Again we use standard Microsoft Dynamics NAV functions
without changing them.

Code()

SquashLedgEntry. INSERT;

DimMgt.MoveJdnlLineDimToLedgEntryDim(
TempJdnlLineDim,DATABASE: :"'Squash Ledger Entry",
SquashLedgEntry."Entry No.");

NextEntryNo := NextEntryNo + 1;

[73]

A Sample Application

Document

For moving ledger entry dimensions to document dimensions, Microsoft
Dynamics NAV does not have a standard function, so we have copied the
function CopyLedgEntryDimToJdnlILnDim to CopyLedgEntryDimToDocDim.

CopyLedgEntryDimToDocDim()
WITH FromLedgEntryDim DO
IF FINDSET THEN
REPEAT
ToDocDim."Dimension Code' := ""Dimension Code'';
ToDocDim.""Dimension Value Code" :=
"Dimension Value Code'';
ToDocDim. INSERT;
UNTIL NEXT = 0;

This function we can then call from our combine invoicing report, which we will
create later in this chapter in the invoicing section.

CreateLn()

DocDim."Table ID" := DATABASE::"Sales Line";
DocDim."Document Type™ := SalesLn.'"Document Type';
DocDim.""Document No.' := SalesLn.'Document No.";
DocDim."Line No." := SalesLn.'Line No.";

LedgEntryDim.SETRANGE("Table 1D",

DATABASE: :"'Squash Ledger Entry');
LedgEntryDim.SETRANGE("Entry No.', "Entry No.');
DimMgt.CopyLedgEntryDimToDocDim(LedgEntryDim, DocDim);

The posting process

Our journal is now ready to be posted. We've implemented all business logic, except
the posting code.

I...|D MName M.. Version List Date Time

-4 123456702 Squash Inl. -Check Line Chapter2-4 02-01-10 17:44:53 1
4 123456703 Sguash Inl. Post Line Chapter2-4 02-01-10 19:51:48
4 123456704 Squash Jnl.-Post Batch Chapter2-4 02-01-10 22:54:30
-4 123456705 Squash Jnl. Post Chapter2-4 28-12-09 21:12:24
-4 123456706 Squash Jnl. Post+Print Chapter2-4 28-12-09 21:12:29
4 123456707 Squash Jnl.-B.Post Chapter2-4 28-12-09 21:12:33
-4 123456708 Squash Inl.-B.Post+Print Chapter2-4 28-12-09 21:12:38

[74]

Chapter 2

The posting process of a journal in Microsoft Dynamics NAV has several codeunits
for the structure:

Jnl.-Check Line: This codeunit checks if the journal line is valid for posting

Jnl.-Post Line: This codeunit does the actual creation of the ledger entry and
register tables, and calls other jnl.-post line codeunits if necessary to provide
the transaction structure in Chapter 1.

Jnl.-Post Batch: This codeunit loops through all journal lines in a journal
batch and posts all the lines. There is a dialog.

Jnl.-Post: This is the codeunit that is called from the page. It calls the
codeunit jnl.-post batch and takes care of some user messaging.

Jnl.-Post+Print: This is the codeunit that is called when you push post +
print. It does the same as the jnl.-post codeunit but with the additional
printing of a report defined in the journal template.

Jnl.-B.Post: Posts all the journal lines that have no errors and marks the
ones that have errors.

Jnl.-B.Post+Print: Does the same as Jnl.-B.Post but with the additional
printing of a report defined in the journal template.

Check line

Let's have a look at the check line codeunit. When it comes to testing, Microsoft
Dynamics NAV has a simple rule:

Test near, Test far, Do-it, Clean up

First we need to test the field in the journal line table, then read external data tables
to check if all is good, then post the lines and delete the data from the journal table.

It does not make sense to read the G/L setup table from the database if the document
no. in our own table is blank, or to start the posting process and error out because the
Posting Date is outside of a valid range. This would cause a lot of unnecessary I/O
from the database to the client.

RunCheck()
WITH SquashJdnlLine DO BEGIN

IF EmptyLine THEN
EXIT;

TESTFIELD(*'Squash Player No.");
TESTFIELD(''Squash Court No.");
TESTFIELD(*'Posting Date');
TESTFIELD(*'Gen. Prod. Posting Group');

[75]

A Sample Application

TESTFIELD(*'From Time');
TESTFIELD(*"To Time');
TESTFIELD("'Reservation Date');
TESTFIELD("Bill-to Customer No.");

IF "Entry Type" = "Entry Type"::Invoice THEN
TESTFIELD("Applies-to Entry No.");

IF "Applies-to Entry No." <> O THEN
TESTFIELD("Entry Type', "Entry Type'::Invoice);

IF "Posting Date'" <> NORMALDATE("'Posting Date') THEN
FIELDERROR("'Posting Date",Text000);

IF (AllowPostingFrom = 0OD) AND (AllowPostingTo = 0D) THEN

END;

IF NOT DimMgt.CheckJnlLineDimComb(JdnlLineDim) THEN

TablelD[1] := DATABASE::"Squash Player";
No[1] := "Squash Player No.";

IF NOT DimMgt.CheckJnlLineDimValuePosting(JdnlLineDim,
TablelD,No)

THEN
IF "Line No." <> 0 THEN

Here we can clearly see that fields in our table are checked first, then the date
validation, and lastly the dimension checking.

Post line

The actual posting code turns out to be quite simple. The values are checked and
then a Register is created or updated.

Code()
WITH SquashJnlLine DO BEGIN
IF EmptyLine THEN
EXIT;

SquashJdnlCheckLine.RunCheck(SquashJdnlLine,TempJnlLineDim);

IF NextEntryNo = O THEN BEGIN
SquashLedgEntry.LOCKTABLE;
IF SquashLedgEntry.FIND("+") THEN
NextEntryNo := SquashLedgEntry."Entry No.";

[76]

Chapter 2

NextEntryNo := NextEntryNo + 1;

END;
IF SquashReg."No."™ = 0 THEN BEGIN
SquashReg.LOCKTABLE;
IF (NOT SquashReg.FIND("+")) OR ... THEN BEGIN
SquashReg. INIT;
SquashReg.""No." := SquashReg."No."™ + 1;

SquashReg. INSERT;
END;
END;
SquashReg."To Entry No." := NextEntryNo;
SquashReg.MODIFY;

SquashPlayer.GET(*'Squash Player No.");
SquashPlayer.TESTFIELD(Blocked,FALSE);

IF (GenPostingSetup.'Gen. Bus. Posting Group" <>
"Gen. Bus. Posting Group'™) OR
(GenPostingSetup.'Gen. Prod. Posting Group" <>
"Gen. Prod. Posting Group'™)

THEN
GenPostingSetup.GET(""Gen. Bus. Posting Group",

"Gen. Prod. Posting Group');

SquashLedgEntry. INIT;
SquashLedgEntry."Entry Type"™ := "Entry Type";
SquashLedgEntry.""Document No." := "Document No.';

SquashLedgEntry.""No. Series"™ := "Posting No. Series";
SquashLedgEntry. INSERT;

All the fields are simply moved to the ledger entry table.

This is what makes Microsoft Dynamics NAV simple and powerful.

M Here we can clearly see how easy it is to add a field to a
Q posting process. Just add the fields to the journal line, the
ledger entry, and add one line of code to the posting process.

[77]

A Sample Application

Invoicing
The last issue on our to-do list is the invoicing process. For this we use a part of
the standard application.

As explained in Chapter 1, invoicing is done using a document structure with a header
and a line table. This has a posting routine that will start the journal transactions.

For our application we need to create the invoice document and make sure that
when posted, it updates our sub administration.

Invoice document

The sales invoice documents in Microsoft Dynamics NAV are stored in the sales
header (36) and sales line (37) tables. We will create a report that will combine the
outstanding reservation entries into invoices allowing the user to filter on a specific
entry or any other field value in the squash ledger entry table.

Reports in Microsoft Dynamics NAV are not just for printing documents, we can
also use its dataset capabilities to start batch jobs.

To enable this, our batch job needs to have a special property, ProcessingOnly
(as shown in the following screenshot), so let's start a blank report and do this.

Report - Properties = =[]
Property Value
1D 123456700 =
Mame Squash Combine Invoices
Caption <Squash Combine Invoices > =
CaptionML <Undefined >
ShowPrintStatus <Yes:
UseRegForm <Yeg>
UseSystemPrinter <No>

|Pr0cessingOnIy Yes E] |
EnableExternallmages =No>
EnableHyperlinks =MNo= -

[78]

Chapter 2

The report will browse through the squash ledger entries filtered on entry type
reservation and open (yes). The sorting is Open, Entry Type, Bill-to Customer
No., and Reservation Date (as shown in the following screenshot):

Report 123456700 Squash Combine Invoices - Repo.. [= |[E |[£2 |

Dataltem Name
» | Squash Ledger Entry <5quash Ledger Entry =
Squash Ledger Entry - Properties = @
Property Value
DataltemIndent <0 =

Squash Ledger Entry
i " SORTING(Open,Entry Type,Bill-to Customer No. Reservation Date) WHERE(Entry Type=CONST(Reservation),Open=CONST(Yes))
DataltemLinkReference <Undefined:>

m

DataltemLink <Undefined:

MewPagePerGroup <Mo>

MewPagePerRecord <Mo>

RegFilterHeading <>

RegFilterHeadingML <>

RegFilterFields Squash Player Mo.,Bill-to Customer Mo.,Entry Mo, -

Because bill-to customer no. is the first non filtered value in the sorting we can
assume that if this value changes we need a new sales header.

For every Squash Ledger Entry we will generate a sales line.

Squash Ledger Entry - OnAfterGetRecord()
IF "Bill-to Customer No." <> SalesHdr."Bill-to Customer No."
THEN

CreateSalesHdr;

Createln;

Sales header

The code to create a sales header looks like this:

CreateSalesHdr()

CLEAR(SalesHdr);

SalesHdr.SetHideValidationDialog(TRUE);

SalesHdr.""Document Type'"™ := SalesHdr.''‘Document Type'::Ilnvoice;
SalesHdr.""Document Date" := WORKDATE;

SalesHdr."Posting Date' := WORKDATE;

SalesHdr.VALIDATE("Sell-to Customer No.",
"Squash Ledger Entry"”."Bill-to Customer No.');

SalesHdr. INSERT(TRUE) ;

NextLineNo := 10000;

CounterOK := CounterOK + 1;

[79]

A Sample Application

The function SetHideValidationDialog makes sure that we don't get pop-up
messages while validating values. This is a standard function in Microsoft Dynamics
NAYV which is designed for this purpose.

Sales line

To create a sales line we need a minimum of this code. Please note that we added the
field Applies-to Squash Entry No. to the sales line table.

CreateLn()
WITH *"Squash Ledger Entry™ DO BEGIN
GenPstSetup.GET(*'Gen. Bus. Posting Group®,
"Gen. Prod. Posting Group'™);
GenPstSetup.TESTFIELD("'Sales Account™);

SalesLn.INIT;

SalesLn.""Document Type'" := SalesHdr.''Document Type';
SalesLn."Document No."™ := SalesHdr.'"'No.";
SalesLn."Line No."™ := NextLineNo;
SalesLn.""System-Created Entry"™ := TRUE;

SalesLn.Type := SalesLn.Type::"G/L Account';
SalesLn_VALIDATE(*'No.", GenPstSetup.'Sales Account™);
SalesLn._Description := Description;

SalesLn_VALIDATE(Quantity, Quantity);
SalesLn_VALIDATE('Unit Price'™, "Unit Price™);
SalesLn_VALIDATE('Unit Cost (LCY)™, "Unit Cost");

SalesLn."Applies-to Squash Entry No."™ := "Entry No.";
SalesLn. INSERT(TRUE);
END;

NextLineNo := NextLineNo + 10000;

When you add fields to the sales and purchase document tables, make
M sure to also add these to the posted equivalents of these tables with
Q the same number. This way you make sure that the information is
copied to the historic data. This is done using the TRANSFERFIELDS
command. We will discuss these tables in Chapter 6.

[80]

Chapter 2

Dialog

If the combined invoicing takes some time it might be good to show the user a
process bar. For this Microsoft Dynamics NAV has a standard structure.

The window shows the bill-to customer no. it is currently processing and a bar
going from 1 percent to 100 percent. This is calculated by keeping a counter.

At the end of the process we show a message telling the user how many invoices
were created out of the number of squash ledger entries.

Squash Ledger Entry - OnPreDataltem()
CounterTotal := COUNT;
Window.OPEN(Text000) ;

Squash Ledger Entry - OnAfterGetRecord()

Counter := Counter + 1;

Window.UPDATE(L,"Bill-to Customer No.");
Window.UPDATE(2,ROUND(Counter / CounterTotal * 10000,1));

Squash Ledger Entry - OnPostDataltem()
Window.CLOSE;
MESSAGE (Text001,CounterOK,CounterTotal);

To do this we need some variables. The Window variable is of type Dialog
whilst Counter, CounterTotal, and CounterOK are integers (as shown in the
following screenshot):

Squash Ledger Entry - C/AL Globals E@
Variables | Text Constants | Functions

Mame DataType Subtype Length
SalesHdr Record Sales Header -
Window Dialog
MextlineNo Integer
CounterTotal Integer
Counter Integer

¥ | CounterQk Integer

[81]

A Sample Application

The constant Text000 has special values #1########## and
@2@RERERRREEE@EAREA (as shown in the following screenshot). The first allows
us to show and update the text; the latter is to create the process bar:

Squash Ledger Entry - C/AL Globals [B 3]
Text Constants | Functions

Mame ConstValue
Textl00 Creating invoices F1F#FZ#FF77777 R20@Q@o@@@oa@ooa@ -
b | TextO01 %1 inveoices out of a total of %2 reservations have now been created. [;]
The result is this:

Microsoft Dynamics MAY

Creating invoices: 34010100
41%

Cancel

We see the following window when invoice creation process completes:

Microsoft Dynamics NAV s &J

j{) 26 invoices out of a total of 39 reservations have now been created.

There is a best practice document about using progress
bars in combination with the impact on performance at
http://www._mibuso.com/howtoinfo.asp?FilelD=17

A

Posting process

Now, our sales invoice is ready so we can start making the necessary changes to the
posting process. Posting a sales document is done using a single posting codeunit
and some helper objects:

e Report 297: This report can be used to post more than one document at the
same time with a filter.

[82]

Chapter 2

e Codeunit 80: This is the actual posting routine we are going to change.

e Codeunit 81: This codeunit is called from the user interface and has a dialog
whether the user wants to ship, invoice or both if the document is an order,
and a yes/no if the document is an invoice or credit memo.

e Codeunit 82: When the user chooses post and print this codeunit is executed
which does the same as codeunit 81 plus printing a report.

So we will make a change to codeunit 80. This codeunit has a specific structure that
we need to understand before we go in and make the change.

Analyse the object

The codeunit also has the Test Near, Test Far, Do it and Cleanup strategy so the first
code is to make sure that everything is in place before the actual posting starts. Let's
have a look at how this codeunit is structured.

focus on the most important parts and learning how to read this

[> The Sales-Post codeunit is too long to discuss in detail. We will]
: type of code routines.

This first part does the test near and a part of the test far. The Ship, Invoice,
and Receive fields are set in codeunit 81 and 82 but checked and completed to
make sure:

Code()

WITH SalesHeader DO BEGIN

TESTFIELD("'Document Type');

TESTFIELD('Sell-to Customer No.'™);

TESTFIELD('Bill-to Customer No.'™);

TESTFIELD(''Posting Date');

TESTFIELD(*'Document Date');

IF GenJnlCheckLine.DateNotAl lowed(*'Posting Date') THEN

FIELDERROR("'Posting Date",Text045);

CASE ''Document Type' OF
"Document Type'"::Order:
Receive := FALSE;
"Document Type'::Invoice:

BEGIN
Ship = TRUE;
Invoice := TRUE;
Receive := FALSE;
END;

[83]

A Sample Application

"Document Type'::"Return Order':
Ship := FALSE;
"Document Type'::"Credit Memo':
BEGIN
Ship := FALSE;
Invoice := TRUE;
Receive := TRUE;
END;
END;
IF NOT (Ship OR Invoice OR Receive) THEN
ERROR(...);
WhseReference := "Posting from Whse. Ref.";
"Posting from Whse. Ref." := 0;

IF Invoice THEN
CreatePrepaymentLines(...);

CopyAndCheckDocDimToTempDocDim;

The next step is to move the sales header information to the history tables for
shipment, invoice, credit memo, or return receipt header. These sections are
commented like this:

// Insert invoice header or credit memo header
IF Invoice THEN
IF "Document Type'"™ IN ["Document Type'::Order,
"Document Type'::Invoice]
THEN BEGIN
SaleslnvHeader.INIT;
SaleslInvHeader.TRANSFERFIELDS(SalesHeader);

We will discuss the relation between a sales header and the]

[sales shipment, sales invoice, sales credit memo, and return
Yas

receipt in Chapter 6.

When this is done, the sales lines are processed. They are also moved to the various
posted line tables. This is all part of the Do-it section of the posting routine.

// Lines
InvPostingBuffer[1].DELETEALL;
DropShipPostBuffer DELETEALL;
EverythinglInvoiced := TRUE;

SalesLine.RESET;
SalesLine.SETRANGE('Document Type',''Document Type');
SalesLine.SETRANGE('Document No.","No."™);

[84]

Chapter 2

LineCount := 0O;
RoundingLinelnserted := FALSE;
MergeSaleslines(...);

If there is a drop shipment in a purchase order this is handled here. We will discuss
Drop Shipments in Chapter 6.

// Post drop shipment of purchase order
PurchSetup.GET;
IF DropShipPostBuffer.FIND("-") THEN
REPEAT
PurchOrderHeader .GET(
PurchOrderHeader.""Document Type'"::Order,
DropShipPostBuffer."Order No.");

Then there is a section that creates the financial information in the general journal.
We will go deeper into this section in Chapter 3:

IF Invoice THEN BEGIN
// Post sales and VAT to G/L entries from posting buffer

LineCount := 0;
IF InvPostingBuffer[1].FIND("+") THEN
REPEAT
LineCount := LineCount + 1;

Window.UPDATE(3,LineCount);

GenJdnlLine.INIT;
GenJdnlLine."Posting Date"™ := "Posting Date";
GenJdnlLine.""Document Date'" := "Document Date';

Then the Clean up section starts by calculating remaining quantities, VAT, and
deleting the sales header and sales lines:

IF ("'Document Type"™ IN ["'Document Type'::Order,
"Document Type'::"Return Order']) AND
(NOT Everythinglnvoiced)
THEN BEGIN
MODIFY;
// Insert T336 records
InsertTrackingSpecification;

IF SalesLine.FINDSET THEN
REPEAT
IF SalesLine.Quantity <> 0 THEN BEGIN
IF Ship THEN BEGIN
SalesLine."Quantity Shipped" :=
SalesLine."Quantity Shipped" +

[85]

A Sample Application

SalesLine."Qty. to Ship";
SalesLine."Qty. Shipped (Base)" :=
SalesLine."Qty. Shipped (Base)" +
SalesLine."Qty. to Ship (Base)";
END;

The Clean up ends by deleting the sales document and related information, and
clearing the variables used:

IF HASLINKS THEN DELETELINKS;
DELETE;

SalesLine.DELETEALL;
DeleteltemChargeAssgnt;

CLEAR(WhsePostRcpt);
CLEAR(WhsePostShpt) ;

CLEAR(WhseJdnlPostLine);
CLEAR(InvtAdjmt);
Window.CLOSE;

Making the change

The change we are going to make is in the section where the lines are handled:

// Squash Journal Line
IF SalesLine."Applies-to Squash Entry No." <> 0 THEN
PostSquashJnlLn;

IF (SalesLine.Type >= SalesLine.Type::"G/L Account'™) AND
(SalesLine."Qty. to Invoice" <> 0)

THEN BEGIN
// Copy sales to buffer

We will create new function PostSquashJnlLn. This way we minimize the impact
on standard code. And when upgrading to a newer version we can easily copy and
paste our function, and only need to change the calling place if required.

M Always try to design for easy upgrading whenever possible. Remember that
Microsoft might change this code in newer versions so the more flexible we
are and the more we minimize the impact on standard code the better.

PostSquashJdnlLn()
WITH SalesHeader DO BEGIN

[86]

Chapter 2

OldSquashLedEnt.GET(

SalesLine."Applies-to Squash Entry No.'™);
OldSquashLedEnt.TESTFIELD(Open);
OldSquashLedEnt.TESTFIELD(""Bill-to Customer No.",

"Bill-to Customer No.'™);

SquashJdnlLn.INIT;

SquashJdnlLn."Posting Date"™ := "Posting Date";
SquashJdnlLn.""Reason Code" := "Reason Code"';
SquashJdnlLn.""Document No." := GenJnlLineDocNo;
SquashJdnlLn."External Document No." := GenJnlLineExtDocNo;
SquashJdnlLn.Quantity := -SalesLine."Qty. to Invoice";
SquashJdnlLn."Source Code" := SrcCode;
SquashJdnlLn.Chargeable := TRUE;

SquashJdnlLn."Posting No. Series"™ := "Posting No. Series";

TempJdnlLineDim.DELETEALL;

TempDocDim.RESET;

TempDocDim.SETRANGE(""Table ID",DATABASE::"Sales Line");

TempDocDim.SETRANGE("'Line No.",SalesLine."Line No.");

DimMgt.CopyDocDimToJdnlLineDim(TempDocDim, TempJdnlLineDim);

SquashJdnlPostLine.RunWithCheck(SquashdnlLn,TempJnlLineDim);
END;

Our new function first gets the squash ledger entry it applies to, and tests if it's still
open and the bill-to customer no. has not changed.

Then we populate squash journal line with the help of the sales line and the old
squash ledger entry.

Then dimensions are handled and the squash journal line is posted.

\ Note that the journal lines are never actually inserted into the database.
~ This is for performance and concurrency reasons. All journal transactions
Q here are handled in the service tier cache. A journal is also never
populated using Val idate. This makes it very clear to see what happens.

Now when we post an invoice we can see that the invoice entries are created:

iy View - Squash Ledger Entries

’ Actions ~ : Related Information ~

Posting ... | Entry Type Document... S.. Reservatio.. FromTime Applies-t.. ToTime Description 0.. Quantity | TotalC.. Total.. C.. Entry..
27-1-2011 Reservation ~ DEMODATA 5. 27-1-2011 19:00:00 0 19:30:00 Squash Courtd [05 2,50 10,00 1
2712011 Invoice 103023 S. 27-1-2011 19:00:00 1 19:3000 | S 0,5 2,50 7,00 40

[87]

A Sample Application

Navigate

We have now covered everything that is necessary for our Squash Court application
to run but there is one special function of Microsoft Dynamics NAV that needs
changing when we add new documents and ledger entries — the Navigate function.

The functionality was already discussed in Chapter 1. The object is a single page (344)
in the application that requires two changes.

FindRecords

The first function we change is FindRecords. This browses though the database
finding all possible combinations of document no. and posting date.

FindRecords()

// Squash Ledger Entries
IF SquashLedgEntry_READPERMISSION THEN BEGIN
SquashLedgEntry . RESET;
SquashLedgEntry.SETCURRENTKEY (*'Document No.",
"Posting Date');
SquashLedgEntry.SETFILTER(''Document No."',DocNoFilter);
SquashLedgEntry.SETFILTER(''"Posting Date',PostingDateFilter);
InsertintoDocEntry(
DATABASE: :"'Squash Ledger Entry",O0,
SquashLedgEntry.TABLECAPTION, SquashLedgEntry.COUNT) ;
END;
// Squash Ledger Entries

DocExists := FINDFIRST;

The function first checks if we have permission to read the Squash Ledger Entry
table. If our system administrator does not allow us to see this table it should not
show up.

The filtering is done on the Document No. and Posting Date. When ready the
system inserts the number of found records in the result table.

[88]

Chapter 2

ShowRecords

Second function to change is ShowRecords. This makes sure we see the squash ledger
entries when we push the show action.

ShowRecords()
DATABASE: :"Warranty Ledger Entry":
FORM.RUN(O,WarrantyLedgerEntry);
//* Squash Ledger Entries
DATABASE: :"'Squash Ledger Entry":
FORM.RUN(O, SquashLedgEntry);
END;
END;

Testing

Now when we navigate from the invoice we posted that was generated from our
combine invoicing report we get this result:

General o
Document Ne.: 103023 .
Posting Date: 27-01-11 :

Source 2 | b

Document Entry A | !

- NoofRec !
Posted Sales Invoice 1

G/L Entry 2 !
VAT Entry 1

Cust. Ledger Entry 1

Detailed Cust, Ledg. Entry 1

T 1

[89]

A Sample Application

Summary

In this chapter we created our own vertical add-on application for Microsoft
Dynamics NAV. We have used similar data model and posting structures, and
reused parts of the standard application where appropriate but never wrongly
used standard features.

We saw how to reverse engineer Microsoft Dynamics NAV code in order to
find out what similar standard functionality to copy, paste, and change for
our application.

We also learned how a journal and document posting codeunit works and how
to structure using Test Near, Test Far, Do it and clean up.

In the next chapter we will explore the financial functionality of Microsoft
Dynamics NAV, and even make some changes to this part of the application.

[90]

Financial Management

Whether you run a company, a not-for-profit organization, or an educational
institute, doing proper bookkeeping is mandatory and required by the government.

This makes financial management the most used part of Microsoft Dynamics NAV
and the least obvious place to make changes, as federal regulations do not allow
much creativity in this part of the application.

The first part of this chapter is all about the 'Look, Learn, and Love' principle
we discussed in the previous chapter. We cannot integrate our application with
Financial Management without knowing the basic functionality and structure of
the tool.

In the second part of the chapter, we will look at some examples of how to change
or expand the way Financial Management works.

Lastly, we will look at how to create a posting in the General Ledger from a newly
designed posting routine.

After studying this chapter, you should be able to set up Financial Management in a
new database and create basic postings to the General Ledger, and you should know
how to integrate Financial Management with your application.

Financial Management

Chart of accounts

Every financial system starts with a Chart of Accounts and although the
numbering might differ from country to country, we all have income statements

and balance accounts.

i View - Chart of Accounts
, Actions ~ Related Information ~ Reports =
MNe. Name
5890 Total Personnel-related Items
5900 Other Liabilities
5810 Dividends for the Fiscal Year
f 5820 Corporate Taxes Payable
5990 Other Liabilities, Total
5995 Short-term Liabilities, Total
i 5997 Total Liabilities
I 5999 TOTAL LIABILITIES AND EQUITY
! 6000 INCOME STATEMENT
6100 Revenue
6105 Sales of Retail
6110 Sales, Retail - Dom.
: 6120 Sales, Retail - EU
6130 Sales, Retail - Export
6190 Job Sales Applied, Retail
t 6191 Job Sales Adjmt.,, Retail
[6195 Total Sales of Retail

Microsoft Dynamics NAV also has some other special accounts; Heading,

Income/Balance
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Balance Sheet
Income Statement
Income Statement
Income Statement
Income Statement
Income Statement
Income Statement
Income Statement
Income Statermnent

Income Statement

Begin-total, and End-total accounts.

With these accounts you can make the Chart of Accounts more readable.

Account Type Totaling
End-Total 5800..5890
Begin-Total

Posting

Posting

End-Total 5900..5990
End-Total 5300..5995
End-Total 5000..5997
Total 3000..5999]...
Heading

Begin-Total

Begin-Total

Posting

Posting

Posting

Posting

Posting

End-Total 6105..6195

Net Change
-138.520.65

-34.572,80
-34.572.80

-2.138.682,63
-2.511.304,18
-3.449.221.37

-761.618,03
-71.641,58
-128.945,18

-962.205,79

The accounts within the total accounts are automatically indented.

Posting accounts

Balance

-138.520,65

-34 572,80
-34.572.80

-2.138.682.63
-2.511.304.18
-3.449.221.37

-761.618,03
-T1.641,58
-128.946,18

-962.205,79

When creating a new posting account, there are several options to choose from.

Most of them are not mandatory but make it easier to push the end users to using

the correct account while generating entries.

i

m

[92]

Chapter 3

Let's have a look at the options by opening a G/L Account Card:

i T i i i i = | =] g
4y Edit - G/L Account Card - 6110 Sa-E,.Ef’ REEJJ Dom. - T T e i
Related Information ~ E Reports ~
6110 - Sales, Retail - Dom.

| General ~ |
MNo.: 6110 MNew Page: [} !
Marme: Sales, Retail - Dom. Search Name: SALES, RETAIL - DOM.
Income/Balance: Income Statement - Balance: -761.618,03
Debit/Credit Both - Reconciliation Account: [

- Automatic Bxt. Texts: F I

Account Type: Posting - Direct Posting: B
Totaling: - Blocked: [l
Mo, of Blank Lines: 0 Last Date Modified:

i Posting ~
Gen. Posting Type: Sale - WAT Bus. Posting Group: NATIOMAL .
Gen. Bus. Posting Group: NATIOMNAL - VAT Prod. Posting Group: VAT25 -
Gen. Prod. Posting Group: RETAIL - Default IC Partner G/L Acc. No: -

f L

| Consolidation ~ '
Consol, Debit Acc. Consol. Translation Method: Average Rate (Manual) -
Consol. Credit Acc.:

| Reporting ~
Exchange Rate Adjustment: Mo Adjustment -

The first and most important decision to make is the type of account. It can be an
Income Statement or a Balance Sheet. Income statement accounts are reset to zero
every new fiscal year while balance sheet accounts continue indefinitely. The total
of the Balance Sheet accounts should always match the total of the

Income Statement accounts.

A View - Chart of Accounts
scuic

Chart of Accounts -
Sorting: No. ~ %l‘
No. Mame

Total Income Statement
Total Blance Sheet

(r Y Y

f Actions ~ [[B Related Information - %Reports =

Income/Balance Account Type

Income Statement Total

=

Balance Sheet

A sl

(= [5 b
90998.. [%] e, =
| Totaling MNet Change Balance
6000..9999 15.626,92 15.626,92
Total ' 1000..5997 -15.626,92 -15.626,92

[93]

Financial Management

M You can create two total accounts to check if the balance in
Q your G/L is accurate. Total all Income Statements and all
Balance Sheets.

You can also force an account to only accept debit or credit postings. The No. of
Blank Lines and New Page fields are for printing report purposes and have no
effect on the system.

Reconciliation Account is hardly used anymore unless you do not use sub accounting.

Automatic Ext. Texts creates the extra texts discussed in Chapter 1 automatically
when you use this account in a sales or purchasing document.

Direct Posting is a very important option. It is highly recommended to disable this
option when an account is used in one of the posting setups. When Direct Posting
is enabled, an end user can create entries on this account, disrupting the balance
between the General Ledger and the sub administration. We'll discuss this in more
detail later in this chapter.

When you do allow Direct Posting, the fields on the Posting tab are very important.

Gen. Posting Type determines if the account is used for purchase and/or sales

for the VAT calculation and filtering in the VAT statements. More detailed VAT
specification is determined by the VAT business and product posting group. The
general business and product posting groups can be used to automatically populate
these fields when this account is used.

In the Consolidation tab, you can populate the consolidation accounts used
when consolidating two or more companies. We'll discuss consolidation later
in this chapter.

Microsoft Dynamics NAV allows the use of an additional reporting currency. This
is an inheritance from the days before the Euro in Europe and was very popular
in the years of Euro introduction. Today, it is used by international companies,
for example: A company based in the USA with a Dutch parent company. In

the Reporting tab, you can determine how you want to handle exchange rate
adjustments when using this functionality.

[94]

Chapter 3

The entry tables

As discussed in Chapter 1, the entries for the General Ledger are also created
in the General Journals when you post a sales or purchase document. So, let's
have a closer look at this functionality and see what we can do with it.

Sub accounting

In theory, you could run Microsoft Dynamics NAV with just the G/L Entry table,
but in accounting we have invented sub administrations.

Sub administrations are very old. Before computers were invented, people would
have cards for all customers and vendors to keep track of their balance. Updating
these cards was a manual and time consuming process with a high probability of
making mistakes.

In Microsoft Dynamics NAYV, this is taken care of automatically. In the General
Ledger, we have the following four sub administrations:

e Bank: The total of all bank ledger entries should match your bank account's
balance. It allows you to quickly find payments.

e Customer: Whenever you sell something to a customer or a customer pays,
a customer ledger entry is created. It allows you to analyze payment history
and send out reminders.

e Vendor: When we buy something from a vendor the system creates a vendor
ledger entry. We can use the vendor ledger entries to determine which
invoice needs to be paid. The vendor ledger entries are the opposite of the
customer ledger entries.

e VAT: The VAT entries help us to easily create clear VAT statements.

[95]

Financial Management

As discussed earlier, it is very important that the total of the sub administration
matches the General Ledger. For example, when your bank account balance is
2.846,54 the G/L account should also have that amount.

|4 Edit - Bank Account Card - NBL- New Bank of London . . =]
elated Information + FE Reports +
NBL - New Bank of London
General ~
No: Bank Branch No.: ME54366
Name: New Bank of London Bank Account No.: 78-66-245
Address: 4 Baker Street Search Name: NEW BANK OF LONDON
Address 2: Balance: 2.846,54
Post Code: W1 3AL - Balance (LCY): 2.846,54 e e e e
- i 3 iz [«| (&
City: Lenden - Min. Belance nﬁk.‘ . T | ©
" ™
Country/Region Code: - Our Contact Code: ®” T
! | PhoneNo. g e a Balance ~
L Last Date Modified: 14-8-2009
i Contact: Holly Dickson
| | communication new bank.of london@cronuscorp.net v |
| | Posting 5 28465 Loy v |
i| | Transfer NB54366 | 78-66-345 . il
i b L H
i o]
2.846,54
2930 Bank Currencies Balance Sheet Posting OI0,1Z O10,1Z
2940 Gire Account Balance Sheet Posting 24924129 249,241,290
2990 Liquid Assets, Total Balance Sheet End-Total 2900..2990 256.096,96 256.096,96
2995 Current Assets. Total Ralance Sheet Fnd-Tatal 2000..2995 2.320.631.85 232063185 T

For this, you can disable the Direct Posting option we discussed earlier.

General journals

When we open a general journal, we can start making transactions. Let's discuss
the possibilities.

[96]

Chapter 3

| i Edit - General Journal - DEFAULT . Default Journal Batch

E Related Information ~

;ﬂ-;’ 7 Apply Entries . Dimensions
P':;-t‘-a;d ~ Get Standard Journals
Print “w Save as Standard Journal
Process
Batch Mame: DEFAULT -
Posting Date D.. Document No. Account Type AccountNo. Description Amount Bal. Account.. Bal. Account.. Bal =
28-1-2011 G00001 G/L Account 1220 Packing Machine 2011 11097 G/L Account
28-1-2011 G00001 G/L Account 8210 Boxes for Packing Machine 2011 2462 G/L Account
28-1-2011 G00001 G/L Account 8210 Glue for Packing Machine 2011 2775 G/L Account .
28-1-2011 (00001 Bank Account WWB-OPER... Materials for Packing Machine 2011 -163,34 G/L Account 3
L 28-1-2011 600002 5710 Invoice no. 156786 for Gasoline 2011 1241 G/ Account
] 28-1-2011 G00002 5750 Invoice no, 156786 for Gasoline 2011 8,20 G/L Account
11 s12m 600002 ustomer | g5t Invoice no. 156786 for Gasoline 2011 2275 G/L Account
| 28-1-2011 (00002 Bank Account | 5710 Invoice no, 156786 for Gasoline 2011 580 G/L Account
! 28-1-2011 G00002 Il:clx;:r?::t 5750 Invoice no. 156786 for Gasoline 2011 283 G/L Account
i 28-1-2011 G00002 G/L Account 8510 Invoice no, 156786 for Gazoline 2011 1062 G/L Account o
| Kipems— o e i —————___ ;
|
Account Name Bal. Account Name Balance Total Balance
Fuel Tax 1241 0,00

The most important fields of a General Journal are the Posting Date and the
Document No. The total of amounts for each combination of these fields should
always be in balance. In other words, all journal lines for any particular combination
of Posting Date and Document No. should always add up to zero.

There are different account types we can post to. When we post directly to a G/L
Account it is clear what will happen. A new G/L Entry will be created for that
amount. When we choose another Account Type the sub administrations will start
to work. For example, when we choose Customer, a Customer Ledger Entry will
be created as well as a G/L Entry. Which G/L account is used is determined by the
posting group which we will discuss later in this chapter.

Here we also see the Gen. Posting Type, General Business, and Product Posting
group and VAT Business and Product Posting group come back. These are
inherited from the G/L Account we discussed earlier, but you can choose a different
one if you want.

The VAT options determine the VAT calculation that is done automatically. A VAT
entry is created with the VAT amount and additional G/L entries are created.

There are two ways of balancing a General Ledger. We can create two lines with the
same debit and credit amount or we can use the balance fields.

[97]

Financial Management

Let's see some of this in an example.

We have made a purchase from an irregular vendor. All we have is a small cash
receipt with the amount and the VAT which we want to bring into our company.

The amount is 440 including 10% VAT, so we want to create the following transaction

Cost 400,00
VAT 40,00
Current Account 440,00

. Dimensions

~ Get Standard Journals

“w Save as Standard Journal

Process

Batch Name: DEFAULT -

Posting Date Docu.. Account Type AccountNo. Description = Gen. Posting.. VAT Bus.Po.. VAT Pr.. Amecunt VAT Amount | Bal. Account... Bal. Account..
PSSO~ GO0002 G/L Account 8310 Software Purchase NATIONAL VAT10 440,00 4000 |G/L Account 3140
4 i s
Account Mame Bal. Account Name Balance Total Balance
Software Demo Account 0,00 0,00

We can see that Microsoft Dynamics NAV calculates the VAT Amount and by
populating the balance account we only need one line which is always in balance.

When we Navigate this transaction, we see that we have three G/L Entries and one
VAT Entry.

Show

Pri

i | General a

I Document No.: 600002

Posting Date:

[Source >]

‘ Document Entry A ‘

Table Name Mo. of Rec...
G/L Entry o5
VAT Entry 1

[98]

Chapter 3

And opening the G/L Entries shows the correct amounts.

i View - General Ledger Entries - 8310 Software

_’ Actions - E Related Information -
Posting Date Documnent.. G/L Accou.. Description Armount Bal, Accou..
27-1-2011 G00002 8310 Software 400,00 3140
27-1-2011 600002 5631 Software 40,00 2783
27-1-2011 600002 3140 Software -440,00 8310 2784

Entry Ma.

In another example, we'll create a customer payment through the bank journal.

Entry application

A bank journal is a general journal with a specific Form ID. This allows the application
to have a different user interface based on the same business logic. A specific feature of
a bank journal is the possibility to easily apply payments to invoices.

',i Edit - Payment Joumnal - BANK - Bank payments . SR fo B
& Actions -~ B} Related Information -

S

fomenl oty 5 Apply Entri Void Check

75 Delete Ctrl+Del £

! Posting »
| Payment Journal Window

| #5 Refresh Fs
Send To ' Document N..| Account Type Jccount Mo. Description Amount | Bal. Account... [al. Accoun * |
B Print Page... Ctrl+P DEMO - Customer Lo00o The Cannon Group PLC -8.260,04 | Bank Account WWB-OPER = |
: T ¥ -
< : » 11 . - : - Sl
Account Name Bal. Account Name Balance Total Balance
The Cannon Group PLC ‘World Wide Bank 0,00 0,00

The bank journal does not directly post to a G/L account, but uses other account
types. In this case, the Account Type is Customer and the Balance Account Type
is a Bank Account. Instead of a list with G/L accounts, the Account No. field now
refers to the Customers and the Balance Account No. fields refer to the Bank
Accounts. The latter is automatically populated from the Journal Batch definition.

[99]

Financial Management

We'll use the Apply Entries feature to determine which invoice this payment applies
to. If we did not do this, the system would not know which invoice is paid.

elat
o B Nevigate
= Post A :
Set &7 Post Application
Applies-t...
Process
General | Customer Ledger Entry... ~
Pasting Date: 271-201 Description: The Cannon Group PLC Docament: Invoice 103005
|| Document Type: Payment - Currency Code: e Due Date: 6-2-2011
Document No.: DEMO Amount: -8.269,04 Pmt. Discount Da... 14-1-2011
Reminder/Fin. Ch... Q
Customer No.: 10000 Remaining Amount: -8.269,04 Applied Entries: 0
Applies-tolD PostingDate DocumentT... Document M. Customer.. Description C.. RemainingA.. A
i 31-12-2010 Invoice 00-16 10000 Opening Entries, Cust... 3385235
! 31-12-2010 Invoice 00-9 10000 Opening Entries, Cust... 50.778,50
e. DEMO !\?'1—21111 Inveoice 102005 10000 Order101001 - 8.269,04 3
T T19-1-2011 Invoice 103018 10000 Order 6005 4.101,88
24-1-2011 Invoice 103001 10000 Invoice 103001 818235 i
< [I] 3
Applin, C... Amountto .. Pmt, Disc, A... Rounding Applied Am... Available A.. Balance
§.269,04 0,00 0,00 8.269,04 -8.268,04 0,00

Another option would be to automatically apply entries, but when a customer decides
to skip a payment the system might get confused, so it is highly recommended to
apply entries manually.

When we post this journal and Navigate the entries, we see that all necessary sub
administrations are updated.

_ df Edit - Navigate

Process
General A
Document No.: DEMO
Posting Date: 27-01-11
Source v
Document Entry -
Table Name No. of Rec...
G/L Entry 2
Cust. Ledger Entry 1
Detailed Cust. Ledg. Entry 3
Bank Account Ledger Entry 1

[100]

Chapter 3

Posting groups

In the previous section, we talked about using customer numbers and bank account
numbers as an account number in the General Journal. The system can then figure
out what G/L Account numbers to use. But how does that work?

This is done using the various posting group matrices. Most application parts that
post to the General Ledger have their own posting group table.

There are two types of posting groups —single layer and matrix layer.

The single layer has direct G/L Account columns, the matrix layer has an additional
setup table.

Single layer Matrix layer

Customer posting group Gen. Business posting group
Vendor posting group Gen. Product posting group

Inventory posting group VAT business posting group
Job posting group VAT product posting group

Bank account posting group Inventory posting setup

FA posting group

Each country uses different account schedules and regulations. The G/L
accounts in this book are used for the CRONUS example database. These
' can be different in each country and implementation.

Let's have a look at the Customer Posting Groups:

-
4 View - Customer Posting Groups = e =nEcn X

Receivables.. Service Char.. PaymentDis.. Payment Dis.. Interest Acc.. Additional F.. Inveice Rou.. Debit Curr. A
2310 6810 9250 9255 9120 9120 9140 9150
2320 G810 9250 9255 9120 9120 9140 9150
FOREIGN 2320 6810 9250 9255 9120 9120 9140 9150

[101]

Financial Management

We see three different codes having their own accounts. So, where is this code used?
Let's open a customer card.

_df Edit - Customer Card - 10000 - The Cannon Group PLC R ol (| B e
10000 - The Cannon Group PLC
General -
MNa.: 10000] Phone Mo.: =2l
MName: The Cannon Group PLC Search Name: THE CANNOMN GROUP PLC
Address: 192 Market Square Balance (LCY): 160185,37
Post Code: B27 4KT - Credit Limit (LCY): 0,00
City: Birmingham - Salesperson Code: PS - I
Country/Region Code: GB - Blocked: -
Last Date Modified: 14-8-2009
Communication the.cannen.group.plc@cronuscorp.net v
Invoicing A
Gen. Bus, Posting Group: MNATIONAL - Customer Posting Group: DOMESTIC -
WAT Bus. Posting Group: NATIOMNAL -

We see it on the invoicing tab. This is what determines the Customer G/L accounts.

We also see other posting groups on the Customer card. There is a Gen. Bus. Posting
Group and a VAT Bus. Posting Group.

In our list, they are matrix layers. So they don't directly point to a G/L account.
When we open the Gen. Bus. Posting Group, we see this.

Select - Gen. Business Posting Groups

’ Actions ~
Code Description Def. VAT Bus...
EU Customers and vendors in EU EU
EXPORT Cther customers and vendors (n... EXPORT
INTERCOMP Intercompany

N Domestic customers and vendors MATIONAL

Just a simple table connecting it to a Default VAT Business Posting Group.

To see where the G/L accounts are defined, we need to go to the General
Posting Setup.

[102]

Chapter 3

_; Edit - Gene}al Posting Setup - EU - Custo(ners and vendaors in EU W M

P

=

Gen. Bus. Po... Gen.Prod. P...
EU MANUFACT
EU MISC

EU MNO VAT

EU RAW MAT
EU RETAIL

EU SERVICES
EXPORT MANUFACT
EXPORT MISC
EXPORT MNO VAT
EXPORT RAW MAT
EXPORT RETAIL
EXPORT SERVICES
INTERCOMP MISC
INTERCOMP NO VAT
INTERCOMP RAW MAT
INTERCOMP RETAIL
NATIONAL MANUFACT
MATIONAL MISC
NATIONAL NO VAT
MATIONAL RAW MAT
NATIONAL RETAIL
MATIONAL SERVICES

Sales Account
6120
6120
6120
6220
6120
6420
6130
6130
6130
6230
6130
6430
6120
6120
6120
6120
6110
6110
6110
6210
6110
6410

Sales Credit ...

6120
6120
6120
6220
6120
6420
6130
6130
6130
6230
6130
6430
6120
6120
6120
6120
6110
6110
6110
6210
6110
6410

Sales Line Di... SalesInv. Dis... Purch. Acco...
6910 6910 7120
6910 6910 7120
6910 6910 7120
6910 6910 7220
6910 6910 7120
6910 6910 7120
6910 6910 7130
6910 6910 7130
6910 6910 7130
6910 6910 7230
6910 6910 7130
6910 6910 7130
6910 6910 7120
6910 6910 7120
6910 6910 7120
6910 6910 7120
6910 6910 7110
6910 6910 7110
6910 6910 7110
6910 6910 720
6910 6910 7110
6910 6910 7110

Purch. Credi...
7120
7120
7120
7220
7120
7120
7130
7130
7130
7230
7130
7130
7120
7120
7120
7120
7110
7110
7110
7210
7110
7110

Purch. Line ...
7140
7140
7140
7240
7140
7140
7140
7140
7140
7240
7140
7140
7140
7140
7240
7140
7140
7140
7140
7240
7140
7140

Purch. Inv. D...
7140
7140
7140
7240
7140
7140
7140
7140
7140
7240
7140
7140
7140
7140
7240
7140
7140
7140
7140
7240
7140
7140

Here we can see that, when combined with a Gen. Prod. Posting Group the

G/ L accounts can be determined. So, where does the Gen. Prod. Posting

Group come from?

For this, we need to go to the item card.

= -
iy Edit - Item Card - 1000 - Bicycle
1000 - Bicycle
General Al fae
No.: m Search Description: BICYCLE
Description: Bicycle Inventony: 32
Base Unit of Measure: PCS . Qty. on Purch. Order: 0
Bill of Materials: No Qty. on Prod. Order: 44
Shelf Now 1 Qty. on Component Lines: 1]
Qty. on Sales Order: 104
Automatic Ext. Texts: [}
Qty. on Service Order: 0
Created From Nenstock Item: [} X —
— Service tem Group: -
Ttem Category Code: -
— Blocked:]
Product Group Code: -
Last Date Modified: 14-8-2009
3
! Invoicing ~ |z
Gen. Prod. Posting Group: RETAIL . Inventory Posting Group: FIMISHED .
VAT Prod. Posting Group: VAT2S .

[103]

Financial Management

Here we can see the same tab, invoicing, with the product posting groups.

Our journey ends here as we can see the last matrix posting group, Inventory.
When we open this setup we see that it is determined by the combination of
Inventory Posting Group and Location Code.

o
_ ¢ Edit - Inventory Posting Setup e i e = | B e
Location Code Invt Posting... Inventory Ac.. Inventory Ac.. WIP Account Material Vari.. Capacity Var.. Subcentract.. Cap. Overhe., *
FINISHED 2120 21n 2140 7830 7891 7892 7893
RAW MAT 2130 2131 2140 7890 7891 7892 7893
RESALE 2110 211 2140 7890 7891 7892 7893
BLUE FINISHED 2120 2121 2140 7890 7891 7892 7893 i
BLUE RAWMAT 2130 an 2140 7890 7891 7802 7803 El I
BLUE RESALE 2110 2111 2140 7890 7891 7892 7893 7
GREEN FINISHED 2120 21n 2140 7890 7891 7892 7893
GREEN RAW MAT 2130 2131 2140 7890 7891 7892 7893
GREEN RESALE 2110 211 2140| 7890 7891 7892 7893
OUT. LOG. FINISHED 220 2121
OUT. LOG. RAW MAT 2130 2131 -
4 | 1 [;
Location Code: GREEN Invt. Posting Group: RESALE I
J
Dimensions

Apart from the General Ledger and sub administrations, Microsoft Dynamics
NAYV allows for a third level of posting. An unlimited number of dimensions
can be attached to every posting and used to cross-analyze the system.

Dimensions originated from the classic project code and department code

Using more dimensions results in increased database activity during the
a processing of transactions and a more complex setup of the system. This
should be carefully considered during the implementation.

functionality, allowing you to consolidate or differentiate costs and profits.

The dimensions are determined via a filtering mechanism. Every master data

record can have dimension definitions.

[104]

Chapter 3

Let's look at some sample dimension codes and values:

[=)
| iy View - Dimensions " - . SIEIE

Related Information -

Code Name Code Caption Filter Caption Description B...

AREA Area Area Code Area Filter 1
BUSINESSGR... Business Group i ol i Eilt- -
CUSTOMER... | Customer Group 4 Edit - Dimension Values - AREA . Area E@g |
DEPARTMENT Department B PR e e i
PROJECT Project Code Name Dimension V... Totaling B...
| PURCHASER Purchaser 10 Eliges Bt]
SALESCAMP... | Sales campaign 20 Europe North Begin-Total (&
SALESPERSON Salesperson 30 Europe Morth (EU) Standard)
40 Europe Morth (Non EU) Standard (&)
45 Eurcpe North, Total End-Total 20.45) 3
50 Europe South Standard)
L 55 Europe, Total End-Total 10..55)
60 America Begin-Total (&)

The Dimension Code Area has several Dimension Values. Here you can also
have total records, just as in the General Ledger.

When more than one master data record has the same dimension code with
different values, it is able to set priorities. It is also possible to block combination
of dimensions to be posted.

Dimensions are a powerful tool for analyzing data and structuring the system
to avoid incorrect entries. However, it requires a lot of time and special skills to
determine these combinations and maintain the setup.

We'll see more of dimensions as we discuss the reporting possibilities.

Budgeting

Microsoft Dynamics NAV allows for budgeting as well.

We can create our own budgeting codes. A budgeting code can be a year, a
department, or just some budget we want to try and throw away later.

The budgeting can be done on G/L accounts but also on any dimension.

[105]

Financial Management

Another important thing to consider is budgeting periods. If you want to compare
monthly budgets with real figures, it does not make sense to create a yearly budget.
Most companies use monthly budgets. It is also most likely that we want to create
budgets for Income Statement accounts, not for Balance Sheets.

¥ Next Period

4 Previous Period

Previous Previous Next

Set Column Column

Process

Show as Columns: Period

Show Column Name: [

2010

[Ganera\ ~
Budget Name: 2010) View by: Month -
Show as Lines: G/L Account - Rounding Factor: None -

;

| 6/ Account Filter

|| Department filten:

Project Filter:

Budget Dimension ...
Budget Dimension ...

Budget Dimension ...

| | Budget Matrix]
N Code Name Budgeted Am... Apr2010 May 2010 Jun 2010 Jul 2010 Aug 2010 Sep 201 ~
| 6100 Revenue
6105 Sales of Retail If...
i 6110 Sales, Retail - Dom. -731.300,00 -83.890,00 -54.050,00 -45.530,00 -34.560,00 -37.340,00 -84.960,00
i 6120 Sales, Retail - EU -52.030,00 790,00 -13.150,00 -7.950,00 -2640,00 -7.180,00 -1.080,0¢
: 6130 Sales, Retail - Export -109.630,00 -11.840,00 -13.600,00 -1180,00 -4.510,00 -14.570,00
6190 Job Sales Applied, Retail
6191 Job Sales Adjmt,, Retail
6195 Total Sales of Retail -892.560,00 -96.520,00 -80.800,00 -53.480,00 -38.380,00 -49.040,00 -100.610,00
6205 Sales of Raw Materials
6210 Sales, Raw Materials - Dom. -4.358.650,00 -366.910,00 -411.580,00 -309.070,00 -189.530,00 -390.480,00 auaeo,ocE
6220 Sales, Raw Materials - EU -487.540,00 -26.580,00 -34.010,00 6051000
6230 Sales, Raw Materials - Export -862.920,00 62.250,00 63.040,00 -1.410,00 -81.210,00 -1620,00 -81.640,00
6290 Job Sales Applied, Raw Mat.
6291 Job Sales Adjmt., Raw Mat.
6295 Total Sales of Raw Materials -5.709.110,00 -429.160,00 -474.620,00 -337.060,00 -270.740,00 -426.110,00 -485.340,00 -
‘[i v
| Filters ~ ‘
Date Filter: Budget Dimension

Another powerful feature is the ability to import and export budgets to excel.
Here we can easily copy and paste , for example, automatically have the same
values each month.

Creating budget entries

Budget entries are created by simply entering new amounts in the columns. In
previous versions of Microsoft Dynamics NAYV, a built-in mechanism would handle
the creation of the entry based on deltas between the previous value and the newly
entered value.

[106]

Chapter 3

In Microsoft Dynamics NAV 2009, this has been changed for the Role Tailored Client
to C/ AL Code. The matrix page object that handles the amount is Budget Matrix
(9203). This page uses the Matrix Management Codeunit (9200) to simulate the
classic built-in algorithms.

Accounting periods

While most companies have accounting periods from January 1st to December 31st
divided into months, there can be exceptions to this.

This is supported by Microsoft Dynamics NAV and set up in the
Accounting Periods.

] View - Accounting Periods il Qe T e R
" Actions - % Reports -

r

= Inventory Period A Trial Balance by Period
B8 Create Year

| ER Close Year
| Process | l
y Mame Mew Fiseal ... Closed Date Locked Inventory.. -
l. January [F]
February = @ 3
1-3-2000 March E [[
i 1-4-2009 Agpril E [
|| 1-5-2009 May] E
[1-6-2009 June E I
| 1-7-2009 July [[
1-8-2009 August E =
1-9-2009 Septernber] [
1-10-2009 October B [
1-11-2009 Movember] il
1-12-2009 Decermber = =
1-1-2010 January E [
1-2-2010 February [] [[l

[107]

Financial Management

We are completely free to set up our own desired posting periods as long as there is
a date algorithm.

Edit - Create Fiscal Year

Options ~ |
i Starting Date: 1-2-2012 - '

No. of Periods: 12
Period Length: 1M i
i
i

[ok)| cencet]

A posting period should also be closed when appropriate. When closing a posting
period, all Income Statement G/L accounts are set to zero and the profit/loss is
posted to a Balance Account.

Edit - Cloze Income Stahement j

Actions ~
Options A
Fiscal Year Ending Date: 31-12-2010 -

Gen. Journal Template: GEMERAL -

Gen. Journal Batch: DEFAULT -

Document Mo.: CLOSE2010

Retained Earnings Acc.: 9410 -
Posting Description: Close Income Statement

Close by

Business Unit Code:

Dimensions: |

Inventory Period Closed: [7]

[T r—

When we run this batch, a General Journal is populated with the postings. It is not
recommended to make changes here.

[108]

Chapter 3

Closing dates

After closing, it is still possible to make transactions but with special posting dates
called closing dates. If you put a 'C' character in front of the posting date, the system
will accept this as a special transaction and allow you to post it.

Closing

Jan. | Feb. | Mar. Okt. | Nov. | Dec. | C31-12-2009 | lan.
Filter: 01-01-2009 .- 31-12- 200‘3'
01-01-2009 . C31-12-2009
01-01-2009 . 31-01-2010|

When filtering on 01-01-2009. .31-12-2009, the system will not include the entries
on the closing dates. Filtering on 01-01-2009. .C31-12-2009 and 01-01-2009. .31~
01-2010 will include the entries on the closing dates.

Currencies

Besides having the possibility of the extra reporting currency, every transaction in
Microsoft Dynamics NAV can have its own currency. The transaction is transformed
into local currency (LCY) with the current currency exchange rates.

Handling currency is simple as long as the exchange rates do not change. After that,
it can get complex.

The exchange rate can change as often as you want but with a maximum of once
per day.

Before you consider implementing daily changing of exchange rates, you should
carefully look at the consequences.

When you change the currency exchange rate everything in the system gets adjusted,
which can lead to a huge number of transactions in your system.

Changing the currency exchange rate takes two steps:

1. Enter the new values.

4 Edit - Currency Exchange Rates - USD R i EIEIM

Starting Date Currency.. R.. Exchange Rate Amo.. Relational Exch. Rat.. Adjustment Exch.. Relational Adjmt... FixExchange...
1-1-2009 usD 100,0 55,7551 100,0 55,7551 Currency
1-1-2010 usD 100,0 60,0 100,0 60,0 Currency
1-1-2011 usD 100,0 70,0 100,0 70,0 Currency

[109]

Financial Management

In our case, the new USD rate in 2010 is 60.

2. Implement the value and generate the entries.

Edit - Adjust Exchange Rates g ﬁ

Options

Adjustment Period
Starting Date: 1-1-2010 -
Ending Date: 31-12-2010 -
Posting Description: Exchange Rate Adjmt. of %61 %2
Posting Date: 31-12-2010 -
Document Mo.: EXCH2010|

Adjust Customer, Vender and Bank Accounts:

Adjust G/L Accounts for Add.-Reporting Currency: 7]

Currency

OK] [Cancel

Consolidation

Consolidation means taking (part of) the General Ledger of two or more companies
together in one consolidated company.

To handle consolidation in Microsoft Dynamics NAV, first the consolidation
accounts have to be populated in the G/L Accounts.

These consolidation accounts have to be valid accounts in the consolidation company.

A consolidation company is a 'dummy' company in the database that just exists for
consolidation purposes. The consolidation company has a business unit for each

consolidated company.

[110]

Chapter 3

The data can be exported out of the database via XML or TXT format.

| Edit - Export Consolidation

: f Actions ~

k.

Options

1 File Format:

i Consolidation Period
Starting Date:

Ending Date:
Copy Field Contents

Copy Dimensions:

Parent Currency Code:

Version 4.00 or Later {xml)

1-1-2010

1-12-2010

| -

Business Units

+4i View - Business Unit List

’ Actions ~ E Related Information -

@

) View Ctrl+ Shift+V
iﬁ Edit Ctrl+Shift+E
B Mew Ctrl+N
?(Delete Ctrl+Del
M = Notec Type to filter
Links Ctrl+L Mo filters applied
I Funcions . [T Company Neme
Sasinces Units Pl Test File.. CRONUS International Ltd,
| Refresh 3 Import Database...
% ClearFilter Ctrl+Shift+A
Send To ¥

Currency .. C.. Consol

The other option is to import it from within the database with the Import
Database function.

[111]

Financial Management

VAT statement

Most companies can issue VAT Statements to get back the VAT they paid to vendors
and pay the VAT they've received from customers.

This is done in the VAT statement. This is a straightforward list where we can filter
on the VAT entries.

Every country has its own VAT statement and many countries have localizations in
this application area.

Data analysis

Some companies do bookkeeping because it is mandatory and do very little with
the generated information, but there is a lot you can do with the information the
system creates.

In bigger companies, using analysis tools is often the only way to get a clear view on
the company's assets.

General Ledger

The General Ledger is a reporting tool by itself. The total accounts give a lot of
information and by applying limit totals (Flow filters) we can narrow this information.

[112]

Chapter 3

M View - Chart of Accounts E@g-\
’ Actions - Related Information - % Reports -
Chart of Accounts ~ = MNo. i
Sorting: No. v #lv Limit totals: PROD » 01-01-10..31-12-10
. No mmml'*‘.lame Income/Balance Account Type Totaling Net Change Balance *
8100 a e Exp Income Statement = Begin-Total
i 8110 Cleaning Income Statement Posting 7.94971 7949711
8120 Electricity and Heating Income Statement Posting 10.621,48 1062148
8130 Repairs and Maintenance Income Statement Posting 70.704,92 70.704,92
8190 Total Bldg. Maint. Expenses Income Statement End-Total 8100..81%0 89.276,11 89.276,11
8200 Administrative Expenses Income Statement = Begin-Total
i 8210 Office Supplies Income Statement Posting 19.520,94 19.520,94
I 8230 Phone and Fax Income Statement Posting 2.279.80 2.279,80
8240 Postage Income Statement Posting 114892 114892
¥ 8290 Total Administrative Expenses Income Statement = End-Total 8200..8290 22.949,66 22.949,66
8300 Computer Expenses Income Statement = Begin-Total
¥l 8310 Software Income Statement Posting 13.252,52 13.25252
8320 Consultant Services Income Statement Posting 6.052,38 6.052,38 ‘E!
8330 Other Computer Expenses Income Statement Posting 131234 131234
8390 Total Computer Expenses Income Statement End-Total 8300..8390 20.617.24 20.617,24

This example filters on G/L Account No. larger than or equal to 6000 and limits total
to 2010 and Department PROD.

a1

-~

You can save these views by clicking on the page name
<Chart of Accounts> and then Save View As....

By choosing a name that makes sense, such as Income
Statement 2010 Production, it is easy to find.

[113]

Financial Management

Account schedules

The account schedules are more advanced to use. Like the VAT statement, they
allows us to filter on the G/L Entries. We can filter on individual G/L accounts or
use the total filter. If the filter gets complex, we can sum individual rows and hide
the source rows. We can also apply up to four dimensions to each account schedule.

iy Edit - Account Schedule - REVENUE - Revenues P il s & R e E@g
i =} Related Information
Mame: REVENUE -
Row Mo. Description Totaling Type Totaling Row Type Amount Type =
REVEMNUE Posting Acc... Met Change Met Amount
Posting Acc... Met Change MNet Amount
Sales of Retail Posting Acc... Met Change Net Amount | _
11 Sales, Retail - Dom. Posting Acc.. 6110 MNet Change Net Amount]
12 Sales, Retail - EU Posting Acc.. 6120 MNet Change Net Amount
13 Sales, Retail - Export Posting Acc.. 6130 Met Change Met Amount
14 lob Sales Adjmt, Retail Posting Acc... 6190 MNet Change Net Amount
15 Sales of Retail, Total Total Accou... 6195 MNet Change Net Amount
; sy Posting Acc... ‘ ~ MNet Change Met Amount
Revenue Area 10..30, Total Posting Acc... 6110.6195 Met Change Met Amount
Revenue Area 40,85, Total Posting Acc... 6110.6195 Met Change Met Amount
Revenue, no Area code, Total Posting Acc... 6110..6195 Met Change MNet Amount
Revenue, Total Posting Acc... 6110.6195 MNet Change Net Amount -

The account schedules also let you define your column layout. You can use multiple
column layouts per schedule and reuse Column Layouts across other schedules.

T Echt - Column Layout = DEFAUILT : Stantiard Colomm Tayout . . (= B [t |
f Actions ~
MName: DEFAULT -

K Colu... Column Header Column Type Ledger Entry... Amount Type Form.. 5.. Comparison... Show
Net Change Debit Net Change G/L Entries MNet Amount 71 When Posi
Net Change Credit Net Change G/L Entries MNet Amount When Neg
Balance at Date Debit Balance at 0. G/L Entries MNet Amount E ‘When Posi

| Balance at Date Cre... Balanceat D.. G/L Entries MNet Amount When Neg

The column layout can contain formulas and date filters. We can show either the
budget or G/L entries per column.

[114]

Chapter 3

i ’ Actions
: Row No.

1
12
13
14
15

Analysis by dimensions

Related Information -

Description
REVEMUE

Sales of Retail

Sales, Retail - Dom.
Sales, Retail - EU
Sales, Retail - Export
Job Sales Adjmt, Retail
Sales of Retail, Total

Revenue Area 10..30, Total
Revenue Area 40..85, Total
Revenue, no Area code, Total

Revenue, Total

View - Acc. Schedule Overview Matrix - REVENUE - BUDGANALYS

Met Change Budget
-0.814,80 -0.410,00
-17.378 57 -16.850,00
-16.710,20 -16.040,00
-43.903,57 -42.300,00
-22101,07 -21.320,00
-18.313.10 -17.590,00
-3.489,40 -3.390,00
-43.903,57 -42.300,00

Variance®

4,30
314
418
-100,00
379

3,66
411
293
3,79 i

As discussed earlier in this chapter, Microsoft Dynamics NAV allows an unlimited
number of dimensions to be posted in the General Ledger. To analyze this information,
we need to tell the system what to compare. This is done in analysis by dimensions.

Each analysis view gets a unique code. An analysis view can be generated for an ad-
hoc requirement and thrown away afterwards or be in the system permanently for
periodical reporting. Analysis views generate redundant information that can always
be discarded and regenerated.

General
Code:
MName:
G/L Account Filter:

Starting Date:

Dimensions

Date Compression:

Dimension 1 Code:

Dimension 2 Code:

Related }nf_ur ation

CAMPAIGN - Campaign Analysis (Retail)

CAMPAIGN

Campaign Analysis (Retail)
6100.,6995[7100..7995
Week

1-1-2011 R

SALESCAMPAIGM
AREA

Ay Edit - Analysis View Card - CAMPAIGN - Campaign Analysis (Retail)

Last Date Updated:

Last Entry No.

Last Budget Entry No.:

Update on Posting:
Include Budgets:
Elocked:

Dimension 3 Code:

Dimension 4 Code:

14-8-2009
2764
0
]
o
]
~
BUSINESSGROUP -
SALESPERSON -

—

[115]

Financial Management

M It is recommended to use a copy of the database on a separate
Q system to use with analysis views and to update them during
the night.

When updated, the analysis view contains all data within the filters in the analysis
view entries. When not properly maintained, this can become a massive table of data.

The result of an analysis view can be viewed in a matrix where all values can be
used as rows, columns, and filters.

View - Analysis by Dimer‘l\s_i Ma_t— N
, Actions ~ Related Information -

Code MName Total Amount JR LM MD PS
10 Eurcpe
20 Europe North
30 Europe North (EU) -8.594,32 -12.100,78 -29.065,60
40 Europe Morth (Mon EU) -15156,62 -16.276,63
45 Europe MNorth, Total -23.750,94 -28.377.41 -29.065,60
50 Europe South
55 Europe, Total -23.750,94 -28.377 41 -29.065,60
60 America
70 America Morth 76.293,36 -1.499.02
80 America South
85 America, Total 76.293,36 -1.499.02

In this example, we view the results of a sales campaign per area and sales person.

The setup

Financial Management has a single General Ledger Setup table which is important
since many of these setup fields will determine how the core of Microsoft Dynamics
NAYV behaves.

We will discuss the setup options to find out what they do and to explore the
possibilities of creating a flexible setup for an application:

e Allow Posting From and Allow Posting To limit the freedom of people
to choose posting dates whilst posting to the General Ledger. It is highly
recommended to enable this feature to avoid posting dates like 01012090
instead of 01012009.

e Register Time allows you to create an entry in the Time register each time
a user logs in and out.

[116]

Chapter 3

Local Address Format and Local Cont. Addr. Format refer to how the
address should be printed for the local country. In Microsoft Dynamics NAV,
it is best practice to leave the Country Code and Currency Code blank for
local values.

Inv. Rounding Precision (LCY) and Inv. Rounding Type (LCY) define how
the rounding on your invoices is calculated. Nearest is best practice and
allows your customers to easily register your invoice in their system.

Allow G/L Acc Deletion Before allows you to clean up closed fiscal years.
It is hardly ever used and you should consult your partner before using
this feature.

Check G/L Account Usage checks if the G/L account is used in setup tables
before it is deleted.

If your company uses an EMU Currency and the system should know this
when applying with other EMU currencies. EMU currencies are currencies that
have a fixed conversion rate to the Euro in the European Union. The LCY Code
field is used when printing reports to indicate the companies' local currency.

4 Edit- General LedgerSetup i .. o P ‘ o sy
’ Actions ~
General Ledger Setup
General Al s
Allow Posting From: - EMU Currency:]
Allow Posting To: - LCY Code: GBP
Register Time: B Pmt. Disc. Excl. VAT: B
Local Address Format: Post CodexCity - Adjust for Payment Disc.: B
Unrealized VAT:
Locsl Cont. Addr. Format: After Company Name = nreaize a
Prepayment Unrealized VAT: B
Inv. Rounding Precision (LCY): 0,01
Max. VAT Difference Allowed: 0,00
Inv. Rounding Type (LCY): MNearest -
nv. Rounding Type (LCY) e VAT Rounding Type: Nearest -
Allow G/L Acc. Deletion Before: -
Bill-to/Sell-to VAT Calc. Bill-to/Pay-to No. -
Check G/L Account Usage:
= ceount Deege B Print VAT specification inLCY: £
Numbering hd
Dimensions A
Global Dimension 1 Code: DEPARTMENT Shortcut Dimension 4 Code: AREA - |E
Global Diension 7 Code: PROECT Shertcut Dimension 5 Code: BUSINESSGROUP -
Shortcut Dimension 1 Code: DEPARTMENT
ortcut Himension £ tode - Shartcut Dimension 6 Code: SALESCAMPAIGN v
Shortcut Dimension 2 Code: PROJECT
Shartcut Dimension 7 Code: -
Shortcut Dimension 3 Code: CUSTOMERGROUP =
Shortcut Dimension 8 Code: -
Reporting s
Additional Reporting Currency: - VAT Exchange Rate Adjustment: o Adjustment -
Application ~
Appin. Rounding Precision: 0,00 Payment Tolerance Waming: B
Pmt, Disc, Tolerance Waming: 7] Payment Tolerance Posting: Payment Tolerance Act
Pmt. Disc. Tolerance Posting: Payment Tolerance Act » Payment Tolerance %: 0
Payment Discount Grace Period: Max. Payment Tolerance Amount: 000 [

[117]

Financial Management

Pmt. Disc. Excl. VAT indicates whether or not VAT is calculated when you
apply payment discounts. When you check this field you need to think about
the Adjust for Payment Disc. field as this will recalculate the VAT.

Unrealized VAT should only be checked if your company has to deal with
this issue. Otherwise, it will lead to unnecessary postings. Unrealized VAT is
VAT that is only valid when the customer pays the invoice rather than when
the invoice is issued.

Prepayment Unrealized VAT should only be checked if your company
handles Unrealized VAT and if you want to implement this for the
prepayment features.

Max. VAT Difference Allowed field determines the maximum amount
of VAT differences. Most of the time the VAT difference will be not more
than 0, 01.

1
‘\Q You can post VAT differences by selecting FULL VAT in the

VAT Calculation Type for the VAT business posting group.

VAT Rounding Type determines how the VAT remainder is calculated.
It is recommended using nearest.

With the Bill-to/Sell-to VAT Calc. you can change what is the source
for the VAT business posting group, whether it is the Bill-to Customer
or

Sell-to Customer and Pay-to Vendor or Buy-from Vendor.

Check the Print VAT specification in LCY if you want the VAT on your
invoices to always be in your local currency.

Bank Account Nos. is almost always a number series that is manually
determined. Most companies have up to 10 bank accounts.

The Global Dimensions determine which dimensions are posted directly
to the G/L entries and sub administrations. You can most often use these
when limiting totals and should be considered carefully.

The Shortcut Dimensions are easier to access when you enter journals
and documents. They can easily be switched later.

Additional Reporting Currency is a useful feature for international
companies. Remember that it requires extra effort if the exchange rates
change. You can change this later but if you do, a batch job will start,
and the job might take a long time if you have a large database.

[118]

Chapter 3

VAT Exchange Rate Adjustment makes it possible to recalculate VAT if

the reporting currency exchange rates change. Think about this thoroughly
before you activate it. It is most likely to generate information that is difficult
to analyze and use.

Appln Rounding Precision can be used to allow rounding differences
when applying different currencies.

When Pmt. Disc. Tolerance Warning is checked, a warning will appear
whenever a difference is posted.

Pmt. Disc. Tolerance Posting determines if the payment tolerance amount
is posted to a special account or to the normal discount account.

Payment Discount Grace Period can be used if you want to be tolerant
when people are one or two days late with their payment and still deduct
the discount amount.

The Payment Tolerance Warning option will show a warning whenever
there is a tolerance amount posted to the General Ledger

Payment Tolerance Posting determines if a special G/L account is used to
post this amount.

Payment Tolerance % determines the tolerance percentage. To change this,
a batch function is used that updates open entries.

Max. Payment Tolerance Amount sets a maximum to the amount so an
invoice that is issued for 100.000 cannot have a tolerance amount of more
than 5.000 if the percentage is set to 5%.

Customizing financial management

As financial management is regulated by the government and the standard
functionality is already very complete, this application area is unlikely to have many
changes, even though we have some examples of where the functionality is changed.

The examples in this chapter are included in the objects we used in
s Chapter 2.

[119]

Financial Management

Sales line description to G/L entries

When we post a Sales Invoice, the system will generate the G/L entries based on
the sales lines. To avoid creating too many entries they are compacted. This is done
using a buffer table, the Invoice Post. Buffer.

Field List

Field |
Fype -
G/L Account [
Gen. Bus. Posting Group

Gen. Prod. Posting Group

VAT Bus. Posting Group

VAT Prod. Posting Group

Tax Area Code

Tax Group Code

Tax Liable

Use Tax

Dimension Entry Mo.

Job Mo.

Fixed Asset Line Mo.

Only for the combination of the above listed fields, a G/L entry record is created.
As we can see, the description is not one of these. This results in G/L entries with
the posting description of the Sales Header which is often confusing for accountants
when looking at the G/L entries.

As an example, we will generate a Sales Invoice with one G/L Account line selling
one of these books.

o 5 s
A4 Edit - Sales Invoice - 1004 . The Cannon Group PLC ! T "

e

rtinnc * @Helated Information ~
% Copy Document

Release

Post and ! et

Print E Statistics

Process

1004 - The Cannon Group PLC
General &
No.: Posting Date: 7741-2011 . i
Sell-to Customer Mo 10000 - Docurment Date: 27-1-2011 .
Sell-to Customer Mame: The Cannon Group PLC Status: Open -
Sell-to City: Birmingham -
Lines iy
Type No. Description Quantity Unit Price Excl. V... Line Amount Exc...
| G/L Acco... 6120 Application Design for Microseft Dynamics NAY 1 100,00 100,00 i | ‘

[120]

Chapter 3

When we post this Invoice, we will get these G/L Entries. Note that the description
is gone.

Ay View - General Ledger Entries - 120 Sales, Retail - EU

’ Actions - EERelated Information -

Posting Dste Document... G/LAccou.. Description
27-1-2011 103022 6120 Invoice 1004 -100,00
27-1-2011 103022 5610 Invoice 1004 -25,00
27-1-2011 103022 2310 Invoice 1004 125,00

To change this behavior we have to change the Invoice Post. Buffer table. The
description field needs to be part of the unique combination since the grouping is
done using a FIND command in function Upd InvPostingBuffer in the Sales-Post
Codeunit (80).

UpdInvPostingBuffer()
InvPostingBuffer[2] := InvPostingBuffer[1];
IF InvPostingBuffer[2].FIND THEN BEGIN
InvPostingBuffer[2].Amount :=
InvPostingBuffer[2].Amount + InvPostingBuffer[1].Amount;

InvPostingBuffer[2] .MODIFY;
END ELSE
InvPostingBuffer[1]. INSERT;

This requires two steps:

1. We need to add the description field to the table.

Table 49 Invoice Post. Buffer - Table Designer [[(]
E.. Field No. Field Name Data Type Length Description
v 5611 Budgeted FA Mo, Code 20 -~
v 5612 Duplicate in Depredation Book Code 10
v 5613 Use Duplication List Boolean |-
v 5614 Fixed Asset Line No. Integer L4
p | ¥ 123455700 Description Text 50 bl

[121]

Financial Management

2. Weneed to add this new field to the key.

-

Table 49 Invoice Post. Buffer - Keys [[=@]==]
E.. Key SumIndexFields
p | ¥ Type,G/L Account,Gen, Bus, Posting Gro... -
Field List ¢ [s
Field i
Type -
G/L Account

Gen. Bus. Postirfg Group
Gen. Prod. Postrg Group
VAT Bus. Posting Group
VAT Prod. Posting Group
Tax Area Code
Tax Group Code :]
Tax Liable
Llse Tax

Dimension Entry o,
Job Mo.
Fixed Asset line Mo

| b | Description 'I

1
‘Q A key in Microsoft Dynamics NAV can only contain 252

bytes to be careful not to add too many fields to this table.

When this is done, a change is required in populating the buffer table. This is done
in the PrepareSales function in the table Invoice Post. Buffer (49) itself.

The C/ AL code has moved in Microsoft Dynamics NAV 2009. In previous
% versions, the code was located in the Sales-Post Codeunit (80) and
~ Purchase-Post Codeunit (90).

PrepareSales()

CLEAR(Rec);

Type := SalesLine.Type;

"'System-Created Entry" := TRUE;

""Job No."™ := SalesLine."Job No.';

"VAT %" -= SalesLine."VAT %';

"VAT Difference" := SalesLine."VAT Difference';
//* Description >>>

Description := SalesLine.Description;

//* Description <<<

[122]

Chapter 3

IF Type = Type::"Fixed Asset'™ THEN BEGIN

END;

The last change we are going to make is in the posting routine of the sales
documents. This is the Sales-Post Codeunit (80) we discussed in Chapter 2,
An Example Application.

IF Invoice THEN BEGIN
// Post sales and VAT to G/L entries from posting buffer

LineCount := O;
IF InvPostingBuffer[1].-FIND("+") THEN
REPEAT
LineCount := LineCount + 1;

Window.UPDATE(3,LineCount);
GenJdnlLine.INIT;

GenJdnlLine."Posting Date"™ := "Posting Date';
GenJdnlLine."Document Date'" := '"Document Date'';
//* Posting Description now from buffer table >>>
// GenJdnlLine._Description := "Posting Description’;

GenJdnlLine.Description :=
InvPostingBuffer[1l] .Description;
//* Posting Description <<<
GenJdnlLine."Reason Code'" := '"Reason Code'';

Instead of the Posting Description of the Sales Header, we will now use the new
field in the buffer table.

When we post the same invoice again, this is the changed result:

i View - General Ledger Entries - 6120 Sales, Retail - EU

m- G-

, Actions ~ {8 Related Information +

Posting Date Document.. G/L Accou.. Description Amount Bal. Accou.. Entry No

27-1-2011 103022 6120 Application Design for Microsoft Dynamics NAV -100,00
27-1-2011 103022 5610 Application Design for Microsoft Dynamics NAYV -25,00 2788
27-1-2011 103022 2310 Invoice 1004 125,00 2789

This makes it a lot easier to read the General Ledger.

\ Making this change might cause our system to create significantly more
~ G/L entries if we have large invoices with different descriptions. Creating
Q extra G/L entries takes more time during a posting routine resulting in
longer running posting transactions and a larger database.

[123]

Financial Management

Extra fields in the G/L entries

Although the G/L entry table has a lot of information, some companies want to
add extra fields to it and populate these in the posting process.

For this example, we will use the database with the squash court application from
Chapter 2. For this business, it might be useful to have the Squash Court No.
as a field in the G/L entries to analyze.

The first step is to add the field to the G/L entry table and make sure we have a
table relation with the source table.

Table17 G/L Entry - Table Designer Squash Court No. - Properties = |[=][]

E.. FieldMo. Field Name Data Type Length O |property Value
v 70 Add.-Currency Credit Amount Decimal CaptionClass pes -
v 71 Close Income Statement Dim. ID Integer Editable <Yes>
v 72 IC Partner Code Code 20 NotBlank <No>
v 73 Reversed Boolean Numeric <Moo
v 74 Reversed by Entry No. Integer Charallowed <Undefined >
v 75 Reversed Entry No. Integer DateFormula <MNo>
v 76 G/L Account Name Text 50 Valuesallowed <>
v 5400 Prod. Order No. Code 20 5QL Data Type <Undefined>
v 5600 FA Entry Type Option TableRelation "Squash Court"I |z
v 5601 FA Entry No. Integer ValidateTableRelation <Yes>

b ¥ 123455702 Squash CourtNo. Code 20 TestTableRelation <Yes>

ExtendedDatatype <None>
T

We have learned that the G/L entries are generated from the General Journal so
we need to add this field there as well. This can be done with copy and paste.

= Table 81 Gen. Journal Line - Table Designer ==

E.. Figld No. Field Name Data Type Length Description
v 5611 Budgeted FA No. Code 20 -
v 5612 Duplicate in Depredation Book Code 10
v 5613 Use Duplication List Boolean
v 5614 FA Reclassification Entry Boolean
v 5615 FA Error Entry Mo. Integer
v 5616 Index Entry Boolean

b ¥ 123456702 Squash Court Mo. Code 20 -

The last step is to make sure we move the information from the journal to the
ledger entry table. Like in our sample squash application, this is done in the
Gen. Jnl.-Post Line Codeunit (12) only this Codeunit has much more code.

[124]

Chapter 3

We need to find the place where the G/L entries are created and add our field there.
This is done in the function InitGLEntry.

InitGLEntry()

GLENntry.INIT;

GLEntry."Posting Date'" := GenJnlLine.'"Posting Date";
GLEntry."Document Date"™ := GenJnlLine.'"'Document Date';
GLEntry.""Document Type' := GenJdnlLine."Document Type';
GLEntry."Document No." := GenJnlLine."Document No.";
GLEntry."Source Code'" := GenJdnlLine."Source Code";

//* Squash App. >>>

GLEntry."Squash Court No." := GenJnlLine."Squash Court No.";

//* Squash App. <<<
IF GenJdnlLine."Account Type" = ...

This is all that is required in Microsoft Dynamics NAV to add a field to the financial
posting process. Of course, it does not make sense to do this unless we use it, so a
logical next step could be to add this new field to the Invoice Post. Buffer table from
our previous example.

This shows how easy it is to combine solutions in Microsoft Dynamics NAV.

Integrating with financial management

Although it is not likely to make big changes in financial management, it might be
necessary to create G/L entries in a new posting routine.

In the previous chapter, we already pointed out briefly that during posting
transactions in Microsoft Dynamics NAV, the actual records are never really inserted
in the database. They are used as temporary containers to hold the data during
posting. Doing an actual INSERT would require defining a journal template name,
journal batch name, and line no. and could cause locking in the database.

Let's create a new Codeunit that would create a G/L transaction.

[125]

[vww allitebooks.cond

http://www.allitebooks.org

Financial Management

Creating a G/L transaction

After creating the Codeunit, we need to set up the three variables that are the

minimum requirement to post something to the General Ledger.

Variables |Text Constants I Functions

Codeunit 123456712 Create G/L Transactio - C/AL Globals [][3]

MName DataType Subtype Length
4 GeanILinel Record Gen, Journal Line

GenJnlPostLine Codeunit Gen. Inl.-Post Line

TempIniLineDim Record Journal Line Dimension

e GenJnlLine: This is a reference to the General Journal Line table (81).
e GenJnlPostLine: The Gen. Jnl.-Post Line Codeunit (12) creates the G/L

entries, the register, and the other financial entries.

e TempJnlLineDim: The Journal Line Dimension table (356) is used
as a buffer table to transport dimensions to the Gen. Jnl.-Post Line
Codeunit. This variable is always set up as a temporary table.

The C/AL

Creating a new

code

G/L entry requires a small amount of mandatory fields. All the other
fields in the General Journal line are either optional for basic entries or mandatory in

combination with more advanced postings as we will find out later.

We will start by writing this code to the OnRun trigger.

OnRunQ)
GenJnlLine

GenJnlLine.
GenJnlLine.
GenJnlLine.
GenJnlLine.
GenJnlLine.

JINIT;

"Posting Date" := WORKDATE;
Description := "Test Entry";
"Document No." = "PACKT";
"Account No."™ := "61207;

Amount := 100;

GenJdnlPostLine.RunWithCheck(GendnlLine, TempJnlLineDim);

If we execute this C/ AL code, we will receive this error message which indicates
that our transaction will result in an unbalanced chart of accounts.

[126]

Chapter 3

Microsoft Dynamics MAV Classic ﬂ

4 The transaction cannot be completed because it will cause
L’k inconsistencies in the G/L Entry table.

Check where and how the COMSISTENT function is used in the
transaction to find the reason for the error.

| Contact your systemn administrator,

b

bl Tables can be marked as inconsistent during comprehensive tasks, such

il as posting. This prevents data from being updated incorrectly.

|

i

!
&l

| = ‘

We can fix this by creating a balance transaction for 100 in the same OnRun trigger.

GenJdnlLine.INIT;

GenJnlLine.""Posting Date" := WORKDATE;
GenJnlLine.Description := "Test Entry";
GenJdnlLine."Document No." := "PACKT";
GenJdnlLine."Account No."™ := "6120";

GenJdnlLine.Amount := -100;
GenJdnlPostLine.RunWithCheck(GenJdnlLine, TempJnlLineDim);

After executing the Codeunit we can Navigate on our Document No. to see the G/L
entries we created.

Show

Process

| General -~

bl Docurment No.: PACKT

i Posting Date:
il
“ | Source v
" | Document Entry ~
! Table Name No. of Rec...

G/L Entry 2

ol View —.G..Enelal Ledtr En

’ Actions ~ E Related Information ~

Posting Date Document.. G/L Accou.. Description Amount Entry Mo,
27-1-2011 PACKT 6120 Test Entry 100,00 2778
27-1-2011 PACKT 6120 Test Entry -100,00 2777

[127]

Financial Management

This was a very simple example of how to integrate with financial management.
Let's create a more advanced example.

Advanced entries

We will create a new customer ledger entry with dimensions. To do this, we should
change one of the C/ AL parts we created to this code.

GenJdnlLine.INIT;

GenJnlLine."Posting Date" := WORKDATE;

GenJdnlLine.Description = "Test Entry";

GenJdnlLine."Document No." := "PACKT2";

GenJdnlLine."Account Type" := GenJdnlLine."Account Type'::Customer;
GenJdnlLine."Account No." := "10000";

GenJdnlLine.Amount := 100;
GenJdnlPostLine.RunWithCheck(GendnlLine, TempJnlLineDim);

But, when we execute this C/ AL code, we receive this error message:

Microsoft Dynamics NAV Classic &J

Select a Dimension Value Code for the Dimension Code AREA for
l\, Customer 10000,

This means we need to implement dimensions.

Let's add the following C/AL code to the routine:

GenJdnlLine.Amount := 100;

TempJdnlLineDim."Dimension Code"™ := "AREA";
TempJdnlLineDim."Dimension Value Code"™ := "30";
TempJdnlLineDim. INSERT;

TempJdnlLineDim."Dimension Code"™ := "CUSTOMERGROUP®;
TempJdnlLineDim."Dimension Value Code"™ := "MEDIUM®;

TempJdnlLineDim. INSERT;
GenJnlPostLine.RunWithCheck(GenJdnlLine, TempJdnlLineDim);

This will insert the required dimensions to the buffer table.

When we now navigate to PACKT2 we see that the system has created a
Customer Ledger Entry and a Detailed Cust. Ledg. Entry.

[128]

Chapter 3

_4 Edit - Navigate m el E e

Process

General :

W Document No.: PACKT2 I

|| | Posting Date: 27-01-11]

ke
B
Source ¥] M
B

Document Entry

Table Name Mo. of Rec...
G/L Entry 2 L
Cust. Ledger Entry 1
Detailed Cust. Ledg, Entry 1

Look, learn, and love

In Microsoft Dynamics NAV, there are many examples of how to integrate with
financial management. This is a list of interesting Codeunits that create General
Journal lines:

e Sales-Post (80)

e Purch.-Post (90)

e Job Calculate WIP (1000)

e CheckManagement (367)

e Sales-Post Prepayments (442)

e Inventory Posting To G/L (56802)

e Serv-Posting Journals Mgt. (5987)

Go ahead and have a look inside these Codeunits to learn how Microsoft does
the integration.

[129]

Financial Management

Summary

In this chapter, we have looked at the financial heart of Microsoft Dynamics NAV.
Understanding the flow of the entries is as important as the way the posting groups
are set up. It is important to regularly check the sub administrations balance with
the General Ledger.

The reporting possibilities offer great insight if the system is set up correctly.
Be careful with changing the setup options on a running system.

In the next chapter, we will look at the opposite of this module; Relationship
management. Where the financial management system is strict, the relationship
management system will be shown to be flexible and expandable.

[130]

Relationship Management

Relationship Management software is a typical result of what ERP applications
have achieved.

In earlier days, everyone had a rolodex on their desk with phone numbers and
addresses and salespeople would always know by heart who was a good customer
and which customers were always late paying or had bad margins.

The introduction of RM software completely changed that allowing us to maintain
all of our companies' contacts in a single place and analyze sales data easily.

Relationship management has been part of Microsoft Dynamics since version 2.0
and was dramatically changed and improved in version 3.0. The current Microsoft
Dynamics NAV RM software is mostly the same as in that version except for the
Microsoft Outlook integration that keeps changing in every version.

In this chapter, we will dive deep into this module. After reading this chapter, we
will have a good understanding of the concepts and how to maintain master data
and analyze transaction data.

We will also make some application changes in the relationship management part.

How companies work

In traditional accounting software, we differentiate customers and vendors
as business relations for invoices, but many companies have many more
relationships which we would like to register in our system.

Relationship Management

Also, a company or person can have multiple relationships with our company.

The best example is my relationship with Microsoft. Like everyone else, I use the
software so I am a customer, both in my business and personal life. On the other
hand, Microsoft hires me to teach workshops and do presentations, which makes me
a vendor. As an MVP, I have a totally different relationship with them. They give me
an award and invite me to special events and allow me to access the company store.
They also ask for my advice on future versions, so to them I am their consultant.

So one person or company can have different roles in RM. Microsoft Dynamics
NAV is able to handle all that while maintaining a single point of data entry
and maintenance.

Unlike financial applications, RM is much more flexible. The functionality and rules
of financial applications are defined by government regulations and are mandatory
for companies to comply with. Companies are not forced to use RM but once it is
implemented, everyone understands the benefits and would never want to do
without them.

Contacts

The starting point of the RM application is the Contact table. This is where we store
the address, phone numbers, e-mail addresses, etc. of everyone we know.

When we open the Contact List, we see that companies and persons are grouped for
an easy overview.

4y View - Contact List
Mo. MName Phone No. Salesperso.. | Territory C... Search Ma..
CT000136 Blanemark Hifi Shop IR BLANEMA...
CT000115 Boybridge Tool Mart RL FOREIGN BOYBRID...
CT100141 John Tippett RL LMD JOHM TIPP...
CT000118 Busterby Stole og Borde A/S RL FOREIGN BUSTERB...
CT000042 BYT-KOMPLET s.r.o. IR FOREIGN BYT-KOM...
CT000009 Candoxy Canada Inc. IR FOREIGN CANDOXY...
CT000051 Candoxy Kontor A/S JR FOREIGN CANDOXY...
CT100232 Ingelise Lang IR FOREIGMN INGELISE L...
CT000023 Candoxy Nederland BV IR FOREIGN CANDOXY...
CT100239 Cane Showroom DC s CANE SHO...
CT100125 Andrew Lan DC 5 ANDREW L...
CT100188 Jane Clayton DC 5] JANE CLA...
CT100187 Scott Bishop DC 5 SCOTT BIS...

As we learned in the previous chapters, a page in Microsoft Dynamics NAV is based
on a single table, so that must mean that companies and persons are stored in the
same table.

[132]

Chapter 4

When we open the contact card we can clearly see that this is the case. The Type
field indicates if the contact is a business or a person and if the person belongs to a
company. The Company No. field refers to a contact with Type Company. This is a
one-to-many relationship meaning that if a physical person has a relationship with
more than one company, he or she needs to be maintained as many times as there
are companies.

B Contact Cover Sheet

E Apply Template a Sales Quotes

I CreatelInteract
E Statistics

Process

CT100141 - John Tippett

General

i e T S S — r E—
H Type: Person - Search Mame: JOHN TIPPETT
i Company Mo.: CT000115 el Phone No.:
il Company Name: Boybrdge Tool Mart e ———
|

MName: John Tippett Salutation Code: M
i Address: 8 Grovenors Park Last Date Modified:
i Address 2: Date of Last Interaction:

Post Code: 16 347 . Last Date Attempted:

"""" MNext To-do Date:

City: London - o-do Late

|| | Lines

Communication

Let's step through the tabs and look at some important fields.

e No.: This is the unique key value determined by a number series. Companies
and persons have the same numbering.

e Type: This indicates if this contact is a person or a company.

e Company Name: When the contact is a person and connected to a company,
it is automatically populated with that company's name.

[133]

Relationship Management

1
‘Q manually enter the post codes for foreign countries. Most countries

Name: This is the name of the contact. If the contact is a person, we can click
the AssistEdit button to open the name details. The name is automatically
broken down in first, middle, and last name depending on the number of
words we enter. However, if our contact has a more complex name, like
"Walter van den Broek" which is typical for Dutch people, the system is
unable to break it down.

Edit - Name Details - CTI00141 - John Ti.. (SEESa

Salutation Code: M -
Job Title:

Initials:

First Narme: John

Middle Mame:

Surname: Tippett

Language Code: ENG -

QK Cancel

Address: Enter the street where the contact lives or has office.

M It is always best practice to enter the postal address here as
Q this will be used on all documents. For visiting address, use
the Alternative Address feature

Post Code and City: These fields are connected via the Post Code table
and one can populate the other if that table is maintained, which is an
optional feature.

Most companies maintain the post code table for their country and

offer a post code/ city list for sale or as a web service which will speed
up data entry and keep people from entering wrong master data

Search Name: This is automatically populated with the Name field and lets
you search for contacts faster as you can enter this field instead of the No.
field when referencing to a contact.

(Mobile) Phone, Fax and Telex No.: A reference to the phone and fax
numbers of this company. The (mobile) phone field also allows you to
start an interaction with this contact.

[134]

Chapter 4

e Sales Person: This is the main salesperson for this contact. If this contact is
promoted to a customer, the salespersons name will be printed on the order
form and invoices.

e Salutation Code: This special field refers to how this contact should be
addressed. The salutation code table allows you to build phrases like
'Dear Mrs. Brown'. We'll see more of salutation codes in Segments.

e E-Mail: This field contains the e-mail address of the contact. By pressing
the E-Mail - button, we can send an e-mail directly.

e Homepage: Here goes the URL of the contacts website. We can access the
website by clicking on the URL button & .

e Correspondence Type: This field is used when we create a Microsoft Word
document in an interaction. It indicates if we send a hardcopy, email or fax.

e Currency Code and VAT Registration No.: When this contact is promoted
to a customer or vendor, the currency code and VAT registration no. are
inherited from here.

e Territory Code: This field can be used to in segments to filter on
geographic regions.

Salutation codes

When we do mail merge, we want the letters to start nicely with "Dear Harry",
or "Dear Mrs. Brown". This can be done using Salutation Codes.

We can create as many codes as we like but a contact can only use one. This is the
list in the Cronus Demo Database.

Select - Salutations

Code Description

COMPANY Company

F Female Married or ...
F-JOB Female - Jeb title
F-MAR Female - Married
F-UMAR Female - Unmarried
o T TR
MJOB Miole - Joptitle
UNISEX Unisex

[135]

Relationship Management

There is one salutation code for companies, but most are for persons. When we look
at the formulas for Female Married or Unmarried we see this screen.

DAM
DAMN
DEU
DEU
ENU
ENU
ESP
ESP
FRA
FRA
ma
ImA

-

4y Edit - Salutation Formulas - F-UMAR
P T

Language C.

Salutation T...
Formal
Informal
Formal
Informal
Formal
Informal
Formal
Informal
Formal
Informal
Formal
Informal
Formal

Informal

L

Salutation

Dear Ms, %1 %62 %3,

Hi %1,

Kaere Frie, %61 %62 %3,

Hej %1,

Sehr geehrte Frau %6l %2 %3,
Hallo %1,

Dear Ms, %1 %2 %3,

Hi %1,

Estimada Sefiora %1 %62 %3,
Estimada Sefora %61 962 %3,
Chere Madame %61 %2 %3,
9,

Gentile Signorina %21 %62,
Cara %1,

Namel

First Name
First Name
First Mame
First Name
First Mame
First Name
First Mame
First Name
First Name
First Name
First Mame
First Name
First Mame

First Name

Name 2
Middle Name

Middle Name

Middle Name

Middle Name

Middle Mame

Middle Name

Middle Name

Surname

MName 3 MName 4 MName

Surname
Surname
Surname
Surname
Surname

Surname

Surname

We can enter a formal and informal code. The salutation can have up to five
variables pointing to Job Title, First Name, Middle Name, Surname, Initials,
and Company Name.

When we look at the result for Karen Friske it will be "Dear Ms. Karen Friske" or

"Hi Karen".

At the end of this chapter, we will look at how to create extra salutation types.

Alternative addresses

Like we said earlier in this chapter, it is best practice to use the address fields in the
contact table for the postal address as this will be printed on all documents.

In the Alternative Address table, we can add as many other addresses to a Contact

as we want.

[136]

Chapter 4

_ 4 New - Contact Alt. Address Card - CT100141 John Tippe
’ Actions ~ E Related Information -

CT100141 John Tippett HOME

General ~
Code: HOME Post Code: N16 347 -
Company MName: Boybridge Tool Mart City: London R
Address: 8 Grovenors Park Country/Region Code: GB -
Address 2: Phone Mo =2

Communication w2
sl Although the codes are not related to anything, it is best practice to have a

Q rule here. Always use the same code for home or office addresses. We can
later use this when printing labels or segments.

An alternative address can also have a valid to and valid end date to control which
alternative address is currently active.

Create as

In Chapter 2, we saw that the contact table is the umbrella data of the customer,
vendor, and bank account master data tables.

Each contact of the type company can be promoted as one of these tables. The benefit
is that all address information fields have a single place of maintenance and are
inherited. It also allows us to analyze sales data into relationship management as we
will see later in this chapter, when discussing segments.

When we create master data, a different number series is used. At the end of this
chapter, we will look at how to change that in the code.

A contact of type person cannot be created as the Customer, Vendor, or
Bank Account.

Duplicates

When entering new contacts the system can search for duplicate contacts. In the
Duplicate Search String Setup table we can enable the filtering on eight fields: Name,
Name2, Address, Address 2, Post Code, City, Phone No. and VAT Registration No.

[137]

Relationship Management

For each field we can set up which part should be used when searching for a
duplicate. We can use the option First and Last and a length which is useful for
Name, Address, and City fields. Using First with the full length of the field will
search for an exact match which is useful for Post Code, Phone Nos. and VAT
Registration No.

In the Marketing Setup table, we can specify the percentage of matching criteria
that should result in a warning.

- =
4y Edit - Marketing Setup [=[&=] &=]

i f Actions ~ EE‘Re!atr:d Information - EE o] PSR I
Marketing Setup

General
Inheritance

Defaults

Interactions
Synchronization i
E
Numbering J - Field 5
Duplicates Field Part of Field Length i
[Namel - First 5
Maintain Dupl. Search Strings: P R z @
Autosearch for Duplicates: Address First 5
. T F Add ot 5
E-Mail Logging =4 5 3
Post Code First 5
F Post Code Last 5
0K
| -~ =)

For each contact, the system will save these values in the Cont. Duplicate Search
String table (5086).

When we enter a new contact, the system will also generate the same strings and
compare these to the ones in the database. When there is a match, the system will
show a warning with the duplicate contacts.

Search

To search for a specific contact we can use the Contact Search functionality. This has
a phonetic search feature allowing for small typos to be ignored. It searches most of
the fields in the contact table for the value.

It is also possible to add AND and OR operators, and to exclude words.

[138]

Chapter 4

li' Show
3 Find

by Edit - Contact Search i . —

Profiles

Genes I
Find What: ”Cronos ‘T Contact Type: All
Search Area: All - Exact Match: []
i . Contact Mo. Contact Name Mo. of Rec...
il | CT000064 Cronus Cardoxy Sales 1
CT000065 Cronus Cardoxy Procurement 1
CT000091 Overschrijd de Grens SA 1
CT000129 Cronus Cardoxy Sales 1
CT000130 Cronus Cardoxy Procurement 1

The contact table has a very limited number of fields and does not allow for much
creativity for us to add flexible information. This is where profiles are used.

Profiles allow the users to create an unlimited number of extra information sources
that can be manually or automatically populated.

Let's have a look at an example profile:

A B Bl Questlonnalllrff e s ki i el sl i i e i il s il i Bl
’ Actions ~
Code Description Priority Contact Type Business Rel...
COMPANY General company informati... Normal Companies
- — “
CUSTOMER [4 Edit - Profile Questionnaire Setup - COMPANY
LEADQ r
Related Information ~

PERSON
PORTF Type Description M.. Priority Auto Contact Classification FremVa.. T
POTENTIAL Question No. of employees [F1 1 |
SATISF Answer 1.99 [F] Mormal =]

Answer 100..429] Mormal 1

Answer 500..999 [] ' Normal il

Answer 1000+] Mormal [

Question Company Cwnership El E

Answer Stock Exchange [[] MNormal |

This profile is for contacts of type Company. It has Question and Answer lines.
A question can have one or multiple answers and we can define as many questions
and answers as we want. The last column shows how many contacts have this

profile answer.

[139]

Relationship Management

A profile is used from the Contact card.

_ 4 Edit - Contact Card - CTOD0082 - Comacycle

‘_‘ Actions elated Information - %Ee

S e B | Rt Corocs

1 1 Create Interact Company

i Person
E Statistics

Process

CT000082 - Comacycle [2]] Statistics F7 |

When we click this, a new page opens where we can select the required profile and
answer the questions.

_ 4 Edit - Contact Card - CT000082 - Comacycle
- |ated Information - E% Re 3
CTO00082 - Comacycle
Profile Questionnaire Code: COMPAMNY -
General
Type Description B
No.: CT000082 Question MNo. of employees
Type: Company Answer 1.93 [
Company Mo.: |CT000082 Answer 100.493 |
Company Mame: éCcmacycIe TAWIED e iecies . I
1000
MName: Comacycle /ﬂnswer "
Question Company Ownership]
Address: 38, Rue Ahmed Arabi / =
Answer Stock Exchange |.‘
Address 2: / ATTEr = Farrily * -
Post Code: MO-20800 / n e =
City: MOHAMME?/ [
. Lines { ; = e e
| Question Answer CQuestions Answ... Last Date Up...
% Company Ownership Stock Exchange ! : 24-4-2010
" No. of employees 100..499 24-4-2010

The answers are displayed in the Lines subpage of the contact card.

Automatic profiles

Profiles can also be automatically answered based on formulas. This is done using
the Auto Contact Classification option and setting up the Question Details.

[140]

Chapter 4

iy Edit - Profile Questionnaires

Code Description Priority Contact Type Business Rel...
COMPANY General company informati... MNormal Companies
CUSTOMER
LEADQ -
Actions E Related Informatinn =
PERSON -
— - Line - p ton Detaile: ShilteET] —
PORTF | Type ¥ s Auto Contact Classification FromVa.. T
| - A I Answer Where-Used I - -
POTENTIAL | + Profit(L —
SATISF Answer Top 25 % of Customers [F] Very Low (Hi...
Answer Middle 50 % of Customers] Very Low (Hi... E 26
Answer Bottom 25 % Customers [[] Very Low (Hi... B 76
Question Profit (LCY) Current Year E
Answer Top 25 % of Customers [Mormal B
Answer Middle 50 % of Customers [] Mermal E 26
Answer Bottom 25 % Customers [Mormal B 76

The Question Details are fixed and hard coded. They depend on the relationship
between a contact and a customer or vendor as discussed earlier in this chapter.

- —— ==
Edit - Profile Question Details - CUSTOMER - Profit (LCY) last year M
, Actions ~
[General
Description: Profit (LCY) last year Multiple Answers:
Classification A |
Auto Contact Classification: Starting Date Formula: CY-2Y+1D
Customer Class, Field: Profit (LCY) E Ending Date Formula: CY¥-1¥
Vendor Class. Field: Sales (LCY) Classification Method: Percentage of Contacts -
Contact Class, Field: Profit (LCY) Sorting Method: Descending -
) . Sales Frequency (Invoices/Year)
Min. % Questions Answered: Avg. Invoice Amount (LCY) Mo. of Decimals: 0
Discount (%)
Awvg, Overdue (Day)
OK Cancel

We will not describe all possibilities as this is very well covered in the online help.

When the questions are set up, the answers should have a From Value and To Value
to allow the system to pick the right one.

[141]

Relationship Management

To generate the answers, a batch job is used called Update Contact Classification
where we can filter on a Profile.

.
Edit - Update Contact Classification ﬁ
Options -
Date: 27-1-2011 -
Profile Questionnaire Header -
Show results:
&2 Where Code ¥ is -
& And Description ™ |'F Code Description
& And Business Relatiol COMPANY General company informa...
a5 Add Filter CUSTOMER Customer information
LEADCG Lead Qualification
PERSON General personal informati...
PORTF Customer Portfolic Manag...
Interactions

We have all kinds of interaction moments with our contacts. Whether they are

phone calls, mailings, or sending an invoice, we can register them in Microsoft
Dynamics NAV.

As with profiles, there are interactions that are generated automatically and
manually. Manual interactions are created using a wizard.

All interactions relate to an Interaction Template Code. The system allows for an
unlimited number of codes we can define ourselves. The interaction code will also
determine how the rest of wizard will behave.

i Edit - Interaction Templates & &% e W e e W W gt e i
Related Information ~
Code Interction Descriin Wizard Actin (B tta... . Crrespon... Information... ; nitiaed By ;
ABSTRACT LETTER Abstracts of meeting Open Yes Hard Copy Outbound
BUS LETTER Business |etter Open Yes Hard Copy ~ Outbound Us
COVERSH SYSTEM Coversheet Me Outbound Us
EMAIL SYSTEM Emails MNe Outbound Us
GOLF LETTER Golf event Open Yes E-Mail Outbound Us
INCOME PHOME Incoming phone call Mo Them
INHOWUSE MEETING Meeting held at CRONUS Mo Outbound Us

[142]

Chapter 4

Interactions can be Inbound or Outbound and Initiated by Us or Them.
These are informative fields.

The Wizard Action field determines if the wizard will generate a mail merge
document, allow us to attach a previously created document, or do nothing.

Mail merge allows us to create a Word document with all fields from the
contact table.

Let's create an interaction and look at how that is done.

To create an interaction we choose Create Interaction on the contact card or list
and push the Create Interaction button from the Process Actions. This will open
the wizard.

f Actions -

| This wizard helps you to create interactions and record information
regarding their cost, duration and connection to a campaign.
M Who are you interacting with?: Comacycle
What is the type of interaction?: MEMO) - 1
L Infcrmﬂt‘
Who is the salesperson respensible?: INCOME Incoming phene call @
i Describe your interaction.: , INHOUSE ~ Meeting held at CRONUS Outbound
INSDOC Insert a document
I MEETINV Meeting Invitation Qutbound
y | MEMO Memo Outbound
g OMSITE Meeting at the customers site Outbound =
I | New Advan.ced ¥ Setas clefaultufilter cclumn. e
i <Back |[Nea> || Finish | [ContactSearch |[close]|

The first page asks us what type of interaction we would like to start. Let's make

a Memo.

Edit - Create Interaction

S

- CTOD00E2 Comacyt

When you click Next, if your interaction terplate is set up to:

*

Open, then the relevant attachment is opened.

#*

Import, then the Import File dialog box is displayed.

[143]

Relationship Management

This is the next step as our interaction code defines that we will generate a
mail merge.

CRONUS
CRONUS International Ltd..
Phone No. 0666-666-6666
Fax No. 0666-666-6660

emo

To: Comacycle

From: Richard Lum

We can now create the Memo in Microsoft Word with all necessary fields
already filled.

Edit - Create Interaction - CTO0D082 Comacycle ; =)

f Actions -

The following fields are optional. If you want to log your interaction

naow, click Finish.

Correspondence Type: Hard Copy -
When did the interaction take place?

Date: 27-1-2011 -

Time of Interaction:

What is the direction of the information flow?: Cutbound -
Initiated By: Us -
|| Enter the evaluation of the interaction herex Very Positive] -
\| Theinteraction attempt was successful.: M
i [
[< Back] ’ Mext =] ’ Finish l Contact Search
L ¥

After closing Word, we move on to the next step and when we populate all fields
we can finish the wizard. This will save the interaction in the database and print the
memo as we choose Hard Copy as Correspondence Type.

It is also possible to postpone interactions and restart
L= them later.

[144]

Chapter 4

Automatic interactions

Some interactions can also be automatically generated. For example, every time we
print an invoice or shipment.

Which interaction code is used is set up in the Interaction Template Setup. For every
print, we want an interaction log entry to be generated and we need to set up a code.

_dy Edit - Interaction Template Setup

Interaction Template Setup

General
E-Mails: ~ Outgoing Calls: OUTGOING
Cover Sheets: COVERSH - Meeting Invitation: MEETINV
Sales
Invoices: 5 INVOICE - Statements: 5_5TATM
Credit Memos: 5 C_MEMO - Reminders: 5_REMIND
Order Confirmations: 5 ORDER_CF - Return Orders: 5 _RET_ORD
Quotes: 5 QUOTE - Return Receipts: S _RET_RCP
Blanket Orders: 5 _B_ORDER - Finance Charge Memos: 5_FIN_CHG
Shipment Notes: 5_SHIP -
Be careful that when printing a lot of documents, the interaction
. log entry table can be locked for a longer period forcing other
\Y

Q

users in the database to wait until the process is completed. To
avoid this, enable auto increment on this table like described

in this blog. http://dynamicsuser_net/blogs/mark_
brummel/archive/2009/06/28/tip-14-autoincrement-
interaction-log-entries.aspx

= [B [|

Other automatically created interaction log entries are created by segments which
we will look at later in the chapter.

Finished interactions

When completed, the interactions are connected to a contact and can be used for
analysis purposes. It is also possible to start a To-Do from an interaction. We'll look
at that in the next paragraph.

[145]

Relationship Management

|]
To-do's
The To-do's are the lowest level of activities in the relationship management model.
They are best compared to Masks or Meetings in Microsoft Outlook.

To-do's can be created directly in the system or from another event. We can create a
To-do from the interaction we just created. Let's do this.

’ Actions ~ ! Related Information ~
| Interaction Log Entries
Switch Checkmark in Canceled
=5 | Show

il Create Interact

Resend

Evaluate Interaction

| Interaction Log Entries Window

#4 Refresh F5

% = Description Atta... Contact No. Evaluation
Send T

sl CT000082 Very Positive

| Notes

Memo Yes

When we click Create To-do from the Interaction Log Entries, the system shows us
a wizard that will guide us through the process, just like the Interaction wizard.

i # Actions ~

< This wizard helps you to create to-dos,

What is the type of the to-do®: @
e .
All Day Event: Phone Call

What is the start date of the to-do®: i4—4—2010 -

L ——

L
What is the end date of the to-do®: 24-4-2010 -

What is the end time of the to-do?: 03000

Team to-da:]

| cgeck ([New> || msh | [Comatemrch][Close |

There are three types of To-do's: Standard (Blank), Meeting, and Phone Call. The
steps in the wizard depend on the type we select. Let's select a meeting.

[146]

Chapter 4

Edit - CrialtE;To—do - unti

’. Actions ~

If you want te invite attendees, you may now select them from

contacts and salespeople.

' Lines F oa '

i i Attendance Type Attendee Type Attendee No. Attendee Name i i% I

i Required Contact CT000006 Spotsmeyer's Furnishings EE
! Opticnal Salesperson R] + lohn Roberts [l ;
i To-do Qrganizer Salesperson RL Richard Lum ,,
Send invitation(s) when [click Finish.: il

Which template will you use for this e-mail invitation?: MEETNY

e L ——— .

Attachment: No

| <Back || Net> || Finish |[Contactsearch || Close |

The next step asks the attendees for the meeting and allows a template for the
invitation which then again will create an interaction log entry.

To perform this step, the To-do organizer should have a valid e-mail
L address. This can be set up in the Sales Persons.

The next step only asks for a location, so we will click Finish.

When we now open the To-do's from the Sales & Marketing department, we can
open the Sales Person per day matrix which shows us the meeting we just created.

T '

To-dos Matrix - | Type to filter | 5 | b
Sorting: Company Name, Type NameNo. * Sl Limit totals: Mo » 15-05-10.15-05-10 = JR » Organizer, 5alesperson Attendee
i MNe. Name 20410 220410 23-04-10 24-04-i6 1‘3--04—10 26-04-10
DC Debra L. Core
IR John Roberts
ps IV ='S [| i
AL View - To-do List - JR John Roberts ﬂ
__’ Actions ~ E Related Information -
H C... Starting Da.. Type Description Priority Status Organizer ... Date Closed
[24-4-2010 Meeting Meeting with Sales team Mormal Mot Started TDO00051 A
“

We'll see more of To-do's when we discuss Opportunities and Outlook Integration.

[147]

Relationship Management

Opportunities

When we discussed profiles we could already see that Relationship Management
is tightly integrated with the ERP part of the application. This is also the case
for opportunities.

Opportunities allow us to manage all the quote requests we get from our prospects
creating a workflow that will guide us to a deal that is won or lost. This then
allows us to analyze the won and lost deals and change our business based on

this information.

We can analyze the sales pipeline and make a proper judgment of our future order
position allowing us to schedule capacity in time.

Workflow

Each opportunity we create will follow a Sales Cycle in the system. This will guide
us step by step through the process.

Let's have a look at the sales cycles in the Cronus Database.

Sy Edit - Sales Cycles Sieuiieilih amiine & e[B [

Related Information =

E Statistics

Process

Comment

Code Description Rrobability Calculation | Blocked

| EX-LARGE Existing customer - Large acc. No

N EX-SMALL Existing customer - Small acc. MNo

I FIRSTLARGE First time - Large account Mo
FIRSTSMALL First time - Small account Add |

4y Edit - Sales Cycle Statistics - FIRSTLARGE . First time el.arge account
" Actions -

FIRSTLARGE - First time - Large account

General

Calcd. Current Value (LCY):

MNo. of Opportunities:
Estimated Value (LCY):

98.600,00

There are four sales cycles defined. The most important field is the Probability
Calculation formula. This will determine how the system calculates the Calculated
Current Value of all opportunities with this code. We can see the Calculated Current
Value by opening the Statistics window of a Sales Cycle.

[148]

Chapter 4

There are four options to choose from: Multiply, Add, Chances of Success % and
Completed %. The function UpdateEstimates in the Opportunity Entry (5093)
table calculates this.

UpdateEstimates()
IF SalesCycleStage.GET(""'Sales Cycle Code","Sales Cycle Stage')
THEN BEGIN
SalesCycle.GET(*'Sales Cycle Code™);
CASE SalesCycle."Probability Calculation” OF
SalesCycle."Probability Calculation™::Multiply:

BEGIN
"Probability %" := "Chances of Success %" *
SalesCycleStage.""Completed %' / 100;
END;
SalesCycle."Probability Calculation'::Add:
BEGIN
"Probability %" := (“'Chances of Success %" +
SalesCycleStage."Completed %') 7/ 2;
END;
SalesCycle."Probability Calculation'::"Chances of Success %":
BEGIN
“"Probability %" := "Chances of Success %';
END;
SalesCycle."Probability Calculation'::"Completed %':
BEGIN
"Probability %" := SalesCycleStage."Completed %";
END;
END;
"Completed %" := SalesCycleStage."Completed %';
“Calcd. Current Value (LCY)"™ := "Estimated Value (LCY)" *
"Probability %' / 100;
END;

The Probabi lity Calculation first calculated a field Probabi lity % which then
leads to the required Calculated Current Value.

[149]

Relationship Management

Sales stages

Each sales cycle has different stages that will guide us through the sales process.

4 Edit - Sales Cycle Stages - FIRSTLARGE - First time - Large accoun i = | =W

g Actions E Related Information -
Stage Description Completed % Activity Code Quote Required Allow Skip Date Formula =~ Comment
1 Initial 2 INIT B No
ﬁ 2 Qualification 5 QuaL F] No
3 Company Presenta... 20 C-PRES E® E® No
[Product Presentation 40 P-PRES 1 (] No
5 Workshop 50 WORKSHOP No
6 Proposal 80 PROPOSAL No
7 Sign Contract 95 SIGN = No

The current Sales Stage of an Opportunity defines the Completed %. We can
decide with Allow Skip if a sales stage is mandatory. The Quote Required will
force us to assign a Sales Quote to this opportunity as we will see later when we
create an opportunity.

Activity codes

Each sales stage has an activity code. This will define which To-do's are created to
support us in the sales process.

_ 4 Edit - Activity - PROPOSAL - Proposal to

PROPOSAL - Proposal to-dos
~
Code: PROPOSAL Description: Proposal to—dos|
Lines A
Type Description Priority Date Formula
Draft a proposal High
Internal approvemnent of proposal High +30
Phone Call Arrange date for the presentation of the prop.. High +1W
Meeting Present the proposal and set date for follow-up ~ High +2W

This is a very powerful tool enabling sales people to create a workflow for each
sales process.

Let's create an opportunity and see what happens in the system.

[150]

Chapter 4

Creating an opportunity

An opportunity starts by selecting an existing contact or creating a new one.
From the contact card we can select Related Information | Contact |
Opportunities | List.

This leads us to a filtered list of opportunities linked to this contact. Here we can
select Create Opportunity.

| .4 View - Opportunity List

I & pctions - elated Information -

¥ Create Opportunity

This opens the wizard that will guide us though the process. In the first window,
we enter the Description "Sell Chairs" and click Next to take us to the second step.

00011 Add-ON Marketing

i " Actions
You must now record the Contact, Salesperson and Sales Cycle of
this Opportunity.
Which contact is invehed?: Add-OM Marketing |
Which salesperson is involved with this opportunity? DC -
[
What is the sales cycle code?: |FIRSTSMALL -
L 2
< Back Mext = Finish ' Contact Search Close
sock ff ctiotau i Y ConactSeoch [l Closn |

In this step, we set the sales cycle code to FIRSTSMALL and select Finish.

Selecting Next will allow us to enter additional information like assigning a sales
campaign and it will activate the first stage. We will skip that now and discuss
campaigns later in this chapter.

[151]

Relationship Management

When we now open the created Opportunity, the information should look like
the following screenshot. There are no activity lines as we have not yet activated
the first stage.

T z G ; " = | = g
. 4j Edit - Opportunity Card - OP000001 - Sell Chairs rar T P -
f Action: Related Information ~
OP000001 - Sell Chairs
General &
Mo. OP000001 Sales Document No.: -
Description: Sell Chairs Campaign No.: -
Contact No.: CT100011 - Priority: MNormal - !
Contact Name: Add-0ON Marketing Sales Cycle Code: FIRSTSMALL - ;
Contact Company Mame: Add-ON Marketing Status: Mot Started -
Salesperson Code: DC - Closed: F
Sales Document Type: - Creation Date: 27-1-2011
Date Closed:
Lines D
A.. Action Taken Sales CycleS.. Dateof Cha.. Estimated Cl.. Estimated Value.. Caled. Current V... Completed % Chances of Succ.. Probak i

Let's activate the first stage and see what happens. We do that by clicking
Actions | Functions | Update. We enter a wizard where we select First.

- L S e i
Edit - Update Opportunity - CT100011 Add-ON Marketing CT100011 Add-ON Marketing

This wizard helps you to update opportunities. Select one of the following options.: [Fl5d -

<Back || Ne» || Finish _[:‘;smssQuote” Close |

We'll click Next twice and enter step three of the wizard. In this step, we should
enter the estimated sales value and chance of success (%) of getting this deal. This is
important to calculate the Calculated Estimated Value that we discussed earlier.

[152]

Chapter 4

(R

Edit - Update Opportunity - CT100011 Add

You can now change the estimated values regarding the

opportunity.

What is the estimated sales value LCVIE 100000
What is the chance of success (%)% 50
What is the estimated closing date®: 27-1-2011 -

Cancel existing open to-dos.: F

When we click Finish, we come back in the Opportunity and see that the current

value is 260.

A.. ActionT.. Sales.. DateofCha.. Estimated Cl.. Estimated Value.. Calcd. CurrentV.. Complet.. Chances of Succ.. E

1 27-1-2011 27-1-2011 1.000,00 2

Since the probability calculation of this sales cycle is Add, the formula is:

"Probability %" := (“'Chances of Success %" +
SalesCycleStage.""Completed %') / 2;

"Calcd. Current Value (LCY)" := "Estimated Value (LCY)" *
"Probability %" / 100;

This leads to (50 + 2) / 2 = 26 and 1000 * 26 / 100 = 260.

50

Now we click Related Information | Opportunity | To-dos and see that the system

has created two To-do's for us that we have to complete.

Date Closed

M View - To-do List - OP000001 Sell Chairs y E@g
f Actions ~ -E Related Information -
C.. Starting Da.. Type Description Priority Status Organizer ..
7] 27-1-2011 Verify quality of opportunity High Mot Started TDOO00054
[3-2-2011 Identify key persons Normal Not Started TDO00056

[153]

Relationship Management

This will help us remember our daily tasks and allow management to see that

nothing has been forgotten.

Stage Description Completed % Activity Code Quote Required Allow Skip Date Formula =~ Comment
1 Initial 2 INIT I} I Ne
2 Qualification 5 | QUAL | [l Ne
3 Presentation 40 P-WORK Ne
4 Proposal 60 PROPOSAL |} No
5 Sign Contract 95 SIGN 0 No

The next Stages in this sales cycle are Qualification and Presentation. We can enter

these stages by entering the wizard again and selecting Next.

-

Edit - Update Opportunity - CT100011 A

This wizard helps you to update opportunities. Select one of the following options.:

==X

M ext

< Back Mext =

Finish | | Sales Quote | [Close |

After selecting the Next button twice we hit step three. Since one of our To-Do's
was verifying the quality of the opportunity, we can now say, for example, that the

chance of success is 80%.

You can now change the estimated values regarding the

opportunity.

=)

What is the estimated sales value (LCY)%

1.000,00

What is the chance of success (36)%

What is the estimated closing date?: 27-1-2011 -
Cancel existing open to-dos.:

80

; < E.ack ;

Next »

| Sales Quote] Close &

We'll select the Cancel existing open to-dos to make sure our workflow is updated.

The Calculated Current Value has increased to 425.

[154]

Chapter 4

A.. ActionT.. Sales.. | Dateof Cha.. | Estimated Cl.. | Estimated Value.. Calcd. CurrentV.. Complet.. Chances of Succ.. F
Next 2 27-1-2011 27-1-2011 1.000,00 425,00 5 80
[l il 27-1-2011 27-1-2011 1.000,00 260,00 2 50

When we enter the next stage, we will see this error message telling us that assigning
a quote is mandatory to enter the next step.

Microsoft Dynamics MAV @

@ You cannot go to this stage before you have assigned a sales quote,

Sales quote

To assign a Sales Quote to an opportunity, we select Actions, Functions, and Assign
Sales Quote from the opportunity card. This will open a new sales quote with all
fields populated from the opportunity.

4 Edit - Sales Quote - 1001 . Add—QN M_g;léet!}ng i L . ’,‘ i

1001 - Add-ON Marketing

General ~
No.: 1001 Mo. of Archived Versions: 0
Sell-to Customer Mo.: Order Date: 27-1-2011 -
Sell-to Contact No.: CT100011 - Document Date: 27-1-2011 -
Sell-to Customer Template Code: | DK-SMALL - Requested Delivery Date: -
Sell-to Customer Mame: Add-ON Marketing Salesperson Code: DC -
Sell-to Address: 435 Kingston Street Campaign No.: <
Sell-to Address 2: Opportunity Mo, QP000001 -
Sell-te Post Code: US-MY 11010 - Responsibility Center: -
Sell-to City: Mew York - Assigned User It -
Sell-to Contact: Status: Open -

'l?_‘:," Show fewer fields

r4

| Lines & A
Type Mao. Description Quantity Unit of M... Unit Price E... Line Amount Exc... Line Discount % *
Item 1920-5 AMNTWERP Conference Table 1 PCS 600,571 480,46 E E
Item 1936-5 BERLIN Guest Chair, yellow 4| PCS 205,571 657,82 20 :

[155]

Relationship Management

, Toassign a quote to a contact without a Sell-to Customer No. we need
to use the Sell-to Customer Template Code. This can be used when
' the Show more fields option is activated on the General fast tab.

We will select two furniture items and populate the Quantity and Line Discount %
field.

When we now update the opportunity, we can use the quote amount of 1.138,28
which will lead to a Calculated Current Value of 682,97 in step three and 796,80 in
step four.

To update the opportunity to step 4, the sales person
should have a valid e-mail address which can be set up
in the Sales Persons.

Close the deal

Step five is the final step in the sales cycle stages we used in our example. Now
we need to tell the system if the deal is won or lost. To do this, we select Actions |
Functions | Close from the opportunity card. We will select Won and click Next.

-ON Marketing CT100011 Add-ON Marketing

Edit - Close Opportunity - CT100011 A

This wizard helps you to close an opportunity. Do you want to close the opportunity b... I;i
Wan

= Lost
< Back Finish 7 Sales Quote [

. = Iy

After selecting a valid reason and the sales amount, we can close the deal.

You can now record the reason for closing the opportunity.
What is the reason for closing the epportunity? PRICE_W -
What is the closing date of the opportunity™: 27-1-2011 -
Sales (LCY): 113878
Cancel existing open to-dos.:
| Mext = | I Finish] [.f:_ Sales Quote l ’ Close
\ e

[156]

Chapter 4

The system now creates a customer for this contact and updates the quote with this
number. We need to promote the quote to an order manually.

Segments

Segments allow us to slice and dice the data in our system to create a filtered list of
contacts. This information can then be used to create an interaction such as a mailing
or start a Sales Campaign.

Since Microsoft Dynamics NAV Relationship Management is integrated with the
ERP system, we can filter on both RM and ERP data.

Let's create a new segment and look at the possibilities:

Af New - Segment - SMOD0D1 . Packt Publishing Book promotion ey v LI—M:' =
f Actions ~ Related Information ~

SMO0001 - Packt Publishing Book promotion

General e
No.: SMO0001 Date: 27-1-2011 -
Description: Packt Publishing Book promotion Mo, of Lines: 0
Salesperson Code: RL - Mo. of Criteria Actions: 0

Lines v

Interaction - l
Interaction Template Code: BUS - Information Flow: Outbound -
Language Code (Default): - Initiated By: Us -
Subject (Default): Interesting new book Unit Cost (LCY): 2,50
Attachment: Yes Unit Duration (Min.): i
Ignore Contact Corres. Type: Send Word Docs. as Attmt: [
Correspondence Type (Default): Hard Copy -

Campaign v

The segment has a No. and a Description. The No. can be defined using
number series.

On the Interaction tab, we select the Interaction Template Code. We will select
an interaction that generates a word document, so we can use the mail merge
capabilities of segments.

The Unit Cost is important for determining the total cost of this segment, especially
when we use it with Campaigns, as we will see later in the chapter.

[157]

Relationship Management

Add contacts

With our segment defined, we can now start filtering the system for contact
information by clicking Actions | Functions | Contacts | Add Contacts.

This opens a selection window allowing us to filter in different parts of the application.

Edit - Add Contacts 1|
Options sl b

Allow Existing Contacts: [l

Expand Companies:]

Allow Related Companies: [7]

Ignore Exclusion:] 3
Contact >
Profile b
Mailing Group el P
Interaction Log Entry M
Job Responsibility ¥
Industry Group i
Business Relation it
Value Entry v -

[oK] [Cancel]

e Contact: Here we can filter directly on all fields in the contact table.
For example: all Contacts in Country 'NL'.

o Profile: This allows us to filter on any profile answer. When we use automatic
profile answers we can, for example, filter on customers with a specific
turnover or profit value.

e Mailing Group: We can save any segment to a mailing group allowing easy
reuse of previously generated filters.

e Interaction Log Entry: We can filter on contacts that have had specific
interaction codes. For example, everyone who had a sales invoice in the
last year.

¢ Job Responsibility: If we want to send out a mailing to all managers, we
select the matching job responsibility code.

¢ Industry Group: This allows us to filter out companies in specific industries.

[158]

Chapter 4

¢ Business Relation: Business relations are by default used to integrate with
customers, vendors, and bank accounts, but can also be expanded with extra
information.

e Value Entry: This is probably the most powerful filter where we can filter on
specific Item Numbers and posting dates from the related contact.

e Options:

[e]

Allow Existing Contacts: If you run multiple selections and
check this option, the system will create new segment line
each time a contact is within the selection.

Expand Companies: When you select this option, the system
will add the persons related to the companies in the selection.

Allow Related Companies: When Expand Companies is
selected, this option will delete the company record if a
company has one or more persons in the filter.

Ignore Exclusion: A contact can be ignored on segments.
Checking this flag will ignore this field.

Refine/Reduce contacts

After adding all contacts from The Netherlands, we might want to refine or reduce
this. That can be done with the same filtering as Add Contacts. Refine will check

if the contacts in the segments match the specific filter criteria, and will remove all
contacts in the segment that match the criteria.

We will reduce the segment with the criteria City Waalwijk.

Segment criteria

We can now ask the system what criteria we used by clicking Related Information |
Segments | Criteria.

_ M View - Segment Criteria - SM00001 - Packt Publishing Book promotion L=

Action/Table Filter

Add Contacts

Contact Country/Region Code: NL
Remaove Contacts (Reduce)

Contact City: Waalwijk

[159]

Relationship Management

This allows us to see what we did, but also to undo the last actions or save

the criteria.

Mailing groups

4 Edit - Segment - SM0D0D1 - Packt Publishing Book promotion
; Actions - E Related Information ~
ment i
S_eg ’ " ook promotion
| View Ctrl+Shift+V
[57| Edit Ctrl+Shift+E
&l New Ctrl+N
SMO0001 Date: 27-1-2011
(| 75 Delete Ctrl+Del
Ma. of Lines:
Functions 3 Contact 3
| Functions IR Citers Actonss 2
Print » [
b Attachment 4 Reuse Criteria...
mpbc : e e i
fEmE € Export File Reuse Segment... Description
+4 | Refresh F5 i s
/ _ Apply Mailing Group Save Criteria... Packt Publishing Book promotion
| ClearFilter Ctrl+Shift+A

Another option to reuse a segment is to apply a Mailing Group to all contacts in a
segment. To start this we click Actions | Functions | Apply Mailing Group from

the segment card.

Edit - Apply Mailing Group.

| * Actions ~

Options

Delete Old Assignments:

]

Mailing Group

Show results:
% Where
=# Add Filter

Code * is

K-GIFT

This will create a record in the Contact Mailing Group table for each contact in

the segment.

[160]

Chapter 4

Log segment

When the segment is finished, it should be logged. Logging the segment will start the
mail merge process in our segment and create the Interaction Log Entries.

Edit - Log Segment ﬁj

Options A

Send Attachments:
Create Follow-up Segment: [7]

ok || cancel |

Using this option will also print the letters in this example. For
an exercise, it might be useful to enable a PDF printer or turn off
’ your printer and remove the print job.

If required the system can directly generate a follow up segment if we would use
this segment with a campaign.

Campaigns
Most larger companies with marketing departments have sales campaigns to

improve their sales. These are typically periods where some items are more
interesting for customers to buy than others.

With the campaigns in Microsoft Dynamics NAV, we can manage the sales prices
and see the results of a specific campaign both from a cost and profit viewpoint.

[161]

Relationship Management

Let's open a campaign and see what information it contains.

4y Edit - Campaign Card - CP1002 . Event s s 4 [E] | |

Related Information ~ B Reporis ~

H Campaign Details

% Statistics
Process
CP1002 - Event
General A
MNo.: (CP1002] i: Ending Date: 22-1-2011 -
Description: Event Salesperson Code: BD -
Status Code: 9-DOME - Last Date Modified:
Starting Date: 19-1-2011 - Activated: MNo
Invoidin L]
9 ol
Department Code: SALES - Project Code: -

Each campaign has a unique No. field that can be created using number series and
a Description. The No. field should be carefully chosen since that will be used
throughout the application where this campaign is used.

The Status Code options can be custom defined, but do not impact business logic.

The Starting Date and Ending Date are important for the pricing information.
The special price and discounts will only be valid within these periods.

Via the Invoicing tab, we can see that the campaigns are integrated with dimensions.
This gives us the powerful option to define a dimension code for each campaign

and create an analysis view to analyze the results in the financial part of Microsoft
Dynamics NAYV, like we discussed in the previous chapter.

Pricing
By clicking on Related Information | Campaign Sales Prices, we can enter the
pricing information for this campaign.

[162]

Chapter 4

_ i Edit - Sales Prices - Campaign CP1002 Event s i “:_ @Mj
General
Sales Type Filter Campaign - Starting Date Filter:
Sales Code Filten CP1002 - Currency Code Filter: - i
Itern Mo, Filter: A g
Sales Type Sales Code Itemn Mo. Un... Minimum Quant... Unit Price Starting Date Ending Date
Campaign CP1002 1000 ,00) 3.500,00 19-1-2011 22-1-2011
| Campaign CP1002 1001 0,00 3.500,00 19-1-2011 22-1-2011
[Campaign CP1002 1100 0,00 800,00 19-1-2011 22-1-2011

This price table is filtered exactly the same way as discussed in our example
application in Chapter 2.

Segments

To select customers or prospects for a campaign, we need to create one or more
segments. These segments should be connected to the campaign using the
Campaign No. field. Everyone related to these segments will get the specific
prices and discounts.

The segments are also used to create the interaction log entries and To-do's for
this campaign. We need to make our target group aware that this campaign exists
by sending them a letter, fax, e-mail, or even a phone call.

Activate

By activating the campaign, the system will add all contacts to the campaign
group and create interaction log entries.

The interaction log entries will be used to calculate the cost of a campaign.
Each interaction has a specific cost and all costs add up to the total amount on
the campaign.

When an opportunity comes in, we can point this to a specific campaign. The
value of this opportunity is also used in estimating the success of the campaign.

The campaign is also copied into the sales documents using the dimensions attached
to the campaign. This allows us to further analyze the results.

[163]

Relationship Management

Outlook integration

Salespeople are often on the road without online access to the ERP system, and
Microsoft Dynamics NAV does not have an offline mode. To solve this problem,
Microsoft Dynamics NAV is integrated with Microsoft Outlook.

This allows salespeople to view contacts and tasks offline and replicate with the
back office system when possible.

If salespeople use a Windows Mobile phone with Microsoft Outlook they can even
have all their Microsoft Dynamics NAV information on their device.

Using User Defined Views will also enable us to synchronize other Microsoft
Dynamics NAV data to Microsoft Outlook, for example, the customer table with
the current value of the balance field or the item table with the current inventory.

We will discuss the possibilities of interfacing with Microsoft Outlook in
Chapter 9, Interfacing.

E-mail logging
Microsoft Dynamics NAV also has a capability to read exchange shared folders such
as info@ mailboxes.

For each e-mail the system can generate Interaction Log Entries and To-Do's.

The setup

Before implementing relationship management, we should properly set up the
options. This can be done in the Marketing Setup.

[164]

Chapter 4

_ 4 Edit - Marketing Setup

Marketing Setup
General

Attachment Storage Type:

Attachment Storage Location:

Inheritance

Defaults

Interactions

Mergefield Language ID:

Synchronization

Bus. Relation Code for
Customers:
Vendors:
Bank Accounts:

Bus. Rel. Code for Squash P...

Numbering
Contact Nos.:
Campaign Mos.:
Segment Mos.:

Duplicates

Maintain Dupl. Search Strings:

Autosearch for Duplicates:

E-Mail Logging

o

, Actions elated Information ~

Embedded

CUsT
VEND
BANK
SQUASH

CONT
CAMP
SEGM

€=

Index Mode:

To-do Mos.:

Opportunity Mos.:

Search Hit %:

Manual

TO-DO
OPP

e Attachment Storage Type: The attachments in the interaction log entries can
either be stored in the database (embedded) or on the file system (Disk File).
It is highly recommended to store them on the file system.

e Attachment Storage Location: If we choose to store the attachments on
file system, this is where we specify the path.

¢ Index Mode: When using Contact Search, this should be set to Auto.
It might have a small drawback on performance and can cause the
database to be bigger.

[165]

Relationship Management

e Inheritance: When entering a person, it can inherit the salesperson code,
territory code, country/region code, language code, address details, and
communication details from the company it belongs to.

e Defaults: A new contact can get a default salesperson code, territory code,
country/region code, language code, or correspondence type. There is a
different default salutation code for companies and persons.

e Default Sales Cycle Code: Every new opportunity will automatically get
this code.

e Mergefield Language ID: This defines if the Word merge fields are in local
language or in English.

e Synchronization: Here we enter the default Business Relation Code for
Customers, Vendors, and Bank Accounts.

e Maintain Dupl. Search strings: Check this field if the duplicate contact
functions are used.

e Autosearch for Duplicates: Use this option if the system should
automatically search when entering new contacts.

e Search Hit %: This determines the percentage of match lines that the
duplicate search string setup should have to qualify as a duplicate contact.

Customizing relationship management

RM is a pretty complete module that is not often highly customized or verticalised.
However, we will describe some possible changes and how to integrate an add-on,
in our case the Squash application, with Relationship Management.

All examples in this chapter are part of the objects downloaded for Chapter 2, A
Sample Application.

Salutation formula types

By default, the system has two salutation formula types— formal and informal,
allowing us to print Dear Mrs. Brown, or Dear Angela. But, what if we want to
print Attn. Mrs. Brown?

For this, we need to first add an option to the Salutation Type field in the Salutation
Formula table.

[166]

Chapter 4

Add the option

Table 5069 Salutation Formula - Table Designer (= ===
E.. Field Mo. Field Name Data Type Length Description
v 1 Salutation Code Code 10 *
v 2 Language Code Code 10
b v 3 Salutation Type Option
v 4 balutation Text 2
v 5 Mame 1 = T —
Salutation Type - Properties [= [

v 6 Mame 2 :
v 7 Name 3 Property Value
v 3 MName 4 AltSearchField <Undefined > -
v 9 Mame 5 OptionString Formal, Informal,,, At
v 10 Contact Mo. Filter OptionCaption Formal, Informal, ,, Attn

OptionCaptionML EMNU=Formal,Informal,,,,Attn -

Support the formula

Next, we want to use the formula when printing a Contact Cover Sheet. This uses
the Format Address functionality from Codeunit 365.

This Codeunit is the single point in Dynamics NAV where all the address formatting
is done.

The formatting of contact persons is done in the function ContactAddrAlt.
We should make the following change.

ContactAddrAlt()
ContldenticalAddress:
WITH ContAltAddr DO BEGIN
GET(Cont.""Company No.",CompanyAltAddressCode);
FormatAddr(
AddrArray,'Company Name',"Company Name 2,
Cont.Name,Address, " Address 2",
City,"Post Code™,County,"Country/Region Code');
END;
(Cont.Type=Cont.Type: :Person) AND
(Cont."Company No.™ <> *"%):
WITH Cont DO

FormatAddr(
// AddrArray,ContCompany .Name,ContCompany. "*Name 2,
// Name,Address, ""Address 2",

[167]

Relationship Management

AddrArray,ContCompany .Name,ContCompany. "'Name 2",
GetSalutation(5, Cont."Language Code'),Address,
"Address 2",City,"Post Code",County,
"Country/Region Code')

Always comment out the original line of code before you make
a change. This will enable you to always go back to standard
M code and help when upgrading this solution to a newer version.
Q Most NAV partners and developers have their own way of
documenting and commenting. The example in here is the
Minimum comment requirement. We will discuss versioning of
objects in Chapter 10, Application Design.

The GetSalutation function

In our modification, we use the GetSalutation function in the Contact table
(5050) instead of the Name field. Let's have a look at that function and analyze
what it does.

GetSalutation()
IF NOT SalutationFormula.GET("'Salutation Code',LanguageCode,
SalutationType)
THEN
ERROR(Text021,LanguageCode, " "No."");

SalutationFormula.TESTFIELD(Salutation);
CASE SalutationFormula."Name 1" OF

SalutationFormula."Name 1"::"Job Title":
NamePart[1] := "Job Title";

SalutationFormula."Name 1"::"First Name":
NamePart[1] := "First Name";

SalutationFormula."Name 1'::"Middle Name':
NamePart[1] := "Middle Name';

SalutationFormula.'"Name 1''::Surname:
NamePart[1] := Surname;

SalutationFormula."Name 1'"::Initials:
NamePart[1] := Initials;

SalutationFormula.""Name 1'"::"Company Name":
NamePart[1] := "Company Name";

END;

CASE SalutationFormula.''Name 2' OF

END;

[168]

Chapter 4

FOR i =1 TO 5 DO
IF NamePart[i] = " THEN BEGIN
SubStr := "%" + FORMAT(i) + " ~;
IF STRPOS(SalutationFormula.Salutation,SubStr) > 0 THEN
SalutationFormula.Salutation :=
DELSTR(SalutationFormula.Salutation,STRPOS(SalutationFormula.
Salutation,SubStr),3);

END;

EXIT(STRSUBSTNO(SalutationFormula.Salutation,NamePart[1],
NamePart[2] ,NamePart[3],NamePart[4] ,NamePart[5]))

The function uses two parameters: SalutationType and LanguageCode. With these
values and the salutation code of the contact, it checks if there is a valid formula.
Since we only added a new option, the code still works because at database level, the
Option field is translated to an Integer.

. For documentation purposes, we could also implement the new
% option value in this function. The downside of that would be that
= we do a modification that is not technically necessary, but needs

to be maintained and upgraded.

Depending on the order of the formula, the necessary name fields are combined and
used as the return value of the function.

Set up the salutation formula

If we want to use our new Salutation formula, we need to set it up first. We will do this
for F-MAR to test it with CT100191 Megan Sherman from American Wood Exports.

i New - Salutation Formulas - F-MAR o g & # . il -

Language C... Salutation T.. Salutation MName1 MName 2 MName 3 MName 4 MName
Formal Dear Ms, %61 %62 %3, First Mame Middle Name Surname
Informal Hi %1, First Mame

DAN Formal Kazre Fru. %6l %2 %3, First Mame Middle Name Surname

DAN Informal Hej %1, First Name

DEU Formal Sehr geehrte Frau %1 %2 %3, First Name Middle Name Surname

DEU Informal Hallo %1, First Mame

EMU Formal Dear Ms, %61 %62 %3, First Mame Middle Name Surname

ENU Informal Hi %l First Name

ENU Attn Attn. Ms. %1 %2 %3 FistName Middle Name Surname -]

ESP Formal Estimada Sefiora %l %62 %63, First Mame Middle Name = Surname

[169]

Relationship Management

Test the solution

After adding the new formula, we print a cover sheet from the Contact Card using the
Contact Cover Sheet option from the Report actions. The result will look like this:

_ My Print Preview S

Contact - Cover Sheet

Bl M 4 1 of1 b M | @] 100% - Find | Mext
Cover Sheet

American Wood Exports CRONUS International Ltd.
| Aftn. Ms. Megan Sherman | 5The Ring

723 North Hampton Drive ‘Westminster

Mew York, US-NY 11010 ‘W2 8HG London

USA

Customer and vendor numbering

Another common requirement from end users is to maintain the same number
when creating a customer or vendor from a contact.

This can be done by adding one line of code to the CreateCustomer function in
the Contact table.

CreateCustomer()

CLEAR(Cust);
Cust.SetlnsertFromContact(TRUE);
//* Maintain Contact No. >>>
Cust."No." := "No.";

//* Maintain Contact No. <<<
Cust. INSERT(TRUE) ;
Cust.SetlnsertFromContact(FALSE);

This works, because by populating the No. field the number series functionality in
the Onlnsert trigger does not start.

Onlnsert()
IF "No.™ = ** THEN BEGIN
SalesSetup.GET;
SalesSetup.TESTFIELD(""Customer Nos.'™);
NoSeriesMgt. InitSeries(SalesSetup."Customer Nos.",
XRec.""No. Series",0D,"No.","No. Series");
END;

[170]

Chapter 4

Disabling direct creation of customers and vendors

When using this option, it should be disabled to directly create a customer or vendor.
This can be done easily by removing the No. series from the Sales & Receivables
setup and Purchases & Payables setup. This results in a runtime error message when
creating the customer or vendor.

Sharing contact information across
companies

When more companies have their administration in Microsoft Dynamics NAV, they
most often have the same owner or group of owners that want their Contact data to
span across their companies.

This can be achieved by sharing some tables over all the companies and changing
some business logic.

Share tables

By default, Microsoft Dynamics NAV will create a separate instance of each table

for each company. This can be changed with the DataPerCompany property in the
Table Designer.

Table - Properties = @
Property Value
D 5050 =
Mame Contact
Caption Contact
CaptionML EMU=Contact
Description <
DataPerCompany E E]
LookupFormID fes
rMCownFormio ZUndenned
DataCaptionFields Mo. Name
PastelsValid <Yes>
LinkedObject <Mooz

The following tables should be shared across the database since they contain the
main contact information and the link to the customer and vendor data.

e 5050 - Contact
e 5051 - Contact Alt. Address

[171]

Relationship Management

e 5052 - Contact Alt. Addr. Date Range
e 5053 - Business Relation
e 5054 - Contact Business Relation

This will allow us to reuse contact data in all companies. Sharing other tables is
optional, but sharing them might be useful in some cases.

By sharing the Contact Profile Answer table other companies can see how a
customer is doing within the group.

The Segment tables could be shared in order to cross company slice and dice
information. This also requires the Criteria tables to be shared.

1
~ When you share the profile or segment tables, the reports that calculate

them should be started for each company individually in the database.

Campaigns and Opportunities should not be shared since that interfaces with the
ERP system. Never share financial tables like the value entry or document tables.

Interaction log entries could be shared but we should realize that most table relations
to sales and purchase documents will not work when we are in the wrong company.

Business relations

When sharing contacts across companies, we are interested to see in which company
the contacts are customers and vendors. We also want to maintain those tables when
the contact information changes.

This means that besides sharing the Contact Business Relation table, we should
also add a field indicating the company and add this field to the primary key.

[172]

Chapter 4

Table 5054 Contact Business Relation - Table Designer (o=][]

E.. Field Mo, Field Name Data Type Length Option String
v 1 Contact Mo. Code 20 e
v 2 Business Relation Code Code 10
v 3 Link to Table Option ,Customer,Vendor, Bank Account,. ..
v 4 Mo, Code 20
v 5 Business Relation Description Text 30
v & Contact Mame Text 50

| /¥ 123455700 Company Text 30

Table 5054 Contact Business Relation - Keys

E kay SpmIndexField:

Contact Mo.,Business Relation Code,Company
Link to Table,No.

Link to Table,Contact Mo.

Business Relation Code

AR

C/AL code modifications

The functions that created the customer and vendor records that we saw in
chapter 2, should also be checked.

For example, the function CreateCustomer in the Contact table.

CreateCustomer()

ContBusRel .RESET;
ContBusRel .SETRANGE(**Contact No.",""No.");
ContBusRel .SETRANGE("'Link to Table",ContBusRel.""Link to
Table": :Customer);
//* Company Sharing >>>
ContBusRel . SETRANGE(Company, COMPANYNAME) ;
//* Company Sharing <<<
IF ContBusRel .FIND("-") THEN

ERROR(

Text019,

And a little bit further up in the C/ AL code:

ContBusRel .""Contact No."™ := ContComp."No.";

ContBusRel .""Business Relation Code"™ := RMSetup."Bus. Rel. Code for
Customers';

ContBusRel."Link to Table" := ContBusRel.'Link to Table'"::Customer;

//* Company Sharing >>>
ContBusRel .Company := COMPANYNAME;

[173]

Relationship Management

//* Company Sharing <<<
ContBusRel.""No." := Cust."No.";
ContBusRel . INSERT(TRUE) ;

We should also check the code that maintains data integrity which is the
CustVendBank-Update Codeunit (5055) that we discussed in chapter 2.

UpdateCustomer()

WITH Cust DO BEGIN

//* Company Sharing >>>
CHANGECOMPANY (COMPANYNAME) ;

//* Company Sharing <<<
GET(ContBusRel .""No."™);

END;

Here we use the CHANGECOMPANY C/AL command to change the company for a
specific instance of a variable.

There are more functions impacted such as the UpdateQuotes
%@“ function in the Contact table. Analyze your database before
’ implementing this feature.

Number series

The last change we should do for a properly working system is create a new instance
of the number series functionality.

This can be achieved relatively easily since the number series are an isolated set
of objects.

In the Object Designer, we should filter on this set of objects and export them to
a .txtfile.

e Table (308) : No. Series

e Table (309) : No. Series Line

e Table (310) : No. Series Relationship

e Report (21) : No. Series

e Report (22) : No. Series Check

e Codeunit (396) : NoSeriesManagement
e DPage (456) : No. Series

e DPage (457) : No. Series Lines

e DPage (458) : No. Series Relationships

[174]

Chapter 4

In this file, we can renumber them and rename them so we get something like this:

e Table (123456721) : No. Series (Shared)

e Table (123456722) : No. Series Line (Shared)

e Table (123456723) : No. Series Rel. (Shared)

e Report (123456721) : No. Series (Shared)

e Report (123456722) : No. Series Check (Shared)

e Codeunit (123456721) : NoSeriesManagement (Shared)
e Page (123456721) : No. Series (Shared)

o DPage (123456722) : No. Series Lines (Shared)

e Page (123456723) : No. Series Rel. (Shared)

Where the tables should be DataPerCompany No.

Final steps

When we have shared number series functionality, we can implement this in the
existing objects.

1. The field Contact Nos. in the marketing setup table should change the table
relation to the shared No. series table as well as the No. series field in the
contact table.

2. The variable NoSeriesMgt in the contact table should move from
NoSeriesManagement to SharedNoSeriesMgt.

Alternative approaches

Sharing contact information across companies is a change that has been implemented
by many companies and can be considered safe. Other tables in Microsoft Dynamics
NAYV are more difficult to share because of financial or operational information.

A typical example in the standard application is the Item table (27). This contains
a field Cost is Adjusted (29) that is used when running Cost Adjustment. If this table
would be shared across all companies we would create a major issue with running
this function.

[% We will discuss Cost Adjustment in Chapter 5, Production.]

[175]

Relationship Management

For this issue there are two commonly implemented solutions:

¢ Shared Master Items: We can create a new table called Master Item. This
table is shared across all companies and contains the information we share
like descriptions and pricing. When the data in this table is changed, it
should enable a mechanism comparable to the CustVendBank-Update
Codeunit (5055) that updates the Items in the other companies using the
CHANGECOMPANY C/ AL function.

e External Synchronization: We could implement something that will export
the changes done in company A to an XML file. An application server can
run in the background and read this XML file and implement these changes
to other companies in the database or even other databases.

The first solution with Master Items looks a lot like the way Contacts work in the
standard application and is a perfect example of Look, Learn, and Love using proven
data structures in customized solutions.

Add contacts to segments

The last change we are implementing in Relationship Management is adding a table
to the Add Contacts functionality in Segments.

We have seen that it is already complete but a vertical solution might want to
integrate its ledger entry tables here.

For this example, we will make it possible to filter in the Squash Ledger Entries from
the example application in Chapter 2.

Expand report

The first step is to add the Squash Ledger Entries as a Dataltem to the Add Contacts
report (5198). We will copy the functionality from the Value Entries as this is
comparable functionality.

M Always find comparable standard application functionality to learn
Q from. Never just copy and paste this but learn how it's done and apply
your own knowledge.

[176]

Chapter 4

Report 5198 Add Contacts - Report Designer [=] ==
Dataltem Mame
Segment Header <Segment Header >
Contact <Contact>
Contact Profile Answer <Contact Profile Answer
Contact Mailing Group <Contact Mailing Group =
Interaction Log Entry <Interaction Log Entry >
Contact Job Responsibility <Contact Job Responsibility =
Contact Industry Group <Contact Industry Group>
Caontact Business Relation <Contact Business Relation =
Value Fotry Value Frtry
Contact Business Relation ContactBusinessFelation2
Squash Ledger Entry <Squash Ledger Entry =
Teger Treger

We cannot copy and paste the table relation from the other Contact Business
Relation Dataltem since squash players are contact persons, not companies.

Our table relation should be Contact No.=FIELD(No.).

The code in our Contact Business Relation table tells us we need two new variables
of type Boolean— SquashFi lters and SkipSquashLedgerEntry.

ContactBusinessRelation2 - OnPreDataltem()

IF ContactOK AND ((GETFILTERS<>"") OR SquashFilters) THEN
ContactOK := FALSE

ELSE
CurrReport._BREAK;

ContactBusinessRelation2 - OnAfterGetRecord()
SkipSquashLedgerEntry := FALSE;
IF NOT SquashFilters THEN BEGIN
ContactOK := TRUE;
SkipSquashLedgerEntry := TRUE;
CurrReport._BREAK;
END;

The SquashFilters is determined in the OnPreReport trigger.

Report - OnPreReport()
ItemFilters := "Value Entry"_.HASFILTER;

//* Squash >>>
SquashFilters := "Squash Ledger Entry".HASFILTER;
//* Squash <<<

[177]

Relationship Management

The code in the Squash Ledger Entry Datal tem should look like this:

Squash Ledger Entry - OnPreDataltem()
IF SkipSquashLedgerEntry THEN
CurrReport.BREAK;

CASE ContactBusinessRelation2."Link to Table"™ OF
ContactBusinessRelation2."Link to Table™"::"Squash Player':
BEGIN

SETRANGE(**'Squash Player No.",
ContactBusinessRelation2."No.™);
END;
ELSE
CurrReport._BREAK;
END;

Squash Ledger Entry - OnAfterGetRecord()
ContactOK := TRUE;

IF ContactOK THEN
CurrReport._BREAK;

Make sure we filter on our instance of Contact Business Relation and that we filter
on Link to Table Squash player.

The ContactOK indicates that all contact persons connected to this Squash Ledger
Entry will be inserted.

Implement criteria filters

To support the criteria filter functionality we need to make two changes. One to the
Add Contacts report and one to Codeunit SegCriteriaManagement.

In the add contacts report, we add this C/ AL code to the OnPreReport trigger. This
will make a call to the SegCriteriaManagement Codeunit (5062).

OnPreReport()

SegCriteriaManagement. InsertCriteriaFilter(
"Segment Header™ .GETFILTER('No.""),DATABASE: :""Value Entry",
"Value Entry".GETFILTERS,"Value Entry"_GETVIEW(FALSE));
//* Squash >>>
SegCriteriaManagement. InsertCriteriaFilter(
"Segment Header™ .GETFILTER(*'No.™),
DATABASE: :"'Squash Ledger Entry™,
""Squash Ledger Entry" _.GETFILTERS,
""Squash Ledger Entry" _GETVIEW(FALSE));
//* Squash <<<

[178]

Chapter 4

In the SegCriteriaManagement Codeunit we add this code to the

SegCriteriaFilter function which will require a new local variable for Squash
Ledger Entry.

SegCriteriaFilter()

CASE TableNo OF
//* Squash Ledger Entry >>>
DATABASE: :"'Squash Ledger Entry":
BEGIN
SquashLedgEntry . SETVIEW(View);
EX1T(SquashLedgEntry.GETFILTERS);
END;
//* Squash Ledger Entry <<<
END;

Test solution

Now we can test the solution by trying to add all Squash Players of type Member
to a Segment.

f Actions ~

| Job Responsibility v

B T

| Business Relation |
[wuegntw B s et v,
:squash p|ayer T T S e

Squash Ledger Entry ~

Sorting: Entry No. = Sl

Show results:

3% Where Squash PlayerMo. « is Enter a value

m

i And Reservation Date ~ is Enter a value
i And Member * is Yes

< Add Filter W
Yes -

[179]

Relationship Management

The result is a segment with the required squash players:

O Elit - Secment D T = =R

’ Actions Related Information -

SMO0002 - Letter to all Squash Members

General Filter
No: 5M00002 1"
° g Squash Ledger Entry Member: Yes
Description: Letter to all Squash M
Salesperson Code: RL]
J

Contact Mo. Corresponde... Contact Company Name

| : : [
I CT100189 Bilabankinn Ragnar Eiriksson Letter to all Squa"—l

f CT100172 Englunds Kontorsmébler AB Britta Simon Letter to all Squa
CT100144 Gagn & Gaman Erik Ismert Letter to all Squa
CT100238 Gagn & Gaman Erlingur O Jensson Letter to all 5qua
CT200080 John Haddock Insurance Co, Pamela Ansman-Wolfe Letterto all Squa _| ||

This change also needs to be implemented to the reduce/refine
s functionality which works similar to the add contacts report.

Summary

In this chapter, we took a deep dive into the Microsoft Dynamics NAV Relationship
Management functionality. We learned how it is integrated with the ERP part of
the system.

Relationship management can be very useful to analyze sales data. With profiles,
we can filter on turnover and profit figures and use them in segments.

Interaction Log Entries allow us to keep track of all the contact moments with the
people we do business with.

Outlook integration can be used for sales people to work remotely and synchronize
with the system.

[180]

Chapter 4

Campaigns and opportunities help us to keep track of the quote process and improve
our sales working and make it more efficient.

Lastly, we looked at some common requirements for changing the relationship
management system to our company's specific requirements.

In the next chapters, we will look at the ERP part of Microsoft Dynamics NAV
starting with the Production process in Chapter 5 and Trade in Chapter 6.

[181]

Production

The previous chapters introduced the key concepts of Microsoft Dynamics NAV as
well as the details of the financial application and CRM. These horizontal modules
can be implemented in most industries without big structural changes.

In this chapter, we will discuss three ways of implementing production in Microsoft
Dynamics NAV using standard functionality and customized features.

We'll discuss Item Tracking and Item Costing and what procedures and objects are
used to get this working correctly in the application.

For Manufacturing, we will discuss the general concepts and data model rather than
go into details of each and every functional possibility.

We will also discuss Kitting which is only available in a limited number of countries
such as North America, France, and Australia but will most likely be moved to the
worldwide version in future versions.

At the end of this chapter, we will look at the five different vertical industries and
highlight two specific features of these industries that are not implemented in the
standard product and discuss how the problems could be solved.

After reading this chapter, you will have a better understanding about the

concepts of production in Microsoft Dynamics NAV, how this fits together with

the rest of the application and when to think out of the box if it does not immediately
fit your process.

Production

What is production?

Production is creating a new product using raw materials or prefabricated items
and resources.

History of production

Production as we know it today started centuries before the industrial revolution
with craftsmen and assistants creating products using raw materials produced by
nature and farmers. Today this method of production still exists for many luxury
items such as custom made furniture or clothes.

The industrial revolution changed production into manufacturing with the
introduction of machines and mass production. This allowed production to grow
because it was less dependent on craftsmen and manual labor.

Raw Production Finished
Process Products

Purchase Sales
The introduction of computers in manufacturing companies allows the production
of more sophisticated items and has made manufacturing more flexible.

Before implementing Microsoft Dynamics NAV for production companies, it is
crucial to understand which level of production is being used in your company.

Production methodologies

In this chapter, we will differentiate three production methodologies:

e Assembling production: When production is combining items into one new
item without changing the items or scrap, we will refer to it as assembling.

e Manufactured production: This is the most complex production method to be

implemented in Microsoft Dynamics NAV. Raw materials are combined into
one or more products leaving scrap.

e Specialized production: These are often one off items or items produced
in small numbers. The system should support the basics of the production
process but should still be flexible enough to fit the company.

[184]

Chapter 5

Raw materials

Each product we consume starts out as raw materials such as cotton, iron ore, logs
and oil that is then processed to be used in a production process. Other raw materials
include water and air or fruits and vegetables. All raw materials are produced by
Mother Nature. Some production of raw materials can be influenced by humans such
as logs, cotton, fruits, and vegetables. Other raw materials are more limited, such as
iron ore, oil, and water.

Basic production principles

Before going into Microsoft Dynamics NAV, we will discuss some terminology that
is important to understand as a basis for the concepts of production in ERP.

Bill of materials

The bill of materials defines what components are used to assemble or manufacture
one item. The components in the Bill of Materials are also items, so before creating a
new Bill of Materials all component items must be created in the system.

In Microsoft Dynamics NAV there are two separate Bill of Material
= definitions. One is for assembling and the other is for manufacturing.

MRP

Material requirements planning was introduced in the 1960's as a calculation
method for production scheduling and was quickly replaced by Manufacturing
resource planning or MRP II.

While ERP replaces MRP, MRP is still a crucial part of ERP Applications.

Microsoft Dynamics NAV has a built-in MRP algorithm but also allows developers
to create their own algorithms using the built in data model.

MRP analyzes dependant demand, that is, demand that comes from production
orders for components.

[185]

Production

GIGO

The biggest risk in running MRP algorithms is the Garbage In Garbage Out principle.
To create a good plan, the data in the system must be absolutely correct or the
planning will contain errors.

If, for example, the shipment dates in the Sales Orders are not entered correctly, the
planning algorithm has no chance of giving correct results. The garbage in (wrong
dates) will result in garbage out (wrong planning).

MPS

Master Production Schedule (MPS) is the term used for the production planning
and scheduling. A MPS is used for decision making linking supply and demand.
It analyzes independent demand, that is, demand that comes from Sales Orders,
Service Orders, and the Production Forecast.

Item costing

For manufacturing companies, it is crucial to be able to calculate real item costing
and profitability. The cost of an item consists of all the components it was created
from as well as the production time and the cost of any machinery used.

In production companies, high costs are incurred before an item can even be
manufactured and sold. Machines need to be purchased and installed and new
manufacturing plants may need to be built.

Item tracking

Item tracking is a relatively new concept that was introduced by the need to be able
to trace back an item to its original production batch in the supply chain. Whenever
something is wrong with a specific item it can be interesting to see if other items that
were produced in the same batch have the same issue. A recall of all items in that
batch may be required.

Quality control

During the production process, and especially at the end, quality control is a crucial
stage. Items can be rejected completely or may require extra handling.

[186]

Chapter 5

In quality control, items are checked for mistakes. The way this is done depends on
the production process. In the automobile industry, all cars are checked individually
while in the chemical industry parts of batches are taken out and checked assuming
that the rest of the batch has the same quality.

Quality control is always at the end of the production process but can also be in
between each of the main production processes.

Sometimes, the item that is manufactured depends on the result of quality control.
In this case, each level of quality is represented by a special item number.

Energy and waste

When manufacturing an item, the obvious components are the items in the bill of
materials. Using less energy and producing less waste material is becoming more
crucial in this process as our environment is becoming more and more vulnerable
and recycling is becoming increasingly important, these components have a bigger
pressure on production cost and planning.

APICS

To learn more about Production it is interesting to study the materials provided by
APICS, The Association for Operations Management. APICS is the organization
that is recognized worldwide as the leading authority on manufacturing standards,
similar to how the W3C is considered the authority on XML standards.

More information about APICS can be found on
e http://www.apics.org/.

Getting started

Let's walk through two scripts to generate a new item with a Bill of Materials.
One for an assembling process, the other for Manufacturing.

We will set up both Item Costing and Item Tracking for these products.

The examples are created using a CRONUS W1 Microsoft Dynamics NAV
=" 2009 Service Pack 1 database without changes.

[187]

Production

Assembling

In our company, we want to start producing office chairs. These chairs consist of five

wheels, a pedestal, a seat, and two arm rests. We will create these four components
as a new item and one new item for the end product.

All the items will have a different costing method to demonstrate the effect of cost
changes. The end product will support serial number item tracking with a one year

warranty period.

[

When using the BOM Journal it is not possible to use Item
Tracking for the components, only for the end product.

The table and posting schema

]

Before going into the application, we will have a look at how this process is solved in
Microsoft Dynamics NAV.

Item N Bill of Materials
\

Child Item BOM Companent Parent llem | BOM Joumal Line BOM Ledger Entry

{Tahle 37} {Table gal (Tabde 271 r| [Table g} (Table 38}

} b
r
L — -,
term Ledger Entry Iterm Register 'temd,ﬂépmt ‘ . (EOML",:L' ot BOM Register
o i + i
{Table 32} Lt (Codpunit 231 L L (Cadeunit 3131 JREE
Y AN
- + Financial) ./ . Resources !\.
GIL - e Ledger Imventory R Inl -Post ch
p ild Resource
Relation Value Entry Pasting Te GIL Line —
) Table thaz) F (Tabde 155)
{Tahle 5823} (Codeunit ooz (Codevnit z13)
A
L 2 y

GfL Entry GjL Register Gen.dhl.- Past Resource Register Res. LedgEr Entry

[Table 173 [Tahle 551 fl:u:lul:ri) [Table zza) (Table zo3}

vy

It starts with creating the components and end products as items in the database
and connecting them using the BOM Component table. A BOM Component can also
contain Resources.

[188]

Chapter 5

If the components are in stock we can use the BOM Journal to create the products.
When posting the BOM Journal the components are consumed and the product
is created.

During this process, the system will create BOM Ledger Entries, Resource Ledger
Entries, Item Ledger Entries, and Value Entries.

The Value Entries can be posted on the General Ledger using the Inventory Posting
to G/L Routine either manual or real time. This completes the process.

The items

For this example, we will need to create five items, four components, and one
end product.

We will assign an estimated Unit Cost to the components and a Unit Price to the
end product.

No. Description Base UOM Unit Cost Unit Price Costing
CHAPTER5-C1 Chapter 5 | Wheel PCs 5 FIFO
CHAPTER5-C2 Chapter 5 | Pedestal PCs 60 LIFO
CHAPTER5-C3 Chapter 5 | Seat PCS 120 Average
CHAPTER5-C4 Chapter 5 | Arm Rest PCS 35 Standard
CHAPTER5-P1 Chapter 5 | Office Chair PCS 500 Specific

. Inareal implementation, we would never set up a bill of materials
with so many different costing methods for each item. This is strictly
s for the purpose of explaining what each costing method does and that
Microsoft Dynamics NAV is technically capable of dealing with this.

Item costing

We will assign a different costing method to each Item. Let's briefly discuss the
available costing methods in Microsoft Dynamics NAV.

e FIFO: First in First out. The cost of the oldest Item Ledger Entry is used.
e LIFO: Last in First out. The cost of the newest Item Ledger Entry is used.

[189]

Production

M When using FIFO or LIFO, the cost is applied within the Lot No. if Item
Q Tracking is used with Lot Numbering. That is, the cost associated with the
specific Lot No. is used.

e Average: Each time we purchase items the total costs are divided by the total
quantity. The result is used as Unit Cost.

e Standard: The user will define the Unit Cost manually. All deviations in
purchase pricing are posted as profit or loss when invoicing.

e Specific: This is always combined with Item Tracking and Serial Numbers.
Each Serial Number uses its own unique Unit Cost.

The Costing Methods are NOT related to the warehouse picking method
L= but only apply to financial costing calculations.

Item tracking

All our chairs will get a serial number with a one year warranty period. This enables
us to track all individual chairs when they come back to the factory with issues.

PR ™ PR
_ 4 Edit - Item Tracking Code Card - SNWARRANTY - Senal Number | 1 Year W.

SNWARRAMTY - Serial Number | 1 Year W.

General -~
Code: SNWARRANTY Description: Serial Number | 1 Year W,
Serial Mo, e3
General SN Warehouse Tracking: 0
SN Specific Tracking: SM Transfer Tracking:

Inbound Outbound
SN No. Info. Must Exist: SN Mo. Info. Must Exist:
SM Purchase Tracking:
5N Sales Tracking:
5N Positive Adjmt. Tracking:
SN Megative Adjmt. Tracking:

SN Purchase Tracking:

SN Sales Tracking:

SN Positive Adjmt. Tracking:
SN Megative Adjmt. Tracking:
5N Manufacturing Tracking:

EEEEEO
EEEEEO

SN Manufacturing Tracking:

Item tracking in Microsoft Dynamics NAV can be done both on individual Serial
Numbers and on Lot numbers for a group of items.

[190]

Chapter 5

The Serial Numbers and Lot Numbers are fields in the Item Ledger Entry table (32).
The consequence of this will be that for each serial number or lot number an individual
record will be created in the table. When using serial numbers, this can lead to a
massive increase in table size.

The lot numbers and item numbers are saved in the Reservation Entry table (337)
during the document entry process. A reservation entry can be assigned to any
table in Microsoft Dynamics NAYV, for example, Sales Lines, Item Journal Lines,

or Production Order.

Then a document is posted and the Item Ledger Entry is created. The Reservation
Entry is removed and replaced by a Tracking Specification record that has the
same value in the Entry No. field as the corresponding Item Ledger Entry.

[

normal Reservation Entries in the Sales and Purchase process.

A Reservation Entry used for Item Tracking should not be confused with]

The process of Item tracking in Microsoft Dynamics NAV works as shown in the

following schema:

Itern Tracking
Management
{C padeiinit Bo)

¥

Reservation
Engine Mgt.

F

(Cedmun. gyoeadin)

! ™ i ™ g
Sales Line Purchase Line Praductian -
{Tabile 37 (Tabile 335 ‘ [Table g} 2 D_-afuments
4 A
f ' "] codeunit
Sales Line- Purch. Line- Prod. Order nﬂ;:; :
Reserve Reserve ‘ Line-Reserve 4) 3
(Cudeu. gooaaiis) el goonaiyg] I udeun, ggocas;y)
L L A 95000844 ry
] []
Iy Y ') -~
Create Resery. Itern Inl.-Fost .
R ticn Ent :
Entry ES’E:IEH G_'n Ll S Line Posted Documents
(Cadet. ggeaalia) able 337 [Codenit Ba) -
. ') - -
Tracking Item Ledger Entr lati
Specification ! q ¥ Itermn Entry Re.atmn
o {Tabla 33} [Table Sgay)
{Table 3351
b A " .- v,

Technically, Item Tracking in Microsoft Dynamics NAV is very complex and should
only be changed by experienced developers after careful analysis.

We will discuss the Reservation process in more detail in Chapter 6, Trade.

[191]

Production

The bill of materials

When the items are created, the Costing Method is defined and Item Tracking is set
up, the next step is to create the bill of materials for the Office Chair. This can be
done using the Bill of Materials option in the Assembly List in the Item List or Card

page.

The Bill of Materials defines the component items and resources that will be used to
create one new end product.

1 Role Center

= Z| Purchase Orders
[Z| Purchase Quotes
[Z| Purchase Blanket Orders
[Z| Purchase Invoices

I> [Z| Purchase Return Orders
[Z| Purchase Credit Memaos
[Z Sales Orders
= Vendors
= Monstock Iterns
[= Stockkeeping Units
[Z Purchase Analysis Reports
[Z] Inventory Analysis Reports
[Z Item Journals
[Z| Purchase Journals
= BOM Joumals
[E Requisition Worksheets

Sales 3

Purchases »

Stockkeeping Units
Entries 3
Statistics 3
Ea Tterns by Location

Itern Availability by~ »
= Bin Contents

> Comments

Sorting: MNo. * ‘%l‘

; MNo. Descr
CHAPTERS-C1 Chap
CHAPTERS-C2 Chapt
CHAPTERS-C3 Chap
CHAPTERS-C4
CHAPTERS-P1

Dimensions 3

Picture

Units of Measure
Variants

Cross References
Substitutions

Monstock Iterns

Translations

Extended Texts
Assembly List 3
Manufacturing 3

Service ltemns

E Inventory Availability

B Inventory - Top 10 List
L B
I B Price List

|cHAPTER

ill... Productio.. = Routing No.

Bill of Materials

Where-Used List
Cale. Standard Cost

We set up the components as discussed earlier using five wheels, one pedestal and

seat, and two arm rests.

Type No.

Ttem CHAPTERS-C1
Ttem CHAPTERS-C2
Ttem CHAPTERS-C3
Ttem CHAPTERS-C4

Description

Chapter 5 | Wheel
Chapter 5 | Pedestal
Chapter 5 | Seat
Chapter 5 | Arm Rest

i B e
1 Edit - Bill of Materials - CHAPTERS-PL - Chapter 5| Office Chair il il

Bill ... Quantity per
No 5
Mo 1
MNo 1
MNo 2

.

Unit of Meas...
PCS
PCS
PCS
PCS

Installed inlt.. Pos

[192]

Chapter 5

Calculate standard cost

The components we selected for the Bill of Materials have a Unit Cost. Together
these items can determine the Unit Cost of our end product.

We can calculate the Standard Cost of the Office Chair by selecting Calc. Standard
Cost in the same Assembly List we used for the Bill of Materials.

The name Calc. Standard Cost in the calculation option is not
to be confused with the costing method. This function should
o~ .
be executed for all costing methods.

The system asks if we want to calculate Single level or All levels. Since our example
BOM has only one level, we select Single level.

Micrasoft Dynamics NAV[&J

Microsoft Dynamics ..
i
@ Single level

0 Al levels

[0K] l Cancel

Single level means that only the first level of the BOM is checked. If an item in the
BOM has a BOM of itself, the value of that item is not recalculated.

The Standard Cost is now calculated using the Unit Cost of the components and the
Overhead rate and Indirect Cost %. We will not use the latter in our example.

((5*5) + (1*60) + (1*120) + (2*35)) = 275

[193]

Production

Creating the inventory

Before we can assemble the chairs we need to purchase the components. For this, we
will create a purchase order with 8 purchase lines. We will purchase the components
for other prices than the unit cost in the system allowing us to show what the impacts
of the costing methods are.

[N N e = T |

Lines
Type Mo. Description Quant... Unit of M... Direct Unit Cost... LineAmo.. Oty to Receive Qty. to Invei.
[~ CHA.. Chapter5|Wheel 5.0 PCS 4,00 20,00 5
Item CHA... Chapter5 | Wheel 5| PCS 5,00 25,00 5
Item CHA... Chapter5 | Pedestal 1 PCs 70,00 70,00 1
Item CHA... Chapter5 | Pedestal 1| PCS 60,00 60,00 1
Item CHA... Chapter5 | Seat 1 PCS 115,00 115,00 1
Item CHA... Chapter5 | Seat 1| PCS 120,00 120,00 1
Item CHA... = Chapter5| Arm Rest 2 PCS 37,00 74,00 2
Item CHA... Chapter5 | Arm Rest 2| PCS 31,00 62,00 2

The purchase order will be received and invoiced.

If the Purchase Order is only received and not invoiced, the example
might not work because Expected Cost posting to G/L is not activated
in the CRONUS database.

Adjusting cost item entries

The Purchase Order we just created, received, and invoiced has a different Unit
Cost compared to the Unit Cost we initially set up in our Items.

Depending on the Costing Method of the Items this will have an impact on the
Unit Cost.

When we take a new look at the Unit Cost of the Items we created, we can see that
this was impacted by the purchase order.

However, the values are not correct. The system only adopts the first change of
Unit Cost.

[194]

Chapter 5

Ma. Description Bill... Bas.. C. Unit Cost Unit Price
CHAPTERS-C1 Chapter5 | Wheel Neo PCS | [O 4,00 0,00
CHAPTERS-C2 Chapter 5 | Pedestal No PCS | [70,00 0,00
CHAPTERS-C3 Chapter 5| Seat MNe PCS | [T 115,00 0,00
CHAPTERS-C4 Chapter 5| Arm Rest Ne PCS [0 35,00 0,00

To correct this we need to run the Adjust Cost Item Entries (Report 795) batch. This
will determine the new Unit Cost based on the Costing Method.

No. Description Bill... | Bas.. | C.. Unit Cost Unit Price
CHAPTERS-C1 Chapter 5 | Wheel Mo PCs 4,50 0,00
CHAPTER5-C2 Chapter 5 | Pedestal Mo PCS 65,00 0,00
CHAPTER5-C3 Chapter 5 | Seat Mo PCs 117,50 0,00
CHAPTERS-C4 Chapter 5 | Arm Rest Mo PCs 35,00 0,00

The Unit Cost for FIFO, LIFO, and Average has been recalculated whist the Standard
Cost has not been impacted by the transactions.

* The Adjust Cost Item Entries report should be scheduled to run
periodically in your database. Even if the database is set to use
Expected Cost Posting and Auto Cost Posting.

A

Posting inventory cost to G/L

Microsoft Dynamics NAV supports posting the Inventory Cost to the General
Ledger. This enables accountants to have a single point for data analysis rather
than printing an inventory report and using the figures manually for reporting to
the management.

This can be done using the Post Inventory Cost to G/L function (report 1002).

Edit - Post Inventory Cost to G/L
Options ~
Posting Method: | Per Posting Group -
Document Mo.: E
Post: 0 "
Post Value Entry to G/L A

[195]

Production

Check, check, and double check
To check if the Value Entries and the General Ledger and synchronized, we can run

Inventory Valuation (Report 1001). This will show us the Inventory Value versus the
Amount posted to the General Ledger.

Inventory Valuation woensdag § mei 2010
CRONUS International Ltd.

Page 1

BRUMMELD Smark

Item: No.: CHAFTERS"

As of Increases [LCY) Decreases (LCY) As of 27-01-11
Base T TTTTITITTTToToTmoTTTTTmoToTToTTm T
anit Cost Fosted
Billof of ‘Quantity Value Quantity Value Quantity Value Quantity Value 0 GIL
Mater Meas
Item No Description ials ure
Inventory Posting Group: RAW MAT
CHAPTERS-C® Chapter 5 | Whesl No PCS 1] 0,00 10 45,00 10 45,00 45,00
CHAFTER5-C2 Chapter 5 | Pedestal No PCE Q 0.00 2z 130,00 2 120,00 130,00
CHAFTERS-C2 Chapter 5 | Seat No PCS 0 0.00 2z 235,00 2 23500 235,00
CHAFTER5-C4 Chapter 5 | Arm Rest Ne FC3 Q 0.00 4 140,00 4 140,00 140,00
Inventory Posting Group Total: RAW MAT 0.00 550.00 0.00 530,00 330.00
Total 0,00 550,00 0.00 550,00 $50,00

Recalculating standard unit cost

The Standard Unit Cost we calculated for our Office chair was 275. This was based
on our assumption of purchase prices. Now that we have purchased and received
the components we can calculate a new Unit Cost based on the real prices.

In this example, the price will still be 275 since the total price of all purchased items
is 550. The inventory allows us to make two chairs with these materials.

(550 / 2) = 275

With this calculation method it is possible to check the results of
s the Calculate Unit Cost algorithm.

BOM journal

Now that we have the components on stock and the Unit Cost correct we can create a
chair. We will do this using the BOM Journal.

In the BOM Journal, we need to create one line for each Item we want to assemble.
The components are automatically used when posting the Journal Lines.

[196]

Chapter 5

We will use the Purchasing Agent Role Center (9007) for this.

4 BOM Journals - Microsoft Dynamics NAV
@@v | E CRONUS International Ltd. » Home » BOM Journals

A Microsoft

Home a
=

2 Role Center - Edit Post Post and
Journal Print

- = Purchase Orders
= Purchase Quotes | Process
=] Purchase Blanket Orders BOM Journals ~
[=| Purchase Invoices

= Purchase Return Orders
= Purchase Credit Memaos
[=| Sales Orders

= Vendors

= Items

=l MNonstock Items

Sorting: Journal Femplate Name,Mame ¥ ‘%l‘

-

- Description Mo, Series Posting M... | Reason Co..
Default Journal BIML-GEM

=l Purcha

= w0 ourm |

After creating a Journal Line for the Office Chair and trying to Post the Journal we
will receive an error message because we first need to specify the Serial Numbers.

Post and
Print

Process

Batch Mame: DEFA

Posting Date Document M... Item No. Description Quantity Unit of Meas... Unit Cost Total Cost
27-1-2011 - B00001 CHAPTERS-P1 Chapter 5 | Office Chair 1l PCS 0,00 0,00

Serial Numbers and Lot Numbers can be set up using the Item Tracking Lines
option. This opens the Item Tracking Line page (6510). This page is able to show
both the Reservation Entries during the registration process as well as the Tracking
Specification if the Item Ledger entry is already created. The latter is not possible
in a Journal, only when using Documents.

[197]

Production

We will manually create a new Serial Number. Microsoft Dynamics NAV also
supports system generated Serial Numbers.

¢ Edit - BOM Journal - DEFAULT - Default Journal

’ Actions

Related Information -

Ctrl+Shift+D

Post

5

Item
Host and

B Item Tracking Lines Ctrl+Shift+]

Print

= Bin Contents

nformation ~

ot Source Item Tracking Undefined [t
| 27-1-201 BOM Journal Line 0,00
E Quantity 1 1
|
| Item Tracking Code: SNWARRAMTY Description: Serial Number | 1 Year W.
: I Ava.. Serial Mo, Ava.. Lot No. Quantity (Base) I
| [Yes smi Ves |

We can now post this BOM Journal and will have one office chair on stock with a
Serial Number.

Check costing (again)

Creating the office chair changed the inventory of the component items and
therefore might have affected the Costing of our Items.

However, when we now check our Items, the Unit Cost has not changed.

Na. Description Bill ... | Bas... | C.. Unit Cost Unit Price
CHAPTER5-C1 Chapter5 | Wheel MNeo PCS [4,50 0,00
CHAPTER5-C2 | Chapter5 | Pedestal MNo PCS | [A 65,00 0,00
CHAPTER5-C3 | Chapter 5 | Seat MNe PCS O 117,50 0,00
CHAPTER5-C4 Chapter 5 | Arm Rest MNe PCS | [35,00 0,00

Chapter 5 | Office Chair Yes PCS. .LTF 275,00 500,00

Even so, with current inventory the Unit Cost might be different. Remember we
used 5 wheels using FIFO costing and one seat using LIFO costing 70.

Let's run Adjust Cost Entries using the Posting to G/L option.

[198]

Chapter 5

No.

CHAPTERS-C1
CHAPTERS-C2
CHAPTERS-C3
CHAPTERS-C4
CHAPTERS-P1

Description

Chapter 5 | Wheel
Chapter 5 | Pedestal

Chapter 5 | Seat

Chapter 5 | Arm Rest

Chapter 5 | Office Chair

Bill ...

Mo
No
No
No
Yes

EEEERD

Unit Cost
5,00
70,00
117,50
35,00
275,00

Unit Price
0,00

0,00

0,00

0,00
500,00

The Unit Cost has changed and now shows that have used the first 5 wheels using
FIFO leaving the other 5 wheels in the inventory for 5. We used the last seat using

LIFO leaving the first seat in inventory for 70.

When we run the Inventory Valuation we can see that producing the first chair
actually cost 267,50 but we posted 275.

Inventory Valuation
CROMNUS International Ltd.

Item: Mo.: CHAPTERS®

Item No. Description

Inventory Posting Group: FINISHED
CHAPTERSP1 Chapter 5 | Offics Chair
Inventory Posting Group Total: FINISHED

Inventory Posting Group: RAW MAT
CHAFTERS-C1 Chapter & | Whael
CHAFTERS-CZ Chapter 5 | Pedestal
CHAPFTER5-C2 Chapter 5 | S=at
CHAFTERS-C4 Chapter 5 | Arm Rast
Inventory Posting Group Total: RAW MAT

Total

Eill of
Mater
ials

No
No

No

Base
Unit
of
Meas
ure

PCE

FCS
FCS
FCS
PCS

Increases [LCY)

Decreases (LCY}

woensdag 5 m

=i 2010

Page

BRUMMELD S \mark

Ag of 2770111

Quantity

ERCIECI=

Value

0,00
.00

0,00
0,00
0.00
0,00
0.00

o.00

Quantity

PR

Value

275,00
275,00

45,00
130,00
235,00
140,00
550,00

825.00

Recalculating unit cost (again)

When we run Calculate Unit Cost for our office Chair, we can see that the new cost

will be 282,50.

Quantity

(5*5) + (1*70) + (1* 117,50) + (2*35) = 282,50

Value

0.00

20,00
0,00
117.50
T0.00
267,50

Quantity Value

275,00
275,00

5 25,00
70,00

117.50

z 70,00
282,50

557,50

Cost Posted
to GIL

275,00
75,00

25,00
.m
117.50
T0.00
282,50

957,50

Together with the first chair worth 267,50 we match our purchase invoice worth 550.

[199]

Production

Standard cost worksheet

We need to correct the cost of the first chair which is currently on inventory to have a
correct inventory value. We can do this using the Standard Cost Worksheet.

Standard Cost Worksheets - Microsoft Dynamics NAV

—
@t‘/)' |E CROMUS International Ltd. » Home » Standard Cost Worksheets

Home

2, Role Center d
[=| Purchase Order

=l Purchase Qufites :
E Purchasefanket | .4 Edit - Standard Cost Worksheet - DEFAULT - 4 E=HHCT

L

= Purchage Invoices | |
=] Purchfase Return (L
=l Purghase Credit IV
= Salfs Orders
= Véndors

= Kems P L

B flonstock tems Name: DEFAULT .

L

tockkeeping Unit
ping Type Ne.

Item CHAPTERS-

Description | Standard Cost Mew Standard C... Jl

urchase Analysis| 1 :
er 5 | Office Chair ! 282,50 267.50 ¢ ||

e Journals

rchase Journals < T v

5

B

=l fnventory Analysig
- "
5

B

M Journals

= Relguisition Works|

This worksheet allows us to correct old Value Entries by creating an entry in the Item
Revaluation Journal when we select the option Implement Standard Cost Changes.

Edit - Implement Standard Cost Change

’ Actions ~

M]c rosoft Dynamics NAV

‘ Options ~ |

Implementing standard cost changes...

Posting Date: 27-1-2011 - Type: ltem
Document No.: T04002 Noz . CHARTER Pl
Item Journal Template : REVAL]
Cancel
Item Journal Batch Name: DEFAULT -
| Standard Cost Worksheet -~ Microsoft Dynamics NAV =i
Show results:

i Costs have been updated on the following: Item.

2% Where Type ~ is Select a value Revaluation journal lines have also been created.
2% And Mo. = is Enter a value

4 Add Filter

e]|

[200]

Chapter 5

Item revaluation journal

The last step is to post the Item Revaluation Journal and run the Post Inventory Cost
to G/L routine.

Calculate Inventory Calculate Post and
Value - Test Inventory Value Print

Process

Batch Mame: DEFAULT -

D.. Iem Mo. Description Quantity Amount Unit Cost (Calcul.. Inventory Value (.. Unit Cost (

i " T. CHAPTERS-PL Chapter5 | Office Chair 1 -7,50 275,00 275,00
We also need to run the Calculate Standard Cost for the Office Chair since
L this batch will reset the Unit Cost to 267,50.

The resulit
When we now run the Inventory Valuation Report we can see that the Office Chair
on stock is worth 267,50 and the remaining inventory is 282,50

Inventory Valuation wosnsdag § mei 2010

CRONUS International Ltd. Pagz 1
BRUMMELDS\mark

Item: Mo.: CHAPTERE*

As of Increases (LCY) Decreases (LCY) As of ZT-01-11
Base TTTTTTTTTTTTTTTmoTToTTToToToTTTmToTmommTTITIIIT
Unit Cost Posted
Eillof of Guantity Value Guantity Value Quantity Value Guantity Value 10 GIL
Mater Meas
Item No. Description ials ure
Inventory Posting Group: FINISHED
CHAPTER5-P1 Chapter 5 | Office Chair Yes FCS L 0,00 1 267,50 1 267.50 275,00
Inventory Posting Group Total: FINISHED 000 267,50 0,00 267,50 275,00
Inventory Posting Group: RAW MAT
CHAFTERSCT Chapter 5 | Whesl Mo FCE L] 0,00 10 45,00 5 20,00 5 25,00 25,00
CHAFTERECZ Chapter 5 | Pedestal No FCS [} 0.00 2 130.00 1 €0.00 1 T70.00 70.00
CHAFTERS-C3 Chapter 5 | Sest Mo FCE L] 0,00 2z 235,00 1 17.50 1 117,50 117,50
CHAPTERS-C4 Chapter 5 | Arm Rest Mo FCE L] 0,00 4 140,00 2 7000 4 0,00 70,00
Inventory Posting Group Total: RAW MAT 0,00 550,00 267,50 282,50 283,50
Total 0.00 87,30 267,30 390,00 97,50

[201]

Production

Item costing in ten steps

All the steps we performed in the example can be summarized in this ten step
process diagram.

e

Preparation

Y

1. Create & Check Items

Production

5. Adjust Cost Item Entries

[

9. Standard Cost Worksheet

=

.

10.

J)

: ' N

(2. Create Bill of Materials W [6. Post Cost to General Ledger ‘

) ¢ i ! .

(3. Calculate Standard Cost W [7. Calculate Standard Cost ‘

) |)])
(4. Post Purchase Order W»—J [8. Post the BOM Journal }»—

Y L)

J
Correction R

10. Item Revaluation Journal

We start by creating new Items and setting up the Costing Method.

Then, we create the Bill of Materials for the production item.

Run the Calculate Standard Cost routine to have a Unit Cost for the

production Item.

Purchase the necessary items for production.

Run the Adjust Cost Item Entries routine.

Synchronize the Value entries with the G/L Entries using the Post Inventory

Cost to G/L routine.

Recalculate the Standard Cost if desired.

Create a BOM Journal Line and post the Journal.
Run the Standard Cost Worksheet to change the Standard Cost.

Run the Item Revaluation Journal to implement the Standard Cost for old

Value Entries.

[202]

Chapter 5

Manufacturing

The Bill of Materials Journal has been part of the Microsoft Dynamics NAV product
since the introduction of the Windows version in 1995 and enables us to create a new
item out of other items.

In version 2.01, Navision introduced the first version of Navision Manufacturing.
This was a separate product from Navision Financials and only available for
certified partners because of its complexity.

With version 3.00, Manufacturing became part of the standard Navision Attain
package and was available for all partners.

Manufacturing offers Microsoft Dynamics NAV users much more functionality
than just creating an item from a Bill of Materials. Production orders can be
scheduled using work centers, machine centers, tools, and a capacity calendar.

The items can be scheduled for production using either a Make-To-Stock or a
Make-To-Order policy in a Planning run.

The system calculates the required BOM components and can create purchase
orders if the inventory is insufficient using a complex demand and supply process.

The table and posting schema
If we put this into the table and posting schema it looks like this:

¥

~y 7 = e > ~ =y
r . Prad.
Production BOM Parent Item Prod. Order Line Production Order AT
— i —h—L _)] Camponent
{Table guncoj) (Table 271 (Table seof) {Table s40s)
(Table geay)
Y
-
Y T T r
™) s Is N \ / B
(g i
. Child Item Sales Orders Reservation Entry Prod. C"Ld” Routing D::”Ur:_lzllon
(Table 25) (Tahla 36 & 37) (Table 3370 :chl':;uw e
.. ., A . L .
— | [!
i - Iy Rt i~ ' r
Planning I . ’
Requisition Lin Qutput Jaurmal Itern Register
|Ia§-?:gli:?rg‘|3| Worksheet - }_‘ qulnblclz'el) lr‘ahl E3) —* [nhleg'?
i L e] e 400
' Calculate Plan ' !
- . VAN A AN
L l i
¥
o ; f) i N
Machines Workcenters Purchase Order Capacity Ledger Item Ledger Entry
[Table gaoooysE) [Table gaoocycs} (Table 38 & 335 » Entry (Takle 32)
Table gfia)
\.)

Production

The Production Order is the center of the process which is created by items having a
Production BOM that are either on Sales Order or low on inventory.

The Planning Run populates the Planning Worksheet which is based on the
Requisition Line table (246). The Planning worksheet can be used to create the
production orders and purchase orders.

During the production process, the consumption journal is used to record the use

of the child items from Production BOM and the Output journal creates the new
item once it is finished. Alternatively, these steps can be combined in the Production
Journal.

Let's demonstrate this with the next example using the Production Planner role
center (9010).

We will create mahogany English desks using raw materials, machines, and resources.

The items, machines, and work centers

For the desks we need mahogany wood, green leather, glue, lacquer, and handles.
To create one desk, the carpenter needs four days and one carpentry unit with tools.
The painter needs one day to varnish the desk in the paint booth and the assembly
department needs four hours to wrap the components and put them into boxes.

Items
Base Replenishment Unit Unit Manufacturing

No. Description UOM System Cost Price Policy

Mahogany
CHAPTER5-P1 English Desk PCS Prod. Order 286,25 999 Make-to-Order
CHAPTER5-C1 Mahogany Log PCS Purchase 100 -
CHAPTER5-C2 Green Leather PCS Purchase 60 -
CHAPTER5-C3 Glue CAN Purchase 15 -

Mahogany
CHAPTER5-C4 Lacquer CAN Purchase 25 -

English Desk
CHAPTER5-C5 Handles PCS Purchase 10 -

[204]

Chapter 5

Machine centers

Capacity Efficiency

No. Name Work Center No.
01-CARP Std. Carpentry Unit w. Tools 400
02-PAINT Paint Booth 300
03-PACK Packaging Department 200

1
1
1

100
100
100

Capacity

The Planning run and the Requisition Worksheets will use capacity if it is defined.
The capacity is defined for each Work Center and Machine Center.

The capacity is stored in the Calendar Entries which are created using Codeunit
CalendarManagement (99000755) and reports Calculate Work Center Calendar
(99001046) and Calc. Machine Center Calendar (99001045). Capacity is based on the
Concurrent Capacity, from either the Machine or Work Center, and the assigned

Shop calendar.

Just like the Interaction Log Entries, the Calendar Entries are directly inserted
instead of going through a journal first.

Departments

& Departments
I g Financial Management |
[@Sales&l\darketing
I |45 Purchase
I b Warehouse

Sorting:
4 % Manufacturing No
Product Design i
Capacities 200
Planning 20U
Execution B
Costing L

MNew

New

Waork Centers -

Related Information ~ %Eep
%j Calculate Work Center Cal.. E& Absence
B statistics Task List
: B3 Calendar

l. Process

No. ¥ %lr
MName Alternate ... Work Cent...
Assembly depart... 1

Packing depart... 1
Painting depart... 2
Machine depart... 2

Report

m Work Center List
m Work Center Load

Mo filters applied

Unit of Me...
MIMUTES
MIMUTES
MIMUTES
MIMUTES

Capacity Shog
3t

1
1
1

(R R

When properly configured, the Planning Worksheet will calculate the starting and
ending dates for the production order and each operation in order to meet the
Shipment Date on the Sales Order Line.

[205]

Production

Production bill of materials

Setting up the Production Bill of Materials for manufacturing is not much different
from the BOM Journal functionality but it contains extra functionality.

The Production BOM uses its own header record with a number series, description,
and search description. The Status field is used to determine if the product is new,
certified, under development, or closed. Together with the versioning it enables us to
maintain multiple BOMs during the product's lifecycle.

_ 4y Edit - Production BOM - CHAPTERS - English Mahogany Desk = | B | o
=1 Related Information ~
CHAPTERS - English Mahogany Desk
General ~
Mo.: CHAPTERS Search Name: ENGLISH MAHOGANY DESK
Description: English Mahogany Desk Version Nos. -
Unit of Measure Code: PCS - Active Version:
Status: Certified - Last Date Modified: 5-5-2010
Lines T
Type MNe. Description Quantity per Unit of Meas... Scrap % Routing Link.. *
Item CHAPTERS-C1 Mahegany Log 1|PCS 10 :
Item CHAPTERS-C2 Green Leather 1 PCS 0 |
Item CHAPTERS-C3 Glue 025 CAN 0 & |
Item CHAPTERS-C4 Mzhogany Lacquer 05 CAM 0 IE ;
Item CHAPTERS-C5 English Desk Handles 10 PCS 0

The components of the Bill of Materials are saved as lines and support using Scrap.
The scrap % is calculated when running the MRP and calculating the Unit Cost.

Routing

The Routing Setup determines how long it will take to produce one item and which
Work Centers and Machine Centers are used in the process.

[206]

Chapter 5

_ 4 Edit - Routing - CHAPTERS - English Mahagany Desk il e

’ Actions - Related Information - & Reports -

CHAPTERS - English Mahogany Desk

General A
MNo.: CHAPTERS Search Description: ENGLISH MAHOGAMY DESK
Description: English Mahogany Desk Version Mos.: -

Type: Serial - Active Version:
Status: Mew - Last Date Modified: 5-5-2010
il | Lines i
é Operation Mo, Type Ma. Description Setup Time Run Time
10 Machine Ce.. 01-CARP Std, Carpenting Unit w. Tools 0 1920
20 Machine Ce... 02-PAINT Paint Cabin 0 480
30 Machine Ce.. 03-PACK Packaging Department 0 240

The Routing Setup allows for advanced features such as parallel and serial
planning, setup time, and so on. For our example, we will keep things simple
and only use the Run Time.

Testing and low level code

We are now almost ready to start testing our Manufacturing Item. We have set up
the items and machine centers, calculated the calendar entries, and set up a routing.

The final step in the process is to calculate the Low Level Code. This field, which is
stored both in the Item and Production BOM table, determines how low the Item is
in the BOM ranking. Low Level Code zero means this is a Parent Item and one or
higher is a child item or a child of a child item.

The maximum value of the Low Level Code can be 50 but

in reality this will be very difficult to work with and bad
Vi

for system performance.

M If you received an error stating that you have exceeded 50 levels check the
Q Production BOMs to ensure that there are no circular references. It is possible
to have a parent item consume a child item that consumes the parent.

The Low Level Codes can be calculated automatically or manually. For automatic
calculation, the Dynamic Low Level Code should be activated.

[207]

Production

Due to NAV's ability to create a Production BOM before it is attached to an Item, the
Dynamic Low Level Code is not always accurate. Prior to a planning run, it is good
practice to run the Calculate Low Level Code (Codeunit 99000793).

_ 4y Edit - Manufacturing Setup . : - L_l_I_J‘:' Gl X
Manufacturing Setup
General =3
Nermal Starting Time: 8:00:00 Planning Warning:
Normal Ending Time: 23:00:00 Doc. No. ks Prod. Order No-
D ic Low-Level Code: v
Preset Qutput Quantity: Expected Quantity - | ynamic -owtevel -ode
CostIncl. Setup:

Activating Dynamic Low Level Code can however impact the performance of your
system, so for most installations, it is preferable to periodically calculate this using
Codeunit Calc. Low-level code (99000853).

Simulation, sales orders, or inventory

There are three ways to create a production order in Microsoft Dynamics NAV. The
easiest way is to manually enter them one-by-one. This can even be a simulation
production order to test if everything is set up as required.

Manual order entry is very time consuming and not often used by manufacturing
companies. Most of them use MRP programs to plan the orders. When this is done
using an external application, the interface will then create the production orders.

The MRP algorithm in Microsoft Dynamics NAV supports two policies:
Make-to-stock and make-to-order.

Make-to-stock

Also called "Build to Stock", this is often used for high volume items which are sold
to trading companies.

When this Manufacturing Policy is used, the Reordering Policy should be used.

[Reordering Policies will be discussed in Chapter 6, Trade.]

[208]

Chapter 5

Make-to-order

This is often used in demand driven items such as automobiles. Keeping these
items in inventory is very expensive. The manufacturing process is started after
the item is sold.

However, most companies that use Make-to-order have reserved time slots where
these items can be scheduled so the production capacity is already reserved but the
item is not yet determined.

When using Make-to-order, the MRP run will create production orders for all sales
orders. We will use this Manufacturing policy in our example.

The sales order
For our example, we need a sales order for 1 or more English Desks.

Be careful when picking a location since this will be the location where
= the desk will be manufactured.

Ay Edit - Sales Order - 1001 - The Cannaon Group PLC

’ Actions ~ f Related Information ~

1001 - The Cannon Group PLC

General Zaille
Moa m Document Date: 27-1-2011 -
Sell-to Customer No.: 10000 - Requested Delivery Date: -
Sell-to Customer Name: The Cannon Group PLC External Document No:
Sell-te City: Birmingham - Salesperson Code: 23 -
Posting Date: 27-1-2011 - Status: Open -
Order Date: 27-1-2011 -

'f_g," Show more fields

Lines T
Type No. Description Location Code Quantity Unit of Meas... 3
Irem CHAPTERS-P1 Mahogany English Desk ELUE 10 | PCS | E

Calculating MPS and MRP

The Planning run in Microsoft Dynamics NAV creates lines in the Requisition or
Planning Worksheets. This Worksheet Structure is important in the Sales/Purchase/
Production process. This worksheet can create purchase orders and production
orders for sales orders.

[209]

Production

Requisition versus planning versus subcontracting

worksheets

The Requisition Worksheet can show different user interfaces (Forms or Pages)
allowing users to do different tasks.

_di Edit - Reg. Worksheet Templates

f Actions - E Related Information -

Name

FOR. LABOR
PLANMING
RECURRING
REQ

Description

For. Labor Worksheet
Planning Worksheet
Recurring Worksheet
Req. Worksheet

e

i

)

The Requisition Worksheet does not have a general Post Line routine like the other
journals. Each worksheet type uses another process.

This schema shows how the Requisition process ties together:

I/P'
MPS - MRP
Sales Order Purchase Order Praduction Crder F’FEPETE Data Calculate Plan
- Plan. Whsh.
(Rt gyodoT)
f/ Trade ™ T Manufacturing -\1 +
Get Sales Calculate Plan Calculate Order Get Action Calc. ltem Flan
Cwders - Req. Wksh. Subcantracts Planning Mgt Messages - Plan 'Wksh.
IRepeet Go8) iAepart hggl (Report ggon1oas) [Cedeunit 55223 (Report gooa1033 (Cadeunit cg3a)
- o
h r ¥ h Y
Subcontracting]] Requisition Line
Req. Worksheet Warkehast Crder Planning Planning Worksheet)
(Page agah {Page £522) [Fage ggoaaicy)
{PageygunnBat) Worksheet
N ¥ S 4
o 1 I
|
Req. Wksh, - Acl::rryﬁ?ut Mager dS:rEp & Ai?;vgs'; A Carry Out
Make Order ":;lq] e [YesiNo} Blan. Action
{Codeumit 3334 (Repart 453F Pmces; l\’;ﬂfksheﬂt (Codeunit g5aay (Report ggooicaa) Lt e
Create Orders
h

The Trade section will be discussed in Chapter 6. In this chapter, we will focus on
the Planning (MPS & MRP) process and the Manufacturing part.

[210]

Chapter 5

The Requisition Worksheet process allows us to create our own process

~ to prepare data using custom settings to generate the worksheet lines and
Q even to build our own planning algorithm in a new C/ AL object that will

create Requisition lines.

Inventory profile offsetting

The actual heart of the MRP calculation in Microsoft Dynamics NAV is Codeunit
Inventory Profile Offsetting (99000854) which is called from Codeunit Calc. Item
Plan - Plan Wksh. (5431) in our schema.

This Codeunit is not easy to understand and should only be changed by specialized
developers after careful analysis.

The process uses the Inventory Profile buffer table during the calculation to build up
information and starts with the function CalculatePlanFromWorksheet.

Codeunit 99000854 Inventory Profile Offs - C/AL Editor
CalculatePlanFromWorksheet(UAR Item : Record Item;ManufacturingSetup? : Record “Hanufacturing Sel
PlanToDate := ToDate;
InitVariables(InventoryProfile[1],ManufacturingSetup2,Item,TemplateName ,WorksheetName,0rderDate,b
DemandtoInvProfile{InventoryProfile[1],Item,ToDate);
ForecastConsumption(InventoryProfile[1],Item,0rderDate,ToDate);
BlanketOrderConsump{InventoryProfile[1],Item,ToDate);
SupplytolnvProfile{InventoryProfile[1],Item,ToDate};
UnfoldItemTracking{InventoryProfile[1],InventoryProfile[2]);
FindCombination{InventoryProfile[1],InventoryProfile[2],Item);
PlanItem{InventoryProfile[1],InventoryProfile[2],0rderDate,ToDate);
CommitTracking;

e InitVariables: This function is used to clear and initialize the variables
used in this Codeunit.

¢ DemandtoInvProfile: Here the system creates records in the Inventory
Profile table for Sales Orders, Service Orders, Production Orders that may
require items.

e ForecastConsumption: If Use Forecast on Locations is used in the
Manufacturing Setup, additional demand lines are created in the Inventory
Profile Buffer based on the Production Forecast.

¢ BlanketOrderConsump: Additional demand is inserted for all Blanket
Sales Orders with a Shipment Date and Outstanding Qty. within the
calculation period.

e SupplytoInvProfile: The current inventory, purchase orders, and production
orders are added to the Inventory Profile as possible supply.

[211]

Production

UnfoldItemTracking: If the Item uses Item Tracking, this function makes

sure that lot numbers and serial numbers will match.

-

FindCombination: This function creates temporary Stock Keeping Unit

In this function, Microsoft developers use a trick that when using

a temporary table with more dimensions the values in both tables
are identical. This blog entry explains how this works. http://
dynamicsuser .net/blogs/mark_brummel/archive/2010/05/05/

tip-27-using-temp-tables-in-arrays.aspx

records for each SKU that requires replenishment. If the Item does not
have any SKU, the system will create a temporary SKU record.

based on the information in the Inventory Profile table and the setup.

CommitTracking: This function saves information stored in temporary

record variables to actual data in the database for Reservation Entries

Planltem: This is where the actual Requisition Lines are created for the Item,

and Action Messages.

Calculating a plan
Let's run the Planning Worksheet for our English Desk and see what Planning Lines
we get.

4 Edit - Planning Worksheet - DEFAULT - Default Journal |
o . "

sages B Carry Out Action Message
& Calculate Regenerative Plan @ Order Tracking

& Refresh Planning Line ‘| Dimensions

Process

DEFAULT -

Ttem Desc|

Starting Date:

Ending Date: 27-1-2011 .

Stop and Show First Error:. [7]

Name:
‘Warning No. Action Mess... A.. Original Due.. Due Date Starting Date-Ti Options A |
! 0 Production Order: -
Edit - Calculate Plan “plan. : Purchase Order I h
T o Copy to Req. Worksheet
Template Name: |
Options Worksheet Name:
Calculate Transfer Order:
A i MPS: Copy to Req. Worksheet
MRP: Template Name:

Worksheet Name: |
Stop and Show First Error: [7]

[]
Use Forecast: 2011 - | e s
Exclude Forecast Before: . Sorting: Worksheet Template Mame Journal Batch Nar
Item ~ Show results:
Il 4 AddFilter
Show results:
4 Where iNo. ~iis CHAPTERS-P1
J T,

[212]

Chapter 5

The MPS & MRP run is started from the Planning Worksheet. We need to enter a
starting date and an ending date. In the CRONUS database, using our example, we
can use the current Workdate.

When the MPS & MRP run is finished we can start the process to Carry Out Action
Message to create the Production order.

Production order workflow

The Production order is now created and ready to be started. The first status is
Planned or Firm Planned. During the planned status Microsoft Dynamics NAV
can automatically change the production order.

Once the production order is released, it can no longer be automatically changed.

CROMUS International Ltd. » Home »

Home Role Center

(ol el Contes,| = Activities .
= Simulated Production Orders
. Production Orders
- = Planned Production Orders
I & Firm Planned Production Ord... :
b B Released Production Orders & © Change Production Order 5tatus
L Z) gl 6 & MNew Production Order
[=| Finished Production Crders Planned Firm Released . Navigate
= Preduction Ferecast Produc... Planne.. Produc..

= Blanket Sales Orders
= Sales Orders
= Blanket Purchase Orders

Planning - Operations

' New Purchase Order

4 [E Purchase Orders o ' Edit Planning Worksheet
¥ My Purchase Orders Purga... + Edit Subcontracting Worksheet

= Transfer Orders

= Vendars Design
[& kems

= Stockkeeping Units @ New Item
I = Production BOMs b o © New Production BOM

Prod. Routings New Routing

I = Routings H BOM:s ... under ...

[213]

Production

To release a production order, the components need to be available. In our test
scenario this is not yet true since we created new items which are not purchased.

Microsoft Dynamics NAYV M

@ Item CHAPTERS-C1 is not on inventory.

Let's see how we can do this.

Purchase orders

To create the purchase orders, we'll use the Order Planning worksheet, to illustrate
another method of planning. This will create Requisition Lines for the Production
order we just released.

4 Edit - Order Planning,

Actions Related Information -

&8 Calculate Plan

® Make Orders

General

Show Demand as: Production Demand -
Demand Date Status Dem‘ g e N — Needed Quantity = Replenishme...| Supply From 3
31-12-2009 Released Prodi | Determining Unplanned Orders: [l 705 || | [102 OakowoodDel... | I
I 14-12-3010 Firm Planned Prod | -
14-12-2010 10000 I
14-12-2010 2 10 Purchase 10000 [E
14-12-2010 CHAPTERS-C3 Glue 3 Purchase | 10000 14
14-12-2010 CHAPTERS-C4 Mahogany Lacquer 5 Purchase 10000 r
14-12-2010 CHAPTERS-C5 English Desk Handles 100 Purchase 10000 4
< | m

Once the Requisition Lines are created, we need to specify a vendor number in
the Supply From field and then start the Make Orders process to generate the
Purchase Orders.

[214]

Chapter 5

Make Supply Orders -

% ’ Actions

Order Planning
Multi-level production orders made with this function may

generate new demand, which you can only see after you have
recalculated a plan in the Order Planning window,

Make Orders for:

| | Options
Create Purchase Order:
Purchase Req. Wksh. Template:
Purchase Wksh. Mame:

Create Production Order:

Prod. Req. Whksh. Template:

Make Purch. Orders -

Firm Planned| -

Prod. Whsh, Mame:

Create Transfer Order:
Transfer Req. Wksh. Template:
Transfer Whsh, Narme:

the Active Order -

Make Trans. Orders -

oK

| [cancel |

The Purchase Order can be received. This allows us to release the Production Order.

S50

Microsoft Dynamics NAV

L2 it

Microsoft Dynamics NAV

Xy

Edit - Change Status on Prod. Order

Change 5tatus on Prod. Order

Do you want to change the status of this Production Order?

@ Receive ‘3
) Invoice e Mew Status:) Firm Planned
() Receive and Invoice @ Released
) Finished
OK I ’ Cancel Posting Date: 2?1_2011 E—

Update Unit Cost: []

Finishing production

When the Production Order is finished, the end product should be in inventory and
the components should be consumed. This consumption process is called flushing.

This is done using the Consumption journal and Output Journal and can be done

automatically and manually.

[215]

Production

An alternative to the Consumption and Output Journal is the
% Production Journal that combines the functionality into one journal.

The Consumption Journal is automatically posted when the Flushing Method in the
Item Card is set to Forward, Backward or Pick + Forward, Pick + Backward.

When using Forward, the Consumption Journal is posted when the Production
order is released, Backward will post when the Production order is set to finished.
Pick + Forward and Pick + Backward can be used in combination with Warehouse
Management Locations.

Specialized production

The last production methodology we discussed in the beginning of the chapter is
Specialized Production.

These are items produced in small numbers or items which have very different
specifications each time they go into production.

For these companies, creating a Bill of Material each time an item changes is just
too much work compared to the extra information they would get.

Jobs

Still these companies want to register their production orders and get a clear view
of their inventory. Most companies doing this kind of production are using the Jobs
functionality of Microsoft Dynamics NAV.

We will discuss this in Chapter 8, Consultancy where we will assemble custom made
computer systems with different components as an example.

Kitting
In Microsoft Dynamics NAV version 5, the North American localized region

introduced a granule called Kitting. Kitting is a term used to describe the sale
of a combination of items (a Kit) as one Item.

The solution can be functionally positioned between the BOM Journal and full
Manufacturing and uses technical components of both. One of the functional
differences between the BOM Journal and Kitting is the support of Setup Resources.

[216]

Chapter 5

The Kitting BOM is defined in the same tables as the Production BOM. This table has
been expanded with a field Type with options Manufacturing and Kitting. It is also
possible in Kitting BOMs to use Resources and Setup Resources.

The posting is done using the BOM Journal table and Posting routine, however the
posting routine has been expanded with the use of a dummy production order which
exists for Kitting.

The Kitting objects can be identified within the numbers 25000 range.

With the introduction of Kitting it is no longer possible to explode
s the classic Item BOM Components on a Sales or Purchase document.

Let's look at the table relation and posting model of Kitting.

4 Sales Process ™
. . Kit BOM Journal
f Kit Sales Li
Sales Line -;.m:; ne Sales-Post Line
N Table ztom
Y s _F,.)J
- - -
Kitting { Bill of Materials I
h 4
S — F = —— —
il
KII:::E..E}? Kitting BOM Line
(Praduction BOM Hezder] =+ lfﬁ'u.-rdau;l:un Eg:-.l;"m BOM Ledger Entry BOM Journzl Line
Tshle 53000771 95 !
A A L A e
-~
T ¥
™ " 5, - -~ -
i Inl.-P
L] Parent item Child Itern BOM Register | BO L’i:w ost| | |
N e S/
Itern Posting ™ -"/ Production
. lterm Ledger Entry Item Register ‘ Hemlili[:':; Pest Pr‘:'d'-"':l_ll':z Crrdler

For reasons of simplicity the Resources and Value Entries have been removed from
this schema. This works exactly the same as shown in the schema for the original
BOM Journal functionality we drafted earlier in this chapter.

[217]

Production

Sales process

Kitting takes place in the Sales process of Microsoft Dynamics NAV. Each Sales
Line table has a corresponding table for kitting.

The Sales Post Codeunit (80) has been changed in order to create the Kit using the
BOM Journal just before the original Item Journal Posting process.

TempJdnlLineDim.DELETEALL;
TempDocDim.RESET;

TempDocDim.SETRANGE(""Table ID",DATABASE::"Sales Line");
TempDocDim.SETRANGE("'Line No.",SalesLine."Line No.");

DimMgt.CopyDocDimToJnlLineDim(TempDocDim, TempJdnlLineDim);

IF SalesLine."Build Kit" AND (QtyToBeShipped <> 0) THEN
PostBOMJInlILine(ltemdnlLine,SalesLine);

OriginalltemdnlLine := ItemJnlLine;
ItemdnlPostLine.RunWithCheck(ltemdnlLine, TempJnlLineDim);

Functionality has also been implemented to move the information stored in table Kit
Sales Line (25001) to the corresponding posted information.

SalesShptLine. INSERT;
IF SalesShptLine."Build Kit" THEN BEGIN
KitSalesLine.RESET;
KitSalesLine.SETRANGE("'Document Type",SalesLine. " 'Document Type');
KitSalesLine.SETRANGE(''Document No.",SalesLine."Document No.');
KitSalesLine.SETRANGE(''Document Line No.",SalesLine.'"Line No.");
IF KitSalesLine.FINDSET THEN
REPEAT
KitSalesShptLine. INIT;
KitSalesShptLine. INSERT;
UNTIL KitSalesLine.NEXT = O;
END;

More information about Kitting can be found in the functional and
= technical whitepapers by Microsoft.

[218]

Chapter 5

Kitting in Microsoft Dynamics NAV "7"

In the last statement of directions published by Microsoft it was announced that
kitting will be introduced in the Worldwide version (W1).

This does not necessarily mean that the functionality and technical solution will
be identical.

Vertical industry implementation

Microsoft Dynamics NAV is used in many different vertical industries. Vertical
Industries often require specific features. Rather than trying to implement all these
features in the standard product, Microsoft Dynamics NAV supports the framework
and allows developers to design and create their own vertical features.

For these features the 80/20 rule applies, Microsoft delivers 80% of the framework
which costs 20% of our time to implement. The missing 20% of the functionality is
developed costing 80% of the budgeted time.

In this chapter, we will discuss how Microsoft Dynamics NAV is used for production
in five different vertical industries. For each industry, we will discuss two specific
vertical features and how they could be solved.

Most industries have solid add-on solutions available which are
designed by certified Microsoft Dynamics NAV partners that have
% been implemented at multiple sites. It is highly recommended to
T look at those add-on solutions instead of reinventing the wheel and
rewrite an add-on that already exists.

Fashion

The general challenge in the Fashion industry is sizes and colors. Each Item can be
produced and sold in sizes ranging from XXS to XXXL and in colors ranging from
pink via orange to green while remaining the same item.

This calls for the creative use of variants which is heavily used by the available
vertical solutions on the market.

[219]

Production

Bill of materials

To use Manufacturing with variants, the Bill of Materials structure should be
changed since this exists by default on item level. However each size uses different
quantities of fabric and the different colors of fabric are often represented by other
item number in the raw materials.

A solution for this might be to move the Bill of Materials from Item level to Stock
Keeping Unit level. An SKU supports Variants for costing and inventory.

Shipping worksheet

Fashion companies produce items for a collection. Customers have the option

to reserve on a collection in order for the production manager to determine how
many to produce. Based on these numbers and an extra safety inventory, the
production orders are created. Once the production orders are finished the company
needs to decide who gets the first items. This can be best described as a reversed
make-to-order mechanism.

To enable this in Microsoft Dynamics NAV, we could create a worksheet that will
create lines for each combination of Production orders and Sales Orders. For each
Sales Order that will be shipped, we could create a Warehouse Pick and Shipment
from the Shipping Worksheet.

We will discuss Stock Keeping Units ,Warehouse Picks, and Shipments
o in Chapter 6.

Automotive

In the Automotive industry, Microsoft Dynamics NAV is mostly used by car
manufacturing suppliers. These companies make prefabricated parts out of
raw materials.

Tooling and amortization

In these companies, the Production Part Approval Process (PPAP) process as well
as the tooling amortization is very important as the initial investments in tooling
before the production process starts is high.

To support this, extra functionality needs to be developed for the tooling and BOM
process. For example, the table Routing Tool (table 99000802) can be connected to a
Fixed Asset (table 5600).

[220]

Chapter 5

Item tracking

When something is wrong with a component of a car it is important to be able to
see which other cars have the same components built by the same factory and tools
using the same base materials.

In Microsoft Dynamics NAYV it is possible to use a single Lot No. for a component or
an end product and to trace this back. It is not possible to simply move the Lot No. of
the component to the end product or copy information from the component's Lot No.
such as a container no. or a quality code to the end product.

To support this we need to change the Item Tracking process. A good place to
start would be the Item Journal where the Reservation Entry is moved to the
Item Ledger Entry.

Medicines

When used by companies that manufacture medicines, using the Expiration Date for
Lot Numbers correctly is highly important.

Lot numbers and expiration dates

In Microsoft Dynamics NAV expiration dates are defined in the Item Ledger Entries
and the Warehouse Entries.

It is not possible to define a single Expiration date for a Lot. This can be changed by
adding this field to the Lot No. Information table (6505). This table allows companies
to predefine Lot numbers to be used in the production process.

By default, the Expiration Date is calculated based on the Document Date multiplied
with the Expiration Calculation field in the Item table (27).

The Lot No. Information table can be used to save additional information about the
specific production batch.

Quality control

Quality control is important in most production processes but maybe extra
important when dealing with medicines. Usually a small part of a Lot is taken
for quality control.

In Microsoft Dynamics NAV we can define Quality Measures in the Prod. Order
Rtng Qlty Meas. Table (5413). However, these values are only saved as information
for the Production Order.

[221]

Production

To enhance quality control, we could add a document structure where a Quality
Check document is created from a production order. The information should be
saved in the Lot No. Information table.

When a Lot is not having the required quality a workflow should be started.

This workflow will lead the user though a process where decisions can be made.
Sometimes the quality can be improved and the items can still be used. Sometimes
the Item number even depends on the quality of the product.

Quality control is in between the consumption journal and the output journal.
During the final quality check the BOM items are used, but the final item is not
yet available.

Food

In the food industry, everything is about expiration dates and fresh products.
Inventory is never high and the rate of circulation is very high.

Zero inventory

For this reason it should be possible for fresh food companies to Zero the inventory
of certain lot numbers once the expiration date is closing or expired.

This could normally be done using the Physical Inventory Journal. Doing this
manually with Lot Numbers can be quite a job for someone to do every day so for
this vertical solution we could create a function to do this. This function would create
a Item Journal Line (83) with the field Phys. Inventory (56) activated and also create
the Reservation Entry for Tracking and post the line automatically.

Ordering schedules

Fresh food companies use daily production processes that start on scheduled times.
Each day, the factory starts the production process but the production numbers can
be different based on the orders.

This can be done using the make-to-order policy but we need to make sure that
there will be no new sales orders when the calculation process starts.

This can be achieved by creating an order schedule policy. New sales lines can be
created for each item until a certain time, and when the time has elapsed the sales
people will get an error message. This allows the production planner to start the
calculation process at a fixed time each day, knowing the sales orders quantities
can be trusted.

[222]

Chapter 5

Furniture

The furniture industry is a large and very old industry that existed long before the
industrial revolution and introduction of computers.

We can roughly split the furniture industry into two parts. The first part has moved
production to be standardized using size and color matrixes which we can compare
to the Fashion industry. Buying a table or kitchen, the customer can choose from
different sizes and colors. Depending on the number of choices, the products are
either made-to-stock (IKEA) or made-to-order.

The second part consists of furniture manufacturers who still produce custom made
items. A desk or kitchen at these manufacturers can have any size or color. For these
companies, it is next to impossible to create a Bill of Material for each custom item so
they use pre-defined calculations with item categories.

For the examples in this book we will discuss the second category.

Calculations

Companies building custom made furniture need a possibility to calculate the use of
materials and resources, both at item category and real item level. For this, we can
create a calculation module with this data and posting model.

Iy \ g " ~ - / - -

Reqg, Wksh.-
Itemn Calculation EE;':L?: Make Order Purchase Crder
(Cexdeunit 3330
A \ A . / \ s
k4 h T —.—
I) i) ') | Carry Out) (1
ion hMsg. - .
\ Resource Caleulation Line Req. Worksheet ‘ MTI(;;_q 4 Purchase Line
L i L. i L i L CRepart 453} ¥

The basic structure of this calculation module is explained in Chapter 8 where we
have combined this into the Jobs functionality of Microsoft Dynamics NAV.

[223]

Production

Inventory

Our furniture company uses a combination of product specific items that are
one-of-a kind and inventory items that are used in most of the products.

These items are combined into the end product and should be consumed when
the product is finished. When the calculation module is integrated with Jobs for
example, it would be possible to flush the components when the Job is completed.
This functionality can be compared to the posting of the Consumption Journal
when a production order is finished.

The inventory items can be updated weekly using the Physical Inventory Journal
and inventory counting. This enables us to use the Requisition Worksheet and
Reordering Policy we will discuss in the next chapter.

Summary

In this chapter, we discussed how three different production methodologies
can be implemented in the Microsoft Dynamics NAV product.

We introduced the concepts of Item Tracking and Item Costing.

We have taken a tour through the Manufacturing process using different
Requisition Worksheets and talked about the solution for MRP.

Finally, we looked at how production can be implemented for different
vertical industries.

In the next chapter, we will take a closer look at the trade process in Microsoft
Dynamics NAV.

[224]

Trade

In the previous chapter we discussed how Microsoft Dynamics NAV can help us
to streamline our production process using both the standard application as well
as customized solutions. We talked about five vertical industries and how to fit
the application for them.

In this chapter we will discuss how to use Microsoft Dynamics NAV for these
companies using sales and purchase documents, and how to integrate this with
the built-in Warehouse Management and Reservation processes.

The primary focus of this chapter is how the application is designed, and where to go
to change or enhance the design. Basic knowledge of how to create and process sales
and purchase documents in Microsoft Dynamics NAYV is a prerequisite.

We will use examples from the same vertical industries we discussed in the previous
chapters; Automotive, Fashion, Medicines, Food, and Furniture.

After reading this chapter you will have a good understanding of how to implement
Microsoft Dynamics NAV in trading companies.

Trade

The process

A trading company purchases and sells items without changing them. The main
activities are purchase, storage, packaging, sales, and shipping (as shown in the
following screenshot):

(Re)
Packaging

Storage

Purchasing & Receiving Shipping

Managing inventory is very important in these companies. Having inventory is
crucial for delivering on time and not having to say "no" to customers.

Wholesale versus retail

Traditionally, trading companies are divided into wholesale and retail companies.
Wholesale companies sell to business and retail companies sell to consumers.
Microsoft Dynamics NAV supports both and from the perspective of design
(table and posting structure) there is not much difference.

The biggest difference between wholesale and retail for the application is the
transaction volume. Where the total turnover of a wholesale company can be much
higher compared to a retailer; the retailer often has more, smaller transactions. It
can be a challenge from an application design perspective to retain a solution that
performs well.

Another issue with high volume transaction systems is traceability of the data.
Whenever something goes wrong it is very important to see where the error
started and how much data was impacted by the mistake. In low transaction
systems it is easier to find this manually.

Sales and purchasing

Traditionally, salespersons are used to working with paper order forms. They would
write down the customer name and address, and the items or services required.

[226]

Chapter 6

Sales Docurnent

The posting process breaks down the information in the document into the
journals, and posts them so that the end user does not have to worry about this.
The application reuses the same posting routines as we discussed in earlier chapters.

Pasted Dacuments

~ ~
Sales Line Sales Header ly Sal':e;land\;\::lce Sales Invaice Line
{Table 371 [Tahle 361 _ 1Table 121)
[Table 110}
\\.—J S / ~ "y
Pasting Process I -\\
Item Jowrnal Line Sales Post J cales SRR e S.hlpment
-+ i ¥ Header Line
(Table B3] (€odeunit 8o "] _ -
[Table 11a) {Tabile 123}
Y
— = — = -
i i Sales Cr.Me 0

Res. Journal Line | _{ Vo ey S Sales Cr Memo Line
(Tabie 207) EIGCS N[= (Table135)
e {Tabike 43 1Tahble 115} =

Joh Post-Line Cenaalionel Return Receipt Return Receipt Line

-+ Line - Header .
\Cadevnit 10a1)) [Tahle &g}
[Table 32) (Table &660) _J'
A / LS . I/J

In Microsoft Dynamics NAV the paper document is replaced by a sales and purchase
document using a header for the general order information and lines to register the
items and services.

Let's look at how the documents and journals tie together by drawing the table and
transaction scheme for this:

Trade

The first step is creating the document. When we create this Sales Document (Sales
Header and Sales Line) nothing is posted. We are only entering information into the
system that can be changed at any time.

When we start the Sales Post (Codeunit 80) the system will create all the journals for
us and post them. When we sell an item, the system will create an Item Journal Line,
when we sell a resource the system creates a Resource Journal Line and so on.

The Invoice Posting Buffer is used to create the entries in the General Journal Line.
We already discussed this feature in Chapter 3, Financial Management.

Microsoft Dynamics NAV allows us to create four different kinds of posted sales
documents: Invoices, Shipments, Credit Memos and Return Receipts. We will
discuss all these types later in this chapter.

Transaction mirroring

The unique concept of sales and purchase in Microsoft Dynamics NAV is the
mirroring of the transaction structure. Once we understand how the sales
transactions fit together it is easy to also understand the structure of purchase.

Let's demonstrate this by comparing the first fields in the Sales Line (37) and
Purchase Line (39) table (as shown in the following screenshot):

[E= Table 37 Sales Line - Table Designer [= Table 33 Purchase Line - Table Designer ===

E..FieldMo, Field Mame Data Type Length E..FieldMo, Field Mame Data Type Length
v 1 Document Type Option - (354 1 Document Type Option ' -
v 2 sell-to Customer Mo. Code 20 v 2 Buy-from Vendor Mo, Code 20
v 3 Document No. Code 20 v 3 Document No. Code 20
v 4 Line No. Integer 1 v 4 Line No. Integer 3
v 5 Type Option 3 v 5 Type Option
v & Mo. Code 20 v & Mo. Code 20
v 7 Location Code Code 10 v 7 Location Code Code 10
v 8 Posting Group Code 10 v 8 Posting Group Code 10
v 10 Shipment Date Date v 10 Expected Receipt Date Date
v 11 Description Text 50 v 11 Description Text 50
v 12 Description 2 Text 50 v 12 Description 2 Text 50
v 13 Unit of Measure Text 10 v 13 Unit of Measure Text 10
v 15 Quantity Decimal v 15 Quantity Decimal
v 16 Qutstanding Quantity Decimal v 16 Qutstanding Quantity Decimal
v 17 Qty. to Invaice Decimal v 17 Qty. to Invaice Decimal
v 18 Qty. to Ship Decimal v 18 Qty. to Receive Decimal
v 22 Unit Price Decmal v 22 Direct Unit Cost Decmal
v 23 Unit Cost (LCY) Decimal v 23 Unit Cost (LCY) Decimal
v 25 VAT % Decimal ¥ 25 VAT % Decimal
v 27 Line Discount % Dedmal v 27 line Discount % Dedmal
v 28 Line Discount Amount Decmal v 28 Line Discount Amount Decmal
v 29 Amount Dedmal v 29 Amount Dedmal
v 30 Amount Including VAT Decimal v 30 Amount Including VAT Decimal
v 32 Allow Invoice Disc. Boolean v 31 Unit Price (LCY) Dedimal
v 34 Gross Weight Decmal v 32 Allow Invoice Disc. Boolean
v 35 MetWeight Decimal v 34 Gross Weight Decimal
v 36 Units per Parcel Dedmal v 35 Met Weight Dedmal

(354 37 Unit Volume Dedimal v 36 Units per Parcel Decimal
v 38 Appl.-to Item Entry Integer v 37 Unit Volume Decimal
v 40 Shortcut Dimension 1 Code Code 20 v 38 Appl.-to Item Entry Integer
v 41 Shortout Dimension 2 Code Code 20 v 40 Shortout Dimension 1 Code Code 20
v 42 Customer Price Group Code 10 v 41 Shertcut Dimension 2 Code Code 20
v 45 Job MNo. Code 20 = v 45 Job MNo. Code 20 S

Helo

[228]

Chapter 6

The fields in both tables are equally numbered and serve the same process even
though they use different terminology. For example, field 18, Qty. to Ship (sale)
and Qty. to Receive (purchase).

Some fields are different because they don't make sense to be in both processes, for
example, Unit Price (LCY) (field 31) in purchase and Customer Price Group (field 42)
in sales.

The purchase process also uses the same posting methodology. The purchase header
(38) and purchase line (39) tables are posted using codeunit purch.-post (90) into the
purchase receipt, invoice, credit memo, and return shipment documents.

Let's have a closer look at the sales process.

Sales

The sales process supports six document types which are normalized into two tables,
sales header (36) and sales line (37).

Each process can have their own number series, and has a special card and list page
but they all share the same business logic.

Let's discuss the document types:

¢ Quote: When a customer would like to know the terms and conditions of
making a purchase we can make a quote. This will show all the calculations
such as pricing and VAT.

¢ Blanket order: This is a pre-order status. When used we have an agreement
with the customer without knowing the exact shipment date.

e Order: This is used for the actual order document.

e Invoice: An invoice can be used in two ways. Directly, without a sales order
if the company only invoices directly on G/L accounts, or we can use the
invoices to invoice one or more shipments.

o Credit memo: We can use a credit memo when we credit on a G/L account.
e Return order: If a customer returns an item we can use a return order to

reverse the inventory process.

Let's discuss these document types in more detail.

[229]

Trade

Orders

The main process is the order. The other document types are designed to
support this.

Sales orders can be created directly or via a quote or blanket order. There are two
differences between a quote and a blanket order.

1. Quotes can only be fully transferred into a sales order, not in parts. For
example, a blanket order of 100 items can be split into 10 deliveries of 10
items with different shipping dates.

2. A customer with a quote has the option to say "yes" or "no". When they say
"no", there will not be a transaction. Therefore, quotes are not used in the
supply and demand calculation we discussed in the previous chapter. A
blanket order is a real order. The customer should eventually purchase the
complete quantity that was agreed. Therefore the blanket orders are used in
the supply and demand calculation.

Quote and blanket order to order

Although the quotes, blanket orders, and orders are stored in the same table, the
records are physically deleted from the table and inserted using another document
type. This is done in codeunits sales-quote to order (86) and blanket sales order to
order (87).

When comparing these codeunits in a compare tool such as Beyond Compare or
Araxis, we can see that there is a lot of similarity. They both create a new sales order.

Quote to order

When moving a quote to an order the complete quote is copied and then deleted.
A quote can be created from an opportunity in CRM as we discussed in Chapter 4,
Relationship Management. Therefore the opportunity is updated when this happens.

Blanket order to order

A blanket order can be moved in parts. Therefore business logic is implemented to
calculate the remaining quantity. There is no link between blanket orders and CRM,
and it is also not possible to create a blanket order from a quote.

[230]

Chapter 6

Creating a new sales order

In order to understand the examples in the chapter we will discuss the most
important fields of the sales order. A sales document contains one header and
multiple lines.

While the sales header table contains more static registration of information, the sales
line has more real business logic such as price calculation, inventory availability, and
VAT. We will discuss how this business logic is normalized.

.
_df Edit - Sales Order - 1017 . The Cannon Group PLC . i B]
’ Actions - Related Information ~ |
1017 - The Cannon Group PLC |
General Feomal 1
Mo.: 1017 Document Date: 30-9-2011 -
Sell-to Customer No.: 10000 - Requested Delivery Date: -
Sell-to Customer Name: The Cannon Group PLC External Document Mo
Sell-to City: Birmingham - Salesperson Code: Ps -
Posting Date: 30-9-2011 - Status: Open -
Order Date: 30-9-2011 -

II:__’::' Show more fields

Lines -
Type Ne. Description Quantity Unitof.. UnitPri.. LineA.. Line Discount % * |
G/L Account 6120 Sales, Retail - EU 1 i } 7
Item 70000 Side Panel 1 PCS 30,70 30,70 |
Resource LIFT Lift for Furniture 1 HOUR 292,00 292,00
Fixed Asset FADD0D60 Conveyor Lift 1
Charge (ftem) ~ 5-FREIGHT Misc. Freight Charges (Sales) 1

Sales header

All document types are uniquely numbered. The primary key fields of the sales
header table are Document Type and No.

M It is useful to use a number series code that makes sense to
Q your end users. For example, SO09-0012 for sales order 12 in
the year 2009 and SQ10-0312 for sales quote 312 for 2010.

The sales document contains two different customer no. Fields:

e Sell-to Customer No.: This is the primary customer no. field which defines
the customer who requested the order to be created. This customer number is
used to calculate the discounts.

[231]

Trade

e Bill-to Customer No.: By default the sell-to customer no. will also receive the
invoice. By changing this field to another customer this will make the invoice
to be printed with other customer details.

The sales document contains some dates that are used for different purposes:

o Posting Date: This date is used for posting to the various ledgers
e Document Date: This date is used for the accounts receivable
e Shipment Date: This date is for the calculation or the inventory availability

e Due Date: This date is the last date at which the bill-to customer is expected
to pay the invoice

Sales lines

Each sales document can contain an almost unlimited number of sales lines. By
default the sales lines are numbered 10000, 20000, 30000, and so on.

The numbering is done using the AutoSplitKey property on the sales line page and
the increment cannot be changed. When a user inserts new records between two
existing lines the program will calculate the new number to be exactly between the
old values, for example 10000, 15000, 17500, 18750, 19375, 19687, 19843, 19921, 19960,
19980, 19990, 19995, 19997, 19998, 19999 ,20000. If there is no more room the system
will generate a run-time error message (as shown in the following screenshot):

Microseft Dynamics NAV Lihj

@ The line cannot be split.

Master data options

A sales line can contain a reference to six types of master data defined by the
type field. These types are Text (blank option), G/L Account, Item, Resource,
Fixed Asset, and Charge (Item).

The type that we specify here determines which journal will be used later when we
post this sales document. However, each line can contain financial information which
will be processed to the general ledger via the posting buffer table.

In the next chapter we will discuss how to add a new type to this process.

[232]

Chapter 6

Sales line fields

To create a new sales line and start the important business logic in Microsoft
Dynamics NAV we need to know about these fields:

e Type: This defines the master data type this sales line uses and eventually
the journal that will be used during posting

When the type field changes after the sales line was created
K the record is cleared and the fields get their default values.

e No.: This is the actual reference to the unique number of the master data
type that is used

When the No. field is changed, the previous Quantity is
/~— used to recreate the Sales Line with the new master data.

¢ Quantity: This is used to calculate the sales amounts for the invoicing and
in case of an item also the physical quantity of the changes in inventory

¢ Outstanding Quantity, Qty. to Invoice and Qty. to Ship: These fields are
designed to be used for partial shipping and invoicing of an order

e Unit Price and Unit Cost (LCY): These fields are used to calculate the
sales amount and profit

e Line Discount % and Line Discount Amount: These fields are used to
determine the discounts

Validation flow

The sales line table has a specific validation flow of functions that is it important to
understand before making changes to the table. This flow is based on the normal
way an end user creates a sales line.

To create a sales line, only four fields are populated and the line is ready to use.
After setting the type and choosing a no. the end user types in the quantity field
and if necessary the unit price.

Let's analyze the C/ AL code in the OnValidate trigger of the three fields that can
calculate the sales line.

[233]

Trade

When changing these C/ AL routines make sure to use the Test Near,
Test Far, Do It, Clean up method we discussed in Chapter 1, Introduction
’ to Microsoft Dynamics NAV.

No. | field 6

The C/AL code in the OnVal idate trigger starts by doing the initial testing if the
change is allowed.

After this the record is cleared and the old values for the no. field and quantity
fields are applied.

TempSalesLine := Rec;
INIT;
Type := TempSalesLine.Type;
"No." = TempSalesLine."No.";
IF "No."™ = "" THEN

EXIT;
IF Type <> Type::" " THEN

Quantity := TempSalesLine.Quantity;

Then the Sales Line inherits the values from the Sales Header if required and the
date fields are calculated.

"Sell-to Customer No." := SalesHeader."Sell-to Customer No.';
"Currency Code"™ := SalesHeader.''Currency Code';
"Promised Delivery Date'" := SalesHeader."Promised Delivery Date";
UpdateDates;

sl The sales header information is NOT present in the sales

Q line when an end user picks a value for the no. field. We
cannot use the customer information for table relations.

When this is done we see a CASE statement where the master data is acquired. This
would be the place where we would move newly added fields from master data to
the sales line table.

CASE Type OF
Type::" "

Type::"G/L Account":

[234]

Chapter 6

Type;;;tem:
Type:;éésource:

Type; ;'-'Fixed Asset':

Type; ;'-'Charge (ltem)':

END;

When this is done the quantities are calculated and the unit price is calculated.

IF Type <> Type::" " THEN BEGIN
IF Type <> Type::"Fixed Asset' THEN
VALIDATE(''VAT Prod. Posting Group');
VALIDATE("'Unit of Measure Code');
IF Quantity <> 0 THEN BEGIN
InitOutstanding;

IF "Document Type"™ IN ["'Document Type'::"Return Order",''Document
Type'"::"Credit Memo'™] THEN

InitQtyToReceilve
ELSE
InitQtyToShip;
UpdateWithWarehouseShip;
END;
UpdateUnitPrice(FIELDNO(*'"No-""));
END;

The latter is important for our analysis. After this function, other code is executed
but this is not important for this example.

Quantity | field 15

Just like the no. field, the quantity field also first checks whether the change is
allowed. When this is done this section of C/AL code is important:

IF Type = Type::ltem THEN BEGIN
UpdateUnitPrice(FIELDNO(Quantity));

CheckApplFromltemLedgEntry(ltemLedgEntry);
END ELSE
VALIDATE(''Line Discount %');

In this C/ AL code we should notice again the UpdateUnitPrice function and also
the validation of the Line Discount % field.

[235]

Trade

Unit price | field 22
This field has little C/ AL code. When changing the unit price manually the C/AL
code will trigger the Line Discount % field.

TestStatusOpen;
VALIDATE("'Line Discount %');

Before going to this field, let's first have a look at the UpdateUnitPrice function
we noticed earlier in the Quantity and No. field.

UpdateUnitPrice

The UpdateUnitPrice function executes this C/ AL code:

IF (CalledByFieldNo <> CurrFieldNo) AND (CurrFieldNo <> 0) THEN
EXIT;

GetSalesHeader;
TESTFIELD("'Qty. per Unit of Measure'™);

CASE Type OF
Type::ltem,Type::Resource:

BEGIN
PriceCalcMgt._FindSalesLineLineDisc(SalesHeader,Rec);
PriceCalcMgt.FindSalesLinePrice(SalesHeader,Rec,

CalledByFieldNo);

END;

END;
VALIDATE('Unit Price™);

After doing the checks the sales price calculation routines we discussed in Chapter 2,
A Sample Application, are executed. This is codeunit sales price calc. mgt. 7000.

When this is done it validates the field unit price which we already analyzed.

This leads us to one single point; the OnValidate trigger of Line Discount %.

Line discount % | field 27

The C/AL code in this OnValidate trigger first calculates the line discount amount
based on the unit price, and then starts the function UpdateAmounts.

TestStatusOpen;
"Line Discount Amount™ :=
ROUND (
ROUND(Quantity * "Unit Price",Currency."Amount Rounding
Precision™) *
“"Line Discount %" / 100,Currency."Amount Rounding Precision™);
"lnv. Discount Amount' := 0;

[236]

Chapter 6

"Inv. Disc. Amount to Invoice" := 0;
UpdateAmounts;

UpdateAmounts

The UpdateAmounts function completes the creation of the sales line and this is
where our quest ends.

The two most important other functions that are executed in this function are the
UpdateVATAmounts for VAT calculation, and the credit limit check for the customer
in CustCheckCreditLimit.SalesLineCheck(Rec).

VAT calculation

The VAT calculation in Microsoft Dynamics NAV is not normalized in one
application area but redeveloped everywhere. This makes VAT calculation one
of the most complex application areas to make changes to.

VAT calculation is not only done in the sales line, purchase line, and general journal
line table but also in more specific function tables such as service line.

It is therefore highly recommended not to change VAT calculation in Microsoft
Dynamics NAV.

If VAT calculation is required in a customized solution it can
M be done using the general journal line as a temporary table.
Q By populating the necessary fields and starting the calculation
we can use the results without copying the VAT calculation to
our own solution.

Invoicing
In Microsoft Dynamics NAYV, a sales order can be shipped and invoiced directly
from the document.

However, not all companies have a combined shipping and invoicing process. Some
companies ship the goods first and send the invoice later; most of the time using
combined invoicing.

[237]

Trade

Prepayments

Besides separating the invoice moment from the shipping moment Microsoft
Dynamics NAV also allows for a prepayment process. This prepayment process is
designed to work on top of the normal invoicing process. This means it does not
replace the invoice but instead creates an extra invoice.

—, - -_ .
Sales-Post Sales Imvoice
Sales Header
t | | Prepayments | ————* Header

1Tabl= 36 -
el 4420 (Table 412}

— - l x_l_
.,-"J_ “y r Y o~ “
Sakes Ling P'IPL'?::EE;ZIFM' Sales Invoice Line

(Talbde 371 (Table 462 (Tabl= 1131
LFLS

p. A . A e

oy

Gen, Joumal Line
[Tahle Sa)

-y

This invoice is not created in codeunit sales-post (80) but in codeunit sales-post
prepayments (461).

Using prepayments in Microsoft Dynamics NAV will always generate
S a minimum of two invoices per sales order

When the order is eventually invoiced the prepayment invoice is deducted from the
invoice amount.

M The design of this solution by Microsoft teaches us and demonstrates
Q that to generate a posted sales invoice it is not specifically necessary to
start codeunit sales-post 80.

Combined invoicing

Combined invoicing of shipments can be done manually or using a batch report.

Manual
To manually combine shipments on a sales invoice we can use the Sales-Get
Shipment (Codeunit 64).

This codeunit can be started from the actions on a sales invoice subpage (47) and
displays the sales shipment lines that are not yet completely invoiced.

[238]

Chapter 6

Get Shipment Lines

Sales Header el
{Table 36)
L i T

Sales-Get

Shipment
(Cedeunit Ge)

t)

The C/AL code however is not completely within the codeunit; the process starts in
the codeunit and runs the page. The page then again starts a function in the codeunit.

Sales Line
(Tabla 37}

Get Shipment Lines % S ﬁ
f Actions ~ Related Information -~
Get Shipment Lines - Type to filter ‘ 2 | Document Mo. n
Sortingt Bill-te Customer No., = %l‘ Filter: 10000 « <=0« "
Document N... Bill-to Cus... Type Na. Description Unit of Meas...
~ 10000 Item 1920-5 ANTWERP Conference Table PCS
102036 10000 Itemn 70000 Side Panel PCS
10000 Itemn 70001 = Base PCS
10000 Itern 70002 Top Panel PCS
Batch

The Combine Shipments report (295) can be used to create one invoice for multiple
shipments in batch.

It works in a similar way to the combine invoice report we created in Chapter 2,
An Example Application.

The C/ AL code that creates the Sales Line for the Invoice is normalized and used
in both the Codeunit Sales-Get Shipment (64) and Combine Shipments report
(295). The function is located in the Sales Shipment Line table (111) and is called
InsertinvLineFromShptLine.

To enable Combined Shipments, the Boolean field Combine
Shipments (87) should be set to Yes in the Customer table. This value
is inherited into the Sales Header for the Sales Order document.

[239]

Trade

Credit Memo and Return Orders

The Credit Memo and Return Order Document Types are used for reversing the
order process.

Purchasing

Before we can ship the items we sold we first need to purchase or produce them.
We discussed the production process in the previous chapter so let's focus on the
Purchasing process.

Technically, the Sales and Purchase process are mirrored transactions and the
application design is similar. The Purchase Header table has the same Document
Types Quote, Order, Invoice, Credit Memo, Blanket Order, and Return Order, and
the same posting process.

So instead of going into the similarities we will discuss the differences.

Resources

In Microsoft Dynamics NAYV it is not possible to purchase resources. When we take a
closer look at the Type field (5) we can see that the option is left blank.

Table 37 Sales Line - Table Designer &= |5
E.. Field Mo. Field Name Data Type Length Option String
v 1 Document Type Option Quote,Order, Invoice, Credit Memo,Blanket Order Return Order =
v 2 Sell-to Customer No. Code 20
v 3 Document No. Code 20
v 4 Line Mo, Integer
[204 5 Type Option ,G/L Account,Item Resource, Fixed Asset,Charge (Item)
v 6 No. Code 20 e

Table 39 Purchase Line - Table Designer

(===

E.. Field Mo. Field Name Data Length Option String
v 1 Document Type Option Quote,Order, Invoice, Credit Memo Blanket Order Return Order »
v 2 Buy-from Vendor No. Code 20
v 3 Document No. Code 20
v 4 Line Mo. Integer
¥ 5 Type Option ,G/L Account,Item,, Fixed Asset,Charge (Item)
v & MNo. Code 20
v 7 Location Code Code 10 -

Drop shipments

When selling items which are not on inventory it is possible to purchase the items
from a vendor and have them directly shipped to the customer. This process is called
Drop shipments.

This process can be handled manually, or by using the requisition worksheet.

[240]

Chapter 6

Manual

To create a drop shipment manually the purchase order should first be created
using the Sell-to Customer No. from the corresponding Sales Order as the
Shipping Address.

4 New - Purchase Order - 106041 - London Postmaster s -5y E@ﬂw
106041 - London Postmaster
General R S D R N R 105041 10000 3092011 : Open o i
Lines PR : 2 T m
L Ir-wmc.ing. e i 10000... CM ...30_9_2011 7
Shipping 7 A
Ship-to Name: The Cannon Group PLC Requested Receipt Date: -
Ship-to City: Birmingham - Promised Receipt Date: =
Ship-to Contact: Mr. Andy Teal Expected Receipt Date: =
Location Code: BLUE - | sell-to Customer No- 10000 - ”
Shipment Method Code: EXW - Ship-to Code: | -

When this is done we can start the Codeunit Purch.-Get Drop Shpt. (76) from the
Actions on the Purchase Order.

This function will show a list of all Sales Orders for this Sell-to Customer No.
regardless if drop shipment is possible.

If we select a Sales Order without Sales Lines that are marked for Drop Shipment
we get this error message:

-
Microsoft Dynamics NAY M

@ There were no lines to be retrieved from sales order 2011.

"

[241]

Trade

After retrieving the sales information the Sales Line and Purchase Line table are
connected to each other by populating the Purchase Order No., Purch. Order Line
No., Sales Order No., and Sales Order Line No. fields.

Purch.-Get
Drop Shpt.
(Cadaunit 38)

Sales Header
[Teble 3£3

Purchase Header
[Tabl= 38}

L 3

Purchase Line | . Sales Line
{Tabile 3g) J - L (Takda 17}

These fields are numbered 71 & 72 in the Sales Line and Purchase Line table.

Requisition worksheet

We introduced the Requisition Worksheet in the previous chapter when we
discussed the planning process. The Requisition Worksheet can also be used
for the Drop Shipment functionality.

| oM Edit - Req. Worksheet - DEFAULT - Default Journal Batch = = & e

telated Information ~ %Eepor‘cg b

Reg. Worksheet i B Inventory Availability B Inventory Purchase Orders
75 Delete Ctrl+Del S i
-em Tracking Lines B Status
Req. Worksheet Window Drop Shipment L4
+4 | Refresh F5 Special Order 3 Iil Sales Order
Send To L4 @ Carry Out Action Message...
== | Print Page... Ctrl+P Reserve Location Code Original Quantity Q
| v Order Tracking

This will start report Get Sales Orders (698) which will filter on all Sales Lines
marked for Drop Shipment and creates a line in the Requisition Worksheet table.

This line can be processed by carrying out the action messages. This function will
also connect the Sales Order to the Purchase Order using fields 71 & 72.

[242]

Chapter 6

The C/ AL code for manual Drop Shipment and using the Requisition
Worksheet is not normalized. This means that changes made to one
method should also be made in the other method, and maintained twice.

Document releasing and approval process

Within the Sales and Purchase document process there is a workflow available for
releasing and approving a document.

This is taken care of by a single status field and two processes.

Status

The Status field (120) in the Sales header and Purchase header table indicates this.
There are four options: Open, Released, Pending Approval, and Pending Prepayment.

Two of these status fields are mandatory to use, Open and Released. Pending
Approval and Pending Prepayment are optional.

We have already discussed prepayments earlier in this chapter.

Releasing a document

Before a document can be posted it is mandatory to release it. This is done by
codeunits Release Sales Document (414) and Release Purchase Document (415).
These codeunits are, as you may have guessed, almost identical.

The codeunit performs a number of tests before setting the status to Released.

Let's discuss some of these checks.

TESTFIELD(""'Sell-to Customer No.");

A typical example of Test Near, the Customer number should not be blank.

SalesLine_SETRANGE(''Document Type',"'Document Type');

SalesLine_SETRANGE('Document No.",""No."™);

SalesLine_SETFILTER(Type, ">0");

SalesLine_SETFILTER(Quantity, "<>0");

IF NOT SalesLine.FIND("-") THEN
ERROR(Text001,""Document Type™," No.'");

[243]

Trade

There should be at least one Sales Line with a Quantity.

When the testing is done, some final calculations are implemented. These
calculations are document calculations that span over the individual Sales Lines.

SalesSetup.GET;

IF SalesSetup."Calc. Inv. Discount”™ THEN BEGIN
CODEUNIT.RUN(CODEUNIT::""Sales-Calc. Discount',SalesLine);
GET('Document Type',"No.");

END;

This codeunit calculates the Invoice Discount.

SalesLine._SetSalesHeader(Rec);
SalesLine.CalcVATAmountLines(0,Rec,SalesLine, TempVATAmountLineO);
SalesLine.CalcVATAmountLines(1,Rec,SalesLine, TempVATAmountLinel);
SalesLine.UpdateVATOnLines(0,Rec,SalesLine, TempVATAmountLineO);
SalesLine.UpdateVATOnLines(1,Rec,SalesLine, TempVATAmountLinel);

At the end of the releasing process the VAT calculation is completed.

Releasing a document also calculates the Amount and Amount Including VAT fields
on the Sales Line.

Manual versus automatic releasing

By default, Microsoft Dynamics NAV releases the document automatically. The
posting codeunits Sales-Post (80) and Purchase-Post(90) contain this C/ AL code.

IF (Status = Status::Open) OR (Status = Status::"Pending Prepayment')
THEN BEGIN

Templnvoice := Invoice;
TempShpt := Ship;
TempReturn := Receive;

CODEUNIT.RUN(CODEUNIT: :""Release Sales Document",SalesHeader);
Status := Status::Open;

Invoice := Templnvoice;

Ship = TempShpt;

Receive := TempReturn;

MODIFY;

COMMIT;

Status := Status::Released;
END;

[244]

Chapter 6

This code temporarily releases the document by starting the Release codeunit and
then sets the status back to Open, modifies the records and commits the transaction.
Then the status is set to Released.

Whenever there is an error afterwards the status will still be Open since that was
the status before the COMMIT.

Document approval

On top of the release process is a Document Approval workflow. This feature is
designed to work on top of the functionality we already discussed and is optional.

Microsoft provides a good whitepaper on Document Approval on
https://mbs._microsoft.com/downloads/customer/nav/
general/NAV5_0_SalesDocFactSheet_A4_JulyO07.pdf.

Yo

Deleting sales and purchase documents

During the life cycle of our application many documents will be created. There might
come a day when this exceeds the point where doing some maintenance is required.

Data deletion

In the IT Administration part of the Departments Role Center we can find a Data
Deletion section which is designed for IT administrators to use to clean up data.

4 5ales Documents - Microsoft Dynamics NAV ——

@n\;jv | CROMUS International Ltd. » Departments » Administration » IT Administration » Data Deletion » Sales Documents |

Departments Sales Documents
4 ’L Administration -
4 IT Administration Tasks

Delete Invoiced Sales Orders...

Delete Invoiced Blanket Sales Orders...
Marketing Activities Delete Invoiced Sales Return Orders...
B Delete Archived Sales Quote Versions...
‘ Delete Archived Sales Order Versions...

4 Data Deletion

Purchase Documents

Warehouse Documer—;
Service Documents
Date Compression
Delete Empty Registe
Delete Entries
Record Links

Configuration and Pti

[245]

Trade

When a sales order is invoiced using Get Shipment Lines or Combined Invoicing, the
sales order is NOT automatically deleted, nor are completely handled blanket orders.

Leaving old orders in the database may lead to large tables. Since these Document
tables are heavily inserted and modified throughout the working day by many
people, this may lead to unnecessary overhead in the database.

Deletion of shipments and invoices

Microsoft Dynamics NAV allows users to delete posted shipments and invoices
when they are printed.

Microsoft Dynamics NAV &I

Mo. Printed must have a value in Sales Invoice Header: Mo.=103013.

It cannot be zero or empty.

Although it should be considered carefully, it might be necessary for some
companies to periodically clean up this data. Most companies never look at
the shipments once the items are delivered to their customers.

Cleaning up these tables will have a positive impact on the performance and
maintainability of your system if it reaches the size of roughly 50-100GB.

M While designing business analysis reports, NEVER use data from
Q the Sales Shipment Header or Line table as they might get deleted.
Always use the Ledger Entry tables instead.

Document tables and row level locking

With the introduction of the SQL Server option for Microsoft Dynamics NAV
Row-Level Locking was introduced. The classic database supports Table
Level Locking only.

Record Level Locking does not benefit concurrency in transactions as Microsoft
Dynamics NAV isolates them as we will demonstrate in Chapter 10, Application Design.

However, it will have an impact for creation of documents as there is no transaction
involved. Or so it seems.

[246]

Chapter 6

Range locks in documents

Even if end-users work on different documents they still might experience this error
message every now and then:

93 The Sales Line table cannot be changed because it is locked by another user. Wait until the user is finished and then try again.

This is caused by Range locking in the SQL Server database.

Range locking is a special SQL Server locking mechanism which is always used by
SQL Server if a query does not exactly specify the clustered index.

Let's illustrate this with an example from the standard application.

UpdateVATOnLines

The Sales Line table contains a VAT function that is used whenever a sales document
is released.

IF QtyType = QtyType::Shipping THEN
EXIT;

IF SalesHeader."Currency Code™ = "" THEN
Currency. InitRoundingPrecision

ELSE
Currency.GET(SalesHeader.""Currency Code™);

TempVATAmountLineRemainder DELETEALL ;

WITH SalesLine DO BEGIN
SETRANGE("'Document Type',SalesHeader.""Document Type');
SETRANGE(*'Document No.',SalesHeader."No.");
LOCKTABLE;
IF FINDSET THEN
REPEAT

In this example the sales line table is filtered on the Document Type and Document
No. field which is not the complete primary key.

This will result in an SQL statement looking like this:

SELECT TOP 51 * FROM "CRONUS International Ltd_$Sales Line" WITH
(UPDLOCK)

WHERE (("'Document Type'=1)) AND ((*'Document No_'"="6004"))
ORDER BY "'Document Type","Document No_","Line No_"

[247]

Trade

This will issue a range lock that we can check with the SQL sp_lock command.

SQLQueryl.sql - ..MELDS\mark (55))*
sp_lock

4 I

3 Results g M
spid dbid Objld Indld Type Resource Mode Status

1 51 pal 1541581955 1 PAG 1:538 1N} GRANT
2 51 pal 1541581955 1 PAG 1:535 U GRANT
3 51 pal 1541581955 1 KEY (8700070471c) |RangeS-U | GRANT
4 51 pal 1541581955 0 TAB 1% GRANT
5 51 pal 1541581955 1 KEY (6700a6c18406) |RangeS-U | GRANT
6 51 pal 1541581955 1 KEY (aB00F36c06) Range5-U | GRANT
7 51 pal 1541581955 1 KEY (570048%ca37e) |RangeS-U | GRANT
2 51 pal 1541581955 1 KEY (470046948ecH) |RangeS-U | GRANT
9 51 pal 1541581955 1 PAG 1:14250 1} GRANT
10 5 pal 1541581955 1 KEY (7700158a88ch) |RangeS-U | GRANT
13 51 pal 1541581955 1 KEY (3700c931c63b) |RangeS-U | GRANT

* More information on range locks and workarounds can be found on

this blog: http://dynamicsuser.net/blogs/mark_brummel/
’~ archive/2009/06/18/tip-7-sql-range-locks.aspx.

Inventory management

In Microsoft Dynamics NAV inventory is kept for items on locations using item
ledger entries and value entries.

On top of this we can use Stock Keeping Units (SKU) to have different inventory
settings per item, location, and variant.

Let's start by looking at the table and posting model of inventory in Microsoft
Dynamics NAV:

[248]

Chapter 6

. 1] = poS——— R
T su Basic ltem Inventory Y
Y
‘o -
Itern Vanant Iberm Itern Ledger Entry ‘alue Entry
{Tabl= geoa) (Table =) {Table 32) (Table giaz)
{ ~
Y
‘. ™ (’ ™ .
. . : | |.-F .
Stock Keeping Unit | | / Itemn Joumal Line -4 L= IJ:-ue 2 . Item Register
{Tabie gyoo) (Talde 821 {Codeunit 22) [Table 455
v \ _
ry . J
Warehouse \'\
'S ! r" N . 'O
5 ‘Whse. Inl.- .
Location Warehou_se T .SE n. Warehouse Register
ey Line » Register Line e
~ (Table 7311} (Codeurit rzon)
b\) . . .
- r ¥
—_—
Zong - i Bin Content Warehouse Entry
iTable 7320) (Table 7354} [Table 732z} \Table 7323}

.

/

Keeping inventory can be extended with the use of warehouse management. This is
designed to run on top of the Basic Item Inventory functionality.

Items

The Item table hosts the Master Data for Inventory Management like a G/L Account
does for Financial Management.

General

Mo

Description:

Bill of Materials:
Shelf No.:

\ Ay Edit - Ttem Card - 70000 - Side Panel

| # Actions - [[E Related Information ~

70000 - Side Panel

Base Unit of Measure:

Automatic Ext, Texts:

Created From Monstock Iterm:

Item Category Code:

Product Group Code:

Invaicing

®

p

[70000)

Side Panel

00 2z 3

Search Description:
Inventory:

Qty. on Purch, Order:

Qty. on Prod, Order:

Qty. on Component Lines:
Qty. on Sales Order:

Qty. on Service Order:
Service Item Group:
Blocked:

Last Date Modified:

FIFO

SIDE PAMEL

]
14-8-2009

30,70

RAW MAT | RAW MAT

4.202

(= < I =]

1

[249]

Trade

In this table we can do the setup for each individual item, including pricing,

inventory and production strategies, and tracking options.

Locations

The Location table defines which level of inventory management is done.

The location can either be a physical warehouse somewhere or a part of a warehouse

if one warehouse uses different warehouse strategies.

If we look at the Location Card we see what we can set up:

Related Information

YELLOW - Yellow Warehouse

| General

é Code:
MName:
Address:
Address 2:

Communication

Warehouse

Require Receive:

Require Shipment:

Require Put-away:

Use Put-away Worksheet:
Require Pick:

Bin Mandatory:

Directed Put-away and Pick:
Use ADCS:

Bins
Receipt
Receipt Bin Code:

Shipment
Shipment Bin Code:

Production
Open Shop Floor Bin Code:

Inbound Preduction Bin Code:

Outbound Production Bin Code:

Bin Palicies

Special Equipment:
Bin Capacity Policy:
Allow Breakbulk:

_ 4 Edit - Location Card - YELLOW - Yellow Warehouse

ELLOW)|

Yellow Warehouse

Main Bristol Street, 10

OECOREE®E

Mever Check Capacit

Post Code: B53 6KL -
City: Bristol -
Country/Region Code: GB -
Contact: Jeanne Bosworth

Use As In-Transit: [}

+44-(010 5214 4987 v

Default Bin Selection:

Outbound Whse. Handling Time: 1D

Inbound Whse. Handling Tirme: 1D

Base Calendar Code: -
Customized Calendar: No

Use Cross-Docking:]

Cross-Dock Due Date Calc.:

Adjustment

Adjustment Bin Code:
Cross-Dock

Cross-Dock Bin Code:
Bill of Material

Inbound BOM Bin Code:

Outbound BOM Bin Code:

Put-away
Put-away Template Code:
Always Create Put-away Line:
Pick
Always Create Pick Line:

il

[250]

Chapter 6

Let's see these settings in detail:

e General: Here we can specify the physical location of the warehouse. We
can also specify Use As In-Transit. When this is specified we can only use
transfer orders to move inventory to this location.

e Warehouse: On this tab we specify which level of warehouse management
functionality we want to use. If everything is left blank, no warehouse entries
are created when this location is used.

e Bins: This tab contains the default bins for most inventory activities such as
Receipt, Shipment, and so on. These values can be changed when creating
the warehouse documents.

¢ Bin Policies: This tab contains some more advanced options for
warehouse management.

Variants

Item variants are a powerful feature of Microsoft Dynamics NAV. It enables us to
differentiate an item into different categories without having to create a new item.

The variant code is maintained in the item ledger entries and used when
applying them.

Example

Our company sells t-shirts. We have three sizes: Small, Medium, and Large, and
four colours: White, Black, Red, and Blue.

This enables us to create twelve unique variant codes.

S-WHITE S-BLACK S-RED S-BLUE
M-WHITE M-BLACK M-RED M-BLUE
L-WHITE L-BLACK L-RED L-BLUE

When we purchase or produce these t-shirts we need to specify the variant code
which is inherited into the item ledger entry.

[251]

Trade

If we sell or transfer one of these items we can specify the same variant code. Microsoft
Dynamics NAV will then use this variant code when searching for inventory.

Edit - Check Availability (B[l
Check Availability
P Nex Period 'E The quantity on inventory is not sufficient to cover the net change
L] in inventory. Do you still want to record the quantity?
:
[Details a
Process 1 !
H 5 Ma.: T-5HIRT
T-SHIRT - T-Shirts o _
Description: T-Shirts
Options Inventory: 0
X X Gross Requirement: 0
View by: [E - Vig
Scheduled Receipt: 0
T Current Quantity: 10
o X Total Quantity: -10
| Code Description Gross Require...
8 _ Earliest Availability Date:
M-WHITE Medium White 10
Substitutes Exist: No
S-WHITE Small White 0
Unit of Measure Code: PCS
4 I
Yes i ’ Mo

Stock keeping units

Sometimes the same item can have more than one unit cost, Replenishment, system
or production method. To support this we can use stock keeping units.

Stock keeping units refer to an existing item, location, and variant. These three fields
are the unique primary key.

Example

Our t-shirts need to have different unit costs. In order to do this we need to create
an SKU for each variant.

[252]

Chapter 6

[44 View - Stockkeeping UnitList = 0« .

@ Inventory - Availability Plan

| Report |
| Stockkeeping Unit List = | Type to filter | > |][em No. v ‘ @ |
|
Sorting: Location Cedeltem Mo, Variant Code ~ %L’ Filter: 'T-SHIRT' |
Ttern MNo. Variant Co... Location C... Replenish.. Description Inventory Last Direct Cost I
T-SHIRT M-WHITE Purchase T-Shirts 2 7.00
T-SHIRT S5-WHITE Purchase T-Shirts 12 6,00 |

Now, when we create two purchase order lines for the same item with a different
Variant Code we can see that the Last Direct Cost is different for each variant
(as shown in the previous screenshot).

A stock keeping unit is a powerful feature of Microsoft Dynamics
that enables you to change settings for an item after it is created
using variant codes for each setting. Make sure the code of the
variant is self explanatory.

Creating SKU function

When an item has many variants and locations, creating the SKU for each
combination can be quite a challenge.

To help in this process we can use the Create Stockkeeping Unit report (5706).

The newly created SKU will inherit all the necessary fields from the item. After
this we can go in and make necessary changes to the individual SKU records.

* [Options

Create Per: Location & Variant -
ftem In Inventory Only: [
Replace Previous SKUs: [7]

Item

i Show results:
|| | & Where INo. wiis T-SHRT

i & And Inventory Posting Group ™ is Enter a value
| | % AddFiter

i Limit totals to:

| | 4 AddFilter

1

[253]

Trade

Sales pricing
The basic unit price of an item can be set in the Item table. This is a static field
which is used when a new sales document is created.

To use more flexible unit prices we can use the sales prices and sales discounts
functionality.

_ 4 Edit - Sales Prices - Item T-SHIRT @E‘!
f Actions ~ .~
General
Sales Type Filter: Mone - Starting Date Filter:
Sales Code Filter: Currency Code Filter: -
Itern Mo. Filter: T-5HIRT v
Sales Type Sales Code Variant Code | Item Mo. Unit of Meas... Minimum Quant... Unit Price Starting Date
All Customers S-WHITE T-5HIRT 10,00 12,00 27-1-2011
All Customers M-WHITE T-5HIRT 10,00 13,00 27-1-2011
Customei T-SHIRT 0,00 0,00
Customer Price Group
All Customers
Campaign

More information about pricing can be found in Chapter 1 and Chapter 2.

Item ledger entry application

When inventory is created and used, the system will apply and close positive and
negative Item Ledger entries with each other. This enables us to trace inventory.

The Application is saved in the Item Application Entry (339). Let's have a look
at the C/ AL code that handles the item application.

Item application C/AL routine

This is done in codeunit Item Jnl.-Post Line (22) in the function
ApplyltemLedgEntry.

The function starts with checking whether reservations are used. Using reservations
changes the way the inventory application is used. We'll discuss reservations later in
this chapter in the section Reservations.

ApplyltemLedgEntry

CLEAR(OIdItemLedgEntry);

[254]

Chapter 6

REPEAT
ItemInlLine.CALCFIELDS(""'Reserved Qty. (Base)");
IF ItemJdnlLine."Reserved Qty. (Base)"™ <> 0 THEN
IF ItemLedgEntry."Applies-to Entry"” <> 0 THEN
ItemLedgEntry.FIELDERROR(
"Applies-to Entry",Text99000000);

END ELSE
StartApplication := TRUE;

If there are no reservations made the system will start the application code. This
allows two possibilities: manual application and automatic application.

Manual application is done when the user populates the Applies-to Entry field in
the Item Journal Line. This is also used when users change the application.

IF StartApplication THEN BEGIN
ItemLedgEntry.CALCFIELDS("'Reserved Quantity');
IF ItemLedgEntry."Applies-to Entry"” <> 0 THEN BEGIN
IF FirstApplication THEN BEGIN
FirstApplication := FALSE;
OldItemLedgEntry.GET(ItemLedgEntry."Applies-to Entry");
OldIltemLedgEntry.TESTFIELD("Item No.", ltemLedgEntry."Item No.');

OldIltemLedgEntry.TESTFIELD("Variant Code", ItemLedgEntry."Variant
Code™);

OldItemLedgEntry.TESTFIELD(Positive,NOT ltemLedgEntry.Positive);

OldltemLedgEntry.TESTFIELD("'Location
Code", ItemLedgEntry."Location Code');

In this case the system checks if the item ledger entry we have specified matches
the requirements.

When the application is done the system will automatically search for the best item
ledger entry based on the same requirements.

END ELSE BEGIN
IF FirstApplication THEN BEGIN

FirstApplication := FALSE;

ItemLedgEntry2 . SETCURRENTKEY("'Item No.",Open,'Variant Code",
Positive, "Location Code","Posting Date');

ItemLedgEntry2 . SETRANGE(""I1tem No.", ItemLedgEntry."l1tem No.");

ItemLedgEntry2.SETRANGE(Open,TRUE) ;

ItemLedgEntry2.SETRANGE("'Variant Code", ItemLedgEntry.
"Variant Code');

[255]

Trade

ItemLedgEntry2.SETRANGE(Positive,NOT ItemLedgEntry.Positive);
ItemLedgEntry2.SETRANGE(''Location Code",
ItemLedgEntry."Location Code');

IF ItemLedgEntry."Job Purchase”™ = TRUE THEN BEGIN
ItemLedgEntry2.SETRANGE(*'Job No.", ItemLedgEntry."Job No.');
ItemLedgEntry2.SETRANGE(*"Job Task No.",

ItemLedgEntry."Job Task No.™);

END;

IF ItemTrackingCode."SN Specific Tracking"™ THEN
ItemLedgEntry2 . SETRANGE(*'Serial No.",

ItemLedgEntry."Serial No."™);

IF ItemTrackingCode.""Lot Specific Tracking" THEN

ItemLedgEntry2.SETRANGE(*'Lot No.", ItemLedgEntry."Lot No.');

IF Location.GET(ltemLedgEntry."Location Code') THEN
IF Location."Use As In-Transit" THEN
ItemLedgEntry2 . SETRANGE("'Transfer Order No.",
ItemLedgEntry."Transfer Order No.");

IF Item."Costing Method" = Item."Costing Method"::LIFO THEN
EntryFindMethod := "+"

ELSE
EntryFindMethod := "-7;

IF NOT ItemLedgEntry2._FIND(EntryFindMethod) THEN
EXIT;

The actual application entry is created in the function InsertApplEntry.

Requirements

In order to apply an item ledger entry to another item ledger entry, certain
requirements should be taken into account. We can read these requirements from
the C/ AL code:

1. The Item No. should be the same.

2. The old item ledger entry should be 'Open'. When an item ledger entry
is fully applied the boolean field 'Open' is set to 'FALSE'.

The variant code and location code should be the same.

The boolean field 'Positive' should have a reverse sign. This results in
the limitation of not being able to apply one negative entry to another
negative entry.

Other requirements are conditional based on system setup. For example, if the item
uses a lot no. or a serial no. this should also match.

[256]

Chapter 6

When the system has defined the filter it tries to find the first record. The search
method depends on the costing method. If the cost method is LIFO the system will try
to find the last record in the filter. For all other costing methods it will find the first.

We can also see that when using lot numbers, the application and the costing is
done within the lot number.

Value entries

In Microsoft Dynamics NAV the physical information for inventory is stored
separately from the financial information. This information is stored in a one-to-
many relation, meaning one item ledger entry can have multiple value entries.

This enables us to specify the value information in detail in a time dimension and
cost type dimension.

Direct cost

Each item ledger entry starts with at least one value entry of the type Direct Cost.
This defines the initial value of the inventory.

During the inventory lifetime the item ledger entry can get four other types of
value entries:

¢ Revaluation: This entry type is used when the item revaluation batch is
started and the value of the item is different compared to the direct cost.

¢ Rounding: Sometimes the inventory adjustment leads into rounding issues.
The rounding is stored as a special entry type for traceability.

e Indirect cost: When the indirect cost % is used on the item card the system
will create additional value entries for the indirect cost amount.

e Variance: When the item uses standard cost, the difference between the
invoiced amount and the standard cost is saved as an entry type variance.

Value entries and general ledger entries
The Value Entries and General Ledger Entries are linked through the G/L - Item
Ledger Relation table (5823).

Each general ledger entry is linked to one or more value entries. This enables
traceability and helps auditors to analyze the system.

[257]

Trade

Transfer orders
In order to move inventory from one location to another, it is possible to do a

negative and a positive adjustment in the Item Journal Line, but we can also use
a Transfer Order.

| g New - Transfer Order - 1011

E Statistics E Inventory - Inbound Tran:

Post and L
Print !;! Print
Process
1011 p
| General ~] 3
Mo 1011 st Department Code: -
I Transfer-from Code: -é-L-L-J-é---------------------------: Project Code: -
‘\ Transfer-te Code: Gf o Assigned UserID: -
H
i‘ In-Transit Code: Status: Open -
" Posting Date: 27-1-2011 -
I
Lines "~
i
Itern Mo. Description Quantity Reserved Qua.. Reserved Qua.. Reserved Qua.. Unit of Meas... -
70040 Drawer 2,000 PC5
-
<] 3
[Transfer-from 274201 || Periol v |
| Transfer-to .]
| Foreign Trade | v]

The transfer order creates the item ledger entries for each location and maintains the
link for the value entries.

This means that if we move 100 items from the location blue to green without having
received the purchase invoice, yet the system will create value entries for the moved
inventory when the invoice is posted.

Let's try this for a new item.

[258]

Chapter 6

Example

The item we will use is Jeans. The first step is to create the item.

1. We define the No., Description, Base UOM, and the Posting Groups only.

2. Now we create a new purchase order with quantity 10 in location BLUE and
unit cost, 10.

3. We receive the purchase order.
Using a new transfer order we move the inventory from BLUE to RED.

This will result in five Item Ledger Entries with five Value Entries but the
total cost is zero as we have not yet received the purchase invoice:

dy View - Item Ledgel.tﬂes -

’ Actions ~ E Related Information ~

Item Ledger Entries ~

Sorting: ItemMNo. * &lv Filter: JEANSL'
Posting Date Entry Type Document.. Document.. Item Mo, Description Location C... Quantity In
27-1-2011 Purchase Purchase R.. 107033 JEANSL BLUE 10
27-1-2011 Transfer Transfer5.. 108007 JEANSL ELUE -10
27-1-2011 Transfer Transfer5.. 108007 JEANSL OUT. LOG. 10
27-1-2011 Transfer TransferR... 109003 JEANSL OUT. LOG. -10
27-1-2011 Transfer TransferR.. 109003 JEANSL RED 10
t i View - Value Entries - Item JEANS1 Jeans
’ Actions ~ E Related Information ~
Value Entries -
Sorting: Entry No. « Sl Filter: 'JEANS1'
Posting Date Item Ledg.. Entry Type A.. Document.. Document.. L. D.. 5. C.| CostAmount.. C. Ttem
27-1-2011 Purchase Direct Cost [7] PurchaseR.. 107033 e T | 0,00 -]
27-1-2011 Transfer Direct Cost [T TransferS.. 108007 g Fre B B 0,00 p.. | .
27-1-2011 Transfer Direct Cost [] TransferS.. 108007 J | 2l 0,00]
27-1-2011 Transfer Direct Cost | [] | TransferR.. | 109003 b o B 0,00]
27-1-2011 Transfer Direct Cost [] TransferR.. 109003). | X 0,00)]

[259]

Trade

5. Now we create a new purchase invoice and get the receipt lines. We use an

unit cost of 10.

Value Entries

Sorting: Entry
Posting Date
27-1-2011

iy View - Value Entries - Item JEANS1 Jeans

Related Information ~

No. v Gl
Item Ledg...

331

27-1-2011
27-1-2011
27-1-2011
27-1-2011
27-1-2011

333
334

Filter: JEANSL = No

Transfer
Transfer
Transfer
Transfer

Purchase

Entry Type
Direct Cost
Direct Cost
Direct Cost
Direct Cost
Direct Cost
Direct Cost

Adjustment

e e e

Document...

Purchase R...

Transfer 5...
Transfer 5...
Transfer R...
Transfer R...

Purchasel..

Document...
107033
108007
108007
109003
109003
108031

D.. S.. C.. | CostAmount.. C

Yo 0,00 1)
ok 0,00)
o 0,00)
P 0,00 1
o 0,00)
ok 100,00)

This results in a value entry for the original item ledger entry.

6. To create the value entries for the transfers we need to run the Adjust
Cost - Item Entries report (795).

This results in all item ledger entries having the same value entries.

27-1-2011
27-1-2011
27-1-2011
27-1-2011
27-1-2011
27-1-2011
27-1-2011
27-1-2011
27-1-2011
27-1-2011

Requisition journals

Value Entries -
Sorting: Entry No. = él‘

Posting Date Item Ledg...

331
332
333
334
335
331
332
333
334
335

iy View - Value Entries - Item JEANS1 Jeans
i

’ Actions ~ E Related Information ~

Item Ledg...

Purchase
Transfer
Transfer
Transfer
Transfer
Purchase
Transfer
Transfer
Transfer
Transfer

Entry Type
Direct Cost
Direct Cost
Direct Cost
Direct Cost
Direct Cost
Direct Cost
Direct Cost
Direct Cost
Direct Cost
Direct Cost

EEEEOOOOOO

Purchase R...
Transfer 5.
Transfer 5.,
Transfer R...
Transfer R...
Purchasel...
Transfer 5.
Transfer 5...
Transfer R...
Transfer R...

Adjustment Do| Document Type pent... L.

107033
108007
108007
109003
109003
108031
108007
108007
109003
109003

Filter: JEANS1
D.. S C CostAmount.. C
) I 0,00 1
PR 0,00 2
I 0,00 2
2 Bt 0,00 2
). |). 0,00 1
it (095 100,00)
). [e -100,00)
bl 100,00 2
I -100,00 3
Ll 100,00 3

For trading companies it is important to have enough inventories, not too much, not

too few.

In order to do this we can use the Requisition Journals together with the Reordering
Policy on the item.

[260]

Chapter 6

Reordering policy

Microsoft Dynamics NAV uses four different reordering policies:

o Fixed Reorder Qty.: Each time we run the requisition journal the system
will purchase the same, fixed quantity of items. This quantity is specified
in the Reorder Quantity field.

e Maximum Qty.: The system will purchase as many items as to meet the
value of the field, Maximum Inventory.

e Order: For each sales order a purchase order will be created. This
automatically enables the reservation process for this item.

e Lot-for-Lot: This option will calculate the required inventory necessary
to deliver the outstanding sales orders.

The quantity is calculated in codeunit Inventory Profile Offsetting (99000854) in
the function CalcReorderQty.

Extending reordering policy

The ordering policy algorithms in Microsoft Dynamics NAV are very static and
some trading companies need more flexibility.

One example is seasonal and weather influences. Toy stores need extra inventory
during Christmas and garden tool stores have their peak in spring.

During these peaks the delivery times and availability are also different compared
to the other times of the year.

Virtual inventory

An upcoming trend in trading companies is virtual inventory. This is inventory
that we do not control but is available to sell to our customers.

The computer industry uses this frequently. Everyone can start a website for
computer equipment and use the inventory of the large wholesale companies.

In order for this to work the information should always be real
time and reliable. In Microsoft Dynamics NAV we could solve this
’ using web services.

[261]

Trade

Warehouse management

With Inventory Management we can use the locations to see where the inventory
is. For some trading companies this is good enough but some would like to be more
specific in where the items are in the warehouse.

For this we can use the Warehouse Management functionality in Microsoft Dynamics
NAV. WMS enables us to specify Zones and Bins within each location.

Another feature in Warehouse Management is the possibility of combining sales
shipments and purchase receipts in warehouse documents. Using these documents
warehouse employees can pick or put away more for than one order at the same
time resulting in a more efficient way of handling logistics.

Warehouse strategy levels

Warehouse Management can be used and implemented in various fashions, from
very simple to highly advanced ones. To demonstrate the application design of WMS
in Microsoft Dynamics NAV we will discuss five possible levels of implementation.
For each level we will show the table and posting models.

1. Bin Code: Using the Bin Code field in the sales and purchase document
enables the system to start creating warehouse entries.

2. Warehouse Receipt and Shipment: This allows us to combine sales shipments
and purchase receipts into one warehouse document. We cannot use the Pick
& Put-Away activities.

3. Warehouse Put-Away and Pick: For each purchase receipt or sales shipment
we can create a Put-Away or Pick journal.

4. Warehouse Receipt and Shipment + Use Put-Away Worksheet: This allows
us to implement a real two step Warehouse process. Receiving the items on a
staging location and create Put-Away documents to move the items to their
storage location in the warehouse.

5. Directed Put-Away and Pick: This is the full option WMS functionality in
Microsoft Dynamics NAV. We use Receipts, Shipments, Put-Aways, and
Picks. Microsoft Dynamics NAV will suggest the Bin Codes. We can use
Zones, Cross Docking and so on.

[262]

Chapter 6

Location setup

The setup options in the Location table (14) enable or disable the WMS options in

Microsoft Dynamics NAV.

This is done on the Warehouse tab (as shown in the following screenshot).
Each level requires a special combination of settings:

Warehouse

Require Receive:

Require Shipment:
Require Put-away:

Use Put-away Worksheet:
Require Pick:

Bin Mandatory:

OEOEEEHE

Directed Put-away and Pick:
Use ADCS:

e Level 1: Enable Bin Mandatory

Default Bin Selection: Fixed Bin -
Qutkound Whse, Handling Time:

Inkound Whse, Handling Tirme:

Base Calendar Code: -

Custemized Calendar: Mo
Use Cross-Docking:

Cross-Dock Due Date Calc:

e Level 2: Enable Require Receive, Require Shipment, and Bin Mandatory

e Level 3: Enable Require Put-away, Require Pick, and Bin Mandatory

e Level 4: Enable Require Receive, Shipment, Require Put-away, Require Pick,
Bin Mandatory , and Use Put-Away Worksheet

e Level 5: Enable Require Receive, Require Shipment, Require Put-away,
Require Pick, Bin Mandatory, and Directed Put-away and Pick

Warehouse employees

Before we can start the current user should be set up as a warehouse employee.

Microsoft Dynamics NAV

e

You rnust first set up user mark as a warehouse employee.

Page Warehouse Receipts must close.

This can be done by creating a new record in the Warehouse Employee table (7301).

[263]

Trade

Each user can be a warehouse employee in each location and can only
L= do warehouse actions in the locations that they are assigned to.

Bin code | level 1

The starting level of implementing WMS is using the Bin table. This is done by
enabling the Bin Mandatory field on the location.

The Bin Code field is available in all the necessary tables such as Purchase Line, Sales
Line, and Item Journal Line.

When the Bin Code is used, codeunit Item Jnl.-Post Line (22) will create a Warehouse
Journal Line and start the Whse. Jnl.-Register Line Codeunit (7301). This will result in
the creation of Warehouse Entries (7312) and a Bin Content (7302).

Example

We will create a new location ORANGE with a bin Binl. The Location uses the
Bin Mandatory option, as shown in the following screenshot:

i dg Edit - Location Card - ORANGE - Orange Warehouse e & Sessiomess & imslosiss s s S P =

’ Actions ~ EERe!ated Information ~

ORANGE - Orange Warehouse

General

Code: ORANGE Post Code:

Mame: T ANEC A e L Edit - Bins - Location ORANGE

Address: 4

4| Bins - lter &2

Communication || Sorting: Location Code,Code * %[Filter 'ORANGE'
Warehouse . _ . _
=
Require Receive: BN Binl [F
Require Shipment:
| Require Put-away:
Use Put-away Worksheet:
Require Pick:

e

| Bin Mandatony:

Use Cross-Docking:

Directed Put-away and Pick:

In a new purchase order we can now select this Bin Code and post a receipt.

[264]

Chapter 6

The system now creates a new record in the Bin Content table which enables us to
see the created Warehouse Entries as shown in the following screenshot:

Bin Code F...| D...
BIN1 T-SHIRT

Item Mo.

i View - Warehouse Entries - Item T-SHIRT

Item Mo.
T-SHIRT

Bin Code
BIMN1

Entry Type Zone Code

‘ Positive A,

Bin content

Source

10000

Source MNo.

106033

Source Do...

P. Order

ool e Quantity = Unit of Me...
SRS

Whenever a Bin is used for the first time, Microsoft Dynamics NAV will create a Bin
Content record. A bin content record is neither master data nor a ledger entry or
document. It is a special kind of table in the philosophy of Microsoft Dynamics NAV.

The C/AL code for the bin content handling can be found in codeunit Whse.

Jnl.-Register Line (7301).

To see which bins are used for an item at any moment we can open the Bin Contents
from the Item Card, as shown in the following screenshot:

| . Edit - Item Card - L5-120 . Loudspeaker, Black, 120W

E:E Related Information ~

Stockkeeping Units

Contents

..................... Sales 4 Entries b
General Purchases 3 Statistics »
No.: iia Iterns by Location
| Ttem Availability b
| Description:

| Base Unit of Measure:

| Bill of Materials:

| Shelf No.: , ACt:l(I‘.'HS M

| Automatic Ext. Texts:

SILVER

| Created From Monstock Item:

| Item Category Code:

Warehouse Entries -

A

Bin Code

Sorting: Location Code >

Entry Type Zone Code

Movement PICK ‘W-02-0001 L5-120
Movement PICK ‘W-02-0001 L5-120
i Movement PICK ‘W-02-0001 L5-120

Location Code Bin Code

Fixed
5-02-0001

~ W-02-0001

Type to filter

Filter: WHITE = "' - L5-120 - W-02-0001 - PCS

D.. V.. Quantity UnitofMe.. SourceDo.. SourceNo. SourceLin
22 | PCS
-6 | PCS 5. Order 2019 30000
-8 | PCS 5. Order 2020 20000

[265]

Trade

The warehouse entries can be displayed by clicking on the Quantity (Base) field.

The Warehouse Entries are only used internally by the program and
s are difficult to find in the end user interface.

Receipt and shipment | level 2

When we enable Require Receive and Require Shipment in the Location we can
start using the Warehouse Receipt and Shipment Documents.

These documents allow us to receive or ship multiple purchase or sales orders in
one document.

Let's have a look at how this is done in the application:

I ™
¥ |
~ -~ o - B =
Whse, -Sal Warehouse
Sales Header - B) e Sales-Post
. - A Release Shiprment Line R
ahle 3k H nit A
! 3 {Codeunit 5771y (Table r3a1) e
l y l - -
T = r-"'— = e /’J = /"J -
W Whse, -P
Release Sales | |warehoues Request Get Source) Varehouse se,-Post
Document — . — Documents | Shipment Header Shipment
[Codeuntt 418 (Tekle 5765 {Report 5753k (Table 7320} (Codeunit g7E3)
', S .
rs
r
-, -, - - ; -
Release | Whse.-Create)
Purchase Whse -Purch. Source Warehouse Receipt Whse, -Post
D S — Release D Header L Receipt
. iCodeunit gr7aj . {Table 316} PCodeunit crbo}
T eleiinit 4454 ICadeunit 57500 J
r y
. - - -
Warehouse Recei
Purchase Header Line g Purch.-Post
[Tahle 38) - {Codeunit ga)
ITable 73371
L

£ ' |

Warehouse request

All warehouse documents start with a record Warehouse Request table (5765).
These records are created when a sales or purchase document is released.

[266]

Chapter 6

The warehouse receipt or shipment can be created in three ways.
1. Using the option Create Whse. Receipt or Create Whse. Shipment from the
Purchase and Sales Order.
Using report Get Source Documents (5723).
Using the option Get Source Documents on the Warehouse Receipt or
Shipment Card.

The first two options will create a new warehouse document for each sales or purchase
document. The latter allows us to combine orders in one warehouse document.

| .4y Edit - Warehouse Receipt - RECO0007 mw\'w,ﬁ:m o e Py o R

: r . z i
Adtofil Qty. Post Postand Post and Print By Posted Whee Receipts |

i to Rece| Receipt Print Put-away g Calculate Cross-Dock

Process

REQOOOO7

i :
[General al | Item De

|

- I
Mo.: REO00007 Vendor Shipment No.: | Ttem No
——— | Identifie
Location Code: LEVELZ - Assigned User ID: - | .
| BaseUni

Limitations

Using only the warehouse receipt and shipment document is basically just adding
one layer on top of the sales and purchase document. The posting routines,

Whse. Post Shipment (5763) and Whse. Post Receipt (5760), does not actually post
something to the warehouse, they just write back the bin code to the Sales Line and
Purchase Line table. Technically this uses the same C/AL code as level 1.

We can see how this is done by looking at the function InitSourceDocumentLines
of, for example, codeunit Whse. Post Receipt (5760).

InitSourceDocumentLines

WhseRcptLine2.COPY(WhseRcptLine);

WITH WhseRcptLine2 DO BEGIN

CASE "'Source Type'"™ OF
DATABASE: :""Purchase Line":
BEGIN
PurchLine.SETRANGE("'Document Type',"Source Subtype'™);
PurchLine.SETRANGE(''Document No.","Source No.");
IF PurchLine.FIND("-") THEN
REPEAT

[267]

Trade

IF PurchLine."Bin Code'" <> "Bin Code" THEN BEGIN

PurchLine."Bin Code"™ := "Bin Code";
ModifyLine := TRUE;
END;

IF ModifyLine THEN
PurchLine .MODIFY;

When the source tables are updated the system creates a normal purchase receipt or
sales shipment using codeunits Sales-Post (80) and Purch. Post (90).

Put-Away and Pick | level 3

Instead of creating a warehouse receipt or shipment we can also directly create a Put-
Away or Pick from the sales or purchase order.

To enable this we need to activate the options Require Put-away and Require Pick on
the Location Card.

i f P t r
'Whse -Sales Create Warehouse Activity
Sales Header Invertary Put-
{Table 36) r pool away Header
SR Codeunit 577l {Tabla 5365)
L 1 (Cadeurit r3zil J J
L 4 l T l
-
| | Create Invt. L
Release Sales Warchouse Recpest Pty | wgrelmug Aclivity
Document —) —) Line
[Codeuntt 444 Table 5785) i ITabile 57570
r \ /A . (kepart 73231 it I J: I J
. =y .f‘_T_ ™, ’ =y T
f f
PRELQ::SEE Whse.-Purch, Warshouse Joumal Whse.-
D:trumenl + Release Line + Activity-Post
[— [Cod=unit 5772} iTabl= ;3220 {Codeunit 7324)
unit 415 P .
S i
L ¥
S) s N
Purchase Header | |Purchase-Past Sales-Post
Mahle 38} ™ l {Cadewnit go) [Cadeunit Sal
e e

[268]

Chapter 6

Warehouse request

The Warehouse Request record is exactly the same as in level 2, but instead of
creating a warehouse receipt or shipment the system directly creates a warehouse
activity header and line.

Warehouse activities

The Warehouse Activity Header and Line table are the internal Microsoft Dynamics
NAV Warehouse documents. There are five types of warehouse activity documents:

e Put-away: This document is used to move items from the receipt bin to a
put away bin. The document is generated from a warehouse receipt.

e Pick: This document used to move items from a storage bin to a shipment
bin. The document is generated from a warehouse shipment.

e Movement: This is an internal document that is used to move items
internally in the warehouse.

¢ Invt. Put-away: This document is used to receive items and put them directly
into the warehouse on their permanent bin. The document is created from a
warehouse request.

e Invt. Pick: This document is used to ship items directly from the warehouse
in one step. The document is created from a warehouse request.

When only using the Require Put-away and Require Pick option on a location,
document types Invt. Put-Away and Invt. Pick are used. This will make sure

that the purchase order and sales order will also be processed by starting codeunit
Sales-Post (80) and Purch. Post (90).

Level 2 and level 3 comparison

Both level 2 and level 3 set up options are one-step warehouse implementations.
When receiving an item we must provide the storage bin where the item will be
stored until it is sold. There is no additional step.

Using the warehouse receipt and shipment documents allows us to combine sales
and purchase documents on one warehouse document. This cannot be done using
direct Put-Away and Pick.

Using Direct Put-Away and Pick we can split one sales line or purchase line into
multiple Bins. This cannot be done using warehouse receipt and shipment documents.

The reason for this is the way the warehouse entries are created. Level 2 uses the
bin field in the item journal line to create the warehouse entries.

[269]

Trade

Using level 3, the warehouse entries are created using codeunit Whse.-Activity-
Post (7324). The bin code is not written back into the sales line or purchase line.
This means we also cannot use the bin code field in the purchase receipt and sales
shipment documents.

Receipt + use put-away worksheet | level 4

Most warehouses use a two step receipt and shipment process. The first step is
receiving the items on a receipt location which is often close to the unloading
docks. In the next step the items are stored in their warehouse location until they
are required for the production or sales process.

To enable this two step process we can combine level 2 and 3 by using the options
Require Receive, Shipment, Put-Away and Pick + Bin Mandatory + Use Put-Away
Worksheet in the location card.

This allows us to first perform the warehouse receipt and shipment as discussed
in level 2. When we process this document it will not only post the sales order and
purchase order but it will also generate a record in the Whse. Put-Away Request
table (7324).

4 Receipt
L
¥ A
' i
Gel Saurce Warehouse Receipl
hase Head Wareh R t : h.-Past
Purchase Header arehouse .Pques e Line L Purc| 5
(Table 325 {Table 5p4c) {Cadeunit go)
(Report spe3h Tabde rzazl
e iy . e e o
& -
r 4|t r L
Release N g Whse_-Create N s)
‘Whse.-Purch.) Warehouse Receipt Whse -Post
FlEs: Release skl Header Receipt
Docurnent Dacument) P)
) (Codeunit s77a) {Table 7316) [odeuntt 5p6a)
(Cadeunil L1g) J {Codeuril grgod
. >/
-
Put-Away |
e) r ™y _ ' ™y
:ft':sﬁ . Warehause Activity '-'-"I’\-Sg.r:;}:rce Whse. Worksheet ‘Whse_ Put-away
ity +— Line -+ Line Request
Register Dacument i i
oot 73071 [Table 23571 theport ; [Table rya6) [Table y32c)
D SR B i l
) ' ™y r Y
‘Warehouse Journal Warehause Activity Create Put- Ge;g'ul':?:nd Get Source
m Ih.lme } -TH:id:;.] |¢o-daw?l- SR [:‘cm Jlnlzound
| able 7311 k‘- il 57 Eunit F3a3l I:H'C‘PDI" le‘l&] (Lodeunit 5751)
% &

[270]

Chapter 6

Whse.- activity register versus whse.-activity-post

When the whse.-put-away request is processed using the warehouse worksheet it
will result in a warehouse activity header and line. In this context the system will
use the Put-Away and Pick document type we discussed in the previous section
about level 3.

Technically the documents for level 3 and level 4 are equal, but there are
two differences.

1 Inatwo step warehouse set up the items are already in a warehouse entry.
This means we have to move them. This results in two new warehouse
entries but also two lines in the warehouse document.

2 The two step warehouse documents are not posted but registered. This
means that the system will only create warehouse entries and no longer
update the sales and purchase documents.

Directed put-away and pick | level 5

Combining warehouse receipts and shipments with Put-Aways and Picks completes
the table and posting diagram of WMS in Microsoft Dynamics NAV. But there are
additional options to enrich the functionality.

One of these options is directed Put-Away and Pick. When this option is activated the
system can and will help us in finding the correct bins for each warehouse activity.

Zones and default bins

This starts with defining Zones and default Bins. A Zone is a group of Bins.
Usually they are located near each other physically but more important, they
share some properties.

For each zone we need to specify if it is allowed to receive, ship, Put-Away, and
Pick. This is done in the Bin Type list.

[271]

Trade

While defining the bins, it is recommended to use a logical name such as R-01-001
for receipt row one, shelf one.

Bins &
Receipt Adjustment
Receipt Bin Code: W-08-0001 - Adjustment Bin Code: W-11-0001 -
Shipment Cross-Dock
Shipment Bin Code: W-09-0001 - Cross-Dock Bin Code: W-14-0001 -
Production Bill of Material
Open Shep Floor Bin Code: W-07-0001 - Inbound BOM Bin Code: v
Inbound Production Bin Code: W-07-0002 - Outbound BOM Bin Code: -
Outbound Production Bin Code: W-07-0003 -

The default bins are set up in the Location Card on the Bin Tab. These bins can
always be changed on each document.

Bin calculation

The bin calculation is done for the put-away documents using templates. This
template defines the rules for finding the correct bin to store the items.

4 Edit - Put-away Template - SO lﬂlﬁlg

STD

General -
Code: STD Description: Standard Template

Lines Foon

Find Fixed Bin Find Floating Bin = Find 5ameltem Find Unit of Me.. | Find Binw. Less... Find Empty Bin = Description

OooEoE=E
EEEEOO
1 =y = =
1 R s Ry =) R = 5
BEEEOE
OFED @ @3

The find options are stored in the Put-away Template Line table (7308).

¢ Find Fixed Bin: The system will try to find a bin which is fixed.
A fixed bin is usually reserved for a specific Item.

e Find Floating Bin: This will try to find the first available bin.

[272]

Chapter 6

e Find Same Item: This will filter on an available bin that already contains
this item.

e Find Unit of Measure Match: This option can be used if parts of the
warehouse are designed to handle a specific kind of carrier such as euro
or us pallet.

e Find Bin w. Less than Min. Qty: Use this option to find bins what are not
fully used. If this option is not used with the Find Same Item it might result
in two items in the same bin.

e Find Empty Bin: This option will make sure we find an empty bin.

The C/ AL code that handles the bin calculation is located in the create Put-Away
codeunit (7313). Let's have a look:

Code()

IF Location."Directed Put-away and Pick™ THEN BEGIN
BinType.CreateBinTypeFilter(BinTypeFilter,2);
REPEAT

QtyToPutAwayBase := RemQtyToPutAwayBase;

IF NOT (PutAwayTemplLine."Find Empty Bin' OR
PutAwayTemplLine."Find Floating Bin™) OR
PutAwayTemplLine."Find Fixed Bin' OR
PutAwayTemplLine."Find Same Item' OR
PutAwayTemplLine."Find Unit of Measure Match™ OR
PutAwayTemplLine."Find Bin w. Less than Min. Qty"

THEN BEGIN

//Calc Availability per Bin Content
IF FindBinContent(*'Location Code","ltem No.",
"Variant Code",WarehouseClassCode)
THEN
REPEAT
UNTIL (BinContent.NEXT(-1) = 0) OR EverythingHandled
END ELSE BEGIN

//Calc Availability per Bin
IF FindBin("'Location Code",WarehouseClassCode) THEN
REPEAT
IF Bin.Code <> "Bin Code" THEN BEGIN
END;
UNTIL (Bin.NEXT(-1) = 0) OR EverythingHandled
END
UNTIL (PutAwayTemplLine.NEXT = 0) OR EverythingHandled;

[273]

Trade

For each record in the Put-away Template Line table the system will try to find a
bin. This means that if the rules of the first template line fail, it will use the second
template line and so forth.

The two options Find Empty Bin and Find Floating Bin eliminate using the others. If
these are true the system will call the FindBin function. For the other options it will
use the FindBinContent function.

Implementing and customizing warehouse
management

As there are many ways to setup WMS in Microsoft Dynamics NAYV it is important
to make the correct decisions in the start of the implementation. Moving the system
from one strategy to another is quite a challenge.

It is therefore important to discuss all possibilities and compare them to the
way your company works.

A common mistake when implementing WMS software is trying to solve procedural
issues with a computer system. The simple rule is: "If it does not work without a
computer system, it will most certainly not work with a computer system".

Customizing and changing WMS should be done very carefully since the data flow
is very complex, especially for Microsoft Dynamics NAV standards.

Reservations

In Microsoft Dynamics NAYV it is possible to do reservations on inventory. This
can help us managing our inventory more effectively. Let's discuss the reservation
process with a customer scenario.

Scenario

One of our customers orders 100 black t-shirts of size M on January 27th 2011.
Currently we have 120 on inventory so we can ship them without problems. The
customer wants to have them delivered in October on the 18th. We enter a sales
order with the shipping date and release the order.

The next day another customer calls for 40 black t-shirts of size M. Our inventory is
still 120. This customer wants to have them delivered on the 31st of May. We enter
the sales order without a warning.

[274]

Chapter 6

Lastly, we will create a new sales order for 90 of the same t-shirts with a delivery
date of July 25th. Now we get this error message:

-
Edit - Check Availability |9 [z
Check Availability
L] The quantity on inventory is not sufficient to cover the net change
L. in inventory. Do you still want to record the quantity?
Details =
No.: RES1
Description: Reservation 1
Inventory: 120
Gross Requirement: 130
Scheduled Receipt: 0
Current Quantity: 90
Total Quantity: -100
Earliest Availability Date:
Substitutes Exist: No
Unit of Measure Code: PCs
[Yes l I No]

And if we now go back to the second sales order and re-enter the quantity we will

see a similar message.

Check-avail. period calc.
The reason this happens lies in the way Microsoft Dynamics NAV calculates the

gross requirement.

4 Edit - Company Information

Company Information

General
Shipping
Ship-te Name: CRONUSIn..
f Ship-to Address: 5 TheRing
Ship-to Post Code: W2BHG -

Ship-to City: London -

Location Code: -

Related Information -

Responsibility Center:

Check-Avail. Period Calc: 90D

Check-Avail. Time Bucket: Week

Cal. Convergence TimeF.. 1Y

[275]

Trade

This is a two step method where first the requirement is calculated until the
shipment date of the sales line and then a look-ahead function is called
using a date formula which is defined in the Company Information table.

The C/ AL code that is used to calculate the look ahead can be found in the
function QtyAvai labletoPromise in codeunit Available to Promise (5790).

QtyAvailabletoPromise
Item_CALCFIELDS(Inventory, Reserved Qty. on Inventory™);
ScheduledReceipt := CalcScheduledReceipt(ltem);
GrossRequirement := CalcGrossRequirement(ltem);

IF FORMAT(LookaheadDateFormula) <> *" THEN BEGIN
GrossRequirement :=
GrossRequirement +
CalculatelLookahead(
Item,PeriodType,
AvailabilityDate + 1,

If this look-ahead functionality is not detailed enough we can start using the
reservation process.

Always versus optional reservation

The reservation option can be activated on the item level and the customer level, and
can be set to Never, Optional, and Always, as shown in the following screenshot:

N
_ 4 Edit - Itemn Card - 70000 - Side Panel | D |

f Actions - {B Related Information -

70000 - Side Panel

General 70000 | PCS | 4202 v
Invoicing FIFO | 30,70 | RAW MAT | RAW MAT v
Replenishment Purchase v
Planning A
Reordering Policy: - Safety Stock Quantity: 0
Include Inventory: Reorder Point: 250

Reserve: Reorder Quantity: 0

Order Tracking Policy: Maximum Inventory: 0

Stockkeeping Unit Exists:

Critical

Minimum Order Quantity: 0

[276]

Chapter 6

Let's see what these options signify:

Never: Reservations on this Item or Customer are impossible. If the Item is
Reserve Always and the Customer Never, the Item wins.

Optional: It is possible to reserve items for this customer; however,
salespersons and warehouse employees can decide to overrule the reservation.

Always: Shipping is not possible without a proper reservation. If the demand
is larger than the supply the salespersons and warehouse employees must
make manual decisions of who gets what.

Reservation entries

Microsoft Dynamics NAV uses the Reservation Entry (337) table to store the
reservation entries.

Reservation entries can be connected to all outstanding documents and journals,
and posted entries. This is done using the source fields:

Source Type: An integer field representing the table the record is linked to,
for example 37 means sales line and 5406 prod. order line.

Source Subtype: An option field which is linked to the document type field
when the record is linked to a sales line or purchase line record or the status
of a production order.

Source ID: The link to the document no. of the record this line is linked to.

Source Batch Name: If the record is linked to a journal this field represents
the journal batch name. If this field is used the source ID is empty and
vice versa.

Source Prod. Order Line: When the record is used for a production order
line or component this field represents the production order line number.

Source Ref. No.: An integer field which is used to link the record to a line no.
in a document or journal or the production component. If the line is linked to
a ledger entry this field represents the entry no. field.

There are four types of Reservation Entries in Microsoft Dynamics NAV represented
by the Reservation Status field:

Reservation: These are 'real' reservation entries, which means that a part of
the current or future inventory is reserved for a production order or sales
order. If the item uses the Always reservation option it is not possible to
work around this. If the reservation is optional it is possible that someone
else might still use these items in another process.

[277]

Trade

e Tracking: This option is used by the Order Tracking Policy option in
Microsoft Dynamics NAV. This is an 'under water' process that can link
supply and demand automatically. The status Tracking means that there
is a supply as well as a demand.

e Surplus: This option is used for both item tracking as discussed in Chapter
5, Production, and the Order Tracking Policy. The records can be identified
by using the value of the item tracking field. This is set to None for Order
Tracking Policy records and Serial No., Lot No. and Lot and Serial No. for
item tracking.

e Prospect: When item tracking is used, a prospect reservation records
indicates an internal journal action, for example, assigning a serial number
to an item journal line.

Creating a reservation

Let's go into the application and create a reservation to see what entries we get in
the database.

We will do this using a new item. The item should have a Description, Base Unit of
Measure and a Gen. Prod., VAT Prod., and Inventory Posting Group. The default
value for Reserve is Optional which we will use for this example. The default costing
method is FIFO which we will also use.

To demonstrate the real value of reservations we should create two purchase orders
with different dates and unit costs. With FIFO the system would normally apply the
sales order to the first item ledger entry. We will reserve on the second item ledger
entry to demonstrate the impact on item costing and application.

When this is done we can create a new sales order with one sales line containing
the item and half the inventory and select Functions | Reserve...

In this screen we can take a look at the available inventory by clicking on Available
to Reserve.

[278]

Chapter 6

1014 - The Cannon Group PLC

Auto Reserve from Cancel Reservatior Available Reservatio
Reserve Current Line - from Current Line . to Reserve T

Process

General \
Itern No.: RESTEST \ Quantity to Reserve:

Shipment Date: 30-9-2011

Customer Sales

Customer No.:
Reserved Quantity: Quotes:
Blanket Orders:

Orders:

Summary Type Total Quangitf Total Reserve.. Qty. Allocated in... Total Available. (urrEntREsEr.\ Tvoices:
100 100
4
| Credit Memos:
@

Description: Unreserved Quantity:

Ttem Ledger Entry Return Orders:
Pstd. Shipments:

View - Available Ledg. Entries - Order 1014 RESTEST.
Pstd. Invaices:

(%) Show more fields Ptd. Return Rec.

Rela1 4 Information

— — e ‘ Pt Credit Mo
| | Available - Item Ledg. ‘ > | Entry Type - —
Sorting: EntryNe. ¥ Zlr Filter: >0 - Yes » Yes No » BLUE - ' « RESTEST Price Excl. V...\, Line Amount Exc. Lot K
o S e IR FOST—— AN S =
GetL, t. rder v
Purchase 107039 BLUE 1-9-2011 50 0 5 N i
. 5| Explode oM
e 4| Puchase 10740 BLUE 30-9-2011 50 0 ey =
Variant Code: Insert Ext. Texts 41 sott..
et o T e B
fl I, T T Order Tracking Part

Nonstock ltems Customize...
=
T

Here we select the second receipt and select Actions | Functions | Reserve.
Then we close the screen.

In the sales order lines we can now see the Reserved Quantity being 50 as shown in
the following screenshot:

| Lines
Type MNo. Description Location Code Quantity | Reserved Qua... | Unit of Meas... L
Ttemn RESTEST Reservation Test BLUE 50 50 | PCS

Let's have a look at the reservation entries created in the database by running the
table from the Object Designer.

Entry Mo, Positive Item Mo. Location ... Quantity (Base) Reservation Status Creation ... Source Type 5... Source ID Source Ba... Source P
13 RES1 BLUE -10 [270111 371 1010
13 v RES1 BLUE 10 Reservation 27-01-11 320

A reservation entry of the type Reservation always uses two lines with the same
Entry No. The Source Type for the first entry links to the Sales Line table (37) and the
second uses the Item Ledger Entry Table (32) as shown in the previous screenshot.

[279]

Trade

We ship and invoice the sales order and look at the Item Ledger Entries for out item:

My View - Item Ledger Entries - Item RESTEST Reservation Test

, Actions ~ |E Related Information -

Item Ledger Entries - Type = | Posting Date

Sotting: EntryNo. v %]+ Filter: RESTEST

W Posting Date Entry Type Document... Document.. Ttem Mo, Location C... Quantity Invoiced Qua... | Remaining Qu... | Sales Amount ... Cost Amount ...

1-8-2011 Purchase Purchase R... 107039 RESTEST BLUE 50 50 50 0,00 5.000,00
30-9-2011 Purchase Purchase R... 107040 RESTEST BLUE 50 50 T 0,00 7.500,00
30-9-2011 Sale Sales Ship... 102040 RESTEST BLUE -50 -50 0| 10.000,00 -5.000,00 |

We see that Microsoft Dynamics NAV has used the second item ledger entry, but the
cost is 5000, not the 7500 from the second entry.

i View - Item Ledger Entrigs - rem RESTEST ResenationTest.. . . @ i 0 0 o

& actions - B Related Information ~

Item Ledger Entries - | = | Posting Date

Sorting: EntryMo. v %lr Filter: RESTEST
Posting Date Entry Type Document... Decument... ltem No, Description Location C... Quantity Invoiced Qua... Remaining Qu... Sales Amount..] CostAmount.. [0
1-8-2011 Purchase Purchase R.. 107039 RESTEST BLUE 50 50 50 0,0 5.000,00
30-9-2011 Purchase Purchase R.. 107040 RESTEST BLUE 50 50 0 0,00 7.500,00
092011 Sale Sales Ship.. 102040 RESTEST BLUE -50 -50 0 10.000,0 -7.500,00

e

i View - Value Entries - Item Ledger Entry 335

& Actions ~ ([Related Information

Value Entries ~ > Posting Date

Sorting: Item Ledger Entry No,Entry Type = %[Filter: 335
Posting Date ktemLedg.. EntryType Adjustment Document.. Document.. L. D.. S.. C.] CostAmount.. [.4€% HemledgerE.. Valued Quantity Invoiced Qua..
2092011 Sale Direct Cost & Sales Invoice 103025 L. | %} 500000 [h. J.. 50 50 50
092011 Sale Direct Cost Sales Invoice 103025). | 3 250000 [h. J.. 0 50 0

To correct this we run report Adjust Cost - Item Entries (795) and have another look
at the Item Ledger Entries and the Value Entries to see that it is corrected as shown
in the previous screenshot.

Order tracking policy

We have seen that reservation entries are not only used for the reservation
process of inventory and item tracking but also for balancing supply and demand.
This is an internal option within Microsoft Dynamics NAV that allows us to link
inventory internally.

The entries are used in the supply and demand calculation to create the
Requisition Worksheets.

[280]

Chapter 6

Example

Let's create a copy of our reservation test item to see the differences between
reservations and item tracking. This new item should have the Order Tracking,

Policy Tracking and Action Msg.

We will create two purchase orders with both a quantity of 50 without receiving
them and create a sales order for the same item with quantity 80.

A4y Edit - Sales Order - 1015 - The Cannon Group PLC

%.

, Actions ~ Eﬂelated Infi

1015 - The Cannon Gro

Edit - Order Tracking - Order 1015 TRACKTEST

General e
Ttern Mo. TRACKTEST Ending Date: 1-10-2011

os Starting Date 1-10-2011 Quantity:

Sell-to Customer No.: Untracked Quantity:

SelptolGu=tormeythme MName Demanded by Starting... Ending .. [Quantity Jtem No.
i Sell-to City: Requisition Line REQ ...~ CURRENTLINE 1-10-2011 1-10-2011 -30 JRACKTEST

Posting Date: Purchase Order106039 ~ CURRENT LINE 1-10-2011 1-10-2011 -50 FRACKTEST =
i Order Date:
" | Lines R e
I B Type - . Nr:». Descnpti;}n Q.ua;'ﬂ: t\r. l..ll:lit of... l..l.nit

fitem| ~ TRACKTEST Item Tracking Test Get Price..,

Reserve,

2l

Sort...

Choose Columns...

Order Tracking ”:Part

T Monstock ems

T Customize...

If we now select Order Tracking from the sales line Functions we will see that the

system matches supply and demand.

Let's have a look at the reservation entries

Reservation Entry - Tabel

Entry No. Positive Item No. Location ... Quantity (Base) Reservation Status Creation ... Source
45 v TRACKTEST BLUE 20 Surplus 30-09-11
47 TRACKTEST BLUE -50 Tracking 30-09-11
47 v TRACKTEST BLUE 50 Tracking 30-09-11
43 TRACKTEST BLUE -30 Tracking 30-09-11
4 48 v TRACKTEST BLUE 30 Tracking 30-09-11

Type S... Source ID Source Ba... Source F
1 106033
371 1015
1 106039
371 1015
39 1 106033 |

We can see that Microsoft Dynamics NAV is now using the Surplus and Tracking
types. The 20 items we have left are not linked to a demand.

[281]

Trade

Let's start the requisition worksheet for this item and see what Microsoft Dynamics
NAYV can do with this information.

Replenishment

Let's change the reordering policy of the item to Lot-for-Lot and run the Requisition
Worksheet for this item.

(Planning -~
Reordering Policy: Im-ﬂ)r-l_ot—v Safety Stock Quantity: | 0|
Include Inventory: Reorder Point: | 0|
Reserve: Optienal v Reorder Quantity: | 0|
Order Tracking Policy: Tracking & Action Maximum Inventory: | 0|
Stockkeeping Unit Exists: No Minimum Order Ouantitv: 0

This will result in the suggestion to combine both purchase orders into one
document with a different quantity.

—

A Edit - Req. Worksheet - DEFAULT . Default Journal Batchz :

E Related Inforr
85 Calculate Plan
B Carry Out Action M e & Hem Tracking Lines % Status

® Order Tracking & Inventory - Availability Plan

Mame: DEFAULT - —
Type Mo Action Mess... A.. Description Original Qu... ™8 Direct Unit Cost = Original Due...
T ~ TRACKTEST Change Qty. Item Tracking Test 50 0,00
0,00

Item TRACKTEST Cancel Item Tracking Test 50

Options

Starting Date: R
Ending Date: 31-12-2011 -
Use Forecast: 2011 .
Exclude Forecast Before: -

[282]

Chapter 6

Trade in vertical industries

Microsoft Dynamics NAV is used in many different vertical industries that often
require specific features. Rather than trying to implement all these features in the
standard product, Microsoft Dynamics NAV supports the framework, and allows
developers to design and create vertical features.

For these features the 80/20 rule applies. Microsoft delivers 80% of the framework
which costs 20% of our time to implement. The missing 20% of the functionality is
developed at a cost of 80% of the budgeted time.

In this chapter we will discuss how Microsoft Dynamics NAV is used for trade
in five different vertical industries. For each industry we will discuss two specific
vertical features and how they could be solved.

Most industries have solid add-on solutions available designed

by certified Microsoft Dynamics NAV partners that have been
% implemented at multiple sites. It is highly recommended to look at

those add-on solutions instead of reinventing the wheel and rewrite

an add-on that already exists.

Fashion

The Fashion industry has trade periods within the seasons. During the spring,
shops need to order the collection for the next winter and in autumn they buy
summer clothes.

Sales orders

The sales orders for each collection are created as normal sales orders but with a
shipment date in the future, sometimes six months or more ahead. When using
variants there should be a separate sales line for each variant, meaning size and color.

This can be quite a hassle to enter for sales people so we could speed this up using
a template sales line for the main item and hide the individual sizes.

Using a matrix where the x-axis represents the size and y-axis the color, sales people
can quickly enter the quantities. When the matrix is closed we can update the hidden
sales lines.

These hidden sales lines are used to calculate the production orders as discussed in
Chapter 5, Production.

[283]

Trade

Reservations

When the production orders return from the factory, the warehouse and sales people
need to decide which customer gets the items first. This can be done using the
shipment date but that might not be completely fair if one customer orders in time,
meaning six months ahead, and another customer orders too late with an earlier or
the same shipment date.

This is where we can start using reservations. The reservations already support
variants but the auto reserve functionality of Microsoft Dynamics NAV might not
just do what we like.

Changing this functionality is a complex task. The C/ AL code for AutoReserve
can be found in codeunit Reservation Management (99000845) but should only be
changed by experienced developers.

Fortunately Reservations are layered on top of the normal Inventory, Production,
Purchase and Sales process. If we change the algorithm we can remove the current
reservations and retest the code to see if the newly created reservation entries are
good. This testing process should be done very carefully on a dataset that is small
enough to analyze using Microsoft Excel.

Automotive

Microsoft Dynamics NAV is used by many car dealer companies and garages
because there are some strong add-on products available for this vertical industry.

On top of the normal trade process supported by Microsoft Dynamics NAV these
companies have additional business requirements. Let's discuss two of them.

Vehicle Information

Each vehicle that is sold needs to be configured and ordered. The configuration
should be stored in the database for future maintenance and warranty.

We can compare this to Serial Numbers or the Lot No. Information table in the
standard product. We could create a new master data table called Vehicle and create
a record in this table for each car we configure or sell. The number we create for the
Vehicle can be used as a Serial Number in the Item Ledger Entry.

For maintenance we could have a vehicle journal that creates vehicle ledger entries
each time the car comes back for servicing. This helps us keep track of the history
and should include information such as mileage. The technical design of this solution
can be compared to the Squash application we created in Chapter 2.

[284]

Chapter 6

Parts management

In the automotive industry, using the right part is crucial. Different parts can be
used on different types of cars and parts often differ between brands.

Many vendors offer their catalogues in digital formats allowing us to create
interfaces with them. Parts should be defined as items using standard features
such as substitutions.

As many parts can be expensive and have low turnover rate, keeping them on
inventory can be expensive thus a minimum inventory should be maintained.

Parts can be connected to vehicle types. For example, a car interior mirror could be
used for five types of cars. When a service engineer wants to replace such a mirror
he can use a filtered item list of all available parts.

Pharmaceuticals/medicines

In a pharmacy or at another medicine supplier it is normal that not just every
customer is allowed to purchase any item. They cannot sell medicines against
cardiac arrhythmia to a healthy person.

Even when someone is allowed to use a certain medication it is often limited to
a certain number of doses.

People are often insured for the cost of these medicines but most insurance
companies require a contribution.

Medication card

Microsoft Dynamics NAV does not support item regulation. To support this we
should create new functionality that links items to customers but also allows us
to enter the doses and frequency.

From this template we could periodically create sales orders and shipments.
Whenever we ship the medicines we need to update the template.

[285]

Trade

Contribution invoicing

When customers need to do pay a part of the cost of the medication as their own
contribution we require the system to create two sales invoices for one sales order.

This is possible using the standard pre-payment functionality in Microsoft Dynamics
NAV. We could send a pre-payment invoice to the customer and handle the other
invoices to the insurance companies using combined invoicing. The pre-payments
will be automatically deducted from the invoice amount but the value entries on the
items will remain intact.

However the standard system does not allow us to create a pre-payment invoice to
another Bill-to Customer No. This would have to be designed and developed.

Food

Where fashion companies have two or three large ordering moments per year where
customers carefully consider what to order, most food companies have a daily
ordering process of high volume items.

This ordering process is often done by phone or fax where the retailer calls and tells
the call center employees what to ship the next day.

Assortment

Most food companies use an assortment of products. This assortment can change
from season to season or contain special action items but is usually stable since that
is what most consumers want. Meatballs on Monday and Pork Chops on Tuesday
and so on.

To save valuable time creating a new sales order with the same items each day we
could have the system do this at night.

This could be done using Standard Customer Sales Codes. This standard function
in Microsoft Dynamics NAV allows us to create template sales orders with multiple
items or other master data supported by the sales process. It also supports fixed
quantities that can be adjusted when the sales orders are created.

The sales order can be created from the customer sales codes using the function Get.
Std. Cust Sales Codes....

[286]

Chapter 6

_ 4 Edit - Sales Order - 1016 - The Cannon Group PLC 1 S
b AL . .. S T 1 T

’ Actions - E Related Information -

Sales Order
= | View Ctrl+Shift+V
Edit Ctrl+Shift+E 4
El| New Ctrl+N
h EE Document Date: 30-8-2011
7< Delete Ctrl+Del b
0000 - Requested Delivery Date: -
‘J Motes
3 Ihe Cannon Group PLC External Document No.:
Links Ctrl+L
ig Calculate Invoice Discount rson Code: Ps A
: Open -
Po-ting < Get Std. Cust. Sales Codes... z
Print 3

This function could be scheduled in the Job Scheduler to create new sales order each
night for the next day. We will discuss the Job Scheduler in Chapter 9, Interfacing.

Fast order entry

When the retailer contacts the call centre to complete the sales order the order entry
person should be able to quickly find the correct sales line. If the assortment contains
150 items this can be quite challenging.

This can be solved by implementing a fast order entry functionality that enables
users to key in an item number and quantity on the sales header. The values will
be updated in the correct sales line and blanked for the next entry.

With this functionality the end user can always work from the same place without
searching for the correct sales line.

Furniture

Furniture trading companies have similar issues with variants to the fashion
companies with some key differences.

Items such as office chairs and desks have far more options compared to clothes,
and when sold most consumers by a few with the same specifications rather than
a collection of different sizes.

[287]

Trade

Variant configuring

The price of furniture is dependant of the configuration, which fabric we want for
the seat, the type of armrest, or even the type of wheel. This configuration also
determines the item number.

An office chair or desk can have as much as 1200 possible combinations. We do not
want to register all these combinations as items or even as variant.

Most furniture suppliers offer online systems or small external software packages to
determine the combination. Once the combination is identified we can create a new
variant code or see whether the variant already exists and create the sales order.

One-off items

Furniture retailers often have many collections they can sell with thousands of items.
Most of the items in these collections will never be sold or as one-off items that are
only sold once to one customer.

In this case it does not make sense to create an item with an item cost and inventory
value but we want to have some traceability of the item.

This allows for two solutions. We could create a collection item which we can reuse
each time we sell an item that is similar to another item but not exactly the same, for
example, a lamp with a different foot color. On the sales line we create the possibility
for sales people to enter the vendor/ collection and an item category. The system
should then search for the template item.

Another solution is to create a new item runtime from the sales order. The sales
person will also select the vendor/collection and item category and the system
should show a list with items already in the database. If the item is not created the
system should create the item using a template for the posting groups and so on. The
sales person can immediately use it and we have traceability of the items we sold.

[288]

Chapter 6

Summary

With this chapter we end our quest to explore the production and trade functionality
around the items in Microsoft Dynamics NAV.

We discussed the application design of sales and purchase documents in Microsoft
Dynamics NAV and how they are mirrored. We've talked about the different
Document Types and how they work together from Quote or Blanket Order to Order
and Invoice or Return Order, and Credit Memo.

The sales and purchase line validation methodology helps us to calculate the pricing,
inventory, and VAT, using a special structure of functions that is linked to the way
end users create these lines.

Sales and Purchase orders have a mandatory release process that can be extended
with Document Approval and Prepayments.

The items have a two layer inventory process using Item Ledger Entries on Locations
and Warehouse Entries on Bins and Zones. We can use Transfer Orders to move
items from one location to another and Warehouse Documents to move items from
bin to bin and zone to zone. A Warehouse is set up done in the location and can have
different levels. The set up level should match the physical process in the warehouse.

Item Application and Costing is tied together with the Reservation process in
Microsoft Dynamics NAV. The Reservation Entry table adds a new level to the
inventory process linking documents, journals and entries together to level supply
and demand. When used, the reservation process can overrule the Costing Method.

At the end of the chapter we talked about different ways to implement this in
vertical solutions and what gaps would have to be solved and how. This
demonstrates the flexibility and the power of the standard transaction structure
in Microsoft Dynamics NAV.

In the next chapter we will take this to a new level where we will design and build a
real world vertical solution for Microsoft Dynamics NAV that will enable us to create
combine sales shipment in routes for trucks. We will also create a new solution on top
of Microsoft Dynamics NAV using the application as a development environment to
build something new with respect to the methodology of the application.

[289]

Storage and Logistics

In the previous chapters, we took a look at how companies work with ERP in
the Production and Trade businesses. All these companies work together to
bring finished products to the stores where end consumers can buy them.

During this process, the products move around between the companies. This is
done using different kinds of transportation, for example trucks, ships, trains,
and airplanes. It may also be necessary to store the products in a warehouse
until they are sold or moved to the shops.

More and more companies make a decision to outsource logistics rather than having
their own transportation. When this is the case, logistics can be a separate part of the
supply chain. This chapter discusses this process and the effects on the ERP system.

One of the specific aspects of logistics companies is that the products they handle are
not their property. Although they are a part of the total cost of the consumer product,
they don't care about the detailed value of their inventory. Logistics companies sell
warehouse handling, storage, and transportation as services.

Microsoft Dynamics NAV does not have built-in functionality to handle this so, in
this chapter, we will discuss how to design an application to do this.

There are several add-on solutions for this business and in a real world situation,
those add-ons should be evaluated as potential solutions. In this chapter, we will
discuss how to design and create a basic framework for such an add-on application
that can be easily extended without adding too much complexity.

The objects provided with this chapter should never be
implemented at a real customer scenario. They are for the

purpose of this chapter's examples only.

Storage and Logistics

After reading this chapter, you will have a better understanding of how to design
a solid add-on solution and how to integrate this into the standard Microsoft
Dynamics NAV product.

How to read this chapter

In this chapter, we will demonstrate how an add-on for Microsoft Dynamics NAV
should be designed. In this example, we create a solution for a Storage & Logistics
company. This is chosen because the functionality is similar to existing functionality
in Microsoft Dynamics NAV (Warehousing) and is a good example of building on
top of standard application features.

We will start by analyzing the business process and discuss reasons why we
won't use standard application features and explain the modules our new
application will have.

The next step is to go deeper into these modules and define the Table and Posting
model for each of them. We will then walk through the application like we did in the
previous chapters and reverse engineer it to explain how all the pieces where designed.

To do this, we need to download and install the application. As we progress through
the chapter, we will discuss most of the objects which can be opened and analyzed in
the Microsoft Dynamics NAYV classic client.

R Open the objects as we move along in the chapter to learn
more. The objects are rich in functionality which cannot all be
discussed in detail in this book.

Chapter objects

With this chapter, some objects and Dynamic-Link library (dll) files are required.
The appendix describes how to import and activate them.

After the import process is completed make sure that your current database is the
default database for the Role Tailored Client and run Page 123456701, Storage &
Logistics Setup from the Object Designer in the Classic Client.

From this page, select the option Initialize Storage & Logistics.

[292]

Chapter 7

The process

To design a solid solution for a specific market we first need to analyze the business
processes and see where the fits and gaps are with the standard product.

The companies that will be using this solution are logistics providers. These
companies do not buy and sell products but sell logistics services like transportation
and storage.

There can be various moments in the supply chain where these companies are
required. Products are often manufactured in companies all over the world and
shipped to consumers elsewhere. Products can cover great distances.

Manufacturing Process Wholesale Services Retailers
&
Customers

Raw Materials

Storage Services

[293]

Storage and Logistics

Using standard features

Microsoft Dynamics NAV, like many ERP systems, is designed for people to
handle their own products and supports the process of costing like we have seen
in the previous chapters. For logistics service providers, this inventory control and
valuation functionality is not necessary as the products are not their property. This
means that they would want to use the warehouse functionality without the Item
Ledger Entries which is very difficult in Microsoft Dynamics NAV.

Logistics service providers also offer transportation solutions. They will pick up
the products and deliver them to the customer. The process includes combining
different stops in routes resulting in a more cost efficient way of transportation.
This functionality is not available in Microsoft Dynamics NAV.

Defining the modules

In this chapter, we will design three new modules on top of Microsoft Dynamics NAV
that integrate with each other and could still be used separately. These modules also
integrate with the standard application though Sales and Purchase documents.

m
f Irrveacing E]l

—_—
Starage
S * Put-A . : | BE
Registration | ey Registration neome & Expense
Storage Recei shorane Sales & Purchase
o Pt Maverment — Shiprrent .
Document Do Dacument
. ‘hfj L %.—’
— S
Pick | Income & Expense
Entry

~,

Financial Mgt. .

p——— =
Logistics Lagistics Shipment Logistics .
e
Registration Document Raule > Analysis
. S

[294]

Chapter 7

Storage

The first part of the application is the storage module. This allows us to receive
and ship products and move them internally in the warehouse.

The design of this module is very similar to the warehouse documents in the
standard application that we discussed previously in Chapter 6, Trade.

Logistics

The logistics module supports the planning of routes delivering the products to the
consumers. This is integrated to the storage module, but can also be used from sales
shipment documents in the standard application.

For the design of this module, we have looked at the production orders in Microsoft
Dynamics NAV in Chapter 5, Production. The routes and shipments have a status field
that indicate the progress similar to a production order.

Invoicing

The storage and transportation services are then invoiced to the customer
periodically or when the products leave the warehouse.

For this, we will use the standard Microsoft Dynamics NAV invoicing solutions
but we will add a new Income & Expenses module in between the logistical solution
and the invoicing functionality.

We have looked at the design of Job Ledger Entries and how they are invoiced.
This will be discussed in the next chapter.

The storage application

In a storage warehouse, products come and go all the time. A big difference between
a storage company and a production plant is that the storage company does not care
about the exact products they have but the amount of space they require for storage.
The business is selling storage handling, storage space, and transportation.

For our application, we'll assume that our warehouse has a receipt and a shipping
region, an 'in between' staging region and a bulk storage region.

[295]

Storage and Logistics

If we simplify the warehouse it might look like this floor plan:

Office

——)
| E—

———— Staging
— BULK — & Receipt
—

Cross
Dock

—— Shipment j@
———— :

— ﬂ

e Receipt: When the products come in, they are first unloaded from the truck
into a receipt region. This is often located close to the unloading dock so the
truck can quickly move on to its next stop after the products are unloaded
and the loading documents are checked.

e From the receiving location, the products should be stored away as quickly as
possible since another truck might come and the space may be needed again.
The products can now go to either the staging region or the bulk region.

e Staging: The staging region is an in-between region where products can
be stored that will leave the warehouse quickly or when it is too busy to
properly store in the bulk area and we need the space in the receipt region.

e Shipment: When products leave the warehouse they will first be moved to
the shipment region. This allows us to quickly load the trucks when they
arrive and easily compare the loading documents with the real products.

e Bulk: When we expect products to be in the warehouse for a longer period,
they will be stored in the bulk area where we can define shelves. A shelf
can have a capacity for one or more products depending on the setup in
the system.

[296]

Chapter 7

Documents

The first step is to set up a registration of what will be coming to our warehouse
by creating the 'Receipt documents'. In the old days, we would often receive
this information by phone or fax, but today most companies use interfaces such
as EDI and web portals for this. This keeps us from making mistakes when
typing in the information in the system and allows us to automatically populate
the receipt document.

The receipt documents will be combined into 'Put-away documents' that register
the transfer from one region to the other. The software will also suggest a shelf to
store the products.

When the products leave the warehouse, our customers will also register a 'Shipment
document'. On their call, we will start the order picking process and combine the
shipments. The 'Pick documents' will tell us on which shelf the products are stored.

Incidentally, it may also be necessary to move products in the warehouse. This will
be registered in internal 'Movement documents'.

The storage documents are connected to the logistics document structure, which we
will see later in this chapter, while discussing logistics.

Look, learn, and love

In Chapter 2, A Sample Application we learned how to use a journal and entry
structure to register usage. In this chapter, we will continue with this and add
some document structures.

To design our application, we will look at how existing pieces of Microsoft Dynamics
NAYV are designed and reuse that.

Journal

The core of our application is the Storage Journal which is created from the same
template as the Squash Journal earlier. The difference is that people in a warehouse
use documents rather than journals.

Documents

We will support the five types of documents we discussed earlier; Receipt, Shipment,
Put-Away, Pick, and Movement. The documents can be created manually by

end users or they can be created automatically. We will also provide an interface
structure to allow customers to register receipts and shipments.

[297]

Storage and Logistics

As all the documents have the same structure and mostly the same fields, they are in
the same table to share business logic.

Al

~ Sharing the same table for multiple document types allows
easier sharing of business logic across the application.

This is also done in the standard Microsoft Dynamics NAV application for sales and
purchase documents as we discussed in Chapter 6, Trade.

Master data

To define what we are storing in the warehouse, we will use a new table called
Product which is similar to the Item table in the standard system. By creating a new
table, we will improve upgradability of our solution and we will be more in control
of our own application or in other words, less likely to be impacted by changes that
Microsoft may implement in the standard product.

Designing the table and posting schema

If we combined this information into a table and transaction structure, it would
look like this diagram:

" o~ o] = P =
(] Storage (Reqistered Starage
Restraticn y| StorageHeader | | | StoragePost | |) Header E
Register {Table 1235 ghiyaa) {Codew. 123506723} (Table 1334, 56735)
[Codeu, 1230562} | . -)
. ¥,
f i | !
- ~ N ™ ’
Storage
Registrelugtinn Storage Line Storage Journal Registered Storage
, Line Lime
I {Table 1334 5723}
rll.:.ﬁll.-;i'ﬁi'lsifl, e (Table 123456726) (Table 123456726}
2 v LS "y -
R -II . l N
r o -\ r
i Storage
Product Bill-to Custamar Journal Post Storage Register
{Table 1234 15 12) (Table 18] Line [Table 32305677)
) .) . [Codeu, 12305530 y, .
h
F ~ I - I's ~ s 5
‘Warehouse | . Region L, Shelf Storage Entry
(Table 133456710 [Tahle 3234567430 (Tabla-233456723) (Table 1734 shaa)
’ . - . A

The actual inventory is kept in the Storage Entries. By filtering on a warehouse code,
region code, or shelf number, the inventory can be calculated.

[298]

Chapter 7

Sharing tables

The storage and logistics add-on application also has some shared tables. It does not
make sense to have a product or warehouse table for each part of the add-on. We
also choose to share the setup and the cue tables for the role center definition. The
storage and logistics application has four role centers.

\ By sharing the cue table, it is much easier to place the same cues
~ on different role centers. If we were to create one table for each
Q role center, we would need to copy and paste the cue definition to
the table for each change request.

Getting started

In our scenario, we'll ship and receive products for a company called CRONUS
International Ltd. We have warehouses in Austria, Belgium, Czech Republic,
Germany, Great Britain, Iceland, Netherlands, Norway, Sweden, Slovenia, Slovakia,
and the USA.

Each warehouse has the same basic layout as explained earlier in this chapter.
From the warehouse, we plan routes to transport the products to the consumer.

After initializing the application and restarting the application, the Role Center
should look like this:

[299]

Storage and Logistics

The Activities window shows the workflow for the warehouse floor. My Products
contains all customer products we have on inventory and My Regions allows us to
see what inventory is where in our warehouses.

Opening balance

The opening balance was created using the Storage Journal. By using the journal to
create opening entries, we are sure that business rules are followed.

In our design, we decided that end users are not allowed to directly register
inventory on the bulk location. We start by receiving it, then we create a put-away
document to move it to the bulk location. We'll see how that is done later in this
chapter when we discuss the storage documents.

Have a look in the Page Storage & Logistics Setup (123456701)
e to see how this was done in the function CreateOpeningBalance().

Products

Products are references to the items of our customers that we keep on the inventory.
They contain a Bill-to Customer No. and a Customer Item No. This allows us, for
example, to keep item with number 10000 for two different customers.

We can also see and set up the Storage Prices for this product, which we will later
use for the invoicing.

[300]

Chapter 7

Warehouse

A warehouse is a physical building with an address. To move products from
one warehouse to another, we would need to ship them, create a route, and then
physically receive them in the other building.

Regions

A region is a part of the warehouse that is used for a specific storage activity.

In our example, we have a receipt, staging, bulk, and shipment region. To move
products from one region to another, we should create a put-away, movement, or

pick document.

[301]

Storage and Logistics

Shelves

A shelf is a specific part of a region. The specific code of a shelf often indicates its
position in the warehouse. For example: Our warehouses have two rows, A and B
with 18 lines and 8 levels where each shelf can contain one pallet.

Registration worksheet

The warehouse process starts with receiving products. To save time when the
products arrive on the dock, we ask our customers to register their products in
advance. This is done in the storage registration worksheet.

In our application, we have simulated an interface with our customer Cronus
International Ltd. We can start the interface from the Role Center directly.

1. We start the report CRONUS Storage Import Receipt from the Role Center.

2. The system pops up and asks for a Storage Registration Code.
3. We will choose CRONUS from the list and start the import process.
4. After this, we open the Registration Worksheets.

5. When we now open the registration worksheet, we see what CRONUS will
send us today. This allows us to prepare our business, maybe move around
some products and schedule resources.

[302]

Chapter 7

6. We can now register this worksheet which will create the receipt documents
for us.

Storage documents

We use documents to determine which product goes where. Creating those
documents in the system manually requires a large amount of work, so in our
application this is done automatically.

Receipt

By default all products that are received are stored in the RECEIPT region.
This region does not have shelves. If required, we can change the region code.

After we register the Receipt document, we have inventory in the RECEIPT location.

| My Regions 7oA
Warehouse Code Code Inventory =
+ DE 19,00
-1 GB 6.749,00
GB BULK 51,00
| GB . RECEPT 6.608,00 |
GB SHIPMEMT
GB STAGING

[303]

Storage and Logistics

Since this is a relatively small region, we need to move the products to the bulk
location as quickly as possible. This is done using a put-away document.

Put-away

A put-away document is used to move products from the receipt region into the
bulk region. The storage entries tell us what is in the receipt region, so we copy
that information into a new put-away document. These documents can be created
manually, and based on the warehouse information on the document, we can pull
the data into the document.

Another requirement is to have an automated process that creates put-away
documents based on the entire content of the receipt region.

To provide for this functionality, we have created report Receipts to Put-Away
(123456715). This processing-only report reads the storage entries for the receipt
region, and creates the put-away documents based on certain predefined rules.

The report filters down the storage entries based regions of type Receipt and
with inventory.

e

Report 123456715 Receipts to Put-Away - Report De.. E@
Dataltem Mame
Warehouse <Warehouse > »
Region <Region:=
Shelf <Shelf=
Storage Entry <Storage Entry >
Storage Entry StorageEntry2

It creates a put-away document for each warehouse suggesting the first put-away
region in the warehouse. For each Storage Entry, the function CreateLine
is started.

[304]

Chapter 7

Let's have a look at the C/ AL code for this.

CreateLineCreateLine()
FindOrCreateStorageHdr;

Region2.SETRANGE(**'Warehouse Code™);
Region2.SETRANGE("'Put-Away", TRUE);
Region2 _FINDFIRST;

WITH StorageEntry DO BEGIN
NextLineNo := NextLineNo + 10000;

StoragelLn."'Document Type' := StorageHdr.''‘Document Type';
StoragelLn._""Document No."™ := StorageHdr."*No.';
StoragelLn."Line No." := NextLineNo;

StorageLn.""No." := "Product No.";

StoragelLn."Warehouse Code™ := "Warehouse Code";
StoragelLn.""Region Code'" := Region2.Code;

The first step is to check if it is required to create a new storage document.
We create a new document for each Warehouse and Storage Date.

Then the system filters on the region table to find a Put-Away region. For each
Storage Entry, a Storage Line is created.

After running the report, our put-away document looks like this:

[305]

Storage and Logistics

The suggested Region Code is BULK and the Apply-to Region Code is RECEIPT.

If we now try to register this document, we should receive an error since we did
not enter any Shelves because this is mandatory on this region.

This check is done in the Codeunit Storage Jnl.-Check Line. By
moving these checks into this Codeunit, we make sure these rules
are mandatory in each posting.

Since we rely on the system to keep track of our inventory we can also have it
suggest available shelves for us. This is also done using batch report 123456716
Generate Put-Away Shelves.

Let's design the report and look at the C/ AL code in the Storage Line Datal tem.

Storage Line - OnAfterGetRecord()

Counter := Counter + 1;
Window.UPDATE(1, ""Document No.'");
Window.UPDATE(2,ROUND(Counter / CounterTotal * 10000,1));

Shel f_SETRANGE(*"Warehouse Code', *'Storage Line'."Warehouse Code™);
Shel f_.SETRANGE(*'Region Code™, ""Region Code™);

Shel f_SETRANGE(Inventory, 0);

Shel f_SETRANGE(*'Blocked by Storage'™, FALSE);

Shel F_FINDFIRST;

"Shelf No."™ := Shelf."No.";
MODIFY;

For each Storage Line in the put-away document, it finds another shelf by filtering
on availability based on Inventory and Blocked by Storage.

The Blocked by Storage field is a flow field that returns true if the shelf is used on a
Warehouse Document preventing two forklift trucks from stopping at the same shelf.

When this report is executed, we can register this Put-Away document and we can
see the Storage Entries that are generated from the Product Card using the Ledger
Entries Action.

[306]

Chapter 7

Here we can see that the Put-Away has applied its entries to the Receipt entries.
Since we moved everything, the original entry is closed and the remaining quantity
is set to zero.

This functionality is similar to what we created in Chapter 2, A Sample Application
when applying an invoice entry to a reservation.

Shipment

After a while, when the products are on inventory, the customer may send a
request to ship them. The shipping documents are sent using the same interface
as the receipt documents.

Running this will create the Storage Registration Worksheet which we can check and
register to a shipment document the same way as the Receipt Documents earlier.

[307]

Storage and Logistics

The system creates a shipment document for each Ship-to Address.

We now have to start the process of moving the products from the storage region to
the shipment region.

Picks

The products that will be shipped need to be picked from the bulk or staging region
using a Pick Document. As with the Put-Away functionality, our application design
provides an automated process that supports this process.

To create the document, we use batch report 123456717 Shipments to Pick.

Report 123456717 Shipments to Pick - Report Desig... | = || B |[#3]

Dataltem Mame
M- torage Heade |+ <Storage Header = »
Storage Line <5Storage Line >

This report can combine shipments into one or more pick documents.

Storage Line - OnAfterGetRecord()

Counter := Counter + 1;
Window.UPDATE(1, ""Document No.'");
Window.UPDATE(2,ROUND(Counter / CounterTotal * 10000,1));

Product.GET(*'No."");
Product.SETRANGE("'Warehouse Filter Code', "Warehouse Code');
Product.CALCFIELDS(Inventory);

[308]

Chapter 7

IF Quantity > Product. Inventory THEN
ERROR(Text001, Quantity, Product.lInventory, "No.');

QtyToPick := Quantity;

StorageEntry.SETCURRENTKEY("'Product No.");
StorageEntry.SETRANGE(*"Warehouse Code', ''Storage Header'."Warehouse
Code™);
StorageEntry.SETRANGE(*"'Product No."™, "No.'™);
StorageEntry.SETRANGE(Open, TRUE);
IF StorageEntry.FINDSET(TRUE) THEN REPEAT
StorageEntry.CALCFIELDS("'Blocked by Storage™);
IF NOT StorageEntry.""Blocked by Storage'™ THEN BEGIN
IF QtyToPick >= StorageEntry.Quantity THEN
QtyToPick := QtyToPick - StorageEntry.Quantity
ELSE BEGIN
StorageEntry.Quantity := QtyToPick;
QtyToPick := 0;
END;
CreatelLine(StorageEntry);
END;
UNTIL (StorageEntry.NEXT = 0) OR (QtyToPick = 0);

IF QtyToPick > O THEN
ERROR(Text002, "No.");

First the system checks if the products are on inventory in this warehouse. If they
are, it starts browsing though the storage entries to look for available shelves. Here
we also use the Blocked by Storage flow field to avoid two employees fighting over
the same products.

One of the functional requirements in our application is not to have half a shipment
be picked and block the SHIPMENT region being incomplete. If there is not enough
inventory available for the pick, the system should error out.

[309]

Storage and Logistics

After the pick is created, we update a field Pick Status on the Shipment. We can
see that there are three Pick Lines attached to this shipment.

When we click on the 3 the system opens the lines. Double clicking on the lines
will open the Pick Document.

a1

N To influence the double click event, assign the RETURN
shortcut to one of the actions on a page.

After registration of the Pick Document, the status of the Shipment moves to
Completely Picked. We can see that the Pick Lines are registered.

[310]

Chapter 7

The last step before the shipment can be registered is updating the Storage Lines
with the Apply-to Storage Entry No. from the Pick document. For this step, we have
designed a dedicated report Update Storage Shipment (123456718) that can be
started from the Storage Shipment document.

After this, the shipment can be registered. The products have now left our warehouse
and are on the road to the customer.

The logistics application

Similar to Production Orders in the standard application, the processes in our
logistics application are status driven rather than transaction driven. This is why
this part of the application does not have a journal with entries. The tables can have
archived copies but they are not part of a normal registering or posting routine.

For the examples in this part of the chapter, we should change the default
Role Center to Logistics Role Center (123456700) in the Profile
table (2000000072).

[311]

Storage and Logistics

Designing the table and posting schema

If we look at the structure of the logistics application, we can see that the typical
posting transactions are missing. The application uses a status-driven workflow
based on events which are defined in the triggers of the tables.

o~ n % Py ,-'—"\-\
[Combine (o
Optimizer

Shiprnents R Shipment R Raute Stop ‘ ¢ Dictarsae

isti [Table 133456701) 1Tablke Lagestro)
Logistics 345E701) FHIETT {Tabike 4334 557071
[Aepart 133456700} W | L |

J R S

. n %, s Y s &) . =
(Combine
) \ Riaute
Storage & |) Shipment Details Route Ot
Logistics [Table 12305652 [Table 123cchrog) P ®
[Aepart 13745670z} ICodew. 1235 56ma)
ks Pt 13345 iy i))

The logistics shipment and shipment details have a lot of similarity with the
shipments from the warehouse. Still we have chosen to move them into new
tables for the following reasons:

e Security: In Microsoft dynamics NAYV, the table level is the most important
for security. If we would share this table, it would be impossible to set up
users to have access to logistics and not to warehouse or vice-versa.

e Locking: If two departments use the same table for different purposes
they will most likely have a different locking mechanism. For example, in
logistics, shipments are bound to the route object. The warehouse shipments
are bound to other shipment documents.

e Filtering the same table in main processes in different ways will significantly
increase the probability of blocks and deadlocks.

e Table size: The storage documents are registered shortly after they are
created. Most documents are deleted and moved to registered tables the
same day that they are created. Logistics shipments have a longer lifecycle.

o [t takes longer to take the products from our warehouse to the customer and
during this process, many things can go wrong because of outside events.
The transport tables may be periodically cleaned up like Manufacturing or
Jobs in the standard Microsoft Dynamics NAV product.

[312]

Chapter 7

Getting started

To start the logistics process, we could create some shipments manually
but the application also provides an interface to the Sales shipments and
Warehouse shipments.

Let's start the option Combine Shipments (Sales) from the Activities on the
Logistics Role Center to generate some data to work with.

Shipments

Logistics shipments are products moving from one physical address to another
physical address.

In our example, the shipments from our warehouse to the customer are created,
but a shipment can also be from another address to a customer.

Tracking the status of a shipment is important for the planners. A shipment starts
with the status Ready to Ship as soon as all mandatory fields are checked.

When the shipments are combined into routes the shipment moves to the Shipping
status. During this stage, the products are picked up from the warehouse. When this
happens the Pickup Date Time is populated. This is done from the route.

After delivery the Delivery Date Time is populated and the status is set to Shipped.

The planners can follow the shipments from their Role Centers in a workflow.

Routes

Shipments are combined into a route. In order to make a product planning, it is
very important that the planners get the shipment details correct. The length, width,
height, and weight of the products determine if they can be combined into a truck,
ship, airplane, or train.

[313]

Storage and Logistics

Our example add-on system has a report to combine shipments into a route.
The shipments in a route will be combined into stops if they have the same
address information.

Combining shipments

This is done in report Shipment To Route & Warehouse (123456701). The shipments
are grouped per warehouse. For each warehouse, a new route is created.

For each shipment, the system creates a route stop. The stops have different types:
Pickup, Delivery, Pickup group, and Delivery group.

Each shipment then gets a Pickup and Delivery stop.

Shipment - OnAfterGetRecord()
IF Route.Description <> Warehouse.Name THEN BEGIN

Route.""No.™ = **";
Route.Description := Warehouse.Name;
Route."'Shipment Date' := WORKDATE;
Route.Status := Route.Status::Planned;
Route."Bill-to Customer No." := "Bill-to Customer No."';
Route."Bill-to Name" := "Bill-to Name";
Route. INSERT(TRUE);
i := 0;

END;

i := i + 10000;

RouteStop."Route No." := Route."No.";

RouteStop."Line No." := i;

RouteStop.Type := RouteStop.Type::Pickup;
RouteStop.VALIDATE("Shipment No.", "No.'™);
RouteStop. INSERT;

i = i + 10000;
RouteStop."Route No." := Route.'No.";

RouteStop."Line No." := i;
RouteStop.Type := RouteStop.Type::Delivery;
RouteStop.VALIDATE("Shipment No.", "No.'™);

RouteStop. INSERT;

After the routes are created and the shipments are assigned to a stop, a grouping and
optimizing algorithm is started. This is Codeunit Route Optimizer (123456700).

[314]

Chapter 7

Route optimizer

The algorithm in our example is designed to find the optimal route to deliver the
products to the addresses by calculating the distance to each address from the
warehouse. The route starts from the address that is closest to our warehouse and
ends at the address that is the farthest away.

This is just an example of a simple algorithm. Each company will have its own
algorithm that needs to be implemented.

RouteStopPickup.SETRANGE("'Route No."™, Route.'No.');
RouteStopPickup.SETRANGE(Type, RouteStopPickup.Type::Pickup);
RouteStopPickup.FINDFIRST;

RouteStopDelivery.SETRANGE(*'Route No.", Route."No.'™);
RouteStopDelivery.SETRANGE(Type, RouteStopDelivery.Type::Delivery);
RouteStopDelivery.FINDSET;
REPEAT

Window.UPDATE(2, RouteStopDelivery."Shipment No.");

IF NOT Optimizer.GET(RouteStopDelivery.Name) THEN BEGIN
CLEAR(BingMapMgt);
BingMapMgt.CalculateRoute(" ", RouteStopPickup.Latitude,
RouteStopPickup.Longitude, "™, RouteStopDelivery.Latitude,
RouteStopDelivery.Longitude, Optimizer."Distance
(Distance)",Optimizer."Activity Time", Optimize::Distance);
Optimizer.Name := RouteStopDelivery.Name;
Optimizer.Latitude := RouteStopDelivery.Latitude;
Optimizer.Longitude := RouteStopDelivery.Longitude;
Optimizer. INSERT;
END;

UNTIL RouteStopDelivery.NEXT = 0;

The calculation of the distance is done by calling a web service from Bing Maps. This
is explained in the interface chapter.

Each distance is stored as a record into the Optimizer table which is a helper table.
This table is a temporary variable in this Codeunit.

Temporary tables have multiple benefits that make them interesting to use. As they
are not stored in the database, they have much better performance compared to real
tables. This also has a benefit for concurrency since there can be no locking.

[315]

Storage and Logistics

M Temporary tables are free to use. They are not checked in the
Q license file when used. To create and modify the definition, a
valid license is still required.

After generating the distances all Pickup shipments are combined into one stop
by assigning them all to the same Sequence No. value.

RouteStopGroup. INIT;

RouteStopGroup.*Route No."™ := Route."No."';
RouteStopGroup."Line No."™ := 10;

RouteStopGroup.Type := RouteStopGroup.Type::"Pickup Group";
RouteStopGroup.''Sequence No." := 10;

RouteStopGroup.Name := RouteStopPickup.Name;
RouteStopGroup. INSERT;

RouteStopPickup .MODIFYALL(""Sequence No.", 10);

By sorting the distance helper table on distance, we can easily assign the correct
Sequence No. to the delivery stops. For each Sequence No. value, we will also
generate a group record in the stop table.

Optimizer.SETCURRENTKEY("'Distance (Distance)");
Optimizer . ASCENDING(FALSE);
Optimizer_FIND("-");

REPEAT
RouteStopGroup. INIT;
RouteStopGroup."Route No."™ := Route."No.";
RouteStopGroup.-"Line No." := Sequence;

RouteStopGroup.Type :=

RouteStopGroup-Type::"Delivery Group';
RouteStopGroup.''Sequence No.' := Sequence;
RouteStopGroup-Name := Optimizer_Name;
RouteStopGroup. INSERT ;

RouteStopDelivery . SETRANGE(Name, Optimizer_Name);
RouteStopDelivery _MODIFYALL("'Sequence No.'", Sequence);

Sequence := Sequence + 10;
IF (xLongitude <> Optimizer.Longitude) OR
(XLatitude <> Optimizer.Latitude)
THEN BEGIN
IF xLongitude + xLatitude <> O THEN BEGIN
CLEAR(BingMapMgt) ;
BingMapMgt.CalculateRoute(" ", xLatitude, xLongitude,"",
Optimizer.Latitude, Optimizer.Longitude,

[316]

Chapter 7

RouteStopGroup.Distance, RouteStopGroup.Time,
Optimize::Distance);
RouteStopGroup.MODIFY;

END;

xLongitude := Optimizer.Longitude;

XLatitude := Optimizer.Latitude;
END;

UNTIL Optimizer.NEXT = 0;

After optimizing the route it should look something like this. We pick up two
shipments at the warehouse and drive them to two addresses in the country.

.4y Edit - Route Card - LRTEQO006
i Ay E 0]
Update Income Income Add Remove
& Expense Expenses Shipments Shipments Incident
Process Shipments Incidents
LRTEQO006
[General A] Route Foomo) 12
o Bur e . Litl-Arskagssandur,
Mo.: LRTEOO00E Shipment Date: 27-1-2011 - %Nkaupmauro iy o PTR %
Description: Iceland Status: -
[Invoicing
Bill-to Customer No.: 70000 = Bill-to Name: CRONUS International Ltd.
Route Stops o
Seque.. Shipmen.. Type D.. In.. MName Address City i a
H kjavik :
5 10 Pickup Group ~ Teitaud e ke .
e~ 90 miles
10 LSHPOO01S Pickup Iceland Engjateigur 7 Reykjavik ;;'
orEksn:
10 LSHPO0023 Pick Ieeland Engjateigur 7 Reykjavik
ickup celan ngjateigur eykjavi 2 | Route Part 7.~
10 LSHP00027 Pickup Iceland Engjateigur 7 Reykjavik 3
= 20 Delivery Gr... Gagn & Gaman Ko, A s B
o . . No. of Deliveries: 2
20 | LSHPO0O15 Delivery Gagn & Gaman Reyljavikurvegi 66 | Hafnafjordur Total Distance: 59718
= 30 Delivery Gr... Heimilisprydi Total Income: 871,48
30 LSHPO0023 Delivery Heimilisprydi Hallarmula Reykjavik o Total Income (L...

Route follow up

During the route, the planner needs to follow up with the driver. This will result in
the status of the shipment being updated.

In our solution, the planner should populate the field Date Time Completed. This
field is automatically updated in the shipment using a flow field.

[317]

Storage and Logistics

Incidents

A special status for a Shipment is Incident. If for any reason we cannot deliver the
shipment it should be taken back to the warehouse and shipped again. Based on
the reason for the incident we might need to invoice extra services.

The incident can be on a stop group or on an individual shipment and can have
status Undeliverable, Closed, or Other. The planner can add extra comments.

-
Edit - Route Incident

Route Mo, Incident Incident Description = Mame Address City

LRTED000G Undeliverable Broken Iceland Engjateigur 7 Reykjavik
LRTED0006 Closed Iceland Engjateigur 7 Reykjavik
LRTED000G Iceland Engjateigur 7 Reylkjavik

The other shipments that do not have incidents get the new status whilst the
incidents move to another place in the Role Center.

Update Income Income Add Remove Report
& Expense Expenzes Shipments Shipments Incident

Process Shipments Incidents
LRTEQOOOG
| General ha Route 5
| Invaicing bt
1 &
Route Stops i — o
[Seque.. Shipmen.. Type | Date Time Completed Incident Name ﬁfl "E =
=10 Pickup Group | 27-1-2011 10:00 Has Incidents Iceland | ser
i | ar
10 LSHPODOLS Pickup | Undeliverable [Iceland g CE a) N D
10 LSHPO0023 Pickup Closed Iceland
10 LSHPO0027 Pickup | 27-1-2011 10:00 !celand F_' “"eyk]a\r[k R
B 20 Delivery Gr... | Gagn & Gaman | Kirkjubesjarklaustur,
20 LSHPOOO15 Delivery Gagn & Gaman F{

Follow up

The incidents can be followed up by the planner via the Role Center. Incidents that
are not handled keep the status open until someone decides what to do with it.

[318]

Chapter 7

-

= Activities F oA
Shipments
Mew Shipment
o 0 o a Combine Shipments (Sales)
Readyto Shipping Shipped Shipped Combine Shipments (Storage)
Ship Today Yesterd...
Routes
Mew Route
0 L Q Q Combine Routes per Warehouse
Planned In Compl... Compl...

Progress Today Yesterd...

Incidents

2 2 0
Open Incidents Incidents
Incicents Today Yesterd...

The invoicing application
In Chapter 2, A Sample Application, we introduced invoicing for an add-on solution.
For the solution in this chapter, we'll take this one step further.

Our company is invoicing different logistics services such as:

¢ Handling costs for storage receipt and shipments.
e Storage costs for the period we keep the inventory.
e Costs for transporting the products to the end consumer.
All these costs need to be combined on one invoice. Some customers may require

monthly invoicing, some weekly, and for incidental customers we invoice directly.
This requires a special module to handle the invoicing.

For the examples in this part of the chapter the Default Role Center in the
% Profile table (2000000072) should be changed to Income & Expenses Role
"~ Center (123456761).

[319]

Storage and Logistics

Process

Let's have a look at the process to see where invoicing is required.

-\ - N ~ f_\
Documents Calculation Staging Invoicing i Histary
™ .
Storage Line Slg‘;;]cgﬂ;:ce Slma?:l:;mnxe Sales/ Income & Expense
‘ - Mgt. I
Table 123z56722) L {Code s el | Fable 133557371 | Purchase Post Joumal
»
Y r
r Shiprment) Stara
Shipment Details Price Calc i Imminige Sales/Purchase Income & Exp,
(Table 123556702 Mat. [y g Lines Jnl-Post Line
. {Repart 1234967031
3 J ICadeu. 433455700) L
r
s .)
Route Price Combined
Route o Income & Expense
. B —n Calc. Mgt. Income & Expense ——p Imnvoicing
(Table 123456703 T Entry
L /) o o L% _/ v

Income and expense

Everything that we want to invoice at one time to a customer, we store in a new table
we will call Income & Expense. This is a container where they will be kept until the
periodical invoicing is done for this customer.

Income & Expense records can be created manually by end users or automatically
by the system.

Let's have a look at this.

[320]

Chapter 7

-
4 Edit - Income & Expense Card - 21. RECEIPT - Cost of Receipt [E=N e
’ Actions ~
21. RECEIPT - Cost of Receipt
General &
Income & Expense Code: 1. RECEIPT R Total Cost: 140,00
Type: Income - Unit Price: 10,00
Description: Cost of Receipt Total Price: 140,00
Quantity: 14 Unit of Measure Code: -
Unit Cost: 10,00
Invoicing -~
Department Code: - Gen. Prod. Posting Group: SERVICES -
Project Code: - WAT Prod. Posting Group: VATIL0 - "
Bill-to Customer Mo.: 70000 - |
Applies-to -
Applies-to Document Type: Storage Document - Applies-to Document Mo SRCPT00001 -
Applies-to Document Subtype: - Applies-to Entry Mo.: 0

To create a new Income & Expense record we need to fill in these fields.
e Income & Expense Code: This is a reference to the group of Income
& Expense.

e Type: This can be either Income or Expense. The former will be used on
Sales Invoices; the latter is reserved for future use on Purchase Invoices
if we decide to hire other companies to handle our logistics.

e Description: This is the description that will be printed on the Sales Invoice.

¢ Quantity: The number of services we have done. For example, the number
of storage days or number of kilometers or miles in a route.

e Unit Cost/Total Cost: This can be used to calculate the profit of a service.

e Unit Price/Total Price: This is the price the customer will see on the
Sales Invoice.

e Unit of Measure Code: A reference to the calculation method like BOX,
KM, MILES, or DAY.

e Applies-to Document (Sub)Type: A reference to Storage Header, Registered
Storage Header, Logistics Shipment, or Logistics Route. If necessary this can
be expanded to accommodate other add-ons.

[321]

Storage and Logistics

e Applies-to Document (Line)No.: A reference to the Storage and Logistics
documents that this Income & Expense record belongs to.

e Applies-to Entry No.: A reference to the Storage Invoice Entry

Invoicing
After the Income & Expenses are created, we can start the invoicing process. To
support this, some minor changes are done in the invoicing part of Microsoft

Dynamics NAV and as an example we choose a slightly different approach
compared to Chapter 2.

Sales Line

The Sales Line table (37) has gotten some minor modifications. We have added an
extra type for Income and implemented a table relation for the No. field.

Lines
Type MNo. Income Exp.. Description i Quantity U.. UnitPrice Excl. V... Line Amount Exc... L
income} : 21. RECEIPT 1 Cost of Receipt 14 10,00 140,00
1. RECEIPT 2 Cost of Receipt 15 10,00 150,00
G/L Account .
Ttemn 1. RECEIPT 3 Cost of Receipt 25 10,00 250,00
Resource 1. RECEIPT 4 Cost of Receipt 250 10,00 2.500,00
Fixed Asset
Charge (item) &1- RECEIPT 5 Cost of Receipt 500 10,00 5.000,00
@ 1.RECEPT 6 Cost of Receipt 52 10,00 520,00

This enables us to also create new entries on a sales invoice without having to create
an Income & Expense first.

The Sales Line also has a reference to the Income & Expense Entry No. and the
Apply-to fields. This enables us to create the Income & Expense Journal Lines in
the Sales Post Code Unit.

Codeunit Sales-Post (80)

The Sales Post Code Unit has only one change to populate the Income &
Expense Journal.

OnRun()

//* Chapter 7 >>>
SalesLine.Type::Income:
IF SalesLine."Qty. to Invoice" <> 0 THEN BEGIN
INncExpJniLn_INIT;
IncExpJnlLn.""Posting Date"™ := "Posting Date";

[322]

Chapter 7

IncExpJnlLn.""Document Date"™ := "Document Date";
IncExpJnlLn."Reason Code"™ := ""Reason Code';
IncExpJnlLn."Income & Expense Type" :=
IncExpJnlLn."Income & Expense Type'::Income;
IncExpJnlLn."Income & Expense No." := SalesLine."No.";
IncExpJnlLn._Description := SalesLine.Description;
IncExpJdnlLn."Bill-to Customer No." :=
SalesLine."Bill-to Customer No.";
IncExpJnlLn."Applies-to Document Type" :=
SalesLine."Applies-to Document Type';
IncExpJnlLn."Applies-to Document Subtype" :=
SalesLine."Applies-to Document Subtype';
IncExpJnlLn."Applies-to Document No." :=
SalesLine."Applies-to Document No.";
IncExpJnlLn."Applies-to Document Line No." :=
SalesLine."Applies-to Document Line No.";
IncExpJnlLn."Income & Expense Entry No." :=
SalesLine."Income & Expense Entry No.";
IncExpJnlLn."Shortcut Dimension 1 Code" :=
SalesLine.""Shortcut Dimension 1 Code";
IncExpJnlLn."Shortcut Dimension 2 Code" :=
SalesLine.""Shortcut Dimension 2 Code";
IncExpJnlLn."Gen. Bus. Posting Group" :=
SalesLine."Gen. Bus. Posting Group";
IncExpJdnlLn."Gen. Prod. Posting Group" :=
SalesLine."Gen. Prod. Posting Group";

This is done in the same way as the Resource Journal.

M As the Sales Line has all the Posting Group and Amount fields populated
Q the General Ledger Entries, VAT Entries and Customer Ledger Entries are
automatically generated by the standard application.

Pricing methodology

Our add-on solution has three levels of automatic price calculation that are more or
less identical. We can calculate prices for Storage Documents, Logistics Shipments,
and Routes.

Let's look at the Storage Prices as an example of how this is done.

[323]

Storage and Logistics

Storage prices

In the Storage Price table, we can register prices for different storage activities.

‘4 Edit - Storage Price

Unit Price Endin

Warehouse ... Product No. @ Shelf.. | Starti.. Income & Ex.. Description

Type

| ~ Receipt PROD0O0O01 21. RECEIPT Cost of Receipt 10,00
Shipment PRODO000O1 21. SHIPMENT Cost of Shipment 10,00
Storage PRODO0001 21, STORAGE Storage Costs 10,00

When the price is calculated, the system will filter down in this table to find the
price that matches best. For example, if a Product has a price for Receipt without a
Warehouse Code, this price is used in all warehouses, but if one Warehouse Code is
populated, this Warehouse has a special price.

Prices can be differentiated to Receipt, Shipment, Pick, Put-Away, Movement
and Storage. The first options are used on the Storage documents, the latter when
calculating Storage Cost.

The Income & Expense Code determines which type of Income & Expense will be
created for this combination. A Storage Document can have more than one Income
& Expense; for example, a normal receipt line and a customs surplus.

Calculation

The Income & Expenses are created using a Price Calc. Mgt. Codeunit we are familiar
with from Chapter 2, only this time we will not update the Unit Price but create the
Income & Expenses.

The calculation for Storage is done in Codeunit 123456710.

FindStoragelLinePrice

WITH StorageLine DO BEGIN
Product.GET(*'No.");
StoragelLinePriceExists(StorageHeader, StoragelLine);
CreatelncExp(StorageHeader,StoragelLine, TempStoragePrice);

END;

The FindStorageLinePrice function will call the standard function
StoragelLinePriceExists to find the Storage Prices that match the criteria.

[324]

Chapter 7

For all the Storage Prices in the filter, it calls the function Create IncExp.

CreatelncExp(Q)

INncExp.SETRANGE(*"Applies-to Document Type', IncExp."Applies-to
Document Type'::'"'Storage Header™);

INncExp.SETRANGE(*"Applies-to Document No.', StorageHeader.''No.'");
INncExp.SETRANGE(*"Applies-to Document Line No.', StoragelLine."Line

No.");

IncExp.DELETEALL;

WITH StoragePrice DO BEGIN
FoundStoragePrice := FINDSET;
IF FoundStoragePrice THEN BEGIN

REPEAT

IncExpCode .GET(StoragePrice."Income & Expense Code™);
IncExp. INIT;
INncExp."Entry No."™ := 0; //* For Autoincrement
IncExp.Type := IncExpCode.Type;
IncExp."Income & Expense Code™ :=

"Income & Expense Code';

IncExp.Description := Description;

IncExp.Quantity := StoragelLine.Quantity;

IncExp."Unit Cost”™ := IncExpCode."Unit Cost";

IncExp."Total Cost™ := IncExp.Quantity *
IncExp.""Unit Cost";

IncExp."Unit Price"™ := StoragePrice."Unit Price";

IncExp."Total Price"™ := IncExp.Quantity *

IncExp."Unit Price";
IncExp."Applies-to Document Type" :=
IncExp."Applies-to Document Type'::"'Storage Header';
IncExp."Applies-to Document No." := StorageHeader."No.';
IncExp."Applies-to Document Line No." :=
StoragelLine."Line No.";
IncExp."Bill-to Customer No." :=
StorageHeader."Bill-to Customer No.';
IncExp."Gen. Prod. Posting Group™ :=
IncExpCode."Gen. Prod. Posting Group';
INncExp."VAT Prod. Posting Group™ :=
IncExpCode."VAT Prod. Posting Group™;
IncExp. INSERT;

UNTIL NEXT = O;

END;
END;

[325]

Storage and Logistics

Each price will create a separate Income & Expense record.

\ The Income & Expense table is set to Auto Increment. This means
~ that the SQL Server will generate the entry number for us. This enables
Q multiple users to generate entries in this table at the same time without
blocking each other.

Result

When new documents are generated by the system or end users, the prices are
automatically calculated. The user can see the total cost and price on the Fact Box
and change, remove, or add records if necessary.

Register Income
Expenses

Process

Income & Ex... ; Description . Quantity Unit Cost Total C... Unit Pri... . Total ... Deg
No: i + Cost of Receipt 14 1000 14000 10,00 140,00
Warehal | 21 RECEIPT Costof Receipt 15 10,00 150,00 10,00 150,00
st
| Sell-to

[i . -
| Invaicing i| Total Cost:
Lines &l | Total Cost{Inv...
MNo. Description Unit of Meas... Quantity Reg Product Details e
PRODO0020 TOKYO Guest Chair, blue PCS 14 RE Inventory: 61,00
PRODO00O21 INNSBRUCK Storage Unit/G.Door PCS 15 RECQ | Blocked: MNo

Periodic invoicing

One of the services we are providing is storage. This means that sometimes products
can be in our warehouse for several days, weeks, or even months. Our customers
will be invoiced for the time they use our warehouse space.

[326]

Chapter 7

Each time we receive a product in our warehouse or move a product to another
region or shelf, a Storage Entry is created to keep track. For invoicing, we also create
a Storage Invoice Entry. This is mainly because the inventory handling and invoicing
are done on different moments by different persons. The products can be shipped to
the customer when we start the invoicing process.

The Storage Invoice Entry is created with a From Storage Date that is inherited
from the Storage Date of the Storage Entry. The Storage Invoice Entry also has a
To Storage Date that maintains blank until the product leaves the warehouse or
moves to another location that might have another price. The Income & Expense
Code determines which price will be invoiced and is determined when posting a
Storage Document.

The batch report Storage Invoicing (123456703) is used for the creation of the
Income & Expenses. Let's have a look at how this is done.

Storage Invoice Entry - Properties o |[[E=ER
Property Value
DataltemIndent <0> 4
DataltemTable Storage Invoice Entry
DataltemTableView WHERE(Open=COMNST(Yes))
CiztaThaml inlDoforan, | nAafinad

e

Report 123456703 Storage Invoicing - Report Desig... | = |[& || &2 |

Dataltem Mame
| Storage Invoice Entry <5Storage Invoice Entry = +

Storage Invoice Entry - C/AL Editor
Documentation()

Storage Invoice Entry - OnPreDataltem()
TempStorageInuEntry .DELETEALL ;

Storage Invoice Entry - OnAfterGetRecord{)
TempStorageInuEntry := "Storage Invoice Entry”;
TempStorageInvEntry.IHSERT;

Storage Invoice Entry - OnPostDataltem()
ProcessBuffer;

The report only has one Storage Invoice Entry Dataltem which is filtered on
Open=Yes.

In the report, all the Storage Invoice Entries are moved to a buffer table first and
handled later.

[327]

Storage and Logistics

There are two important reasons for implementing a solution like this:

Changing Record Set: This report filters on Storage Invoice Entries which are
open for invoicing. When the Storage Invoice Entry is completely invoiced,
we want to change this value. This means that the record set we use is
changing during the process. This is something the SQL Server backend
cannot handle and this will result in a very poor performance.

By first moving all records to a buffer table the filtering will be done on a
virtual table that is maintained on the Service Tier rather than SQL Server.

Locking: If we were to filter on open entries and modify our dataset it would
result in locking more records than necessary. Filtering on a non-clustered
index will result in SQL Server moving to Range Locks rather than Row Locks.

By reading the actual Storage Invoice Entry one by one using the clustered

index, we will make sure that SQL Server only locks the records we use for
this process allowing other users to keep creating new records at the end of
this table.

Processing the buffer

When processing the buffer we first check if this entry has been invoiced before. If
this is the case, we start invoicing from the previous date, if not we use the From
Storage Date.

Then we check if the products have already left the warehouse or have been moved.
If this is the case, we can close this entry by invoicing until this date, otherwise we
will invoice until the Workdate.

A\l

~ Users can change the systems Workdate and influence the
system's behavior this way and invoice until another date.

ProcessBuffer()
StoragelnvEntry . LOCKTABLE;

WITH TempStoragelnvEntry DO

IF FIND("-") THEN REPEAT
StoragelnvEntry.GET("Entry No."");

IF "Last Invoice Date'" <> 0D THEN

FromDate := '"Last Invoice Date"
ELSE
FromDate := "From Storage Date";

IF "To Storage Date'"™ <> OD THEN

[328]

Chapter 7

StoragelnvEntry."Last Invoice Date" := "To Storage Date"
ELSE
StoragelnvEntry."Last Invoice Date"™ := WORKDATE;

Date.SETRANGE("'Period Type', Date."Period Type'::Datum);

Date.SETRANGE("Period No.", 1, 5);

Date.SETRANGE("'Period Start', FromDate,
StoragelnvEntry."Last Invoice Date');

IncExp."Entry No."™ := 0;

IncExp."Income & Expense Code™ := "Income & Expense Code";

INnCExp.Type := InckExp.Type::Income;

IncExp.Description := STRSUBSTNO(Text000, FromDate,
StoragelnvEntry."Last Invoice Date');

INncCExp.Quantity := Date.COUNT;

INncExp."Unit Cost" := "Unit Cost";

IncExp."Total Cost™ := IncExp.Quantity * "Total Cost";
INncExp."Unit Price"™ := "Unit Price";

IncExp."Total Price" := IncExp.Quantity * "Unit Price";

IncExp."Global Dimension 1 Code" :=
"Global Dimension 1 Code";
IncExp."Global Dimension 2 Code" :=
"Global Dimension 2 Code";
IncExp."Bill-to Customer No."™ := "Bill-to Customer No.";
IncExpCode.GET(IncExp."Income & Expense Code');
INnCExp."Gen. Prod. Posting Group" :=
IncExpCode."Gen. Prod. Posting Group';
INnCExp."VAT Prod. Posting Group" :=
IncExpCode."VAT Prod. Posting Group";
INncExp."Unit of Measure Code" :=
IncExpCode."Unit of Measure Code";
IncExp."Applies-to Entry No." := "Entry No.";
IncExp. INSERT;

StoragelnvEntry.Open := "'To Storage Date'" <> 0D;
StoragelnvEntry _MODIFY;
UNTIL NEXT = O;

The next step in our code is to calculate the number of workdays between the
two dates. This will prevent our customer from paying for storage on Saturday
and Sunday

We do this by using the virtual Date table. This table contains all dates, weeks,
months, quarters, and years between January 1st 0000 and December 31st 9999
and can be very useful in date calculations.

[329]

Storage and Logistics

With this result, we can now create the Income & Expense records that will be
invoiced later.

If the To Storage Date is populated, we close the Storage Invoice Entry.

Combined invoicing

The Data Model we use allows us to combine invoicing on all the services we
provide for our customers. We can create one invoice that contains handling,
storage, and transportation costs for our customers.

This is done by batch report 123456704 Combine Storage & Logistics which works
exactly the same as the report in Chapter 2.

Add-on flexibility

The add-on we have created in this chapter is definitely not ready to be used by
a real company, but it demonstrates how to create a flexible solution that can be
expanded by others easily.

Most modern logistic service providers offer other services to customers like
Value Added Logistics, Item Tracking, and third and fourth party logistics.

Value added logistics

When a company offers Value Added Logistics services, they not only keep products
on inventory but they also offer services around this like display packaging.

This can be best compared with Manufacturing in Microsoft Dynamics NAV. A list
of items called a Bill of Materials is combined into a new product. This new product
is then shipped to the customer.

When the displays are no longer necessary, for example, when a marketing
campaign is finished, the displays need to be picked up from the customer and
disassembled into the original products.

[330]

Chapter 7

Storage Pick WAL Order }
¥ l

/ = — —————
W H
VAL Ca{:ls]impuon »| VAL Product Line]—}[ﬂmage PuLt-hwayJ

— S %, 4 W O A

1

-~

/

Income & Expense

"y

In our solution, this could be implemented by creating a VAL region where the
products are moved to.

Item tracking

Our customers also want to know the whereabouts of their products —which
warehouse are they in and which product was shipped to which customer. It is
especially important in the food and medicine industry to be able to call back a lot
if something goes wrong.

To implement this in our solution requires some changes. First, we need to
implement a Tracking Code in the Storage Entries, second, we need to implement
some kind of Tracking Entries when we ship a product outside our warehouse since
currently our logistics solution does not have any entries, only status fields.

I/—'\

l Storage Line Route Stop
.—'l'ij “_T/
' \ # ~. T
L Smragp EnTl'y —| Track & Trace Enrn.,r -+——— Route 'Smp Entr'r-

Hy \ l ! -, A

Web Service

[331]

Storage and Logistics

Third and fourth party logistics

In our example database, we plan shipments on routes and drive them to the end
customer with our own trucks. This is called second party logistics. First party
logistics would be if we were to handle our own products with our own trucks.

Multiple

Service Level

Single Se

Low Information Sharing High

If we were to provide third party logistics, we would use other companies to offer
parts of the services to our customers. We will then tell them which part of the
service to handle and report back to us when it is finished. The third party involved
does not know the details of the complete transaction.

If we were to offer fourth party logistics we would outsource a complete warehouse
or route to another company. We would only tell them which product should be
moved where and they would handle it without us knowing the details.

It is common for third and fourth party logistics to be mixed but almost always they
are handled by interfaces between different companies.

Summary

In this chapter, we looked at the Microsoft Dynamics NAV product from a
completely different viewpoint compared to the previous chapters.

The goal was not to design a rock solid Storage and Logistics add-on solution for
Microsoft Dynamics NAV as this would require much more than one chapter.
The information in this chapter is intended to demonstrate how to integrate new
functionality on top of Microsoft Dynamics NAV.

[332]

Chapter 7

We analyzed business processes and designed new data and transaction models to
handle them in the product and implemented this.

For our solution, we designed two new document structures and two new journal
and entry structures. We stayed close to the standard methodology of Microsoft
Dynamics NAV by creating a framework that can easily be expanded.

We also spent some time looking at how to prevent unnecessary locking in the
database and how to avoid changing a filtered dataset.

At the end, we looked at some examples of how our add-on solution could be
enhanced to better suit other demands in the market.

This chapter does not end here. The C/ AL objects provided with this chapter can
be studied in order to understand even better how the pieces are put together.

In the next chapter, we will design an application inside Microsoft Dynamics NAV.
We will look at how it can be used for a consultancy company using the Jobs module
and how to extend this with new functionality to meet specific requirements.

[333]

Consulting

In this chapter we will learn how Microsoft Dynamics NAYV fits a consultancy
company. Most consultancy companies have project related processes. They take
on larger projects that take a certain time to complete. Some consultancy companies
also purchase and sell items.

For each of the projects the consultancy company needs to keep track of used
resources and items. Sometimes they can invoice the resource hours they spend
one-on-one but most of the time they will also take a risk in doing fixed price
projects. In this case it is even more important to know if the project was budgeted
well and ensure money is not lost on the way.

There are many types of companies working this way. Some examples include
accountancy firms and lawyers, but also many companies in the construction
business work like this.

For this chapter we will use an example company we are all very familiar with,
either through being an employee, a customer or maybe even an owner. We will
look at the business process of a Microsoft Dynamics NAV Partner.

The Partner in our case sells Microsoft Dynamics NAV licenses for new projects.
They also help existing customers in upgrades and support. Lastly, they are sell
infrastructure solutions; assemble servers and desktop systems in house.

We will discuss four different project scenarios and see how Microsoft Dynamics
NAV can be used to support those. To do this we will create some modifications
along the way.

With this chapter objects are required. The Appendix describes how to import and
activate them.

Consulting

After reading this chapter you will have a good understanding of the possibilities
and limitations of the Job Module in Microsoft Dynamics NAV, how it fits in with
the rest of the product and how it can be expanded safely.

The process

The two main processes for Microsoft Dynamics NAV partners are implementing
new projects and providing services such as support and upgrades to existing
customers. A third process is selling infrastructure and assembling computer
systems but this is an extra service, not the core business.

To support the projects (jobs) the company needs people, software licenses, and
hardware. The people (resources) need to be carefully planned on the projects as
they are the least flexible part of the company. Hardware (items) and software
licenses (G/L accounts) will be purchased from vendors such as Microsoft.

The projects can be divided into large and small projects. The larger projects are
new implementations and upgrades. Smaller projects include implementing small
features and helping users with regular support issues.

Invoicing can be done in various ways. New implementations and small projects
can be invoiced per billable hour while upgrades are sold fixed price. For hardware
we will use items. Licenses are invoiced directly to the General Ledger.

Large projects also have budgets and a plan that need to be maintained. If the budget
is fully used and the planning milestones have not been reached there should be a
new budget created in order to complete the project.

To support this process we will use the Jobs functionality with some customizations.
Projects are called Jobs in Microsoft Dynamics NAV so we will use that term from
Nnow on.

. The Jobs module has been completely redesigned by Microsoft for
version 5. In this chapter we will use a lot of the new functionality
= where we would have done customizations in the older versions of
Microsoft Dynamics NAV.

[336]

Chapter 8

Fits
The registration of the Jobs can be done using the standard functionality of Microsoft
Dynamics NAV as well as the budgeting and planning.

The standard software also allows us to invoice Jobs both fixed price and on time and
materials. We can also purchase items for our Jobs.

Gaps
The Jobs module in Microsoft Dynamics NAYV is often referenced as a framework

that almost always needs some changes. Fortunately, it is designed to be easily
changed and we will do so to support our processes.

Resource groups

Although many companies work this way; budgeting on Resource Groups is not
possible. We will create a solution for that. We will also make it possible to see the
total number of planned, used, and invoiced hours.

Time registration

The standard software allows us to register hours but it does not have a real-time
sheet application. We will create one.

Item calculation

We will create a solution calculating the system assembling. As hardware
specifications are changing rapidly we do not want to create a new item for
each system when we may only sell that particular configuration once or twice.

Issue registration

Our support team needs a single point for registration of all support issues for
all customers and follow up their workflow. For this we will also create the
functionality to register and follow up issues.

[337]

Consulting

Getting started

Before we start creating any new jobs, we should have a look at the data and posting
model of the Microsoft Dynamics NAV Jobs module.

r,. - " e
- -
ok G.;. .Arrnun'r Job lab ir'l Post Job Journal Line
Tice . ine _
[Table dodgh (Tabeatay (Coadeunit aoa) (Table 230)
-
ki w J
- ————— - S “y T et
Jak e Price y laob Task leb Ledgar Entry Sales-Post
(Talde 13 (Table 1ca) [Table afis) {Codeunit Be)
ps ps -~ Rt R
-~
L 4
—— _a — - -~ o
Job Resource Price |) Joh Planning Line Sjl-l:'h Create Sales Document
Table a3} (Takle 4ea7i ¥ |I‘|-.l'1:lll.:f' [Takle 36 B 37
[Aepart 1093
e,

The starting point is the Job table, which has Job Tasks and Job Planning Lines
we can use for budgeting and planning. Each job can have its own prices.

The Job Planning Lines get invoiced through the standard Microsoft Dynamics
NAYV Sales functionality which then creates Job Ledger Entries.

How many jobs

The first step is setting up a new job. There can be different angles on setting up jobs.
This depends on how we want to work with the system. The minimum requirement
is to have at least one job per Bill-to Customer. This enables us to do the invoicing.
Some companies use jobs this way to use it as a pre-invoice engine.

Another angle can be to set up new jobs nicely for each project we do for the
customer. In our case this starts with the basic Dynamics NAV implementation.
When this is finished we close the job. If the customer has any new requirements
we will need to start a new job. This way we can keep better track of what issues
we have outstanding with each customer. The downside of this methodology is
that it requires some work to set up a new job every time.

[338]

Chapter 8

Most companies end up with a solution in the middle. It is common to set up a new
job for larger jobs and to have a job for support issues. This also allows us to set up
different invoicing strategies for each job. We will use this strategy.

Job card

Let's have a look at the Job Card and the important fields there.

| ¢ Edit - Job Card - EXAMPLEL - Packt Publishing - New Impl i e = [B [

5 ’ ctions * Eﬁelated Information = .EE_' 0

Copy Job ﬁ Statistics @ G/L Account E Job Actual to Budget E Job - Suggested Billing
Eﬁ Ledger Entries '?fg Calculate WIP E Job Analysis
Job Task Lines i Post WIP to G/L B Job - Planning Lines
Process Report
EXAMPLEL - Packt Publishing - New Implementation
[General ~] Job Details - No. ... Al
MNo.: EXAMPLEL Bill-to City: Birmingham - Job Nou: EXAMPLEL
e — e Resource: 0
Description: Packt Publishin... Bill-to Ceuntry/Region Code: GEB - Ttem: 0
Bill-to Customer Mo.: #0000 - Bill-to Contact: G/L Account: 0
| Bill-to Contact Mo.: CT000142 . Search Description: PACKT PUBLIS... Customer Statistic... ~
| Bill-to Name: Packt Publishing Person Responsible: - Customer ... 30000
| Bill-to Address: 32 Lincoln Road Blocked: - Balance (L... 0,00
| Bill-to Address 2 Last Date Modified: 30-4-2010 Qutstandin.. 0001
! ill-to ress 2: - ast Date Modified: Shipped N... 000
| Bill-to Post Code: B27 6PA - Outstandin... 0,00
Shipped N... 0,00
§ [Posting ~] QOutstandin... 0,00
i S .| TotalCvy 0,00
| Job Posting Group: SETTINGUP Status: Order * i Credit Limi... 0,00
H WIP Method: Cost Value - Allow Schedule/Contract Lines: [] Overdue A... 0,00
| Sales ¥TD (.. 0,00
Duration ~ | | Job Details - WIP... ~ll
Creation Date: 30-4-2010 Ending Date: . Job MNo.: EXAMPLEL
. —] WIP Postin...
Starting Date: -
Total WIP 5... 0,00
. Total WIP ... 0,00
[feiennliade ¥] Recog. Sale.. 0,00
Currency Code: T Exch. Calculation (Cost): Fixed LCY - Recog. Cos.. 0,00
— — Calc. WIP ...
Invoice Currency Code: - Exch. Calculation (Price): Fixed FCY - WIP Posted... No

Let's see these fields in more detail:

e No.: This is the unique number of a job. We can use different number series
strategies for this, from simple sequential numbering to linked number series
for different job types or manual numbering.

[339]

Consulting

Description: This should be a logical description of the job for internal use.
Most people will search on this field so make sure to have certain rules for
naming. This will make searching for old jobs easier in the future.

Bill-to Customer No.: Each job has one Bill-to Customer. If we want
to invoice multiple customers for one job we will need to customize
the application.

Search Description: By default this will be populated with the value of
the description field but can be changed to another value if required.

Person Responsible: This is an informative field indicating who is
responsible for this job.

Blocked: If this field is checked, it is not possible to make new entries for
this job. Use this for closed jobs.

Job Posting Group: This refers to the G/L Accounts that are used for the
Work In Progress postings (WIP). There can be different G/L Accounts
for different types of jobs or WIP methods.

WIP Method: Each job can have one Work in Progress method. We will
discuss this briefly later in this chapter.

Status: The jobs have a limited set of status fields. The only available
status values are Planning, Quote, Order, and Completed.

\ Most companies want to have more sub statuses for the order phase.
~ The best approach for this is to add a new status field that maps
Q with the standard status field. This requires minimum changes to
the application while creating new workflow possibilities.

Allow Schedule/Contract Lines: If this field is not checked it is not possible
to create planning lines, which have both schedule and contract options.
When planning lines are created they will be split into a schedule and a
contract line.

Starting and Ending Date: These are informative fields that are only used
to calculate the currency exchange rates for the job.

Foreign Trade: In the jobs module it is possible to send calculate and create
invoices in a currency other than the local currency. This will increase the
complexity of the implementation and should be used carefully.

[340]

Chapter 8

Job task and planning lines

When the Job is created, the next step is to create Job Tasks and Planning Lines.
These can be used in different ways.

Using job task lines we can cut the job into smaller pieces, which we can then
schedule and invoice. The more detailed the job tasks are, the better we can measure
the progress of the job, but the more work they require to maintain. Balance is the
key to success here.

A Edit - Job Task Lines - EXAMPLEL . Packt Publishing - New Implementation

New

Related Information ~ E%F‘.eports =

E Edit Planning Lines 2 Copy Job Task To B Job Actual to Budget B Job - Suggested Billing

%= Split Planning Lines B Job Analysis

I Copy Job Task From il B Job - Planning Lines
!

Process

| | Report

Job Task Lines ~

Sorting: Job No.Job Task No. = 4l Mo filters applied

Job Task Mo. Description Job Task Type Totaling Job Posting... Schedul.. Schedule.. Sct
0000.JOB Job Total Begin-Total

0100. INSTALL Installation and Setup Begin-Total

0110, INSTCLIEN... Install and Setup clients Posting SETTING UP 4,00 80,00 1
0120, INSTSERV Install and Setup server Posting SETTING UP 4,00 80,00 1
0199, INSTALLT... Total for Installation and Setup ~ End-Total 0100. INSTALL..0... 8,00 160,00 32
0200. SETUP Application Setup Begin-Total

0210. FIM Financilals Posting SETTING UP 4,00 160,00 3
0220, INV Inventory Posting SETTING UP 4,00 160,00 3
0230. SALES Sales Posting SETTING UP 4,00 160,00 3
0240. PURCH Purchasing Posting SETTING UP 4,00 160,00 3
0299, SETUPTO... Total for Setup End-Total 0200. SETUP..029... 16,00 640,00 1.2

The Job Tasks can be created with the same structure as the Chart of Accounts,
meaning the actual Task Lines can be grouped using Begin and End Total lines.
Each level can be indented for better readability.

The Job Planning Lines are the detail lines of each job task. This defines what we
will do and how this will be invoiced. A job planning line can be linked to the
master data types Resource, Item, G/L Account, or Text.

Al

Q

Job Tasks and Job Planning Lines can be copied very easily from
other jobs. This allows us to reuse them and even create template

jobs for frequently used combinations.

[341]

Consulting

The line type in the job planning line defines how it will be invoiced. There are
three types:

e Schedule: The amounts on this line will only be used in for budgeting
purposes. When invoicing we need to post one or more job journal lines that
will be invoiced or we can create another job planning line with the invoice
amount. Schedule lines should be used when billing on time and materials.

e Contract: This line will be invoiced with the exact amounts. However the
amounts do not show up in the budget. This can be used when invoicing
fixed price jobs in a schedule, for example: 50% when signing the contract
and 50% on job completion.

e Both Schedule and Contract: This line will be invoiced exactly the same way
as the contract lines but the amount will also show up in the budget.

Job journal

When the job tasks and job planning lines are set up we can start the job. During

the job we will consume resources and items from our company. This should be
registered using the Job Journal. The Job Journal is the lowest level of the Journal
Posting diagram we drafted in Chapter 1, Introduction to Microsoft Dynamics NAV,
and uses the other journals to create the Resource, Item, and General Ledger Entries.

When creating a job journal line a few fields are particularly important for
the process:

44 Edit - Job Journal - DEFAULT - Default Journal R

E Related Information -

: Calc. Remaining Usage

—
Post and
Print

Voo -
. Dimensions

Process

Batch Mame: DEFAULT -
Line Type Posting Date Docum.. JobMNo. Job.. Type No. Description Quan.. Unit C.. Unit Price
| 28-1-2011 Wi-01 GUILD... 1210 Resource MARK Delivering and Asse... 8 3190 54,00
W5-01 GUILD... 1210 Resource MARK Delivering and Asse... 4 31,90 54,00
Cohedule W5-01 GULD.. 1210 Resource MARK Delivering and Asse.. 3 3% 54,00
Both Schedule and Contract

[342]

Chapter 8

e Line Type: This has the same options as the job planning line, Schedule,
Contract, and Both Schedule and Contract. When the job journal line should
be invoiced, the type should be Contract. When the job journal line is part
of a fixed price the line type should be left blank. When the line type is
Schedule, the system will create additional Job Planning Lines of this type
which may corrupt our budget for the customer as they are already created.

e Unit Cost and Unit Price: These fields will determine the cost of the job and
the price that will be invoiced to the customer if the line type is Contract.
This information is also used in the calculation of the Work in Progress.

Job examples

Let's go through some different job scenarios to see how we can use this functionality.

Chapter objects

The chapter objects contain both the changes we discuss in this chapter and
as the example jobs we will use. After importing chapter 8. job as described
in the Appendix, run page 123.456.700 Jobs Add-on Setup and then run
Initialise Application.

N
4y View - Jobs Add-on Setup . E@I&J

Jobs Add-on Setup
View Ctrl+Shift+V

|=f | Edit Ctrl+Shift+E Cad
Motes
Links Ctrl+L

Initialise Application ~

When this completes, restart the Role Tailored Client. You should now see the Project
Manager Role Center.

1 | The new implementation

Implementing Microsoft Dynamics NAV 2009 is not an easy task and many things
need to be taken care of before we can use the product. We will implement Microsoft
Dynamics NAV for Packt Publishing. The job for this example is EXAMPLEL.

[343]

Consulting

For the implementation we will create various job task groups. Each part of the
implementation gets a code. Because the sorting is done on this field we will create
codes using numbers and a logical name. For example, 0200. SETUP and 0210. FIN.

\ Leave enough space in the numbers to add additional lines
~ if required. This will avoid renaming which is an expensive
Q task for the database engine and users will have to wait
until it is completed.

Our consultants will help the customer to install the system, help with the setup,
and convert the data from the old system. When this is done we will help them
with testing and train them for using Microsoft Dynamics NAV. The consultants
will be set up in the system as Resources, which are in turn entered into the job
planning lines.

When everything is working as expected we can schedule a go-live weekend and
help them in the first period using the system.

& Edit - Job Task Lines - EXAMPLEL - Packt Publishing - New Implementation T
, Actions ~ Related Information = E Reports -

Job Task Mo. Description Job Task Type Totaling Job Posting... Schedul... Schedule.. 5Sck
0000.J0B Job Total Begin-Total

0100. INSTALL Installation and Setup Begin-Total

0110, INSTCLIEN... Install and Setup clients Posting SETTING UP 4,00 80,00 1€
0120, INSTSERV Install and Setup server Posting SETTING UP 4,00 80,00 1t
0199. INSTALLT... Total for Installation and Setup End-Total 0100. INSTALL..0... 8,00 160,00 32
0200. SETUP Application Setup Begin-Total

0210. FIN Financilals Posting SETTING UP 4,00 16000 32
0220, INV Inventory Posting SETTING UP 4,00 16000 3:
0230. SALES Sales Paosting SETTING UP 4,00 16000 3:
0240. PURCH Purchasing Posting SETTING UP 4,00 16000 3
0299. SETUPTO... Total for Setup End-Total 0200. SETUP.029... 16,00 640,00 1.20
0300. CONV Conversion Begin-Total

0310. CONVFIN Opening Balance Posting SETTING UP 4,00 240,00 4
0320. CONVINYV Inventory Posting SETTING UP 4,00 24000 &
0399. CONVTOT... Total for Conversion End-Total 0300. CONV..039... 8,00 480,00 96
0400. TRAINING Training and Testing Begin-Total

0410, OVERVIEW Global Overview Training Posting SETTING UP 4,00 160,00 32
0420. KEYYSERS Keyuser Training Posting SETTING UP 4,00 16000 32
0499. TOTTRAIN Total Training End-Total 0400. TRAINING...... 8,00 320,00 64
0500. GO-LIVE Go-Live and support Begin-Total

0510. GOLIVE Go-Live weekend Posting SETTING UP 4,00 24000 &
0520. SUPPORT After Care Posting SETTING UP 4,00 16000 3i
0599. TOTAL Total End-Total 0500. GO-LIVE..0... 8,00 400,00 80
9999.J0B Job Total End-Total 0000.J0B..9999.)... 48,00 2.000,00 4.0

Invoicing a job like this is done using a budget. We will make a precalculation of the
number of hours we think are necessary and start with that. During the job we need
to measure the used budget and compare it with the progress.

[344]

Chapter 8

Budgeting

The budget is created using the Job Planning Lines. During this phase of the job we
do not yet know which resource will be used for the job tasks and it might even be
done by more than one resource. This is why we want to use Resource Groups in
our budget.

This is not possible in the standard application so we have created
= a modification which we will discuss at the end of this chapter.

_ 4 View - Job Planning List - EXAMPLEL PaFkl Eublishing = Ne'w]Erlplemfantat'lon qllO. IN STCLIENTE I%ﬁnd %etu&clients
i Job Task No. Type Mo. Description Qu... Unit Cost Total Cost = Unit Price Lit
| 0110 INSTCLEN... Resource Group TECHN Technician 4 20,00 80,00 000 1
Schedule 0120, INSTSERY Resource Group TECHM Technician 4 20,00 50,00 40,00 1
Schedule 0210, FIM Resource Group CONS Consultant 4 40,00 160,00 80,00
Schedule 0220, INV Resource Group CONS Consultant 4 40,00 160,00 80,00
Schedule 0230, SALES Resource Group COMNS Consultant 4 40,00 160,00 80,00
Schedule 0240, PURCH Resource Group CONS Consultant 4 40,00 160,00 80,00
Schedule 0310, CONVFIMN Resource Group PROG Programmer 4 60,00 240,00 120,00 !
Schedule 0320, CONVINY Resource Group PROG Programmer 4 60,00 240,00 120,00 ¢
Schedule 0410, OVERVIEW Resource Group CONS Consultant 4 40,00 160,00 80,00
Schedule 0420, KEYYSERS Resource Group CONS Consultant 4 40,00 160,00 80,00
Schedule 0510, GOLIVE Resource Group PROG Programmer 4 60,00 240,00 120,00 ¢
Schedule 0520, SUPPORT Resource Group CONS Consultant 4 40,00 160,00 80,00

The Line Type of these job planning lines is Schedule. This means that these lines
are just for budgeting and schedule purposes. The system will invoice the actual
consumption posted in the Job Journal.

2 | The infrastructure

To use Microsoft Dynamics NAV 2009 Packt Publishing needs new infrastructure.
Their current systems do not meet the requirements for Microsoft Dynamics
NAYV 2009.

For this job we could create new Job Task Lines in the implementation job, but for
a clearer overview we will create a new job, EXAMPLE2.

[345]

Consulting

Our company builds and sells its own computer systems. We can build both servers
and desktop systems. Because none of the systems are exactly the same and available
components switch regularly we do not want to create an item and a bill of materials
for each system. Instead we use a Calculation system that allows us to determine a
price for a system. For other products like switches, routers, printers, and laptops we

use items which we purchase from vendors.

The Job Tasks and Job Planning Lines for this job look like this:

r,q Edit - Job Task Lines - EXAMPLEZ? - Packt Publishing - Replace Irlfrastn.lclure — .
’ Actions - Related Information ~ % Reports ~

Job Task No. Description Job Task Type Totaling Job Posting... Schedul... Schedule.. 5ck
0000.JOB Packt Publishing - Replace Infr... Begin-Total
0100.SERVERS Servers Begin-Total
(0110.FILE File Server Posting SETTING UP 1,00 36000 7
0120.MAIL E-mail Server Posting SETTING UP 1,00 360,00 7:
0130.DYNAMICS Dynamics MNAV Server Posting SETTING UP 1,00 360,00 7:
0199.5ERVERS Servers Total End-Total 0100.5ERVERS..0... 3.00 1.080,00 2.1
0200.NETWORK Network i View - Job Planning List - EXAMPLE2 Packt Publishing - Replace Infrastructure 0110.FILE F
0210.5WITCH 1GB Managed Switch e
0209.NETWORK Network Total & actions - I Repars
0300.CLIENTS Clients Line Type Job Task Mo, Type MNao. Description

% 0310.DESKTOP Desktop PC 0110.FILE Calculat?on CALCO0001 Server

E (320.LAPTOP Laptop PC Both Schedule.. 0120.MAIL Calculation CALC00001 | Server

§ 0299.CLIENTS Clients Total Both Schedule... 0130.DYNAMICS Calculation CALCO0001 Server
0400.PRINTERS Brisitars Both Schedule.. 0210.5WITCH Ttem 80205 Switch
0410.COPIER Copier/Printer Both Schedule.. 0310.DESKTOP Calculation CALCO0002 Switch
0420.COLOR Gl B Both Schedule... 0320.LAPTOP Item 80005 Laptop PC
0499.PRINTERS Printers Total Both Schedule... 0410.COPIER Ttem 80230 Copier
0500INSTALLAL R G Both Schedule... 0420.COLOR Item 80231 Color Laserjet
0510.SERVERS Servers Schedule 0510.5ERVERS Resource Group TECHN Technician
0520.NETWORK Network S i
0530.CLIENTS Clients
0540.PRINTERS Printers ‘ - o — o :
0599.INSTALLA... Total Cost of Installation End-Total 0500.INSTALLATL... 16,00 320,00 64
9999.J0B Job Total End-Total 0000.JOB..9999.)... 34,00 5.720,00 10.

The installation costs in this job are Resource Groups with line type Schedule,
just as in the previous job, so we invoice actual hours spent on the job.

The other lines are of type Both Schedule and Contract. This means we will invoice
exactly what is in the budget. The job journal lines for these tasks should be posted
with a blank line type.

[346]

Chapter 8

3 | The upgrade

Our customer requests an upgrade from Navision version 3.70 to Microsoft
Dynamics NAV 2009. We can do this for a fixed price but we require a fee for
analyzing the system.

For this job, EXAMPLE3, we can start with a limited number of Job Task Lines,
just for the quote. When the customer agrees to do the upgrade we can add new
job task lines.

Both the Quote and the Upgrade are fixed price and posted directly to the general
ledger. This does not mean we cannot have our resources to register the actual hours
using the job journal but the line type should be blank.

Another part of the upgrade is not done fixed price. The systems needs some
redesign, a conversion to SQL Server 2008, and the customer wants additional
training and support.

[iy Edit - Job Task Lines - EXAMPLES . Packt Publishing - Upgrade 3_.70 to 2009 e il i
Related Information - ﬁ Reports ~
Job Task No. Description Job Task Type Totaling Job Posting... Schedul.. Sch.. Schedule (..
0000.JOB Packt Publishing - Upgrade 3.7.. Begin-Total
0100.QUOTE Analysis Begin-Total
0150.QUOTE Analisys old system Posting SETTING UP 1,00 285,00
0199.QUOTE Analysis Total End-Total 0100.QUOTE..019... 100 295,00
0200.UPGRADE Upgrade Begin-Total
0250.UPGRADE Fixed Price Upgrade Pasting SETTING UP 3,00 26.500,00
0299.UPGRADE Upgrade Total End-Total 0200.UPGRADE..... 3,00 26.500,00
0300.REDESIGN Redesig Begin-Total

0310.REDESIGN | _d View - Job Planning List - EXAMPLE3 Packt Publishing - Upgrade 3.70 to 2009 0250.UPGRADE Fixed Price Upgrade
0320.REDESIGN ’ Actions ~ B Reports ~

0399.REDESIGN Job Task ... Type No. Description Qu.. UnitCost Total C.. Unit Price
0400.5QL 1 0250.UP.. G/LAcco.. 6620 Fixed Price U... 1 0,00 000 13.250,00
0410.5QL2008 Both Schedule.. 0250.UP.. G/L Acco.. 6620 Fixed Price U... 1 0,00 000 10.00,00
0420.5QLBENCH Both Schedule.. 0250.UP.. G/L Acco.. 6620 Fixed Price U... 1 0,00 0,00 2,650,00

The fixed price part of the upgrade is invoiced in three phases. When the job starts
we invoice 50%, when we deliver the test system we invoice 40% and 10% is invoiced
three months after go-live.

This is done using lines of Both Schedule and Contract line type.

[347]

Consulting

4 | The support team

For the support team, our policy is to create one job per fiscal year per Customer.
We will use this job, EXAMPLE4, for invoicing the maintenance of the license and
all support issues.

The support issues can be both little questions customers call us for, such as
changing a report or a page, or implementing new features that requires only a few
days work.

Each issue and new feature will be created as a job task line. The new features will
be created by the account manager who sells the feature. We can then decide if the
invoicing is done fixed price, using contract lines, or on time and materials using
schedule lines.

Our support team also needs to use the job system, but we do not want them to
manually create a new job task line for each support call, and we also want them to
view all outstanding issues for all customers easily. For this we have created a new
issue registration system which we discuss at the end of this chapter.

Each issue in the system is linked to a job task. When Support Engineers create a new
issue, the job task line is automatically generated for them and they can use it in our
time and billing system.

Time sheets

For all the jobs in our examples it is critical to have a solid registration of resource
hours. In the standard Microsoft Dynamics NAV job application resources need to
post a job journal for each combination of Job, Job Task, and Posting Date. This is not
the way most people want to register their hours; therefore we have created a Time
Sheet application.

Data and transaction model

The Time Sheet application is layered above the job journal line and is created using
resources and job tasks.

[348]

Chapter 8

Time Sheets
o o 0
Open To Approv.,

Check

There is an approval process for the person responsible for the job allowing them to
make corrections.

.”/ Planning \\, 4 Tirne Sheet Application)
o,
» Resource Time Sheet
(Table 156) (Table 123456703 Corrections
—_—
Jab Task Tirne Sheet Lire
3
e (Table 100a) [Table 22325805 &ppro--al
. 4 \
S —— - ~
A Time Sheet
- Job Planning Line | Registration | [4——Approved
(Talde 1)
iCodeu.1z34 ghyoa)
e ~
. Ol AN x
e
Jeh Jowmal L q\\
Job Ledger Entry Job f_';':_;:ﬂﬂ Job Journal Line

[Tahle 16g)

iTabde 310}

[pde=unit zo12)

.
-
f‘/_ Resource Journal ‘L ™
Res. Ledger Enrnl,r Res. i'_"l"Poﬂ Res. Journal Line
fTable za3) i m:zul i Table 207}

[349]

Consulting

The time sheet is designed to be created for each week. The system automatically
generates the week starting date and creates the description. After that the resource
can create time sheet lines for each job task line, and populate the number of hours
each day of the week.

e ™ 7
_4f Edit - Time Sheet Card - TIMEOODOL = B]
TIMEOOQQO1
General ~ Time Sheet ... -
No. TIME0000L Resource Mo MARK o L= 800
Tu. 8,00
Week Start Date: 24-1-2011 - Status: - We.: 6,00
Description: Week : 4, 2011 Th. 8,00
Fr= 8,00
Time Sheet Line - 5a.
Su.
Job No. Job Task Mo. Description Mo. | Tu. | We. Th Fr. | - 5a. Su Y
Total: 38,00
EXAMPLEL 0110.INSTC... Install and Setup clients 4,00
EXAMPLEL 0120.IMSTSE... Install and Setup server 400
EXAMPLEZ 0120.MAIL E-rnail Server 8,00 8,00 800
EXAMPLE3 0410.5QL2008 | SQL 2008 Conversion 6,00

If we look at this time sheet we can see, after it is updated, that Wednesday is
missing two hours.

Purchasing

For some jobs it might be necessary to purchase items specifically for that job.
Unfortunately job planning lines are not used in the requisition worksheet we
looked at in Chapter 5, Production, or Chapter 6, Trade, so we need to create the
purchase orders manually.

Expanding the requisition worksheet business logic for job planning lines is not
recommended for two important reasons. First reason is that the code is very
complex and cuts deep in the item reservation process. The second, more obvious
reason, is that most companies that use jobs do not use the requisition worksheet
as it is designed for production and trade businesses.

A better way of automatically creating the purchase orders for jobs would be to
copy the drop shipment functionality from sales.

[350]

Chapter 8

For this example we will create a manual Purchase Order looking like this:

.y Edit - Purchase Order - 106024 - London Postmaster pri
’ Actions ~ elated Information ~
106024 - London Postmaster
General
Mo 106024 Order Date: 27-1-2011 -
Buy-from Vendor No.: 10000 - Document Date: 27-1-2011 -
Buy-from Contact No.: CT000066 - Vendor Order No.:
Buy-from Vendor Name: London Postraster Vendor Shipment Mo.:
Buy-from City: Lendon - Vendor Invoice No.: PACKTL
Posting Date: 27-1-2011 - Status: Open
IZ:V;_‘.I Show more field
Lines
Type No. Description Quant... Job No. Job Task Mo, Job Line Type Unitof M... Direct Unit Cost... Lin
Ttemn 80005 Computer I 266 M... 1 EXAMPLE2 0320.LAPTOP Contract ~ PCS 10,50

When purchasing for a job, the Job No. and Job Task No. fields should be used. If we
set the Job Line Type to contract this item will be invoiced to the customer. Usually
this is not required since it should have been in the Job Planning Lines already.

Item costing versus work in progress

After we post this purchase document and navigate from the purchase invoice we
can see that the system has created two Value Entries for this item (as shown in the
following screenshot):

i View - Value Entries

, Actions - Re[atedlnformation =

Posting Date Item Ledg.. Entry Type A.. Document.. Docu.. CostAmount.. C.. C.. [Ie.. Valued Quantity Inv.. Cost
27-1-2011 Purchase Direct Cost [| Purchasel.. 108028 050 Jekad 1 1 1
27-1-2011 Megative A.. Direct Cost [Purchasel.. 108028 1050 | .. | D -1 -1 -1

This is very important for the costing as we discussed in the previous chapters.
Purchased items for jobs are not calculated as inventory but used for the Work in
Progress calculation.

Invoicing
When everything in our jobs is set up as required and the job journal is used to post
the usage, creating the invoices is a simple task.

[351]

Consulting

In the Job Manager Role Center we can see if a job is due to be invoiced. This is done
using a flow filter on the Planning Date field of the Job Planning Lines.

= Activities Foa
Invoicing
N ¢ lob Create Sales Invoice
0 Wla
Upcom... Inwvoices

Invoices Due - ...

Each job planning line has a planning date. This can be used to schedule our
resources but is far more useful for invoice scheduling. Each job planning line
that is ready to be invoiced should get the invoice date in the planning date field.

The invoices can then be created using the batch report Job Create Sales Invoice
(1093) but we can also preview the invoice by using report Job Suggested Billing
(1011). This report can be started from each job.

i On Order - Microsoft Dynamics NAV

@1\.‘)' |T CROMNUS International Ltd. » Home » Jobs » On Order

Microsoft Dynamics N... ~ ’ Actions ~ Eﬂ.elated Information - E% Reports ~

Home ﬁ Create Job 5ales Invoice Job Task Lines B Job Actual to Budget B Job- Suggested Billing

& CopyJob B statistics & Job Analysis
2 Role Center e g
4 [F Jobs :Eﬁ Ledger Entries & Calculate WIP I B Job - Planning Lines
F On Order | Process | Report
“F Planned and Qu... Jobs, On Order - | Tvpe to filter
v EmplEEE Sorting: No. * Sl Filter: Order
F Unassigned
F Upcoming Invoi... No. Description Bill-to Cus... Search Des...
¥ Invoices Due - N.. EXAMPLEL Packt Publishing - New Imp... 80000 PACKT PU...
¥ Jobs - WIP Mot ... EXAMPLE2 Packt Publishing - ReplaceL.. =~ 80000 PACKT PU...

The sales invoice lines are created using the same description as the job planning lines.
To clarify information for the customer we can use extra text lines to add information
to the invoice.

When the invoice is created and posted, the job task is updated with the actual
invoicing information.

[352]

Chapter 8

Calculating Work in Progress

As most jobs are not completed in a day or a week it is important to be able to
determine the status of each job at any given point in time. This can be measured
both in quantity and financially. In quantities we can see how much of the budget
is being used by looking at the job task page. For financial progress we can calculate
the Work in Progress or WIP.

WIP calculates the costs we incurred and the sales we invoiced on the job and creates
job WIP entries for this. This can then be posted to the general ledger if required.

The WIP amounts depend on the WIP method. Microsoft Dynamics NAV has five
possible WIP calculation methods:

¢ Cost Value: The Cost Value is leading for WIP calculation. The WIP is
the total percentage of job completion multiplied by the cost value. Job
completion is calculated using ((Real Cost/Scheduled Cost) — (Really
Invoiced/Scheduled Price)).

e Sales Value: The Sales Value is leading for WIP Calculation. The WIP is the
total percentage of job invoicing multiplied by the cost sales. Invoiced % is a
field in the job task.

e Cost of Sales: The total cost is calculated for the WIP calculation.

e Percentage of Completion: The scheduled costs are multiplied by the job
completion percentage.

e Completed Contract: All completed contract entries are used for WIP.

S The online help shows some good explanations of the

WIP methods.

Example

Let's create an example and calculate the WIP for each method.

We created a job with a total price of 1000 and total cost of 500. We used four
resource hours worth 500 and cost 250. We invoiced nothing.

Recog. Cost Recog. Sales WIP Cost WIP Sales

Cost Value 125 0 125 0
Sales Value 250 250 0 250
Cost of Sales 250

Percentage of Completion 250 250 0 250
Completed Contract 250

[353]

Consulting

Now we send an invoice to the customer for the hours spent. We invoice 500.

Recog. Cost Recog. Sales ~ WIP Cost WIP Sales

Cost Value 375 500 -125 0
Sales Value 250 250 0 -250
Cost of Sales 500 500 -250

Percentage of 250 250 0 -250
Completion

Completed 250 -500
Contract

In the last example we will use an item with cost of 250 which we cannot invoice.
We now have 500 costs and 500 sales.

Recog. Cost Recog. Sales WIP Cost WIP Sales

Cost Value 500 500 0 0
Sales Value 250 250 0 -250
Cost of Sales 500 500 0

Percentage of 500 500 0 0
Completion

Completed 500 -500
Contract

When the WIP is positive it means that we have done more than we have invoiced,
when the WIP is negative we have invoiced more than we have done.

Each company that uses Microsoft Dynamics NAV should make their own decision
on what WIP method to use. WIP methods can change for each job and even change
during a job.

WIP post to general ledger

Some accountants want to post the WIP amounts to the general ledger. The benefit
of doing this is to have all the financial information in one place for easier reporting.

The G/L accounts for the WIP posting are set up in the job posting group.

When posting WIP to the general ledger there is always a reversal posting. When a
company does monthly reporting the WIP is posted on the last day of the month and
reversed on the first day of the next month.

[354]

Chapter 8

Changing jobs

In this chapter we have used some changes to the job functionality in order to make
it work for Cronus International Ltd. to sell Microsoft Dynamics NAV.

Quantity budgeting

For some companies it is important to know the total number of hours required
for a job and the number of hours used rather than the exact amounts.

For this we have created new flow fields in the Job Task table:

= Table 1001 Job Task - Table Designer =N EoR ==
E.. Field Mo, Field Name Data Type Length Description
v 62 Qutstanding Orders Decimal -
v 63 Amt. Rcd. Mot Invoiced Decimal
¥ 123456700 Scheduled Qty. (Base) Decimal
k| ¥ 123456701 Contract Qty. (Base) Decimal -
Help
The flow field definition is special.
Sum(*'Job Planning Line'"_"Quantity (Base)"
WHERE (Job No. = FIELD(Job No.),
Job Task No. = FIELD(Job Task No.),
Job Task No. = FIELD(FILTER(Totaling)),
Contract Line = CONST(Yes),
Planning Date = FIELD(Planning Date Filter)))
=) Table Filter [[]
Field Type Value OnlyMaxL... ValuelsFilter
Job Mo, FIELD Job Mo, +
Job Task Mo. FIELD Job Taszk Mo.
Job Task Mo. FIELD Totaling v
Schedule Line COMST Yes
Planning Date FIELD Planning Date Filter

[355]

Consulting

The Totaling field is for the lines of type End-Total. The ValuelsFilter property
ensures that the field will be interpreted as filter instead of a value.

L4y Eit o Task ies - DXANPLEL Pockt Publzhing - New Implemeriaion N
Y b i o e ol
’ Actions ~ Related Information - % Reports ~
Job Task No. Description Job Task Type Totaling Job Posting... Schedul.. Schedule (Total Co...
0510, GOLIVE Go-Live weekend Posting SETTIMNG UP 4,00 240,00
0520. SUPPORT After Care Posting SETTING UP 4,00 160,00
0599. TOTAL Total End-Total 0500. GO-LIVE..0... 8,00 400,00
9999 JOB Job Total End-Total 0000.J0B..9999.)... 48,00 2.000,00

The result is visible in the Job Task page (1002).

Resource groups

For scheduling we have implemented the possibility of using Resource Groups
in the Job Planning Lines as well as Calculations. This is done by adding two new
fields: Add-on Type and Add-on No..

"

Table 1003 Job Planning Line - Table Designer [=== ‘
E.. Field No. __Field Name Nata Tune | enath Descrintinn
v 10 Add-on Type - Properties =i @
v 10 i
W 10| _Property Valus
W 10| || Optionstring Resource,Item,G/L Account, Text,Resaurce Group,CaIcuIaﬁonl al |z
v 54 |OptionCaption <Updefined> o g
W 5 OptionCaptionM| efined= -
v 5 .
v 5410 Quanti{[Base} Decimal
¥ 5900 Service Order Mo Code 20
=l

p ¥ 123456700 Add-on Type Option |i|

¥ 123456701 Add-on Mo. Code 20 b

These fields replace the standard Type and No. fields on the pages allowing users to
select these new options. The caption of the new fields matches the replacement fields.

Add-on No. - OnValidate()
CASE "Add-on Type"™ OF
"Add-on Type'::Resource, "Add-on Type"::ltem, "Add-on Type"::"G/L
Account™, "Add-on Type'"::Text:
BEGIN
VALIDATE(Type, "Add-on Type');
VALIDATE("'No.", "Add-on No.");
END;

[356]

Chapter 8

"Add-on Type'::"Resource Group':
BEGIN
TESTFIELD(*'Line Type', "Line Type"::Schedule);
VALIDATE(Type, Type::Text);
VALIDATE(*'No.", "");
ResGroup.GET("*Add-on No.'™);

Description := ResGroup.Name;
"Resource Group No."™ := ResGroup."No.";
GetJob;

ResCost.SETRANGE(Type,
ResPrice.Type: :"Group(Resource)');
ResCost.SETRANGE(Code, ResGroup.''No.");
IF ResCost.FINDFIRST THEN BEGIN
"Unit Cost™ := ROUND(
CurrExchRate.ExchangeAmtLCYToFCY (
"Currency Date",'Currency Code",
ResCost.""Unit Cost","Currency Factor™),
UnitAmountRoundingPrecision);

In the C/ AL code we can make sure that when users select the values available in
the standard product, the normal code is executed. If a user selects a resource group
we execute our own business logic.

To make sure everything works as expected we use the type Text in the background.
The Line Type is mandatory set to Schedule because we do not want to invoice
resource groups, we just want them to be budgeted.

The Unit Cost and Unit Price are calculated using the Resource Cost and Resource
Price tables, which support the use of Resource Groups. This is an inheritance from
the previous Job functionality prior to version 5.0.

The pages Job Planning List (1007) and Job Planning Line Sub form (1022) are
changed to show our add-on fields instead of the normal fields.

To completely finish this functionality we would also need to change the reports
that show the Job Planning Lines and the C/ AL code that creates the Job Planning
Lines, when posting a Job Journal Line. This is not done in the example code for
this chapter.

[357]

Consulting

Calculations

Some companies using the Job functionality have a need for flexible calculations. In
our example we use it to calculate the price of a computer system but other examples
are book publishers or construction companies.

They want to know what it costs to create a product without exactly knowing which
screws, hinges, or color of chipboard is used.

For these companies we designed a simple but effective calculation module.

In our database there are two example calculations, a server and a desktop system.

Calculate

Process

CALCO0001 - Server

Calculation Factbox &% &
Total Price: 840,00
Hours: 3,00
Unit Price H... 40,00
Total Price ... 120,00
Unit Cost: 360,00
Unit Price: 720,00
Correction ... 0,00
Correction ... 0,00
Unit Price (... 720,00
Profit (After... 360,00
Hours (Afte... 3,00
Calculated: Calculated

Ir General L
MNo.: W Job Mo .
Description: Server Customer Mo.: .
Search Description: Turnover Account No.: 6620 .

Calculation Lines 7 A
Item Mo, Quan.. Description Unit Cost Unit Price Changed Profit Hours
- 1 Audio Device 20,00 40,00 Changed 20,00 017
CASE1 1 Casing Big 20,00 40,00 Changed 20,00 017
CASE2 1 Casing Small 20,00 40,00 Changed 20,00 017
HDD 1 Hard Disk Drive 20,00 40,00 Changed 20,00 017
MEMORY 2 Memeory Bank 40,00 80,00 Changed 40,00 033
MOTHE... 1 Motherboard 20,00 40,00 Changed 20,00 017
MNETWO... 2 Metwork Device 40,00 80,00 Changed 40,00 033
POWER Power Supply Changed 0,00
VIDEO 1 Video Device 20,00 40,00 Changed 20,00 017

TR

Correction -
Correction % Hours: 0,00 Correction % ltems: 0,00

The Calculation is designed using a header/line construction with a Number Series

and a Line Number. The calculation lines are Items.

[358]

Chapter 8

When a new Calculation is created some lines are automatically inserted. This is
done in a C/AL function that is called from the OnlInsert trigger.

The OnlInsert trigger will also copy the default Unit Price for Hours from our
setup table.

Onlnsert()
CalcSetup.GET;
IF "No."™ = "" THEN BEGIN

CalcSetup.TESTFIELD("'Calculation Nos.'™);

NoSeriesMgt. InitSeries(CalcSetup."Calculation Nos.",xRec."No.
Series",0D,"No.","No. Series");
END;

"Unit Price Hours (LCY)" := CalcSetup."Unit Price Hours";
InitLines;

The InitLines function creates a Calculation Line for each Item marked as
Calculation Item. This is a new field we added to the Item table.

InitLines(Q)
CalcLn_RESET;

i :=0;
Item.SETRANGE("'Calculation Item", TRUE);
IF Item.FINDSET THEN REPEAT

i += 10000;
CalcLn."Calculation No." := "No.";
CalcLn."Line No." := i;

CalcLn.VALIDATE("'Item No."™, Item."No.");
CalcLn. INSERT;
UNTIL Item.NEXT = O;

In the Calculation we can choose how many we will use from each item, and the
system will not only calculate the cost and price, but also the required number of
hours that is required. The Unit Cost and Unit Price are used from the Item table.
Hours is calculated from a new field, Minutes, which we added to the Item table.

Calculate()

CalcLn_RESET;

CalcLn.SETRANGE("'Calculation No.","No.");
CalcLn._CALCSUMS("'Unit Cost", "Unit Price", Profit, Hours);
CalcLn.FIND("-");

CalcLn._MODIFYALL(Changed,Calculated: :Calculated);

CalcLn.CALCSUMS("'Unit Cost', "Unit Price", Hours);
"Unit Cost" := CalcLn."Unit Cost";

[359]

Consulting

"Unit Price" := CalcLn."Unit Price";
Profit := "Unit Price"™ - "Unit Cost";
Hours := CalcLn.Hours;
Correct;
"Total Price Hours (LCY)" := "Hours (After Correction)" * "Unit Price
Hours (LCY)";
"Total Price" := "Total Price Hours (LCY)" +
"Unit Price (After Correction)';
Calculated := Calculated::Calculated;
MODIFY;
Correct()
"Unit Price (After Correction)"™ := "Unit Price"™ + ("Unit Price" *

("'Correction % ltems" / 100));
"Profit (After Correction)" :=

"Unit Price (After Correction)" - "Unit Cost";
"Hours (After Correction)" :=

Hours + (Hours * (*'Correction % Hours"™ / 100));

When we now use the Calculate function, the system will generate a total Unit
Cost, Unit Price, and Hours for this product to be created. Flexibility is added to
the system by allowing users to correct hours and usage with a percentage.

The Calculation can be used in a Job Planning Line the same way as the Resource
Groups earlier, the only difference is that we use the G/L Account type on the
background to invoice a calculation fixed price. Let's look at the C/ AL code in the
OnValidate trigger of the Add-On No. field in the Job Planning Line:

Add-on No. - OnValidate()

CASE "'Add-on Type' OF
"Add-on Type''::Resource ... "Add-on Type'::Text:
"Add-on Type'::"Resource Group':

"Add-on Type'::Calculation:

BEGIN
Calc.GET("'Add-on No."™);
IF Calc."Turnover Account No.'"™ = "" THEN BEGIN

TESTFIELD(''Line Type', 'Line Type'::Schedule);
VALIDATE(Type, Type::Text);
VALIDATE("'No.", "");
END ELSE BEGIN
TESTFIELD('Line Type",
"Line Type"::"Both Schedule and Contract");
VALIDATE(Type, Type::"G/L Account');

[360]

Chapter 8

VALIDATE(*'No.", Calc."Turnover Account No.'™);

END;
Description := Calc.Description;
GetJob;

To complete this functionality we would create a method to use the hours in the
calculation for the Resource planning. This can be done using job planning lines
of line type Schedule with no unit cost and unit price.

Issue registration

For our support team we have implemented an issue registration solution. This
allows them to have a simple application where they can register issues for all
customers, and keep track of their status without going in and out of each Job.

- - "
L4 New - Issue Card -1SS000001 (B 5)
’ Actions ~
IS5000001
General “~
Mo.: 155000001 Work Type: -
Description: Bug in Job functionality Job Mo.: EXAMPLE4 -
Resource Mo MARK - Job Task Mo. 0110.LICEMSE 2012 -
Delivery Date: 27-1-2011 - Job Description: Packt Publishing - Support 2011
Status: Created -
v Issue Description F A
Type Description
E Question How do I change the WIP after [posted it to the General Ledger?

The Issue registration is a header/line construction with a number series and a line
number. The lines can be used to phrase questions and answers.

When a support engineer creates a new issue, the system will create the Job Task
automatically. Let's have a look at the C/ AL code that does that:

CreateJdobTask()
TESTFIELD(*'Job No.™);
TESTFIELD(""Job Task No.", "");

OldJobTask.SETRANGE(*'Job No.", *"Job No.");

OldJobTask.SETRANGE(*'Job Task Type",
OldJobTask."Job Task Type'::Posting);

IF OldJobTask. ISEMPTY THEN

[361]

Consulting

OldJobTask.SETRANGE("'Job Task Type",
OldJobTask."Job Task Type'::"Begin-Total');
OldJobTask.FINDLAST;

JobTask."Job No."™ := "Job No.";

JobTask."Job Task No."™ := INCSTR(OldJobTask."Job Task No.™);
JobTask.Description := Description;

JobTask."Job Task Type"™ := JobTask."Job Task Type'::Posting;

JobTask. INSERT(TRUE) ;
CODEUNIT.RUN(CODEUNIT: :"Job Task-Indent Direct", JobTask);

"Job Task No."™ := JobTask."Job Task No.";

The system searches for the last Job Task of the type Posting in the Job. If that
cannot be found, it searches for the last Begin-Total line.

Assuming this line exists we create a new Job Task line using the INCSTR function
to increment the number. The description is copied to the job task.

The support engineers can now register their hours on this job lask.

This piece of C/AL code is very simple but shows how effective a small solution
can be without even touching any of the standard Microsoft Dynamics NAV objects.
This is a very safe method of development.

Time sheet

We already discussed the functionality of the Time Sheet application in this chapter.
Let's have a look at how it was created.

The Time Sheet application is also a header/line construction with a number series
and a line number. It is designed to be used weekly and therefore automatically
creates the description based on the date. It calculates the week number and the year.

Week Start Date - OnvValidate()
IF DATE2DWY(""Week Start Date'™, 1) <> 1 THEN
FIELDERROR("'Week Start Date');

Description := Text000 + FORMAT("'Week Start Date', 0, "<Week>,
<Year4>");

[362]

Chapter 8

The user can change the Description if required.

{5 Table 123456703 Time Sheet - Table Designer ==

E.. Figld No. Field Name Data Type Length Option String
v 1 Mo. Code 20 -
v 2 Description Text 50
v 3 Week Start Date Date
v 4 Resource Mo, Code 20
v 9 Mo, Decimal
v 10 Tu. Decimal
v 11 We. Decimal
v 12 Th, Decmal
v 13 Fr. Decmal
v 14 Sa. Decimal
v 15 Su. Decimal
v 16 Total Decimal

»|v 20 Status Option ,To Check, Approved,Registered |
v 66 Mo. Series Code 10

-

To support a workflow the Time Sheet table has a Status field. During the work
week a resource can keep track of the things he did and change everything. When
the week is finished they can change the status to To Check. Then the person
responsible for the Job can check whether everything is valid, and change the status
to Approved. The Time Sheet can then be Registered, this is done using a codeunit
we will discuss later.

The Mo., Tu., We., Th., Fr., Sa., and Su. fields are Flowfields used in the Fact Box.

E.. Field No.
b

L R T T T T T T 4

Field Mame
1 Time Sheet Mo.
2 Line No.
3 Job Mo.
4 Job Task No.
5 Job Description
& Work Type
3 Description
9 Mo,
10 Tu
11 We.
12 Th
13 Fr.
14 Sa.
15 Su.
16 Total

Table 123456704 Time Sheet Line - Table Designer

Data Type Length
Code
Integer
Code
Code
Text
Code
Text
Dedma
Decimal
Dedma
Decimal
Dedma
Decimal
Dedma
Decimal

Description

B R

50

50

===

Help

[363]

Consulting

The Time Sheet Line allows users to create a line for each Job Task we worked on
during the week. Each day of the week has its own column for easy registration.
After validating each day the total is calculated using a function.

CalcTotal)
TESTFIELD(*"Job Task No.");

Total :=
"Mo."™ + "Tu."™ + "We."™ + "Th." + "Fr." + "Sa."™ + "Su.";

The Total field is used to calculate the total hours per week in a flow field.

Registration

The Time Sheet application has a registration codeunit. As the Time Sheet
application is a document covering the Job Journal, this checks the status of the time
sheet, and then creates and posts a Job Journal Line for each day if required.

OnRun()
TESTFIELD(Status, Status::Approved);

TimeSheet := Rec;

TimeSheetLn . SETRANGE(*'Time Sheet No.", "No.™);
IF TimeSheetLn_FINDSET(TRUE) THEN REPEAT
Job.GET(TimeSheetLn."Job No.");
IF TimeSheetLn."Mo."™ <> 0 THEN
CreateJdnlLn("'Week Start Date', TimeSheetLn."Mo.™");
IF TimeSheetLn."Tu."™ <> 0 THEN
CreatednlLn("'Week Start Date'™ + 1, TimeSheetLn."Tu.™");
IF TimeSheetLn."We."™ <> 0 THEN
CreatednlLn("'Week Start Date' + 2, TimeSheetLn."We.™);
IF TimeSheetLn."Th." <> 0 THEN
CreatednlLn("'Week Start Date' + 3, TimeSheetLn."Th.™");
IF TimeSheetLn."Fr." <> 0 THEN
CreatednlLn("'Week Start Date' + 4, TimeSheetLn."Fr.");
IF TimeSheetlLn."Sa." <> 0 THEN
CreatednlLn("'Week Start Date'™ + 5, TimeSheetLn."Sa.™);
IF TimeSheetLn."Su."™ <> 0 THEN
CreateJdnlLn("'Week Start Date' + 6, TimeSheetLn."Su.');
UNTIL TimeSheetLn.NEXT = O;

Status := Status::Registered;
MODIFY;

[364]

Chapter 8

At the end of the routine we change the Status to Registered.

CreatednlLn()

JobJnlILn.INIT;

JobJnlILn."Job No."™ := TimeSheetLn."Job No.'";

JobJnlILn."Job Task No."™ := TimeSheetLn."Job Task No.';
JobJnlLn_VALIDATE('Line Type™, JobJdnlLn."Line Type'::Contract);
JobJdnlLn_"Posting Date"™ := PostingDate;

JobJnlLn_"Document Date™ := PostingDate;

JobJnlLn."Document No." := TimeSheetLn."Time Sheet No.';

JobJdnlLn.Type := JobJdnlLn.Type::Resource;
JobJnlLn_VALIDATE(*'No.", TimeSheet."Resource No.™);
JobJdnlLn."Work Type Code™ := TimeSheetLn."Work Type";
JobJdnlLn_Description := TimeSheetLn._.Description;
JobJnlLn_VALIDATE(Quantity, Qty);

JobJnlPostLine.RunWithCheck(JobJdnlLn,TempJnlLineDim);

The Job Journal Line records are of type Contract to allow invoicing.

Summary

In this chapter we learned how to implement the Job functionality of Microsoft
Dynamics NAV. We discussed different strategies of setting up Jobs and Job Tasks.

We created several examples with different invoicing methods using the Job
Planning Lines in a creative way.

The Job Journal should be used to register usage on Jobs, but we discussed how to
enhance this by creating a simple but effective Time Sheet application.

When Purchasing Items for Jobs the Items are not used for Costing, but in the Work
in Progress calculation we discussed in detail.

Invoicing is done automatically when everything happens as it should.

Lastly, we designed some small enhancements for the Job module without making
big changes in the standard application.

This was the last chapter about the functionality of Microsoft Dynamics NAV.
We discussed all possibilities of the application, and how they should be changed
without risking breaking anything.

In the next chapter we will look at how Microsoft Dynamics NAV can interface with
other applications.

[365]

Interfacing

When the first version of Microsoft Dynamics NAV for Windows was released in
1995 the system was very closed. It was possible to import and export data using flat
text files and that was basically it. These flat text files would be placed on a floppy
disk and sent by postal mail. Internet and e-mail were just coming and large USB
sticks were a dream.

Since then the world has changed tremendously. Internet, e-mail, ActiveX, SQL
Server and .NET changed the way we think about interfacing with applications.

Today Microsoft Dynamics NAV 2009 has a completely open database and supports
a wide range of interfacing possibilities which we will learn in this chapter.

In this chapter, we will first discuss the available interfacing technologies and the
interfaces available in the standard product. Then we will talk about interfacing
methodology and how to create reliable interfaces.

At the end of the chapter, we will create some sample interfaces and see how the
future will further improve interfacing.

After reading this chapter, you will have a good understanding of what interfaces
the product supports out of the box, what interfacing technologies to use, and
how to design a solid business-to-business interface.

Interfacing

Interface types

When discussing an interface we usually start with the technology, but before that,
some other basic questions need answering such as the following;:

e Does it need to import, export, or both?
e Isit started manually or automatically?
e Is the interface timer or event driven?

Let's discuss these questions.

Import and export

The first question is if the interface should only export data from Microsoft Dynamics
NAYV or if it would also import data to the system which then needs to be processed.

When importing and exporting, the data process can be started manually by an
end-user using data pulling or data pushing. The interface can also be event or
timer driven.

Microsaft Dynamics MAY External Application

. Manual
- . Data Pulling
e s DataPushing
. Events
. Tirner
Microsoft Dynamics NAY (External Application 3
Manual

-
- Data Pulling
) Import Intesface e
= DataPushing sl
= Evenls
- Tirner

Microsoft Dynarmics MAY External Application
e)

Manual

When an interface is manual, the first application has an export process and another
application has an import process. The end-user first manually starts the export
process and then manually starts the import process in another application, usually
saving the data to a flat-file. This is a very classical approach to interfacing.

[368]

Chapter 9

An example of manual interfacing is exporting tele-banking information from
Microsoft Dynamics NAV or sending XBRL files to your accountant.

Data pulling

When using data pulling to export data, the interface is started from an external
application. This application will read the data from the database and process it.

When using data pulling to import data, the interface is started from the application
which reads and processes data from another application.

Data pushing

If an interface uses data pushing, the exporting application writes the data to the
other data source. This method is used when the data in the other application does
not need further processing. A typical example is exporting data from Microsoft
Dynamics NAV to Microsoft Office applications such as Word or Excel.

Event driven versus timer driven

When data pushing or data pulling is combined with the use of events or timers,
there is no longer any need for end-user interference. The interface will then
run automatically.

We will discuss these methods in detail later in this chapter when we discuss
interface methodologies.

Interfacing technologies

In Microsoft Dynamics NAV there are a wide range of methods to interface. Each
method is useful for certain types of interfacing and less useful for other types.
We will discuss all available methods in the C/SIDE development platform.

File
Both Flat files and XML files are supported by Microsoft Dynamics NAV.

Flat files have been available since the introduction of the product in 1995 using
Data Ports for the classic Clients.

XML support was introduced in version 3.60 as an extra option for data ports.

Version 4.0 introduced the XMLPort object that replaced the data port for importing
and exporting XML files.

[369]

Interfacing

In the Role Tailored Client for Microsoft Dynamics NAV 2009, data ports
are no longer supported. The XMLPort has taken over the task by having
"~ aflat file option.

Automation Control and OCX

The implementation for Microsoft COM and ActiveX in Microsoft Dynamics NAV is
referred to as Automation Control or OCX.

OCX

OCX is short for Ole Control Extension, which was the predecessor of ActiveX.
OLE was introduced in 1990 and ActiveX in 1996. Although OCXis a 20 year old
technology it is loved by the Microsoft Dynamics NAV developers. Most commonly
implemented OCX types are Microsoft Common Dialog and Microsoft COM control.

Although supported in Microsoft Dynamics NAV 2009 it is very likely

that this old technology will no longer be supported in future versions
g of the product.

Automation Control

Automation Control or ActiveX allows software applications to be reused as
embedded parts of another application. Most Microsoft applications support being
used in such a way. Examples are Microsoft office, Windows Scripting Host, and
ActiveX Data Objects (ADO).

Microsoft Dynamics NAV has support for Automation Control. The application can
be consumed by other applications using the C/FRONT.dIl which is shipped with
the product. We will discuss C/FRONT later on in this chapter.

Consuming Automation Control is done using interface exposing methods
and properties.

The most commonly used and generic interface is iUnknown. This is also the
only Automation Control interface supported by Microsoft Dynamics NAV. If the
Automation Control uses other interfaces, a wrapper should be created in Visual
Studio transforming the interface to iUnknown. We should also create a wrapper
when the Automation Controls needs to be embedded using a form control.

[370]

Chapter 9

More information about the iUnknown interface and COM technology
Ze—> can be found here : http://en_wikipedia.org/wiki/1Unknown.

Events

Most Automation Controls allow data to be pushed. Using events for automation
control, it is also possible to start business logic in Microsoft Dynamics NAV when
something happens in the other applications.

A classic example used by many Microsoft Dynamics NAV developers is using the
ntimer.dll that is shipped with the product. We will discuss this example later
on in this chapter in the section "Example Interfaces".

.NET

Service Pack 1 for Microsoft Dynamics NAV 2009 introduced using embedded .NET
controls in the Role Tailored Client. This technology is called Client Add-ins. We will
discuss this technology later in this chapter.

Consuming .NET controls is only supported in the current version of Microsoft
Dynamics NAV when it is wrapped in a COM control.

Automation wrappers

To work around the issues with embedded Automation Control, the iUnknown
interface, and .NET support, many developers use COM Wrappers. This converts the
methods and properties to the format that Microsoft Dynamics NAV supports.

. Anexample of how to create a com wrapper for a .NET control
% can be found on https://blogs.msdn.com/freddyk/
e archive/2009/03/18/integration-to-virtual-earth-part-
1-out-of-4_aspx

ODBC/ADO

Open Database Connectivity was developed in 1992 with the goal of allowing all
types of databases to exchange data in a unified way.

ODBC for Microsoft Dynamics NAV allows both reading and writing in the
application database as well as reading and writing to other databases.

[371]

Interfacing

When using the SQL Server database, we can use all SQL Server interfacing features
including ODBC. The Native database supports ODBC using the C/ODBC driver.

Using ODBC is more advanced and requires basic knowledge
s of T-SQL Statements.

Reading from Microsoft Dynamics NAV

To read data from the database it is only required to have a valid ODBC driver
installed on the Windows Machine you are using and credentials to log in to

the database.

Let's create an example to import data from Microsoft Dynamics NAV using Excel:

1. Open Microsoft Excel and select Data.

Bookl - Microsoft Excel

Home Insert Page Layout Formulas Data Review View Add-Ins

S | T 5 2 U] Connections Al ‘E]_[? K Clea % = —
| lm| Lo 22 21 21 =y 85 =
From From From |From Other| Existing Refresh ; Z) Sot
Access Web Text | Sources~ | Connections All~ *

port & Filter

.. & From SQL Server
Al =z Create a connection to a SQL Server table, Import data [
s into Excel as a Table or PivotTable report.

T] Text to Remove Drata
L Advanced | Columns Duplicates Validation

Data Toc

Filter

2. Select a Server name and valid credentials.

Data Connection Wizard

Connect to Database Server

Enter the information required to connect to the database server,

1, Server name: ||gcalhost

2. Log on credentials
@ Use Windows Authentication
() Use the following User Name and Password
User Mame:

Password:

[Cancel H < Back][Mext =

[372]

Chapter 9

3. Select a Database and the Table you want to view. In our example, we will
select the Customer Table. Then select Finish and OK.

Data Connection Wizard

Select Database and Table
Select the Database and Table/Cube which contains the data you want.

Select the database that contains the dats you want:

CHAPTERT

Connect to a spedific table:

[>

Import Data

% |l
Select how you want to view this data in your workbook.
Table

PivotTable Report

fi3]) PivotChart and PivotTable Report

CRONUS International Ltd_SCustomer Posting Group
CRONUS International Ltd_$Customer Price Group dbo

CRONUS International Ltd $Customer Template dbo
< 1 J

Mame Owner = Description | *
EZ| CRONUS International L dbo
[E] CRONUS International Ltd_gCustomer Amount dbo
CRONUS International Ltd_SCU! Bank Account dbo
CRONUS International Ltd_$Customer Discoury dbo

=5 Only Create Connection
Where do you want to put the data?
(@ Existing worksheet:

(7 Mew worksheet

[P[cperﬁes...] i OK] [Cancel]

7 |
e e e | meees]{,"#_____;4

4. We now have the Microsoft Dynamics NAV data in Excel.

& = |+ Bookl - Microsoft Excel

Home Insert

Table Name: i3] sSummarize with PivatTable

Table_localhost_ j‘" Remove Duplicates

Page Layout Formulas Data Review

ﬂ & Properties

View Add-Ins Design

Header Row |:| First Column
otal Row |:| Last Column

Export Refresh
<:' Resize Table “-____'] Convert to Range E - glt\’) Unlink Banded Rows |:| Banded Columns
Properties Tools External Table Data Table Style Options
Al - |

HSearch Name
SPOTSMEYER'S FURNISHINGS
PROGRESSIVE HOME FURNISHINGS
NEW CONCEPTS FURNITURE
CANDOXY CANADA INC.

ELKHORN AIRPORT

01905902 London Candoxy Storage Campus LONDON CANDOXY STORAGE CAMPUS

01121212 Spotsmeyer's Furnishings
01445544 Progressive Home Furnishings
01454545 New Concepts Furniture
01905893 Candoxy Canada Inc.
01905899 Elkhorn Airport

10000 The Cannon Group PLC
20000 Selangorian Ltd.

[F- RN RENRE- BT R SRR

SELANGORIAN LTD.

we cannot use them in ODBC.

THE CANNON GROUP PLC

n Name zﬂ Address

612 South Sunset Drive
3000 Roosevelt Blvd.

705 West Peachtree Street
18 Cumberland Street

105 Buffalo Dr.

120 Wellington Rd.

192 Market Square

153 Thomas Drive

Since Flow Fields are not actual fields in the SQL Server database,

Writing to Microsoft Dynamics NAV

Directly writing data to the Microsoft Dynamics NAV database using ODBC is not
recommended as a best practice. The reason for this is the missing business logic

at this interface level.

[373]

Interfacing

When writing via ODBC, we directly address SQL Server without allowing the C/

AL Business Logic to validate the data we create. The C/ AL data normally ensures
data integrity for the business rules we develop. The same applies when using the

C/ODBC driver for the Native database.

To work around this issue, the data can be saved in a special interface
buffer table and processed by a C/ AL transaction using an Application
Server or can be started from the User Interface.

Talking to other databases

To use ODBC to read and write data from Microsoft Dynamics NAV to other
databases, it is recommended to use ActiveX Data Objects (ADO). ADO is a Microsoft
Technology that allows using an ActiveX interface to connect using ODBC. Using
ADO allows us to read and write to the database on the other end.

We could even use ADO to connect to the Microsoft Dynamics NAV SQL Server
database and run SQL Statements from C/AL code.

[We will use ADO in the "Interface methodology" section of this chapter.]

SQL Server interfacing

If Microsoft Dynamics NAV runs on top of a SQL Server database we can use all
available technologies in SQL Server to get data in and out. This offers a wide range of
options that goes beyond the scope of this book, but let's briefly discuss some of them:

e Linked servers: In SQL Server it is possible to set up linked servers. This
allows us to send queries to other databases such as other SQL Servers or MS
Access or Oracle and create views based on this data.

e Views: A view in SQL Server is a saved query with a fixed result set that can
be interpreted as a table. In C/Side we can use a view as a data source for a
table using the Linked Object property and create a Page or Report based on
this data source.

e DTS Packages and Integration Services: SQL Server Integration Services
(SSIS) replaces DTS Packages as the primary component for SQL Server to
integrate with other databases. Using SSIS requires good knowledge and
skills of both SQL Server and Microsoft Dynamics NAV.

[374]

Chapter 9

e Reporting Services: SQL Server Reporting Services or SSRS is a server
based reporting platform that can be integrated with SharePoint allowing
users to design RDL reports based on T-SQL queries.

e Analysis Services: SQL Server Analysis Services or SSAS is Microsoft's
answer to the OLAP, Bl, and Data mining requirements of their customers.

M Another SQL Server component we can use is the SQL Server Agent.
Q This component allows us to schedule interface tasks that run
directly on the database.

C/FRONT

C/FRONT is an ActiveX component that can be used to call Microsoft Dynamics
NAYV from other applications. C/Front uses both OCX and .NET technology.

Before Web services were introduced in Microsoft Dynamics NAV 2009, C/Front
was the only technology available to interface directly into the Microsoft Dynamics
NAYV Application from other systems.

The C/Front.dl1 allows a range of properties and methods to be used and can also
be used from within C/AL.

C/AL Symbol Menu [=] & |[==)

crrone ______[Rlvetods ________[Riffsetierson -
SYSTEM Properties DisconnectServer

FILE OpenDatabase

TRANSACTIONTYPE CloseDatabase =
DIALOG ConnectServer

ACTIOM MextCompany

CODEUNIT OpenCompany

& More information on using C/FRONT can be found on MDSN:
i http://msdn.microsoft.com/en-us/library/dd338953.aspx.

Microsoft Message Queue

Microsoft Message Queue or MSMQ allows applications to integrate that run
asynchronously with an unreliable connection. This interfacing technology is very
popular for websites that use information from Microsoft Dynamics NAV and send
information back to the database.

[375]

Interfacing

To use MSMQ from Microsoft Dynamics NAYV, it is required to use Automation
Control. An example in the standard application that uses MSMQ is Employee Portal.

NAS

MSMQ is always combined with an Application Server to handle the requests sent
back by the website.

[WEBUSERS

<
Wi

\

SQL Server Internet

,
h&

-

The web users can be employees from the company using a web solution for
timesheet registration or a PDA or customers using a web shop.

Web services

With the success of the internet grew the need for an API that is designed for
communication using this platform. Web services were introduced in the beginning
of the 21st century using XML and standard communication protocols such as HTTP.

Microsoft Dynamics NAV is capable of both consuming and exposing web services.
To expose web services, it is a requirement to use the Service Tier and SQL Server.

The most important difference between Web services and Microsoft Message Queue
is that Web services is real time and only runs when the connection between both
applications is active whilst MSMQ will queue the requests until the connection has
been re-established.

Consuming web services in NAV

To consume a web service in C/ AL we use an ActiveX control Microsoft XMLHTTP.
This can send an XML file to a web service listener and wait for the answer.

Examples of web services are Address Verification, Shipping Rates and Services
(UPS, FedEx), Currency Exchange Rates, or Credit Card number validation.

[376]

Chapter 9

% A very good example of consuming a web service using C/ AL can be
2— found at http://mibuso.com/blogs/ara3n/2008/03/06/.

When developing a web service interface, make sure to have good documentation of
the web service format and to have a valid test account.

Exposing a NAV web service

In Microsoft Dynamics NAV 2009 every Page object and most Codeunits can be
exposed as a web service. This can be done using the Web Service Table (2000000076).

Web Services EI@
O...0bjectID Service Mame Published
» C.. 5313 Outlook v -

m

To publish a web service, select the Object type and Object ID and find a unique
service name. Then select the Published checkmark.

The only valid web service object in the standard product is Codeunit Outlook
Synch. Dispatcher (5313) which is used for Outlook Synchronization which we will
discuss later in this chapter.

Consuming a Microsoft Dynamics NAV web service

To consume the web service, an address is generated that is called from the
other application.

http://<Server>:<WebServicePort>/<Serverlnstance>/WS/<CompanyName>/

(& hitp://localhost:7047/DynamicsNAV/WS/CRONUS%20International%:20Ltd./services - Windows Internet Explorer =R Eo]
&) = [£) nepviiacalast 7047/ DynamicsNAY WS/ CRONUSS0Intermat ~ | | 42 | x | [[=] Bing
x (B Snagit E B

<l Favorites | 5 (@ Suggested Sites v @] Web Slice Gallery »

& http://localhost7047/DynamicsMAV/WS/CRONU... B = B « [o - Page~v Safetyr Tools+ §

- zdiscovery xmins="http://schemas.xmlsoap.org/disco/"

xmins:xsi="http:z/ /www.w3.org/2001/XMLSchema-instance"

¥xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<contractRef ref="http:/ /localhost:7047 /DynamicsNAV/WS/CRONUS International
Ltd/SystemService" xmins="http:/ /schemas.xmlsoap.org/disco/scl/" />

<contractRef ref="http:/ /localhost:7047 fDynamicsNAV/WS/CRONUS International
Ltd/Codeunit/Outlook" xmins="http://schemas.xmlsoap.org/disco/scl/" />

</discovery>

[377]

Interfacing

A very good source of information on web services for Microsoft
o Dynamics NAV is http://blogs.msdn.com/freddyk/.

Client add-ins

The latest interfacing technology for Microsoft Dynamics NAYV is called
Client add-ins.

This allows the possibility to hand over a page control to a .NET dll. Using this
technology requires some basic .NET skills.

Standard application interfaces

We discussed all the available interface technologies for Microsoft Dynamics NAV.
Let's have a look at how this has been implemented in the standard product.

In this book, we will not go into details for each interface since that would almost
require another book. We will just briefly discuss where to find all technologies we
discussed in the standard application and indicate where a white paper or website
can be found.

Exporting Contacts Microsoft Dynamics NAV allows us to export our contacts both
from the classic client as from the Role Tailored Client. As both interfaces have a
different object type, we will discuss both the Dataport as well as the XMLPort.

Dataport

The Dataport that handles this is Export Contact (5050). The Dataport has two
Dataltems; Integer and Contact.

Dataport 5050 Export Contact - Dataport Designer [= || = |[23 |
Dataltem Mame
» | Integer <Integer >
Contact <Contact>
Integer - Field De
Integer - Properties = |[-E- |
E.. SourceExpr
b |¥ Contact.FIE Property Value

« Contact.FIE] DataltemTable Integer (#] =«
¥ Contact.FIELDCAPTION{Mame] DataltemVarMame <Integer > =
¥ Contact,FIELDCAPTION(MName... DataltemTableView SORTING({Number) WHERE{Mumber =COMST(1))
¥ Contact.FIELDCAPTION({Address) RegFilterHeading <>
¥ Contact. FIELDCAFTION("Addr... ReqFilterHeadingML < -
¥ Contact.FIELDCAPTION{County)
¥ Contact.FIELDCAPTION(Post ...

¥ Contact, FIELDCAPTION(City)] 0

¥ Contact. FIELDCAPTION("Coun. .. 1] 0

¥ Contact,FIELDCAPTION(Phon... 0 0>
Help

Chapter 9

The Integer Dataltem is used to export the column headers. The Contact Dataltem
exports the real information.

1
‘Q Using the virtual Integer table as a Dataltem for Dataports and Reports

can solve many issues where iteration is required.

XMLPort

The corresponding XMLPort for this functionality has the same number (5050) and
uses the Format Variable Text. Other options are XML and Fixed Text.

KMLport 5050 Export Contact - XMLport Designer E=n EoR x|
MNode Name Mode Type Source Type Data Source
4 m Element Text
ContactHeader Element Table AMLport - Properties [= =] =]

ContMoTitle Element Text

ContExternallDTite Element Text Property Value

ContMameTitle Element Text b 5050 -

ConthMame 2Title Element Text Name Export Contact

ContAddressTitle Element Text Caption Expart Contact

ContAddressZTitle Element Text Cfapﬁn.nML EMU=Export Contact

ContCountyTitle Element Text Dlrechon. o Export

ContPostCodeTitle Element Text DefaultFieldsvalidation <Yes> e

a:] T Encoding <UTF-16>
XMLVersionMo <1.0>
Format/Evaluate <C/SIDE FormatEvaluate =
UseDefaultamespace <Mox>
DefaultMamespace <urr:microsoft-dynamics-nav fxmiports/x5... |
InlineSchema <MNox>
Lsel ax Tio
| Format Variable Text] (=]
| FileMame xml
Feoelnte g
Fixed Text

Where Dataports have a separate window to define the fields, the XMLPorts have
a node structure like pages. The XMLPort also starts with Integer table as the first
data type followed by the Contact table.

* More information about programming Data Ports and XMLPorts can be
% found in Programming Dynamics NAV by David Studebaker, published
"~ by Packt.

[379]

Interfacing

Office integration

Microsoft Dynamics NAV and Microsoft Office are integrated to use with Word,
Excel, and Outlook. We will first discuss the standard Word and Excel integration
and later discuss alternatives. Lastly, we will briefly discuss the possibilities for
Outlook integration.

Word and Excel integration

In Microsoft Dynamics NAV, each form or page can be exported to Word and Excel
using style sheets. This built-in technology is automatically provided by the user
interface and requires no effort from developers.

HE e

There is a difference in functionality when using the Role Tailored Client compared
to the Classic Client. The classic client supports multiple style sheets and executes
them using C/ AL whilst the Role Tailored Client only supports one style sheet

per page object. This is solved in the Style Sheet Tool version 2.0.

,ﬁ- View - Cus;;:;ner List

Customers

View Ctrl+Shift+V

Reminder rr Cash Receipt Journal ﬁ Statistics ﬁ Customer - Order Summary E Custome]

" Sales Journal B Customer- Top 10 List
Edit Ctrl+Shift+E o, 5 B
) CHILN | B Ledger Entries Statement
Delete Ctrl+Del] s
New Document - - Cusmn
Not No filt lied
.D es o filters appliet || custom
bk Gl Responsibi.. Location C.. Phane Ma. Contact = | | Quotes:
T i
i iture YELLOW Ms. Tammy L. McDonald ||| | Blanket
[B§ ™ Cash Receipt Journal | :
| e . VELLOW Mr. Rob Young Orders
| @ sales Journal |.| Invoices
| YELLOW Mr. Ryan Danner | Retumn €
|l Customers Place = e SR Ry |* urm
| orage C... r. John Kane
ll €| Refresh Es g | Credith
| i g PLC BIRMII . BLUE Mr. Andy Teal Pstd. Sh
|| "% ClearFilter Ctrl+Shift+A |
| o —— Mr. Mark McArthur Pt Im
- ecipient as Attachment
£ Mrs. Azleen Samat patel Re
|H fr toe s ket E MixrceoftWord hcul o Mr. Mark Darrell Boland > —Pstd. “
il [MicrosoftExcel Ctri+E 3] v | Custon

The style sheets are standard XML office style sheets.

Style sheet tool

Since Office XML style sheet syntax is not very user-friendly, Microsoft has released
Style sheet tool for Microsoft Dynamics NAV and Word. This tool allows users to
easily generate style sheets.

[380]

Chapter 9

The Style Sheet tool version 2.0 can be downloaded from this website:
i http://www_mibuso.com/dlinfo.asp?FilelD=1111.

The tool can only be started from the Classic Client. After importing the . fob file the
first step is to create the setup by opening the form Style Sheet Setup (687). When
this is done we can start creating style sheets by using form Style Sheet Card (680).

The manual provided with the style sheet tool gives a good description about how to
create the style sheets.

4 Object Designer E=S B)
B Table T...ID Name M.. Version List Date Time BLOB Size C..
i] 680 Style Sheet Header Style Sheet ToolW12.0 18-06-09 23:55:48 12044 ¥ -~

/=3 Form a 681 Style Sheet Tables Style Sheet Toolw12.0 20-02-09 1n21:12 6992 ¥
] Report 3 682 Style Sheet Fields Style Sheet ToolW12.0 240209 25:42:10 6208 v
i] 683 Style Sheet Table Relations Style Sheet ToolW12.0 19-02-09 13:55::02 5184 ¥
*# Dataport A 634 Style Sheet Setup Style Sheet ToolW12.0 290609 13:10:48 1612 ¥
[XMLport 3 685 Style Sheet Link Style Sheet ToolW12.0 13-06-09 23:59:30 1656 ¥
o 680 Style Sheet Card Style Sheet Toolw12.0 24-06-09 22:05:43 24904 ¥
¥4 Codeunit 681 Style Sheet Tables Used Subfrm Style Sheet ToolW11.0 22-06-07 12:00:00 9696 ¥
R MenuSuite 6582 Style Sheet Fields Used List Style Sheet ToolW12.0 30-06-09 11:22:58 7392 ¥
683 Style Sheet List Style Sheet ToolW11.0 22-06-07 12:00:00 5244 ¥
[Page 684 Style Sheet Table Relations Style Sheet ToolW12.0 30-06-09 9260 ¥
685 Style Sheet Object List Style Sheet ToolW11.0 22-06-07 4568 ¥

686 Style Sheet Field List Style Sheet ToolW11.0 22-06-07 4592 v |
687 Style Sheet Setup Style Sheet Toolw12.0 25-06-09 8440 ¥
£ 680 Style Sheet Management Style Sheet ToolW12.0 30-06-0% 123296 ¥

A 681 Style Sheet Functions Style Sheet ToolW12.0 30-06-09 39528 ¥ |=

- 682 Style Sheet Data Management Style Sheet ToolW12.0 30-06-09 94436 ¥
| 680 Style Sheet Definition Style Sheet ToolW12.0 10-10-07 6:57:06 10100 ¥

Using style sheets in the RTC

To enable using the style sheets in the Role Tailored Client, all pages need to be
changed. This can be easily done using a tool that comes provided with the style
sheet application and requires the following steps:

1.

Export the pages you want to use the style sheets for to the new .xml
file format.

Start Codeunit 50000 and select the generated .xml file. The tool will
generate a new file with the same name adding the letters -SST.
Import the -sst.xml file and compile the pages.

The pages have now the style sheet action.

Word Automation

The built-in style sheet functionality was introduced by Microsoft in version 5.0.
Before that, the general solution to integrate with Microsoft Word was to use
Automation Control. An example of how this can be done can be found in
Codeunit WordManagement (5054).

[381]

Interfacing

Advanced Excel integration

When exporting information to Excel that needs to be combined from different parts
of the application, using style sheets is not the ideal way.

To support this, the Excel Buffer table (370) can be used. This table can be populated
with data and then sent to Excel using a simple C/ AL command.

This is used in several parts of the application, for example, to import and export the
budgets we discussed in Chapter 3.

Let's create a sample Codeunit that exports data to Excel using the Excel Buffer table.

1. Create a new Codeunit and define a global variable of type record Excel
Buffer. This needs to be a temporary variable. Also, define the other
variables as displayed in this screenshot:

-

Codeunit 50001 Demo Excel Buffer - C/AL Globals [=[=]E=]

Variables |Text Constants i Functions l

Mame DataType Subtype Length
Cust Record Customer »
| } | ExcelBufTemp Record Excel Buffer I
| FormatAddr Codeunit Format Address
Addr Text a0
RowhMo Integer
ExcelBufTemp - Properties [= &] -]

Value

<lndefined>
Yes I %

1D
Dimensions

| Temporary

. Temporary record variables are not stored in the database but in client
% memory. This allows multiple users to create the same records without
L blocking each other. It is also faster since all handling is done without

the network and database.

[382]

Chapter 9

2. Create a new Function EnterCell with the parameters displayed in

this screenshot:

-

Codeunit 50001 Demo Excel Buffer - C/AL Globals

| Variables I Text Constants | Functions

Cellvalue

Bold

UnderLine
MumberFormat

OnRunQ)
ExcelBufTemp.CreateBook;

Cust.FIND("-");
REPEAT
RowNo := RowNo + 1;

EnterCell(RowNo, 1, Cust."No.', FALSE, FALSE, "");

» | EnterCell e
EnterCell - C/AL Locals =] -E]]
Parameters | Return Value I Variables | Text Constants |
Var Name DataType Subtype Length
4 RowMo Integer e
ColumnMo Integer

Text
Boolean
Boolean
Text

Put the C/ AL Code in place that will handle the interface.

FormatAddr.Customer (Addr, Cust);

EnterCell (RowNo, 2, Addr[1],
EnterCell(RowNo, 3, Addr[2],
EnterCell (RowNo, 4, Addr[3],
EnterCell(RowNo, 5, Addr[4],
EnterCell (RowNo, 6, Addr[5],
EnterCell(RowNo, 7, Addr[6],
EnterCell(RowNo, 8, Addr[7],
EnterCell(RowNo, 9, Addr[8],

UNTIL Cust_NEXT = O;

FALSE, FALSE, "%);
FALSE, FALSE, "%);
FALSE, FALSE, "");
FALSE, FALSE, *%);
FALSE, FALSE, "");
FALSE, FALSE, "%);
FALSE, FALSE, "%);
FALSE, FALSE, "*");

250

ExcelBufTemp.CreateSheet(Cust.TABLECAPTION,Cust.TABLECAPTION,

COMPANYNAME ,USERID) ;
ExcelBufTemp.GiveUserControl ;

EnterCell ()
ExcelBufTemp. INIT;

ExcelBufTemp.VALIDATE(*'Row No.',RowNo);

[383]

Interfacing

ExcelBufTemp.VALIDATE(*"Column No.',ColumnNo);
ExcelBufTemp."'Cell Value as Text"™ := CellValue;

ExcelBufTemp.Formula = **;
ExcelBufTemp.Bold := Bold;
ExcelBufTemp.Underline := UnderLine;
ExcelBufTemp.NumberFormat := NumberFormat;

ExcelBufTemp. INSERT;

This C/ AL code will browse the customers in the database and format the addresses
using the Address Format (365) Codeunit.

The Customer No. field and the result array Addr[] are saved in the Excel Buffer table.

Lastly, we start the C/ AL functions to generate the Excel spreadsheet based on

the data.
@I HY- o= Book2 - Microsoft Excel
Hom‘e Insert Page Layout Formulas Data Review View Add-Ins
=% Calibri oA = =RE] = Wrap Text G | - '-i‘ﬁ =
J i A == = pTe enera = E
Paste B I U- |- &d-A- EE= $5 [Merge & Center - | B3~ 9, » | %8 ;% | Conditional Foi
7 S = 2 ;3 o Lg : o Formatting = as Ti
Clipboard Font Alignment u MNumber 1 Style
Al - _______fr | 1121212

4] 8 R e
it 1 1121212|Spotsmeyers Furnlshlngs Mr. Mike Nash 612 South Sunset Drive Miami, US-FL
2 | 1445544 Progressive Home Furnishings Mr. Scott Mitchell 3000 Roosevelt Blvd. Chicago, US-II
3 | 1454545 New Concepts Furniture Ms. Tammy L. McDonald 705 West Peachtree Street Atlanta, US-G
4 1905893 Candoxy Canada Inc. Mr. Rob Young 18 Cumberland Street Thunder Bay,
5 | 1905899 Elkhorn Airport Mr. Ryan Danner 105 Buffalo Dr. Elkhorn, CA-I
6 1905302 London Candoxy Storage Campus Mr. John Kane 120 Wellington Rd. London, CA-C
7 10000 The Cannon Group PLC Mr. Andy Teal 192 Market Square Birmingham,

Outlook integration

Microsoft Dynamics NAV 2009 allows different levels of interfacing with Microsoft
Outlook. They are as follows:

1. The Outlook Part on the Role Center.
Sending e-mails from pages using the ExtendedDatatype property.
Using the Mail (397) or SMTP Mail (400) Codeunits to send e-mails.

Synchronize Contacts and To-Do's using the Outlook integration Web Service.

ARSI

Reading e-mail from Exchange using the E-Mail - Logging functionality.

[384]

Chapter 9

Outlook part

On a Role Center, it is possible to activate the Outlook System Part. This allows users
to see their E-mail, Agenda, and Tasks directly on the Role Center.

I QOutlook F A
Mail
Poshy

Customnize Outlook Part @
Calen

Taski Choose which Microsoft Office Outlook elements to show.

Show Mail

Show these folders:

Select Folders...

Show Calendar

Show this number of days in my calendar:

This functionality is built in the Role Tailored Client and cannot be changed using
C/AL Code.

ExtendedDatatype property

When a Text field in a table uses the ExtendedDatatype property E-Mail, the Role
Tailored Client will automatically allow the users to directly send an e-mail to the
address specified in the field.

Table 5050 Contact - Table Designer [=ll= g
E.. Field No. Field Name Data Type Length D =3 F_paail - : = 1
v 38 Comment Boolean i = @
v 54 Last Date Modified Date Property Value
v 84 Fax Mo. Text 30 AutoFormatExpr <> -
v 85 Telex Answer Back Text 20 CaptionClass <>
v 86 VAT Registration Mo. Text 20 Editable <Yes>
v 89 Picture ELOB MotBlank <Mox
v 91 Post Code Code /'D"' T <No>
v 92 County Text 30 CharAllowed <Undefined >
v 102 E-Mail Text 80 | DateFormula <No>
| 107 Home Page Text B0 Title <N >
v 107 Mo, Series Code 10 valuesallowed k|
TableRelation <Updefined> T
ValidateTableRelation <= |
jon fes
| ExtendedDatatype E-Mail = [-

[385]

Interfacing

This is also built in functionality in the Role Tailored Client that cannot be
influenced by C/AL code.

. M New - Contact Card - CT000143 . Brummel

f Actions - Eﬂﬂelated Information - E Reports ~

CT000143 - Brummel

General
Lines

Communication
Phone No.: e | E-Mail: e, | mark@brummelds.com el |
Maobile P

o EEIE™ | . |= Untitled - Message (

Message Insert Options

Fax Mo.: #
Fopnat Text Review Add-Ins

Telex Mo. 4
= == m, [GE) gEE 0 3

Pager: 2 Cop A A = — g M J J Z

Faste : B 7 U = = = £E $= Address Check Attach Attach Signat
Telex Ans - # Format G : Book Names File Ttem~ b

Clipboard Basic Text Mames Include
Segments .£
To... Mark Brummel

Fareign T i '3

Ce.
Send

Subject: Question about your book

Mail and SMTP mail Codeunits

Before the introduction of the ExtendedDatatype property, the e-mails from Microsoft
Dynamics NAV were sent using an Automation Control wrapper DLL to Microsoft
Outlook. This is handled in Codeunit 397 and can still be used to send e-mails

directly from C/AL code.

Codeunit SMTP Mail (400) allows us to send e-mails directly to an SMTP server.

Outlook synchronization

Microsoft Outlook can be used as an offline client for Microsoft Dynamics NAV.
Every table can be synchronized to Microsoft Outlook when a connection with both
systems is available. Using the offline functionality in Outlook, users can view the
data when they are on the road and even change the information or create new data.

This is done using the Outlook Synchronization Web Service we discussed earlier in
this chapter or in previous versions using a C/FRONT interface.

[386]

Chapter 9

_ i Settings

| Genem|| Connection | Folders I Fiters I Customize

Servertype
@ Microsoft Dynamics NAV Service Tier
() Microsoft Dynamics NAV Database Server
() Microsoft SQL Server
Connection type
@ \web Service
wieb Service Path http:/Aocalhost: 7047/ DynamicsNAY/W S/Codeunit /Outlook
C/IERONT.NET

Sepver Name

Database Name

CRONUS Intemational Ltd -

Test Connection

[ok][Cancel][ey]

Company Name

The functionality is very well documented by Microsoft.

More information can be found on MSDN http://msdn.
microsoft.com/en-us/library/dd338966.aspx or on Partner
Source https://mbs.microsoft.com/partnersource/
deployment/documentation/howtoarticles/
howtonavoutlooksynchronization.htm

Exchange integration

To read incoming e-mails, Microsoft Dynamics NAV offers integration with Exchange
Public folders. Information in these mailboxes can be read and used in Microsoft
Dynamics NAV.

The handling of the interface is done using the Job Queue and the Application
Server (NAS).

[387]

Interfacing

In the Marketing Setup that we discussed in Chapter 4, Relationship Management,
we can set up the parameters for the Exchange integration.

_ 4 Edit - Marketing Setup - RO — " [[B [

’ Actions + Eﬂelated Information -

Marketing Setup

General
Inheritance
Defaults
Interactions

Synchronization

MNumbering
Duplicates 57
E-Mail Logging ~
Time Interval (Sec.): 30 Storage Folder Name:
E-Mail Logging Profile Name: E-Mail Logging User ID: -

Queue Folder Name:

Interaction log entries
Each e-mail read from Microsoft Exchange is displayed in Microsoft Dynamics NAV
as an interaction log entry.

Since Microsoft Exchange 2010 no longer supports public folders this
s functionality can no longer be used.

SharePoint

Microsoft Dynamics NAYV is integrated with SharePoint using a product called
Employee Portal.

Encrypted
Request

o

LAN

SharePoint

Encrypted
nesponse Response

ponse

DB Response—

Chapter 9

Most forms can be exposed to SharePoint. Using Message Queue and one of more
Application Servers, users can read and write data the same way as in the normal
user interfaces.

2} Web Part Page - Microsoft Internet Explorer : =T
Ebe Edt Wew Favoeites Tools Hep |£
Bk -) - (=] (2] | 0 sesch U Raveites Wmeds £ | 00- L (3

Ao [B1 Rt fochosiShorodiottbocmentsficromthats.s =] @ [ms>]

T4 Home Documents and Lists Create Site Settings Help

é‘l) Employee Portal

Modify My Page =

Customer List T

M, HName Responsibility Conter Lacation Code Fhone No. Contact

10000 The Cannon Group PLC BLUE Mr. Andy Teal iy

20000 Selangarian Ltd. Mr. Mark Mearthur View

30000 Johs Haddeek Ingursnee Co. Migs Patricia Dayle Visw

40000 Deerfield Graphics Campany TELLOW Mir. Kevin Wright View

50000 Guildford Water Departrent Mr. Jirn Skewart View
123405 1 =]

Customer Card -

General Cornmunication Inwoicing Payments Shipping

Ho. 10000 Search Name THE CANNOM GROUP PLC

Narne The Cannon Group PLC Last Date Modified 4f13/2008

hddraszs 1932 Market Square Baslancs (L) 164262.53

* More information about Employee Portal can be found on Partner Source:
%ii\ https://mbs._microsoft.com/partnersource/downloads/
g releases/employeeportalnav50.htm

BizTalk

Electronic Data Interchange or EDI is the most commonly used standardized
interface between companies.

Microsoft Dynamics NAV supports sending and receiving EDI Sales and Purchase
orders using Microsoft BizTalk server.

To implement BizTalk requires knowledge of the application and should be done
by specialized consultants.

[389]

Interfacing

Client Add-ins

Microsoft Dynamics NAV 2009 SP1 ships with one Client add-in for Microsoft
Connect. The page object that uses the Connect control is Connect (9175).

u Connect

2] - € Jsinin =
ﬁ Microsoft Dynamics Community

% Finance
Articles | Blogs | Forums

=4 Microsoft Dynamics NAV
L. Elogs | Newsgroups | Forums | Product Feedback

&
1

m

Let's have a look at how this done:

-
Page 9175 Connect - Page Designer = = fE=T]
Mame Caption Type SubType SourceExpr
<Control1> <Control1> Container ContentArea -
»| <ControlZ= Connect Field Parameters |
<Control2> - Properties o [
Property Value
Mumeric <No= -
DateFormuls Mo
ControlAddIn Microsoft. Dynamics, MAY . MicrosoftDynamicsOnlineConnectControl;PublickeyToken =3 1bf3856ad 3642 35 E] I_
3 =None> &2
StyleExpr <FALSE= -

The page type of this page is CardPart and it has no Source Table. The only control
on the page is Parameters which is a function with a Text(350) return value.

The property ControlAddIn points to the Add-in that will be used when this page
is started. This Add-in will replace the original control on the page.

In the Parameters function, a string is created to feed information into the Connect
add-in enabling it to show information that is interesting for the current role. This
is done using a combination of other C/AL functions.

Parameters()
InitCurrentRoleValues;

EXIT(Add(Version) + Add(Locale) + Add(Role) + Add(RolelD) +
Add(Serial));

AddQ

[390]

Chapter 9

EXIT(Parameter + Separator);

Version()

EXIT("version=" + FORMAT(ApplicationManagement.ApplicationVersion +
-y

ApplicationManagement.ApplicationBuild,0,XMLFormat));

Locale()
// Windows Language ID
EXIT("locale=" + FORMAT(CurrentLanguagelD,0,XMLFormat));

Role()

// Profile ID (Any text entered in Profile ID)

EXIT("role=" + FORMAT(DELCHR(CurrentRole, "=",Separator),0,
XMLFormat));

RolelD()
// Role Center ID (Page ID)
EXIT("roleid=" + FORMAT(CurrentRolelD,0,XMLFormat));

Serial()
// License ID
EXIT("serial=" + FORMAT(SERIALNUMBER,O,XMLFormat));

Separator()

EXIT(";");

XMLFormat()

EXIT(9);

InitCurrentRolevValues()
CurrentLanguagelD := GLOBALLANGUAGE;

CurrentRolelD := ApplicationManagement.DefaultRoleCenter;
CurrentRole := FORMAT(CurrentRolelD);

Chapter 7, Storage and Logistics, uses Client Extensibility and Bing Maps to show the
stops of a route on a map.

More information on using Client Extensibility can be found on
http://blogs.msdn.com/cabeln/. More information on how
%\ to integrate with Bing Maps can be found on https://blogs.
’ msdn.com/freddyk/archive/2009/03/18/integration-
to-virtual-earth-part-1-out-of-4._aspx

The available libraries are stored in the Client Add-in table (2000000069).

[391]

Interfacing

Interface methodologies

So now we discussed interface types, interface technologies and the built in interfaces
in Microsoft Dynamics NAV.

Let's design and develop a new business to business interface. We will use the objects
from Chapter 7, Storage and Logistics to create the interface.

The scenario

One of our customers wants to e-mail the shipments from now on instead of faxing.
The e-mail will contain an Excel file in a predefined format.

The design

Let's bring back the Data Model we designed for the Logistics part of the solution
in Chapter 7.

I , r . F —
Reqistration Shiprment) > Route Step .
[Table 123050700k (Table 133456708)
\ r ! 4 ~ A
3
r
-~ ™y — =
Shipment Details Raoute
{Tabile 1230 0f poa) (Tabile 1 338 EE303)
o .

The process starts in the Registration table. From a registration, we generate
shipments and shipments are combined into a Route with stops.

So we need to move the data from the Excel sheet to the Registration table.

The mapping

When a customer delivers us an Excel sheet with information, it seldom happens that
they exactly use the same fields as our table. Therefore, we need to create a mapping.
Each field in the Excel sheet needs to be mapped to a field and missing fields need to

be identified and discussed.

The Excel Sheet we get from the customer looks like this.

A B C D E E G H I i K L
1 |Goods Code Description Date Pallets Length Width Height Weight Delivery At Address Postal Code City
2 |L51029 Loud Speaker LS 1029 10-1-2010 10 100 20 40 1000 Mr. Mark Brummel Duivenlaan £ 7331 AS Apeldoorn

[392]

Chapter 9

Let's try to map this information to our Logistics Registration Worksheet table.

Field No. Field Name Data Type Length Mapped Field
1 Registration Batch Code 10 -

2 Line No. Integer -

6 Shipment Date Date Date

8 Product No. Code 20 Goods Code
10 Description Text 50 Description
12 Unit of Measure Text 10 -

16 Quantity Decimal Pallets

20 Length Decimal Length

21 Width Decimal Width

22 Height Decimal Height

31 Gross Weight Decimal -

32 Net Weight Decimal Weight

36 Units per Parcel Decimal -

37 Unit Volume Decimal -

53 Ship-to Name Text 50 Delivery At
55 Ship-to Address Text 50 Address

57 Ship-to City Text 30 City

58 Ship-to Contact Text 50 -

59 Ship-to Post Code Code 20 Postal Code
60 Ship-to County Text 30 -

61 Ship-to Country/Region Code Code 10 -

Most of the fields in the Excel sheet can be mapped to a field in our table.

The gaps
Some fields that are needed in NAV are not populated by the Excel sheet. For

some fields this is okay, for example the Registration Batch and Line No. fields
are determined by the import.

Some other fields are more difficult. Unit of Measure, Gross Weight, Units per Parcel,
and Unit Volume are left blank in the Excel sheet, but they are all needed in NAV.

[393]

Interfacing

For these fields, we need to come to an agreement with the customer. They need to
either specify these fields or tell us if they have default values. Let's look at our
gaps and fill them in:

e Unit of Measure: For this customer it is always "PALLET".
e Volume: This can be calculated using Length x Width x Height.
¢ Gross Weight: We agree that this is equal to Net Weight.

e Units per Parcel: This is always 1.

What if it does not work

Reading the external data into the database is just one step in creating a
reliable interface.

But what happens if the customer contacts us and says: "We sent you a file with 10
lines and the shipment document shows nine lines." When we check our database,
the shipment does show nine lines, but there is no way to check if we imported the
original ten lines. At this stage, the imported Registration lines are deleted and the
shipments are generated.

If this happens we need traceability.

In a well designed interface, we should always create a table that exactly matches
the imported data. This allows us to first check if everything matches.

The data from this table can be processed but should not be deleted from the
database but periodically cleaned up. This allows us to check if things go wrong.

We will demonstrate this in a more advanced example.

The scenario

The implementation of our storage and logistics add-on requires a real time interface
with a Radio Frequency application. The RF scanners are used for the pick process.
The RF application uses its own database system with tables that we should populate
and read afterwards.

[394]

Chapter 9

s) ” RF Application N

Microsoft Dynamics NAV 2009

Y
Storage Header Storage Post | — Registered Storage N
Header 2
- V. l l)
- , m
F I istered Finished Picks
Starage Line Storalg_tianleuurna ReglsteﬁneSlu(agE
() Interface
l R Exceptions
Storage

Jowmal Post —»| Storage Register 1

Line

p—

Storage Enbry
\

The RF application has three tables. Our interface needs to export data to the Pick
Lines table, and it needs to import data from the two remaining tables, Finished
Picks and Exceptions.

The interface type

This is an import and export interface that will use data pushing for the Pick Lines
and data pulling for the Finished Picks and Exceptions.

The interface will be timer driven. Every minute we will poll for new data.

The interface technology

For this interface, we will use a combination of technologies that we discussed in
this chapter.

The main technology is Automation Control. We will use two of them.

Active Data Objects

The Picking database runs on SQL Server, so we will use ADO to connect to the
database and send T-SQL Statements to read and write data.

[395]

Interfacing

Reliability

For the timer feature we can use two technologies. The obvious choice seems to use
the Job Queue to execute our business logic. However, the interface we are creating
here can be defined as business critical. If it stops working, the picking process in
the warehouse will quickly stop. When designing a business critical interface always
remember the more components we use, the more can go wrong. For this reason, it
might be better to create our own timer mechanism.

NTimer.dll

We will use the ntimer.dl1 for this and it comes shipped with each Microsoft
Dynamics NAYV installation.

Logging

In this interface, we will enable two types of logging. The first log will be to duplicate
the RF tables in Microsoft Dynamics NAV and use them as a buffer. A second log
will be maintained where we will save a copy of all T-SQL statements we generate.
This will enable us to see what we generated if something goes wrong.

The design
Let's look at the design of the interface we will be developing for this project.

-~

(" Microsoft DynamicsNAV 2009 | [NAS) [RF Application R

Slorage Header

)

2 Oy

- Pick Limes

1
2

[RF Interface

j Mgt
Storage Line RF Pick Lines ~ e

— — f -
e |\ Mtimer.dll -
RF Finished Picks (- ﬁ—) — Finished Picks

| ([—
y) . SOL Statement L\ r A
J \
——————— RFExceplions (= — Exceplions

. - .

\ \ N 4

[396]

Chapter 9

The interface will be controlled from an Application Server. Each minute it will execute
a Codeunit that checks if there are new Storage Lines that need to be exported. These
lines will first be moved to the RF Pick Lines buffer table and then moved to the RF
database using ADO and T-SQL. New Finished Picks and Exceptions from the RF
database will be moved to Microsoft Dynamics NAV using the same technology

and can then be processed.

The solution

To run the interface we have created three Codeunits and a table. The SQL
Statement table is used to log each interface session.

(NAS -
R

i ¥ Lo
RF MAS Timer RF Helper RF Interfaci % !
¢Codeu. 123456730] iCodeu. 1234 05732) iCodeu. 133456730

L L

{ SOL Statement
(Table 133458731}

ho______

_\

—_—

1. RF NAS Timer (123.456.730)

This Codeunit is started from the NASHandler function in Codeunit
ApplicationManagement 1. It uses the ntimer.dll as an automation
control with Events and the Singlelnstance property.

-

Cedeunit 123456730 RF NAS Timer - C/AL Globals = 3
Variables |Text Constants | Functions
Mame DataType Subtype Length
b | NTimer Automa... ‘MNawision Timer 1.0'.Timer -
RFInt Codeunit RF Interface
SynchID Integer
i Integer
NTimer - Properties = o=
Property Value
D 1100102000 -
I j fined =
|WithEvents Ves

[397]

Interfacing

Ntimer.dl1l is an automation control that can be used to handle timer events
in C/AL. The Event NTimer: :Timer can be used to execute C/ AL code.

Enabling events on an Automation Control can be done in the properties of
the variable.
OnRunQ)
IF ISCLEAR(NTimer) THEN
CREATE(NTimer);

NTimer.Interval := 1000;
NTimer.Enabled := TRUE;

RFInt.CreateConnectionString;

ParseError()

SELECTLATESTVERSION;

RFIntSetup.GET;

SynchlID := RFIntSetup.'Synchronisation ID";

SQLStat. INIT;
SQLStat."SQL Statement 1" = "ERROR : " + GETLASTERRORTEXT;

SQLStat.Bold := TRUE;

SQLStat.Color := 16711680;
SQLStat.SessionlD := SynchlD;
SQLStat.Type := SQLStat.Type::Error;
SQLStat. INSERT(TRUE);

COMMIT;

NTimer::Timer(Milliseconds : Integer)
IF NOT CODEUNIT.RUN(CODEUNIT::"RF Helper™) THEN
ParseError;

Singlelnstance is a property of a Codeunit that changes the behavior vari-
ables in the object. Normally all variables are destroyed when the transaction
is completed. In Singlelnstance, Codeunit variables remain active during
the lifetime of the application.

This means that the NTimer: :Timer event will keep coming back during the
lifetime of the NAS which is always.

From the NTimer: :Timer trigger, we execute Codeunit RF Helper. If this
Codeunit returns an ERROR we save the error in the SQL Statement table.
This enables traceability of the interface.

GETLASTERRORTEXT is a C/ AL function that returns the last error message
that was generated by the system. It can be used in combination with
IF CODEUNIT.RUN syntax to catch runtime errors.

[398]

Chapter 9

RF Helper (123.456.732)

The RF Helper Codeunit is a wrapper Codeunit that is used for error catching
and maintaining readability.

Each run of the interface we create a new SQL Statement ID which we can
filter on to trace any errors.

OnRun()

SELECTLATESTVERSION;

RFINntSetup.GET;

RFIntSetup.''Synchronisation ID" := RFIntSetup."Synchronisation ID"
+ 1;

RFINntSetup -MODIFY;
SynchlID := RFIntSetup.'Synchronisation I1D";

SQLStat.INIT;
SQLStat."SQL Statement 1" :=
"-SYNCHRONISATION STARTED- ID = * + FORMAT(SynchlID) + * -*;
SQLStat.Bold := TRUE;
SQLStat.Color := 16711935;
SQLStat.SessionlID := SynchlD;
SQLStat.Type := SQLStat.Type::StartStop;
SQLStat. INSERT(TRUE) ;

COMMIT;

CLEAR(RFInterface);
RFInterface.SetSynchID(SynchlD);

StoragelLn.LOCKTABLE;

IF StorageLn.FINDSET THEN REPEAT
RFInterface.CreatePickLines(StoragelLn);

UNTIL StorageLn_NEXT = O;

COMMIT;

CLEAR(RFInterface);
RFInterface.SetSynchID(SynchlD);
RFInterface.ReadFinishedPicks;

COMMIT;

CLEAR(RFInterface);
RFInterface.SetSynchID(SynchlD);
RFInterface.ReadExceptions;

COMMIT;

[399]

Interfacing

SQLStat. INIT;
SQLStat."SQL Statement 1" :=
"-SYNCHRONISATION STOPPED- ID = " + FORMAT(SynchID) + " -";
SQLStat.Bold := TRUE;
SQLStat.Color := 16711935;
SQLStat.SessionlID := SynchlD;
SQLStat.Type := SQLStat.Type::StartStop;
SQLStat. INSERT(TRUE) ;

COMMIT;

Then the three interface functions are triggered to synchronize the three
required tables.

COMMIT

After each command we execute the COMMIT statement. This will make sure that
everything in the database is stored up to that point. This is necessary since the ADO
statements we create are outside our transaction. If our interface run would roll back
it might synchronize data that is already synchronized.

RF Interface (123.456.731)

The actual ADO synchronization is done in this Codeunit. This Codeunit is also
Singlelnstance. This will keep the ADO connection alive during the NAS session.

CreateConnectionString()
IF ConnActive THEN EXIT;

IF 1SCLEAR(AdoCon) THEN CREATE(AdoCon);
IF ISCLEAR(AdoRecordSet) THEN CREATE(AdoRecordSet);
IF ISCLEAR(AdoStream) THEN CREATE(AdoStream);

RFIntSetup.GET;
Database := RFIntSetup.'Database Name';
Server := RFIntSetup.'Server Name";

ConnString := "Provider=SQLOLEDB;Data Source=" + Server +
";Initial Catalog=" + Database + ";Trusted_Connection=yes";

SaveReadSQL("Connection * + ConnString +
FORMAT (CURRENTDATETIME) ,TRUE,0,0,0, "7);

opened on " +

AdoCon.ConnectionString := ConnString;
AdoCon.Open;

ConnActive := TRUE;

CloseConnectionString()
AdoCon.Close;

[400]

Chapter 9

CLEAR(AdoCon);
CLEAR(AdoStream);
CLEAR(AdoRecordSet) ;

SaveReadSQL("Connection closed on * +
FORMAT (CURRENTDATETIME) ,TRUE,0,0,1, "%);

ConnActive := FALSE;

For the interface we use three Automation Variables.

Codeunit 123456731 RF Interface - C/AL Globals =] =[]
Variables |Text Constants | Functions

Mame DataType Subtype Length
AdoCon Automa... ‘Microsoft ActiveX Data Objects 2.8 Library'. Connection -
AdoRecordset Automa... ‘Microsoft ActiveX Data Objects 2.8 Library'.Recordset
AdoStream Automa... 'Microsoft ActiveX Data Objects 2.8 Library'.Stream
SynchID Integer

» | ConnActive Boolean

e ADO.Connection: This is used for the connection with the database and to
execute the T-SQL statements.

e ADO.Recordset: The result sets of a SELECT statement can be read using this.

e ADO.Stream: The streams are used to convert data types between
ODBC and C/Side.

Writing data

The RF application needs data from the Storage Line table. We first create a mapping
to the RF application as we did with the Excel interface earlier in this chapter.

This mapping is saved in a buffer table for traceability.

CreatePickLines()
CreateConnectionString;

SaveReadSQL("CreatePickLines” ,TRUE, 1, 8388608, 3, "");

PickID := COPYSTR(StoragelLn."Document No." + FORMAT(StorageLn.'Line
No."™), 1, 20);

SaveReadSQL("Pick Document : "+PicklID,TRUE,3,16711680,7,"");
WITH RFPickLines DO BEGIN

"Pick Code"™ := PicklID;

Quantity := StoragelLn.Quantity;

"Terminal ID" := 1;

"Display 1" := StoragelLn.Description;

"Display 2" := "Warehouse " + StoragelLn."Warehouse Code';

[401]

Interfacing

"Display 3" := "Region " + StoragelLn.'"Region Code";
"Display 4" := "Shelf " + StoragelLn."Shelf No.";
INSERT;

SQLStatement := "INSERT INTO [RF Pick Lines]" +
"([Pick Code], "+
"[Quantity], "+
"[Terminal 1D],"+
"[Display 1],"+
"[Display 2],"+
"[Display 3],"+
"[Display 4])"+

"VALUES("+

Quote + PickID + Quote +7, "+
FORMAT (Quantity) +7,%+
"1 +','+
Quote + "Display 1" + Quote +","+
Quote + "Display 2" + Quote +","+
Quote + "Display 3" + Quote +","+
Quote + "Display 4" + Quote + ")";

END;
ExecuteSQL(SQLStatement);

StoragelLn.Exported := CURRENTDATETIME;
StorageLn.MODIFY;

The actual data is moved to the RF database using an INSERT command.

. Toavoid exporting the same data twice we need to keep track of what
% we exported. The simplest way to do this is to create a new field called
" Exported. Making this field a DateTime also enables the traceability

of the application.

Reading data

When reading data from the RF database, we also send a T-SQL SELECT query for the
data. We use the ADORecordSet to browse through the records that are in the result set.

For each record in the result set, we create a record in our buffer table which we can
later use to update the information in the Storage Lines.

When reading data, we do not want to import the same data twice. To avoid this, we
need to store a unique identifier in a table that enables us to remember where we left
in the last run.

[402]

Chapter 9

ReadFinishedPicks()
CreateConnectionString;

SaveReadSQL("ReadFinishedPicks",TRUE, 1, 8388608, 3, "");

RFINntSetup.GET;
LastSync := RFIntSetup.'Last Finished Pick";

AdoRecordSet := AdoCon.Execute(
SaveReadSQL("SELECT * +
"[Reference Entry No]," +
"[Terminal ID]," +
"[Duration], " +
"[Ready Date Time]" +
" FROM [RF Finished Pick] WHERE [Reference Entry No] > " +
LastSync,FALSE,2,0,2, ""));

IF AdoRecordSet.BOF AND AdoRecordSet.EOF THEN
EXIT;

AdoRecordSet.MoveFirst;
REPEAT
RFFinishedPick. INIT;
RFFinishedPick.""Reference Entry No." :=
ReadInteger("Reference Entry No");
RFFinishedPick."Terminal ID" := Readlnteger("Terminal ID");
RFFinishedPick.Duration := Readlnteger("Duration®);
RFFinishedPick.""Ready Date Time" :=
ReadDateTime("Ready Date Time");
RFFinishedPick. INSERT;
AdoRecordSet.MoveNext;
UNTIL AdoRecordSet.EOF;

RFIntSetup.'Last Finished Pick" := Quote + FORMAT(RFFinishedPick.""Refe
rence Entry No.'™) + Quote;

RFIntSetup.MODIFY;
AdoRecordSet.Close;

In our example, this unique identifier is the Reference Entry No.

Log, log, and log more

Although much of the logging is done using the buffer tables, we also want to store
the general process of the interface each time it runs. This is done using the SQL
Statement table. Both the SQL Statements as well as the other events are stored there.

By using the COMMIT functionality we can exactly see where it stopped by looking at
the last record in this table. We can solve the problem that caused the interface
to stop and restart the interface without losing data.

[403]

Interfacing

. Never use the COMMIT statement unless there is a very good reason for it.
% C/SIDE will normally handle the transactions for you by enabling a full
/= role back when things go wrong. Creating a COMMIT in a normal C/SIDE
transaction will prevent C/SIDE from rolling back.

Testing

Let's test the interface we have just designed and developed. In order to do this, we
need to have records in the Storage Line table and the RF database needs to exist
somewhere.

The RF database

To test the objects we have created for this solution, the RF database should exist
on your system. This database can be created using a T-SQL script and should
be executed on a Microsoft SQL Server machine.

The script RF database.sql is part of the object files downloaded for this
s book.

Open the script in SQL Server Management Studio and push Execute.

L'jg Microsoft SQL Server Management Studic 3 E‘.
File Edit View Query Project Debug Tools Window Community Help
D NewQuery | [y | ®hi b o | b | B H S & -
'3 | master w| ¥ Execute v i3 [= AR &
| Object Bxplorer < 3| RF database.sql -.MMELDS\mark (56))|_
Connect~ | @3 43 2 1 CRELTE DATABASE [RF Database]
7 GO
= [3 RF Database
3 Database Diagrams USE [RF Database]
= [@ Tables
3 System Tables
3 dbo.RF Exception ! [dbo] . [RE Pick Lines] |
= dbo.RF Finished Pick T No_] [int] IDENTITY(1,1)} NOT NULL
= dbo.RF Pick Lines e] [varchar] (20
3 Views [decimal] (38, 2
@ 3 Synonyms \:m fommt nm smor
3 Programmability ; _ T
LA Service Broker
L3 Security g L
= | {1 rowis) affected)
T Ll SECUTILy
3 Server Objects k W | 58
< i , | ,1| (@ Query exscuted successhully. |hoca|) (9.0 5P3) | BRUMMELDS\mark (56) | master | 00:00:00

Ready Ln5 Col 3 Ch3

[404]

Chapter 9

The test

Even though the C/AL code could run in the Role Tailored Client, we will run the
test in the Classic Client. The reason for this is that the interface will run in the NAS
which will execute the C/ AL code the same way as the Classic Client. Another
reason to use the Classic Client is that this is the interface for the DBA to perform
all their tasks.

To start a test run, open form RF Interface Setup (123.456.730) from the
Object Designer.

Make sure that the Database and Server are correct. The server should be the SQL
Server instance where the SQL Script was executed.

The ADO connection uses the current Windows Account with Trusted
connection. This user should have enough rights to insert and read data
e
from the RF database.

h— -
%k Object Designer == =]
T.... ID MName M.. Version List Date Time BLOE Si:
E Table
. 4 123456730 RF Interface Setup ¥ Chapter7ag 28-02-10 11:23:54 £
Form == 123456731 SOQL Statements ¥ Chapter7a9 268-02-10 11:24:45 |
] Repart = 123456791 Income & Exp. Journal - Test ¥ Chapter7ag 29-01-10 21:21:10 31
; 1= 29-01-10 2L:20:56 :
= RF Interface Setu
+2+ Dataport | - P EI-@ 27-02-10 16:19:09 3
o — i
| 28-02-10 11:13:25 3
[52# XMLport i General |
B 27-02-10 16:25:45 b
4 Codeunit E Synchronisation ID . . . 0 13:09:20 LE
iy MenuSLite E Database Mame. RF Database 17:44:49
=r 1 | servername localhost 10:28:44 1
age F .18: ¢
J Last Finished Pick |'0' 21:18:55 i
] j S
4 Last Exception E 10:26:52 2
E 22:05:16 ¢
E 22:05:24 ¢
E 21:12:33 ‘-
4 3
Log | [Test] [Help
|

To start a Test run, push the Test button.

Viewing the results

If everything went well, the results should show both in the log and in the buffer
tables and the RF Database. Let's check them all.

[405]

Interfacing

SQL statements

The SQL Statement log can be opened by either pushing the Log button on the RF
Interface Setup form or opening form SQL Statements (123.456.731) from the
Object Designer.

SQL Statements EI@
Options
Open Connection . . |:| 50L Statement Rl Gyt Comments. |:| 1
Close Connection . . . |:| TREGErS <L (=) o o 01-05-10 15:11

50L Timestamp S0L Statement

-- SYNCHRONISATION STARTED --- ID = 1 --- -
05-01 | 15:11:25 CreatePicklLines .
05-01 | 15:11:35 INSERT INTO [RF Pick Lines] ([Pick Code], [Quantity], [Terminal ID], [Display 1] ,
05-01 | 15:11:26 CreatePicklLines
05-01 | 15:11:26 INSERT INTO [RF Pick Lines] {[Pick Code], [Quantity], [Terminal ID], [Display 1],
05-01 | 15:11:26 CreatePicklines

05-01 | 15:11:26 INSERT INTO [RF Pick Lines] {[Pick Code], [Quantity], [Terminal ID], [Display 1],
05-01 | 15:11:26 CreatePicklLines

05-01 | 15:11:26 INSERT INTO [RF Pick Lines] {[Pick Code], [Quantity], [Terminal ID], [Display 1],
05-01 | 15:11:26 CreatePicklLines -
< | [P

(e) @)@]

The information on the form shows us exactly what the interface did during this run.

The buffer tables

When we open the buffer tables from the object designer, we can see that the
interface moved the data from the Storage Line table into the RF Pick Lines table.

%k Object Designer

T D Name M.. Version List Date Time
i} 123456730 RF Interface Setup ¥ Chapter7&9 27-02-10 15:13:51
15:34:50
fE3 RF Pick Lines - Table 15:13:58
15:14:04
Entry Mo, Pick Code Quantity Terminal ID Display 1 Display 2 15:14:10
4 1 SRCPTOD... 14,00 1 TOKYO Guest Chair, blue Warehouse GB - 19:4‘3:45 i
2 SRCPTOO... - 2o ¥
3 SSHPOOO... RF Exception - Table
4 55HPOOO. .. . -~ - 5 ——
5 5SHPOOD... Referenc... Terminal ID Duration Ready Date Time Description
N 4 1 27-017-10 1508 Tnyentary Broken -
RF Finished Pick - Table = = =5 E
Referenc... Terminal ID Duration Ready Date Time 3
» (R 1 27-02-10 15:08 -
2 1 27-02-10 15:09 J
3 1 27-02-10 15:10 E

[406]

Chapter 9

The RF Finished Pick and RF Exceptions are also populated with the records from
the RF Database.

The RF database

Last thing to check is the data in the RF Database. The data in both databases should
now be exactly the same.

i

........ .

File Edit View Query Project Debug Tools Window Community Help
BNewQuey | [y BRI b | G H I E

13 RF Database + | ¥ Bxecute b e 23 |5u g‘“ Iy g3 i= iE Q:’B i
Object Explorer ~ 1 x SQLQueryl.sqgl - (..MELDS\mark (58))*|" RF da'tab;_s_e,'sql_-...'MMELDS\mark (56_}}] |
Connect~ | 33 33 ‘3 select * from [RF Exception]

= GO
= (3 RFDatabase & select * from [RF Finished Pick]
[Database Diagrams o
& [Tables select * from [RF Pick Lines]
3 System Tables o

= dbo.RF Exception
= dbo.RF Finished Pick
=] dbo.RF Pick Lines
3 Views r 7|]
[Synonyms |
3 Programmability
[Senvice Broker (1 row(s) affected)
3 Security
3 Security
3 Server Objects |
3 Replication |

'‘; Messages

{3 row(s) affected)

{45 row(s) affected)

This can be checked from the SQL Server Management Studio.

Interfacing into the future

Interfacing will become more and more important in the future as technology evolves.
Newer technologies and faster internet connections will allow us to integrate our
applications better but will also make it more accessible for end users.

Let's briefly discuss some of the integrations we will see in the near future with
Microsoft Dynamics NAV.

[407]

Interfacing

SharePoint client in Microsoft Dynamics
NAV II7II

The next major release of Microsoft Dynamics NAV will be shipped with a new
SharePoint Client that will replace the Employee Portal product discussed in
this chapter.

The new product will allow us to reuse the Pages we have already defined for the
Role Tailored Client and Web services, and connects to the Service Tier.

Microsoft Dynamics CRM

Another important new interface will be with Microsoft Dynamics CRM. This
will allow us to use the strong integration that Microsoft Dynamics CRM has with
Microsoft Outlook and use the analysis and remote possibilities of this product.

Windows Azure

Cloud Computing is the latest technology where companies like Microsoft and
Google are really pushing us into, so what does that mean for Microsoft Dynamics
NAYV and interfacing.

We discussed earlier in this chapter that using Web Services requires a real time
connection between the systems using Windows Domain Credentials.

Windows Azure allows us to implement a remote mechanism that will solve these
issues. We can publish information to the cloud and users can subscribe to this
information.

Public Internet

Storage Services

[408]

Chapter 9

More information on Windows Azure can be found on this website:
e http://geekswithblogs.net/claeyskurt/Default.aspx

Summary

In this chapter, we have looked at how Microsoft Dynamics NAV can interface with
other applications.

We discussed the basics of interfacing, import versus export, and data pulling versus
data pushing. An interface can be executed manually or by a timer or event.

Microsoft Dynamics NAV supports a wide range of interfacing technologies such as
Files, Automation Control, OCX, .NET, ODBC, ADO, and Web Services.

It is also possible to integrate using SQL Server technologies.

The Application Server (NAS) is often used for interfacing with other systems for
example using Microsoft Message Queuing or Active Data Objects (ADO).

A wide range of interfaces that comes with the product have been discussed
including all interfaces with Microsoft Office, Exchange, SharePoint, and BizTalk.

We designed and developed two business to business interfaces. One is to import
data manually from Microsoft Excel and the other to automatically import and
export data to another database using ADO and a timer.

When designing an interface, reliability and traceability are the key elements.

In the next chapter, we will talk about Application Design methodologies
and principles.

[409]

10

Application Design

In Microsoft Dynamics NAV, technology and functionality go hand in hand. It is
impossible to design an effective change or enhancement to the application without
thorough knowledge of how the standard pieces fit together. With this knowledge
now available we can start designing our own applications.

In this book we talked about Application Design for Microsoft Dynamics NAV.
We discussed the data and the transaction model; how it works and why
it works that way.

We designed several small and large changes to the system both in detailed
examples and on a conceptual level.

In this chapter we will fit together all the pieces we have learned in this book,
and turn them into concepts for good application design.

We will also discuss how to approach a Microsoft Dynamics NAV implementation
project, and how to maintain the application. This requires a different approach
depending on the level of customization the project contains.

Application lifecycle

Designing an application is more than just analyzing processes and developing new
objects. These phases are just the tip of the iceberg.

Application Design

Once your application has been designed and developed it is most likely that one
or more companies will start using it. When this happens your software will start a
new phase in its lifecycle. Let's have a look at the lifecycle of a Microsoft Dynamics
NAV application.

Microsoft Dynamics NAV | Application Lifecycle

Design
Fit/Gap

Development

Maintenance

Implement

Production

The Development phase of the application starts with the Fit/Gap analysis,
followed by the Design and Build steps we saw in the earlier chapters of this
book. When those steps have been completed, the maintenance phase of your
application will start.

The Maintenance phase starts with the implementation and taking the software into
production. The first time this will happen it will be the Microsoft Dynamics NAV
implementation in your company. Once this is done your system will enter the real
lifecycle where constant improvements will be made to the application.

With the flexibility of the Microsoft Dynamics NAV product, this is a special
procedure where it is easy to step into the many pitfalls there are along the way.

We will discuss some guidelines that are important to follow. There are six
categories: Design to use, Maintain, Support, Upgrade, Perform, and Analyze.

Design to use

Designing software is not a goal; it's a way to support companies doing their
business. This makes usability one of the most important focus areas when
designing your application.

[412]

Chapter 10

The first thing that pops into mind when talking about usability is the user interface.
Microsoft Dynamics NAV 2009 has two interfaces that are commonly used, the
Classic Client and the new Role Tailored Client.

Both interfaces have a very different approach, where the Classic Client is very
flexible in design using a limited number of WYSIWYG (What You See Is What
You Get) controls, and the Role Tailored Client for Microsoft Dynamics NAV 2009
is less flexible rendering the page definition at runtime.

We will discuss both object types, focusing on the issues which require the most
design effort.

Forms

The form object is available for backwards compatibility with the Classic Client and
Add-on solutions that are not yet transformed to the Page objects.

e Tabs: Forms are tabbed horizontally. This means thaty only the fields on
the first tab are visible by default. It is tempting to move important fields
for an implementation to the first tab, and this might increase productivity
which is good. However, there is a downside to this, which we will discuss
when talking about upgrades.

C | Tabs [[ColorandFont || Columns |)

L4 L] L]
— 1 |
[53 104001 CoolWood Technologies ?ur:hﬁs-éﬁn—l ==
General | Invoicing Shipping [Foreign Trade [E-Commerce [Prepayment I y Vendor Information
-from Vi
Nowo s 104001 ()| &] Posting Date 240111 Buy-from Vendor |
= Order Addr
Buy-from Vendor No. . . 30000(%) OrderDate 2401-11 cf :; resses ()
= Lontac 1
Buy-from Contact No. . . | CTO0D068 D J Document Date 2401-11 = m
= Purchase History
Buy-from Vendor Name | | CoolWood Technologies QuoteMo.
Buy-from Address. . . | | Vendor Order No. Pay-to Vendor
Buy-from Address 2. . Vendor Shipment No.
Buy-from Post Code/City |PO7 2HI [#)| Portsmouth [#] | vendor Invoice No. . . . |D-303
Buy-from Contact. . . . Mr. Richard Bready Order Address Code. . . +
No. of Archived Versions. 0 Purchaser Code RL 3]
Responsibility Center . . (1]
Assigned UserID (%)
Status 00 Open
T... No. Description Location ... Quantity Reserved... UnitofM... DirectUni... L tem Information
b L. L5MAN-10 Manual for Loudspeakers WHITE 100 PCS ~ |- Item Card |
L. Ls-75 Loudspeaker, Cherry, 75W WHITE 10 PALLET £ | puatabity (229
= Purthase Prices 0}
. |- Purthase line Di... (0}
‘ (] L3
| [Order v] [Line v] [Fynctions v] [Pgsting v] [Brint...] [Help J
ry
r 3

[[Menu Buttons [| List Control and Sub form |]

[413]

Application Design

Columns: By default most forms have two columns, where the first is wider
and the latter is narrower. This is mainly for screen sizing. A third column is
often added, to allow us to display more information on the first tab. This is
not a bad thing. Try to keep the columns vertically aligned. This will improve
the readability of the form.

Fields: Most field types have a standard font, font size, width, and height
when they are placed on a form. Try to maintain them as much as possible.
This will improve the similarity of the forms throughout the application.
Exceptions are forms for Point of Sale, Shop floor, and Warehouse
employees. In these cases the users often have only one or few screens they
use throughout the day, and they won't see the rest of the application.

Colors: Colors are something all users love. It makes it easier to manage
exceptions and make decisions quickly. Be careful with implementing too
much color, this will have a counter effect and lead to confusion.

Menu Buttons: By default the menu buttons of many standard application
forms give access to all possible application features supported. Most
companies do not use them all and the end users have even less need for
them. This makes it tempting to go and change them. However this will only
have a very short term productivity effect. After a while most users will have
learned where to click. A better improvement for productivity is teaching
end users to use the available shortcuts.

List Controls: The list controls are the most flexible controls in the classic
client. Users can change the visibility and size of the columns themselves.

Sub Forms: Most document forms have one sub form displaying the lines.
Sometimes there might be a need to add more than one sub form. This
should be done only as a last resort. Having more than one sub form is an
indication of possible bad design. Exceptions to this are forms that are used
to analyze data by managers. For those forms it might be very useful to have
all the information in one place.

Pages

Where forms are very flexible in design, pages are fixed. However they have a lot of
advantages over forms that make them easier to use, although they require slightly
more work to design.

Tabs: Pages have vertical tabs that can be opened at the same time making it
less desirable to move fields to the first tab.

Embedded Lists: Another advantage of pages is that the users always gets to
see a embedded list page first, and then continues to the card that opens in a
new Windows control after selecting a record. This is something that many
developers have done in the classic client as a modification.

[414]

Chapter 10

e Importance: On pages it is possible to promote controls to be displayed
when the tab is closed or made additional so the end users have to
specifically make them visible. Use this functionality carefully when
designing your application.

e Personalization: All pages can be personalized by end users, also card
pages. This makes it easier to customize pages during an implementation
for a company, department, or end user. Personalization does not change
the object definition and does not require a developer.

4 ™\
Actions Tabs Importance Add-In
. 3]] /
T 1
_d Edit - Route Card - LRTEO0005 —— il |5
£ Actions ~
= 7 |
E % < 'L
Optimise Updatelncome Income Add Remove Report
& Expense Expenses Uhipments Shipnients Incident
Frovess Sinprieis HEEv SRS
LRTEQ0005
General ~ ||| Route -~ r
) r} 3
No.: LRTEODOOS | ... Shipment Date: | 27-1-2011 - o, Feartisle o7
Description: Great Britain Status: Planned - ;e -
i 1 % 1 . = F
Invoicing I?oooc CROMUS International Ltd. v %«.ﬂ Shiaf
Dublin . _ R
Route Stops # ~ ||
atarford
Seque.. Shipmen.. Type D.. In.. Name Address || |75
@ 10 Pickup Group Great Britain '
£ 20 Delivery Gr... John Haddock In... ! a4
Poole | b,
20 LSHPOOOO7 Delivery John HaddockIn... 10 High 1 B 2;:'5;;
20 LSHPOOO14 Delivery John HaddockIn.. 10 High 1 @f['fa;:},;r —————
= | | oimeat e S ey P:gamwf‘_
20 LSHP00020 Delivery John HaddockIn.. 10 High1
)) Route Part ~
20 LSHP00026 = Delivery John HaddockIn... 10 High 1
20 LSHP0032 Delivery John HeddockIn... 10 High 1 N°-°: ;WEUP? ;
Deliv: c Mo, of Deliveries:
) EL SO [he = Total Distance: 767,31
[+ 40 Delivery Gr... Deerfield Graph... | Total Income: 959,14
= 50 Delivery Gr... Selangorian Ltd. il Total Income (Invoiced):
l L N
Emphasis Fact Boxes

_/

e Actions: On pages Actions have replaced the menu buttons used on Forms.
Users can select which actions they want to emphasize making it easier for
them to get started with the application.

[415]

Application Design

Fact Boxes: This is a new feature which was not available in the classic client.
Each page can have an unlimited number of fact boxes attached. Fact boxes
can be used to show detailed information about a record. The Route page in
Chapter 7, Storage and Logistics, is a good example where we can see the route
in Bing maps and the details of the stops.

Emphasis: A control on a page can be emphasized with Bold, Red, Green,
or Red Italics. A combination of these colors in one control is not possible.

Client extensibility: A control on a page can be taken over by a .net dll.
The .net control will use the content of the d1 I and render the information.
We have discussed Client extensibility in Chapter 9, Interfacing.

Web Services: All pages can be exposed as a Web Service. This makes it
possible to create your own user interface in Visual Studio, Borland Delphi,
or another development tool that can consume Web Services.

Role centers

When it comes to usability in Microsoft Dynamics NAV 2009, the Role Centers are
the heart of the application. The Role Center is the place where the end users starts
their working day and returns to regularly. Let's discuss the Role Centers we created
in this book.

Squash application

The Squash Court Role Center was created for Chapter 2, A Sample Application, and
looks like this:

[416]

Chapter 10

ry
1
4 Role Center - Milrosoft Dynamics NAV " - ‘ =)
!
(L)) [® [cRoNUSIntemational Ltd. + Home »+ 4 , |
4 Microsoft Dynamics NAV ~ % Actions ~ I Reports ~
Home Role Center
% Role Center S Activities - My Squash Players -
7 Contacts e Squash Pla... Phone No. Name From Time To Time -
4 () Resenations 5QPLO0000L Andrew Cencini 22:30:00 23:00:00
T Resenvations Today New Reservation SQPLO00002 David Hodgson 12:00:00 12:30:00
¥ Reservations Tomorrow - o Registers SQPLO00003 Edk lsmest 14:30:00 15:00:00
7 Squash Pl
quash Players Reserva.. Reserva.. SQPLO00DDS Michael Lund 10:30:00 11:00:00
! Squash Courts Today Tomorr..
= con SQPLO000OS Monica Brink 20:00:00 20:30:00
ustomers -
Invoicing SQPLO0000S Christian Kleinerman 12:30:00 13:00:00
 Squash Journals 2
SODIMNNAT Reniamin Martin 150000 152000
1 Recurring Squash Journals New Invoice S
£ Sales Invoices 108 Combined Invaicing © |— My Reservations ~
Sales No. Name Unit Price | 15:00 15:30 1600 16:30 =
Invoices
SQCRTOOL Squash Court1 2000 |No Mo No No
SQCRT00Z Squash Court2 2000|Ne Mo Mo No L
Outlook ~ |sqcrmooz Squash Court3 000 Mo Mo Mo No
% Home . SQCRTO04 Squash Courtd 2000 |Mo Yes MNo No
i Microsoft Office Qutjook is not installed. < qu N
T SQCRT005 Squash Court5 000 |Ne No Mo Mo
4% Posted Documents
) SQCRTO06 Squash Court6 2000 |No Mo Yes No
BJ Departments CAFBTINT Courseh a7 am e Ma e e -
» O vy Noes .
| CRONUS International Ltd. | donderdag 27 januari 2011 | mark i
h 4 v

The Application screen has two sections, the Menu section and the Role
Center section.

The Menu section is created by merging Actions from the Role Center with the main
menu. When clicking on Departments an end user can access the entire application
depending on the security setup.

_ More information about the Home items can be found on
& this blog: http://dynamicsuser.net/blogs/mark_
e—brummel/archive/2009/12/16/tip-26-grouping-in-
the-homeitems.aspx.

The Role Center has a left and right part. The left part usually contains the activities
and a shortcut to Microsoft Outlook. The right part contains shortlists to the My List
pages that show frequently used records and notes. An end user can customize the
Role Center and move the parts around.

A Role Center can also show graphs. Graphs are defined using an XML structure
which is stored in the Chart table (2000000078).

[417]

Application Design

Storage and logistics

This application has four different Role Centers. We will discuss the Storage Role
Center (123.456.726). Other Role Centers are Logistics Role Center (123.456.700),
Manager Log. and St. Role Center (123.456.756), and Income and Expenses Role
Center (123.456.761).

e rello e
->j® [® CRONUSIntemationalLtd. » Home » 4]] search
Rag Tl
| Home Role Center
| L&.RoleGenter,] ! 2 u My Products -~
|
| 4 [E Storage Receipts | Receipts Product Mo. Description Inventory |:
T Vesterday PRODOD00S Glass Daor 600, -
T Imy L PRODOOOOG Mounting 100
T °"‘°"D_"" lo (o [0 PROD00007 Paint, blue 1,00
4 B Storage Shipments Aeoeol W o PRODOO0I0 ATHENS Desk 9,00
¥ Vesterda |)
o v PRODODOI1 PARIS Guest Chair, black 6,00
¥ Todsy .
| Shipments PRODOD0I2 ATHENS Mohile Pedestal 7.00
¥ Tomoerrow i
B Put-Away & New Shipment [E] My Regions =
= Picks il |o le le
£ Movements | Vesterd. Tody Tomor. , Warehouse Code Code Inventory *
| AT 9,00 H
e AT BULK 9,00
AT RECEIPT
Registration Worksheets AT SHIFMENT
10 Lo Lo Storage Journal AT STAGING
Put-fw.. Picks Move.. - 1700
...... @ vy notes “
9 Outiack From Creste.. Note Page
= Calendar
% Departments
Tasks
.-
75
CROMNUS International Ltd. | donderdag 27 januari 2011 | mark

On the Activities storage page employees can directly go to the documents filtered
on dates from the stacks. From the menu options users can create new documents or
open worksheets and journals.

We have designed two shortlist pages, My Products and My Regions. My Products
can be changed by the user by clicking on the small lightning button, and select
Manage List.

My Products g~ |

Product Mo, Description Inventory ;
PRODUUUUS - Glass Door 52,00 i Open

PRODO0006 Mounting 751,00 List

PROD0000T Paint, blue 1,00 |4]]| sort..

PRODO0OL0 ATHENS Desk 8,00 Choose Columns...

PRODO0011 PARIS Guest Chair, black 166,00 Gt

PRODO00L2 ATHENS Mobile Pedestal 27,00 (S co-tomee

[418]

Chapter 10

The My Region page is built on the Region table. Users cannot change this list. The
page uses the SourceTableTemporary and ShowAsTree properties. This allows users
to expand and collapse warehouses.

Reports

The reports in the standard Microsoft Dynamics NAV application are typical ERP
reports that show the required information and that's it.

Designing reports requires special skills and is not as easy as it seems. When
changing a report layout from the standard application it is best practice to leave
the original report as it is, and modify the saved copy.

We will discuss more of reports in the section Design to analyze.

Design to maintain

It seldom happens that software is designed and developed, never to be changed.
Objects are usually changed many times in the lifetime of the application.

The changes to an existing object may be done quite a while after the object's original
development. At this time, even if the changes are done by the original developer,
it will be difficult to remember how and why some choices were made.

This is why it is important to develop in a unified way. This will make it easier for
developers to read each other's code or to understand their own code after months
or years.

Written external documentation is a no brainer at this point but we should
realize that this is not always done, and focus on more obvious and easier ways
of explaining our code. A well designed and built application should be self
documenting. This is done by following some simple guidelines.

Naming
When creating new objects it is important to follow the naming guidelines of the
product. Field and variable names should explain themselves.

Singular and plural

Table names should be singular. This will make the C/ AL command TABLECAPTION
return a usable value. Let's look at an example in the Item table (27).

[419]

Application Design

OnDelete()

ItemInlLine.SETRANGE(""Item No.","No.");
IF ItemJdnlLine.FIND("-") THEN
ERROR(Text023,TABLECAPTION, "No.", 1temJnlLine.TABLECAPTION);

_d¢ Edit - Ttem Card - 1110 - Rim e

’ Actions ~ ReFatedInfmmation -

1110 - Rim

| l@l You cannot delete Item 1110 because there is at least one Item Journal Line that includes this item. | ‘_ Links

List forms and pages should be plural as they contain more than one record, whilst
card forms and pages are singular.

Reserved words

Reserved words should not be used in objects such as name for fields, variables,
and functions.

Microsoft has published a list of reserved words on:
http://msdn._microsoft.com/en-us/library/
ee414230.aspx.

One very important Reserved word, which is missing in that list is Action. This is
reserved for using IF Page.RUNMODAL = ACTION::OK then.

Names and abbreviations

Using standard naming and abbreviations has been one of the strong points of the
application that makes it easy to learn for new developers.

Some examples:

e <<Table name>> No.: This is the standard reference to field in a table relation.
If the field has a relation with the Customer the field is called Customer
No., and if the relation is with Vendor we use Vendor No. In our example
application we have used Product No., Squash Player No., and so on.

e Line No.: This fieldname is always used in the popular Header/Line and
Journal constructions. This field always uses the auto split key property in
forms and pages.

e Entry No.: This fieldname is always used for entry and register tables such
as G/L Entry and Customer Ledger Entry.

[420]

Chapter 10

e Name and Description: Standard naming for persons or products.

e Quantity/Qty.: The standard name and abbreviation for measuring quantity.
e (LCY): Abbreviation for Local Currency.

e Duty Due %: When the field represents a % this should be in the field name.

A list of naming conventions can be found on MSDN:
Ao http://msdn._microsoft.com/en-us/library/ee414213.aspx.

Quantity versus quality

There is a general rule that can be applied to the quantity and quality of software that
states that, when more functionality is added to a product it is difficult to maintain
a certain level of quality.

Quality
ra

Functionality

To avoid this in your solution, make sure to not just add all requirements from your
prospects into the product in one release, but use a release policy that ensures small
pieces of functionality are developed, tested, and implemented each time.

The framework concept

When developing an add-on product it is important to divide it into smaller parts.
This will make it easier to have several developers work on the application and
release parts of the application.

Each part of the add-on has its own framework that interacts with other pieces of
the add-on or the standard product.

[421]

Application Design

This is exactly what we have done in the Storage and Logistics example add-on
application. The add-on has three main functional areas; Storage, Logistics, and
Income and Expenses. These three areas share the same master data.

Each area interacts with other parts of the application using mini interfaces.

Using this concept will also have great benefits for upgrading to newer versions
which we will discuss in the section Design to upgrade.

Transformation tool

Microsoft Dynamics NAV Version 2009 introduced a new object type for user
interface, the Page. This object is used in the Role Tailored Client and not supported
by the Classic Client. The Role Tailored Client does not support forms. This has great
new possibilities but is difficult from a maintenance perspective.

Each form object has a corresponding page object with the same number. When
a change is made to the form object, the page object should also be changed if both
the Classic Client and the Role Tailored Client are used.

To solve this problem Microsoft has released the Transformation tool. This tool can
create a page object from a form object, and add to, or remove additional metadata
from it.

More information about the transformation tool can be found on MSDN:
Ao http://msdn._microsoft.com/en-us/library/dd338789.aspx.

Transform or design

Many Microsoft Dynamics NAV partners have difficulties answering this question.
Should we keep developing forms and transform them to pages, or drop using forms
and move completely to pages?

Let's discuss the pros and cons of Form Transformation:

e Con 1: Pages are very strict in their UI behavior. Editable pages have a
limitation of only using two columns. Many developers have changed their
forms to have three columns or controls that do not align nicely. These forms
will have to be redesigned in order to move them to a page.

e Con 2: Pages offer the ability to have fact boxes. This was not available in
the forms so many of the fact boxes need to be designed from scratch. When
using the transformation tool the fact box need first to be designed as a form
and then converted to a page. The additional meta data required to attach the
fact box to a page needs to be manually updated in the TIF editor.

[422]

Chapter 10

e Con 3: Role centers are also new object types not available before. They too
need to be designed as a form and then transformed to a page.

¢ Con 4: Maintaining the additional meta data in the TIF tool is a lot of work
that will increase the cost of development and make developing less flexible.
Each change to a form should be considered if it can be transformed into a
page and if it needs additional Meta data.

e Pro 1: Many end users still use forms and have learned to work with them
and love them. When implementing new features they do not have to move
to the RTC. New customers however will not have issues with moving to the
RTC directly.

As you can see there are more cons than pro's. As the next release of Microsoft
Dynamics NAV will be shipped without forms, the general advice is to move
completely to pages as quickly as possible.

\ In the TIF tool it is possible to create a page out of a form with a
~ different number. This allows you to have a creative form when this is
Q necessary without losing the possibility to use the transformation tool.
Examples to this feature are the matrix forms in the standard product.

Design to support

There are different levels of support. First level support is usually done by someone
at the customer site that works in the IT department or someone that has feeling for
IT. The general first line support questions are about filters, missing data, and so on.

Second level support is usually a small bug in the software or something missing in
set up or master data. Depending on the customer this will be solved by the internal
IT department or escalated to the partner.

As a developer you are most likely going to do the third level support where
something needs to be debugged or reverse engineered in order find the bug.

So before a bug reaches the developer other people have already spent time
analyzing the issue without success. The development of the software should be
done in such a way that third line support has a minimum chance of being required.

When the guidelines discussed in Design to use and Design to maintain are used, it will
already be easier for second level support to analyze the issue.

[423]

Application Design

Second level support

Most problems in support occur in the second level. The first level support engineers
are often very familiar with the system, and third level support engineers are often
the original developers of the software.

Second level support people need to be able to go into a database and analyze the
issue without having to change their way of thinking.

Let's briefly summarize the general guidelines for this specific topic:

a1

Shortcuts: Use standard shortcuts as much as possible. Remember that many
of the shortcuts have changed when moving to the RTC. For example, use F9
for posting and registering, CtrI+F7 for ledger entries. Avoid using reserved
shortcuts such as F8 (Copy previous) and Alt+F3 (Filter to this value).

Screen Layout: Avoid screen layouts that are too creative. Too much
information on a screen is often an indication of bad design and will be
difficult to support. Typical examples are multiple sub forms and hiding
elements based on business logic such as menu buttons and sub forms.
An example of bad design in the standard application is form 6510 Item
Tracking Lines where there is a hidden menu button behind a sub form.

Variable Naming: As discussed in the section Design to maintain, good
naming conventions will make a huge difference when looking at someone
else's design. This starts with trying to use the naming conventions that
Microsoft uses for the standard application.

C/AL Placement: Microsoft Dynamics NAYV is very flexible when it comes
to placing C/ AL code in objects. Both forms and pages support using C/AL
code to an extent that it is possible to write an entire posting routine there.
C/ AL coding should be done in tables or codeunits unless it is not possible.

Using Functions: When your C/ AL code exceeds the size of your screen it
is best practice to create a function. This will make the original code more
readable for others. Use a name for your function that makes sense so that
the code will document itself. An example for this can be found in the
codeunit Register Time Sheet (75000) we discussed in Chapter 8, Consulting.

Global vs. Local Variables: Variables can be both global and local in C/AL.
Microsoft does not have strict guidelines in which to use when. The general
rule when looking at the standard application is to use global variables
unless the variable is only used in a function. Then it can be local.

The compiler does not give a warning when using a local variable with

~Q the same name as the global variable. The system will always use the local

variable first.

[424]

Chapter 10

Design to upgrade

It might not be the first thing you think of when designing your application but
there will come a time when it needs to be upgraded to a newer version.

When upgrading your application we can split the process into two parts. Part one
is the part of the add-on that is written on top of the standard application, new
tables, pages, and codeunits that are loosely coupled with the standard application.
This part is often easily upgraded. The other part is the changes made in the base
application. These changes are often more difficult to move to a newer version.

Has Microsoft changed my (referenced) object

This is the question it comes down to when analyzing the upgrade task. If the object
you modified has not been changed by Microsoft, the upgrade is easy. If Microsoft
has changed the object slightly we might need to analyze the changes to see if we
need to change something as well.

With each release Microsoft tends to redesign a part of the application. If your
solution is integrated with the part Microsoft has redesigned it will be a bigger
task to bring the add-on forward.

a1

~ To see the design changes done by Microsoft in a new release,
analyze the upgrade toolkit objects to see what it hits.

Some redesign examples

Let's have a look on some redesign examples.

CRM (version 2.0)

In version 2.0 Navision introduced the current CRM application we discussed in
Chapter 4, Relationship Management. The most important change was to merge company
contacts and persons into one table as well as implementing new functionality.

Dimensions (version 3.x)

In version 3.0 Navision introduced the Dimension solution we know today. Before
this the current Global Dimensions 1 and 2 were called Department Code and
Project Code.

[425]

Application Design

Bin code (version 3.x)
With the introduction of WMS the usage of the Bin Code field changed. The Bin

Code used to be a field in the Item Ledger Entry table (32) and moved to the
Warehouse Entries.

Inventory valuation (version 3.x)

No single piece of code in Microsoft Dynamics NAV has changed as many
times as the Inventory Valuation solution. Try to avoid changing this in your
add-on application.

Item tracking (version 3.6 and 4.0)

As with Inventory Valuation, item tracking has been changed many times. Where
older versions had Item Tracking Entries and Item Ledger Entries they are merged
into one table in newer versions.

MenuSuite (version 4.0)

Although it is not a functional change, the introduction of MenuSuites in version 4.0
caused a lot of work to upgrade to.

MenuSuites do not support C/AL code. This means that all journals need to be
changed for this version.

Jobs (version 5.0)

As discussed in Chapter 8, Consulting, the Jobs functionality has been changed in
version 5.0. The budgeting in the previous version was done differently using
Budget Entries and Phase, Task and Step tables.

The Job Journal Line and Job Ledger entries have not changed, but the new job task
table has become a mandatory field when posting on a job.

When there is no other way, it is possible to take out the Job
M Objects and renumber them to be customized tables. This allows
Q you to upgrade to a newer version with minimum impact. After
the upgrade, a new project can be started to move to the new Job
functionality completely.

[426]

Chapter 10

Role tailored client (version 2009)

Version 2009 introduced a new user interface called the Role Tailored Client. This was
the first real change in the Ul since the introduction of the Windows version in 1995.

Item costing (almost all versions)

The Item Costing has been improved in almost every new versions of Microsoft
Dynamics NAV. Changes in Item Costing are difficult to upgrade to newer versions
and almost always need to be redesigned.

Documentation

While many parts of the application will have no issue in the upgrade it is useful to
have external documentation when there is a need to redesign.

This documentation should contain information about the business reason the
feature has been implemented. With that information it is possible to do a new fit/
gap analysis.

M External documentation such as Microsoft Word and Visio files can be
Q linked to C/Side objects. This way it is easy to find the documentation
when a developer needs it.

Split operational and financial information

In the Storage and Logistics application we have chosen a data and transaction
model that can be easily upgraded to a newer version of Microsoft Dynamics NAV.

This is achieved by creating separate modules that move data to each other.

Design to perform

All good applications are useless if the performance is not adequate. It is important
to keep performance in mind when designing your application.

When talking about performance there are two typical issues. The first issue is an
application with an overall slow performance, the latter is an application with good
performance but users block each other or create deadlocks.

Both issues have their own approach to be analyzed and solved. We will not talk in
detail about this process but rather explain how to avoid these situations in general.

[427]

Application Design

OLTP versus OLAP

In any ERP system it is important to balance Online Transaction Processing (OLTP)
with Online Analytical Processing (OLAP).

This is especially important when working with Microsoft Dynamics NAV. The
reason for this is its unique data and posting model, which creates the Analytical
data while processing the transaction.

Creating this analytical information in real time can have advantages but when
posting transactions take too much time it may not be worth it.

Examples of analytical information are Dimension Ledger Entries and Analysis
View Entries but also VAT Entries and Value Entries. Although they give us
important information about the business we do not always need them instantly
when processing the transaction.

Other examples of Analytical information are Secondary Keys and SumIndexFields.
All this information will be created when creating the master record. If a Ledger
Entry table has 32 secondary keys and 15 SumIndexFields it will take a considerable
amount of time to write this information to the database.

Fast transaction posting

Good performance starts with fast transactions. There are several ways to
achieve this.

Cleanup unused indexes

Each secondary SumIndexFields field in the database needs to be maintained
whether they are used or not. Microsoft Dynamics NAV allows end users to create
their own schedule to maintain this.

Creating such an index schedule is quite a complex task that should be done by
experienced functional developers.

In versions prior to Microsoft Dynamics 5 SP 1 the overhead of unused
e SumlndexFields was substantially higher compared to newer versions.

[428]

Chapter 10

Application setup

It all starts with a solid application setup. Some setup features in Microsoft
Dynamics NAV will cause the system to create more analytical information

when posting transactions.

An example is Update On Posting for Analysis Views (as shown in the following
screenshot). This feature will update the Analysis View Entries at the same time
the General Ledger Entries are created:

', Actions ~ E Related Information -

General
Code: CAMPAIGN|
Mame: Campaign Analysis (Retail)

G/L Account Filter: 6100..69957100..7995

Date Compression: Week

Starting Date: 1-1-2011 -

i Edit - Analysis View Card - CAMPAIGN - Campaign Analysis (Retail)
- S

W W

CAMPAIGN - Campaign Analysis (Retail)

Last Date Updated:

Last Entry No.:
- Last Budget Entry No.:

14-8-2000

Update on Posting:

4

]

Include Budgets:
Blocked:

L
(5]

2764

Other examples are the Automatic Cost options in the Inventory Setup. When they
are activated the cost is adjusted each time an Item Ledger Entry is created.

i Edit - Inventory SEt!.‘I-E_.
_’ Actions -

Inventory Setup

General
Automatic Cost Posting:]
Expected Cost Posting to G/L: [
Automatic Cost Adjustment: Mever
Average Cost Calc. Type: Itern
Average Cost Period: Day

Copy Comments Order to Shpt.:

Copy Comments Order to Rept.:
- Outbound Whse. Handling Time:
- Inbound Whse. Handling Time:

m

[429]

Application Design

Job queue

Microsoft Dynamics NAV is shipped with an excellent Job Queue system. For each
company in the database it is possible to set up a Windows service that handles
scheduled tasks.

This process is called a Navision Application Server or NAS. A NAS can execute
C/ AL code in report and codeunit objects.

Examples of Job Queue tasks are, creating the Analysis View Entries, Posting the
Adjust Cost for Inventory Valuation or even Posting Sales, and Purchase documents.

Background posting

Microsoft Dynamics NAV only allows posting documents directly. This means that
the user that starts the posting routine needs to wait until this process has been
completed before starting a new task.

This task can also be handled by the Job Queue. The user marks a document as ready
to post and the Job Queue polls for documents with this status.

Date compression and cleanup

When the number of records in a table exceed normal proportions it might be useful
to start thinking about doing data maintenance. This is a normal procedure in all
ERP systems and Microsoft Dynamics NAV has some possibilities to do that.

[430]

Chapter 10

Date compression

Most Entry tables in Microsoft Dynamics NAV can be compressed by date. This
means that all entries with the same values will be replaced by one new entry.
The detailed information is lost afterwards.

iy Date Compresgion = MicrosoﬂmDyn,;micws Nx\u’ - W

GO |

4| Microsoft Dynamics NAV -

v Departments » Administration » IT Administration » Data Deletion » Date Compression »

Edit - Date Compress General Lédg.él.' ;

Departments Date Compression

4 ‘i Administration i

4 IT Administration Lists
Date Compr. Registers

4 Data Deletion i
Starting Date: |

Options ~

Warehouse Documen

Service Documents

Bank Account Ledger Entries...

G/L Budget Entries...
Item Budget Entries...

Posting Description:

Retain Field Contents

Marketing Activities Tasks
Sales Documents G/L Entries... Ending Date: 30-4-2010 -
Purchase Documents VAT Entries.. Period Length: Day -

Date Compressed

| Custorner Ledger Entries...

Vendor Ledger Entries... Document Type:]

Date Compression

Delete Empty Register|” |, BOM Ledger Entries... Document Mo.:]
Delete Entries Resource Ledger Entries... Job Mo A
FA Ledger Entries...

Business Unit Co... [7]

Retain Dimensions:

Record Links | Maintenance Ledger Entries...
Configuration and Pe g | Insurance Ledger Entries...
Warehouse Entries...

Contact Creation Retain Totals

Quantity:]

Commerce Gateway

Saving the detailed information can be easily implemented by changing the
compression report. The detailed information can be saved in a copy of the
original table.

M The total size of the database has minimal impact on the
Q performance. More important is the size of the tables we are

writing to during a transaction.
Data cleanup

Microsoft Dynamics NAV allows most data to be deleted when the fiscal year it
was created in is closed.

Examples of data that can be deleted are Sales Shipments and Purchase Receipts.
They can be either deleted or moved to copy tables.

Cleaning up data will prevent the transactions from slowing down if your company
uses Microsoft Dynamics NAV for a long time. Data cleanup generally starts after
using the product for five years and when the database exceeds 100 gigabytes in size.

[431]

Application Design

Locks, blocks, and deadlocks

The Microsoft Dynamics NAV product is very sensitive when it comes to blocking
and deadlocks. This has everything to do with the posting model, the inheritance of
the Native database, and the numbering used in entry tables.

Blocks and deadlocks are caused primarily by Locks in the database. Locking is a
mechanism databases use to ensure consistency of the data.

Native server versus SQL server

Originally Microsoft Dynamics NAV had a proprietary (Native) database. This
database did not support row level locking, only table locking.

The Role Tailored Client no longer supports this database and only runs on

SQL Server, which does support row level locks. However the current data and
transaction model is designed for table locking. The classic client still supports the
Native database and the application has one codebase.

The benefit of row level locking on your SQL Server is best experienced in systems
with many users creating documents in the same database. Most posting transactions
in the database are isolated, meaning only one user at a time can post a document
from anywhere in the application.

Locking is always done for a single company, both in the Native and the SQL
Database. Unless tables are shared as explained in Chapter 4, a user from company
A cannot lock a user in company B.

Locking principles

In Microsoft Dynamics NAV locking starts with the LOCKTABLE command. Using this
command will generate the T-SQL statements that are generated by the application
to issue a UPDLOCK hint where without the statement READUNCOMMITED is issued.

Lets create an example that shows how locking is done. For this example we create
a new codeunit Locking A (60000). The codeunit has a global variable Cust of type
Record 18.

OnRun()

Cust.LOCKTABLE;

Cust.GET("10000");

IF CONFIRM("Maintain Lock in database®) THEN;

[432]

Chapter 10

We start this codeunit and leave the confirm window open:

Micrasoft Dynamics NAV Classic M

Maintain Lock in databasze

®

iy e

Now we go to the Role Tailored Client, open the Customer Card for Customer 10000
and try to change the name. After 10 seconds we will get this message:

,'.g Edit - Customer Card - 10000 - The Cannon Group PLC . frosre e Pt e S P

_4 Actions ~ EREIated Information -
Eﬁ Sales Invoice E Apply Template E Mimmiq!\v i
ﬁ Sales Order % Cash Receipt Journal

i Reminder " Sales Journal

New Process

10000 - The Cannon Group PLC

| @ The Customer table cannot be changed because it is locked by another user. Wait until the user is finished and then try again.

[General
|
Mo.: 10000 | Contact: Mr. Andy Teal
MName: The Cannon Group PLC Search Mame: THE CANMNOMN GROUP PLC

The reason for this error message pop ping up is that the user in the classic client
issued an exclusive lock on the record. If we move to Customer 20000 which is the
next record in the database we can safely change the name. This record is not locked.

Deadlocks

Let's take this example one step further and simulate a deadlock. Deadlocks happen
if users try to lock each other's record in different order.

[433]

Application Design

r/_ USER A) "z USER B I

—o Blocking—

Blocking

M_,_ﬂ-”

Customer
10000

—Deadiock!—

-

Lets see this in more detail:

1. User A reads and locks Customer 10000.
2. User B reads and locks Customer 20000.
3. User A tries to read and lock Customer 20000. A blocking event starts...

4. When user B now tries to lock Customer 10000 a deadlock occurs...

To demonstrate a deadlock we have created two codeunits, Deadlock A (60001) and
Deadlock B (60002). We need two Classic Clients on the same SQL Server database
to do this. Start Deadlock A on one client and Deadlock B on the other.

OnRun()

Cust.LOCKTABLE;

Cust.GET("10000");

IF CONFIRM("Start another client and run codeunit 60002") THEN
LockOtherCust;

LockOtherCust()
Cust2.GET("20000");
IF CONFIRM(*"Maintain Lock®) THEN;

OnRun()

Cust.LOCKTABLE;

Cust.GET("20000%);

IF CONFIRM("Select Yes on the other client™) THEN
LockOtherCust;

LockOtherCust()
Cust2.GET("10000%);
IF CONFIRM("Did the deadlock happen?®) THEN;

[434]

Chapter 10

Then select Yes on both confirmation boxes. One of the Clients should now deadlock.

M SQL Server checks for deadlocks every 5 seconds and kills the transaction
Q that has the lowest roll back impact on the database. This is why users
will experience deadlocks as slow sometimes and fast other times.

Microsoft Dynamics NAV Classic &J

Your activity was deadlocked with ancther user who was modifying the
lx Customer table.

Start again.

The error message is confusing as it leads us to believe that we have locked the entire
table but this is not true.

The function LockOtherCust reads a record from the Customer table with another
variable. This new variable Cust2 does not explicitly issues a LOCKTABLE command.
This proves that LOCKTABLE is a transaction command that is valid for ALL variables
of this type.

Blocking and deadlocks in Microsoft Dynamics NAV

The standard application has several built-in blocking events by design. This is to
ensure database integrity and to avoid deadlocks.

The two main isolating tables in Microsoft Dynamics NAV are the G/L Entry table
(17) and the Item Ledger Entry table (32).

Both codeunits, Sales-Post 80 and Purch.-Post 90, we discussed earlier isolate on the
G/L Entry table. Codeunits 12 has a similar construction.

OnRun()

IF RECORDLEVELLOCKING THEN BEGIN
DocDim.LOCKTABLE;
SalesLine.LOCKTABLE;
ItemChargeAssgntSales.LOCKTABLE;

[435]

Application Design

PurchOrderLine.LOCKTABLE;

PurchOrderHeader .LOCKTABLE;

GLENntry.LOCKTABLE;

IF GLEntry.FINDLAST THEN;
END;

In real life this means that no one in a company can post a Sales Document together
with a Purchase Document or a General Journal.

Taking away this isolation will most likely cause deadlocks as the locking order of
each transaction in Microsoft Dynamics NAV is different.

This emphasizes the importance of fast transactions and generating analysis data in
separate batches.

Impact on development

If we summarize the impact of all this knowledge on your development it
emphasizes the importance of designing your own application structures that
interface with the Standard Application.

When changing and implementing the standard application, try to reduce the
overhead during posting as much as possible.

Create compression routines and allow end users to periodically clean up records.

In the next section we will talk about how to design to analyze and allow end users
to generate analysis data in batches separate from the posting transactions.

Design to analyze

Analysis in Microsoft Dynamics NAV should always be done on (ledger) entry
records. There are many types of entry records that are either created during a
transaction or in batches.

Avoid building analysis on document tables. It should always be possible to
delete old data in the database without losing information which is essential
for data analysis.

[436]

Chapter 10

Report design

Designing a report in Microsoft Dynamics NAYV starts with generating a Data Set.
This is built using table relations and can get quite complex.

Report 206 Sales - Invoice - Report Designer [[=] S
Dataltem MName
Sales Invoice Header <Sales Invoice Header = e
Integer CopyLoop
Integer PagelLoop
Integer DimensionLoop1
Sales Invoice Line =5ales Invoice Line =
Inteqger Sales Shipment Buffer
Integer DimensionLoop2
Integer VATCounter
Integer VatCounterLCY
Integer Total
Integer Total2

When the Data Set is defined the second step is to define the Layout. This is done
differently in the Classic Client and the Role Tailored Client. Creating report layouts
is beyond the scope of this book.

Reports with a large Data Set are complex to maintain and have a risk in being
slow in performance as the database engine needs to read all the information
before combining the information into a view.

This can be solved by preparing the data first and running the report afterwards.
This approach is quite common in data warehousing. The preparation of the data
can be done in scheduled batches running in the Job Queue.

Version and object management

When doing software development, discussing version management is unavoidable.
Microsoft Dynamics NAV is flexible in this and allows developers to make their own
decisions on this subject rather than forcing them to one way of versioning.

[437]

Application Design

What is a version

In Microsoft Dynamics NAV there are two ways of determining what a version

is. The first and easiest approach is to change the version of an object each time it
changes. The initial released version is 1.00 and each change increments to 1.01, 1.02,
and so on. A big change will lead to version 2.00.

Another more common approach in Microsoft Dynamics NAV is to group version
numbers in releases of a group of objects together. When this is applied the
application gets a version number that is incremented each time we release. This
means that an object with version number 1.01 can jump to 1.04 if it was not changed
in releases 1.02 and 1.03.

Version numbering

There are rules in Microsoft Dynamics NAV for version numbering although the
rules have changed over the years.

The current version principle allows using letters and digits. The letters indicate
the product and country code, the digits, the version, subversion, and service
pack number.

Let's look at an example object to clarify this. Codeunit Sales Tax Calculate (398).

NAV W1 3. 70 01

The last service pack this object was changed

The last subversion this object was changed
The last version this object was changed
The Localization Version
The Product Name

If Microsoft would change this object in Service pack 1 for 2009 the new version
number would be NAVW16.00.01.

Combining versions

An object can have multiple versions but only one version for each product or
country version. A localized object gets version NAVW13.70.01, NAVNL6.00.01.
This means that although the global product team has not changed the object, it has
been changed by the Dutch localization team.

[438]

Chapter 10

Creating a version

Versioning in Microsoft Dynamics NAV is done manually. The version number
is an editable field in the Object table (2000000001) that can be freely changed.

Developing a tool to do this is easy and has been done by many partners in
the channel.

The Data and Transaction model of such a solution should look something like this.

"

—

- r = e
Changed Ohject 4—{ Change Request]—b Release
5, r ",
' =, ’
, Generate Released
Object
1eE \ Release CHoject

The process starts with a change request. This can be fixing a small bug or creating
new functionality. For this change request objects need to be modified.

Each modified object is attached to the change request. We can release several change
requests at the same time. All objects in the release will get the version number from
the release which can be automatically updated in the Object table.

By saving the change request and release information in the database we will also
generate documentation that will help future developers to find information on
why objects were changed.

Tracking object changes

Object changes can be tracked using triggers in SQL Server. All the C/Side objects
are stored in the Object table (2000000001).

To connect an object change to a change request the developer should tell the system
which request they are currently working on. This will enable us to have a failsafe
tracking mechanism to do version management.

[439]

Application Design

To view the complete solution for tracking object changes

visit: http://dynamicsuser._net/blogs/stryk/
"~ archive/2009/05/18/object-auditing.aspx.

Development methodology

For developing software there are many methodologies such as Prince2, Extreme
Programming or the Microsoft Solutions Framework.

Most of these methodologies are suitable to be applied to Microsoft Dynamics NAV
but they should be used properly. Because of the flexibility of the product it is easy to
leave out steps in the process that should be there.

In Microsoft Dynamics NAYV it is extremely easy to quickly create and modify
business software. This is by far the strongest selling point for the solution but
also the biggest pitfall.

A sample approach

When an end user requests a change to the application it is tempting for most
experienced developers to go into the application and create it, preferably, in
the production database without documentation. This is not the desired way of
software development.

However, Microsoft Dynamics NAYV is a suitable design environment for
prototyping and Rapid Application Design. All the example applications in this
book are first built with prototyping and later finalized using testing.

If we design a suitable Development Methodology for Microsoft Dynamics NAV
we see that the Application Lifecycle perfectly fits our methodology.

[440]

Chapter 10

When implementing Microsoft Dynamics NAV it is important to involve the end
users in each step of the development process.

- . . '“ I . n,
f Fit { Gap Analysis oo Prototyping
o)
—s .
T { \

v

User Change] Cuick Spec | Build
Request -)l Prototype
N, ‘\-\._ _.ﬂ"-'F-_ - hY

[='4
s — e
W "?} Y
Warkshop %
Fa . z
Development N)
Testing
\ |
|)
(FullSpeciﬁcatinn " /
S—
r‘/ Implementation

e) ;3 —
o
t Software WarI;-Mp [Dnrumem‘atinj

Developrment

Testing J i L
hS v ET
-~ 8
Maintenance & Support Training B

Fit/gap analysis

At this phase a quick specification is usually enough to describe what the user would
like the system to do and a possible solution in the application. This document should
not count more than two or three pages. During the prototyping phase it is normal to
come across advanced understanding. It would be a waste of valuable time to find this
during the initial analysis with the risk of not finding them anyway.

Prototyping

With the quick specification a developer creates the solution as a draft without going
into too much detail. This should be enough to show the end user what the solution
will look like when it is finished. This will often lead to new questions and ideas that
should be carefully considered, and put into the full specification or a new prototype,
should be built first.

[441]

Application Design

Development

Depending on the amount of changes after the prototype development can often
start with the work done already. In this stage all the details should be worked out
and tested.

There is no complete checklist for developers to use when developing in Microsoft
Dynamics NAV but here is a partial list of things to consider:

Captions/Translations: Make sure all objects have the required captions and
translations populated.

Table relations: Make sure all Table Relations are in place, check the Ledger
Entry and Line tables as well, they are frequently forgotten.

Modify and delete triggers: What happens if a user modifies or deletes the
record. Make sure that everything is nicely handled in the OnModify and
OnDelete C/AL triggers. OnRename should be automatically handled by
C/Side. Renaming a table with many table relations may cause severe
locking in the database. If users should not rename a record, this can be
blocked by placing an ERROR command in the OnRename trigger.

LookupFormID and DrillDownFormID: Even when running the Role
Tailored it is important to assign a Lookup and Drilldown form ID. Lookup
forms or pages are used for table relations and when using the Lookup
button @ in the Classic Client. Drilldown forms or pages are used when
drilling down from a SUM flow field.

CardFormID: The Role Tailored Client always starts a list page when a user
selects a menu item or a cue. Double clicking a row will open the associated
card page. This is controlled by the CardFormID property on a list page.

Field Groups: To show records from a table relation when entering values
the Role Tailored Client does not directly use the LookupFormlID but first
shows a DropDown list. The fields in this list are defined in the associated
tables Field Groups. Each table can have only one Field Group called
DropDown.

=3 Table 18 Customer - Field Groups E@
ID Mame Group
M1 w-l Mo.,Mame, City,Post Code,Phone No.,Contact e

[442]

Chapter 10

Menu Buttons and Actions: Menu Buttons and Actions should make sense
to end users. Make sure to use logical names, and avoid creating menu
buttons and actions that are solely for super users and confuse end users.
Actions should be placed in the correct container. Only promote actions that
will be frequently used by all end users.

Shortcuts: Always assign ampersand (&) shortcuts and avoid double
shortcuts. When using function keys such as F3 and F9 follow the
Microsoft standard.

Compression and Posting: If your solution will generate a potentially
large about of data, be sure to provide compression, posting or cleaning
up routines so end users can periodically maintain the data.

Permissions: Does your solution require additional permissions to be set up
in the system? Make sure to document this when delivering the solution.

Unused variables: Make sure not to leave unused variables in the C/AL
objects. Although they won't break the functionality it will make future
maintenance of the software more complex.

FIND Commands and Locking: Double check the usage of the correct find
commands before you ship the software. Using the wrong commands and
leaving locking to the database engine may cause extra performance overhead.

More detailed information about these features is explained in the book Programming
Microsoft Dynamics NAV 2009, written by David Studebaker and published by Packt.

There is a free tool available that will perform over 40 checks on your
objects to see if the coding is done correctly. This can be downloaded
M from: http://www.mibuso.com/dlinfo.asp?FilelD=826.
Q A good explanation about using the different FIND commands in
C/ AL can be found on: http://dynamicsuser.net/blogs/
waldo/archive/2008/02/01/what-impact-does-my-c-al-
have-on-sqgl .aspx.

Testing

Testing is probably one of the most important but under-rated tasks of
application design.

Testing involves three main steps:

1.

Does the software meet the original requirements? If this is not the case
it does not make sense to continue testing.

[443]

Application Design

2. Does it work as expected? This includes trying to deliberately break the

solution. If the software is not monkey proof things will certainly go wrong

when using it. Here Murphy's Law is applicable: "What ever can go wrong,
will go wrong'".

3. Does it fit the rest of the application? Is the software usable and intuitive?
A solution that is bug free but difficult to use will be expensive to maintain.

The testing should be performed by someone who likes doing it and has enough

available time. If someone is asked to test the software who is buried under normal

work the change of bugs slipping in is quite high.

The cost of fixing a bug increases as the software evolves. The sooner a bug is fixed
the better.

2000

3000

Cost per Bug

500
200

Application Lifecycle

Implementation

When the changes are developed and tested the documentation should be
finalized. This can be either a manual for end users, or a technical reference for
future developers and support engineers.

The end users should be trained to use the software.

Maintenance and support

After the software is implemented and users are trained the solution goes into

the maintenance and support stage. During this stage the application manager
needs to take care of the data generated by the solution, analyze it and cleanup
the data periodically.

If the end users request a change on the solution the cycle starts again.

[444]

Chapter 10

The project

Implementing an ERP product such as Microsoft Dynamics NAV is not just installing
in a software package and start using it. Each part of your company will have to
make decisions how to integrate their work with the software. This often leads to an
interesting new look at your companies way of work.

Standard, customized, or both

There are several ways of implementing Dynamics NAV. It is important
to make a decision what kind of implementation you do, and adjust the
implementation accordingly.

@ Microsoft Dynamics NAV Object Model
‘ Worldwide Objects
.. Country Specific Objects
. Customer Objects
O Vertical Solutions Objects
. - J

Compared to when it was introduced in 1995, Microsoft Dynamics NAV 2009 is

a mature ERP package with all the built-in functionalities we discussed in this
book. On top of this standard product resellers have built horizontal and vertical
solutions called add-on products. These two combined offer powerful solutions for
companies that cannot work with the standard product but are flexible enough to
use a vertical solution.

Add-on products

Vertical solutions have often started years ago as a customised solution for a
company who decided to implement Microsoft Dynamics NAV. Together with
the implementation partner these companies have customized the product to
meet their requirements.

Many of these add-on products are now grown up software solutions that fit a
vertical industry.

[445]

Application Design

When buying an add-on solution it is good to ask the reseller some questions.

e What is the release procedure?

A solid add-on solution has a release procedure. Most resellers have
periodical release each half year or maybe sooner. If a bug is found in
the software there should be a hot fix. Most resellers have releases they
support. Make sure to know what versions are still supported.

e How do I upgrade to a new version of the vertical solution?

If a new version of the vertical solutions is released there should be an
upgrade procedure. This should be clearly documented and tested by
the reseller.

e Amallowed to make changes to the software?

Most add-on resellers do not recommend their customers to change the
software. The reason for this is the increased complexity of bug fixing
and upgrading.

e What if I do change the software?

If an add-on solution is customized anyway it is basically downgraded
from being a supported add-on solution to a customized database. For
most resellers it is difficult to support these customized solutions.

Customizing

Although customizing an add-on solution is not always recommended, customizing
Microsoft Dynamics NAV should not be considered bad practice.

The impact of customization on Microsoft Dynamics NAV can make a difference that
can be compared to a suit that is confection or tailored to fit. The benefits of having
an ERP package that exactly fits the organization can be more important than the
increased cost of ownership of the solution.

Total cost of ownership

The Total Cost of Ownership of Microsoft Dynamics NAV depends highly on the
level of customizations. A non-customized implementation with one or two good
add-on products created by experienced consultants will have a low impact on your
company and will be easy to maintain and support.

The higher the level of customizations, the more it will cost to keep the application
running. This is not per se a bad thing. If your company has a unique way of doing
business it might need an ERP package that supports this unique way.

[446]

Chapter 10

Roadmap to success

Designing a solid application in Microsoft Dynamics NAV starts with a thorough
knowledge of the standard application functionality, and its design philosophy.

Secondly, we need to carefully analyze the business process we want to support,
and implement new functionality step by step to ensure good quality as the solution
grows bigger and mature.

Use data and posting models that are similar to Microsoft Dynamics NAV and try to
maintain a similar user interface. This will make it easier for end users to adopt your
solution and more likely for the software to be easy to maintain and support.

Last but not least do good housekeeping in your database, compress and
cleanup data periodically to guarantee stable performance of the system now
and in the future.

Summary

In this book we covered functional and technical design of both standard Microsoft
Dynamics and how to extend the application to succeed.

This book is not finished. After the publication we will periodically publish
new articles, tips and tricks based on the information in this book on
http://www._brummelds.com.

Any questions or comments regarding the information published in this book can
be posted there for discussion as well.

[447]

Installation Guide

With this book we provided development examples that can be installed using
the demo version of Microsoft Dynamics NAV 2009 SP1 W1.

This demo version can be downloaded from msdn._.microsoft.com.

Licensing
Microsoft has very strict licensing regulations for using and developing in
Microsoft Dynamics NAV.

For educational purposes, you may use the MSDN license to develop new
objects with numbers 123.456.700 to 123.456.799.

Installing Microsoft Dynamics NAV

After downloading the product CD from the MSDN website run the setup.exe file.

f7l Welcome to the Microsoft Dynamics NAV 2008 Service Pack 1 Installer _%i_,

;.l', 1|
| L Microsoft Dynamics NAV 2009 Installer

L "% Install Demo
|
I.;' 8 || Includesthe RoleTailored client and the Classic client, Microsoft Dynamics MAV Server
W' Microsoft Office Outlook Add-In for Microsoft Dynamics MAV, and a demonstration
database with ademonstration license.

Installation Guide

From the installation options select Install Demo (as shown in the
previous screenshot).

Changing the license

After the installation completes we can use both the Classic Client and the Role
Tailored Client. We use the Classic Client for administration purposes and
development. The user interface is done using the Role Tailored Client.

The example objects can be used in the Role Tailored Client only.
S This means there are no Form objects, only Pages.

Each server instance of Microsoft Dynamics NAV runs on a license file. This file
determines what access we have to the system. The demo license that is installed
allows us to access al functionality but not the C/ AL code.

To access the C/ AL code we would need an official partner development license.
To get this license we would have to register as a partner and start being a reseller.
If this is not what we want to do we can use the MSDN license.

The MSDN license will allow access to all the new objects developed for the book.
Access to the base application change examples is not possible with this license.

To change the license, open the Classic Client, then open the Tools menu and select
License Information (as shown in the following screenshot):

File Edit View Window Help

T LVl Work Date... ! [AN e S = - 3 3]
= & EE N 0000 0 @EE
RNy bttt Language...
Object Designer Shift+F12 E
Designer Ctrl+F2
Mavigation Pane Designer Alt+F12 Jrdtec L:!.CEHSE InFlJI‘m_gtllJl:l z
2887 Microsoft Corporation. All rights reserved
Manage Style Sheets...
Dot ; : WM-Z2A-888-55H5 8-H
o : CRONUS MSDH International Ltd.
Client Monitor John Roberts
Zoom Ctrl+F8 5 The Ring
Westminster
Backup... W2 8HG London
Restore... United Kingdom
BE666-666- 6666
Security 3

License Information

[Upload...][Import...][Export...][Change...][

Custom Controls...

Options...

[450]

Appendix

This opens the License Information screen where we can select Upload, which
opens a file dialog where we can select the MSDN license.

To enable the license file on the Classic Client restart
—" the application.

Restart service tier

To enable the license file on the Role Tailored Client we need to restart the Service
Tier. This can be done from the Services window in the Windows Control Panel:

. Services EI@

File Action View Help

e @ 0o B >8]

G4 Services (Local) Name Description Status Startup Type Log On As =
++ Media Center Extender Service Allows Med... Disabled Local Service
++ Microsoft MET Framework NGEN v2,0.50727_X86 Microsoft ... Manual Local Syste...
+; Microsoft Dynamics MAV Business Web Services Service han... Manual MNetwerk 5.

*#1 Microsoft Dynamics NAV Server Service han... Automatic Network 5...

L IS CT T [I I

Installing the objects

This book has three Microsoft Dynamics NAV object files, two DLL files, a SQL
Server script, and some helper files for the installation.

e Chapter2-4.fob: This file contains the Squash Court examples used
in Chapters 2, A Sample Application, Chapter 3, Financial Managemenet,
and Chapter 4, Relationship Management.

e Chapter7-9.fob: This file contains the storage and logistics application
used in Chapter 7, Storage and Logistics, and the sample interfaces for
Chapter 9, Interfacing. We need the additional SQL Server scripts to get
the ADO examples to run.

e Chapter8.fob: This file contains the Job extensions for Chapter 8, Consulting.
This chapter also requires the additional DLL files to be installed.

e RF database.sql: This is the SQL Server script used in Chapter 9 to create
the RD Database and create the demo data.

e MSDN.fIT: This is the MSDN License we can use to access the custom
objects numbered from 123.456.700 to 123.456.799.

e NavMaps.dll and VEControl .dl1: These are the Dynamic Link Library
files we need for Chapter 7.

[451]

Installation Guide

e Pinl._gifand Pin5.gif: These are the icons displayed on the Bing Map.

e AddInImporter.msi: This enables us to register add in applications.

Importing a FOB file

To install the objects first open the Object Designer in the Classic Client by
selecting the Object Designer [Shift + F12] option from the Tools menu as shown
in the following screenshot:

M CRONUS International Ltd. - Microsoft Dynamics NAV Classic

“File - Edit View [Tools| Window Help
| Work Date...
b .J %3

Language...
Object Designer Shift+F12
Designer Ctrl+F2

si[File] Edit View Tools Window Help
1 Mew... Ctrl+M BB O A A S R
& . F HEEZEE W 0000 O
| Design |

Run Ctrl+R |
[| Name

Close Esc | 99000958 Order Promising Setup
£ P o | 99000552 Order Promising Lines

99003500 Unsent BizTalk Sales Document
99008501 Sent BizTalk Sales Document

Import..
e 99008502 Outbound Sales Doc. Subform
[Pl 99008503 Outbnd BizTalk Sales Doc. List
Database » | 99008504 Pending BizTalk Sales Document
99008505 Rejected BizTalk Sales Doc.
- Company 4 QONNRACNE Arrantad Ri=Tall Calae MNns

Select Import, this will open a file dialog window, now select the . fob file you
want to import.

If everything is as it should be this dialog should appear:

[452]

Appendix

Microsoft Dynamics NAV Classic

_"\-.I All objects have been examined, and no conflicts were found.

Choose Yes to import all objects, No to open the Import Worksheet, or
Cancel to stop the import.

Mo

| |

Cancel

Import Objects

Import Completed

Select Yes and this dialog box will confirm the import.

Installing the dynamic link library files

B

To support the Bing Maps Client Add-in, Geocoding and distance calculation,

we ship two DLL files and five .gif files, along with some supporting files for

the installation.

e NavMaps.dll
e VEControl.dll

e pinl._gif
e pin2.gif
e pin3._gif
e pind_gif
e pin5.gif

e RegisterDIl._bat

These files should be placed in this folder:

@Uv| . » Computer » Local Disk (C:) » Program Files » Microsoft Dynamics NAY » 60 » RoleTailored Client » Add-ins »

Organize + Include in library +
[Favorites Name
. Connect

B Desktop

Share with

-

Burn

MNew folder

Date modified

1-5-2010 16:17

Type

File folder

Size

[453]

Installation Guide

Register NavMaps.dli

To register this DLL we use RegAsm. The command is predefined in the
RegisterDI I ._bat file that we can execute.

Register VEControl.dll

To register the visual map control we use the Client Add-In form in the classic client:

4k Object Designer
H Table T I MName M. . Version List Date Time
i 11418 Certificate Distinguished Mame MAVNL4.00.01 14-08-09 12:0 =
=Form | 35000 Purch, Tnv. fCr.M., Info NAVNLE.00.01 140803 12:0
= = 35001 Bank/Girp Jnl, Subf, Info PAVMLE, 00 05-11-08 120
:| Report —
L 100000 Client Add-In ¥ Chapter7as 05-06-0% 230
+#+ Dataport = 11000000 Talahanl - Banl Auorvicw RIAVKIL A QN 14.02.00 17.01
) xMLport Client Add-In o =5 (E=h %=
5 /
#4 Codeunit Control Add-in Name Pyblic Key Token Version
Fln MenuSuite (YRicrosoft Dynamics NAV: Microsoffl 412 ik 2 s &
=
FPage g
4 4 3
al /
Register Add-ins ...

» This action requires that the AddinImporter is installed. This

tool is distributed by Microsoft and can be installed using the
s [
AddInImporter.msi file.

In the file dialog we select the VEControl .d11 file.

[454]

Symbol

fob file
importing 452, 453
.NET, Automation Control
using 371

A

accounting periods, Chart of accounts
closing 108
closing dates 109
setting up 108
ActiveX Data Objects. See ADO
AddInImporter.msi file 452, 454
add-on
about 330
designing 292
fourth party logistics 332
item tracking 331
second party logistics 332
third party logistics 332
value added logistics 330
ADO 370
APICS
URL 187
application lifecycle
about 411
designing, to analyze 436
designing, to maintain 419
designing, to perform 427
designing, to support 423
designing, to upgrade 425
designing, to use 412
development phase 412

Index

maintenance phase 412
role centres 416
application lifecycle, designing to analyze
about 436
report, designing 437
application lifecycle, designing to maintain
about 419
Form Transformation 422
framework concept 421
product, naming 419
quantity, versus quality 421
Transformation tool 422
application lifecycle, designing to perform
about 427
data, cleaning up 431
date, compressing 431
deadlocks 433-435
fast transactions, achieving 428
job queue 430
locking 432, 433
native server versus SQL server 432
OLTP versus OLAP 428
application lifecycle, designing to support
levels 423
second level support 424
second level support, general
guidelines 424
application lifecycle, designing to upgrade
about 425
documentation 427
redesign examples 425
upgrade task, analyzing 425
application lifecycle, designing to use
about 413
form object, colors 414
form object, columns 414

form object, fields 414
form object, list controls 414
form object, menu button 414
form object, sub forms 414
form object, tabs 413
pages 414
reports 419
ApplyltemLedgEntry function 254
assembling production
about 188
Bill of Materials 192
BOM Journal 196, 197
costing, checking 198
cost item entries, adjusting 194, 195
diagrammatic summary 202
inventory cost, posting to G/L 195
inventory, creating 194
item costing 189
item revaluation journal, posting 201
items, creating 189
items, tracking 190, 191
posting schema 188
result, testing 201
standard cost, calculating 193
standard cost worksheet, using 200
standard unit cost, recalculating 196
table 188
unit cost, recalculating 199
value entries, checking 196
AssistEdit button 134
AssistEdit function 53
Auto Contact Classification option 140
Automation Control
.NET, using 371
about 370
COM Wrappers, using 371
events, using 371
automotive industry
item tracking 221
parts, managing 285
tooling amortization 220
vehicle information 284

B

basic principles, production

APICS 187

Bill of Material 185

GIGO 186

item costing 186

items, tracking 186

less energy, using 187

MPS 186

MRP 185

quality control 186
BlanketOrderConsump function 211
budgeting, Chart of accounts

about 106

budget entries, creating 106
building blocks, Microsoft Dynamics NAV

Menu Suite 16

table, as business logic 16-18

table, as user interface 16-18

tables 15

user interface 16
business to business interface, designing

Data Model 392

RF application 394

scenario 392

C

Calculate function 360
CalculatePlanFromWorksheet function 211
Inventory profile offsetting 211
campaigns, company
about 161
activating 163
pricing information, entering 162, 163
segments, creating 163
viewing 162
CardPart 390
Chapter2-4.fob file 451
Chapter7-9.fob file 451
Chapter8.fob file 451
Chart of accounts
about 92
accounting periods 107
budgeting 105
consolidation 110, 111

[456]

currencies 109

data analysis 112

dimensions 104, 105

entry tables 95

general journals 96

General Ledger Setup 116-119

posting account, creating 92-94

posting groups 101

VAT statement 112
COMMIT statement

about 400, 401

Automation Variables 401
CommitTracking function 212
company

campaigns 161

contact list 132

email logging 164

interactions 142

marketing setup 165, 166

opportunities 148

outlook, configuring 164

profiles 139

segments 157

To-do's 146, 147

working 132

contact information, sharing across

companies

about 171

alternative approaches 175

business relations 172

C/ AL code modifications 173

external synchronization 176

implementing 175

Master Item, sharing 176

number series 174

table, sharing 171, 172
contact list, company

about 133

Address 134

alternative addresses 136

city 134

Company Name 133

contact card, editing 133

Correspondence Type 135

create as 137

Currency Code 135

duplicate contacts 137

E-Mail 135

Homepage 135

Name 134

name details, editing 134

No 133

postal code 134

sales person 135

salutation code 135, 136

searching 138

search name 134

Territory Code 135

Type 133

VAT Registration No 135
contacts, adding to segments

about 176

criteria filters, implementing 178

report, expanding 176, 177

solution, testing 179, 180
ControlAddIn property 390
CreateCustomer function 170
CreateIncExp function 325
CreateLine function 304
CreateOpeningBalance() function 300
CreateSquashPlayer function 48 47
CreateVendor function 47
customer, numbering

CreateCustomer function, using 170

direct creation, disabling 171

D

data analysis, Chart of accounts
account schedules 114, 115
by dimensions 115, 116
General Ledger 112,113
data, exporting
data pulling, using 369
data pushing, using 369
data, importing. See data, exporting
Data Model, business to business interface
about 393
gaps 394
mapping, creating 392, 393
data model, principles
documents 37
journals 28
master data 27

[457]

other structures 38- 40
DataPerCompany property 171
DemandtoInvProfile function 211
development methodology

about 440

sample approach 440-444
dimensions

connecting, to master data 71

journal, posting 73
directed put-away and pick level

bin calculation 272-274

default bins, defining 271

zones, defining 271
document

data, deleting 245

Document Approval workflow 245

invoices, deleting 246

manual versus automatic releasing 244

purchase document, deleting 245, 246

range locks 247

releasing 243, 244

Relationship Management 131

sales document, deleting 245, 246

shipments, deleting 246

Status field 243

structure 38

transactions 38

UpdateVATOnLines 247, 248
Document Approval workflow 245
drop shipments, purchasing

about 240

creating, manually 241, 242

Requisition Worksheet 242
dynamic link library files

installing 453
dynamic link library files installation

NavMaps.dll, registering 454

VEControl.dll, registering 454
Dynamics NAV

accounting periods 107

add-on products 445

basic modules 19, 20

benefit 12

blocking 435, 436

budgeting 105

building blocks 15

consultancy companies 335

costing methods, average 190

costing methods, FIFO 189

costing methods, LIFO 189

costing methods, specific 190

costing methods, standard 190

customized applications 11

customizing 446

data model principles 27

deadlocks 435, 436

demo version, downloading 449

detailed entries 37

developing, checklist 442, 443

dimensions 26, 27

documents 38

entries 35

extended text 21

financial management 91

fit/ gap analysis 441

future integrations 408

General Ledger 95

history 9, 10

horizontal add-ons 12

implementing 445

infrastructure, selling 336

installing 449, 450

integrating, with Exchange Public
folders 387

interfacing 367

inventory management 248

inventory reservations 274

invoicing 237

Jobs module 337

job structure 39

journals 34

Kitting 216

large projects 336

licensing 449

manufacturing module 40

navigate 22

new projects, implementing 336

number series 20, 21

object files, installing 452

open source 12

overview 10,11

posting groups 24, 25

posting schema 36

pricing 25

[458]

prototyping 441 financial management, customizing

recording policies 261 extra fields, adding in G/L entries 124, 125
registers 34 sales line description, to G/L
relationship management 39 entries 120-122
sales 227 FindBinContent function 274
services, providing 336 FindBin function 274
setup tables 23, 24 FindCombination function 212
sub-entries 37 FindSquashPlayerPrice function 70
testing 443 FindStorageLinePrice function 324
total cost of ownership 446 Fit 42
transaction mirroring 228 fit/gap analysis
using, in business supply chain 19 about 42, 441
using, in vertical industries 219-283 Squash Court application, designing 42
versioning 439 food industry
versions 9, 10 assortments of products, using 286
vertical add-ons 12 fast order entry functionality 287
schedules, ordering 222
E zero inventory 222
ForecastConsumption function 211
EDI 389 Form Transformation
Electronic Data Interchange. See EDI cons 423
EnterCell function 383 pros 423
Exchange integration From Storage Date
interaction log entry 388 using 328
marketing setup 388 furniture industry
ExtendedDatatype property about 223,287
levels 384 calculations 223
inventory items 224
F one-off items 288
fashion industry variant, configuring 288
Bill of Material 220 G
challenges 219
reservations 284 Gap 42
sales orders 283 Garbage In Garbage Out. See GIGO
Shipping worksheet 220 general journals, Chart of accounts
fast transactions, achieving bank journal 99, 100
application, setting up 429 transaction, possibilities 97-99
unused indexes, cleaning up 428 General Ledger
financial management sub administrations, bank 95
about 91 sub administrations, customer 95
Chart of accounts 92 sub administrations, VAT 95
Codeunits 129 sub administrations, vendor 95
customizing 119 GETLASTERRORTEXT 398
G/L transaction, creating 126 GetSalutation function 168, 169
interacting with 125 GIGO 186

[459]

G/L transaction, creating
C/AL code 126-128
C/AL code, adding 128

InitLines function 359
InitSquashApp function 59
InitVariables function 211
INSERT command 402
InsertInvLineFromShptLine 239
installing

dynamic link library files 453

Dynamics NAV 449, 450
interactions, company

about 142

automatic interactions 145

creating 143, 144

finished interactions 145

templates, editing 143
interface

data, exporting 368

data, importing 368

event driven 369

exporting, need for 368

importing, need for 368

manual 368

manual interfacing 369

standard application interfaces 378

time driven 369
interfacing technologies 395
Automation Control 370

C/FRONT 375

Client add-ins 378

file 369, 370

MSMQ 375

ntimer.dll 396

OCX 370

ODBC 371

reliability 396

SQL Server interfacing 374

web services 376
inventory management

about 248, 249

Item ledger entry application 254

item table 249, 250
location table 250, 251

Requisition Journals, using with recording
policies 260, 261
sales pricing 254
stock keeping units 252
stock keeping units, example 252, 253
stock keeping units, SKU function 253
transfer order 258
transfer order, example 259, 260
value entries 257
variants 251
variants, example 251, 252
inventory reservations
always reservations 277
creating 278-280
never reservations 277
optional reservations 277
order tracking policy 280
order tracking policy, example 281
order tracking policy, replenishing 282
Reservation entries 277
Reservation entries, in Dynamics NAV 277
scenario 274,275
invoice documents
about 78
sales header, creating 79
sales line, creating 80
invoicing
about 78
combined invoicing 238
combined invoicing, batch 239
combined invoicing, manual 238
Credit Memo 240
invoice documents 78-82
prepayments 238
Return Order 240
invoicing application
about 319
buffer, processing 328, 329
combined invoicing 330
Income & Expense record, creating 321, 322
Income & Expense records 320
periodic invoicing 327
pricing calculations 323
process 320
process, starting with 322, 323
Sales Line table 322
Sales Post Code Unit 322, 323

[460]

Storage Invoicing, implementing 328
item costing
diagrammatic, summary 202
item ledger entry application
applying, requirements 256
C/AL code 254-256

J

Job Card
allow Schedule/Contract Lines field 340
Bill-to Customer No field 340
blocked field 340
description field 340
Foreign Trade field 340
Job Posting Group field 340
No field 339
person responsible field 340
Search Description field 340
Starting and Ending Date field 340
status field 340
WIP Method field 340

job, creating
Job Card 339
Job table 338
new job, setting up 338

job, examples
budget 345
chapter objects 343
infrastructure 345, 346
new implementation 343, 344
support team 348
timesheets 348
upgrade 347

job journal
about 342
creating 343

job planning lines
both schedule and contract type 342
contract type 342
schedule type 342

job queue
background posting 430
examples 430

jobs
changing 355
creating 338

examples 343
invoicing 351, 352
journal 342
planning lines 341
purchasing 350, 351
registering 337
tasks 341
Work in Progress, calculation methods 353
jobs, changing
calculations 358-360
issue registration 361, 362
quantity budgeting 355, 356
resource group 356, 357
time sheet application 362-364
time sheet application, registration 364, 365
Jobs module 336
data and posting model 338
issue registration 337
item calculation 337
job task 341
planning lines 341
resource groups 337
time registration 337
journal
about 62
balancing 31, 32
flow fields 33
flow filters 33
general ledger 29-31
invoicing 63, 64
ledger entry dimensions, moving to
document dimensions 74
list 34
master data, using 72
posting 74
reservation 63
structure 28
sub ledger tables 35
journal, designing
chapter objects 58, 59
dimensions 70
price, calculating 67
reservations, tracking 59, 60
Squash Court master data 57, 58
time, calculating 65-67
journal, posting
checkline codeunit 75, 76

[461]

codeunits 75 machine centres 205

postline 76, 77 MPS, calculating 209
MRP, calculating 209
K plan, calculating 212
. posting schema 203, 204
Kitting production Bill of Material, setting up 206
about 216 production order workflow 213, 214
BOM, defining 217 purchase orders, creating 214, 215
in Microsoft Dynamics NAV 7 219 Requisition Worksheet 210, 211
sales process 218 routing 206, 207
table relation and posting model 217 sales order 209

simulation production order 208

L table 203, 204
master data

core master data, examples 27

helper master data, examples 27
C/ AL code, accessing 450 umbrella mast.er data, examples 27
enabling, on Role Tai%ored Client 451 Mastef Produ?tlon Schedule..See MPS
modifying 450, 451 Material requirements planning. See MRP,

MSDN license 450 g .DYI_IagliCS NAV
Local Currency. See LCY medicine industry

LOCKTABLE command 432 expiration dates, defining 221
logisti . . lot numbers, adding 221
ogistics application

LanguageCode parameter 169
LCY 421
license

about 311 quality control 221

incidents 318 Microsoft Dyanamics NAV 2009. See
incidents, following up 318) Dynamics NAV

locking 312 Microsoft Dynamics CRM 408
logistics shipments 313 Microsoft Message Queue. See MSMQ
route 313 modules, Storage & Logistics setup

invoicing module 295
logistics module 295
storage module 295

route, following up 317
route, optimizing 315-317
route, shipments combining 314

security 312 MPS
starting with 313 about 1_86
structure 312 calculating 209
table size 312 MRP, Dynamics NAV
about 185
M calculating 209
policies, make-to-order 209
manufactured production policies, make-to-stock 208
about 203 MSDN fIf file 451
capacity, defining 205 MSMQ
flushing 215 about 375
items 204 NAS 376
item, testing 207, 208 using 376

low level code, calculating 207, 208

[462]

N

NAS 430
NASHandler function 397
Navigate function
FindRecords, changing 88
ShowRecords function, changing 89
Navision Application Server. See NAS
NavMaps.dll file 451
new item, generating
for assembling 188
for manufacturing 203
new sales order, creating
about 231
sales header 231
sales lines 232
sales lines, fields 233
sales lines, master data 232
validation flow 233
VAT calculation 237

(0

OCX 370
ODBC
about 371
connecting, to other databases 374

data, reading from Dynamic NAV 372, 373

data, writing from Dynamic NAV 373
OLAP 428
Ole Control Extension. See OCX
OLTP 428
Onlnsert Trigger 52

Online Analytical Processing. See OLAP
Online Transaction Processing. See OLTP

OnValidate Trigger 53

Open Database Connectivity. See ODBC

opportunity, company
about 148
creating 151-156
deal, terminating 156
sales quote, assigning 155
sales stages 150
sales stages, activity codes 150
workflow 148, 149

Outlook integration
ExtendedDatatype property 385, 386
levels 384
Outlook part, customizing 385

Outlook Synchronization Web Service 386

SMTP Mail codeunit 386

Outlook integration, standard application

interfaces
Style sheet tool, using 380
Word, integrating with Excel 380

P

pages
actions 415
client extensibility 416
embedded list 414
emphasis 416
fact boxes 416
importance 415
personalization 415
tabs 414
web services 416
Parameters function 390
pharmaceutical industry
about 285
contribution invoicing 286
medication card 285
Pinl.gif file 452
Pin5.gif file 452
PK 28
PlanItem function 212
posting groups
customer card, viewing 102
Customer Posting Groups 101
inventory posting setup, editing 104
item card, editing 104
matrix layer 101
setup 103
single layer 101
posting process
changes, making 86, 87
codeunit 80 83
codeunit 81 83
codeunit 82 83
codeunit, structuring 83-86

[463]

modifying 82
report 27 82
Post Inventory Cost to G/L function 195
PostSquash]nlLn function 86
PPAP 220
price, calculating
codeunit 68, 69
inherited data 69
squash prices 67, 68
pricing calculations, invoicing application
result 326
storage calculation 324-326
storage prices 324
Primary Key. See PK
Probability Calculation formula 148
ProcessingOnly property 78
production
about 184
basic principles 185
history 184
methodologies, assembling production 184
methodologies, manufactured
production 184
methodologies, specialized production 184
raw materials 185
Production Part Approval Process. See
PPAP
product, naming
abbreviations 420
plural 419
reserved words 420
singular 419
standard names 420
products, storage warehouse
about 300
regions 301
shelf 302
warehouse 301
profiles, company
automatic profiles 140-142
editing 139, 140
example 139
prototyping 441
purchasing
about 240, 350
drop shipments 240
item cost versus work in progress 351

purchase order, editing 351
resources 240
Put-Away and Pick level
comparing, with receipt and shipment
level 269
enabling 268
Warehouse activities 269
Warehouse Request 269

Q

QtyAvailabletoPromise function 276

R

receipt and shipment level
about 266
comparing, with Put-Away and Pick level
269
creating 267
limitations 267
receipt + use put-away worksheet level
enabling 270
whse.- activity register versus whse.-
activity-post 271
recording policies
extending 261
fixed reorder qty 261
Lot-for-Lot 261
maximum qty 261
order 261
virtual inventory 261
redesign examples
Bin code (version 3.x) 426
CRM (version 2.0) 425
Dimensions (version 3.x) 425
Inventory valuation (version 3.x) 426
Item costing (almost all versions) 427
Item tracking (version 3.6 & 4.0) 426
Jobs (version 5.0) 426
MenuSuite (version 4.0) 426
Role tailored client (version 2009) 427
Relationship Management
about 131
customizing 166
Relationship Management, customizing
contact information, sharing across
companies 171

[464]

contacts, adding to segments 176
customer, numbering 170
salutation formula types 166
vendor, numbering 170
reservations, tracking
about 59
Journal Batch 61
Journal Template 60, 61
Register 62
RF application
data, reading from 402
interface design, viewing 396, 397
interface technology 395
interface type 395
logging 403
logging, types 396
mapping, creating 401, 402
objects testing, RF database, using 404
results, viewing 405, 406
results, viewing in buffer tables 406
results, viewing in RF database 407
results, viewing in SQL statements 406
test, running 405
RF database.sql file 451
RF Helper 399
RF NAS Timer 397, 398
Role Center
Activities window 300
screenshot 299
role centres
about 416
Income and Expenses Role Center 418
Logistics Role Center 418
Manager Log. and St. Role Center 418
quash application 416, 417
Storage Role Center 418
Role Tailored Client
style sheets, enabling 381
Role Tailored ERP
about 14
purchaser Role Center 14
row level locking 246

S

sales
blanket order to order 230
Blank order, document types 229
Credit memo, document types 229
document 227
document, creating 228
Invoice, document types 229
new sales order, creating 231
order, document types 229
orders, document types 230
Quote, document types 229
quote to order 230
Return order, document types 229
transaction mirroring 228, 229
Sales Invoice. See SI
salutation formula types
about 166
formula, using 167, 168
GetSalutation function 168, 169
option, adding 167
setting up 169
solution, testing 170
SalutationType parameter 169
segments, company
about 157
contacts, adding 158, 159
contacts, reducing 159
contacts, refining 159
criteria 159, 160
logging 161
mailing groups, applying 160
new segment, creating 157
SetHideValidationDialog function 80
setup.exe file 449
SharePoint Client 408
ShowAsTree property 419
ShowRecords function
changing 89
testing 89
SI 21
Singlelnstance property 397
SourceTableTemporary property 419

[465]

specialized production
about 216
jobs 216
SQL Server
dead locks 435
SQL Server Analysis Services. See SSAS
SQL Server Integration Services. See SSIS
SQL Server interfacing
linked servers 374
SSIS 374
SSRS 375
views 374
SQL Server Reporting Services. See SSRS
Squash Court application
CreateVendor versus
CreateCustomer 46, 47
reverse engineering 48- 57
squash players, creating 44-46
Squash Court application, designing
parts, viewing 42
project approach 43
schema, posting 43
standard application, interfacing with 43
tables, drawing 43
SSAS 375
SSIS 374
SSRS 375
standard application interfaces
about 378
advanced Excel integration 382-384
BizTalk server 389
Client add-ins 390, 391
Dataport 378
Exchange integration 388
Outlook integration 380, 384
SharePoint 388, 389
XMLPort 379
storage documents, storage warehouse
pick document 308-311
put-away document 304-306
receipt region 303
shipping documents 307
StorageLinePriceExists function 324
Storage & Logistics setup
modules, defining 294
process 293
standard features, using 294

storage warehouse
about 295
application 297
application, designing 297, 298
bulk region 296
cue table, sharing 299
documents 297, 298
documents, registering 297
master data 298
opening balance 300
products 300
receipt 296
registration worksheet 302, 303
shipment region 296
staging region 296
storage documents 303
table, designing 298
strategy levels, Warehouse Management
bin code level 264
bin code level, bin content 265, 266
bin code level, example 264, 265
directed put-away and pick level 271
Put-Away and Pick level 268
receipt and shipment level 266
receipt + use put-away worksheet level 270
Style Sheet tool
downloading 381
SupplytoInvProfile function 211

T

testing
about 444
steps 444
timesheets
about 348
data transaction model 348, 350
trading company
process 226
retail company 226
wholesale company 226
trading, in vertical industries
automotive industry 284
fashion industry 283
food industry 286
furniture industry 287
pharmaceutical industry 285

[466]

transaction mirroring 228, 229
TRANSFERFIELDS command 80
TRANSFERFIELDS function 50

U

UnfoldItemTracking function 212
UpdateAmounts function 237
UpdateQuotes function 174
UpdateUnitPrice function 236
UpdateVendor function 54

Vv

ValidateShortcutDimCode function 72
validation flow
Line discount % field 236
No field 234
quantity field 235
unit price field 236
UpdateAmounts function 237
UpdateUnitPrice function 236
value entries, inventory management
about 257
Direct cost 257
indirect cost 257
linking, to general ledger entry 257
revaluation 257
rounding 257
value entries, inventory management
variance 257
Variable Text 379
VEControl.dll file 451
registering 454
version
about 438
combining 438
creating 439

numbering 438

object changes, creating 439
version management

version, creating 439

version, determining 438

version numbering 438
version numbering

rules 438

versions, combining 438

w

Warehouse Management
about 262
customizing 274
feature 262
implementing 274
location setups 263
strategy levels 262
warehouse employee, setting up 263
web services
consuming, in NAV 376
MSMQ, differentiating 376
NAYV web service, consuming 377, 378
NAYV web service, exposing 377
Windows Azure 408
URL 409
WIP Method 18
Workdate 328
Work in Progress
calculating, example 353, 354
calculation methods 353
posting, to general ledger 354

[467]

[468]

enTerprise

professional expertise distilled

PUBLISHING

Thank you for buying

Microsoft Dynamics NAV 2009
Application Design

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub . com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PUBLISHING

enterprise 8

professional expertise distilled

Programming Microsoft

Dynamics NAV 2009
ISBN: 978-1-847196-52-1 Paperback: 620 pages

Develop and maintain high performance NAV
applications to meet changing business needs with
improved agility and enhanced flexibility

1. Create, modify, and maintain smart NAV
applications to meet your client's business
needs

2. Thoroughly covers the new features of NAV
2009, including Service Pack 1

3. Focused on development for the three-tier
environment and the Role Tailored Client

Microsoft Dynamics AX 2009

Programming: Getting Started
ISBN: 978-1-847197-30-6 Paperback: 348 pages

Get to grips with Dynamics AX 2009 development
quickly to build reliable and robust business
applications

1. Develop and maintain high performance
applications with Microsoft Dynamics AX 2009

2. Create comprehensive management solutions
to meet your customer's needs

3. Best-practices for customizing and extending
your own high-performance solutions

4. Thoroughly covers the new features in AX 2009
and focuses on the most common tasks and
issues

Please check www.PacktPub.com for information on our titles

PUBLISHING

enterprise 8

professional expertise distilled

Microsoft Dynamics AX 2009

Development Cookbook
ISBN: 978-1-847199-42-3 Paperback: 352 pages

Solve real-world Dynamics AX development
problems with over 60 simple but incredibly effective
recipes

1. Develop powerful, successful Dynamics AX
projects with efficient X++ code

2. Proven AXrecipes that can be implemented in
various successful Dynamics AX projects

3. Covers general ledger, accounts payable,
accounts receivable, project, CRM modules and
general functionality of Dynamics AX

Quality Assurance for Dynamics

AX-Based ERP Solutions
ISBN: 978-1-847192-91-2 Paperback: 168 pages

Verifying Dynamics AX customization to the
Microsoft IBI Standards

1. Learn rapidly how to test Dynamics AX
applications

2. Verify Industry Builder Initiative (IBI)
compliance of your ERP software

3. Readymade testing templates

4. Code, design, and test a quality Dynamics
AX-based ERP solution

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Introduction to Microsoft Dynamics NAV
	Versions and history
	What is this book about
	Setup versus customization
	The beauty of simplicity
	Horizontal versus vertical solutions
	Open source

	Structure of this book
	The Role Tailored concept
	The building blocks
	Tables as user interface and business logic
	Dynamics NAV in throughout supply chain
	Some basics
	Number series
	Extended text
	Navigate
	Setup tables
	Posting groups
	Pricing
	Dimensions

	Data model principles
	Master data
	Journals
	The general ledger
	Balancing
	Flow fields and flow filters

	More journals and entries
	Posting Schema
	Sub and detailed entries

	Documents—combining the journals into processes
	Document structure
	Document transactions

	Other structures
	Relationship management
	Jobs
	Manufacturing

	Summary

	Chapter 2: A Sample Application
	Fit-gap analysis
	Designing a Squash Court application
	Look, learn, and love
	Drawing the table and posting schema
	The Project approach
	Interfacing with the standard application

	Getting started
	Creating squash players
	CreateVendor versus CreateCustomer
	Reverse engineering

	Designing a journal
	Squash Court master data
	Chapter objects
	Reservations
	The Journal
	Reservation
	Invoicing

	Time calculation
	Price calculation
	Squash prices
	Price calc mgt. codeunit
	Inherited data

	Dimensions
	Master data
	Journal

	The posting process
	Check line
	Post line

	Invoicing
	Invoice document
	Sales header
	Sales line
	Dialog

	Posting process
	Analyse the object
	Making the change

	Navigate
	FindRecords
	ShowRecords
	Testing

	Summary

	Chapter 3: Financial Management
	Chart of accounts
	Posting accounts
	The entry tables
	Sub accounting

	General journals
	Entry application

	Posting groups
	Dimensions
	Budgeting
	Creating budget entries

	Accounting periods
	Closing dates

	Currencies
	Consolidation
	VAT statement
	Data analysis
	General Ledger
	Account schedules
	Analysis by dimensions

	The setup

	Customizing financial management
	Sales line description to G/L entries
	Extra fields in the G/L entries

	Integrating with financial management
	Creating a G/L transaction
	The C/AL code
	Advanced entries

	Look, learn, and love

	Summary

	Chapter 4: Relationship Management
	How companies work
	Contacts
	Salutation codes
	Alternative addresses
	Create as
	Duplicates
	Search

	Profiles
	Automatic profiles

	Interactions
	Automatic interactions
	Finished interactions

	To-do's
	Workflow
	Sales stages
	Creating an opportunity

	Segments
	Add contacts
	Refine/Reduce contacts
	Segment criteria
	Mailing groups
	Log segment

	Campaigns
	Pricing
	Segments
	Activate

	Outlook integration
	E-mail logging

	The setup

	Customizing relationship management
	Salutation formula types
	Add the option
	Support the formula
	The GetSalutation function
	Set up the salutation formula
	Test the solution

	Customer and vendor numbering
	Disabling direct creation of customers and vendors

	Sharing contact information across companies
	Share tables
	Business relations
	C/AL code modifications
	Number series
	Final steps
	Alternative approaches

	Add contacts to segments
	Expand report
	Implement criteria filters
	Test solution

	Summary

	Chapter 5: Production
	What is production?
	History of production
	Production methodologies
	Raw materials

	Basic production principles
	Bill of materials
	MRP
	GIGO

	MPS
	Item costing
	Item tracking
	Quality control
	Energy and waste
	APICS

	Getting started
	Assembling
	The table and posting schema
	The items
	Item costing
	Item tracking
	The bill of materials
	Calculate standard cost
	Creating the inventory
	Adjusting cost item entries
	Posting inventory cost to G/L
	Check, check, and double check
	Recalculating standard unit cost
	BOM journal
	Check costing (again)
	Recalculating unit cost (again)
	Standard cost worksheet
	Item revaluation journal
	The result

	Item costing in ten steps
	Manufacturing
	The table and posting schema
	The items, machines, and work centers
	Capacity
	Production bill of materials
	Routing
	Testing and low level code
	Simulation, sales orders, or inventory
	Calculating MPS and MRP
	Inventory profile offsetting
	Calculating a plan
	Production order workflow
	Purchase orders
	Finishing production

	Specialized production
	Jobs

	Kitting
	Sales process
	Kitting in Microsoft Dynamics NAV "7"

	Vertical industry implementation
	Fashion
	Bill of materials
	Shipping worksheet

	Automotive
	Tooling and amortization
	Item tracking

	Medicines
	Lot numbers and expiration dates
	Quality control

	Food
	Zero inventory
	Ordering schedules

	Furniture
	Calculations
	Inventory

	Summary

	Chapter 6: Trade
	The process
	Wholesale versus retail

	Sales and purchasing
	Transaction mirroring
	Sales
	Orders
	Quote and blanket order to order

	Creating a new sales order
	Sales header
	Sales lines
	Sales line fields
	Validation flow
	VAT calculation

	Invoicing
	Prepayments
	Combined invoicing
	Credit Memo and Return Orders

	Purchasing
	Resources
	Drop shipments

	Document releasing and approval process
	Status
	Releasing a document
	Manual versus automatic releasing
	Document approval

	Deleting sales and purchase documents
	Data deletion
	Deletion of shipments and invoices

	Document tables and row level locking
	Range locks in documents
	UpdateVATOnLines

	Inventory management
	Items
	Locations
	Variants
	Example

	Stock keeping units
	Example
	Creating SKU function

	Sales pricing
	Item ledger entry application
	Item application C/AL routine
	Requirements

	Value entries
	Direct cost
	Value entries and general ledger entries

	Transfer orders
	Example

	Requisition journals
	Reordering policy
	Extending reordering policy
	Virtual inventory

	Warehouse management
	Warehouse strategy levels
	Location setup
	Warehouse employees

	Bin code | level 1
	Example
	Bin content

	Receipt and shipment | level 2
	Warehouse request
	Limitations

	Put-Away and Pick | level 3
	Warehouse request
	Warehouse activities
	Level 2 and level 3 comparison

	Receipt + use put-away worksheet | level 4
	Whse.- activity register versus whse.-activity-post

	Directed put-away and pick | level 5
	Zones and default bins
	Bin calculation

	Implementing and customizing warehouse management

	Reservations
	Scenario
	Check-avail. period calc.

	Always versus optional reservation
	Reservation entries
	Creating a reservation
	Order tracking policy
	Example
	Replenishment

	Trade in vertical industries
	Fashion
	Sales orders
	Reservations

	Automotive
	Vehicle Information
	Parts management

	Pharmaceuticals/medicines
	Medication card
	Contribution invoicing

	Food
	Assortment
	Fast order entry

	Furniture
	Variant configuring
	One-off items

	Summary

	Chapter 7: Storage and Logistics
	How to read this chapter
	Chapter objects
	The process
	Using standard features
	Defining the modules
	Storage
	Logistics
	Invoicing

	The storage application
	Documents
	Look, learn, and love
	Journal
	Documents
	Master data

	Designing the table and posting schema
	Sharing tables

	Getting started
	Opening balance
	Products
	Warehouse
	Regions
	Shelves

	Registration worksheet
	Storage documents
	Receipt
	Put-away
	Shipment
	Picks

	The logistics application
	Designing the table and posting schema
	Getting started
	Shipments
	Routes
	Route optimizer
	Route follow up

	Incidents
	Follow up

	The invoicing application
	Process
	Income and expense
	Invoicing
	Sales Line
	Codeunit Sales-Post (80)

	Pricing methodology
	Storage prices
	Calculation
	Result

	Periodic invoicing
	Processing the buffer

	Combined invoicing

	Add-on flexibility
	Value added logistics
	Item tracking
	Third and fourth party logistics

	Summary

	Chapter 8: Consulting
	The process
	Fits
	Gaps
	Resource groups
	Time registration
	Item calculation
	Issue registration

	Getting started
	How many jobs
	Job card

	Job task and planning lines
	Job journal
	Job examples
	Chapter objects
	1 | The new implementation
	2 | The infrastructure
	3 | The upgrade
	4 | The support team

	Time sheets
	Data and transaction model

	Purchasing
	Item costing versus work in progress

	Invoicing
	Calculating Work in Progress
	Example
	WIP post to general ledger

	Changing jobs
	Quantity budgeting
	Resource groups
	Calculations
	Issue registration
	Time sheet
	Registration

	Summary

	Chapter 9: Interfacing
	Interface types
	Import and export
	Manual
	Data pulling
	Data pushing

	Event driven versus timer driven

	Interfacing technologies
	File
	Automation Control and OCX
	OCX
	Automation Control
	Events
	.NET
	Automation wrappers

	ODBC/ADO
	Reading from Microsoft Dynamics NAV
	Writing to Microsoft Dynamics NAV
	Talking to other databases

	SQL Server interfacing
	C/FRONT
	Microsoft Message Queue
	NAS

	Web services
	Consuming web services in NAV
	Exposing a NAV web service
	Consuming a Microsoft Dynamics NAV web service

	Client add-ins

	Standard application interfaces
	Dataport
	XMLPort

	Office integration
	Word and Excel integration
	Word Automation

	Advanced Excel integration
	Outlook integration
	Outlook part
	ExtendedDatatype property
	Mail and SMTP mail Codeunits
	Outlook synchronization
	Exchange integration

	SharePoint
	BizTalk
	Client Add-ins

	Interface methodologies
	The scenario
	The design
	The mapping
	The gaps
	What if it does not work

	The scenario
	The interface type
	The interface technology
	Logging
	The design
	The solution
	Testing
	Viewing the results

	Interfacing into the future
	SharePoint client in Microsoft Dynamics
NAV "7"
	Microsoft Dynamics CRM
	Windows Azure

	Summary

	Chapter 10: Application Design
	Application lifecycle
	Design to use
	Forms
	Pages
	Role centers
	Reports

	Design to maintain
	Naming
	Quantity versus quality
	Transformation tool

	Design to support
	Second level support

	Design to upgrade
	Has Microsoft changed my (referenced) object
	Some redesign examples
	Documentation
	Split operational and financial information

	Design to perform
	OLTP versus OLAP
	Fast transaction posting
	Job queue
	Date compression and cleanup
	Locks, blocks, and deadlocks
	Impact on development

	Design to analyze
	Report design

	Version and object management
	What is a version
	Version numbering
	Combining versions

	Creating a version
	Tracking object changes

	Development methodology
	A sample approach
	Fit/gap analysis
	Prototyping
	Development
	Implementation
	Maintenance and support

	The project
	Standard, customized, or both
	Add-on products
	Customizing
	Total cost of ownership

	Roadmap to success

	Summary

	Appendix: Installation Guide
	Licensing
	Installing Microsoft Dynamics NAV
	Changing the license
	Restart service tier

	Installing the objects
	Importing a FOB file
	Installing the dynamic link library files
	Register NavMaps.dll
	Register VEControl.dll

	Index

