
www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics NAV 2009
Application Design

Design and extend complete applications using
Microsoft Dynamics NAV 2009

Mark Brummel

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics NAV 2009 Application Design

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2010

Production Reference: 1040610

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-84968-096-7

www.packtpub.com

Cover Image by Tina Negus (tina_manthorpe@sky.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Mark Brummel

Reviewers
Daniel Rimmelzwaan

Max Traxinger

Jeremy Vyska

Eric Wauters

Acquisition Editor
Rashmi Phadnis

Development Editor
Mayuri Kokate

Technical Editors
Neha Damle

Bhavesh D. Bhasin

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Poorvi Nair

Proofreader
Lesley Harrison

Indexer
Rekha Nair

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

www.allitebooks.com

http://www.allitebooks.org

Foreword

The history of the Dynamics NAV application started with a small accounting
product called "PC-Plus" back in 1984. The idea was to create an application suitable
for bookkeepers who had no knowledge of computers. It was done by copying
real life artifacts like paper journals, orders, and invoices and it even had a copy
of a Canon table calculator! "PC-Plus" was an overnight success – but soon a huge
demand for customizations and verticals started developing. After the "PC-Plus"
team developed a vertical for auto repair shops called "Auto-Plus", they realized
that if they had to create all the functionality themselves, their business would never
scale. Therefore, they got the idea to create a product including a base application
and a set of tools suitable for others to build exactly the functionality they wanted.
That was the start of Dynamics NAV as we know it today.

Over the years, the base application evolved. When "PC-Plus" was created, people
loved it for its core G/L functionality—but soon the same people wanted the
same simple solution to help run more of their business and eventually manage
their entire business. This meant that the Dynamics NAV application grew from
being all about finance management to cover manufacturing, distribution, service
management, projects and CRM and is today a fully-fledged ERP solution. Even
though the application has grown, it is still simple and consistent, which makes it
possible for a single developer to overview it, understand it, and build exactly the
necessary functionality.

Michael Nielsen

Director of Engineering, Dynamics NAV,
Microsoft Development Center Copenhagen — Denmark

www.allitebooks.com

http://www.allitebooks.org

About the Author

Mark Brummel is an all-round Microsoft Dynamics NAV specialist. He started
in 1997 as an end user but quickly moved to the other side of the table. For ten
years he has worked for resellers where designing and maintaining add-on systems
was his specialization. Some of these add-on systems exceed the standard product
when it comes to size and complexity. He has also been coaching colleagues and
troubleshooting 'impossible' problems as a part of day-to-day work. Mark has
trained most of the experienced NAV developers for the NAV 2009 product in The
Netherlands and Belgium and he has been hired by almost every NAV reseller in
the Benelux.

Mark works as a freelancer. His main focus area is to help out end users in
implementations all over the world.

Mark was the first world wide to use the NAV 2009 (CTP3) product in a production
system feeding back valuable information to Microsoft. Today, he is still involved in
projects to provide input for future versions and test new CTP releases.

A special project has been performance tuning of the Dynamics NAV product on
SQL Server. From 2007 to 2009, he was involved in the development of the 'SQL
Perform Tools' as business partner of SQL Perform Benelux. As a unique specialist,
he has done break through research in improving the performance of Dynamics
NAV on SQL Server.

In his spare time, Mark maintains his blog on www.brummelds.com. This blog
contains a wide range of articles about both the Microsoft Dynamics NAV and SQL
Server product. He is also a frequent speaker at Microsoft events and a writer for
independent Dynamics NAV websites and user groups. In 2006, Mark was rewarded
by Microsoft with the Most Valuable Professional award for his contribution to the
online and offline communities. In 2007 and 2009 he also reviewed "Programming
Microsoft Dynamics NAV" and "Programming Microsoft Dynamics NAV 2009".

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

Just before I was asked to write this book, I sold my company and went back to
freelancing in order to spend more time with my wife Dionel and kids Josephine (6),
Wesley (4) and Saskia (1½). Therefore, I would like to thank them for allowing me
this great opportunity and challenge. Writing this book has taken the better part of
weekends, evenings, and vacations for a period of almost half a year. I will never
forget this period where daddy is writing a book and Josephine asking, "What is
your book about dad?" (in Dutch of course) and me finding it difficult to explain.

I would also like to thank Packt Publishing for giving me the opportunity to write
a book about the application that I love so much. The people at Packt were very
helpful and patient in helping me explore the life of an author and my continuous
efforts in changing the outline and number of chapters and pages.

I have tried my best to write a book about the real intention of what Microsoft
Dynamics NAV is. NAV is more than ERP and more than a Development
Environment. It is about simplicity and being able to create applications using a
unique structure and way of thinking.

Many people have helped to get this book at the great level it is. First of all, the
technical reviewers, Daniel Rimmelzwaan, Matt Traxinger, Jeremy Vyska, and
Eric Wauters who have done an excellent job in improving my efforts in writing.
I would like to thank Andrew Good for his help with Chapter 5, Production.

The examples for implementing Microsoft Dynamics NAV in vertical industries in
Chapters 5 and 6 are taken from real implementations and I would like to thank
these companies for taking the time and effort to answer my questions:

•	 Arseus: Karel Jutte
•	 Bakery 't Stoepje: Sjacco Nel
•	 Bosman Medical Supplies: Renate Lukassen
•	 Rev'it Sport: Bas Stijntjes, Theo van Geel, and Peter Kuypers
•	 Wildkamp: Albert Smit and Gerard Nijlant

www.allitebooks.com

http://www.allitebooks.org

I would like to thank all the people who helped me during the first thirty three
years of my life. Leaving school when I was 18, I studied at the university of life
(sometimes the hard way) with the help of many who guided me in my personal
and business life. Amongst all these people are of course my wife Dionel, my
parents, great parents, brother Rene and sister Anna, and my parents-in-law.

Special thanks go to David and Karen Studebaker. I met them in 2006 at Tech-Ed in
Boston, USA. They have been of invaluable help in bringing structure in my business
and personal life.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Daniel Rimmelzwaan was born and raised in The Netherlands, and moved to the
USA at the end of 1999 to be with his new American wife. In Holland, he worked as
a Microsoft Access and VBA developer. When looking for a job as a VB developer in
the USA, he was introduced to Navision by a "VB Recruiter", and was intrigued by
the simplicity of its development tools. He decided to accept a job offer as a Navision
Developer, with the firm intention to continue looking for a 'real' developer job.

More than 10 years later, a long stint at a Microsoft partner, a few years as a
freelancer, and now back in the partner channel, Daniel is still working with
NAV. He currently works for Archerpoint, one of the largest and most experienced
Microsoft Dynamics NAV partners in the USA, and he is enjoying his career more
than ever.

Daniel has had the opportunity to work in a wide variety of roles such as Developer,
Analyst, Designer, Team Lead, Project Manager, Consultant, and more. Although
he has a very versatile experience with all things related to NAV, his main focus
is custom development, with a bias toward helping his customers solve NAV
performance issues on SQL Server.

Ever since he started working with NAV, Daniel has been an active member of
the online communities for NAV, such as mibuso.com, dynamicsuser.net, and
the online forums managed by Microsoft. For his contributions to these online
communities, Daniel received his first of five consecutive Microsoft Most Valuable
Professional Awards in July 2005, which was just the second year that the MVP
Award was given out for NAV. The MVP Award is given out by Microsoft to
independent members of technology communities around the world, and recognizes
people that share their knowledge with other members of the community.

Daniel lives with his wife and two kids in Michigan in the USA.

www.allitebooks.com

http://www.allitebooks.org

Matt Traxinger graduated from the Georgia Institute of Technology in 2005
with a B.S. in Computer Science, specializing in Human Computer Interaction
and Cognitive Science. After college, he took a job as an add-on developer using
a language he was unfamiliar with for a product he had never heard of: Navision.
It turned out to be a great decision.

In the following years, Matt learned all areas of the product and earned Microsoft
Certified Business Solutions Professional certifications in both technical and
functional areas of NAV. He continues to stay current with new releases of the
product and is certified in multiple areas for versions 4.0, 5.0, and 2009.

Currently Matt works in Norcross, GA, for Canvas Systems, one of the largest
resellers of new and refurbished computer equipment as an in-house NAV
Developer and Business Analyst. He supports multiple offices in the United States
as well as locations in the United Kingdom and the Netherlands.

Matt is also writing the NAV Development Cookbook for Packt Publishing which
should be released later this year. In his spare time, you can find him on the online
communities Mibuso.com and DynamicsUser.net under the name MattTrax,
helping others learn more about the Dynamics NAV software.

Jeremy Vyska started his career in Microsoft Dynamics NAV in 2000. Since
then, he has worked with, implemented, and customized almost every functional
area of Dynamics NAV. He has fulfilled many business process roles relating to
Dynamics NAV, including technical sales, requirements gathering, project planning,
implementation, training, support, and of course, development. He has overseen teams
of staff working on a project, as well as co-ordinating of independent resources.

Jeremy has also specialized in add-on and vertical development, which is a different
skill-set than typical client development. Optimizations and maintainability are even
more critical in those products, since partners may need to implement and customize
the solution. He has been on the development and PM teams of at least half a dozen
such solutions that are actively in the market space today, most notably Serenic
Software on their premiere NAV-based solution for non-profits and NGO's.

Currently, Jeremy runs Small Square Services (founded in 2009), providing a wide
variety of services to the worldwide Microsoft Dynamics NAV Partner Channel and
supporting customers throughout the northeast US.

www.allitebooks.com

http://www.allitebooks.org

Eric Wauters is one of the founding partners of iFacto Business Solutions www.
ifacto.be. With nine years of technical expertise, he is an everyday inspiration to
its development team. As development manager, he continually acts upon iFacto's
technical readiness and guarantees that he and iFacto are always on top of the
latest Microsoft Dynamics NAV developments. Apart from that, Eric is also very
active in Microsoft Dynamics NAV community-life where he tries to solve technical
issues and thrives to share his knowledge with other Dynamics NAV enthusiasts.
Surely, a lot amongst you will have read some of Eric's posts on Mibuso.com,
Dynamicsusers.net or his own blog www.waldo.be which he invariably signs with
"waldo". In 2008, he co-founded the Belgian Dynamics Community, a platform for all
Belgian Dynamics NAV users, consultants and partners, enabling knowledge sharing
and networking. His proven track record entitled him to be awarded in 2007, 2008,
2009, and 2010 as MVP (Microsoft Most Valuable Professional).

Table of Contents
Preface 1
Chapter 1: Introduction to Microsoft Dynamics NAV 9

Versions and history 9
What is this book about 10
Setup versus customization 11
The beauty of simplicity 12

Horizontal versus vertical solutions 12
Open source 12

Structure of this book 12
The Role Tailored concept 13
The building blocks 15

Tables as user interface and business logic 16
Dynamics NAV in throughout supply chain 19
Some basics 20

Number series 20
Extended text 21
Navigate 22
Setup tables 23
Posting groups 24
Pricing 25
Dimensions 26

Data model principles 27
Master data 27
Journals 28

The general ledger 29
Balancing 31
Flow fields and flow filters 33

More journals and entries 34
Posting Schema 36
Sub and detailed entries 36

Table of Contents

[ii]

Documents—combining the journals into processes 37
Document structure 38
Document transactions 38

Other structures 38
Relationship management 39
Jobs 39
Manufacturing 40

Summary 40
Chapter 2: A Sample Application 41

Fit-gap analysis 42
Designing a Squash Court application 42
Look, learn, and love 42

Drawing the table and posting schema 43
The Project approach 43
Interfacing with the standard application 43

Getting started 44
Creating squash players 44

CreateVendor versus CreateCustomer 46
Reverse engineering 48

Designing a journal 57
Squash Court master data 57
Chapter objects 58
Reservations 59
The Journal 62

Reservation 63
Invoicing 63

Time calculation 65
Price calculation 67

Squash prices 67
Price calc mgt. codeunit 68
Inherited data 69

Dimensions 70
Master data 71
Journal 72

The posting process 74
Check line 75
Post line 76

Invoicing 78
Invoice document 78

Sales header 79
Sales line 80
Dialog 81

Posting process 82
Analyse the object 83

Table of Contents

[iii]

Making the change 86
Navigate 88

FindRecords 88
ShowRecords 89

Testing 89
Summary 90

Chapter 3: Financial Management 91
Chart of accounts 92

Posting accounts 92
The entry tables 95

Sub accounting 95
General journals 96

Entry application 99
Posting groups 101
Dimensions 104
Budgeting 105

Creating budget entries 106
Accounting periods 107

Closing dates 109
Currencies 109
Consolidation 110
VAT statement 112
Data analysis 112

General Ledger 112
Account schedules 114
Analysis by dimensions 115

The setup 116
Customizing financial management 119

Sales line description to G/L entries 120
Extra fields in the G/L entries 124

Integrating with financial management 125
Creating a G/L transaction 126

The C/AL code 126
Advanced entries 128

Look, learn, and love 129
Summary 130

Chapter 4: Relationship Management 131
How companies work 131

Contacts 132
Salutation codes 135
Alternative addresses 136
Create as 137
Duplicates 137

Table of Contents

[iv]

Search 138
Profiles 139

Automatic profiles 140
Interactions 142

Automatic interactions 145
Finished interactions 145

To-do's 146
Workflow 148
Sales stages 150
Creating an opportunity 151

Segments 157
Add contacts 158
Refine/Reduce contacts 159
Segment criteria 159
Mailing groups 160
Log segment 161

Campaigns 161
Pricing 162
Segments 163
Activate 163

Outlook integration 164
E-mail logging 164

The setup 164
Customizing relationship management 166

Salutation formula types 166
Add the option 167
Support the formula 167
The GetSalutation function 168
Set up the salutation formula 169
Test the solution 170

Customer and vendor numbering 170
Disabling direct creation of customers and vendors 171

Sharing contact information across companies 171
Share tables 171
Business relations 172
C/AL code modifications 173
Number series 174
Final steps 175
Alternative approaches 175

Add contacts to segments 176
Expand report 176
Implement criteria filters 178
Test solution 179

Summary 180

Table of Contents

[v]

Chapter 5: Production 183
What is production? 184

History of production 184
Production methodologies 184
Raw materials 185

Basic production principles 185
Bill of materials 185
MRP 185

GIGO 186
MPS 186
Item costing 186
Item tracking 186
Quality control 186
Energy and waste 187
APICS 187

Getting started 187
Assembling 188

The table and posting schema 188
The items 189
Item costing 189
Item tracking 190
The bill of materials 192
Calculate standard cost 193
Creating the inventory 194
Adjusting cost item entries 194
Posting inventory cost to G/L 195
Check, check, and double check 196
Recalculating standard unit cost 196
BOM journal 196
Check costing (again) 198
Recalculating unit cost (again) 199
Standard cost worksheet 200
Item revaluation journal 201
The result 201

Item costing in ten steps 202
Manufacturing 203

The table and posting schema 203
The items, machines, and work centers 204
Capacity 205
Production bill of materials 206
Routing 206
Testing and low level code 207
Simulation, sales orders, or inventory 208
Calculating MPS and MRP 209
Inventory profile offsetting 211
Calculating a plan 212

Table of Contents

[vi]

Production order workflow 213
Purchase orders 214
Finishing production 215

Specialized production 216
Jobs 216

Kitting 216
Sales process 218
Kitting in Microsoft Dynamics NAV "7" 219

Vertical industry implementation 219
Fashion 219

Bill of materials 220
Shipping worksheet 220

Automotive 220
Tooling and amortization 220
Item tracking 221

Medicines 221
Lot numbers and expiration dates 221
Quality control 221

Food 222
Zero inventory 222
Ordering schedules 222

Furniture 223
Calculations 223
Inventory 224

Summary 224
Chapter 6: Trade 225

The process 226
Wholesale versus retail 226

Sales and purchasing 226
Transaction mirroring 228
Sales 229

Orders 230
Quote and blanket order to order 230

Creating a new sales order 231
Sales header 231
Sales lines 232
Sales line fields 233
Validation flow 233
VAT calculation 237

Invoicing 237
Prepayments 238
Combined invoicing 238
Credit Memo and Return Orders 240

Purchasing 240
Resources 240

Table of Contents

[vii]

Drop shipments 240
Document releasing and approval process 243

Status 243
Releasing a document 243
Manual versus automatic releasing 244
Document approval 245

Deleting sales and purchase documents 245
Data deletion 245
Deletion of shipments and invoices 246

Document tables and row level locking 246
Range locks in documents 247
UpdateVATOnLines 247

Inventory management 248
Items 249
Locations 250
Variants 251

Example 251
Stock keeping units 252

Example 252
Creating SKU function 253

Sales pricing 254
Item ledger entry application 254

Item application C/AL routine 254
Requirements 256

Value entries 257
Direct cost 257
Value entries and general ledger entries 257

Transfer orders 258
Example 259

Requisition journals 260
Reordering policy 261
Extending reordering policy 261
Virtual inventory 261

Warehouse management 262
Warehouse strategy levels 262
Location setup 263

Warehouse employees 263
Bin code | level 1 264

Example 264
Bin content 265

Receipt and shipment | level 2 266
Warehouse request 266
Limitations 267

Put-Away and Pick | level 3 268
Warehouse request 269
Warehouse activities 269

Table of Contents

[viii]

Level 2 and level 3 comparison 269
Receipt + use put-away worksheet | level 4 270

Whse.- activity register versus whse.-activity-post 271
Directed put-away and pick | level 5 271

Zones and default bins 271
Bin calculation 272

Implementing and customizing warehouse management 274
Reservations 274

Scenario 274
Check-avail. period calc. 275

Always versus optional reservation 276
Reservation entries 277
Creating a reservation 278
Order tracking policy 280

Example 281
Replenishment 282

Trade in vertical industries 283
Fashion 283

Sales orders 283
Reservations 284

Automotive 284
Vehicle Information 284
Parts management 285

Pharmaceuticals/medicines 285
Medication card 285
Contribution invoicing 286

Food 286
Assortment 286
Fast order entry 287

Furniture 287
Variant configuring 288
One-off items 288

Summary 289
Chapter 7: Storage and Logistics 291

How to read this chapter 292
Chapter objects 292
The process 293
Using standard features 294
Defining the modules 294

Storage 295
Logistics 295
Invoicing 295

The storage application 295
Documents 297

Table of Contents

[ix]

Look, learn, and love 297
Journal 297
Documents 297
Master data 298

Designing the table and posting schema 298
Sharing tables 299

Getting started 299
Opening balance 300
Products 300

Warehouse 301
Regions 301
Shelves 302

Registration worksheet 302
Storage documents 303

Receipt 303
Put-away 304
Shipment 307
Picks 308

The logistics application 311
Designing the table and posting schema 312
Getting started 313

Shipments 313
Routes 313
Route optimizer 315
Route follow up 317

Incidents 318
Follow up 318

The invoicing application 319
Process 320
Income and expense 320
Invoicing 322

Sales Line 322
Codeunit Sales-Post (80) 322

Pricing methodology 323
Storage prices 324
Calculation 324
Result 326

Periodic invoicing 326
Processing the buffer 328

Combined invoicing 330
Add-on flexibility 330

Value added logistics 330
Item tracking 331
Third and fourth party logistics 332

Summary 332

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[x]

Chapter 8: Consulting 335
The process 336

Fits 337
Gaps 337

Resource groups 337
Time registration 337
Item calculation 337
Issue registration 337

Getting started 338
How many jobs 338

Job card 339
Job task and planning lines 341
Job journal 342
Job examples 343

Chapter objects 343
1 | The new implementation 343
2 | The infrastructure 345
3 | The upgrade 347
4 | The support team 348

Time sheets 348
Data and transaction model 348

Purchasing 350
Item costing versus work in progress 351

Invoicing 351
Calculating Work in Progress 353

Example 353
WIP post to general ledger 354

Changing jobs 355
Quantity budgeting 355
Resource groups 356
Calculations 358
Issue registration 361
Time sheet 362

Registration 364
Summary 365

Chapter 9: Interfacing 367
Interface types 368

Import and export 368
Manual 368
Data pulling 369
Data pushing 369

Event driven versus timer driven 369
Interfacing technologies 369

File 369

Table of Contents

[xi]

Automation Control and OCX 370
OCX 370
Automation Control 370
Events 371
.NET 371
Automation wrappers 371

ODBC/ADO 371
Reading from Microsoft Dynamics NAV 372
Writing to Microsoft Dynamics NAV 373
Talking to other databases 374

SQL Server interfacing 374
C/FRONT 375
Microsoft Message Queue 375

NAS 376
Web services 376

Consuming web services in NAV 376
Exposing a NAV web service 377
Consuming a Microsoft Dynamics NAV web service 377

Client add-ins 378
Standard application interfaces 378

Dataport 378
XMLPort 379

Office integration 380
Word and Excel integration 380
Word Automation 381

Advanced Excel integration 382
Outlook integration 384

Outlook part 385
ExtendedDatatype property 385
Mail and SMTP mail Codeunits 386
Outlook synchronization 386
Exchange integration 387

SharePoint 388
BizTalk 389
Client Add-ins 390

Interface methodologies 392
The scenario 392
The design 392

The mapping 392
The gaps 393
What if it does not work 394

The scenario 394
The interface type 395
The interface technology 395
Logging 396
The design 396

Table of Contents

[xii]

The solution 397
Testing 404
Viewing the results 405

Interfacing into the future 407
SharePoint client in Microsoft Dynamics
NAV "7" 408
Microsoft Dynamics CRM 408
Windows Azure 408

Summary 409
Chapter 10: Application Design 411

Application lifecycle 411
Design to use 412

Forms 413
Pages 414
Role centers 416
Reports 419

Design to maintain 419
Naming 419
Quantity versus quality 421
Transformation tool 422

Design to support 423
Second level support 424

Design to upgrade 425
Has Microsoft changed my (referenced) object 425
Some redesign examples 425
Documentation 427
Split operational and financial information 427

Design to perform 427
OLTP versus OLAP 428
Fast transaction posting 428
Job queue 430
Date compression and cleanup 430
Locks, blocks, and deadlocks 432
Impact on development 436

Design to analyze 436
Report design 437

Version and object management 437
What is a version 438
Version numbering 438

Combining versions 438
Creating a version 439

Tracking object changes 439
Development methodology 440

A sample approach 440
Fit/gap analysis 441

Table of Contents

[xiii]

Prototyping 441
Development 442
Implementation 444
Maintenance and support 444

The project 445
Standard, customized, or both 445

Add-on products 445
Customizing 446
Total cost of ownership 446

Roadmap to success 447
Summary 447

Appendix: Installation Guide 449
Licensing 449

Installing Microsoft Dynamics NAV 449
Changing the license 450

Restart service tier 451
Installing the objects 451

Importing a FOB file 452
Installing the dynamic link library files 453

Register NavMaps.dll 454
Register VEControl.dll 454

Index 455

Preface
In 1997, the company I worked for was looking for a replacement for their
MS-DOS-based software package. We were very fortunate in finding Navision
Financials 1.1 as a software package that supported the upcoming Windows
platform, and was flexible enough to be implemented supporting our demands.

Even though the standard functionality was nowhere near what we have today,
the structure of the application's design was simple and solid and has not changed
since then.

In the years after that more companies embraced Navision as their answer to the
changing demands in the market, and many vertical solutions that exist today
started their life cycle. With the acquisition of Navision by Microsoft the interest
of new partners grew in to the channel we know today.

The add-on solutions catalogue now has 620 pages with 548 solutions from
208 partners in 36 countries, making Microsoft Dynamics NAV a very popular
development platform to create business software.

Microsoft Dynamics NAV offers a unique development experience that can only be
fully used once you understand how the standard application parts are designed.

When properly licensed, everyone can change how the application works. With
this great possibility comes great responsibility as this means that we can also easily
break important business logic.

This results in a unique need for a designer of applications that run inside Microsoft
Dynamics NAV to know more about the application without going into deep
functional details.

Preface

[2]

The balance in this book will be between learning and understanding how the
standard application features of Microsoft Dynamics NAV are designed, and
learning how to use this knowledge when designing our own solutions. The area
between understanding the application's functionality and its technical design is
very thin.

In this book, we will make changes to the standard application and also create
new solutions.

We will also discuss how Microsoft Dynamics NAV can interface with
other applications.

What this book covers
Chapter 1, Introduction to Microsoft Dynamics NAV, will introduce you to Microsoft
Dynamics NAV. We will talk briefly about the history of the application and talk about
the concepts. We will cover some of the basics such as Number Series and Navigation.
Then we will discuss the Data Model principles used by Microsoft Dynamics NAV
using Master Data, Journals, and Ledger Entries covered by Documents.

Chapter 2, A Sample Application, will implement the theory we learned in the first
chapter to make a sample application. The goal of this chapter is to better understand
how Journals and Ledger entries work throughout the system and how to create
your own Journal application. You will learn how to reverse engineer the standard
application to learn from it and apply this to our own customizations. We will
integrate the application with Relationship Management and Sales in Microsoft
Dynamics NAV, and extend Navigation and Dimensions for our solution.

Chapter 3, Financial Management, will explore how the Financial Management part
of the application can be used and how it is designed. You will learn important
concepts such as VAT, Posting Groups, Closing Dates, Entry Application, and
Financial Data Analysis. We will make some changes in the core application by
adding new information to the General Ledger, and learn how to integrate Financial
Management into our add-on solution.

Chapter 4, Relationship Management, will help us to analyze the sales data in our
system and be more productive towards our customers. We will explore the unique
design of this part of the application and integrate this with the sample application
we created in Chapter 2.

Preface

[3]

Chapter 5, Production, will show us how to set up Microsoft Dynamics NAV for
Production companies. We will discuss the BOM Journal, Manufacturing, and
Kitting. Item Costing and Item Tracking are key elements when using this part of the
application. We will look at the Planning Worksheet and how to create Production
orders using Make-to-Order and Make-to-Stock policies. We will reverse engineer
the Inventory Profile Offsetting codeunit and see how this leads to a planning and
Purchase Orders. At the end of this chapter we will look at ten ways to customize
Production for vertical industries.

Chapter 6, Trade, will discuss the relationship between Sales, Inventory Management,
and Purchasing, and how Warehousing can be involved using different levels of
complexity. We will learn how Reservation Entries are used in the system from a
technical perspective.

Chapter 7, Storage and Logistics, will design and build a solution for planning routes
for shipments, a feature that is not available in Microsoft Dynamics NAV. We will
design a solution that can be used by trading companies not only for their own
shipments but also for storage companies. The solution is seamlessly integrated with
the Dynamics NAV product. We will extend the journal knowledge we learned in
Chapter 2 and Chapter 3 with new document structures we learned in Chapter 5
and Chapter 6.

Chapter 8, Consulting, will discuss how to implement the Job functionality using four
example jobs, and extend jobs with an issue registration and timesheet application
using resource groups and calculations.

Chapter 9, Interfacing, will discuss how to design a rock solid business to business
interface. We will show what technologies are available to use for interfacing and
how these technologies are implemented in the standard product. We will discuss
all the built-in interfaces with other Microsoft applications such as Office, SharePoint,
BizTalk, and Exchange.

Chapter 10, Application Design, will focus on the concepts of application design and
how they apply to Microsoft Dynamics NAV. We will focus on Design to Use,
Maintain, Support, Upgrade, Perform, and Analyze. This includes concepts for User
Interface, Version Management, and the Development Methodology.

Preface

[4]

What you need for this book
To successfully follow the examples in this book you will need the following:

•	 The Microsoft Dynamics NAV 2009 product CD to install the application.
•	 Ideally you should have a full developers license. This can be obtained by

being registering as a Microsoft Dynamics NAV partner. Alternatively,
most of the example code can be explored using a demo license which can
be downloaded from MSDN.

•	 Microsoft Office and SQL Server Management Studio for the interface
examples in Chapter 9.

The appendix describes how to install these prerequisites.

Who this book is for
Basically, this book is for:

•	 NAV consultants and developers
•	 Designers of business applications
•	 Application Managers and End Users
•	 Business Owners and influencers

This book assumes that you have a basic understanding of business management
systems and application development, with a working knowledge of Microsoft
Dynamics NAV or another ERP system.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We need to reverse engineer this code
in order to see what we need to create for our CreateSquashPlayer function."

A block of code is set as follows:

IF Type = Type::Company THEN
 ContComp := Rec
ELSE
 ContComp.GET("Company No.");

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

No. - OnValidate()
IF "No." <> xRec."No." THEN BEGIN
 SquashSetup.GET;
 NoSeriesMgt.TestManual(SquashSetup."Squash Player Nos.");
 "No. Series" := '';
END;

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Now
we are in the Action Designer and we can search for the Create as part."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Where to find the Screens in this book
Most of the screens in the book were created using the Role Tailored Client
introduced with Microsoft Dynamics NAV 2009. Wherever possible or necessary
the Role Center that was used is mentioned. Some chapters had new or modified
Role Centers.

To find a screen, type the name into the search window in the upper right corner of
the Role Center (as shown in the following screenshot). This will tell you where in
the application's menus the screen can be found:

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Screenshots
All the screenshots in this book were taken from the Role Tailored Client which
was introduced with Microsoft Dynamics NAV 2009.

For most of the images the Action Pane and FactBox Pane were turned off to save
space. This can be done using the Customize option on each page.

How to read the application schemas
Most of the chapters in this book have application schemas to clarify the flow of data
through the system. They are specially designed for this book.

To read the schemas follow the arrows. Wherever possible the functional areas are
grouped using boxes. Some schemas might have more starting and ending points
as this is how the application is designed. Multiple master data tables are processed
using normalized business logic.

Number and date punctuation
This book was written by a Dutch author, which means that all the number and date
formatting is done in Dutch formats, for example, 1.000,00 instead of 1,000.00 and
18-10-10 for October 18th 2010.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

Preface

[7]

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit https://www.packtpub.com//sites/default/files/
downloads/0967EN_Code.zip to directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Preface

[8]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to Microsoft
Dynamics NAV

Once Upon a Time; this is how fairytales often start and even though the story of
Microsoft Dynamics NAV is anything but a fairytale, it sure has some magic.

With more than 1,350,000 seats and 75,000 installations it is one of the most popular
ERP packages in the mid market. In this book, we will go through the magic of
the Dynamics NAV application. We'll see how Dynamics NAV will give better
information on how our business is doing and better insight into where the processes
can be optimized or need to be changed.

In this chapter, we'll discuss the basic principles of the Microsoft Dynamics NAV
application, how it's structured and why. After reading this chapter, you will have a
better understanding of what to expect when implementing and designing Microsoft
Dynamics NAV.

Versions and history
At the time of publishing this book, Microsoft Dynamics NAV 2009 (6.0) SP1 is the
most recent version of the product. When the Windows version was first introduced
in 1995, the product was called Navision Financials 1.0. The Danish software
company that originally developed the product, Navision Software A/S, was not
yet acquired by Microsoft and it was a revolution. It was a full Windows product
and had all the basic functionality that small companies needed. It is important to
understand that the original version was targeted at smaller companies.

Since then, we have had many (20+) versions. All new versions contained new
functionality and with that, the product has gotten more mature and more suitable
for bigger companies. This was especially empowered with the support of the
Microsoft SQL Server platform allowing more concurrent users to work in the same
application areas.

Introduction to Microsoft Dynamics NAV

[10]

Until version 5.0, the technology of the product did not change. The original
intention of Microsoft was to release a new technology platform together with the
new functional changes. This turned out to be a very difficult task so they decided to
split the improvements into two releases. Version 5.0 contains new functionality and
improvements, whilst version 2009 or 6.0 which is the technical release number, is a
technology release.

The technical challenge was to migrate from the old C++ platform to .NET and to
move from a two tier to a three tier technology. This was also the first release with
a drastic change in the user interface. Microsoft Dynamics NAV 2009 contains an
entirely new user interface, the "Role Tailored Client", built new from the ground
up—the existing ("Classic") user interface is the same with no changes. During
this migration process, all application functionality was frozen although small
improvements and bug fixes were made in 2009 SP1.

This book supports functionality from both the 5.0 and 2009 release even though we
decided to use the new 2009 interface for all user interface screenshots and pages for
the development examples. As the development environment is only available in the
classic client, we have taken these screenshots from there.

What is this book about
The title of the book is "Microsoft Dynamics NAV 2009 Application Design".
What does Application Design mean? And what does it mean in Microsoft
Dynamics NAV 2009?

Microsoft Dynamics NAV 2009 is a very complete ERP package, but unlike
other ERP packages it has a design capable of providing an open structure and a
development platform. The idea is to provide 80% of the solution out of the box
and allow the other 20% to be designed by qualified business application developers.

The partner channel is a unique part of Microsoft Dynamics NAV. From the first
moment that Navision was introduced, company management decided that it would
only make sense to have an indirect selling model and to let the resellers (called
partners) have the availability to change the product and add new functionality.

This book is about both the 80% and the 20%. We'll see that the percentages differ
as per the industry where it is applied. Some industries have close to a 100% fit
while others have a need for 80% development.

So there is a thin line in this book between using the standard application and
designing changes and expanding the product. Although this is not a development
book, we'll dive into code and objects in almost every chapter.

Chapter 1

[11]

To understand the code it should be enough to read this chapter but if you want to
know more we highly recommend reading "Programming Microsoft Dynamics NAV
2009" written by David Studebaker and also published by Packt.

This book is not a manual for Microsoft Dynamics NAV 2009. It should give a clear
idea of how the structure of the application is laid out and about its possibilities. We
do not want to replace or rewrite the Microsoft Documentation but rather want to
provide ideas you might not have thought about.

Setup versus customization
In Microsoft Dynamics NAV, the line between implementing and developing is
very thin. Where you would do a lot of setup in other ERP packages, you'll see
that it often makes more sense in Dynamics NAV to make a change with the
Development Tools.

The standard package is very complete in its functionality but does not support
all industries. It is more a framework for Partners to work with. In this book, we
will explain this framework and what philosophy it is built on. Understanding this
philosophy is critical to knowing how to expand the functionality.

But, expanding the functionality means customizing the application. Do end-users in
2009 still want customized applications? Mostly they will say they don't want their
software customized, but in the next breath, they will say that the software should
change to match their way of doing business, and that they should not have to
change their business to fit the software.

This is why Microsoft pushes their Partners to create horizontal and vertical
solutions on top of the standard product and release these solutions as products with
their own versions like it was part of the standard applications. This way of using
the partner channel is a unique concept that has proven to be very successful and has
made Microsoft Dynamics NAV useable in almost any industry.

Most companies, however, have such a unique way of working that they will always
require more or less customized solutions. The total cost of ownership depends on
the level of customizations and how these customizations are designed.

The key is knowing when to do setup and when to do a customization. Only a
solid understanding of the application will help you determine which is correct.

After reading this book, you will know how to design your application best to have
a good balance between cost of ownership and functionality.

Introduction to Microsoft Dynamics NAV

[12]

The beauty of simplicity
As discussed earlier, the application is designed to be expanded and changed by
external partners. When this Partner program was created, a decision was made that
partners could only do a good job if the application was completely open for them
to add and change. This philosophy is very important to understand when you first
start implementing or changing Microsoft Dynamics NAV.

Partners can change all business logic in the application. They can add new fields to
tables and create their own tables. The only thing they cannot do is delete fields from
the tables in the base application.

As you can see, Microsoft Dynamics NAV is an extremely flexible and open product
with a lot of freedom. But with freedom comes responsibilities. In Dynamics NAV,
you are responsible for the housekeeping in your system.

Horizontal versus vertical solutions
Because of this open system, partners have created thousands of smaller and
larger changes to the system. Some of these changes were bundled into new
functional pieces and called "add-ons". These add-ons are often solutions that
change Dynamics NAV into a product for a specific industry rather than a generic
ERP system. Other add-ons are specific features that can be used in all industries
like EDI or Workflow. Microsoft calls the industry specific add-ons verticals and the
generic add-ons horizontals.

Open source
Even though Dynamics NAV has an open source for their partners, it does not come
fully equipped with a development environment like most developers are used to.
It has a customization tool that lets you customize the application like you would
customize another ERP system with settings. This customization tool is a basic tool
that is nice to work with but misses some development features such as version
control and intellisense. This makes it more difficult to keep track of your changes.

Structure of this book
This book will cover most functional elements of Dynamics NAV in a number
of vertical industries. We will do this in a supply chain matrix. The specific
industries we will look at are fashion, automotive, medicines, food, and furniture.
For production and trade we will look at the general process and we will see how
consultancy and distribution companies help in this process.

Chapter 1

[13]

The following image shows how this book is structured:

For all these industries we will look at what parts of the standard product can be
utilized and where we need vertical solutions. We'll discuss how these vertical
solutions will interface with the standard package or maybe even change the
behavior of the standard product.

Two parts of the product however are so general in their use and usability for
all industries that we'll discuss them in their own chapter. These are Financial
Management and Relationship Management.

To emphasize the strength of the vertical concept, we'll design and create a vertical
solution for a distribution company.

Now we will look at some of the basic concepts of the application.

The Role Tailored concept
With the NAV 2009 release, Microsoft marketing decided to introduce the concept of
Role Tailored ERP. Until now, most ERP systems were module driven, which means
that the application has an area for finance, CRM, sales, purchasing, and so on. The
access to the individual modules was separated. A purchaser needs to switch to sales
in order to see the sales orders.

Introduction to Microsoft Dynamics NAV

[14]

Most people in a company have specialized tasks that the ERP system should
support. In a classic ERP interface, the users would have to decide themselves
which parts they need. This has changed.

This is a "purchaser's" Role Center. As you can see, all the information needed by this
person in the organization is in one place and usable in a workflow-like way. Also,
the Sales Orders are accessible from the main menu. It is completely different to the
menu found in version 5.0 or before

Chapter 1

[15]

However, the Role Tailored concept is not new. Dynamics NAV partners have been
implementing it for many years. In the classic menu, it was extremely easy to create
new menus and most companies implemented their own menus per role. When the
'Microsoft Outlook' style Menu Suites where introduced in version 4.0, end users
could create shortcut Menu Suites and these also quickly became role centers. You
can clearly see that the role tailored concept is like coming home for Dynamics NAV.

The building blocks
To understand the development examples in this book, we will discuss some of the
basic building blocks of Microsoft Dynamics NAV 2009.

Like all database applications, it starts with tables. They contain all the information
displayed in a structured way. It is important to understand that the tables of
Microsoft Dynamics NAV are not completely normalized. The tables are structured
in the way the user interface works. This makes it easy for non- technical people to
understand the data model. We'll discuss the unique structure of the application in
the next chapter.

Tables, however, not only contain data, they contain business logic as well. As they are
structured like the functionality in the database, tables contain simple functions like
address validation, and more complex functions for VAT and discount calculation.

Whenever functionality gets more complex or can be shared across the application, it
is better to move them to the Codeunit object. These are containers of business logic
for a special purpose.

Introduction to Microsoft Dynamics NAV

[16]

For the user interface there are three object types: Forms, reports, and pages.
The first and latter are intended for user input. Reports are originally intended to
be printed on paper but with the current status of technology, they are more and
more used as information dashboards combining management information with
drill-through possibilities.

Forms and pages are tightly linked to each other. Each form object has a page object
with the same number and name. The form object is used in the 'Classic Client' only
whilst the pages are used in the 'Role Tailored Client'.

The report object is used in both interfaces but has two layouts—a black and white
layout for the Classic client and a RDLC layout for the Role Tailored client that
supports colors and graphs.

As the tables are structured in the way the application works, the forms and pages
are bound to one table. For people new to this concept, it sometimes takes a while
to get used to this.

The Menu Suite defines the way the navigation is structured when people leave their
Role Centers, or when using the Classic Client which does not support Role Centers.

The last two object types are external interfacing objects. Data ports and XML ports
make it possible to import and export data in and out of the system.

For this book, the table and page objects are the most important to understand. Most
of this book, however, can also be applied to older versions but then forms should be
applied wherever this book addresses pages.

Tables as user interface and business logic
The table object in Microsoft Dynamics NAV is very important. As it is not
normalized, it contains a lot of information about how the database works.

For example the Job Card (88) is built on one table, the Job (167). This table
contains all fields required for this screen.

Chapter 1

[17]

In a traditional development environment this screen would have a transaction
GetJobData and UpdateJobData. These transactions would read the information
from the database, map them to the screen, and save the information in the database
if the user if finished. However, in Microsoft Dynamics NAV, all fields that are
displayed in the interface are stored in one table. This makes it possible for the screen
to have built-in triggers to get the data and update the database.

Introduction to Microsoft Dynamics NAV

[18]

The table object then contains the business logic required for this document. Let's
have a look at some of the fields in this table.

In this table you will see see a lot of fields that are required for a Job like WIP
Method, Currency Code, and so on. But when we click on the C/AL Code icon
and focus on Currency Code we get this.

Currency Code - OnValidate()

IF "Currency Code" <> xRec."Currency Code" THEN
 IF NOT JobLedgEntryExist THEN
 CurrencyUpdatePlanningLines
 ELSE
 ERROR(Text000,FIELDCAPTION("Currency Code"),TABLECAPTION);

It contains business logic that gets executed every time something happens with this
field. In this case, the currency factor is recalculated and updated in the Sales Lines.

So, the tables in Microsoft Dynamics NAV are not just data containers, they are the
foundation for both the business logic and the application workflow.

Chapter 1

[19]

Dynamics NAV in throughout supply chain
The Dynamics NAV product is used almost everywhere in the business supply
chain. This is mainly because it is a highly customizable ERP system. Dynamics NAV
is used in the classical supply chain companies like manufacturing plants, wholesale
companies, and in retail with or without many changes. But with an add-on, the
product is also used in transportation companies or in the recycling industry.

In order to understand this better, it is important to know how companies work.
A company is a person or a group of persons using materials and resources to
deliver a product or a service to other companies or end consumers. A group of
companies working together is called a supply chain. Dynamics NAV can be used
in all these companies although it is traditionally used in companies with 5 to 250
concurrent users.

In order to serve this process, Dynamics NAV has a list of basic modules:

•	 Financial management: Traditionally, financial management was used
in companies to comply with federal regulations of bookkeeping. For
entrepreneurs starting their business, this is usually the part they least like.
However, good bookkeeping can give a clear view on the company's well
being and support strategic decisions with good financial information.

•	 Inventory: Every company that grows will reach a certain point where it is
no longer possible to handle inventory without a system. Keeping too much
inventory is expensive. A good inventory system can help you keep your
stock management as efficient as possible.

•	 Relationship management: When it comes to people, a company is not only
dealing with customers and vendors. RM will help you keep track of every
company and person your company is dealing with.

•	 Sales: The sales process is usually the place where businesses make money.
The system will help you keep track of orders that your customers place.

•	 Purchasing: The purchasing department is usually split in two pieces. One
piece is the purchasing of goods the company needs for itself. This facility
management can grow into a business of its own at large companies. The
other purchasing part is buying the materials and resources you need for
your sales process. For some trading companies, this can even be a drop
shipment process where you never have the purchased goods in house.

•	 Warehouse management: Warehouses are getting bigger and bigger, making
the need for a system that supports the picking and put-away process even
greater. This is usually tightly connected to the sales and purchasing process.

Introduction to Microsoft Dynamics NAV

[20]

•	 Manufacturing: When you make products yourself, you need a system
that helps you create a new item from one or more purchased materials
and resources.

•	 Jobs: In some companies the process of delivering a service is so complex
that it requires its own administration process. Time and billing is usually
a very important process for these companies.

•	 Service management: This supports the service process handling warranty
and necessary periodical maintenance of your items.

Some basics
Microsoft Dynamics NAV has some basic structures that are reused throughout
the application and are necessary to understand before you read the rest of this book.

Number series
Databases need unique records. The application has two ways of making
this happen.

Some tables have automatic incremental numbering that cannot be influenced.
These are often accounting tables that have auditable purposes. Examples of
these tables are G/L entries, G/L registers, and VAT entries.

The other way is using a flexible alphanumeric code. In some setup tables, users
are free to create their own numbers, like in the location table, but most of the
time, number series functionality is used. These can be influenced by the end user
depending on their access rights. Let's have a closer look at those:

Chapter 1

[21]

Users can define their own numbering, usually starting with an alphanumeric
character. Numbering can be done automatically, manually, or in a combination.
Numbers can have a starting date and incremental number. This way you can
number your Sales Invoices SI11-0001. SI means Sales Invoice. 11 means 2011 and
0001 is the incremental number.

Number series can be linked to each other making it possible to have a different
number series for national and international customers.

Extended text
Most master data tables in Microsoft Dynamics NAV have two description fields but
it is possible to add extra text.

The text can be defined for all languages in the system and valid for a specific period.

We can enable or disable using the text for most documents available in the system, so
we can have a long text for the Sales Quote and a shorter text for the Sales Invoice.

Introduction to Microsoft Dynamics NAV

[22]

Navigate
The main reason Microsoft Dynamics NAV consultants like you to use numbers as
SI11-0001 is the Navigate functionality. This functionality makes it possible to find
all information in the database linked to this document. If you were to call your Sales
Invoice 110001 and your Purchase Invoice the same, the system would not be able to
find the correct information.

When Navigating on Posted Sales Invoice 103006 in the CRONUS Demo database,
we get all the information that is linked to this number.

Navigation shows both documents and entries. Using the Show option, we can drill
down into the records and go even deeper into the information.

Chapter 1

[23]

Setup tables
An ERP application can be used in many different ways and to make it work in the
way we want, we need to set it up correctly. We already discussed that Dynamics
NAV has far less setup work required than other ERP packages and is more likely
to be changed but nonetheless, there is setup work to do.

Every part of the application has its own setup table. There are also some
application-wide or cross application setup tables. During the implementation,
we need to make sure to touch all of these tables. Changing these setups after the
implementation should be done with great care.

This list shows all Microsoft Dynamics NAV setup tables grouped by type.

Specific setup tables Application wide setup tables
General ledger setup

Sales & receivables setup

Purchases & payables setup

Inventory setup

Resources setup

Jobs setup

Marketing setup

Human resources setup

Production schedule setup

FA setup

Nonstock item setup

Warehouse setup

Service mgt. setup

Manufacturing setup

Source code setup

Change log setup

SMTP mail setup

Approval setup

Job queue setup

Online map setup

Interaction template setup

Employee portal setup

Notification setup

Order promising setup

BizTalk management setup

Introduction to Microsoft Dynamics NAV

[24]

When we open a setup from the application, we see several options, including the
numbering we discussed earlier.

Posting groups
Microsoft Dynamics NAV is very flexible in its posting to the General Ledger. This is
set up in posting groups. These form a matrix which is filtered out by the application.

Most application areas have one or more posting group tables:

•	 Customer posting group
•	 Vendor posting group
•	 Inventory posting group
•	 Job posting group
•	 Gen. Business posting group
•	 Gen. Product posting group
•	 Bank account posting group
•	 VAT business posting group

Chapter 1

[25]

•	 VAT product posting group
•	 FA posting group

We'll discuss posting groups in more detail in Chapter 3,
Financial Management.

Pricing
When it comes to pricing and discounts, Microsoft Dynamics NAV has a very
simple, yet effective way of calculating prices.

All sales and purchase prices are stored in four simple tables.

•	 7002—Sales Price
•	 7004—Sales Line Discount
•	 7012—Purchase Price
•	 7014—Purchase Line Discount

The system finds the appropriate price by filtering down in these tables. The
narrower the filter, the more likely the price is applied.

For example: The normal price of item 1972-W on the item card is 974,80 but from
1-1-2011 it is 843,345.

The filtering is done in Codeunits Sales Price Calc. Mgt. (7000) and Purch. Price Calc.
Mgt. (7010). We'll discuss this structure in Chapter 2, An Example Application where
we will also create such a structure for our own application.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Microsoft Dynamics NAV

[26]

Dimensions
Throughout the application, an unlimited number of dimensions can be used to
analyze the data. These dimensions are inherited from master data tables.

The application has two global dimensions that are directly posted into each
transaction. Six other dimensions can be defined as shortcut dimensions to be
directly used in journals and documents. An unlimited number of additional
dimensions can be added but need to be accessed with additional effort.

This screenshot shows how Global and Shortcut Dimensions can be used in a
Sales Document.

Chapter 1

[27]

As discussed earlier, Microsoft Dynamics NAV has built-in OLAP possibilities. It
allows us to create cubes to be analyzed within the application or in SQL Server
analysis services. .

Although the cubes can be updated real time during posting, it is highly
recommended to update them periodically in a batch. Also, the number of
dimensions has an impact on the performance of the system.

Data model principles
Microsoft Dynamics NAV has some specific data model principles that are very
important to understand before you can create your own structure. The building
blocks are layered and reused and rely on each other in order to secure data integrity.

Master data
The data model starts with master data. There are three types or levels of master
data. They are all used in transactions. We differentiate helpers, core, and umbrella
master data.

Examples of helper master data are Currencies, Locations, and Payment terms.
They often do not use a number series but allow us to create our own unique codes.

Examples of core master data are G/L Accounts, Customers, Vendors, Items,
Resources, and Fixed assets. They are numbered using number series and have
their own journal structure.

Umbrella master data consists of data tables such as Contacts, Jobs, and Production
orders. They allow us to group other master data and documents.

Introduction to Microsoft Dynamics NAV

[28]

The combination of all above combine the information allows us to quickly analyse
the created data.

Journals
Every transaction starts with a journal. Each journal can contain a number of sub
transactions that are treated by the system as one. This way the system is able to
check, for example, if the integrity of the system is maintained after the transaction
is completed.

This diagram shows how a journal is structured. PK means Primary Key which is
the unique identifier of the table.

Every journal can contain one or more templates with one or more batches, allowing
multiple users to have multiple templates and batches. A journal line has a source
number field that refers to, for example, the G/L Account number or the Item
number we are changing. When we post the journal, the changes are stored in the
entry table and a register is maintained for all the lines for the journal allowing
auditors to check if the transactions are consistent.

Chapter 1

[29]

The general ledger
To see how this works in the application we can best go to the Chart of Accounts
and the General Journals.

If we select G/L Account 1140 and drill down, we see the details of this record.

Introduction to Microsoft Dynamics NAV

[30]

These are created through journals, so let's open a journal.

This journal contains two documents on the same posting date and the balance is zero.
When we post this journal, the system will create the ledger entries and a register.

Chapter 1

[31]

This is the basic building block for Dynamics NAV. Everything in Dynamics NAV is
built on top of a journal, registers, and entries.

Balancing
In any ERP system, totaling and balancing is crucial, whether you are totaling
the general ledger, customer payments or inventory, it is important to know the
balance of each Account, Customer, or Item.

Traditionally, this requires calculating these balances and deciding a place to
store the totals and subtotals. Not in Dynamics NAV. The system has built-in
technology that will handle balancing and totaling for you, without effort and
cost of performance.

This built-in technology is called Sum Index Flow Technology, SIFT in short.
For Dynamics NAV it is the key feature to its success.

The way it works is that, as a developer, you define your totaling on an index level.
By associating the totaling fields with a key, the system knows that it has to maintain
the totals for you.

In the original proprietary database, this technique was built-in and invisible for
the user but in the SQL Server database, we can see how it works.

Introduction to Microsoft Dynamics NAV

[32]

If we go into the CRONUS database and open the G/L Entry table with its keys ,we
see this information.

Let's take key number two as an example. The key contains the fields G/L Account
number and Posting Date. If we take a closer look at the SumIndexFields column,
we see the following fields listed.

Notice that these are all fields of type decimal. This is mandatory for
SumIndexfields.

From the SQL Server Management studio you can see the generated data
from the SumIndexField definition. Each key with a SumIndexField
generates a view in the database. In older versions (prior to 5 SP 1) the
SumIndexFields are saved in tables.

Chapter 1

[33]

So now we know that we do not have to worry about maintaining the totals, we can
spend our time on what's really important.

Flow fields and flow filters
As discussed earlier, screens in Microsoft Dynamics NAV are built directly on one
table. These table definitions contain all fields including the totals. However, these
totals are not real database fields.

This can be illustrated by comparing the table definition in Microsoft Dynamics
NAV to the table definition in the SQL Server.

The fields Date Filter (28) to Budgeted Amount (33) are not actual fields in the
database. They are helper fields to show data on screens.

Flow filters can have seven types; Sum, Average, Exist, Count, Min, Max, and Lookup
and contain a Query to the database. For example, Balance at Date (31) shows:

Sum("G/L Entry".Amount

 WHERE (G/L Account No.=FIELD(No.),

 G/L Account No.=FIELD(FILTER(Totaling)),

Introduction to Microsoft Dynamics NAV

[34]

 Business Unit Code=FIELD(Business Unit Filter),

 Global Dimension 1 Code=FIELD(Global Dimension 1 Filter),

 Global Dimension 2 Code=FIELD(Global Dimension 2 Filter),

 Posting Date=FIELD(UPPERLIMIT(Date Filter))))

This creates the Sum of the field Amount in the G/L Entry table (17) filtering on G/L
Account, G/L Account No., Business Unit Code, Global Dimension 1 & 2 Code, and
Posting Date.

Some of these filters are actual fields in the G/L Account table, but others are Flow
filters. Non-existing fields that can be used as a runtime filter to limit the result of
the Query.

We will use and discuss more of these Flow filters and Flow fields in this book.

More journals and entries
So now that we know how a journal works, it might be interesting to build a posting
diagram of Dynamics NAV. Dynamics NAV has a number of journals, registers, and
entries built on top of each other.

These are the most important journals, registers and entries:

Journals Gen. Journal Line (81)

Item Journal Line (83)

Res. Journal Line (207)

Job Journal Line (210)
Registers G/L Register (45)

Item Register (46)

Resource Register (240)

Job Register (241)

Chapter 1

[35]

Entries G/L Entry (17)

Cust. Ledger Entry (21)

Vendor Ledger Entry (25)

Item Ledger Entry (32)

Job Ledger Entry (169)

Res. Ledger Entry (203)

VAT Entry (254)

Bank Account Ledger Entry (271)

Please notice that when you look in the database you'll find more of these tables, but
these are the main building blocks.

Each journal is responsible for creating its own entries but may run another journal if
that is required. For example, an Item Journal may generate G/L entries if required
using a General Journal and a Job Journal may create Item Ledger Entries using the
Item Journal.

We already discussed the G/L Entry table which is used to store the basic financial
information. This is the basic administration table.

The other entry tables are sub ledger tables. They store redundant information but
have extra information for their specific use. A total of a sub ledger should always
balance with the G/L. We'll see how that works in Chapter 3, Financial Management.

•	 The Customer and Vendor ledger entry tables are used to store specific
information about the accounts receivables. They are linked to Customer
and Vendor master data tables.

•	 The VAT Entry table stores specific information to make registration easier.
Most companies do monthly or quarterly VAT registrations with one or
more governmental agencies.
VAT is different in many countries and could be different from what this
book describes in localized country systems.

•	 The Bank Account entries should show exactly what transactions were
carried out on our bank accounts.

The logistical part of the ERP package is handled by the Item Journal. Every item
that is purchased, produced, or sold is handled though this journal. Services are
handled through the Resource journal. A 'Resource' can either be a person or a
piece of equipment, for example a lift.

Introduction to Microsoft Dynamics NAV

[36]

The Job journal is an umbrella overlaying the entire application. It allows you to
group transactions making it easier to analyze cost and profit for larger projects.

Posting Schema
When we combine all this information in a schema, we can create the following basic
Microsoft Dynamics NAV posting schema.

Here you can clearly see what journal is responsible for creating what entry. An
entry table is always maintained by one process.

The General Journal is the heart of the application where the basic financial
information is created in the ledger entries. All the basic information is in the G/L
entry table which is grouped in the G/L Register which is always balanced. The
Customer, Vendor, VAT, and Bank Account Ledger entries are sub tables that
always refer to a G/L register. We can never create one of these entries without
touching this part of the application.

Sub and detailed entries
When an entry is created, its basic structure should not be changed for audit ability.
This is why most entries in Microsoft Dynamics NAV have sub- or detailed entries.

Chapter 1

[37]

The Customer and Vendor Ledger Entry have details for application, unrealized loss
and gain, various discounts, and corrections. This way we are able to keep track of
what happens with an entry without changing the original information.

The Item Ledger Entries a have wide variety of sub entries depending on what you
are doing with the items.

One of the most important tables in Microsoft Dynamics NAV is the Value Entry
table. Each Item Ledger Entry has one or more of these. This table is the 'soft bridge'
between the inventory and the financial part of the application.

Warehouse entries enable moving items within our organization without touching
the basic inventory or financial application.

Documents—combining the journals into
processes
The journal and entry tables make it possible for us to do the basic balancing in our
company but people in companies are not used to working with journals.

Traditionally, companies work with documents. This was also the case before ERP
applications were introduced. A sales representative would travel through the
country with a paper order block and then come back to the back office. The back
office then ships the orders with shipping documents and invoices.

Microsoft Dynamics NAV supports working with documents. Traditionally, we
divide the documents in sales and purchasing documents but the later versions
of Microsoft Dynamics NAV also have warehouse documents. Other supported
documents are reminders and service documents.

Introduction to Microsoft Dynamics NAV

[38]

Document structure
A document in Microsoft Dynamics NAV always has a header and lines. The header
contains the basic information about the transaction like shipment dates, addresses,
and payment terms.

The lines contain information about what is sold or purchased. This can be a variety
of G/L accounts, items, and resources.

A document can have different stages depending on the type of the transaction. A
quote is a typical starting point in the sales or purchasing process. When a quote is
approved it can be promoted to an order which is then shipped and invoiced. The
process can be also reversed via a return order resulting in a credit memo.

Document transactions
Transactions in the database can be started via documents. When a document is
processed the necessary journals are automatically populated. For example, when an
order is shipped the goods leave the warehouse, thus an Item Journal is created and
posted to handle this. When the invoice is posted, a General Journal is generated to
create G/L Entries and a Customer or Vendor Ledger Entries.

Other structures
The previously discussed structure with journals and documents is by far the most
important transaction structure. But Microsoft Dynamics NAV has other structures
as well.

The three most important other structures are CRM, Jobs, and Manufacturing.
These structures are all 'umbrella' structures for other processes.

Chapter 1

[39]

Relationship management
Microsoft Dynamics NAV RM helps you to maintain master data and analyze
transactional data. It is both at the very start of the data process and at the end.

We have already seen the Customer, Vendor, and Bank master data records. But
what if a Vendor is also a customer or vice versa. We don't want to maintain the
same data twice. We might also want to keep extra information of our customers
and vendors like contact persons and their interests. We'll see more of that in the
RM chapter later.

There is also a need to analyze the data we have created with the document and
journal structure.

Jobs
Sometimes a project can be more comprehensive than just a purchase and/or a
sales document. A project can take from several weeks to over a year and requires
multiple documents.

The job structure in Dynamics NAV allows you to handle this. Every document and
journal transaction can be attached to a job making it easy to analyze profit and loss,
and even schedule your jobs.

Introduction to Microsoft Dynamics NAV

[40]

The jobs module also allows you to do a calculation before you start the project and
balance this calculation throughout the process.

Manufacturing
When you produce your own items, you have different needs in your ERP process
than when you only purchase the items you sell.

The manufacturing module of Microsoft Dynamics NAV allows you to handle
this process. Basically what it does is create an item out of one of the other items
and resources.

Summary
In this chapter, we have covered the basic structure of Microsoft Dynamics NAV.
We talked about the design philosophy, application objects, and the unique table
structure. We discussed the role tailored concept and its reflection to older versions
of the product. We talked about some basic functions of the product-like number
series and application setup. Very important is the basic posting structure and the
way SIFT works. We discussed how the document structure is overlaying the journal
structure and how the umbrella structure is on top of that. In the next chapter, we
will look at a sample industry application and its effect on the standard functionality.

A Sample Application
Let's create a structure of our own in Microsoft Dynamics NAV. To do this we must
think of something that is not already available in the standard package but can be
built on top of it.

For our example application we will run a squash court. Running a squash court is
simple to understand but something we cannot do without changing and expanding
the product. In order to define our changes we first need to make a fit-gap analysis.

After this chapter you will have a better understanding of how to reuse the
framework of the Microsoft Dynamics NAV application. We will show how to
reverse engineer the application and study its functionality by going into the
application code.

For this example, some new and changed objects are required. The Appendix
describes where to find the objects, and how to install and activate them.

In the first part we will look at how to reverse engineer the standard application to
look and learn how it works, and how to reuse the structures in our own solutions.

In the second part of the chapter we will learn how to use the journals and entries
in a custom application.

Lastly, we will look at how to integrate our solution with the standard application,
in our case Sales Invoicing.

A Sample Application

[42]

Fit-gap analysis
When we do a fit-gap analysis we look at the company's processes and define what
we can and cannot do with the standard package. When a business process can be
handled with the standard software we call this a Fit. When it cannot be done it's a
Gap, we can fill a gap by developing a solution or purchasing an add-on.

But even when something could be done with standard software features, it does
not necessarily mean that doing this is wise. The standard application should be
used for what it was designed for. Using standard features for something else might
work in the current version but if it changes in a new version it might no longer fit.
For this reason it is better to design something new instead of wrongly using the
standard features.

Designing a Squash Court application
The basic process of a squash court company is renting the courts to squash players;
both members and non-members. There is a reservation and invoicing process
handling different rates for members and non-members.

Although this could be implemented using items to represent squash courts and
customers to represent players this would be a typical example of using standard
features wrongly. Instead of doing this we will look at how items and customers
are designed and use this to create a new Squash Court application.

Look, learn, and love
To determine the design for this application we will first look at the parts of the
standard application (we could have used) to learn how they work. We will use
this knowledge in our own design.

In Microsoft Dynamics NAV, customer and vendor master data are maintained using
Relationship Management (RM). For our solution we will create a new master data
for squash players being the business part of application. This will also be integrated
with RM.

To design the Squash Court we will look at the design of items in the standard
package. The Squash Court will be the product part of our application having a
journal to create reservation entries, which we can invoice.

For this invoicing process we will use and integrate with the Sales part of Microsoft
Dynamics NAV.

Chapter 2

[43]

Drawing the table and posting schema
After we have decided what the design of our application will be, we can draw the
tables and post the routines as we did in the previous chapter. This will clarify the
design for others and guide us through the development process.

The objects in Relationship Management and Sales are standard objects that we will
possibly need to modify. The objects for the Squash Application are new objects but
based on similar objects in the standard application.

The Project approach
In order to keep track of our project we'll cut the changes into smaller tasks.
The first task will be to do the changes in Relationship Management to be able
to create a squash player from a contact. The second task is to create squash
courts. The reservation and invoice processes are tasks three and four.

Interfacing with the standard application
In our schema we can see that we have two processes where we need to touch the
standard Microsoft Dynamics NAV processes, which are Relationship Management
and Sales.

A Sample Application

[44]

Getting started
In the first part of the design process we will look at how to reverse engineer the
standard application in order to learn and reuse the knowledge in our own solution.

Creating squash players
For our squash players administration we will use the data from the Contact table.
In the standard product it is possible to create a customer or vendor with the contact
data. We require the same functionality to create squash players so let's have a look
at how this is done by Microsoft.

Open the contact card and try to find this function (as shown in the
following screenshot):

We want a function like this for our squash players. So let's get in and see what it
does. For this we need to design the page and look at the actions. The page number
in this case is 5050 which we can find by clicking on About This Page in the upright
corner of the page as shown in the following screenshot:

Chapter 2

[45]

This option can be useful for finding information about the fields that are not on
the page, the filters or the source table:

To open the page we need to open the Object Designer (Shift F12) in the Classic
client as shown in the following screenshot:

Here in the Object Designer we can find page 5050, Contact Card, as shown:

A Sample Application

[46]

We are looking for the Actions on this page. They are kind of difficult to find if you
are unfamiliar with the Page Designer. To open the Actions, the cursor should be on
the blank line below the last populated line. Then press the right mouse button and
Actions or select Actions from the View drop down menu:

Now we are in the Action Designer and we can search for the Create as part.

To see what it does we need to go into the C/AL code by pressing F9 or by selecting
C/AL Code from the View drop down menu as shown in the following screenshot:

CreateVendor versus CreateCustomer
In Microsoft Dynamics NAV there is a small difference between creating a customer
and a vendor from a contact. When creating a customer the system will ask us to
select a customer template. The vendor option does not have this. Because of this
simplicity we will look at and learn from the Vendor function in this chapter.

Chapter 2

[47]

The customer and vendor table are almost identical in structure and fields are
numbered similar in both tables. This is called transaction mirroring between sales
and purchasing, which we will discuss further in Chapter 6, Trade. We will mirror
our new table in a similar way to the other Microsoft Dynamics NAV tables.

The C/AL code in the Action tells us that while pushing the menu option, the
function CreateVendor in the contact table is started. To copy this feature we need
to create a new function CreateSquashPlayer. Let's keep this in mind while we
dive further into this code.

Open the Contact table (no. 5050), and search the function CreateVendor. You can
find functions in a table by going into the C/AL code (F9) from anywhere in the table
designer, and use the Find (Ctrl+F) function as shown in the following screenshot:

A Sample Application

[48]

Reverse engineering
We need to reverse engineer this code in order to see what we need to create for our
CreateSquashPlayer function. We will look at each part of the C/AL code in order
to decide whether we need it or not.

What does this piece of code do?

TESTFIELD("Company No.");

This tests the current record for a valid Company No. If this fails we cannot continue
and the end user get's a runtime error.

RMSetup.GET;
RMSetup.TESTFIELD("Bus. Rel. Code for Vendors");

This reads the marketing setup table from the system and tests whether the
Bus. Rel. Code for Vendors is valid. We need a new code for squash
players here, which will be added as a new field to the setup table.

CLEAR(Vend);
Vend.SetInsertFromContact(TRUE);
Vend.INSERT(TRUE);
Vend.SetInsertFromContact(FALSE);

Here, the vendor table is cleared and a function is called within that table, then a new
record is inserted in the database while activating the necessary business logic. Then
the same function is called again with another parameter. Since the vendor table is
what we are copying we will write down that we might need a similar function as
SetInsertFromContact.

Chapter 2

[49]

IF Type = Type::Company THEN
 ContComp := Rec
ELSE
 ContComp.GET("Company No.");

This code checks whether the current contact is a company. If so it populates the
variable ContComp with this record. If not it populates ContComp with the company
our current contact is related to.

ContBusRel."Contact No." := ContComp."No.";
ContBusRel."Business Relation Code" := RMSetup."Bus. Rel. Code for
Vendors";
ContBusRel."Link to Table" := ContBusRel."Link to Table"::Vendor;
ContBusRel."No." := Vend."No.";
ContBusRel.INSERT(TRUE);

The ContBusRel refers to the table, Contact Business Relation (5054), and is a linking
table in the Microsoft Dynamics NAV data model. Technically a contact can be
connected to multiple customers and vendors although this does not make sense.
This table is populated here. Let's write down that we need to look into this table and
see if it needs changes.

UpdateCustVendBank.UpdateVendor(ContComp,ContBusRel);

UpdateCustVendBank is an external code unit that is used with the function,
UpdateVendor, we might need a copy of this function for our Squash players.

MESSAGE(Text009,Vend.TABLECAPTION,Vend."No.");

This throws a message box for the end-user stating that the record was created with
a new number.

Now we have a number of things on our to-do list:

1. Create a master data table which looks like the vendor table.
2. We need to copy the CreateVendor function.
3. Look at the contact business relation table and the UpdateCustVendBank

(5055) code unit.

Let's look at the latter to learn something important before we start with the first.

UpdateVendor()
WITH Vend DO BEGIN
 GET(ContBusRel."No.");
 xRecRef.GETTABLE(Vend);
 NoSerie := "No. Series";
 PurchaserCode := Vend."Purchaser Code";

A Sample Application

[50]

 TRANSFERFIELDS(Cont);
 "No." := ContBusRel."No.";
 "No. Series" := NoSerie;
 Vend."Purchaser Code" := PurchaserCode;
 MODIFY;
 RecRef.GETTABLE(Vend);
 ChangeLogMgt.LogModification(RecRef,xRecRef);
END;

This code synchronizes the contact table with the vendor table. It does that by using
the TRANSFERFIELDS function. This function transfers all fields with the same number
from one table to another. This means that we cannot be creative with our field
numbering. For example, in the contact table the Name field has number 2. If we
were to use a different number for the Name field then TRANSFERFIELDS would not
copy the information.

Using this information our table should look like this:

Notice that we use field 19 for our Squash Player specific field. This is because field
19 was used for Budgeted Amount in the vendor table. We can therefore safely
assume that Microsoft will not use field 19 in the contact table in the future.

An alternative approach for this, if we want to be even safer, is to add the fields that
are specific to our solution as fields in our add-on number series. In our case that
would be 123.456.700.

Chapter 2

[51]

You can copy and paste fields from one table to another table.
Note that table relations and C/AL code in the OnValidate and
OnLookup trigger is copied as well. If the table we want to create is
similar to an existing table we could also use the Save As option from
the File drop-down menu.

The next step is to add some business logic to the table. We want this table to
use number series functionality just like the vendor table. This requires some
standard steps:

1. Create the Setup table: A number series is defined in a setup table. As the
Squash Court module will be quite sophisticated, we'll create our own.

A setup table always has a single Primary Key field (as shown in the
previous screenshot) and the necessary setup fields. This table is designed
to only have one single record.

2. Create a link to the number series: Our Squash Player table is now required
to have a link to the number series. We can copy this field from the vendor
table and can make a table relation to the No. Series table (as shown in the
following screenshot):

A Sample Application

[52]

3 Add the C/AL Business Logic: Now we can add the business logic to our
table, but first we need to define the variables that are required. These are
our new SquashSetup table and the number series management codeunit.

We can define the variables in the specially created C/AL Globals menu
(as shown in the screenshot):

It is highly recommended that you use the Microsoft naming standard,
which allows you to copy and paste a lot of code and makes it easier
for others to read your code.

Number Series require three pieces of code. This code makes sure that the business
logic of the Number Series functionality is always followed:

1. The OnInsert Trigger: This code goes into the OnInsert trigger. It populates
the No. field with the next value of the Number Series.
OnInsert()

IF "No." = '' THEN BEGIN

 SquashSetup.GET;

 SquashSetup.TESTFIELD("Squash Player Nos.");

Chapter 2

[53]

 NoSeriesMgt.InitSeries(SquashSetup."Squash Player Nos.",

 xRec."No. Series",0D,"No.","No. Series");

END;

2. The OnValidate Trigger of the No. field: The OnValidate code of the No.
field tests when a user manually enters a value if that is allowed.
No. - OnValidate()

IF "No." <> xRec."No." THEN BEGIN

 SquashSetup.GET;

 NoSeriesMgt.TestManual(SquashSetup."Squash Player Nos.");

 "No. Series" := '';

END;

3. Create a new AssistEdit function: Lastly, we create a new function. This
is always called AssistEdit. This is for readability and others reading your
code afterwards. The code is used in the page or form and allows users to
switch between linked number series.
AssistEdit() : Boolean

SquashSetup.GET;

SquashSetup.TESTFIELD("Squash Player Nos.");

IF NoSeriesMgt.SelectSeries(SquashSetup."Squash Player Nos.",

 xRec."No. Series","No. Series")

THEN BEGIN

 NoSeriesMgt.SetSeries("No.");

 EXIT(TRUE);

END;

When the number series are in place we can make the necessary changes in the
Contact Business Relation table.

In this table we need to add the possibility to link squash players to contacts. This
is done in the properties window of the Table Designer that can be accessed by
pressing Shift +F4 or by using the Properties option from the View drop-down
menu (as shown in the following screenshot):

A Sample Application

[54]

First we add the Squash player option to the Link to Table field (as shown in the
following screenshot):

Options are converted to SQL Integer data types. Make sure to add
some blank options so when Microsoft releases other functionality
we are not impacted. Changing the integer value of an existing
option field requires a lot of work.

Then we create a table relation with our new table (as shown in the following
screenshot):

The next step is to expand the Codeunit CustVendBank-Update with a new
function UpdateSquashPlayer (as shown in the following screenshot). This is
a copy of the function UpdateVendor we discussed earlier. We can add functions
in the Globals menu.

Chapter 2

[55]

There are two ways to copy a function. We can create a new function manually and
copy the C/AL code and variables, or we can select a function from the list and use
copy and paste and then rename the function:

When you add the—line to the function others can see
that it is not a Microsoft function. You can also include the
project name like—Squash.

This code also requires a new global variable, SquashPlayer:

UpdateSquashPlayer()
WITH SquashPlayer DO BEGIN
 GET(ContBusRel."No.");
 xRecRef.GETTABLE(SquashPlayer);
 NoSerie := "No. Series";
 TRANSFERFIELDS(Cont);
 "No." := ContBusRel."No.";
 "No. Series" := NoSerie;
 MODIFY;
 RecRef.GETTABLE(SquashPlayer);
 ChangeLogMgt.LogModification(RecRef,xRecRef);
END;

A Sample Application

[56]

The final piece of preparation work is to add the Bus. Rel. Code for Squash Players
field to the Marketing Setup table as shown in the following screenshot:

We use the same numbering in our fields as in our objects. This makes
it easier in the future to see what belongs to what if more functionality
is added.

With all this preparation work we can now finally go ahead and make our function
in the contact table (5050) that we can call from the user interface.

CreateSquashPlayer()
TESTFIELD(Type, Type::Person);

RMSetup.GET;
RMSetup.TESTFIELD("Bus. Rel. Code for Squash Pl.");

CLEAR(SquashPlayer);
SquashPlayer.INSERT(TRUE);

ContBusRel."Contact No." := Cont."No.";
ContBusRel."Business Relation Code" :=
 RMSetup."Bus. Rel. Code for Squash Pl.";
ContBusRel."Link to Table" :=
 ContBusRel."Link to Table"::"Squash Player";
ContBusRel."No." := SquashPlayer."No.";
ContBusRel.INSERT(TRUE);

UpdateCustVendBank.UpdateSquashPlayer(Cont,ContBusRel);

MESSAGE(Text009,SquashPlayer.TABLECAPTION,SquashPlayer."No.");

Please note that we do not need the SetInsertFromContact function. This function
enables users to create a new Vendor first and Create a Contact using the Vendor
information. We do not want to support this method in our application.

Chapter 2

[57]

Now we can add the function to the page and test our functionality:

Designing a journal
Now it is time to start on the product part of the Squash Application. In this part we
will no longer reverse engineer in detail. We will learn how to search in the standard
functionality and reuse parts in our own software.

For this part we will look at resources in Microsoft Dynamics NAV. Resources
are similar to use products as Items but far less complex making it easier to look
and learn.

Squash Court master data
Our company has 12 courts that we want to register in Microsoft Dynamics NAV.
This master data is comparable to resources so we'll go ahead and copy this
functionality. Resources are not attached to umbrella data like the vendor/squash
player tables. We need the number series again so we'll add a new number series to
our squash setup table.

A Sample Application

[58]

The Squash Court table should look like this after creation:

Chapter objects
With this chapter some objects are required. A description of how to import these
objects can be found in the Appendix.

After the import process is completed make sure that your current database is the
default database for the role tailored client and run Page 123456701, Squash Setup.

Chapter 2

[59]

From this page select the action Initialise Squash Application. This will execute the
C/AL code in the InitSquashApp function of this page, which will prepare demo
data for us to play with. The objects are prepared and tested in a Microsoft Dynamics
NAV 2009 SP1 W1 database.

Reservations
When running a squash court we want to be able to keep track of reservations.
Looking at standard Dynamics NAV functionality it might be a good idea to
create Squash player Journal. The Journal can create entries for reservations that
can be invoiced.

A journal needs the object structure. The journal is prepared in the objects delivered
with this chapter. Creating a new journal from scratch is a lot of work and can easily
lead to making mistakes. It is easier and safer to copy an existing Journal structure
from the standard application that is similar to the journal we need for our design.

In our example we have copied the Resource Journals.

You can export these objects to text format, and then rename
and renumber the objects to be reused easily. The squash journal
objects are renumbered and renamed from the resource journal.

A Sample Application

[60]

As explained in Chapter 1, Introduction to Microsoft Dynamics NAV, all journals have
the same structure. The template, batch and register tables are almost always the
same, whereas the journal line and ledger entry table contain function specific fields.
Let's have a look at all of them one by one.

Journal Template
The Journal Template has several fields as shown in the following screenshot:

Lets discuss these fields in more detail:

•	 Name: This is the unique name. It is possible to define as many Templates
as required but usually one Template per Form ID and one for Recurring
will do. If you want journals with different source codes you need to have
more templates.

•	 Description: A readable and understandable description of its purpose.
•	 Test Report ID: All Templates have a test report that allows the user to

check for posting errors.
•	 Form ID: For some journals, more UI objects are required. For example,

the General Journals have a special form for bank and cash.
•	 Posting Report ID: This report is printed when a user selects Post and Print.
•	 Force Posting Report: Use this option when a posting report is mandatory.
•	 Source Code: Here you can enter a Trail Code for all the postings done via

this Journal.

Chapter 2

[61]

•	 Reason Code: This functionality is similar to source sodes.
•	 Recurring: Whenever you post lines from a recurring journal, new lines

are automatically created with a posting date defined in the recurring
date formula.

•	 No. Series: When you use this feature the Document No. in the Journal Line
is automatically populated with a new number from this Number Series.

•	 Posting No. Series: Use this feature for recurring journals.

Journal Batch
Journal Batch has various fields as shown in the following screenshot:

Lets discuss these fields in more detail:

•	 Journal Template Name: The name of the Journal Template this batch
refers to

•	 Name : Each batch should have a unique code
•	 Description: A readable and explaining description for this batch
•	 Reason Code: When populated, this Reason Code will overrule the

Reason Code from the Journal Template
•	 No. Series: When populated this No. Series will overrule the No. Series

from the Journal Template
•	 Posting No. Series: When populated this Posting No. Series will overrule

the Posting No. Series from the Journal Template

A Sample Application

[62]

Register
The Register table has various fields as shown in the following screenshot:

Lets discuss these fields in more detail:

•	 No.: This field is automatically and incrementally populated for each
transaction with this journal. There are no gaps between the numbers.

•	 From Entry No.: A reference to the first Ledger Entry created is with
this transaction.

•	 To Entry No.: A reference to the last Ledger Entry is created with
this transaction.

•	 Creation Date: Always populated with the real date when the
transaction was posted.

•	 User ID: The ID of the end user who has posted the transaction.

The Journal
The journal line has a number of mandatory fields that are required for all journals
and some fields that are required for its designed functionality.

In our case the journal should create a reservation which then can be invoiced.
This requires some information to be populated in the lines.

Chapter 2

[63]

Reservation
The reservation process is a logistical process that requires us to know the number
of the Squash Court, the date, and the time of the reservation. We also need to know
how long the players want to play. To check the reservation it might also be useful
to store the number of the Squash Player.

Invoicing
For the invoicing part we need to know the price we need to invoice. It might also be
useful to store the cost to see our profit. For the system to figure out the proper G/L
Account for the turnover we also need to define a General Product Posting Group.
We will see more of how that works later in Chapter 3, Financial Managemenet.

•	 Journal Template Name: This is a reference to the current journal template.
•	 Line No. : Each journal has virtually unlimited number of lines; this number is

automatically incremented by 10000 allowing lines to be created in between.
•	 Entry Type: Reservation or invoice.
•	 Document No.: This number can be used to give to the squash player as a

reservation number. When the entry type is invoice, it is the invoice number.
•	 Posting Date: Posting date is usually the reservation date but when the entry

type is invoice it might be the date of the invoice which might differ from the
posting date in the general ledger.

•	 Squash Player No.: A reference to the squash player who has made
the reservation.

A Sample Application

[64]

•	 Squash Court No.: A reference to the squash court.
•	 Description: This is automatically updated with the number of the squash

court, reservation date and times, but can be changed by the user.
•	 Reservation Date: The actual date of the reservation.
•	 From Time: The starting time of the reservation. We allow only whole or

half hours.
•	 To Time: The ending time of the reservation. We only allow whole and half

hours. This is automatically populated when people enter a quantity.
•	 Quantity: The number of hours playing time. We only allow units of 0.5 to be

entered here. This is automatically calculated when the times are populated.
•	 Unit Cost: The cost to run a Squash Court for one hour.
•	 Total Cost: The cost for this reservation.
•	 Unit Price: The invoice price for this reservation per hour. This depends

on whether or not the squash player is a member or not.
•	 Total Price: The total invoice price for this reservation.
•	 Shortcut Dimension Code 1 & 2: A reference to the dimensions used for

this transaction.
•	 Applies-to Entry No.: When a reservation is invoiced, this is the reference

to the squash entry no. of the reservation.
•	 Source Code: Inherited from the journal batch or template and used when

posting the transaction.
•	 Chargeable: When this option is used, there will not be an invoice for

the reservation.
•	 Journal Batch Name: A reference to the journal batch that is used for

this transaction.
•	 Reason Code: Inherited from the journal batch or template, and used when

posting the transaction.
•	 Recurring Method: When the journal is a recurring journal you can use this

field to determine whether the amount field is blanked after posting the lines.
•	 Recurring Frequency: This field determines the new posting date after the

recurring lines are posted.
•	 Gen. Bus. Posting Group: The combination of general business and

product posting group determines the G/L cccount for turnover when
we invoice the reservation. The Gen. Bus. Posting Group is inherited
from the bill-to customer.

Chapter 2

[65]

•	 Gen. Prod. Posting Group: This will be inherited from the squash player.
•	 External Document No.: When a squash player wants us to note a reference

number we can store it here.
•	 Posting No. Series: When the journal template has a posting no. series it is

populated here to be used when posting.
•	 Bill-to Customer No.: This determines who is paying for the reservation.

We will inherit this from the squash player.

So now we have a place to enter reservations but we have something to do before
we can start doing this.

Some fields were determined to be inherited and calculated:

•	 The time field needs calculation to avoid people entering wrong values
•	 The Unit Price should be calculated
•	 The Unit Cost, Posting groups, and Bill-to Customer No. need to

be inherited
•	 As final cherry on top, we will look at implementing dimensions

Time calculation
As it comes to the times we want only to allow specific start and end times. Our
Squash Court can be used in blocks of half an hour. The quantity field should be
calculated based on the entered times and vice versa.

To have the most flexible solution possible we will create a new table with allowed
starting and ending times. This table will have two fields; Reservation Time and
Duration as shown in the following screenshot:

Duration will be a decimal field that we will promote to a Sum Index Field. This will
enable us to use SIFT to calculate the Quantity.

www.allitebooks.com

http://www.allitebooks.org

A Sample Application

[66]

When populated the table will look like this:

The time fields in the squash journal table will now get a table relation with this
table. This prevents a user from entering values that are not in the table thus
allowing only valid starting and ending times. This is all done without any C/AL
code and flexible when times change later.

Now we need some code that calculates the quantity based on the user's input:

From Time - OnValidate()
CalcQty;

To Time - OnValidate()
CalcQty;

CalcQty()
IF ("From Time" <> 0T) AND ("To Time" <> 0T) THEN BEGIN
 IF "To Time" <= "From Time" THEN
 FIELDERROR("To Time");
 ResTime.SETRANGE("Reservation Time", "From Time",
 "To Time");
 ResTime.FIND('+');
 ResTime.NEXT(-1);
 ResTime.SETRANGE("Reservation Time", "From Time",
 ResTime."Reservation Time");
 ResTime.CALCSUMS(Duration);
 VALIDATE(Quantity, ResTime.Duration);
END;

Chapter 2

[67]

When a user enters a value in the From Time or To Time the function CalcQty is
executed. This checks if both fields have a value and then checks whether To Time
is larger than From Time.

Then we place a filter on the Reservation Time table. When a user now makes a
reservation from 8:00 to 9:00 there are three records in the filter making the result
of the CALCSUMS (Total of all records) of duration 1,5. Therefore we find the previous
reservation time and use that.

This example shows how easy it is to use built in Microsoft Dynamics NAV
functionality like table relations and CALCSUMS instead of complex time calculations
which we could have also used.

Price calculation
As discussed in Chapter 1, Microsoft Dynamics NAV has a special technique to
determine prices. Prices are stored in a table with all possible parameters as fields
and by filtering down on these fields the best price is determined. If required with
extra logic to find the lowest (or highest) price if more prices are found.

To look, learn, and love this part of the standard application we have used table
Sales Price (7002) and Sales Price Calc. Mgt. (7000) even though we only need a small
part of this functionality. This mechanism of price calculation is used throughout
the application and offers a normalized way of calculating sales prices. A similar
construction is used for purchase prices with table purchase price (7012) and Purch.
Price calc. Mgt. (7010).

Squash prices
In our case we have already determined that we have a special rate for members, but
let's say we have also a special rate for daytime and evening in winter and summer.

This could make our table look like this:

We can make special prices for members on dates for winter and summer and make
a price only valid until a certain time. We can also make a special price for a court.

A Sample Application

[68]

This table could be creatively expanded with all kinds of codes until we end up
with table sales price (7002) in the standard product which was the template for
our example.

Price calc mgt. codeunit
To calculate the price we need a codeunit similar to the standard product. This
codeunit is called with a squash journal line record and stores all valid prices in
a buffer table and then finds the lowest price if there is an overlap:

FindSquashPrice()
WITH FromSquashPrice DO BEGIN
 SETFILTER("Ending Date",'%1|>=%2',0D,StartingDate);
 SETRANGE("Starting Date",0D,StartingDate);

 ToSquashPrice.RESET;
 ToSquashPrice.DELETEALL;

 SETRANGE(Member, IsMember);

 SETRANGE("Ending Time", 0T);
 SETRANGE("Squash Court No.", '');
 CopySquashPriceToSquashPrice(FromSquashPrice,ToSquashPrice);

 SETRANGE("Ending Time", 0T);
 SETRANGE("Squash Court No.", CourtNo);
 CopySquashPriceToSquashPrice(FromSquashPrice,ToSquashPrice);

 SETRANGE("Squash Court No.", '');
 IF StartingTime <> 0T THEN BEGIN
 SETFILTER("Ending Time",'%1|>=%2',000001T,StartingTime);
 CopySquashPriceToSquashPrice(FromSquashPrice,
 ToSquashPrice);
 END;

 SETRANGE("Squash Court No.", CourtNo);
 IF StartingTime <> 0T THEN BEGIN
 SETFILTER("Ending Time",'%1|>=%2',000001T,StartingTime);
 CopySquashPriceToSquashPrice(FromSquashPrice,
 ToSquashPrice);
 END;
END;

If there is no price in the filter it uses the unit price from the Squash Court.

CalcBestUnitPrice()
WITH SquashPrice DO BEGIN
 FoundSquashPrice := FINDSET;
 IF FoundSquashPrice THEN BEGIN

Chapter 2

[69]

 BestSquashPrice := SquashPrice;
 REPEAT
 IF SquashPrice."Unit Price" <
 BestSquashPrice."Unit Price"
 THEN
 BestSquashPrice := SquashPrice;
 UNTIL NEXT = 0;
 END;
END;

// No price found in agreement
IF BestSquashPrice."Unit Price" = 0 THEN
 BestSquashPrice."Unit Price" := SquashCourt."Unit Price";

SquashPrice := BestSquashPrice;

Inherited data
To use the journal for the product part of the application we want to inherit some of
the fields from the master data tables. In order to make that possible we need to copy
and paste these fields from other tables to our master data table and populate it.

In our example we can copy and paste the fields from the Resource table (156).
We also need to add code to the OnValidate triggers in the Journal Line table.

The Squash Court table for example is expanded with the fields Unit Code, Unit
Price, Gen. Prod. Posting Group, and VAT Prod. Posting Group (as shown in the
previous screenshot)

A Sample Application

[70]

We can now add code to the OnValidate of the Squash Court No. field in the
journal line table:

Squash Court No. - OnValidate()
IF SquashCourt.GET("Squash Court No.") THEN BEGIN
 Description := SquashCourt.Description;
 "Unit Cost" := SquashCourt."Unit Cost";
 "Gen. Prod. Posting Group" := SquashCourt."Gen. Prod. Posting
Group";
 FindSquashPlayerPrice;
END;

Please note that unit price is used in the squash price calc. mgt. codeunit that is
executed from the function FindSquashPlayerPrice.

Dimensions
In Microsoft Dynamics NAV, dimensions are defined in master data and posted
to the ledger entries to be used in analysis view entries.

In Chapter 3,we will discuss how to analyse the data generated by dimensions.

In between that journey they move around a lot in different tables:

•	 Table 348 | Dimension: Here the main dimension codes are defined.
•	 Table 349 | Dimension Value: Here each dimension can have an unlimited

number of values.
•	 Table 350 | Dimension Combination: In this table we can block certain

combinations of dimension codes.
•	 Table 351 | Dimension Value Combination: In this table we can block

certain combinations of dimension values. If this table is populated,
the value limited is populated in the dimension combination table for
these dimensions.

•	 Table 352 | Default Dimension: This table is populated for all master data
that has dimensions defined.

•	 Table 354 | Default Dimension Priority: When more than one master-data
record in one transaction have the same dimensions, it is possible here to
set priorities.

•	 Table 355 | Ledger Entry Dimension: This is the history table for posted
dimensions in ledger entries.

•	 Table 356 | Journal Line Dimension: This is a buffer table for dimensions
in unposted journal lines.

Chapter 2

[71]

•	 Table 357 | Document Dimension: This is a buffer table for dimensions in
unposted documents.

•	 Table 358 | Production Document Dimension: This table saves dimensions
especially for production orders.

•	 Table 359 | Posted Document Dimension: This is the history table for posted
dimensions in posted documents.

•	 Codeunit 408 | DimensionManagement: This codeunit is the single point in
the application where all dimension movement is done.

In our application dimensions are moved from the squash player, squash court, and
customer table via the squash journal line to the squash ledger entries. When we create
an invoice we move the dimensions from the ledger entries to the sales line table.

Master data
To connect dimensions to master data we first need to allow this changing codeunit
408 dimension management.

SetupObjectNoList()
TableIDArray[1] := DATABASE::"Salesperson/Purchaser";
TableIDArray[2] := DATABASE::"G/L Account";
TableIDArray[3] := DATABASE::Customer;
...
TableIDArray[22] := DATABASE::"Service Item Group";
TableIDArray[23] := DATABASE::"Service Item";

//* Squash Application
TableIDArray[49] := DATABASE::"Squash Player";
TableIDArray[50] := DATABASE::"Squash Court";
//* Squash Application

Object.SETRANGE(Type,Object.Type::Table);

FOR Index := 1 TO ARRAYLEN(TableIDArray) DO BEGIN
 ...

The variable TableIDArray has a default number of 23 dimensions. We have
changed this to 50.

By leaving gaps we allow Microsoft to add master data tables
in the future without us having to change our code

A Sample Application

[72]

Without this change, the system would return an error message when we tried to
use dimensions.

Next change is to add the Global Dimension fields to the master data tables.
They can be copied and pasted from other master data tables (as shown in the
following screenshot):

When these fields are validated the function ValidateShortcutDimCode is executed.

ValidateShortcutDimCode()
DimMgt.ValidateDimValueCode(FieldNumber,ShortcutDimCode);
DimMgt.SaveDefaultDim(DATABASE::"Squash Player","No.",
 FieldNumber,ShortcutDimCode);
MODIFY;

Journal
When we use the master data records in the Journal table, the dimensions are copied
from the default dimension table to the journal line dimension table. This is done
using this piece of code that is called from the OnValidate of each master data
reference field:

CreateDim()
TableID[1] := Type1;
No[1] := No1;
TableID[2] := Type2;
No[2] := No2;
TableID[3] := Type3;
No[3] := No3;

"Shortcut Dimension 1 Code" := '';
"Shortcut Dimension 2 Code" := '';

DimMgt.GetDefaultDim(
 TableID,No,"Source Code",
 "Shortcut Dimension 1 Code","Shortcut Dimension 2 Code");

Chapter 2

[73]

IF "Line No." <> 0 THEN
 DimMgt.UpdateJnlLineDefaultDim(
 DATABASE::"Squash Journal Line","Journal Template Name",
 "Journal Batch Name","Line No.",0,
 "Shortcut Dimension 1 Code","Shortcut Dimension 2 Code");

To decide which dimensions to inherit we should first analyze which master data is
used in our journal that is using default dimensions.

Squash Court No. - OnValidate()
CreateDim(
 DATABASE::"Squash Court","Squash Court No.",
 DATABASE::"Squash Player","Squash Player No.",
 DATABASE::Customer,"Bill-to Customer No.");

In our case Table[1] is Squash Player, Table[2] is Squash Court, and Table[3] is
Customer. The dimension management codeunit makes sure everything is copied.
We can use standard Microsoft Dynamics NAV functions.

Posting
When we post a journal using codeunit squash jnl.-post line (123456703) the
dimensions are first copied into a posting buffer table.

RunWithCheck()
SquashJnlLine.COPY(SquashJnlLine2);
TempJnlLineDim.RESET;
TempJnlLineDim.DELETEALL;
DimMgt.CopyJnlLineDimToJnlLineDim(TempJnlLineDim2,
 TempJnlLineDim);
Code;
SquashJnlLine2 := SquashJnlLine;

Then after we have created the ledger entry and know the number, the ledger entry
dimensions are created. Again we use standard Microsoft Dynamics NAV functions
without changing them.

Code()
...

SquashLedgEntry.INSERT;

DimMgt.MoveJnlLineDimToLedgEntryDim(
 TempJnlLineDim,DATABASE::"Squash Ledger Entry",
 SquashLedgEntry."Entry No.");

NextEntryNo := NextEntryNo + 1;

A Sample Application

[74]

Document
For moving ledger entry dimensions to document dimensions, Microsoft
Dynamics NAV does not have a standard function, so we have copied the
function CopyLedgEntryDimToJnlLnDim to CopyLedgEntryDimToDocDim.

CopyLedgEntryDimToDocDim()
WITH FromLedgEntryDim DO
 IF FINDSET THEN
 REPEAT
 ToDocDim."Dimension Code" := "Dimension Code";
 ToDocDim."Dimension Value Code" :=
 "Dimension Value Code";
 ToDocDim.INSERT;
 UNTIL NEXT = 0;

This function we can then call from our combine invoicing report, which we will
create later in this chapter in the invoicing section.

CreateLn()
...

DocDim."Table ID" := DATABASE::"Sales Line";
DocDim."Document Type" := SalesLn."Document Type";
DocDim."Document No." := SalesLn."Document No.";
DocDim."Line No." := SalesLn."Line No.";

LedgEntryDim.SETRANGE("Table ID",
 DATABASE::"Squash Ledger Entry");
LedgEntryDim.SETRANGE("Entry No.", "Entry No.");
DimMgt.CopyLedgEntryDimToDocDim(LedgEntryDim, DocDim);

The posting process
Our journal is now ready to be posted. We've implemented all business logic, except
the posting code.

Chapter 2

[75]

The posting process of a journal in Microsoft Dynamics NAV has several codeunits
for the structure:

•	 Jnl.-Check Line: This codeunit checks if the journal line is valid for posting
•	 Jnl.-Post Line: This codeunit does the actual creation of the ledger entry and

register tables, and calls other jnl.-post line codeunits if necessary to provide
the transaction structure in Chapter 1.

•	 Jnl.-Post Batch: This codeunit loops through all journal lines in a journal
batch and posts all the lines. There is a dialog.

•	 Jnl.-Post: This is the codeunit that is called from the page. It calls the
codeunit jnl.-post batch and takes care of some user messaging.

•	 Jnl.-Post+Print: This is the codeunit that is called when you push post +
print. It does the same as the jnl.-post codeunit but with the additional
printing of a report defined in the journal template.

•	 Jnl.-B.Post: Posts all the journal lines that have no errors and marks the
ones that have errors.

•	 Jnl.-B.Post+Print: Does the same as Jnl.-B.Post but with the additional
printing of a report defined in the journal template.

Check line
Let's have a look at the check line codeunit. When it comes to testing, Microsoft
Dynamics NAV has a simple rule:

Test near, Test far, Do-it, Clean up

First we need to test the field in the journal line table, then read external data tables
to check if all is good, then post the lines and delete the data from the journal table.

It does not make sense to read the G/L setup table from the database if the document
no. in our own table is blank, or to start the posting process and error out because the
Posting Date is outside of a valid range. This would cause a lot of unnecessary I/O
from the database to the client.

RunCheck()
WITH SquashJnlLine DO BEGIN
 IF EmptyLine THEN
 EXIT;

 TESTFIELD("Squash Player No.");
 TESTFIELD("Squash Court No.");
 TESTFIELD("Posting Date");
 TESTFIELD("Gen. Prod. Posting Group");

A Sample Application

[76]

 TESTFIELD("From Time");
 TESTFIELD("To Time");
 TESTFIELD("Reservation Date");
 TESTFIELD("Bill-to Customer No.");

 IF "Entry Type" = "Entry Type"::Invoice THEN
 TESTFIELD("Applies-to Entry No.");

 IF "Applies-to Entry No." <> 0 THEN
 TESTFIELD("Entry Type", "Entry Type"::Invoice);

 IF "Posting Date" <> NORMALDATE("Posting Date") THEN
 FIELDERROR("Posting Date",Text000);

 IF (AllowPostingFrom = 0D) AND (AllowPostingTo = 0D) THEN
 ...
 END;

 ...

 IF NOT DimMgt.CheckJnlLineDimComb(JnlLineDim) THEN
 ...
 TableID[1] := DATABASE::"Squash Player";
 No[1] := "Squash Player No.";
 ...
 IF NOT DimMgt.CheckJnlLineDimValuePosting(JnlLineDim,
 TableID,No)
 THEN
 IF "Line No." <> 0 THEN
 ...

Here we can clearly see that fields in our table are checked first, then the date
validation, and lastly the dimension checking.

Post line
The actual posting code turns out to be quite simple. The values are checked and
then a Register is created or updated.

Code()
WITH SquashJnlLine DO BEGIN
 IF EmptyLine THEN
 EXIT;

 SquashJnlCheckLine.RunCheck(SquashJnlLine,TempJnlLineDim);

 IF NextEntryNo = 0 THEN BEGIN
 SquashLedgEntry.LOCKTABLE;
 IF SquashLedgEntry.FIND('+') THEN
 NextEntryNo := SquashLedgEntry."Entry No.";

Chapter 2

[77]

 NextEntryNo := NextEntryNo + 1;
 END;

 IF SquashReg."No." = 0 THEN BEGIN
 SquashReg.LOCKTABLE;
 IF (NOT SquashReg.FIND('+')) OR ... THEN BEGIN
 SquashReg.INIT;
 SquashReg."No." := SquashReg."No." + 1;
 ...
 SquashReg.INSERT;
 END;
 END;
 SquashReg."To Entry No." := NextEntryNo;
 SquashReg.MODIFY;

 SquashPlayer.GET("Squash Player No.");
 SquashPlayer.TESTFIELD(Blocked,FALSE);

 IF (GenPostingSetup."Gen. Bus. Posting Group" <>
 "Gen. Bus. Posting Group") OR
 (GenPostingSetup."Gen. Prod. Posting Group" <>
 "Gen. Prod. Posting Group")
 THEN
 GenPostingSetup.GET("Gen. Bus. Posting Group",
 "Gen. Prod. Posting Group");

 SquashLedgEntry.INIT;
 SquashLedgEntry."Entry Type" := "Entry Type";
 SquashLedgEntry."Document No." := "Document No.";
 ...
 SquashLedgEntry."No. Series" := "Posting No. Series";

 SquashLedgEntry.INSERT;

All the fields are simply moved to the ledger entry table.

This is what makes Microsoft Dynamics NAV simple and powerful.

Here we can clearly see how easy it is to add a field to a
posting process. Just add the fields to the journal line, the
ledger entry, and add one line of code to the posting process.

A Sample Application

[78]

Invoicing
The last issue on our to-do list is the invoicing process. For this we use a part of
the standard application.

As explained in Chapter 1, invoicing is done using a document structure with a header
and a line table. This has a posting routine that will start the journal transactions.

For our application we need to create the invoice document and make sure that
when posted, it updates our sub administration.

Invoice document
The sales invoice documents in Microsoft Dynamics NAV are stored in the sales
header (36) and sales line (37) tables. We will create a report that will combine the
outstanding reservation entries into invoices allowing the user to filter on a specific
entry or any other field value in the squash ledger entry table.

Reports in Microsoft Dynamics NAV are not just for printing documents, we can
also use its dataset capabilities to start batch jobs.

To enable this, our batch job needs to have a special property, ProcessingOnly
(as shown in the following screenshot), so let's start a blank report and do this.

Chapter 2

[79]

The report will browse through the squash ledger entries filtered on entry type
reservation and open (yes). The sorting is Open, Entry Type, Bill-to Customer
No., and Reservation Date (as shown in the following screenshot):

Because bill-to customer no. is the first non filtered value in the sorting we can
assume that if this value changes we need a new sales header.

For every Squash Ledger Entry we will generate a sales line.

Squash Ledger Entry - OnAfterGetRecord()
IF "Bill-to Customer No." <> SalesHdr."Bill-to Customer No."
THEN
 CreateSalesHdr;

CreateLn;

Sales header
The code to create a sales header looks like this:

CreateSalesHdr()
CLEAR(SalesHdr);
SalesHdr.SetHideValidationDialog(TRUE);
SalesHdr."Document Type" := SalesHdr."Document Type"::Invoice;
SalesHdr."Document Date" := WORKDATE;
SalesHdr."Posting Date" := WORKDATE;
SalesHdr.VALIDATE("Sell-to Customer No.",
 "Squash Ledger Entry"."Bill-to Customer No.");
SalesHdr.INSERT(TRUE);

NextLineNo := 10000;
CounterOK := CounterOK + 1;

A Sample Application

[80]

The function SetHideValidationDialog makes sure that we don't get pop-up
messages while validating values. This is a standard function in Microsoft Dynamics
NAV which is designed for this purpose.

Sales line
To create a sales line we need a minimum of this code. Please note that we added the
field Applies-to Squash Entry No. to the sales line table.

CreateLn()
WITH "Squash Ledger Entry" DO BEGIN
 GenPstSetup.GET("Gen. Bus. Posting Group",
 "Gen. Prod. Posting Group");
 GenPstSetup.TESTFIELD("Sales Account");

 SalesLn.INIT;
 SalesLn."Document Type" := SalesHdr."Document Type";
 SalesLn."Document No." := SalesHdr."No.";
 SalesLn."Line No." := NextLineNo;
 SalesLn."System-Created Entry" := TRUE;

 SalesLn.Type := SalesLn.Type::"G/L Account";
 SalesLn.VALIDATE("No.", GenPstSetup."Sales Account");
 SalesLn.Description := Description;

 SalesLn.VALIDATE(Quantity, Quantity);
 SalesLn.VALIDATE("Unit Price", "Unit Price");
 SalesLn.VALIDATE("Unit Cost (LCY)", "Unit Cost");

 SalesLn."Applies-to Squash Entry No." := "Entry No.";
 SalesLn.INSERT(TRUE);

END;
NextLineNo := NextLineNo + 10000;

When you add fields to the sales and purchase document tables, make
sure to also add these to the posted equivalents of these tables with
the same number. This way you make sure that the information is
copied to the historic data. This is done using the TRANSFERFIELDS
command. We will discuss these tables in Chapter 6.

Chapter 2

[81]

Dialog
If the combined invoicing takes some time it might be good to show the user a
process bar. For this Microsoft Dynamics NAV has a standard structure.

The window shows the bill-to customer no. it is currently processing and a bar
going from 1 percent to 100 percent. This is calculated by keeping a counter.

At the end of the process we show a message telling the user how many invoices
were created out of the number of squash ledger entries.

Squash Ledger Entry - OnPreDataItem()
CounterTotal := COUNT;
Window.OPEN(Text000);

Squash Ledger Entry - OnAfterGetRecord()
Counter := Counter + 1;
Window.UPDATE(1,"Bill-to Customer No.");
Window.UPDATE(2,ROUND(Counter / CounterTotal * 10000,1));

...

Squash Ledger Entry - OnPostDataItem()
Window.CLOSE;
MESSAGE(Text001,CounterOK,CounterTotal);

To do this we need some variables. The Window variable is of type Dialog
whilst Counter, CounterTotal, and CounterOK are integers (as shown in the
following screenshot):

A Sample Application

[82]

The constant Text000 has special values #1########## and
@2@@@@@@@@@@@@@ (as shown in the following screenshot). The first allows
us to show and update the text; the latter is to create the process bar:

The result is this:

We see the following window when invoice creation process completes:

There is a best practice document about using progress
bars in combination with the impact on performance at
http://www.mibuso.com/howtoinfo.asp?FileID=17

Posting process
Now, our sales invoice is ready so we can start making the necessary changes to the
posting process. Posting a sales document is done using a single posting codeunit
and some helper objects:

•	 Report 297: This report can be used to post more than one document at the
same time with a filter.

Chapter 2

[83]

•	 Codeunit 80: This is the actual posting routine we are going to change.
•	 Codeunit 81: This codeunit is called from the user interface and has a dialog

whether the user wants to ship, invoice or both if the document is an order,
and a yes/no if the document is an invoice or credit memo.

•	 Codeunit 82: When the user chooses post and print this codeunit is executed
which does the same as codeunit 81 plus printing a report.

So we will make a change to codeunit 80. This codeunit has a specific structure that
we need to understand before we go in and make the change.

Analyse the object
The codeunit also has the Test Near, Test Far, Do it and Cleanup strategy so the first
code is to make sure that everything is in place before the actual posting starts. Let's
have a look at how this codeunit is structured.

The Sales-Post codeunit is too long to discuss in detail. We will
focus on the most important parts and learning how to read this
type of code routines.

This first part does the test near and a part of the test far. The Ship, Invoice,
and Receive fields are set in codeunit 81 and 82 but checked and completed to
make sure:

Code()
...
WITH SalesHeader DO BEGIN
 TESTFIELD("Document Type");
 TESTFIELD("Sell-to Customer No.");
 TESTFIELD("Bill-to Customer No.");
 TESTFIELD("Posting Date");
 TESTFIELD("Document Date");
 IF GenJnlCheckLine.DateNotAllowed("Posting Date") THEN
 FIELDERROR("Posting Date",Text045);

 CASE "Document Type" OF
 "Document Type"::Order:
 Receive := FALSE;
 "Document Type"::Invoice:
 BEGIN
 Ship := TRUE;
 Invoice := TRUE;
 Receive := FALSE;
 END;

A Sample Application

[84]

 "Document Type"::"Return Order":
 Ship := FALSE;
 "Document Type"::"Credit Memo":
 BEGIN
 Ship := FALSE;
 Invoice := TRUE;
 Receive := TRUE;
 END;
 END;

 IF NOT (Ship OR Invoice OR Receive) THEN
 ERROR(...);

 WhseReference := "Posting from Whse. Ref.";
 "Posting from Whse. Ref." := 0;

 IF Invoice THEN
 CreatePrepaymentLines(...);
 CopyAndCheckDocDimToTempDocDim;

The next step is to move the sales header information to the history tables for
shipment, invoice, credit memo, or return receipt header. These sections are
commented like this:

 // Insert invoice header or credit memo header
 IF Invoice THEN
 IF "Document Type" IN ["Document Type"::Order,
 "Document Type"::Invoice]
 THEN BEGIN
 SalesInvHeader.INIT;
 SalesInvHeader.TRANSFERFIELDS(SalesHeader);

We will discuss the relation between a sales header and the
sales shipment, sales invoice, sales credit memo, and return
receipt in Chapter 6.

When this is done, the sales lines are processed. They are also moved to the various
posted line tables. This is all part of the Do-it section of the posting routine.

 // Lines
 InvPostingBuffer[1].DELETEALL;
 DropShipPostBuffer.DELETEALL;
 EverythingInvoiced := TRUE;

 SalesLine.RESET;
 SalesLine.SETRANGE("Document Type","Document Type");
 SalesLine.SETRANGE("Document No.","No.");

Chapter 2

[85]

 LineCount := 0;
 RoundingLineInserted := FALSE;
 MergeSaleslines(...);

If there is a drop shipment in a purchase order this is handled here. We will discuss
Drop Shipments in Chapter 6.

 // Post drop shipment of purchase order
 PurchSetup.GET;
 IF DropShipPostBuffer.FIND('-') THEN
 REPEAT
 PurchOrderHeader.GET(
 PurchOrderHeader."Document Type"::Order,
 DropShipPostBuffer."Order No.");

Then there is a section that creates the financial information in the general journal.
We will go deeper into this section in Chapter 3:

 IF Invoice THEN BEGIN
 // Post sales and VAT to G/L entries from posting buffer
 LineCount := 0;
 IF InvPostingBuffer[1].FIND('+') THEN
 REPEAT
 LineCount := LineCount + 1;
 Window.UPDATE(3,LineCount);

 GenJnlLine.INIT;
 GenJnlLine."Posting Date" := "Posting Date";
 GenJnlLine."Document Date" := "Document Date";

Then the Clean up section starts by calculating remaining quantities, VAT, and
deleting the sales header and sales lines:

IF ("Document Type" IN ["Document Type"::Order,
 "Document Type"::"Return Order"]) AND
 (NOT EverythingInvoiced)
THEN BEGIN
 MODIFY;
 // Insert T336 records
 InsertTrackingSpecification;

 IF SalesLine.FINDSET THEN
 REPEAT
 IF SalesLine.Quantity <> 0 THEN BEGIN
 IF Ship THEN BEGIN
 SalesLine."Quantity Shipped" :=
 SalesLine."Quantity Shipped" +

A Sample Application

[86]

 SalesLine."Qty. to Ship";
 SalesLine."Qty. Shipped (Base)" :=
 SalesLine."Qty. Shipped (Base)" +
 SalesLine."Qty. to Ship (Base)";
 END;

The Clean up ends by deleting the sales document and related information, and
clearing the variables used:

IF HASLINKS THEN DELETELINKS;
DELETE;
...

SalesLine.DELETEALL;
DeleteItemChargeAssgnt;
...

CLEAR(WhsePostRcpt);
CLEAR(WhsePostShpt);
...
CLEAR(WhseJnlPostLine);
CLEAR(InvtAdjmt);
Window.CLOSE;

Making the change
The change we are going to make is in the section where the lines are handled:

// Squash Journal Line
IF SalesLine."Applies-to Squash Entry No." <> 0 THEN
 PostSquashJnlLn;

IF (SalesLine.Type >= SalesLine.Type::"G/L Account") AND
 (SalesLine."Qty. to Invoice" <> 0)
THEN BEGIN
 // Copy sales to buffer

We will create new function PostSquashJnlLn. This way we minimize the impact
on standard code. And when upgrading to a newer version we can easily copy and
paste our function, and only need to change the calling place if required.

Always try to design for easy upgrading whenever possible. Remember that
Microsoft might change this code in newer versions so the more flexible we
are and the more we minimize the impact on standard code the better.

PostSquashJnlLn()
WITH SalesHeader DO BEGIN

Chapter 2

[87]

 OldSquashLedEnt.GET(
 SalesLine."Applies-to Squash Entry No.");
 OldSquashLedEnt.TESTFIELD(Open);
 OldSquashLedEnt.TESTFIELD("Bill-to Customer No.",
 "Bill-to Customer No.");

 SquashJnlLn.INIT;
 SquashJnlLn."Posting Date" := "Posting Date";
 SquashJnlLn."Reason Code" := "Reason Code";
 ...
 SquashJnlLn."Document No." := GenJnlLineDocNo;
 SquashJnlLn."External Document No." := GenJnlLineExtDocNo;
 SquashJnlLn.Quantity := -SalesLine."Qty. to Invoice";
 SquashJnlLn."Source Code" := SrcCode;
 SquashJnlLn.Chargeable := TRUE;
 SquashJnlLn."Posting No. Series" := "Posting No. Series";
 TempJnlLineDim.DELETEALL;
 TempDocDim.RESET;
 TempDocDim.SETRANGE("Table ID",DATABASE::"Sales Line");
 TempDocDim.SETRANGE("Line No.",SalesLine."Line No.");
 DimMgt.CopyDocDimToJnlLineDim(TempDocDim,TempJnlLineDim);
 SquashJnlPostLine.RunWithCheck(SquashJnlLn,TempJnlLineDim);
END;

Our new function first gets the squash ledger entry it applies to, and tests if it's still
open and the bill-to customer no. has not changed.

Then we populate squash journal line with the help of the sales line and the old
squash ledger entry.

Then dimensions are handled and the squash journal line is posted.

Note that the journal lines are never actually inserted into the database.
This is for performance and concurrency reasons. All journal transactions
here are handled in the service tier cache. A journal is also never
populated using Validate. This makes it very clear to see what happens.

Now when we post an invoice we can see that the invoice entries are created:

A Sample Application

[88]

Navigate
We have now covered everything that is necessary for our Squash Court application
to run but there is one special function of Microsoft Dynamics NAV that needs
changing when we add new documents and ledger entries—the Navigate function.

The functionality was already discussed in Chapter 1. The object is a single page (344)
in the application that requires two changes.

FindRecords
The first function we change is FindRecords. This browses though the database
finding all possible combinations of document no. and posting date.

FindRecords()
...
// Squash Ledger Entries
IF SquashLedgEntry.READPERMISSION THEN BEGIN
 SquashLedgEntry.RESET;
 SquashLedgEntry.SETCURRENTKEY("Document No.",
 "Posting Date");
 SquashLedgEntry.SETFILTER("Document No.",DocNoFilter);
 SquashLedgEntry.SETFILTER("Posting Date",PostingDateFilter);
 InsertIntoDocEntry(
 DATABASE::"Squash Ledger Entry",0,
 SquashLedgEntry.TABLECAPTION,SquashLedgEntry.COUNT);
END;
// Squash Ledger Entries

DocExists := FINDFIRST;

The function first checks if we have permission to read the Squash Ledger Entry
table. If our system administrator does not allow us to see this table it should not
show up.

The filtering is done on the Document No. and Posting Date. When ready the
system inserts the number of found records in the result table.

Chapter 2

[89]

ShowRecords
Second function to change is ShowRecords. This makes sure we see the squash ledger
entries when we push the show action.

ShowRecords()
...
 DATABASE::"Warranty Ledger Entry":
 FORM.RUN(0,WarrantyLedgerEntry);
//* Squash Ledger Entries
 DATABASE::"Squash Ledger Entry":
 FORM.RUN(0,SquashLedgEntry);
 END;
END;

Testing
Now when we navigate from the invoice we posted that was generated from our
combine invoicing report we get this result:

A Sample Application

[90]

Summary
In this chapter we created our own vertical add-on application for Microsoft
Dynamics NAV. We have used similar data model and posting structures, and
reused parts of the standard application where appropriate but never wrongly
used standard features.

We saw how to reverse engineer Microsoft Dynamics NAV code in order to
find out what similar standard functionality to copy, paste, and change for
our application.

We also learned how a journal and document posting codeunit works and how
to structure using Test Near, Test Far, Do it and clean up.

In the next chapter we will explore the financial functionality of Microsoft
Dynamics NAV, and even make some changes to this part of the application.

Financial Management
Whether you run a company, a not-for-profit organization, or an educational
institute, doing proper bookkeeping is mandatory and required by the government.

This makes financial management the most used part of Microsoft Dynamics NAV
and the least obvious place to make changes, as federal regulations do not allow
much creativity in this part of the application.

The first part of this chapter is all about the 'Look, Learn, and Love' principle
we discussed in the previous chapter. We cannot integrate our application with
Financial Management without knowing the basic functionality and structure of
the tool.

In the second part of the chapter, we will look at some examples of how to change
or expand the way Financial Management works.

Lastly, we will look at how to create a posting in the General Ledger from a newly
designed posting routine.

After studying this chapter, you should be able to set up Financial Management in a
new database and create basic postings to the General Ledger, and you should know
how to integrate Financial Management with your application.

Financial Management

[92]

Chart of accounts
Every financial system starts with a Chart of Accounts and although the
numbering might differ from country to country, we all have income statements
and balance accounts.

Microsoft Dynamics NAV also has some other special accounts; Heading,
Begin-total, and End-total accounts.

With these accounts you can make the Chart of Accounts more readable.
The accounts within the total accounts are automatically indented.

Posting accounts
When creating a new posting account, there are several options to choose from.
Most of them are not mandatory but make it easier to push the end users to using
the correct account while generating entries.

Chapter 3

[93]

Let's have a look at the options by opening a G/L Account Card:

The first and most important decision to make is the type of account. It can be an
Income Statement or a Balance Sheet. Income statement accounts are reset to zero
every new fiscal year while balance sheet accounts continue indefinitely. The total
of the Balance Sheet accounts should always match the total of the
Income Statement accounts.

Financial Management

[94]

You can create two total accounts to check if the balance in
your G/L is accurate. Total all Income Statements and all
Balance Sheets.

You can also force an account to only accept debit or credit postings. The No. of
Blank Lines and New Page fields are for printing report purposes and have no
effect on the system.

Reconciliation Account is hardly used anymore unless you do not use sub accounting.

Automatic Ext. Texts creates the extra texts discussed in Chapter 1 automatically
when you use this account in a sales or purchasing document.

Direct Posting is a very important option. It is highly recommended to disable this
option when an account is used in one of the posting setups. When Direct Posting
is enabled, an end user can create entries on this account, disrupting the balance
between the General Ledger and the sub administration. We'll discuss this in more
detail later in this chapter.

When you do allow Direct Posting, the fields on the Posting tab are very important.

Gen. Posting Type determines if the account is used for purchase and/or sales
for the VAT calculation and filtering in the VAT statements. More detailed VAT
specification is determined by the VAT business and product posting group. The
general business and product posting groups can be used to automatically populate
these fields when this account is used.

In the Consolidation tab, you can populate the consolidation accounts used
when consolidating two or more companies. We'll discuss consolidation later
in this chapter.

Microsoft Dynamics NAV allows the use of an additional reporting currency. This
is an inheritance from the days before the Euro in Europe and was very popular
in the years of Euro introduction. Today, it is used by international companies,
for example: A company based in the USA with a Dutch parent company. In
the Reporting tab, you can determine how you want to handle exchange rate
adjustments when using this functionality.

Chapter 3

[95]

The entry tables
As discussed in Chapter 1, the entries for the General Ledger are also created
in the General Journals when you post a sales or purchase document. So, let's
have a closer look at this functionality and see what we can do with it.

Sub accounting
In theory, you could run Microsoft Dynamics NAV with just the G/L Entry table,
but in accounting we have invented sub administrations.

Sub administrations are very old. Before computers were invented, people would
have cards for all customers and vendors to keep track of their balance. Updating
these cards was a manual and time consuming process with a high probability of
making mistakes.

In Microsoft Dynamics NAV, this is taken care of automatically. In the General
Ledger, we have the following four sub administrations:

•	 Bank: The total of all bank ledger entries should match your bank account's
balance. It allows you to quickly find payments.

•	 Customer: Whenever you sell something to a customer or a customer pays,
a customer ledger entry is created. It allows you to analyze payment history
and send out reminders.

•	 Vendor: When we buy something from a vendor the system creates a vendor
ledger entry. We can use the vendor ledger entries to determine which
invoice needs to be paid. The vendor ledger entries are the opposite of the
customer ledger entries.

•	 VAT: The VAT entries help us to easily create clear VAT statements.

Financial Management

[96]

As discussed earlier, it is very important that the total of the sub administration
matches the General Ledger. For example, when your bank account balance is
2.846,54 the G/L account should also have that amount.

For this, you can disable the Direct Posting option we discussed earlier.

General journals
When we open a general journal, we can start making transactions. Let's discuss
the possibilities.

Chapter 3

[97]

The most important fields of a General Journal are the Posting Date and the
Document No. The total of amounts for each combination of these fields should
always be in balance. In other words, all journal lines for any particular combination
of Posting Date and Document No. should always add up to zero.

There are different account types we can post to. When we post directly to a G/L
Account it is clear what will happen. A new G/L Entry will be created for that
amount. When we choose another Account Type the sub administrations will start
to work. For example, when we choose Customer, a Customer Ledger Entry will
be created as well as a G/L Entry. Which G/L account is used is determined by the
posting group which we will discuss later in this chapter.

Here we also see the Gen. Posting Type, General Business, and Product Posting
group and VAT Business and Product Posting group come back. These are
inherited from the G/L Account we discussed earlier, but you can choose a different
one if you want.

The VAT options determine the VAT calculation that is done automatically. A VAT
entry is created with the VAT amount and additional G/L entries are created.

There are two ways of balancing a General Ledger. We can create two lines with the
same debit and credit amount or we can use the balance fields.

Financial Management

[98]

Let's see some of this in an example.

We have made a purchase from an irregular vendor. All we have is a small cash
receipt with the amount and the VAT which we want to bring into our company.

The amount is 440 including 10% VAT, so we want to create the following transaction

Cost 400,00
VAT 40,00
Current Account 440,00

We can see that Microsoft Dynamics NAV calculates the VAT Amount and by
populating the balance account we only need one line which is always in balance.

When we Navigate this transaction, we see that we have three G/L Entries and one
VAT Entry.

Chapter 3

[99]

And opening the G/L Entries shows the correct amounts.

In another example, we'll create a customer payment through the bank journal.

Entry application
A bank journal is a general journal with a specific Form ID. This allows the application
to have a different user interface based on the same business logic. A specific feature of
a bank journal is the possibility to easily apply payments to invoices.

The bank journal does not directly post to a G/L account, but uses other account
types. In this case, the Account Type is Customer and the Balance Account Type
is a Bank Account. Instead of a list with G/L accounts, the Account No. field now
refers to the Customers and the Balance Account No. fields refer to the Bank
Accounts. The latter is automatically populated from the Journal Batch definition.

Financial Management

[100]

We'll use the Apply Entries feature to determine which invoice this payment applies
to. If we did not do this, the system would not know which invoice is paid.

Another option would be to automatically apply entries, but when a customer decides
to skip a payment the system might get confused, so it is highly recommended to
apply entries manually.

When we post this journal and Navigate the entries, we see that all necessary sub
administrations are updated.

Chapter 3

[101]

Posting groups
In the previous section, we talked about using customer numbers and bank account
numbers as an account number in the General Journal. The system can then figure
out what G/L Account numbers to use. But how does that work?

This is done using the various posting group matrices. Most application parts that
post to the General Ledger have their own posting group table.

There are two types of posting groups—single layer and matrix layer.

The single layer has direct G/L Account columns, the matrix layer has an additional
setup table.

Single layer Matrix layer
Customer posting group

Vendor posting group

Inventory posting group

Job posting group

Bank account posting group

FA posting group

Gen. Business posting group

Gen. Product posting group

VAT business posting group

VAT product posting group

Inventory posting setup

Each country uses different account schedules and regulations. The G/L
accounts in this book are used for the CRONUS example database. These
can be different in each country and implementation.

Let's have a look at the Customer Posting Groups:

Financial Management

[102]

We see three different codes having their own accounts. So, where is this code used?
Let's open a customer card.

We see it on the invoicing tab. This is what determines the Customer G/L accounts.

We also see other posting groups on the Customer card. There is a Gen. Bus. Posting
Group and a VAT Bus. Posting Group.

In our list, they are matrix layers. So they don't directly point to a G/L account.
When we open the Gen. Bus. Posting Group, we see this.

Just a simple table connecting it to a Default VAT Business Posting Group.

To see where the G/L accounts are defined, we need to go to the General
Posting Setup.

Chapter 3

[103]

Here we can see that, when combined with a Gen. Prod. Posting Group the
G/L accounts can be determined. So, where does the Gen. Prod. Posting
Group come from?

For this, we need to go to the item card.

Financial Management

[104]

Here we can see the same tab, invoicing, with the product posting groups.

Our journey ends here as we can see the last matrix posting group, Inventory.
When we open this setup we see that it is determined by the combination of
Inventory Posting Group and Location Code.

Dimensions
Apart from the General Ledger and sub administrations, Microsoft Dynamics
NAV allows for a third level of posting. An unlimited number of dimensions
can be attached to every posting and used to cross-analyze the system.

Using more dimensions results in increased database activity during the
processing of transactions and a more complex setup of the system. This
should be carefully considered during the implementation.

Dimensions originated from the classic project code and department code
functionality, allowing you to consolidate or differentiate costs and profits.

The dimensions are determined via a filtering mechanism. Every master data
record can have dimension definitions.

Chapter 3

[105]

Let's look at some sample dimension codes and values:

The Dimension Code Area has several Dimension Values. Here you can also
have total records, just as in the General Ledger.

When more than one master data record has the same dimension code with
different values, it is able to set priorities. It is also possible to block combination
of dimensions to be posted.

Dimensions are a powerful tool for analyzing data and structuring the system
to avoid incorrect entries. However, it requires a lot of time and special skills to
determine these combinations and maintain the setup.

We'll see more of dimensions as we discuss the reporting possibilities.

Budgeting
Microsoft Dynamics NAV allows for budgeting as well.

We can create our own budgeting codes. A budgeting code can be a year, a
department, or just some budget we want to try and throw away later.

The budgeting can be done on G/L accounts but also on any dimension.

Financial Management

[106]

Another important thing to consider is budgeting periods. If you want to compare
monthly budgets with real figures, it does not make sense to create a yearly budget.
Most companies use monthly budgets. It is also most likely that we want to create
budgets for Income Statement accounts, not for Balance Sheets.

Another powerful feature is the ability to import and export budgets to excel.
Here we can easily copy and paste , for example, automatically have the same
values each month.

Creating budget entries
Budget entries are created by simply entering new amounts in the columns. In
previous versions of Microsoft Dynamics NAV, a built-in mechanism would handle
the creation of the entry based on deltas between the previous value and the newly
entered value.

Chapter 3

[107]

In Microsoft Dynamics NAV 2009, this has been changed for the Role Tailored Client
to C/AL Code. The matrix page object that handles the amount is Budget Matrix
(9203). This page uses the Matrix Management Codeunit (9200) to simulate the
classic built-in algorithms.

Accounting periods
While most companies have accounting periods from January 1st to December 31st
divided into months, there can be exceptions to this.

This is supported by Microsoft Dynamics NAV and set up in the
Accounting Periods.

Financial Management

[108]

We are completely free to set up our own desired posting periods as long as there is
a date algorithm.

A posting period should also be closed when appropriate. When closing a posting
period, all Income Statement G/L accounts are set to zero and the profit/loss is
posted to a Balance Account.

When we run this batch, a General Journal is populated with the postings. It is not
recommended to make changes here.

Chapter 3

[109]

Closing dates
After closing, it is still possible to make transactions but with special posting dates
called closing dates. If you put a 'C' character in front of the posting date, the system
will accept this as a special transaction and allow you to post it.

When filtering on 01-01-2009..31-12-2009, the system will not include the entries
on the closing dates. Filtering on 01-01-2009..C31-12-2009 and 01-01-2009..31-
01-2010 will include the entries on the closing dates.

Currencies
Besides having the possibility of the extra reporting currency, every transaction in
Microsoft Dynamics NAV can have its own currency. The transaction is transformed
into local currency (LCY) with the current currency exchange rates.

Handling currency is simple as long as the exchange rates do not change. After that,
it can get complex.

The exchange rate can change as often as you want but with a maximum of once
per day.

Before you consider implementing daily changing of exchange rates, you should
carefully look at the consequences.

When you change the currency exchange rate everything in the system gets adjusted,
which can lead to a huge number of transactions in your system.

Changing the currency exchange rate takes two steps:

1. Enter the new values.

Financial Management

[110]

In our case, the new USD rate in 2010 is 60.
2. Implement the value and generate the entries.

Consolidation
Consolidation means taking (part of) the General Ledger of two or more companies
together in one consolidated company.

To handle consolidation in Microsoft Dynamics NAV, first the consolidation
accounts have to be populated in the G/L Accounts.

These consolidation accounts have to be valid accounts in the consolidation company.

A consolidation company is a 'dummy' company in the database that just exists for
consolidation purposes. The consolidation company has a business unit for each
consolidated company.

Chapter 3

[111]

The data can be exported out of the database via XML or TXT format.

It can be imported via the Business Unit list in the consolidation company.

The other option is to import it from within the database with the Import
Database function.

Financial Management

[112]

VAT statement
Most companies can issue VAT Statements to get back the VAT they paid to vendors
and pay the VAT they've received from customers.

This is done in the VAT statement. This is a straightforward list where we can filter
on the VAT entries.

Every country has its own VAT statement and many countries have localizations in
this application area.

Data analysis
Some companies do bookkeeping because it is mandatory and do very little with
the generated information, but there is a lot you can do with the information the
system creates.

In bigger companies, using analysis tools is often the only way to get a clear view on
the company's assets.

General Ledger
The General Ledger is a reporting tool by itself. The total accounts give a lot of
information and by applying limit totals (Flow filters) we can narrow this information.

Chapter 3

[113]

This example filters on G/L Account No. larger than or equal to 6000 and limits total
to 2010 and Department PROD.

You can save these views by clicking on the page name
<Chart of Accounts> and then Save View As....
By choosing a name that makes sense, such as Income
Statement 2010 Production, it is easy to find.

Financial Management

[114]

Account schedules
The account schedules are more advanced to use. Like the VAT statement, they
allows us to filter on the G/L Entries. We can filter on individual G/L accounts or
use the total filter. If the filter gets complex, we can sum individual rows and hide
the source rows. We can also apply up to four dimensions to each account schedule.

The account schedules also let you define your column layout. You can use multiple
column layouts per schedule and reuse Column Layouts across other schedules.

The column layout can contain formulas and date filters. We can show either the
budget or G/L entries per column.

Chapter 3

[115]

Analysis by dimensions
As discussed earlier in this chapter, Microsoft Dynamics NAV allows an unlimited
number of dimensions to be posted in the General Ledger. To analyze this information,
we need to tell the system what to compare. This is done in analysis by dimensions.

Each analysis view gets a unique code. An analysis view can be generated for an ad-
hoc requirement and thrown away afterwards or be in the system permanently for
periodical reporting. Analysis views generate redundant information that can always
be discarded and regenerated.

Financial Management

[116]

It is recommended to use a copy of the database on a separate
system to use with analysis views and to update them during
the night.

When updated, the analysis view contains all data within the filters in the analysis
view entries. When not properly maintained, this can become a massive table of data.

The result of an analysis view can be viewed in a matrix where all values can be
used as rows, columns, and filters.

In this example, we view the results of a sales campaign per area and sales person.

The setup
Financial Management has a single General Ledger Setup table which is important
since many of these setup fields will determine how the core of Microsoft Dynamics
NAV behaves.

We will discuss the setup options to find out what they do and to explore the
possibilities of creating a flexible setup for an application:

•	 Allow Posting From and Allow Posting To limit the freedom of people
to choose posting dates whilst posting to the General Ledger. It is highly
recommended to enable this feature to avoid posting dates like 01012090
instead of 01012009.

•	 Register Time allows you to create an entry in the Time register each time
a user logs in and out.

Chapter 3

[117]

•	 Local Address Format and Local Cont. Addr. Format refer to how the
address should be printed for the local country. In Microsoft Dynamics NAV,
it is best practice to leave the Country Code and Currency Code blank for
local values.

•	 Inv. Rounding Precision (LCY) and Inv. Rounding Type (LCY) define how
the rounding on your invoices is calculated. Nearest is best practice and
allows your customers to easily register your invoice in their system.

•	 Allow G/L Acc Deletion Before allows you to clean up closed fiscal years.
It is hardly ever used and you should consult your partner before using
this feature.

•	 Check G/L Account Usage checks if the G/L account is used in setup tables
before it is deleted.

•	 If your company uses an EMU Currency and the system should know this
when applying with other EMU currencies. EMU currencies are currencies that
have a fixed conversion rate to the Euro in the European Union. The LCY Code
field is used when printing reports to indicate the companies' local currency.

Financial Management

[118]

•	 Pmt. Disc. Excl. VAT indicates whether or not VAT is calculated when you
apply payment discounts. When you check this field you need to think about
the Adjust for Payment Disc. field as this will recalculate the VAT.

•	 Unrealized VAT should only be checked if your company has to deal with
this issue. Otherwise, it will lead to unnecessary postings. Unrealized VAT is
VAT that is only valid when the customer pays the invoice rather than when
the invoice is issued.

•	 Prepayment Unrealized VAT should only be checked if your company
handles Unrealized VAT and if you want to implement this for the
prepayment features.

•	 Max. VAT Difference Allowed field determines the maximum amount
of VAT differences. Most of the time the VAT difference will be not more
than 0, 01.

You can post VAT differences by selecting FULL VAT in the
VAT Calculation Type for the VAT business posting group.

•	 VAT Rounding Type determines how the VAT remainder is calculated.
It is recommended using nearest.

•	 With the Bill-to/Sell-to VAT Calc. you can change what is the source
for the VAT business posting group, whether it is the Bill-to Customer
or
Sell-to Customer and Pay-to Vendor or Buy-from Vendor.

•	 Check the Print VAT specification in LCY if you want the VAT on your
invoices to always be in your local currency.

•	 Bank Account Nos. is almost always a number series that is manually
determined. Most companies have up to 10 bank accounts.

•	 The Global Dimensions determine which dimensions are posted directly
to the G/L entries and sub administrations. You can most often use these
when limiting totals and should be considered carefully.

•	 The Shortcut Dimensions are easier to access when you enter journals
and documents. They can easily be switched later.

•	 Additional Reporting Currency is a useful feature for international
companies. Remember that it requires extra effort if the exchange rates
change. You can change this later but if you do, a batch job will start,
and the job might take a long time if you have a large database.

Chapter 3

[119]

•	 VAT Exchange Rate Adjustment makes it possible to recalculate VAT if
the reporting currency exchange rates change. Think about this thoroughly
before you activate it. It is most likely to generate information that is difficult
to analyze and use.

•	 Appln Rounding Precision can be used to allow rounding differences
when applying different currencies.

•	 When Pmt. Disc. Tolerance Warning is checked, a warning will appear
whenever a difference is posted.

•	 Pmt. Disc. Tolerance Posting determines if the payment tolerance amount
is posted to a special account or to the normal discount account.

•	 Payment Discount Grace Period can be used if you want to be tolerant
when people are one or two days late with their payment and still deduct
the discount amount.

•	 The Payment Tolerance Warning option will show a warning whenever
there is a tolerance amount posted to the General Ledger

•	 Payment Tolerance Posting determines if a special G/L account is used to
post this amount.

•	 Payment Tolerance % determines the tolerance percentage. To change this,
a batch function is used that updates open entries.

•	 Max. Payment Tolerance Amount sets a maximum to the amount so an
invoice that is issued for 100.000 cannot have a tolerance amount of more
than 5.000 if the percentage is set to 5%.

Customizing financial management
As financial management is regulated by the government and the standard
functionality is already very complete, this application area is unlikely to have many
changes, even though we have some examples of where the functionality is changed.

The examples in this chapter are included in the objects we used in
Chapter 2.

Financial Management

[120]

Sales line description to G/L entries
When we post a Sales Invoice, the system will generate the G/L entries based on
the sales lines. To avoid creating too many entries they are compacted. This is done
using a buffer table, the Invoice Post. Buffer.

Only for the combination of the above listed fields, a G/L entry record is created.
As we can see, the description is not one of these. This results in G/L entries with
the posting description of the Sales Header which is often confusing for accountants
when looking at the G/L entries.

As an example, we will generate a Sales Invoice with one G/L Account line selling
one of these books.

Chapter 3

[121]

When we post this Invoice, we will get these G/L Entries. Note that the description
is gone.

To change this behavior we have to change the Invoice Post. Buffer table. The
description field needs to be part of the unique combination since the grouping is
done using a FIND command in function UpdInvPostingBuffer in the Sales-Post
Codeunit (80).

UpdInvPostingBuffer()
...
InvPostingBuffer[2] := InvPostingBuffer[1];
IF InvPostingBuffer[2].FIND THEN BEGIN
 InvPostingBuffer[2].Amount :=
 InvPostingBuffer[2].Amount + InvPostingBuffer[1].Amount;
 ...
 InvPostingBuffer[2].MODIFY;
END ELSE
 InvPostingBuffer[1].INSERT;

This requires two steps:

1. We need to add the description field to the table.

Financial Management

[122]

2. We need to add this new field to the key.

A key in Microsoft Dynamics NAV can only contain 252
bytes to be careful not to add too many fields to this table.

When this is done, a change is required in populating the buffer table. This is done
in the PrepareSales function in the table Invoice Post. Buffer (49) itself.

The C/AL code has moved in Microsoft Dynamics NAV 2009. In previous
versions, the code was located in the Sales-Post Codeunit (80) and
Purchase-Post Codeunit (90).

PrepareSales()
CLEAR(Rec);
Type := SalesLine.Type;
"System-Created Entry" := TRUE;
...
"Job No." := SalesLine."Job No.";
"VAT %" := SalesLine."VAT %";
"VAT Difference" := SalesLine."VAT Difference";
//* Description >>>
Description := SalesLine.Description;
//* Description <<<

Chapter 3

[123]

IF Type = Type::"Fixed Asset" THEN BEGIN
 ...
END;

The last change we are going to make is in the posting routine of the sales
documents. This is the Sales-Post Codeunit (80) we discussed in Chapter 2,
An Example Application.

IF Invoice THEN BEGIN
 // Post sales and VAT to G/L entries from posting buffer
 LineCount := 0;
 IF InvPostingBuffer[1].FIND('+') THEN
 REPEAT
 LineCount := LineCount + 1;
 Window.UPDATE(3,LineCount);

 GenJnlLine.INIT;
 GenJnlLine."Posting Date" := "Posting Date";
 GenJnlLine."Document Date" := "Document Date";
//* Posting Description now from buffer table >>>
// GenJnlLine.Description := "Posting Description";
 GenJnlLine.Description :=
 InvPostingBuffer[1].Description;
//* Posting Description <<<
 GenJnlLine."Reason Code" := "Reason Code";

Instead of the Posting Description of the Sales Header, we will now use the new
field in the buffer table.

When we post the same invoice again, this is the changed result:

This makes it a lot easier to read the General Ledger.

Making this change might cause our system to create significantly more
G/L entries if we have large invoices with different descriptions. Creating
extra G/L entries takes more time during a posting routine resulting in
longer running posting transactions and a larger database.

Financial Management

[124]

Extra fields in the G/L entries
Although the G/L entry table has a lot of information, some companies want to
add extra fields to it and populate these in the posting process.

For this example, we will use the database with the squash court application from
Chapter 2. For this business, it might be useful to have the Squash Court No.
as a field in the G/L entries to analyze.

The first step is to add the field to the G/L entry table and make sure we have a
table relation with the source table.

We have learned that the G/L entries are generated from the General Journal so
we need to add this field there as well. This can be done with copy and paste.

The last step is to make sure we move the information from the journal to the
ledger entry table. Like in our sample squash application, this is done in the
Gen. Jnl.-Post Line Codeunit (12) only this Codeunit has much more code.

Chapter 3

[125]

We need to find the place where the G/L entries are created and add our field there.
This is done in the function InitGLEntry.

InitGLEntry()
...

GLEntry.INIT;
GLEntry."Posting Date" := GenJnlLine."Posting Date";
GLEntry."Document Date" := GenJnlLine."Document Date";
GLEntry."Document Type" := GenJnlLine."Document Type";
GLEntry."Document No." := GenJnlLine."Document No.";
...
GLEntry."Source Code" := GenJnlLine."Source Code";
//* Squash App. >>>
GLEntry."Squash Court No." := GenJnlLine."Squash Court No.";
//* Squash App. <<<
IF GenJnlLine."Account Type" = ...

This is all that is required in Microsoft Dynamics NAV to add a field to the financial
posting process. Of course, it does not make sense to do this unless we use it, so a
logical next step could be to add this new field to the Invoice Post. Buffer table from
our previous example.

This shows how easy it is to combine solutions in Microsoft Dynamics NAV.

Integrating with financial management
Although it is not likely to make big changes in financial management, it might be
necessary to create G/L entries in a new posting routine.

In the previous chapter, we already pointed out briefly that during posting
transactions in Microsoft Dynamics NAV, the actual records are never really inserted
in the database. They are used as temporary containers to hold the data during
posting. Doing an actual INSERT would require defining a journal template name,
journal batch name, and line no. and could cause locking in the database.

Let's create a new Codeunit that would create a G/L transaction.

www.allitebooks.com

http://www.allitebooks.org

Financial Management

[126]

Creating a G/L transaction
After creating the Codeunit, we need to set up the three variables that are the
minimum requirement to post something to the General Ledger.

•	 GenJnlLine: This is a reference to the General Journal Line table (81).
•	 GenJnlPostLine: The Gen. Jnl.-Post Line Codeunit (12) creates the G/L

entries, the register, and the other financial entries.
•	 TempJnlLineDim: The Journal Line Dimension table (356) is used

as a buffer table to transport dimensions to the Gen. Jnl.-Post Line
Codeunit. This variable is always set up as a temporary table.

The C/AL code
Creating a new G/L entry requires a small amount of mandatory fields. All the other
fields in the General Journal line are either optional for basic entries or mandatory in
combination with more advanced postings as we will find out later.

We will start by writing this code to the OnRun trigger.

OnRun()
GenJnlLine.INIT;
GenJnlLine."Posting Date" := WORKDATE;
GenJnlLine.Description := 'Test Entry';
GenJnlLine."Document No." := 'PACKT';
GenJnlLine."Account No." := '6120';
GenJnlLine.Amount := 100;
GenJnlPostLine.RunWithCheck(GenJnlLine, TempJnlLineDim);

If we execute this C/AL code, we will receive this error message which indicates
that our transaction will result in an unbalanced chart of accounts.

Chapter 3

[127]

We can fix this by creating a balance transaction for 100 in the same OnRun trigger.

GenJnlLine.INIT;
GenJnlLine."Posting Date" := WORKDATE;
GenJnlLine.Description := 'Test Entry';
GenJnlLine."Document No." := 'PACKT';
GenJnlLine."Account No." := '6120';
GenJnlLine.Amount := -100;
GenJnlPostLine.RunWithCheck(GenJnlLine, TempJnlLineDim);

After executing the Codeunit we can Navigate on our Document No. to see the G/L
entries we created.

Financial Management

[128]

This was a very simple example of how to integrate with financial management.
Let's create a more advanced example.

Advanced entries
We will create a new customer ledger entry with dimensions. To do this, we should
change one of the C/AL parts we created to this code.

GenJnlLine.INIT;
GenJnlLine."Posting Date" := WORKDATE;
GenJnlLine.Description := 'Test Entry';
GenJnlLine."Document No." := 'PACKT2';
GenJnlLine."Account Type" := GenJnlLine."Account Type"::Customer;
GenJnlLine."Account No." := '10000';
GenJnlLine.Amount := 100;
GenJnlPostLine.RunWithCheck(GenJnlLine, TempJnlLineDim);

But, when we execute this C/AL code, we receive this error message:

This means we need to implement dimensions.

Let's add the following C/AL code to the routine:

...
GenJnlLine.Amount := 100;
TempJnlLineDim."Dimension Code" := 'AREA';
TempJnlLineDim."Dimension Value Code" := '30';
TempJnlLineDim.INSERT;
TempJnlLineDim."Dimension Code" := 'CUSTOMERGROUP';
TempJnlLineDim."Dimension Value Code" := 'MEDIUM';
TempJnlLineDim.INSERT;
GenJnlPostLine.RunWithCheck(GenJnlLine, TempJnlLineDim);

This will insert the required dimensions to the buffer table.

When we now navigate to PACKT2 we see that the system has created a
Customer Ledger Entry and a Detailed Cust. Ledg. Entry.

Chapter 3

[129]

Look, learn, and love
In Microsoft Dynamics NAV, there are many examples of how to integrate with
financial management. This is a list of interesting Codeunits that create General
Journal lines:

•	 Sales-Post (80)

•	 Purch.-Post (90)

•	 Job Calculate WIP (1000)

•	 CheckManagement (367)

•	 Sales-Post Prepayments (442)

•	 Inventory Posting To G/L (5802)

•	 Serv-Posting Journals Mgt. (5987)

Go ahead and have a look inside these Codeunits to learn how Microsoft does
the integration.

Financial Management

[130]

Summary
In this chapter, we have looked at the financial heart of Microsoft Dynamics NAV.
Understanding the flow of the entries is as important as the way the posting groups
are set up. It is important to regularly check the sub administrations balance with
the General Ledger.

The reporting possibilities offer great insight if the system is set up correctly.
Be careful with changing the setup options on a running system.

In the next chapter, we will look at the opposite of this module; Relationship
management. Where the financial management system is strict, the relationship
management system will be shown to be flexible and expandable.

Relationship Management
Relationship Management software is a typical result of what ERP applications
have achieved.

In earlier days, everyone had a rolodex on their desk with phone numbers and
addresses and salespeople would always know by heart who was a good customer
and which customers were always late paying or had bad margins.

The introduction of RM software completely changed that allowing us to maintain
all of our companies' contacts in a single place and analyze sales data easily.

Relationship management has been part of Microsoft Dynamics since version 2.0
and was dramatically changed and improved in version 3.0. The current Microsoft
Dynamics NAV RM software is mostly the same as in that version except for the
Microsoft Outlook integration that keeps changing in every version.

In this chapter, we will dive deep into this module. After reading this chapter, we
will have a good understanding of the concepts and how to maintain master data
and analyze transaction data.

We will also make some application changes in the relationship management part.

How companies work
In traditional accounting software, we differentiate customers and vendors
as business relations for invoices, but many companies have many more
relationships which we would like to register in our system.

Relationship Management

[132]

Also, a company or person can have multiple relationships with our company.
The best example is my relationship with Microsoft. Like everyone else, I use the
software so I am a customer, both in my business and personal life. On the other
hand, Microsoft hires me to teach workshops and do presentations, which makes me
a vendor. As an MVP, I have a totally different relationship with them. They give me
an award and invite me to special events and allow me to access the company store.
They also ask for my advice on future versions, so to them I am their consultant.

So one person or company can have different roles in RM. Microsoft Dynamics
NAV is able to handle all that while maintaining a single point of data entry
and maintenance.

Unlike financial applications, RM is much more flexible. The functionality and rules
of financial applications are defined by government regulations and are mandatory
for companies to comply with. Companies are not forced to use RM but once it is
implemented, everyone understands the benefits and would never want to do
without them.

Contacts
The starting point of the RM application is the Contact table. This is where we store
the address, phone numbers, e-mail addresses, etc. of everyone we know.

When we open the Contact List, we see that companies and persons are grouped for
an easy overview.

As we learned in the previous chapters, a page in Microsoft Dynamics NAV is based
on a single table, so that must mean that companies and persons are stored in the
same table.

Chapter 4

[133]

When we open the contact card we can clearly see that this is the case. The Type
field indicates if the contact is a business or a person and if the person belongs to a
company. The Company No. field refers to a contact with Type Company. This is a
one-to-many relationship meaning that if a physical person has a relationship with
more than one company, he or she needs to be maintained as many times as there
are companies.

Let's step through the tabs and look at some important fields.

•	 No.: This is the unique key value determined by a number series. Companies
and persons have the same numbering.

•	 Type: This indicates if this contact is a person or a company.
•	 Company Name: When the contact is a person and connected to a company,

it is automatically populated with that company's name.

Relationship Management

[134]

•	 Name: This is the name of the contact. If the contact is a person, we can click
the AssistEdit button to open the name details. The name is automatically
broken down in first, middle, and last name depending on the number of
words we enter. However, if our contact has a more complex name, like
"Walter van den Broek" which is typical for Dutch people, the system is
unable to break it down.

•	 Address: Enter the street where the contact lives or has office.

It is always best practice to enter the postal address here as
this will be used on all documents. For visiting address, use
the Alternative Address feature

•	 Post Code and City: These fields are connected via the Post Code table
and one can populate the other if that table is maintained, which is an
optional feature.

Most companies maintain the post code table for their country and
manually enter the post codes for foreign countries. Most countries
offer a post code/city list for sale or as a web service which will speed
up data entry and keep people from entering wrong master data

•	 Search Name: This is automatically populated with the Name field and lets
you search for contacts faster as you can enter this field instead of the No.
field when referencing to a contact.

•	 (Mobile) Phone, Fax and Telex No.: A reference to the phone and fax
numbers of this company. The (mobile) phone field also allows you to
start an interaction with this contact.

Chapter 4

[135]

•	 Sales Person: This is the main salesperson for this contact. If this contact is
promoted to a customer, the salespersons name will be printed on the order
form and invoices.

•	 Salutation Code: This special field refers to how this contact should be
addressed. The salutation code table allows you to build phrases like
'Dear Mrs. Brown'. We'll see more of salutation codes in Segments.

•	 E-Mail: This field contains the e-mail address of the contact. By pressing
the E-Mail button, we can send an e-mail directly.

•	 Homepage: Here goes the URL of the contacts website. We can access the
website by clicking on the URL button .

•	 Correspondence Type: This field is used when we create a Microsoft Word
document in an interaction. It indicates if we send a hardcopy, email or fax.

•	 Currency Code and VAT Registration No.: When this contact is promoted
to a customer or vendor, the currency code and VAT registration no. are
inherited from here.

•	 Territory Code: This field can be used to in segments to filter on
geographic regions.

Salutation codes
When we do mail merge, we want the letters to start nicely with "Dear Harry",
or "Dear Mrs. Brown". This can be done using Salutation Codes.

We can create as many codes as we like but a contact can only use one. This is the
list in the Cronus Demo Database.

Relationship Management

[136]

There is one salutation code for companies, but most are for persons. When we look
at the formulas for Female Married or Unmarried we see this screen.

We can enter a formal and informal code. The salutation can have up to five
variables pointing to Job Title, First Name, Middle Name, Surname, Initials,
and Company Name.

When we look at the result for Karen Friske it will be "Dear Ms. Karen Friske" or
"Hi Karen".

At the end of this chapter, we will look at how to create extra salutation types.

Alternative addresses
Like we said earlier in this chapter, it is best practice to use the address fields in the
contact table for the postal address as this will be printed on all documents.

In the Alternative Address table, we can add as many other addresses to a Contact
as we want.

Chapter 4

[137]

Although the codes are not related to anything, it is best practice to have a
rule here. Always use the same code for home or office addresses. We can
later use this when printing labels or segments.

An alternative address can also have a valid to and valid end date to control which
alternative address is currently active.

Create as
In Chapter 2, we saw that the contact table is the umbrella data of the customer,
vendor, and bank account master data tables.

Each contact of the type company can be promoted as one of these tables. The benefit
is that all address information fields have a single place of maintenance and are
inherited. It also allows us to analyze sales data into relationship management as we
will see later in this chapter, when discussing segments.

When we create master data, a different number series is used. At the end of this
chapter, we will look at how to change that in the code.

A contact of type person cannot be created as the Customer, Vendor, or
Bank Account.

Duplicates
When entering new contacts the system can search for duplicate contacts. In the
Duplicate Search String Setup table we can enable the filtering on eight fields: Name,
Name2, Address, Address 2, Post Code, City, Phone No. and VAT Registration No.

Relationship Management

[138]

For each field we can set up which part should be used when searching for a
duplicate. We can use the option First and Last and a length which is useful for
Name, Address, and City fields. Using First with the full length of the field will
search for an exact match which is useful for Post Code, Phone Nos. and VAT
Registration No.

In the Marketing Setup table, we can specify the percentage of matching criteria
that should result in a warning.

For each contact, the system will save these values in the Cont. Duplicate Search
String table (5086).

When we enter a new contact, the system will also generate the same strings and
compare these to the ones in the database. When there is a match, the system will
show a warning with the duplicate contacts.

Search
To search for a specific contact we can use the Contact Search functionality. This has
a phonetic search feature allowing for small typos to be ignored. It searches most of
the fields in the contact table for the value.

It is also possible to add AND and OR operators, and to exclude words.

Chapter 4

[139]

Profiles
The contact table has a very limited number of fields and does not allow for much
creativity for us to add flexible information. This is where profiles are used.

Profiles allow the users to create an unlimited number of extra information sources
that can be manually or automatically populated.

Let's have a look at an example profile:

This profile is for contacts of type Company. It has Question and Answer lines.
A question can have one or multiple answers and we can define as many questions
and answers as we want. The last column shows how many contacts have this
profile answer.

Relationship Management

[140]

A profile is used from the Contact card.

When we click this, a new page opens where we can select the required profile and
answer the questions.

The answers are displayed in the Lines subpage of the contact card.

Automatic profiles
Profiles can also be automatically answered based on formulas. This is done using
the Auto Contact Classification option and setting up the Question Details.

Chapter 4

[141]

The Question Details are fixed and hard coded. They depend on the relationship
between a contact and a customer or vendor as discussed earlier in this chapter.

We will not describe all possibilities as this is very well covered in the online help.

When the questions are set up, the answers should have a From Value and To Value
to allow the system to pick the right one.

Relationship Management

[142]

To generate the answers, a batch job is used called Update Contact Classification
where we can filter on a Profile.

Interactions
We have all kinds of interaction moments with our contacts. Whether they are
phone calls, mailings, or sending an invoice, we can register them in Microsoft
Dynamics NAV.

As with profiles, there are interactions that are generated automatically and
manually. Manual interactions are created using a wizard.

All interactions relate to an Interaction Template Code. The system allows for an
unlimited number of codes we can define ourselves. The interaction code will also
determine how the rest of wizard will behave.

Chapter 4

[143]

Interactions can be Inbound or Outbound and Initiated by Us or Them.
These are informative fields.

The Wizard Action field determines if the wizard will generate a mail merge
document, allow us to attach a previously created document, or do nothing.

Mail merge allows us to create a Word document with all fields from the
contact table.

Let's create an interaction and look at how that is done.

To create an interaction we choose Create Interaction on the contact card or list
and push the Create Interaction button from the Process Actions. This will open
the wizard.

The first page asks us what type of interaction we would like to start. Let's make
a Memo.

Relationship Management

[144]

This is the next step as our interaction code defines that we will generate a
mail merge.

We can now create the Memo in Microsoft Word with all necessary fields
already filled.

After closing Word, we move on to the next step and when we populate all fields
we can finish the wizard. This will save the interaction in the database and print the
memo as we choose Hard Copy as Correspondence Type.

It is also possible to postpone interactions and restart
them later.

Chapter 4

[145]

Automatic interactions
Some interactions can also be automatically generated. For example, every time we
print an invoice or shipment.

Which interaction code is used is set up in the Interaction Template Setup. For every
print, we want an interaction log entry to be generated and we need to set up a code.

Be careful that when printing a lot of documents, the interaction
log entry table can be locked for a longer period forcing other
users in the database to wait until the process is completed. To
avoid this, enable auto increment on this table like described
in this blog. http://dynamicsuser.net/blogs/mark_
brummel/archive/2009/06/28/tip-14-autoincrement-
interaction-log-entries.aspx

Other automatically created interaction log entries are created by segments which
we will look at later in the chapter.

Finished interactions
When completed, the interactions are connected to a contact and can be used for
analysis purposes. It is also possible to start a To-Do from an interaction. We'll look
at that in the next paragraph.

Relationship Management

[146]

To-do's
The To-do's are the lowest level of activities in the relationship management model.
They are best compared to Masks or Meetings in Microsoft Outlook.

To-do's can be created directly in the system or from another event. We can create a
To-do from the interaction we just created. Let's do this.

When we click Create To-do from the Interaction Log Entries, the system shows us
a wizard that will guide us through the process, just like the Interaction wizard.

There are three types of To-do's: Standard (Blank), Meeting, and Phone Call. The
steps in the wizard depend on the type we select. Let's select a meeting.

Chapter 4

[147]

The next step asks the attendees for the meeting and allows a template for the
invitation which then again will create an interaction log entry.

To perform this step, the To-do organizer should have a valid e-mail
address. This can be set up in the Sales Persons.

The next step only asks for a location, so we will click Finish.

When we now open the To-do's from the Sales & Marketing department, we can
open the Sales Person per day matrix which shows us the meeting we just created.

We'll see more of To-do's when we discuss Opportunities and Outlook Integration.

Relationship Management

[148]

Opportunities
When we discussed profiles we could already see that Relationship Management
is tightly integrated with the ERP part of the application. This is also the case
for opportunities.

Opportunities allow us to manage all the quote requests we get from our prospects
creating a workflow that will guide us to a deal that is won or lost. This then
allows us to analyze the won and lost deals and change our business based on
this information.

We can analyze the sales pipeline and make a proper judgment of our future order
position allowing us to schedule capacity in time.

Workflow
Each opportunity we create will follow a Sales Cycle in the system. This will guide
us step by step through the process.

Let's have a look at the sales cycles in the Cronus Database.

There are four sales cycles defined. The most important field is the Probability
Calculation formula. This will determine how the system calculates the Calculated
Current Value of all opportunities with this code. We can see the Calculated Current
Value by opening the Statistics window of a Sales Cycle.

Chapter 4

[149]

There are four options to choose from: Multiply, Add, Chances of Success % and
Completed %. The function UpdateEstimates in the Opportunity Entry (5093)
table calculates this.

UpdateEstimates()
IF SalesCycleStage.GET("Sales Cycle Code","Sales Cycle Stage")
THEN BEGIN
 SalesCycle.GET("Sales Cycle Code");
 CASE SalesCycle."Probability Calculation" OF
 SalesCycle."Probability Calculation"::Multiply:
 BEGIN
 "Probability %" := "Chances of Success %" *
 SalesCycleStage."Completed %" / 100;
 END;
 SalesCycle."Probability Calculation"::Add:
 BEGIN
 "Probability %" := ("Chances of Success %" +
 SalesCycleStage."Completed %") / 2;
 END;
 SalesCycle."Probability Calculation"::"Chances of Success %":
 BEGIN
 "Probability %" := "Chances of Success %";
 END;
 SalesCycle."Probability Calculation"::"Completed %":
 BEGIN
 "Probability %" := SalesCycleStage."Completed %";
 END;
 END;
 "Completed %" := SalesCycleStage."Completed %";
 "Calcd. Current Value (LCY)" := "Estimated Value (LCY)" *
 "Probability %" / 100;
END;

The Probability Calculation first calculated a field Probability % which then
leads to the required Calculated Current Value.

Relationship Management

[150]

Sales stages
Each sales cycle has different stages that will guide us through the sales process.

The current Sales Stage of an Opportunity defines the Completed %. We can
decide with Allow Skip if a sales stage is mandatory. The Quote Required will
force us to assign a Sales Quote to this opportunity as we will see later when we
create an opportunity.

Activity codes
Each sales stage has an activity code. This will define which To-do's are created to
support us in the sales process.

This is a very powerful tool enabling sales people to create a workflow for each
sales process.

Let's create an opportunity and see what happens in the system.

Chapter 4

[151]

Creating an opportunity
An opportunity starts by selecting an existing contact or creating a new one.
From the contact card we can select Related Information | Contact |
Opportunities | List.

This leads us to a filtered list of opportunities linked to this contact. Here we can
select Create Opportunity.

This opens the wizard that will guide us though the process. In the first window,
we enter the Description "Sell Chairs" and click Next to take us to the second step.

In this step, we set the sales cycle code to FIRSTSMALL and select Finish.

Selecting Next will allow us to enter additional information like assigning a sales
campaign and it will activate the first stage. We will skip that now and discuss
campaigns later in this chapter.

Relationship Management

[152]

When we now open the created Opportunity, the information should look like
the following screenshot. There are no activity lines as we have not yet activated
the first stage.

Let's activate the first stage and see what happens. We do that by clicking
Actions | Functions | Update. We enter a wizard where we select First.

We'll click Next twice and enter step three of the wizard. In this step, we should
enter the estimated sales value and chance of success (%) of getting this deal. This is
important to calculate the Calculated Estimated Value that we discussed earlier.

Chapter 4

[153]

When we click Finish, we come back in the Opportunity and see that the current
value is 260.

Since the probability calculation of this sales cycle is Add, the formula is:

"Probability %" := ("Chances of Success %" +
 SalesCycleStage."Completed %") / 2;

"Calcd. Current Value (LCY)" := "Estimated Value (LCY)" *
 "Probability %" / 100;

This leads to (50 + 2) / 2 = 26 and 1000 * 26 / 100 = 260.

Now we click Related Information | Opportunity | To-dos and see that the system
has created two To-do's for us that we have to complete.

Relationship Management

[154]

This will help us remember our daily tasks and allow management to see that
nothing has been forgotten.

The next Stages in this sales cycle are Qualification and Presentation. We can enter
these stages by entering the wizard again and selecting Next.

After selecting the Next button twice we hit step three. Since one of our To-Do's
was verifying the quality of the opportunity, we can now say, for example, that the
chance of success is 80%.

 We'll select the Cancel existing open to-dos to make sure our workflow is updated.

The Calculated Current Value has increased to 425.

Chapter 4

[155]

When we enter the next stage, we will see this error message telling us that assigning
a quote is mandatory to enter the next step.

Sales quote
To assign a Sales Quote to an opportunity, we select Actions, Functions, and Assign
Sales Quote from the opportunity card. This will open a new sales quote with all
fields populated from the opportunity.

Relationship Management

[156]

To assign a quote to a contact without a Sell-to Customer No. we need
to use the Sell-to Customer Template Code. This can be used when
the Show more fields option is activated on the General fast tab.

We will select two furniture items and populate the Quantity and Line Discount %
field.

When we now update the opportunity, we can use the quote amount of 1.138,28
which will lead to a Calculated Current Value of 682,97 in step three and 796,80 in
step four.

To update the opportunity to step 4, the sales person
should have a valid e-mail address which can be set up
in the Sales Persons.

Close the deal
Step five is the final step in the sales cycle stages we used in our example. Now
we need to tell the system if the deal is won or lost. To do this, we select Actions |
Functions | Close from the opportunity card. We will select Won and click Next.

After selecting a valid reason and the sales amount, we can close the deal.

Chapter 4

[157]

The system now creates a customer for this contact and updates the quote with this
number. We need to promote the quote to an order manually.

Segments
Segments allow us to slice and dice the data in our system to create a filtered list of
contacts. This information can then be used to create an interaction such as a mailing
or start a Sales Campaign.

Since Microsoft Dynamics NAV Relationship Management is integrated with the
ERP system, we can filter on both RM and ERP data.

Let's create a new segment and look at the possibilities:

The segment has a No. and a Description. The No. can be defined using
number series.

On the Interaction tab, we select the Interaction Template Code. We will select
an interaction that generates a word document, so we can use the mail merge
capabilities of segments.

The Unit Cost is important for determining the total cost of this segment, especially
when we use it with Campaigns, as we will see later in the chapter.

Relationship Management

[158]

Add contacts
With our segment defined, we can now start filtering the system for contact
information by clicking Actions | Functions | Contacts | Add Contacts.

This opens a selection window allowing us to filter in different parts of the application.

•	 Contact: Here we can filter directly on all fields in the contact table.
For example: all Contacts in Country 'NL'.

•	 Profile: This allows us to filter on any profile answer. When we use automatic
profile answers we can, for example, filter on customers with a specific
turnover or profit value.

•	 Mailing Group: We can save any segment to a mailing group allowing easy
reuse of previously generated filters.

•	 Interaction Log Entry: We can filter on contacts that have had specific
interaction codes. For example, everyone who had a sales invoice in the
last year.

•	 Job Responsibility: If we want to send out a mailing to all managers, we
select the matching job responsibility code.

•	 Industry Group: This allows us to filter out companies in specific industries.

Chapter 4

[159]

•	 Business Relation: Business relations are by default used to integrate with
customers, vendors, and bank accounts, but can also be expanded with extra
information.

•	 Value Entry: This is probably the most powerful filter where we can filter on
specific Item Numbers and posting dates from the related contact.

•	 Options:
	° Allow Existing Contacts: If you run multiple selections and

check this option, the system will create new segment line
each time a contact is within the selection.

	° Expand Companies: When you select this option, the system
will add the persons related to the companies in the selection.

	° Allow Related Companies: When Expand Companies is
selected, this option will delete the company record if a
company has one or more persons in the filter.

	° Ignore Exclusion: A contact can be ignored on segments.
Checking this flag will ignore this field.

Refine/Reduce contacts
After adding all contacts from The Netherlands, we might want to refine or reduce
this. That can be done with the same filtering as Add Contacts. Refine will check
if the contacts in the segments match the specific filter criteria, and will remove all
contacts in the segment that match the criteria.

We will reduce the segment with the criteria City Waalwijk.

Segment criteria
We can now ask the system what criteria we used by clicking Related Information |
Segments | Criteria.

Relationship Management

[160]

This allows us to see what we did, but also to undo the last actions or save
the criteria.

Mailing groups
Another option to reuse a segment is to apply a Mailing Group to all contacts in a
segment. To start this we click Actions | Functions | Apply Mailing Group from
the segment card.

This will create a record in the Contact Mailing Group table for each contact in
the segment.

Chapter 4

[161]

Log segment
When the segment is finished, it should be logged. Logging the segment will start the
mail merge process in our segment and create the Interaction Log Entries.

Using this option will also print the letters in this example. For
an exercise, it might be useful to enable a PDF printer or turn off
your printer and remove the print job.

If required the system can directly generate a follow up segment if we would use
this segment with a campaign.

Campaigns
Most larger companies with marketing departments have sales campaigns to
improve their sales. These are typically periods where some items are more
interesting for customers to buy than others.

With the campaigns in Microsoft Dynamics NAV, we can manage the sales prices
and see the results of a specific campaign both from a cost and profit viewpoint.

Relationship Management

[162]

Let's open a campaign and see what information it contains.

Each campaign has a unique No. field that can be created using number series and
a Description. The No. field should be carefully chosen since that will be used
throughout the application where this campaign is used.

The Status Code options can be custom defined, but do not impact business logic.

The Starting Date and Ending Date are important for the pricing information.
The special price and discounts will only be valid within these periods.

Via the Invoicing tab, we can see that the campaigns are integrated with dimensions.
This gives us the powerful option to define a dimension code for each campaign
and create an analysis view to analyze the results in the financial part of Microsoft
Dynamics NAV, like we discussed in the previous chapter.

Pricing
By clicking on Related Information | Campaign Sales Prices, we can enter the
pricing information for this campaign.

Chapter 4

[163]

This price table is filtered exactly the same way as discussed in our example
application in Chapter 2.

Segments
To select customers or prospects for a campaign, we need to create one or more
segments. These segments should be connected to the campaign using the
Campaign No. field. Everyone related to these segments will get the specific
prices and discounts.

The segments are also used to create the interaction log entries and To-do's for
this campaign. We need to make our target group aware that this campaign exists
by sending them a letter, fax, e-mail, or even a phone call.

Activate
By activating the campaign, the system will add all contacts to the campaign
group and create interaction log entries.

The interaction log entries will be used to calculate the cost of a campaign.
Each interaction has a specific cost and all costs add up to the total amount on
the campaign.

When an opportunity comes in, we can point this to a specific campaign. The
value of this opportunity is also used in estimating the success of the campaign.

The campaign is also copied into the sales documents using the dimensions attached
to the campaign. This allows us to further analyze the results.

Relationship Management

[164]

Outlook integration
Salespeople are often on the road without online access to the ERP system, and
Microsoft Dynamics NAV does not have an offline mode. To solve this problem,
Microsoft Dynamics NAV is integrated with Microsoft Outlook.

This allows salespeople to view contacts and tasks offline and replicate with the
back office system when possible.

If salespeople use a Windows Mobile phone with Microsoft Outlook they can even
have all their Microsoft Dynamics NAV information on their device.

Using User Defined Views will also enable us to synchronize other Microsoft
Dynamics NAV data to Microsoft Outlook, for example, the customer table with
the current value of the balance field or the item table with the current inventory.

We will discuss the possibilities of interfacing with Microsoft Outlook in
Chapter 9, Interfacing.

E-mail logging
Microsoft Dynamics NAV also has a capability to read exchange shared folders such
as info@ mailboxes.

For each e-mail the system can generate Interaction Log Entries and To-Do's.

The setup
Before implementing relationship management, we should properly set up the
options. This can be done in the Marketing Setup.

Chapter 4

[165]

•	 Attachment Storage Type: The attachments in the interaction log entries can
either be stored in the database (embedded) or on the file system (Disk File).
It is highly recommended to store them on the file system.

•	 Attachment Storage Location: If we choose to store the attachments on
file system, this is where we specify the path.

•	 Index Mode: When using Contact Search, this should be set to Auto.
It might have a small drawback on performance and can cause the
database to be bigger.

Relationship Management

[166]

•	 Inheritance: When entering a person, it can inherit the salesperson code,
territory code, country/region code, language code, address details, and
communication details from the company it belongs to.

•	 Defaults: A new contact can get a default salesperson code, territory code,
country/region code, language code, or correspondence type. There is a
different default salutation code for companies and persons.

•	 Default Sales Cycle Code: Every new opportunity will automatically get
this code.

•	 Mergefield Language ID: This defines if the Word merge fields are in local
language or in English.

•	 Synchronization: Here we enter the default Business Relation Code for
Customers, Vendors, and Bank Accounts.

•	 Maintain Dupl. Search strings: Check this field if the duplicate contact
functions are used.

•	 Autosearch for Duplicates: Use this option if the system should
automatically search when entering new contacts.

•	 Search Hit %: This determines the percentage of match lines that the
duplicate search string setup should have to qualify as a duplicate contact.

Customizing relationship management
RM is a pretty complete module that is not often highly customized or verticalised.
However, we will describe some possible changes and how to integrate an add-on,
in our case the Squash application, with Relationship Management.

All examples in this chapter are part of the objects downloaded for Chapter 2, A
Sample Application.

Salutation formula types
By default, the system has two salutation formula types— formal and informal,
allowing us to print Dear Mrs. Brown, or Dear Angela. But, what if we want to
print Attn. Mrs. Brown?

For this, we need to first add an option to the Salutation Type field in the Salutation
Formula table.

Chapter 4

[167]

Add the option

Support the formula
Next, we want to use the formula when printing a Contact Cover Sheet. This uses
the Format Address functionality from Codeunit 365.

This Codeunit is the single point in Dynamics NAV where all the address formatting
is done.

The formatting of contact persons is done in the function ContactAddrAlt.
We should make the following change.

ContactAddrAlt()
...
 ContIdenticalAddress:
 WITH ContAltAddr DO BEGIN
 GET(Cont."Company No.",CompanyAltAddressCode);
 FormatAddr(
 AddrArray,"Company Name","Company Name 2",
 Cont.Name,Address,"Address 2",
 City,"Post Code",County,"Country/Region Code");
 END;
 (Cont.Type=Cont.Type::Person) AND
 (Cont."Company No." <> ''):
 WITH Cont DO
 FormatAddr(
// AddrArray,ContCompany.Name,ContCompany."Name 2",
// Name,Address,"Address 2",

Relationship Management

[168]

 AddrArray,ContCompany.Name,ContCompany."Name 2",
 GetSalutation(5, Cont."Language Code"),Address,
 "Address 2",City,"Post Code",County,
 "Country/Region Code")

Always comment out the original line of code before you make
a change. This will enable you to always go back to standard
code and help when upgrading this solution to a newer version.
Most NAV partners and developers have their own way of
documenting and commenting. The example in here is the
Minimum comment requirement. We will discuss versioning of
objects in Chapter 10, Application Design.

The GetSalutation function
In our modification, we use the GetSalutation function in the Contact table
(5050) instead of the Name field. Let's have a look at that function and analyze
what it does.

GetSalutation()
IF NOT SalutationFormula.GET("Salutation Code",LanguageCode,
 SalutationType)
THEN
 ERROR(Text021,LanguageCode,"No.");

SalutationFormula.TESTFIELD(Salutation);

CASE SalutationFormula."Name 1" OF
 SalutationFormula."Name 1"::"Job Title":
 NamePart[1] := "Job Title";
 SalutationFormula."Name 1"::"First Name":
 NamePart[1] := "First Name";
 SalutationFormula."Name 1"::"Middle Name":
 NamePart[1] := "Middle Name";
 SalutationFormula."Name 1"::Surname:
 NamePart[1] := Surname;
 SalutationFormula."Name 1"::Initials:
 NamePart[1] := Initials;
 SalutationFormula."Name 1"::"Company Name":
 NamePart[1] := "Company Name";
END;

CASE SalutationFormula."Name 2" OF
 ...
END;

Chapter 4

[169]

...
FOR i := 1 TO 5 DO
 IF NamePart[i] = '' THEN BEGIN
 SubStr := '%' + FORMAT(i) + ' ';
 IF STRPOS(SalutationFormula.Salutation,SubStr) > 0 THEN
 SalutationFormula.Salutation :=
 DELSTR(SalutationFormula.Salutation,STRPOS(SalutationFormula.
Salutation,SubStr),3);
 END;

EXIT(STRSUBSTNO(SalutationFormula.Salutation,NamePart[1],
 NamePart[2],NamePart[3],NamePart[4],NamePart[5]))

The function uses two parameters: SalutationType and LanguageCode. With these
values and the salutation code of the contact, it checks if there is a valid formula.
Since we only added a new option, the code still works because at database level, the
Option field is translated to an Integer.

For documentation purposes, we could also implement the new
option value in this function. The downside of that would be that
we do a modification that is not technically necessary, but needs
to be maintained and upgraded.

Depending on the order of the formula, the necessary name fields are combined and
used as the return value of the function.

Set up the salutation formula
If we want to use our new Salutation formula, we need to set it up first. We will do this
for F-MAR to test it with CT100191 Megan Sherman from American Wood Exports.

Relationship Management

[170]

Test the solution
After adding the new formula, we print a cover sheet from the Contact Card using the
Contact Cover Sheet option from the Report actions. The result will look like this:

Customer and vendor numbering
Another common requirement from end users is to maintain the same number
when creating a customer or vendor from a contact.

This can be done by adding one line of code to the CreateCustomer function in
the Contact table.

CreateCustomer()
...

CLEAR(Cust);
Cust.SetInsertFromContact(TRUE);
//* Maintain Contact No. >>>
Cust."No." := "No.";
//* Maintain Contact No. <<<
Cust.INSERT(TRUE);
Cust.SetInsertFromContact(FALSE);

This works, because by populating the No. field the number series functionality in
the OnInsert trigger does not start.

OnInsert()
IF "No." = '' THEN BEGIN
 SalesSetup.GET;
 SalesSetup.TESTFIELD("Customer Nos.");
 NoSeriesMgt.InitSeries(SalesSetup."Customer Nos.",
 xRec."No. Series",0D,"No.","No. Series");
END;
...

Chapter 4

[171]

Disabling direct creation of customers and vendors
When using this option, it should be disabled to directly create a customer or vendor.
This can be done easily by removing the No. series from the Sales & Receivables
setup and Purchases & Payables setup. This results in a runtime error message when
creating the customer or vendor.

Sharing contact information across
companies
When more companies have their administration in Microsoft Dynamics NAV, they
most often have the same owner or group of owners that want their Contact data to
span across their companies.

This can be achieved by sharing some tables over all the companies and changing
some business logic.

Share tables
By default, Microsoft Dynamics NAV will create a separate instance of each table
for each company. This can be changed with the DataPerCompany property in the
Table Designer.

The following tables should be shared across the database since they contain the
main contact information and the link to the customer and vendor data.

•	 5050 - Contact
•	 5051 - Contact Alt. Address

Relationship Management

[172]

•	 5052 - Contact Alt. Addr. Date Range
•	 5053 - Business Relation
•	 5054 - Contact Business Relation

This will allow us to reuse contact data in all companies. Sharing other tables is
optional, but sharing them might be useful in some cases.

By sharing the Contact Profile Answer table other companies can see how a
customer is doing within the group.

The Segment tables could be shared in order to cross company slice and dice
information. This also requires the Criteria tables to be shared.

When you share the profile or segment tables, the reports that calculate
them should be started for each company individually in the database.

Campaigns and Opportunities should not be shared since that interfaces with the
ERP system. Never share financial tables like the value entry or document tables.

Interaction log entries could be shared but we should realize that most table relations
to sales and purchase documents will not work when we are in the wrong company.

Business relations
When sharing contacts across companies, we are interested to see in which company
the contacts are customers and vendors. We also want to maintain those tables when
the contact information changes.

This means that besides sharing the Contact Business Relation table, we should
also add a field indicating the company and add this field to the primary key.

Chapter 4

[173]

C/AL code modifications
The functions that created the customer and vendor records that we saw in
chapter 2, should also be checked.

For example, the function CreateCustomer in the Contact table.

CreateCustomer()
...

ContBusRel.RESET;
ContBusRel.SETRANGE("Contact No.","No.");
ContBusRel.SETRANGE("Link to Table",ContBusRel."Link to
Table"::Customer);
//* Company Sharing >>>
ContBusRel.SETRANGE(Company, COMPANYNAME);
//* Company Sharing <<<
IF ContBusRel.FIND('-') THEN
 ERROR(
 Text019,

...

And a little bit further up in the C/AL code:

ContBusRel."Contact No." := ContComp."No.";
ContBusRel."Business Relation Code" := RMSetup."Bus. Rel. Code for
Customers";
ContBusRel."Link to Table" := ContBusRel."Link to Table"::Customer;
//* Company Sharing >>>
ContBusRel.Company := COMPANYNAME;

Relationship Management

[174]

//* Company Sharing <<<
ContBusRel."No." := Cust."No.";
ContBusRel.INSERT(TRUE);

We should also check the code that maintains data integrity which is the
CustVendBank-Update Codeunit (5055) that we discussed in chapter 2.

UpdateCustomer()
WITH Cust DO BEGIN
//* Company Sharing >>>
 CHANGECOMPANY(COMPANYNAME);
//* Company Sharing <<<
 GET(ContBusRel."No.");
 ...
END;

Here we use the CHANGECOMPANY C/AL command to change the company for a
specific instance of a variable.

There are more functions impacted such as the UpdateQuotes
function in the Contact table. Analyze your database before
implementing this feature.

Number series
The last change we should do for a properly working system is create a new instance
of the number series functionality.

This can be achieved relatively easily since the number series are an isolated set
of objects.

In the Object Designer, we should filter on this set of objects and export them to
a .txt file.

•	 Table (308) : No. Series
•	 Table (309) : No. Series Line
•	 Table (310) : No. Series Relationship
•	 Report (21) : No. Series
•	 Report (22) : No. Series Check
•	 Codeunit (396) : NoSeriesManagement
•	 Page (456) : No. Series
•	 Page (457) : No. Series Lines
•	 Page (458) : No. Series Relationships

Chapter 4

[175]

In this file, we can renumber them and rename them so we get something like this:

•	 Table (123456721) : No. Series (Shared)
•	 Table (123456722) : No. Series Line (Shared)
•	 Table (123456723) : No. Series Rel. (Shared)
•	 Report (123456721) : No. Series (Shared)
•	 Report (123456722) : No. Series Check (Shared)
•	 Codeunit (123456721) : NoSeriesManagement (Shared)
•	 Page (123456721) : No. Series (Shared)
•	 Page (123456722) : No. Series Lines (Shared)
•	 Page (123456723) : No. Series Rel. (Shared)

Where the tables should be DataPerCompany No.

Final steps
When we have shared number series functionality, we can implement this in the
existing objects.

1. The field Contact Nos. in the marketing setup table should change the table
relation to the shared No. series table as well as the No. series field in the
contact table.

2. The variable NoSeriesMgt in the contact table should move from
NoSeriesManagement to SharedNoSeriesMgt.

Alternative approaches
Sharing contact information across companies is a change that has been implemented
by many companies and can be considered safe. Other tables in Microsoft Dynamics
NAV are more difficult to share because of financial or operational information.

A typical example in the standard application is the Item table (27). This contains
a field Cost is Adjusted (29) that is used when running Cost Adjustment. If this table
would be shared across all companies we would create a major issue with running
this function.

We will discuss Cost Adjustment in Chapter 5, Production.

Relationship Management

[176]

For this issue there are two commonly implemented solutions:

•	 Shared Master Items: We can create a new table called Master Item. This
table is shared across all companies and contains the information we share
like descriptions and pricing. When the data in this table is changed, it
should enable a mechanism comparable to the CustVendBank-Update
Codeunit (5055) that updates the Items in the other companies using the
CHANGECOMPANY C/AL function.

•	 External Synchronization: We could implement something that will export
the changes done in company A to an XML file. An application server can
run in the background and read this XML file and implement these changes
to other companies in the database or even other databases.

The first solution with Master Items looks a lot like the way Contacts work in the
standard application and is a perfect example of Look, Learn, and Love using proven
data structures in customized solutions.

Add contacts to segments
The last change we are implementing in Relationship Management is adding a table
to the Add Contacts functionality in Segments.

We have seen that it is already complete but a vertical solution might want to
integrate its ledger entry tables here.

For this example, we will make it possible to filter in the Squash Ledger Entries from
the example application in Chapter 2.

Expand report
The first step is to add the Squash Ledger Entries as a DataItem to the Add Contacts
report (5198). We will copy the functionality from the Value Entries as this is
comparable functionality.

Always find comparable standard application functionality to learn
from. Never just copy and paste this but learn how it's done and apply
your own knowledge.

Chapter 4

[177]

We cannot copy and paste the table relation from the other Contact Business
Relation DataItem since squash players are contact persons, not companies.

Our table relation should be Contact No.=FIELD(No.).

The code in our Contact Business Relation table tells us we need two new variables
of type Boolean— SquashFilters and SkipSquashLedgerEntry.

ContactBusinessRelation2 - OnPreDataItem()
IF ContactOK AND ((GETFILTERS<>'') OR SquashFilters) THEN
 ContactOK := FALSE
ELSE
 CurrReport.BREAK;

ContactBusinessRelation2 - OnAfterGetRecord()
SkipSquashLedgerEntry := FALSE;
IF NOT SquashFilters THEN BEGIN
 ContactOK := TRUE;
 SkipSquashLedgerEntry := TRUE;
 CurrReport.BREAK;
END;

The SquashFilters is determined in the OnPreReport trigger.

Report - OnPreReport()
ItemFilters := "Value Entry".HASFILTER;

//* Squash >>>
SquashFilters := "Squash Ledger Entry".HASFILTER;
//* Squash <<<
...

Relationship Management

[178]

The code in the Squash Ledger Entry DataItem should look like this:

Squash Ledger Entry - OnPreDataItem()
IF SkipSquashLedgerEntry THEN
 CurrReport.BREAK;

CASE ContactBusinessRelation2."Link to Table" OF
 ContactBusinessRelation2."Link to Table"::"Squash Player":
 BEGIN
 SETRANGE("Squash Player No.",
 ContactBusinessRelation2."No.");
 END;
 ELSE
 CurrReport.BREAK;
END;

Squash Ledger Entry - OnAfterGetRecord()
ContactOK := TRUE;

IF ContactOK THEN
 CurrReport.BREAK;

Make sure we filter on our instance of Contact Business Relation and that we filter
on Link to Table Squash player.

The ContactOK indicates that all contact persons connected to this Squash Ledger
Entry will be inserted.

Implement criteria filters
To support the criteria filter functionality we need to make two changes. One to the
Add Contacts report and one to Codeunit SegCriteriaManagement.

In the add contacts report, we add this C/AL code to the OnPreReport trigger. This
will make a call to the SegCriteriaManagement Codeunit (5062).

OnPreReport()
...
SegCriteriaManagement.InsertCriteriaFilter(
 "Segment Header".GETFILTER("No."),DATABASE::"Value Entry",
 "Value Entry".GETFILTERS,"Value Entry".GETVIEW(FALSE));
//* Squash >>>
SegCriteriaManagement.InsertCriteriaFilter(
 "Segment Header".GETFILTER("No."),
 DATABASE::"Squash Ledger Entry",
 "Squash Ledger Entry".GETFILTERS,
 "Squash Ledger Entry".GETVIEW(FALSE));
//* Squash <<<

Chapter 4

[179]

In the SegCriteriaManagement Codeunit we add this code to the
SegCriteriaFilter function which will require a new local variable for Squash
Ledger Entry.

SegCriteriaFilter()
...

CASE TableNo OF
 ...
//* Squash Ledger Entry >>>
 DATABASE::"Squash Ledger Entry":
 BEGIN
 SquashLedgEntry.SETVIEW(View);
 EXIT(SquashLedgEntry.GETFILTERS);
 END;
//* Squash Ledger Entry <<<
END;

Test solution
Now we can test the solution by trying to add all Squash Players of type Member
to a Segment.

Relationship Management

[180]

The result is a segment with the required squash players:

This change also needs to be implemented to the reduce/refine
functionality which works similar to the add contacts report.

Summary
In this chapter, we took a deep dive into the Microsoft Dynamics NAV Relationship
Management functionality. We learned how it is integrated with the ERP part of
the system.

Relationship management can be very useful to analyze sales data. With profiles,
we can filter on turnover and profit figures and use them in segments.

Interaction Log Entries allow us to keep track of all the contact moments with the
people we do business with.

Outlook integration can be used for sales people to work remotely and synchronize
with the system.

Chapter 4

[181]

Campaigns and opportunities help us to keep track of the quote process and improve
our sales working and make it more efficient.

Lastly, we looked at some common requirements for changing the relationship
management system to our company's specific requirements.

In the next chapters, we will look at the ERP part of Microsoft Dynamics NAV
starting with the Production process in Chapter 5 and Trade in Chapter 6.

Production
The previous chapters introduced the key concepts of Microsoft Dynamics NAV as
well as the details of the financial application and CRM. These horizontal modules
can be implemented in most industries without big structural changes.

In this chapter, we will discuss three ways of implementing production in Microsoft
Dynamics NAV using standard functionality and customized features.

We'll discuss Item Tracking and Item Costing and what procedures and objects are
used to get this working correctly in the application.

For Manufacturing, we will discuss the general concepts and data model rather than
go into details of each and every functional possibility.

We will also discuss Kitting which is only available in a limited number of countries
such as North America, France, and Australia but will most likely be moved to the
worldwide version in future versions.

At the end of this chapter, we will look at the five different vertical industries and
highlight two specific features of these industries that are not implemented in the
standard product and discuss how the problems could be solved.

After reading this chapter, you will have a better understanding about the
concepts of production in Microsoft Dynamics NAV, how this fits together with
the rest of the application and when to think out of the box if it does not immediately
fit your process.

Production

[184]

What is production?
Production is creating a new product using raw materials or prefabricated items
and resources.

History of production
Production as we know it today started centuries before the industrial revolution
with craftsmen and assistants creating products using raw materials produced by
nature and farmers. Today this method of production still exists for many luxury
items such as custom made furniture or clothes.

The industrial revolution changed production into manufacturing with the
introduction of machines and mass production. This allowed production to grow
because it was less dependent on craftsmen and manual labor.

The introduction of computers in manufacturing companies allows the production
of more sophisticated items and has made manufacturing more flexible.

Before implementing Microsoft Dynamics NAV for production companies, it is
crucial to understand which level of production is being used in your company.

Production methodologies
In this chapter, we will differentiate three production methodologies:

•	 Assembling production: When production is combining items into one new
item without changing the items or scrap, we will refer to it as assembling.

•	 Manufactured production: This is the most complex production method to be
implemented in Microsoft Dynamics NAV. Raw materials are combined into
one or more products leaving scrap.

•	 Specialized production: These are often one off items or items produced
in small numbers. The system should support the basics of the production
process but should still be flexible enough to fit the company.

Chapter 5

[185]

Raw materials
Each product we consume starts out as raw materials such as cotton, iron ore, logs
and oil that is then processed to be used in a production process. Other raw materials
include water and air or fruits and vegetables. All raw materials are produced by
Mother Nature. Some production of raw materials can be influenced by humans such
as logs, cotton, fruits, and vegetables. Other raw materials are more limited, such as
iron ore, oil, and water.

Basic production principles
Before going into Microsoft Dynamics NAV, we will discuss some terminology that
is important to understand as a basis for the concepts of production in ERP.

Bill of materials
The bill of materials defines what components are used to assemble or manufacture
one item. The components in the Bill of Materials are also items, so before creating a
new Bill of Materials all component items must be created in the system.

In Microsoft Dynamics NAV there are two separate Bill of Material
definitions. One is for assembling and the other is for manufacturing.

MRP
Material requirements planning was introduced in the 1960's as a calculation
method for production scheduling and was quickly replaced by Manufacturing
resource planning or MRP II.

While ERP replaces MRP, MRP is still a crucial part of ERP Applications.

Microsoft Dynamics NAV has a built-in MRP algorithm but also allows developers
to create their own algorithms using the built in data model.

MRP analyzes dependant demand, that is, demand that comes from production
orders for components.

Production

[186]

GIGO
The biggest risk in running MRP algorithms is the Garbage In Garbage Out principle.
To create a good plan, the data in the system must be absolutely correct or the
planning will contain errors.

If, for example, the shipment dates in the Sales Orders are not entered correctly, the
planning algorithm has no chance of giving correct results. The garbage in (wrong
dates) will result in garbage out (wrong planning).

MPS
Master Production Schedule (MPS) is the term used for the production planning
and scheduling. A MPS is used for decision making linking supply and demand.
It analyzes independent demand, that is, demand that comes from Sales Orders,
Service Orders, and the Production Forecast.

Item costing
For manufacturing companies, it is crucial to be able to calculate real item costing
and profitability. The cost of an item consists of all the components it was created
from as well as the production time and the cost of any machinery used.

In production companies, high costs are incurred before an item can even be
manufactured and sold. Machines need to be purchased and installed and new
manufacturing plants may need to be built.

Item tracking
Item tracking is a relatively new concept that was introduced by the need to be able
to trace back an item to its original production batch in the supply chain. Whenever
something is wrong with a specific item it can be interesting to see if other items that
were produced in the same batch have the same issue. A recall of all items in that
batch may be required.

Quality control
During the production process, and especially at the end, quality control is a crucial
stage. Items can be rejected completely or may require extra handling.

Chapter 5

[187]

In quality control, items are checked for mistakes. The way this is done depends on
the production process. In the automobile industry, all cars are checked individually
while in the chemical industry parts of batches are taken out and checked assuming
that the rest of the batch has the same quality.

Quality control is always at the end of the production process but can also be in
between each of the main production processes.

Sometimes, the item that is manufactured depends on the result of quality control.
In this case, each level of quality is represented by a special item number.

Energy and waste
When manufacturing an item, the obvious components are the items in the bill of
materials. Using less energy and producing less waste material is becoming more
crucial in this process as our environment is becoming more and more vulnerable
and recycling is becoming increasingly important, these components have a bigger
pressure on production cost and planning.

APICS
To learn more about Production it is interesting to study the materials provided by
APICS, The Association for Operations Management. APICS is the organization
that is recognized worldwide as the leading authority on manufacturing standards,
similar to how the W3C is considered the authority on XML standards.

More information about APICS can be found on
http://www.apics.org/.

Getting started
Let's walk through two scripts to generate a new item with a Bill of Materials.
One for an assembling process, the other for Manufacturing.

We will set up both Item Costing and Item Tracking for these products.

The examples are created using a CRONUS W1 Microsoft Dynamics NAV
2009 Service Pack 1 database without changes.

Production

[188]

Assembling
In our company, we want to start producing office chairs. These chairs consist of five
wheels, a pedestal, a seat, and two arm rests. We will create these four components
as a new item and one new item for the end product.

All the items will have a different costing method to demonstrate the effect of cost
changes. The end product will support serial number item tracking with a one year
warranty period.

When using the BOM Journal it is not possible to use Item
Tracking for the components, only for the end product.

The table and posting schema
Before going into the application, we will have a look at how this process is solved in
Microsoft Dynamics NAV.

It starts with creating the components and end products as items in the database
and connecting them using the BOM Component table. A BOM Component can also
contain Resources.

Chapter 5

[189]

If the components are in stock we can use the BOM Journal to create the products.
When posting the BOM Journal the components are consumed and the product
is created.

During this process, the system will create BOM Ledger Entries, Resource Ledger
Entries, Item Ledger Entries, and Value Entries.

The Value Entries can be posted on the General Ledger using the Inventory Posting
to G/L Routine either manual or real time. This completes the process.

The items
For this example, we will need to create five items, four components, and one
end product.

We will assign an estimated Unit Cost to the components and a Unit Price to the
end product.

No. Description Base UOM Unit Cost Unit Price Costing
CHAPTER5-C1 Chapter 5 | Wheel PCS 5 FIFO

CHAPTER5-C2 Chapter 5 | Pedestal PCS 60 LIFO

CHAPTER5-C3 Chapter 5 | Seat PCS 120 Average

CHAPTER5-C4 Chapter 5 | Arm Rest PCS 35 Standard

CHAPTER5-P1 Chapter 5 | Office Chair PCS 500 Specific

In a real implementation, we would never set up a bill of materials
with so many different costing methods for each item. This is strictly
for the purpose of explaining what each costing method does and that
Microsoft Dynamics NAV is technically capable of dealing with this.

Item costing
We will assign a different costing method to each Item. Let's briefly discuss the
available costing methods in Microsoft Dynamics NAV.

•	 FIFO: First in First out. The cost of the oldest Item Ledger Entry is used.
•	 LIFO: Last in First out. The cost of the newest Item Ledger Entry is used.

Production

[190]

When using FIFO or LIFO, the cost is applied within the Lot No. if Item
Tracking is used with Lot Numbering. That is, the cost associated with the
specific Lot No. is used.

•	 Average: Each time we purchase items the total costs are divided by the total
quantity. The result is used as Unit Cost.

•	 Standard: The user will define the Unit Cost manually. All deviations in
purchase pricing are posted as profit or loss when invoicing.

•	 Specific: This is always combined with Item Tracking and Serial Numbers.
Each Serial Number uses its own unique Unit Cost.

The Costing Methods are NOT related to the warehouse picking method
but only apply to financial costing calculations.

Item tracking
All our chairs will get a serial number with a one year warranty period. This enables
us to track all individual chairs when they come back to the factory with issues.

Item tracking in Microsoft Dynamics NAV can be done both on individual Serial
Numbers and on Lot numbers for a group of items.

Chapter 5

[191]

The Serial Numbers and Lot Numbers are fields in the Item Ledger Entry table (32).
The consequence of this will be that for each serial number or lot number an individual
record will be created in the table. When using serial numbers, this can lead to a
massive increase in table size.

The lot numbers and item numbers are saved in the Reservation Entry table (337)
during the document entry process. A reservation entry can be assigned to any
table in Microsoft Dynamics NAV, for example, Sales Lines, Item Journal Lines,
or Production Order.

Then a document is posted and the Item Ledger Entry is created. The Reservation
Entry is removed and replaced by a Tracking Specification record that has the
same value in the Entry No. field as the corresponding Item Ledger Entry.

A Reservation Entry used for Item Tracking should not be confused with
normal Reservation Entries in the Sales and Purchase process.

The process of Item tracking in Microsoft Dynamics NAV works as shown in the
following schema:

Technically, Item Tracking in Microsoft Dynamics NAV is very complex and should
only be changed by experienced developers after careful analysis.

We will discuss the Reservation process in more detail in Chapter 6, Trade.

Production

[192]

The bill of materials
When the items are created, the Costing Method is defined and Item Tracking is set
up, the next step is to create the bill of materials for the Office Chair. This can be
done using the Bill of Materials option in the Assembly List in the Item List or Card
page.

The Bill of Materials defines the component items and resources that will be used to
create one new end product.

We set up the components as discussed earlier using five wheels, one pedestal and
seat, and two arm rests.

Chapter 5

[193]

Calculate standard cost
The components we selected for the Bill of Materials have a Unit Cost. Together
these items can determine the Unit Cost of our end product.

We can calculate the Standard Cost of the Office Chair by selecting Calc. Standard
Cost in the same Assembly List we used for the Bill of Materials.

The name Calc. Standard Cost in the calculation option is not
to be confused with the costing method. This function should
be executed for all costing methods.

The system asks if we want to calculate Single level or All levels. Since our example
BOM has only one level, we select Single level.

Single level means that only the first level of the BOM is checked. If an item in the
BOM has a BOM of itself, the value of that item is not recalculated.

The Standard Cost is now calculated using the Unit Cost of the components and the
Overhead rate and Indirect Cost %. We will not use the latter in our example.

((5*5) + (1*60) + (1*120) + (2*35)) = 275

Production

[194]

Creating the inventory
Before we can assemble the chairs we need to purchase the components. For this, we
will create a purchase order with 8 purchase lines. We will purchase the components
for other prices than the unit cost in the system allowing us to show what the impacts
of the costing methods are.

The purchase order will be received and invoiced.

If the Purchase Order is only received and not invoiced, the example
might not work because Expected Cost posting to G/L is not activated
in the CRONUS database.

Adjusting cost item entries
The Purchase Order we just created, received, and invoiced has a different Unit
Cost compared to the Unit Cost we initially set up in our Items.

Depending on the Costing Method of the Items this will have an impact on the
Unit Cost.

When we take a new look at the Unit Cost of the Items we created, we can see that
this was impacted by the purchase order.

However, the values are not correct. The system only adopts the first change of
Unit Cost.

Chapter 5

[195]

To correct this we need to run the Adjust Cost Item Entries (Report 795) batch. This
will determine the new Unit Cost based on the Costing Method.

The Unit Cost for FIFO, LIFO, and Average has been recalculated whist the Standard
Cost has not been impacted by the transactions.

The Adjust Cost Item Entries report should be scheduled to run
periodically in your database. Even if the database is set to use
Expected Cost Posting and Auto Cost Posting.

Posting inventory cost to G/L
Microsoft Dynamics NAV supports posting the Inventory Cost to the General
Ledger. This enables accountants to have a single point for data analysis rather
than printing an inventory report and using the figures manually for reporting to
the management.

This can be done using the Post Inventory Cost to G/L function (report 1002).

Production

[196]

Check, check, and double check
To check if the Value Entries and the General Ledger and synchronized, we can run
Inventory Valuation (Report 1001). This will show us the Inventory Value versus the
Amount posted to the General Ledger.

Recalculating standard unit cost
The Standard Unit Cost we calculated for our Office chair was 275. This was based
on our assumption of purchase prices. Now that we have purchased and received
the components we can calculate a new Unit Cost based on the real prices.

In this example, the price will still be 275 since the total price of all purchased items
is 550. The inventory allows us to make two chairs with these materials.

(550 / 2) = 275

With this calculation method it is possible to check the results of
the Calculate Unit Cost algorithm.

BOM journal
Now that we have the components on stock and the Unit Cost correct we can create a
chair. We will do this using the BOM Journal.

In the BOM Journal, we need to create one line for each Item we want to assemble.
The components are automatically used when posting the Journal Lines.

Chapter 5

[197]

We will use the Purchasing Agent Role Center (9007) for this.

After creating a Journal Line for the Office Chair and trying to Post the Journal we
will receive an error message because we first need to specify the Serial Numbers.

Serial Numbers and Lot Numbers can be set up using the Item Tracking Lines
option. This opens the Item Tracking Line page (6510). This page is able to show
both the Reservation Entries during the registration process as well as the Tracking
Specification if the Item Ledger entry is already created. The latter is not possible
in a Journal, only when using Documents.

Production

[198]

We will manually create a new Serial Number. Microsoft Dynamics NAV also
supports system generated Serial Numbers.

We can now post this BOM Journal and will have one office chair on stock with a
Serial Number.

Check costing (again)
Creating the office chair changed the inventory of the component items and
therefore might have affected the Costing of our Items.

However, when we now check our Items, the Unit Cost has not changed.

Even so, with current inventory the Unit Cost might be different. Remember we
used 5 wheels using FIFO costing and one seat using LIFO costing 70.

Let's run Adjust Cost Entries using the Posting to G/L option.

Chapter 5

[199]

The Unit Cost has changed and now shows that have used the first 5 wheels using
FIFO leaving the other 5 wheels in the inventory for 5. We used the last seat using
LIFO leaving the first seat in inventory for 70.

When we run the Inventory Valuation we can see that producing the first chair
actually cost 267,50 but we posted 275.

Recalculating unit cost (again)
When we run Calculate Unit Cost for our office Chair, we can see that the new cost
will be 282,50.

(5*5) + (1*70) + (1* 117,50) + (2*35) = 282,50

Together with the first chair worth 267,50 we match our purchase invoice worth 550.

Production

[200]

Standard cost worksheet
We need to correct the cost of the first chair which is currently on inventory to have a
correct inventory value. We can do this using the Standard Cost Worksheet.

This worksheet allows us to correct old Value Entries by creating an entry in the Item
Revaluation Journal when we select the option Implement Standard Cost Changes.

Chapter 5

[201]

Item revaluation journal
The last step is to post the Item Revaluation Journal and run the Post Inventory Cost
to G/L routine.

We also need to run the Calculate Standard Cost for the Office Chair since
this batch will reset the Unit Cost to 267,50.

The result
When we now run the Inventory Valuation Report we can see that the Office Chair
on stock is worth 267,50 and the remaining inventory is 282,50

Production

[202]

Item costing in ten steps
All the steps we performed in the example can be summarized in this ten step
process diagram.

1. We start by creating new Items and setting up the Costing Method.
2. Then, we create the Bill of Materials for the production item.
3. Run the Calculate Standard Cost routine to have a Unit Cost for the

production Item.
4. Purchase the necessary items for production.
5. Run the Adjust Cost Item Entries routine.
6. Synchronize the Value entries with the G/L Entries using the Post Inventory

Cost to G/L routine.
7. Recalculate the Standard Cost if desired.
8. Create a BOM Journal Line and post the Journal.
9. Run the Standard Cost Worksheet to change the Standard Cost.
10. Run the Item Revaluation Journal to implement the Standard Cost for old

Value Entries.

Chapter 5

[203]

Manufacturing
The Bill of Materials Journal has been part of the Microsoft Dynamics NAV product
since the introduction of the Windows version in 1995 and enables us to create a new
item out of other items.

In version 2.01, Navision introduced the first version of Navision Manufacturing.
This was a separate product from Navision Financials and only available for
certified partners because of its complexity.

With version 3.00, Manufacturing became part of the standard Navision Attain
package and was available for all partners.

Manufacturing offers Microsoft Dynamics NAV users much more functionality
than just creating an item from a Bill of Materials. Production orders can be
scheduled using work centers, machine centers, tools, and a capacity calendar.

The items can be scheduled for production using either a Make-To-Stock or a
Make-To-Order policy in a Planning run.

The system calculates the required BOM components and can create purchase
orders if the inventory is insufficient using a complex demand and supply process.

The table and posting schema
If we put this into the table and posting schema it looks like this:

Production

[204]

The Production Order is the center of the process which is created by items having a
Production BOM that are either on Sales Order or low on inventory.

The Planning Run populates the Planning Worksheet which is based on the
Requisition Line table (246). The Planning worksheet can be used to create the
production orders and purchase orders.

During the production process, the consumption journal is used to record the use
of the child items from Production BOM and the Output journal creates the new
item once it is finished. Alternatively, these steps can be combined in the Production
Journal.

Let's demonstrate this with the next example using the Production Planner role
center (9010).

We will create mahogany English desks using raw materials, machines, and resources.

The items, machines, and work centers
For the desks we need mahogany wood, green leather, glue, lacquer, and handles.
To create one desk, the carpenter needs four days and one carpentry unit with tools.
The painter needs one day to varnish the desk in the paint booth and the assembly
department needs four hours to wrap the components and put them into boxes.

Items

No. Description
Base
UOM

Replenishment
System

Unit
Cost

Unit
Price

Manufacturing
Policy

CHAPTER5-P1
Mahogany
English Desk PCS Prod. Order 286,25 999 Make-to-Order

CHAPTER5-C1 Mahogany Log PCS Purchase 100 -
CHAPTER5-C2 Green Leather PCS Purchase 60 -
CHAPTER5-C3 Glue CAN Purchase 15 -

CHAPTER5-C4
Mahogany
Lacquer CAN Purchase 25 -

CHAPTER5-C5
English Desk
Handles PCS Purchase 10 -

Chapter 5

[205]

Machine centers

No. Name Work Center No. Capacity Efficiency
01-CARP Std. Carpentry Unit w. Tools 400 1 100
02-PAINT Paint Booth 300 1 100
03-PACK Packaging Department 200 1 100

Capacity
The Planning run and the Requisition Worksheets will use capacity if it is defined.
The capacity is defined for each Work Center and Machine Center.

The capacity is stored in the Calendar Entries which are created using Codeunit
CalendarManagement (99000755) and reports Calculate Work Center Calendar
(99001046) and Calc. Machine Center Calendar (99001045). Capacity is based on the
Concurrent Capacity, from either the Machine or Work Center, and the assigned
Shop calendar.

Just like the Interaction Log Entries, the Calendar Entries are directly inserted
instead of going through a journal first.

When properly configured, the Planning Worksheet will calculate the starting and
ending dates for the production order and each operation in order to meet the
Shipment Date on the Sales Order Line.

Production

[206]

Production bill of materials
Setting up the Production Bill of Materials for manufacturing is not much different
from the BOM Journal functionality but it contains extra functionality.

The Production BOM uses its own header record with a number series, description,
and search description. The Status field is used to determine if the product is new,
certified, under development, or closed. Together with the versioning it enables us to
maintain multiple BOMs during the product's lifecycle.

The components of the Bill of Materials are saved as lines and support using Scrap.
The scrap % is calculated when running the MRP and calculating the Unit Cost.

Routing
The Routing Setup determines how long it will take to produce one item and which
Work Centers and Machine Centers are used in the process.

Chapter 5

[207]

The Routing Setup allows for advanced features such as parallel and serial
planning, setup time, and so on. For our example, we will keep things simple
and only use the Run Time.

Testing and low level code
We are now almost ready to start testing our Manufacturing Item. We have set up
the items and machine centers, calculated the calendar entries, and set up a routing.

The final step in the process is to calculate the Low Level Code. This field, which is
stored both in the Item and Production BOM table, determines how low the Item is
in the BOM ranking. Low Level Code zero means this is a Parent Item and one or
higher is a child item or a child of a child item.

The maximum value of the Low Level Code can be 50 but
in reality this will be very difficult to work with and bad
for system performance.

If you received an error stating that you have exceeded 50 levels check the
Production BOMs to ensure that there are no circular references. It is possible
to have a parent item consume a child item that consumes the parent.

The Low Level Codes can be calculated automatically or manually. For automatic
calculation, the Dynamic Low Level Code should be activated.

Production

[208]

Due to NAV's ability to create a Production BOM before it is attached to an Item, the
Dynamic Low Level Code is not always accurate. Prior to a planning run, it is good
practice to run the Calculate Low Level Code (Codeunit 99000793).

Activating Dynamic Low Level Code can however impact the performance of your
system, so for most installations, it is preferable to periodically calculate this using
Codeunit Calc. Low-level code (99000853).

Simulation, sales orders, or inventory
There are three ways to create a production order in Microsoft Dynamics NAV. The
easiest way is to manually enter them one-by-one. This can even be a simulation
production order to test if everything is set up as required.

Manual order entry is very time consuming and not often used by manufacturing
companies. Most of them use MRP programs to plan the orders. When this is done
using an external application, the interface will then create the production orders.

The MRP algorithm in Microsoft Dynamics NAV supports two policies:
Make-to-stock and make-to-order.

Make-to-stock
Also called "Build to Stock", this is often used for high volume items which are sold
to trading companies.

When this Manufacturing Policy is used, the Reordering Policy should be used.

Reordering Policies will be discussed in Chapter 6, Trade.

Chapter 5

[209]

Make-to-order
This is often used in demand driven items such as automobiles. Keeping these
items in inventory is very expensive. The manufacturing process is started after
the item is sold.

However, most companies that use Make-to-order have reserved time slots where
these items can be scheduled so the production capacity is already reserved but the
item is not yet determined.

When using Make-to-order, the MRP run will create production orders for all sales
orders. We will use this Manufacturing policy in our example.

The sales order
For our example, we need a sales order for 1 or more English Desks.

Be careful when picking a location since this will be the location where
the desk will be manufactured.

Calculating MPS and MRP
The Planning run in Microsoft Dynamics NAV creates lines in the Requisition or
Planning Worksheets. This Worksheet Structure is important in the Sales/Purchase/
Production process. This worksheet can create purchase orders and production
orders for sales orders.

Production

[210]

Requisition versus planning versus subcontracting
worksheets
The Requisition Worksheet can show different user interfaces (Forms or Pages)
allowing users to do different tasks.

The Requisition Worksheet does not have a general Post Line routine like the other
journals. Each worksheet type uses another process.

This schema shows how the Requisition process ties together:

The Trade section will be discussed in Chapter 6. In this chapter, we will focus on
the Planning (MPS & MRP) process and the Manufacturing part.

Chapter 5

[211]

The Requisition Worksheet process allows us to create our own process
to prepare data using custom settings to generate the worksheet lines and
even to build our own planning algorithm in a new C/AL object that will
create Requisition lines.

Inventory profile offsetting
The actual heart of the MRP calculation in Microsoft Dynamics NAV is Codeunit
Inventory Profile Offsetting (99000854) which is called from Codeunit Calc. Item
Plan - Plan Wksh. (5431) in our schema.

This Codeunit is not easy to understand and should only be changed by specialized
developers after careful analysis.

The process uses the Inventory Profile buffer table during the calculation to build up
information and starts with the function CalculatePlanFromWorksheet.

•	 InitVariables: This function is used to clear and initialize the variables
used in this Codeunit.

•	 DemandtoInvProfile: Here the system creates records in the Inventory
Profile table for Sales Orders, Service Orders, Production Orders that may
require items.

•	 ForecastConsumption: If Use Forecast on Locations is used in the
Manufacturing Setup, additional demand lines are created in the Inventory
Profile Buffer based on the Production Forecast.

•	 BlanketOrderConsump: Additional demand is inserted for all Blanket
Sales Orders with a Shipment Date and Outstanding Qty. within the
calculation period.

•	 SupplytoInvProfile: The current inventory, purchase orders, and production
orders are added to the Inventory Profile as possible supply.

Production

[212]

•	 UnfoldItemTracking: If the Item uses Item Tracking, this function makes
sure that lot numbers and serial numbers will match.

In this function, Microsoft developers use a trick that when using
a temporary table with more dimensions the values in both tables
are identical. This blog entry explains how this works. http://
dynamicsuser.net/blogs/mark_brummel/archive/2010/05/05/
tip-27-using-temp-tables-in-arrays.aspx

•	 FindCombination: This function creates temporary Stock Keeping Unit
records for each SKU that requires replenishment. If the Item does not
have any SKU, the system will create a temporary SKU record.

•	 PlanItem: This is where the actual Requisition Lines are created for the Item,
based on the information in the Inventory Profile table and the setup.

•	 CommitTracking: This function saves information stored in temporary
record variables to actual data in the database for Reservation Entries
and Action Messages.

Calculating a plan
Let's run the Planning Worksheet for our English Desk and see what Planning Lines
we get.

Chapter 5

[213]

The MPS & MRP run is started from the Planning Worksheet. We need to enter a
starting date and an ending date. In the CRONUS database, using our example, we
can use the current Workdate.

When the MPS & MRP run is finished we can start the process to Carry Out Action
Message to create the Production order.

Production order workflow
The Production order is now created and ready to be started. The first status is
Planned or Firm Planned. During the planned status Microsoft Dynamics NAV
can automatically change the production order.

Once the production order is released, it can no longer be automatically changed.

Production

[214]

To release a production order, the components need to be available. In our test
scenario this is not yet true since we created new items which are not purchased.

Let's see how we can do this.

Purchase orders
To create the purchase orders, we'll use the Order Planning worksheet, to illustrate
another method of planning. This will create Requisition Lines for the Production
order we just released.

Once the Requisition Lines are created, we need to specify a vendor number in
the Supply From field and then start the Make Orders process to generate the
Purchase Orders.

Chapter 5

[215]

The Purchase Order can be received. This allows us to release the Production Order.

Finishing production
When the Production Order is finished, the end product should be in inventory and
the components should be consumed. This consumption process is called flushing.

This is done using the Consumption journal and Output Journal and can be done
automatically and manually.

Production

[216]

An alternative to the Consumption and Output Journal is the
Production Journal that combines the functionality into one journal.

The Consumption Journal is automatically posted when the Flushing Method in the
Item Card is set to Forward, Backward or Pick + Forward, Pick + Backward.

When using Forward, the Consumption Journal is posted when the Production
order is released, Backward will post when the Production order is set to finished.
Pick + Forward and Pick + Backward can be used in combination with Warehouse
Management Locations.

Specialized production
The last production methodology we discussed in the beginning of the chapter is
Specialized Production.

These are items produced in small numbers or items which have very different
specifications each time they go into production.

For these companies, creating a Bill of Material each time an item changes is just
too much work compared to the extra information they would get.

Jobs
Still these companies want to register their production orders and get a clear view
of their inventory. Most companies doing this kind of production are using the Jobs
functionality of Microsoft Dynamics NAV.

We will discuss this in Chapter 8, Consultancy where we will assemble custom made
computer systems with different components as an example.

Kitting
In Microsoft Dynamics NAV version 5, the North American localized region
introduced a granule called Kitting. Kitting is a term used to describe the sale
of a combination of items (a Kit) as one Item.

The solution can be functionally positioned between the BOM Journal and full
Manufacturing and uses technical components of both. One of the functional
differences between the BOM Journal and Kitting is the support of Setup Resources.

Chapter 5

[217]

The Kitting BOM is defined in the same tables as the Production BOM. This table has
been expanded with a field Type with options Manufacturing and Kitting. It is also
possible in Kitting BOMs to use Resources and Setup Resources.

The posting is done using the BOM Journal table and Posting routine, however the
posting routine has been expanded with the use of a dummy production order which
exists for Kitting.

The Kitting objects can be identified within the numbers 25000 range.

With the introduction of Kitting it is no longer possible to explode
the classic Item BOM Components on a Sales or Purchase document.

Let's look at the table relation and posting model of Kitting.

For reasons of simplicity the Resources and Value Entries have been removed from
this schema. This works exactly the same as shown in the schema for the original
BOM Journal functionality we drafted earlier in this chapter.

Production

[218]

Sales process
Kitting takes place in the Sales process of Microsoft Dynamics NAV. Each Sales
Line table has a corresponding table for kitting.

The Sales Post Codeunit (80) has been changed in order to create the Kit using the
BOM Journal just before the original Item Journal Posting process.

TempJnlLineDim.DELETEALL;
TempDocDim.RESET;
TempDocDim.SETRANGE("Table ID",DATABASE::"Sales Line");
TempDocDim.SETRANGE("Line No.",SalesLine."Line No.");
DimMgt.CopyDocDimToJnlLineDim(TempDocDim,TempJnlLineDim);

IF SalesLine."Build Kit" AND (QtyToBeShipped <> 0) THEN

 PostBOMJnlLine(ItemJnlLine,SalesLine);

OriginalItemJnlLine := ItemJnlLine;
ItemJnlPostLine.RunWithCheck(ItemJnlLine,TempJnlLineDim);

Functionality has also been implemented to move the information stored in table Kit
Sales Line (25001) to the corresponding posted information.

SalesShptLine.INSERT;
IF SalesShptLine."Build Kit" THEN BEGIN
 KitSalesLine.RESET;
 KitSalesLine.SETRANGE("Document Type",SalesLine."Document Type");
 KitSalesLine.SETRANGE("Document No.",SalesLine."Document No.");
 KitSalesLine.SETRANGE("Document Line No.",SalesLine."Line No.");
 IF KitSalesLine.FINDSET THEN
 REPEAT
 KitSalesShptLine.INIT;
 ...
 KitSalesShptLine.INSERT;
 UNTIL KitSalesLine.NEXT = 0;
END;

More information about Kitting can be found in the functional and
technical whitepapers by Microsoft.

Chapter 5

[219]

Kitting in Microsoft Dynamics NAV "7"
In the last statement of directions published by Microsoft it was announced that
kitting will be introduced in the Worldwide version (W1).

This does not necessarily mean that the functionality and technical solution will
be identical.

Vertical industry implementation
Microsoft Dynamics NAV is used in many different vertical industries. Vertical
Industries often require specific features. Rather than trying to implement all these
features in the standard product, Microsoft Dynamics NAV supports the framework
and allows developers to design and create their own vertical features.

For these features the 80/20 rule applies, Microsoft delivers 80% of the framework
which costs 20% of our time to implement. The missing 20% of the functionality is
developed costing 80% of the budgeted time.

In this chapter, we will discuss how Microsoft Dynamics NAV is used for production
in five different vertical industries. For each industry, we will discuss two specific
vertical features and how they could be solved.

Most industries have solid add-on solutions available which are
designed by certified Microsoft Dynamics NAV partners that have
been implemented at multiple sites. It is highly recommended to
look at those add-on solutions instead of reinventing the wheel and
rewrite an add-on that already exists.

Fashion
The general challenge in the Fashion industry is sizes and colors. Each Item can be
produced and sold in sizes ranging from XXS to XXXL and in colors ranging from
pink via orange to green while remaining the same item.

This calls for the creative use of variants which is heavily used by the available
vertical solutions on the market.

Production

[220]

Bill of materials
To use Manufacturing with variants, the Bill of Materials structure should be
changed since this exists by default on item level. However each size uses different
quantities of fabric and the different colors of fabric are often represented by other
item number in the raw materials.

A solution for this might be to move the Bill of Materials from Item level to Stock
Keeping Unit level. An SKU supports Variants for costing and inventory.

Shipping worksheet
Fashion companies produce items for a collection. Customers have the option
to reserve on a collection in order for the production manager to determine how
many to produce. Based on these numbers and an extra safety inventory, the
production orders are created. Once the production orders are finished the company
needs to decide who gets the first items. This can be best described as a reversed
make-to-order mechanism.

To enable this in Microsoft Dynamics NAV, we could create a worksheet that will
create lines for each combination of Production orders and Sales Orders. For each
Sales Order that will be shipped, we could create a Warehouse Pick and Shipment
from the Shipping Worksheet.

We will discuss Stock Keeping Units ,Warehouse Picks, and Shipments
in Chapter 6.

Automotive
In the Automotive industry, Microsoft Dynamics NAV is mostly used by car
manufacturing suppliers. These companies make prefabricated parts out of
raw materials.

Tooling and amortization
In these companies, the Production Part Approval Process (PPAP) process as well
as the tooling amortization is very important as the initial investments in tooling
before the production process starts is high.

To support this, extra functionality needs to be developed for the tooling and BOM
process. For example, the table Routing Tool (table 99000802) can be connected to a
Fixed Asset (table 5600).

Chapter 5

[221]

Item tracking
When something is wrong with a component of a car it is important to be able to
see which other cars have the same components built by the same factory and tools
using the same base materials.

In Microsoft Dynamics NAV it is possible to use a single Lot No. for a component or
an end product and to trace this back. It is not possible to simply move the Lot No. of
the component to the end product or copy information from the component's Lot No.
such as a container no. or a quality code to the end product.

To support this we need to change the Item Tracking process. A good place to
start would be the Item Journal where the Reservation Entry is moved to the
Item Ledger Entry.

Medicines
When used by companies that manufacture medicines, using the Expiration Date for
Lot Numbers correctly is highly important.

Lot numbers and expiration dates
In Microsoft Dynamics NAV expiration dates are defined in the Item Ledger Entries
and the Warehouse Entries.

It is not possible to define a single Expiration date for a Lot. This can be changed by
adding this field to the Lot No. Information table (6505). This table allows companies
to predefine Lot numbers to be used in the production process.

By default, the Expiration Date is calculated based on the Document Date multiplied
with the Expiration Calculation field in the Item table (27).

The Lot No. Information table can be used to save additional information about the
specific production batch.

Quality control
Quality control is important in most production processes but maybe extra
important when dealing with medicines. Usually a small part of a Lot is taken
for quality control.

In Microsoft Dynamics NAV we can define Quality Measures in the Prod. Order
Rtng Qlty Meas. Table (5413). However, these values are only saved as information
for the Production Order.

Production

[222]

To enhance quality control, we could add a document structure where a Quality
Check document is created from a production order. The information should be
saved in the Lot No. Information table.

When a Lot is not having the required quality a workflow should be started.
This workflow will lead the user though a process where decisions can be made.
Sometimes the quality can be improved and the items can still be used. Sometimes
the Item number even depends on the quality of the product.

Quality control is in between the consumption journal and the output journal.
During the final quality check the BOM items are used, but the final item is not
yet available.

Food
In the food industry, everything is about expiration dates and fresh products.
Inventory is never high and the rate of circulation is very high.

Zero inventory
For this reason it should be possible for fresh food companies to Zero the inventory
of certain lot numbers once the expiration date is closing or expired.

This could normally be done using the Physical Inventory Journal. Doing this
manually with Lot Numbers can be quite a job for someone to do every day so for
this vertical solution we could create a function to do this. This function would create
a Item Journal Line (83) with the field Phys. Inventory (56) activated and also create
the Reservation Entry for Tracking and post the line automatically.

Ordering schedules
Fresh food companies use daily production processes that start on scheduled times.
Each day, the factory starts the production process but the production numbers can
be different based on the orders.

This can be done using the make-to-order policy but we need to make sure that
there will be no new sales orders when the calculation process starts.

This can be achieved by creating an order schedule policy. New sales lines can be
created for each item until a certain time, and when the time has elapsed the sales
people will get an error message. This allows the production planner to start the
calculation process at a fixed time each day, knowing the sales orders quantities
can be trusted.

Chapter 5

[223]

Furniture
The furniture industry is a large and very old industry that existed long before the
industrial revolution and introduction of computers.

We can roughly split the furniture industry into two parts. The first part has moved
production to be standardized using size and color matrixes which we can compare
to the Fashion industry. Buying a table or kitchen, the customer can choose from
different sizes and colors. Depending on the number of choices, the products are
either made-to-stock (IKEA) or made-to-order.

The second part consists of furniture manufacturers who still produce custom made
items. A desk or kitchen at these manufacturers can have any size or color. For these
companies, it is next to impossible to create a Bill of Material for each custom item so
they use pre-defined calculations with item categories.

For the examples in this book we will discuss the second category.

Calculations
Companies building custom made furniture need a possibility to calculate the use of
materials and resources, both at item category and real item level. For this, we can
create a calculation module with this data and posting model.

The basic structure of this calculation module is explained in Chapter 8 where we
have combined this into the Jobs functionality of Microsoft Dynamics NAV.

Production

[224]

Inventory
Our furniture company uses a combination of product specific items that are
one-of-a kind and inventory items that are used in most of the products.

These items are combined into the end product and should be consumed when
the product is finished. When the calculation module is integrated with Jobs for
example, it would be possible to flush the components when the Job is completed.
This functionality can be compared to the posting of the Consumption Journal
when a production order is finished.

The inventory items can be updated weekly using the Physical Inventory Journal
and inventory counting. This enables us to use the Requisition Worksheet and
Reordering Policy we will discuss in the next chapter.

Summary
In this chapter, we discussed how three different production methodologies
can be implemented in the Microsoft Dynamics NAV product.

We introduced the concepts of Item Tracking and Item Costing.

We have taken a tour through the Manufacturing process using different
Requisition Worksheets and talked about the solution for MRP.

Finally, we looked at how production can be implemented for different
vertical industries.

In the next chapter, we will take a closer look at the trade process in Microsoft
Dynamics NAV.

Trade
In the previous chapter we discussed how Microsoft Dynamics NAV can help us
to streamline our production process using both the standard application as well
as customized solutions. We talked about five vertical industries and how to fit
the application for them.

In this chapter we will discuss how to use Microsoft Dynamics NAV for these
companies using sales and purchase documents, and how to integrate this with
the built-in Warehouse Management and Reservation processes.

The primary focus of this chapter is how the application is designed, and where to go
to change or enhance the design. Basic knowledge of how to create and process sales
and purchase documents in Microsoft Dynamics NAV is a prerequisite.

We will use examples from the same vertical industries we discussed in the previous
chapters; Automotive, Fashion, Medicines, Food, and Furniture.

After reading this chapter you will have a good understanding of how to implement
Microsoft Dynamics NAV in trading companies.

Trade

[226]

The process
A trading company purchases and sells items without changing them. The main
activities are purchase, storage, packaging, sales, and shipping (as shown in the
following screenshot):

Managing inventory is very important in these companies. Having inventory is
crucial for delivering on time and not having to say "no" to customers.

Wholesale versus retail
Traditionally, trading companies are divided into wholesale and retail companies.
Wholesale companies sell to business and retail companies sell to consumers.
Microsoft Dynamics NAV supports both and from the perspective of design
(table and posting structure) there is not much difference.

The biggest difference between wholesale and retail for the application is the
transaction volume. Where the total turnover of a wholesale company can be much
higher compared to a retailer; the retailer often has more, smaller transactions. It
can be a challenge from an application design perspective to retain a solution that
performs well.

Another issue with high volume transaction systems is traceability of the data.
Whenever something goes wrong it is very important to see where the error
started and how much data was impacted by the mistake. In low transaction
systems it is easier to find this manually.

Sales and purchasing
Traditionally, salespersons are used to working with paper order forms. They would
write down the customer name and address, and the items or services required.

Chapter 6

[227]

In Microsoft Dynamics NAV the paper document is replaced by a sales and purchase
document using a header for the general order information and lines to register the
items and services.

The posting process breaks down the information in the document into the
journals, and posts them so that the end user does not have to worry about this.
The application reuses the same posting routines as we discussed in earlier chapters.

Let's look at how the documents and journals tie together by drawing the table and
transaction scheme for this:

Trade

[228]

The first step is creating the document. When we create this Sales Document (Sales
Header and Sales Line) nothing is posted. We are only entering information into the
system that can be changed at any time.

When we start the Sales Post (Codeunit 80) the system will create all the journals for
us and post them. When we sell an item, the system will create an Item Journal Line,
when we sell a resource the system creates a Resource Journal Line and so on.

The Invoice Posting Buffer is used to create the entries in the General Journal Line.
We already discussed this feature in Chapter 3, Financial Management.

Microsoft Dynamics NAV allows us to create four different kinds of posted sales
documents: Invoices, Shipments, Credit Memos and Return Receipts. We will
discuss all these types later in this chapter.

Transaction mirroring
The unique concept of sales and purchase in Microsoft Dynamics NAV is the
mirroring of the transaction structure. Once we understand how the sales
transactions fit together it is easy to also understand the structure of purchase.

Let's demonstrate this by comparing the first fields in the Sales Line (37) and
Purchase Line (39) table (as shown in the following screenshot):

Chapter 6

[229]

The fields in both tables are equally numbered and serve the same process even
though they use different terminology. For example, field 18, Qty. to Ship (sale)
and Qty. to Receive (purchase).

Some fields are different because they don't make sense to be in both processes, for
example, Unit Price (LCY) (field 31) in purchase and Customer Price Group (field 42)
in sales.

The purchase process also uses the same posting methodology. The purchase header
(38) and purchase line (39) tables are posted using codeunit purch.-post (90) into the
purchase receipt, invoice, credit memo, and return shipment documents.

Let's have a closer look at the sales process.

Sales
The sales process supports six document types which are normalized into two tables,
sales header (36) and sales line (37).

Each process can have their own number series, and has a special card and list page
but they all share the same business logic.

Let's discuss the document types:

•	 Quote: When a customer would like to know the terms and conditions of
making a purchase we can make a quote. This will show all the calculations
such as pricing and VAT.

•	 Blanket order: This is a pre-order status. When used we have an agreement
with the customer without knowing the exact shipment date.

•	 Order: This is used for the actual order document.
•	 Invoice: An invoice can be used in two ways. Directly, without a sales order

if the company only invoices directly on G/L accounts, or we can use the
invoices to invoice one or more shipments.

•	 Credit memo: We can use a credit memo when we credit on a G/L account.
•	 Return order: If a customer returns an item we can use a return order to

reverse the inventory process.

Let's discuss these document types in more detail.

Trade

[230]

Orders
The main process is the order. The other document types are designed to
support this.

Sales orders can be created directly or via a quote or blanket order. There are two
differences between a quote and a blanket order.

1. Quotes can only be fully transferred into a sales order, not in parts. For
example, a blanket order of 100 items can be split into 10 deliveries of 10
items with different shipping dates.

2. A customer with a quote has the option to say "yes" or "no". When they say
"no", there will not be a transaction. Therefore, quotes are not used in the
supply and demand calculation we discussed in the previous chapter. A
blanket order is a real order. The customer should eventually purchase the
complete quantity that was agreed. Therefore the blanket orders are used in
the supply and demand calculation.

Quote and blanket order to order
Although the quotes, blanket orders, and orders are stored in the same table, the
records are physically deleted from the table and inserted using another document
type. This is done in codeunits sales-quote to order (86) and blanket sales order to
order (87).

When comparing these codeunits in a compare tool such as Beyond Compare or
Araxis, we can see that there is a lot of similarity. They both create a new sales order.

Quote to order
When moving a quote to an order the complete quote is copied and then deleted.
A quote can be created from an opportunity in CRM as we discussed in Chapter 4,
Relationship Management. Therefore the opportunity is updated when this happens.

Blanket order to order
A blanket order can be moved in parts. Therefore business logic is implemented to
calculate the remaining quantity. There is no link between blanket orders and CRM,
and it is also not possible to create a blanket order from a quote.

Chapter 6

[231]

Creating a new sales order
In order to understand the examples in the chapter we will discuss the most
important fields of the sales order. A sales document contains one header and
multiple lines.

While the sales header table contains more static registration of information, the sales
line has more real business logic such as price calculation, inventory availability, and
VAT. We will discuss how this business logic is normalized.

Sales header
All document types are uniquely numbered. The primary key fields of the sales
header table are Document Type and No.

It is useful to use a number series code that makes sense to
your end users. For example, SO09-0012 for sales order 12 in
the year 2009 and SQ10-0312 for sales quote 312 for 2010.

The sales document contains two different customer no. Fields:

•	 Sell-to Customer No.: This is the primary customer no. field which defines
the customer who requested the order to be created. This customer number is
used to calculate the discounts.

Trade

[232]

•	 Bill-to Customer No.: By default the sell-to customer no. will also receive the
invoice. By changing this field to another customer this will make the invoice
to be printed with other customer details.

The sales document contains some dates that are used for different purposes:

•	 Posting Date: This date is used for posting to the various ledgers
•	 Document Date: This date is used for the accounts receivable
•	 Shipment Date: This date is for the calculation or the inventory availability
•	 Due Date: This date is the last date at which the bill-to customer is expected

to pay the invoice

Sales lines
Each sales document can contain an almost unlimited number of sales lines. By
default the sales lines are numbered 10000, 20000, 30000, and so on.

The numbering is done using the AutoSplitKey property on the sales line page and
the increment cannot be changed. When a user inserts new records between two
existing lines the program will calculate the new number to be exactly between the
old values, for example 10000, 15000, 17500, 18750, 19375, 19687, 19843, 19921, 19960,
19980, 19990, 19995, 19997, 19998, 19999 ,20000. If there is no more room the system
will generate a run-time error message (as shown in the following screenshot):

Master data options
A sales line can contain a reference to six types of master data defined by the
type field. These types are Text (blank option), G/L Account, Item, Resource,
Fixed Asset, and Charge (Item).

The type that we specify here determines which journal will be used later when we
post this sales document. However, each line can contain financial information which
will be processed to the general ledger via the posting buffer table.

In the next chapter we will discuss how to add a new type to this process.

Chapter 6

[233]

Sales line fields
To create a new sales line and start the important business logic in Microsoft
Dynamics NAV we need to know about these fields:

•	 Type: This defines the master data type this sales line uses and eventually
the journal that will be used during posting

When the type field changes after the sales line was created
the record is cleared and the fields get their default values.

•	 No.: This is the actual reference to the unique number of the master data
type that is used

When the No. field is changed, the previous Quantity is
used to recreate the Sales Line with the new master data.

•	 Quantity: This is used to calculate the sales amounts for the invoicing and
in case of an item also the physical quantity of the changes in inventory

•	 Outstanding Quantity, Qty. to Invoice and Qty. to Ship: These fields are
designed to be used for partial shipping and invoicing of an order

•	 Unit Price and Unit Cost (LCY): These fields are used to calculate the
sales amount and profit

•	 Line Discount % and Line Discount Amount: These fields are used to
determine the discounts

Validation flow
The sales line table has a specific validation flow of functions that is it important to
understand before making changes to the table. This flow is based on the normal
way an end user creates a sales line.

To create a sales line, only four fields are populated and the line is ready to use.
After setting the type and choosing a no. the end user types in the quantity field
and if necessary the unit price.

Let's analyze the C/AL code in the OnValidate trigger of the three fields that can
calculate the sales line.

Trade

[234]

When changing these C/AL routines make sure to use the Test Near,
Test Far, Do It, Clean up method we discussed in Chapter 1, Introduction
to Microsoft Dynamics NAV.

No. | field 6
The C/AL code in the OnValidate trigger starts by doing the initial testing if the
change is allowed.

After this the record is cleared and the old values for the no. field and quantity
fields are applied.

TempSalesLine := Rec;
INIT;
Type := TempSalesLine.Type;
"No." := TempSalesLine."No.";
IF "No." = '' THEN
 EXIT;
IF Type <> Type::" " THEN
 Quantity := TempSalesLine.Quantity;

Then the Sales Line inherits the values from the Sales Header if required and the
date fields are calculated.

"Sell-to Customer No." := SalesHeader."Sell-to Customer No.";
"Currency Code" := SalesHeader."Currency Code";
...

"Promised Delivery Date" := SalesHeader."Promised Delivery Date";
...

UpdateDates;

The sales header information is NOT present in the sales
line when an end user picks a value for the no. field. We
cannot use the customer information for table relations.

When this is done we see a CASE statement where the master data is acquired. This
would be the place where we would move newly added fields from master data to
the sales line table.

CASE Type OF
 Type::" ":
 ...
 Type::"G/L Account":

Chapter 6

[235]

 ...
 Type::Item:
 ...
 Type::Resource:
 ...
 Type::"Fixed Asset":
 ...
 Type::"Charge (Item)":
 ...
END;

When this is done the quantities are calculated and the unit price is calculated.

IF Type <> Type::" " THEN BEGIN
 IF Type <> Type::"Fixed Asset" THEN
 VALIDATE("VAT Prod. Posting Group");
 VALIDATE("Unit of Measure Code");
 IF Quantity <> 0 THEN BEGIN
 InitOutstanding;
 IF "Document Type" IN ["Document Type"::"Return Order","Document
Type"::"Credit Memo"] THEN
 InitQtyToReceive
 ELSE
 InitQtyToShip;
 UpdateWithWarehouseShip;
 END;
 UpdateUnitPrice(FIELDNO("No."));
END;

The latter is important for our analysis. After this function, other code is executed
but this is not important for this example.

Quantity | field 15
Just like the no. field, the quantity field also first checks whether the change is
allowed. When this is done this section of C/AL code is important:

IF Type = Type::Item THEN BEGIN
 UpdateUnitPrice(FIELDNO(Quantity));
 ...
 CheckApplFromItemLedgEntry(ItemLedgEntry);
END ELSE
 VALIDATE("Line Discount %");

In this C/AL code we should notice again the UpdateUnitPrice function and also
the validation of the Line Discount % field.

Trade

[236]

Unit price | field 22
This field has little C/AL code. When changing the unit price manually the C/AL
code will trigger the Line Discount % field.

TestStatusOpen;
VALIDATE("Line Discount %");

Before going to this field, let's first have a look at the UpdateUnitPrice function
we noticed earlier in the Quantity and No. field.

UpdateUnitPrice
The UpdateUnitPrice function executes this C/AL code:

IF (CalledByFieldNo <> CurrFieldNo) AND (CurrFieldNo <> 0) THEN
 EXIT;

GetSalesHeader;
TESTFIELD("Qty. per Unit of Measure");

CASE Type OF
 Type::Item,Type::Resource:
 BEGIN
 PriceCalcMgt.FindSalesLineLineDisc(SalesHeader,Rec);
 PriceCalcMgt.FindSalesLinePrice(SalesHeader,Rec,
 CalledByFieldNo);
 END;
END;
VALIDATE("Unit Price");

After doing the checks the sales price calculation routines we discussed in Chapter 2,
A Sample Application, are executed. This is codeunit sales price calc. mgt. 7000.

When this is done it validates the field unit price which we already analyzed.

This leads us to one single point; the OnValidate trigger of Line Discount %.

Line discount % | field 27
The C/AL code in this OnValidate trigger first calculates the line discount amount
based on the unit price, and then starts the function UpdateAmounts.

TestStatusOpen;
"Line Discount Amount" :=
 ROUND(
 ROUND(Quantity * "Unit Price",Currency."Amount Rounding
Precision") *
 "Line Discount %" / 100,Currency."Amount Rounding Precision");
"Inv. Discount Amount" := 0;

Chapter 6

[237]

"Inv. Disc. Amount to Invoice" := 0;
UpdateAmounts;

UpdateAmounts
The UpdateAmounts function completes the creation of the sales line and this is
where our quest ends.

The two most important other functions that are executed in this function are the
UpdateVATAmounts for VAT calculation, and the credit limit check for the customer
in CustCheckCreditLimit.SalesLineCheck(Rec).

VAT calculation
The VAT calculation in Microsoft Dynamics NAV is not normalized in one
application area but redeveloped everywhere. This makes VAT calculation one
of the most complex application areas to make changes to.

VAT calculation is not only done in the sales line, purchase line, and general journal
line table but also in more specific function tables such as service line.

It is therefore highly recommended not to change VAT calculation in Microsoft
Dynamics NAV.

If VAT calculation is required in a customized solution it can
be done using the general journal line as a temporary table.
By populating the necessary fields and starting the calculation
we can use the results without copying the VAT calculation to
our own solution.

Invoicing
In Microsoft Dynamics NAV, a sales order can be shipped and invoiced directly
from the document.

However, not all companies have a combined shipping and invoicing process. Some
companies ship the goods first and send the invoice later; most of the time using
combined invoicing.

Trade

[238]

Prepayments
Besides separating the invoice moment from the shipping moment Microsoft
Dynamics NAV also allows for a prepayment process. This prepayment process is
designed to work on top of the normal invoicing process. This means it does not
replace the invoice but instead creates an extra invoice.

This invoice is not created in codeunit sales-post (80) but in codeunit sales-post
prepayments (461).

Using prepayments in Microsoft Dynamics NAV will always generate
a minimum of two invoices per sales order

When the order is eventually invoiced the prepayment invoice is deducted from the
invoice amount.

The design of this solution by Microsoft teaches us and demonstrates
that to generate a posted sales invoice it is not specifically necessary to
start codeunit sales-post 80.

Combined invoicing
Combined invoicing of shipments can be done manually or using a batch report.

Manual
To manually combine shipments on a sales invoice we can use the Sales-Get
Shipment (Codeunit 64).

This codeunit can be started from the actions on a sales invoice subpage (47) and
displays the sales shipment lines that are not yet completely invoiced.

Chapter 6

[239]

The C/AL code however is not completely within the codeunit; the process starts in
the codeunit and runs the page. The page then again starts a function in the codeunit.

Batch
The Combine Shipments report (295) can be used to create one invoice for multiple
shipments in batch.

It works in a similar way to the combine invoice report we created in Chapter 2,
An Example Application.

The C/AL code that creates the Sales Line for the Invoice is normalized and used
in both the Codeunit Sales-Get Shipment (64) and Combine Shipments report
(295). The function is located in the Sales Shipment Line table (111) and is called
InsertInvLineFromShptLine.

To enable Combined Shipments, the Boolean field Combine
Shipments (87) should be set to Yes in the Customer table. This value
is inherited into the Sales Header for the Sales Order document.

Trade

[240]

Credit Memo and Return Orders
The Credit Memo and Return Order Document Types are used for reversing the
order process.

Purchasing
Before we can ship the items we sold we first need to purchase or produce them.
We discussed the production process in the previous chapter so let's focus on the
Purchasing process.

Technically, the Sales and Purchase process are mirrored transactions and the
application design is similar. The Purchase Header table has the same Document
Types Quote, Order, Invoice, Credit Memo, Blanket Order, and Return Order, and
the same posting process.

So instead of going into the similarities we will discuss the differences.

Resources
In Microsoft Dynamics NAV it is not possible to purchase resources. When we take a
closer look at the Type field (5) we can see that the option is left blank.

Drop shipments
When selling items which are not on inventory it is possible to purchase the items
from a vendor and have them directly shipped to the customer. This process is called
Drop shipments.

This process can be handled manually, or by using the requisition worksheet.

Chapter 6

[241]

Manual
To create a drop shipment manually the purchase order should first be created
using the Sell-to Customer No. from the corresponding Sales Order as the
Shipping Address.

When this is done we can start the Codeunit Purch.-Get Drop Shpt. (76) from the
Actions on the Purchase Order.

This function will show a list of all Sales Orders for this Sell-to Customer No.
regardless if drop shipment is possible.

If we select a Sales Order without Sales Lines that are marked for Drop Shipment
we get this error message:

Trade

[242]

After retrieving the sales information the Sales Line and Purchase Line table are
connected to each other by populating the Purchase Order No., Purch. Order Line
No., Sales Order No., and Sales Order Line No. fields.

These fields are numbered 71 & 72 in the Sales Line and Purchase Line table.

Requisition worksheet
We introduced the Requisition Worksheet in the previous chapter when we
discussed the planning process. The Requisition Worksheet can also be used
for the Drop Shipment functionality.

This will start report Get Sales Orders (698) which will filter on all Sales Lines
marked for Drop Shipment and creates a line in the Requisition Worksheet table.

This line can be processed by carrying out the action messages. This function will
also connect the Sales Order to the Purchase Order using fields 71 & 72.

Chapter 6

[243]

The C/AL code for manual Drop Shipment and using the Requisition
Worksheet is not normalized. This means that changes made to one
method should also be made in the other method, and maintained twice.

Document releasing and approval process
Within the Sales and Purchase document process there is a workflow available for
releasing and approving a document.

This is taken care of by a single status field and two processes.

Status
The Status field (120) in the Sales header and Purchase header table indicates this.
There are four options: Open, Released, Pending Approval, and Pending Prepayment.

Two of these status fields are mandatory to use, Open and Released. Pending
Approval and Pending Prepayment are optional.

We have already discussed prepayments earlier in this chapter.

Releasing a document
Before a document can be posted it is mandatory to release it. This is done by
codeunits Release Sales Document (414) and Release Purchase Document (415).
These codeunits are, as you may have guessed, almost identical.

The codeunit performs a number of tests before setting the status to Released.

Let's discuss some of these checks.

TESTFIELD("Sell-to Customer No.");

A typical example of Test Near, the Customer number should not be blank.

SalesLine.SETRANGE("Document Type","Document Type");
SalesLine.SETRANGE("Document No.","No.");
SalesLine.SETFILTER(Type,'>0');
SalesLine.SETFILTER(Quantity,'<>0');
IF NOT SalesLine.FIND('-') THEN
 ERROR(Text001,"Document Type","No.");

Trade

[244]

There should be at least one Sales Line with a Quantity.

When the testing is done, some final calculations are implemented. These
calculations are document calculations that span over the individual Sales Lines.

SalesSetup.GET;
IF SalesSetup."Calc. Inv. Discount" THEN BEGIN
 CODEUNIT.RUN(CODEUNIT::"Sales-Calc. Discount",SalesLine);
 GET("Document Type","No.");
END;

This codeunit calculates the Invoice Discount.

SalesLine.SetSalesHeader(Rec);
SalesLine.CalcVATAmountLines(0,Rec,SalesLine,TempVATAmountLine0);
SalesLine.CalcVATAmountLines(1,Rec,SalesLine,TempVATAmountLine1);
SalesLine.UpdateVATOnLines(0,Rec,SalesLine,TempVATAmountLine0);
SalesLine.UpdateVATOnLines(1,Rec,SalesLine,TempVATAmountLine1);

At the end of the releasing process the VAT calculation is completed.

Releasing a document also calculates the Amount and Amount Including VAT fields
on the Sales Line.

Manual versus automatic releasing
By default, Microsoft Dynamics NAV releases the document automatically. The
posting codeunits Sales-Post (80) and Purchase-Post(90) contain this C/AL code.

IF (Status = Status::Open) OR (Status = Status::"Pending Prepayment")
THEN BEGIN
 TempInvoice := Invoice;
 TempShpt := Ship;
 TempReturn := Receive;
 CODEUNIT.RUN(CODEUNIT::"Release Sales Document",SalesHeader);
 Status := Status::Open;
 Invoice := TempInvoice;
 Ship := TempShpt;
 Receive := TempReturn;
 MODIFY;
 COMMIT;
 Status := Status::Released;
END;

Chapter 6

[245]

This code temporarily releases the document by starting the Release codeunit and
then sets the status back to Open, modifies the records and commits the transaction.
Then the status is set to Released.

Whenever there is an error afterwards the status will still be Open since that was
the status before the COMMIT.

Document approval
On top of the release process is a Document Approval workflow. This feature is
designed to work on top of the functionality we already discussed and is optional.

Microsoft provides a good whitepaper on Document Approval on
https://mbs.microsoft.com/downloads/customer/nav/
general/NAV5_0_SalesDocFactSheet_A4_July07.pdf.

Deleting sales and purchase documents
During the life cycle of our application many documents will be created. There might
come a day when this exceeds the point where doing some maintenance is required.

Data deletion
In the IT Administration part of the Departments Role Center we can find a Data
Deletion section which is designed for IT administrators to use to clean up data.

Trade

[246]

When a sales order is invoiced using Get Shipment Lines or Combined Invoicing, the
sales order is NOT automatically deleted, nor are completely handled blanket orders.

Leaving old orders in the database may lead to large tables. Since these Document
tables are heavily inserted and modified throughout the working day by many
people, this may lead to unnecessary overhead in the database.

Deletion of shipments and invoices
Microsoft Dynamics NAV allows users to delete posted shipments and invoices
when they are printed.

Although it should be considered carefully, it might be necessary for some
companies to periodically clean up this data. Most companies never look at
the shipments once the items are delivered to their customers.

Cleaning up these tables will have a positive impact on the performance and
maintainability of your system if it reaches the size of roughly 50-100GB.

While designing business analysis reports, NEVER use data from
the Sales Shipment Header or Line table as they might get deleted.
Always use the Ledger Entry tables instead.

Document tables and row level locking
With the introduction of the SQL Server option for Microsoft Dynamics NAV
Row-Level Locking was introduced. The classic database supports Table
Level Locking only.

Record Level Locking does not benefit concurrency in transactions as Microsoft
Dynamics NAV isolates them as we will demonstrate in Chapter 10, Application Design.

However, it will have an impact for creation of documents as there is no transaction
involved. Or so it seems.

Chapter 6

[247]

Range locks in documents
Even if end-users work on different documents they still might experience this error
message every now and then:

This is caused by Range locking in the SQL Server database.

Range locking is a special SQL Server locking mechanism which is always used by
SQL Server if a query does not exactly specify the clustered index.

Let's illustrate this with an example from the standard application.

UpdateVATOnLines
The Sales Line table contains a VAT function that is used whenever a sales document
is released.

IF QtyType = QtyType::Shipping THEN
 EXIT;
IF SalesHeader."Currency Code" = '' THEN
 Currency.InitRoundingPrecision
ELSE
 Currency.GET(SalesHeader."Currency Code");

TempVATAmountLineRemainder.DELETEALL;

WITH SalesLine DO BEGIN
 SETRANGE("Document Type",SalesHeader."Document Type");
 SETRANGE("Document No.",SalesHeader."No.");
 LOCKTABLE;
 IF FINDSET THEN
 REPEAT

In this example the sales line table is filtered on the Document Type and Document
No. field which is not the complete primary key.

This will result in an SQL statement looking like this:

SELECT TOP 51 * FROM "CRONUS International Ltd_$Sales Line" WITH
(UPDLOCK)
 WHERE (("Document Type"=1)) AND (("Document No_"='6004'))
ORDER BY "Document Type","Document No_","Line No_"

Trade

[248]

This will issue a range lock that we can check with the SQL sp_lock command.

More information on range locks and workarounds can be found on
this blog: http://dynamicsuser.net/blogs/mark_brummel/
archive/2009/06/18/tip-7-sql-range-locks.aspx.

Inventory management
In Microsoft Dynamics NAV inventory is kept for items on locations using item
ledger entries and value entries.

On top of this we can use Stock Keeping Units (SKU) to have different inventory
settings per item, location, and variant.

Let's start by looking at the table and posting model of inventory in Microsoft
Dynamics NAV:

Chapter 6

[249]

Keeping inventory can be extended with the use of warehouse management. This is
designed to run on top of the Basic Item Inventory functionality.

Items
The Item table hosts the Master Data for Inventory Management like a G/L Account
does for Financial Management.

Trade

[250]

In this table we can do the setup for each individual item, including pricing,
inventory and production strategies, and tracking options.

Locations
The Location table defines which level of inventory management is done.

The location can either be a physical warehouse somewhere or a part of a warehouse
if one warehouse uses different warehouse strategies.

If we look at the Location Card we see what we can set up:

Chapter 6

[251]

Let's see these settings in detail:

•	 General: Here we can specify the physical location of the warehouse. We
can also specify Use As In-Transit. When this is specified we can only use
transfer orders to move inventory to this location.

•	 Warehouse: On this tab we specify which level of warehouse management
functionality we want to use. If everything is left blank, no warehouse entries
are created when this location is used.

•	 Bins: This tab contains the default bins for most inventory activities such as
Receipt, Shipment, and so on. These values can be changed when creating
the warehouse documents.

•	 Bin Policies: This tab contains some more advanced options for
warehouse management.

Variants
Item variants are a powerful feature of Microsoft Dynamics NAV. It enables us to
differentiate an item into different categories without having to create a new item.

The variant code is maintained in the item ledger entries and used when
applying them.

Example
Our company sells t-shirts. We have three sizes: Small, Medium, and Large, and
four colours: White, Black, Red, and Blue.

This enables us to create twelve unique variant codes.

S-WHITE S-BLACK S-RED S-BLUE
M-WHITE M-BLACK M-RED M-BLUE
L-WHITE L-BLACK L-RED L-BLUE

When we purchase or produce these t-shirts we need to specify the variant code
which is inherited into the item ledger entry.

Trade

[252]

If we sell or transfer one of these items we can specify the same variant code. Microsoft
Dynamics NAV will then use this variant code when searching for inventory.

Stock keeping units
Sometimes the same item can have more than one unit cost, Replenishment, system
or production method. To support this we can use stock keeping units.

Stock keeping units refer to an existing item, location, and variant. These three fields
are the unique primary key.

Example
Our t-shirts need to have different unit costs. In order to do this we need to create
an SKU for each variant.

Chapter 6

[253]

Now, when we create two purchase order lines for the same item with a different
Variant Code we can see that the Last Direct Cost is different for each variant
(as shown in the previous screenshot).

A stock keeping unit is a powerful feature of Microsoft Dynamics
that enables you to change settings for an item after it is created
using variant codes for each setting. Make sure the code of the
variant is self explanatory.

Creating SKU function
When an item has many variants and locations, creating the SKU for each
combination can be quite a challenge.

To help in this process we can use the Create Stockkeeping Unit report (5706).

The newly created SKU will inherit all the necessary fields from the item. After
this we can go in and make necessary changes to the individual SKU records.

Trade

[254]

Sales pricing
The basic unit price of an item can be set in the Item table. This is a static field
which is used when a new sales document is created.

To use more flexible unit prices we can use the sales prices and sales discounts
functionality.

More information about pricing can be found in Chapter 1 and Chapter 2.

Item ledger entry application
When inventory is created and used, the system will apply and close positive and
negative Item Ledger entries with each other. This enables us to trace inventory.

The Application is saved in the Item Application Entry (339). Let's have a look
at the C/AL code that handles the item application.

Item application C/AL routine
This is done in codeunit Item Jnl.-Post Line (22) in the function
ApplyItemLedgEntry.

The function starts with checking whether reservations are used. Using reservations
changes the way the inventory application is used. We'll discuss reservations later in
this chapter in the section Reservations.

ApplyItemLedgEntry
...

CLEAR(OldItemLedgEntry);

Chapter 6

[255]

...
REPEAT
 ItemJnlLine.CALCFIELDS("Reserved Qty. (Base)");
 IF ItemJnlLine."Reserved Qty. (Base)" <> 0 THEN
 IF ItemLedgEntry."Applies-to Entry" <> 0 THEN
 ItemLedgEntry.FIELDERROR(
 "Applies-to Entry",Text99000000);
 ...
 END ELSE
 StartApplication := TRUE;

If there are no reservations made the system will start the application code. This
allows two possibilities: manual application and automatic application.

Manual application is done when the user populates the Applies-to Entry field in
the Item Journal Line. This is also used when users change the application.

IF StartApplication THEN BEGIN
 ItemLedgEntry.CALCFIELDS("Reserved Quantity");
 IF ItemLedgEntry."Applies-to Entry" <> 0 THEN BEGIN
 IF FirstApplication THEN BEGIN
 FirstApplication := FALSE;
 OldItemLedgEntry.GET(ItemLedgEntry."Applies-to Entry");
 OldItemLedgEntry.TESTFIELD("Item No.",ItemLedgEntry."Item No.");
 OldItemLedgEntry.TESTFIELD("Variant Code",ItemLedgEntry."Variant
Code");

 OldItemLedgEntry.TESTFIELD(Positive,NOT ItemLedgEntry.Positive);
 OldItemLedgEntry.TESTFIELD("Location
Code",ItemLedgEntry."Location Code");

In this case the system checks if the item ledger entry we have specified matches
the requirements.

When the application is done the system will automatically search for the best item
ledger entry based on the same requirements.

END ELSE BEGIN
 IF FirstApplication THEN BEGIN
 FirstApplication := FALSE;
 ItemLedgEntry2.SETCURRENTKEY("Item No.",Open,"Variant Code",
 Positive,"Location Code","Posting Date");
 ItemLedgEntry2.SETRANGE("Item No.",ItemLedgEntry."Item No.");
 ItemLedgEntry2.SETRANGE(Open,TRUE);
 ItemLedgEntry2.SETRANGE("Variant Code",ItemLedgEntry.
 "Variant Code");

Trade

[256]

 ItemLedgEntry2.SETRANGE(Positive,NOT ItemLedgEntry.Positive);
 ItemLedgEntry2.SETRANGE("Location Code",
 ItemLedgEntry."Location Code");

 IF ItemLedgEntry."Job Purchase" = TRUE THEN BEGIN
 ItemLedgEntry2.SETRANGE("Job No.",ItemLedgEntry."Job No.");
 ItemLedgEntry2.SETRANGE("Job Task No.",
 ItemLedgEntry."Job Task No.");
 END;
 IF ItemTrackingCode."SN Specific Tracking" THEN
 ItemLedgEntry2.SETRANGE("Serial No.",
 ItemLedgEntry."Serial No.");
 IF ItemTrackingCode."Lot Specific Tracking" THEN
 ItemLedgEntry2.SETRANGE("Lot No.",ItemLedgEntry."Lot No.");

 IF Location.GET(ItemLedgEntry."Location Code") THEN
 IF Location."Use As In-Transit" THEN
 ItemLedgEntry2.SETRANGE("Transfer Order No.",
 ItemLedgEntry."Transfer Order No.");

 IF Item."Costing Method" = Item."Costing Method"::LIFO THEN
 EntryFindMethod := '+'
 ELSE
 EntryFindMethod := '-';
 IF NOT ItemLedgEntry2.FIND(EntryFindMethod) THEN
 EXIT;

The actual application entry is created in the function InsertApplEntry.

Requirements
In order to apply an item ledger entry to another item ledger entry, certain
requirements should be taken into account. We can read these requirements from
the C/AL code:

1. The Item No. should be the same.
2. The old item ledger entry should be 'Open'. When an item ledger entry

is fully applied the boolean field 'Open' is set to 'FALSE'.
3. The variant code and location code should be the same.
4. The boolean field 'Positive' should have a reverse sign. This results in

the limitation of not being able to apply one negative entry to another
negative entry.

Other requirements are conditional based on system setup. For example, if the item
uses a lot no. or a serial no. this should also match.

Chapter 6

[257]

When the system has defined the filter it tries to find the first record. The search
method depends on the costing method. If the cost method is LIFO the system will try
to find the last record in the filter. For all other costing methods it will find the first.

We can also see that when using lot numbers, the application and the costing is
done within the lot number.

Value entries
In Microsoft Dynamics NAV the physical information for inventory is stored
separately from the financial information. This information is stored in a one-to-
many relation, meaning one item ledger entry can have multiple value entries.

This enables us to specify the value information in detail in a time dimension and
cost type dimension.

Direct cost
Each item ledger entry starts with at least one value entry of the type Direct Cost.
This defines the initial value of the inventory.

During the inventory lifetime the item ledger entry can get four other types of
value entries:

•	 Revaluation: This entry type is used when the item revaluation batch is
started and the value of the item is different compared to the direct cost.

•	 Rounding: Sometimes the inventory adjustment leads into rounding issues.
The rounding is stored as a special entry type for traceability.

•	 Indirect cost: When the indirect cost % is used on the item card the system
will create additional value entries for the indirect cost amount.

•	 Variance: When the item uses standard cost, the difference between the
invoiced amount and the standard cost is saved as an entry type variance.

Value entries and general ledger entries
The Value Entries and General Ledger Entries are linked through the G/L - Item
Ledger Relation table (5823).

Each general ledger entry is linked to one or more value entries. This enables
traceability and helps auditors to analyze the system.

Trade

[258]

Transfer orders
In order to move inventory from one location to another, it is possible to do a
negative and a positive adjustment in the Item Journal Line, but we can also use
a Transfer Order.

The transfer order creates the item ledger entries for each location and maintains the
link for the value entries.

This means that if we move 100 items from the location blue to green without having
received the purchase invoice, yet the system will create value entries for the moved
inventory when the invoice is posted.

Let's try this for a new item.

Chapter 6

[259]

Example
The item we will use is Jeans. The first step is to create the item.

1. We define the No., Description, Base UOM, and the Posting Groups only.
2. Now we create a new purchase order with quantity 10 in location BLUE and

unit cost, 10.
3. We receive the purchase order.
4. Using a new transfer order we move the inventory from BLUE to RED.

This will result in five Item Ledger Entries with five Value Entries but the
total cost is zero as we have not yet received the purchase invoice:

Trade

[260]

5. Now we create a new purchase invoice and get the receipt lines. We use an
unit cost of 10.

This results in a value entry for the original item ledger entry.
6. To create the value entries for the transfers we need to run the Adjust

Cost - Item Entries report (795).
This results in all item ledger entries having the same value entries.

Requisition journals
For trading companies it is important to have enough inventories, not too much, not
too few.

In order to do this we can use the Requisition Journals together with the Reordering
Policy on the item.

Chapter 6

[261]

Reordering policy
Microsoft Dynamics NAV uses four different reordering policies:

•	 Fixed Reorder Qty.: Each time we run the requisition journal the system
will purchase the same, fixed quantity of items. This quantity is specified
in the Reorder Quantity field.

•	 Maximum Qty.: The system will purchase as many items as to meet the
value of the field, Maximum Inventory.

•	 Order: For each sales order a purchase order will be created. This
automatically enables the reservation process for this item.

•	 Lot-for-Lot: This option will calculate the required inventory necessary
to deliver the outstanding sales orders.

The quantity is calculated in codeunit Inventory Profile Offsetting (99000854) in
the function CalcReorderQty.

Extending reordering policy
The ordering policy algorithms in Microsoft Dynamics NAV are very static and
some trading companies need more flexibility.

One example is seasonal and weather influences. Toy stores need extra inventory
during Christmas and garden tool stores have their peak in spring.

During these peaks the delivery times and availability are also different compared
to the other times of the year.

Virtual inventory
An upcoming trend in trading companies is virtual inventory. This is inventory
that we do not control but is available to sell to our customers.

The computer industry uses this frequently. Everyone can start a website for
computer equipment and use the inventory of the large wholesale companies.

In order for this to work the information should always be real
time and reliable. In Microsoft Dynamics NAV we could solve this
using web services.

Trade

[262]

Warehouse management
With Inventory Management we can use the locations to see where the inventory
is. For some trading companies this is good enough but some would like to be more
specific in where the items are in the warehouse.

For this we can use the Warehouse Management functionality in Microsoft Dynamics
NAV. WMS enables us to specify Zones and Bins within each location.

Another feature in Warehouse Management is the possibility of combining sales
shipments and purchase receipts in warehouse documents. Using these documents
warehouse employees can pick or put away more for than one order at the same
time resulting in a more efficient way of handling logistics.

Warehouse strategy levels
Warehouse Management can be used and implemented in various fashions, from
very simple to highly advanced ones. To demonstrate the application design of WMS
in Microsoft Dynamics NAV we will discuss five possible levels of implementation.
For each level we will show the table and posting models.

1. Bin Code: Using the Bin Code field in the sales and purchase document
enables the system to start creating warehouse entries.

2. Warehouse Receipt and Shipment: This allows us to combine sales shipments
and purchase receipts into one warehouse document. We cannot use the Pick
& Put-Away activities.

3. Warehouse Put-Away and Pick: For each purchase receipt or sales shipment
we can create a Put-Away or Pick journal.

4. Warehouse Receipt and Shipment + Use Put-Away Worksheet: This allows
us to implement a real two step Warehouse process. Receiving the items on a
staging location and create Put-Away documents to move the items to their
storage location in the warehouse.

5. Directed Put-Away and Pick: This is the full option WMS functionality in
Microsoft Dynamics NAV. We use Receipts, Shipments, Put-Aways, and
Picks. Microsoft Dynamics NAV will suggest the Bin Codes. We can use
Zones, Cross Docking and so on.

Chapter 6

[263]

Location setup
The setup options in the Location table (14) enable or disable the WMS options in
Microsoft Dynamics NAV.

This is done on the Warehouse tab (as shown in the following screenshot).
Each level requires a special combination of settings:

•	 Level 1: Enable Bin Mandatory
•	 Level 2: Enable Require Receive, Require Shipment, and Bin Mandatory
•	 Level 3: Enable Require Put-away, Require Pick, and Bin Mandatory
•	 Level 4: Enable Require Receive, Shipment, Require Put-away, Require Pick,

Bin Mandatory , and Use Put-Away Worksheet
•	 Level 5: Enable Require Receive, Require Shipment, Require Put-away,

Require Pick, Bin Mandatory, and Directed Put-away and Pick

Warehouse employees
Before we can start the current user should be set up as a warehouse employee.

This can be done by creating a new record in the Warehouse Employee table (7301).

Trade

[264]

Each user can be a warehouse employee in each location and can only
do warehouse actions in the locations that they are assigned to.

Bin code | level 1
The starting level of implementing WMS is using the Bin table. This is done by
enabling the Bin Mandatory field on the location.

The Bin Code field is available in all the necessary tables such as Purchase Line, Sales
Line, and Item Journal Line.

When the Bin Code is used, codeunit Item Jnl.-Post Line (22) will create a Warehouse
Journal Line and start the Whse. Jnl.-Register Line Codeunit (7301). This will result in
the creation of Warehouse Entries (7312) and a Bin Content (7302).

Example
We will create a new location ORANGE with a bin Bin1. The Location uses the
Bin Mandatory option, as shown in the following screenshot:

In a new purchase order we can now select this Bin Code and post a receipt.

Chapter 6

[265]

The system now creates a new record in the Bin Content table which enables us to
see the created Warehouse Entries as shown in the following screenshot:

Bin content
Whenever a Bin is used for the first time, Microsoft Dynamics NAV will create a Bin
Content record. A bin content record is neither master data nor a ledger entry or
document. It is a special kind of table in the philosophy of Microsoft Dynamics NAV.

The C/AL code for the bin content handling can be found in codeunit Whse.
Jnl.-Register Line (7301).

To see which bins are used for an item at any moment we can open the Bin Contents
from the Item Card, as shown in the following screenshot:

Trade

[266]

The warehouse entries can be displayed by clicking on the Quantity (Base) field.

The Warehouse Entries are only used internally by the program and
are difficult to find in the end user interface.

Receipt and shipment | level 2
When we enable Require Receive and Require Shipment in the Location we can
start using the Warehouse Receipt and Shipment Documents.

These documents allow us to receive or ship multiple purchase or sales orders in
one document.

Let's have a look at how this is done in the application:

Warehouse request
All warehouse documents start with a record Warehouse Request table (5765).
These records are created when a sales or purchase document is released.

Chapter 6

[267]

The warehouse receipt or shipment can be created in three ways.

1. Using the option Create Whse. Receipt or Create Whse. Shipment from the
Purchase and Sales Order.

2. Using report Get Source Documents (5723).
3 Using the option Get Source Documents on the Warehouse Receipt or

Shipment Card.

The first two options will create a new warehouse document for each sales or purchase
document. The latter allows us to combine orders in one warehouse document.

Limitations
Using only the warehouse receipt and shipment document is basically just adding
one layer on top of the sales and purchase document. The posting routines,
Whse. Post Shipment (5763) and Whse. Post Receipt (5760), does not actually post
something to the warehouse, they just write back the bin code to the Sales Line and
Purchase Line table. Technically this uses the same C/AL code as level 1.

We can see how this is done by looking at the function InitSourceDocumentLines
of, for example, codeunit Whse. Post Receipt (5760).

InitSourceDocumentLines
WhseRcptLine2.COPY(WhseRcptLine);
WITH WhseRcptLine2 DO BEGIN
 CASE "Source Type" OF
 DATABASE::"Purchase Line":
 BEGIN
 PurchLine.SETRANGE("Document Type","Source Subtype");
 PurchLine.SETRANGE("Document No.","Source No.");
 IF PurchLine.FIND('-') THEN
 REPEAT

Trade

[268]

 ...
 IF PurchLine."Bin Code" <> "Bin Code" THEN BEGIN
 PurchLine."Bin Code" := "Bin Code";
 ModifyLine := TRUE;
 END;
 ...
 IF ModifyLine THEN
 PurchLine.MODIFY;

When the source tables are updated the system creates a normal purchase receipt or
sales shipment using codeunits Sales-Post (80) and Purch. Post (90).

Put-Away and Pick | level 3
Instead of creating a warehouse receipt or shipment we can also directly create a Put-
Away or Pick from the sales or purchase order.

To enable this we need to activate the options Require Put-away and Require Pick on
the Location Card.

Chapter 6

[269]

Warehouse request
The Warehouse Request record is exactly the same as in level 2, but instead of
creating a warehouse receipt or shipment the system directly creates a warehouse
activity header and line.

Warehouse activities
The Warehouse Activity Header and Line table are the internal Microsoft Dynamics
NAV Warehouse documents. There are five types of warehouse activity documents:

•	 Put-away: This document is used to move items from the receipt bin to a
put away bin. The document is generated from a warehouse receipt.

•	 Pick: This document used to move items from a storage bin to a shipment
bin. The document is generated from a warehouse shipment.

•	 Movement: This is an internal document that is used to move items
internally in the warehouse.

•	 Invt. Put-away: This document is used to receive items and put them directly
into the warehouse on their permanent bin. The document is created from a
warehouse request.

•	 Invt. Pick: This document is used to ship items directly from the warehouse
in one step. The document is created from a warehouse request.

When only using the Require Put-away and Require Pick option on a location,
document types Invt. Put-Away and Invt. Pick are used. This will make sure
that the purchase order and sales order will also be processed by starting codeunit
Sales-Post (80) and Purch. Post (90).

Level 2 and level 3 comparison
Both level 2 and level 3 set up options are one-step warehouse implementations.
When receiving an item we must provide the storage bin where the item will be
stored until it is sold. There is no additional step.

Using the warehouse receipt and shipment documents allows us to combine sales
and purchase documents on one warehouse document. This cannot be done using
direct Put-Away and Pick.

Using Direct Put-Away and Pick we can split one sales line or purchase line into
multiple Bins. This cannot be done using warehouse receipt and shipment documents.

The reason for this is the way the warehouse entries are created. Level 2 uses the
bin field in the item journal line to create the warehouse entries.

Trade

[270]

Using level 3, the warehouse entries are created using codeunit Whse.-Activity-
Post (7324). The bin code is not written back into the sales line or purchase line.
This means we also cannot use the bin code field in the purchase receipt and sales
shipment documents.

Receipt + use put-away worksheet | level 4
Most warehouses use a two step receipt and shipment process. The first step is
receiving the items on a receipt location which is often close to the unloading
docks. In the next step the items are stored in their warehouse location until they
are required for the production or sales process.

To enable this two step process we can combine level 2 and 3 by using the options
Require Receive, Shipment, Put-Away and Pick + Bin Mandatory + Use Put-Away
Worksheet in the location card.

This allows us to first perform the warehouse receipt and shipment as discussed
in level 2. When we process this document it will not only post the sales order and
purchase order but it will also generate a record in the Whse. Put-Away Request
table (7324).

Chapter 6

[271]

Whse.- activity register versus whse.-activity-post
When the whse.-put-away request is processed using the warehouse worksheet it
will result in a warehouse activity header and line. In this context the system will
use the Put-Away and Pick document type we discussed in the previous section
about level 3.

Technically the documents for level 3 and level 4 are equal, but there are
two differences.

1 In a two step warehouse set up the items are already in a warehouse entry.
This means we have to move them. This results in two new warehouse
entries but also two lines in the warehouse document.

2 The two step warehouse documents are not posted but registered. This
means that the system will only create warehouse entries and no longer
update the sales and purchase documents.

Directed put-away and pick | level 5
Combining warehouse receipts and shipments with Put-Aways and Picks completes
the table and posting diagram of WMS in Microsoft Dynamics NAV. But there are
additional options to enrich the functionality.

One of these options is directed Put-Away and Pick. When this option is activated the
system can and will help us in finding the correct bins for each warehouse activity.

Zones and default bins
This starts with defining Zones and default Bins. A Zone is a group of Bins.
Usually they are located near each other physically but more important, they
share some properties.

For each zone we need to specify if it is allowed to receive, ship, Put-Away, and
Pick. This is done in the Bin Type list.

Trade

[272]

While defining the bins, it is recommended to use a logical name such as R-01-001
for receipt row one, shelf one.

The default bins are set up in the Location Card on the Bin Tab. These bins can
always be changed on each document.

Bin calculation
The bin calculation is done for the put-away documents using templates. This
template defines the rules for finding the correct bin to store the items.

The find options are stored in the Put-away Template Line table (7308).

•	 Find Fixed Bin: The system will try to find a bin which is fixed.
A fixed bin is usually reserved for a specific Item.

•	 Find Floating Bin: This will try to find the first available bin.

Chapter 6

[273]

•	 Find Same Item: This will filter on an available bin that already contains
this item.

•	 Find Unit of Measure Match: This option can be used if parts of the
warehouse are designed to handle a specific kind of carrier such as euro
or us pallet.

•	 Find Bin w. Less than Min. Qty: Use this option to find bins what are not
fully used. If this option is not used with the Find Same Item it might result
in two items in the same bin.

•	 Find Empty Bin: This option will make sure we find an empty bin.

The C/AL code that handles the bin calculation is located in the create Put-Away
codeunit (7313). Let's have a look:

Code()
IF Location."Directed Put-away and Pick" THEN BEGIN
 BinType.CreateBinTypeFilter(BinTypeFilter,2);
 REPEAT
 QtyToPutAwayBase := RemQtyToPutAwayBase;
 IF NOT (PutAwayTemplLine."Find Empty Bin" OR
 PutAwayTemplLine."Find Floating Bin") OR
 PutAwayTemplLine."Find Fixed Bin" OR
 PutAwayTemplLine."Find Same Item" OR
 PutAwayTemplLine."Find Unit of Measure Match" OR
 PutAwayTemplLine."Find Bin w. Less than Min. Qty"
 THEN BEGIN
 //Calc Availability per Bin Content
 IF FindBinContent("Location Code","Item No.",
 "Variant Code",WarehouseClassCode)
 THEN
 REPEAT
 ...
 UNTIL (BinContent.NEXT(-1) = 0) OR EverythingHandled
 END ELSE BEGIN

 //Calc Availability per Bin
 IF FindBin("Location Code",WarehouseClassCode) THEN
 REPEAT
 IF Bin.Code <> "Bin Code" THEN BEGIN
 ...
 END;
 UNTIL (Bin.NEXT(-1) = 0) OR EverythingHandled
 END
 UNTIL (PutAwayTemplLine.NEXT = 0) OR EverythingHandled;

Trade

[274]

For each record in the Put-away Template Line table the system will try to find a
bin. This means that if the rules of the first template line fail, it will use the second
template line and so forth.

The two options Find Empty Bin and Find Floating Bin eliminate using the others. If
these are true the system will call the FindBin function. For the other options it will
use the FindBinContent function.

Implementing and customizing warehouse
management
As there are many ways to setup WMS in Microsoft Dynamics NAV it is important
to make the correct decisions in the start of the implementation. Moving the system
from one strategy to another is quite a challenge.

It is therefore important to discuss all possibilities and compare them to the
way your company works.

A common mistake when implementing WMS software is trying to solve procedural
issues with a computer system. The simple rule is: "If it does not work without a
computer system, it will most certainly not work with a computer system".

Customizing and changing WMS should be done very carefully since the data flow
is very complex, especially for Microsoft Dynamics NAV standards.

Reservations
In Microsoft Dynamics NAV it is possible to do reservations on inventory. This
can help us managing our inventory more effectively. Let's discuss the reservation
process with a customer scenario.

Scenario
One of our customers orders 100 black t-shirts of size M on January 27th 2011.
Currently we have 120 on inventory so we can ship them without problems. The
customer wants to have them delivered in October on the 18th. We enter a sales
order with the shipping date and release the order.

The next day another customer calls for 40 black t-shirts of size M. Our inventory is
still 120. This customer wants to have them delivered on the 31st of May. We enter
the sales order without a warning.

Chapter 6

[275]

Lastly, we will create a new sales order for 90 of the same t-shirts with a delivery
date of July 25th. Now we get this error message:

And if we now go back to the second sales order and re-enter the quantity we will
see a similar message.

Check-avail. period calc.
The reason this happens lies in the way Microsoft Dynamics NAV calculates the
gross requirement.

Trade

[276]

This is a two step method where first the requirement is calculated until the
shipment date of the sales line and then a look-ahead function is called
using a date formula which is defined in the Company Information table.

The C/AL code that is used to calculate the look ahead can be found in the
function QtyAvailabletoPromise in codeunit Available to Promise (5790).

QtyAvailabletoPromise
Item.CALCFIELDS(Inventory,"Reserved Qty. on Inventory");
ScheduledReceipt := CalcScheduledReceipt(Item);
GrossRequirement := CalcGrossRequirement(Item);

IF FORMAT(LookaheadDateFormula) <> '' THEN BEGIN
 GrossRequirement :=
 GrossRequirement +
 CalculateLookahead(
 Item,PeriodType,
 AvailabilityDate + 1,

If this look-ahead functionality is not detailed enough we can start using the
reservation process.

Always versus optional reservation
The reservation option can be activated on the item level and the customer level, and
can be set to Never, Optional, and Always, as shown in the following screenshot:

Chapter 6

[277]

Let's see what these options signify:

•	 Never: Reservations on this Item or Customer are impossible. If the Item is
Reserve Always and the Customer Never, the Item wins.

•	 Optional: It is possible to reserve items for this customer; however,
salespersons and warehouse employees can decide to overrule the reservation.

•	 Always: Shipping is not possible without a proper reservation. If the demand
is larger than the supply the salespersons and warehouse employees must
make manual decisions of who gets what.

Reservation entries
Microsoft Dynamics NAV uses the Reservation Entry (337) table to store the
reservation entries.

Reservation entries can be connected to all outstanding documents and journals,
and posted entries. This is done using the source fields:

•	 Source Type: An integer field representing the table the record is linked to,
for example 37 means sales line and 5406 prod. order line.

•	 Source Subtype: An option field which is linked to the document type field
when the record is linked to a sales line or purchase line record or the status
of a production order.

•	 Source ID: The link to the document no. of the record this line is linked to.
•	 Source Batch Name: If the record is linked to a journal this field represents

the journal batch name. If this field is used the source ID is empty and
vice versa.

•	 Source Prod. Order Line: When the record is used for a production order
line or component this field represents the production order line number.

•	 Source Ref. No.: An integer field which is used to link the record to a line no.
in a document or journal or the production component. If the line is linked to
a ledger entry this field represents the entry no. field.

There are four types of Reservation Entries in Microsoft Dynamics NAV represented
by the Reservation Status field:

•	 Reservation: These are 'real' reservation entries, which means that a part of
the current or future inventory is reserved for a production order or sales
order. If the item uses the Always reservation option it is not possible to
work around this. If the reservation is optional it is possible that someone
else might still use these items in another process.

Trade

[278]

•	 Tracking: This option is used by the Order Tracking Policy option in
Microsoft Dynamics NAV. This is an 'under water' process that can link
supply and demand automatically. The status Tracking means that there
is a supply as well as a demand.

•	 Surplus: This option is used for both item tracking as discussed in Chapter
5, Production, and the Order Tracking Policy. The records can be identified
by using the value of the item tracking field. This is set to None for Order
Tracking Policy records and Serial No., Lot No. and Lot and Serial No. for
item tracking.

•	 Prospect: When item tracking is used, a prospect reservation records
indicates an internal journal action, for example, assigning a serial number
to an item journal line.

Creating a reservation
Let's go into the application and create a reservation to see what entries we get in
the database.

We will do this using a new item. The item should have a Description, Base Unit of
Measure and a Gen. Prod., VAT Prod., and Inventory Posting Group. The default
value for Reserve is Optional which we will use for this example. The default costing
method is FIFO which we will also use.

To demonstrate the real value of reservations we should create two purchase orders
with different dates and unit costs. With FIFO the system would normally apply the
sales order to the first item ledger entry. We will reserve on the second item ledger
entry to demonstrate the impact on item costing and application.

When this is done we can create a new sales order with one sales line containing
the item and half the inventory and select Functions | Reserve...

In this screen we can take a look at the available inventory by clicking on Available
to Reserve.

Chapter 6

[279]

Here we select the second receipt and select Actions | Functions | Reserve.
Then we close the screen.

In the sales order lines we can now see the Reserved Quantity being 50 as shown in
the following screenshot:

Let's have a look at the reservation entries created in the database by running the
table from the Object Designer.

A reservation entry of the type Reservation always uses two lines with the same
Entry No. The Source Type for the first entry links to the Sales Line table (37) and the
second uses the Item Ledger Entry Table (32) as shown in the previous screenshot.

Trade

[280]

We ship and invoice the sales order and look at the Item Ledger Entries for out item:

We see that Microsoft Dynamics NAV has used the second item ledger entry, but the
cost is 5000, not the 7500 from the second entry.

To correct this we run report Adjust Cost - Item Entries (795) and have another look
at the Item Ledger Entries and the Value Entries to see that it is corrected as shown
in the previous screenshot.

Order tracking policy
We have seen that reservation entries are not only used for the reservation
process of inventory and item tracking but also for balancing supply and demand.
This is an internal option within Microsoft Dynamics NAV that allows us to link
inventory internally.

The entries are used in the supply and demand calculation to create the
Requisition Worksheets.

Chapter 6

[281]

Example
Let's create a copy of our reservation test item to see the differences between
reservations and item tracking. This new item should have the Order Tracking,
Policy Tracking and Action Msg.

We will create two purchase orders with both a quantity of 50 without receiving
them and create a sales order for the same item with quantity 80.

If we now select Order Tracking from the sales line Functions we will see that the
system matches supply and demand.

Let's have a look at the reservation entries

We can see that Microsoft Dynamics NAV is now using the Surplus and Tracking
types. The 20 items we have left are not linked to a demand.

Trade

[282]

Let's start the requisition worksheet for this item and see what Microsoft Dynamics
NAV can do with this information.

Replenishment
Let's change the reordering policy of the item to Lot-for-Lot and run the Requisition
Worksheet for this item.

This will result in the suggestion to combine both purchase orders into one
document with a different quantity.

Chapter 6

[283]

Trade in vertical industries
Microsoft Dynamics NAV is used in many different vertical industries that often
require specific features. Rather than trying to implement all these features in the
standard product, Microsoft Dynamics NAV supports the framework, and allows
developers to design and create vertical features.

For these features the 80/20 rule applies. Microsoft delivers 80% of the framework
which costs 20% of our time to implement. The missing 20% of the functionality is
developed at a cost of 80% of the budgeted time.

In this chapter we will discuss how Microsoft Dynamics NAV is used for trade
in five different vertical industries. For each industry we will discuss two specific
vertical features and how they could be solved.

Most industries have solid add-on solutions available designed
by certified Microsoft Dynamics NAV partners that have been
implemented at multiple sites. It is highly recommended to look at
those add-on solutions instead of reinventing the wheel and rewrite
an add-on that already exists.

Fashion
The Fashion industry has trade periods within the seasons. During the spring,
shops need to order the collection for the next winter and in autumn they buy
summer clothes.

Sales orders
The sales orders for each collection are created as normal sales orders but with a
shipment date in the future, sometimes six months or more ahead. When using
variants there should be a separate sales line for each variant, meaning size and color.

This can be quite a hassle to enter for sales people so we could speed this up using
a template sales line for the main item and hide the individual sizes.

Using a matrix where the x-axis represents the size and y-axis the color, sales people
can quickly enter the quantities. When the matrix is closed we can update the hidden
sales lines.

These hidden sales lines are used to calculate the production orders as discussed in
Chapter 5, Production.

Trade

[284]

Reservations
When the production orders return from the factory, the warehouse and sales people
need to decide which customer gets the items first. This can be done using the
shipment date but that might not be completely fair if one customer orders in time,
meaning six months ahead, and another customer orders too late with an earlier or
the same shipment date.

This is where we can start using reservations. The reservations already support
variants but the auto reserve functionality of Microsoft Dynamics NAV might not
just do what we like.

Changing this functionality is a complex task. The C/AL code for AutoReserve
can be found in codeunit Reservation Management (99000845) but should only be
changed by experienced developers.

Fortunately Reservations are layered on top of the normal Inventory, Production,
Purchase and Sales process. If we change the algorithm we can remove the current
reservations and retest the code to see if the newly created reservation entries are
good. This testing process should be done very carefully on a dataset that is small
enough to analyze using Microsoft Excel.

Automotive
Microsoft Dynamics NAV is used by many car dealer companies and garages
because there are some strong add-on products available for this vertical industry.

On top of the normal trade process supported by Microsoft Dynamics NAV these
companies have additional business requirements. Let's discuss two of them.

Vehicle Information
Each vehicle that is sold needs to be configured and ordered. The configuration
should be stored in the database for future maintenance and warranty.

We can compare this to Serial Numbers or the Lot No. Information table in the
standard product. We could create a new master data table called Vehicle and create
a record in this table for each car we configure or sell. The number we create for the
Vehicle can be used as a Serial Number in the Item Ledger Entry.

For maintenance we could have a vehicle journal that creates vehicle ledger entries
each time the car comes back for servicing. This helps us keep track of the history
and should include information such as mileage. The technical design of this solution
can be compared to the Squash application we created in Chapter 2.

Chapter 6

[285]

Parts management
In the automotive industry, using the right part is crucial. Different parts can be
used on different types of cars and parts often differ between brands.

Many vendors offer their catalogues in digital formats allowing us to create
interfaces with them. Parts should be defined as items using standard features
such as substitutions.

As many parts can be expensive and have low turnover rate, keeping them on
inventory can be expensive thus a minimum inventory should be maintained.

Parts can be connected to vehicle types. For example, a car interior mirror could be
used for five types of cars. When a service engineer wants to replace such a mirror
he can use a filtered item list of all available parts.

Pharmaceuticals/medicines
In a pharmacy or at another medicine supplier it is normal that not just every
customer is allowed to purchase any item. They cannot sell medicines against
cardiac arrhythmia to a healthy person.

Even when someone is allowed to use a certain medication it is often limited to
a certain number of doses.

People are often insured for the cost of these medicines but most insurance
companies require a contribution.

Medication card
Microsoft Dynamics NAV does not support item regulation. To support this we
should create new functionality that links items to customers but also allows us
to enter the doses and frequency.

From this template we could periodically create sales orders and shipments.
Whenever we ship the medicines we need to update the template.

Trade

[286]

Contribution invoicing
When customers need to do pay a part of the cost of the medication as their own
contribution we require the system to create two sales invoices for one sales order.

This is possible using the standard pre-payment functionality in Microsoft Dynamics
NAV. We could send a pre-payment invoice to the customer and handle the other
invoices to the insurance companies using combined invoicing. The pre-payments
will be automatically deducted from the invoice amount but the value entries on the
items will remain intact.

However the standard system does not allow us to create a pre-payment invoice to
another Bill-to Customer No. This would have to be designed and developed.

Food
Where fashion companies have two or three large ordering moments per year where
customers carefully consider what to order, most food companies have a daily
ordering process of high volume items.

This ordering process is often done by phone or fax where the retailer calls and tells
the call center employees what to ship the next day.

Assortment
Most food companies use an assortment of products. This assortment can change
from season to season or contain special action items but is usually stable since that
is what most consumers want. Meatballs on Monday and Pork Chops on Tuesday
and so on.

To save valuable time creating a new sales order with the same items each day we
could have the system do this at night.

This could be done using Standard Customer Sales Codes. This standard function
in Microsoft Dynamics NAV allows us to create template sales orders with multiple
items or other master data supported by the sales process. It also supports fixed
quantities that can be adjusted when the sales orders are created.

The sales order can be created from the customer sales codes using the function Get.
Std. Cust Sales Codes....

Chapter 6

[287]

This function could be scheduled in the Job Scheduler to create new sales order each
night for the next day. We will discuss the Job Scheduler in Chapter 9, Interfacing.

Fast order entry
When the retailer contacts the call centre to complete the sales order the order entry
person should be able to quickly find the correct sales line. If the assortment contains
150 items this can be quite challenging.

This can be solved by implementing a fast order entry functionality that enables
users to key in an item number and quantity on the sales header. The values will
be updated in the correct sales line and blanked for the next entry.

With this functionality the end user can always work from the same place without
searching for the correct sales line.

Furniture
Furniture trading companies have similar issues with variants to the fashion
companies with some key differences.

Items such as office chairs and desks have far more options compared to clothes,
and when sold most consumers by a few with the same specifications rather than
a collection of different sizes.

Trade

[288]

Variant configuring
The price of furniture is dependant of the configuration, which fabric we want for
the seat, the type of armrest, or even the type of wheel. This configuration also
determines the item number.

An office chair or desk can have as much as 1200 possible combinations. We do not
want to register all these combinations as items or even as variant.

Most furniture suppliers offer online systems or small external software packages to
determine the combination. Once the combination is identified we can create a new
variant code or see whether the variant already exists and create the sales order.

One-off items
Furniture retailers often have many collections they can sell with thousands of items.
Most of the items in these collections will never be sold or as one-off items that are
only sold once to one customer.

In this case it does not make sense to create an item with an item cost and inventory
value but we want to have some traceability of the item.

This allows for two solutions. We could create a collection item which we can reuse
each time we sell an item that is similar to another item but not exactly the same, for
example, a lamp with a different foot color. On the sales line we create the possibility
for sales people to enter the vendor/collection and an item category. The system
should then search for the template item.

Another solution is to create a new item runtime from the sales order. The sales
person will also select the vendor/collection and item category and the system
should show a list with items already in the database. If the item is not created the
system should create the item using a template for the posting groups and so on. The
sales person can immediately use it and we have traceability of the items we sold.

Chapter 6

[289]

Summary
With this chapter we end our quest to explore the production and trade functionality
around the items in Microsoft Dynamics NAV.

We discussed the application design of sales and purchase documents in Microsoft
Dynamics NAV and how they are mirrored. We've talked about the different
Document Types and how they work together from Quote or Blanket Order to Order
and Invoice or Return Order, and Credit Memo.

The sales and purchase line validation methodology helps us to calculate the pricing,
inventory, and VAT, using a special structure of functions that is linked to the way
end users create these lines.

Sales and Purchase orders have a mandatory release process that can be extended
with Document Approval and Prepayments.

The items have a two layer inventory process using Item Ledger Entries on Locations
and Warehouse Entries on Bins and Zones. We can use Transfer Orders to move
items from one location to another and Warehouse Documents to move items from
bin to bin and zone to zone. A Warehouse is set up done in the location and can have
different levels. The set up level should match the physical process in the warehouse.

Item Application and Costing is tied together with the Reservation process in
Microsoft Dynamics NAV. The Reservation Entry table adds a new level to the
inventory process linking documents, journals and entries together to level supply
and demand. When used, the reservation process can overrule the Costing Method.

At the end of the chapter we talked about different ways to implement this in
vertical solutions and what gaps would have to be solved and how. This
demonstrates the flexibility and the power of the standard transaction structure
in Microsoft Dynamics NAV.

In the next chapter we will take this to a new level where we will design and build a
real world vertical solution for Microsoft Dynamics NAV that will enable us to create
combine sales shipment in routes for trucks. We will also create a new solution on top
of Microsoft Dynamics NAV using the application as a development environment to
build something new with respect to the methodology of the application.

Storage and Logistics
In the previous chapters, we took a look at how companies work with ERP in
the Production and Trade businesses. All these companies work together to
bring finished products to the stores where end consumers can buy them.

During this process, the products move around between the companies. This is
done using different kinds of transportation, for example trucks, ships, trains,
and airplanes. It may also be necessary to store the products in a warehouse
until they are sold or moved to the shops.

More and more companies make a decision to outsource logistics rather than having
their own transportation. When this is the case, logistics can be a separate part of the
supply chain. This chapter discusses this process and the effects on the ERP system.

One of the specific aspects of logistics companies is that the products they handle are
not their property. Although they are a part of the total cost of the consumer product,
they don't care about the detailed value of their inventory. Logistics companies sell
warehouse handling, storage, and transportation as services.

Microsoft Dynamics NAV does not have built-in functionality to handle this so, in
this chapter, we will discuss how to design an application to do this.

There are several add-on solutions for this business and in a real world situation,
those add-ons should be evaluated as potential solutions. In this chapter, we will
discuss how to design and create a basic framework for such an add-on application
that can be easily extended without adding too much complexity.

The objects provided with this chapter should never be
implemented at a real customer scenario. They are for the
purpose of this chapter's examples only.

Storage and Logistics

[292]

After reading this chapter, you will have a better understanding of how to design
a solid add-on solution and how to integrate this into the standard Microsoft
Dynamics NAV product.

How to read this chapter
In this chapter, we will demonstrate how an add-on for Microsoft Dynamics NAV
should be designed. In this example, we create a solution for a Storage & Logistics
company. This is chosen because the functionality is similar to existing functionality
in Microsoft Dynamics NAV (Warehousing) and is a good example of building on
top of standard application features.

We will start by analyzing the business process and discuss reasons why we
won't use standard application features and explain the modules our new
application will have.

The next step is to go deeper into these modules and define the Table and Posting
model for each of them. We will then walk through the application like we did in the
previous chapters and reverse engineer it to explain how all the pieces where designed.

To do this, we need to download and install the application. As we progress through
the chapter, we will discuss most of the objects which can be opened and analyzed in
the Microsoft Dynamics NAV classic client.

Open the objects as we move along in the chapter to learn
more. The objects are rich in functionality which cannot all be
discussed in detail in this book.

Chapter objects
With this chapter, some objects and Dynamic-Link library (dll) files are required.
The appendix describes how to import and activate them.

After the import process is completed make sure that your current database is the
default database for the Role Tailored Client and run Page 123456701, Storage &
Logistics Setup from the Object Designer in the Classic Client.

From this page, select the option Initialize Storage & Logistics.

Chapter 7

[293]

The process
To design a solid solution for a specific market we first need to analyze the business
processes and see where the fits and gaps are with the standard product.

The companies that will be using this solution are logistics providers. These
companies do not buy and sell products but sell logistics services like transportation
and storage.

There can be various moments in the supply chain where these companies are
required. Products are often manufactured in companies all over the world and
shipped to consumers elsewhere. Products can cover great distances.

Storage and Logistics

[294]

Using standard features
Microsoft Dynamics NAV, like many ERP systems, is designed for people to
handle their own products and supports the process of costing like we have seen
in the previous chapters. For logistics service providers, this inventory control and
valuation functionality is not necessary as the products are not their property. This
means that they would want to use the warehouse functionality without the Item
Ledger Entries which is very difficult in Microsoft Dynamics NAV.

Logistics service providers also offer transportation solutions. They will pick up
the products and deliver them to the customer. The process includes combining
different stops in routes resulting in a more cost efficient way of transportation.
This functionality is not available in Microsoft Dynamics NAV.

Defining the modules
In this chapter, we will design three new modules on top of Microsoft Dynamics NAV
that integrate with each other and could still be used separately. These modules also
integrate with the standard application though Sales and Purchase documents.

Chapter 7

[295]

Storage
The first part of the application is the storage module. This allows us to receive
and ship products and move them internally in the warehouse.

The design of this module is very similar to the warehouse documents in the
standard application that we discussed previously in Chapter 6, Trade.

Logistics
The logistics module supports the planning of routes delivering the products to the
consumers. This is integrated to the storage module, but can also be used from sales
shipment documents in the standard application.

For the design of this module, we have looked at the production orders in Microsoft
Dynamics NAV in Chapter 5, Production. The routes and shipments have a status field
that indicate the progress similar to a production order.

Invoicing
The storage and transportation services are then invoiced to the customer
periodically or when the products leave the warehouse.

For this, we will use the standard Microsoft Dynamics NAV invoicing solutions
but we will add a new Income & Expenses module in between the logistical solution
and the invoicing functionality.

We have looked at the design of Job Ledger Entries and how they are invoiced.
This will be discussed in the next chapter.

The storage application
In a storage warehouse, products come and go all the time. A big difference between
a storage company and a production plant is that the storage company does not care
about the exact products they have but the amount of space they require for storage.
The business is selling storage handling, storage space, and transportation.

For our application, we'll assume that our warehouse has a receipt and a shipping
region, an 'in between' staging region and a bulk storage region.

Storage and Logistics

[296]

If we simplify the warehouse it might look like this floor plan:

•	 Receipt: When the products come in, they are first unloaded from the truck
into a receipt region. This is often located close to the unloading dock so the
truck can quickly move on to its next stop after the products are unloaded
and the loading documents are checked.

•	 From the receiving location, the products should be stored away as quickly as
possible since another truck might come and the space may be needed again.
The products can now go to either the staging region or the bulk region.

•	 Staging: The staging region is an in-between region where products can
be stored that will leave the warehouse quickly or when it is too busy to
properly store in the bulk area and we need the space in the receipt region.

•	 Shipment: When products leave the warehouse they will first be moved to
the shipment region. This allows us to quickly load the trucks when they
arrive and easily compare the loading documents with the real products.

•	 Bulk: When we expect products to be in the warehouse for a longer period,
they will be stored in the bulk area where we can define shelves. A shelf
can have a capacity for one or more products depending on the setup in
the system.

Chapter 7

[297]

Documents
The first step is to set up a registration of what will be coming to our warehouse
by creating the 'Receipt documents'. In the old days, we would often receive
this information by phone or fax, but today most companies use interfaces such
as EDI and web portals for this. This keeps us from making mistakes when
typing in the information in the system and allows us to automatically populate
the receipt document.

The receipt documents will be combined into 'Put-away documents' that register
the transfer from one region to the other. The software will also suggest a shelf to
store the products.

When the products leave the warehouse, our customers will also register a 'Shipment
document'. On their call, we will start the order picking process and combine the
shipments. The 'Pick documents' will tell us on which shelf the products are stored.

Incidentally, it may also be necessary to move products in the warehouse. This will
be registered in internal 'Movement documents'.

The storage documents are connected to the logistics document structure, which we
will see later in this chapter, while discussing logistics.

Look, learn, and love
In Chapter 2, A Sample Application we learned how to use a journal and entry
structure to register usage. In this chapter, we will continue with this and add
some document structures.

To design our application, we will look at how existing pieces of Microsoft Dynamics
NAV are designed and reuse that.

Journal
The core of our application is the Storage Journal which is created from the same
template as the Squash Journal earlier. The difference is that people in a warehouse
use documents rather than journals.

Documents
We will support the five types of documents we discussed earlier; Receipt, Shipment,
Put-Away, Pick, and Movement. The documents can be created manually by
end users or they can be created automatically. We will also provide an interface
structure to allow customers to register receipts and shipments.

Storage and Logistics

[298]

As all the documents have the same structure and mostly the same fields, they are in
the same table to share business logic.

Sharing the same table for multiple document types allows
easier sharing of business logic across the application.

This is also done in the standard Microsoft Dynamics NAV application for sales and
purchase documents as we discussed in Chapter 6, Trade.

Master data
To define what we are storing in the warehouse, we will use a new table called
Product which is similar to the Item table in the standard system. By creating a new
table, we will improve upgradability of our solution and we will be more in control
of our own application or in other words, less likely to be impacted by changes that
Microsoft may implement in the standard product.

Designing the table and posting schema
If we combined this information into a table and transaction structure, it would
look like this diagram:

The actual inventory is kept in the Storage Entries. By filtering on a warehouse code,
region code, or shelf number, the inventory can be calculated.

Chapter 7

[299]

Sharing tables
The storage and logistics add-on application also has some shared tables. It does not
make sense to have a product or warehouse table for each part of the add-on. We
also choose to share the setup and the cue tables for the role center definition. The
storage and logistics application has four role centers.

By sharing the cue table, it is much easier to place the same cues
on different role centers. If we were to create one table for each
role center, we would need to copy and paste the cue definition to
the table for each change request.

Getting started
In our scenario, we'll ship and receive products for a company called CRONUS
International Ltd. We have warehouses in Austria, Belgium, Czech Republic,
Germany, Great Britain, Iceland, Netherlands, Norway, Sweden, Slovenia, Slovakia,
and the USA.

Each warehouse has the same basic layout as explained earlier in this chapter.
From the warehouse, we plan routes to transport the products to the consumer.

After initializing the application and restarting the application, the Role Center
should look like this:

Storage and Logistics

[300]

The Activities window shows the workflow for the warehouse floor. My Products
contains all customer products we have on inventory and My Regions allows us to
see what inventory is where in our warehouses.

Opening balance
The opening balance was created using the Storage Journal. By using the journal to
create opening entries, we are sure that business rules are followed.

In our design, we decided that end users are not allowed to directly register
inventory on the bulk location. We start by receiving it, then we create a put-away
document to move it to the bulk location. We'll see how that is done later in this
chapter when we discuss the storage documents.

Have a look in the Page Storage & Logistics Setup (123456701)
to see how this was done in the function CreateOpeningBalance().

Products
Products are references to the items of our customers that we keep on the inventory.
They contain a Bill-to Customer No. and a Customer Item No. This allows us, for
example, to keep item with number 10000 for two different customers.

We can also see and set up the Storage Prices for this product, which we will later
use for the invoicing.

Chapter 7

[301]

Warehouse
A warehouse is a physical building with an address. To move products from
one warehouse to another, we would need to ship them, create a route, and then
physically receive them in the other building.

Regions
A region is a part of the warehouse that is used for a specific storage activity.
In our example, we have a receipt, staging, bulk, and shipment region. To move
products from one region to another, we should create a put-away, movement, or
pick document.

Storage and Logistics

[302]

Shelves
A shelf is a specific part of a region. The specific code of a shelf often indicates its
position in the warehouse. For example: Our warehouses have two rows, A and B
with 18 lines and 8 levels where each shelf can contain one pallet.

Registration worksheet
The warehouse process starts with receiving products. To save time when the
products arrive on the dock, we ask our customers to register their products in
advance. This is done in the storage registration worksheet.

In our application, we have simulated an interface with our customer Cronus
International Ltd. We can start the interface from the Role Center directly.

1. We start the report CRONUS Storage Import Receipt from the Role Center.

2. The system pops up and asks for a Storage Registration Code.
3. We will choose CRONUS from the list and start the import process.
4. After this, we open the Registration Worksheets.

5. When we now open the registration worksheet, we see what CRONUS will
send us today. This allows us to prepare our business, maybe move around
some products and schedule resources.

Chapter 7

[303]

6. We can now register this worksheet which will create the receipt documents
for us.

Storage documents
We use documents to determine which product goes where. Creating those
documents in the system manually requires a large amount of work, so in our
application this is done automatically.

Receipt
By default all products that are received are stored in the RECEIPT region.
This region does not have shelves. If required, we can change the region code.

After we register the Receipt document, we have inventory in the RECEIPT location.

Storage and Logistics

[304]

Since this is a relatively small region, we need to move the products to the bulk
location as quickly as possible. This is done using a put-away document.

Put-away
A put-away document is used to move products from the receipt region into the
bulk region. The storage entries tell us what is in the receipt region, so we copy
that information into a new put-away document. These documents can be created
manually, and based on the warehouse information on the document, we can pull
the data into the document.

Another requirement is to have an automated process that creates put-away
documents based on the entire content of the receipt region.

To provide for this functionality, we have created report Receipts to Put-Away
(123456715). This processing-only report reads the storage entries for the receipt
region, and creates the put-away documents based on certain predefined rules.

The report filters down the storage entries based regions of type Receipt and
with inventory.

It creates a put-away document for each warehouse suggesting the first put-away
region in the warehouse. For each Storage Entry, the function CreateLine
is started.

Chapter 7

[305]

Let's have a look at the C/AL code for this.

CreateLineCreateLine()

FindOrCreateStorageHdr;

Region2.SETRANGE("Warehouse Code");
Region2.SETRANGE("Put-Away", TRUE);
Region2.FINDFIRST;

WITH StorageEntry DO BEGIN
 NextLineNo := NextLineNo + 10000;
 StorageLn."Document Type" := StorageHdr."Document Type";
 StorageLn."Document No." := StorageHdr."No.";
 StorageLn."Line No." := NextLineNo;
 StorageLn."No." := "Product No.";
 StorageLn."Warehouse Code" := "Warehouse Code";
 StorageLn."Region Code" := Region2.Code;

The first step is to check if it is required to create a new storage document.
We create a new document for each Warehouse and Storage Date.

Then the system filters on the region table to find a Put-Away region. For each
Storage Entry, a Storage Line is created.

After running the report, our put-away document looks like this:

Storage and Logistics

[306]

The suggested Region Code is BULK and the Apply-to Region Code is RECEIPT.

If we now try to register this document, we should receive an error since we did
not enter any Shelves because this is mandatory on this region.

This check is done in the Codeunit Storage Jnl.-Check Line. By
moving these checks into this Codeunit, we make sure these rules
are mandatory in each posting.

Since we rely on the system to keep track of our inventory we can also have it
suggest available shelves for us. This is also done using batch report 123456716
Generate Put-Away Shelves.

Let's design the report and look at the C/AL code in the Storage Line DataItem.

Storage Line - OnAfterGetRecord()

Counter := Counter + 1;
Window.UPDATE(1,"Document No.");
Window.UPDATE(2,ROUND(Counter / CounterTotal * 10000,1));

Shelf.SETRANGE("Warehouse Code", "Storage Line"."Warehouse Code");
Shelf.SETRANGE("Region Code", "Region Code");
Shelf.SETRANGE(Inventory, 0);
Shelf.SETRANGE("Blocked by Storage", FALSE);
Shelf.FINDFIRST;

"Shelf No." := Shelf."No.";
MODIFY;

For each Storage Line in the put-away document, it finds another shelf by filtering
on availability based on Inventory and Blocked by Storage.

The Blocked by Storage field is a flow field that returns true if the shelf is used on a
Warehouse Document preventing two forklift trucks from stopping at the same shelf.

When this report is executed, we can register this Put-Away document and we can
see the Storage Entries that are generated from the Product Card using the Ledger
Entries Action.

Chapter 7

[307]

Here we can see that the Put-Away has applied its entries to the Receipt entries.
Since we moved everything, the original entry is closed and the remaining quantity
is set to zero.

This functionality is similar to what we created in Chapter 2, A Sample Application
when applying an invoice entry to a reservation.

Shipment
After a while, when the products are on inventory, the customer may send a
request to ship them. The shipping documents are sent using the same interface
as the receipt documents.

Running this will create the Storage Registration Worksheet which we can check and
register to a shipment document the same way as the Receipt Documents earlier.

Storage and Logistics

[308]

The system creates a shipment document for each Ship-to Address.

We now have to start the process of moving the products from the storage region to
the shipment region.

Picks
The products that will be shipped need to be picked from the bulk or staging region
using a Pick Document. As with the Put-Away functionality, our application design
provides an automated process that supports this process.

To create the document, we use batch report 123456717 Shipments to Pick.

This report can combine shipments into one or more pick documents.

Storage Line - OnAfterGetRecord()

Counter := Counter + 1;
Window.UPDATE(1,"Document No.");
Window.UPDATE(2,ROUND(Counter / CounterTotal * 10000,1));

Product.GET("No.");
Product.SETRANGE("Warehouse Filter Code", "Warehouse Code");
Product.CALCFIELDS(Inventory);

Chapter 7

[309]

IF Quantity > Product.Inventory THEN
 ERROR(Text001, Quantity, Product.Inventory, "No.");

QtyToPick := Quantity;

StorageEntry.SETCURRENTKEY("Product No.");
StorageEntry.SETRANGE("Warehouse Code", "Storage Header"."Warehouse
Code");
StorageEntry.SETRANGE("Product No.", "No.");
StorageEntry.SETRANGE(Open, TRUE);
IF StorageEntry.FINDSET(TRUE) THEN REPEAT
 StorageEntry.CALCFIELDS("Blocked by Storage");
 IF NOT StorageEntry."Blocked by Storage" THEN BEGIN
 IF QtyToPick >= StorageEntry.Quantity THEN
 QtyToPick := QtyToPick - StorageEntry.Quantity
 ELSE BEGIN
 StorageEntry.Quantity := QtyToPick;
 QtyToPick := 0;
 END;
 CreateLine(StorageEntry);
 END;
UNTIL (StorageEntry.NEXT = 0) OR (QtyToPick = 0);

IF QtyToPick > 0 THEN
 ERROR(Text002, "No.");

First the system checks if the products are on inventory in this warehouse. If they
are, it starts browsing though the storage entries to look for available shelves. Here
we also use the Blocked by Storage flow field to avoid two employees fighting over
the same products.

One of the functional requirements in our application is not to have half a shipment
be picked and block the SHIPMENT region being incomplete. If there is not enough
inventory available for the pick, the system should error out.

Storage and Logistics

[310]

After the pick is created, we update a field Pick Status on the Shipment. We can
see that there are three Pick Lines attached to this shipment.

When we click on the 3 the system opens the lines. Double clicking on the lines
will open the Pick Document.

To influence the double click event, assign the RETURN
shortcut to one of the actions on a page.

After registration of the Pick Document, the status of the Shipment moves to
Completely Picked. We can see that the Pick Lines are registered.

Chapter 7

[311]

The last step before the shipment can be registered is updating the Storage Lines
with the Apply-to Storage Entry No. from the Pick document. For this step, we have
designed a dedicated report Update Storage Shipment (123456718) that can be
started from the Storage Shipment document.

After this, the shipment can be registered. The products have now left our warehouse
and are on the road to the customer.

The logistics application
Similar to Production Orders in the standard application, the processes in our
logistics application are status driven rather than transaction driven. This is why
this part of the application does not have a journal with entries. The tables can have
archived copies but they are not part of a normal registering or posting routine.

For the examples in this part of the chapter, we should change the default
Role Center to Logistics Role Center (123456700) in the Profile
table (2000000072).

Storage and Logistics

[312]

Designing the table and posting schema
If we look at the structure of the logistics application, we can see that the typical
posting transactions are missing. The application uses a status-driven workflow
based on events which are defined in the triggers of the tables.

The logistics shipment and shipment details have a lot of similarity with the
shipments from the warehouse. Still we have chosen to move them into new
tables for the following reasons:

•	 Security: In Microsoft dynamics NAV, the table level is the most important
for security. If we would share this table, it would be impossible to set up
users to have access to logistics and not to warehouse or vice-versa.

•	 Locking: If two departments use the same table for different purposes
they will most likely have a different locking mechanism. For example, in
logistics, shipments are bound to the route object. The warehouse shipments
are bound to other shipment documents.

•	 Filtering the same table in main processes in different ways will significantly
increase the probability of blocks and deadlocks.

•	 Table size: The storage documents are registered shortly after they are
created. Most documents are deleted and moved to registered tables the
same day that they are created. Logistics shipments have a longer lifecycle.

•	 It takes longer to take the products from our warehouse to the customer and
during this process, many things can go wrong because of outside events.
The transport tables may be periodically cleaned up like Manufacturing or
Jobs in the standard Microsoft Dynamics NAV product.

Chapter 7

[313]

Getting started
To start the logistics process, we could create some shipments manually
but the application also provides an interface to the Sales shipments and
Warehouse shipments.

Let's start the option Combine Shipments (Sales) from the Activities on the
Logistics Role Center to generate some data to work with.

Shipments
Logistics shipments are products moving from one physical address to another
physical address.

In our example, the shipments from our warehouse to the customer are created,
but a shipment can also be from another address to a customer.

Tracking the status of a shipment is important for the planners. A shipment starts
with the status Ready to Ship as soon as all mandatory fields are checked.

When the shipments are combined into routes the shipment moves to the Shipping
status. During this stage, the products are picked up from the warehouse. When this
happens the Pickup Date Time is populated. This is done from the route.

After delivery the Delivery Date Time is populated and the status is set to Shipped.

The planners can follow the shipments from their Role Centers in a workflow.

Routes
Shipments are combined into a route. In order to make a product planning, it is
very important that the planners get the shipment details correct. The length, width,
height, and weight of the products determine if they can be combined into a truck,
ship, airplane, or train.

Storage and Logistics

[314]

Our example add-on system has a report to combine shipments into a route.
The shipments in a route will be combined into stops if they have the same
address information.

Combining shipments
This is done in report Shipment To Route & Warehouse (123456701). The shipments
are grouped per warehouse. For each warehouse, a new route is created.

For each shipment, the system creates a route stop. The stops have different types:
Pickup, Delivery, Pickup group, and Delivery group.

Each shipment then gets a Pickup and Delivery stop.

Shipment - OnAfterGetRecord()

IF Route.Description <> Warehouse.Name THEN BEGIN
 Route."No." := '';
 Route.Description := Warehouse.Name;
 Route."Shipment Date" := WORKDATE;
 Route.Status := Route.Status::Planned;

 Route."Bill-to Customer No." := "Bill-to Customer No.";
 Route."Bill-to Name" := "Bill-to Name";

 Route.INSERT(TRUE);
 i := 0;
END;

i := i + 10000;

RouteStop."Route No." := Route."No.";
RouteStop."Line No." := i;
RouteStop.Type := RouteStop.Type::Pickup;
RouteStop.VALIDATE("Shipment No.", "No.");
RouteStop.INSERT;

i := i + 10000;

RouteStop."Route No." := Route."No.";
RouteStop."Line No." := i;
RouteStop.Type := RouteStop.Type::Delivery;
RouteStop.VALIDATE("Shipment No.", "No.");
RouteStop.INSERT;

After the routes are created and the shipments are assigned to a stop, a grouping and
optimizing algorithm is started. This is Codeunit Route Optimizer (123456700).

Chapter 7

[315]

Route optimizer
The algorithm in our example is designed to find the optimal route to deliver the
products to the addresses by calculating the distance to each address from the
warehouse. The route starts from the address that is closest to our warehouse and
ends at the address that is the farthest away.

This is just an example of a simple algorithm. Each company will have its own
algorithm that needs to be implemented.

RouteStopPickup.SETRANGE("Route No.", Route."No.");
RouteStopPickup.SETRANGE(Type, RouteStopPickup.Type::Pickup);
RouteStopPickup.FINDFIRST;

RouteStopDelivery.SETRANGE("Route No.", Route."No.");
RouteStopDelivery.SETRANGE(Type, RouteStopDelivery.Type::Delivery);
RouteStopDelivery.FINDSET;
REPEAT
 Window.UPDATE(2, RouteStopDelivery."Shipment No.");

 IF NOT Optimizer.GET(RouteStopDelivery.Name) THEN BEGIN
 CLEAR(BingMapMgt);
 BingMapMgt.CalculateRoute('', RouteStopPickup.Latitude,
RouteStopPickup.Longitude,'', RouteStopDelivery.Latitude,
 RouteStopDelivery.Longitude, Optimizer."Distance
(Distance)",Optimizer."Activity Time", Optimize::Distance);

 Optimizer.Name := RouteStopDelivery.Name;
 Optimizer.Latitude := RouteStopDelivery.Latitude;
 Optimizer.Longitude := RouteStopDelivery.Longitude;
 Optimizer.INSERT;
 END;

UNTIL RouteStopDelivery.NEXT = 0;

The calculation of the distance is done by calling a web service from Bing Maps. This
is explained in the interface chapter.

Each distance is stored as a record into the Optimizer table which is a helper table.
This table is a temporary variable in this Codeunit.

Temporary tables have multiple benefits that make them interesting to use. As they
are not stored in the database, they have much better performance compared to real
tables. This also has a benefit for concurrency since there can be no locking.

Storage and Logistics

[316]

Temporary tables are free to use. They are not checked in the
license file when used. To create and modify the definition, a
valid license is still required.

After generating the distances all Pickup shipments are combined into one stop
by assigning them all to the same Sequence No. value.

RouteStopGroup.INIT;
RouteStopGroup."Route No." := Route."No.";
RouteStopGroup."Line No." := 10;
RouteStopGroup.Type := RouteStopGroup.Type::"Pickup Group";
RouteStopGroup."Sequence No." := 10;
RouteStopGroup.Name := RouteStopPickup.Name;
RouteStopGroup.INSERT;

RouteStopPickup.MODIFYALL("Sequence No.", 10);

By sorting the distance helper table on distance, we can easily assign the correct
Sequence No. to the delivery stops. For each Sequence No. value, we will also
generate a group record in the stop table.

Optimizer.SETCURRENTKEY("Distance (Distance)");
Optimizer.ASCENDING(FALSE);
Optimizer.FIND('-');
REPEAT
 RouteStopGroup.INIT;
 RouteStopGroup."Route No." := Route."No.";
 RouteStopGroup."Line No." := Sequence;
 RouteStopGroup.Type :=
 RouteStopGroup.Type::"Delivery Group";
 RouteStopGroup."Sequence No." := Sequence;
 RouteStopGroup.Name := Optimizer.Name;
 RouteStopGroup.INSERT;

 RouteStopDelivery.SETRANGE(Name, Optimizer.Name);
 RouteStopDelivery.MODIFYALL("Sequence No.", Sequence);

 Sequence := Sequence + 10;
 IF (xLongitude <> Optimizer.Longitude) OR
 (xLatitude <> Optimizer.Latitude)
 THEN BEGIN
 IF xLongitude + xLatitude <> 0 THEN BEGIN
 CLEAR(BingMapMgt);
 BingMapMgt.CalculateRoute('', xLatitude, xLongitude,'',
 Optimizer.Latitude, Optimizer.Longitude,

Chapter 7

[317]

 RouteStopGroup.Distance, RouteStopGroup.Time,
 Optimize::Distance);
 RouteStopGroup.MODIFY;
 END;
 xLongitude := Optimizer.Longitude;
 xLatitude := Optimizer.Latitude;
 END;
UNTIL Optimizer.NEXT = 0;

After optimizing the route it should look something like this. We pick up two
shipments at the warehouse and drive them to two addresses in the country.

Route follow up
During the route, the planner needs to follow up with the driver. This will result in
the status of the shipment being updated.

In our solution, the planner should populate the field Date Time Completed. This
field is automatically updated in the shipment using a flow field.

Storage and Logistics

[318]

Incidents
A special status for a Shipment is Incident. If for any reason we cannot deliver the
shipment it should be taken back to the warehouse and shipped again. Based on
the reason for the incident we might need to invoice extra services.

The incident can be on a stop group or on an individual shipment and can have
status Undeliverable, Closed, or Other. The planner can add extra comments.

The other shipments that do not have incidents get the new status whilst the
incidents move to another place in the Role Center.

Follow up
The incidents can be followed up by the planner via the Role Center. Incidents that
are not handled keep the status open until someone decides what to do with it.

Chapter 7

[319]

The invoicing application
In Chapter 2, A Sample Application, we introduced invoicing for an add-on solution.
For the solution in this chapter, we'll take this one step further.

Our company is invoicing different logistics services such as:

•	 Handling costs for storage receipt and shipments.
•	 Storage costs for the period we keep the inventory.
•	 Costs for transporting the products to the end consumer.

All these costs need to be combined on one invoice. Some customers may require
monthly invoicing, some weekly, and for incidental customers we invoice directly.
This requires a special module to handle the invoicing.

For the examples in this part of the chapter the Default Role Center in the
Profile table (2000000072) should be changed to Income & Expenses Role
Center (123456761).

Storage and Logistics

[320]

Process
Let's have a look at the process to see where invoicing is required.

Income and expense
Everything that we want to invoice at one time to a customer, we store in a new table
we will call Income & Expense. This is a container where they will be kept until the
periodical invoicing is done for this customer.

Income & Expense records can be created manually by end users or automatically
by the system.

Let's have a look at this.

Chapter 7

[321]

To create a new Income & Expense record we need to fill in these fields.

•	 Income & Expense Code: This is a reference to the group of Income
& Expense.

•	 Type: This can be either Income or Expense. The former will be used on
Sales Invoices; the latter is reserved for future use on Purchase Invoices
if we decide to hire other companies to handle our logistics.

•	 Description: This is the description that will be printed on the Sales Invoice.
•	 Quantity: The number of services we have done. For example, the number

of storage days or number of kilometers or miles in a route.
•	 Unit Cost/Total Cost: This can be used to calculate the profit of a service.
•	 Unit Price/Total Price: This is the price the customer will see on the

Sales Invoice.
•	 Unit of Measure Code: A reference to the calculation method like BOX,

KM, MILES, or DAY.
•	 Applies-to Document (Sub)Type: A reference to Storage Header, Registered

Storage Header, Logistics Shipment, or Logistics Route. If necessary this can
be expanded to accommodate other add-ons.

Storage and Logistics

[322]

•	 Applies-to Document (Line)No.: A reference to the Storage and Logistics
documents that this Income & Expense record belongs to.

•	 Applies-to Entry No.: A reference to the Storage Invoice Entry

Invoicing
After the Income & Expenses are created, we can start the invoicing process. To
support this, some minor changes are done in the invoicing part of Microsoft
Dynamics NAV and as an example we choose a slightly different approach
compared to Chapter 2.

Sales Line
The Sales Line table (37) has gotten some minor modifications. We have added an
extra type for Income and implemented a table relation for the No. field.

This enables us to also create new entries on a sales invoice without having to create
an Income & Expense first.

The Sales Line also has a reference to the Income & Expense Entry No. and the
Apply-to fields. This enables us to create the Income & Expense Journal Lines in
the Sales Post Code Unit.

Codeunit Sales-Post (80)
The Sales Post Code Unit has only one change to populate the Income &
Expense Journal.

OnRun()
...
//* Chapter 7 >>>
SalesLine.Type::Income:
 IF SalesLine."Qty. to Invoice" <> 0 THEN BEGIN
 IncExpJnlLn.INIT;
 IncExpJnlLn."Posting Date" := "Posting Date";

Chapter 7

[323]

 IncExpJnlLn."Document Date" := "Document Date";
 IncExpJnlLn."Reason Code" := "Reason Code";
 IncExpJnlLn."Income & Expense Type" :=
 IncExpJnlLn."Income & Expense Type"::Income;
 IncExpJnlLn."Income & Expense No." := SalesLine."No.";
 IncExpJnlLn.Description := SalesLine.Description;
 IncExpJnlLn."Bill-to Customer No." :=
 SalesLine."Bill-to Customer No.";
 IncExpJnlLn."Applies-to Document Type" :=
 SalesLine."Applies-to Document Type";
 IncExpJnlLn."Applies-to Document Subtype" :=
 SalesLine."Applies-to Document Subtype";
 IncExpJnlLn."Applies-to Document No." :=
 SalesLine."Applies-to Document No.";
 IncExpJnlLn."Applies-to Document Line No." :=
 SalesLine."Applies-to Document Line No.";
 IncExpJnlLn."Income & Expense Entry No." :=
 SalesLine."Income & Expense Entry No.";
 IncExpJnlLn."Shortcut Dimension 1 Code" :=
 SalesLine."Shortcut Dimension 1 Code";
 IncExpJnlLn."Shortcut Dimension 2 Code" :=
 SalesLine."Shortcut Dimension 2 Code";
 IncExpJnlLn."Gen. Bus. Posting Group" :=
 SalesLine."Gen. Bus. Posting Group";
 IncExpJnlLn."Gen. Prod. Posting Group" :=
 SalesLine."Gen. Prod. Posting Group";

This is done in the same way as the Resource Journal.

As the Sales Line has all the Posting Group and Amount fields populated
the General Ledger Entries, VAT Entries and Customer Ledger Entries are
automatically generated by the standard application.

Pricing methodology
Our add-on solution has three levels of automatic price calculation that are more or
less identical. We can calculate prices for Storage Documents, Logistics Shipments,
and Routes.

Let's look at the Storage Prices as an example of how this is done.

Storage and Logistics

[324]

Storage prices
In the Storage Price table, we can register prices for different storage activities.

When the price is calculated, the system will filter down in this table to find the
price that matches best. For example, if a Product has a price for Receipt without a
Warehouse Code, this price is used in all warehouses, but if one Warehouse Code is
populated, this Warehouse has a special price.

Prices can be differentiated to Receipt, Shipment, Pick, Put-Away, Movement
and Storage. The first options are used on the Storage documents, the latter when
calculating Storage Cost.

The Income & Expense Code determines which type of Income & Expense will be
created for this combination. A Storage Document can have more than one Income
& Expense; for example, a normal receipt line and a customs surplus.

Calculation
The Income & Expenses are created using a Price Calc. Mgt. Codeunit we are familiar
with from Chapter 2, only this time we will not update the Unit Price but create the
Income & Expenses.

The calculation for Storage is done in Codeunit 123456710.

FindStorageLinePrice

WITH StorageLine DO BEGIN
 Product.GET("No.");
 StorageLinePriceExists(StorageHeader, StorageLine);
 CreateIncExp(StorageHeader,StorageLine,TempStoragePrice);

END;

The FindStorageLinePrice function will call the standard function
StorageLinePriceExists to find the Storage Prices that match the criteria.

Chapter 7

[325]

For all the Storage Prices in the filter, it calls the function CreateIncExp.

CreateIncExp()

IncExp.SETRANGE("Applies-to Document Type", IncExp."Applies-to
Document Type"::"Storage Header");
IncExp.SETRANGE("Applies-to Document No.", StorageHeader."No.");
IncExp.SETRANGE("Applies-to Document Line No.", StorageLine."Line
No.");
IncExp.DELETEALL;

WITH StoragePrice DO BEGIN
 FoundStoragePrice := FINDSET;
 IF FoundStoragePrice THEN BEGIN
 REPEAT
 IncExpCode.GET(StoragePrice."Income & Expense Code");
 IncExp.INIT;
 IncExp."Entry No." := 0; //* For Autoincrement
 IncExp.Type := IncExpCode.Type;
 IncExp."Income & Expense Code" :=
 "Income & Expense Code";
 IncExp.Description := Description;
 IncExp.Quantity := StorageLine.Quantity;
 IncExp."Unit Cost" := IncExpCode."Unit Cost";
 IncExp."Total Cost" := IncExp.Quantity *
 IncExp."Unit Cost";
 IncExp."Unit Price" := StoragePrice."Unit Price";
 IncExp."Total Price" := IncExp.Quantity *
 IncExp."Unit Price";
 IncExp."Applies-to Document Type" :=
 IncExp."Applies-to Document Type"::"Storage Header";
 IncExp."Applies-to Document No." := StorageHeader."No.";
 IncExp."Applies-to Document Line No." :=
 StorageLine."Line No.";
 IncExp."Bill-to Customer No." :=
 StorageHeader."Bill-to Customer No.";
 IncExp."Gen. Prod. Posting Group" :=
 IncExpCode."Gen. Prod. Posting Group";
 IncExp."VAT Prod. Posting Group" :=
 IncExpCode."VAT Prod. Posting Group";
 IncExp.INSERT;
 UNTIL NEXT = 0;
 END;
END;

Storage and Logistics

[326]

Each price will create a separate Income & Expense record.

The Income & Expense table is set to Auto Increment. This means
that the SQL Server will generate the entry number for us. This enables
multiple users to generate entries in this table at the same time without
blocking each other.

Result
When new documents are generated by the system or end users, the prices are
automatically calculated. The user can see the total cost and price on the Fact Box
and change, remove, or add records if necessary.

Periodic invoicing
One of the services we are providing is storage. This means that sometimes products
can be in our warehouse for several days, weeks, or even months. Our customers
will be invoiced for the time they use our warehouse space.

Chapter 7

[327]

Each time we receive a product in our warehouse or move a product to another
region or shelf, a Storage Entry is created to keep track. For invoicing, we also create
a Storage Invoice Entry. This is mainly because the inventory handling and invoicing
are done on different moments by different persons. The products can be shipped to
the customer when we start the invoicing process.

The Storage Invoice Entry is created with a From Storage Date that is inherited
from the Storage Date of the Storage Entry. The Storage Invoice Entry also has a
To Storage Date that maintains blank until the product leaves the warehouse or
moves to another location that might have another price. The Income & Expense
Code determines which price will be invoiced and is determined when posting a
Storage Document.

The batch report Storage Invoicing (123456703) is used for the creation of the
Income & Expenses. Let's have a look at how this is done.

The report only has one Storage Invoice Entry DataItem which is filtered on
Open=Yes.

In the report, all the Storage Invoice Entries are moved to a buffer table first and
handled later.

Storage and Logistics

[328]

There are two important reasons for implementing a solution like this:

•	 Changing Record Set: This report filters on Storage Invoice Entries which are
open for invoicing. When the Storage Invoice Entry is completely invoiced,
we want to change this value. This means that the record set we use is
changing during the process. This is something the SQL Server backend
cannot handle and this will result in a very poor performance.

•	 By first moving all records to a buffer table the filtering will be done on a
virtual table that is maintained on the Service Tier rather than SQL Server.

•	 Locking: If we were to filter on open entries and modify our dataset it would
result in locking more records than necessary. Filtering on a non-clustered
index will result in SQL Server moving to Range Locks rather than Row Locks.

•	 By reading the actual Storage Invoice Entry one by one using the clustered
index, we will make sure that SQL Server only locks the records we use for
this process allowing other users to keep creating new records at the end of
this table.

Processing the buffer
When processing the buffer we first check if this entry has been invoiced before. If
this is the case, we start invoicing from the previous date, if not we use the From
Storage Date.

Then we check if the products have already left the warehouse or have been moved.
If this is the case, we can close this entry by invoicing until this date, otherwise we
will invoice until the Workdate.

Users can change the systems Workdate and influence the
system's behavior this way and invoice until another date.

ProcessBuffer()

StorageInvEntry.LOCKTABLE;

WITH TempStorageInvEntry DO
 IF FIND('-') THEN REPEAT
 StorageInvEntry.GET("Entry No.");

 IF "Last Invoice Date" <> 0D THEN
 FromDate := "Last Invoice Date"
 ELSE
 FromDate := "From Storage Date";

 IF "To Storage Date" <> 0D THEN

Chapter 7

[329]

 StorageInvEntry."Last Invoice Date" := "To Storage Date"
 ELSE
 StorageInvEntry."Last Invoice Date" := WORKDATE;

 Date.SETRANGE("Period Type", Date."Period Type"::Datum);
 Date.SETRANGE("Period No.", 1, 5);
 Date.SETRANGE("Period Start", FromDate,
 StorageInvEntry."Last Invoice Date");

 IncExp."Entry No." := 0;
 IncExp."Income & Expense Code" := "Income & Expense Code";
 IncExp.Type := IncExp.Type::Income;
 IncExp.Description := STRSUBSTNO(Text000, FromDate,
 StorageInvEntry."Last Invoice Date");
 IncExp.Quantity := Date.COUNT;
 IncExp."Unit Cost" := "Unit Cost";
 IncExp."Total Cost" := IncExp.Quantity * "Total Cost";
 IncExp."Unit Price" := "Unit Price";
 IncExp."Total Price" := IncExp.Quantity * "Unit Price";
 IncExp."Global Dimension 1 Code" :=
 "Global Dimension 1 Code";
 IncExp."Global Dimension 2 Code" :=
 "Global Dimension 2 Code";
 IncExp."Bill-to Customer No." := "Bill-to Customer No.";
 IncExpCode.GET(IncExp."Income & Expense Code");
 IncExp."Gen. Prod. Posting Group" :=
 IncExpCode."Gen. Prod. Posting Group";
 IncExp."VAT Prod. Posting Group" :=
 IncExpCode."VAT Prod. Posting Group";
 IncExp."Unit of Measure Code" :=
 IncExpCode."Unit of Measure Code";
 IncExp."Applies-to Entry No." := "Entry No.";
 IncExp.INSERT;

 StorageInvEntry.Open := "To Storage Date" <> 0D;
 StorageInvEntry.MODIFY;
 UNTIL NEXT = 0;

The next step in our code is to calculate the number of workdays between the
two dates. This will prevent our customer from paying for storage on Saturday
and Sunday.

We do this by using the virtual Date table. This table contains all dates, weeks,
months, quarters, and years between January 1st 0000 and December 31st 9999
and can be very useful in date calculations.

Storage and Logistics

[330]

With this result, we can now create the Income & Expense records that will be
invoiced later.

If the To Storage Date is populated, we close the Storage Invoice Entry.

Combined invoicing
The Data Model we use allows us to combine invoicing on all the services we
provide for our customers. We can create one invoice that contains handling,
storage, and transportation costs for our customers.

This is done by batch report 123456704 Combine Storage & Logistics which works
exactly the same as the report in Chapter 2.

Add-on flexibility
The add-on we have created in this chapter is definitely not ready to be used by
a real company, but it demonstrates how to create a flexible solution that can be
expanded by others easily.

Most modern logistic service providers offer other services to customers like
Value Added Logistics, Item Tracking, and third and fourth party logistics.

Value added logistics
When a company offers Value Added Logistics services, they not only keep products
on inventory but they also offer services around this like display packaging.

This can be best compared with Manufacturing in Microsoft Dynamics NAV. A list
of items called a Bill of Materials is combined into a new product. This new product
is then shipped to the customer.

When the displays are no longer necessary, for example, when a marketing
campaign is finished, the displays need to be picked up from the customer and
disassembled into the original products.

Chapter 7

[331]

In our solution, this could be implemented by creating a VAL region where the
products are moved to.

Item tracking
Our customers also want to know the whereabouts of their products—which
warehouse are they in and which product was shipped to which customer. It is
especially important in the food and medicine industry to be able to call back a lot
if something goes wrong.

To implement this in our solution requires some changes. First, we need to
implement a Tracking Code in the Storage Entries, second, we need to implement
some kind of Tracking Entries when we ship a product outside our warehouse since
currently our logistics solution does not have any entries, only status fields.

Storage and Logistics

[332]

Third and fourth party logistics
In our example database, we plan shipments on routes and drive them to the end
customer with our own trucks. This is called second party logistics. First party
logistics would be if we were to handle our own products with our own trucks.

If we were to provide third party logistics, we would use other companies to offer
parts of the services to our customers. We will then tell them which part of the
service to handle and report back to us when it is finished. The third party involved
does not know the details of the complete transaction.

If we were to offer fourth party logistics we would outsource a complete warehouse
or route to another company. We would only tell them which product should be
moved where and they would handle it without us knowing the details.

It is common for third and fourth party logistics to be mixed but almost always they
are handled by interfaces between different companies.

Summary
In this chapter, we looked at the Microsoft Dynamics NAV product from a
completely different viewpoint compared to the previous chapters.

The goal was not to design a rock solid Storage and Logistics add-on solution for
Microsoft Dynamics NAV as this would require much more than one chapter.
The information in this chapter is intended to demonstrate how to integrate new
functionality on top of Microsoft Dynamics NAV.

Chapter 7

[333]

We analyzed business processes and designed new data and transaction models to
handle them in the product and implemented this.

For our solution, we designed two new document structures and two new journal
and entry structures. We stayed close to the standard methodology of Microsoft
Dynamics NAV by creating a framework that can easily be expanded.

We also spent some time looking at how to prevent unnecessary locking in the
database and how to avoid changing a filtered dataset.

At the end, we looked at some examples of how our add-on solution could be
enhanced to better suit other demands in the market.

This chapter does not end here. The C/AL objects provided with this chapter can
be studied in order to understand even better how the pieces are put together.

In the next chapter, we will design an application inside Microsoft Dynamics NAV.
We will look at how it can be used for a consultancy company using the Jobs module
and how to extend this with new functionality to meet specific requirements.

Consulting
In this chapter we will learn how Microsoft Dynamics NAV fits a consultancy
company. Most consultancy companies have project related processes. They take
on larger projects that take a certain time to complete. Some consultancy companies
also purchase and sell items.

For each of the projects the consultancy company needs to keep track of used
resources and items. Sometimes they can invoice the resource hours they spend
one-on-one but most of the time they will also take a risk in doing fixed price
projects. In this case it is even more important to know if the project was budgeted
well and ensure money is not lost on the way.

There are many types of companies working this way. Some examples include
accountancy firms and lawyers, but also many companies in the construction
business work like this.

For this chapter we will use an example company we are all very familiar with,
either through being an employee, a customer or maybe even an owner. We will
look at the business process of a Microsoft Dynamics NAV Partner.

The Partner in our case sells Microsoft Dynamics NAV licenses for new projects.
They also help existing customers in upgrades and support. Lastly, they are sell
infrastructure solutions; assemble servers and desktop systems in house.

We will discuss four different project scenarios and see how Microsoft Dynamics
NAV can be used to support those. To do this we will create some modifications
along the way.

With this chapter objects are required. The Appendix describes how to import and
activate them.

Consulting

[336]

After reading this chapter you will have a good understanding of the possibilities
and limitations of the Job Module in Microsoft Dynamics NAV, how it fits in with
the rest of the product and how it can be expanded safely.

The process
The two main processes for Microsoft Dynamics NAV partners are implementing
new projects and providing services such as support and upgrades to existing
customers. A third process is selling infrastructure and assembling computer
systems but this is an extra service, not the core business.

To support the projects (jobs) the company needs people, software licenses, and
hardware. The people (resources) need to be carefully planned on the projects as
they are the least flexible part of the company. Hardware (items) and software
licenses (G/L accounts) will be purchased from vendors such as Microsoft.

The projects can be divided into large and small projects. The larger projects are
new implementations and upgrades. Smaller projects include implementing small
features and helping users with regular support issues.

Invoicing can be done in various ways. New implementations and small projects
can be invoiced per billable hour while upgrades are sold fixed price. For hardware
we will use items. Licenses are invoiced directly to the General Ledger.

Large projects also have budgets and a plan that need to be maintained. If the budget
is fully used and the planning milestones have not been reached there should be a
new budget created in order to complete the project.

To support this process we will use the Jobs functionality with some customizations.
Projects are called Jobs in Microsoft Dynamics NAV so we will use that term from
now on.

The Jobs module has been completely redesigned by Microsoft for
version 5. In this chapter we will use a lot of the new functionality
where we would have done customizations in the older versions of
Microsoft Dynamics NAV.

Chapter 8

[337]

Fits
The registration of the Jobs can be done using the standard functionality of Microsoft
Dynamics NAV as well as the budgeting and planning.

The standard software also allows us to invoice Jobs both fixed price and on time and
materials. We can also purchase items for our Jobs.

Gaps
The Jobs module in Microsoft Dynamics NAV is often referenced as a framework
that almost always needs some changes. Fortunately, it is designed to be easily
changed and we will do so to support our processes.

Resource groups
Although many companies work this way; budgeting on Resource Groups is not
possible. We will create a solution for that. We will also make it possible to see the
total number of planned, used, and invoiced hours.

Time registration
The standard software allows us to register hours but it does not have a real-time
sheet application. We will create one.

Item calculation
We will create a solution calculating the system assembling. As hardware
specifications are changing rapidly we do not want to create a new item for
each system when we may only sell that particular configuration once or twice.

Issue registration
Our support team needs a single point for registration of all support issues for
all customers and follow up their workflow. For this we will also create the
functionality to register and follow up issues.

Consulting

[338]

Getting started
Before we start creating any new jobs, we should have a look at the data and posting
model of the Microsoft Dynamics NAV Jobs module.

The starting point is the Job table, which has Job Tasks and Job Planning Lines
we can use for budgeting and planning. Each job can have its own prices.

The Job Planning Lines get invoiced through the standard Microsoft Dynamics
NAV Sales functionality which then creates Job Ledger Entries.

How many jobs
The first step is setting up a new job. There can be different angles on setting up jobs.
This depends on how we want to work with the system. The minimum requirement
is to have at least one job per Bill-to Customer. This enables us to do the invoicing.
Some companies use jobs this way to use it as a pre-invoice engine.

Another angle can be to set up new jobs nicely for each project we do for the
customer. In our case this starts with the basic Dynamics NAV implementation.
When this is finished we close the job. If the customer has any new requirements
we will need to start a new job. This way we can keep better track of what issues
we have outstanding with each customer. The downside of this methodology is
that it requires some work to set up a new job every time.

Chapter 8

[339]

Most companies end up with a solution in the middle. It is common to set up a new
job for larger jobs and to have a job for support issues. This also allows us to set up
different invoicing strategies for each job. We will use this strategy.

Job card
Let's have a look at the Job Card and the important fields there.

Let's see these fields in more detail:

•	 No.: This is the unique number of a job. We can use different number series
strategies for this, from simple sequential numbering to linked number series
for different job types or manual numbering.

Consulting

[340]

•	 Description: This should be a logical description of the job for internal use.
Most people will search on this field so make sure to have certain rules for
naming. This will make searching for old jobs easier in the future.

•	 Bill-to Customer No.: Each job has one Bill-to Customer. If we want
to invoice multiple customers for one job we will need to customize
the application.

•	 Search Description: By default this will be populated with the value of
the description field but can be changed to another value if required.

•	 Person Responsible: This is an informative field indicating who is
responsible for this job.

•	 Blocked: If this field is checked, it is not possible to make new entries for
this job. Use this for closed jobs.

•	 Job Posting Group: This refers to the G/L Accounts that are used for the
Work In Progress postings (WIP). There can be different G/L Accounts
for different types of jobs or WIP methods.

•	 WIP Method: Each job can have one Work in Progress method. We will
discuss this briefly later in this chapter.

•	 Status: The jobs have a limited set of status fields. The only available
status values are Planning, Quote, Order, and Completed.

Most companies want to have more sub statuses for the order phase.
The best approach for this is to add a new status field that maps
with the standard status field. This requires minimum changes to
the application while creating new workflow possibilities.

•	 Allow Schedule/Contract Lines: If this field is not checked it is not possible
to create planning lines, which have both schedule and contract options.
When planning lines are created they will be split into a schedule and a
contract line.

•	 Starting and Ending Date: These are informative fields that are only used
to calculate the currency exchange rates for the job.

•	 Foreign Trade: In the jobs module it is possible to send calculate and create
invoices in a currency other than the local currency. This will increase the
complexity of the implementation and should be used carefully.

Chapter 8

[341]

Job task and planning lines
When the Job is created, the next step is to create Job Tasks and Planning Lines.
These can be used in different ways.

Using job task lines we can cut the job into smaller pieces, which we can then
schedule and invoice. The more detailed the job tasks are, the better we can measure
the progress of the job, but the more work they require to maintain. Balance is the
key to success here.

The Job Tasks can be created with the same structure as the Chart of Accounts,
meaning the actual Task Lines can be grouped using Begin and End Total lines.
Each level can be indented for better readability.

The Job Planning Lines are the detail lines of each job task. This defines what we
will do and how this will be invoiced. A job planning line can be linked to the
master data types Resource, Item, G/L Account, or Text.

Job Tasks and Job Planning Lines can be copied very easily from
other jobs. This allows us to reuse them and even create template
jobs for frequently used combinations.

Consulting

[342]

The line type in the job planning line defines how it will be invoiced. There are
three types:

•	 Schedule: The amounts on this line will only be used in for budgeting
purposes. When invoicing we need to post one or more job journal lines that
will be invoiced or we can create another job planning line with the invoice
amount. Schedule lines should be used when billing on time and materials.

•	 Contract: This line will be invoiced with the exact amounts. However the
amounts do not show up in the budget. This can be used when invoicing
fixed price jobs in a schedule, for example: 50% when signing the contract
and 50% on job completion.

•	 Both Schedule and Contract: This line will be invoiced exactly the same way
as the contract lines but the amount will also show up in the budget.

Job journal
When the job tasks and job planning lines are set up we can start the job. During
the job we will consume resources and items from our company. This should be
registered using the Job Journal. The Job Journal is the lowest level of the Journal
Posting diagram we drafted in Chapter 1, Introduction to Microsoft Dynamics NAV,
and uses the other journals to create the Resource, Item, and General Ledger Entries.

When creating a job journal line a few fields are particularly important for
the process:

Chapter 8

[343]

•	 Line Type: This has the same options as the job planning line, Schedule,
Contract, and Both Schedule and Contract. When the job journal line should
be invoiced, the type should be Contract. When the job journal line is part
of a fixed price the line type should be left blank. When the line type is
Schedule, the system will create additional Job Planning Lines of this type
which may corrupt our budget for the customer as they are already created.

•	 Unit Cost and Unit Price: These fields will determine the cost of the job and
the price that will be invoiced to the customer if the line type is Contract.
This information is also used in the calculation of the Work in Progress.

Job examples
Let's go through some different job scenarios to see how we can use this functionality.

Chapter objects
The chapter objects contain both the changes we discuss in this chapter and
as the example jobs we will use. After importing chapter 8.job as described
in the Appendix, run page 123.456.700 Jobs Add-on Setup and then run
Initialise Application.

When this completes, restart the Role Tailored Client. You should now see the Project
Manager Role Center.

1 | The new implementation
Implementing Microsoft Dynamics NAV 2009 is not an easy task and many things
need to be taken care of before we can use the product. We will implement Microsoft
Dynamics NAV for Packt Publishing. The job for this example is EXAMPLE1.

Consulting

[344]

For the implementation we will create various job task groups. Each part of the
implementation gets a code. Because the sorting is done on this field we will create
codes using numbers and a logical name. For example, 0200. SETUP and 0210. FIN.

Leave enough space in the numbers to add additional lines
if required. This will avoid renaming which is an expensive
task for the database engine and users will have to wait
until it is completed.

Our consultants will help the customer to install the system, help with the setup,
and convert the data from the old system. When this is done we will help them
with testing and train them for using Microsoft Dynamics NAV. The consultants
will be set up in the system as Resources, which are in turn entered into the job
planning lines.

When everything is working as expected we can schedule a go-live weekend and
help them in the first period using the system.

Invoicing a job like this is done using a budget. We will make a precalculation of the
number of hours we think are necessary and start with that. During the job we need
to measure the used budget and compare it with the progress.

Chapter 8

[345]

Budgeting
The budget is created using the Job Planning Lines. During this phase of the job we
do not yet know which resource will be used for the job tasks and it might even be
done by more than one resource. This is why we want to use Resource Groups in
our budget.

This is not possible in the standard application so we have created
a modification which we will discuss at the end of this chapter.

The Line Type of these job planning lines is Schedule. This means that these lines
are just for budgeting and schedule purposes. The system will invoice the actual
consumption posted in the Job Journal.

2 | The infrastructure
To use Microsoft Dynamics NAV 2009 Packt Publishing needs new infrastructure.
Their current systems do not meet the requirements for Microsoft Dynamics
NAV 2009.

For this job we could create new Job Task Lines in the implementation job, but for
a clearer overview we will create a new job, EXAMPLE2.

Consulting

[346]

Our company builds and sells its own computer systems. We can build both servers
and desktop systems. Because none of the systems are exactly the same and available
components switch regularly we do not want to create an item and a bill of materials
for each system. Instead we use a Calculation system that allows us to determine a
price for a system. For other products like switches, routers, printers, and laptops we
use items which we purchase from vendors.

The Job Tasks and Job Planning Lines for this job look like this:

The installation costs in this job are Resource Groups with line type Schedule,
just as in the previous job, so we invoice actual hours spent on the job.

The other lines are of type Both Schedule and Contract. This means we will invoice
exactly what is in the budget. The job journal lines for these tasks should be posted
with a blank line type.

Chapter 8

[347]

3 | The upgrade
Our customer requests an upgrade from Navision version 3.70 to Microsoft
Dynamics NAV 2009. We can do this for a fixed price but we require a fee for
analyzing the system.

For this job, EXAMPLE3, we can start with a limited number of Job Task Lines,
just for the quote. When the customer agrees to do the upgrade we can add new
job task lines.

Both the Quote and the Upgrade are fixed price and posted directly to the general
ledger. This does not mean we cannot have our resources to register the actual hours
using the job journal but the line type should be blank.

Another part of the upgrade is not done fixed price. The systems needs some
redesign, a conversion to SQL Server 2008, and the customer wants additional
training and support.

The fixed price part of the upgrade is invoiced in three phases. When the job starts
we invoice 50%, when we deliver the test system we invoice 40% and 10% is invoiced
three months after go-live.

This is done using lines of Both Schedule and Contract line type.

Consulting

[348]

4 | The support team
For the support team, our policy is to create one job per fiscal year per Customer.
We will use this job, EXAMPLE4, for invoicing the maintenance of the license and
all support issues.

The support issues can be both little questions customers call us for, such as
changing a report or a page, or implementing new features that requires only a few
days work.

Each issue and new feature will be created as a job task line. The new features will
be created by the account manager who sells the feature. We can then decide if the
invoicing is done fixed price, using contract lines, or on time and materials using
schedule lines.

Our support team also needs to use the job system, but we do not want them to
manually create a new job task line for each support call, and we also want them to
view all outstanding issues for all customers easily. For this we have created a new
issue registration system which we discuss at the end of this chapter.

Each issue in the system is linked to a job task. When Support Engineers create a new
issue, the job task line is automatically generated for them and they can use it in our
time and billing system.

Time sheets
For all the jobs in our examples it is critical to have a solid registration of resource
hours. In the standard Microsoft Dynamics NAV job application resources need to
post a job journal for each combination of Job, Job Task, and Posting Date. This is not
the way most people want to register their hours; therefore we have created a Time
Sheet application.

Data and transaction model
The Time Sheet application is layered above the job journal line and is created using
resources and job tasks.

Chapter 8

[349]

There is an approval process for the person responsible for the job allowing them to
make corrections.

Consulting

[350]

The time sheet is designed to be created for each week. The system automatically
generates the week starting date and creates the description. After that the resource
can create time sheet lines for each job task line, and populate the number of hours
each day of the week.

If we look at this time sheet we can see, after it is updated, that Wednesday is
missing two hours.

Purchasing
For some jobs it might be necessary to purchase items specifically for that job.
Unfortunately job planning lines are not used in the requisition worksheet we
looked at in Chapter 5, Production, or Chapter 6, Trade, so we need to create the
purchase orders manually.

Expanding the requisition worksheet business logic for job planning lines is not
recommended for two important reasons. First reason is that the code is very
complex and cuts deep in the item reservation process. The second, more obvious
reason, is that most companies that use jobs do not use the requisition worksheet
as it is designed for production and trade businesses.

A better way of automatically creating the purchase orders for jobs would be to
copy the drop shipment functionality from sales.

Chapter 8

[351]

For this example we will create a manual Purchase Order looking like this:

When purchasing for a job, the Job No. and Job Task No. fields should be used. If we
set the Job Line Type to contract this item will be invoiced to the customer. Usually
this is not required since it should have been in the Job Planning Lines already.

Item costing versus work in progress
After we post this purchase document and navigate from the purchase invoice we
can see that the system has created two Value Entries for this item (as shown in the
following screenshot):

This is very important for the costing as we discussed in the previous chapters.
Purchased items for jobs are not calculated as inventory but used for the Work in
Progress calculation.

Invoicing
When everything in our jobs is set up as required and the job journal is used to post
the usage, creating the invoices is a simple task.

Consulting

[352]

In the Job Manager Role Center we can see if a job is due to be invoiced. This is done
using a flow filter on the Planning Date field of the Job Planning Lines.

Each job planning line has a planning date. This can be used to schedule our
resources but is far more useful for invoice scheduling. Each job planning line
that is ready to be invoiced should get the invoice date in the planning date field.

The invoices can then be created using the batch report Job Create Sales Invoice
(1093) but we can also preview the invoice by using report Job Suggested Billing
(1011). This report can be started from each job.

The sales invoice lines are created using the same description as the job planning lines.
To clarify information for the customer we can use extra text lines to add information
to the invoice.

When the invoice is created and posted, the job task is updated with the actual
invoicing information.

Chapter 8

[353]

Calculating Work in Progress
As most jobs are not completed in a day or a week it is important to be able to
determine the status of each job at any given point in time. This can be measured
both in quantity and financially. In quantities we can see how much of the budget
is being used by looking at the job task page. For financial progress we can calculate
the Work in Progress or WIP.

WIP calculates the costs we incurred and the sales we invoiced on the job and creates
job WIP entries for this. This can then be posted to the general ledger if required.
The WIP amounts depend on the WIP method. Microsoft Dynamics NAV has five
possible WIP calculation methods:

•	 Cost Value: The Cost Value is leading for WIP calculation. The WIP is
the total percentage of job completion multiplied by the cost value. Job
completion is calculated using ((Real Cost/Scheduled Cost) – (Really
Invoiced/Scheduled Price)).

•	 Sales Value: The Sales Value is leading for WIP Calculation. The WIP is the
total percentage of job invoicing multiplied by the cost sales. Invoiced % is a
field in the job task.

•	 Cost of Sales: The total cost is calculated for the WIP calculation.
•	 Percentage of Completion: The scheduled costs are multiplied by the job

completion percentage.
•	 Completed Contract: All completed contract entries are used for WIP.

The online help shows some good explanations of the
WIP methods.

Example
Let's create an example and calculate the WIP for each method.

We created a job with a total price of 1000 and total cost of 500. We used four
resource hours worth 500 and cost 250. We invoiced nothing.

Recog. Cost Recog. Sales WIP Cost WIP Sales
Cost Value 125 0 125 0
Sales Value 250 250 0 250
Cost of Sales 250
Percentage of Completion 250 250 0 250
Completed Contract 250

Consulting

[354]

Now we send an invoice to the customer for the hours spent. We invoice 500.

Recog. Cost Recog. Sales WIP Cost WIP Sales
Cost Value 375 500 -125 0
Sales Value 250 250 0 -250
Cost of Sales 500 500 -250
Percentage of
Completion

250 250 0 -250

Completed
Contract

250 -500

In the last example we will use an item with cost of 250 which we cannot invoice.
We now have 500 costs and 500 sales.

Recog. Cost Recog. Sales WIP Cost WIP Sales
Cost Value 500 500 0 0
Sales Value 250 250 0 -250
Cost of Sales 500 500 0
Percentage of
Completion

500 500 0 0

Completed
Contract

500 -500

When the WIP is positive it means that we have done more than we have invoiced,
when the WIP is negative we have invoiced more than we have done.

Each company that uses Microsoft Dynamics NAV should make their own decision
on what WIP method to use. WIP methods can change for each job and even change
during a job.

WIP post to general ledger
Some accountants want to post the WIP amounts to the general ledger. The benefit
of doing this is to have all the financial information in one place for easier reporting.

The G/L accounts for the WIP posting are set up in the job posting group.

When posting WIP to the general ledger there is always a reversal posting. When a
company does monthly reporting the WIP is posted on the last day of the month and
reversed on the first day of the next month.

Chapter 8

[355]

Changing jobs
In this chapter we have used some changes to the job functionality in order to make
it work for Cronus International Ltd. to sell Microsoft Dynamics NAV.

Quantity budgeting
For some companies it is important to know the total number of hours required
for a job and the number of hours used rather than the exact amounts.

For this we have created new flow fields in the Job Task table:

The flow field definition is special.

Sum("Job Planning Line"."Quantity (Base)"
 WHERE (Job No. = FIELD(Job No.),
 Job Task No. = FIELD(Job Task No.),
 Job Task No. = FIELD(FILTER(Totaling)),
 Contract Line = CONST(Yes),
 Planning Date = FIELD(Planning Date Filter)))

Consulting

[356]

The Totaling field is for the lines of type End-Total. The ValueIsFilter property
ensures that the field will be interpreted as filter instead of a value.

The result is visible in the Job Task page (1002).

Resource groups
For scheduling we have implemented the possibility of using Resource Groups
in the Job Planning Lines as well as Calculations. This is done by adding two new
fields: Add-on Type and Add-on No..

These fields replace the standard Type and No. fields on the pages allowing users to
select these new options. The caption of the new fields matches the replacement fields.

Add-on No. - OnValidate()
CASE "Add-on Type" OF
 "Add-on Type"::Resource, "Add-on Type"::Item, "Add-on Type"::"G/L
Account", "Add-on Type"::Text:
 BEGIN
 VALIDATE(Type, "Add-on Type");
 VALIDATE("No.", "Add-on No.");
 END;

Chapter 8

[357]

 "Add-on Type"::"Resource Group":
 BEGIN
 TESTFIELD("Line Type", "Line Type"::Schedule);
 VALIDATE(Type, Type::Text);
 VALIDATE("No.", '');
 ResGroup.GET("Add-on No.");
 Description := ResGroup.Name;
 "Resource Group No." := ResGroup."No.";
 GetJob;
 ResCost.SETRANGE(Type,
 ResPrice.Type::"Group(Resource)");
 ResCost.SETRANGE(Code, ResGroup."No.");
 IF ResCost.FINDFIRST THEN BEGIN
 "Unit Cost" := ROUND(
 CurrExchRate.ExchangeAmtLCYToFCY(
 "Currency Date","Currency Code",
 ResCost."Unit Cost","Currency Factor"),
 UnitAmountRoundingPrecision);

In the C/AL code we can make sure that when users select the values available in
the standard product, the normal code is executed. If a user selects a resource group
we execute our own business logic.

To make sure everything works as expected we use the type Text in the background.
The Line Type is mandatory set to Schedule because we do not want to invoice
resource groups, we just want them to be budgeted.

The Unit Cost and Unit Price are calculated using the Resource Cost and Resource
Price tables, which support the use of Resource Groups. This is an inheritance from
the previous Job functionality prior to version 5.0.

The pages Job Planning List (1007) and Job Planning Line Sub form (1022) are
changed to show our add-on fields instead of the normal fields.

To completely finish this functionality we would also need to change the reports
that show the Job Planning Lines and the C/AL code that creates the Job Planning
Lines, when posting a Job Journal Line. This is not done in the example code for
this chapter.

Consulting

[358]

Calculations
Some companies using the Job functionality have a need for flexible calculations. In
our example we use it to calculate the price of a computer system but other examples
are book publishers or construction companies.

They want to know what it costs to create a product without exactly knowing which
screws, hinges, or color of chipboard is used.

For these companies we designed a simple but effective calculation module.

In our database there are two example calculations, a server and a desktop system.

The Calculation is designed using a header/line construction with a Number Series
and a Line Number. The calculation lines are Items.

Chapter 8

[359]

When a new Calculation is created some lines are automatically inserted. This is
done in a C/AL function that is called from the OnInsert trigger.

The OnInsert trigger will also copy the default Unit Price for Hours from our
setup table.

OnInsert()
CalcSetup.GET;

IF "No." = '' THEN BEGIN
 CalcSetup.TESTFIELD("Calculation Nos.");
 NoSeriesMgt.InitSeries(CalcSetup."Calculation Nos.",xRec."No.
Series",0D,"No.","No. Series");
END;

"Unit Price Hours (LCY)" := CalcSetup."Unit Price Hours";
InitLines;

The InitLines function creates a Calculation Line for each Item marked as
Calculation Item. This is a new field we added to the Item table.

InitLines()
CalcLn.RESET;

i := 0;
Item.SETRANGE("Calculation Item", TRUE);
IF Item.FINDSET THEN REPEAT
 i += 10000;
 CalcLn."Calculation No." := "No.";
 CalcLn."Line No." := i;
 CalcLn.VALIDATE("Item No.", Item."No.");
 CalcLn.INSERT;
UNTIL Item.NEXT = 0;

In the Calculation we can choose how many we will use from each item, and the
system will not only calculate the cost and price, but also the required number of
hours that is required. The Unit Cost and Unit Price are used from the Item table.
Hours is calculated from a new field, Minutes, which we added to the Item table.

Calculate()
CalcLn.RESET;
CalcLn.SETRANGE("Calculation No.","No.");
CalcLn.CALCSUMS("Unit Cost", "Unit Price", Profit, Hours);
CalcLn.FIND('-');
CalcLn.MODIFYALL(Changed,Calculated::Calculated);

CalcLn.CALCSUMS("Unit Cost", "Unit Price", Hours);

"Unit Cost" := CalcLn."Unit Cost";

Consulting

[360]

"Unit Price" := CalcLn."Unit Price";
Profit := "Unit Price" - "Unit Cost";
Hours := CalcLn.Hours;

Correct;

"Total Price Hours (LCY)" := "Hours (After Correction)" * "Unit Price
Hours (LCY)";
"Total Price" := "Total Price Hours (LCY)" +
 "Unit Price (After Correction)";
Calculated := Calculated::Calculated;
MODIFY;

Correct()
"Unit Price (After Correction)" := "Unit Price" + ("Unit Price" *
("Correction % Items" / 100));
"Profit (After Correction)" :=
 "Unit Price (After Correction)" - "Unit Cost";
"Hours (After Correction)" :=
 Hours + (Hours * ("Correction % Hours" / 100));

When we now use the Calculate function, the system will generate a total Unit
Cost, Unit Price, and Hours for this product to be created. Flexibility is added to
the system by allowing users to correct hours and usage with a percentage.

The Calculation can be used in a Job Planning Line the same way as the Resource
Groups earlier, the only difference is that we use the G/L Account type on the
background to invoice a calculation fixed price. Let's look at the C/AL code in the
OnValidate trigger of the Add-On No. field in the Job Planning Line:

Add-on No. - OnValidate()
CASE "Add-on Type" OF
 "Add-on Type"::Resource ... "Add-on Type"::Text:
 ...
 "Add-on Type"::"Resource Group":
 ...
 "Add-on Type"::Calculation:
 BEGIN
 Calc.GET("Add-on No.");
 IF Calc."Turnover Account No." = '' THEN BEGIN
 TESTFIELD("Line Type", "Line Type"::Schedule);
 VALIDATE(Type, Type::Text);
 VALIDATE("No.", '');
 END ELSE BEGIN
 TESTFIELD("Line Type",
 "Line Type"::"Both Schedule and Contract");
 VALIDATE(Type, Type::"G/L Account");

Chapter 8

[361]

 VALIDATE("No.", Calc."Turnover Account No.");

 END;
 Description := Calc.Description;
 GetJob;

To complete this functionality we would create a method to use the hours in the
calculation for the Resource planning. This can be done using job planning lines
of line type Schedule with no unit cost and unit price.

Issue registration
For our support team we have implemented an issue registration solution. This
allows them to have a simple application where they can register issues for all
customers, and keep track of their status without going in and out of each Job.

The Issue registration is a header/line construction with a number series and a line
number. The lines can be used to phrase questions and answers.

When a support engineer creates a new issue, the system will create the Job Task
automatically. Let's have a look at the C/AL code that does that:

CreateJobTask()
TESTFIELD("Job No.");
TESTFIELD("Job Task No.", '');

OldJobTask.SETRANGE("Job No.", "Job No.");
OldJobTask.SETRANGE("Job Task Type",
 OldJobTask."Job Task Type"::Posting);
IF OldJobTask.ISEMPTY THEN

Consulting

[362]

 OldJobTask.SETRANGE("Job Task Type",
 OldJobTask."Job Task Type"::"Begin-Total");
OldJobTask.FINDLAST;

JobTask."Job No." := "Job No.";
JobTask."Job Task No." := INCSTR(OldJobTask."Job Task No.");
JobTask.Description := Description;
JobTask."Job Task Type" := JobTask."Job Task Type"::Posting;
JobTask.INSERT(TRUE);
CODEUNIT.RUN(CODEUNIT::"Job Task-Indent Direct", JobTask);

"Job Task No." := JobTask."Job Task No.";

The system searches for the last Job Task of the type Posting in the Job. If that
cannot be found, it searches for the last Begin-Total line.

Assuming this line exists we create a new Job Task line using the INCSTR function
to increment the number. The description is copied to the job task.

The support engineers can now register their hours on this job lask.

This piece of C/AL code is very simple but shows how effective a small solution
can be without even touching any of the standard Microsoft Dynamics NAV objects.
This is a very safe method of development.

Time sheet
We already discussed the functionality of the Time Sheet application in this chapter.
Let's have a look at how it was created.

The Time Sheet application is also a header/line construction with a number series
and a line number. It is designed to be used weekly and therefore automatically
creates the description based on the date. It calculates the week number and the year.

Week Start Date - OnValidate()
IF DATE2DWY("Week Start Date", 1) <> 1 THEN
 FIELDERROR("Week Start Date");

Description := Text000 + FORMAT("Week Start Date", 0, '<Week>,
 <Year4>');

Chapter 8

[363]

The user can change the Description if required.

To support a workflow the Time Sheet table has a Status field. During the work
week a resource can keep track of the things he did and change everything. When
the week is finished they can change the status to To Check. Then the person
responsible for the Job can check whether everything is valid, and change the status
to Approved. The Time Sheet can then be Registered, this is done using a codeunit
we will discuss later.

The Mo., Tu., We., Th., Fr., Sa., and Su. fields are Flowfields used in the Fact Box.

Consulting

[364]

The Time Sheet Line allows users to create a line for each Job Task we worked on
during the week. Each day of the week has its own column for easy registration.
After validating each day the total is calculated using a function.

CalcTotal()
TESTFIELD("Job Task No.");

Total :=
 "Mo." + "Tu." + "We." + "Th." + "Fr." + "Sa." + "Su.";

The Total field is used to calculate the total hours per week in a flow field.

Registration
The Time Sheet application has a registration codeunit. As the Time Sheet
application is a document covering the Job Journal, this checks the status of the time
sheet, and then creates and posts a Job Journal Line for each day if required.

OnRun()
TESTFIELD(Status, Status::Approved);

TimeSheet := Rec;

TimeSheetLn.SETRANGE("Time Sheet No.", "No.");
IF TimeSheetLn.FINDSET(TRUE) THEN REPEAT
 Job.GET(TimeSheetLn."Job No.");
 IF TimeSheetLn."Mo." <> 0 THEN
 CreateJnlLn("Week Start Date", TimeSheetLn."Mo.");
 IF TimeSheetLn."Tu." <> 0 THEN
 CreateJnlLn("Week Start Date" + 1, TimeSheetLn."Tu.");
 IF TimeSheetLn."We." <> 0 THEN
 CreateJnlLn("Week Start Date" + 2, TimeSheetLn."We.");
 IF TimeSheetLn."Th." <> 0 THEN
 CreateJnlLn("Week Start Date" + 3, TimeSheetLn."Th.");
 IF TimeSheetLn."Fr." <> 0 THEN
 CreateJnlLn("Week Start Date" + 4, TimeSheetLn."Fr.");
 IF TimeSheetLn."Sa." <> 0 THEN
 CreateJnlLn("Week Start Date" + 5, TimeSheetLn."Sa.");
 IF TimeSheetLn."Su." <> 0 THEN
 CreateJnlLn("Week Start Date" + 6, TimeSheetLn."Su.");
UNTIL TimeSheetLn.NEXT = 0;

Status := Status::Registered;
MODIFY;

Chapter 8

[365]

At the end of the routine we change the Status to Registered.

CreateJnlLn()
JobJnlLn.INIT;
JobJnlLn."Job No." := TimeSheetLn."Job No.";
JobJnlLn."Job Task No." := TimeSheetLn."Job Task No.";
JobJnlLn.VALIDATE("Line Type", JobJnlLn."Line Type"::Contract);
JobJnlLn."Posting Date" := PostingDate;
JobJnlLn."Document Date" := PostingDate;
JobJnlLn."Document No." := TimeSheetLn."Time Sheet No.";
JobJnlLn.Type := JobJnlLn.Type::Resource;
JobJnlLn.VALIDATE("No.", TimeSheet."Resource No.");
JobJnlLn."Work Type Code" := TimeSheetLn."Work Type";
JobJnlLn.Description := TimeSheetLn.Description;
JobJnlLn.VALIDATE(Quantity, Qty);

JobJnlPostLine.RunWithCheck(JobJnlLn,TempJnlLineDim);

The Job Journal Line records are of type Contract to allow invoicing.

Summary
In this chapter we learned how to implement the Job functionality of Microsoft
Dynamics NAV. We discussed different strategies of setting up Jobs and Job Tasks.

We created several examples with different invoicing methods using the Job
Planning Lines in a creative way.

The Job Journal should be used to register usage on Jobs, but we discussed how to
enhance this by creating a simple but effective Time Sheet application.

When Purchasing Items for Jobs the Items are not used for Costing, but in the Work
in Progress calculation we discussed in detail.

Invoicing is done automatically when everything happens as it should.

Lastly, we designed some small enhancements for the Job module without making
big changes in the standard application.

This was the last chapter about the functionality of Microsoft Dynamics NAV.
We discussed all possibilities of the application, and how they should be changed
without risking breaking anything.

In the next chapter we will look at how Microsoft Dynamics NAV can interface with
other applications.

Interfacing
When the first version of Microsoft Dynamics NAV for Windows was released in
1995 the system was very closed. It was possible to import and export data using flat
text files and that was basically it. These flat text files would be placed on a floppy
disk and sent by postal mail. Internet and e-mail were just coming and large USB
sticks were a dream.

Since then the world has changed tremendously. Internet, e-mail, ActiveX, SQL
Server and .NET changed the way we think about interfacing with applications.

Today Microsoft Dynamics NAV 2009 has a completely open database and supports
a wide range of interfacing possibilities which we will learn in this chapter.

In this chapter, we will first discuss the available interfacing technologies and the
interfaces available in the standard product. Then we will talk about interfacing
methodology and how to create reliable interfaces.

At the end of the chapter, we will create some sample interfaces and see how the
future will further improve interfacing.

After reading this chapter, you will have a good understanding of what interfaces
the product supports out of the box, what interfacing technologies to use, and
how to design a solid business-to-business interface.

Interfacing

[368]

Interface types
When discussing an interface we usually start with the technology, but before that,
some other basic questions need answering such as the following:

•	 Does it need to import, export, or both?
•	 Is it started manually or automatically?
•	 Is the interface timer or event driven?

Let's discuss these questions.

Import and export
The first question is if the interface should only export data from Microsoft Dynamics
NAV or if it would also import data to the system which then needs to be processed.

When importing and exporting, the data process can be started manually by an
end-user using data pulling or data pushing. The interface can also be event or
timer driven.

Manual
When an interface is manual, the first application has an export process and another
application has an import process. The end-user first manually starts the export
process and then manually starts the import process in another application, usually
saving the data to a flat-file. This is a very classical approach to interfacing.

Chapter 9

[369]

An example of manual interfacing is exporting tele-banking information from
Microsoft Dynamics NAV or sending XBRL files to your accountant.

Data pulling
When using data pulling to export data, the interface is started from an external
application. This application will read the data from the database and process it.

When using data pulling to import data, the interface is started from the application
which reads and processes data from another application.

Data pushing
If an interface uses data pushing, the exporting application writes the data to the
other data source. This method is used when the data in the other application does
not need further processing. A typical example is exporting data from Microsoft
Dynamics NAV to Microsoft Office applications such as Word or Excel.

Event driven versus timer driven
When data pushing or data pulling is combined with the use of events or timers,
there is no longer any need for end-user interference. The interface will then
run automatically.

We will discuss these methods in detail later in this chapter when we discuss
interface methodologies.

Interfacing technologies
In Microsoft Dynamics NAV there are a wide range of methods to interface. Each
method is useful for certain types of interfacing and less useful for other types.
We will discuss all available methods in the C/SIDE development platform.

File
Both Flat files and XML files are supported by Microsoft Dynamics NAV.

Flat files have been available since the introduction of the product in 1995 using
Data Ports for the classic Clients.

XML support was introduced in version 3.60 as an extra option for data ports.

Version 4.0 introduced the XMLPort object that replaced the data port for importing
and exporting XML files.

Interfacing

[370]

In the Role Tailored Client for Microsoft Dynamics NAV 2009, data ports
are no longer supported. The XMLPort has taken over the task by having
a flat file option.

Automation Control and OCX
The implementation for Microsoft COM and ActiveX in Microsoft Dynamics NAV is
referred to as Automation Control or OCX.

OCX
OCX is short for Ole Control Extension, which was the predecessor of ActiveX.
OLE was introduced in 1990 and ActiveX in 1996. Although OCX is a 20 year old
technology it is loved by the Microsoft Dynamics NAV developers. Most commonly
implemented OCX types are Microsoft Common Dialog and Microsoft COM control.

Although supported in Microsoft Dynamics NAV 2009 it is very likely
that this old technology will no longer be supported in future versions
of the product.

Automation Control
Automation Control or ActiveX allows software applications to be reused as
embedded parts of another application. Most Microsoft applications support being
used in such a way. Examples are Microsoft office, Windows Scripting Host, and
ActiveX Data Objects (ADO).

Microsoft Dynamics NAV has support for Automation Control. The application can
be consumed by other applications using the C/FRONT.dll which is shipped with
the product. We will discuss C/FRONT later on in this chapter.

Consuming Automation Control is done using interface exposing methods
and properties.

The most commonly used and generic interface is iUnknown. This is also the
only Automation Control interface supported by Microsoft Dynamics NAV. If the
Automation Control uses other interfaces, a wrapper should be created in Visual
Studio transforming the interface to iUnknown. We should also create a wrapper
when the Automation Controls needs to be embedded using a form control.

Chapter 9

[371]

More information about the iUnknown interface and COM technology
can be found here : http://en.wikipedia.org/wiki/IUnknown.

Events
Most Automation Controls allow data to be pushed. Using events for automation
control, it is also possible to start business logic in Microsoft Dynamics NAV when
something happens in the other applications.

A classic example used by many Microsoft Dynamics NAV developers is using the
ntimer.dll that is shipped with the product. We will discuss this example later
on in this chapter in the section "Example Interfaces".

.NET
Service Pack 1 for Microsoft Dynamics NAV 2009 introduced using embedded .NET
controls in the Role Tailored Client. This technology is called Client Add-ins. We will
discuss this technology later in this chapter.

Consuming .NET controls is only supported in the current version of Microsoft
Dynamics NAV when it is wrapped in a COM control.

Automation wrappers
To work around the issues with embedded Automation Control, the iUnknown
interface, and .NET support, many developers use COM Wrappers. This converts the
methods and properties to the format that Microsoft Dynamics NAV supports.

An example of how to create a com wrapper for a .NET control
can be found on https://blogs.msdn.com/freddyk/
archive/2009/03/18/integration-to-virtual-earth-part-
1-out-of-4.aspx

ODBC/ADO
Open Database Connectivity was developed in 1992 with the goal of allowing all
types of databases to exchange data in a unified way.

ODBC for Microsoft Dynamics NAV allows both reading and writing in the
application database as well as reading and writing to other databases.

Interfacing

[372]

When using the SQL Server database, we can use all SQL Server interfacing features
including ODBC. The Native database supports ODBC using the C/ODBC driver.

Using ODBC is more advanced and requires basic knowledge
of T-SQL Statements.

Reading from Microsoft Dynamics NAV
To read data from the database it is only required to have a valid ODBC driver
installed on the Windows Machine you are using and credentials to log in to
the database.

Let's create an example to import data from Microsoft Dynamics NAV using Excel:

1. Open Microsoft Excel and select Data.

2. Select a Server name and valid credentials.

Chapter 9

[373]

3. Select a Database and the Table you want to view. In our example, we will
select the Customer Table. Then select Finish and OK.

4. We now have the Microsoft Dynamics NAV data in Excel.

Since Flow Fields are not actual fields in the SQL Server database,
we cannot use them in ODBC.

Writing to Microsoft Dynamics NAV
Directly writing data to the Microsoft Dynamics NAV database using ODBC is not
recommended as a best practice. The reason for this is the missing business logic
at this interface level.

Interfacing

[374]

When writing via ODBC, we directly address SQL Server without allowing the C/
AL Business Logic to validate the data we create. The C/AL data normally ensures
data integrity for the business rules we develop. The same applies when using the
C/ODBC driver for the Native database.

To work around this issue, the data can be saved in a special interface
buffer table and processed by a C/AL transaction using an Application
Server or can be started from the User Interface.

Talking to other databases
To use ODBC to read and write data from Microsoft Dynamics NAV to other
databases, it is recommended to use ActiveX Data Objects (ADO). ADO is a Microsoft
Technology that allows using an ActiveX interface to connect using ODBC. Using
ADO allows us to read and write to the database on the other end.

We could even use ADO to connect to the Microsoft Dynamics NAV SQL Server
database and run SQL Statements from C/AL code.

We will use ADO in the "Interface methodology" section of this chapter.

SQL Server interfacing
If Microsoft Dynamics NAV runs on top of a SQL Server database we can use all
available technologies in SQL Server to get data in and out. This offers a wide range of
options that goes beyond the scope of this book, but let's briefly discuss some of them:

•	 Linked servers: In SQL Server it is possible to set up linked servers. This
allows us to send queries to other databases such as other SQL Servers or MS
Access or Oracle and create views based on this data.

•	 Views: A view in SQL Server is a saved query with a fixed result set that can
be interpreted as a table. In C/Side we can use a view as a data source for a
table using the Linked Object property and create a Page or Report based on
this data source.

•	 DTS Packages and Integration Services: SQL Server Integration Services
(SSIS) replaces DTS Packages as the primary component for SQL Server to
integrate with other databases. Using SSIS requires good knowledge and
skills of both SQL Server and Microsoft Dynamics NAV.

Chapter 9

[375]

•	 Reporting Services: SQL Server Reporting Services or SSRS is a server
based reporting platform that can be integrated with SharePoint allowing
users to design RDL reports based on T-SQL queries.

•	 Analysis Services: SQL Server Analysis Services or SSAS is Microsoft's
answer to the OLAP, BI, and Data mining requirements of their customers.

Another SQL Server component we can use is the SQL Server Agent.
This component allows us to schedule interface tasks that run
directly on the database.

C/FRONT
C/FRONT is an ActiveX component that can be used to call Microsoft Dynamics
NAV from other applications. C/Front uses both OCX and .NET technology.

Before Web services were introduced in Microsoft Dynamics NAV 2009, C/Front
was the only technology available to interface directly into the Microsoft Dynamics
NAV Application from other systems.

The C/Front.dll allows a range of properties and methods to be used and can also
be used from within C/AL.

More information on using C/FRONT can be found on MDSN:
http://msdn.microsoft.com/en-us/library/dd338953.aspx.

Microsoft Message Queue
Microsoft Message Queue or MSMQ allows applications to integrate that run
asynchronously with an unreliable connection. This interfacing technology is very
popular for websites that use information from Microsoft Dynamics NAV and send
information back to the database.

Interfacing

[376]

To use MSMQ from Microsoft Dynamics NAV, it is required to use Automation
Control. An example in the standard application that uses MSMQ is Employee Portal.

NAS
MSMQ is always combined with an Application Server to handle the requests sent
back by the website.

The web users can be employees from the company using a web solution for
timesheet registration or a PDA or customers using a web shop.

Web services
With the success of the internet grew the need for an API that is designed for
communication using this platform. Web services were introduced in the beginning
of the 21st century using XML and standard communication protocols such as HTTP.

Microsoft Dynamics NAV is capable of both consuming and exposing web services.
To expose web services, it is a requirement to use the Service Tier and SQL Server.

The most important difference between Web services and Microsoft Message Queue
is that Web services is real time and only runs when the connection between both
applications is active whilst MSMQ will queue the requests until the connection has
been re-established.

Consuming web services in NAV
To consume a web service in C/AL we use an ActiveX control Microsoft XMLHTTP.
This can send an XML file to a web service listener and wait for the answer.

Examples of web services are Address Verification, Shipping Rates and Services
(UPS, FedEx), Currency Exchange Rates, or Credit Card number validation.

Chapter 9

[377]

A very good example of consuming a web service using C/AL can be
found at http://mibuso.com/blogs/ara3n/2008/03/06/.

When developing a web service interface, make sure to have good documentation of
the web service format and to have a valid test account.

Exposing a NAV web service
In Microsoft Dynamics NAV 2009 every Page object and most Codeunits can be
exposed as a web service. This can be done using the Web Service Table (2000000076).

To publish a web service, select the Object type and Object ID and find a unique
service name. Then select the Published checkmark.

The only valid web service object in the standard product is Codeunit Outlook
Synch. Dispatcher (5313) which is used for Outlook Synchronization which we will
discuss later in this chapter.

Consuming a Microsoft Dynamics NAV web service
To consume the web service, an address is generated that is called from the
other application.

http://<Server>:<WebServicePort>/<ServerInstance>/WS/<CompanyName>/

Interfacing

[378]

A very good source of information on web services for Microsoft
Dynamics NAV is http://blogs.msdn.com/freddyk/.

Client add-ins
The latest interfacing technology for Microsoft Dynamics NAV is called
Client add-ins.

This allows the possibility to hand over a page control to a .NET dll. Using this
technology requires some basic .NET skills.

Standard application interfaces
We discussed all the available interface technologies for Microsoft Dynamics NAV.
Let's have a look at how this has been implemented in the standard product.

In this book, we will not go into details for each interface since that would almost
require another book. We will just briefly discuss where to find all technologies we
discussed in the standard application and indicate where a white paper or website
can be found.

Exporting Contacts Microsoft Dynamics NAV allows us to export our contacts both
from the classic client as from the Role Tailored Client. As both interfaces have a
different object type, we will discuss both the Dataport as well as the XMLPort.

Dataport
The Dataport that handles this is Export Contact (5050). The Dataport has two
DataItems; Integer and Contact.

Chapter 9

[379]

The Integer DataItem is used to export the column headers. The Contact DataItem
exports the real information.

Using the virtual Integer table as a DataItem for Dataports and Reports
can solve many issues where iteration is required.

XMLPort
The corresponding XMLPort for this functionality has the same number (5050) and
uses the Format Variable Text. Other options are XML and Fixed Text.

Where Dataports have a separate window to define the fields, the XMLPorts have
a node structure like pages. The XMLPort also starts with Integer table as the first
data type followed by the Contact table.

More information about programming Data Ports and XMLPorts can be
found in Programming Dynamics NAV by David Studebaker, published
by Packt.

Interfacing

[380]

Office integration
Microsoft Dynamics NAV and Microsoft Office are integrated to use with Word,
Excel, and Outlook. We will first discuss the standard Word and Excel integration
and later discuss alternatives. Lastly, we will briefly discuss the possibilities for
Outlook integration.

Word and Excel integration
In Microsoft Dynamics NAV, each form or page can be exported to Word and Excel
using style sheets. This built-in technology is automatically provided by the user
interface and requires no effort from developers.

There is a difference in functionality when using the Role Tailored Client compared
to the Classic Client. The classic client supports multiple style sheets and executes
them using C/AL whilst the Role Tailored Client only supports one style sheet
per page object. This is solved in the Style Sheet Tool version 2.0.

The style sheets are standard XML office style sheets.

Style sheet tool
Since Office XML style sheet syntax is not very user-friendly, Microsoft has released
Style sheet tool for Microsoft Dynamics NAV and Word. This tool allows users to
easily generate style sheets.

Chapter 9

[381]

The Style Sheet tool version 2.0 can be downloaded from this website:
http://www.mibuso.com/dlinfo.asp?FileID=1111.

The tool can only be started from the Classic Client. After importing the .fob file the
first step is to create the setup by opening the form Style Sheet Setup (687). When
this is done we can start creating style sheets by using form Style Sheet Card (680).

The manual provided with the style sheet tool gives a good description about how to
create the style sheets.

Using style sheets in the RTC
To enable using the style sheets in the Role Tailored Client, all pages need to be
changed. This can be easily done using a tool that comes provided with the style
sheet application and requires the following steps:

1. Export the pages you want to use the style sheets for to the new .xml
file format.

2. Start Codeunit 50000 and select the generated .xml file. The tool will
generate a new file with the same name adding the letters –SST.

3. Import the –sst.xml file and compile the pages.
4. The pages have now the style sheet action.

Word Automation
The built-in style sheet functionality was introduced by Microsoft in version 5.0.
Before that, the general solution to integrate with Microsoft Word was to use
Automation Control. An example of how this can be done can be found in
Codeunit WordManagement (5054).

Interfacing

[382]

Advanced Excel integration
When exporting information to Excel that needs to be combined from different parts
of the application, using style sheets is not the ideal way.

To support this, the Excel Buffer table (370) can be used. This table can be populated
with data and then sent to Excel using a simple C/AL command.

This is used in several parts of the application, for example, to import and export the
budgets we discussed in Chapter 3.

Let's create a sample Codeunit that exports data to Excel using the Excel Buffer table.

1. Create a new Codeunit and define a global variable of type record Excel
Buffer. This needs to be a temporary variable. Also, define the other
variables as displayed in this screenshot:

Temporary record variables are not stored in the database but in client
memory. This allows multiple users to create the same records without
blocking each other. It is also faster since all handling is done without
the network and database.

Chapter 9

[383]

2. Create a new Function EnterCell with the parameters displayed in
this screenshot:

3. Put the C/AL Code in place that will handle the interface.
OnRun()

ExcelBufTemp.CreateBook;

Cust.FIND('-');

REPEAT

 RowNo := RowNo + 1;

 EnterCell(RowNo, 1, Cust."No.", FALSE, FALSE, '');

 FormatAddr.Customer(Addr, Cust);

 EnterCell(RowNo, 2, Addr[1], FALSE, FALSE, '');

 EnterCell(RowNo, 3, Addr[2], FALSE, FALSE, '');

 EnterCell(RowNo, 4, Addr[3], FALSE, FALSE, '');

 EnterCell(RowNo, 5, Addr[4], FALSE, FALSE, '');

 EnterCell(RowNo, 6, Addr[5], FALSE, FALSE, '');

 EnterCell(RowNo, 7, Addr[6], FALSE, FALSE, '');

 EnterCell(RowNo, 8, Addr[7], FALSE, FALSE, '');

 EnterCell(RowNo, 9, Addr[8], FALSE, FALSE, '');

UNTIL Cust.NEXT = 0;

ExcelBufTemp.CreateSheet(Cust.TABLECAPTION,Cust.TABLECAPTION,

 COMPANYNAME,USERID);

ExcelBufTemp.GiveUserControl;

EnterCell()

ExcelBufTemp.INIT;

ExcelBufTemp.VALIDATE("Row No.",RowNo);

Interfacing

[384]

ExcelBufTemp.VALIDATE("Column No.",ColumnNo);

ExcelBufTemp."Cell Value as Text" := CellValue;

ExcelBufTemp.Formula := '';

ExcelBufTemp.Bold := Bold;

ExcelBufTemp.Underline := UnderLine;

ExcelBufTemp.NumberFormat := NumberFormat;

ExcelBufTemp.INSERT;

This C/AL code will browse the customers in the database and format the addresses
using the Address Format (365) Codeunit.

The Customer No. field and the result array Addr[] are saved in the Excel Buffer table.

Lastly, we start the C/AL functions to generate the Excel spreadsheet based on
the data.

Outlook integration
Microsoft Dynamics NAV 2009 allows different levels of interfacing with Microsoft
Outlook. They are as follows:

1. The Outlook Part on the Role Center.
2. Sending e-mails from pages using the ExtendedDatatype property.
3. Using the Mail (397) or SMTP Mail (400) Codeunits to send e-mails.
4. Synchronize Contacts and To-Do's using the Outlook integration Web Service.
5. Reading e-mail from Exchange using the E-Mail – Logging functionality.

Chapter 9

[385]

Outlook part
On a Role Center, it is possible to activate the Outlook System Part. This allows users
to see their E-mail, Agenda, and Tasks directly on the Role Center.

This functionality is built in the Role Tailored Client and cannot be changed using
C/AL Code.

ExtendedDatatype property
When a Text field in a table uses the ExtendedDatatype property E-Mail, the Role
Tailored Client will automatically allow the users to directly send an e-mail to the
address specified in the field.

Interfacing

[386]

This is also built in functionality in the Role Tailored Client that cannot be
influenced by C/AL code.

Mail and SMTP mail Codeunits
Before the introduction of the ExtendedDatatype property, the e-mails from Microsoft
Dynamics NAV were sent using an Automation Control wrapper DLL to Microsoft
Outlook. This is handled in Codeunit 397 and can still be used to send e-mails
directly from C/AL code.

Codeunit SMTP Mail (400) allows us to send e-mails directly to an SMTP server.

Outlook synchronization
Microsoft Outlook can be used as an offline client for Microsoft Dynamics NAV.
Every table can be synchronized to Microsoft Outlook when a connection with both
systems is available. Using the offline functionality in Outlook, users can view the
data when they are on the road and even change the information or create new data.

This is done using the Outlook Synchronization Web Service we discussed earlier in
this chapter or in previous versions using a C/FRONT interface.

Chapter 9

[387]

The functionality is very well documented by Microsoft.

More information can be found on MSDN http://msdn.
microsoft.com/en-us/library/dd338966.aspx or on Partner
Source https://mbs.microsoft.com/partnersource/
deployment/documentation/howtoarticles/
howtonavoutlooksynchronization.htm

Exchange integration
To read incoming e-mails, Microsoft Dynamics NAV offers integration with Exchange
Public folders. Information in these mailboxes can be read and used in Microsoft
Dynamics NAV.

The handling of the interface is done using the Job Queue and the Application
Server (NAS).

Interfacing

[388]

In the Marketing Setup that we discussed in Chapter 4, Relationship Management,
we can set up the parameters for the Exchange integration.

Interaction log entries
Each e-mail read from Microsoft Exchange is displayed in Microsoft Dynamics NAV
as an interaction log entry.

Since Microsoft Exchange 2010 no longer supports public folders this
functionality can no longer be used.

SharePoint
Microsoft Dynamics NAV is integrated with SharePoint using a product called
Employee Portal.

Chapter 9

[389]

Most forms can be exposed to SharePoint. Using Message Queue and one of more
Application Servers, users can read and write data the same way as in the normal
user interfaces.

More information about Employee Portal can be found on Partner Source:
https://mbs.microsoft.com/partnersource/downloads/
releases/employeeportalnav50.htm

BizTalk
Electronic Data Interchange or EDI is the most commonly used standardized
interface between companies.

Microsoft Dynamics NAV supports sending and receiving EDI Sales and Purchase
orders using Microsoft BizTalk server.

To implement BizTalk requires knowledge of the application and should be done
by specialized consultants.

Interfacing

[390]

Client Add-ins
Microsoft Dynamics NAV 2009 SP1 ships with one Client add-in for Microsoft
Connect. The page object that uses the Connect control is Connect (9175).

Let's have a look at how this done:

The page type of this page is CardPart and it has no Source Table. The only control
on the page is Parameters which is a function with a Text(350) return value.

The property ControlAddIn points to the Add-in that will be used when this page
is started. This Add-in will replace the original control on the page.

In the Parameters function, a string is created to feed information into the Connect
add-in enabling it to show information that is interesting for the current role. This
is done using a combination of other C/AL functions.

Parameters()
InitCurrentRoleValues;

EXIT(Add(Version) + Add(Locale) + Add(Role) + Add(RoleID) +
 Add(Serial));

Add()

Chapter 9

[391]

EXIT(Parameter + Separator);

Version()
EXIT('version=' + FORMAT(ApplicationManagement.ApplicationVersion +
':' +
 ApplicationManagement.ApplicationBuild,0,XMLFormat));

Locale()
// Windows Language ID
EXIT('locale=' + FORMAT(CurrentLanguageID,0,XMLFormat));

Role()
// Profile ID (Any text entered in Profile ID)
EXIT('role=' + FORMAT(DELCHR(CurrentRole,'=',Separator),0,
 XMLFormat));

RoleID()
// Role Center ID (Page ID)
EXIT('roleid=' + FORMAT(CurrentRoleID,0,XMLFormat));

Serial()
// License ID
EXIT('serial=' + FORMAT(SERIALNUMBER,0,XMLFormat));

Separator()
EXIT(';');

XMLFormat()
EXIT(9);

InitCurrentRoleValues()
CurrentLanguageID := GLOBALLANGUAGE;
CurrentRoleID := ApplicationManagement.DefaultRoleCenter;
CurrentRole := FORMAT(CurrentRoleID);
...

Chapter 7, Storage and Logistics, uses Client Extensibility and Bing Maps to show the
stops of a route on a map.

More information on using Client Extensibility can be found on
http://blogs.msdn.com/cabeln/. More information on how
to integrate with Bing Maps can be found on https://blogs.
msdn.com/freddyk/archive/2009/03/18/integration-
to-virtual-earth-part-1-out-of-4.aspx

The available libraries are stored in the Client Add-in table (2000000069).

Interfacing

[392]

Interface methodologies
So now we discussed interface types, interface technologies and the built in interfaces
in Microsoft Dynamics NAV.

Let's design and develop a new business to business interface. We will use the objects
from Chapter 7, Storage and Logistics to create the interface.

The scenario
One of our customers wants to e-mail the shipments from now on instead of faxing.
The e-mail will contain an Excel file in a predefined format.

The design
Let's bring back the Data Model we designed for the Logistics part of the solution
in Chapter 7.

The process starts in the Registration table. From a registration, we generate
shipments and shipments are combined into a Route with stops.

So we need to move the data from the Excel sheet to the Registration table.

The mapping
When a customer delivers us an Excel sheet with information, it seldom happens that
they exactly use the same fields as our table. Therefore, we need to create a mapping.
Each field in the Excel sheet needs to be mapped to a field and missing fields need to
be identified and discussed.

The Excel Sheet we get from the customer looks like this.

Chapter 9

[393]

Let's try to map this information to our Logistics Registration Worksheet table.

Field No. Field Name Data Type Length Mapped Field
1 Registration Batch Code 10 -
2 Line No. Integer -
6 Shipment Date Date Date
8 Product No. Code 20 Goods Code
10 Description Text 50 Description
12 Unit of Measure Text 10 -
16 Quantity Decimal Pallets
20 Length Decimal Length
21 Width Decimal Width
22 Height Decimal Height
31 Gross Weight Decimal -
32 Net Weight Decimal Weight
36 Units per Parcel Decimal -
37 Unit Volume Decimal -
53 Ship-to Name Text 50 Delivery At
55 Ship-to Address Text 50 Address
57 Ship-to City Text 30 City
58 Ship-to Contact Text 50 -
59 Ship-to Post Code Code 20 Postal Code
60 Ship-to County Text 30 -
61 Ship-to Country/Region Code Code 10 -

Most of the fields in the Excel sheet can be mapped to a field in our table.

The gaps
Some fields that are needed in NAV are not populated by the Excel sheet. For
some fields this is okay, for example the Registration Batch and Line No. fields
are determined by the import.

Some other fields are more difficult. Unit of Measure, Gross Weight, Units per Parcel,
and Unit Volume are left blank in the Excel sheet, but they are all needed in NAV.

Interfacing

[394]

For these fields, we need to come to an agreement with the customer. They need to
either specify these fields or tell us if they have default values. Let's look at our
gaps and fill them in:

•	 Unit of Measure: For this customer it is always "PALLET".
•	 Volume: This can be calculated using Length x Width x Height.
•	 Gross Weight: We agree that this is equal to Net Weight.
•	 Units per Parcel: This is always 1.

What if it does not work
Reading the external data into the database is just one step in creating a
reliable interface.

But what happens if the customer contacts us and says: "We sent you a file with 10
lines and the shipment document shows nine lines." When we check our database,
the shipment does show nine lines, but there is no way to check if we imported the
original ten lines. At this stage, the imported Registration lines are deleted and the
shipments are generated.

If this happens we need traceability.

In a well designed interface, we should always create a table that exactly matches
the imported data. This allows us to first check if everything matches.

The data from this table can be processed but should not be deleted from the
database but periodically cleaned up. This allows us to check if things go wrong.

We will demonstrate this in a more advanced example.

The scenario
The implementation of our storage and logistics add-on requires a real time interface
with a Radio Frequency application. The RF scanners are used for the pick process.
The RF application uses its own database system with tables that we should populate
and read afterwards.

Chapter 9

[395]

The RF application has three tables. Our interface needs to export data to the Pick
Lines table, and it needs to import data from the two remaining tables, Finished
Picks and Exceptions.

The interface type
This is an import and export interface that will use data pushing for the Pick Lines
and data pulling for the Finished Picks and Exceptions.

The interface will be timer driven. Every minute we will poll for new data.

The interface technology
For this interface, we will use a combination of technologies that we discussed in
this chapter.

The main technology is Automation Control. We will use two of them.

Active Data Objects
The Picking database runs on SQL Server, so we will use ADO to connect to the
database and send T-SQL Statements to read and write data.

Interfacing

[396]

Reliability
For the timer feature we can use two technologies. The obvious choice seems to use
the Job Queue to execute our business logic. However, the interface we are creating
here can be defined as business critical. If it stops working, the picking process in
the warehouse will quickly stop. When designing a business critical interface always
remember the more components we use, the more can go wrong. For this reason, it
might be better to create our own timer mechanism.

NTimer.dll
We will use the ntimer.dll for this and it comes shipped with each Microsoft
Dynamics NAV installation.

Logging
In this interface, we will enable two types of logging. The first log will be to duplicate
the RF tables in Microsoft Dynamics NAV and use them as a buffer. A second log
will be maintained where we will save a copy of all T-SQL statements we generate.
This will enable us to see what we generated if something goes wrong.

The design
Let's look at the design of the interface we will be developing for this project.

Chapter 9

[397]

The interface will be controlled from an Application Server. Each minute it will execute
a Codeunit that checks if there are new Storage Lines that need to be exported. These
lines will first be moved to the RF Pick Lines buffer table and then moved to the RF
database using ADO and T-SQL. New Finished Picks and Exceptions from the RF
database will be moved to Microsoft Dynamics NAV using the same technology
and can then be processed.

The solution
To run the interface we have created three Codeunits and a table. The SQL
Statement table is used to log each interface session.

1. RF NAS Timer (123.456.730)
This Codeunit is started from the NASHandler function in Codeunit
ApplicationManagement 1. It uses the ntimer.dll as an automation
control with Events and the SingleInstance property.

Interfacing

[398]

Ntimer.dll is an automation control that can be used to handle timer events
in C/AL. The Event NTimer::Timer can be used to execute C/AL code.
Enabling events on an Automation Control can be done in the properties of
the variable.
OnRun()

IF ISCLEAR(NTimer) THEN

 CREATE(NTimer);

NTimer.Interval := 1000;

NTimer.Enabled := TRUE;

RFInt.CreateConnectionString;

ParseError()

SELECTLATESTVERSION;

RFIntSetup.GET;

SynchID := RFIntSetup."Synchronisation ID";

SQLStat.INIT;

SQLStat."SQL Statement 1" := 'ERROR : ' + GETLASTERRORTEXT;

SQLStat.Bold := TRUE;

SQLStat.Color := 16711680;

SQLStat.SessionID := SynchID;

SQLStat.Type := SQLStat.Type::Error;

SQLStat.INSERT(TRUE);

COMMIT;

NTimer::Timer(Milliseconds : Integer)

IF NOT CODEUNIT.RUN(CODEUNIT::"RF Helper") THEN

 ParseError;

SingleInstance is a property of a Codeunit that changes the behavior vari-
ables in the object. Normally all variables are destroyed when the transaction
is completed. In SingleInstance, Codeunit variables remain active during
the lifetime of the application.
This means that the NTimer::Timer event will keep coming back during the
lifetime of the NAS which is always.
From the NTimer::Timer trigger, we execute Codeunit RF Helper. If this
Codeunit returns an ERROR we save the error in the SQL Statement table.
This enables traceability of the interface.
GETLASTERRORTEXT is a C/AL function that returns the last error message
that was generated by the system. It can be used in combination with
IF CODEUNIT.RUN syntax to catch runtime errors.

Chapter 9

[399]

2. RF Helper (123.456.732)
The RF Helper Codeunit is a wrapper Codeunit that is used for error catching
and maintaining readability.
Each run of the interface we create a new SQL Statement ID which we can
filter on to trace any errors.
OnRun()

SELECTLATESTVERSION;

RFIntSetup.GET;

RFIntSetup."Synchronisation ID" := RFIntSetup."Synchronisation ID"
+ 1;

RFIntSetup.MODIFY;

SynchID := RFIntSetup."Synchronisation ID";

SQLStat.INIT;

SQLStat."SQL Statement 1" :=

 '-SYNCHRONISATION STARTED- ID = ' + FORMAT(SynchID) + ' -';

SQLStat.Bold := TRUE;

SQLStat.Color := 16711935;

SQLStat.SessionID := SynchID;

SQLStat.Type := SQLStat.Type::StartStop;

SQLStat.INSERT(TRUE);

COMMIT;

CLEAR(RFInterface);

RFInterface.SetSynchID(SynchID);

StorageLn.LOCKTABLE;

IF StorageLn.FINDSET THEN REPEAT

 RFInterface.CreatePickLines(StorageLn);

UNTIL StorageLn.NEXT = 0;

COMMIT;

CLEAR(RFInterface);

RFInterface.SetSynchID(SynchID);

RFInterface.ReadFinishedPicks;

COMMIT;

CLEAR(RFInterface);

RFInterface.SetSynchID(SynchID);

RFInterface.ReadExceptions;

COMMIT;

Interfacing

[400]

SQLStat.INIT;

SQLStat."SQL Statement 1" :=

 '-SYNCHRONISATION STOPPED- ID = ' + FORMAT(SynchID) + ' -';

SQLStat.Bold := TRUE;

SQLStat.Color := 16711935;

SQLStat.SessionID := SynchID;

SQLStat.Type := SQLStat.Type::StartStop;

SQLStat.INSERT(TRUE);

COMMIT;

Then the three interface functions are triggered to synchronize the three
required tables.

COMMIT
After each command we execute the COMMIT statement. This will make sure that
everything in the database is stored up to that point. This is necessary since the ADO
statements we create are outside our transaction. If our interface run would roll back
it might synchronize data that is already synchronized.

RF Interface (123.456.731)

The actual ADO synchronization is done in this Codeunit. This Codeunit is also
SingleInstance. This will keep the ADO connection alive during the NAS session.

CreateConnectionString()
IF ConnActive THEN EXIT;

IF ISCLEAR(AdoCon) THEN CREATE(AdoCon);
IF ISCLEAR(AdoRecordSet) THEN CREATE(AdoRecordSet);
IF ISCLEAR(AdoStream) THEN CREATE(AdoStream);

RFIntSetup.GET;
Database := RFIntSetup."Database Name";
Server := RFIntSetup."Server Name";

ConnString := 'Provider=SQLOLEDB;Data Source=' + Server +
 ';Initial Catalog=' + Database + ';Trusted_Connection=yes';

SaveReadSQL('Connection ' + ConnString + ' opened on ' +
 FORMAT(CURRENTDATETIME),TRUE,0,0,0, '');

AdoCon.ConnectionString := ConnString;
AdoCon.Open;

ConnActive := TRUE;

CloseConnectionString()
AdoCon.Close;

Chapter 9

[401]

CLEAR(AdoCon);
CLEAR(AdoStream);
CLEAR(AdoRecordSet);

SaveReadSQL('Connection closed on ' +
 FORMAT(CURRENTDATETIME),TRUE,0,0,1, '');

ConnActive := FALSE;

For the interface we use three Automation Variables.

•	 ADO.Connection: This is used for the connection with the database and to
execute the T-SQL statements.

•	 ADO.Recordset: The result sets of a SELECT statement can be read using this.
•	 ADO.Stream: The streams are used to convert data types between

ODBC and C/Side.

Writing data
The RF application needs data from the Storage Line table. We first create a mapping
to the RF application as we did with the Excel interface earlier in this chapter.

This mapping is saved in a buffer table for traceability.

CreatePickLines()
CreateConnectionString;

SaveReadSQL('CreatePickLines',TRUE, 1, 8388608, 3, '');

PickID := COPYSTR(StorageLn."Document No." + FORMAT(StorageLn."Line
No."), 1, 20);

SaveReadSQL('Pick Document : '+PickID,TRUE,3,16711680,7,'');

WITH RFPickLines DO BEGIN
 "Pick Code" := PickID;
 Quantity := StorageLn.Quantity;
 "Terminal ID" := 1;
 "Display 1" := StorageLn.Description;
 "Display 2" := 'Warehouse ' + StorageLn."Warehouse Code";

Interfacing

[402]

 "Display 3" := 'Region ' + StorageLn."Region Code";
 "Display 4" := 'Shelf ' + StorageLn."Shelf No.";
 INSERT;

 SQLStatement := 'INSERT INTO [RF Pick Lines]' +
 '([Pick Code],'+
 '[Quantity],'+
 '[Terminal ID],'+
 '[Display 1],'+
 '[Display 2],'+
 '[Display 3],'+
 '[Display 4])'+
 'VALUES('+
 Quote + PickID + Quote +','+
 FORMAT(Quantity) +','+
 '1' +','+
 Quote + "Display 1" + Quote +','+
 Quote + "Display 2" + Quote +','+
 Quote + "Display 3" + Quote +','+
 Quote + "Display 4" + Quote + ')';
END;

ExecuteSQL(SQLStatement);

StorageLn.Exported := CURRENTDATETIME;
StorageLn.MODIFY;

The actual data is moved to the RF database using an INSERT command.

To avoid exporting the same data twice we need to keep track of what
we exported. The simplest way to do this is to create a new field called
Exported. Making this field a DateTime also enables the traceability
of the application.

Reading data
When reading data from the RF database, we also send a T-SQL SELECT query for the
data. We use the ADORecordSet to browse through the records that are in the result set.

For each record in the result set, we create a record in our buffer table which we can
later use to update the information in the Storage Lines.

When reading data, we do not want to import the same data twice. To avoid this, we
need to store a unique identifier in a table that enables us to remember where we left
in the last run.

Chapter 9

[403]

ReadFinishedPicks()
CreateConnectionString;

SaveReadSQL('ReadFinishedPicks',TRUE, 1, 8388608, 3, '');

RFIntSetup.GET;
LastSync := RFIntSetup."Last Finished Pick";

AdoRecordSet := AdoCon.Execute(
 SaveReadSQL('SELECT ' +
 '[Reference Entry No],' +
 '[Terminal ID],' +
 '[Duration],' +
 '[Ready Date Time]' +
 ' FROM [RF Finished Pick] WHERE [Reference Entry No] > ' +
 LastSync,FALSE,2,0,2, ''));

IF AdoRecordSet.BOF AND AdoRecordSet.EOF THEN
 EXIT;

AdoRecordSet.MoveFirst;
REPEAT
 RFFinishedPick.INIT;
 RFFinishedPick."Reference Entry No." :=
 ReadInteger('Reference Entry No');
 RFFinishedPick."Terminal ID" := ReadInteger('Terminal ID');
 RFFinishedPick.Duration := ReadInteger('Duration');
 RFFinishedPick."Ready Date Time" :=
 ReadDateTime('Ready Date Time');
 RFFinishedPick.INSERT;
 AdoRecordSet.MoveNext;
UNTIL AdoRecordSet.EOF;

RFIntSetup."Last Finished Pick" := Quote + FORMAT(RFFinishedPick."Refe
rence Entry No.") + Quote;
RFIntSetup.MODIFY;

AdoRecordSet.Close;

In our example, this unique identifier is the Reference Entry No.

Log, log, and log more
Although much of the logging is done using the buffer tables, we also want to store
the general process of the interface each time it runs. This is done using the SQL
Statement table. Both the SQL Statements as well as the other events are stored there.

By using the COMMIT functionality we can exactly see where it stopped by looking at
the last record in this table. We can solve the problem that caused the interface
to stop and restart the interface without losing data.

Interfacing

[404]

Never use the COMMIT statement unless there is a very good reason for it.
C/SIDE will normally handle the transactions for you by enabling a full
role back when things go wrong. Creating a COMMIT in a normal C/SIDE
transaction will prevent C/SIDE from rolling back.

Testing
Let's test the interface we have just designed and developed. In order to do this, we
need to have records in the Storage Line table and the RF database needs to exist
somewhere.

The RF database
To test the objects we have created for this solution, the RF database should exist
on your system. This database can be created using a T-SQL script and should
be executed on a Microsoft SQL Server machine.

The script RF database.sql is part of the object files downloaded for this
book.

Open the script in SQL Server Management Studio and push Execute.

Chapter 9

[405]

The test
Even though the C/AL code could run in the Role Tailored Client, we will run the
test in the Classic Client. The reason for this is that the interface will run in the NAS
which will execute the C/AL code the same way as the Classic Client. Another
reason to use the Classic Client is that this is the interface for the DBA to perform
all their tasks.

To start a test run, open form RF Interface Setup (123.456.730) from the
Object Designer.

Make sure that the Database and Server are correct. The server should be the SQL
Server instance where the SQL Script was executed.

The ADO connection uses the current Windows Account with Trusted
connection. This user should have enough rights to insert and read data
from the RF database.

To start a Test run, push the Test button.

Viewing the results
If everything went well, the results should show both in the log and in the buffer
tables and the RF Database. Let's check them all.

Interfacing

[406]

SQL statements
The SQL Statement log can be opened by either pushing the Log button on the RF
Interface Setup form or opening form SQL Statements (123.456.731) from the
Object Designer.

The information on the form shows us exactly what the interface did during this run.

The buffer tables
When we open the buffer tables from the object designer, we can see that the
interface moved the data from the Storage Line table into the RF Pick Lines table.

Chapter 9

[407]

The RF Finished Pick and RF Exceptions are also populated with the records from
the RF Database.

The RF database
Last thing to check is the data in the RF Database. The data in both databases should
now be exactly the same.

This can be checked from the SQL Server Management Studio.

Interfacing into the future
Interfacing will become more and more important in the future as technology evolves.
Newer technologies and faster internet connections will allow us to integrate our
applications better but will also make it more accessible for end users.

Let's briefly discuss some of the integrations we will see in the near future with
Microsoft Dynamics NAV.

Interfacing

[408]

SharePoint client in Microsoft Dynamics
NAV "7"
The next major release of Microsoft Dynamics NAV will be shipped with a new
SharePoint Client that will replace the Employee Portal product discussed in
this chapter.

The new product will allow us to reuse the Pages we have already defined for the
Role Tailored Client and Web services, and connects to the Service Tier.

Microsoft Dynamics CRM
Another important new interface will be with Microsoft Dynamics CRM. This
will allow us to use the strong integration that Microsoft Dynamics CRM has with
Microsoft Outlook and use the analysis and remote possibilities of this product.

Windows Azure
Cloud Computing is the latest technology where companies like Microsoft and
Google are really pushing us into, so what does that mean for Microsoft Dynamics
NAV and interfacing.

We discussed earlier in this chapter that using Web Services requires a real time
connection between the systems using Windows Domain Credentials.

Windows Azure allows us to implement a remote mechanism that will solve these
issues. We can publish information to the cloud and users can subscribe to this
information.

Chapter 9

[409]

More information on Windows Azure can be found on this website:
http://geekswithblogs.net/claeyskurt/Default.aspx

Summary
In this chapter, we have looked at how Microsoft Dynamics NAV can interface with
other applications.

We discussed the basics of interfacing, import versus export, and data pulling versus
data pushing. An interface can be executed manually or by a timer or event.

Microsoft Dynamics NAV supports a wide range of interfacing technologies such as
Files, Automation Control, OCX, .NET, ODBC, ADO, and Web Services.

It is also possible to integrate using SQL Server technologies.

The Application Server (NAS) is often used for interfacing with other systems for
example using Microsoft Message Queuing or Active Data Objects (ADO).

A wide range of interfaces that comes with the product have been discussed
including all interfaces with Microsoft Office, Exchange, SharePoint, and BizTalk.

We designed and developed two business to business interfaces. One is to import
data manually from Microsoft Excel and the other to automatically import and
export data to another database using ADO and a timer.

When designing an interface, reliability and traceability are the key elements.

In the next chapter, we will talk about Application Design methodologies
and principles.

Application Design
In Microsoft Dynamics NAV, technology and functionality go hand in hand. It is
impossible to design an effective change or enhancement to the application without
thorough knowledge of how the standard pieces fit together. With this knowledge
now available we can start designing our own applications.

In this book we talked about Application Design for Microsoft Dynamics NAV.
We discussed the data and the transaction model; how it works and why
it works that way.

We designed several small and large changes to the system both in detailed
examples and on a conceptual level.

In this chapter we will fit together all the pieces we have learned in this book,
and turn them into concepts for good application design.

We will also discuss how to approach a Microsoft Dynamics NAV implementation
project, and how to maintain the application. This requires a different approach
depending on the level of customization the project contains.

Application lifecycle
Designing an application is more than just analyzing processes and developing new
objects. These phases are just the tip of the iceberg.

Application Design

[412]

Once your application has been designed and developed it is most likely that one
or more companies will start using it. When this happens your software will start a
new phase in its lifecycle. Let's have a look at the lifecycle of a Microsoft Dynamics
NAV application.

The Development phase of the application starts with the Fit/Gap analysis,
followed by the Design and Build steps we saw in the earlier chapters of this
book. When those steps have been completed, the maintenance phase of your
application will start.

The Maintenance phase starts with the implementation and taking the software into
production. The first time this will happen it will be the Microsoft Dynamics NAV
implementation in your company. Once this is done your system will enter the real
lifecycle where constant improvements will be made to the application.

With the flexibility of the Microsoft Dynamics NAV product, this is a special
procedure where it is easy to step into the many pitfalls there are along the way.

We will discuss some guidelines that are important to follow. There are six
categories: Design to use, Maintain, Support, Upgrade, Perform, and Analyze.

Design to use
Designing software is not a goal; it's a way to support companies doing their
business. This makes usability one of the most important focus areas when
designing your application.

Chapter 10

[413]

The first thing that pops into mind when talking about usability is the user interface.
Microsoft Dynamics NAV 2009 has two interfaces that are commonly used, the
Classic Client and the new Role Tailored Client.

Both interfaces have a very different approach, where the Classic Client is very
flexible in design using a limited number of WYSIWYG (What You See Is What
You Get) controls, and the Role Tailored Client for Microsoft Dynamics NAV 2009
is less flexible rendering the page definition at runtime.

We will discuss both object types, focusing on the issues which require the most
design effort.

Forms
The form object is available for backwards compatibility with the Classic Client and
Add-on solutions that are not yet transformed to the Page objects.

•	 Tabs: Forms are tabbed horizontally. This means thaty only the fields on
the first tab are visible by default. It is tempting to move important fields
for an implementation to the first tab, and this might increase productivity
which is good. However, there is a downside to this, which we will discuss
when talking about upgrades.

Application Design

[414]

•	 Columns: By default most forms have two columns, where the first is wider
and the latter is narrower. This is mainly for screen sizing. A third column is
often added, to allow us to display more information on the first tab. This is
not a bad thing. Try to keep the columns vertically aligned. This will improve
the readability of the form.

•	 Fields: Most field types have a standard font, font size, width, and height
when they are placed on a form. Try to maintain them as much as possible.
This will improve the similarity of the forms throughout the application.
Exceptions are forms for Point of Sale, Shop floor, and Warehouse
employees. In these cases the users often have only one or few screens they
use throughout the day, and they won't see the rest of the application.

•	 Colors: Colors are something all users love. It makes it easier to manage
exceptions and make decisions quickly. Be careful with implementing too
much color, this will have a counter effect and lead to confusion.

•	 Menu Buttons: By default the menu buttons of many standard application
forms give access to all possible application features supported. Most
companies do not use them all and the end users have even less need for
them. This makes it tempting to go and change them. However this will only
have a very short term productivity effect. After a while most users will have
learned where to click. A better improvement for productivity is teaching
end users to use the available shortcuts.

•	 List Controls: The list controls are the most flexible controls in the classic
client. Users can change the visibility and size of the columns themselves.

•	 Sub Forms: Most document forms have one sub form displaying the lines.
Sometimes there might be a need to add more than one sub form. This
should be done only as a last resort. Having more than one sub form is an
indication of possible bad design. Exceptions to this are forms that are used
to analyze data by managers. For those forms it might be very useful to have
all the information in one place.

Pages
Where forms are very flexible in design, pages are fixed. However they have a lot of
advantages over forms that make them easier to use, although they require slightly
more work to design.

•	 Tabs: Pages have vertical tabs that can be opened at the same time making it
less desirable to move fields to the first tab.

•	 Embedded Lists: Another advantage of pages is that the users always gets to
see a embedded list page first, and then continues to the card that opens in a
new Windows control after selecting a record. This is something that many
developers have done in the classic client as a modification.

Chapter 10

[415]

•	 Importance: On pages it is possible to promote controls to be displayed
when the tab is closed or made additional so the end users have to
specifically make them visible. Use this functionality carefully when
designing your application.

•	 Personalization: All pages can be personalized by end users, also card
pages. This makes it easier to customize pages during an implementation
for a company, department, or end user. Personalization does not change
the object definition and does not require a developer.

•	 Actions: On pages Actions have replaced the menu buttons used on Forms.
Users can select which actions they want to emphasize making it easier for
them to get started with the application.

Application Design

[416]

•	 Fact Boxes: This is a new feature which was not available in the classic client.
Each page can have an unlimited number of fact boxes attached. Fact boxes
can be used to show detailed information about a record. The Route page in
Chapter 7, Storage and Logistics, is a good example where we can see the route
in Bing maps and the details of the stops.

•	 Emphasis: A control on a page can be emphasized with Bold, Red, Green,
or Red Italics. A combination of these colors in one control is not possible.

•	 Client extensibility: A control on a page can be taken over by a .net dll.
The .net control will use the content of the dll and render the information.
We have discussed Client extensibility in Chapter 9, Interfacing.

•	 Web Services: All pages can be exposed as a Web Service. This makes it
possible to create your own user interface in Visual Studio, Borland Delphi,
or another development tool that can consume Web Services.

Role centers
When it comes to usability in Microsoft Dynamics NAV 2009, the Role Centers are
the heart of the application. The Role Center is the place where the end users starts
their working day and returns to regularly. Let's discuss the Role Centers we created
in this book.

Squash application
The Squash Court Role Center was created for Chapter 2, A Sample Application, and
looks like this:

Chapter 10

[417]

The Application screen has two sections, the Menu section and the Role
Center section.

The Menu section is created by merging Actions from the Role Center with the main
menu. When clicking on Departments an end user can access the entire application
depending on the security setup.

More information about the Home items can be found on
this blog: http://dynamicsuser.net/blogs/mark_
brummel/archive/2009/12/16/tip-26-grouping-in-
the-homeitems.aspx.

The Role Center has a left and right part. The left part usually contains the activities
and a shortcut to Microsoft Outlook. The right part contains shortlists to the My List
pages that show frequently used records and notes. An end user can customize the
Role Center and move the parts around.

A Role Center can also show graphs. Graphs are defined using an XML structure
which is stored in the Chart table (2000000078).

Application Design

[418]

Storage and logistics
This application has four different Role Centers. We will discuss the Storage Role
Center (123.456.726). Other Role Centers are Logistics Role Center (123.456.700),
Manager Log. and St. Role Center (123.456.756), and Income and Expenses Role
Center (123.456.761).

On the Activities storage page employees can directly go to the documents filtered
on dates from the stacks. From the menu options users can create new documents or
open worksheets and journals.

We have designed two shortlist pages, My Products and My Regions. My Products
can be changed by the user by clicking on the small lightning button, and select
Manage List.

Chapter 10

[419]

The My Region page is built on the Region table. Users cannot change this list. The
page uses the SourceTableTemporary and ShowAsTree properties. This allows users
to expand and collapse warehouses.

Reports
The reports in the standard Microsoft Dynamics NAV application are typical ERP
reports that show the required information and that's it.

Designing reports requires special skills and is not as easy as it seems. When
changing a report layout from the standard application it is best practice to leave
the original report as it is, and modify the saved copy.

We will discuss more of reports in the section Design to analyze.

Design to maintain
It seldom happens that software is designed and developed, never to be changed.
Objects are usually changed many times in the lifetime of the application.

The changes to an existing object may be done quite a while after the object's original
development. At this time, even if the changes are done by the original developer,
it will be difficult to remember how and why some choices were made.

This is why it is important to develop in a unified way. This will make it easier for
developers to read each other's code or to understand their own code after months
or years.

Written external documentation is a no brainer at this point but we should
realize that this is not always done, and focus on more obvious and easier ways
of explaining our code. A well designed and built application should be self
documenting. This is done by following some simple guidelines.

Naming
When creating new objects it is important to follow the naming guidelines of the
product. Field and variable names should explain themselves.

Singular and plural
Table names should be singular. This will make the C/AL command TABLECAPTION
return a usable value. Let's look at an example in the Item table (27).

Application Design

[420]

OnDelete()
...
ItemJnlLine.SETRANGE("Item No.","No.");
IF ItemJnlLine.FIND('-') THEN
 ERROR(Text023,TABLECAPTION,"No.",ItemJnlLine.TABLECAPTION);

List forms and pages should be plural as they contain more than one record, whilst
card forms and pages are singular.

Reserved words
Reserved words should not be used in objects such as name for fields, variables,
and functions.

Microsoft has published a list of reserved words on:
http://msdn.microsoft.com/en-us/library/
ee414230.aspx.

One very important Reserved word, which is missing in that list is Action. This is
reserved for using IF Page.RUNMODAL = ACTION::OK then.

Names and abbreviations
Using standard naming and abbreviations has been one of the strong points of the
application that makes it easy to learn for new developers.

Some examples:

•	 <<Table name>> No.: This is the standard reference to field in a table relation.
If the field has a relation with the Customer the field is called Customer
No., and if the relation is with Vendor we use Vendor No. In our example
application we have used Product No., Squash Player No., and so on.

•	 Line No.: This fieldname is always used in the popular Header/Line and
Journal constructions. This field always uses the auto split key property in
forms and pages.

•	 Entry No.: This fieldname is always used for entry and register tables such
as G/L Entry and Customer Ledger Entry.

Chapter 10

[421]

•	 Name and Description: Standard naming for persons or products.
•	 Quantity/Qty.: The standard name and abbreviation for measuring quantity.
•	 (LCY): Abbreviation for Local Currency.
•	 Duty Due %: When the field represents a % this should be in the field name.

A list of naming conventions can be found on MSDN:
http://msdn.microsoft.com/en-us/library/ee414213.aspx.

Quantity versus quality
There is a general rule that can be applied to the quantity and quality of software that
states that, when more functionality is added to a product it is difficult to maintain
a certain level of quality.

To avoid this in your solution, make sure to not just add all requirements from your
prospects into the product in one release, but use a release policy that ensures small
pieces of functionality are developed, tested, and implemented each time.

The framework concept
When developing an add-on product it is important to divide it into smaller parts.
This will make it easier to have several developers work on the application and
release parts of the application.

Each part of the add-on has its own framework that interacts with other pieces of
the add-on or the standard product.

Application Design

[422]

This is exactly what we have done in the Storage and Logistics example add-on
application. The add-on has three main functional areas; Storage, Logistics, and
Income and Expenses. These three areas share the same master data.

Each area interacts with other parts of the application using mini interfaces.

Using this concept will also have great benefits for upgrading to newer versions
which we will discuss in the section Design to upgrade.

Transformation tool
Microsoft Dynamics NAV Version 2009 introduced a new object type for user
interface, the Page. This object is used in the Role Tailored Client and not supported
by the Classic Client. The Role Tailored Client does not support forms. This has great
new possibilities but is difficult from a maintenance perspective.

Each form object has a corresponding page object with the same number. When
a change is made to the form object, the page object should also be changed if both
the Classic Client and the Role Tailored Client are used.

To solve this problem Microsoft has released the Transformation tool. This tool can
create a page object from a form object, and add to, or remove additional metadata
from it.

More information about the transformation tool can be found on MSDN:
http://msdn.microsoft.com/en-us/library/dd338789.aspx.

Transform or design
Many Microsoft Dynamics NAV partners have difficulties answering this question.
Should we keep developing forms and transform them to pages, or drop using forms
and move completely to pages?

Let's discuss the pros and cons of Form Transformation:
•	 Con 1: Pages are very strict in their UI behavior. Editable pages have a

limitation of only using two columns. Many developers have changed their
forms to have three columns or controls that do not align nicely. These forms
will have to be redesigned in order to move them to a page.

•	 Con 2: Pages offer the ability to have fact boxes. This was not available in
the forms so many of the fact boxes need to be designed from scratch. When
using the transformation tool the fact box need first to be designed as a form
and then converted to a page. The additional meta data required to attach the
fact box to a page needs to be manually updated in the TIF editor.

Chapter 10

[423]

•	 Con 3: Role centers are also new object types not available before. They too
need to be designed as a form and then transformed to a page.

•	 Con 4: Maintaining the additional meta data in the TIF tool is a lot of work
that will increase the cost of development and make developing less flexible.
Each change to a form should be considered if it can be transformed into a
page and if it needs additional Meta data.

•	 Pro 1: Many end users still use forms and have learned to work with them
and love them. When implementing new features they do not have to move
to the RTC. New customers however will not have issues with moving to the
RTC directly.

As you can see there are more cons than pro's. As the next release of Microsoft
Dynamics NAV will be shipped without forms, the general advice is to move
completely to pages as quickly as possible.

In the TIF tool it is possible to create a page out of a form with a
different number. This allows you to have a creative form when this is
necessary without losing the possibility to use the transformation tool.
Examples to this feature are the matrix forms in the standard product.

Design to support
There are different levels of support. First level support is usually done by someone
at the customer site that works in the IT department or someone that has feeling for
IT. The general first line support questions are about filters, missing data, and so on.

Second level support is usually a small bug in the software or something missing in
set up or master data. Depending on the customer this will be solved by the internal
IT department or escalated to the partner.

As a developer you are most likely going to do the third level support where
something needs to be debugged or reverse engineered in order find the bug.

So before a bug reaches the developer other people have already spent time
analyzing the issue without success. The development of the software should be
done in such a way that third line support has a minimum chance of being required.

When the guidelines discussed in Design to use and Design to maintain are used, it will
already be easier for second level support to analyze the issue.

Application Design

[424]

Second level support
Most problems in support occur in the second level. The first level support engineers
are often very familiar with the system, and third level support engineers are often
the original developers of the software.

Second level support people need to be able to go into a database and analyze the
issue without having to change their way of thinking.

Let's briefly summarize the general guidelines for this specific topic:

•	 Shortcuts: Use standard shortcuts as much as possible. Remember that many
of the shortcuts have changed when moving to the RTC. For example, use F9
for posting and registering, Ctrl+F7 for ledger entries. Avoid using reserved
shortcuts such as F8 (Copy previous) and Alt+F3 (Filter to this value).

•	 Screen Layout: Avoid screen layouts that are too creative. Too much
information on a screen is often an indication of bad design and will be
difficult to support. Typical examples are multiple sub forms and hiding
elements based on business logic such as menu buttons and sub forms.
An example of bad design in the standard application is form 6510 Item
Tracking Lines where there is a hidden menu button behind a sub form.

•	 Variable Naming: As discussed in the section Design to maintain, good
naming conventions will make a huge difference when looking at someone
else's design. This starts with trying to use the naming conventions that
Microsoft uses for the standard application.

•	 C/AL Placement: Microsoft Dynamics NAV is very flexible when it comes
to placing C/AL code in objects. Both forms and pages support using C/AL
code to an extent that it is possible to write an entire posting routine there.
C/AL coding should be done in tables or codeunits unless it is not possible.

•	 Using Functions: When your C/AL code exceeds the size of your screen it
is best practice to create a function. This will make the original code more
readable for others. Use a name for your function that makes sense so that
the code will document itself. An example for this can be found in the
codeunit Register Time Sheet (75000) we discussed in Chapter 8, Consulting.

•	 Global vs. Local Variables: Variables can be both global and local in C/AL.
Microsoft does not have strict guidelines in which to use when. The general
rule when looking at the standard application is to use global variables
unless the variable is only used in a function. Then it can be local.

The compiler does not give a warning when using a local variable with
the same name as the global variable. The system will always use the local
variable first.

Chapter 10

[425]

Design to upgrade
It might not be the first thing you think of when designing your application but
there will come a time when it needs to be upgraded to a newer version.

When upgrading your application we can split the process into two parts. Part one
is the part of the add-on that is written on top of the standard application, new
tables, pages, and codeunits that are loosely coupled with the standard application.
This part is often easily upgraded. The other part is the changes made in the base
application. These changes are often more difficult to move to a newer version.

Has Microsoft changed my (referenced) object
This is the question it comes down to when analyzing the upgrade task. If the object
you modified has not been changed by Microsoft, the upgrade is easy. If Microsoft
has changed the object slightly we might need to analyze the changes to see if we
need to change something as well.

With each release Microsoft tends to redesign a part of the application. If your
solution is integrated with the part Microsoft has redesigned it will be a bigger
task to bring the add-on forward.

To see the design changes done by Microsoft in a new release,
analyze the upgrade toolkit objects to see what it hits.

Some redesign examples
Let's have a look on some redesign examples.

CRM (version 2.0)
In version 2.0 Navision introduced the current CRM application we discussed in
Chapter 4, Relationship Management. The most important change was to merge company
contacts and persons into one table as well as implementing new functionality.

Dimensions (version 3.x)
In version 3.0 Navision introduced the Dimension solution we know today. Before
this the current Global Dimensions 1 and 2 were called Department Code and
Project Code.

Application Design

[426]

Bin code (version 3.x)
With the introduction of WMS the usage of the Bin Code field changed. The Bin
Code used to be a field in the Item Ledger Entry table (32) and moved to the
Warehouse Entries.

Inventory valuation (version 3.x)
No single piece of code in Microsoft Dynamics NAV has changed as many
times as the Inventory Valuation solution. Try to avoid changing this in your
add-on application.

Item tracking (version 3.6 and 4.0)
As with Inventory Valuation, item tracking has been changed many times. Where
older versions had Item Tracking Entries and Item Ledger Entries they are merged
into one table in newer versions.

MenuSuite (version 4.0)
Although it is not a functional change, the introduction of MenuSuites in version 4.0
caused a lot of work to upgrade to.

MenuSuites do not support C/AL code. This means that all journals need to be
changed for this version.

Jobs (version 5.0)
As discussed in Chapter 8, Consulting, the Jobs functionality has been changed in
version 5.0. The budgeting in the previous version was done differently using
Budget Entries and Phase, Task and Step tables.

The Job Journal Line and Job Ledger entries have not changed, but the new job task
table has become a mandatory field when posting on a job.

When there is no other way, it is possible to take out the Job
Objects and renumber them to be customized tables. This allows
you to upgrade to a newer version with minimum impact. After
the upgrade, a new project can be started to move to the new Job
functionality completely.

Chapter 10

[427]

Role tailored client (version 2009)
Version 2009 introduced a new user interface called the Role Tailored Client. This was
the first real change in the UI since the introduction of the Windows version in 1995.

Item costing (almost all versions)
The Item Costing has been improved in almost every new versions of Microsoft
Dynamics NAV. Changes in Item Costing are difficult to upgrade to newer versions
and almost always need to be redesigned.

Documentation
While many parts of the application will have no issue in the upgrade it is useful to
have external documentation when there is a need to redesign.

This documentation should contain information about the business reason the
feature has been implemented. With that information it is possible to do a new fit/
gap analysis.

External documentation such as Microsoft Word and Visio files can be
linked to C/Side objects. This way it is easy to find the documentation
when a developer needs it.

Split operational and financial information
In the Storage and Logistics application we have chosen a data and transaction
model that can be easily upgraded to a newer version of Microsoft Dynamics NAV.

This is achieved by creating separate modules that move data to each other.

Design to perform
All good applications are useless if the performance is not adequate. It is important
to keep performance in mind when designing your application.

When talking about performance there are two typical issues. The first issue is an
application with an overall slow performance, the latter is an application with good
performance but users block each other or create deadlocks.

Both issues have their own approach to be analyzed and solved. We will not talk in
detail about this process but rather explain how to avoid these situations in general.

Application Design

[428]

OLTP versus OLAP
In any ERP system it is important to balance Online Transaction Processing (OLTP)
with Online Analytical Processing (OLAP).

This is especially important when working with Microsoft Dynamics NAV. The
reason for this is its unique data and posting model, which creates the Analytical
data while processing the transaction.

Creating this analytical information in real time can have advantages but when
posting transactions take too much time it may not be worth it.

Examples of analytical information are Dimension Ledger Entries and Analysis
View Entries but also VAT Entries and Value Entries. Although they give us
important information about the business we do not always need them instantly
when processing the transaction.

Other examples of Analytical information are Secondary Keys and SumIndexFields.
All this information will be created when creating the master record. If a Ledger
Entry table has 32 secondary keys and 15 SumIndexFields it will take a considerable
amount of time to write this information to the database.

Fast transaction posting
Good performance starts with fast transactions. There are several ways to
achieve this.

Cleanup unused indexes
Each secondary SumIndexFields field in the database needs to be maintained
whether they are used or not. Microsoft Dynamics NAV allows end users to create
their own schedule to maintain this.

Creating such an index schedule is quite a complex task that should be done by
experienced functional developers.

In versions prior to Microsoft Dynamics 5 SP 1 the overhead of unused
SumIndexFields was substantially higher compared to newer versions.

Chapter 10

[429]

Application setup
It all starts with a solid application setup. Some setup features in Microsoft
Dynamics NAV will cause the system to create more analytical information
when posting transactions.

An example is Update On Posting for Analysis Views (as shown in the following
screenshot). This feature will update the Analysis View Entries at the same time
the General Ledger Entries are created:

Other examples are the Automatic Cost options in the Inventory Setup. When they
are activated the cost is adjusted each time an Item Ledger Entry is created.

Application Design

[430]

Job queue
Microsoft Dynamics NAV is shipped with an excellent Job Queue system. For each
company in the database it is possible to set up a Windows service that handles
scheduled tasks.

This process is called a Navision Application Server or NAS. A NAS can execute
C/AL code in report and codeunit objects.

Examples of Job Queue tasks are, creating the Analysis View Entries, Posting the
Adjust Cost for Inventory Valuation or even Posting Sales, and Purchase documents.

Background posting
Microsoft Dynamics NAV only allows posting documents directly. This means that
the user that starts the posting routine needs to wait until this process has been
completed before starting a new task.

This task can also be handled by the Job Queue. The user marks a document as ready
to post and the Job Queue polls for documents with this status.

Date compression and cleanup
When the number of records in a table exceed normal proportions it might be useful
to start thinking about doing data maintenance. This is a normal procedure in all
ERP systems and Microsoft Dynamics NAV has some possibilities to do that.

Chapter 10

[431]

Date compression
Most Entry tables in Microsoft Dynamics NAV can be compressed by date. This
means that all entries with the same values will be replaced by one new entry.
The detailed information is lost afterwards.

Saving the detailed information can be easily implemented by changing the
compression report. The detailed information can be saved in a copy of the
original table.

The total size of the database has minimal impact on the
performance. More important is the size of the tables we are
writing to during a transaction.

Data cleanup
Microsoft Dynamics NAV allows most data to be deleted when the fiscal year it
was created in is closed.

Examples of data that can be deleted are Sales Shipments and Purchase Receipts.
They can be either deleted or moved to copy tables.

Cleaning up data will prevent the transactions from slowing down if your company
uses Microsoft Dynamics NAV for a long time. Data cleanup generally starts after
using the product for five years and when the database exceeds 100 gigabytes in size.

Application Design

[432]

Locks, blocks, and deadlocks
The Microsoft Dynamics NAV product is very sensitive when it comes to blocking
and deadlocks. This has everything to do with the posting model, the inheritance of
the Native database, and the numbering used in entry tables.

Blocks and deadlocks are caused primarily by Locks in the database. Locking is a
mechanism databases use to ensure consistency of the data.

Native server versus SQL server
Originally Microsoft Dynamics NAV had a proprietary (Native) database. This
database did not support row level locking, only table locking.

The Role Tailored Client no longer supports this database and only runs on
SQL Server, which does support row level locks. However the current data and
transaction model is designed for table locking. The classic client still supports the
Native database and the application has one codebase.

The benefit of row level locking on your SQL Server is best experienced in systems
with many users creating documents in the same database. Most posting transactions
in the database are isolated, meaning only one user at a time can post a document
from anywhere in the application.

Locking is always done for a single company, both in the Native and the SQL
Database. Unless tables are shared as explained in Chapter 4, a user from company
A cannot lock a user in company B.

Locking principles
In Microsoft Dynamics NAV locking starts with the LOCKTABLE command. Using this
command will generate the T-SQL statements that are generated by the application
to issue a UPDLOCK hint where without the statement READUNCOMMITED is issued.

Lets create an example that shows how locking is done. For this example we create
a new codeunit Locking A (60000). The codeunit has a global variable Cust of type
Record 18.

OnRun()
Cust.LOCKTABLE;
Cust.GET('10000');
IF CONFIRM('Maintain Lock in database') THEN;

Chapter 10

[433]

We start this codeunit and leave the confirm window open:

Now we go to the Role Tailored Client, open the Customer Card for Customer 10000
and try to change the name. After 10 seconds we will get this message:

The reason for this error message pop ping up is that the user in the classic client
issued an exclusive lock on the record. If we move to Customer 20000 which is the
next record in the database we can safely change the name. This record is not locked.

Deadlocks
Let's take this example one step further and simulate a deadlock. Deadlocks happen
if users try to lock each other's record in different order.

Application Design

[434]

Lets see this in more detail:

1. User A reads and locks Customer 10000.
2. User B reads and locks Customer 20000.
3. User A tries to read and lock Customer 20000. A blocking event starts...
4. When user B now tries to lock Customer 10000 a deadlock occurs...

To demonstrate a deadlock we have created two codeunits, Deadlock A (60001) and
Deadlock B (60002). We need two Classic Clients on the same SQL Server database
to do this. Start Deadlock A on one client and Deadlock B on the other.

OnRun()
Cust.LOCKTABLE;
Cust.GET('10000');
IF CONFIRM('Start another client and run codeunit 60002') THEN
 LockOtherCust;

LockOtherCust()
Cust2.GET('20000');
IF CONFIRM('Maintain Lock') THEN;

OnRun()
Cust.LOCKTABLE;
Cust.GET('20000');
IF CONFIRM('Select Yes on the other client') THEN
 LockOtherCust;

LockOtherCust()
Cust2.GET('10000');
IF CONFIRM('Did the deadlock happen?') THEN;

Chapter 10

[435]

Then select Yes on both confirmation boxes. One of the Clients should now deadlock.

SQL Server checks for deadlocks every 5 seconds and kills the transaction
that has the lowest roll back impact on the database. This is why users
will experience deadlocks as slow sometimes and fast other times.

The error message is confusing as it leads us to believe that we have locked the entire
table but this is not true.

The function LockOtherCust reads a record from the Customer table with another
variable. This new variable Cust2 does not explicitly issues a LOCKTABLE command.
This proves that LOCKTABLE is a transaction command that is valid for ALL variables
of this type.

Blocking and deadlocks in Microsoft Dynamics NAV
The standard application has several built-in blocking events by design. This is to
ensure database integrity and to avoid deadlocks.

The two main isolating tables in Microsoft Dynamics NAV are the G/L Entry table
(17) and the Item Ledger Entry table (32).

Both codeunits, Sales-Post 80 and Purch.-Post 90, we discussed earlier isolate on the
G/L Entry table. Codeunits 12 has a similar construction.

OnRun()
...
 IF RECORDLEVELLOCKING THEN BEGIN
 DocDim.LOCKTABLE;
 SalesLine.LOCKTABLE;
 ItemChargeAssgntSales.LOCKTABLE;

Application Design

[436]

 PurchOrderLine.LOCKTABLE;
 PurchOrderHeader.LOCKTABLE;
 GLEntry.LOCKTABLE;
 IF GLEntry.FINDLAST THEN;
 END;

In real life this means that no one in a company can post a Sales Document together
with a Purchase Document or a General Journal.

Taking away this isolation will most likely cause deadlocks as the locking order of
each transaction in Microsoft Dynamics NAV is different.

This emphasizes the importance of fast transactions and generating analysis data in
separate batches.

Impact on development
If we summarize the impact of all this knowledge on your development it
emphasizes the importance of designing your own application structures that
interface with the Standard Application.

When changing and implementing the standard application, try to reduce the
overhead during posting as much as possible.

Create compression routines and allow end users to periodically clean up records.

In the next section we will talk about how to design to analyze and allow end users
to generate analysis data in batches separate from the posting transactions.

Design to analyze
Analysis in Microsoft Dynamics NAV should always be done on (ledger) entry
records. There are many types of entry records that are either created during a
transaction or in batches.

Avoid building analysis on document tables. It should always be possible to
delete old data in the database without losing information which is essential
for data analysis.

Chapter 10

[437]

Report design
Designing a report in Microsoft Dynamics NAV starts with generating a Data Set.
This is built using table relations and can get quite complex.

When the Data Set is defined the second step is to define the Layout. This is done
differently in the Classic Client and the Role Tailored Client. Creating report layouts
is beyond the scope of this book.

Reports with a large Data Set are complex to maintain and have a risk in being
slow in performance as the database engine needs to read all the information
before combining the information into a view.

This can be solved by preparing the data first and running the report afterwards.
This approach is quite common in data warehousing. The preparation of the data
can be done in scheduled batches running in the Job Queue.

Version and object management
When doing software development, discussing version management is unavoidable.
Microsoft Dynamics NAV is flexible in this and allows developers to make their own
decisions on this subject rather than forcing them to one way of versioning.

Application Design

[438]

What is a version
In Microsoft Dynamics NAV there are two ways of determining what a version
is. The first and easiest approach is to change the version of an object each time it
changes. The initial released version is 1.00 and each change increments to 1.01, 1.02,
and so on. A big change will lead to version 2.00.

Another more common approach in Microsoft Dynamics NAV is to group version
numbers in releases of a group of objects together. When this is applied the
application gets a version number that is incremented each time we release. This
means that an object with version number 1.01 can jump to 1.04 if it was not changed
in releases 1.02 and 1.03.

Version numbering
There are rules in Microsoft Dynamics NAV for version numbering although the
rules have changed over the years.

The current version principle allows using letters and digits. The letters indicate
the product and country code, the digits, the version, subversion, and service
pack number.

Let's look at an example object to clarify this. Codeunit Sales Tax Calculate (398).

NAV W1 3. 70. 01
The last service pack this object was changed

The last subversion this object was changed
The last version this object was changed

The Localization Version
The Product Name

If Microsoft would change this object in Service pack 1 for 2009 the new version
number would be NAVW16.00.01.

Combining versions
An object can have multiple versions but only one version for each product or
country version. A localized object gets version NAVW13.70.01, NAVNL6.00.01.
This means that although the global product team has not changed the object, it has
been changed by the Dutch localization team.

Chapter 10

[439]

Creating a version
Versioning in Microsoft Dynamics NAV is done manually. The version number
is an editable field in the Object table (2000000001) that can be freely changed.

Developing a tool to do this is easy and has been done by many partners in
the channel.

The Data and Transaction model of such a solution should look something like this.

The process starts with a change request. This can be fixing a small bug or creating
new functionality. For this change request objects need to be modified.

Each modified object is attached to the change request. We can release several change
requests at the same time. All objects in the release will get the version number from
the release which can be automatically updated in the Object table.

By saving the change request and release information in the database we will also
generate documentation that will help future developers to find information on
why objects were changed.

Tracking object changes
Object changes can be tracked using triggers in SQL Server. All the C/Side objects
are stored in the Object table (2000000001).

To connect an object change to a change request the developer should tell the system
which request they are currently working on. This will enable us to have a failsafe
tracking mechanism to do version management.

Application Design

[440]

To view the complete solution for tracking object changes
visit: http://dynamicsuser.net/blogs/stryk/
archive/2009/05/18/object-auditing.aspx.

Development methodology
For developing software there are many methodologies such as Prince2, Extreme
Programming or the Microsoft Solutions Framework.

Most of these methodologies are suitable to be applied to Microsoft Dynamics NAV
but they should be used properly. Because of the flexibility of the product it is easy to
leave out steps in the process that should be there.

In Microsoft Dynamics NAV it is extremely easy to quickly create and modify
business software. This is by far the strongest selling point for the solution but
also the biggest pitfall.

A sample approach
When an end user requests a change to the application it is tempting for most
experienced developers to go into the application and create it, preferably, in
the production database without documentation. This is not the desired way of
software development.

However, Microsoft Dynamics NAV is a suitable design environment for
prototyping and Rapid Application Design. All the example applications in this
book are first built with prototyping and later finalized using testing.

If we design a suitable Development Methodology for Microsoft Dynamics NAV
we see that the Application Lifecycle perfectly fits our methodology.

Chapter 10

[441]

When implementing Microsoft Dynamics NAV it is important to involve the end
users in each step of the development process.

Fit/gap analysis
At this phase a quick specification is usually enough to describe what the user would
like the system to do and a possible solution in the application. This document should
not count more than two or three pages. During the prototyping phase it is normal to
come across advanced understanding. It would be a waste of valuable time to find this
during the initial analysis with the risk of not finding them anyway.

Prototyping
With the quick specification a developer creates the solution as a draft without going
into too much detail. This should be enough to show the end user what the solution
will look like when it is finished. This will often lead to new questions and ideas that
should be carefully considered, and put into the full specification or a new prototype,
should be built first.

Application Design

[442]

Development
Depending on the amount of changes after the prototype development can often
start with the work done already. In this stage all the details should be worked out
and tested.

There is no complete checklist for developers to use when developing in Microsoft
Dynamics NAV but here is a partial list of things to consider:

•	 Captions/Translations: Make sure all objects have the required captions and
translations populated.

•	 Table relations: Make sure all Table Relations are in place, check the Ledger
Entry and Line tables as well, they are frequently forgotten.

•	 Modify and delete triggers: What happens if a user modifies or deletes the
record. Make sure that everything is nicely handled in the OnModify and
OnDelete C/AL triggers. OnRename should be automatically handled by
C/Side. Renaming a table with many table relations may cause severe
locking in the database. If users should not rename a record, this can be
blocked by placing an ERROR command in the OnRename trigger.

•	 LookupFormID and DrillDownFormID: Even when running the Role
Tailored it is important to assign a Lookup and Drilldown form ID. Lookup
forms or pages are used for table relations and when using the Lookup
button in the Classic Client. Drilldown forms or pages are used when
drilling down from a SUM flow field.

•	 CardFormID: The Role Tailored Client always starts a list page when a user
selects a menu item or a cue. Double clicking a row will open the associated
card page. This is controlled by the CardFormID property on a list page.

•	 Field Groups: To show records from a table relation when entering values
the Role Tailored Client does not directly use the LookupFormID but first
shows a DropDown list. The fields in this list are defined in the associated
tables Field Groups. Each table can have only one Field Group called
DropDown.

Chapter 10

[443]

•	 Menu Buttons and Actions: Menu Buttons and Actions should make sense
to end users. Make sure to use logical names, and avoid creating menu
buttons and actions that are solely for super users and confuse end users.
Actions should be placed in the correct container. Only promote actions that
will be frequently used by all end users.

•	 Shortcuts: Always assign ampersand (&) shortcuts and avoid double
shortcuts. When using function keys such as F3 and F9 follow the
Microsoft standard.

•	 Compression and Posting: If your solution will generate a potentially
large about of data, be sure to provide compression, posting or cleaning
up routines so end users can periodically maintain the data.

•	 Permissions: Does your solution require additional permissions to be set up
in the system? Make sure to document this when delivering the solution.

•	 Unused variables: Make sure not to leave unused variables in the C/AL
objects. Although they won't break the functionality it will make future
maintenance of the software more complex.

•	 FIND Commands and Locking: Double check the usage of the correct find
commands before you ship the software. Using the wrong commands and
leaving locking to the database engine may cause extra performance overhead.

More detailed information about these features is explained in the book Programming
Microsoft Dynamics NAV 2009, written by David Studebaker and published by Packt.

There is a free tool available that will perform over 40 checks on your
objects to see if the coding is done correctly. This can be downloaded
from: http://www.mibuso.com/dlinfo.asp?FileID=826.
A good explanation about using the different FIND commands in
C/AL can be found on: http://dynamicsuser.net/blogs/
waldo/archive/2008/02/01/what-impact-does-my-c-al-
have-on-sql.aspx.

Testing
Testing is probably one of the most important but under-rated tasks of
application design.

Testing involves three main steps:

1. Does the software meet the original requirements? If this is not the case
it does not make sense to continue testing.

Application Design

[444]

2. Does it work as expected? This includes trying to deliberately break the
solution. If the software is not monkey proof things will certainly go wrong
when using it. Here Murphy's Law is applicable: "What ever can go wrong,
will go wrong".

3. Does it fit the rest of the application? Is the software usable and intuitive?
A solution that is bug free but difficult to use will be expensive to maintain.

The testing should be performed by someone who likes doing it and has enough
available time. If someone is asked to test the software who is buried under normal
work the change of bugs slipping in is quite high.

The cost of fixing a bug increases as the software evolves. The sooner a bug is fixed
the better.

Implementation
When the changes are developed and tested the documentation should be
finalized. This can be either a manual for end users, or a technical reference for
future developers and support engineers.

The end users should be trained to use the software.

Maintenance and support
After the software is implemented and users are trained the solution goes into
the maintenance and support stage. During this stage the application manager
needs to take care of the data generated by the solution, analyze it and cleanup
the data periodically.

If the end users request a change on the solution the cycle starts again.

Chapter 10

[445]

The project
Implementing an ERP product such as Microsoft Dynamics NAV is not just installing
in a software package and start using it. Each part of your company will have to
make decisions how to integrate their work with the software. This often leads to an
interesting new look at your companies way of work.

Standard, customized, or both
There are several ways of implementing Dynamics NAV. It is important
to make a decision what kind of implementation you do, and adjust the
implementation accordingly.

Compared to when it was introduced in 1995, Microsoft Dynamics NAV 2009 is
a mature ERP package with all the built-in functionalities we discussed in this
book. On top of this standard product resellers have built horizontal and vertical
solutions called add-on products. These two combined offer powerful solutions for
companies that cannot work with the standard product but are flexible enough to
use a vertical solution.

Add-on products
Vertical solutions have often started years ago as a customised solution for a
company who decided to implement Microsoft Dynamics NAV. Together with
the implementation partner these companies have customized the product to
meet their requirements.

Many of these add-on products are now grown up software solutions that fit a
vertical industry.

Application Design

[446]

When buying an add-on solution it is good to ask the reseller some questions.

•	 What is the release procedure?
A solid add-on solution has a release procedure. Most resellers have
periodical release each half year or maybe sooner. If a bug is found in
the software there should be a hot fix. Most resellers have releases they
support. Make sure to know what versions are still supported.

•	 How do I upgrade to a new version of the vertical solution?
If a new version of the vertical solutions is released there should be an
upgrade procedure. This should be clearly documented and tested by
the reseller.

•	 Am I allowed to make changes to the software?
Most add-on resellers do not recommend their customers to change the
software. The reason for this is the increased complexity of bug fixing
and upgrading.

•	 What if I do change the software?
If an add-on solution is customized anyway it is basically downgraded
from being a supported add-on solution to a customized database. For
most resellers it is difficult to support these customized solutions.

Customizing
Although customizing an add-on solution is not always recommended, customizing
Microsoft Dynamics NAV should not be considered bad practice.

The impact of customization on Microsoft Dynamics NAV can make a difference that
can be compared to a suit that is confection or tailored to fit. The benefits of having
an ERP package that exactly fits the organization can be more important than the
increased cost of ownership of the solution.

Total cost of ownership
The Total Cost of Ownership of Microsoft Dynamics NAV depends highly on the
level of customizations. A non-customized implementation with one or two good
add-on products created by experienced consultants will have a low impact on your
company and will be easy to maintain and support.

The higher the level of customizations, the more it will cost to keep the application
running. This is not per se a bad thing. If your company has a unique way of doing
business it might need an ERP package that supports this unique way.

Chapter 10

[447]

Roadmap to success
Designing a solid application in Microsoft Dynamics NAV starts with a thorough
knowledge of the standard application functionality, and its design philosophy.

Secondly, we need to carefully analyze the business process we want to support,
and implement new functionality step by step to ensure good quality as the solution
grows bigger and mature.

Use data and posting models that are similar to Microsoft Dynamics NAV and try to
maintain a similar user interface. This will make it easier for end users to adopt your
solution and more likely for the software to be easy to maintain and support.

Last but not least do good housekeeping in your database, compress and
cleanup data periodically to guarantee stable performance of the system now
and in the future.

Summary
In this book we covered functional and technical design of both standard Microsoft
Dynamics and how to extend the application to succeed.

This book is not finished. After the publication we will periodically publish
new articles, tips and tricks based on the information in this book on
http://www.brummelds.com.

Any questions or comments regarding the information published in this book can
be posted there for discussion as well.

Installation Guide
With this book we provided development examples that can be installed using
the demo version of Microsoft Dynamics NAV 2009 SP1 W1.

This demo version can be downloaded from msdn.microsoft.com.

Licensing
Microsoft has very strict licensing regulations for using and developing in
Microsoft Dynamics NAV.

For educational purposes, you may use the MSDN license to develop new
objects with numbers 123.456.700 to 123.456.799.

Installing Microsoft Dynamics NAV
After downloading the product CD from the MSDN website run the setup.exe file.

Installation Guide

[450]

From the installation options select Install Demo (as shown in the
previous screenshot).

Changing the license
After the installation completes we can use both the Classic Client and the Role
Tailored Client. We use the Classic Client for administration purposes and
development. The user interface is done using the Role Tailored Client.

The example objects can be used in the Role Tailored Client only.
This means there are no Form objects, only Pages.

Each server instance of Microsoft Dynamics NAV runs on a license file. This file
determines what access we have to the system. The demo license that is installed
allows us to access al functionality but not the C/AL code.

To access the C/AL code we would need an official partner development license.
To get this license we would have to register as a partner and start being a reseller.
If this is not what we want to do we can use the MSDN license.

The MSDN license will allow access to all the new objects developed for the book.
Access to the base application change examples is not possible with this license.

To change the license, open the Classic Client, then open the Tools menu and select
License Information (as shown in the following screenshot):

Appendix

[451]

This opens the License Information screen where we can select Upload, which
opens a file dialog where we can select the MSDN license.

To enable the license file on the Classic Client restart
the application.

Restart service tier
To enable the license file on the Role Tailored Client we need to restart the Service
Tier. This can be done from the Services window in the Windows Control Panel:

Installing the objects
This book has three Microsoft Dynamics NAV object files, two DLL files, a SQL
Server script, and some helper files for the installation.

•	 Chapter2-4.fob: This file contains the Squash Court examples used
in Chapters 2, A Sample Application, Chapter 3, Financial Managemenet,
and Chapter 4, Relationship Management.

•	 Chapter7-9.fob: This file contains the storage and logistics application
used in Chapter 7, Storage and Logistics, and the sample interfaces for
Chapter 9, Interfacing. We need the additional SQL Server scripts to get
the ADO examples to run.

•	 Chapter8.fob: This file contains the Job extensions for Chapter 8, Consulting.
This chapter also requires the additional DLL files to be installed.

•	 RF database.sql: This is the SQL Server script used in Chapter 9 to create
the RD Database and create the demo data.

•	 MSDN.flf: This is the MSDN License we can use to access the custom
objects numbered from 123.456.700 to 123.456.799.

•	 NavMaps.dll and VEControl.dll: These are the Dynamic Link Library
files we need for Chapter 7.

Installation Guide

[452]

•	 Pin1.gif and Pin5.gif: These are the icons displayed on the Bing Map.
•	 AddInImporter.msi: This enables us to register add in applications.

Importing a FOB file
To install the objects first open the Object Designer in the Classic Client by
selecting the Object Designer [Shift + F12] option from the Tools menu as shown
in the following screenshot:

When the Object Designer is active, the File menu shows some additional options:

Select Import, this will open a file dialog window, now select the .fob file you
want to import.

If everything is as it should be this dialog should appear:

Appendix

[453]

Select Yes and this dialog box will confirm the import.

Installing the dynamic link library files
To support the Bing Maps Client Add-in, Geocoding and distance calculation,
we ship two DLL files and five .gif files, along with some supporting files for
the installation.

•	 NavMaps.dll

•	 VEControl.dll

•	 pin1.gif

•	 pin2.gif

•	 pin3.gif

•	 pin4.gif

•	 pin5.gif

•	 RegisterDll.bat

These files should be placed in this folder:

Installation Guide

[454]

Register NavMaps.dll
To register this DLL we use RegAsm. The command is predefined in the
RegisterDll.bat file that we can execute.

Register VEControl.dll
To register the visual map control we use the Client Add-In form in the classic client:

This action requires that the AddinImporter is installed. This
tool is distributed by Microsoft and can be installed using the
AddInImporter.msi file.

In the file dialog we select the VEControl.dll file.

Index
Symbol
.fob file

importing 452, 453
.NET, Automation Control

using 371

A
accounting periods, Chart of accounts

closing 108
closing dates 109
setting up 108

ActiveX Data Objects. See ADO
AddInImporter.msi file 452, 454
add-on

about 330
designing 292
fourth party logistics 332
item tracking 331
second party logistics 332
third party logistics 332
value added logistics 330

ADO 370
APICS

URL 187
application lifecycle

about 411
designing, to analyze 436
designing, to maintain 419
designing, to perform 427
designing, to support 423
designing, to upgrade 425
designing, to use 412
development phase 412

maintenance phase 412
role centres 416

application lifecycle, designing to analyze
about 436
report, designing 437

application lifecycle, designing to maintain
about 419
Form Transformation 422
framework concept 421
product, naming 419
quantity, versus quality 421
Transformation tool 422

application lifecycle, designing to perform
about 427
data, cleaning up 431
date, compressing 431
deadlocks 433-435
fast transactions, achieving 428
job queue 430
locking 432, 433
native server versus SQL server 432
OLTP versus OLAP 428

application lifecycle, designing to support
levels 423
second level support 424
second level support, general

guidelines 424
application lifecycle, designing to upgrade

about 425
documentation 427
redesign examples 425
upgrade task, analyzing 425

application lifecycle, designing to use
about 413
form object, colors 414
form object, columns 414

[456]

form object, fields 414
form object, list controls 414
form object, menu button 414
form object, sub forms 414
form object, tabs 413
pages 414
reports 419

ApplyItemLedgEntry function 254
assembling production

about 188
Bill of Materials 192
BOM Journal 196, 197
costing, checking 198
cost item entries, adjusting 194, 195
diagrammatic summary 202
inventory cost, posting to G/L 195
inventory, creating 194
item costing 189
item revaluation journal, posting 201
items, creating 189
items, tracking 190, 191
posting schema 188
result, testing 201
standard cost, calculating 193
standard cost worksheet, using 200
standard unit cost, recalculating 196
table 188
unit cost, recalculating 199
value entries, checking 196

AssistEdit button 134
AssistEdit function 53
Auto Contact Classification option 140
Automation Control

.NET, using 371
about 370
COM Wrappers, using 371
events, using 371

automotive industry
item tracking 221
parts, managing 285
tooling amortization 220
vehicle information 284

B
basic principles, production

APICS 187
Bill of Material 185
GIGO 186
item costing 186
items, tracking 186
less energy, using 187
MPS 186
MRP 185
quality control 186

BlanketOrderConsump function 211
budgeting, Chart of accounts

about 106
budget entries, creating 106

building blocks, Microsoft Dynamics NAV
Menu Suite 16
table, as business logic 16-18
table, as user interface 16-18
tables 15
user interface 16

business to business interface, designing
Data Model 392
RF application 394
scenario 392

C
Calculate function 360
CalculatePlanFromWorksheet function 211

Inventory profile offsetting 211
campaigns, company

about 161
activating 163
pricing information, entering 162, 163
segments, creating 163
viewing 162

CardPart 390
Chapter2-4.fob file 451
Chapter7-9.fob file 451
Chapter8.fob file 451
Chart of accounts

about 92
accounting periods 107
budgeting 105
consolidation 110, 111

[457]

currencies 109
data analysis 112
dimensions 104, 105
entry tables 95
general journals 96
General Ledger Setup 116-119
posting account, creating 92-94
posting groups 101
VAT statement 112

COMMIT statement
about 400, 401
Automation Variables 401

CommitTracking function 212
company

campaigns 161
contact list 132
email logging 164
interactions 142
marketing setup 165, 166
opportunities 148
outlook, configuring 164
profiles 139
segments 157
To-do's 146, 147
working 132

contact information, sharing across
companies

about 171
alternative approaches 175
business relations 172
C/AL code modifications 173
external synchronization 176
implementing 175
Master Item, sharing 176
number series 174
table, sharing 171, 172

contact list, company
about 133
Address 134
alternative addresses 136
city 134
Company Name 133
contact card, editing 133
Correspondence Type 135
create as 137
Currency Code 135
duplicate contacts 137

E-Mail 135
Homepage 135
Name 134
name details, editing 134
No 133
postal code 134
sales person 135
salutation code 135, 136
searching 138
search name 134
Territory Code 135
Type 133
VAT Registration No 135

contacts, adding to segments
about 176
criteria filters, implementing 178
report, expanding 176, 177
solution, testing 179, 180

ControlAddIn property 390
CreateCustomer function 170
CreateIncExp function 325
CreateLine function 304
CreateOpeningBalance() function 300
CreateSquashPlayer function 48 47
CreateVendor function 47
customer, numbering

CreateCustomer function, using 170
direct creation, disabling 171

D
data analysis, Chart of accounts

account schedules 114, 115
by dimensions 115, 116
General Ledger 112, 113

data, exporting
data pulling, using 369
data pushing, using 369

data, importing. See data, exporting
Data Model, business to business interface

about 393
gaps 394
mapping, creating 392, 393

data model, principles
documents 37
journals 28
master data 27

[458]

other structures 38- 40
DataPerCompany property 171
DemandtoInvProfile function 211
development methodology

about 440
sample approach 440-444

dimensions
connecting, to master data 71
journal, posting 73

directed put-away and pick level
bin calculation 272-274
default bins, defining 271
zones, defining 271

document
data, deleting 245
Document Approval workflow 245
invoices, deleting 246
manual versus automatic releasing 244
purchase document, deleting 245, 246
range locks 247
releasing 243, 244
Relationship Management 131
sales document, deleting 245, 246
shipments, deleting 246
Status field 243
structure 38
transactions 38
UpdateVATOnLines 247, 248

Document Approval workflow 245
drop shipments, purchasing

about 240
creating, manually 241, 242
Requisition Worksheet 242

dynamic link library files
installing 453

dynamic link library files installation
NavMaps.dll, registering 454
VEControl.dll, registering 454

Dynamics NAV
accounting periods 107
add-on products 445
basic modules 19, 20
benefit 12
blocking 435, 436
budgeting 105
building blocks 15
consultancy companies 335

costing methods, average 190
costing methods, FIFO 189
costing methods, LIFO 189
costing methods, specific 190
costing methods, standard 190
customized applications 11
customizing 446
data model principles 27
deadlocks 435, 436
demo version, downloading 449
detailed entries 37
developing, checklist 442, 443
dimensions 26, 27
documents 38
entries 35
extended text 21
financial management 91
fit/gap analysis 441
future integrations 408
General Ledger 95
history 9, 10
horizontal add-ons 12
implementing 445
infrastructure, selling 336
installing 449, 450
integrating, with Exchange Public

folders 387
interfacing 367
inventory management 248
inventory reservations 274
invoicing 237
Jobs module 337
job structure 39
journals 34
Kitting 216
large projects 336
licensing 449
manufacturing module 40
navigate 22
new projects, implementing 336
number series 20, 21
object files, installing 452
open source 12
overview 10, 11
posting groups 24, 25
posting schema 36
pricing 25

[459]

prototyping 441
recording policies 261
registers 34
relationship management 39
sales 227
services, providing 336
setup tables 23, 24
sub-entries 37
testing 443
total cost of ownership 446
transaction mirroring 228
using, in business supply chain 19
using, in vertical industries 219-283
versioning 439
versions 9, 10
vertical add-ons 12

E
EDI 389
Electronic Data Interchange. See EDI
EnterCell function 383
Exchange integration

interaction log entry 388
marketing setup 388

ExtendedDatatype property
levels 384

F
fashion industry

Bill of Material 220
challenges 219
reservations 284
sales orders 283
Shipping worksheet 220

fast transactions, achieving
application, setting up 429
unused indexes, cleaning up 428

financial management
about 91
Chart of accounts 92
Codeunits 129
customizing 119
G/L transaction, creating 126
interacting with 125

financial management, customizing
extra fields, adding in G/L entries 124, 125
sales line description, to G/L

entries 120-122
FindBinContent function 274
FindBin function 274
FindCombination function 212
FindSquashPlayerPrice function 70
FindStorageLinePrice function 324
Fit 42
fit/gap analysis

about 42, 441
Squash Court application, designing 42

food industry
assortments of products, using 286
fast order entry functionality 287
schedules, ordering 222
zero inventory 222

ForecastConsumption function 211
Form Transformation

cons 423
pros 423

From Storage Date
using 328

furniture industry
about 223, 287
calculations 223
inventory items 224
one-off items 288
variant, configuring 288

G
Gap 42
Garbage In Garbage Out. See GIGO
general journals, Chart of accounts

bank journal 99, 100
transaction, possibilities 97-99

General Ledger
sub administrations, bank 95
sub administrations, customer 95
sub administrations, VAT 95
sub administrations, vendor 95

GETLASTERRORTEXT 398
GetSalutation function 168, 169
GIGO 186

[460]

G/L transaction, creating
C/AL code 126-128
C/AL code, adding 128

I
InitLines function 359
InitSquashApp function 59
InitVariables function 211
INSERT command 402
InsertInvLineFromShptLine 239
installing

dynamic link library files 453
Dynamics NAV 449, 450

interactions, company
about 142
automatic interactions 145
creating 143, 144
finished interactions 145
templates, editing 143

interface
data, exporting 368
data, importing 368
event driven 369
exporting, need for 368
importing, need for 368
manual 368
manual interfacing 369
standard application interfaces 378
time driven 369

interfacing technologies 395
Automation Control 370
C/FRONT 375
Client add-ins 378
file 369, 370
MSMQ 375
ntimer.dll 396
OCX 370
ODBC 371
reliability 396
SQL Server interfacing 374
web services 376

inventory management
about 248, 249
Item ledger entry application 254
item table 249, 250
location table 250, 251

Requisition Journals, using with recording
policies 260, 261

sales pricing 254
stock keeping units 252
stock keeping units, example 252, 253
stock keeping units, SKU function 253
transfer order 258
transfer order, example 259, 260
value entries 257
variants 251
variants, example 251, 252

inventory reservations
always reservations 277
creating 278-280
never reservations 277
optional reservations 277
order tracking policy 280
order tracking policy, example 281
order tracking policy, replenishing 282
Reservation entries 277
Reservation entries, in Dynamics NAV 277
scenario 274, 275

invoice documents
about 78
sales header, creating 79
sales line, creating 80

invoicing
about 78
combined invoicing 238
combined invoicing, batch 239
combined invoicing, manual 238
Credit Memo 240
invoice documents 78-82
prepayments 238
Return Order 240

invoicing application
about 319
buffer, processing 328, 329
combined invoicing 330
Income & Expense record, creating 321, 322
Income & Expense records 320
periodic invoicing 327
pricing calculations 323
process 320
process, starting with 322, 323
Sales Line table 322
Sales Post Code Unit 322, 323

[461]

Storage Invoicing, implementing 328
item costing

diagrammatic, summary 202
item ledger entry application

applying, requirements 256
C/AL code 254-256

J
Job Card

allow Schedule/Contract Lines field 340
Bill-to Customer No field 340
blocked field 340
description field 340
Foreign Trade field 340
Job Posting Group field 340
No field 339
person responsible field 340
Search Description field 340
Starting and Ending Date field 340
status field 340
WIP Method field 340

job, creating
Job Card 339
Job table 338
new job, setting up 338

job, examples
budget 345
chapter objects 343
infrastructure 345, 346
new implementation 343, 344
support team 348
timesheets 348
upgrade 347

job journal
about 342
creating 343

job planning lines
both schedule and contract type 342
contract type 342
schedule type 342

job queue
background posting 430
examples 430

jobs
changing 355
creating 338

examples 343
invoicing 351, 352
journal 342
planning lines 341
purchasing 350, 351
registering 337
tasks 341
Work in Progress, calculation methods 353

jobs, changing
calculations 358-360
issue registration 361, 362
quantity budgeting 355, 356
resource group 356, 357
time sheet application 362-364
time sheet application, registration 364, 365

Jobs module 336
data and posting model 338
issue registration 337
item calculation 337
job task 341
planning lines 341
resource groups 337
time registration 337

journal
about 62
balancing 31, 32
flow fields 33
flow filters 33
general ledger 29-31
invoicing 63, 64
ledger entry dimensions, moving to

document dimensions 74
list 34
master data, using 72
posting 74
reservation 63
structure 28
sub ledger tables 35

journal, designing
chapter objects 58, 59
dimensions 70
price, calculating 67
reservations, tracking 59, 60
Squash Court master data 57, 58
time, calculating 65-67

journal, posting
checkline codeunit 75, 76

[462]

codeunits 75
postline 76, 77

K
Kitting

about 216
BOM, defining 217
in Microsoft Dynamics NAV 7 219
sales process 218
table relation and posting model 217

L
LanguageCode parameter 169
LCY 421
license

C/AL code, accessing 450
enabling, on Role Tailored Client 451
modifying 450, 451
MSDN license 450

Local Currency. See LCY
LOCKTABLE command 432
logistics application

about 311
incidents 318
incidents, following up 318
locking 312
logistics shipments 313
route 313
route, following up 317
route, optimizing 315-317
route, shipments combining 314
security 312
starting with 313
structure 312
table size 312

M
manufactured production

about 203
capacity, defining 205
flushing 215
items 204
item, testing 207, 208
low level code, calculating 207, 208

machine centres 205
MPS, calculating 209
MRP, calculating 209
plan, calculating 212
posting schema 203, 204
production Bill of Material, setting up 206
production order workflow 213, 214
purchase orders, creating 214, 215
Requisition Worksheet 210, 211
routing 206, 207
sales order 209
simulation production order 208
table 203, 204

master data
core master data, examples 27
helper master data, examples 27
umbrella master data, examples 27

Master Production Schedule. See MPS
Material requirements planning. See MRP,

Dynamics NAV
medicine industry

expiration dates, defining 221
lot numbers, adding 221
quality control 221

Microsoft Dyanamics NAV 2009. See
Dynamics NAV

Microsoft Dynamics CRM 408
Microsoft Message Queue. See MSMQ
modules, Storage & Logistics setup

invoicing module 295
logistics module 295
storage module 295

MPS
about 186
calculating 209

MRP, Dynamics NAV
about 185
calculating 209
policies, make-to-order 209
policies, make-to-stock 208

MSDN.flf file 451
MSMQ

about 375
NAS 376
using 376

[463]

N
NAS 430
NASHandler function 397
Navigate function

FindRecords, changing 88
ShowRecords function, changing 89

Navision Application Server. See NAS
NavMaps.dll file 451
new item, generating

for assembling 188
for manufacturing 203

new sales order, creating
about 231
sales header 231
sales lines 232
sales lines, fields 233
sales lines, master data 232
validation flow 233
VAT calculation 237

O
OCX 370
ODBC

about 371
connecting, to other databases 374
data, reading from Dynamic NAV 372, 373
data, writing from Dynamic NAV 373

OLAP 428
Ole Control Extension. See OCX
OLTP 428
OnInsert Trigger 52
Online Analytical Processing. See OLAP
Online Transaction Processing. See OLTP
OnValidate Trigger 53
Open Database Connectivity. See ODBC
opportunity, company

about 148
creating 151-156
deal, terminating 156
sales quote, assigning 155
sales stages 150
sales stages, activity codes 150
workflow 148, 149

Outlook integration
ExtendedDatatype property 385, 386
levels 384
Outlook part, customizing 385
Outlook Synchronization Web Service 386
SMTP Mail codeunit 386

Outlook integration, standard application
interfaces

Style sheet tool, using 380
Word, integrating with Excel 380

P
pages

actions 415
client extensibility 416
embedded list 414
emphasis 416
fact boxes 416
importance 415
personalization 415
tabs 414
web services 416

Parameters function 390
pharmaceutical industry

about 285
contribution invoicing 286
medication card 285

Pin1.gif file 452
Pin5.gif file 452
PK 28
PlanItem function 212
posting groups

customer card, viewing 102
Customer Posting Groups 101
inventory posting setup, editing 104
item card, editing 104
matrix layer 101
setup 103
single layer 101

posting process
changes, making 86, 87
codeunit 80 83
codeunit 81 83
codeunit 82 83
codeunit, structuring 83-86

[464]

modifying 82
report 27 82

Post Inventory Cost to G/L function 195
PostSquashJnlLn function 86
PPAP 220
price, calculating

codeunit 68, 69
inherited data 69
squash prices 67, 68

pricing calculations, invoicing application
result 326
storage calculation 324-326
storage prices 324

Primary Key. See PK
Probability Calculation formula 148
ProcessingOnly property 78
production

about 184
basic principles 185
history 184
methodologies, assembling production 184
methodologies, manufactured

production 184
methodologies, specialized production 184
raw materials 185

Production Part Approval Process. See
PPAP

product, naming
abbreviations 420
plural 419
reserved words 420
singular 419
standard names 420

products, storage warehouse
about 300
regions 301
shelf 302
warehouse 301

profiles, company
automatic profiles 140-142
editing 139, 140
example 139

prototyping 441
purchasing

about 240, 350
drop shipments 240
item cost versus work in progress 351

purchase order, editing 351
resources 240

Put-Away and Pick level
comparing, with receipt and shipment

level 269
enabling 268
Warehouse activities 269
Warehouse Request 269

Q
QtyAvailabletoPromise function 276

R
receipt and shipment level

about 266
comparing, with Put-Away and Pick level

269
creating 267
limitations 267

receipt + use put-away worksheet level
enabling 270
whse.- activity register versus whse.-

activity-post 271
recording policies

extending 261
fixed reorder qty 261
Lot-for-Lot 261
maximum qty 261
order 261
virtual inventory 261

redesign examples
Bin code (version 3.x) 426
CRM (version 2.0) 425
Dimensions (version 3.x) 425
Inventory valuation (version 3.x) 426
Item costing (almost all versions) 427
Item tracking (version 3.6 & 4.0) 426
Jobs (version 5.0) 426
MenuSuite (version 4.0) 426
Role tailored client (version 2009) 427

Relationship Management
about 131
customizing 166

Relationship Management, customizing
contact information, sharing across

companies 171

[465]

contacts, adding to segments 176
customer, numbering 170
salutation formula types 166
vendor, numbering 170

reservations, tracking
about 59
Journal Batch 61
Journal Template 60, 61
Register 62

RF application
data, reading from 402
interface design, viewing 396, 397
interface technology 395
interface type 395
logging 403
logging, types 396
mapping, creating 401, 402
objects testing, RF database, using 404
results, viewing 405, 406
results, viewing in buffer tables 406
results, viewing in RF database 407
results, viewing in SQL statements 406
test, running 405

RF database.sql file 451
RF Helper 399
RF NAS Timer 397, 398
Role Center

Activities window 300
screenshot 299

role centres
about 416
Income and Expenses Role Center 418
Logistics Role Center 418
Manager Log. and St. Role Center 418
quash application 416, 417
Storage Role Center 418

Role Tailored Client
style sheets, enabling 381

Role Tailored ERP
about 14
purchaser Role Center 14

row level locking 246

S
sales

blanket order to order 230
Blank order, document types 229
Credit memo, document types 229
document 227
document, creating 228
Invoice, document types 229
new sales order, creating 231
order, document types 229
orders, document types 230
Quote, document types 229
quote to order 230
Return order, document types 229
transaction mirroring 228, 229

Sales Invoice. See SI
salutation formula types

about 166
formula, using 167, 168
GetSalutation function 168, 169
option, adding 167
setting up 169
solution, testing 170

SalutationType parameter 169
segments, company

about 157
contacts, adding 158, 159
contacts, reducing 159
contacts, refining 159
criteria 159, 160
logging 161
mailing groups, applying 160
new segment, creating 157

SetHideValidationDialog function 80
setup.exe file 449
SharePoint Client 408
ShowAsTree property 419
ShowRecords function

changing 89
testing 89

SI 21
SingleInstance property 397
SourceTableTemporary property 419

[466]

specialized production
about 216
jobs 216

SQL Server
dead locks 435

SQL Server Analysis Services. See SSAS
SQL Server Integration Services. See SSIS
SQL Server interfacing

linked servers 374
SSIS 374
SSRS 375
views 374

SQL Server Reporting Services. See SSRS
Squash Court application

CreateVendor versus
CreateCustomer 46, 47

reverse engineering 48- 57
squash players, creating 44-46

Squash Court application, designing
parts, viewing 42
project approach 43
schema, posting 43
standard application, interfacing with 43
tables, drawing 43

SSAS 375
SSIS 374
SSRS 375
standard application interfaces

about 378
advanced Excel integration 382-384
BizTalk server 389
Client add-ins 390, 391
Dataport 378
Exchange integration 388
Outlook integration 380, 384
SharePoint 388, 389
XMLPort 379

storage documents, storage warehouse
pick document 308-311
put-away document 304-306
receipt region 303
shipping documents 307

StorageLinePriceExists function 324
Storage & Logistics setup

modules, defining 294
process 293
standard features, using 294

storage warehouse
about 295
application 297
application, designing 297, 298
bulk region 296
cue table, sharing 299
documents 297, 298
documents, registering 297
master data 298
opening balance 300
products 300
receipt 296
registration worksheet 302, 303
shipment region 296
staging region 296
storage documents 303
table, designing 298

strategy levels, Warehouse Management
bin code level 264
bin code level, bin content 265, 266
bin code level, example 264, 265
directed put-away and pick level 271
Put-Away and Pick level 268
receipt and shipment level 266
receipt + use put-away worksheet level 270

Style Sheet tool
downloading 381

SupplytoInvProfile function 211

T
testing

about 444
steps 444

timesheets
about 348
data transaction model 348, 350

trading company
process 226
retail company 226
wholesale company 226

trading, in vertical industries
automotive industry 284
fashion industry 283
food industry 286
furniture industry 287
pharmaceutical industry 285

[467]

numbering 438
object changes, creating 439

version management
version, creating 439
version, determining 438
version numbering 438

version numbering
rules 438
versions, combining 438

W
Warehouse Management

about 262
customizing 274
feature 262
implementing 274
location setups 263
strategy levels 262
warehouse employee, setting up 263

web services
consuming, in NAV 376
MSMQ, differentiating 376
NAV web service, consuming 377, 378
NAV web service, exposing 377

Windows Azure 408
URL 409

WIP Method 18
Workdate 328
Work in Progress

calculating, example 353, 354
calculation methods 353
posting, to general ledger 354

transaction mirroring 228, 229
TRANSFERFIELDS command 80
TRANSFERFIELDS function 50

U
UnfoldItemTracking function 212
UpdateAmounts function 237
UpdateQuotes function 174
UpdateUnitPrice function 236
UpdateVendor function 54

V
ValidateShortcutDimCode function 72
validation flow

Line discount % field 236
No field 234
quantity field 235
unit price field 236
UpdateAmounts function 237
UpdateUnitPrice function 236

value entries, inventory management
about 257
Direct cost 257
indirect cost 257
linking, to general ledger entry 257
revaluation 257
rounding 257
value entries, inventory management

variance 257
Variable Text 379
VEControl.dll file 451

registering 454
version

about 438
combining 438
creating 439

[468]

Thank you for buying
Microsoft Dynamics NAV 2009

Application Design

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Programming Microsoft
Dynamics NAV 2009
ISBN: 978-1-847196-52-1 Paperback: 620 pages

Develop and maintain high performance NAV
applications to meet changing business needs with
improved agility and enhanced flexibility

1. Create, modify, and maintain smart NAV
applications to meet your client's business
needs

2. Thoroughly covers the new features of NAV
2009, including Service Pack 1

3. Focused on development for the three-tier
environment and the Role Tailored Client

Microsoft Dynamics AX 2009
Programming: Getting Started
ISBN: 978-1-847197-30-6 Paperback: 348 pages

Get to grips with Dynamics AX 2009 development
quickly to build reliable and robust business
applications

1. Develop and maintain high performance
applications with Microsoft Dynamics AX 2009

2. Create comprehensive management solutions
to meet your customer's needs

3. Best-practices for customizing and extending
your own high-performance solutions

4. Thoroughly covers the new features in AX 2009
and focuses on the most common tasks and
issues

Please check www.PacktPub.com for information on our titles

Microsoft Dynamics AX 2009
Development Cookbook
ISBN: 978-1-847199-42-3 Paperback: 352 pages

Solve real-world Dynamics AX development
problems with over 60 simple but incredibly effective
recipes

1. Develop powerful, successful Dynamics AX
projects with efficient X++ code

2. Proven AX recipes that can be implemented in
various successful Dynamics AX projects

3. Covers general ledger, accounts payable,
accounts receivable, project, CRM modules and
general functionality of Dynamics AX

Quality Assurance for Dynamics
AX-Based ERP Solutions
ISBN: 978-1-847192-91-2 Paperback: 168 pages

Verifying Dynamics AX customization to the
Microsoft IBI Standards

1. Learn rapidly how to test Dynamics AX
applications

2. Verify Industry Builder Initiative (IBI)
compliance of your ERP software

3. Readymade testing templates

4. Code, design, and test a quality Dynamics
AX-based ERP solution

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Introduction to Microsoft Dynamics NAV
	Versions and history
	What is this book about
	Setup versus customization
	The beauty of simplicity
	Horizontal versus vertical solutions
	Open source

	Structure of this book
	The Role Tailored concept
	The building blocks
	Tables as user interface and business logic
	Dynamics NAV in throughout supply chain
	Some basics
	Number series
	Extended text
	Navigate
	Setup tables
	Posting groups
	Pricing
	Dimensions

	Data model principles
	Master data
	Journals
	The general ledger
	Balancing
	Flow fields and flow filters

	More journals and entries
	Posting Schema
	Sub and detailed entries

	Documents—combining the journals into processes
	Document structure
	Document transactions

	Other structures
	Relationship management
	Jobs
	Manufacturing

	Summary

	Chapter 2: A Sample Application
	Fit-gap analysis
	Designing a Squash Court application
	Look, learn, and love
	Drawing the table and posting schema
	The Project approach
	Interfacing with the standard application

	Getting started
	Creating squash players
	CreateVendor versus CreateCustomer
	Reverse engineering

	Designing a journal
	Squash Court master data
	Chapter objects
	Reservations
	The Journal
	Reservation
	Invoicing

	Time calculation
	Price calculation
	Squash prices
	Price calc mgt. codeunit
	Inherited data

	Dimensions
	Master data
	Journal

	The posting process
	Check line
	Post line

	Invoicing
	Invoice document
	Sales header
	Sales line
	Dialog

	Posting process
	Analyse the object
	Making the change

	Navigate
	FindRecords
	ShowRecords
	Testing

	Summary

	Chapter 3: Financial Management
	Chart of accounts
	Posting accounts
	The entry tables
	Sub accounting

	General journals
	Entry application

	Posting groups
	Dimensions
	Budgeting
	Creating budget entries

	Accounting periods
	Closing dates

	Currencies
	Consolidation
	VAT statement
	Data analysis
	General Ledger
	Account schedules
	Analysis by dimensions

	The setup

	Customizing financial management
	Sales line description to G/L entries
	Extra fields in the G/L entries

	Integrating with financial management
	Creating a G/L transaction
	The C/AL code
	Advanced entries

	Look, learn, and love

	Summary

	Chapter 4: Relationship Management
	How companies work
	Contacts
	Salutation codes
	Alternative addresses
	Create as
	Duplicates
	Search

	Profiles
	Automatic profiles

	Interactions
	Automatic interactions
	Finished interactions

	To-do's
	Workflow
	Sales stages
	Creating an opportunity

	Segments
	Add contacts
	Refine/Reduce contacts
	Segment criteria
	Mailing groups
	Log segment

	Campaigns
	Pricing
	Segments
	Activate

	Outlook integration
	E-mail logging

	The setup

	Customizing relationship management
	Salutation formula types
	Add the option
	Support the formula
	The GetSalutation function
	Set up the salutation formula
	Test the solution

	Customer and vendor numbering
	Disabling direct creation of customers and vendors

	Sharing contact information across companies
	Share tables
	Business relations
	C/AL code modifications
	Number series
	Final steps
	Alternative approaches

	Add contacts to segments
	Expand report
	Implement criteria filters
	Test solution

	Summary

	Chapter 5: Production
	What is production?
	History of production
	Production methodologies
	Raw materials

	Basic production principles
	Bill of materials
	MRP
	GIGO

	MPS
	Item costing
	Item tracking
	Quality control
	Energy and waste
	APICS

	Getting started
	Assembling
	The table and posting schema
	The items
	Item costing
	Item tracking
	The bill of materials
	Calculate standard cost
	Creating the inventory
	Adjusting cost item entries
	Posting inventory cost to G/L
	Check, check, and double check
	Recalculating standard unit cost
	BOM journal
	Check costing (again)
	Recalculating unit cost (again)
	Standard cost worksheet
	Item revaluation journal
	The result

	Item costing in ten steps
	Manufacturing
	The table and posting schema
	The items, machines, and work centers
	Capacity
	Production bill of materials
	Routing
	Testing and low level code
	Simulation, sales orders, or inventory
	Calculating MPS and MRP
	Inventory profile offsetting
	Calculating a plan
	Production order workflow
	Purchase orders
	Finishing production

	Specialized production
	Jobs

	Kitting
	Sales process
	Kitting in Microsoft Dynamics NAV "7"

	Vertical industry implementation
	Fashion
	Bill of materials
	Shipping worksheet

	Automotive
	Tooling and amortization
	Item tracking

	Medicines
	Lot numbers and expiration dates
	Quality control

	Food
	Zero inventory
	Ordering schedules

	Furniture
	Calculations
	Inventory

	Summary

	Chapter 6: Trade
	The process
	Wholesale versus retail

	Sales and purchasing
	Transaction mirroring
	Sales
	Orders
	Quote and blanket order to order

	Creating a new sales order
	Sales header
	Sales lines
	Sales line fields
	Validation flow
	VAT calculation

	Invoicing
	Prepayments
	Combined invoicing
	Credit Memo and Return Orders

	Purchasing
	Resources
	Drop shipments

	Document releasing and approval process
	Status
	Releasing a document
	Manual versus automatic releasing
	Document approval

	Deleting sales and purchase documents
	Data deletion
	Deletion of shipments and invoices

	Document tables and row level locking
	Range locks in documents
	UpdateVATOnLines

	Inventory management
	Items
	Locations
	Variants
	Example

	Stock keeping units
	Example
	Creating SKU function

	Sales pricing
	Item ledger entry application
	Item application C/AL routine
	Requirements

	Value entries
	Direct cost
	Value entries and general ledger entries

	Transfer orders
	Example

	Requisition journals
	Reordering policy
	Extending reordering policy
	Virtual inventory

	Warehouse management
	Warehouse strategy levels
	Location setup
	Warehouse employees

	Bin code | level 1
	Example
	Bin content

	Receipt and shipment | level 2
	Warehouse request
	Limitations

	Put-Away and Pick | level 3
	Warehouse request
	Warehouse activities
	Level 2 and level 3 comparison

	Receipt + use put-away worksheet | level 4
	Whse.- activity register versus whse.-activity-post

	Directed put-away and pick | level 5
	Zones and default bins
	Bin calculation

	Implementing and customizing warehouse management

	Reservations
	Scenario
	Check-avail. period calc.

	Always versus optional reservation
	Reservation entries
	Creating a reservation
	Order tracking policy
	Example
	Replenishment

	Trade in vertical industries
	Fashion
	Sales orders
	Reservations

	Automotive
	Vehicle Information
	Parts management

	Pharmaceuticals/medicines
	Medication card
	Contribution invoicing

	Food
	Assortment
	Fast order entry

	Furniture
	Variant configuring
	One-off items

	Summary

	Chapter 7: Storage and Logistics
	How to read this chapter
	Chapter objects
	The process
	Using standard features
	Defining the modules
	Storage
	Logistics
	Invoicing

	The storage application
	Documents
	Look, learn, and love
	Journal
	Documents
	Master data

	Designing the table and posting schema
	Sharing tables

	Getting started
	Opening balance
	Products
	Warehouse
	Regions
	Shelves

	Registration worksheet
	Storage documents
	Receipt
	Put-away
	Shipment
	Picks

	The logistics application
	Designing the table and posting schema
	Getting started
	Shipments
	Routes
	Route optimizer
	Route follow up

	Incidents
	Follow up

	The invoicing application
	Process
	Income and expense
	Invoicing
	Sales Line
	Codeunit Sales-Post (80)

	Pricing methodology
	Storage prices
	Calculation
	Result

	Periodic invoicing
	Processing the buffer

	Combined invoicing

	Add-on flexibility
	Value added logistics
	Item tracking
	Third and fourth party logistics

	Summary

	Chapter 8: Consulting
	The process
	Fits
	Gaps
	Resource groups
	Time registration
	Item calculation
	Issue registration

	Getting started
	How many jobs
	Job card

	Job task and planning lines
	Job journal
	Job examples
	Chapter objects
	1 | The new implementation
	2 | The infrastructure
	3 | The upgrade
	4 | The support team

	Time sheets
	Data and transaction model

	Purchasing
	Item costing versus work in progress

	Invoicing
	Calculating Work in Progress
	Example
	WIP post to general ledger

	Changing jobs
	Quantity budgeting
	Resource groups
	Calculations
	Issue registration
	Time sheet
	Registration

	Summary

	Chapter 9: Interfacing
	Interface types
	Import and export
	Manual
	Data pulling
	Data pushing

	Event driven versus timer driven

	Interfacing technologies
	File
	Automation Control and OCX
	OCX
	Automation Control
	Events
	.NET
	Automation wrappers

	ODBC/ADO
	Reading from Microsoft Dynamics NAV
	Writing to Microsoft Dynamics NAV
	Talking to other databases

	SQL Server interfacing
	C/FRONT
	Microsoft Message Queue
	NAS

	Web services
	Consuming web services in NAV
	Exposing a NAV web service
	Consuming a Microsoft Dynamics NAV web service

	Client add-ins

	Standard application interfaces
	Dataport
	XMLPort

	Office integration
	Word and Excel integration
	Word Automation

	Advanced Excel integration
	Outlook integration
	Outlook part
	ExtendedDatatype property
	Mail and SMTP mail Codeunits
	Outlook synchronization
	Exchange integration

	SharePoint
	BizTalk
	Client Add-ins

	Interface methodologies
	The scenario
	The design
	The mapping
	The gaps
	What if it does not work

	The scenario
	The interface type
	The interface technology
	Logging
	The design
	The solution
	Testing
	Viewing the results

	Interfacing into the future
	SharePoint client in Microsoft Dynamics
NAV "7"
	Microsoft Dynamics CRM
	Windows Azure

	Summary

	Chapter 10: Application Design
	Application lifecycle
	Design to use
	Forms
	Pages
	Role centers
	Reports

	Design to maintain
	Naming
	Quantity versus quality
	Transformation tool

	Design to support
	Second level support

	Design to upgrade
	Has Microsoft changed my (referenced) object
	Some redesign examples
	Documentation
	Split operational and financial information

	Design to perform
	OLTP versus OLAP
	Fast transaction posting
	Job queue
	Date compression and cleanup
	Locks, blocks, and deadlocks
	Impact on development

	Design to analyze
	Report design

	Version and object management
	What is a version
	Version numbering
	Combining versions

	Creating a version
	Tracking object changes

	Development methodology
	A sample approach
	Fit/gap analysis
	Prototyping
	Development
	Implementation
	Maintenance and support

	The project
	Standard, customized, or both
	Add-on products
	Customizing
	Total cost of ownership

	Roadmap to success

	Summary

	Appendix: Installation Guide
	Licensing
	Installing Microsoft Dynamics NAV
	Changing the license
	Restart service tier

	Installing the objects
	Importing a FOB file
	Installing the dynamic link library files
	Register NavMaps.dll
	Register VEControl.dll

	Index

