
M A N N I N G

Stephan Hochhaus
Manuel Schoebel
FOREWORD BY Matt DeBergalis

www.allitebooks.com

http://www.allitebooks.org

Meteor in Action
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Meteor in Action

STEPHAN HOCHHAUS
MANUEL CHRISTOPH SCHOEBEL

M A N N I N G
SHELTER ISLAND
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Technical development editor Kostas Passadis
PO Box 761 Copyeditor: Liz Welch
Shelter Island, NY 11964 Proofreader: Barbara Mirecki

Technical proofreader: Al Krinker
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617292477
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
PART 1 LOOK—A SHOOTING STAR! ...1

1 ■ A better way to build apps 3

2 ■ My fridge! A reactive game 31

PART 2 3, 2, 1—IMPACT!...49

3 ■ Working with templates 51

4 ■ Working with data 76

5 ■ Fully reactive editing 105

6 ■ Users, authentications, and permissions 130

7 ■ Exchanging data 153

8 ■ Routing using Iron.Router 176

9 ■ The package system 203

10 ■ Advanced server methods 227

PART 3 LEAVING THE CRATER..251

11 ■ Building and debugging 253

12 ■ Going into production 281
v

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix
about the cover illustration xxiii

PART 1 LOOK—A SHOOTING STAR!................................1

1 A better way to build apps 3
1.1 Introducing Meteor 4

The story behind Meteor 4 ■ The Meteor stack 5
Isomorphic frameworks: full-stack JavaScript 7
Processing in the browser: running on distributed platforms 9
Reactive programming 11

1.2 How Meteor works 12
Core projects 14 ■ Isobuild and the CLI tool 17
Client code vs. server code 17

1.3 Strengths and weaknesses 19
Where Meteor shines 19 ■ Challenges when using Meteor 21

1.4 Creating new applications 24
Setting up a new project 24 ■ Starting the application 25
vii

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
1.5 Dissecting the default project 25
helloWorld.css 26 ■ helloWorld.html 26 ■ helloWorld.js 27

1.6 Summary 29

2 My fridge! A reactive game 31
2.1 Application overview 32
2.2 Initial setup 32

Setting up a new project 33

2.3 Creating a layout 34
Setting the styles 34 ■ Adding the templates 35

2.4 Adding content to the database in real time 38
Storing items in the database 38 ■ Connecting data
to templates 40 ■ Adding a defined set of products 43

2.5 Moving items into the fridge 44
Adding jQuery-UI to the project 44 ■ Defining drop targets
for items 44 ■ Allowing items to be draggable 47

2.6 Deploying to meteor.com and using the fridge 48
2.7 Summary 48

PART 2 3, 2, 1—IMPACT! ...49

3 Working with templates 51
3.1 Introduction to templates 52
3.2 Working with templates 53

The Blaze engine 53 ■ Organizing template files 54

3.3 Creating dynamic HTML templates 55
Double and triple-braced tags (expressions) 55 ■ Inclusion tags
(partials) 57 ■ Block tags 60 ■ Helpers 63

3.4 Handling events 68
Template event maps 69 ■ Event propagation 70
Preventing the browser’s default behavior 71

3.5 The template life cycle 72
3.6 Summary 74
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
4 Working with data 76
4.1 Meteor’s default data sources 79

What makes a data source reactive? 80 ■ How reactive data
is connected to functions 81

4.2 Building a house-sitter app 82
Setting up templates 84 ■ Connecting to a database and
declaring collections 85

4.3 Working with the Session object 86
The Session object 86 ■ Using Session to store selected
drop-down values 87 ■ Creating a reactive context
using Tracker.autorun 89

4.4 Working with MongoDB collections 89
Querying documents in MongoDB 91 ■ Working with
Meteor collections 92 ■ Initializing a collection 93
Querying collections 94 ■ Display collection data in
a template 95 ■ Updating data in a collection 98
Inserting new data into a collection 101 ■ Removing
data from a collection 102

4.5 Summary 104

5 Fully reactive editing 105
5.1 The reactive editing workflow 106
5.2 Reactive front ends vs. DOM manipulation 107
5.3 Staging changes in a local collection 111
5.4 Displaying collection data within a form 115

Adding array index information to an #each loop 116

5.5 Reactive updates using a local collection 118
Event map for the houseForm template 119 ■ Event map
for the plantFieldset template 121

5.6 Implementing a simple notifications system 124
Adding a notifications template 125 ■ Adding a
status property 125 ■ Using a Session variable to
trigger notifications 127

5.7 Summary 129
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
6 Users, authentications, and permissions 130
6.1 Adding users to an application 131

Adding password authentication 132 ■ Registration
and password reset 133 ■ Setting up email 137

6.2 Authenticating users with OAuth 141
An introduction to OAuth 141 ■ Integrating Facebook
authentication 143 ■ Integrating other OAuth providers 147

6.3 Managing user permissions, roles, and groups 148
Managing permissions with allow/deny 149

6.4 Summary 152

7 Exchanging data 153
7.1 Publications and subscriptions 155

publish() and subscribe() 155 ■ Global subscriptions 157
Template-level subscriptions 158 ■ Parameterizing
subscriptions 159 ■ Publishing aggregated data to
a client-only collection 162 ■ Turning an aggregation
publication into a reactive data source 165 ■ Limiting data
visibility by user ID 167

7.2 Meteor methods 169
Removing the insecure package 170 ■ Using methods to
write data to collections 171

7.3 Summary 174

8 Routing using Iron.Router 176
8.1 Routing in web applications 177
8.2 Client-side routing 180

Adding Iron.Router 180 ■ Creating your first routes 181
Defining a layout depending on a route 183 ■ Setting the
data context depending on a route 187 ■ Data subscriptions
with Iron.Router 190

8.3 Advanced routing methods 192
Using named routes and link helpers 192 ■ Working with
active routes for better navigation links 194 ■ Waiting for external
libraries to load 195 ■ Organizing routes as controllers 196
Extending the route process using hooks 197 ■ Creating an
Iron.Router plug-in 199

8.4 Server-side routing with a REST API 200
8.5 Summary 202
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xi
9 The package system 203
9.1 The foundation of all applications 204
9.2 Using Isopacks 205

Version Solver and semantic versioning 205 ■ Finding
packages 206 ■ Adding and removing Isopacks 210
Updating packages 212

9.3 Using npm packages 212
9.4 Creating an Isopack 213

Creating a package 214 ■ Declaring package metadata 215
Adding package functionality 217 ■ Testing Isopacks
using tinytest 220 ■ Publishing 224

9.5 Summary 225

10 Advanced server methods 227
10.1 Reintroducing Node.js 227

Synchronous code 228 ■ Asynchronous code 230

10.2 Asynchronous functions using fibers 232
Introducing multitasking to the event loop 232
Binding callbacks to a fiber with wrapAsync 235
Unblocking method calls for a single client 237
Creating fibers with bindEnvironment 238

10.3 Integrating external APIs 240
Making RESTful calls with the http package 241
Using a synchronous method to query an API 242
Using an asynchronous method to call an API 242

10.4 Uploading files to a collection 244
Uploading files to the database 246

10.5 Summary 249

PART 3 LEAVING THE CRATER251

11 Building and debugging 253
11.1 The Meteor build process 254

Build stages 256 ■ Running with the --production flag 259
Load order 260 ■ Adding build stages via packages 262
Adding a custom build stage 264
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxii
11.2 Accessing running applications 266
Using the interactive server shell 266 ■ Debugging using
node-inspector 267

11.3 Creating browser applications 270
Application configuration using Meteor.settings 270
Building Meteor projects 271

11.4 Creating mobile applications 273
Hybrid apps with Cordova 273 ■ Adding mobile platforms 274
Configuring mobile applications 276 ■ Adding mobile
functionality 279

11.5 Summary 280

12 Going into production 281
12.1 Preparing for production 282

Using version control 282 ■ Testing functionality: the
Velocity framework 284 ■ Estimating and testing load 286
Server administration 289 ■ Checklist 290

12.2 Setup and deployment 290
The simplest deployment: meteor.com 291 ■ All-inclusive hosting:
cloud providers 294 ■ Full flexibility: manual setup 297

12.3 Connecting the pieces 301
Environment variables 301 ■ Connecting Meteor
to MongoDB 301

12.4 Scaling strategies 303
Active-passive high availability with redundancy 303
Single-component deployments 304 ■ Redundancy and
load balancing 305 ■ Bulletproof availability 307

12.5 Summary 308

appendix A Installing Meteor 309
appendix B The anatomy of MongoDB 314
appendix C Setting up nginx 322

index 331
Licensed to Mark Watson <nordickan@gmail.com>

foreword
In 2011, Geoff Schmidt, Nick Martin, and I started writing Meteor, a new JavaScript
application platform. Our plan was to make it possible for any JavaScript developer to
built great web and mobile apps with a mimimum of fuss and confusion.

 JavaScript is a remarkable technology. From its humble beginnings as a scripting
tool for browsers, it has become the programming language that runs everywhere:
inside a browser, on a mobile device, and in the cloud. It is favored by both experts
and beginners, an unusual combination for the software industry. But the JavaScript
ecosystem is highly fragmented, and the teams who choose JavaScript have to assem-
ble and maintain complete application stacks from scratch and spend far too much of
their time working on low-level technical tasks—like designing application-specific
WebSocket messages—that have little to do with their actual application.

 Meteor offers a simple and straightforward solution for JavaScript developers look-
ing to build a modern application, and Meteor in Action includes everything you need
to get started. It covers all the key parts of the Meteor stack: the data synchronization
system that publishes new information from the cloud to each active user, reactive
templates that redraw the screen as data changes, events and forms, Meteor’s isomor-
phic user account system, routing, packages, and security.

 More than that, though, Meteor in Action teaches the fundamentals of Meteor’s
application architecture. Meteor is a full-stack reactive platform, which means all its
parts, from the database driver to the client-side template engine to hot code push, work
together to respond to changes in real time. And Meteor is an isomorphic platform,
meaning that wherever possible the JavaScript APIs you use are identical across the
xiii

Licensed to Mark Watson <nordickan@gmail.com>

FOREWORDxiv
browser, mobile device, and in the cloud. With clear examples, the authors explain these
principles and show how they add up to form the Meteor development experience.

 Stephan and Manuel have been active in the Meteor community since our earliest
releases. They’ve contributed on countless email and forum threads, and now they’ve
shared their knowledge in an enjoyable and approachable book on Meteor.

 Happy hacking!

MATT DEBERGALIS

FOUNDER, METEOR DEVELOPMENT GROUP
Licensed to Mark Watson <nordickan@gmail.com>

preface
I met Manuel in 2013 when a friend took me to the first Meteor Ruhr meetup. After
too many years in the enterprise world I was about to start my own business based on a
web platform built on PHP. What Manuel showed us in these early stages solved so
many issues I had faced, and it made web programming seem like child’s play. Highly
motivated, I got back home and immediately collected more material on this new plat-
form. I put the collection on my blog, and since I had just read an article on SEO that
recommended using superlatives to attract people’s attention, I boldly claimed to
present the “Best Learning Resources for Meteor.js.” And this is where it all started.

 In March 2014, Manning contacted me and asked if I was interested in writing a
book on the promising Meteor platform. They had found my blog post and were con-
vinced I was knowledgeable enough to explain the platform to other developers. Of
course I agreed, but even though I had collected the—what I thought to be—best
learning resources, I had little idea of how to actually apply them. I was still stuck in
PHP-land. Writing a book was an excellent opportunity to learn everything about
Meteor, so I happily agreed, but not without first consulting Manuel and asking him to
join me in this endeavor. Luckily for me, he agreed to write the book, so together we
set out to explain this new platform.

 Having written this book, I feel that the combination of Manuel’s vast knowledge
and my own ignorance helped us to avoid the pitfalls of assuming too much on the
reader’s part and strike a good balance on usefulness vs. theoretical depth. Do let us
know if this strategy pays off.
xv

Licensed to Mark Watson <nordickan@gmail.com>

PREFACExvi
 We feel the contents of this book are sufficient to get you into good shape to write
amazing applications. While we can’t address each and every detail of working with
Meteor, we hope that the fundamentals we teach you will help you understand the
available documentation, packages, and source code much better. At the end of the
day Meteor, and the Meteor in Action book, are about enabling you to turn your ideas
into applications. Tell us what you built! You can find us on Twitter, use the book’s
GitHub repo, or post in the Author Online forum for this book. We’d love to hear
back from you!

STEPHAN HOCHHAUS
Licensed to Mark Watson <nordickan@gmail.com>

acknowledgments
Looking at the cover, you will see only two names, Manuel’s and mine, but there were
so many wonderful people who contributed to our book, that it would be a shame to
let them go unmentioned. First and foremost, thanks are due to the fine folks at Man-
ning, most importantly Robin De Jongh, who believed that a book on Meteor was a
good idea, and Ozren Harlovic, who made the first contact with me. Thanks also to
our editors Sean Dennis and Dan Maharry, who helped turn our technical gibberish
into intelligible words and graphics. Thanks to our copyeditor Liz Welch, who had to
put up with dozens of faux amis du traducteur, and to our proofreader Barbara Mirecki,
as well as to the many other folks at Manning who worked with us behind the scenes.

 The Meteor community has been invaluable in the creation of this book. We’d like
to thank all of the early (and latter-day) pioneers using Meteor and publishing articles
on the web, writing packages, and pushing the boundaries of the platform. You know
who you are!

 Manning’s editorial, production, and technical staff were amazing to work with,
even though they kept pushing us hard in order to make this book the best we could.
We appreciate the pestering; it was worth it!

 Many reviewers read the manuscript at various stages of its development, and we’d
like to thank them for providing invaluable feedback: Carl Wolsey, Charlie Gaines,
Cristian Antonioli, Daniel Anderson, Daniel Bertoi, David DiMaria, Dennis Hettema,
John Griffiths, Jorge Bo, Keith Webster, Patrick Regan, Subhasis Ghosh, Tim Couger,
and Touko Vainio-Kaila.
xvii

Licensed to Mark Watson <nordickan@gmail.com>

ACKNOWLEDGMENTSxviii
 Thanks also to our technical development editor Kostas Passidis, who made sure
that our technical explanations were both accurate and understandable, as well as to
Al Krinker for his thorough technical review of the final manuscript shortly before it
went to press. And special gratitude to Matt DeBergalis for contributing the foreword
to our book.

 A huge thank you goes out to you, our readers, especially those who believed in the
book early on and joined the MEAP early access program when only a few chapters
were available. Your input, interest, and encouragement kept us going!

STEPHAN HOCHHAUS

I’d like to thank Said Seihoub for making me go to that Meteor meetup. Without him
this book would have never been written. Huge thanks also to Manuel, who always
knew an answer when I ran into problems. Writing is a lonesome business, so thanks
also to the entire #meteor IRC channel who kept me company when I needed to pro-
crastinate. Without you this book would probably have come out already in 2014!

 Thanks also to Anton Bruckner, Johann Sebastian Bach, Joss Whedon, and Terry
Pratchett for creating the right working atmosphere. Finally my thanks go out to my
family, who showed a lot of patience when I told them once a month that I finished a
chapter, only to return to the very same chapter the next week to rewrite and ‘finish’
it again.

MANUEL SCHOEBEL

Writing a book takes a lot more effort than I imagined, but it was a great journey that
helped me to dig deeper into the details of Meteor. Thank you Stephan for getting me
on board. As always, it was a pleasure working with you.

 During the writing of this book I went on another journey as well, with my startup
that took up just as much of my time. Christina, without your indulgence and patience
and support I could not have worked on either project, so thank you for being as great
as you are!

 Having a family that is always behind you is a luxury that not everyone exper-
inces. I know that and appreciate it very much—you give me peace of mind when
things get difficult.

 Last but not least, I thank everyone who is part of the group of people working
on making the web more awesome every day. This includes not only the guys from
Meteor itself, but also everyone who creates new packages, joins meetups, or is just
starting to learn how to bring their ideas to the web. The web has given us freedom to
learn and to explore, to work and to play—more freedom than we have ever known in
the past. It is a playground in which you can even make a living. We invite you to play
with us!
Licensed to Mark Watson <nordickan@gmail.com>

about this book
A common phrase you hear from experienced developers is that “building applica-
tions ain’t rocket science.” While it may not be as complicated as sending people into
space, it can be quite daunting to the uninitiated. A huge number of tools and server
components is typically required to put your applications on the web, not to mention
mobile devices. Meteor aims to become a game-changer. As Nick Martin, one of Meteor’s
creators, puts it:

At Meteor, we hope to democratize web app development by empowering
anyone, anywhere to create apps.1

We have seen people with only the most basic understanding of HTML and CSS turn
their ideas into code after less than a day with Meteor. As such we believe that it will
make development easier. It will even open up development for people who never
considered themselves developers.

 Unless you have a good teacher you will probably need more than half a day to
know your way around the Meteor platform. This is where Meteor in Action comes in. It
is your personal teacher that walks you through all major aspects of creating applica-
tions, regardless whether you want to write a web or mobile app. Eventually you will
be able to turn your own ideas into code. If you did this before Meteor, you will be
amazed at how quickly Meteor solves some of the most common issues.

1 http://blog.heavybit.com/blog/2014/04/01/meteor
xix

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://blog.heavybit.com/blog/2014/04/01/meteor
http://www.allitebooks.org

ABOUT THIS BOOKxx
 When writing Meteor in Action we aimed to address both front-end developers
that want to extend their skills to the server side as well as developers with a server
background, making the transition from Java, Ruby, or PHP to full stack JavaScript. It
is not a book for complete beginners; we expect that you have built (or at least tried)
something for the web before.

 As all tools that are still in use, Meteor is always changing and evolving. We took
great care to lay a good foundation with this book to teach you the fundamentals of
this platform. We have confirmed that all functionality described in the following
chapters works well with version 1.1.

Roadmap
Meteor in Action is organized into three parts.

 Part 1 gives a high-level overview of the platform. It introduces the various com-
ponents and concepts that make up the Meteor stack. After a first look at Node.js,
MongoDB, isomorphism, and reactivity in chapter 1, you will build your first Meteor
application in chapter 2.

 Part 2 teaches you about the fundamental building blocks for reactive applications.
Each chapter focuses on a different aspect of writing applications. Chapter 3 starts with
templates, chapter 4 explains how to work with data and perform CRUD operations.
Chapter 5 brings together these two and highlights some important considerations
when building reactive interfaces. Chapter 6 introduces a way to secure applications by
bringing in user-related functionality. The following chapter 7 explains how to replace
the automated data publication mechanism Meteor uses by default. It covers Meteor’s
pub/sub concept and how to use methods to implement another layer of security.
Routing operations on both client and server using the popular Iron.Router library is
discussed in chapter 8. Chapter 9 teaches you how to use packages to extend Meteor’s
core functionality, either by using existing Isopacks, npm packages, or writing your
own. Chapter 10 concludes the second part of the book by looking at server-side
methods for asynchronous operations, accessing external APIs, or uploading files.

 Part 3 takes it one step further and covers building and deploying your applica-
tions properly. Chapter 11 explains Meteor’s build system, debugging your code, and
how to turn your code into both web and mobile applications. The final chapter 12
addresses various aspects of putting your Meteor application into production.

 The book ends with three appendixes. Appendix A covers the installation of
Meteor on all supported platforms. Appendix B sheds some light on the architecture
of MongoDB and which components are used to achieve high availability. It also
includes instructions on how to set up oplog tailing, an important technique behind
Meteor’s approach to scalability. Appendix C teaches you how to set up the reverse
proxy nginx for load balancing between multiple Meteor servers, serving static con-
tent, and enabling SSL.
Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxi
Prerequisites
To get the most out of this book, you’ll need to have Meteor installed on your system.
Instructions for installing Meteor can be found in appendix A and also on the official
Meteor website (http://meteor.com).

 Throughout the book we assume that you have at least basic knowledge of HTML,
CSS, and JavaScript. You should know how to work with objects and have used a call-
back before. It is also helpful, yet not required, to have a basic understanding of how
databases work. However, you do not need to have any experience with server-side
JavaScript or even Node.js to be able to follow along.

Code
All code presented in this book is available as a download from the Manning web-
site www.manning.com/books/meteor-in-action. You can also find it on GitHub at
www.github.com/meteorinaction.

 To make it easy to follow, each chapter is available as a separate git repository.
Since not all code is printed in the book, we have added tags to each repository mak-
ing it easy for you to get back on track if you ever get lost. For example, when you
begin chapter 2, you can refer to the code tagged as begin to see what the starting
code looks like. If you want to skip ahead to when we added fixtures upon server start,
check out the code tagged listing-2.9.

Author Online
The purchase of Meteor in Action includes free access to a private forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and other users. To access and subscribe to
the forum, point your browser to www.manning.com/books/meteor-in-action. This
page provides information on how to get on the forum once you are registered, what
kind of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contributions to the book’s forum remain voluntary (and unpaid). We
suggest you try asking them some challenging questions, lest their interests stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors

Stephan Hochhaus started his development career when he accidentally found him-
self in a Perl class for linguists. After many years of working for large enterprises creat-
ing scalable web solutions and several flings with PHP, C#, and even Java, in 2013 he
started his own business developing web apps for small and medium companies.
Since he met Meteor he feels ready to settle down with JavaScript. Stephan also does
Licensed to Mark Watson <nordickan@gmail.com>

http://meteor.com
http://www.github.com/meteorinaction
http://www.manning.com/books/meteor-in-action
http://www.manning.com/books/meteor-in-action

ABOUT THIS BOOKxxii
consultancy work for teams introducing Scrum or Continuous Delivery. He holds a
masters degree in linguistics and socio-psychology from the University of Bochum and
is fluent in regular expressions.

Manuel Schoebel holds a diploma in business informatics from the University of
Essen with a special focus on web entrepreneurship. Manuel spent much of his time
coaching founders and developing MVPs and even founded several startups. He
started with Meteor in 2012 when the platform was still in its infancy and quickly
became a renowned expert in the Meteor community for his valuable blog posts.
Since 2013, Manuel uses Meteor exclusively for his projects.

Together, Manuel and Stephan have established Meteor meetups in Cologne and the
Ruhr area in Germany, bringing together Meteor developers to exchange ideas and
present new developments.

About the title
By combining introductions, overviews, and how-to examples, the In Action books are
designed to help learning and remembering. According to research in cognitive science,
the things people remember are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember
new things, which is to say they master them, only after actively exploring them.
Humans learn in action. An essential part of an In Action book is that it is example-
driven. It encourages the reader to try things out, to play with new code, and explore
new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want just when they want it.
They need books that aid them in action. The books in this series are designed for
such readers.
Licensed to Mark Watson <nordickan@gmail.com>

about the cover illustration
The figure on the cover of Meteor in Action is a “Roustabout”—an unskilled laborer,
deckhand, or dock worker, of seemingly pugnacious disposition. The illustration is
taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume compen-
dium of regional dress customs published in France. Each illustration is finely drawn
and colored by hand. The rich variety of Maréchal’s collection reminds us vividly of
how culturally apart the world’s towns and regions were just 200 years ago. Isolated
from each other, people spoke different dialects and languages. In the streets or in
the countryside, it was easy to identify where they lived and what their trade or station
in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now hard to discern the inhabitants of different continents, let
alone different towns or regions. Perhaps we have traded cultural diversity for a more
varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxiii

Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Part 1

Look—a shooting star!

Part 1 serves as a high-level overview. It takes a look at the various pieces that
make up the Meteor platform and how they work together. We’ll introduce you
to Node.js, MongoDB, and the concept of reactive programming. After a thor-
ough look at the entire stack in chapter 1, you’ll build your first Meteor applica-
tion in the second chapter.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

A better way to build apps
Meteors have a reputation of changing life as we know it. They’re capable of mak-
ing dinosaurs extinct or forcing Bruce Willis to sacrifice his life for humankind.
This book is about a Meteor that impacts web development, but it doesn’t threaten
to destroy anything. On the contrary, it promises to offer a better way to build appli-
cations. Meteor takes several existing tools and libraries; combines them with new
thoughts and new libraries, standards, and services; and bundles them to provide
an entire ecosystem for developing web and mobile applications that are a delight
to use.

This chapter covers
■ The story behind Meteor
■ The Meteor stack
■ Full-stack JavaScript, reactivity, and

distributed platforms
■ Core components of the Meteor platform
■ The pros and cons of using Meteor
■ The anatomy of Meteor applications
3

Licensed to Mark Watson <nordickan@gmail.com>

4 CHAPTER 1 A better way to build apps
 Meteor is an open source, MEAN1 stack–based app development platform designed
to have a consistent JavaScript API across client and server with a focus on real-time,
reactive applications, rapid prototyping, and code reuse.

 As a developer, you know that once you open the source view of your browser all
web applications are just a combination of HTML, CSS, and JavaScript. Giants like
Google, Twitter, or Facebook achieve impressive results that look and feel like desktop
applications rather than websites. The smoothness of Google Maps and the directness
of Facebook’s Messenger led to users having much higher expectations toward all sites
on the internet. Meteor allows you to meet these high expectations because it pro-
vides all the infrastructure functionality like data subscriptions and user handling,
allowing you to focus on implementing business functionality.

 This chapter will tell you how Meteor makes your life as a developer easier. After a
short look at why it was created, we’ll focus on what it consists of and how you can use
it to build your own applications that may take only a fraction of the time.

1.1 Introducing Meteor
If you look at the state of web development in recent years, you’ll see two clear trends.
First, applications become more powerful, often indistinguishable from desktop appli-
cations. Frankly, users don’t care what the technology is that works behind the scenes;
they simply expect a great user experience. This includes instant feedback on clicks,
real-time interaction with other users, and integration with other services. The second
trend is that the number of languages, libraries, tools, and workflows is increasing so
quickly that it’s becoming impossible for developers to keep up with all trends. As a
result, we can summarize the current state of web development:

1 Users expect more convenience from applications.
2 Developers expect to worry less about making different libraries work well

together or writing plumbing code.

1.1.1 The story behind Meteor

When Geoff Schmidt, Matt DeBergalis, and Nick Martin got accepted into the Y Com-
binator startup seed accelerator, they planned to build a travel recommendation site.
But when they talked to fellow start-up companies, they realized how much they strug-
gled with the same challenges they’d already solved when they worked on Asana, an
online platform for cooperative project and task management. So they changed their
plans and decided to come up with an open source platform to provide a sound foun-
dation for web applications that are just as smooth to use as desktop applications.

1 The MEAN stack refers to all applications built on top of MongoDB, Node.js, Angular, and Express.js.
There are several variations of the MEAN stack, such as MEEN—MongoDB, Ember.js, Express, and Node.js.
Sometimes the term is used loosely to indicate any infrastructure running on Node.js in combination with
a NoSQL database.
Licensed to Mark Watson <nordickan@gmail.com>

5Introducing Meteor
 On December 1, 2011 the Meteor Development Group (MDG) announced the first
preview release of Skybreak,1 which soon after got renamed to Meteor. Only eight
months later, the project had arranged for $11.2 million in funding from big names in
the industry such as Andreessen Horowitz, Matrix Partners, Peter Levine (former CEO
of XenSource), Dustin Moskovitz (co-founder of Facebook), and Rod Johnson
(founder of SpringSource). The Meteor GitHub repository has stayed in the top 20
most popular repositories since then and rose to become the 11th most popular
repository on GitHub just days after its 1.0 release, having more stars than the Linux
kernel, the Mac OS X package manager homebrew, and backbone.js.

 Why did Meteor create such interest with developers? Because it takes away the
need to create low-level infrastructure like data synchronization or to build pipelines
to minimize and compile code and lets developers focus on business functionality.
With over $11 million in funding, investors find Meteor very appealing. Similar to
Xen, the free hypervisor for server virtualization, or JBoss, the Java application server,
the MDG will eventually offer additional tools targeted at larger enterprises.

 The MDG divides its projects into four areas:

■ Tools such as a command-line interface (CLI), a hybrid between a build-tool like
make and a package manager such as the node package manager npm, that takes
care of entire build flows that prepare an application to deploy for the web or
mobile devices

■ A collection of software libraries, a suite of core packages that provide functional-
ity that can also be extended with custom packages or Node.js modules installed
via npm

■ Standards like the Distributed Data Protocol (DDP), a WebSocket-based data
protocol

■ Services such as an official package server or a build farm

All of Meteor’s projects are accessible using a unified API so that developers don’t
need to know which components make up the entire Meteor stack.

1.1.2 The Meteor stack

Simply put, Meteor is an open source platform for creating rich web applications
entirely in JavaScript. It bundles and provides all required pieces under one umbrella.
It consists of Node.js, MongoDB, the actual application code, and a powerful CLI tool
that combines the power of npm and make. As such, it’s more than a combination of
server processes and libraries. Some like to refer to it as an entire ecosystem rather
than a framework. But even if it goes beyond what other web frameworks offer, at its
core it still relies on a stack to run applications.

 The Meteor stack (see figure 1.1) is a member of the MEAN family, which means
it’s powered by Node.js on the server side. Node.js is an event-driven, highly scalable

1 https://www.meteor.com/blog/2011/12/01/first-preview
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

https://www.meteor.com/blog/2011/12/01/first-preview
http://www.allitebooks.org

6 CHAPTER 1 A better way to build apps
runtime for JavaScript on the server. It serves the same purpose as an Apache web
server in the LAMP (Linux, Apache, MySQL, PHP) stack.

 All data is typically stored inside a MongoDB, a document-oriented NoSQL data-
base. There are plans for Meteor to support other (SQL-based) database systems, but
currently the only suggested database is Mongo. It provides a JavaScript API that gives
access to all stored content in the form of documents or objects. The same language
used inside the browser can be used to access data, which Meteor takes advantage of
to implement true full-stack development.

 All software and libraries required to create web applications from scratch are bun-
dled in the shape of smart packages, so developers can get started right away. These
packages include a reactive UI library (Blaze), user account management (accounts),
and a library for transparent reactive programming (Tracker).

 The Meteor CLI tool allows developers to quickly set up an entire development
environment. There’s no need to know how to install or configure any server software;
Meteor takes care of the infrastructure aspect entirely. It’s also both a build tool, com-
parable to make or grunt, and a package manager, such as apt or npm. For example, it
can compile preprocessor languages such as LESS or CoffeeScript on the fly, without
first setting up workflow, or add authentication via Facebook OAuth with a single com-
mand. Finally, the CLI tool bundles an application to run on different client plat-
forms, inside a web browser or as native mobile apps.

Applications can take advantage
of many packages that provide
functionality, such as OAuth logins,
reactive UIs, and request routing.

The CLI tool manages
the build process,
package management,
app deployment, and
other common tasks.

Server

Browser

Mobile

CLI tool

The same codebase is used
to deploy applications to the
web and mobile devices.

MongoDB

Node.js

Application code

App
Hybrid

app

Node.js is an event-driven,
highly scalable runtime
environment for JavaScript
on the server.

MongoDB is the default database
for Meteor. As a NoSQL database
it stores documents rather
than tables.

Figure 1.1 The Meteor stack runs applications powered by smart packages on top of Node.js and
MongoDB.
Licensed to Mark Watson <nordickan@gmail.com>

7Introducing Meteor
 All parts of the stack integrate seamlessly; all core packages are designed and
tested to work well together. On the other hand, it’s entirely possible to switch out
parts of the stack for others, should the need arise. Instead of using Meteor in full, you
could decide to use only the server components and use, for example, Angular.js on
the client side, or use a Java back end that uses Meteor on the front end to provide
real-time updates to all clients.

1.1.3 Isomorphic frameworks: full-stack JavaScript

Meteor runs on top of Node.js and moves the application logic to the browser, which
is often referred to as single-page applications. The same language is used across the
entire stack, which makes Meteor an isomorphic platform. As a result, the same
JavaScript code can be used on the server, the client, and even in the database.

 Although many frameworks use the same language on both client and server, most
of the time they can’t share code between the two instances because the frameworks
aren’t tightly integrated—for example, they use Angular on the front end and Express.js
on the back end. Meteor is truly full-stack because it uses a simple and unified API that
exposes all core functionality and can be used on the server, in the browser, and even to
access the database. To get started you don’t have to learn multiple frameworks, and it
results in much better reusability of the code than only using the same language.

 To allow you to access the database from the browser, Meteor includes mini-databases.
They simulate the exact same API of a database. Inside the browser, Minimongo allows
developers to use the same commands as they would in a MongoDB console.

 All Meteor applications run on top of Node.js, a server that interprets application
code written in JavaScript. In contrast to many other application servers, it uses only a
single thread. In multithreaded environments, a single thread that writes to disk may
block all other threads and put all further client requests on hold until a write opera-
tion finishes. Node.js, on the other hand, is able to queue all write requests and con-
tinue taking and processing requests, effectively avoiding race conditions (that is, two
operations trying to update the same data simultaneously). The application code runs
in sequence from top to bottom, or synchronously.

 Long-running operations such as I/O to disk or database may be split off from the
synchronous sequence. They’ll be processed in an asynchronous way. Node.js doesn’t
wait until these finish, but it attaches a callback and revisits the results of an operation
once it finishes, meanwhile working on the next requests in line. To better understand
synchronous and asynchronous events, let’s consider a familiar programming sce-
nario: heating up a frozen pizza.

 Figure 1.2 details all the steps required to prepare food from the freezer. Each step
is an event, albeit a pretty small one in our lives. Every event that requires our atten-
tion takes place in a synchronous stream of events: we take the pizza from the freezer,
unwrap it, preheat the oven, put the pizza in, and set an alarm. That’s the point
when we actually branch off a subprocess. At its core, cooking the pizza in the oven is
a long-running I/O process. We set the alarm to be notified when it’s done so we can
Licensed to Mark Watson <nordickan@gmail.com>

8 CHAPTER 1 A better way to build apps
attend to more important matters, like learning Meteor. When the alarm goes off, it
calls our attention and puts the result of the subprocess back in our synchronous flow.
We can take the pizza out and move on.

 As you can see from this example, cooking the pizza doesn’t block your flow. But if
your colleague also wants a pizza and you have room for only one inside the oven,
he’ll need to queue his request—this effectively blocks all others in the office from
heating up their pizza.

 In Node.js the synchronous flow takes place as long as the server runs. It’s called
the event loop. Figure 1.3 shows how the event loop deals with processing user requests.
It takes one event at a time from a queue. The associated code is executed, and when
it finishes, the next event is pulled into the loop. But some events may be offloaded to
a thread pool—for example, operations writing to disk or database. Once the write
operation is finished, a callback function will be executed that returns the result of
the operation back into the event loop.

Asynchronous subprocess

Callback

Take pizza

out
Learn Meteor

Cook pizza

Set

alarm

Put pizza

in oven

Preheat

oven

Unwrap

pizza

Take pizza

from fridge

Synchronous flow

Figure 1.2 Synchronous and asynchronous events when heating up a pizza

Node.js

event loop

Callback

Single-threaded

processing

Split off to a

child process

Event queue

Event

Event

Event

Event

…

Disk

Network

Process

…

Thread pool

Figure 1.3 The Node.js event loop
Licensed to Mark Watson <nordickan@gmail.com>

9Introducing Meteor
Typically, developers need to know how to write code that takes full advantage of the
event loop and which functions run synchronously and which asynchronously. The
more asynchronous functionality is used, the more callbacks are involved and things
can become quite messy.

 Fortunately, Meteor leverages the full power of the event loop, but it makes it easy
because you don’t have to worry so much about writing asynchronous code. It uses a
concept called fibers behind the scenes. Fibers provide an abstraction layer for the event
loop that executes asynchronous functions (tasks) in sequence. It removes the need
for explicit callbacks so that a familiar synchronous style can be used.

1.1.4 Processing in the browser: running on distributed platforms

When using a back end running a Java, PHP, or Rails application, processing takes place
far away from the user. Clients request data by calling a URI. In response, the application
fetches data from a database, performs some processing to create HTML, and sends the
results to a client. The more clients request the same information, the more caching can
be done by the server. News sites work particularly well with this paradigm.

 In a scenario where each user has the means to create highly individualized views,
a single processing instance can quickly become a bottleneck. Consider Facebook as
an example: no two people will ever see the exact same wall—it needs to be computed
for each user individually. That puts a lot of stress on the servers while clients idle
most of the time, waiting for a response.

 When the processing power of clients was relatively limited this made perfect
sense, but these days a single iPhone already has more computing power than most
supercomputers in the early days of the web. Meteor takes advantage of that power
and delegates most of the processing to the clients. Smart front ends request data
from the server and assemble the Document Object Model (DOM) only in the browser
or mobile device (see figure 1.4).

Browser User

Traditional

web applications

Server

Data Presentation

<html>

Shirts

Shoes

Sweaters

</html>

DB Processing DOM

Browser User

Modern rich

web applications

Server

Data

[{ name: "Shirts"},

{ name: "Shoes"},

{ name: "Sweaters"}]

DB Processing DOM

Figure 1.4 The difference between traditional and modern rich web applications
Licensed to Mark Watson <nordickan@gmail.com>

10 CHAPTER 1 A better way to build apps
This client-centric approach brings two significant advantages:

■ Less data needs to be transferred between server and client, which essentially
translates into quicker response times.

■ Processing is less likely to be blocked by other users due to long-running requests,
because most of the work is done on each individual client.

Traditional client-server architectures are based on stateless connections. Clients
request data once, the server responds, and the connection is closed again. Updates
from other clients may happen, but unless users explicitly make a server request
again, they won’t see the updates but an historic snapshot of the site. There’s no feed-
back channel from the server to the client to push out updated content.

 Imagine you open your local movie theater’s site and see only two seats are left to
the new Joss Whedon movie premiere. While you debate whether you should go,
someone else buys these tickets. Your browser keeps telling you two seats are available
until you decide to click again, only to find out that the tickets are gone. Bummer.

 Moving the processing from a single server to multiple clients involves moving into
the direction of distributed computing platforms. In such distributed environments,
data needs to be sent in both directions. In Meteor, the browser is a smart client. Con-
nections aren’t stateless anymore; the server may send data to the client whenever
there are updates to subscribed content. Figure 1.5 shows the various architectures.
To allow bidirectional communication between server and client, Meteor uses Web-
Sockets. A standardized protocol named Distributed Data Protocol (DDP) is used to
exchange messages. DDP is simple to use and can be used with many other program-
ming languages like PHP or Java as well.

 As a consequence of moving applications to the browser, all clients essentially
become nodes of an application cluster. This introduces new challenges already

Database Database

Server

Traditional client-server architecture Distributed application platform

Client

Client

Smart

client

Smart

clientServer

• Updates to the browser only happen

when clients request new content.

• Changes made by other clients are

only visible when requests take place.

• The server may push updated content

to all connected clients.

• Changes made by one client trigger the

server to actively update all clients.

Database

Database

Figure 1.5 Traditional client-server architectures compared to distributed application platforms
Licensed to Mark Watson <nordickan@gmail.com>

11Introducing Meteor
familiar from distributed server farms, most importantly synchronizing data between
all nodes. Meteor takes care of this by means of its reactive nature.

1.1.5 Reactive programming

Applications created by traditional programming paradigms are much like a golem1

you sent off with a plan. No matter what happens, the golem will keep walking and fol-
lowing directions. As its creator, you must be diligent about each and every step you
command. For example, in an application you must define that you want to listen to
changes to a drop-down element and what actions to take when a new value is
selected. Also, you need to define what the application should do if another user has
meanwhile deleted the associated entry while the first wants to display its contents. In
other words, traditional programming hardly reacts to the world but follows orders
given to it in code.

 The real world happens to be slightly different. Especially on the web, a lot of
events happen and the more complex usage scenarios get, the harder it is to foresee
in which sequence events will occur.

 In a desktop environment reactivity is the norm. When you use a Microsoft Excel
spreadsheet and change the value in one cell, all other values depending on it will
automatically recalculate. Even charts will be adjusted without the need to click refresh.
An event, such as changing a cell, triggers reactions in related parts of the sheet. All
cells are reactive.

 To illustrate how reactivity differs from procedural programming, let’s look at a
simple example. We have two variables: a and b. We’ll store the result of adding a and
b in a variable called c using the procedural way of doing things. With actual values, it
looks like this:

a = 2;
b = 5;
c = a + b;

The value of c is now 7. What happens if we change the value of a to 5? c won’t change
unless we explicitly call the addition code again. A developer therefore needs to
include a checking method to observe whether a or b has changed. In a reactive
approach, the value of c will automatically be set to 10 because the underlying engine
is taking care of observing change. There’s no need to periodically check that neither
a nor b has changed or even explicitly initiating recalculations. The focus is on what
the system should do and not how to do it.

 In a web environment, achieving the Excel effect can be achieved in various ways.
Using poll and diff, you could check for changes every two seconds. In scenarios
where a lot of users are involved and little change happens, this puts a lot of stress on

1 A golem is a mythical creature. Usually made from clay, it’s magically brought to life and carries out its
master’s wishes to the letter. Terry Pratchett’s Feet of Clay is a good first introduction if you’re a fan of
the fantastic.
Licensed to Mark Watson <nordickan@gmail.com>

12 CHAPTER 1 A better way to build apps
all components involved and is extremely ineffective. Increasing the polling interval
makes the UI appear slow and sluggish. Alternatively, you can monitor all possible
events and define actions writing a lot of code to mimic the desktop behavior. This
option becomes a maintenance nightmare when you need to update various elements
in the DOM, even if each event fires only a handful of update operations. A reactive
environment offers a third option that enables low-latency UIs with concise, maintain-
able code.

 Reactive systems need to react to events, load, failure, and users.1 To do so, they
must be nonblocking and asynchronous. Remember when we talked about full-stack
JavaScript? Then you’ll notice that reactivity and JavaScript are a natural fit. Also we
discussed that Meteor applications run distributed and that the server isn’t the only
instance responsible for creating a user’s view. Load can still be scaled across multiple
servers, but it also scales across each client. Should one of these clients ever fail, it
doesn’t bring down the entire application.

 Although you can still build a less-than-optimal system by not taking into account
the principles of reactive systems, reactivity is built into the core of Meteor. You don’t
have to worry about learning a new programming style; you can continue to use the
same synchronous style you’re used to. In many cases Meteor automatically hooks up
reactivity without you even noticing it.

 All components, from the database to the client UI, are reactive. This means all
changes to data are synchronized between clients in real time. There’s no need to
write any Ajax routines or code to push updates to users because this functionality is
directly built into Meteor. Also, it effectively removes the need to write most of the
glue code when integrating different components, thereby shortening development
times significantly.

 Reactive programming certainly isn’t the best approach for every scenario, but it fits
perfectly into the way web applications work because in most cases we need to capture
events and perform actions on it. Beyond the user experience, it can help improve qual-
ity and transparency, reduce programming time, and decrease maintenance.

1.2 How Meteor works
Once deployed on a server, Meteor applications can hardly be told apart from other
Node.js-based projects. The platform’s real strength comes to light when you look
closely at how Meteor supplements the development process. A CLI tool and a collec-
tion of packages enable developers to quickly achieve results and focus on adding
functionality to an application. Infrastructure concerns such as data exchange
between database and browser or integrating user authentication via external OAuth
providers are taken care of by adding packages.

1 The reactive manifesto defines how reactive systems should be designed and behave in production environ-
ments; see www.reactivemanifesto.org.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.reactivemanifesto.org

13How Meteor works
Figure 1.6 shows the anatomy of Meteor applications. Developers define business logic
that consists of code, templates and styles, and assets such as image files. Meteor can
leverage the power of external packages from the Node.js ecosystem via npm and Cor-
dova for mobile devices. Additionally, it defines its own package format called Isopacks.

 Isopacks are designed to work in both server and client environments and may also
contain templates and images. They may even extend Isobuild, the build process that
outputs deployable code for all targeted platforms. Isobuild and Isopacks are Meteor’s
core ingredients.

 Meteor applications communicate over both HTTP and WebSockets (see figure 1.7).
The initial page request and all static files such as images, fonts, styles, and JavaScript
files are transferred over HTTP. The applications running on client and server rely on
the DDP protocol to exchange data. SockJS provides the necessary infrastructure. The
client calls methods on the server using remote procedure calls. The client is calling a
function over the network. The server sends back its responses as JavaScript Object
Notation (JSON) objects. Furthermore, each client may subscribe to certain data pub-
lications. The Livequery component takes care of pushing out any changes to a sub-
scribed dataset over DDP as well. The reactive Tracker library watches for those
changes and triggers DOM updates in the UI layer via Blaze.

cordova-plugin-camera

cordova-plugin-battery

Isobuild

Business logic

Code

Blaze

Tracker

DDP

Livequery

Full stack DB drivers

…

Styles

Templates

Assets

cordova-plugin-camera

cordova-plugin-battery

Application

A single codebase for all deployment targets

Server

Mobile devices

Browser

Cordova packages

Fibers

NPM packages

Isopacks

Figure 1.6 Applications consist of business logic and various packages, which are compiled for the
target platform using Isobuild.
Licensed to Mark Watson <nordickan@gmail.com>

14 CHAPTER 1 A better way to build apps
1.2.1 Core projects

Meteor ships with a number of packages that provide commonly used functionality for
web-based applications. A CLI tool allows you to create a new project and add or remove
packages with a single command. New projects contain all core packages already.

BLAZE

Blaze is a reactive UI library, and one of its parts is the templating language Spacebars.
Because developers usually (only) interact with the front-end lib via the templating
language and Spacebars is relatively easy to use (in comparison to other templating
languages), Blaze is simpler to use than React, Angular, or Ember.

 The official documentation describes Blaze as a “reactive jQuery,” a powerful library
to update the DOM. But it doesn’t follow the same imperative style jQuery uses (“find
element #user-list and add a new li node!”), but a declarative approach (“render all
usernames from the DB in this list using templates users!”). When content changes,
Blaze re-renders only small fragments inside a template and not the entire page. It also
plays nicely with other UI libraries such as jQuery-UI or even Angular.

TRACKER

The Tracker package provides the fundamentals of functional reactive programming
(FRP). At its core Tracker is a simple convention that allows reactive data sources, such

Static after assets HTML, JS, CSS, JPG,

PNG, etc.

Remote procedure calls

Initial page request

Data subscriptions

The initial request and all static
resources are transferred via HTTP.

Clients call server functions
via DDP over WebSockets,
and the server returns
data as JSON objects.

Livequery watches for
changes and pushes data
to all subscribed clients.

Tracker triggers reactive
updates, e.g., in the UI
powered by Blaze.

Database

Server Client

App

Livequery

MiniDB

App

Tracker

Blaze

Figure 1.7 Communication between the server and client
Licensed to Mark Watson <nordickan@gmail.com>

15How Meteor works
as data from the database, to be connected to data consumers. Remember this code
from section 1.1.5:

c = a + b

a and b are reactive data sources, and c is the consumer. A change to either a or b trig-
gers a recomputation of c. Tracker achieves reactivity by setting up a reactive context
with dependencies between data and functions, invalidating the given context when-
ever data changes and reexecuting functions.

DDP
Accessing web applications is usually done over HTTP, which by definition is a proto-
col for exchanging documents. Although it does have advantages for transferring
documents, HTTP has several shortcomings when passing data only, so Meteor uses a
dedicated protocol based on JSON called DDP. DDP is a standard way to pass data over
WebSockets bidirectionally, without the overhead of encapsulating documents. This
protocol is the foundation for all reactive functionality and is one of the core elements
of Meteor.

 DDP is a standard approach to solving the biggest problem facing client-side
JavaScript developers: querying a server-side database, sending the results down to the
client, and then pushing changes to the client whenever anything changes in the data-
base. DDP implementations are available in most major languages like Java, Python, or
Objective-C. This means you can use Meteor just as a front-end component for an
application and use a Java back end to communicate with it via DDP.

LIVEQUERY

Distributed environments like Meteor need a way to push changes initiated by one cli-
ent to all others without needing a refresh button. Livequery detects changes in the
database and pushes all changes out to the clients currently viewing affected data. At
1.0 Meteor is tightly integrated with MongoDB, but additional databases support is
already on the roadmap.

FULL-STACK DATABASE DRIVERS

Many of the tasks performed on a client rely on database functionality, like filtering
and sorting. Meteor leverages a seamless database everywhere principle. This means as a
developer you can reuse most of your code anywhere in the stack.

 Meteor comes with mini-databases that simulate an actual database inside the
browser. The miniature database for MongoDB is called Minimongo, an in-memory,
nonpersistent implementation of MongoDB in pure JavaScript. It doesn’t rely on
HTML5 Local Storage because it exists only in the browser’s memory.

 The in-browser database mirrors a subset of the actual server data and is used to
simulate actions like inserts. It’s also used as a cache for queries, so a client can
directly access available data without any network activity. Because the connection
between Minimongo and MongoDB is also reactive, the data is automatically kept
in sync.
Licensed to Mark Watson <nordickan@gmail.com>

16 CHAPTER 1 A better way to build apps
 Latency is a key differentiating factor between desktop applications and the web.
Nobody likes to wait, so Meteor uses prefetching and model simulation on the client
to make it look like your app has a zero-latency connection to the database. The local
Minimongo instance will be used to simulate any database operations before sending
requests to the server.

 The client doesn’t have to wait for the remote database to finish writing, but the
application assumes it’ll eventually be successful, which roughly makes the vast major-
ity of all use cases seem much quicker. In those cases where problems occurred when
passing the write action to the server, the client needs to roll back gracefully and dis-
play an error message.

 A typical flow of events is shown in figure 1.8. Once a user publishes a comment,
it’ll be validated first and then immediately stored in the Minimongo database in the
browser. Unless validation fails, this operation will be successful and the user’s view
will be updated immediately. Because up to this point no network traffic is involved
and all actions take place in memory, the user will experience no latency. In the back-
ground, though, the action is still ongoing.

 The comment gets sent to the server, where again validations take place, and after-
ward the comment is stored in the database. A notification is sent to the browser indi-
cating whether the storing operation was successful. At this point, at least one full
server round-trip together with some disk I/O took place, but those have no impact on
the user experience. From a user’s perspective there’s no delay in updating the view
because latency compensation already took care of any updates in the fourth step.
Eventually the comment gets published to all other clients as well.

Potentially unsafe content

is sent to the server.

Database

Server Client

App

Livequery

MiniDB

App

5. Call method to

store comment

6. Validate data 2. Validate data
1. Submit

comment

4. Update

view

7. Store to DB

3. Simulate

storing to DB

8. Confirm success
Tracker

Blaze

Figure 1.8 Data flow using latency compensation
Licensed to Mark Watson <nordickan@gmail.com>

17How Meteor works
ADDITIONAL PACKAGES

Besides the core packages many more packages are available as part of Meteor and are
provided by the development community. They include functionality to easily inte-
grate users and OAuth authentication via Twitter, GitHub, and others.

1.2.2 Isobuild and the CLI tool

On a computer with a Meteor installation, entering meteor on the command line will
bring up the CLI tool. This tool is both a build tool comparable to make or grunt and
a package manager such as apt or npm. It enables you to manage all tasks concerning
your application:

■ Create new applications
■ Add and remove functionality in form of packages
■ Compile and minify scripts and styles
■ Run, reset, and monitor applications
■ Access MongoDB shell
■ Prepare an application for deployment
■ Deploy applications to the meteor.com infrastructure

Creating a new project is a single command upon which the CLI tool creates all essen-
tial files and folder structures for a simple application. A second command starts a
complete development stack, including a Node.js server and a MongoDB instance to
enable a fully working development. Any file changes are monitored and directly sent
to the clients in the form of hot code pushes so that you can fully focus on writing
code instead of starting and restarting servers.

 When starting a development instance or getting ready for production, Meteor
gathers all source files, compiles and minifies code and styles, creates source maps,
and takes care of any package dependencies. As such, it combines the power of grunt
with npm.

 There’s no need to define processing chains if you use LESS instead of plain CSS;
all it takes is to add the corresponding Isopack. All *.less files will automatically be
processed by Meteor:

$ meteor add less

Add the coffeescript package to enable compiling from CoffeeScript to JavaScript.

1.2.3 Client code vs. server code

When you begin working with Meteor, you’ll find that knowing which code should be
executed in which environment is essential to writing applications. Theoretically all
code can run anywhere in the stack, but some limitations exist. API keys should never
be sent to the client—event maps that handle mouse clicks aren’t useful on the server.
To let Meteor know where to execute specific code, you can organize files in dedi-
cated folders or use a check to verify in which context they’re running.
Licensed to Mark Watson <nordickan@gmail.com>

18 CHAPTER 1 A better way to build apps
As an example, all code that handles mouse events might be placed inside a folder
named client. Also, all HTML and CSS files won’t be needed on the server side, which
is why they’ll also be found inside the client folder. Access credentials to a mail server
or API secret keys must never be sent to the client—they’ll be kept exclusively on the
server (see figure 1.9).

 All content from the server folder will never be sent to the client. To avoid redun-
dancies, shared code can be saved to a file inside the shared folders such as lib, and it
becomes available in both contexts. You can easily use front-end libraries like jQuery
on the server as well.

 Sharing code between both instances is especially helpful when it comes to input
validation. The same method to validate that a user entered a correct credit card num-
ber can be used to display an error message in the browser and again on the server
side to prevent inserting faulty data to the database on the server. Without Meteor
you’d have to define one method in JavaScript for validation in the browser and
another method in your server context because everything coming from the browser
must be validated before working with it to establish a certain level of security. If your
back end is written in a language like Ruby, PHP, or Java, not only is there redundant
code, but also the same task needs to be done twice. Even if using JavaScript on the
server side in other frameworks you’d need to copy and paste the validation section to
a file on the server and a second file on the client. Meteor removes this need by pro-
cessing the same file on both ends.

 During the initial page load all JavaScript, styles, and static assets like images or fonts
are transferred to the client.1 As figure 1.10 shows, all files are available on the server but
aren’t executed as part of the application. Similarly, not all files are sent to the client, so
developers can have better control over which code runs in which environment. Trans-
ferring files is done via HTTP, which is also used as a fallback for browsers that don’t sup-
port WebSockets. After the initial page load, only data is exchanged via DDP.

1 Technically, all JavaScript files are combined into a single app.js file, but for better traceability individual files
illustrate the information flow.

Sent to the browser

Processed on the server

Figure 1.9 The file structure for a simple application
Licensed to Mark Watson <nordickan@gmail.com>

19Strengths and weaknesses
1.3 Strengths and weaknesses
As with any tool there are situations when Meteor will be a perfect fit, but there will
always be scenarios in which using it might be a poor choice. Generally speaking,
any application based on the principles of distributed application platforms will
greatly benefit from using it, whereas the more static a site is, the less you’ll gain
from using Meteor.

1.3.1 Where Meteor shines
The Meteor platform offers all the tools required to build applications for different
platforms—the web or mobile. It’s a one-stop shop for developers and makes it much
simpler to get started with than most other frameworks. The main advantages of
Meteor are a single language across the entire stack, built-in reactivity, and a thriving
ecosystem of packages to extend existing functionality. In summary, this translates to
development speed.

 Having one language across the entire application stack, a protocol that’s designed
for data exchange, and simple unified APIs removes the need for additional JavaScript
frameworks such as AngularJS or Backbone that talk to sophisticated REST back ends.
That makes Meteor extremely well suited for projects that require fast results while
still meeting high user expectations.

EASY TO LEARN

Quickly achieving visible results is one of the best motivators for learners. Meteor
leverages the power of the MEAN stack, which may be very powerful but also rather

App

Server Client

App

Transfer files
via HTTP.

Database MiniDB

All application files are stored
on the server but not all are
executed as part of the app.

Only client files are
transferred and executed
in the app context.

Figure 1.10 Data exchange between server and client via HTTP and DDP
Licensed to Mark Watson <nordickan@gmail.com>

20 CHAPTER 1 A better way to build apps
complex to learn. To increase developer productivity, Meteor exposes this power
behind one common JavaScript API. New developers don’t have to take a deep dive
into the specifics of loosely coupled front-end libraries and back-end frameworks
before they can achieve results. Knowing the fundamentals of JavaScript is sufficient
to get started.

 Meteor’s common API also makes it easier to work with the Node.js event loop by
allowing developers to write synchronous code instead of worrying about nested call-
back structures. Existing knowledge can be reused, because familiar libraries like jQuery
or Underscore are part of the stack.

CLIENT-SIDE APPLICATIONS

With increasingly powerful clients, much of the application can be executed on the cli-
ent instead of the server. This gives us two main benefits that are also valid for Meteor:

■ Less load on the server as clients perform some of the processing
■ Better responsiveness of actions in the user interface

To efficiently promote browsers to smart clients, it’s important to provide a two-way com-
munication infrastructure so that the server may push changes out to the client. With
DDP, Meteor provides not only a transport layer but a full solution for communicating in
both directions. These stateless connections are a core feature of the platform, and
developers can take advantage of them without worrying about message formats.

INSTANT UPDATES USING REACTIVE PROGRAMMING

Much of an application’s code is about handling events. Users clicking certain ele-
ments may trigger a function that updates documents inside the database and updates
the current view. When using reactive programming, the code you need to write for
handling events is reduced. Massive collaboration that consists of hundreds of events
becomes much more manageable. For that reason, Meteor is especially suited for real-
time chats and online games or even to power the Internet of Things.

HIGH CODE REUSE

Meteor delivers on the old Java promise: write once, run anywhere. Because of the iso-
morphic nature of Meteor, the same code may run inside the browser, on the server,
or even on a mobile device.

 For example, in REST architectures the back end must talk to the database in SQL
while the clients expect JSON. Taking advantage of in-browser mini-databases, the
server can publish a handful of records to a client, which in turn accesses this data as if
it were in a real database. That enables powerful latency compensation with minimal
coding requirements.

POWERFUL BUILD TOOLS

Out of the box, Meteor offers a CLI tool that acts as a package and build manager. It
covers the entire build process, from gathering and compiling of source files to minifi-
cation, source mapping, and resolving of dependencies. This Isobuild tool optimizes
an application for the web or packages it as a mobile Android or iOS app.
Licensed to Mark Watson <nordickan@gmail.com>

21Strengths and weaknesses
1.3.2 Challenges when using Meteor

Although you can use Meteor to build any type of site, in some situations it’s best to
use alternatives. Given its relatively young age and positioning, you may encounter
certain challenges when working with Meteor.

PROCESSING INTENSE APPLICATIONS

Especially when your application relies on heavy processing such as data-crunching
extract, transform, and load (ETL) jobs, Meteor won’t be able to handle the load well.
By nature, any Node.js process is single-threaded, so it’s much harder to take advan-
tage of fast multiprocessor capabilities. In a multitier architecture, Meteor could be
used to serve the UI, but it doesn’t offer a lot of computing power.

 The way to integrate more processing power into a Meteor application is similar to
any other Node.js application: you delegate CPU-intense tasks to child processes. But
this is also a best-practice architecture for any language, where multiple tiers are used
to separate the number crunching from the user interface.

MATURITY

Meteor is relatively young and still has to prove itself in production environments in
regard to scaling or search engine rankings. Scaling applications in particular requires
a lot of knowledge about the components involved and possible bottlenecks.

 Although Node.js has proven that it’s capable of scaling to large loads, Meteor still
has to show it can handle large deployments and a high number of requests. Conser-
vative users might argue that it’s safer to rely on an established foundation. Just keep
in mind that any server stack and framework is likely to be slow if the application isn’t
written with scalability and performance in mind.

 Even if the Meteor community is friendly and helpful, it is in no way comparable
with the huge resources available for PHP or Java. The same goes for hosting options;
there aren’t yet as many dedicated Node.js or Meteor solutions available as for PHP or
even Python. If you plan on hosting your application on your own infrastructure, sev-
eral solutions are available.

 As with all young projects, the number of tools available around the framework
itself is rather limited with Meteor as of now. Velocity is a community-driven effort to
create a testing framework, which has active developers but isn’t part of the core
Meteor projects. Also, debugging tools aren’t as convenient as the ones available for
Java or PHP.

FEW CONVENTIONS ON STRUCTURE

There are only few suggestions for structuring applications and code in Meteor. This
freedom is great for single developers who can quickly hack on code, but it requires
good coordination between team members when applications grow in size. It’s up to
developers’ preference whether they use a single file or hundreds of folders and files.
Some may embrace this freedom; others will find it necessary to define clear struc-
tures before being able to start coding.
Licensed to Mark Watson <nordickan@gmail.com>

22 CHAPTER 1 A better way to build apps
USING SQL AND ALTERNATIVE DATABASES

The roadmap shows that someday Meteor will support SQL databases, but for now the
only officially supported database is MongoDB. To use additional systems like MySQL
or PostgreSQL, community packages must be used. Although several community
members have successfully launched applications backed by SQL databases, no full-
stack support exists for latency compensation and transparent client-to-server updates.
If you need a rock-solid and fully supported stack with relational data high on your
priority list, then Meteor is not yet for you.

SERVING STATIC CONTENT

Some sites like newspapers and magazines rely heavily on static content. Those are the
sites that profit most from server-rendered HTML and can use advanced caching
mechanisms that speed up the site for all users. Also, the initial loading times are
much faster.

 If initial loading times are important to your app, or it serves mostly the same con-
tent for a large number of users, you won’t be able to leverage all the advantages of
Meteor. In fact, you’ll need to find ways to work around its standard behavior to opti-
mize for your use case and you therefore might want to use a more traditional frame-
work to build your site.

Who is using Meteor? (From the horse’s mouth)
Despite its young history, Meteor is already powering many successful projects and
even entire companies.

Adrian Lanning’s Share911.com was one of the early adopters to the Meteor plat-
form. In case of an emergency, the application enables you to simultaneously alert
the people you work with as well as public safety personnel. The main criterion for
picking a technology was speed—both in real-time behavior as well as development
time. Adrian researched the event-driven technologies Netty (Java), Tornado (Python),
and Node.js. After further evaluation of Tower and Derby.js, he decided to develop a
prototype using Meteor, which took less than 10 days.

Happily, Meteor has been solid and we haven’t needed to make a change. We
have included other technologies but I am confident Meteor will be the core web
tier for us for a long time.

 —Adrian Lanning

Workpop.com provides a job platform for hiring hourly-wage workers. With a team
of only two developers and just five months’ time, CTO Ben Berman managed to
create a modern take on what job boards on the internet should look like. Over $7
million in funding prove that their decision to go with Meteor has paid off. Workpop’s
philosophy is to keep technology out of the way and focus on their goal of getting
people hired. Although very performant, both Spring (Java) and ASP.net were found
Licensed to Mark Watson <nordickan@gmail.com>

23Strengths and weaknesses
to be too intensive, and even Rails was dismissed because it encourages building
RESTful applications.

By sticking to familiar JavaScript and shipping with the best reactive UI kit on the
web, Meteor delivers on its promise of rapid iteration for small teams.

—Ben Berman

With lookback.io, it’s possible to record mobile user experiences and get insight
into how people use your application at the push of a button. The initial version was
built using Django, but lead developer Carl Littke switched to Meteor soon after.
Achieving the same results using Django, Angular, and the associated REST APIs
turned out to be a much more complex task than relying on Meteor’s built-in reac-
tivity, data APIs, and login. Speed of development was the most important aspect
when choosing Meteor. This also made up for the areas where Meteor’s young age
is still showing.

The Meteor Development Group has done an exceptional job of developing a
framework that solves some of the major pain points of developing web apps
today. I wouldn’t think twice about using Meteor for my next project.

—Carl Littke

Sara Hicks and Aaron Judd created the open source shopping platform ReactionCom-
merce.com. They consider Meteor’s event-driven nature a perfect fit for enhancing
sales using dynamic merchandising and real-time promotions and pricing. Having a
single codebase for the web and mobile devices was a big plus. Meteor isn’t the only
technology used for the Reaction platform, but it forms the foundation. Additional
libraries are added into the project, thanks to the support for all Node.js packages
via npm.

Slow speed can cost retailers as much as 13 percent of sales. Thanks to Meteor’s
latency compensation the screen will redraw right away. This translates into hap-
pier customers and better sales figures.

 —Sara Hicks

Sacha Greif created the popular Hacker News clone Telescope. When looking for the
right stack, he narrowed his choices down to Rails and Node.js. With Rails he was
worried about managing a large number of moving parts with hundreds of files and
gems, and as a designer, he was already familiar with JavaScript. He made the deci-
sion for Meteor in 2012 despite its still limited feature set at that time. Today Tele-
scope is powering sites like crater.io (news about Meteor) and bootstrappers.io (a
community for bootstrapped entrepreneurs).

What really appealed to me was the all-in-one aspect: all these things that
required piecing together multiple solutions with other frameworks were provided
out of the box with Meteor.

 —Sacha Greif
Licensed to Mark Watson <nordickan@gmail.com>

24 CHAPTER 1 A better way to build apps
1.4 Creating new applications
We’ve discussed a lot of theory; now it’s time to look at the code. Before you proceed,
make sure you’ve installed Meteor on your machine. Refer to appendix A to guide you
through the process.

 Because Meteor is also a CLI tool, we’ll need to perform the initial setup of our
application in a shell environment. This allows us to install the framework and create
new applications. All the steps in this section will be performed inside a terminal.

1.4.1 Setting up a new project

When Meteor is installed, the CLI tool is used to create a new project. Navigate to the
folder you want to contain your application and type the following into the terminal
(see figure 1.11):

$ meteor create helloWorld

Meteor creates a new project folder and three files automatically:

■ helloWorld.css contains all styling information.
■ helloWorld.html contains all templates.
■ helloWorld.js contains the actual logic.

NOTE Every project contains an invisible folder, .meteor (see figure 1.11),
where runtime files such as the development database, compiled files, meta-
information regarding used packages, and other automatically generated
content goes. For development purposes, we can ignore this folder.

Figure 1.11 A basic
Meteor application created
with the Meteor CLI tool
Licensed to Mark Watson <nordickan@gmail.com>

25Dissecting the default project
You can now start creating your own application by changing the content of the exist-
ing files. For this project the three files will suffice, but for any other project that’s
even a little more complex, it’s better to create folders and split your code into sepa-
rate files to maintain a better overview. We’ll take a close look at how to structure your
projects in the next chapter.

1.4.2 Starting the application

The CLI tool of Meteor also starts the application with the following command:

$ meteor run

You can also start a Meteor server by calling the meteor command without any argu-
ments; run is the default behavior. Behind the scenes, it starts both a Node.js server
instance on port 3000 as well as a MongoDB listening on port 3001.

 You can access the application with your web browser at http://localhost:3000 (see
figure 1.12).

 Should you need to change the port Meteor is listening on, you can do so by pass-
ing the argument --port to the meteor command. The following command starts
Meteor on port 8080:

$ meteor run --port 8080

As you can see, the application is up and running and it has one button. If you click
the Click Me button, the text below will update automatically, showing you exactly
how many times you’ve clicked it since you loaded the web page. This is because the
application already has an event binding included. Let’s take a closer look at the file
contents and find out how that binding works.

1.5 Dissecting the default project
The helloWorld application at this state is very simple. Because all files are in the root
folder of the project, they’re all executed on the server and sent to the client. Let’s see
what each file does.

Figure 1.12 Every new
Meteor project is a simple
application with a single
button.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://localhost:3000
http://www.allitebooks.org

26 CHAPTER 1 A better way to build apps
1.5.1 helloWorld.css

By default, this file is empty. Because it’s a CSS file, you can use it to store your custom
style information. If you put something into this file, the styles will immediately be
applied to the application. Meteor automatically parses through all files ending with
.css and will send those to the client for you. Try, for example, adding body { back-
ground: red; }. Save the file and you’ll see the background of your application in a
beautiful red color.

1.5.2 helloWorld.html

The file shown in listing 1.1 contains the templates used in our project. Templates
control the overall look and layout of an application. Although the file extension is
.html, the code inside isn’t fully valid HTML as you’d expect.

<head>
 <title>helloWorld</title>
</head>

<body>
 <h1>Welcome to Meteor!</h1>
 {{> hello}}
</body>

<template name="hello">
 <button>Click Me</button>
 <p>You've pressed the button {{counter}} times.</p>
</template>

First, three different elements appear here: an HTML head, an HTML body, and a tem-
plate named hello. As you can see, the opening <html> tag of a valid HTML docu-
ment is missing. Meteor adds it automatically, so you don’t need to worry about it.

 The body consists of only an h1 heading and a placeholder using Handlebars syn-
tax. The curly brackets let you know that you’re dealing with some sort of dynamic
content. The greater-than symbol indicates that another template will be injected into
the document at this position. It’s followed by the name of the template. Therefore,
the placeholder inserts a template named hello into the body element:

{{> hello}}

When starting the server, Meteor parses all files with an .html extension to collect all tem-
plates. It recognizes and manages any references and inclusions. For this to work prop-
erly, every template needs to have an opening <template> and closing </template> tag.
The name attribute is needed to reference a template in order to include it. A template’s
name is case sensitive and must always be unique.

Listing 1.1 helloWorld template

The HTML head

The page’s body, which prints
a heading and imports a
template named “hello”

The actual template
named “hello” counter, a helper

that’s filled
dynamically
Licensed to Mark Watson <nordickan@gmail.com>

27Dissecting the default project
 You also need to be able to reference the template somehow in your JavaScript to
extend it with some functionality, as you’ll see in the helloWorld.js file in the next sec-
tion. Again, the name of the template is used to make that connection.

 Finally, you need a way to inject data from the JavaScript code into the template.
That’s the purpose of {{ counter }}, a so-called helper. Helpers are JavaScript methods
with a return value that’s available to the template. If you look at your browser, you’ll
find that instead of {{ counter }} you can see the number of clicks. Let’s look at the
corresponding code.

1.5.3 helloWorld.js

The JavaScript file of a basic project contains several fundamental concepts of Meteor.
The first snippet we want to show you is this:

if (Meteor.isClient) {
 //...
}

if (Meteor.isServer) {
 //...
}

There are two if statements, both relating to a Boolean variable of the global Meteor
object itself. Remember that all code that you write is available to both the client and
the server unless you apply any restrictions. Being available also means code gets exe-
cuted in both environments. Sometimes, though, you need to specify whether code
should run only on the server or only on the client. By checking for these two attri-
butes of the global Meteor object, you can always find out where you are.

 In any project, the code block in the first if statement will run only if the context
is the client and the code block in the second if statement will run only if the context is
the server.

 You should be aware that the entire code from this file is available on the server
and the client. That means you must never put security-related code (like private API
keys) into an if (Meteor.isServer) block because doing so may send it directly to
the client as well. Anyone opening the source view inside a browser could simply read
the lines of code and with those any security-related information, and you definitely
don’t want this to happen.

NOTE When creating a new project, Meteor puts developer productivity first.
That means initially projects won’t be secure enough to be deployed into pro-
duction. Throughout the book we’ll discuss how to develop production-ready
and secure applications.

Of course, there are simple and standard ways to handle sensitive code, and we’ll
cover this topic in the upcoming chapters when we discuss how to structure a project.
Licensed to Mark Watson <nordickan@gmail.com>

28 CHAPTER 1 A better way to build apps
For now, we’ll only use this single JavaScript file. For simple applications, checking the
current context is good enough.

 The next snippet looks like this:

if (Meteor.isClient) {
 // counter starts at 0
 Session.setDefault("counter", 0);

 Template.hello.helpers({
 counter: function () {
 return Session.get("counter");
 }
 });
//...
}
//...

Here you see two global objects in use: Session and Template. Session allows you to
store key-value pairs in memory. The Template object enables you to access all tem-
plates, which you defined in the HTML file, from your JavaScript files. Because both
objects are only available on the client, they can’t be called on the server. That would
lead to reference errors, which is why this code is wrapped inside the isClient context.

 As long as Session variables aren’t declared, they remain undefined. The Session
.setDefault() command initiates a key-value pair inside the Session object with
the key counter and a value of 0.

 In this snippet you access the hello template defined inside the helloWorld.html
file and extend it with a so-called template helper. This template helper is named counter
and is a function that returns the content of the Session value for the key counter as
a string. Now you see why the hello template is different from what you actually see in
the browser. The template helper in the hello template {{ counter }} is in fact a
function that returns the string that you see in the browser.

 On the one hand, you have templates to define the HTML that should be ren-
dered, and on the other hand, you have template helpers that extend templates and
make it possible to use functions and substitute placeholders with dynamic content.

 Remember what happens when you click the button? This is where event binding
comes in. If you click the button, a click event is fired. This in turn increases the
counter on the page by 1. The following code increases the counter, which is stored
inside the Session object:

if (Meteor.isClient) {
 Template.hello.events({
 'click button': function () {
 // increment the counter when button is clicked
 Session.set("counter", Session.get("counter") + 1);
 }
 });}

Handling mouse clicks is
only useful on the client. Define a function to

call when the input
button is clicked.

Increases the Session
variable by 1
Licensed to Mark Watson <nordickan@gmail.com>

29Summary
Every template has the function events() and with that you can define event handling
for a specific template. The object to pass to the events() function is called an event
map, which is basically a normal key-value JavaScript object where the key always defines
the event to listen to and the value is a function that’s called if the event is fired.

 To specify the event, always use a string in the form 'event target', where the tar-
get is defined by standard CSS selectors. You can easily change the previous example
to use a CSS class or ID to further specify the button. Also note that these events are
only fired in the context of this template. This means any input in a different template
such as clicking on an input element wouldn’t call the function specified here.

 You can go ahead and click the button a couple of times, and you’ll note how
the browser renders your new string. Only the placeholder is updated and not the
entire page.

 Notice that there’s no code involved that updates the template directly; you rely on
the reactive nature of Session. The template helper counter is rerun whenever the
value inside the Session object changes. The event simply changes the data source,
and Meteor takes care that all places that use this value are recomputed instantly.

 The last snippet we’ll look at is this one:

if (Meteor.isServer) {
 Meteor.startup(function () {
 // code to run on server at startup
 });
}

As the comment indicates, you can define a function that should be run at the startup
of your application. You could also call the Meteor.startup function multiple times
and pass different functions in order to run several different functions at the startup
of the application. Meteor.startup can also be used on the client side to run func-
tions at the start of the client-side application. This sample application doesn’t use any
server-side code, so this block and the startup function remain empty.

 Now that you’ve looked at the helloWorld example code and you have a solid
understanding of the basic concepts, you’ll extend these files to develop your own first
Meteor application.

1.6 Summary
In this chapter, you’ve learned that

■ Meteor is a full-stack or isomorphic JavaScript platform, similar to the MEAN
stack.

■ Developers can run the same code only on the server, the client, or in all contexts.
■ Clients are active parts of the application logic, which means Meteor applica-

tions leverage the power of distributed computing environments.
■ Using a standard protocol called DDP, servers and clients communicate via Web-

Sockets instead of HTTP, enabling bidirectional message exchange.
Licensed to Mark Watson <nordickan@gmail.com>

30 CHAPTER 1 A better way to build apps
■ Meteor uses the principle of reactive programming to minimize the need for
infrastructure code.

■ Development productivity is enforced by reusable packages called Isopacks,
which are used to provide common or specialized functionality.

■ One codebase is used to provision HTML apps for the browser or hybrid appli-
cations for mobile devices on iOS, Android, or Firefox OS.
Licensed to Mark Watson <nordickan@gmail.com>

My fridge! A reactive game
In this chapter, you’re going to build your first Meteor application. You could cre-
ate a new project from one of the included example applications, but creating a
small reactive game from scratch gives you a much better understanding of how
things work together. At the end of this chapter, you’ll have written fewer than 60
lines of JavaScript and even less HTML to create a game that stores data to a data-
base and updates all connected clients in real time.

 You’ll see how templates and code work together and include jQuery-UI in
your project. To share your application with the world, you’ll also deploy it to the
meteor.com infrastructure with a single command.

This chapter covers
■ Building a reactive app with Meteor
■ Understanding the basic architecture for

Meteor projects
■ Including jQuery-UI to enable drag-and-drop

interfaces
■ Using the Meteor CLI to deploy to meteor.com
31

Licensed to Mark Watson <nordickan@gmail.com>

32 CHAPTER 2 My fridge! A reactive game
2.1 Application overview
My fridge! is a small real-time application that shows the contents of a fridge and
allows you to drag products in and out. Unlike a physical refrigerator, this one can be
accessed from anywhere in the world and all changes will be visible to every client con-
nected to the server.

 Although our application is merely a simulator, you could use My fridge! as a note-
pad to remember what’s in your actual fridge at home. Or if you’re a hardware hacker,
you could connect your actual fridge to the internet and use Meteor to display its con-
tents in real time. That way, if your friends take out the last bottle of juice, you can
check this from your office and grab some OJ on the way back home.

 As you build this application, you’ll keep things simple and rely on the functional-
ity enabled in every new Meteor project. You’re going to add code, styles, templates,
and assets (see figure 2.1). You won’t use any additional packages in this chapter.

 First you’ll create the views using Spacebars, Meteor’s templating language. All
products will be stored in a MongoDB database, so you need to define a database con-
nection. You’ll use static images to represent each product in the fridge. Finally, you’ll
learn how to include an external JavaScript library and use jQuery-UI to enable drag-
ging items in and out.

 Meteor’s own reactivity will take care of keeping all clients synchronized and updat-
ing the views. All you need to take care of is the actual functionality—that is, the drag-
ging and dropping to update the location attribute for a product inside the database. In
this application you won’t allow users to add additional products easily, and you won’t be
applying strict security measures. Those topics will be covered in later chapters. At the
end of this chapter your fridge will look like the one shown in figure 2.2.

2.2 Initial setup
Before you continue, make sure you’ve installed Meteor on your machine. Refer to
appendix A to guide you through the process. Remember that Meteor also comes
with a CLI tool? You’ll use it to perform the initial setup of the application in a shell

Isobuild

Business Logic

Code

Styles

Templates

Assets

Application

Server

Browser

MongoDB

Figure 2.1 Only business logic is required for the My fridge! application.
Licensed to Mark Watson <nordickan@gmail.com>

33Initial setup
environment. This allows you to create new applications. You’ll perform all the steps
in this subsection inside a terminal.

2.2.1 Setting up a new project
With Meteor installed, its CLI tool becomes available. Creating a Meteor project involves
typing just one line into a terminal:

$ meteor create myFridge

That line creates the project folder containing three files: one for HTML templates,
one for JavaScript code, and one for CSS styling information.

 Navigate to the project folder and use the CLI tool to start the application with the
following commands:

$ cd myFridge
$ meteor run

Move the terminal console to the background; you’ll now start coding in your editor
of choice. It’ll be useful to check whether it shows any error messages, but you won’t
need to restart the server for the rest of this chapter. Each change to a file and even
adding new files will be handled by Meteor automatically. If you pay close attention,
you’ll notice that with every file change the console will either show that the server was
restarted or that the client code was modified and has been refreshed. Figure 2.3
shows the output.

Figure 2.2 The final state of
the My fridge! application
Licensed to Mark Watson <nordickan@gmail.com>

34 CHAPTER 2 My fridge! A reactive game
2.3 Creating a layout
The first step of building our game requires us to think about the layout. For My fridge!
we need a simple layout with a fridge on the left side and a product shelf with a list of
items on the right side. Items should then be draggable from one side to the other.

 So to create the layout, you’ll create some templates, add images, and add a way to
iterate through a list of products.

NOTE Because this book is about Meteor and not CSS, we won’t discuss the
styling in depth. You can refer to the associated code example to browse
through all styles.

2.3.1 Setting the styles

For a basic structure, we want to have a fridge and a product list side by side, as shown
in figure 2.4.

 Your first step is to set the styles for the general layout inside myFridge.css accord-
ing to listing 2.1 so that you can then focus on the HTML templates. Define the con-
tainer’s width setting and make sure that the fridge is displayed on the left and that
the product list (on the right) is a little smaller.

.container{
 width: 95%;
 position: relative;
}

.left{
 float: left;
 width: 60%;
 margin-right: 2%;
}

.right{
 float: right;
 width: 37%;
}

Listing 2.1 General layout styles

Figure 2.3 The meteor
command automatically
restarts the server when
application code
changes.

These are only the
positioning elements;
check the code samples
for the full code.
Licensed to Mark Watson <nordickan@gmail.com>

35Creating a layout
Listing 2.1 defines three classes to position the DIV containers. Because you want our
application to work on a mobile phone as well, you use percentages to make the lay-
out responsive.

2.3.2 Adding the templates

For each of the DIVs you’ll use an individual template, even for the container. When
you’re finished you’ll have a head section, a body, and four templates:

■ container—for the general layout
■ fridge—to display the fridge on the left
■ productList—to display the supermarket on the right
■ productListItem—to show items on either side

<div class="container" />

<div id="fridge">

<div id="supermarket">

Figure 2.4 The three main DIV containers for the My fridge! layout
Licensed to Mark Watson <nordickan@gmail.com>

36 CHAPTER 2 My fridge! A reactive game
Let’s start with the first three templates. Update the contents of myFridge.html as
shown in the following listing.

<head>
 <title>myFridge</title>
</head>

<body>
 {{> container}}
</body>

<template name="container">
 <div class="container">
 <div class="left">
 {{> fridge}}
 </div>
 <div class="right">
 {{> productList}}
 </div>
 </div>
</template>

<template name="fridge">
 <div id="fridge">
 ...
 </div>
</template>

<template name="productList">
 <div id="supermarket" class="box">
 ...
 </div>
</template>

The container template takes care of the basic layout of the application. It puts the
fridge on the left and the product list on the right. Technically we could use a single
template for all HTML code, but splitting things up provides a better overview and
control over what happens where.

 Now that you’ve created the skeleton layout, let’s make the left side look like an
actual fridge. The fridge should be represented by an image of an open fridge. At this
point we need to extend our project to be able to add image files. Because in the sam-
ple application no images were used, create a new folder called public in the applica-
tion root. This is where you’ll put all images.

NOTE The public folder is treated in a special way by convention. Every file
you put into the folder is accessible at the root path of your URL. If you put
a file named image.jpg into the public folder, you can access it via http://
localhost:3000/image.jpg.

Listing 2.2 Skeleton template structure

Include
contents
from a
subtemplate.

Subtemplates
are referenced
by name.
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:3000/image.jpg
http://localhost:3000/image.jpg

37Creating a layout
To include an image of the empty fridge in the browser, you’ll use a file called
myFridge/public/empty-fridge.jpg from this chapter’s source code. To reference it
from a template, you don’t need to include /public in the path—just use the following:

Our fridge should contain an unsorted list of items on the right, also represented by
images. We can’t tell how many items will be in the fridge at any given time, so we
need a flexible solution we can iterate through. Therefore, we’re going to use a dedi-
cated template for the item list.

 Iterating through an array of objects inside a template can be done with a helper
named {{#each}}. The # in front indicates that it doesn’t substitute the placeholder
for a string but provides some sort of logic. You’ll create an unordered list and iterate
over an array called products. The following listing shows how it looks in action.

<template name="productList">
 <div id="supermarket" class="box">
 <ul id="products">
 {{#each products}}
 {{> productListItem}}
 {{/each}}

 </div>
</template>

For each object in the array you pass to this helper, the contents between the each tags
is rendered once. In this case you want to render a list element for every product you
pass to the helper. The list element you render contains a template that you want to
insert here {{> productListItem}}. The advantage of using a template inside the
loop is that you can reuse the same template, productListItem, again for your prod-
uct list on the right side of our application, which means you can write less code.

 Add a new template to the bottom of your HTML file as shown in the following listing.

<template name="productListItem">
 <img src="{{img}}"
 data-id="{{_id}}"
 class="image-responsive product-image draggable" />
</template>

Next let’s adjust the fridge template in the myFridge.html file so that it looks like the
code in listing 2.5.

Listing 2.3 Looping through products in the productsList template with the
each helper

Listing 2.4 Template for each productListItem
Licensed to Mark Watson <nordickan@gmail.com>

38 CHAPTER 2 My fridge! A reactive game
<template name="fridge">
 <div id="fridge">

 {{#each products}}
 {{> productListItem}}
 {{/each}}

 </div>
</template>

As you can see, you’re reusing the {{> productListItem}} template for both the fridge
and the supermarket. Next we want to be able to render some products—the product
list as well as the fridge is currently empty.

2.4 Adding content to the database in real time
Now that the layout is in place, we can focus on the back end. All items, regardless
whether they’re in the fridge or not, should be available from our database. Once
they’re in the database, they should be sent to the client, so we need to add a connec-
tion between the database and the templates.

2.4.1 Storing items in the database
Meteor comes with a bundled MongoDB database that’s used by default. Due to the
tight integration, we don’t need to specify a connection string or credentials to use Mon-
goDB. To communicate with the database, we need to declare a new collection. MongoDB
uses collections instead of database tables because it’s a NoSQL or documents-oriented
database. Collections contain data in the form of one or multiple documents. Chapter 4
covers the details of working with databases; for now we’ll focus on getting the fridge
into a fully functional state.

 You’ll use Mongo.Collection to define a new database collection to insert, remove,
update, and find documents. Because the collection is going to store products,
you’ll name it accordingly and place it inside the JavaScript file, as shown in the fol-
lowing listing.

Products = new Mongo.Collection('products');

if (Meteor.isClient) {
 //...
}

if (Meteor.isServer) {
 //...
}

You should put this line on top of the file, outside of any Meteor.isServer or Meteor
.isClient block, because it should be available on both the client and the server.

Listing 2.5 Looping through each product inside the fridge template

Listing 2.6 Declaring a products collection on the client and server
Licensed to Mark Watson <nordickan@gmail.com>

39Adding content to the database in real time
 All of our products will have three attributes:

■ A name—for example, Bread
■ An associated image file in the /public folder, such as bread.png
■ A current location—that is, either fridge or supermarket

To add some data you can open up the JavaScript command-line tools in a browser
and add a product using the following:

Products.insert({img: '/bread.png', name: 'Bread', place: 'fridge'});

In response to this function call, you get the document ID of the newly inserted prod-
uct. With this ID you can also get the document out of the database like this:

Products.findOne({_id: 'X6Qw8v3ChcsZKaKan'});

Because you know only a single object can have this ID, you’ll use the findOne() func-
tion. The response is a single product object from the database (see figure 2.5).

Using the JavaScript console inside the browser
Because Meteor applications run at least partly inside the browser, you need to
switch to the JavaScript console sometimes to see debugging output or to be able to
issue commands. All major browsers have developer tools that allow you to access
the console by using a simple keyboard shortcut.

Chrome:

■ On the Mac, press the keys Option-Command-J.
■ On Windows, press the keys Ctrl-Shift-J.

Firefox:

■ On the Mac, press the keys Option-Command-K.
■ On Windows, press the keys Ctrl-Shift-K.

Internet Explorer:

■ On Windows, press F12 and click the Scripts tab.

Opera:

■ On the Mac, press the keys Option-Command-I.
■ On Windows, press the keys Ctrl-Shift-I.

Safari:

■ On the Mac, press the keys Option-Command-C.
Licensed to Mark Watson <nordickan@gmail.com>

40 CHAPTER 2 My fridge! A reactive game
Querying data by its location is also quite simple. Instead of using the _id field, you
can look at individual attributes as well. You expect more than a single result, so you’ll
use find() and look for all database entries that have fridge as their place attribute:

Products.find({place: 'fridge'});

Now that you’ve added some data to the database, you can access and view the data in
the browser.

2.4.2 Connecting data to templates

In the fridge template, you’ll want to iterate over all products where the attribute
place is fridge. To do so, you’ll extend the template with a helper called products that
returns all products you want to show in the fridge. Let’s look at the template again:

<template name="fridge">
 ...
</template>

Developer productivity vs. security
Although it’s convenient to use the Developer Console to add and remove items from
the database, it’s also a security risk. If you can do it, then anyone else using your
application will also be able to do it.

New projects always contain a package called insecure, which disables authentica-
tion checks and allows anyone to read and write to any collection. Together with its
sibling autopublish—which automatically makes all collections from the server side
and their content available to the client—it makes developers’ lives much easier
because it lets them focus on building functionality first, without having to struggle
with authentication issues during the early stages of development.

During development you’ll most likely introduce a permissions scheme and limit pub-
lishing data to what the authenticated user has access to. When that time comes,
you can get rid of both packages using the following command line:

$ meteor remove insecure
$ meteor remove autopublish

Figure 2.5 Using the browser’s JavaScript console to insert and look up data in the database
Licensed to Mark Watson <nordickan@gmail.com>

41Adding content to the database in real time
You can access each template by its name with the global Template object that comes
from Meteor. Every Template object has a function called helpers that takes an asso-
ciative array where the values are accessible in the template through its keys:

Template.fridge.helpers({
 products: function(){
 return [];
 }
});

For the fridge, you’ll want to iterate through an array of products that you get from
the database. The helper’s job is to look up the data from the database and pass it to
the template. Remember that to display the data you created a loop inside the tem-
plates using {{#each products}}...{{/each}}:

<template name="fridge">
 <div id="fridge">

 {{#each products}}
 ...
 {{/each}}

 </div>
</template>

To extend the template fridge with the products helper, you pass it to the helpers
function of the Template object. To do so, replace all code inside the Meteor.isClient
block in the myFridge.js file with the code from the following listing.

Template.fridge.helpers({
 products: function () {
 return Products.find({
 place: 'fridge'
 });
 }
});

The products helper is a function that returns every product where the attribute
place is fridge, just as you want it. Because you’ve added a product to the fridge
already, it should directly be added to your view. Make sure you also placed the associ-
ated image into the public folder. If you’ve added the bread document to your collec-
tion and the corresponding image to the public folder, the application will look like
figure 2.6 now.

 For the productList template on the right side, you can now do the same thing
but with a query that looks for a different value of the place attribute. You don’t want

Listing 2.7 Setting up a products helper for the fridge template

The each tag inside
the template expects
an array.

Loop through all
items returned from
the products helper.
Licensed to Mark Watson <nordickan@gmail.com>

42 CHAPTER 2 My fridge! A reactive game
to show all products from the database, but only those that are currently in the super-
market. To do so you need to query the database, as in the following listing.

Template.productList.helpers({
 products: function () {
 return Products.find({
 place: 'supermarket'
 });
 }
});

If you insert some more products to the fridge or the supermarket using the Java-
Script console, you’ll see how they get added automatically to the screen. Also, the
insertion of products is done in real time already. Open another browser and you’ll
see products being added immediately (see figure 2.7).

 So far you’ve created the UI and set up the required data structures for the fridge
application. The last thing you have to add is the user interaction that allows visitors to
put products into the fridge and remove them from it, too.

Listing 2.8 Setting up a products helper for the productList template

Figure 2.6 The fridge shows
an image of a loaf of bread.
Licensed to Mark Watson <nordickan@gmail.com>

43Adding content to the database in real time
2.4.3 Adding a defined set of products

Although it’s sometimes helpful to be able to add products manually, you can use the
server to add a defined set of products upon startup. That way, you’ll have a known
state to work with, regardless of how much testing has been done in a previous run.

 Inside the JavaScript file the code from listing 2.9 will remove all products from
the database every time the server starts. Afterward, it’ll put milk in the fridge and
bread in the supermarket.

if (Meteor.isServer) {
 Meteor.startup(function () {

 Products.remove({});

 // fill the database with some products
 Products.insert({
 name: 'Milk',
 img: '/milk.png',
 place: 'fridge'
 });

 Products.insert({
 name: 'Bread',
 img: '/bread.png',
 place: 'supermarket'
 });
 });
}

Listing 2.9 Adding a defined dataset to the database upon server start

Figure 2.7 Changes to the database are reflected in other browsers in real time.

This gets executed whenever
the server restarts.

Removes all products
from the database

Inserts some
products into
the database
Licensed to Mark Watson <nordickan@gmail.com>

44 CHAPTER 2 My fridge! A reactive game
Stop your Meteor server by pressing Ctrl-C and start it again. If you copied over the
images for milk and bread from the sample code into your public folder, you can now
see a bottle in the fridge and bread on the right. As a final touch, let’s add interactivity
via drag and drop.

2.5 Moving items into the fridge

Our goal is to make the products draggable from the product list into the fridge, and
vice versa. This isn’t specific to Meteor but a standard front-end task. We’ll use the
jQuery-UI library for the dragging and dropping and make the necessary connections
to your templates. Because we also want to update the database as a result of dragging
and dropping, we’ll need to supplement the front-end actions with a back end that’s
capable of storing content in the database.

 We’ll start by adding the jQuery-UI library to the existing project. It’ll provide drag-
and-drop functionality that works across all major browsers. Once the library is avail-
able, we’ll define both the fridge and the product list as possible drop targets where
items may be placed. Finally, each product list item will be marked as draggable so
that it can be moved to either of the drop containers.

2.5.1 Adding jQuery-UI to the project

You don’t have to add the jQuery-UI library to your project files, but you can include
the online version instead. This works the same way in Meteor as in any other HTML
file: by adding it to the <head> area of your myFridge.html file (see following listing).

<head>
 <title>myFridge</title>
 <script src="//code.jquery.com/ui/1.11.4/jquery-ui.js"></script>
</head>

The library is now loaded from jquery.com. Obviously you need to have a connection
to the internet in order to use the content delivery network (CDN) to provide the
JavaScript file. Alternatively you can download the library from http://jqueryui.com
and put the file jquery-ui.min.js into a folder called client. Meteor will automatically
serve and load this file on the client. If you add the file locally, make sure to not
include the script tag in the head section of the template file.

2.5.2 Defining drop targets for items

You’ll use the jQuery API for drag and drop to define both fridge and productList as
possible drop targets. Because the fridge and the productList have to be rendered
into the DOM before you can use jQuery-UI to perform any modifications on them,

Listing 2.10 Loading jQuery-UI from a CDN
Licensed to Mark Watson <nordickan@gmail.com>

http://jqueryui.com

45Moving items into the fridge
you have to wait until each template is rendered. A callback function available to every
template makes this very easy1:

Template.fridge.onRendered(function() {
 var templateInstance = this;

 templateInstance.$('#fridge').droppable({
 drop: function(evt, ui) {
 // do something
 }
 });
});

When the fridge template is rendered, you define <div id="fridge"> as a droppable
target. This means DOM elements may be added to it dynamically by simply dragging
them into the div area. Basically you’re listening for an event (that is, a user moving
an item to the container), so you have to define an event handler to determine
whether something was dropped in the container. The event handler will also need to
perform an update to the associated item in the database and update its location.

 The event handler will be called drop, and it’ll change the place attribute once a
product has been dropped. To identify the database entry that corresponds to the
product that was dropped, you need to pass a data ID to it. In the JavaScript event han-
dler, you use a function with two arguments: the event and a ui object. You’ll use the
ui object of the drop callback to identify the ID of the dropped product. You can tell
which HTML item was dragged by looking at the ui.draggable argument. The
ui.draggable object will always be one of the productListItem items. It’s easy to

1 Using jQuery within the current template’s scope is covered in more detail in chapter 3.

Scoped DOM parsing with jQuery
Every time you see $() in your code, you can be certain that jQuery is involved. Usu-
ally it also means that the entire DOM tree is parsed, which is rather slow and often
not what you want. When you try to set the background color for body it’s perfectly
acceptable to use $('body'). But most of the time you want to avoid one template
having side effects that change other templates. Besides the full DOM parsing, which
affects performance, debugging will become a nightmare.

Meteor offers a simple solution to limit jQuery’s activity to the current template scope:
Template.instance() contains an object that represents the current template. Inside
the created, rendered, and destroyed callbacks the same object is available as
this. You can limit jQuery’s scope to this object and safely use, for example, the
.dateinput class in multiple templates without having the formTemplate suddenly
creating datepickers all over the place.

Because using this directly can be confusing, you should use a more meaningful
identifier such as templateInstance in the code example earlier.

Instead of parsing the entire
DOM, we limit jQuery’s scope
to this template instance.
Licensed to Mark Watson <nordickan@gmail.com>

46 CHAPTER 2 My fridge! A reactive game
identify which HTML element was dragged, but you also need a link back to the data-
base, which is where the data-id attribute comes in:

<template name="productListItem">
 <img src="{{img}}" data-id="{{_id}}" class="image-responsive product-image

draggable" />
</template>

You added a data attribute to the named data-id. The value of the data-id
attribute is set to _id, which represents the database ID of a product. When you drag
an image, you have an easy way to identify which product in your database is affected,
and you can change its place attribute accordingly. Using a similar syntax like you did
for inserting new products, you can update existing ones by calling the update() func-
tion for our products collection. All you need is to pass the database ID and set the
place attribute to the location it was dropped in, as shown in listing 2.11.

 Remember that data-id, and with that the _id of the related product of the
dragged image, is available via the ui.draggable object.

Template.fridge.onRendered(function () {
 var templateInstance = this;

 templateInstance.$('#fridge').droppable({
 drop: function(evt, ui) {
 var query = { _id: ui.draggable.data('id') };
 var changes = { $set: { place: 'fridge' } };

Using jQuery to access element attributes
To minimize the amount of code you have to write, you’ll use a shorthand notation to
get the ID of any product. You’ll use jQuery to access an element from the HTML5
dataset API.

Unlike jQuery UI, the basic jQuery functionality is bundled with Meteor, so you don’t
need to include it for any project. The HTML5 dataset API specifies that every element
in the DOM may hold additional attributes with a data- prefix. It’s useful to attach
meta-information to any element on a page. In combination with newer jQuery ver-
sions (starting with 1.4.3) you don’t have to access the attribute via attr('data-
id') but with data('id').

Accessing the data-id attribute for a product is therefore done like this:

$(ui.draggable).data('id')

You can even further shorten the code by dropping the surrounding $() so that only
the ui object remains:

ui.draggable.data('id')

You can use either of those two variants.

Listing 2.11 Declaring fridge as a droppable target and updating the product location

Get the database
ID from the HTML
attribute data-id.

Set the update statement
to set place to fridge.
Licensed to Mark Watson <nordickan@gmail.com>

47Moving items into the fridge
 Products.update(query, changes);
 }
 });
});

You create a query that addresses the correct product document in our Products col-
lection. The first argument passed to Products.update() works just like before: it
returns a document based on its ID. The second argument uses the $set functionality
to specify that you want to update a field in this document. The data you want to set is
the place attribute, and because it’s the drop event that’s called if an item is dropped
over the fridge, you want to change the place attribute to fridge.

 The product list is also a drop target and therefore needs almost the same code
but with two small, yet important, differences. Again the rendered function of the
productList template has to be used to wait for the DOM. Also, if an item is dropped
over the productList template, the place attribute of the product document has to
be changed. This time you need to set it to supermarket instead of fridge. The follow-
ing listing shows the required code.

Template.productList.onRendered(function() {
 var templateInstance = this;

 templateInstance.$('#supermarket').droppable({
 drop: function(evt, ui) {
 var query = { _id: ui.draggable.data('id') };
 var changes = { $set: { place: 'supermarket' } };
 Products.update(query, changes);
 }
 });
});

2.5.3 Allowing items to be draggable

You’ve set up the droppable targets, but you also have to define elements that may be
dropped: the draggable items. In this application, each productListItem element
should be draggable. Again, you’ll rely on jQuery-UI to mark the list items as dragga-
ble, so you use the rendered function of the productListItem. For every product-
ListItem that’s rendered, this rendered callback will be executed once, effectively
making each food movable (see the following listing).

Template.productListItem.onRendered(function() {
 var templateInstance = this;

 templateInstance.$('.draggable').draggable({
 cursor: 'move',
 helper: 'clone'
 });
});

Listing 2.12 Declaring productList as a droppable target

Listing 2.13 Declaring productListItem as a draggable item

Perform the
database update.

productList is the template
name used by Meteor.

supermarket is
the div ID.

Set the place attribute
to supermarket when
products are dropped.
Licensed to Mark Watson <nordickan@gmail.com>

48 CHAPTER 2 My fridge! A reactive game
Note that listing 2.13 uses templateInstance.$('.draggable') in order to access the
HTML element that’s dragged. In our case this is the . Using jQuery in this tem-
plate’s context allows Meteor to search for an element only inside the productList-
Item template rather than the entire DOM tree, which makes it more efficient.

2.6 Deploying to meteor.com and using the fridge
You now have an application in which you can drag an image from a product list on
the right to the fridge on the left, and vice versa. When the image is dropped, the
underlying product document will be updated accordingly. The changes reactively
change the UI and the product is rendered in the correct place automatically.

 To share your fridge with the world, you can deploy it on one of the Meteor test
servers with the deploy command. Just pick a name that’s not yet taken that should be
used as the subdomain under which your app will be available. If the subdomain is
taken already, you’ll see an error message.

 Let’s deploy our project to mia-ch02-myfridge by using the following:

$ meteor deploy mia-ch02-myfridge

To make sure only you can access, update, or delete the application from the test server,
it’ll be associated with your personal Meteor developer account that’s based on your
email address. Therefore, you must provide your email when deploying for the first
time. Meteor will memorize your address on your working machine. Also, you’ll get an
email response that explains how to secure your account with a password. When the
deployment is finished, you can access your application on a meteor.com subdomain
with the name you picked—in our case, http://ch02-mia-myfridge.meteor.com.

 Now you can share this URL with a friend (or simply open up two browsers on the
same computer) and start dragging and dropping products back and forth. You’ll see
that all changes will be available on all clients almost instantly. Meteor takes care of
keeping all connected clients in sync, even though you never defined any specific
code for that. You also never had to write any code to poll the server for any database
updates. This is full-stack reactivity in action.

 In the following chapters, we’ll look at how all the parts that seem to work magi-
cally fit together, and you’ll see that there’s no magic behind all of this at all but just
good-old JavaScript.

2.7 Summary
In this chapter, you’ve learned that

■ For development purposes, the meteor CLI tool runs the entire Meteor stack in
the background.

■ Spacebars is the templating language used by Meteor.
■ Collections are used to interact with the database.
■ Static files like images are served from the public folder.
■ Changed data is reactively pushed to all clients.
Licensed to Mark Watson <nordickan@gmail.com>

http://ch02-mia-myfridge.meteor.com

Part 2

3, 2, 1—impact!

Now that you’re familiar with the basic concepts of the Meteor platform,
you’ll learn about the building blocks for reactive applications in detail. Begin-
ning with the UI and templates (chapter 3), we’ll slowly work our way through
the stack. We’ll explain how to work with data and use reactive editing (chapters 4
and 5), add users (chapter 6), manage data publications (chapter 7), use rout-
ing (chapter 8), structure code in packages (chapter 9), and write synchronous
and asynchronous code on the server (chapter 10).
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Working with templates
Everything your web browser renders is HTML eventually. If you open any website in
source view you’ll find that each page has hundreds of lines of HTML. Not only is writ-
ing everything by hand tedious, error-prone, and highly inefficient, it’s also impossi-
ble when you’re working with web applications because much of the content is
dynamic and you can’t know in advance what exact code needs to be rendered.

 Templates allow you to define blocks of HTML that can be reused as often as you
like. As a result, you have to write less code, and your code is easier to read and
much simpler to maintain.

 In this chapter, you’ll learn how to write templates and what you can do with
them. We’ll first take a look at Blaze, Meteor’s reactive UI library, and Spacebars, its
default templating language.

This chapter covers
■ Creating templates
■ Using Meteor’s default templating syntax
■ Organizing JavaScript and HTML
■ Using event maps to make templates

interactive
■ Understanding the template life cycle
51

Licensed to Mark Watson <nordickan@gmail.com>

52 CHAPTER 3 Working with templates
3.1 Introduction to templates

Templates are the building blocks for our UI. Templates are snippets of HTML that con-
tain placeholders, which can be filled by content returned by the application logic. They
can be reused to ensure the same look and feel on all sites and all elements.

 Another important aspect of templates is separation of concerns. This means a tem-
plate is intended only for the representation of data and is ultimately rendered as
HTML to the DOM. A template should have as little programming logic inside it as pos-
sible. Everything that needs computation and creates a specific output shouldn’t be
inside a template but separated into a JavaScript file. This approach helps to increase
the readability, and it’s basically the same concept of separating the styling of HTML
into its own Cascading Style Sheets (CSS) files instead of cluttering the HTML with styl-
ing definitions.

 Think about a simple list of users, as shown in fig-
ure 3.1. For each person you’re going to display the
name along with a phone number. Because you
don’t know how many people need to be shown in
this list, you’ll use a dynamic template to generate
the necessary HTML code.

 In this example, you use an <h5> element that
wraps around the name and you put the phone
number inside a <p> element. To tell the template
processor where you want the content to go, you use
placeholders that include double curly brackets.
Using pseudocode, the required template would
look like this:

<h5>{{NAME}}</h5>
<p>Phone: {{PHONE}}</p>

Because the placeholders may contain multiple elements, you need the template to be
able to create any number of list items. Just like in JavaScript code, you can use a loop
that takes an array as input and iterates over each of the array contents, taking care of
filling the placeholders for name and phone with information about the person. In this
example, you’ll create a list of people that reuses the profile template. For each per-
son, it should contain the following:

 <!-- for every user render this: -->
 {{ LOOP_THROUGH_PERSON_LIST_USING_TEMPLATE }}

Hooking up the templates with the back-end logic will return the HTML code shown
in the following listing.

Figure 3.1 A list of people and
their phone numbers
Licensed to Mark Watson <nordickan@gmail.com>

53Working with templates

 <h5>Christina</h5>
 <p>Phone: 1234-567</p>

 <h5>Stephan</h5>
 <p>Phone: 666-999-321</p>

 <h5>Manuel</h5>
 <p>Phone: 987-654-321</p>

The advantage of using templates is you write them only once and use them for an
infinite amount of data (in our case, people) you want to render. Having a single
place to manage the appearance of an element is also convenient. Think about what
you need to do if you don’t want the <h5> element but only a normal <p> element for
a person’s name. You only have to change it in a single template, and it instantly
updates for any person that you render with the help of the profile template.

3.2 Working with templates
Unless you’re writing a server-only application, every web application written in
Meteor should have at least one template. Displaying content in a browser without
using a template isn’t possible. This section discusses the foundations of working
with templates.

3.2.1 The Blaze engine

Behind the scenes, Meteor uses a reactive UI library called Blaze. It’s responsible for
processing templates and is an important part of what’s often referred to as the magic
of Meteor. As you can see in figure 3.2, Blaze consists of two major components:

■ A runtime API
■ A build-time compiler

Listing 3.1 Rendered HTML from template

Blaze

Build-time

compiler

Runtime

API
Renders elements/DOM, observes
changes, and updates elements

Compiles HTML to HTMLJS

Figure 3.2 The Blaze
components
Licensed to Mark Watson <nordickan@gmail.com>

54 CHAPTER 3 Working with templates
The runtime API renders elements, keeps track of their dependencies, and updates
them through their complete life cycle as those dependencies change. That means if
the phone number of a person is changed in the database and a user currently views a
page listing this person’s information, the number gets automatically updated on the
screen. This is because the placeholder depends on the actual value stored in the data-
base, which is a reactive data source.

 The runtime API works with JavaScript in order to apply reactivity; it can’t deal with
HTML directly, which is why the second component of Blaze is a build-time compiler.
Meteor ships with a compiler that translates HTML into JavaScript (HTMLJS to be pre-
cise). By default, it processes templates using Spacebars. Optionally, it’s possible to use
packages to switch the compiler to a different templating language such as Jade.

 Both components work separately, so it’s entirely possible to bypass the build-time
compiler and not use any templates but instead write code that directly targets the run-
time API. Because this isn’t very practical for most users, we won’t worry about the
runtime API itself but concentrate on using Spacebars.

NOTE Meteor’s templating language is called Spacebars. It’s a direct descen-
dant of Handlebars, with which it shares most of its syntax and functionality.

Blaze uses live page updating, so whenever a template-related file is changed on the
server (HTML, CSS, or JavaScript), it gets updated instantly in the browser. How does
Blaze find templates inside a project?

3.2.2 Organizing template files

When working with templates, you usually have four types of files to deal with, though
only one is technically required for a template:

■ The actual template stored in an HTML file
■ Optional JavaScript code in a JS file that runs inside the client context and pro-

vides functionality to templates
■ Optional styles in one or more CSS files1

■ Optional static resources such as images or fonts inside the public folder

Without a JavaScript counterpart, templates may only be static and can’t be filled with
dynamic content, which is why in most cases you’ll need at least two files for working with
templates. To keep everything organized, it’s best to keep each template in a dedicated
HTML file. Meteor will find them anywhere in your project folders.2 All the front-end
code can be stored in a single JS file, or you can use HTML/JS pairs so that each template
consists of two files, which we recommend if your projects grow more complex:

<template name>.js
<template name>.html

1 Also, Less, Sass, and other styling languages can be used; CSS is just an example.
2 There are exceptions to this rule, which we’ll explore in depth in chapter 10.
Licensed to Mark Watson <nordickan@gmail.com>

55Creating dynamic HTML templates
In this chapter we won’t worry about styling elements because this works just like in
any other web application. We covered the public folder in the previous chapter, so
let’s focus solely on the first two elements: HTML and JavaScript files.

3.3 Creating dynamic HTML templates
Meteor comes with its own templating language called Spacebars. If you’re familiar
with Handlebars or Mustache, you already know enough to start using it immediately.
Even if you haven’t used any of these languages, you’ll find that the general syntax is
fairly simple to work with.

 Templates written using Spacebars look almost like regular HTML. Template tags
are easily spotted because they’re always enclosed in multiple curly braces. The four
major types of template tags are

■ Double-braced tags {{ ... }}
■ Triple-braced tags {{{ ... }}}
■ Inclusion tags {{> ... }}
■ Block tags {{#directive}} ... {{/directive}}

3.3.1 Double and triple-braced tags (expressions)

Template tags that can enhance static HTML code by being replaced with dynamically
generated content are also called expressions. They depend on a data source or some
kind of application logic that returns a value.

 Template tags can only be used inside a template context. A basic template tag is
shown in the following listing.

<template name="expressions">
 {{ name }}
</template>

As you can see, every template has an opening and closing <template> tag and a man-
datory name attribute. The name attribute has to be a unique identifier for a template
inside the application. Using the name of a template, you’re able to access it from a
JavaScript file, which we’ll do later on.

DOUBLE-BRACED TAGS

Double-braced template tags are used to insert strings into the HTML. No matter what
return value they’re dealing with—an array, an object, or a string—it’s always rendered
as a string. Let’s assume you have a template named expressions from listing 3.2 and
you want to replace the template tag {{ name }} with Michael.

 The accompanying JavaScript code must return the substitute string as shown in
listing 3.3. Remember that the code must be wrapped in a Meteor.isClient environ-
ment—it can’t be run on the server side because templates aren’t available inside the
server scope.

Listing 3.2 Double-braced template tags
Licensed to Mark Watson <nordickan@gmail.com>

56 CHAPTER 3 Working with templates
if (Meteor.isClient) {
 Template.expressions.helpers({
 name: function () {
 return "Michael";
 }
 });
}

Together the HTML and JavaScript code will render as
shown in figure 3.3.

 As you can see, double braces process the string and
escape all possibly unsafe characters. This is useful if you
want to avoid return values being accidentally inter-
preted as HTML or even JavaScript. Sometimes, though,
you may want to avoid any processing of the string. In
that case, you need to use triple brackets.

TRIPLE-BRACED TAGS

If your template tag starts and ends with three curly
braces {{{ ... }}}, its contents will be rendered exactly
as you passed them to the template tag. Extending the example from listing 3.3, let’s
now use {{{ name }}} instead of {{ name }}. Meteor won’t escape any characters or
tags and will pass the output to the browser unaltered (see figure 3.4).

 As you can see, the HTML tags are rendered as HTML into the DOM and not as sim-
ple strings.

Listing 3.3 JavaScript code for a helper called name

The template can only be
used on the client; it’s
undefined on the server.

Figure 3.3 Tags in double
curly braces always render
strings and escape HTML and
script tags.

Figure 3.4 Strings in triple
curly braced tags are rendered
as HTML.
Licensed to Mark Watson <nordickan@gmail.com>

57Creating dynamic HTML templates
WARNING If you use triple curly braces to display data entered by a user, you
must ensure that it’s been sanitized first (that is, check for potential malicious
scripting content). If you don’t, your website is vulnerable to cross-site script-
ing attacks. The simplest way to deal with user-generated data is to let Meteor
sanitize it for you before it gets displayed and stick with double curly brackets
whenever possible.

3.3.2 Inclusion tags (partials)

In addition to inserting strings or HTML, you can insert a template into another tem-
plate. Because they represent only a part of the whole template, these subtemplates
are also known as partials. Inserting a template into another is achieved using the >
sign enclosed within two curly braces like this:

{{> anotherTemplate }}

Peeking inside Blaze’s build-time compiler: turning HTML into HTMLJS
Blaze uses its runtime API to transform HTML code from a Spacebars template into
JavaScript. Each compiled template file can be found in the directory .meteor/local/
build/programs/web.browser/app.

The template in listing 3.2 produces the following code:

Template["expressions"] = new Template("Template.expressions",
 (function() {
 var view = this;
 return [HTML.Raw(
 Blaze.View("lookup:name",
 function() {
 return Spacebars.mustache(view.lookup("name"));
 }
)
];
 }));
}));

This HTMLJS code enables Meteor to reactively update templates and even just
parts of them. Every template is accessible through the global Template object by
its name attribute.

Although it’s possible to call Blaze.View directly from inside a template helper,
there’s rarely a need to do so. Only when you decide to build your own runtime API
for Blaze, replacing Spacebars with something else such as Jade or Markdown, will
you need to familiarize yourself with the internal processing structures.

Until an API documentation for this becomes available, you can find out more by
looking at the contents of the blaze and spacebars packages, which are part of
Meteor’s core.

The template
named
expressions is
converted into
a function.

Blaze.View
constructs a reactive
region in the DOM.

Spacebars returns the
actual value for name.
Licensed to Mark Watson <nordickan@gmail.com>

58 CHAPTER 3 Working with templates
Inclusion tags are an important tool to keep templates small and let them represent
only one thing. If you want to render a complex UI, we advise you to split everything
the user can see into smaller, logically encapsulated templates and subtemplates.

MONOLITHIC TEMPLATES

For example, say you need a profile page that displays not only an avatar image and
the name of a person but also a news stream. You could put everything into one tem-
plate, as shown in the following listing.

<template name="partials">
 <div class="left">

 <p>{{name}}</p>
 </div>
 <div class="right">
 <ul class="news-stream">
 <li class="news-item">Yesterday I went fishing, boy this was a blast
 <li class="news-item">Look, cookies!

 </div>
</template>

If your UI gets more complex, you can imagine that your profile template could
become big. This is bad for readability and code maintainability. It’s better to separate
everything with its own logical function into a dedicated template and combine them
in a main template. That way, your templates stay small and are easier to read and
maintain. Two developers could split up the profile and news stream work and make
independent changes much more easily.

MODULAR TEMPLATES

Listing 3.5 shows our first template, partialsSplit. This is the main template that rep-
resents the site and contains two smaller templates. Two small templates represent the
actual user profile (partialsUserProfile) and the news stream (partialsNews-
Stream). Also note that the layout is contained in the main partialsSplit template—
in this case, the simple <div class="left"></div> and <div class= "right"></div>.

<template name="partialsSplit">
 <div class="left">
 {{> partialsUserProfile}}
 </div>
 <div class="right">
 {{> partialsNewsStream}}
 </div>
</template>

Listing 3.4 Full profile page template

Listing 3.5 Splitting the profile page template

The template representing
the partials pagePlace this div

on the left side.

Place this div on
the right side.

The template that represents
the profile page

The user profile is included in the
parent template as a subtemplate.

The news stream is also
included in the parent
template as a subtemplate.
Licensed to Mark Watson <nordickan@gmail.com>

59Creating dynamic HTML templates
<template name="partialsUserProfile">

 <p>{{name}}</p>
</template>

<template name="partialsNewsStream">
 <ul class="news-stream">
 <li class="news-item">Yesterday I went fishing, boy this was a blast
 <li class="news-item">Look, cookies!

</template>

TIP Avoid putting layout information into subtemplates. Let the parent tem-
plate define the look and feel as well as the size of the elements they include.

Not having layout definitions buried inside subtemplates greatly improves reusability.
Because there are no layout definitions in the partialsUserProfile template, you
can easily reuse it on another page template and put it onto the right side into a <div
class="right">{{> partialsUserProfile }}</div>.

DYNAMICALLY INCLUDED TEMPLATES

In addition to using static texts to include subtemplates, you can dynamically include
a template based on the return value from a helper (see listing 3.6). That way, you can
reactively switch templates without having to maintain complex if/else structures
inside templates. In combination with reactive data sources like a session variable,
they can be quite powerful.

// meteorTemplates.html
<template name="dynamicPartials">
 <div class="left">
 {{> Template.dynamic template=templateNameLeft }}
 </div>
 <div class="right">
 {{> Template.dynamic template=templateNameRight }}
 </div>
</template>

// meteorTemplates.js
Template.dynamicPartials.helpers({
 templateNameLeft: function () {
 return "partialsUserProfile";
 },
 templateNameRight: function () {
 return "partialsNewsStream";
 }
});

Listing 3.6 Inserting subtemplates dynamically with helpers

The name of the
subtemplate comes
from a helper.

Helpers return a string
that can either be
dynamic or static.
Licensed to Mark Watson <nordickan@gmail.com>

60 CHAPTER 3 Working with templates
3.3.3 Block tags
In contrast to expressions or partials, which are essentially placeholders, block tags change
the behavior of the enclosed block of HTML. They start with double curly braces and a #.
A sample block template tag may look like this:

<template name="myTemplate">
 {{#name arguments}}
 <p>Some content</p>
 {{/name}}
</template>

Block tags are used not only to display content but also to have control over the pro-
cessing of a template. You can either define your own block tags or use Spacebars:

■ #if—Executes a content block if a condition is true or the else block if not
■ #unless—Executes a block if a condition is false or the else block if not
■ #with—Sets the data context of a block
■ #each—Loops through multiple elements

THE IF/UNLESS TAG

One of the built-in tags is the #if block tag. It works like a normal if block in
JavaScript. It checks a condition, and if it evaluates to true, the contents of the block
are processed—that is, they’re rendered. Any value that’s considered to be true in a
regular JavaScript context is also considered to be true by the #if tag. If a common
falsey3 JavaScript value like null, undefined, 0, "" (empty string), or false is passed to
#if, the following block won’t be rendered (see table 3.1). Listing 3.7 shows an image
tag only if there’s an image helper and it evaluates to true.

<div class="cookies">
 <p>Look, more cookies!</p>
 {{#if image}}

 {{/if}}
</div>

3 Anything that evaluates to false is considered falsey, even if the actual value is not false. Values that evaluate
to true are considered truthy.

Listing 3.7 Using an if block

Table 3.1 Input values and their interpretation by #if

Input value Evaluates to

false, 0 (zero), "" (empty string), null, undefined, NaN, [] (empty array) false

Strings (including "0"), arrays, objects (including empty objects) true

The opening of a block template tag
has a name and optional arguments.

The content of the
block template tagThe closing of a block template

tag must always have the same
name as in the opening tag.

The tag is
rendered if the value for
image evaluates to true.
Licensed to Mark Watson <nordickan@gmail.com>

61Creating dynamic HTML templates
The counterpart to an #if block tag is the #unless block tag. It processes the block
contents only if the condition evaluates to false (see the following listing).

<template name="unlessBlock">
 {{#unless image}}
 <p>Sorry, no image available.</p>
 {{/unless}}
</template>

Both #if and #unless can be combined with an else tag in order to render one thing
if the condition is true and another if it’s false. Listing 3.9 uses #if but it works just the
same with #unless.

{{#if image}}

{{else}}
 <p>Sorry, no image available.</p>
{{/if}}

NOTE There’s no tag {{elseif}}. To deal with more cases than true and
false, you’ll either need to use nested if-else structures inside your template
or, preferably, adjust your JavaScript code so that it can do the processing
instead of the template.

Block tags and template tags always have to include valid HTML; otherwise Meteor will
run into an error. That means you have to take care that tags that are opened are
closed as well. Also, every element that opens inside a block must also be closed inside
that block. You can’t, for example, include an opening <div> tag in an #if block tag
and close after the {{else}} because this would result in invalid HTML for your page
upon rendering. If you have errors in your templates, the application will crash and
produce an error message. Figure 3.5 shows the resulting error message for the follow-
ing code block:

{{#if highlightBox}}
 <div class="box box-highlighted">
{{else}}
 <div class="box ">
{{/if}}
 <p>Welcome!</p>
</div>

Listing 3.8 Using an unless block

Listing 3.9 Using else in an if block

The <p> tag is
rendered if image
evaluates to false.

Whether if or unless is used
defines whether the case for
true or false is handled first.

The <p> tag is rendered if
{{image}} returns a falsey value.

This isn’t allowed because it’s
not a valid HTML tag pair.

A closing <div> tag without an opening
one isn’t allowed inside a template.
Licensed to Mark Watson <nordickan@gmail.com>

62 CHAPTER 3 Working with templates
It’s perfectly all right, though, to use a block tag inside of an HTML attribute value:

<div class="box {{#if highlightBox}}box-highlighted{{/if}}">
 <p>Welcome!</p>
</div>

THE EACH/WITH TAG

If you wish to pass multiple values to a template, the most common way is to use an
array. When an array is passed to a template, you can iterate over its contents using
an #each tag. #each takes an array as its argument and renders its block content for
every item inside the array. In listing 3.10 skills is passed as an argument. This
defines the so-called data context of the block. Without a data context, #each doesn’t
render anything.

// HTML file
<template name="eachBlock">

 {{#each skills}}
 {{this}}
 {{/each}}

</template>

// JavaScript file
Template.eachBlock.helpers({
 skills: function(){
 return ['Meteor', 'Sailing', 'Cooking'];
 }
});

Listing 3.10 Using the #each tag

Figure 3.5 Output for invalid HTML in templates

If showBox is a truthy value, the box
string is included in the class attribute.

The #each block tag takes
an array as a parameter.

You can access the
current object of the
array with this.
Licensed to Mark Watson <nordickan@gmail.com>

63Creating dynamic HTML templates
Whereas #each requires the template to have a data context, #with allows you to define a
data context. The data context is the actual association between a template and any data.

 Setting the data context using the #with tag requires a single attribute that will
become the data context for the following block. Listing 3.11 shows an example where
the data context for the template withBlock is explicitly set to profileJim.

// meteorTemplates.html
<template name="withBlock">

 {{#with profileJim}}
 <p>{{name}}</p>
 {{#each skills}}
 {{this}}
 {{/each}}
 {{/with}}

</template>

// meteorTemplates.js
Template.withBlock.helpers({
 profileJim: function () {
 var jim = {
 name: 'Jim "Sailor Ripley" Johnson',
 skills: ['Meteor', 'Sailing', 'Cooking'],
 };
 return jim;
 }
});

There’s no need to explicitly specify a data context; using a helper automatically pro-
vides a context. Some more advanced use cases require you to do so. We’ll look at
them when we talk about reactive data sources in the next chapter.

 Technically, all built-in block tags are helpers. Let’s have a look at how you can cre-
ate your own template helpers.

3.3.4 Helpers
When dealing with templates, you may often find it necessary to apply the same func-
tionality again, such as formatting seconds into the HH:mm:ss format or applying con-
trol structures. This is when helpers are needed.

 Helpers are JavaScript functions that can perform any kind of processing. They can
either be limited to a single template or be made available globally. Global template
helpers may be reused in all available templates, and it’s good practice to define them
in a dedicated JavaScript file instead of the individual template JS files.

LOCAL TEMPLATE HELPERS

A local template helper is used to extend one specific template only. It can’t be shared
between other templates and exists only within the namespace of a template. In their
simplest form, local template helpers look similar to expressions.

Listing 3.11 Using the #with tag

The profileJim
object is defined as
the data context.
Licensed to Mark Watson <nordickan@gmail.com>

64 CHAPTER 3 Working with templates

Im
an

and

val
c
b

ren
 Every Template object has a helpers
function, which takes an object that can
contain multiple key-value objects. Typically
the key represents the placeholder name
that can be used inside a template, whereas
the value is a function that returns some-
thing. The function’s return value doesn’t
have to be a string, but it can be any static
value like a number, an array, an object, or
even a function that returns another value.

 To simplify things, we’ve shown both the contents from the HTML file as well as the
JavaScript file in listing 3.12. Some of the helpers return only a static value (name);
others return an array (skills), an object (image), and even a function (has-
MoreSkills). The rendered HTML code can be seen in figure 3.6.

// meteorTemplates.html
<template name="localHelpers">
 <p>{{name}}</p>
 {{#if image}}

 {{/if}}
 {{#if skills}}
 <p>Primary Skill: {{skills.[0]}}</p>
 {{#if hasMoreSkills skills}}
 see more...
 {{/if}}
 {{/if}}
</template>

// meteorTemplates.js
Template.localHelpers.helpers({
 name: 'Jim',
 image: {
 large: '/jim-profile-large.jpg',
 thumb: '/jim-profile-thumb.jpg'
 },
 skills: ['Meteor', 'Sailing', 'Cooking'],
 hasMoreSkills: function (skills) {
 return skills && skills.length > 1;
 }
});

To pass parameters to a helper function, simply write the parameters you want to pass
after the helper function (separated by a whitespace). The order in which you pass the
parameters will be the same as defined in the function itself.

Listing 3.12 A profile template using different local helpers

Figure 3.6 Resulting code from local helpers

Accesses the local helper name
that is the simple string 'Jim'

age is
 object
 thus a
truthy
ue; the
ontent
lock is
dered.

You can access object values as
you would in normal JavaScript
using dot notation.

If the array is empty, it wouldn’t
render the block content.

Skills is an array and you can access
a special index with via array.[index].

The #if block content is rendered if the
returned value of the helper function
hasMoreSkills returns true. In this case
hasMoreSkills has the skills helper as a
parameter.

Returns true if the skills
parameter is passed and has
more than just one skill
Licensed to Mark Watson <nordickan@gmail.com>

65Creating dynamic HTML templates
 Have a look at listing 3.12 again. The built-in helper #if evaluates the following
expression to determine whether it is true or false:

{{#if hasMoreSkills skills}}

In this case it checks hasMoreSkills, which is a function that itself requires an input
value. Therefore, instead of the standard behavior of using if followed by a single
expression, a second placeholder is passed: skills. The content of the skills object
is passed to the function represented by hasMoreSkills. If a person has multiple skills
it’ll return true, so the if condition passes.

GLOBAL HELPERS

Oftentimes you have some helper that you need in more than just one template but
you want to write it only once. Let’s say you want to create a helper that returns true if
an array has more than n items. Let’s call this helper gt (as in greater than). This
helper should be used in multiple templates, so create a globalHelpers.js file and put
the helper code in there. Remember to wrap it in an if(Meteor.isClient){...}
block because helpers—just like templates—are only available in the client scope.

 You want the new helper to be available in all templates, so you can’t use Template
.<templateName> to define it. Instead, use Template.registerHelper; the following
listing shows how local and global helpers are combined.

// meteorTemplates.html
<template name="globalHelpers">
 {{#if gt skills 1}}
 see more...
 {{/if}}
 {{#if gt images 4}}
 see more...
 {{/if}}
</template>

// meteorTemplates.js
Template.globalHelpers.helpers({
 skills: function () {
 return ['Meteor', 'Sailing', 'Cooking'];
 },
 images: function () {
 return ['/jim-profile-large.jpg', '/jim-profile-thumb.jpg'];
 }
});

// globalHelpers.js
if (Meteor.isClient){
 Template.registerHelper('gt', function(array, n){
 return array && array.length > n;
 });
}

Listing 3.13 Using global helpers to determine array length

skills contains three items so the
global gt helper returns true.

images contains only two items;
the global gt helper returns false.

Local helpers for the
globalHelpers template

Using the registerHelper
function you can create
helpers that are available
to all templates.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

66 CHAPTER 3 Working with templates

Thi
c

th
dis
CUSTOM BLOCK HELPERS

Also globally available and very useful are custom block helpers. They allow you to build
reusable UI components or widgets. Note that the actual helpers may be used even
without any JavaScript.

 Suppose you define a new block helper named #sidebarWidget; you also need to
define a template of the same name. The template will be injected where the block
helper is called. Inside the template you use the partials syntax to include the output
of Template.contentBlock. You can also access any other elements from the data
context that may be passed to the block helper. This example will produce a sidebar
widget with a title and some content.

 When #sidebarWidget is called from within a template, it places its own con-
tents between the {{#sidebarWidget }} and {{/sidebarWidget }} tags by includ-
ing Template.contentBlock. Listing 3.14 shows how sidebarWidget can be used to
wrap block contents in any template. The fact that it’s reusable makes it ideal for
building UI components or widgets.

 Adding {{> coderOfTheMonth }} to the body of an application creates the output
shown in figure 3.7.

<template name="coderOfTheMonth">
 {{# sidebarWidget title="Coder of the month"}}
 Manuel
 {{/sidebarWidget}}
</template>

<template name="sidebarWidget">
 <div class="sidebar-widget box">
 <div class="title">{{ this.title }}</div>
 <div class="content">
 {{> Template.contentBlock}}
 </div>
 </div>
</template>

Listing 3.14 Custom block helpers with Template.contentBlock

Figure 3.7 Reusable UI
components or widgets can
wrap any content using
custom block helpers.

Data context
can be set for
custom block
helpers as well.

s is the
ontent
at gets
played.
Licensed to Mark Watson <nordickan@gmail.com>

67Creating dynamic HTML templates
Besides the Template.contentBlock there’s a Template.elseBlock (see listing 3.15)
that relates to the content block after an {{else}} template tag. This way, you can
enhance block helpers with simple control structures.

// meteorTemplates.html
<template name="templateElseBlock">
 {{#isFemale gender}}
 Mrs.
 {{else}}
 Mr.
 {{/isFemale}}
</template>

<template name="isFemale">
 {{#if eq this 'w'}}
 {{> Template.contentBlock}}
 {{else}}
 {{> Template.elseBlock}}
 {{/if}}
</template>

// meteorTemplates.js
Template.templateElseBlock.helpers({
 gender: function () {
 return 'm';
 }
});

Template.isFemale.helpers({
 eq: function (a, b) {
 return a === b;
 }
});

MOVING LOGIC INTO HELPERS

Using helpers to return a value that should be rendered is generally the better way
to dynamically display content. The less logic exists within a template, the easier it is to
troubleshoot and extend an application.

 If you don’t require different HTML code for different cases, it’s best to define a
helper that calculates the correct content to be displayed. This way, you can avoid
using #if and #unless in your templates. Listing 3.16 uses a template, logicBy-
Helper, that displays the correct salutation based on a single-character gender value
that may be stored in a database. All processing is done by the helper function, not
the template itself.

// meteorTemplates.html
<template name="logicByHelper">
 {{genderLabel gender}}
</template>

Listing 3.15 Using Template.elseBlock

Listing 3.16 Moving template logic into a JavaScript helper

Custom block helper called isFemale, to
which we pass the gender variable that
comes from the template helper

The isFemale block helper also has a helper
function, eq, that takes two arguments and
checks if they’re both equal. this relates to
the gender parameter in this case.

If the gender is 'w' then the #if
statement is truthy and the
contentBlock should be rendered.

If not, the elseBlock should be
rendered. Because the gender is 'm'
the elseBlock would be rendered.

The isFemale block helper also has a helper
function, eq, that takes two arguments and
checks if they’re both equal. this relates to
the gender parameter in this case.

In the double-braced tag, we call the
helper function genderLabel and
pass the parameter gender.
Licensed to Mark Watson <nordickan@gmail.com>

68 CHAPTER 3 Working with templates
// meteorTemplates.js
Template.logicByHelper.helpers({
 gender: 'm',
 genderLabel: function (gender) {
 if (gender === 'm') {
 return 'Mr.';
 } else {
 return 'Mrs.';
 }
 }
});

As you can see, you can define lots of different helpers for a template that can be static
values or even functions that return some computed value.

 You’ve learned how to use Spacebars to create and extend templates so that it’s
easy to generate some HTML at the end. Now that you know how to create the
HTML code of an application, let’s enable the user to interact with the rendered
HTML using events.

3.4 Handling events
One of the main differences between a static site and an application is that applica-
tions allow for user interaction. They need to handle events such as button clicks and
react to them. The response most of the time is basically the modification of the DOM
in order to show users something that’s useful to them. To achieve this, there must be
a way to do two things:

■ Define the events the application listens to
■ Define the actions that are triggered by an event

Meteor uses event maps to define events and their actions. DOM events are used in
conjunction with CSS selectors to specify which elements and which events should be
watched. Although you may use any DOM event for an event map, their behavior
might differ between various browsers, but the events in table 3.2 should behave the
same across all major browsers.

Table 3.2 Event types that work alike across all major browsers

Event type Use

click Mouse click on any element, including links, buttons, or divs.

dblclick Double-clicks using the mouse.

focus, blur Text input or other form control fields that gain or lose focus. Any
element with a tabindex property is considered focusable.

change Check boxes or radio buttons that change state.

mouseenter, mouseleave Entering or leaving an element with the mouse pointer.

The genderLabel helper
function returns “Mr.” in
this case, because gender
has the value 'm'.
Licensed to Mark Watson <nordickan@gmail.com>

69Handling events

T
t

def
eve
be

ct

is
he

nd
e
3.4.1 Template event maps

Every template has its own event map. It’s defined inside a JavaScript file similar to the
following listing.

if (Meteor.isClient) {
 Template.layout.events({
 'click button': function (event, template) {
 $('body').css('background-color', 'red');
 },
 'mouseenter #redButton': function (event, template) {
 // start fancy animation
 }
 });
}

Meteor uses jQuery to call the actual event handler functions. In this example, if the
user clicks any button within the layout template, the corresponding event handler is
called and the background color of the body is set to red. Clicking any button outside
of the layout template wouldn’t trigger an action because the associated event map is
only relevant for anything inside the layout template. But what happens if we use a
child template and send an event to it? Change the code according to listing 3.18 and
click either button to see.

// meteorEvents.html
<body>
 {{> layout}}
</body>
<template name="layout">
 <button>Turn red</button>
 {{> green }}
</template>

<template name="green">
 <button id="green">Turn green</button>
</template>

mousedown, mouseup Pressing and releasing the mouse button.

keydown, keypress, keyup Pressing and releasing keys on a keyboard; keydown and keyup
are mostly used for modifier keys such as Shift.

Listing 3.17 Event map for layout template

Listing 3.18 Listening for events in a subtemplate

Table 3.2 Event types that work alike across all major browsers (continued)

Event type Use

Each template has an events
function that takes the event
map object as its parameter.

he key of
he object
ines what
nt should
triggered
on which
element.

The value of the obje
is a function that’s
called in case the
button is clicked. Th
event handler takes t
event object itself as
the first parameter a
the template instanc
as the second
parameter.Moving the mouse cursor over

the element with ID redButton
might start an animation.

Clicking the button would make
the body element’s background
color red because the event would
also call the handler of the layout
template after the green handler
was executed.
Licensed to Mark Watson <nordickan@gmail.com>

70 CHAPTER 3 Working with templates
// meteorEvents.js
Template.layout.events({
 'click button': function (event, template) {
 $('body').css('background-color', 'red');
 }
});
Template.green.events({
 'click button': function(event, template) {
 $('body').css('background-color', 'green');
 }
});

Even though we have two distinct event maps and two buttons, any click on a button
in the updated code will turn the background to red, even clicking the Turn Green
button. Why is that?

3.4.2 Event propagation

The phenomenon you can see at work here is called event propagation, or event bubbling.
That means every event is first processed where it occurs and then passed upward in
the DOM tree. There it may trigger another action.

 In a best-case scenario, you’d cleverly use this as chaining; in the worst case—which
this example shows—you’ll end up overwriting the action you wanted to take place
with another.

NOTE Event propagation may have unexpected side effects when working with
event maps. Remember to stop it; otherwise, it’ll bubble up the DOM tree.

As you can see in figure 3.8, there are three template instances: the body, a layout
template, and a green template. If the user clicks <button>Turn green</button> the
event listener of the green template is called, because it listens for clicks on buttons
inside its template scope. The first action that takes place sets the background-color
attribute of body to green. But the event propagation isn’t done yet.

body

Event: no listener defined

Action: no action defined

template name="layout"

Event: click

Action: set background-color=red

Propagate event up

2. Action:

Red background

1. Action:

Green background

Propagate event up
template name="green"

Event: click

Action: set background-color=green

Figure 3.8 Action sequence for a click in the green template
Licensed to Mark Watson <nordickan@gmail.com>

71Handling events
The event is passed upward to the layout template, which also acts on click events. It
calls its own event handler. Now a second action takes place, which sets the background-
color attribute to red.

 Technically the background color was green for a brief moment in time, but only
as long as it took the event to propagate up. Therefore, the event handler of the green
template has no visible effect.

 Finally, the event is passed to the body element, and if it had an event map defined,
it might even trigger a third action.

 If you don’t want an event to be handled by multiple templates you can—and
should—always stop the event propagation. Add stopImmediatePropagation() to
your template’s event map to prevent events from bubbling up the DOM. Fix the event
map for the green template by updating your code to the following listing.

Template.green.events({
 'click button': function(event, template) {
 event.stopImmediatePropagation();
 $('body').css('background-color', 'green');
 }
});

Now clicking the button turns the background color to green, regardless of whether
the layout template also listens to button clicks. If you want to have even more con-
trol over event handling, you can also call evt.stopPropagation(). Doing so doesn’t
prevent other event handlers from being executed, but if you prefer you can call
evt.isPropagationStopped() to check whether stopPropagation() was called some-
where in the event chain. Using this technique, you can add an event handler to the
body and react to the click event in the green template as well as in the body but not
trigger the layout event handler.

3.4.3 Preventing the browser’s default behavior

Something you also want to prevent in many circumstances is the browser’s default
event handling. For example, if you click a normal link (Go To),
the browser would open the URL specified in the <a> element’s href attribute and
reload the page. Of course, in an application you build with Meteor you don’t want the
browser to reload the page at any time. To prevent this, you can call event.prevent-
Default() (see listing 3.20) and the browser’s default behavior is prevented.

Template.layout.events({
 'click a': function(event, template){
 event.preventDefault();
 console.log('Please do not leave yet');
 }
});

Listing 3.19 Stopping event propagation within an event map

Listing 3.20 Preventing the browser’s default behavior

This stops the event from
bubbling up the DOM.

Prevents the browser from
executing the default action—
that is, following the link
Licensed to Mark Watson <nordickan@gmail.com>

72 CHAPTER 3 Working with templates
Before we move on to see how to integrate data into a template, the last topic we need
to cover is the template life cycle.

3.5 The template life cycle
Putting a template inside the DOM and making it visible for the user is only part of its
life cycle. Each template goes through three steps (figure 3.9) in order to get ren-
dered in the browser. Each stage has an associated callback, which is useful to add cus-
tom behavior.

The first step when inserting a template into the DOM is called created. Although
the actual template isn’t visible yet, the template instance is already accessible. The
associated callback onCreated is especially useful if you want to initially create some
properties for the template instance before it’s rendered and visible to the user. All
properties that you set in the onCreated callback are available in the other life-cycle
callbacks as well. You can even use them in your helpers and event handlers. To
access a template instance from within a helper or event handler, use Template
.instance().

NOTE As you saw in chapter 2, jQuery’s scope can be limited to the current tem-
plate instance and its subtemplates using template.$() or template.find().

The second state for a template is called rendered. The associated onRendered call-
back is used to initiate objects that are inside the DOM already. Typical examples are
jQuery plug-ins like datepickers, calendars, or datetables. They require a rendered
DOM element, so they’re initiated in the onRendered callback as shown in listing 3.21.
Here we extend all elements inside the formTemplate that have a .dateinput class
with a datepicker.4

4 To actually use a datepicker, you also need to add the required datepicker libraries to your project.

Created

onCreated callback onRendered callback onDestroyed callback

• Template instance

accessible

• Template not visible

• Template instance

accessible

• Template visible inside

the browser

• Template instance not

accessible anymore

• Template not visible

anymore

Rendered Destroyed

Figure 3.9 The template life cycle
Licensed to Mark Watson <nordickan@gmail.com>

73The template life cycle
Template.formTemplate.onRendered(function() {
 var templateInstance = this;

 templateInstance.$('.dateinput').datepicker({
 // additional options
 });
});

The third callback, onDestroyed, is used to clean up anything that you set up during
the lifetime of a template. After it executes, the template instance is neither visible
nor accessible anymore.

 All three callbacks are just executed once and won’t be repeated, even if data on
the page changes.

 Let’s consider a simple scenario with a single placeholder expression:

<body>
 {{> profile}}
</body>
<template name="profile">
 {{!-- demonstrating the lifecycle --}}
 <p>{{placeholder}}</p>
 <button>Button</button>
</template>

Listing 3.22 adds an explicit callback to each stage in a template’s life cycle. When the
profile template is created, you attach a property lastCallback to the template
object, set it to created, and print the object in the JavaScript console. This is also
the place where you could already read the data context of a template. Inside the
onRendered callback, you change the value for lastCallback to rendered. Using
Template.instance(), the helper can read the value for lastCallback and the but-
ton click is able to update its value. The onDestroyed callback can’t be observed inside
the browser console. All console messages are shown in figure 3.10.

Template.profile.onCreated(function () {
 this.lastCallback = 'created';
 console.log('profile.created', this);
});
Template.profile.onRendered(function () {
 this.lastCallback = 'rendered';
 console.log('profile.rendered', this);
});
Template.profile.onDestroyed(function () {
 this.lastCallback = 'destroyed';
 console.log('profile.destroyed', this);
});

Listing 3.21 Initializing a jQuery plug-in to create a datepicker on an input element

Listing 3.22 The template life-cycle callbacks

You can use comments
inside templates like this.

Prints out the instance of the
profile template. You can set
variables to the template
instance like this.foo = 'bar'
that you could use later. You can
also read the data context, but
you can’t set it here.
Licensed to Mark Watson <nordickan@gmail.com>

74 CHAPTER 3 Working with templates

.

.

You c
acc
te

inst
te

helpe
Template.profile.helpers({
 placeholder: function () {
 console.log('profile.placeholder', this);
 console.log('profile.tplInstance',
 Template.instance().lastCallback);
 return 'This is the {{placeholder}} helper';
 }
});
Template.profile.events({
 'click button': function (event, template) {
 Template.instance().lastCallback = 'rendered and clicked';
 console.log('profile.clicked', this);
 console.log('profile.clicked.tplInstance', template);
 }
});

3.6 Summary
In this chapter, you’ve learned that

■ Meteor uses its own reactive UI library called Blaze.
■ Spacebars is Meteor’s default templating language and is an extended variation

of Handlebars.
■ Spacebars uses expressions, partials, blocks, and helpers to create small and

modular templates.

Prints out only
the data context
You have no
access to the
template
instance via this

an still
ess the
mplate
ance in
mplate
rs and

events.

In the event handlers you don’t need
Template.instance() because the template instance is

passed as the second parameter directly.

Figure 3.10 Console messages for template callbacks
Licensed to Mark Watson <nordickan@gmail.com>

75Summary
■ Helpers may be limited to a single template or available globally.
■ Event maps are used to associate actions to events and elements.
■ Each template goes through three steps—create, render, and destroy—in order

to get rendered in the browser. Each stage has an associated callback, which is
useful to add custom behavior.
Licensed to Mark Watson <nordickan@gmail.com>

Working with data
As you saw in chapter 1, Meteor doesn’t rely on a traditional, server-focused archi-
tecture. It runs code and processes data on each client as well. To do so, it uses a
mini-database to mimic the API of a real database inside the browser. That means
you can access data in the same manner, regardless of whether you’re making a
database lookup or accessing the results of a query on the browser.

 All data that’s available only in a single client will obviously be lost once the cli-
ent disconnects and hasn’t sent its updates back to a central server. Meteor will take
care of persisting data automatically by synchronizing client and server state.

 Some information is relevant for only a single client, such as state information,
which tabs have been clicked, or which value was selected from a drop-down list.

This chapter covers
■ Meteor’s default data sources
■ The principles of reactive data and

computations
■ The Session object
■ Working with a MongoDB database using

Collections
■ CRUD operations
76

Licensed to Mark Watson <nordickan@gmail.com>

77Working with data
Information that’s relevant only to an ongoing user session doesn’t need to be stored
on the central server and doesn’t get synchronized. Figure 4.1 illustrates the general
architecture. At the end of this chapter, you’ll be able use Collections for data inside
databases and Sessions for client-only information.

 At its core, each web application captures, stores, and processes data. Creating,
reading, updating, and deleting data, often referred to as CRUD, is the foundation on
which advanced functionality can be built. CRUD in itself is only the most basic func-
tionality, though. When two users read the same document from the database and one
of them performs an update, we want this update to be published to the other client
immediately. At least we should tell the second user that the document has changed
since she first accessed it. In most languages and frameworks, you must manually set
up a synchronization process that ensures all clients work with fresh data. Meteor
takes care of managing the data flow properly by means of reactivity.

 This chapter introduces you to the key components of reactivity and how to lever-
age it for CRUD operations in Meteor. To illustrate the principles, we’ll turn a real-
world problem into an application: imagine you go on a trip and ask a friend to take
care of your plants and leave him with a note to water the red flowers once a week.
We’re building a house-sitter application.

 When you’ve finished this chapter, you’ll be familiar with the most important data
sources in Meteor. You’ll also be able to work with both volatile and persistent data,
meaning you can store and retrieve data from a database and perform full CRUD

Persistent
data storage

Volatile
data storage

Database

Server

App

MiniDB

Client

App

Publications

Subscriptions

Collections are used to exchange
data between server and client.

Session is used to memorize the current
application state in the client only.

Session

object

Figure 4.1 Database everywhere means persistent data on the server but volatile
data on the client.
Licensed to Mark Watson <nordickan@gmail.com>

78 CHAPTER 4 Working with data
operations. We’ll also discuss how to implement two-way data binding using Meteor’s
reactive approach by means of a so-called edit object.

 We’re going to implement functionality into an application by making use of two
standard packages in Meteor: autopublish and insecure. As the names suggest, these
packages make development easier by taking care of publishing data automatically
across all clients and giving us more freedom during the development process by waiv-
ing strict security. That way, we can focus fully on adding functionality without con-
stantly having to refactor security settings. Eventually, when we get to chapter 7, we’ll
discuss how to remove them to prepare an application for deployment.

houseSitter: become a better friend using Meteor

When Manuel goes on vacation, he asks his friend Stephan to water the red flowers
once a week. He’s left his instructions on a sticky note requesting a simple action:
watering the flowers. When should this action be carried out? When a week has
passed. Although this seems like a simple task, we should build an application that
helps us keep track of when and which plants we need to water.

To comply with Manuel’s request, any good friend will have to factor in two data
sources: the flowers and a calendar. The latter isn’t explicitly mentioned, but it plays
an important role in determining whether an action should be executed on the flowers.
As with most situations in the real world, these instructions leave out some details. For
starters, they don’t define when the week starts or even how much water to use.

Naturally, a true friend will provide the missing context. To determine whether to
water the flowers, Stephan relies on his calendar. A calendar is just a regular data
source in itself, but adding a dependency to water the flowers each week turns it into
a reactive data source. While Manuel is gone, Stephan is going to look at his calendar
each day, and if it’s a Monday, he’ll go over and water the red flowers. To react to
changed data, Stephan has created a mental dependency. The event “Monday” is
linked to an action, “water the flowers.”

Although there’s room for error, it’s much more convenient if Stephan is capable of
making some sensible assumptions. This would allow Manuel to use a sticky note
rather than having to write a 1,000-word essay on what to do while he’s gone.

Meteor also links data sources and actions and provides an out-of-the-box behavior
that allows developers to work with reactive data.

Please water

the red flowers

once a week

Thanks,

Manuel
Licensed to Mark Watson <nordickan@gmail.com>

79Meteor’s default data sources
4.1 Meteor’s default data sources
In web applications, you typically deal with two types of data that are each associated
with a specific type of data source:

■ Volatile data, or short-term memory (for example, RAM)
■ Persistent data, or long-term memory (for example, files and databases)

Volatile or short-lived data is used to deal with things like accessing the currently logged-
in user. There’s no reason to put this data into a database and share it across all cli-
ents, so it’s generally only available in the client instance where the session takes place.
Once a browser window is closed, all volatile data is typically gone, unless it’s stored in
the form of a cookie or the browser’s local storage. But a user may have configured his
browser to delete those on quit, so it isn’t safe to assume the data stored inside is still
available the next time a user visits a site.

 Persistent data is anything that’s actually stored by an application. This can include
blog articles, comments, user profiles, or products in a web shop. Persistent data
sources are available to some or all users of a web application. Meteor’s default behav-
ior is to share all persistent data sources across all connected clients. This is great dur-
ing the early stages of development, but not if the amount of data grows into
hundreds or even thousands of datasets. Transferring everything to clients regardless
of whether they’ll ever see the data can be avoided by using customized publications
that clearly define what data gets transferred. They can also help by adding a security
layer to avoid sending sensitive data that should be available only for some users to all
connected clients. Again, this is a topic you’ll learn about in chapter 6.

 Meteor is designed to work well with NoSQL databases and so doesn’t use tables
(like MySQL or Oracle do) but instead stores data as documents. Collections are com-
parable to database tables and may hold one or multiple documents. Later in this
chapter we’ll talk more about databases.

NOTE By default, Meteor publishes all data from a database to all clients
unless the autopublish package is removed. We’ll do this in chapter 6 when
we cover publications.

Regardless of whether they’re used to store volatile or persistent data, all built-in data
sources in Meteor are reactive by default. Table 4.1 gives an overview of the most com-
mon data sources and what they’re used for. Let’s take a closer look to understand
what makes them different from nonreactive data sources.

Table 4.1 Most common data sources and their typical use

Data source Typical use Type

Session variables using the Session
object

Selections or current step in multistep
actions

Volatile

Collections (database queries) Database content Persistent
Licensed to Mark Watson <nordickan@gmail.com>

80 CHAPTER 4 Working with data
4.1.1 What makes a data source reactive?

If something happens in consequence to another thing that happened before, it’s
commonly known as a reaction. The same holds true for Meteor. To apply reactivity,
we need data and actions, and we must create a trigger mechanism that links both
together.

 There’s no need to constantly evaluate whether the flowers in a friend’s house
need water. Instead, by using a calendar we already have a data source that can be
used to determine whether an action is required. We have an action, “check whether
the flowers should be watered,” which we defined to be executed each Monday. As
such, we need to use a calendar as our data source in order to tell if today’s day of the
week has changed. If it has changed, we must perform the check once and can then
wait for the next day until we check again.

 It isn’t effective to create a large list of all actions and every relationship that even-
tually may occur; it becomes tedious to keep such a list up to date. Also, what happens
if we forget to check the calendar? In most frameworks we’d have to implement a fre-
quent check to monitor possible changes to the calendar, which is similar to sitting at
a desk and constantly looking at the clock in order not to miss the next day to possibly
water the flowers.

 Meteor makes things easier by using a declarative approach to define relationships
between data and functions. A regular calendar becomes reactive due to the linked
dependency on the check action, and it behaves just like an alarm clock for weekdays.
That way, we can take advantage of reactivity, which means we execute the check
based on the alarm initiated by our data source (see figure 4.2). There’s no need to
explicitly check whether the current day has changed—we’ll be notified by the calen-
dar when it happens.

 By adding a relationship in form of a dependency, we turn any regular data source
into a reactive data source. Not only can a reactive data source be passively accessed,
but it’s also capable of actively initiating a function to run by invalidating it. The
Tracker package is responsible for creating and tracking dependencies as well as
managing computations, which are the foundation of the platform’s reactivity.

Trigger action
Check if flowers

need water

Today’s

weekday

When data changes…

…it triggers a related action.
Figure 4.2 Data changes
trigger related actions.
Licensed to Mark Watson <nordickan@gmail.com>

81Meteor’s default data sources
4.1.2 How reactive data is connected to functions

Although we’ve told you that reactivity is built into Meteor and you get it for free,
keep in mind that reactivity will only be used if you set up your code to do so. For that
matter, Meteor provides reactive contexts in which reactivity takes place. These contexts
can be created by using one of the following:

■ Templates
■ Blaze.render and Blaze.renderWithData
■ Tracker.autorun

We looked at templates and Blaze in chapter 3. We’ll be using Tracker.autorun in
section 4.3 when we look at the Session object.

 Once you’ve created a reactive context, a function inside this context will become
a computation. A computation gets executed once and is executed again if it gets inval-
idated. Invalidating a function happens when a reactive data source is changed.

 When computations are invalidated they’re rerun, which makes them valid again.
That prevents functions from running constantly and creating a chaotic and nonde-
terministic state of the application. The invalidation is a direct consequence of a data
change and triggers an action. As long as the data doesn’t change, the computation
isn’t invalidated and therefore isn’t executed again. Because there can be various reac-
tive contexts with varying dependencies, Meteor keeps track of all dependencies in a
list (see figure 4.3).

 When you first work with Meteor, you may not be aware that you’re using reactive
computations. When sending data to a template, Meteor takes care of re-rendering if
any of the data changes. For example, if you have a template that displays a reminder
to water the flowers, it’d be automatically updated if a reactive data source were used,
as shown in listing 4.1.

Tracker: dependency tracking behind the scenes
The fact that all built-in data sources are reactive by default means that Meteor auto-
matically takes care of creating and tracking dependencies. It does so via a package
named Tracker. This package is used to declare dependencies for a data source,
invalidate computations, and trigger recomputations.

As long as you only work with Session and Collection objects inside of templates,
you might not need to use Tracker directly. For advanced techniques, it’s helpful to
understand the basic principles behind this small package that consists of less than
1 kilobyte of code. For the moment, we’ll rely on Meteor to keep track of all depen-
dencies for us without explicit declaration. We’ll look at observing changes again in
chapter 7.
Licensed to Mark Watson <nordickan@gmail.com>

82 CHAPTER 4 Working with data

Crea
rea
co
Template.friendsHouse.helpers({
 waterTheFlowers: function () {
 var day = Session.get("today");
 if (day === "Monday") {
 return "Watering the flowers";
 }
 }
});

NOTE Functions inside reactive contexts are called computations. Reactive
data sources invalidate computations when data changes, which causes com-
putations to reexecute. All reactive data sources used inside a computation
are automatically associated with the computation.

Now that we’ve looked at the things Meteor will do automatically for us, let’s focus on
the things we have to do to work with and display data.

4.2 Building a house-sitter app
Let’s revisit the example of our friend watering the flowers. Not only is he taking
care of people’s plants, but he’s now a professional house sitter for many people and
he tracks all of them in a database. This is also where he keeps all instructions for
watering the plants. He’s going to use a simple web application to look up each house

Listing 4.1 Setting up a reactive context using template helpers

Session

Invalidate

and rerun

computation

Session = {

today: "Tuesday"

};

Computation

Template.friendsHouse.helpers({

waterTheFlowers: function () {

if (Session.get("today") === "Monday") {

return "Watering the flowers";

}

}

});

List of dependencies

waterTheFlowers —> Session.get("today")

Reactive data source Template creates a reactive context

Using a reactive
data source inside
a computation
creates a dependency

Figure 4.3 Changes to reactive data sources invalidate computations and trigger them to rerun.

tes a
ctive
ntext

Functions inside reactive
contexts are called
computations.

Session is a reactive data source
that will invalidate the computation
when its contents change.
Licensed to Mark Watson <nordickan@gmail.com>

83Building a house-sitter app
and make a note when he’s finished with a visit. Such an application would use the
following data sources:

■ A database to store all friends, instructions, and notes
■ Session variables to store the currently selected house

Figure 4.4 shows the user interface along with some annotations. All data coming from a
collection is shown in darker boxes, and all temporary data inside a Session object is
depicted in a lighter box. If we view it from a high level, the app looks up all entries in a
database and retrieves a single full document based on the value of a temporary session
variable. Eventually it lets the user store changes made to the database.

 Create a new project using Meteor’s CLI tool:

$ meteor create houseSitter

Let’s organize our code in different folders to make it easier to follow which code goes
where. That removes the need to add Meteor.isServer() or Meteor.isClient()
around any of the code.

 We’ll have code that should only be executed on the client. This goes into client/
client.js. All templates will be put inside client/templates.html. Code that’s exe-
cuted only on the server goes into server/server.js, and collections will be stored in

Documents

from House

collection

Document with

_id
=== Session var

Send name and _id
to drop-down list

Session
variable

Store selected

_id Sessionin

Display document

contents

Find document with _id

Figure 4.4 User interface and data sources for the house-sitter app
Licensed to Mark Watson <nordickan@gmail.com>

84 CHAPTER 4 Working with data
collections/houses.js because they should be available on both client and server. See
figure 4.5 for reference.

4.2.1 Setting up templates

Before you start working with reactive data, you must set up a skeleton structure. List-
ing 4.2 shows the body of our site. It includes three subtemplates: selectHouse, which
allows users to select a house; showHouse, which displays all relevant details of a data-
base entry; and houseForm, which allows users to add and edit database entries. These
will be defined inside the same file in the upcoming sections—all templates will
remain rather small, and splitting them up isn’t necessary.

<head>
 <title>The HouseSitter</title>
</head>

<body>
 <h1>The House-Sitter App</h1>
 {{> selectHouse }}
 {{> showHouse }}
 {{> houseForm }}
</body>

<template name="selectHouse">
</template>

<template name="showHouse">
</template>

<template name="houseForm">
</template>

NOTE If you’re including templates that aren’t available, Meteor will display an
error. You can avoid running into these errors by either creating an empty tem-
plate or removing the inclusion tags from the body until they’re actually needed.

Listing 4.2 Basic template structure in client/templates.html

Sent to the browser

Defines the data
coming from a
database

Executed on
the server

Figure 4.5 Organization of the house-sitter app

Inclusion tags
for additional
templates

These templates
remain empty
for now.
Licensed to Mark Watson <nordickan@gmail.com>

85Building a house-sitter app
The application doesn’t need any styling definitions, so the client/style.css file remains
empty. If you wish to add styles to make the house-sitter app prettier, this is where you
can put them.

4.2.2 Connecting to a database and declaring collections

Although you’ll learn about collections at section 4.4, you need to define one now
because you require some data to be available. We’ll discuss the details of working
with collections later in this chapter.

 MongoDB is a document-oriented, or NoSQL, database. It doesn’t store its contents
in tables but in documents. Multiple documents are grouped in collections. There-
fore, you’ll going to define a new Collection object called HousesCollection that
will store its contents inside a MongoDB database in a collection named houses. Cre-
ate a file inside a collections directory and add the code from listing 4.3.

HousesCollection = new Mongo.Collection('houses');

Also, you should make sure there’s some data inside the database to work with, so
you’ll add some server-side code that checks upon start whether there’s any data avail-
able inside the HousesCollection. If there are no entries, our code will insert a new
document into the database (see listing 4.4). You can add more houses to the houses
array if you require more data to be available.

NOTE Wrapping code in a Meteor.startup() block works on both server
and client. Whereas on the server the code gets executed once when the
Node.js instance starts, it gets executed on each client once the DOM is ready.

Wrapping the code inside a Meteor.startup() block ensures that it runs only when
the server starts. Theoretically you could also add this code to the client, but Meteor
.startup() would be executed every time a client successfully connects. Because of
the conditional if, nothing would happen, so you can just as well limit the fixtures to the
server only.

Meteor.startup(function () {
 if (HousesCollection.find().count() === 0) {
 var houses = [{
 name: 'Stephan',
 plants: [{
 color: 'red',
 instructions: '3 pots/week'
 }, {
 color: 'white',
 instructions: 'keep humid'
 }]
 }];

Listing 4.3 Collection declaration in collections/houses.js

Listing 4.4 Adding fixtures in server/server.js

Execute only once when
the server starts.

Check whether there are any
entries in the collection yet.

Define all fixtures as
array elements.
Licensed to Mark Watson <nordickan@gmail.com>

86 CHAPTER 4 Working with data

Re
de
 while (houses.length > 0) {
 HousesCollection.insert(houses.pop());
 }
 console.log('Added fixtures');
 }
});

NOTE The console.log() command works well in the browser console, but
it can also be used inside the server context to print out messages. The output
can be viewed inside the terminal running the meteor command.

4.3 Working with the Session object
Traditionally, accessing a website via HTTP is stateless. A user requests one document
after another. Because there’s often the need to maintain a certain state between
requests—for example, to keep a user logged in—the most essential way to store vola-
tile data in a web application is the session. Meteor’s concept of a session is different
from languages such as PHP, where a dedicated session object exists on the server or in
a cookie. Meteor doesn’t use HTTP cookies but uses the browser’s localStorage instead—
for example, for storing session tokens to keep a user logged in.

 A dedicated Session object that’s just available on the client and lives in memory is
useful only for keeping track of current user contexts and actions.

4.3.1 The Session object

The Session object holds key-value pairs, which can only be used on the client. It’s a
reactive dictionary that provides a get() and a set() method. Until a session key is
associated via set(), it remains undefined. You can avoid this by setting a default
value using setDefault(), which works exactly the same as set(), but only if the value
is currently undefined. Checking for a session value is a common operation, which
can be done more efficiently by using the Session object’s equals() function. It isn’t
necessary to declare a new Session variable using the var syntax, because the variable
becomes available as soon as a set() or setDefault() method is used. The corre-
sponding syntax is shown in the following listing.

Session.setDefault("key", "default value");
Session.get("key");
Session.set("key","new value");
Session.equals("key","expression");

TIP Although a Session variable is typically used with strings, it can also hold
arrays or objects.

Listing 4.5 Using the Session object

Insert all objects from
the houses array into
the database.

Console logging also
works on the server.

setDefault() sets a value for a
key only if the key is undefined.

turns
fault

value
Assigns a new value to a key

Translates to Session.get("key") === "
expression" but is more efficient
Licensed to Mark Watson <nordickan@gmail.com>

87Working with the Session object
Let’s see how you can apply the Session object to the houseSitter app. Consider
Session to be the app’s short-term memory for keeping track of the currently
selected house.

4.3.2 Using Session to store selected drop-down values

For the selectHouse template, all you need is a drop-down list so users can select a
house from the database. The idea is to retrieve all documents from the database and
show all available names. Once a name is selected, it’ll define the context of all other
templates and a single house will be displayed. You’ll be using the code shown in list-
ing 4.6.

 An {{#each}} template helper is used to iterate through all houses returned from
the database. The data context is set explicitly by passing housesNameId1 as an argu-
ment. Both {{_id}} and {{name}} are attributes of the house object coming from the
database, so there’s no need to define helpers for them.

<template name="selectHouse">
 <select id="selectHouse">
 <option value="" {{isSelected}}></option>
 {{#each housesNameId}}
 <option value="{{_id}}" {{isSelected}}>{{name}}</option>
 {{/each}}
 </select>
</template>

In the client.js file you define a helper that provides the housesNameId data context.
Because we haven’t looked at the details of working with collections yet, you’ll just
return all documents and fields for now. Because housesNameId is defined inside a
Template object, it’s reactive. This means if you add or remove documents from the
database, the return value will automatically be adjusted and the select box will reflect
your changes without the need to write dedicated code.

 You’ll use a Session variable called selectedHouseId to store the drop-down selec-
tion. The select box should reflect the actual selection, so you need to add a selected
attribute to the currently selected option. To do so, you’ll define a second helper
named isSelected that returns an empty string or returns selected if the value of
_id equals that of your Session variable.

 The last step is to set the value for the Session variable based on the user’s selec-
tion. Because it involves an action coming from the user, this requires an event map.

 Whenever the value for the DOM element with the ID selectHouse changes, the
event handler will set the selectedHouseId variable to the value from the selected

1 For now housesNameId contains more than just a name and an ID, but don’t worry. We’ll make that more
efficient in a bit.

Listing 4.6 Drop-down list code in the selectHouse template

Begin the list with an
empty option to select.

each iterates over all objects returned
by a helper called housesNameId.
Licensed to Mark Watson <nordickan@gmail.com>

88 CHAPTER 4 Working with data

Retu
docu

fr
col
option element. Note that you need to pass the event as an argument to the JavaScript
function that sets the Session value in order to access its value (see following listing).

Template.selectHouse.helpers({
 housesNameId: function () {
 return HousesCollection.find({}, {});
 },
 isSelected: function () {
 return Session.equals('selectedHouseId', this._id) ? 'selected' : '';
 }
});
Template.selectHouse.events = {
 'change #selectHouse': function (evt) {
 Session.set('selectedHouseId', evt.currentTarget.value);
 }
};

You can test that everything works correctly by opening the JavaScript console inside a
browser and selecting a value from the drop-down list. You can get and set values for
the variable directly inside your console as well. If you change the value to a valid _id,
you can see that the drop-down list instantly updates itself as a result of the isSelected
helper, as shown in figure 4.6.

Listing 4.7 JavaScript code for selecting houses

rns all
ments

om the
lection

Returns selected if the _id for
the currently processed house
equals that stored inside the
Session variable

Remember to pass
the event as an
argument so the
function can assign
the selection value
to the Session
variable.

Changing the selected
value sets the value
for selectedHouse.

Check the current
value using Session.get
in the console.

Setting a value for
selectedHouse
automatically changes
the display value of
the drop-down list.

Figure 4.6 Getting and setting the Session variable via the JavaScript console
Licensed to Mark Watson <nordickan@gmail.com>

89Working with MongoDB collections
4.3.3 Creating a reactive context using Tracker.autorun

When working with JavaScript code, you’ll often need to check for the value of a vari-
able to better understand why an application behaves the way it does. You can use the
console.log() method, one of the most important tools for debugging, to keep track
of variable contents. Because you’re dealing with reactive data sources, you can also
take advantage of computations to monitor the actual values of those sources. In this
section you’ll learn how to print the contents of the reactive Session variable any time
it changes by creating a reactive context for the execution of console.log().

 In section 4.1 you saw that besides templates and Blaze there’s a third way to estab-
lish a context that enables reactive computations: Tracker.autorun(). Any function
running inside such a block is automatically rerun whenever its dependencies (that is,
the reactive data sources used within it) change. Meteor automatically detects which
data sources are used and sets up the necessary dependencies.

 You can keep track of the value for Session.get("selectedHouseId") by putting
it inside an autorun function. Place this code at the very beginning of the client.js file,
outside any template blocks (see listing 4.8). Whenever you use the drop-down list to
select another value, the console immediately prints the currently selected ID. If no
house is selected, it’ll print undefined.

Tracker.autorun(function () {
 console.log("The selectedHouse ID is: " +
 Session.get("selectedHouseId")
);
});

As you can see, the Session object is simple to work with and can be extremely useful.
It can be accessed from any part of the application and maintains its values even if you
change source files and Meteor reloads your application (a process known as hot code
pushes). If a user initiates a page refresh, all data is lost, though.

 Keep in mind that the contents of a Session object never leave the browser, so
other clients or even the server may never access its contents. This is what collections
are used for. Let’s take a closer look at working with collections.

4.4 Working with MongoDB collections
Meteor comes with its own instance of MongoDB, an open source, document-oriented
NoSQL database. Each time you start your server with the meteor run command, a
dedicated database server is also started and listens to connections on port 3001. By
default, Meteor uses this instance as its database engine and stores all content inside a
database called meteor. There’s no need to define any database connection strings.
But you can use environment variables like MONGO_URL to point your Meteor server to
another database instance. Chapter 12 goes into detail on how to use external data-
bases instead of the default local one.

Listing 4.8 Using Tracker.autorun() to print a Session variable to the console
Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 4 Working with data
If data is meant to be stored for an extended period of time, or if it should be shared
across clients, collections are the way to do it. New database collections are declared

What is a document-oriented database?
MongoDB is a document-oriented, NoSQL database. In contrast to relational (SQL)
databases, every entry is self-contained and isn’t spread across multiple tables to
specify relationships. Each database entry is basically a JSON object.

To better understand document-oriented databases, consider all data you want to
store to be written on a piece of paper (a “document”). If you want to keep track of
all the houses you’re house-sitting for, you’d create one form per house and then
write down all the instructions. The advantage of document storage is that all relevant
information is in a single place. Just grab a single piece of paper and you have all the
info you need to take care of that house. The downside is that if multiple houses have
the same plants and science has discovered that red flowers in fact need four
instead of three pots of water each week, you’ll have to change the instructions on
every single piece of paper.

Every document is self-contained and may even have different information on it
(“fields”), which reflects that at some houses you take care of the plants whereas in
others you might also need to feed the rabbit. You don’t write down any areas that
you don’t have to take action in, so even though two documents may be from the
same collection, they don’t necessarily contain the same fields:

If you’ve worked with SQL databases such as MySQL or Oracle before, the following
table translates common SQL terms to their document-oriented equivalents.

Name: Stephan

Plants:

- Color: Red

Instructions: 3 pots/week

- Color: White

Instructions: water daily

Animals:

- Name: Danbo

Instructions: 1 carrot/day

Name: Manuel

Plants:

- Color: Red

Instructions: 3 pots/week

- Color: Yellow

Instructions: keep humid

SQL term Document-oriented term

database database

table collection

row document

column field
Licensed to Mark Watson <nordickan@gmail.com>

91Working with MongoDB collections
using the Mongo object. The following statement makes the content from a MongoDB
collection named mycollection available inside a Meteor application as MyCollection:

MyCollection = new Mongo.Collection("mycollection");

Because the collection should be accessed from both the server and the client, you
need to make sure this line is executed in both contexts, so it shouldn’t be wrapped
inside any isClient() or isServer() blocks. Also note that it doesn’t use a var decla-
ration, which would limit its scope to a single file.

NOTE Collection names in Meteor usually start with a capital letter and have
plural names. If you want to be more explicit you can add Collection to their
names to make your code more readable. Collections are best defined in one
or more dedicated files accessible to both client and server.

The fundamentals of working with a collection are based on the way MongoDB works,
so if you’re already familiar with the syntax used to query Mongo databases you can
reuse this knowledge with Meteor, even from inside the browser.

4.4.1 Querying documents in MongoDB

Querying documents in MongoDB is done using either find() or findOne(). The first
returns all matching documents; the latter retrieves only the first document that
matches specified search criteria. These criteria are passed to the query as an object
called the query document or selector. If no selector is defined, then all documents match.

 To find one document where the name is "Stephan", we need to make sure the
selector contains the search field (name) and the desired value ("Stephan"). Field
names or keys don’t require quotes:

MyCollection.findOne({name: "Stephan"});

The findOne() operation is executed on the collection named MyCollection. It
matches and returns the first document where the value of the field name equals
"Stephan".

 Finding all documents that have instructions for watering a white plant requires a
more advanced query. This time find() is executed, so all matching documents inside
MyCollection are returned. The query document specifies that inside a plants key
must be another key called color. The term $exists: 1 translates into the field being
present inside all matches.

Collection.find({"plants.color" : {$exists: 1 } });

To check whether the field contains a specific value, you can use $in instead of
$exists. If you want to find all documents that contain a plant with a color attribute
of "White", you use the following query:

Collection.find({"plants.color" : {$in: ["White"] } });
Licensed to Mark Watson <nordickan@gmail.com>

92 CHAPTER 4 Working with data
In addition to search criteria, a second object may be passed to the query operations.
It’s called the projection, and you can use it to limit the fields that should be returned,
change the sort order, or apply any kind of operation on the search results before
returning them. Projections can be used with or without a query document. If no
search criteria are needed, an empty selector is passed to the find() function.

 The following query returns only the name field and value from each document.
The term name:1 can be read as “set the field name to visible” because 1 represents
true. Using 0, you define the fields you want to exclude from retrieval:

Collection.find({},{name:1})

As you can see from these examples, using collection queries is quite different from
using SQL. It’s helpful to keep in mind that you aren’t dealing with tables and rows but
with documents that behave like objects.

NOTE More details on using MongoDB can be found in the official documen-
tation at http://docs.mongodb.org/.

4.4.2 Working with Meteor collections

At the most basic level, you can store data to a collection as a document and search
and retrieve one or more documents when you need to display data. Let’s start by
populating the houses collection.

 The most important functions when working with collections are listed in table 4.2.

INTRODUCING CURSORS: THE DIFFERENCE BETWEEN FIND() AND FINDONE()
A single document can be retrieved from a collection by using findOne(). This func-
tion returns a JavaScript object that can be dealt with just like any other object. Using

Table 4.2 Overview of most important functions when working with collections

Function Use case Return value

Collection.find() Finds all documents that match the
selector

Cursor

Collection.findOne() Finds the first document that matches
selector and projection criteria

Object

Collection.insert() Inserts a document in a collection String (document _id)

Collection.update() Modifies one or more documents in
a collection

Number of documents
affected

Collection.upsert() Modifies one or more documents in a
collection or inserts a new document
if no match is found

Object

Collection.remove() Removes documents from a collection Object
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.mongodb.org/

93Working with MongoDB collections
the find() function to retrieve multiple documents doesn’t return any documents
but instead returns a cursor. The cursor is a reactive data source, not the collection.

 You can think of a cursor as being the query that eventually gets executed against
the database. Cursors allow you to send data in batches. When dealing with large data-
sets, you’ll find it’s not efficient to always return all documents from a query but to
iterate over results and send them in batches.

 For now, we won’t deal with cursors directly because Meteor is capable of knowing
how to handle the results from a Collection.find() just fine. We’ll revisit this topic
once we discuss more advanced use cases in chapter 9.

4.4.3 Initializing a collection

For each house you need to take care of, you’ll have one document inside the data-
base. This document will include the name and plants you need to take care of. To
have better traceability throughout the application code, you’ll use a verbose name to
help you keep track of the collection object. You’ve added the necessary code in sec-
tion 4.2.2 already, so there’s no need to add this line again. HousesCollection will
provide an interface to all database entries:

HousesCollection = new Mongo.Collection("houses");

There’s no need to create any data structures inside a collection. When the first entry
is added to a collection, Meteor automatically creates a collection inside the database
if it’s not yet present.

 The server code we defined during the setup of our application in section 4.2.2
takes care of both creating a database collection and filling it with data. As you saw in
chapter 2 with the fridge example, you can also use the browser console to add new
data. We’ll add security mechanisms that prohibit this when we discuss publications
and methods in chapter 6. For now let’s focus on adding functionality instead of get-
ting ready for production.

 An important side effect of using fixtures is that you have an idea of what the data
structure looks like. Because you’re dealing with a NoSQL database, each document
may have a completely different structure and it’s good to have reference entries at
hand. Although there may be other fields (such as animals or kids), the expected
fields for each house document are shown in table 4.3. You’re only taking care of
plants in this example.

Table 4.3 Expected fields for the houses collection

Field name Contains Notes

_id Unique ID for each house; string Automatically assigned by MongoDB

name Display name for each house;
string
Licensed to Mark Watson <nordickan@gmail.com>

94 CHAPTER 4 Working with data
4.4.4 Querying collections

It’s convenient to rely on everything being reactive in a development environment,
but with larger datasets having every function react on any data change will have a
visible impact on performance. For the drop-down list of houses, it doesn’t matter
whether someone adds or removes plants to/from a document, so you’re going to
limit reactivity to the name and _id fields only.

RETURNING SPECIFIC FIELDS ONLY

In the previous section, you defined the housesNameId helper to return everything
from HousesCollection; now you’ll limit the return value to only the fields name and
_id as shown in listing 4.9. The selector object remains empty, but you pass a second
object with a fields property to the cursor. Inside it you may set individual fields to 1,
which means they’ll be returned. Alternatively you could set fields to 0 to exclude
them from being returned. You can’t mix inclusion (1) and exclusion (0) styles. All
keys mentioned must be set to either 1 or 0.

Template.selectHouse.helpers({
 housesNameId: function () {
 return HousesCollection.find({}, {fields: {name: 1, _id: 1} });
 },
 // isSelected definition
});

RETURNING A FULL DOCUMENT

Once the user makes a selection from the drop-down list, you want to show the house
document in full. In this case you obviously need to return all the fields inside the doc-
ument. You’ll create another helper that’ll return exactly one document with all fields
based on the value of the Session variable selectedHouseId. This helper will be used
inside a template called showHouse, so you need to add this block to the client.js file,
as shown in listing 4.10.

lastvisit Timestamp for last action;
Date

Generated by application logic

plants Household plants to take care
of; array of objects

plants.color Unique plant color per house;
string

No database constraint, uniqueness
must be ensured by application logic

plants.instructions Watering instructions for
a plant; string

Listing 4.9 Limiting the fields returned to the drop-down list

Table 4.3 Expected fields for the houses collection (continued)

Field name Contains Notes
Licensed to Mark Watson <nordickan@gmail.com>

95Working with MongoDB collections
Template.showHouse.helpers({
 house: function () {
 return HousesCollection.findOne({
 _id: Session.get("selectedHouseId")
 });
 }
});

This time you’re using a query document but pass no options to the findOne() func-
tion. As a result you’ll get the full document stored inside MongoDB as an object. This
object can be accessed like any other in JavaScript.

4.4.5 Display collection data in a template

Meteor templates make it easy to access data inside an object returned by a helper. All
you need is a double-braced tag referencing the name of the object and the specific
field you want displayed. To show the name stored inside the document returned by
house, you can use {{house.name}}. To eliminate the need to prefix each object prop-
erty with house, though, you’ll find that a #with block that sets the data context is use-
ful because it makes the template more readable.

 To enhance the user experience, you’ll add a conditional to check whether a valid
selection has been made. If no selection has been made, the template should ask the
user to make a selection.

 Each plant should be displayed with information regarding its color, instructions
for watering, and a button to mark a plant as watered.

 For displaying the document’s contents, you can either put everything inside the
showHouse template or use a dedicated subtemplate. Using a subtemplate gives you
greater flexibility and manageability in the future when you might want to support
pets, kids, or cleaning.

 When you include a template, it inherits the parent’s data context. That way, you
don’t have to define a new helper and need to write less code. In the example in list-
ing 4.11, you can see that the data context isn’t taken from the parent directly but is
further specified by {{#each plants}}. From the subtemplate, the current plant
object from the loop is the defined context. You can still use the same expressions as
you would in the parent, but remember that now you’re at a deeper level inside house.
To access parent attributes such as the house ID, you must use the ../ notation.

<template name="showHouse">
 {{#with house}}
 <h2>Taking care of {{name}}'s house</h2>

Listing 4.10 Returning a database document to a template based on ID

Listing 4.11 Template code for showing a house with all plants

Setting the data
context for the
template explicitlyEach database field is a property

of the house object and can be
accessed using dot notation.
Licensed to Mark Watson <nordickan@gmail.com>

96 CHAPTER 4 Working with data
 {{#each plants }}
 {{> plantDetails }}
 {{/each}}
 {{else}}
 You need to select a house.
 {{/with}}
</template>

<template name="plantDetails">
 <p>
 Plant color: {{color}}
 </p>
 <p>
 Instructions: {{instructions}}
 <button class="water" data-id="{{../_id}}-{{color}}" {{isWatered}}
 Done
 </button>
 </p>
</template>

Adding both templates to the application, you can now select a house and view its con-
tents, regardless of the number of plants.

ReactiveVar: the power of Session with a local scope
Session requires a globally unique name, or technically speaking, it lives inside the
global scope. Sometimes you want a variable to be available everywhere in your app,
but there are many cases where their usage is limited to a single part of the applica-
tion—or even a single template.

As a rule of thumb you should avoid putting too much into the global scope, especially
not variables that are used only locally, such as the watered state. To keep things
simple we focus on working with the Session object, let’s accept this limitation for
the house-sitter app.

For bigger projects and if you wish to improve the code you can use locally scoped
reactive variables—the aptly named ReactiveVar. The ReactiveVar package is
part of Meteor core, but you have to add it manually via the command line:

$ meteor add reactive-var

Both ReactiveVar and Session use get() and set() functions, but ReactiveVar
doesn’t pollute the global namespace and can be limited to a local scope. You can
reuse it with different values for the same template.

Just like Session, ReactiveVar stores key-value pairs. It may store whole objects as
values. Updating objects inside the ReactiveVar container requires the use of set().
Because it’s scoped to a template context, you must declare a new ReactiveVar
inside the created callback for a template. There’s no setDefault() function, but you
can pass a default value to ReactiveVar when a new instance is declared:

Template.plantDetails.onCreated(function () {
 this.watered = new ReactiveVar();
 this.watered.set(false);
});

each further narrows
the data context for
the subtemplate.

A subtemplate,
plantsDetails,
is included.
Licensed to Mark Watson <nordickan@gmail.com>

97Working with MongoDB collections
EVENT MAPS AND DATA ASSOCIATION

Besides simply presenting the data from a document, you also want to be able to mark
a plant as watered. Clicking a button triggers an event that sets a plant to watered, but
if you switch between houses you want to keep the state of a plant. To accomplish that,
you’ll use a Session variable again. This time you can’t set the name in the applica-
tion code because you don’t know how many plants each house has. Therefore, you’ll
dynamically create an ID for each plant, consisting of the document _id in combina-
tion with the color attribute. You can do this because you defined color as a unique
identifier for each plant inside a house.

 It’s common practice to use the HTML attribute data-id to pass unique element
IDs to the application code. The event map watches for a click on any button with the
class water and stores the value of data-id for the currently clicked button consisting
of both the document ID and the color value. The event map shown in listing 4.12
can use data-id without having to create the compound ID itself.

 Once the button is clicked, a Session variable with the new compound ID value is set
to true. There’s no need to set a default value for the Session variable. Remember, tech-
nically it’s a key-value store inside the Session object, so you can add new keys at any time.

Template.plantDetails.events({
 'click button.water': function (evt) {
 var plantId = $(evt.currentTarget).attr('data-id');
 Session.set(plantId, true);
 }
});

(continued)

Here, the keyword this refers to the currently available data context (which happens
to be the content of a single plants object). Inside an event map you can set its
value to true when the button is clicked. You must use the second argument to the
function, tpl, which holds a reference to the template. Because watered is a prop-
erty of the template, you can set it like this:

Template.plantDetails.events({
 'click button': function (evt, tpl) {
 tpl.watered.set(true);
 }
});

And finally, from within the helpers the current value can be accessed. Here you
must access the current template instance using the corresponding Template
.instance() syntax:

Template.plantDetails.helpers({
 watered: function () {
 return Template.instance().watered.get() ? 'disabled' : '';
 }
});

Listing 4.12 Event map for watering the plants

data-id contains
a unique ID for
each plant.
Licensed to Mark Watson <nordickan@gmail.com>

98 CHAPTER 4 Working with data
Whenever a plant is watered, you want to disable the button as an indicator that this
plant doesn’t require any more attention. You’ll do this with a helper (listing 4.13)
similar to the one you used to determine the currently selected house in the drop-
down list. Because you’re using globally available Session variables, you can water the
red plant in Manuel’s house, switch to Stephan’s house, and then back to Manuel’s
and still find the button disabled.

 Unless the user forces a page reload, all contents stored inside a Session object
will remain available globally throughout an application.

Template.plantDetails.helpers({
 isWatered: function () {
 var plantId = Session.get("selectedHouseId") + '-' + this.color;
 return Session.get(plantId) ? 'disabled' : '';
 }
});

4.4.6 Updating data in a collection

You update data inside a collection via the Collection.update() function. Although
it can modify one or more documents at the same time when invoked on the server,
the update() function is limited to manipulating a single document based on its _id
when running on the client side. This is to avoid accidental bulk operations that may
block the server for all users. If you need to update more than a single document at a
time, you can do so using server-side methods (see chapter 6).

 When using update(), you need to specify which documents to update, how to
update them, and optionally define options as well as a callback (using an error as the
first return value and the number of affected documents as a second value):

Collection.update(selector, modifier, options, callback);

Only two options are available, both of which are Booleans:

■ multi—The default is false; if it’s set to true, all matching documents are
updated; otherwise, only the first match is updated.

■ upsert—The default is false; if it’s set to true, it inserts a new document if no
matching documents are found.

To call update() from the client, you must provide a single _id as the first argument.
This is part of the first argument, which is called the selector. It can be either an object
with an _id attribute or a string that holds a valid document ID. The modifier uses
standard Mongo syntax to define how to modify present data. Table 4.4 gives an over-
view of some of the most common operators. The following command updates a doc-
ument with an _id of 12345 and sets the field name to Updated Name:

Collection.update({_id: "12345"}, {$set: {name: "Updated Name"}});

Listing 4.13 Template helper for disabling the Done button
Licensed to Mark Watson <nordickan@gmail.com>

99Working with MongoDB collections
NOTE Not all functionality available in MongoDB is available in Minimongo,
the client implementation. You can check the NOTES file inside the mini-
mongo package for an overview of the current limitations.

TRIGGERING UPDATES VIA EVENTS

So far we’ve only shown you how to use Session variables to store data, which means
all data is gone once the browser window is closed or the user forces a reload. To keep
track of when each house was last visited, you’ll extend the event handler to store the
current date to the database. A field, lastvisited, will be used inside each house
document. Again, you don’t have to define the database structure before you can add
data—you can just add a new field to an existing document.

 Inside the client.js file you’ll extend the existing event handler for the plant-
Details template with two lines (listing 4.14). A new variable called lastvisit will be
assigned a current timestamp. It’ll be used in the update() function for the current
document.2 Be careful because you’re now dealing with two IDs: one for the plant and
another for the house. Let’s leave plantId untouched and for the document ID use
the selectedHouseId session variable to specify the ID in the update statement.

Template.plantDetails.events({
 'click button.water': function (evt) {
 var plantId = $(evt.currentTarget).attr('data-id');
 Session.set(plantId, true);
 var lastvisit = new Date();
 HousesCollection.update({
 _id: Session.get("selectedHouseId")
 }, {

Table 4.4 Overview of frequently used update modifiers for collections

Update operator Description

$inc Increments the value of a field by the specified amount

$set Sets the value of a field in the document

$unset Removes a field from the document

$rename Renames a field from a document

$addtoSet Adds elements to an array if they don’t already exist

$push Adds an item to an array

$pull Removes all array elements that match a specified query

2 The browser implementation Minimongo doesn’t support the full feature set provided by MongoDB. There-
fore, using the $currentDate modifier isn’t possible on the client.

Listing 4.14 Extended event map for adding a last-visited date

lastvisit contains a
current timestamp.
Licensed to Mark Watson <nordickan@gmail.com>

100 CHAPTER 4 Working with data
 $set: {
 lastvisit: lastvisit
 }
 });
 }
});

Every time any of the plants inside a house is watered now (that is, the Done button
is clicked) the lastvisit field gets updated. To verify that this update happens,
you’ll extend the showHouse template to display the value of lastvisit, as shown in
the following listing.

<template name="showHouse">
 {{#with house}}
 //...
 <p>Last visit: {{lastvisit}}</p>
 //...
 {{/with}}
</template>

Clicking the button for either plant will automatically disable the button and update
the timestamp in the database, as shown in figure 4.7.

 Because of latency compensation, the value in the local Minimongo instance is
updated first and the result is shown immediately. At the same time, the update is sent
to the server, where the last visit date will be persisted. Should the connection to the

Listing 4.15 Adding the lastvisit timestamp to the showHouse template

The lastvisit field inside the
currently selected document is
set to the current timestamp.

Add this line to show
the timestamp stored
as lastvisit.

Figure 4.7 The timestamp gets updated onscreen and inside the database
by each click on a Done button.
Licensed to Mark Watson <nordickan@gmail.com>

101Working with MongoDB collections
server be lost, Meteor will store the update locally in the browser and resend it once
the connection is restored.

4.4.7 Inserting new data into a collection

As business grows, new houses are added and new documents must be added to a col-
lection. Generally adding documents is done using the insert() function. Each field
of the document must be specified individually, and the value for _id is left out
because it’s assigned automatically by the database:

Collection.insert({field: "value"});

Adding a new house to our collection requires a new template as well as another event
map to trigger the insertion. In section 4.2.2 you already set up a template called
houseForm, which you can extend.

NOTE We haven’t discussed routing yet, so all templates are displayed in the
same view. Although you could use Session to determine which templates to
show, the preferred method involves using a router. Skip ahead to chapter 8
to learn about the principles for using dedicated views for editing and display-
ing data.

Listing 4.16 shows the houseForm template, which consists of a view for a house docu-
ment that displays all editable fields inside a form. To keep things simple, let’s limit
the form to add only a single plant to a house.3 All input fields will be identified by
their ID.

<template name="houseForm">
 <h3>Add a house</h3>
 <form id="houseForm">
 Name <input id="house-name" type="text" placeholder="Name">

 Plant

 Color <input id="plant-color" type="text">
 Instructions <input id="plant-instructions" type="text">

 <button id="saveHouse">Save House</button>
 </form>
</template>

Next, create an event map for handling the form (listing 4.17). When the button for
the form is clicked, the default behavior is to send a form and reload a page. Because
you’re implementing your own functionality for the button, you must suppress the
default behavior by calling the preventDefault() method on the event. Using
jQuery, you’ll retrieve all values for the input fields and put them in local variables.

3 Don’t worry; you’ll soon create a more powerful way to add as many plants as you like.

Listing 4.16 Adding new houses using a form
Licensed to Mark Watson <nordickan@gmail.com>

102 CHAPTER 4 Working with data
 The final line of code does two things. First, it inserts a new document with values
from the input fields into the HousesCollection. That returns the ID of the new
document, which is assigned to the selectedHouseId Session variable. That way, the
entire page instantly displays the new house in the selection and detail view.

Template.houseForm.events({
 'click button#saveHouse': function (evt) {
 evt.preventDefault();
 var houseName = $('input[id=house-name]').val();
 var plantColor = $('input[id=plant-color]').val();
 var plantInstructions = $('input[id=plant-instructions]').val();
 Session.set('selectedHouseId', HousesCollection.insert({
 name: houseName,
 plants: [{
 color: plantColor,
 instructions: plantInstructions
 }]
 }));
 // empty the form
 $('input').val('');
 }
});

This is only a very simple way to add houses that has several shortcomings. The form
doesn’t allow the user to enter multiple plants for a house. Also, the form is only capa-
ble of adding new houses (although you could easily reuse it to allow editing of exist-
ing houses as well). In the upcoming section, you’ll enhance the example to improve
on these shortcomings and refactor some of the code for better efficiency. But first
let’s put the finishing touches on basic CRUD.

4.4.8 Removing data from a collection

The final step for full CRUD4 functionality is removing an entry from the database.
The relevant function is called remove():

Collection.remove(id);

Similar to the update() method, delete() requires a unique ID to know which docu-
ment to remove. Multiple documents may be deleted only from the server, which we’ll
look at in a bit when we discuss methods.

Listing 4.17 Event map for adding a new house

4 Create, Read, Update, Delete—a common name for basic operations on persistent data

Prevents sending the
form and reloading
the pageRetrieves

the input
field values

using jQuery

Inserts a new document and
assigns the return value to

the selectedHouseId variable
to immediately show the

contents of the new
documentEmpties the

form fields
Licensed to Mark Watson <nordickan@gmail.com>

103Working with MongoDB collections

ion
ore

the
 For the HTML, all you have to do to allow for houses to be deleted is to add a but-
ton to the showHouse template. When the button is clicked, you’ll identify the house
by its ID. There are at least three ways to do this in Meteor:

■ If the HTML button had a data-id attribute, you could query its contents in the
same way you determined the plant ID.

■ If the currently selected house ID is stored inside the Session object, you can
use it the same way you did the Done button for updating houses.

■ If the template has a data context that provides the ID, you access it directly.

We already covered the first two. This time, the ID is already part of the data context in
which the click event takes place. That means you can simplify the way you deter-
mine which document to delete and choose the third option. Listing 4.18 shows how
to add the button to the template.

NOTE Although it’s not needed, you should consider adding a data-id attri-
bute to the delete button to provide some traceability to make debugging easier.

<template name="showHouse">
 {{#with house}}
 ...
 <button id="delete">Delete this house</button>
 {{else}}
 ...
 {{/with}}
</template>

There’s no event map for the showHouse template yet, so clicking the buttons doesn’t
do anything. Let’s create a new event map in client.js. Listing 4.19 shows the code that
essentially performs a Collection.remove(). You’ll wrap it inside a confirmation dia-
log to prevent users from accidentally deleting houses.

 Notice that you don’t have to capture the event and read out the data-id attribute
as you did when you set a plant to a watered state. You can directly access all informa-
tion contained in the currently selected house document, including _id.

Template.showHouse.events({
 'click button#delete': function (evt) {
 var id = this._id;
 var deleteConfirmation = confirm('Really delete this house?');
 if (deleteConfirmation) {
 HousesCollection.remove(id);
 }
 }
});

Listing 4.18 Adding a delete button to remove houses from the database

Listing 4.19 Event map for deleting a house

Add the button
just before the
else tag.

This is the current data context:
the selected house document

Shows a
confirmat
dialog bef
actually
removing
document

Removes the
document from the
collection on both
client and server
Licensed to Mark Watson <nordickan@gmail.com>

104 CHAPTER 4 Working with data
Congratulations, you’re now able to perform all basic data operations using Meteor!
Roughly 50 lines of HTML code and about 100 lines of JavaScript are all it takes. Take
a deep breath and pat yourself on the back.

 By now you’re familiar with using the Session object and various ways to store,
manipulate, and retrieve data from a MongoDB database using Collections. Although
the main functionality for this application is present, you still have some work to do.
Depending on your preferences, you could start securing the application now, which
would require users and accounts (see chapter 6). A second option would be to add
routing capabilities to the application so that the form for adding new houses isn’t dis-
played on the same page as the house details (see chapter 8). But we should address
some shortcomings in regard to our application’s functionality first: adding and
removing a custom number of plants to/from existing and new houses.

 In the next chapter, we’ll step things up a bit by taking a more reactive approach to
overcome the current limitations of our application by leveraging Meteor’s core prin-
ciples of reactivity rather than falling into old habits of performing complex DOM
manipulations using jQuery.

4.5 Summary
In this chapter, you’ve learned that

■ Reactive data sources are aware of dependent computations.
■ Reactive contexts allow functions to be rerun when data sources change.
■ Tracker.autorun() can turn any function into a reactive computation by pro-

viding a reactive context.
■ Short-lived data can be stored inside the key-value store of the Session object.
■ Persistent data is stored in MongoDB Collections.
■ Meteor automatically publishes all Collections to every client unless the auto-

publish package is removed.
■ Both autopublish and insecure must be removed before putting an applica-

tion into production.
Licensed to Mark Watson <nordickan@gmail.com>

Fully reactive editing
In chapter 4 you created a fully functional yet basic application that allows users to
select, view, add, and delete houses. Because you used reactive data sources, you
didn’t have to manipulate the DOM tree—for example, adding a new option ele-
ment to the drop-down list when you created a new house—Meteor’s reactivity took
care of it for you.

 The most common approach to front-end development is manual DOM mani-
pulation, but it’s tedious and error-prone. In most frameworks, data is retrieved
from a back end and needs to be inserted into the DOM somehow. If a new data-
base entry is sent to the client, a library like jQuery is used to add a new li element
or table row. Although this approach is straightforward, it tends to make code overly

This chapter covers
■ Building reactive forms
■ Using reactive data bindings to update views
■ Working with unsynchronized, or local,

collections
■ Displaying collection data within forms and

performing updates reactively
■ Implementing a simple notifications system
105

Licensed to Mark Watson <nordickan@gmail.com>

106 CHAPTER 5 Fully reactive editing
complex and forces you to explicitly add changes for all occurrences inside a page.
Many people associate front-end coding with DOM manipulations, but Meteor allows
you to focus on data only and let it perform any changes to views and templates. In
this chapter you’ll be taking advantage of reactive data bindings that limit the amount
of code required and make the application more robust.

 This chapter shows you how to enhance the existing application to allow working
with more complex data structures. You’ll keep all interactions with the DOM at a mini-
mum. In order to do so, you’ll take advantage of Meteor’s database everywhere principle
and use a local collection that exists only on the client. That way, you can add and
remove any number of plants to a house. Additionally, you’ll ensure that unsaved
changes won’t be discarded by accident by implementing a rudimentary notifications
system. By the end of this chapter, you’ll be able to create fully reactive front ends
powered by reactive data sources.

5.1 The reactive editing workflow
Before you apply some of the advanced Meteor concepts to the houseSitter application,
let’s revisit the overall flow of information between users and databases (figure 5.1).

 When a house is selected, users may change its contents, for example, by adding or
removing plants (step 1). Especially when dealing with sensitive data, the application
will validate the incoming data in the browser already (step 2). If all data is valid, it’s
stored inside the local mini-database (step 3). Because the data is still volatile and
present only inside the user’s browser, it’s merely a simulation of the actual saving pro-
cess. If the user closes her browser at this point, no data is stored on the server
although the browser view is already updated (step 4).

 After the successful simulation, data is sent to the server with a request to persist it
(step 5). Again, validations should occur (step 6) and the actual storing procedure
takes place (step 7). Finally, the result of the operation, either an error or a success
message, is sent back to the client (step 8). All other users who can currently view the

Database

Server Client

App

Livequery

MiniDB

App

5. Call method to store doc

6. Validate data 2. Validate data

1. Edit doc

4. Update

view

7. Store to DB

3. Simulate

storing to DB

8. Confirm success

Livequery watches

for changes and pushes

them to all subscribed clients

Blaze

Figure 5.1 The reactive editing workflow
Licensed to Mark Watson <nordickan@gmail.com>

107Reactive front ends vs. DOM manipulation
updated document get an instant update of their screen. The Livequery component
constantly monitors the database for changes and keeps track of all currently sub-
scribed clients.1

 So far the houseSitter business you built in chapter 4 allows you to take on new cli-
ents with only a single plant. You need to be able to serve not only customers with mul-
tiple plants but also those with varying numbers of plants. The first improvement for
the existing application must be to allow editing of existing documents while also
enabling an arbitrary number of plants in each household. The combination of Blaze
templates and reactive data sources allows you to implement reactive form editing
with just a few lines of code.

 Once you introduce reactive editing, you’ll have to take into account that the
instant updates triggered by Livequery may not always be desirable. There may be
times when two people edit the same document, so you need a way to communicate
that someone else has changed a document that’s currently being edited. You
shouldn’t discard all unsaved changes because the server holds newer data. All local
changes should first be stored in a staging environment, which gives you performance
benefits as well as a safety net. You’ll also implement a notifications system to highlight
changes to the user.

5.2 Reactive front ends vs. DOM manipulation
Most front-end engineers typically think about the DOM first. They consider how and
where to put elements or how to serialize data and send it to REST interfaces. jQuery is
a handy tool for these tasks, and it’s synonymous for many people with front-end
development and DOM manipulation.

 When you’re using different languages and frameworks on the server and the cli-
ent, you often find yourself faced with the problem of how to map data received from
the server to an actual view. If no easy integration is available, there’s always jQuery
and adding and removing nodes from the DOM. Unfortunately, changing the DOM
manually becomes quite messy, even for small tasks, which is why we see a shift toward
functional reactive paradigms. Meteor is no exception to this development.

 Let’s compare the two scenarios side by side. Consider a simple form for adding
and removing plants in each of our houses. One button is used to remove an existing
plant; another will add another form fieldset to allow entering plant details. Sce-
nario A in figure 5.2 shows the associated code when removing a DOM node. A click
on a button removes a form’s fieldset (the parent of the clicked button). It doesn’t
affect any other occurrences where the plant may be displayed, so in more complex
views additional remove() operations might be required—for example, when a pre-
view of the house document appears on the same page. Adding a new plant involves a
lot more complexity—you need to inject the entire HTML necessary to define a plant

1 We’ll discuss subscriptions and publications in more detail in chapter 7.
Licensed to Mark Watson <nordickan@gmail.com>

108 CHAPTER 5 Fully reactive editing
form field. Not only is this line very long; it’s also very fragile should you ever decide
to adjust the form code by using different classes or adding more fields.

 DOM manipulation may be suitable for small front-end hacks, but when writing
larger applications it’ll be a challenge to maintain that kind of code. Here’s where
Meteor’s seamless integration between front end and back end comes in handy. With

Scenario A: Manipulating the DOM

Remove a

DOM node

Add a

DOM node

$("#houseForm fieldset:last").after("

<fieldset id='plant-3'>

Color <input type='text' class='color'>

Instructions <input type='text' class='instructions'>

</fieldset>

");

$(evt.currentTarget).parent().remove();

Scenario B: Manipulating the underlying data structure

Remove an

object property

Add an

object property

LocalHouse.update(id,

{$push: {'plants':

{color: '', instructions: ''}

}

}

)

plants.splice(index, 1);

LocalHouse.update(id, {$set: {'plants': plants}})

Figure 5.2 Comparing DOM manipulation with reactive data updates
Licensed to Mark Watson <nordickan@gmail.com>

109Reactive front ends vs. DOM manipulation
Meteor you can directly work with data and let the framework do all the DOM map-
ping for you. Changing the data structure will automatically trigger the necessary
DOM updates.

 Each house is already stored as a document or object inside the database. Why not
leave it at that and work with the object rather than worry about the HTML tags? With
Meteor you can do this easily so that not only you do not have to worry about mapping
content with jQuery, but you also get reactive data binding for free (see the sidebar
“Two-way data binding vs. reactivity” for more information on data binding). The
HTML form is just a different representational view of the house object. Clicking but-
tons won’t trigger DOM operations but will change an object, as shown in Scenario B
in figure 5.2.

 As you can see, not only is less code involved, but it also does a much better job at
separating data from presentation. As a JavaScript developer you’re already familiar
with manipulating objects. All that’s left is to walk through how Meteor can pass data
as an object to the front end.

 In this extended example of the houseSitter app, you’ll rely on four data
sources only:

■ HouseCollection—A MongoDB collection on the server side used to persist
houses

■ Session.get('selectedHouseId')—Used to keep track of which house is cur-
rently selected

■ Session.get('notification')—Used to store and display notification mes-
sages

■ LocalHouse—A local Minimongo collection that exists only inside the browser
and acts as the staging database before changes are sent to the server

The first two were already present in the previous chapter, and you’ll add the other two
in this chapter. You can also get rid of the button used to track whether flowers have
been watered already because you’ll focus solely on the management of client or house
records. While you’re at it, you’ll enhance the layout so you use two columns. The con-
tents of the house document will appear on the left and the editing form on the right.
Again, you can find the styles used in the code sample accompanying this chapter.

Two-way data binding vs. reactivity
Popular frameworks such as Angular or Ember promote a concept called two-way data
binding, where changes in the UI can affect the underlying data model, and vice
versa. Meteor doesn’t rely on such bindings but uses reactivity instead. But what are
the actual differences?

Using a traditional server-side language such as PHP or Java, the application
retrieves data from a database, renders it into HTML, and sends it to the browser for
display. It’s possible for the server code to poll the database for changes, re-render,
Licensed to Mark Watson <nordickan@gmail.com>

110 CHAPTER 5 Fully reactive editing
(continued)

and send an updated view to the browser, using Ajax, for example. If the data is dis-
played as a form, users can perform as many changes as they like and it won’t affect
the database content. In fact, form data must be posted first to the server to process
and update the data. The server will then store the data in the database, retrieve it,
and send an updated view to the browser. Because data flows from a data provider
to a consumer, this is sometimes referred to as one-way data binding.

With two-way data binding, the flow is continuous. Every change in a view flows back
into the actual data, and vice versa. That means if a form field is updated by a user,
the underlying data provider is changed as well. This behavior can be observed if form
data is also displayed elsewhere on the site because it would update instantly.

View

TemplateData

Render

Rendering a view flows
in one direction only.

The rendering process retrieves
data and template specifications.

One-way data
binding

View

Template

Data

Render

Updates to the
view immediately
update data.

Changes to data
trigger views to
be refreshed.

Two-way data
binding
Licensed to Mark Watson <nordickan@gmail.com>

111Staging changes in a local collection
5.3 Staging changes in a local collection
In chapter 4 you used two different types of reactive data sources: Session and
Collection. Before you implement any reactive editing, you must decide which to use
for holding house data. You could easily use the Collection object because all houses
are already stored inside it. That way, you could get rid of much of the code and always
have the latest editing state inside the database. There are two disadvantages of using
a server-side Collection:

■ Each change—that is, keystroke—must initiate a database write operation, which
puts stress on both the network as well as the server. A single client will do quite
well, but if you expect thousands of houseSitters to be updating their client’s
houses you can foresee a lot of load that’s best avoided.

■ There’s no rollback if changes were made accidentally. You still want the user to
press a button to persist data to avoid adding complex undo routines.

You could use Session to hold the database object, but that would mean you’d have to
use a different way to work with data and affect your ability to reuse existing code.

 You need an intermediary data storage that holds house data only for the dura-
tion of the editing process and hands it over to a Collection once the Save button is
clicked. To comply with the first point, there’s no reason you should send the con-
tents of the staging Collection back to the server after each editing step (although
you could, if you wanted to build an autosaving variant akin to Google Docs). To
avoid any intermediary formats, you can use a special variant of Collection as a
staging instance: a local or unsynchronized collection. You can see the data flow in
figure 5.3.

 Local collections have the advantage that they exist only inside the browser’s
memory. That means they’re fast and write operations are cheap. No network

(continued)

In practice, these two-way data bindings can have unpredictable consequences, espe-
cially when there are multiple instances and each may trigger updates to others.

Although reactivity isn’t necessarily related to any data bindings, it can easily be used
to monitor events and use computations to automatically perform updates when data
is changed. In fact, using a reactive data source is an easy way to implement behav-
ior similar to two-way data binding by using template helpers to show data and using
events to update data sources. No code is required to update any views if data
changes because it’s taken care of by the Blaze engine. If done cleverly, you don’t
even need to provide any code to send the data back to the server, as you must when
using a client-only framework.

If you need more advanced front-end functionality or specifically two-way data bind-
ings, it’s possible to combine Meteor with other front-end frameworks such as Angu-
lar or Ember by using packages.
Licensed to Mark Watson <nordickan@gmail.com>

112 CHAPTER 5 Fully reactive editing
latency or disk I/O is involved that could slow down these operations. As a bonus, all
data is already in exactly the same format as in the persisted MongoDB collection on
the server.

NOTE Using a local staging collection requires you to deal with potential data
inconsistencies when server content changes. We’ll address this by imple-
menting a notifications system later on.

As a starting point let’s use the code for the houseSitter application from the previous
chapter and set up a new houseSitter2 app. The only files you’re going to change are
the client files client.js and templates.html.

 When you instantiate a new Mongo.Collection without a name or explicitly set the
name to null, an unsynchronized, or local, collection is created. This can be done in
either the server or client environment:

LocalHouse = new Mongo.Collection(null);

To use the LocalHouse collection on the client exclusively, you must add the code to
the client.js file. Each client has its own instance of LocalHouse, and pushing changes
to the server (which in turn will update all clients) will be triggered by clicking the
Save button.

 You’ll also add a default value for selectedHouseId to make our code more under-
standable and a newHouse object that defines the structure of a database entry. With
the two fields lastsave and status, you have a better chance of comparing the data
available in the staging and server environments. That ability will come in handy later.
Listing 5.1 shows the first lines of the updated client.js file.

HousesCollection LocalHouse

Server

Synchronized
MongoDB collection

Browser

Unsynchronized
local collection:

Minimongo instance

HousesCollection.
findOne()

LocalHouse.
findOne()

LocalHouse.
update()

HouseCollection.upsert()

Figure 5.3 The local collection LocalHouse is used as a staging environment for house documents.
Licensed to Mark Watson <nordickan@gmail.com>

113Staging changes in a local collection

 to
.

LocalHouse = new Mongo.Collection(null);
var newHouse = {
 name: '',
 plants: [],
 lastsave: 'never',
 status: 'unsaved'
 };
Session.setDefault('selectedHouseId', '');

Once the collection is set up, selecting a house performs a lookup in the server data-
base and inserts the document for the currently selected ID into the LocalHouse col-
lection. That means we need to revisit the events for the selectHouse template.

 So far the only thing the change event on the drop-down list does is set the value
for Session, so let’s enhance the existing code. Listing 5.2 shows the changes you
need to make. When assigning a value to newId things get a little more complex, so
we’ll look at the code from the inside out. The findOne() operation on the Houses-
Collection will return a document based on the currently selected ID. If the empty
drop-down option was selected, it can’t find a document. In that case, you’ll use the
newHouse object instead. Either way, after changing the drop-down option you’ll have
a document.

 Because you deal with either an existing doc (which would require using update())
or a new document (which must use insert()), you can use the flexible upsert()
method. If it finds an existing document based on its _id, it’ll perform an update;
otherwise, it’ll insert a whole new document. When performing an update upsert()
returns how many documents were affected; when inserting a new document it
returns an object with two attributes: numberAffected and insertedId. Either way the
returned value for insertedId is assigned to newId, which will become the new value
for selectedHouseId. If upsert() doesn’t need to insert any new documents into the
local collection, it means a document with the selected ID is already present and
should be used as newId.

Template.selectHouse.events({
 'change #selectHouse': function (evt) {
 var selectedId = evt.currentTarget.value;
 var newId = LocalHouse.upsert(
 selectedId,
 HousesCollection.findOne(selectedId) || newHouse
).insertedId;
 if (!newId) newId = selectedId;
 Session.set('selectedHouseId', newId);
 }
});

Listing 5.1 Setting up a local collection

Listing 5.2 Adding a house to the local staging collection using the change event

Insert a new doc or
update if the _id exists.

If no document
was found, set
reactiveHouseObject
the newHouse object

If no insert took place, you
can use selectedId directly
Licensed to Mark Watson <nordickan@gmail.com>

114 CHAPTER 5 Fully reactive editing
Now that you’re going to add editing functionality to the form, you need the full
house details in two places: the showHouse template and the houseForm. It’s more effi-
cient to use a single global helper that can be used in any template instead of creating
another helper that returns the house content for the editing template.

 Template.registerHelper() allows you to create global helpers, so you’ll use it to
make {{selectedHouse}} available from all templates in the application (listing 5.3).
Note that the helper doesn’t perform a database lookup on the server as before; it
returns the contents from LocalHouse.

Template.registerHelper('selectedHouse', function () {
 return LocalHouse.findOne(Session.get('selectedHouseId'));
});

Next you can update the showHouse template to use the global helper instead of the
template-specific house. Find the {{#with house}} tag and change it as shown in
the following listing.

<template name="showHouse">
 {{#with selectedHouse}}
 <h2>Taking care of {{name}}'s house</h2>
 ...
 {{/with}}
</template>

To conclude the showHouse refactoring, you can remove the code for Template.show-
House.helpers completely.

 If you use the drop-down list to select a house, its name and plant details should
now be shown just like before, only this time they’re coming from the local collection,
not the server. The houseForm, though, doesn’t yet show any data for a selected house
because it doesn’t yet have a data context. You can either use the same approach as
before (adding {{#with selectedHouse}} to the template) or provide the data con-
text directly when including the template in the body. The latter requires adding a sin-
gle word and not two more lines to the code:

{{> houseForm selectedHouse }}

For consistency let’s stick with the {{#with}} syntax. Also, if you decide later to put
templates into separate files, it’ll be easier to understand the given data context
because it’s contained inside the template itself and not inherited from the parent.

Listing 5.3 Global helper that returns the edit object

Listing 5.4 Setting the data context to the global selectedHouse helper using
{{#with}}
Licensed to Mark Watson <nordickan@gmail.com>

115Displaying collection data within a form

C

h

t

5.4 Displaying collection data within a form
Still, no data shows in the input fields, so you must add value attributes to each. Also,
you still need to allow for any number of plants to be displayed. Listing 5.5 shows the
updated code.

 For better visual organization, you’ll introduce fieldsets around each group of
inputs. That way, you can easily keep track of which instructions belong to which
plant. In addition, you’ll split the templates in the same way you did for the showHouse
template. A new plantFieldset template will be used for each plant. For removing
plants, you’ll add buttons to each plant’s fieldset and place another button for add-
ing new plants just before the Save button of the form (figure 5.4).

 Finally, in order to show the existing data inside the input fields, each input gets a new
attribute value with an associated expression. As a finishing touch, change the generic
“Add a house” heading to mention the current name instead (see following listing).

<template name="houseForm">
 {{#with selectedHouse}}
 <h3>Edit {{name}}'s house</h3>
 <form id="houseForm">
 <fieldset id="house-name">
 Name <input id="house-name" class="name" type="text"

placeholder="Name" value="{{name}}">

 </fieldset>
 <label>Plants</label>

Listing 5.5 Template code for displaying multiple plants in the HTML form

New add and
remove buttons

Figure 5.4 Updated form using fieldsets and buttons to add/remove plants

Set the data context
using the global helper.

hange the
generic

eading to
mention

he name.

fieldsets group
plant inputs

Existing data is assigned
to value attributes.
Licensed to Mark Watson <nordickan@gmail.com>

116 CHAPTER 5 Fully reactive editing

But
add

r

 {{#each plants}}
 {{> plantFieldset}}
 {{/each}}
 <button class="addPlant">Add Plant</button>

 <button id="save-house" data-id="{{_id}}">Save House</button>
 </form>
 {{/with}}
</template>

<template name="plantFieldset">
 <fieldset>
 Color <input class="color" type="text" value="{{color}}">
 Instructions <input class="instructions" type="text"
 value="{{instructions}}">
 <button class="removePlant">Remove Plant</button>
 </fieldset>
</template>

Let’s revisit the code. You’re aiming for reactive data binding, so there must be a way
for the application code to map each attribute in the current house object to a unique
HTML element. You can verify that this is the case because each data attribute (such as
the name and all plant details) are correctly shown. There must also be a way to
uniquely tie HTML elements back to the data object, which is missing so far. Apart
from the input values each plant fieldset looks exactly the same, so you need to
enrich it with a unique identifier. You could define color as a unique field and add
validation code to ensure you never have two plants of the same color, but that
wouldn’t be a very robust approach. You could even have houses with two plants of the
same color, so requiring the color attribute to be unique would severely limit future
developments. Instead, you can already identify each plant uniquely by its position
inside the array. In the next section, we’ll introduce a new index value that represents a
plant’s position inside the plants array, which enables you to perform reverse mapping.

5.4.1 Adding array index information to an #each loop

At the time this book was written the {{@index}} helper did not yet exist2. As soon as
it’s available you can easily access the position of a plant inside an array like that:

<template name="plants">
 {{#each plant in plants}}
 Index: {{@index}}
 Plant Color: {{color}}
</template>

Until the new helper is available you need to manually implement a solution to get
the index of an array element inside an each block.

2 The functionality is already available in the development branch, so it should probably be available in Meteor
1.2 and later.

tons for
ing and

emoving
plants

Existing data
is assigned
to value
attributes.
Licensed to Mark Watson <nordickan@gmail.com>

117Displaying collection data within a form
 You’ll use a global helper called withIndex, which will return the plants array
with each plant as an object and enhance it with a new index attribute using the map
function provided by Underscore.js.3 Using Underscore.js helps you keep the required
code to a minimum. Underscore.js ships with Meteor and you don’t have to add it
manually. Listing 5.6 shows withIndex, which takes list as an argument. This will be
the plants array. First, you check if the plant object (v) equals null. If not, you add a
new property to the object named index with the value of the current array position
(i). Your new helper takes a list and gives you a new list with exactly the same ele-
ments in the same order, with an additional index property attached to each object.

Template.registerHelper('withIndex', function (list) {
 var withIndex = _.map(list, function (v, i) {
 if (v === null) return;
 v.index = i;
 return v;
 });
 return withIndex;
});

You can pass any array of objects to the withIndex function and use {{index}} in a
template to return the array position of an object inside a loop. That way, you can
uniquely identify each cycle and element created by an #each block. In the houseForm
template, adjust the #each block tag to pass plants to the withIndex function as shown
in the following listing.

<template name="houseForm">
 ...
 <form id="houseForm">
 ...
 {{#each withIndex plants}}
 {{> plantFieldset}}
 {{/each}}
 ...
 </form>
</template>

You also need to enhance the plantFieldset template to add an index for each field
(see listing 5.7). You’re going to use an attribute, data-index, to store it for each
input; the fieldset itself will use id instead.

 There’s no more need for a compound ID mashed up of house ID and plant color
as you did previously, because you can uniquely identify each plant by its position in

3 Underscore.js is a highly useful library that provides commonly used functions in a simple way. See http://
underscorejs.org/.

Listing 5.6 Using Underscore.js to add an index attribute to arrays of objects

Listing 5.7 Adding an index to plants using template helpers

Underscore.js’s
map function is
used to iterate
over a list.

Adjust this line;
the rest remains
as is.
Licensed to Mark Watson <nordickan@gmail.com>

http://underscorejs.org/
http://underscorejs.org/

118 CHAPTER 5 Fully reactive editing

e
a
the plants array of the current document by enhancing the template as shown in list-
ing 5.8. You can now have dozens of red plants that share the same name but have dif-
ferent instructions.4

<template name="plantFieldset">
 <fieldset>
 Color <input class="color" type="text" value="{{color}}"
 data-index="{{index}}">
 Instructions <input class="instructions" type="text"

value="{{instructions}}" data-index="{{index}}">
 <button class="removePlant" data-index="{{index}}">Remove Plant</button>
 </fieldset>
</template>

At this point both the showHouse and the houseForm templates will show all plants
inside each house. Now let’s step it up a notch and implement editing houses with an
arbitrary number of plants.

5.5 Reactive updates using a local collection
You can edit the document using a safety net so that all your changes remain locally in
the browser. Unlike other frameworks, Meteor doesn’t differentiate between using the
database on a server or locally, so you can reuse everything you learned about CRUD
operations in the previous chapter. This time, though, you won’t use it to store data
back to a server but to edit the contents of a document until you’re ready to persist in
the central database.

 For editing houses, you’ll focus on two templates and six events, three in each tem-
plate. This covers all actions involving only the staging collection. Figure 5.5 gives an
overview of which events occur in which templates.

 Let’s look at the code. You begin with the event map for the houseForm template.
Editing the document name, adding a new plant, and saving to the remote database
are the main functions.

 Because all editing events will trigger an update() operation, you can reduce the
lines of code by introducing a general function to perform updates to LocalHouse. As
you know, every update() of a collection takes two arguments: which objects to update
(the document _id argument) and how to update it (the modifier argument). Let’s
keep the code lean by using listing 5.9; put that code at the end of your client.js file,
and you won’t have to touch it again.

Listing 5.8 Adding index information to the plantFieldset template

4 If you have limited botanical knowledge, it might indeed be useful to require plant colors to remain unique
or at least add a location attribute. Otherwise, you shouldn’t pursue a career as a professional house-sitter.

Each input
lement gets
data-index.
Licensed to Mark Watson <nordickan@gmail.com>

119Reactive updates using a local collection
Although the _id can easily be retrieved from Session.get("selectedHouseId") you
still need to come up with the code required to assemble the modifier for each
event.

updateLocalHouse = function (id, modifier) {
 LocalHouse.update(
 {
 '_id': id
 },
 modifier
);
};

5.5.1 Event map for the houseForm template

In the previous version of the app, you relied on jQuery to retrieve form values and
manually put them into an object to be stored in the collection. This time you can
reduce the amount of jQuery involved. Listing 5.10 shows how you can achieve the
same goal in a much simpler fashion.

 The evt object gives you access to the contents of the input field with an ID of
house-name. Whenever a keystroke occurs, you set the name value to the value of the
currentTarget property for the caught event and wrap it in the correct $set syntax
for updating MongoDB collections. You then call the update() function with both the
current document ID and the modifier. To avoid the default browser behavior of
reloading the page, you must keep the evt.preventDefault() directive.

Listing 5.9 Wrapper function for performing updates to the LocalHouse collection

houseForm

plantFieldset

Edit name

Edit color

Edit
instructions

Add plant Remove plant

Save house

Figure 5.5 Editing a house involves two templates and six events.
Licensed to Mark Watson <nordickan@gmail.com>

120 CHAPTER 5 Fully reactive editing
Template.houseForm.events({
 'keyup input#house-name': function (evt) {
 evt.preventDefault();
 var modifier = {$set: {'name': evt.currentTarget.value}};
 updateLocalHouse(Session.get('selectedHouseId'), modifier);
 },
 //...
});

With the code from listing 5.10 in place, each change to the value of the input ele-
ment for house-name will automatically update all occurrences of the name attribute
on the page. Every keystroke will trigger all templates to be partly re-rendered with the
new value for name. The rest of the templates, such as the color or instructions
fields, won’t be rendered again.

 Even though the event relates to a button, similar code can be applied to the
addPlant event. This time, though, you don’t need the $set syntax but, because
you’re dealing with an array of objects, you need the $push syntax shown in listing 5.11.
You can simply insert a new empty plant object with color and instructions as its
attributes.

Template.houseForm.events({
 'click button.addPlant': function (evt) {
 evt.preventDefault();
 var newPlant = {color: '', instructions: ''};
 var modifier = {$push: {'plants': newPlant}};
 updateLocalHouse(Session.get('selectedHouseId'), modifier);
 },
 //...
});

There’s no need to manipulate the DOM in any way—simply changing the underlying
data will update your templates. Both editing the name attribute and clicking the but-
ton to add a new plant will automatically update the screen. This is reactive data bind-
ing in action.

 Before we move on to the plantFieldset, let’s look at the third event: saving to
the remote database (see listing 5.12). To keep track of the last save, each house has a
field called lastsave, which you populate with a timestamp.

NOTE Because different clients can have different clock settings, it’s not
good practice to trust the client to provide an accurate timestamp. Ideally, a
timestamp used for database entries should be created by the server. In chap-
ter 7 we’ll introduce you to server-side methods that allow you to implement
this functionality quite easily.

Listing 5.10 Event map for updating the house name

Listing 5.11 Event map for adding a new plant
Licensed to Mark Watson <nordickan@gmail.com>

121Reactive updates using a local collection
Again, you’re providing a modifier. First you update the local house document and
then send it to the remote database. But now you run into a limitation of running
code from a client: what happens if you successfully update the local document but
persisting the changes in the MongoDB fails? You could (and probably should) work
around this by checking return values and catching exceptions. Again, this is some-
thing you can accomplish much more easily by using server-side methods, so just keep
this limitation in mind. Chapter 7 will give you the necessary tools to deal with these
situations more efficiently.

Template.houseForm.events({
 //...
 'click button#save-house': function (evt) {
 evt.preventDefault();
 var id = Session.get('selectedHouseId');
 var modifier = {$set: {'lastsave': new Date()}};
 updateLocalHouse(id, modifier);
 // persist house document in remote db
 HousesCollection.upsert(
 {_id: id},
 LocalHouse.findOne(id)
);
 }
});

Three events implemented, three to go. Next up is the plantFieldset template.

5.5.2 Event map for the plantFieldset template

Laziness is a virtue for programmers, so let’s use only a single event for changes to
either the color or instructions attribute of a plant. That way, you’ll get updates
to all available plant attributes for free, should you ever decide to add, say, a location
field. That means you have to determine not only the value of what to insert into the
document but also the field name or where to insert it. To uniquely identify a prop-
erty, you need three pieces of information:

■ Current plant index (the position of a plant inside the plants array, such as 0)
■ Current plant attribute (the field name inside a document, such as color)
■ Updated attribute value (the value for a field, such as blue)

Let’s take the following document as an example:

{
 name: 'Manuel',
 plants: [
 {color: 'Red', instructions: '3 pots/week'},
 {color: 'Yellow', instructions: 'keep humid'}
]
}

Listing 5.12 Saving the staging document to the database with a timestamp

Saves the local doc
on the server
Licensed to Mark Watson <nordickan@gmail.com>

122 CHAPTER 5 Fully reactive editing

th
a

To change the first color attribute for the first plant from Red to Blue, use the follow-
ing dot notation:

LocalHouse.update(id, {$set: {"plants.0.color": "Blue"}});

As you can see in listing 5.13, you first combine the necessary identifiers to access the
right element inside the collection. You can obtain the index from the data-index
attribute of the HTML element, which you defined earlier in this chapter. The field
name is the same as the class attribute of an input element. These pieces are concat-
enated into the dot notation for the currently edited plant and property. Dynamically
concatenating field names inside an object or using variables as keys is only possible
when using the bracket notation, which is why you must first assign plantProperty
with the field identifier and then use brackets to assign the new value, which is accessi-
ble via evt.currentTarget.value.

Template.plantFieldset.events({
 'keyup input.color, keyup input.instructions': function (evt) {
 evt.preventDefault();
 var index = evt.target.getAttribute('data-index');
 var field = evt.target.getAttribute('class');
 var plantProperty = 'plants.' + index + '.' + field;
 var modifier = {$set: {}};
 modifier['$set'][plantProperty] = evt.target.value;

 updateLocalHouse(Session.get('selectedHouseId'), modifier);
 }
});

MongoDB allows you to manipulate data inside a collection in various ways, but unfor-
tunately there’s no easy way of removing a single plant object from the plants array.5

But this is exactly what you need the removePlant button to do. You’ll work around
this limitation by first putting all plants in a regular array, splicing it, and then storing
the modified plants array back into the document.

 Because you’re in the plantFieldset template, the current data context is limited
to a single plant object. To read the entire plants array, you can perform another
lookup in the local collection. The collection is available inside the browser and no
network latency would affect the lookup, so you could use the following to get all
plants for the currently selected house:

LocalHouse.findOne(Session.get('selectedHouseId')).plants

Listing 5.13 Event map for updating plant properties

5 This limitation in MongoDB is tracked as “A modifier to delete a single value from an array” (https://jira
.mongodb.org/browse/SERVER-1014) and dates back to 2010.

Concat the
exact identifier
for the plant
and property.

Assign the new
value using
bracket notation.

Perform
e update
s always.
Licensed to Mark Watson <nordickan@gmail.com>

https://jira.mongodb.org/browse/SERVER-1014
https://jira.mongodb.org/browse/SERVER-1014

123Reactive updates using a local collection
Alternatively, you could access the parent data context using the global Template object:

Template.parentData(1).plants;

If you don’t put an argument inside the brackets, it defaults to 1, which means the
data context one level up is referenced. You can go up as many levels as required and
access the data you need by adding its name to the statement. The previous code is
equivalent to using {{../plants}} within a template.

 Once you have all plants from the house document in a regular JavaScript array,
you’ll use splice to extract the element at the position determined by the index asso-
ciated with the HTML button. The resulting array has one less element and is used
inside modifier. The following listing shows the event map for removing a plant.

Template.plantFieldset.events({
 'click button.removePlant': function (evt) {
 evt.preventDefault();
 var index = evt.target.getAttribute('data-index');
 var plants = Template.parentData(1).plants;
 plants.splice(index, 1);
 var modifier = {$set: {'plants': plants}};

 updateLocalHouse(Session.get('selectedHouseId'), modifier);

 },
 //...
});

These are all the events needed to provide full editing of existing houses. Together
with the code provided in the selectHouse event, this approach is also flexible
enough to address the use case of creating new houses; you simply select the empty
option from the drop-down.

NOTE We haven’t discussed it in detail, but make sure that when removing a
house you remove it from both HousesCollection as well as LocalHouse.
Make this simple fix before moving on to the next section.

The application still lacks something in terms of usability. How can you tell whether
you’ve made any changes to the document currently opened in your browser when
you return from a lengthy phone call? Or even worse, what happens if a colleague
works on the same house as you do simultaneously and saves it without you knowing?
You can greatly improve this app with a basic notifications6 system that provides and
save reminders and warnings if there’s newer database content.

Listing 5.14 Removing plants

6 You’ll see more efficient ways to implement notifications when we talk about packages in chapter 9.

All plants go into a
regular array.

Regular arrays can
use splice to
remove an element.
Licensed to Mark Watson <nordickan@gmail.com>

124 CHAPTER 5 Fully reactive editing
5.6 Implementing a simple notifications system
Any application that allows multiple users to edit the same data simultaneously has to
deal with concurrent saves. What happens if you start editing a house and someone
saves while you’re still editing? Let’s assume Manuel and Stephan are both editing the
same house document, as shown in figure 5.6. Stephan updates the plants in his home
so that the document contains three entries: red, orange, and white. When he’s fin-
ished, he stores the changes back to the server. Meanwhile, Manuel has started editing
Stephan’s house as well. He views a local copy with only two plants: red and blue. What
should happen with Manuel’s view now that the database content has changed? One
possibility would be to discard all local changes and reactively update the view with the
latest state of the document. Doing so automatically wouldn’t be an ideal solution and
results in poor user experience; it may frustrate Manuel because it’ll feel as if he lost
important data. Perhaps his data was even newer than Stephan’s.

 There are many scenarios where you want to avoid instant updates—for example,
when thinking about a simple way to provide fallbacks to cancel an edit, or when docu-
ments can only be changed entirely to maintain a certain level of consistency.

 Either way, as long as you don’t have a means to collaboratively update a document
simultaneously and merge updates directly into a document, a better approach is to
use notifications to signal that the local copy Manuel is looking at is outdated.

App

Database

Client A

Server

MiniDB

App

Show local copy

of Stephan’s house

Stephan

Edit Stephan’s house

plants: - red

- orange

- white

Persist changes to

Stephan’s house

May new

database content

overwrite Manuel’s

current edit?

Local

House

Client B

MiniDB

App

Show local copy

of Stephan’s house

Manuel

Edit locally

plants: - red

- blue
Local

House

Houses

Collection

plants: - red

- orange

- white

Figure 5.6 Dealing with concurrent edits to the same house
Licensed to Mark Watson <nordickan@gmail.com>

125Implementing a simple notifications system
Besides having an area to display notifications, you need a trigger to determine when
to show messages and which messages to show, so you’ll extend the update() opera-
tions on the local document to indicate that a document has been changed by includ-
ing a status field. Also, you want to avoid overwriting someone else’s changes. To do
so, you’ll implement a notification that appears when remote data is changed by
someone else. There are many ways to achieve this—in this chapter, you’ll rely on the
lastsave attribute to determine whether a document was changed by someone else
while editing is still in progress.

 A second use case for providing notifications is to prevent a user from accidentally
discarding an edited document. So you’ll also build in a safety net for the drop-down
list so that users won’t accidentally switch houses while unsaved changes are present
on the page.

5.6.1 Adding a notifications template

All notifications will be displayed at the top of the page. If there are no messages or
warnings to show, the notifications area remains invisible. Both the showHouse and the
formHouse templates already use a similar approach—if there’s no data context, they
won’t be rendered.

 You’ll use an additional template called notificationArea that checks whether
there’s a notification object. If so, it’ll use its style and text properties and display a
message to the user. The following listing shows the template’s code.

<template name="notificationArea">
 {{#if notification}}
 <p class="{{notification.type}}">{{notification.text}}</p>
 {{/if}}
</template>

You can embed this template anywhere you like, in the form template or at the top of
the page, by using {{> notificationArea}}.

5.6.2 Adding a status property

Keeping track of the status of a house document is best done by introducing a new
status property. There can be three states:

■ The contents of a document in HouseCollection and LocalHouse are the same—
This requires no notifications. As long as users only look at content and don’t
use the form to make any updates, there’s no need to display any notifications
besides the actual document contents.

■ LocalHouse has local or unsaved changes but the remote document hasn’t changed—If
there are only local edits, a warning must be displayed that unsaved changes are
present on the page and navigating away will discard them.

Listing 5.15 Using a template for displaying notifications
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

126 CHAPTER 5 Fully reactive editing

s

■ While you were editing the current document, the remote document was changed—In this
scenario the remote database contains newer content than what the user cur-
rently sees inside the browser. A warning must tell the user that saving now will
overwrite a newer version on the server.

The first state is the initial state when a new house is selected by the user. It doesn’t
require any additional code, so let’s look at the second case: identifying unsaved changes.

 To add state, you’ll extend the existing modifiers you’ve used for the Local-
House.update() operation. In most cases it’s sufficient to add a new key-value pair to
the $set statement. Adding plants makes use of the $push operator, so you must add a
dedicated $set statement to the modifier. For the color and instructions events,
you’ll also use bracket notation to add the status to the update modifier. The Save but-
ton will set the status to saved, so make sure you set the correct status. The following
listing shows which lines must be present inside the event map code.

Template.houseForm.events({
 'click button#save-house': function (evt) {
 //...
 var modifier = {$set: {'lastsave': new Date(), 'status': 'saved'}};
 },
 'click button.addPlant': function (evt) {
 //...
 var modifier = {$push: {'plants': newPlant}, $set: {'status':

'unsaved'}};
 },
 'keyup input#house-name': function (evt) {
 //...
 var modifier = {$set: {'name': evt.target.value, 'status': 'unsaved'}};
 }
});

Template.plantFieldset.events({
 'click button.removePlant': function (evt) {
 //...
 var modifier = {$set: {'plants': plants, 'status': 'unsaved'}};
 },
 'keyup input.color, keyup input.instructions': function (evt) {
 //...
 modifier['$set'].status = 'unsaved';
 }
});

Not only will every change to the form contents trigger an update to LocalHouse, but
it will also set a status field to unsaved. Only clicking the Save button or selecting
another house should reset the current status.

Listing 5.16 Adding status to the update modifiers

The Save
button

sets the
tatus to

saved.
$push and $set can
be performed inside
a single operation.

Adding the status field
using bracket notation
Licensed to Mark Watson <nordickan@gmail.com>

127Implementing a simple notifications system
5.6.3 Using a Session variable to trigger notifications

You could easily use a helper to determine different states and return the actual dis-
play text and style, but in this chapter you’ll use a dedicated Session variable to trig-
ger messages. Keeping the code separated makes it much simpler to extend the code
in the future and only perform updates to a single location. The code presented in
listing 5.17 should look familiar by now—it’s a simple helper that returns the contents
of the Session variable named notification.

Template.notificationArea.helpers({
 notification: function () {
 return Session.get('notification');
 }
});

The contents for the Session variable must be set based on simple conditions. Instead
of hooking into the update modifiers, you’ll use a computation that checks for certain
conditions. If those are met, it’ll reactively set the correct notifications content.

 You used Tracker.autorun earlier to set up a reactive computation. This time you
can limit it to the houseForm template because this is the only place where status
updates may be triggered. The advantage of using autorun inside a template context
is that once the template is destroyed the autorun function is destroyed as well. We
discussed hooking into the created callback in chapter 4:

Template.houseForm.onCreated(function () {
 this.autorun(function () {
 // do stuff
 })
});

Inside the autorun you’ll check for two conditions to be met:

■ Is a house document selected and does its status equal unsaved? Then let the
notification be a save reminder.

■ Is the lastsave timestamp of the remote doc newer than that of the local stag-
ing document? Then let the notification be a warning.

If neither of these conditions is met, you can safely proceed without any notifications.
Listing 5.18 shows how to perform the checks in the client.js code. Because the Session
object can hold entire objects, you store both the type as well as the text property for
the notification via Session.set().

Template.houseForm.onCreated(function () {
 this.autorun(function () {
 if (HousesCollection.findOne(Session.get('selectedHouseId')) &&
 LocalHouse.findOne(Session.get('selectedHouseId')).lastsave <

Listing 5.17 Helper that displays notifications from a Session variable

Listing 5.18 Setting the notifications inside an autorun
Licensed to Mark Watson <nordickan@gmail.com>

128 CHAPTER 5 Fully reactive editing
 HousesCollection.findOne(Session.get('selectedHouseId')).lastsave) {
 Session.set('notification', {
 type: 'warning',
 text: 'This document has been changed inside the database!'
 });
 } else if (LocalHouse.findOne(Session.get('selectedHouseId')) &&

LocalHouse.findOne(Session.get('selectedHouseId')).status === 'unsaved') {
 Session.set('notification', {
 type: 'reminder',
 text: 'Remember to save your changes'
 });
 } else {
 Session.set('notification', '');
 }
 })
});

Open up two browsers and check if the code works as expected (see figure 5.7 for
an example). If you open the same house in both and start editing, you’ll see a

Check if the
doc already

exists on the
server and if

it is newer.

Check if the local
document has an

unsaved status.

Browser 1 still shows
an outdated doc.

Browser 1 is editing while the
remote doc has changed. Browser 2 finished editing and

saved to HousesCollection.

Figure 5.7 Remote changes trigger a warning message about changed content.
Licensed to Mark Watson <nordickan@gmail.com>

129Summary
green7 message text saying that you must remember to save your changes. As soon
as you save in one of the browsers, the other will tell you that the document has
been changed inside the database on a red background.

 You can now build on this rather simple solution. Possible improvements include
showing the remote and local documents side by side so that a user can easily see the
differences. All that’s required is to display the contents from HousesCollection in
the showHouse template and keep the houseForm populated with data from Local-
House. You can even go as far as highlighting the differing fields to give even more
guidance. We’ve covered enough ground now that you should be capable of enhanc-
ing the application on your own.

 If you want to include information on who changed the document, you must first
understand the concept of users and how Meteor handles them. Head over to the
next chapter to find out how to deal with users and authentications, and learn how to
restrict users to editing only certain fields or documents.

5.7 Summary
In this chapter, you learned that

■ Local collections are unsynchronized and may be used just like regular data-
bases, even if they exist only inside the browser’s memory. That means they
aren’t affected by network latency or slow disk performance.

■ Using reactive data binding between collections and templates removes the
need to perform DOM updates manually; simply updating data sources will trig-
ger view updates.

■ Reactive data binding can have similar effects as two-way data binding in other
frameworks.

■ Blaze templates can’t return array index positions; a helper function is required.
■ Session can be used to implement a simple notifications system.

7 Of course the message will only be green if you took the CSS classes from the chapter’s code and put them
into your styles.css file.
Licensed to Mark Watson <nordickan@gmail.com>

Users, authentications,
and permissions
Once an application is connected to one or more data sources, it’s capable of dis-
playing dynamic content. To customize the content different users see, the applica-
tion needs to know who is requesting data. Most likely some users will be able to
add content, but there will be some restrictions on both what data can be accessed
and what can be done with it.

 For these reasons this chapter introduces the concept of users and accounts. Up
until now we’ve kept things fairly simple and assumed a single type of user: the
anonymous guest. Unless the application can identify a guest as a particular user,
we can’t show user-specific content.

This chapter covers
■ Enabling user registration via username/

password
■ Connecting to an SMTP server to send emails
■ Customizing email messages for accounts-

related messages
■ Adding OAuth authentication via Facebook
■ Managing permissions using allow/deny
130

Licensed to Mark Watson <nordickan@gmail.com>

131Adding users to an application
The process of identifying a user is called authentication. In this chapter we’ll discuss
how users can sign up to an application and how they can identify themselves using a
combination of username and password or log in using an existing service like Face-
book, Twitter, or GitHub to verify who they are.

 The second main concept of working with accounts, authorization, introduces secu-
rity fundamentals to every application. In its simplest form, logged-in users may be
treated differently from anonymous guests. Typically applications require a more
granular way to define permissions so the concept of roles such as members and
admins becomes important.

 In this chapter you’ll learn how to add users to any application using Meteor’s
core functionality for both password authentication and OAuth. Every step, from
registering, to editing a user’s profile data, to deleting an account, will be discussed.
You’ll take advantage of what you learned in chapter 4 to use Collections to allow
users to exchange messages and apply granular permissions for deleting and view-
ing these messages.

 To explore the user-related functionality, you’ll build a small application again.
Meteor doesn’t require a specific file structure. For this chapter you’re going to use
the structure shown in figure 6.1.

 Begin by creating a new project and setting up the files and folders shown in fig-
ure 6.1. Once you’ve done that, we’ll start by addressing the authentication aspect
when dealing with users.

6.1 Adding users to an application
Our application should be able to tell who is currently using it. This will be the foun-
dation upon which we can later grant or restrict access and functionality. Fortunately,
Meteor makes it easy to add user functionality, and doing so requires hardly any code.

Templates, styles, application code (client)

Data source definitions (client and server)

Common code (client and server)

Application code (server)

Figure 6.1 Application structure for userApp
Licensed to Mark Watson <nordickan@gmail.com>

132 CHAPTER 6 Users, authentications, and permissions
 The most common scenario for adding users on the web is to allow visitors to sign up
or register themselves. That turns them from guests into users. As the identifier, you’ll
use an email address or a username, and to verify a user, you’ll rely on passwords.

 The basic workflow for user management is as follows:

1 User registration or signup
2 Logging in or signing in of existing users
3 Password reset for existing users

6.1.1 Adding password authentication

Not every application needs accounts, so the accounts functionality isn’t available in a
new project. It is, though, part of the core packages of every Meteor installation and
can be added quickly using the CLI tool. The following commands will extend an
existing application to allow users to sign up, log in, and perform all relevant actions
for a basic user workflow:

$ meteor add accounts-password
$ meteor add accounts-ui

The first command adds the functionality for using passwords. The second adds tem-
plates for user actions (registration/login/password reset) and associated styling
information. If you don’t want any styles applied to the templates because you’re
going to take care of this yourself, add accounts-ui-unstyled instead.

 Both commands will ensure that all dependencies are met as well. For example,
the accounts-password package enables users to reset their passwords. To do so, it
requires the email module to be able to send the reset link to a user, so it adds it to
the application as well. Also, the styles used for the default login mask rely on the LESS
preprocessor, so the less package is added as well. Meteor will show on the command
line detailed messages indicating which packages were added. Inside your project
folder you can find information on all packages in the .meteor/packages file.

 Once the packages are added, start the Meteor server again.

ADDING USER TEMPLATES

In your client/templates.html file, you can now add the user-related subtemplates.
The accounts-ui package includes all required templates, and all you need to do is
add an inclusion tag anywhere inside the existing templates as shown in listing 6.1.

NOTE For the code in this chapter, we added Bootstrap 3 using meteor add
twbs:bootstrap to provide a nicer look and feel. Instead of the default
accounts-ui package we used ian:accounts-ui-bootstrap-3, which inte-
grates nicely into Bootstrap 3.

<head>
 <title>Working with users</title>
</head>

Listing 6.1 Adding loginButtons
Licensed to Mark Watson <nordickan@gmail.com>

133Adding users to an application
<body>
 <div class="container">
 <div class="navbar">
 {{>loginButtons }}
 </div>
 <h1>Working with users</h1>
 </div>
</body>

Figure 6.2 shows how the login feature is presented to the user. The loginButtons
template creates an expandable overlay that provides login, signup, and password
reset functionality in a single container. When the user clicks Sign In, the dialog opens
and provides three buttons. By default users are identified by their email address and
a password. Requiring a username or making the email address optional can be con-
figured using Accounts.ui.config.

 Before we change the default behavior, let’s use the login box to sign up the first user.

6.1.2 Registration and password reset

Ideally the signup process for an application should be as simple and quick as possi-
ble. That encourages users to register and not cancel the process if multiple steps are
involved. Therefore, the default Meteor user registration requires only a minimum of
information from the user. Once users are signed up, you can remind them to fill out
a profile or answer additional questions.

This includes the actual
user templates.

Clicking Sign In
opens the login box

Register new user

Log in
existing
user

Password reset

Figure 6.2 Login box
Licensed to Mark Watson <nordickan@gmail.com>

134 CHAPTER 6 Users, authentications, and permissions
The simplest way to sign up users is to ask for
their email address and password. These two parts
are sufficient to uniquely identify users and keep
their accounts somewhat safe. The accounts-
password package requires all passwords to be at
least six characters long.

 Use the login box to sign up your first user by
filling in both fields. Then click the link that says
“Create account,” just below the Sign In button.
Notice how the big Sign In button now shows Cre-
ate Account as well (figure 6.3)? That’s it; you just
registered the first user for your application.

THE USERS COLLECTION

Users belong in the long-term memory of the application, so they’re stored inside a
database collection. Start the Meteor server with meteor run and open Robomongo,
or issue meteor mongo in another terminal session in order to access the database.
Using a database shell, query the contents of the users collection like this:

db.users.find();

WARNING There are database users and application users. Application users
are stored inside a real Collection, not inside the special Users folder you
may see in Robomongo. Database users are needed to connect Meteor with
MongoDB, and typically only one user of that type is needed.

When you look at a single user document (see listing 6.2), you see that it now contains
four top-level fields:

■ _id—Holds the unique database ID for the user, also accessible via Meteor
.userId().

■ createdAt—A timestamp when the user was created/registered for the
application.

■ emails—An array of one or more addresses associated with the user. Each email
address may belong to only one user and may be verified or not.

■ services—An object containing data used by particular login services, such as
tokens used by forgot-password links.

{
 "_id" : "xcwYNyvMhP8rq6EPp",
 "createdAt" : ISODate("2015-05-22T12:47:33.821Z"),
 "emails" : [
 {
 "address" : "stephan@meteorinaction.com",
 "verified" : false
 }
],

Listing 6.2 A single user document stored inside the users collection

Figure 6.3 Using the login box to
create an account
Licensed to Mark Watson <nordickan@gmail.com>

135Adding users to an application
 "services" : {
 "password" : {
 "bcrypt" : "$2a$10$OsFJKxSApp68T9elfjKvtXBdBP...SnY"
 },
 "resume" : {
 "loginTokens" : [
 {
 "when" : ISODate("2014-12-26T09:24:51.382Z"),
 "hashedToken" : "sAMzRZMnqWrmXbmOCm7cpKzG5JR5qf...8f9bUTo="
 }
]
 }
 }
}

For each authentication provider, the services field holds the information needed to
perform authentication. By default, passwords are stored using bcrypt, which is also
used as the password hash algorithm for BSD and many Linux systems.

 There are no restrictions on which fields can be stored inside a user document, so
you can extend it as you like. There are two more standard fields that are only filled
when needed: username and profile. Because the signup process doesn’t require
users to set a username, you won’t use the field in this example. The profile field
contains an object, to which the associated user has full read and write access by
default. This object is the default storage for things like a real name, biography text,
or phone numbers.

 To allow users to share social information and protect their identity, you’ll require
usernames and also make sure all users have a profile that they can fill as they like.

CONFIGURING THE REGISTRATION PROCESS

Because the login box is available only on the client, the corresponding configuration
also needs to take place inside the client context. By adjusting the setting for password-
SignupField for the Accounts.ui.config object, you can ask users to provide a user-
name during the registration process. As you can see in table 6.1, each setting has a
different requirement as to which fields must be provided during registration.

For this chapter we’ll assume each user has a username. An email address isn’t
important for us—if they don’t want to be able to recover their passwords, we won’t

Table 6.1 Possible values for passwordSignupFields

Setting Username Email

USERNAME_AND_EMAIL mandatory mandatory

USERNAME_AND_OPTIONAL_EMAIL mandatory optional

USERNAME_ONLY mandatory n/a

EMAIL_ONLY n/a mandatory
Licensed to Mark Watson <nordickan@gmail.com>

136 CHAPTER 6 Users, authentications, and permissions
force users to provide an address. Listing 6.3 shows how to configure our applica-
tion to ask for both username and an (optional) email address during the registra-
tion process.

Accounts.ui.config({
 passwordSignupFields: 'USERNAME_AND_OPTIONAL_EMAIL'
});

Remember that this configuration code belongs
in a file that isn’t executed on the server or is at
least wrapped in a Meteor.isClient block. If it
isn’t, your application will produce errors. Place
it in client/client.js.

 When the configuration is in place, the login
box will show four instead of two fields for creat-
ing a new account, as shown in figure 6.4. Because
users may decide to not provide us with an email
address, they won’t be able to reset their password
and it becomes important to make sure they enter
the password correctly. For this reason, there’s
also a password verification field that wasn’t shown
when using a mandatory email address.

 If you sign up new users without an email address now, you’ll notice that inside the
MongoDB collection there is no emails field. This is because empty fields aren’t cre-
ated in NoSQL databases. This is different from relational databases like MySQL,
where a fixed schema is used. New fields may be added at any time, so there’s no need
to store empty fields in a document.

EXTENDING THE ACCOUNTS CREATION WITH PROFILE DATA

When you’re registering a new user on a web page, the form data is forwarded to the
server to process and store inside a MongoDB collection. To extend the default behav-
ior, it’s possible to hook into the creation process and add checks or enrich the data
stored. This is done using Accounts.onCreateUser(), which takes a function as its
argument. This function gets called every time a new user is created and enables you
to control the content of new user documents. The function itself can make use of two
arguments: options and user.

// server.js
Accounts.onCreateUser(function (options, user) {
 user.profile = options.profile;
 return user;
});

Listing 6.3 Configuring registration to ask for both username and email

Figure 6.4 Creating an account with a
mandatory username and an optional
email address
Licensed to Mark Watson <nordickan@gmail.com>

137Adding users to an application
The options object comes from the authentication provider, in this case accounts-
password. It comes from the client and shouldn’t be trusted. By default, onCreate-
User simply copies options.profile to user.profile and returns a user object
representing the newly created user document in the database.

 If you want to add profile information to each new user, you need to place your
code in the server/server.js file (or inside a Meteor.isServer block). Let’s keep the
default behavior of onCreateUser to copy profile data from the authentication pro-
vider to the user document. When using passwords, there’s no profile data, but when
you later add external logins with Facebook or Twitter, you’ll be able to use the profile
data they pass on. If there’s no profile data provided from the signup process, you’ll
add it as an empty object. Before returning the user document, a new profile property
called rank will be added to each user, making them a “White belt.”1 The required
code is shown in the following listing.

// server.js
Accounts.onCreateUser(function (options, user) {
 if (options.profile) {
 user.profile = options.profile;
 }
 else {
 user.profile = {};
 }
 user.profile.rank = 'White belt';
 return user;
});

All users who sign up from now on will have a profile field in their user document.
Existing users aren’t affected by that change because they already went through the
createUser stage and therefore won’t be affected by the updated functionality.

TIP If you want to clear the database, use the command meteor reset. This
will empty all collections and you can start over with no users.

6.1.3 Setting up email

Especially when an email address is required to sign up, you’ll want to ensure that it
actually works. For resetting passwords, the Meteor server must be capable of sending
out emails to users. If you don’t configure the emails package, then all messages will
be shown on the server console but never actually sent out (see figure 6.5).

 As you can see in figure 6.5, Meteor requires the MAIL_URL environment variable to
hold the connection string for an SMTP server. Using an environment variable is a

1 We’ll use the ranking system found in most martial arts here, where practitioners start as white belts and work
toward a black belt.

Listing 6.4 Adding profile information to new users
Licensed to Mark Watson <nordickan@gmail.com>

138 CHAPTER 6 Users, authentications, and permissions
great way to quickly adjust a configuration value. Most of the time, it provides more
transparency to add the mail server configuration to a file, though.

ADDING A MAIL SERVER

The connection details to a mail server are considered highly sensitive. You don’t want
anyone to find out the credentials for your mail server and start sending spam from
your machines. To avoid sharing login details with all users, be sure to configure the
mail server not inside a Meteor.isServer block but inside a dedicated file within
the server folder of your application.

 Meteor uses various environment variables for configuration; you can find an over-
view in chapter 12. All environment variables may be passed directly to the server upon
startup or can be set from inside the code using process.env.<Name of Environment
Variable>. To set MAIL_URL to a valid mail server, you’ll put the command inside a
Meteor.startup() function, so it gets executed every time the Meteor server starts. To
keep the code clean, you’ll use variables to set username, password, server, and port
instead of writing the SMTP connect string directly. Some characters need to be
escaped in a connection string, so each variable is processed by encodeURIComponent.

 Once you’ve added the code shown in listing 6.5 to your application, your app
will be able to send emails such as password-reset links to all users who provided an
email address. Be sure to adjust the variable values to match your own mail server
configuration.

Meteor.startup(function () {
 smtp = {
 username: 'yourmail@gmail.com',
 password: 'mySecretPassword',
 server: 'smtp.gmail.com',
 port: 587
 };

Listing 6.5 Configuring an SMTP server in server/smtp.js

Figure 6.5 Unless an email server is configured, Meteor will show emails on the server console.

Adjust these
values for your
SMTP server.
Licensed to Mark Watson <nordickan@gmail.com>

139Adding users to an application
 process.env.MAIL_URL = 'smtp://' +
 encodeURIComponent(smtp.username) + ':' +
 encodeURIComponent(smtp.password) + '@' +
 encodeURIComponent(smtp.server) + ':' +
 smtp.port;
});

Now that the application is capable of sending emails, you can encourage users to ver-
ify their address upon registration.

TIP Sending mail via SMTP requires the password to be passed in clear text.
For better security you can use environment variables instead of storing the
password inside a file or alternatively use a local sendmail that listens on
smtp://localhost:25 without the need for a password.

SENDING ADDRESS VERIFICATION EMAILS

Again, you’ll hook into the onCreateUser function to send a verification email as soon
as a user registers. The corresponding function is called sendVerificationEmail, and
it takes two arguments: the user ID and an optional email address:

Accounts.sendVerificationEmail(user._id, email);

Typically only the first argument is needed, because the address will be part of the
user document. But you aren’t requiring users to provide an email address, so you
should take care that there’s no attempt to send emails when the user doesn’t have an
address. Also, if you hook directly into the creation process, you have to wait for
Meteor to create a user document first before you can access it.

 The code shown in listing 6.6 first checks if the user provided an email address,
then sets a timeout of 2 seconds to wait for the account to be created, and finally sends
the verification email.

Accounts.onCreateUser(function (options, user) {
 //...
 user.profile.rank = 'White belt';
 if (options.email) {
 Meteor.setTimeout(function () {
 Accounts.sendVerificationEmail(user._id);
 }, 2 * 1000);
 }
 return user;
});

CUSTOMIZING MAIL MESSAGES

Meteor has default settings for the sender of all accounts-related emails, subjects, and
body texts. You can adjust them to hold any text you like. Table 6.2 explains how the
settings are accessed inside the Accounts.emailTemplates object. Also refer to list-
ing 6.7 to see how they’re used.

Listing 6.6 Sending verification emails upon user creation

Only do this if the user
provided an address.

Give Meteor up to
2 seconds to create
a user document.

Send a verification
email.
Licensed to Mark Watson <nordickan@gmail.com>

140 CHAPTER 6 Users, authentications, and permissions

Adju
th

nam
no

o

ha

 will
is as
nder
emails.

fines the
tent

the
ification
ail
As you can see, the accounts-password package defines three different types of emails
it can send. You can trigger them manually by using the corresponding send functions:

Accounts.sendResetPasswordEmail()
Accounts.sendEnrollmentEmail()
Accounts.sendVerificationEmail()

During user creation, the server sends a verification email. Let’s customize the subject
and content for this verification email. To keep things simple, you can add the code
from listing 6.7 to the existing server/smtp.js file or use a dedicated file server/mail-
Templates.js. It must run inside a server environment; otherwise, the browser will
throw errors.

Accounts.emailTemplates.siteName = 'Meteor in Action userApp';
Accounts.emailTemplates.from = 'Stephan <stephan@meteorinaction.com>';

Accounts.emailTemplates.verifyEmail.subject = function (user) {
 return 'Confirm Your Email Address, ' + user.username;
};

Accounts.emailTemplates.verifyEmail.text = function (user, url) {
 return 'Welcome to the Meteor in Action userApp!\n'
 + 'To verify your email address go ahead and follow the link below:\n\n'
 + url;
};

Accounts.emailTemplates.verifyEmail.html = function (user, url) {
 return '<h1>Welcome to the Meteor in Action userApp!</h1>'
 + '<p>To verify your email address go ahead and follow the

link below:</p>'
 + url;
};

Table 6.2 Available fields for adjusting accounts-related emails

Field name Description Notes

siteName Name of the application, such
as “Meteor in Action App”

Default value: DNS name of the app,
such as usersApp.meteor.com

from RFC5322-compliant sender name
and address

Default value: Meteor Accounts
<no-reply@meteor.com>

resetPassword Contains three fields; each takes a
function: subject, text, html

text and subject are mandatory,
html is optional.

enrollAccount Contains three fields; each takes a
function: subject, text, html

text and subject are mandatory,
html is optional.

verifyEmail Contains three fields; each takes a
function: subject, text, html

text and subject are mandatory,
html is optional.

Listing 6.7 Customizing the accounts email templates

sting
e site
e has
effect
n the
URL

users
ve to
click.

Users
see th
the se
of all

De
con
of
ver
em
Licensed to Mark Watson <nordickan@gmail.com>

141Authenticating users with OAuth
Even though you can easily define HTML emails, keep in mind that both text and
HTML are sent to the recipient. If they set their email client to prefer plain text for dis-
playing content, they won’t see the content defined inside the html function. There-
fore, make sure that you always have the same amount of information in both text
and html templates.

 Register as a new user. You’ll now receive a customized email with a personal verifi-
cation link. As you can see, it still points to http://localhost:3000. When deploying
your application, you must set the correct URL via an environment variable. If you use
meteor deploy, it’s automatically taken care of. If you use a different method to
deploy your application, you have to adjust the ROOT_URL to the correct URL by setting
the value of the environment variable when starting Meteor like this:

$ ROOT_URL='http://www.meteorinaction.com' meteor run

Alternatively you can add it to your code and wrap it inside a startup block like that:

// server.js
Meteor.startup(function () {
 process.env.ROOT_URL = 'http://www.meteorinaction.com';
});

6.2 Authenticating users with OAuth
Oftentimes usernames and passwords aren’t the only option you want to give your
users to log into an application. Being able to use an existing account to log into a site
lowers the barrier of signing up by not requiring users to type in a single bit of infor-
mation. Additionally, it simplifies using an application by not having to remember
additional usernames or passwords.

 Meteor ships with multiple authentication providers that allow users to use a social
network instead of a local username. These networks include

■ Facebook
■ GitHub
■ Google
■ Meetup
■ Meteor Developer Account
■ Twitter
■ Weibo

All of these are based on OAuth, a complex way to pass authentication data from one
site to another. Many community packages are also available that enable other authen-
tication providers such as LinkedIn or Dropbox. The fundamentals of working with
OAuth providers are the same for each provider, so we won’t discuss each.

6.2.1 An introduction to OAuth

The Open Authentication (OAuth) mechanism has become popular among web
applications since its beginnings in 2007. The main idea behind it (see figure 6.6) is to
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:3000

142 CHAPTER 6 Users, authentications, and permissions
use a service provider, such as Facebook, to authenticate a user and allow a third-party
application to access specific information from the authenticated user (access authori-
zation). This could be simply the username or more sensitive information such as
friends or permission to post to the user’s wall.

 As figure 6.6 shows, there are three main ingredients to every OAuth scenario:

■ A service provider, such as Facebook or Twitter
■ A consumer, such as your Meteor application
■ The user—for example, an existing Facebook user wanting to log into your

Meteor application

Many websites can act as a service provider for OAuth. We’re going to use Facebook as
an example to illustrate the process. Our Meteor application must be connected to
Facebook. This is done by creating a new application on Facebook’s developer site. To
verify our application isn’t a malicious script, it will then be able to identify itself using
the corresponding application ID (App ID) and a secret key (App Secret). These are basi-
cally the username and password for our Meteor server process. Once both are con-
nected, we can allow users to sign in with their Facebook account.

 Instead of entering any credentials in our Meteor app, users can now click a button
to log them in via Facebook. Assuming they’re already logged in on Facebook, they’ll
now see a dialog asking them whether they want to share information with the Meteor
application. Behind the scenes the Meteor application has forwarded the login
request to Facebook as the service provider. If users agree to share their login infor-
mation with the Meteor application, Facebook generates an access token. This token
lets the Meteor app know that users have been authenticated properly and it grants
the permissions provided by the users. In the simplest case, Meteor may only have
read access to a user’s email address. Depending on the configuration settings, we
could also request more permissions such as posting to the user’s wall.

User

Facebook

(service

provider)

Meteor app

(consumer)

4. Send access token.

App ID: 12345

App Secret: xxkeyyy

3. Show login window and

ask to share information

with consumer.

1. “Log me in

using Facebook.”

2. Forward login request.

Figure 6.6 OAuth flow using Facebook as the service provider
Licensed to Mark Watson <nordickan@gmail.com>

143Authenticating users with OAuth
 Not all OAuth providers support the same set of permissions, so they must all be
individually configured. The advantage of using OAuth is that the consumer applica-
tion can talk directly with the service provider to exchange data, if permissions exist.
That way, all Facebook friends, recent tweets, or the number of private repos on
GitHub can easily be accessed and added to the user’s profile.

6.2.2 Integrating Facebook authentication

To integrate OAuth authentication via Facebook in a Meteor app, you perform the fol-
lowing steps:

1 Add the accounts-facebook package.
2 Create a new Facebook application.
3 Configure the Facebook integration.

ADDING ACCOUNTS-FACEBOOK TO AN APPLICATION

The first step is to add Facebook as the authentication provider for our application. If
the application already supports username/password authentication as in section 6.1,
it’s sufficient to add a single package:

$ meteor add accounts-facebook

This package won’t add any templates to the application. Therefore, if accounts-
facebook is the only package available in the project, you’ll need to manually call all
functionality within your templates. Or you can add the accounts-ui package, which
provides a login box for use with not only password authentication but also for many
OAuth services.

 All OAuth packages require configuration. Just like users, this configuration is
stored inside a MongoDB collection. A collection named meteor_accounts_login-
ServiceConfiguration will be created as soon as the service is configured. Pending
credentials will be stored temporarily as well, which is done in a dedicated collection.
This collection is created at server startup already and is called meteor_OAuth
_pendingCredentials.

 There’s no need to manually access either of these two collections. Meteor will use
these internally only and there’s no benefit in querying data from them directly.

CREATING A FACEBOOK APPLICATION

If Meteor can’t find a configuration for integration with Facebook, the UI will show a
red Configure Facebook Login button instead of the regular login button. Clicking it
will bring up a short configuration guide as well as two fields in which you provide the
application ID and secret.

 You’ll need to register yourself as a Facebook developer, which is free of charge but
requires you to have a Facebook account. You can create a new Facebook application
at https://developers.facebook.com. Under the Apps tab you can add a new applica-
tion of type Web/WWW. Next you assign an application ID; this can be any name that
Licensed to Mark Watson <nordickan@gmail.com>

https://developers.facebook.com

144 CHAPTER 6 Users, authentications, and permissions
helps you and your users identify the application. Your users may eventually see the
application name, so it’s good practice to use the site name or something that closely
describes your application. The category for your application and whether it’s a test
version of another Facebook application don’t have any influence on the functionality
and can be set to the values that best describe your project.

 The site URL for a Facebook application that’s used with a local development envi-
ronment should typically be set to http://localhost:3000. You can take the correct URL
setting from the configuration dialog shown by Meteor.

 Once you’ve made these settings, Facebook requires you to set up a contact email
for the application before you can activate it. Navigate to the application dashboard
on the Facebook Developer site and enter a contact email in the Settings section (see
figure 6.7). Finally, you need to activate the application on the Status & Review tab.

 An activated Facebook application can be used to authenticate users. The last step
to implement logging in via Facebook is to configure the Meteor application.

CONFIGURING
Open the Meteor application in the browser and click the Facebook button to bring
up the configuration dialog shown in figure 6.8.

Credentials for
OAuth configuration

Contact address
for this application

Application name
shown to users

URL where the Meteor
application can be reached

Figure 6.7 Settings for a Facebook application used to integrate with Meteor
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:3000

145Authenticating users with OAuth
Besides the basic instructions on how to create a Facebook application, the configura-
tion dialog lets you add the application credentials (App ID and App Secret) as well as
a login style. The default is to use a pop-up–based dialog, which means the application
window will remain when the user logs into Facebook and a new window with the
Facebook dialog is opened. In contrast, the redirect-based login style will leave the appli-
cation, redirect the current browser window to Facebook, and reload the entire
application once the authentication is successful. Unless you plan on running your
application inside a Cordova container on mobile devices,2 it’s preferable to use the
pop-up–based login.

 Save the configuration and users can start logging in via Facebook. If you’ve miscon-
figured the application, you can manually delete the configuration information from
the meteor_accounts_loginServiceConfiguration collection inside the MongoDB.

2 Refer to chapter 11 on Isobuild to learn more about running Meteor applications on mobile devices.

Figure 6.8 Configuration dialog for Facebook integration
Licensed to Mark Watson <nordickan@gmail.com>

146 CHAPTER 6 Users, authentications, and permissions
Open a Mongo shell using either an application such as Robomongo or issue meteor
mongo on the command line and then use

db.getCollection('meteor_accounts_loginServiceConfiguration').remove({service
:'facebook'})

If you use meteor reset to empty all collections, all login service configurations will
also be reset.

NOTE All OAuth configuration is stored inside the application database.
Whenever you issue the meteor reset command to empty the database, it’ll
also remove all OAuth configuration data from the database.

As long as no Facebook credentials are available in the database, any user visiting the
application will be able to configure it via the browser. To avoid this you can add any
OAuth credentials to the application’s source code. In case no credentials are config-
ured in the database yet, these will be automatically inserted, just like the fixtures we
used in the previous chapters. This requires a package called service-configuration
to be available:

$ meteor add service-configuration

Once the package is available, the code shown in listing 6.8 will take care of setting the
correct OAuth credentials for Facebook upon the start of your Meteor application.

if (ServiceConfiguration.configurations.find({
 service: 'facebook'
 }).count() === 0) {
 ServiceConfiguration.configurations.insert({
 service: 'facebook',
 appId: 'OAuth-credentials-from-facebook',
 secret: 'OAuth-credentials-from-facebook',
 loginStyle: 'popup'
 });
}

ADDING FACEBOOK INFORMATION TO THE USER PROFILE

All users who logged in via Facebook have a new entry in the services field in their
user document (see listing 6.9). It contains the token used for authentication, but it
also includes information such as first and last name, gender, and email. If you want to
allow a user to edit this information, it’s easiest to copy the data over to the profile
object inside the user document.

{
 "_id" : "nzPMRdhSKx7NJvTGY",
 "createdAt" : ISODate("2015-03-30T21:23:55.475Z"),

Listing 6.8 Inserting Facebook OAuth configuration as a fixture in server/server.js

Listing 6.9 The user document when signing up via Facebook
Licensed to Mark Watson <nordickan@gmail.com>

147Authenticating users with OAuth

autom
a

pro
the
 "profile" : {
 "name" : "Stephan Hochhaus"
 },
 "services" : {
 "facebook" : {
 "accessToken" : "CAAEkDwbZAj.....",
 "email" : "stephan@meteorinaction.com",
 "expiresAt" : 1421097429424,
 "first_name" : "Stephan",
 "gender" : "male",
 "id" : "1234567890",
 "last_name" : "Hochhaus",
 "link" : "https://www.facebook.com/app_scoped_user_id/123456789/",
 "locale" : "en_US",
 "name" : "Stephan Hochhaus"
 },
 "resume" : {
 ...
 }
 }
}

As you can see from listing 6.9, Meteor already copied over the name property from
Facebook to the user profile. Hooking again into Accounts.onCreateUser, you can
copy over data provided by Facebook to the user’s profile. You’ll copy over first and last
name and gender from user.services.facebook to user.profile so that the user can
edit this information inside the Meteor application independently from Facebook.

 Listing 6.10 shows how to extend the onCreateUser hook to copy over fields from
the facebook.service to the profile field, but only if a user has logged in via Face-
book. That way, it can also be merged with the code in listing 6.6 for adding profile
fields for password authentication.

Accounts.onCreateUser(function (options, user) {
 if (user.services.facebook){
 user.profile.first_name = user.services.facebook.first_name;
 user.profile.last_name = user.services.facebook.last_name;
 user.profile.gender = user.services.facebook.gender;
 }
 return user;
});

Even if Facebook has updated information for names or gender, it won’t update the
settings inside the user’s profile object because the onCreateUser function will only
be called the first time a user logs into the application using Facebook.

6.2.3 Integrating other OAuth providers

As mentioned earlier, Meteor comes with multiple packages that allow the integration
of social networks as authentication providers. The principles always remain the same.

Listing 6.10 Adding Facebook information to the user profile

Meteor
atically
dds the

name
perty to
 profile.
Licensed to Mark Watson <nordickan@gmail.com>

148 CHAPTER 6 Users, authentications, and permissions
Before you can configure the external service provider, you must create an applica-
tion in Twitter, Google, GitHub, or whatever service you plan to integrate. Some of
these services require you to set a value for authenticated or callback URLs. As long
as an application is under development, this is typically http://localhost:3000.
Therefore, it’s good practice to create two applications on the service provider: one
for the local development environment and another for the live instance of your
Meteor application.

USING ALTERNATIVE AUTHENTICATION METHODS IN ONE APPLICATION

Meteor makes it simple to add multiple authentication providers to a single applica-
tion. But these providers don’t share the same data with the consumer, which makes it
complicated in many cases to associate alternative login methods to the same user.

 Imagine an application is set up to allow authentication via username and pass-
word as well as Twitter and Facebook. A user may decide to log in with Twitter one day
and with Facebook the next. How could the application tell it’s the same user? Possi-
bly if the email address associated with the user’s Twitter account matches the one for
the Facebook account. Unfortunately, Twitter doesn’t expose a user’s email address
over the authentication API. As a result, Meteor can’t connect a Twitter login to a Face-
book account. It’ll assume both are different users. In a worst-case scenario, users will
log in through each of the login methods the application provides and end up having
as many accounts as there are login methods.

 Of course, it’s entirely possible to use multiple authentication providers in the
same application and allow users to use them all to identify a single user. To do so you
need users to manually connect their profiles to the same account. Unfortunately, this
functionality isn’t part of the core packages that provide account functionality.

 Some community packages are available that save you from creating your own tem-
plates and code to allow users to connect multiple social networks to the same account.
If you wish to include multiple authentication providers in a single application, take a
look at splendido:accounts-meld or bozhao:link-accounts.

 Before adding too many authentication providers to an application, consider
which are actually needed. The fact that working with OAuth is so simple with Meteor
may lead to overly complicated applications that have little user benefit.

6.3 Managing user permissions, roles, and groups
Authenticating users isn’t enough—you also need to authorize their actions. Permis-
sions can be used to define what data users can access and what functions they’re
allowed to use. Administrators should be able to perform all possible actions, whereas
regular users can only edit or delete their own data.

 To better illustrate how to manage user permissions, let’s use a simple messaging
application. You can find the source code in this chapter’s sample code. It offers lim-
ited functionality, which makes it easier to illustrate the main points of Meteor’s per-
mission system.
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:3000

149Managing user permissions, roles, and groups
 Users can sign up with a username and password. Once they’re logged in, the
application shows a list of users, each of which can be selected by clicking them. Once
a user is clicked, the ID will be assigned to a Session variable and a second template
will display basic profile data and allow users to view and leave messages. Only the
owner of the message board should be allowed to delete messages.

 All functionality implemented in this sample application is based on the contents
of chapters 3 (working with templates) and 4 (working with data) with some refer-
ences to the beginning of this chapter in regard to user accounts.

 As highlighted in previous chapters already, Meteor uses a package called insecure
for every new application. This allows the client and every user, authenticated or not,
to save or remove data from the database. The first step in adding security to an appli-
cation is to remove the package using the following:

$ meteor remove insecure

The result of removing the insecure package is that no user is able to write to the
database anymore. Viewing data is possible because the autopublish package is still
available. We’ll talk about removing it in the next chapter. First we’ll concentrate on
restricting access for users.

 The simplest form of managing user permissions in Meteor is by using the allow/
deny function for any collection.

6.3.1 Managing permissions with allow/deny

Meteor trusts all code executed on the server by default. All client code isn’t considered
safe to use, especially with the insecure package removed. Any inserts, updates, or
removes to a database collection from the browser result in an Access denied message.

NOTE Allow and deny only affect write operations to the database. Reading
from a collection can be controlled using Publications and Subscriptions.

Each collection exposes an allow function and a deny function that can limit or grant
permissions to users. Listing 6.11 shows the syntax, which is the same for both allow
and deny. The code must run in the server environment, but it’s safe to also run it
inside the client. Therefore, it can be put in the same file where collections are
defined, because it removes redundancy. If you prefer, you can also put it in a server-
only file. Either way, a client may not change the server code and work around permis-
sions, even if you send this code to the browser.

// collections.js
MessagesCollection = new Mongo.Collection('messages');
MessagesCollection.allow({
 insert: function (userId, doc) {
 return true;
 },

Listing 6.11 Using allow for a Messages collection
Licensed to Mark Watson <nordickan@gmail.com>

150 CHAPTER 6 Users, authentications, and permissions
 update: function (userId, doc) {
 return true;
 },
 remove: function (userId, doc) {
 return true;
 }
});

Multiple allow and deny rules may be defined; sometimes they’ll overlap. Meteor first
executes all deny callbacks to determine if an action is forbidden. If any of the deny
callbacks returns true, then the user won’t be able to carry out the associated action,
even if there is an allow rule that returns true. If there are multiple allow rules, only
one has to match and return true to allow a user to carry out an action.

NOTE The allow and deny callbacks affect only direct writes to the database
and not Meteor method calls. Methods will be discussed in full detail in the
next chapter.

You can use MessagesCollection.allow to enable sending messages without the
insecure package and also restrict the deletion of messages to a user by the recipi-
ent only.

SENDING MESSAGES TO A USER

By selecting a user, you make it possible for every logged-in user to write a message to
their site. Each message document contains five fields:

■ _id—A unique ID for the message document
■ sender—The user ID from the author of a message
■ recipient—The user ID of the recipient of a message
■ message—The actual message text
■ timestamp—The creation date of the message

It’s impossible to create a new message document from the browser unless an allow
callback returns true. Only logged-in users should be able to send a message, so we
need to return true when the user trying to insert a new document has a user ID (see
listing 6.12). Guests don’t have a user ID and therefore their value for userId would
return false.

MessagesCollection.allow({
 insert: function (userId, doc) {
 return userId;
 }
});

Be aware that this grants permission to users to insert whatever they like into the data-
base. The only restriction is that the user is logged in and writes to the messages col-
lection. New fields are added on the fly—for example, in case a user wants to add an

Listing 6.12 Allowing logged-in users to insert new messages
Licensed to Mark Watson <nordickan@gmail.com>

151Managing user permissions, roles, and groups
additional field called messageSubtext. To prevent users from adding new fields to a
document, you can use a deny rule that checks whether all defined fields are provided
and that none is missing. Listing 6.13 shows how the Underscore.js library that is part
of Meteor can be used to extract all document fields to an array. Using a second array
that contains all valid field names, you can verify that no mandatory fields are missing
and no additional fields are coming from the client. When inserting data, the _id
field will be added by the database automatically. Because it’s not sent by the client, it’s
not part of the validFields array for the insert method.

MessagesCollection.deny({
 insert: function (userId, doc) {
 var fieldsInDoc = _.keys(doc);
 var validFields = ['sender', 'recipient', 'timestamp', 'message'];
 if (_.difference(fieldsInDoc, validFields).length > 0) {
 console.log('additional fields found');
 return true;
 } else {
 console.log('all fields good');
 return false
 }
 }
});

Although you’ve effectively ensured that only known fields are provided for a new
user document, you have no control over the contents of these fields. A user might
send a string as the sender, an object or array, or even a binary BLOB.

 Using allow/deny rules isn’t too complicated, but they should be used only for rel-
atively simple tasks; otherwise, maintaining the growing complexity will become com-
plicated. The more rules you add to an application, the harder it becomes to tell
which cases will be denied and which will be allowed.

NOTE For better control over database operations, consider using Meteor
methods instead of allow/deny rules. Chapter 7 will provide a thorough
introduction.

REMOVING MESSAGES FROM A WHITEBOARD

In case a recipient doesn’t like the contents of a message, she should be able to delete
the message. But not everybody should be allowed to remove messages—only the
recipient should be able to do so.

 You can’t set a deny rule that globally denies all remove operations and add one allow
rule for the recipient. Remember that it takes only a single deny rule to return true to
prevent any other allow rule from execution. Therefore, you’ll work with a single deny
rule that checks whether the user requesting to remove a message is the same as the recipi-
ent. The deny rule in listing 6.14 returns true if the userId for the currently logged-in
user is different from the user ID in the recipient field of the message document.

Listing 6.13 deny inserts with missing or additional fields

Using Underscore.js to put
all document field names
into an array

Check for
additional or
missing fields.
Licensed to Mark Watson <nordickan@gmail.com>

152 CHAPTER 6 Users, authentications, and permissions
MessagesCollection.deny({
 remove: function (userId, doc) {
 return doc.recipient !== userId;
 }
});

The deny code eventually runs on the server side of the application, even if you placed
the code inside a file that can be accessed on both client and server. The userId
parameter is provided by the accounts packages directly, and it’s determined and
passed to the remove function on the server. It isn’t possible to change this value from
the browser console to fake another user’s ID.

DELETING A USER ACCOUNT

The users collection is special in several ways. For one, by default users can edit only the
content of the profile field. Even if no dedicated allow rules are available, new users can
still sign up and create a new user document. Deleting a user, even if it’s his own
account, isn’t possible once the insecure package is removed. But using a simple allow
rule on the users collection enables the removal of accounts (see following listing).

Meteor.users.allow({
 remove: function (userId, doc) {
 return doc._id === userId;
 }
});

TIP When you need more control over user authorization, take a look at the
roles packages alanning:roles or nicolaslopezj:roles. They allow you to
implement user groups with much greater transparency than allow and deny
rules alone.

6.4 Summary
In this chapter, you’ve learned that

■ Meteor ships with several accounts package that enable user registration and
login.

■ Connecting to an SMTP server can be done via an environment variable or
inside the code.

■ System email messages can be adjusted via their own Template objects.
■ OAuth integration is a core feature that requires little effort to implement.
■ Simple database permissions can be implemented using allow and deny.
■ For more complex permission settings, allow and deny should be replaced by

Meteor methods.

Listing 6.14 Deny message removal for everyone but the recipient

Listing 6.15 Enabling users to remove their account
Licensed to Mark Watson <nordickan@gmail.com>

Exchanging data
In the early stages of development, it may often be helpful to have the contents of
the server database available on the client as well. The increased convenience
comes at the price of both performance and security, though. If the idea is to build
low-latency and high-performance applications for the web, you must refrain from
replicating the entire database on each client. Additionally, sharing all data proba-
bly includes sensitive information that should be viewed only by its owner. As a
result, you must get rid of the automatic data publication and regain control over
all database content.

This chapter covers
■ Publishing Collections without the

autopublish package
■ Using template-level subscriptions
■ Limiting client data with parameterized

subscriptions
■ Creating a new aggregation data source
■ Making a custom data source reactive
■ Securing an application with server-side

methods
153

Licensed to Mark Watson <nordickan@gmail.com>

154 CHAPTER 7 Exchanging data
 This chapter introduces two key concepts to working with Meteor: publications
and methods (see figure 7.1).

 Using Meteor’s publications and subscriptions you can control not only how much
data is sent to each client but also which fields are available to which user. In this chapter
you’ll learn how to set up data publications on the server that’ll allow your application
to easily hold thousands of database documents while sending only small subsets to the
clients. That way, you can effectively address many performance issues that might arise.

 In chapter 6 we discussed allow/deny rules for securing write operations to the data-
base. Methods, Meteor’s remote procedure calls, are a powerful alternative to these
simple rules. Methods may run on the server or the client. You’ll use them to secure
all write operations to the database by properly validating all content received from
the client. Their use isn’t limited to database operations, though—they can also be
used for other actions like sending emails.

 Throughout this chapter you’ll be enhancing an application so that it becomes
robust enough to be deployed to the internet. The application you’ll use will store
workout data to cover the following aspects:

■ Manually defining publications and subscriptions
■ Limiting data sent to a client by using parameterized subscriptions
■ Aggregating data
■ Restricting data only to a particular user
■ Securing database writes with methods

Methods secure writing data to the database
by adding validations on the server.

Publications can limit data
sent to specific clients.

Database

Server
Client

App

Livequery

MiniDB

App

Remote method calls

Publications
Tracker

Blaze

Figure 7.1 Publications and methods give developers full control when dealing
with data.
Licensed to Mark Watson <nordickan@gmail.com>

155Publications and subscriptions
The workout tracker is very simple; all code is put into five files. You’ll use a fixtures.js
file to populate the collection with random workout data—look at the sample code
for this chapter to see how it works:

├── client
│ ├── workoutTracker.html
│ └── workoutTracker.js
├── collections
│ └── Workouts.js
└── server
 ├── fixtures.js
 └── publications.js

7.1 Publications and subscriptions
Up to this point, Meteor has automatically published all collection data to all clients
using the autopublish package. This package isn’t suitable for production environ-
ments because it doesn’t limit the amount of data sent to a client. What works well for
a few database entries during development doesn’t scale well with hundreds or thou-
sands of documents. Also, it doesn’t provide any access restrictions—every client may
access all data. In this section, you’ll learn ways to send data to the client in an effi-
cient and secure way.

 You’re going to use an application that stores workouts such as running or biking
and presents them to a user in a simple table. All workouts will be stored inside a single
collection and contain the date when they happened and their distance as well. You’ll
create a lot of sample workout documents at startup and show all of them in one table
at first. Because you don’t want the client to load all the data at once, you’ll then limit
the number of workouts loaded to the client and also add a button to fetch more data
on each click. Eventually you’ll add an aggregated view of the whole data. For that,
you’ll add up the distance of the workouts of each month. The aggregated data in the
client will also be updated reactively. When a new document is added to the workouts
collection, the count for the affected month will reactively show the updated sum.

7.1.1 publish() and subscribe()

Publications and subscriptions always come in pairs. Although Collections are typi-
cally declared on both the server and the client, publications exists only on the server.
They can retrieve data from a database using the Collection.find() method just
like a template helper. In figure 7.2 you can see an example where the publication
retrieves three documents from the database. Those documents are then published
under the same name as the collection: workouts.

 On the client a Meteor.subscribe() call initiates a request to the server to send
data for the workouts collection. Notice that it doesn’t request the content from the
database but from the server—more precisely, the result for Collection.find(). In
this case the result is just three documents. The client receives these documents and
puts them into a local collection of the same name. Although the Collection object
Licensed to Mark Watson <nordickan@gmail.com>

156 CHAPTER 7 Exchanging data
has the same name on the server and client, it may hold different data, depending on
context and publication settings.

REMOVING AUTOPUBLISH

Because you’ll manually decide what content to send to clients, you must remove the
autopublish package. Adding and removing packages with Meteor is done via the CLI
tool. Here’s how you get rid of the autopublish package:

$ meteor remove autopublish

Once the package is removed and the Meteor server is started, the client will have no
data available anymore. Even though the client still knows about all available collec-
tions, no data is transferred from the server-side MongoDB to the browser’s Mini-
mongo instance. If you were to query for documents with any collection, you wouldn’t
get any results back.

SETTING UP A PUBLICATION

In order to display the data you need from the workouts collection inside the Mon-
goDB, you have to provide a pub/sub pair. First you’ll set up a simple publication that
sends all workout documents to all clients that subscribe to that publication. Because
all publications live in the server scope, you’ll put them in a new publications.js file
within the server folder. The following listing shows how to set up the publication.

MongoDB Minimongo
Return 3

docs

Server

Subscribe

to

workouts

Publish

data for

workouts

Meteor.publish('workouts', function () {

return Collection.find({},{limit: 3});

});

Publication

Collection = new Mongo.Collection('workouts');

Collection: Same on server and client

Meteor.subscribe('workouts');

Subscription

Documents
Documents

Put

documents into

workouts

Client

Documents

Documents

Figure 7.2 An overview of publications and subscriptions
Licensed to Mark Watson <nordickan@gmail.com>

157Publications and subscriptions
Meteor.publish('workouts', function () {
 return WorkoutsCollection.find({});
});

NOTE Publications are one-way streets that send data from the server to the
client. To send data from the client back to the server, you must provide a
secure method to insert and update data. We’ll look at this topic later in
the chapter.

Setting up a publication won’t have any effect on the client at this point. It must spe-
cifically ask for the data via a subscription.

7.1.2 Global subscriptions

On the client you must add a subscription. Inside the workoutTracker.js file, add the
following line at the top:

Meteor.subscribe("workouts");

Once you subscribe to the publication, you’ll see that all the data that’s available on
the server-side MongoDB is also available through the Minimongo on the client. You
can check inside a browser console by using the same code as inside the publication:

WorkoutsCollection.find({})

Calling Meteor.subscribe() returns an object with a stop() and a ready() method.
stop() can be used to terminate a subscription, and ready() is true if the server
has marked the publication as ready. It’s a reactive data source just like Collection
or Session.

 This is basically what the autopublish package gave you for free for all collections.
Next you’ll start to control the data that’s published to the client by limiting the num-
ber of documents going to the client.

Listing 7.1 A simple server-side publication

Using servers as clients
There are scenarios when two Meteor servers should exchange information. Techni-
cally, one server becomes the client of the other. The subscribe() method works
only inside the client context, but there’s a way one server can subscribe to the data
of another using a Distributed Data Protocol (DDP) connection.

You can connect to another server using DDP.connect(). It takes the URL of the
remote server as the only argument. Once successfully connected, it’ll return an object
that allows you to use subscribe() (to access published data), call() (to invoke
methods), methods() (to define client-side methods), and a few more functions.

You name a publication in order to
subscribe to it, as you’ll see later on.

Publications can return data
just like template helpers.
Licensed to Mark Watson <nordickan@gmail.com>

158 CHAPTER 7 Exchanging data
7.1.3 Template-level subscriptions

Subscriptions using the Meteor.subscribe function are greedy. Regardless of whether
a user views the subscription data, the function will register a subscription with the
server and trigger data transfers. As soon as a user hits the front page of your applica-
tion, all subscriptions will be made and data will be loaded, even if the user never
looks at it. You can avoid such global subscriptions by binding them to templates,
using Meteor’s template-level subscriptions.

 When you use a template-level subscription, the subscription is initiated when
the template is created. When the template is destroyed, the subscription is also ter-
minated. That way, you can limit the actual data transfers between client and server.
You also don’t need to worry about which route1 requires which data; you can pass
this relation directly to the template that requires that data. Each Template instance
has its own subscribe function, which uses the same syntax as Meteor.subscribe.
In the onCreated callback of a template, you can access the current template
instance via this:

Template.workoutList.onCreated(function () {
 this.subscribe("workouts");
});

Whenever the workoutList template is created, Meteor will automatically set up a
subscription to the workouts publication. To determine whether the subscription is
ready, you can use the Template.subscriptionsReady helper. It returns true if all
subscriptions of a template are ready and can be used to show a loading indicator for
the template itself, as shown in the following listing.

(continued)

Connecting one server to another and acting as a client takes only three lines of
code. First, the server-to-server connection is defined; a connection to http://
192.168.2.201:3000 will be established. To receive the published data, you need
to declare a collection. This time it’ll take not only a name as its argument but also
how to connect to the master. Hence, server2 will be the second argument. Finally,
the server may subscribe to remoteData. Again there’s a slight variation because you
need to call the subscribe() method on the remote server rather than the local
Meteor instance:

var server2 = DDP.connect('http://191.168.2.201:3000/');
var RemoteCollection = new Mongo.Collection('remoteData', server2);
server2.subscribe('remoteData');

1 We’ll discuss route-based subscriptions in the next chapter.
Licensed to Mark Watson <nordickan@gmail.com>

http://192.168.2.201:3000
http://192.168.2.201:3000

159Publications and subscriptions
// workoutTracker.html
<template name="workoutList">
 {{#if Template.subscriptionsReady}}

 {{#each workouts}}
 {{workoutAt}}
 {{/each}}

 {{else}}
 loading workouts...
 {{/if}}
</template>

// workoutTracker.js
Template.workoutList.onCreated(function () {
 this.subscribe('workouts');
});

Template.workoutList.helpers({
 workouts: function () {
 return WorkoutsCollection.find({}, {
 sort: {
 workoutAt: -1
 }
 });
 }
});

Using template-level subscriptions gives you more control over when and where to
load data. By avoiding global subscriptions, you also decrease the required traffic
when initially loading a Meteor application. Especially when you’re rendering multi-
ple templates on the same page, there’s no need to wait until all data is available—
each template can use its own loading indicator.

 In the rest of this chapter, we’ll use the global Meteor.subscribe because the
examples are rather simple. For more complex applications, you can use the same syn-
tax and place your subscriptions in the onCreated callback of a template. Their behav-
ior is exactly the same, except they differ in lifespan:

■ Meteor.subscribe is set up when the client loads your application and is termi-
nated when the client closes the connection.

■ Template.subscribe is set up when the associated template is created and is
terminated when the template is destroyed.

7.1.4 Parameterizing subscriptions
For performance reasons, you never want the entire database content to be sent over
the network. Besides taking a long time to transfer, too much information may be con-
fusing to users. Therefore you’ll publish only the 10 newest documents of the work-
outs collection initially. Users can choose to request more documents if they want to
see older records as well. Obviously you need to adjust the existing publication code.

Listing 7.2 Using a template-level subscription with a loading indicator

Returns true if all template
subscriptions are ready

Displays
workout details

Lets users know
that data is
being loaded

Sets up the
subscription

Returns all workouts,
newest first
Licensed to Mark Watson <nordickan@gmail.com>

160 CHAPTER 7 Exchanging data
It must support both limits and take an argument to dynamically determine an offset
to allow sending a second or third set of 10 documents. Let’s take it step by step.

 The first thing you’ll do is tell the publication the limit you want to set for the
workout query. You can add parameters to the subscription call that’ll be available as
parameters inside the server-side publication function. This way, you can set options
for the publication; the client tells the server what to do.

WARNING Whenever you’re dealing with data coming from the client, you
must validate it before using it.

The publication takes an options argument that first needs to be checked. Instead of
adding your own validation, you can use Meteor’s check() function.

VALIDATING DATA VIA CHECK()
With the check() function, you can match input values against known patterns. To
limit the subscription, you expect the user to provide a number and nothing else.
check() uses a simple syntax with two arguments—the value itself and the pattern it
should be checked against:

check(value, pattern);

To ensure that the provided parameter contains only a number, you use check
(options, Number); inside the publication. In our example, you’re dealing with an
object, so you have to check a pattern for every parameter of the object:

check(options,
 {
 limit: Number
 }
);

You’ll use check() again when we discuss methods.

DYNAMIC SUBSCRIPTIONS

Listing 7.3 shows the code from the server’s publications.js file.

Meteor.publish('workouts', function(options){
 check(options,
 {
 limit: Number
 }
);

 var qry = {};
 var qryOptions = {
 limit: options.limit,
 sort: {workoutAt: 1}
 }

 return WorkoutsCollection.find(qry, qryOptions);
});

Listing 7.3 Adding parameters to a publication

The publication takes
an options object as
a parameter.

Sort all
database entries
by timestamp to
ensure the limit
starts from the
newest. Using the limit query

options from MongoDB
returns only a limited
number of documents.
Licensed to Mark Watson <nordickan@gmail.com>

161Publications and subscriptions
Every client can now subscribe to this publication and set a limit. The check() func-
tion expects an option object and will throw an error unless one is passed by the sub-
scription. You have to create the subscription for the client that subscribes to the data
provided by this publication. You’ll do this inside the client folder’s workoutTracker.js
file because the subscription is available only in the browser. You’ll use Session to
keep track of the currently used limit (see the following listing).

Session.setDefault('limit', 10);

// Subscriptions
Tracker.autorun(function(computation){
 Meteor.subscribe('workouts', {
 limit: Session.get('limit')
 });
});

When the application first starts, the Session variable limit is set to 10 because it
doesn’t have any other value. This is what setDefault does and it ensures that limit
will always have a value.

 The reason you need to put the subscription inside a Tracker.autorun is to create
a reactive context. Once the Session variable limit changes, the subscription to
workouts gets rerun with the updated limit value. This means whenever the limit
value changes, triggered by an event or directly from the JavaScript console, the sub-
scription is updated automatically. Then the new data from the publication is added
to the client’s Minimongo and also rendered in the template.

 To allow for a more convenient way to increase the number of documents to show,
you can add a button with a click handler that adds 10 to the current limit value in
the Session object (see following listing).

Template.workoutList.events({
 'click button.show-more': function(evt, tpl){
 var newLimit = Session.get('limit') + 10;
 Session.set('limit', newLimit);
 }
});

As you can see, it’s not too difficult to remove the autopublish package and take con-
trol over the data that’s available on the client. With reactive variables, it’s also very
easy to modify a subscription and the data that’s available. The same approach you
used for limiting the amount of documents can easily be used for filtering and sorting.

Listing 7.4 Subscribing to a publication with parameters

Listing 7.5 Adding an event handler to increase the limit by 10

For the limit parameter of the subscription,
you want to use a Session variable with a
default value of 10.

Autorun creates a reactive
context that renews the
subscription if the limit changes.

The Session object is passed
as the value for limit.

Changing the limit in the reactive
Session variable updates the
subscription automatically.
Licensed to Mark Watson <nordickan@gmail.com>

162 CHAPTER 7 Exchanging data
Before you proceed to the next section, try to add a second button that provides a
value of -1 or 1 to sort all documents in ascending or descending order.

7.1.5 Publishing aggregated data to a client-only collection

Imagine you run three times a week, four weeks a month. Then you’re not only incred-
ibly fit, but you also need to look at 12 different entries to understand how many miles
you covered in a single month. That makes quickly comparing stats a pain. This is
when data aggregation comes in. Instead of showing all the fine details, you some-
times need a summary of large amounts of data to make sense of it. Let’s extend the
application so you can say for sure that you ran farther in June than in January.

 If you had all workout documents available on the client, aggregating could be an
easy task. By iterating over each document and adding the distance for each month,
you’d be all set. Unfortunately, this approach has multiple downsides. One is you’d
have to pass a lot of data over the wire. If you wanted to aggregate the data of the last
10 years, you’d end up sending thousands of documents over the network. Another
downside is that the computation takes quite some time, and this would slow down the
user’s UI, resulting in poor user experience. Therefore, you need to aggregate the data
on the server and publish the aggregate as well. Figure 7.3 shows the client subscribing
to both publications. Whereas workouts uses the find() method, distanceByMonth
will use MongoDB’s aggregation framework.

Data aggregation with MongoDB
If you’re familiar with SQL, you’re probably already thinking about doing a SELECT with
a COUNT(*) and a GROUP BY, but that won’t work in the NoSQL world. MongoDB itself
is built to handle large datasets and give analytical insight, so it also offers a way to
aggregate data, just not using GROUP BY. You’re going to use the aggregation pipeline

DB

Server Client

Subscribe to

workouts

Subscribe to

distanceByMonth

workouts

distance

ByMonth

workouts
find()

aggregate()

Mini DB

One collection Two publications

distance

ByMonth

workouts

Figure 7.3 Using two publications from a single database collection
Licensed to Mark Watson <nordickan@gmail.com>

163Publications and subscriptions
Any publication can send status messages to its subscribers, indicating that content
has changed or that it’s done with sending all available content. When publishing a
database collection directly, these status messages are automatically managed by
Meteor. When using a custom publication they must be called explicitly.

■ added(collection, docId, fields)—When a new document is created, the
first argument is the collection, followed by the document ID. The third argu-
ment contains all fields of the document (excluding the _id field).

■ changed(collection, docId, fields)—For changed documents, again the
collection name and ID are passed as the first argument, followed by an object
that contains all updated fields (fields with a value of undefined have been
deleted from the document).

■ removed(collection, docId)—This takes two arguments: the collection name
and the document ID that was removed.

■ ready()—This takes no arguments and informs the client that all available data
has been sent.

Listing 7.6 gives you the full code, which we’ll go through bit by bit. To use the Mon-
goDB core driver you must use MongoInternals, which is defined as part of the mongo
package included with each new Meteor project. A reference to the default database
used by Meteor is stored inside db. Because you’re using the core MongoDB driver, you
can use all functions, including aggregate(). The pipeline variable contains an array
with details about the actual aggregation. The MongoDB aggregation pipeline consists
of stages. Each stage transforms the documents as they pass through the pipeline.
First, all matching documents are determined. In this scenario, all documents match

(continued)

to compare the distances between all months of the year. Minimongo, the client
implementation in the browser, doesn’t support using the aggregation pipeline, but
this is okay as you’ll see.

The approach you’ll take involves creating a publication that doesn’t send data directly
from a Collection but creates the aggregated data inside itself and returns this to all
subscribers. This data is stored inside a collection that exists only on the client. It’s
not persistent in the server-side MongoDB because it’d leave you with redundant data.

At first, you’ll create a new publication named distanceByMonth. It doesn’t have a
corresponding collection inside the database. Where you previously put a find()
operation on a database collection, the second argument to publish() will now hold
the aggregation.

The aggregation framework for MongoDB isn’t supported out of the box. Several com-
munity packages are available that provide aggregation capabilities so you can easily
add it yourself. You’ll fall back to the core MongoDB driver, then define the actual
pipeline, run the aggregation so that it doesn’t block any other processes, and finally
mark the subscription as ready.
Licensed to Mark Watson <nordickan@gmail.com>

164 CHAPTER 7 Exchanging data
because we haven’t defined any restrictions. Next, all resulting documents, or rather
the specified field contents, are grouped together. All workouts are grouped by month
and are given a new _id that represents the month (1 = January, 2 = February, etc.).

 MongoDB isn’t reactive by itself and calling it would result in a synchronous call
that would block all other server requests until the aggregation is finished. This is why
you need a way to unblock the aggregation and receive a callback once it’s done while
maintaining the full Meteor context. Asynchronous calls to external components
should always be wrapped inside Meteor.bindEnvironment().

NOTE This aggregation operates on the fly, meaning that every subscription
will trigger the aggregation on database contents. If you notice that the pro-
cessing takes a long time, it may be a better option to write the aggregated
data to a dedicated collection.

Using the Underscore library, all months’ results are added to the subscription
distanceByMonth. Finally, the publish() function signals the client that the subscrip-
tion is ready.

Meteor.publish('distanceByMonth', function(){
 var subscription = this;

 var db = MongoInternals.defaultRemoteCollectionDriver().mongo.db;

 var pipeline = [
 {
 $group: {
 _id: { $month: '$workoutAt' },
 distance: { $sum: '$distance' }
 }
 }
];

 db.collection('workouts').aggregate(
 pipeline,
 Meteor.bindEnvironment(
 function(err, result){
 console.log('result', result);
 _.each(result, function(r){
 subscription.added('distanceByMonth', r._id, {distance:

r.distance});
 })
 }
)
)

 subscription.ready();
});

Listing 7.6 Aggregation inside a publication

Because there’s no official support
for aggregation from Meteor, use

the core Mongo driver.

The aggregation settings create
documents with the _id field equal to
the month of the workoutAt field and
the sum of all distances of this month.

Create the
aggregation.

Because you can’t use asynchronous
code in a publication, use
Meteor.bindEnvironment.

Add the data to
this subscription.

The subscription is
ready to send the
data to the client.
Licensed to Mark Watson <nordickan@gmail.com>

165Publications and subscriptions
On the client side, you create a collection available only on the client that takes this
data. Create this collection inside the client folder in the workoutTracker.js file:

DistanceByMonth = new Mongo.Collection('distanceByMonth');

This looks and behaves exactly like any other collection, but the data comes from your
custom publication and not the server-side MongoDB. You can use the data inside this
collection as you normally would. You can create a new template and helper to display
the data from the aggregation publication. Refer to the sample code for more details.

 One downside of this approach is that this data isn’t reactive because the aggrega-
tion framework is just a dumb data source. That means if someone added a new work-
out for the month of April with an 8-mile distance, the aggregated data on the client
for April wouldn’t be increased by 8 automatically. When the page is reloaded the sub-
scription would be initialized again so that the screen would update correctly. This is
definitely not how things are supposed to be inside a Meteor application where the cli-
ent should be reactive. Next, you’ll see how to improve the publication to make this
aggregated publication reactive again.

7.1.6 Turning an aggregation publication into a reactive data source

Unlike a normal Collection.find(), the aggregation publication isn’t reactive.
Nevertheless, you want a client’s aggregated data to update reactively when data
changes—just like adding a workout would update the limited list automatically.
What’s missing to turn the aggregation into a reactive data source is an observer that
monitors the workout collection and performs an action if a new workout is added.

 Every collection cursor available—for example, the returned cursor from calling
WorkoutsCollection.find()—has the ability to observe the documents that were
added, deleted, or changed inside the collection. Which documents are observed
depends on the query that’s used by the Collection.find() method.

 By limiting the query for a find(), you can keep an eye only on workouts with a
type of jogging and react if a new document is added, changed, or removed. At a
later point, we could add a different action for workouts of type chess or aerobics.
The function you’ll use for monitoring updates to a data source is observeChanges().

 There are three cases that you can observe; each has an associated callback with one
or more attributes. The associated callbacks are similar to those used for setting the pub-
lication status, but they don’t require that you pass a collection name as an argument:

■ added(docId, fields)—When a new document is created, the first argument
is the document ID, and the second contains all fields of the document (exclud-
ing the _id field).

■ changed(docId, fields)—For changed documents, again the ID is passed as
the first argument, and the second contains only the updated fields (fields with
a value of undefined have been deleted from the document).

■ removed(docId)—This takes a single argument: the ID of the document that
was removed from the collection.
Licensed to Mark Watson <nordickan@gmail.com>

166 CHAPTER 7 Exchanging data
NOTE Although they have the same names, the added, changed, and removed
functions in a publication use a slightly different syntax.

The following listing shows the syntax of using all three callbacks on a watched
WorkoutsCollection query.

WorkoutsCollection
 .find(query)
 .observeChanges({
 added: function(id, fields){
 // do something if a document was added matching the query
 },
 changed: function(id, fields){
 // do something if a document of the query changed
 },
 removed: function(id){
 // do something if a document of the query was removed
 }
 });

You know how to aggregate data in a publication as well as how to create a callback if a
document is added to a collection. That’s all you need to make the aggregation publi-
cation reactive. The trick is to create an object within the publication that keeps track
of all the aggregated data via observeChanges(). In this example workoutHandle is
used to watch the collection and observe if a new document is added. If so, you can
update the total distance of the month in the object that keeps track of the aggregated
data. The newly updated data is then sent down to the client, telling it that the sub-
scription has changed (see the following listing).

Meteor.publish('distanceByMonth', function () {
 var subscription = this;
 var initiated = false;
 var distances = {};

 // existing aggregation code

 var workoutHandle = WorkoutsCollection
 .find()
 .observeChanges({
 added: function (id, fields) {
 if (!initiated) return;
 idByMonth = new Date(fields.workoutAt).getMonth() + 1;

 distances[idByMonth] += fields.distance;

Listing 7.7 Observing changes in a collection

Listing 7.8 Using observeChanges to update aggregated data

You need this because the very first
documents from the initial subscription
shouldn’t affect the added callback.

This object keeps
track of all distances
for each month.

Create the ID of
the document.
The +1 comes
from the month
starting at
index 0.

Update the distance for
the month since a new
workout was added.
Licensed to Mark Watson <nordickan@gmail.com>

167Publications and subscriptions
 subscription.changed('distanceByMonth',
 idByMonth, {
 distance: distances[idByMonth]
 }
)
 }
 });

 subscription.ready();
});

Now whenever a new workout is added to Workouts, the object that tracks the aggre-
gated data (workoutHandle) is updated and sends the change to the client. Go to your
browser and add a new workout through the console. You’ll see that the aggregated
data updates accordingly.

 One last but very important thing to do is to clean up the publication accordingly.
The observe methods will run endlessly if you don’t stop them. The right moment to
stop the observation of the collection is when the client subscription stops:

subscription.onStop(function(){
 workoutHandle.stop();
});

Whenever the client stops the subscription, observing will be stopped as well.

NOTE If you want to publish a single document, you still have to use collec-
tion.find({_id: options._id}) and not findOne(). This is because a pub-
lication must return a cursor whereas findOne() returns the actual result as
an object.

7.1.7 Limiting data visibility by user ID

You can now control the data that’s sent to the client and make sure that not every
workout is sent to it. Still, you need to find a way to decide how many documents a
user can see and that he sees only his own workouts and not the ones from other users
(see listing 7.9). For this, you’ll add the accounts packages we looked at earlier in this
chapter. In a publication you can access the userId of the currently logged-in user by
using this.userId, which is null if the user isn’t logged in.

Meteor.publish('workouts', function (options) {
 check(options, {
 limit: Number,
 sorting: Number
 });

Listing 7.9 Sending only the data a user is allowed to see

Inform the client that
the subscription was
changed.

The subscription (or this) has an onStop
callback that’s fired whenever the client
subscription is closed.

The handle that’s returned from
the observerChanges() function is
used to stop observing.
Licensed to Mark Watson <nordickan@gmail.com>

168 CHAPTER 7 Exchanging data
 var qry = {
 userId: this.userId
 };
 var qryOptions = {
 limit: options.limit,
 sort: {
 workoutAt: options.sorting
 }
 }

 return WorkoutsCollection.find(qry, qryOptions);
});

It’s important to store the reference to the user inside the workout document. If you
do this, it’s as simple as adding { userId: this.userId } to the query in the Workouts-
Collection.find(qry...) function. Also note that if you log in or out, the data changes
reactively.

 The aggregated data is a little bit more complicated to adjust because you need
to match the aggregation itself as well as the query that you want to observe (see the
following listing).

Meteor.publish('distanceByMonth', function () {
 var subscription = this;
 var initiated = false;
 var distances = {};
 var userId = this.userId;
 var db = MongoInternals.defaultRemoteCollectionDriver().mongo.db;
 var pipeline = [{
 $match: {
 userId: userId
 }
 }, {
 $group: {
 _id: {
 $month: '$workoutAt'
 },
 distance: {
 $sum: '$distance'
 }
 }
 }];

 db.collection('workouts').aggregate(
 pipeline,
 Meteor.bindEnvironment(
 function (err, result) {
 console.log('result', result);
 _.each(result, function (r) {
 distances[r._id] = r.distance;
 subscription.added('distanceByMonth', r._id, {
 distance: r.distance
 });

Listing 7.10 Aggregation of a user’s documents

Query for all workouts that
belong to the currently
logged-in user

The aggregation should only
be done over documents
that match the userId.
Licensed to Mark Watson <nordickan@gmail.com>

169Meteor methods
 })
 }
)
)

 var workoutHandle = WorkoutsCollection
 .find({
 userId: userId
 })
 .observeChanges({
 added: function (id, fields) {
 if (!initiated) return;

 idByMonth = new Date(fields.workoutAt).getMonth() + 1;

 distances[idByMonth] += fields.distance;

 subscription.changed('distanceByMonth',
 idByMonth, {
 distance: distances[idByMonth]
 }
)
 }
 });

 initiated = true;
 subscription.onStop(function () {
 workoutHandle.stop();
 });
 subscription.ready();
});

There’s not much to do to update the aggregation publication so that it depends on
the user. Only the aggregated documents with the correct userId should be counted
in. Lastly, the documents that should be observed have to be found by the query
{userId: this.userId}.

7.2 Meteor methods
Meteor makes sending data from clients to the server very easy. But on the web you
can never trust the data that comes from a client. You can never be certain that there
isn’t a malicious hacker on the other end trying to access or modify sensitive data.
Therefore, everything coming from a client must be validated before processing.
Using the browser’s console, every validation could be bypassed. This applies to all
web applications, regardless of whether they’re written in Java or JavaScript.

 The solution is to implement a safeguard on the server side that deals with all write
actions. Meteor uses a concept similar to remote procedure calls (RPCs) that can be
called from the client and are executed on the client and afterward on the server, too.
These are known as methods. Not only do they help secure applications but they’re also
capable of making apps more user friendly using latency compensation.

 Storing data inside a database takes a relatively long time, depending on network
connections and write speeds. Figure 7.4 illustrates how methods are used to apply

In this publication there should
be only the documents with the
logged-in userId observed.
Licensed to Mark Watson <nordickan@gmail.com>

170 CHAPTER 7 Exchanging data
security and increase the perceived speed of write operations. First, a user submits a
new workout. An event handler receives the data and passes it to a client method. This
method will perform data validation to check whether the distance entered is valid. If
all checks are passed, it simulates storing data to the database by adding it to the local
Minimongo instance and updates the screen for the user. This happens in a fraction
of a second, because all events take place in the memory of the local computer or
mobile device. But now the data is sent to the server, where the same method will be
executed. Some server-specific checks might be added as well, such as making sure the
user ID is correct. If all validations pass, data is stored in the database and success is
confirmed to the client.

 Methods can be used not only for database operations but also for anything else
that needs to take place on the server, such as sending emails or triggering processes.

 In this section you’ll replace the default insecure package (which lets anybody
access every database document) with methods that allow for a fine-grained level of
security. Users will be able to add their own workouts to the collection. For this, you’ll
use a method call to send the write actions instead of direct inserts and updates.

7.2.1 Removing the insecure package

Just as the autopublish functionality was provided in form of a package, there’s a
package called insecure that allows a client to initiate writes to the server-side data-
base. As the name suggests, it isn’t intended for production environments but rather
to speed up the development process. To remove the package from your application,
stop the Meteor server and issue the following command:

$ meteor remove insecure

Potentially unsafe content

is sent to the server.

Database

Server Client

App

Livequery

MiniDB

App

5. Call method to

store workout

6. Validate data 2. Validate data
1. Submit

comment

4. Update

view

7. Store to DB

3. Simulate

storing to DB

8. Confirm success
Tracker

Blaze

Figure 7.4 User-generated content must always be validated on the server because it may be
possible to bypass the code executed on the client.
Licensed to Mark Watson <nordickan@gmail.com>

171Meteor methods
Having the ability to update and insert data from the browser console is useful during
development, so it’s up to you whether you prefer to remove the insecure package
early on in a project or leverage its power for quicker development. Either way, a pro-
duction application should never be deployed with insecure still active.

 Once the insecure package is removed and the server is started again, any attempt
to update, insert, or remove a document from the client will result in an error mes-
sage in the console (see figure 7.5).

NOTE Read access to data is defined using publications, so removing the
insecure package doesn’t protect any sensitive data. It simply prohibits
the client from writing to the server-side database directly.

7.2.2 Using methods to write data to collections

The place to put methods depends on what you want to do. If you put a method inside
the server folder you can still call it from the client, but the method is processed only
on the server and not on the client. If the method is shared between the server and
the client, the process is similar to the Collection.insert() functionality. This
means a method call is processed on the client immediately. Then if all goes well it’s
also processed on the server, and if something goes wrong here, the function is
reverted on the client. This way, you gain the latency compensation with methods too.

TIP If a method is executed on the client, it’s running as a simulation. You
can check by using this.isSimulation() inside a method context to deter-
mine whether the code is used to trigger a remote method or runs as a stub. It
returns true if the method is running on the client, but simulations can also
be used on the server.

You now want users to be able to add workouts themselves by adding a simple form. If
the form is submitted, you want to extract the data from the form and use it in a
method call. In the method, you want to make sure that the data is allowed and valid
and that it comes from a logged-in user—a guest shouldn’t be able to add workouts.
Finally, you create a new workout in the method.

 Meteor.call() takes one mandatory argument: the method name. Additionally,
you can add as many arguments as you like and they’ll be available in the method. The
last argument you provide is a callback function to deal with the results returned by

Figure 7.5 When the insecure package is removed, access is denied
in the browser for any write operation.
Licensed to Mark Watson <nordickan@gmail.com>

172 CHAPTER 7 Exchanging data

e

uery
act
ta
he
ce
ield
ake it
ger.

v

lly
the method (see listing 7.11). The callback itself takes two arguments: error and
result. The value for error remains undefined as long as the method finishes as
expected. result contains the return value of the method—in this case, the docu-
ment ID for the newly inserted workout.

Template.addWorkout.events({
 'submit form': function (evt, tpl) {
 evt.preventDefault();

 var distance = parseInt(tpl.$('input[name="distance"]').val());

 Meteor.call('CreateWorkout', {
 distance: distance
 }, function (error, result) {
 if (error) return alert('Error: ' + error.error);
 });
 }
});

A method always has a name and can have as many parameters as you like. This way,
you can use a method to send data from the client to the server. Next, you must define
the method; its purpose is to create a workout. Let’s put it into a new file in a methods
folder. It should be available on the client and the server as well, which allows you to
take advantage of latency compensation (see the following listing).

Meteor.methods({
 'CreateWorkout': function(data) {
 check(data, {
 distance: Number
 });

 var distance = data.distance;
 if(distance <= 0 || distance > 45){
 throw new Meteor.Error('Invalid distance');
 }

 if(!this.userId){
 throw new Meteor.Error('You have to login');
 }

Listing 7.11 A method call from the client

Listing 7.12 Using a method to create a new document

Listen
to the

submit
form

vent as
usual.

The default behavior of a form
submit should be prevented because
it would reload the page.

Use jQ
to extr
the da
from t
distan
input f
and m
an inteThe method is called by

its name and additional
parameters.

The method has a callback that’s called if an error
happens or a result was returned from the server.

Creating a method follows the scheme of
helpers: a method function that takes a
key-value object as a parameter.

The key of the
object is the name
of the method.

Use check to make sure
that only data is used in a
method that you allow.

Do a
aildation

on the
distance.

If the validation fails, throw a new
Meteor.Error. It’s like a normal
JavaScript error but is automatica
populated to the client.

The userId of the currently
logged-in user is accessed
via this in a method.
Licensed to Mark Watson <nordickan@gmail.com>

173Meteor methods
 data.workoutAt = new Date();
 data.type = 'jogging';
 data.userId = this.userId;

 return WorkoutsCollection.insert(data);
 }
});

If you look at the method, you’ll see that the data parameter is what’s finally passed to
the WorkoutsCollection.insert method. Because of this, it’s really important to
make sure that you know exactly what’s inside the data object that’s coming from the
client. If you didn’t make any security checks, a user could add any data inside your
WorkoutsCollection collection. We’ll use the check() function again and look at it in
a little more detail.

USING AUDIT-ARGUMENT-CHECKS TO VALIDATE ALL USER INPUT

Each argument sent to a method should be checked before processing it. The more
form fields are used, the harder it is to keep track of whether every user input has
been checked yet. Meteor ships with a package called audit-argument-checks, which
checks that every argument was indeed checked before it was used. Add it to your
project via this command:

$ meteor add audit-argument-checks

Every time the client sends an argument to the server for processing, audit-argument-
checks will ensure that it’s checked first. You need to add checks to all methods. If
there’s no check in place, a method will still execute but you’ll see an exception on
the server, as shown in the following listing.

Exception while invoking method 'CreateWorkout' Error: Did not check() all
arguments during call to 'CreateWorkout'

 at _.extend.throwUnlessAllArgumentsHaveBeenChecked (packages/check/
match.js:352)

 at Object.Match._failIfArgumentsAreNotAllChecked (packages/check/
match.js:108)

 at maybeAuditArgumentChecks (packages/ddp/livedata_server.js:1596)
 at packages/ddp/livedata_server.js:648
 at _.extend.withValue (packages/meteor/dynamics_nodejs.js:56)
 at packages/ddp/livedata_server.js:647
 at _.extend.withValue (packages/meteor/dynamics_nodejs.js:56)
 at _.extend.protocol_handlers.method (packages/ddp/

livedata_server.js:646)
 at packages/ddp/livedata_server.js:546

Listing 7.13 Console message for unchecked values in methods

Add some data to
the document you
want to create.

You can be sure now that
the data that goes into
the collection is saved.
Licensed to Mark Watson <nordickan@gmail.com>

174 CHAPTER 7 Exchanging data
Depending on what you expect arguments to be, you need to use different checks.
Although Match.Any will accept any value from the client, others are stricter. Table 7.1
lists the available pattern matches for checking variable content.

7.3 Summary
In this chapter, you’ve learned that

■ Pub/sub is Meteor’s way to get data from the server to a client.
■ To secure applications, autopublish and insecure must be removed; publica-

tions and methods should take their place.

Table 7.1 Match patterns for checking variable content

Pattern Matches

Match.Any Matches any value.

String, Number, Boolean,
undefined, null

Matches a primitive of the given type.

Match.Integer Matches a signed 32-bit integer.
Doesn’t match Infinity, -Infinity, or NaN.

[pattern] A one-element array matches an array of elements,
each of which match pattern.
For example, [Number] matches a (possibly empty)
array of numbers; [Match.Any] matches any array.

{key1: pattern1, key2: pattern2,
...}

Matches an object with the given keys, with values
matching the given patterns. If any pattern is a
Match.Optional, that key doesn’t need to exist in
the object. The value may not contain any keys not
listed in the pattern. The value must be a plain object
with no special prototype.

Match.ObjectIncluding({key1:
pattern1, key2: pattern2, ...})

Matches an object with the given keys; the value may
also have other keys with arbitrary values.

Object Matches any plain object with any keys; equivalent to
Match.ObjectIncluding({}).

Match.Optional(pattern) Matches either undefined or something that
matches pattern. If used in an object this matches
only if the key isn’t set as opposed to the value being
set to undefined.

Any constructor function (e.g., Date) Matches any element that’s an instance of that type.

Match.Where(condition) Calls the function condition with the value as
the argument. If condition returns true, this
matches. If condition throws a Match.Error or
returns false, this fails. If condition throws any
other error, that error is thrown from the call to check.
Licensed to Mark Watson <nordickan@gmail.com>

175Summary
■ Publications may return data from a database or publish customized data.
■ Publications can securely limit the published data by document fields such as a

user/owner ID.
■ Subscriptions can either be made globally for the entire application or scoped

to individual templates.
■ Writing to the database via server-side methods is secure and more flexible than

using allow/deny patterns.
■ The audit-argument-checks package helps to ensure all data provided by a cli-

ent is validated before it’s used.
Licensed to Mark Watson <nordickan@gmail.com>

Routing using Iron.Router
As your application grows in size and complexity, you’ll have to deal with lots of
subscriptions, publications, collections, and templates. You need a way to organize
all these things as well as specify what to render and what data context should be
available in the rendered templates.

 One good approach to handling this complexity is to use routes. This means you
decide what to subscribe to and what to render and you specify the data context,
depending on unique URLs. The router handles all those tasks. The most com-
monly used package with Meteor is Iron.Router.

 Iron.Router is a community package maintained by Chris Mather and Tom
Coleman. Tom wrote one of the first routers for Meteor, called meteor-router, and

This chapter covers
■ Adding routing capabilities to Meteor

applications
■ Creating layouts
■ Improving code structure using Iron.Router
■ Extending Iron.Router with controllers, hooks,

and plug-ins
■ Creating server-side routes and APIs
176

Licensed to Mark Watson <nordickan@gmail.com>

177Routing in web applications
Chris also started a routing project called meteor-mini-pages. Luckily for the Meteor
community, they combined their efforts and developed a single router, which eventu-
ally became the Iron.Router package.

 The Meteor Development Group (MDG) had a router on its own roadmap once
but decided that it wasn’t necessary for them to build one, even though routing is a
crucial aspect of every web framework. The reason was that the community efforts in
building a router were so good that a router developed by MDG wasn’t needed.

8.1 Routing in web applications
If you click a link on a normal website, the URL changes in the browser. The browser
then requests the resource from the server that belongs to the new URL. The first
thing the web server does after it receives a request with a given route is go through a
dictionary of all the routes it knows. If the route of the request matches a known route
in the dictionary, the defined action is performed. At the end of each action, the
response is created and sent back to the browser, which renders the HTML it received
for the new route. The router typically handles all of this functionality (figure 8.1).

 Let’s say you’re on a community website and see a list of profiles. One of them is
from Manuel. If you click the Manuel link, the URL of the browser changes and a
request is sent to the server. The server performs the actions defined for the route to
generate the HTML needed for Manuel’s profile. At the end, the response is sent back.

 With Meteor, you create client-side web applications. This means if you click a link,
there’s no request back to the server for a different HTML document. In a web appli-
cation, if you click a link the view is changed directly in the browser, without the need
for a new HTTP request to the server. This means that technically you don’t need any

Router initiates the rendering
process and returns the rendered
HTML to the client.

Server Client

Database

HTML from response
is shown in browser.

Rendering

processes

Router Click on link

HTTP request with URL

Response with HTML

Figure 8.1 The client’s HTTP request is handled by a server-side router that responds
with HTML.
Licensed to Mark Watson <nordickan@gmail.com>

178 CHAPTER 8 Routing using Iron.Router
routes because you can link the functions that change the DOM directly on the event
handler of a click event on specific anchor elements (figure 8.2).

 When links to profiles are listed on a website, the process is quite different from
the one on a static website. If you click the link for Manuel’s profile, the URL
doesn’t change at all, but instead the event is handled by a JavaScript function
directly in the browser. The DOM could be changed directly on the click and show a
loading indicator—for example, a simple string like Loading.... At the same time,
the application fetches some data from the server that’s needed in order to render
the profile. In Meteor, you do this by updating or creating a new subscription. If the
new data is available on the client, the DOM is changed again and the new profile
is rendered.

 If you change the current HTML based on click events like this without changing
the browser’s URL, it affects the maintainability of your application. The URL com-
bined with a dictionary of routes that your application understands is a very good
starting point if you want to figure out where to look in your code. Suppose you want
to join a project that’s creating a complex application that’s completely new to you. If
you click a profile of the community website and the URL changes to /profiles/manuel,
you can start looking at the defined routes and see what action is performed. You can
use the URL as a first hint where to look for relevant code, which is very important.

Synced via publications
and subscriptions.

Server Client

Triggers

DB Mini DB

The event handler listens
for a click and changes
the DOM directly.

DOM update

process

Event

handler
Click on link

Figure 8.2 A client-side web application can handle the DOM manipulation in
an event handler.
Licensed to Mark Watson <nordickan@gmail.com>

179Routing in web applications
 The main reason why you should always use URLs even for a client-side application
is the architecture of the web itself. Its URLs define every resource you can reach in the
web. URLs enable you to share content with your friends. If your community applica-
tion will consist of only one URL, you can never share an interesting profile with any-
one. But if you perform actions like filtering or sorting of tables, it would be good to
reflect this in the URL as well. Consider a special and very important filter and sorting
combination of a large data set that you need to access very often. If you can access this
exact data set with a URL, you can easily bookmark it and reach it much faster than you
would if you had to set up the configuration every time you wanted to access it.

 URLs are important not only for humans browsing through the web but for appli-
cations as well. If a search engine crawls a website, it always tries to understand the
content of the given document that relates to a specific URL. If a user then types
search phrases into the search bar, the search engine will try to present the best
matching URL as a response. If your application has only one URL for all the content it
contains, a search engine can’t properly redirect visitors to the exact view that would
be relevant to the search phrase of the user.

 Because routes are so important for Meteor applications, Iron.Router implements a
router. The router is available on both the client and the server sides. On the client side,
the router helps you set up new subscriptions but also end old ones based on a given
URL. In addition, it takes care of rendering the specified template based on the current
URL (figure 8.3). As you’ll see in this chapter, Iron.Router has even more capabilities.

Synced via publications
and subscriptions.

Server Client

Change

URL

DB Mini DB

Iron.Router reacts on changes
to the URL and performs
specific actions.

Handles new

subscriptions

and rendering

Iron.Router Click on link

Figure 8.3 Iron.Router listens for URL changes and performs actions defined
for a route.
Licensed to Mark Watson <nordickan@gmail.com>

180 CHAPTER 8 Routing using Iron.Router
You can also use Iron.Router to react as a normal server-side router. This means
you can create REST interfaces with a Meteor application. The main use case of
Iron.Router is client-side routing, and this is what we’ll focus on in this chapter. But
we’ll take a look at server-side routing at the end of this chapter, too.

8.2 Client-side routing
In this section we’ll show you how to use Iron.Router to implement client-side rout-
ing. The router component will run exclusively on the client and let you navigate
around without having to contact the server.

 You’ll be building a community application where you can see users’ profiles and
comment on their profile pages. An important aspect of an application like this (and
for nearly any web application) is to have URLs that are sharable. Think of your profile
page on our new community website. Without your unique URL, you couldn’t share it
with anyone or even access it yourself.

 At the end of this chapter you’ll have built an application that can contain an
unlimited number of profile pages, each with a unique and sharable URL. Each pro-
file will have a dedicated URL that shows the contents, as shown in figure 8.4. Our
application will have multiple routes not only for static pages but also for dynamic
pages that require data in order to render the templates.

8.2.1 Adding Iron.Router

Meteor doesn’t come with a router as a core feature, but as mentioned earlier,
Iron.Router is a high-quality package developed by the Meteor community that’s well
maintained. For your Meteor project, you have to add Iron.Router as a package first:

$ meteor add iron:router

Figure 8.4 A simple profile page of a single-page community application
Licensed to Mark Watson <nordickan@gmail.com>

181Client-side routing
Once you’ve added Iron.Router you get access to the Router object in your applica-
tion in both the client and server environments. Therefore, you can use it to perform
server-side routing as well. We’ll get back to using Router on the server in a bit.

 Create a router folder just at the root of your application folder. Inside this folder
you’ll put all router-related files, beginning with the routes.js file that contains all
route definitions (figure 8.5).

You’ll use the routes.js file to define all the routes the application should contain. It’s
a good practice to have every route of your application in a single file to allow for a
quicker overview.

8.2.2 Creating your first routes

Our next goal is to set up two basic routes. One is the standard home route, which
should be rendered at the root of your application. This route relates to the path /.
The second route is a simple about page that should be rendered when users access
the /about URL (see figure 8.6).

NOTE To reduce the complexity of the code we won’t show any of the boot-
strap markup. The code download for this chapter contains all the relevant
bootstrap code in order to achieve a more polished look. To add the Boot-
strap CSS-Framework, you have to add the twbs:bootstrap package.

The file structure you’ll use for the first step is shown in figure 8.7.

Figure 8.5 Iron.Router works on both the client and the
server, so putting a routes.js file somewhere outside the client
or server folder makes it accessible in all environments.

Figure 8.6 Clicking the About link in the top navigation changes the URL to /about.
Licensed to Mark Watson <nordickan@gmail.com>

182 CHAPTER 8 Routing using Iron.Router
The home.html file (see listing 8.1) contains the template that should be rendered if
a user is on the root path, /. Navigating to the /about page should bring up a static
site with further information about the application. For this you’ll use an about tem-
plate that’s stored in the static folder. The index.html file contains some general tem-
plates as well as the <head> element for the application.

// index.html
<head>
 <title>My Little Community</title>
</head>

<template name="header">
 <nav>

 My Little Community

 About

 </nav>
</template>

// home.html
<template name="home">
 {{> header}}

 <h1>Home</h1>
</template>

// about.html
<template name="about">
 {{> header}}

 <h1>About</h1>
</template>

There’s nothing too fancy about the templates yet. The navigation inside the header tem-
plate contains two anchor elements. One links to the root path My Little
Community and the other links to the about page About.

Listing 8.1 Initial templates for the community application

Figure 8.7 To create two simple routes, you
must define the routes and the templates that
should be rendered for each route.

The header template contains
the navigation so it can be
included in other templates.

The templates include
the header template so
the navigation is on
top of every view.
Licensed to Mark Watson <nordickan@gmail.com>

183Client-side routing

The s
tem

re
Next you want to add those routes to the Iron.Router and render the appropriate
template using the code from the following listing.

// routes.js
Router.route('/', function(){
 this.render('home');
});

Router.route('/about', function(){
 this.render('about');
});

The Router object has a route function that takes two parameters—the path and the
associated function. The function is called if the URL changes and the path matches
the specified one. Inside the scope of the function that’s called, you have access to the
current instance of the so-called RouteController object via this. With the help of
the RouteController you can, for example, render a template to a specific location
into the DOM. In this case, because you have nothing else defined, the template speci-
fied with the string parameter of the this.render('templateName') function will be
rendered simply inside the <body> element.

8.2.3 Defining a layout depending on a route

For the entire application you want to maintain a consistent layout—for example, by
keeping the main navigation on top. Therefore, you can set a default layout for all
routes. Alternatively, some routes may require different layouts. The front page
shows multiple images side by side whereas a profile page uses a single, bigger pro-
file image instead.

SINGLE LAYOUT

In our previous example, we included the navigation at the top of the application in
every rendered template (see figure 8.8).

 A more effective way to reuse the header template is to use a layout template for
each route and alter only a part of the layout based on the current route. This is espe-
cially useful if layouts grow more complex or multiple layouts must be used within a
single application.

 As you can see in figure 8.9, for both routes the masterLayout template should
be rendered so that it always has the header template on top. The dynamic part is
changed depending on the current route. If the current path is /, the dynamic part
of the layout should be replaced with the template called home, and if the path
changes to /about, the dynamic part of the layout has to be exchanged with the tem-
plate called about.

 In the layout template you use the {{> yield}} template helper that’s defined
by the Iron.Router package. With {{> yield}}, you can specify exactly where the

Listing 8.2 Setting up different routes

Defines a path and
associates it with a
function to call if the
URL matches this path

pecified
plate is
ndered.
Licensed to Mark Watson <nordickan@gmail.com>

184 CHAPTER 8 Routing using Iron.Router
<template name="home">

{{> header}}

...

</template>

<template name="about">

{{> header}}

...

</template>

Figure 8.8 Reusing templates for each route without using a layout

<template name="masterLayout">

{{> header}}

<div class="container">

{{> yield}}

</div>

</template>

<template name="masterLayout">

{{> header}}

<div class="container">

{{> yield}}

</div>

</template>

Reusing the masterLayout
and header template

Figure 8.9 {{> yield}} is a dynamic area that’s replaced with the template that should be
rendered for the current route.
Licensed to Mark Watson <nordickan@gmail.com>

185Client-side routing
template for the route should be rendered; it’s a placeholder for content. This is
what’s called a region.

 Remember to consolidate the code from your view templates to the masterLayout
template, as shown in the following listing.

// masterLayout.html
<template name="masterLayout">
 {{> header}}

 <div class="container">
 {{> yield}}
 </div>
</template>

// home.html
<template name="home">
 <h1>Home</h1>
</template>

To specify which layout should be used for each route, you must set it inside the
Router object via the configure() function. To keep the configuration separate from
route definitions, put the following content inside a new file router/config.js:

Router.configure({
 layoutTemplate: 'masterLayout'
});

USING MULTIPLE LAYOUTS

Instead of a single layout template for all routes, you need two layouts to differentiate
the profile page from the front page. First let’s look at the old masterLayout and the
new profileLayout (figure 8.10).

 As you can see, the profile layout has two columns. The column on the left renders
the profile picture and the right column contains profile information. You still have
one main content region that’s specified with the {{> yield}} template helper. The
second region on the left needs a name so it can be referenced later in the route
function. For that, you can use a named yield like this: {{> yield "name"}}.

 In the route function you can specify which layout should be used. If you don’t
specify a layout, the one set by the configure function is used. If it hasn’t been config-
ured, the template is directly rendered into the <body> (see the following listing).

Router.route('/profiles/manuel', function () {
 this.layout('profileLayout');
 this.render('profileDetail');
});

Listing 8.3 Moving layout-specific markup into a common layout template

Listing 8.4 Setting a layout inside the route function

Sets a layout

The layout template is used to render
the specified profileDetail template.
Licensed to Mark Watson <nordickan@gmail.com>

186 CHAPTER 8 Routing using Iron.Router
DEFINING THE CONTENT TEMPLATE FOR NAMED REGIONS

If you have named regions like the previous example—{{> yield "left"}}—you want to
define which template should be rendered there. You can do so in one of several ways.

 The easiest approach is inside the template itself. Iron.Router uses a template
helper named contentFor that lets you define content for specific regions (see list-
ing 8.5). Anything outside this block is rendered to the main region.

// profileDetail.html
<template name="profileDetail">
 {{#contentFor 'left'}}

 {{/contentFor}}

Listing 8.5 Rendering a template inside a named yield with template helpers

<template name="masterLayout">

{{> header}}

<div>

{{> yield}}

</div>

</template>

<template name="profileLayout">

{{> header}}

<div class="left">

{{> yield "left"}}

</div>

<div class="right">

{{> yield}}

</div>

</template>

masterLayout template

profileLayout template

Figure 8.10 The second layout for the profile pages should be used on routes for profiles.

The block contents are
rendered to the region
called left.
Licensed to Mark Watson <nordickan@gmail.com>

187Client-side routing
 <h1>Manuel Schoebel</h1>
 <p>I like to eat good food and also cooking it myself!</p>
</template>

You can also use contentFor as a partial and specify which template to render:

{{> contentFor region='left' template="profileImage"}}

The most flexible way to define contents for a region is inside the route definition.
The render() function has a to option that can be used to specify the region in which
you want to render templates and data (see the following listing).

// profileDetail.html
<template name="profileDetail">
 {{> contentFor region='left' template="profileImage"}}

 <h1>Manuel Schoebel</h1>
 <p>I like to eat good food and also cooking it myself!</p>
</template>

<template name="profileImage">

</template>

// routes.js
Router.route('/profiles/manuel', function () {
 this.layout('profileLayout');
 this.render('profileImage', {to: 'left'});
 this.render('profileDetail');
});

You defined the route for a specific profile in a static way because you used the route
/profiles/manuel. Of course, you want to have only one route for profile detail pages,
as you’ll see next.

8.2.4 Setting the data context depending on a route

On the home route of our application, you want to have multiple profiles with links to
their details page. The profile detail page should have a template that renders the
data of the individual profile that’s specified through the URL. That means the route
/profiles/stephan should render the profile detail template with Stephan’s profile
data. The route /profiles/manuel should render the profile detail template as well,
only with Manuel’s profile data (figure 8.11).

 Figure 8.11 shows the core functionality you’ll implement in this chapter. You’ll
need a list of profiles on the home route, a more… link that redirects to the profile
URL, and a dynamic route that displays detailed profiles.

Listing 8.6 Rendering a template inside a named yield using JavaScript

This is rendered
into the main yield.

Setting the template
and region using a
template helper

This is rendered
into the main yield.

The option “to”
specifies where to
render a given
template.
Licensed to Mark Watson <nordickan@gmail.com>

188 CHAPTER 8 Routing using Iron.Router
The data context of the home route has to be a set of profiles that should be ren-
dered. On the profile’s detail page you only require a single user’s data as the context
for the profileDetail template. Because the URL defines the data context, you’ll use
Iron.Router to set it.

Clicking the
“more...” link
renders the
profile detail
page.

Layout

home.html

Layout

profile

Img.

html

profile

Detail.

html

[

{

_id: 'Stephan',

img: 'http://...',

...

},

{

name: 'Manuel',

img: 'http://...',

...

}

]

Data

{

name: 'Stephan',

img: 'http://...',

_id: '6RwqQML6ivpf5cj93',

...

}

Path: /profiles/6RwqQML6ivpf5cj93

{

name: 'Manuel',

img: 'http://...' ,

_id: 'iMBBTWJWXefNQ6FeP' ,

...

}

Path: /profiles/iMBBTWJWXefNQ6FeP

Data Data

Figure 8.11 With Iron.Router you can define the rendered template, the layout, and the data context.
Licensed to Mark Watson <nordickan@gmail.com>

189Client-side routing

Co
ind

varia

Acce
varia

this.para

Set
co

the r
t

 To make things easier, let’s assume that the autopublish package is still active so
that all profile data is available on the client. You also need all profile data to be avail-
able inside ProfilesCollection. Refer back to chapter 7 to learn how to set up publi-
cations and subscriptions that limit the data on the client.

 The relevant logic is located in the routes.js file (see listing 8.7). You now have
three routes: home or /, /about, and a dynamic /profiles route that accepts a user ID
as a URL parameter to determine which profile to display. The /about route stays the
same, but the other two require updating.

 The home route now sets the data context of the home template. It returns an object
that contains all profiles available on the client and makes them accessible via pro-
files. This makes it possible to access all profiles inside {{#each profiles}}...{{/
each}} within the home template. There’s no need to define a template helper that
returns data; Iron.Router can take care of it entirely.

// routes.js
Router.route('/', function(){
 this.render('home', {
 data: function(){
 return {profiles: ProfilesCollection.find()};
 }
 });
});

Router.route('/about', function(){
 this.render('about');
});

Router.route('/profiles/:_id', function(){
 profile = ProfilesCollection.findOne({_id: this.params._id});
 this.layout('profileLayout');
 this.render('profileDetailLeft', {
 to: 'left',
 data: function(){
 return profile;
 }
 });
 this.render('profileDetail', {
 data: function(){
 return profile;
 }
 });
});

In case of the profile’s detail page, you expect the path to be /profiles/:_id. The
leading : (colon) signifies that _id is a variable, which is read from the URL. Its con-
tent is accessible through the params attribute of the current route controller
instance. You access the current value from the URL with this.params._id. This way,

Listing 8.7 Setting the data context with Iron.Router

Profiles are accessible
via {{profiles}} in the
home template.

Set the data
context of
the rendered
template.

lons
icate
path
bles.

ss path
bles via
ms.key.

Data is directly
accessible, for
example, via
{{name}} in the
profile templates.the data

ntext of
endered
emplate.
Licensed to Mark Watson <nordickan@gmail.com>

190 CHAPTER 8 Routing using Iron.Router
you can identify which document to retrieve from the database. Let’s take a closer
look at the data option.

8.2.5 Data subscriptions with Iron.Router

You’ve seen that multiple aspects depend on the current route: the layout that should
be used, the templates that should be rendered, and the data that you want to look at.
Typically the autopublish package won’t be available within a package, so you must
be able to dynamically subscribe to data depending on the current route.

 On the home path of the social community, say you’d like to show some random
profiles, limited to a maximum of 10. This involves subscribing to the data. But
instead of being subscribed to this data all the time, you want to be subscribed to it
only for the home route. If you navigate to a profile’s detail page, you don’t need to
have all the data of the 10 profiles available anymore.

 At first you’ll remove the autopublish package from the application. On the
server you’ll create a publication that includes a slight delay to simulate network
latency. The following listing shows the publication code for the server.

// publications.js
Meteor.publish('profiles', function () {
 profiles = Meteor.wrapAsync(function (cb) {
 Meteor.setTimeout(function () {
 cb(null, ProfilesCollection.find({}, {
 limit: 10
 }));
 }, 1000);
 })();

 return profiles;
});

Next you need the client to subscribe to this publication. Let’s start with the home route.
Instead of using a simple this.render() call, you’ll pass an object as the second route
argument. The result will be the same, but the syntax is different (see following listing).

Router.route('/', {
 template: 'home',
 data: function() {
 return {
 profiles: ProfilesCollection.find({}, {limit: 10});
 }
 }
});

Listing 8.8 Publishing the profiles collection with a one-second delay

Listing 8.9 Defining a route’s behavior by options only

This code simulates
waiting time.

Here the actual query to the
MongoDB happens and the result
is stored in the profiles variable.Limit the publication

to 10 profiles.

The collection cursor from the
MongoDB query is returned from
the publication.

The template option specifies
which template to render. Data context is set

using the data option.

Return 10 profiles
from the
ProfilesCollection.
Licensed to Mark Watson <nordickan@gmail.com>

191Client-side routing
As you can see, by using options instead of a route function you save some lines of
code and it works perfectly fine for this simple use case.

 While you wait for data you want the application to render a loading indicator.
Iron.Router comes with a waitOn option that you can use to define all required sub-
scriptions (listing 8.10). A loading template is automatically shown when you use the
waitOn option. It’s possible to change the default loading template via the load-
ingTemplate option. You can do so either in the route’s options or globally for the
entire application in the global router configuration.

Router.route('/', {
 waitOn: function () {
 return Meteor.subscribe('profiles');
 },
 template: 'home',
 data: function () {
 return {
 profiles: ProfilesCollection.find({}, {
 limit: 10
 })
 };
 }
});

When the home route is requested, you’ll see a loading indicator, as shown in figure 8.12.
Once the subscription is ready, the home template will be rendered with the correct data.

 The same technique is used to display individual profiles. To tell the application
which profile to display you must also include the requested profile ID. As mentioned
earlier, you can pass it to the subscription using this.params._id. Without using the
render() function, the route looks like the following listing.

Router.route('/profiles/:_id', {
 layoutTemplate: 'profileLayout',
 waitOn: function() {
 return Meteor.subscribe('profile', this.params._id);
 },

Listing 8.10 Subscribing based on a route

Listing 8.11 Waiting on individual profile subscriptions

If waiting for multiple
subscriptions, you can
also use an array.

Figure 8.12 Iron.Router
automatically renders a loading
indicator when using waitOn.
Licensed to Mark Watson <nordickan@gmail.com>

192 CHAPTER 8 Routing using Iron.Router
 template: 'profileDetail',
 yieldTemplates: {
 'profileDetailLeft': {
 to: 'left'
 }
 },
 data: function() {
 return ProfilesCollection.findOne({
 _id: this.params._id
 });
 }
});

These are the fundamental building blocks you need to create single-page applica-
tions. Iron.Router not only helps you organize your code but also lets you accurately
define which templates should be rendered, which subscriptions are required, and
what data should be available in the templates’ data context.

 Ready to step it up a bit? Let’s look at some more advanced use cases.

8.3 Advanced routing methods
For the rest of this chapter, we’ll look at advanced techniques that are useful and com-
monly used in applications. They’re related to

■ Maintainability—Using named routes for easier reference and organizing code
in controllers and plug-ins

■ Appearance—Highlighting active links with different classes
■ Performance—Loading external libraries for specific routes only
■ Functionality—Using hooks to add view counters and prevent anonymous users

from accessing routes

8.3.1 Using named routes and link helpers

It’s good practice not to hard-code any links in an application, such as the href attri-
bute of an anchor element. If a route changes, you’d have to edit all hard-coded
occurrences manually, so it’s much better to rely on route names and use a helper to
generate the link path. As with templates you can give a name to a route and use it
to reference the router. The name of a route is one of its options in the route defini-
tion. To link to a named route, you’ll use the pathFor template helper.

 Listing 8.12 shows how to link to named routes. A profile page requires a profile’s
ID to properly display its contents. In that case the route named profile must fill a
variable called _id and the {{pathFor}} template helper must have access to it. It’s
possible to set the data context through Iron.Router or use the {{#with}} block
helper to pass a value for _id. Listing 8.12 uses Iron.Router to set the context.

Licensed to Mark Watson <nordickan@gmail.com>

193Advanced routing methods
// routes.js
Router.route('/', { name: 'home' });
Router.route('/about', 'about', { name: 'about' });
Router.route('/profiles/:_id', { name: 'profile.details' });

// index.html
<template name="header">
 <nav>
 ...

 My Little Community
 About

 </nav>
</template>

// profilePreview.html
<template name="profilePreview">

 <div>
 <h3>{{name}}</h3>
 <p>{{profileText}}</p>
 more...
 </div>
</template>

When {{pathFor}} is used, it returns a relative URL, making it work equally well in
different deployment environments. If you need an absolute URL, you should use
{{urlFor}} instead. A third option is {{#linkTo}}, which you’ve used earlier in this
chapter as well. It renders the anchor element and allows for content to be included
between its tags—for example, when providing a link text (see following listing).

{{#linkTo route='about'}}About{{/linkTo}}

// renders to
About

{{#linkTo route='home' class='navbar-brand'}}
 My Little Community
{{/linkTo}}

// renders to

 My Little Community

Any attribute you add to a {{#linkTo}} block helper will be rendered to the anchor
element, too. That way, you can add attributes such as class, data-*, or id.

Listing 8.12 Using named routes

Listing 8.13 Using the linkTo block helper to render anchor elements

Links to /

Links to /about

The profile route
requires :_id and
inherits the data
context of the
profilePreview
template.
Licensed to Mark Watson <nordickan@gmail.com>

194 CHAPTER 8 Routing using Iron.Router
8.3.2 Working with active routes for better navigation links

To let users know which part of an application they’re currently dealing with, you
should highlight the link associated with the current route. This way, users can
directly see where they are on the application (figure 8.13).

 For this functionality, you need a global template helper that can be used in any
template and for any navigational link. The purpose of the global helper is to check
whether or not the currently active route matches the route of the link. To be able to
tell which route is currently active, you’ll take advantage of Iron.Router’s named
routes feature:

Router.route("/about", {name: "about"});

Every route can have an optional name, which makes it easier to reference it. Listing
8.14 defines a template helper that determines the name for the current route and
returns it to the template. In the HTML file it’s then possible to implement a simple
check and set the CSS class for the li element to active for the current route.

// helpers.js
Template.registerHelper("isActiveRoute", function(routeName) {
 if (Router.current().route.getName() === routeName) {
 return 'active';
 }
});

// index.html
<nav>

 <li class="{{isActiveRoute 'about'}}">
 {{#linkTo route="about"}}About{{/linkTo}}

</nav>

Listing 8.14 A global template helper that highlights an active link

Active link is highlighted.

Figure 8.13 An active navigation item has a CSS class active and a highlighted UI.

Returns active if the name of
the currently active route
equals routeName

The template helper takes a
string of the route name to
check as a parameter.

The linkTo helper creates
the actual link tag for the
about route.
Licensed to Mark Watson <nordickan@gmail.com>

195Advanced routing methods
You can use this template helper on every navigational link where you want to set the
active class depending on the current route name. You can also use this helper for
anything else that needs to check the name of the currently active route.

8.3.3 Waiting for external libraries to load

Meteor loads every JavaScript to the client with the initial page request. If your appli-
cation contains a lot of external JavaScript libraries, it’s a good idea to not put every-
thing into the main application folder because doing so will increase the amount of
data to be transferred when first accessing the page. The resulting load time will be
longer than for a statically rendered page. If you use external libraries that aren’t
required by the initial page, it’s better to split them from the initial loading request.

 Iron.Router makes it possible to load an external library based on a route. When
adding a map or date picker, the library must be loaded before rendering, which can
also be achieved with Router.

 A package called wait-on-lib provides the necessary functionality:

$ meteor add manuelschoebel:wait-on-lib

This package enables you to use an object called IRLibloader, which can be used in a
waitOn function named Iron.Router just like you do with a Meteor.subscription.
Let’s say you want to load the jquery.fittext.js library only for the /profiles/:_id URL.
Once loaded, it’ll make text sizes flexible. The library itself is located in the public
folder as public/jquery.fittext.js.1

 With the wait-on-lib package, the waitOn function is used as shown in listing 8.15.
You define a full URL or a filename; wait-on-lib will look for the file inside the pub-
lic folder.

// router.js
Router.route('/profiles/:_id', {
 // ...
 waitOn: function() {
 return [
 Meteor.subscribe('profile', this.params._id),
 IRLibLoader.load("/jquery.fittext.js")
];
 },
 //...
});

1 Everything inside the public folder is served as is. This means even if a JavaScript file is located in public, it
won’t be minified by Meteor, even when running with the --production flag.

Listing 8.15 Waiting for external libraries to load

You can subscribe to
publications as you
would normally do.

IRLibLoader behaves like a
subscription and includes
a loading indicator.
Licensed to Mark Watson <nordickan@gmail.com>

196 CHAPTER 8 Routing using Iron.Router
Even though Meteor is loaded as one complete application, it’s still possible to load
libraries you don’t need for every visit of the application separately in order to reduce
the data that has to be transferred on an initial page load.

8.3.4 Organizing routes as controllers

Until now you’ve added all of a route’s functionality directly in the route() method. If
you did this in a large application, the routes.js file would quickly become too large to
comfortably manage, and you’d lose the ability to get a quick overview of an applica-
tion’s route at a glance. As a means to better organize your code, Iron.Router intro-
duces the concept of controllers (see the accompanying sidebar).

You can specify a controller for each route and put it into its own file. That way, you
can remove all logic from the routes.js file and split it across multiple files, similar to
how you deal with templates.

 Let’s say that you want to use a controller for the home route. It should wait for a
subscription to the profiles collection and set the data context so that all available
profiles are shown inside the home template.

 To specify a controller for this route, you can set it explicitly as a string or a con-
troller object. The controller itself typically has the same name as the route, suffixed
by the word Controller. To organize your code, place each controller in a dedicated
file. For the HomeController you need to define the waitOn, template, and data attri-
butes as shown in listing 8.16.

Introducing routing controllers
Many web frameworks build on the MVC principle, which consists of models, views,
and controllers. Therefore the term controller comes with a lot of associations.
Meteor doesn’t rely on the MVC pattern, which means that some of these assump-
tions may not be accurate. So what is a controller in the Iron.Router context?

A routing controller is the blueprint for commonly shared routing instructions. Each
route can build on these default settings and extend them as required. Technically
the routing controller is an object that stores state information when changing URLs.
Controllers offer two main benefits when applications grow larger:

■ Inheritance—Routing controllers may build on each other to model an applica-
tion’s behavior, enforcing the Don’t repeat yourself principle (DRY).

■ Organization—Separating route logic into different files helps maintain a better
overview of the actual routing and business logic.

By default, all of the routing functions like route() and render() rely on the default
RouteController object.
Licensed to Mark Watson <nordickan@gmail.com>

197Advanced routing methods

ou
th
 a
D
e.
// routes.js
Router.route('/', { controller: 'HomeController' });

// homeController.js
HomeController = RouteController.extend({
 waitOn: function () {
 return Meteor.subscribe('profiles');
 },
 template: 'home',
 data: function () {
 return {
 profiles: ProfilesCollection.find({}, {
 limit: 10
 })
 };
 }
});

RouteController can have the same attributes as route(). This means you can also cre-
ate your own custom action function or specify a layoutTemplate. Splitting your routes
into separate controllers leaves a clean and short routes.js file (see following listing).

Router.route('/', { controller: 'HomeController' });
Router.route('/about', 'about');
Router.route('/profiles/:_id', { controller: 'ProfileController' });

If you’re using named routes, you don’t even have to specify a controller anymore. If
you have a route named home, then Iron.Router automatically looks for a controller
called homeController or HomeController: The following works just like the code in
listing 8.17:

Router.route('/', { name: 'home' });
Router.route('/about', { name: 'about' });
Router.route('/profiles/:_id', { name: 'profile.details',
 controller: 'ProfileController'});

8.3.5 Extending the route process using hooks

A hook is basically a function that can be added to the routing process. One of the
most common requirements for using route hooks is to prevent anonymous users
from accessing internal routes. Another use case is tracking some statistics or count
views, like the number of times a certain profile has been viewed. To track each view,
you can use an onRun hook. This hook runs exactly once regardless of whether a com-
putation invalidates and a rerun takes place. Therefore, onRun is the perfect hook to
use to increase the view count.

Listing 8.16 Using an Iron.Router controller

Listing 8.17 Routes declaration using controllers

Using controllers makes
the routes.js file much
more readable.

Every controller
extends the default
RouteController object.

Basic routes don’t
need controllers.

If needed y
can pass bo
a name and
controller I
to the rout
Licensed to Mark Watson <nordickan@gmail.com>

198 CHAPTER 8 Routing using Iron.Router
In listing 8.18, you add an onRun hook to the ProfileController. Now whenever the
route is accessed, an update to the ProfilesCollection is made, increasing the views
field by 1 for the current profile _id.

// ProfileController.js
ProfileController = RouteController.extend({
 layoutTemplate: 'profileLayout',
 template: 'profileDetail',
 yieldTemplates: {
 'profileDetailLeft': {to: 'left'}
 },
 onRun: function() {
 ProfilesCollection.update({
 _id: this.params._id
 }, {
 $inc: {
 views: 1
 }
 });
 this.next();
 },
...
});

Now every view of a profile is counted, and you can add it within the data context of a
profile via {{views}}.

 In our community application, there are several routes only members should be
able to access. This can be implemented with the onBeforeHook just as easily. See
listing 8.19 for the code. Within the onBeforeAction hook, you perform a check for
the current user ID. If there’s no user ID available, you redirect the request to show a

Iron.Router hooks
For every hook you can create one function or an array of multiple functions that will
all be called.

onRun—Called when the route runs for the first time. It runs only once!

onRerun—Called every time a computation is invalidated.

onBeforeAction—Called before an action or route function runs. If there are mul-
tiple functions, you have to make sure that next is called because this doesn’t hap-
pen automatically with onBeforeActions. If you want the next onBeforeAction to
be called, you have to call this.next.

onAfterAction—Called after the action or route function runs.

onStop—If a route stops—for example, a new route is run—this hook is called.

Listing 8.18 Adding a hook to a RouteController

On every run of this
route, the views attribute
is increased by 1.

Use next() to
continue routing.
Licensed to Mark Watson <nordickan@gmail.com>

199Advanced routing methods
membersOnly template. In combination with a data publication that checks for a
user ID, this will be enough to prevent users from seeing content they aren’t autho-
rized for.

// profileController.js
ProfileController = RouteController.extend({
 // ...
 onBeforeAction: function() {
 if (!Meteor.userId()) {
 this.render('membersonly');
 } else {
 this.next();
 }
 },
//...
});

You can make these hooks reusable by putting them into controllers or wrapping
them into plug-ins.

8.3.6 Creating an Iron.Router plug-in

If you create hooks that you want to use for multiple applications or share with the
community, creating Iron.Router plug-ins is the way to go. These plug-ins enable por-
table functionality that’s easy to share and use in applications or packages. Let’s turn
the hook that requires users to be logged in into a plug-in.

 Each Iron.Router plug-in can be added as part of the configuration. You can
include it for all or just for specific routes. Because you already have an onBefore-
Action hook in the /profiles route, you can remove the code from here and place it
inside a new router/plugins/membersOnly.js file. Creating a plug-in is similar to the
way you define template helpers. Plug-ins take two parameters: router and options.
Instead of simply reading the parameters passed to a plug-in, use a lookupOption
function to access all configuration options available to Iron.Router. You could use
the function to access layoutTemplate the same way you use it here to access the set-
ting for membersOnlyTpl. As you can see in listing 8.20, most of the code for a plug-in
is fairly similar to an actual route.

 To use a plug-in, you don’t call it from a specific route or controller but instead
set it in the router configuration file router/config.js (see listing 8.20). A plug-in is
loaded via Router.plugin('name', options). The options object contains two set-
tings: membersOnlyTpl defines which template to render when an anonymous user
tries to access a route that requires a user ID, and only contains an array of the routes
affected. You have a single route, /profile, that should be protected. If most of your
routes require a plug-in, then you can use except rather than only to define all routes
that don’t require a logged-in user.

Listing 8.19 Requiring a logged-in user for a specific route
Licensed to Mark Watson <nordickan@gmail.com>

200 CHAPTER 8 Routing using Iron.Router

o
// membersOnly.js
Iron.Router.plugins.membersOnly = function(router, options) {
 router.onBeforeAction(function() {
 if (!Meteor.userId()) {
 this.render(this.lookupOption('membersOnlyTpl'));
 } else {
 this.next();
 }
 }, options);
}

// config.js
Router.plugin('membersOnly', {
 membersOnlyTpl: 'membersonly',
 only: ['profile.details']
});

Keep in mind that this plug-in checks for a user ID only on the client side. Any mali-
cious user can fake a user ID, so it isn’t sufficient to rely on routing functionality as the
only security measure. A combination of a router with a publication that checks for a
user ID on the server side should be used to secure your application for production.
Even if users could get to the layout and templates of a single profile, they still
couldn’t access any data if it’s not published to the client in the first place.

8.4 Server-side routing with a REST API
If you need an API for non-Meteor clients, you can’t take advantage of DDP, so you may
need a traditional HTTP interface. For an automated process, you might want to allow
scripts to look up usernames based on their ID. Then all routing takes place on the
server because you’re dealing with a dumb client that knows only a single URL.
There’s no point in first sending all JavaScript over the wire if all the client needs is a
single name string.

 Implementing server-side routing requires passing the where option to the route()
function. You use this option to limit the route to the server only. Providing an HTTP
interface effectively bypasses most of Meteor’s functionality, so you’ll rely on the basic
Node.js functionality with both request and response objects (see listing 8.21). Instead
of defining all headers and using response.write(), you shorten the code to use only
response.end(). In the response.end() function, you perform a database lookup
with the given ID and return the name attribute (figure 8.14).

Listing 8.20 Creating a reusable Iron.Router plug-in

The plug-in is named
membersOnly.

It runs as an
onBeforeAction
hook.

this.lookupOption may als
access options set in the
global Router.configure()
settings.

Continue if there
is a user ID.

Template that should
be rendered in case the
user isn’t logged in

The plug-in is applied only
to the profile.details route.
Licensed to Mark Watson <nordickan@gmail.com>

201Server-side routing with a REST API
Router.route('/api/profiles/name/:_id', function() {
 var request = this.request;
 var response = this.response;

 response.end(ProfilesCollection.findOne({
 _id: this.params._id
 }).name);
}, {
 where: 'server'
})

If you make a request with a query string and message as the key, the server will
respond with the value.

 For more advanced APIs, it’s even possible to use the route() function to deter-
mine whether a GET, POST, or PUT request was received. For more RESTful routes,
take a look at listing 8.22. It defines a GET method for /api/find/profiles that
returns all database entries from the profiles collection and a POST method for /api/
insert/profile to create new profiles via an API. Remember when using this for your
own API to secure the API endpoints—for example, by requiring a login system.

// routes.js
Router.route('/api/find/profiles', {
 where: 'server'
 })
 .get(function() {
 this.response.statusCode = 200;
 this.response.setHeader("Content-Type", "application/json");
 this.response.setHeader("Access-Control-Allow-Origin", "*");
 this.response.setHeader("Access-Control-Allow-Headers",
 "Origin, X-Requested-With, Content-Type, Accept");
 this.response.end(JSON.stringify(
 ProfilesCollection.find().fetch())
);
 })

Listing 8.21 Simple server-side route

Listing 8.22 RESTful routes

Figure 8.14 When provided with a valid ID, the API responds with the
name of a member.

Node.js request object

Node.js response object

This route should run
only on the server and
not on the client.

These are server-
only routes.

Defines what to do
with GET requests

All REST responses
should be JSON.
Licensed to Mark Watson <nordickan@gmail.com>

202 CHAPTER 8 Routing using Iron.Router

r

Router.route('/api/insert/profile', {
 where: 'server'
 })
 .post(function() {
 this.response.statusCode = 200;
 this.response.setHeader("Content-Type", "application/json");
 this.response.setHeader("Access-Control-Allow-Origin", "*");
 this.response.setHeader("Access-Control-Allow-Headers",
 "Origin, X-Requested-With, Content-Type, Accept");
 // returns ID for new profile
 this.response.end(JSON.stringify(
 ProfilesCollection.insert(this.request.body)
));
 })

TIP If you need to build a REST interface, instead of using Iron.Router
directly you should also look into using either the nimble:restivus or
simple:rest package, which both offer a simpler approach for creating routes
and endpoints.

Iron.Router is an extremely versatile and highly configurable router that’s tailored to
the Meteor platform. It enables applications to react on specific route requests and
can also be used to greatly improve your code structures.

8.5 Summary
In this chapter, you’ve learned that

■ URLs enable applications to be accessible and shareable.
■ Iron.Router is the de facto standard for routing in Meteor.
■ Templates, subscriptions, and the data context can be defined using routes.
■ Routing functionality can be structured and grouped by using named routes,

controllers, hooks, and plug-ins.
■ Routes can be created for the client and the server.

These are server-
only routes.

Defines
what to
do with

POST
equests

All REST responses
should be JSON.
Licensed to Mark Watson <nordickan@gmail.com>

The package system
One of the most powerful aspects of Meteor is its active ecosystem of packages.
Throughout this book we’ve taken advantage of packages to extend applications’
functionality without having to write more than a few lines of code (for example,
using twbs:bootstrap or iron:router) or to remove unwanted features (for
example, using autopublish and insecure). This chapter takes a closer look at
what types of packages can be used by Meteor and how they work together.

 The more parts are involved in a system, the more complicated it can be to take
into account all dependencies. When you’re using a third-party library, it’s impor-
tant to work against a known set of API calls. In the worst case, libraries change
their API between versions, which results in updates to small parts and breaks the
entire functionality of an app. Package managers can be used to identify depen-
dencies between the various parts that an application comprises. Their job also

This chapter covers
■ Finding and adding core and community

packages
■ Integrating npm packages
■ Writing, testing, and publishing custom

packages
203

Licensed to Mark Watson <nordickan@gmail.com>

204 CHAPTER 9 The package system
includes keeping possible incompatibilities to a minimum so that changing any part
won’t result in a hopelessly broken chunk of code.

 When you’re finished with this chapter, you’ll be able to use existing packages and
create your own, which allows you to structure your Meteor applications in even more
efficient ways.

9.1 The foundation of all applications
All applications you build with Meteor, even the simplest “Hello World” example,
already rely on dozens of packages. These packages are what compose Meteor—without
them, all that’s left is plain Node.js. Although you could certainly write amazing appli-
cations that way, the packages system makes it much easier and quicker to achieve
results, much like standing on the shoulders of a giant. It’s like accessing the DOM
with vanilla JavaScript instead of jQuery—it works, but it requires a lot more effort,
which could better be spent enhancing other functionality.

 Applications consist of both business logic and a number of underlying packages
that provide functionality (see figure 9.1).

 Packages can be categorized into three types:

■ Isopacks, which are Meteor’s own package format
■ Cordova packages, which provide mobile functionality
■ NPM packages, which are Node.js packaged modules

Isopacks are Meteor’s own package format, which we’ll focus on in this chapter. We’ll
also look at how to integrate npm modules as packages. If you want to find out more

cordova-plugin-camera

cordova-plugin-battery

Business logic

Code

Blaze

Tracker

DDP

Livequery

Full stack DB drivers

…

Styles

Templates

Assets

cordova-plugin-camera

cordova-plugin-battery

Application

Cordova packages

Fibers

NPM packages

Isopacks

Packages are the
foundation all
applications are
built upon.

Figure 9.1 Packages are the foundation for all business logic in a Meteor application.
Licensed to Mark Watson <nordickan@gmail.com>

205Using Isopacks
about using Cordova packages, you can skip ahead to chapter 11, where we discuss
mobile applications and packages in more detail.

9.2 Using Isopacks
Because of their isomorphic nature, Meteor packages are called Isopacks. In contrast
to npm modules, they aren’t limited to the server, but they can include server, browser,
and even mobile code. They provide a single command and architecture-specific func-
tionality hidden from the user. For example, an HTTP.get() function can be called
anywhere in the code. Technically, it requires different implementation on the server
and the browser. Therefore, the http package, which provides the HTTP functionality,
uses XMLHttpRequest in the browser environment and in the Node.js context falls
back to http.request.

 Isopacks aren’t limited to JavaScript code; they can also include styles and tem-
plates (for example, including a login dialog as in accounts-ui) and even static assets
such as images or fonts. There are packages that can also change the build process, such
as supporting CoffeeScript or LESS styles. We’ll take a closer look at those when we dis-
cuss Isobuild (chapter 11).

9.2.1 Version Solver and semantic versioning

Isopacks rarely stand on their own; usually they have dependencies on other packages.
This avoids repeated code but requires a sophisticated way to determine which pack-
ages play well together. Meteor Version Solver is an optimizing constraint solver for package
dependencies. It goes beyond simply resolving constraints because it doesn’t find a
possible solution but aims for the best solution.

 Any update to a working application bears the risk of breaking existing functional-
ity. Adding a new package is no different, which is why Version Solver tries to maintain
the existing package versions when new packages are included. If that’s not possible, it
checks for a solution that involves only changing direct dependencies and thus prefer-
ring backward-compatible upgrades over new versions with updated APIs. Favoring cer-
tain solutions over others is what makes Version Solver an optimized constraint solver.

 All Isopacks follow the semantic versioning scheme to enable the Version Solver to
determine whether breaking changes will be introduced by a package. All packages
that provide a public API for other packages use a version consisting of three parts:

MAJOR.MINOR.PATCH

Semantic versioning
For version numbers you have to use semantic versioning. This basically means you
always have three numbers separated by a dot—for example, version: "1.2.3".

The first number is the major version number. You increase this number if the pack-
age changes significantly and contains incompatible API changes. This signals to the
Licensed to Mark Watson <nordickan@gmail.com>

206 CHAPTER 9 The package system
When dealing with package constraints, developers can now take one of several
approaches:

■ A package requires an exact version.
■ A package requires a minimum version.
■ A package requires either an exact version or a minimum version.

This gives Version Solver various options to determine the optimal package combina-
tion. When a package requires a minimum version of 2.0.0, any version that starts
with a 2 will be a valid choice because all releases share the same feature set. But if a
package requires a minimum of 2.2.0, then only higher version numbers will be
acceptable choices because it’s possible to introduce new features when increasing a
minor version as long as existing functionality and APIs are still available. Packages
that require any 2.x.y version may work with 3.x.y versions, but Version Solver won’t
consider higher (or lower) major version numbers for resolving constraints. You’ll
learn more about defining required versions when we show you how to write your
own package in a bit.

 It’s important to remember that unlike Node.js Meteor supports only a single ver-
sion of a package per application. It’s not possible to have different versions of a pack-
age like jquery or http installed. Although it could work on the server, this approach
would lead to unpredictable behavior on the client side. As a consequence, the con-
straint resolver must always return one package version that satisfies all requirements.

9.2.2 Finding packages

The Meteor Development Group (MDG) runs a public package server that holds all
available Isopacks. This package server is a DDP service that’s accessible at pack-
ages.meteor.com. It’s possible to build your own client, but the preferred method to
search for packages is via the CLI tool. A more convenient way is to use the web inter-
face at https://atmospherejs.com. The package server contains both core packages

(continued)

developer using the package “If I update from version 1.x.x to 2.x.x, I have to be sure
to adjust my codebase using new API methods.”

The second number is increased if new functionality is added but no breaking
changes are expected. This way, the developer using the package knows that he can
update from version 1.2.x to 1.3.x, knowing that his app will still run. He can decide
if the new functionality is useful for him and use it if necessary.

The third number is increased for patches that fixes bugs but don’t break any APIs.
Developers using the package nearly always want to update to this kind of version
because the package is more stable but doesn’t break anything in their app.

You can read more about semantic versioning at http://semver.org/.
Licensed to Mark Watson <nordickan@gmail.com>

https://atmospherejs.com
http://semver.org/

207Using Isopacks
that are created by the MDG as well as community packages contributed by other orga-
nizations or individuals.

TYPES OF ISOPACKS

Isopacks have a two-level namespace. Most packages have a prefix such as twbs or
iron that identifies the maintainer. These are the community packages. Isopacks that
have no prefix are provided by the MDG and are considered core packages.

 The core packages are the ones that are created and maintained by the MDG itself.
If you create a new Meteor project, you’ll add a lot of Meteor core packages immedi-
ately, although there are only three packages explicitly added and the rest come in as
dependencies from those three:

■ meteor-platform—A collection of nearly 50 packaged libraries, including
Tracker, Blaze, Minimongo, and jQuery. To see all packages that are included
by meteor-platform you can run meteor show meteor-platform.

■ autopublish—Automatic publications for all collections.
■ insecure—Allow database writes from the client.

To see all packages that are maintained by the MDG, you can search them with the CLI
tool. Make sure that you don’t forget the dot at the end of the search command to
show all packages:

$ meteor search --maintainer=mdg .

You can add core packages with $ meteor add package.
 The fact that a package has a prefix doesn’t tell anything about its stability or accep-

tance; it’s merely an indicator of who is responsible for handling issues that may arise.

NOTE Some packages have an mrt: prefix, which indicates that they’ve been
automatically migrated to the new packaging system that was introduced in
Meteor 0.9.0. They may not be actively maintained anymore. Be careful when
using those.

SEARCHING PACKAGES VIA THE CLI TOOL

Using the meteor CLI tool, you can directly access the package repository and perform
a search. By using the search command, you can look for any string inside a package
name—for example, ddp:

$ meteor search ddp

The search returns the 10 packages shown in figure 9.2.
 As you can see, the result set lists multiple packages, one of them a core package

named ddp. The other packages are community packages starting with the organiza-
tion names of the package creators.

 The search command only lists a short line that summarizes what a package does.
To see more details about an individual package, use the show command. The output
includes the contents of the package’s readme file as well as a list of available versions
(see figure 9.3).
Licensed to Mark Watson <nordickan@gmail.com>

208 CHAPTER 9 The package system
Community package

Community packages

Core package

Figure 9.2 Searching the packages repository for ddp using the CLI tool

Figure 9.3 The meteor show command shows a package’s readme content and available
versions.
Licensed to Mark Watson <nordickan@gmail.com>

209Using Isopacks
SEARCHING PACKAGES ON ATMOSPHEREJS.COM

Atmospherejs.com is a client for the Meteor packages server built by Percolate Studio.
It sports a unique UI to search for packages. Unlike the CLI tool, it not only searches
for matching package names but also searches within the contents of the readme files.
Therefore, a search for ddp on atmospherejs.com returns 23 instead of 10 results (see
figure 9.4).

 Using the web interface also has a significant advantage: each package has a popu-
larity indicator that’s calculated based on how often a package is updated and how
many users download it. Additionally, it’s possible to “star” packages to show their use-
fulness. Especially with a large number of packages doing similar things, this popular-
ity indicator can be a great help when deciding between two (or more) alternatives.
Also, each package’s details page has two links: one to the associated GitHub reposi-
tory and another for reporting bugs.

Figure 9.4 Searching atmospherejs.com for ddp
Licensed to Mark Watson <nordickan@gmail.com>

210 CHAPTER 9 The package system
9.2.3 Adding and removing Isopacks

In this book you’ve added and removed packages several times, so we’ll now focus on
dealing with specific versions. Adding a package at its latest and greatest version is
done using meteor add. To add Twitter Bootstrap, use the following:

$ meteor add twbs:bootstrap

If you want to use a specific version such as v3.3.2, you can use the @= operator:

$ meteor add twbs:bootstrap@=3.3.2

Check in the .meteor/packages file. You’ll now see that not only is the name of the
package listed but also the version constraint (see figure 9.5). Even if there’s a newer
version it’ll never be considered for this project because v3.3.2 is pinned.

Popular Meteor packages
Thousands of packages are available for the Meteor platform, which makes it hard to
discover new packages. But some packages became quite popular in a short period
of time and should be known by all Meteor developers:

■ alanning:roles—Offers role-based authorization.
■ aldeed:autoform—Lets you easily create forms with automatic insert and

update, as well as provide automatic reactive validation.
■ aldeed:collection2—Provides automatic validation of insert and update

operations on the client and server.
■ bengott:avatar—Provides a consolidated user avatar template (Twitter, Face-

book, Gravatar, etc.).
■ cfs:standard-packages—Contains a file management system for Meteor.
■ ecwyne:polymer-elements—Lets you add Polymer elements to Meteor.
■ Iron:Router—Enables you to add routing to an application.
■ meteoric:ionic—Provides a port of the Ionic UI components for Meteor with-

out the need for Angular.
■ meteorsteam:meteor-postgres—Allows you to use PostgreSQL databases

with Meteor.
■ msavin:mongol—Offers a convenient way to inspect collection contents during

development.
■ numtel:mysql—Adds MySQL support with reactive SELECT subscriptions to

your application.
■ ongoworks:security—Implements logical security for client-originated Mon-

goDB collection operations.
■ splendido:accounts-meld—Links accounts from different OAuth providers to

the same user.
■ tap:i18n—Adds support for localizing/internationalizing applications.
Licensed to Mark Watson <nordickan@gmail.com>

211Using Isopacks
Unfortunately, this leaves very few choices for Version Solver, and adding a specific
version should only be done in rare cases—for example, when you’re trying to resolve
issues with certain package combinations. Otherwise, it’s usually best to define a mini-
mum version instead.

 To define a minimum version, use @:

$ meteor add twbs:bootstrap@3.3.2

This code tells Version Solver to always use Twitter Bootstrap in version 3 but never
below 3.3.2.

 The Twitter Bootstrap package is a rather simple package; it doesn’t introduce
additional dependencies when it’s added to a project. If you use more complex
Isopacks such as Iron:Router, a number of dependencies will be added to the project
as well. Those are transitive dependencies, meaning they’re explicitly added by the
developer but a package demanded them to be added. Identifying and resolving these
dependencies is the job of the package manager. Meteor handles these transitive
dependencies behind the scenes.

 Removing a package doesn’t require any version information—it’s sufficient to use
the package name:

$ meteor remove twbs:bootstrap

If a package brought in transitive dependencies, removing it will also remove all pack-
ages that aren’t required by the remaining Isopacks directly or as dependencies.

Figure 9.5 Adding a specific package version to a project
Licensed to Mark Watson <nordickan@gmail.com>

212 CHAPTER 9 The package system
9.2.4 Updating packages

Every time you issue the update command in a project folder, Version Solver automat-
ically determines whether it’s necessary to update any of the packages. Although Ver-
sion Solver acts conservatively when adding new packages and tries to avoid any
updates, the update command tells it to aim for the newest available versions:

$ meteor update

The default behavior of the update command will also look for a newer Meteor
release and update core packages, which may be unwanted when, for example, you’re
fixing a bug. By providing a package name to the command, you can limit its actions to
a single package. To update all community packages in a project, use the --packages-
only switch:

$ meteor update --packages-only

Because all core packages are tied to a Meteor release, they won’t be updated by this
command.

9.3 Using npm packages
Meteor is built on top of Node.js, so it’s possible to use all packages for Node.js as well.
npm manages those packages. Its repository contains more than 100,000 packages. A
huge community of JavaScript developers has created packages for almost any use
case and it’s simple to integrate them into Meteor projects as well.

 There are two ways to add an npm package to a project. The first is to wrap it into
a Meteor package, which is usually the better approach. Most npm packages are
designed to work only within the server context, so they don’t follow the isomorphic
nature of Isopacks. The second approach is to use the meteorhacks:npm package,
which allows you to use a packages.json similar to plain Node.js projects.

 Writing an isomorphic wrapper for an npm module is quite advanced and goes
beyond the scope of this book, so we’ll focus on bringing in modules directly. Let’s
start by adding the required Meteor package:

$ meteor add meteorhacks:npm

The package enhances Meteor applications so that npm modules can be used directly.
Because the package needs to perform some configuration tasks before it can add
modules, the project must be run using the meteor run command after you add
meteorhacks:npm. As a result, a new folder named packages will be added to the proj-
ect. It contains an npm-container package that will take care of adding npm modules.

 To specify which module you want to add to a project, you’ll use a packages.json
file. This file is also created when first running a Meteor project with the npm package
added, and it’s located at the root of the application folder. As shown in listing 9.1, all
Licensed to Mark Watson <nordickan@gmail.com>

213Creating an Isopack
modules that should be added to the application are listed as keys and the required
versions as values. We’re using the gravatar module as an example.

{
 "gravatar": "1.1.1"
}

Adjust the contents of the packages.json file and restart Meteor, and the npm module
will be added automatically. Because npm doesn’t provide client functionality, modules
are required from server-side code only using Meteor.npmRequire(). Once a module
is loaded, it can be used in the same way you would in a plain Node.js application.
Refer to a module’s documentation to learn more. For the gravatar module, you can
get the URL for a user’s avatar image by calling gravatar.url(email), with email
being a valid email address of a Gravatar account (see following listing).

Meteor.methods({
 getGravatar: function(email){
 var gravatar = Meteor.npmRequire('gravatar');
 var url = gravatar.url(email);
 return url;
 }
});

This method can be called from anywhere in the code using this familiar syntax:

Meteor.call('getGravatar', 'mail@example.org', function(err, res) {
 return res;
});

9.4 Creating an Isopack
All functionality that should be reusable across different applications should be imple-
mented as a package to achieve maximum portability. Also, for structuring a single
application it’s good practice to think of different features as components. This helps
maintain a clean separation of concerns and is one of the cornerstones of scalability. A
large codebase greatly benefits from being split across packages.

 Creating packages involves multiple steps. Meteor doesn’t yet support private pack-
age repositories, so all packages must either be published publicly or used locally
within a packages folder inside a project. This is also where package development usu-
ally starts. Before publishing to the official packages repository, you must test each
package. The tinytest package is specifically designed for unit-testing packages.

 To illustrate the process of creating Isopacks, we’ll show you how to take the notifi-
cation functionality introduced in chapter 5 and wrap it into a package that lets you
easily create errors, warnings, or success messages using a single line.

Listing 9.1 Adding npm packages via packages.json

Listing 9.2 Using the gravatar npm module from a Meteor method
Licensed to Mark Watson <nordickan@gmail.com>

214 CHAPTER 9 The package system
9.4.1 Creating a package

Each package has a maintainer that’s identified by the prefix. Meteor developers can
either use their own username or that of an organization (allowing multiple people to
work on the same package). If you’re a registered Meteor developer, you should use
your username as a prefix when creating a new package. In case you haven’t yet regis-
tered for an account, you can do so on the meteor.com site.

 You have two options when deciding where to locate a new package: inside an
existing application or outside. If you choose to create a new package inside an exist-
ing application, you must still add it via the meteor add command. The cleanest solu-
tion is to create new packages outside of any application context. Therefore, you
should create the new package outside of your current application.

 The syntax to create a new package is as follows:

$ meteor create --package <prefix>:<name>

You’re going to create a new notifications package with a meteorinaction prefix,
as shown in figure 9.6. The command creates a boilerplate file structure, including a
README.md file.

 This basic structure assumes that all code goes inside a single JavaScript file; all unit
tests in a dedicated *-tests.js file; and metadata, such as the package name, version, and
dependencies, in the package.js file. As with regular Meteor projects there’s no need to
keep the given structure; the only mandatory file is package.js, so let’s start there.

Package
contents

Readme file, used on Atmospherejs.com

Unit tests for the package

Creates a
new package

Actual package functionality

Package metadata

Figure 9.6 Creating a notifications package using meteor create --package
Licensed to Mark Watson <nordickan@gmail.com>

215Creating an Isopack
9.4.2 Declaring package metadata

The package.js file contains three important blocks:

■ Package.describe()—The name and description of the package and the link
to a Git repository

■ Package.onUse()—The definition of the actual package, which Meteor API ver-
sion to use, which files are used, and so forth

■ Package.onTest()—The test definition for the package

Using these blocks allows for fine-grained control over tasks such as declaring the load
order of files. All settings within this file can have an effect on whether or not a pack-
age can be used within a Meteor project. The key ingredients are semantic versioning
numbers, as explained in the previous section.

 If a package relies on npm packages, a fourth block may be used: Npm.depends(). For
packages that use npm packages, you don’t have to add the meteorhacks:npm package.

PACKAGE.DESCRIBE

The describe block determines the actual name of a package. Regardless of the path
name, the setting for the name value takes precedence. The following properties are
set inside the description:

■ name—A unique name for the package, using a Meteor developer account/
organization as a prefix.

■ version—A version number in the major.minor.patch format. When you use a
hyphen, you can add prerelease information after the patch, such as 1.1.0-rc1.

■ summary—A single line to be displayed when using the meteor search command.
■ git—The URL to a Git repository containing the source code for the package.
■ documentation—The documentation file you want to use; it must be set to null

if no documentation should be used.
■ debugOnly—If set to true, this option will prevent the package from being

included in build bundles.

PACKAGE.ONUSE

This block is the essence of a package—without it, a package wouldn’t accomplish
anything. Package.onUse() takes a single function as its argument. It holds the pack-
age control api object that keeps track of dependencies and exports.

 The first setting via api.versionsFrom() should be the Meteor API version a pack-
age is built against. This release version will set the baseline for the versions required
for all dependencies that are part of the platform. If a package requires other pack-
ages, those are listed in the api.use() declaration. Typically all packages must include
a version declaration like templating@1.0.11. Because the templating package is part
of the Meteor core release and we already set a baseline using api.versionsFrom(),
we can omit the version string. All community packages must include a version con-
straint. This can be in the form of either package@=1.0.0 (to require exactly version
Licensed to Mark Watson <nordickan@gmail.com>

216 CHAPTER 9 The package system
1.0.0) or package@1.0.0 (to require at least version 1.0.0). It’s even possible to use a
combination such as this:

api.use('package@1.0.0 || =2.0.1');

In this example, Version Solver would try to include exactly version 2.0.1. If that isn’t
possible, it’d fall back to any 1.x.y release of the package.

 If a package depends on multiple other packages, these are provided as an array.
The second argument to api.use specifies the architecture—that is, server, client,
web.browser, or web.cordova. Even though packages are isomorphic, this allows for a
leaner build output. If a package is required only on the server, the build process
won’t include it with the browser bundle, thus reducing the size of what needs to be
sent via the network.

 To access package functionality from the business logic, you export a global to be
used anywhere inside the code via api.export(). Again, it’s possible to specify in
which context this global is available. For displaying notifications, you expose a
Notification global that works only within the client.

 When you’re using multiple source files, api.addFiles() takes an array with all
names listed; otherwise, a single string is sufficient. In contrast to Meteor applications,
not all files are loaded automatically but only those listed here. The order in which
they’re passed to addFiles also specifies their load order.

 The meteorinaction:notifications package uses three files: a JavaScript, an
HTML, and a CSS file. The full onUse() definition is shown in the following listing.

Package.onUse(function (api) {
 api.versionsFrom('1.1.0.2');
 api.use([
 'templating',
 'ui'
],
 'client'
);
 api.export(
 'Notification',
 'client'
);
 api.addFiles([
 'notifications.html',
 'notifications.js',
 'notifications.css'
],
 'client'
);
});

Listing 9.3 Defining the notifications package
Licensed to Mark Watson <nordickan@gmail.com>

217Creating an Isopack
PACKAGE.ONTEST

By default, all packages are tested using the tinytest package; therefore, it’s the first
dependency to be declared inside the onTest() block. The package under test must
be declared as a dependency as well, even if it’s the current package. As you can see in
the following listing, the overall syntax is similar to Package.onUse().

Package.onTest(function(api) {
 api.use('tinytest');
 api.use('meteorinaction:notifications');
 api.addFiles('notifications-tests.js', 'client');
});

Now we have all metadata definitions in place and we can implement package
functionality.

9.4.3 Adding package functionality

The notifications package consists of three files:

■ Styles
■ Templates
■ JavaScript code

In the styles file you define three classes: error, success, and warning. Each has a dif-
ferent background-color and color attribute to differentiate between the types of
error. You can copy over the template code from chapter 5 into the notifications.html
file, as in listing 9.5. You’ll enhance it slightly to use a button to dismiss a notification.

<template name="notificationArea">
 {{#with notification}}
 <p class="{{type}}">{{text}}</p>
 <button>{{buttonText}}</button>
 {{/with}}
</template>

Listing 9.4 Defining unit tests for the notifications package

Depending on npm packages
If a package requires functionality from an npm package, the dependency is declared
using the following:

Npm.depends({package: 'version'})

This code will make an npm package available to the application. To use its function-
ality instead of using the plain Node.js syntax for require, simply prefix it with Npm:

Package = Npm.require('package');

Listing 9.5 Template code for the notifications package
Licensed to Mark Watson <nordickan@gmail.com>

218 CHAPTER 9 The package system
All notifications will be stored inside a Session variable. Therefore, we need a tem-
plate helper to display the contents of Session.get('notify'). Again you can reuse
the code from chapter 5. You also need an event to clear the variable contents when
the user clicks the button (see following listing).

Template.notificationArea.helpers({
 notification: function () {
 return Session.get('notify');
 }
});

Template.notificationArea.events({
 'click button': function () {
 Session.set('notify', '');
 }
});

Before you can use the package, you must expose its functionality via the Notification
global you declared in the package.js file. You’ll add four functions to set and clear
messages:

■ setSuccess

■ setWarning
■ setError
■ clear

Each of these sets the contents of the Session object to a different value (see follow-
ing listing).

Notification = {
 setError: function (text) {
 Session.set('notify', {
 type: 'error',
 text: text,
 buttonText: 'Oh, no.'
 });
 },
 setWarning: function (text) {
 Session.set('notify', {
 type: 'warning',
 text: text,
 buttonText: 'Good to know...'
 });
 },
 setSuccess: function (text) {
 Session.set('notify', {
 type: 'success',
 text: text,
 buttonText: 'Cool!'
 });

Listing 9.6 Template helpers and events for the notifications package

Listing 9.7 Exposing package functionality via the Notifications global
Licensed to Mark Watson <nordickan@gmail.com>

219Creating an Isopack
 },
 clear: function () {
 Session.set('notify', '');
 }
};

That’s it—you now have a fully functional package. But before you can use it in a pro-
ject, you need to add it just like any other package:

$ meteor add meteorinaction:notifications

Meteor expects local packages to be available in a packages directory within your
project. But what if you created the package outside of an application? You can
always create a link in the filesystem, but that won’t work well across different work-
stations. It’s better to specify the location of local packages via the environment vari-
able PACKAGE_DIRS.

 In this case, the package exists in /Users/Stephan/code/packages/notifications,
with the packages directory being the one we need for our app. Therefore, we’re going
to set PACKAGE_DIRS to /Users/Stephan/code/packages/. It’ll find the notifications
package automatically. You can either export the variable globally using $ export
PACKAGE_DIRS=/Users/Stephan/code/packages (Linux and Mac) or C:\>set PACKAGE
_DIRS=c:\code\packages (Windows) or set it directly when calling any meteor com-
mands (if you’re on Windows be sure to adjust the path):

$ PACKAGE_DIRS=/Users/stephan/code/packages meteor add
meteorinaction:notifications

NOTE Remember that if you set the environment variable when calling
meteor you must also do it for each meteor run command so that the package
location can be resolved.

If you experience problems adding a package, check that it’s there and has the correct
name declared inside the package.js file.

 Before we take a look at unit-testing packages, let’s perform a quick manual test. Add
the notificationArea template to your app and set a message using the Notifications
global. To keep things simple, you can use the default Meteor app and extend the but-
ton click, as shown in listing 9.8. Figure 9.7 shows the result.

Template.gravatar.events({
 'click button': function (evt, tpl) {
 // ...
 Meteor.call('getGravatar', email, function (err, res) {
 // ...
 Session.set('gravatarUrl', res);
 Notification.setSuccess('I found a gravatar image!');
 }
 });
});

Listing 9.8 Adding a notification via the notifications package
Licensed to Mark Watson <nordickan@gmail.com>

220 CHAPTER 9 The package system
Now that you know the package works, you’ll implement unit tests to make sure that
core functions won’t break when you upgrade the package in the future.

9.4.4 Testing Isopacks using tinytest

The tinytest package is designed to make testing packages as simple as possible. It
comes with a nice web interface that presents all test results at a glance, making it
easy to run and analyze tests. Running package tests is again done using the meteor
CLI tool:

$ meteor test-packages

This code will start a Meteor application on localhost:3000 where you can see all the
results of all tests (figure 9.8).

 The tests rerun automatically if you change any of the tests, just like a regular
Meteor application. If you want to develop your application and also have the tiny-

{{> notificationArea}}
Clicking this button
removes the notification

Clicking this button triggers
Notification.setSuccess()

Figure 9.7 Using the notifications package
Licensed to Mark Watson <nordickan@gmail.com>

221Creating an Isopack
test reporter running at the same time, you can specify a different port for the test
reporter:

$ meteor test-packages --port 4000

This way, you can have the test reporter running on http://localhost:4000 and your
normal Meteor application on http://localhost:3000. A simple unit test with tinytest
as the notifications package is shown in the following listing.

Tinytest.add('setError', function (test) {
 var msgText = 'An error message';
 Notification.setError(msgText);
 test.equal(Session.get('notify').text, msgText);
 test.equal(Session.get('notify').type, 'error');
});

If you want to structure your tests even more, you can use a hyphen in the name of
your test. That way, you can group tests and get a better overview in the test reporter.

Listing 9.9 Testing Notification.setError with tinytest

Total execution time
for all tests

Number of tests passed
out of tests run

Manually rerun
all tests

Individual test results
and durations

Figure 9.8 The test reporter for tinytest

First you add a test with
a name to tinytest.

Tinytest exposes different test
functions such as equal.
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:4000
http://localhost:3000

222 CHAPTER 9 The package system
To group all messaging-related tests you use Msg and then group by messaging type
(success/warning/error) like this:

Tinytest.add('Msg - Error - setError', function(test) {
 //...
});

This allows you to fold and expand groups of tests, which becomes especially impor-
tant for larger packages (figure 9.9).

 Let’s revisit the test setup defined in package.js:

Package.onTest(function(api) {
 api.use('tinytest');
 api.use('meteorinaction:notifications');
 api.addFiles('notifications-tests.js', 'client');
});

The last line declares tests to run only on the client. If you change the line to
api.addFiles('notifications-tests.js'); the tests are run in every environment
the application is targeted to be built for. In case of the default app, this includes client
and server.

The clear test case from
the Msg group failed

Tests grouped
into Msg

Subgroups for each
message type

Figure 9.9 Using groups to structure the output of tinytest reports
Licensed to Mark Watson <nordickan@gmail.com>

223Creating an Isopack
If the notifications tests are run on the server side, they’ll all fail because the
Notification global is only exported to be available on the client. The web report
will show all tests, regardless of the platform they ran in. Each test is prefixed by either
an S or a C to indicate whether it ran on the server or the client (see figure 9.10).

S stands
for server.

C stands
for client.

Notification is not available on the
server, which causes the test to fail.

Figure 9.10 Running the same tests on the client and the server
Licensed to Mark Watson <nordickan@gmail.com>

224 CHAPTER 9 The package system
You can also specify a single test that should run on the server and on the client, too.
You should use tinytest to unit-test your packages, especially if you want to publish
your packages to let others use them too.

9.4.5 Publishing

Every new package starts out as a local package. Although this is fine, it has its down-
sides. First, in order to share it between applications you must copy and paste its
folder manually. There’s no way to take advantage of automatic updates via the meteor
update command because Version Solver can’t access local repositories. On the other
hand, using local packages is the only option to keep code private. Once a package is
published, anyone may use it within their Meteor projects, so it’s important to under-
stand when not to use the publish command.

 Until Meteor supports private package repositories, the only way to publish a pack-
age and take advantage of Version Solver is to make it public. To do so, you need to
have a Meteor developer account.

 Each Meteor package that’s published to the Meteor repository is connected to a
user or organization. The username or organization is always part of the package and
serves the same function as a namespace. You can use it to build up your reputation as
a quality package developer.

INITIAL PUBLICATION

Once a package is in a usable state and all tests pass, it can be published to the Meteor
package infrastructure. This is done using the publish command. New packages must
also include the --create flag:

$ meteor publish --create

A concise tinytest API reference
Unfortunately the tinytest package isn’t documented very well, but most API calls
are straightforward to use because they adhere to basic testing operations. The fol-
lowing is a list of available operations you can use when writing unit tests:

■ test.equal(actual, expected, message, not)
■ test.notEqual(actual, expected, message)
■ test.instanceOf(obj, class)
■ test.matches(actual, regexp, message)
■ test.isTrue(actual, msg)
■ test.isFalse(actual, msg)
■ test.isNull(actual, msg)
■ test.isNotNull(actual, msg)
■ test.isUndefined(actual, msg)
■ test.isNaN(actual, msg)
■ test.length(obj, expected_length, msg)
Licensed to Mark Watson <nordickan@gmail.com>

225Summary
All subsequent updates to a package can be done using meteor publish. After you
publish your package, you can add it to any Meteor application with the meteor add
authorname:packagename CLI command.

After you publish a package, it’ll be visible via the meteor search command and also
on atmospherejs.com. Remember to include a useful readme file to explain how to
use the package. To enable atmospherejs.com to show the contents of the readme file,
you also need to configure a valid Git repository in the package.js file.

UPDATING

Updating a package basically requires two steps. First, increment the version number
in your package.js file. Then, publish the update using the meteor publish command
inside the package folder. In contrast to the initial publish command, there’s no
need to use the --create flag.

UNPUBLISHING

There’s no way to remove a package that was released. The reason for this is that you
can’t know if someone is already using your package—deleting the package would
break every app using the package.

 The only thing that comes close to unpublishing or deleting is to hide a package from
the search and show commands. You can do so by setting a package to unmigrated.
Issue the following command inside the root folder of a package to exclude it from all
searches on the public repository:

$ meteor admin set-unmigrated

9.5 Summary
In this chapter, you’ve learned that

■ Meteor applications take advantage of a powerful packages system that com-
bines Isopacks, npm packages, and Cordova plug-ins.

■ The public packages repository is hosted by Meteor and can be accessed via
meteor search or at http://atmospherejs.com, where you can explore packages.

■ All packages rely on semantic versioning to allow Version Solver to identify the
optimal combination of package versions for a project.

Publication errors
When you’re publishing packages, there are not many things that can possibly go
wrong. One of the most common errors is trying to publish the same or even an older
version of an existing package.

Some users have reported issues when publishing packages that are located in an
actual Meteor project under the packages hierarchy. Should you encounter issues
with publishing packages, try moving them out of an existing project context.
Licensed to Mark Watson <nordickan@gmail.com>

http://atmospherejs.com

226 CHAPTER 9 The package system
■ Creating packages helps to better structure an application.
■ tinytest is the unit-testing library specifically for testing Isopack functionality.
■ Anyone with a Meteor developer account can publish packages to the public

repository.
■ Once a package is published, it can’t be deleted but it can be set to an invisi-

ble state.
Licensed to Mark Watson <nordickan@gmail.com>

Advanced server methods
Even though Meteor is an isomorphic platform, some things can only be done in
certain environments. This chapter introduces you to some advanced concepts on
the server. With Node.js running in the background, it’s time to take a closer look
at the event loop and the right way to work with asynchronous code. This is espe-
cially useful if you plan to have your application communicate with external APIs.

 While we’re looking into server specifics, we’ll also discuss a simple way to
upload files to the server. The code in this chapter should run on the server unless
stated otherwise.

10.1 Reintroducing Node.js
The foundation of the Meteor stack is Node.js (see figure 10.1). Technically, it’s a
server implementation of the V8 JavaScript engine that can also be found in the

This chapter covers
■ Understanding the difference between

synchronous and asynchronous functions
■ Using asynchronous functions
■ Integrating external APIs
■ Uploading files
227

Licensed to Mark Watson <nordickan@gmail.com>

228 CHAPTER 10 Advanced server methods
Google Chrome browser. Therefore, it comes as no surprise that Node.js shows the
same characteristics as a browser. It’s because of two reasons:

■ Node.js is event driven.
■ Node.js uses nonblocking I/O.

These two characteristics make Node.js stand out from other server technology such
as PHP or Rails that typically execute code in a linear or synchronous way. But even if
Node.js is by nature nonblocking, you can still write blocking code.

 JavaScript was designed for an environment where actions could take a long
time—like querying additional data from a server over a 56k modem connection. It
doesn’t block the execution of all other actions just because it waits for a return value.
Imagine phoning a call center and being put on hold. Would you wait and listen to
the music playing or would you do other things like rearranging your desk, walking
around, or browsing the web? If you do anything else while waiting, then your call
doesn’t block other activities and can be considered asynchronous.

 Callbacks are usually used in JavaScript to get back to a task once a result is avail-
able. If call centers were powered by JavaScript, instead of making you wait they’d
offer you a callback once an agent was free to talk to you. Most of the time they don’t,
though, probably because it’s hard to keep track of large numbers of callbacks.

10.1.1 Synchronous code

Even though Meteor builds on top of the Node.js single-threaded event loop architec-
ture (remember the pizza example from chapter 1?), the general programming style
in its methods is synchronous rather than the asynchronous callback style typical of
Node.js. The linear execution model is easier to follow and understand, especially on
the server. This means that one function is processed after another and then the
return value is returned. Meteor retains the scalability of Node.js and combines it with
a simplified way of writing code (see following listing).

Node.js is powered by V8,
the same JavaScript engine
that powers Google Chrome.

Server

MongoDB

Node.js

Application code

Client

App

Figure 10.1 Node.js is the server engine for all Meteor applications.
Licensed to Mark Watson <nordickan@gmail.com>

229Reintroducing Node.js
addSync = function(a, b){
 return a + b;
}

blockFor3s = function(value) {
 var waitUntil = new Date().getTime() + 3000;
 while(new Date().getTime() < waitUntil) {};
 return value;
}

Meteor.methods({
 'blockingMethod': function(value){
 console.log('Method.blockingMethod called');
 var returnValue = 0;
 resultComputation = blockFor3s(value);
 returnValue = addSync(resultComputation, 1);
 return returnValue;
 }
});

Listing 10.1 uses a simple method that processes two synchronous functions and returns
the result value. The way the blockFor3s function is called requires the server’s full
attention until it completes, effectively blocking the CPU for all other requests. They
have to wait until the blocking function completes. You can test this easily if you open
two browsers and call the method in both via the console using the following:

Meteor.call('blockingMethod', 1);

You’ll notice that the first browser causes the method to run and the console.log is
printed out in the terminal. If you call the method within 3 seconds on the second
browser, it’s not called immediately. There’s no console message printed out to the
terminal. Once the first method call is finished, the second method call is executed
and the console.log is finally printed out to the console. If you call the method four
times as quickly as you can and pass values from 1 to 4, the result will be the same as
shown in figure 10.2. The method pauses for 3 seconds between each request.

Listing 10.1 Blocking synchronous code in methods

Synchronous function
that adds two values

Block the CPU
for 3 seconds.

Synchronous
addition

The result is returned after
both functions complete.

The server waits for
3 seconds between
each response.

Figure 10.2 Calling the nonBlocking method will result in a pause of 3 seconds between each
response.
Licensed to Mark Watson <nordickan@gmail.com>

230 CHAPTER 10 Advanced server methods
Now imagine hundreds of users making requests to an application that needs to run a
method that can’t be run in parallel. Like a traffic jam, these requests would pile up
and leave the app unresponsive and users unhappy. As long as you’re inside the event
loop you need to allow methods to give way to others in order to avoid having a single
user lock the entire application with a long-running request. The answer lies in using
asynchronous code.

10.1.2 Asynchronous code

To prevent single operations from blocking the execution of all other activities, you
should offload long-running tasks into another process. Processing-intense tasks could
be executed on another CPU of the same machine or on a remote server. To accom-
plish this, Node.js typically uses callbacks. This means you call a function and register
another function that should be executed once the long-running and blocking func-
tion is done. That second function is the callback. That way, the CPU isn’t blocked and
it can continue processing other requests while waiting for the result of the long-
running function (see figure 10.3).

Simply adding a callback to the Meteor method from the blocking method in list-
ing 10.1 won’t change the observed behavior, because methods don’t wait on call-
backs before they finish. Instead, methods are processed from top to bottom and
return their result to the caller of the method. Listing 10.2 shows an updated func-
tion, setTimeoutFor3s, that delays its own execution by 3 seconds using setTimeout.

Wait for callback

Long-running process on other CPU

Initial function

Process time

Idle time

Continue initial function

Request 1:

Request 2:

Request 3:

Figure 10.3 While request 1 is
waiting for another process to finish,
two other requests are handled.
Licensed to Mark Watson <nordickan@gmail.com>

231Reintroducing Node.js
setTimeoutFor3s = function(value) {
 var result = value;
 setTimeout(function(){
 result += 3;
 console.log('Result after timeout', result);
 }, 3000);
 return result;
}

Meteor.methods({
 'nonBlockingMethod': function(){
 console.log('Method.nonBlockingMethod');

 var returnValue = 0;
 returnValue = setTimeoutFor3s(returnValue);
 console.log('resultComputation', returnValue);

 return returnValue;
 }
});

At first the method call itself is added to the event loop and gets processed. The
setTimeout function adds itself to the event loop as well, but it’ll be delayed and can
be processed only after the original method has already finished. This explains why
the return value of the method is 0 and only after 3 seconds the correct result, 3, will
be printed out (figure 10.4). Because the method has already finished execution it
can’t be returned, though. Therefore, the method can’t do anything based on the
return value.

 Now you’ve seen what won’t work. The next section introduces different ways to
use asynchronous functions on the server side. Oftentimes you’ll need to be able to

Listing 10.2 Nonblocking method with simulated delay

This needs some
time to finish.

This always prints 0
because Meteor won’t wait
for setTimeout to finish.

Timeout

1. Method

call

0 3

Event loop (seconds)

1 2 4 5

12:00:00.100(2)? Method.nonBlockingMethod

2. Method

returns

value

Server log output:

12:00:00.100(2)? resultComputation 0

12:00:03.100(2)? Result after timeout 3

3. Set timeout

callback

Figure 10.4 The callback function setTimeout is a new function on the event loop.
Licensed to Mark Watson <nordickan@gmail.com>

232 CHAPTER 10 Advanced server methods
perform an asynchronous task inside a method call and be able to process the result
and send it to the client. With Meteor there are different approaches to implementing
asynchronous code that all share their dependency on fibers.

10.2 Asynchronous functions using fibers
Every method runs within a fiber (see section 10.2.1 for a definition) in Meteor, and
the reason for that is to have a more synchronous coding style than you normally have
if you’re programming with Node.js. One problem with Node.js is that you often end
up with the so-called pyramid of doom or callback hell. This happens because you
have the event loop where every function call is registered as an asynchronous call-
back. If you, for example, create a connection to a database, perform a query, make a
call to an external API, and then save the result and return a value, in the end you
wind up having five callbacks. Let’s look at the pseudocode in the following listing.

DB.connect(options, function(err, connection){
 connection.query(something, function(err, document){
 ExternalAPI.makeCall(document, function(err, apiResult){
 connection.save(apiResult, function(err, saveResult){
 request.end(saveResult);
 });
 });
 });
});

First you create a connection to a database; then you query the database for a docu-
ment. This will possibly return the user’s Twitter handle. Next comes an API lookup;
let’s say you retrieve the number of followers. This number will be stored in the data-
base and the result will be returned to the user who initiated this flow of actions. Now
imagine what listing 10.3 would look like with additional code that performs process-
ing—it would be a nightmare to maintain. Luckily Meteor prevents you from using
such complex structures.

10.2.1 Introducing multitasking to the event loop

By nature Node.js uses a single thread for everything it does. That’s great because
this avoids all the ugly aspects of multithreaded environments, but it creates a need
for a solution to do things in parallel. A Zen-like approach of doing one thing after
another is great as a personal life choice, but servers usually need to deal with multi-
ple requests at the same time, especially when there are multiple CPU cores waiting
for something to do.

Listing 10.3 The pyramid of doom

Connect to
a database. Query the

database for
a document.

Query an
external API.

Save the result of
the API call to the

database.
Send the result to

the calling user via
the initial request.
Licensed to Mark Watson <nordickan@gmail.com>

233Asynchronous functions using fibers
 Fibers are one possibility for introducing lightweight threading characteristics to
Node.js with low overhead. There are several concepts that deal with long-running or
parallel tasks like futures, promises, or the callbacks we looked at earlier. Because
Meteor heavily relies on fibers, we’ll limit our discussion to just them. In fact, fibers
are one of the main reasons for Meteor’s popularity. To explain how they work, we’ll
first look at the two main flavors of multitasking.

PREEMPTIVE AND COOPERATIVE MULTITASKING

To coordinate multitasking, you usually use a central scheduler to assign CPU cycles to
threads. Schedulers have the power to suspend and resume threads whenever they see
fit. With this preemptive approach to multitasking, resources may be evenly spread
between processes. Unfortunately, the scheduler doesn’t know when it’s a good time
to pause one task and resume another. If one thread requires a lot of CPU resources
but the scheduler switches over to another that still needs to wait for an I/O operation
to finish, it’s not very efficient.

 Inside the context of a process, it’s much simpler to determine whether a task is
currently waiting for the result from another operation (for example, calling a remote
API or writing to the database) and handing over the CPU to another task that can use
it. This is called cooperative multitasking. Each cooperative thread may yield (that is, give
resources) to others while they need to wait. This is different from the commonly used
preemptive multitasking (for example, when the operating system’s scheduler decides
that one thread must give resources to another thread).

FIBERS AND THE EVENT LOOP

Fibers introduce cooperative multitasking to the event loop. They’re exclusive to the
server and can’t be used in the browser. Fibers are sometimes referred to as green
threads, because unlike regular threads that are scheduled by the operating system,
fibers are managed by the single-threaded Node.js server.

 You’ll hardly ever need to create a fiber yourself in a Meteor application because
they’re built into the platform so that fibers are used automatically. By default, Meteor
creates a dedicated fiber for each DDP connection. Because each client uses a single
DDP connection, you can say it creates one fiber per client.

 Listing 10.3 showed how for every callback the pyramid gets bigger and bigger. To
avoid that, you can wrap all functions inside a fiber (see following listing).

Fiber(function(){
 var connection, document, apiResult, saveResult = null;

 DB.connect(options, function(err, con){
 connection = con;
 });

 connection.query(something, function(err, doc){
 document = doc;
 });

Listing 10.4 Using fibers to avoid the pyramid of doom
Licensed to Mark Watson <nordickan@gmail.com>

234 CHAPTER 10 Advanced server methods
 ExternalAPI.makeCall(document, function(err, res){
 apiResult = res;
 });

 connection.save(apiResult, function(err, res){
 saveResult = res;
 });

 request.end(saveResult);

}).run()

The code in listing 10.4 looks a lot easier to follow. Even though you’re using asyn-
chronous functions, within a fiber the execution is synchronized. The synchronous
execution doesn’t affect or even block other fibers (see figure 10.5)—no more pyra-
mid is visible. Meteor uses exactly the same approach behind the scenes.

 Even if you weren’t aware of it, every time you use find() on a collection within a
server method, you actually execute a nonblocking database query:

var user = Meteor.users.findOne({name: 'Michael'});
return user.name;

To access the database and return a result, Meteor automatically wraps the instruc-
tions in a fiber. The downside of this is that it becomes more complicated to use asyn-
chronous external APIs. In section 10.1.2 we looked at a simple example where we
used setTimeout to simulate an asynchronous function call. Unfortunately, the method
finished and returned a value before the asynchronous call did. To change that, you
can use fibers.

Fiber #1

0 30

Event loop (milliseconds)

Wait (idle CPU time)

10 20 40

DB.connect ExternalAPI.makeCall request.end

By default Meteor
creates one fiber
per client

connection.query connection.save

Figure 10.5 Meteor uses a fiber inside the event loop for each DDP connection.
Licensed to Mark Watson <nordickan@gmail.com>

235Asynchronous functions using fibers
You interact with Meteor’s internally used fibers via three commands (see figure 10.6):

■ wrapAsync—Attaches a callback back to the current fiber
■ unblock—Enables multiple operations to execute in parallel within a single fiber
■ bindEnvironment—Creates a new fiber to maintain the current environment

(for example, global variable values)

10.2.2 Binding callbacks to a fiber with wrapAsync

Meteor creates a new fiber per client request, so you could assume that all code is
already executed within a fiber. But callbacks break out of a given fiber and return
their result without the previous context (such as which user made a request in the
first place). Hence, a common error message in Meteor is “Meteor code must always
run within a fiber.” When dealing with callbacks, you can use the Meteor.wrapAsync
function to ensure that the result from the callback stays within a certain fiber. You
can wrap any other function in a fiber using wrapAsync. Without passing a callback as
an argument, it calls a function synchronously; otherwise, it actually is asynchronous.
Only when a callback is provided will Meteor be able to restore the environment cap-
tured when the original function was called, effectively putting the result into the
same fiber.

Fiber #1

Fiber #2

Fiber #3

0 150 200 250

Event loop (milliseconds)

50 100 300

By default Meteor
creates one fiber
per client but may
use additional fibers
if needed.

wrapAsync attaches
a callback back to the
current fiber.

unblock creates a new
fiber for subsequent
method calls.

bindEnvironment
creates a new fiber
and copies the current
environment.

Method

call

Method

call

Method

calls

Result

(callback) Result Result

Figure 10.6 Making asynchronous calls using fibers
Licensed to Mark Watson <nordickan@gmail.com>

236 CHAPTER 10 Advanced server methods
Listing 10.5 shows an updated method named wrapAsyncMethod we’re going to call.
In this method, an asynchronous function with a callback is invoked. With the help of
a fiber, it’s possible to wait for the asynchronous function to complete and only then
the execute the method, returning the correct value. This helper function automati-
cally runs the async function in the current fiber (see figure 10.7).

setTimeoutFor3sCb = function (value, cb) {
 var result = value;
 Meteor.setTimeout(function () {
 console.log('Result after timeout', result);
 cb(null, result + 3)
 }, 3000);
}

Meteor.methods({
 'wrapAsyncMethod': function () {
 console.log('Method.wrapAsyncMethod');

 var returnValue = 0;

 returnValue = Meteor.wrapAsync(setTimeoutFor3sCb)(returnValue);
 console.log('resultComputation', returnValue);

 return returnValue;
 }
});

NOTE wrapAsync takes a standard callback function as the last parameter
with an error and response parameter: callbackFunction(err, result){}.

Listing 10.5 Calling a function using wrapAsync

Timeout

0 3

Event loop (seconds)

1 2 4 5

12:00:00.045(2)? Method.wrapAsyncMethod

2. Set

timeout

callback

3. Method

returns

value

Server log output:

12:00:03.047(2)? Result after timeout 0

12:00:03.047(2)? resultComputation 3

1. Method

call

Figure 10.7 Using wrapAsync in order to wait for a callback to provide a method’s return value

Wait for
function
to finish

Returns 1
Licensed to Mark Watson <nordickan@gmail.com>

237Asynchronous functions using fibers
10.2.3 Unblocking method calls for a single client

If you call a method, it may perform several tasks. On the other hand, there are times
when multiple tasks are performed by different methods and you want to call multiple
methods in parallel for the same client. As you know, each client has an associated
fiber and every method runs in it in a synchronous fashion, one at a time. If a client
calls methodA and methodB afterward, the default behavior is to wait for methodA to fin-
ish before invoking methodB.

 Let’s assume you call a method two times, one after the other (from the same
browser) and the method called is a long-running method that’s blocking, as in the
following listing.

block = function(value, cb) {
 Meteor.setTimeout(function(){
 cb(null, true);
 }, 3000);
}

Meteor.methods({
'sequential': function (value) {
 console.log('Method.sequential', value);
 Meteor.wrapAsync(block)(value);
 console.log('Method.sequential returns', value);
 return true;
 }
});

In a browser console you can now issue both method calls like this:

Meteor.call('sequential', 'first', function(err,res){
 console.log('done first');
});

Meteor.call('sequential', 'second', function(err,res){
 console.log('done second');
});

Did you notice anything? In this example the methods are called sequentially. The
first callback function is executed after 3 seconds and the second callback 3 sec-
onds after that. To execute the methods immediately and in parallel, you can use
this.unblock() in the method, as shown in listing 10.7. If a method is still waiting for
a result, using unblock allows Meteor to create a new fiber if the same client makes
additional method calls.

Listing 10.6 Sequentially executing methods
Licensed to Mark Watson <nordickan@gmail.com>

238 CHAPTER 10 Advanced server methods
Meteor.methods({
 unblock: function(value){
 console.log('Method.unblock', value);

 this.unblock();

 Meteor.wrapAsync(block)(value);
 console.log('Method.unblock returns', value);
 return value;
 }
});

In this case, both methods run immediately and both callbacks will be executed after
3 seconds. Neither method has to wait for the other. Test it by calling the method from
the browser using Meteor.call.

 As you can see in figure 10.8, calling the sequential method will execute the first
request and 3 seconds later the second, whereas the unblock method executes both
requests at once.

10.2.4 Creating fibers with bindEnvironment

For certain operations, it’s important to access the environment from which you made
an asynchronous function call. Let’s assume you have the accounts package added
and you want to access the current userId in a simple method. As long as you do so
asynchronously, you can do it easily like this:

Meteor.userId()

Listing 10.7 Using unblock to let other functions continue

Calling this.unblock allows
the client to execute
another fiber right away.

The second method
call starts when the
first is finished.

Both functions
are called at the
same time.

Figure 10.8 Running methods sequentially and using unblock
Licensed to Mark Watson <nordickan@gmail.com>

239Asynchronous functions using fibers

In the scope of a method, you can read the value for userId just fine because Meteor
automatically attaches various variables to the fiber. Methods allow you to access the
given environment at the time it was called via this. Through this invocation object,
you can access different attributes and functions such as this.userId, which relates
to the user that called the method. If you call a function that’s executed outside the
current fiber, you’ll lose access to these environmental variables.

 When calling an asynchronous function (setTimeoutFor3sCb) that takes 3 sec-
onds to return its result, the original environment gets lost inside the callback. Sud-
denly this has lost access to userId because it relates to the global object instead of
the invocation object.1 That’s the reason the first console.log can print out the current
user ID to the terminal and the second attempt to log causes an error: “Meteor.userId
can only be invoked in method calls.” To illustrate the problem, take a look at the
following listing.

Meteor.methods({
 'unboundEnvironment': function () {
 console.log('Method.unboundEnvironment: ', Meteor.userId());

 setTimeoutFor3sCb(2, function () {
 console.log('3s later: ', Meteor.userId());
 });
 }

});

When using asynchronous functions in a method that needs to be able to access the cur-
rent environment, you can use Meteor’s bindEnvironment function. bindEnvironment
creates a fiber and attaches the correct environment automatically. In our example,
it’s sufficient to change the method as shown in listing 10.9. The entire callback func-
tion is wrapped in a Meteor.bindEnvironment() block.

Meteor.methods({
 'bindEnvironment': function () {
 console.log('Method.bindEnvironment: ', Meteor.userId());

 setTimeoutFor3sCb(2, Meteor.bindEnvironment(function () {
 console.log('Method.unboundEnvironment (3s delay): ', Meteor.userId());
 }));
 }
});

1 For a more in-depth explanation of the this keyword in JavaScript, take a look at http://stackoverflow.com/
questions/133973/how-does-this-keyword-work-within-a-javascript-object-literal.

Listing 10.8 Using Meteor.userId() in a callback for a method

Listing 10.9 Using Meteor.userId() in a bound callback for a method

Prints ID
of the user
calling the
method

Generates
an error
message

Binds the current
environment of
the method to
the callback

Prints the ID of the user
calling the method
Licensed to Mark Watson <nordickan@gmail.com>

http://stackoverflow.com/questions/133973/how-does-this-keyword-work-within-a-javascript-object-literal
http://stackoverflow.com/questions/133973/how-does-this-keyword-work-within-a-javascript-object-literal

240 CHAPTER 10 Advanced server methods
Figure 10.9 shows a call to both an unbound and a bound environment. Because the
value for Meteor.userId gets lost in the callback, the unbound example throws an
error message whereas the second call to the bound method succeeds.

 Most of the time, it’s sufficient to use wrapAsync for calling asynchronous func-
tions. Only when you need to access the given environment and can’t pass all required
variables to a function call should you use bindEnvironment. Most of the time, using
wrapAsync is fine.

 Look back at chapter 7, where we discussed the publication of aggregated data to
the client. In this scenario, we also had to use bindEnvironment to make sure that the
publication isn’t blocked by waiting for the result from MongoDB.

10.3 Integrating external APIs
Many applications rely on external APIs to retrieve data. Getting information regard-
ing your friends from Facebook, looking up the current weather in your area, or sim-
ply retrieving an avatar image from another website—there are endless uses for
integrating additional data. They all share a common challenge: if APIs must be called
from the server, calling the API usually takes longer than executing the method itself.
You saw in the previous section how to deal with this theoretically—now we’ll inte-
grate an external API via HTTP.

Calling Meteor.userId from a
long-running method callback
results in an error.

Using bindEnvironment,
the Meteor.userId is
available in the callback.

Using Meteor.userId
in bindEnvironment

Using Meteor.userId
in an unbound
callback

Figure 10.9 Callbacks in an unbound environment return an error when accessing Meteor.userId.
Licensed to Mark Watson <nordickan@gmail.com>

241Integrating external APIs
 Based on the IP address of your visitors, you can determine various information
about their current location, such as coordinates, city, or time zone. There’s a simple
API that takes an IPv4 address and returns all these tidbits as a JSON object, and it’s
called Telize (www.telize.com).

10.3.1 Making RESTful calls with the http package

To communicate with RESTful external APIs such as Telize, you need to add the http
package:

$ meteor add http

Although the http package allows you to make HTTP calls from both the client and the
server, the API call in this example will be performed from the server only. Many APIs
require you to provide an ID as well as a secret key to identify the application that makes
an API request. Even though you won’t need any credentials for this example, in many
other cases you will, and then you should run your requests from the server. That way,
you never have to share secret keys with clients. Figure 10.10 explains the basic concept.
A user requests location information for an IP address (step 1). The client application
calls a server method called geoJsonforIp (step 2) that makes an asynchronous call to
the external API using the HTTP.get() method (step 3). The response (step 4) is a JSON
object with information regarding the geographic location associated with an IP
address, which gets sent back to the client via a callback (step 5).

Perform asynchronous
third-party API call
per client

External API

REST

endpoint

Server

App

Client

DDP App

3. onHTTP.get()

the API URL
1. Request

location for IP

2. Call geoJsonForIp

method

5. Return reponse

in callback

4. onJSON

response

Figure 10.10 Data flow when making external API calls
Licensed to Mark Watson <nordickan@gmail.com>

http://www.telize.com

242 CHAPTER 10 Advanced server methods
10.3.2 Using a synchronous method to query an API

Let’s add a method that queries telize.com for a given IP address, as shown in list-
ing 10.10. This example includes only the bare essentials for querying an API.

Meteor.methods({
 'geoJsonForIp': function (ip) {
 console.log('Method.geoJsonForIp for', ip);
 var apiUrl = 'http://www.telize.com/geoip/' + ip;
 var response = HTTP.get(apiUrl).data;
 return response;
 }
});

Once the method is available on the server, querying the location of an IP works by
calling the method with a callback from the client:

Meteor.call('geoJsonForIp', '8.8.8.8', function(err,res){
 console.log(res);
});

Although this solution appears to be working fine, there are two major flaws to this
approach:

■ If the API is slow to respond, requests will start queuing up.
■ Should the API return an error, there’s no way to return it back to the UI.

To address the issue of queuing, you can add an unblock() statement to the method:

this.unblock();

As you know from the previous sections, calling an external API should always be done
asynchronously. That way, you can also return possible error values back to the
browser, which will solve the second issue. Let’s create a dedicated function for calling
the API asynchronously to keep the method itself clean.

10.3.3 Using an asynchronous method to call an API

Listing 10.11 shows how to issue an HTTP.get call and return the result via a callback.
It also includes error handling that can be shown on the client.

var apiCall = function (apiUrl, callback) {
 try {
 var response = HTTP.get(apiUrl).data;
 callback(null, response);
 } catch (error) {

Listing 10.10 Querying an external API using a synchronous method

Listing 10.11 Dedicated function for asynchronous API calls

The method expects
a valid IPv4 address.

Construct
the API URL.

Query
the API.

try...catch allows you
to handle errors.

A successful API call returns no error but
returns the contents from the JSON response.
Licensed to Mark Watson <nordickan@gmail.com>

243Integrating external APIs
 if (error.response) {
 var errorCode = error.response.data.code;
 var errorMessage = error.response.data.message;
 } else {
 var errorCode = 500;
 var errorMessage = 'Cannot access the API';
 }
 var myError = new Meteor.Error(errorCode, errorMessage);
 callback(myError, null);
 }
}

Inside a try...catch block you can differentiate between a successful API call (the
try block) and an error case (the catch block). A successful call may return null for
the error object of the callback; an error will return only an error object and null for
the actual response.

 There are various types of errors and you want to differentiate between a problem
with accessing the API and an API call that got an error inside the returned response.
This is what the if statement checks for: in case the error object has a response pro-
perty both code and message for the error should be taken from it; otherwise you can
display a generic error 500 that the API couldn’t be accessed.

 Each case, success and failure, returns a callback that can be passed back to the
UI. To make the API call asynchronous, you need to update the method as shown in
listing 10.12. The improved code unblocks the method and wraps the API call in a
wrapAsync function.

Meteor.methods({
 'geoJsonForIp': function (ip) {
 this.unblock();
 var apiUrl = 'http://www.telize.com/geoip/' + ip;
 var response = Meteor.wrapAsync(apiCall)(apiUrl);
 return response;
 }
});

Finally, to allow requests from the browser and to show error messages, you should
add a template similar to the following listing.

<template name="telize">
 <p>Query the location data for an IP</p>
 <input id="ipv4" name="ipv4" type="text" />
 <button>Look up location</button>

 {{#with location}}
 {{#if error}}
 <p>There was an error: {{error.errorType}} {{error.message}}!</p>

Listing 10.12 Updated method for making asynchronous API calls

Listing 10.13 Template for making API calls and displaying errors

If the API responded with
an error message that
contained a payload

Otherwise use a generic
error message.

Create an error
object and return
it via callback.

Avoid blocking
other method calls.

Asynchronous call to
the dedicated API
calling function

Set the
data
context.

If location has an error
property, display type
and message.
Licensed to Mark Watson <nordickan@gmail.com>

244 CHAPTER 10 Advanced server methods
 {{else}}
 <p>The IP address {{location.ip}} is in {{location.city}}
 ({{location.country}}).</p>
 {{/if}}
 {{/with}}
</template>

The JavaScript required to connect the template with the method call is shown in
listing 10.14. A Session variable called location is used to store the results from the
API call. Clicking the button takes the content of the input box and sends it as a
parameter to the geoJsonForIp method. The Session variable is set to the value of
the callback.

Template.telize.helpers({
 location: function () {
 return Session.get('location');
 }
});

Template.telize.events({
 'click button': function (evt, tpl) {
 var ip = tpl.find('input#ipv4').value;
 Meteor.call('geoJsonForIp', ip, function (err, res) {
 if (err) {
 Session.set('location', {error: err});
 } else {
 Session.set('location', res);
 return res;
 }
 });
 }
});

10.4 Uploading files to a collection
Although uploading files is one of the most common functions used on the web,
implementing this functionality isn’t trivial. You can store uploaded content in various
places (see figure 10.11), and each option has its pros and cons:

■ The local filesystem
■ Remote storage
■ The application’s database

Most developers find that the local filesystem is the natural solution for storing files
(Option A). It’s already there, it’s reasonably fast, and it can hold as much content as
space is available. Many hosting providers don’t offer access to the local filesystem due
to both security and performance reasons. Imagine a malicious script starting to write
hundreds of megabytes to fill up disk space, effectively causing a denial of service for

Listing 10.14 Template helpers for making API calls

The API response
is stored inside a
Session variable.

The method call sets
the Session variable to
the callback value.
Licensed to Mark Watson <nordickan@gmail.com>

245Uploading files to a collection
all applications hosted on this instance. In practice this means that when deploying
your application to a service such as meteor.com you won’t be able to store data on
the local disks; you need to upload files to a different location. A better solution for
applications on the web is a separation of applications and data storage.

 These days, cloud storage providers (Option B) are common because they offer
a lot of advantages: they’re fast and highly available, and redundant storage will
keep your files safe. At the same time, setting up your application with them is a bit
complicated and they can be costly. Cloud storage providers are a great option for
scaling out production applications, but if you want quick results, you might con-
sider another option.

 A third possibility is to store files in the application’s database (Option C). Unlike
the filesystem you always have access to it, and having all data in a single place makes
backups a breeze. Unfortunately, using the database for storing files is highly ineffi-
cient because it’s slow and takes significantly more space than saving directly to the
filesystem. MongoDB is designed to store files, but they’re limited to the maximum
document size of 16 MB. Storing files within collections requires some overhead, so
the actual maximum file size is around 12 MB. MongoDB can be configured to use the
GridFS filesystem, which allows you to use files of any size. Either way, it remains an
inefficient yet convenient way to store files.

 For small files such as avatar images or building prototypes, the database is a viable
option, and it gives developers the most portable and simplest solution to implement.
In the next section, you’ll implement Option C (see the accompanying sidebar for
other ways to implement uploads).

Database

Option C:

Storage in database

Option B:

External storage,

e.g., S3

Option A:

Local filesystemFilesystem

Server
Cloud

storageClient
Upload file

Figure 10.11 File storage and upload options for Meteor applications
Licensed to Mark Watson <nordickan@gmail.com>

246 CHAPTER 10 Advanced server methods
10.4.1 Uploading files to the database

In this example you’ll create a template to select a file, which will be uploaded directly
to a MongoDB collection. Files can then be published and subscribed to just like any
other database content. Image data will be stored in a Base64-encoded format so that
it’s simple to display images in the browser.

 Each file document will have a name property and the file contents in a field called
base64.

REQUIREMENTS AND LIMITATIONS

There are no additional requirements for uploading files to the database except from
the usual Meteor components: an application and a database. You’ll be using the
HTML5 FileReader API in the browser to upload files, so not all browsers are sup-
ported, namely Internet Explorer 8 and 9.2

TEMPLATES

All that’s needed for uploading files is an input element. You don’t even need a
button because the upload can start immediately when a file has been selected (list-
ing 10.15).

 For displaying images normally, you’d pass a URL to the src attribute of the img
tag. Because this image isn’t accessible from a URL, you can also pass the Base64-
encoded content directly to the src attribute. For displaying multiple images from a
collection, you can use an {{#each}} block—again, just as you do for any other data-
base content.

Useful package for file uploads
Although storing files in the database is convenient and easy to implement, it’s hardly
advisable for most production scenarios. For better performance and scalability, both
the local filesystem and cloud storage providers are a much better fit.

tomi:upload-server allows users to upload files to the local filesystem, and when
used in combination with tomi:upload-jquery, it also enables a full UI that also
works well on mobile devices (this package implements Option A).

CollectionFS comes with various storage adapters that allow you to store files in
the local filesystem (cfs:filesystem), in a MongoDB using the GridFS filesystem
(cfs:gridfs), or in an S3 bucket (cfs:s3) (CollectionFS can be used to imple-
ment any of the three options).

When uploading files to a cloud provider, you might not want to first upload to your
server and then forward to the actual storage. The client can also upload directly to
Google Cloud, Rackspace, or others. The edgee:slingshot package implements the
required functionality and works in combination with Option B.

2 You can check which browsers support the FileReader API at http://caniuse.com/#feat=filereader.
Licensed to Mark Watson <nordickan@gmail.com>

http://caniuse.com/#feat=filereader

247Uploading files to a collection
<template name="upload">
 <h2>Upload a file</h2>
 <input type="file" id="file-upload" />
</template>

<template name="file">
 {{#with file}}
 <h2>{{name}}</h2>

 {{/with}}
</template>

LIMITING PUBLICATIONS TO A SINGLE FILE

The first step is to create a new collection that will be used to store files:

FilesCollection = new Mongo.Collection('files');

This collection should be available on both client and server. Perform a meteor
remove autopublish to avoid sending all files to all clients. This collection will
become extremely big!

NOTE When publishing files from collections, take care to limit the publica-
tion to a single file to avoid sending hundreds of megabytes to each con-
nected client.

The required code to set up a publication for a single file only is shown in listing 10.16.
The requested filename is passed to the publication via a Session variable. This
means that only a single image can be displayed at a time. If you need to display multi-
ple images from the FilesCollection, you must adjust the function to take an array
of names.

if (Meteor.isServer) {
 Meteor.publish('files', function (file) {
 console.log("publish", file);
 return FilesCollection.find({
 name: file
 });
 });
}

if (Meteor.isClient) {
 Tracker.autorun(function (computation) {
 Meteor.subscribe('files', Session.get('file'));
 });
}

Now that files from the database can be sent to the client, it’s time to implement the
upload process.

Listing 10.15 Template code for uploading files

Listing 10.16 Code for publishing and subscribing to a single file

Publication is based
on the filename.

Passing the Session
variable will result
in a single file being
returned.
Licensed to Mark Watson <nordickan@gmail.com>

248 CHAPTER 10 Advanced server methods
USING THE FILEREADER API TO UPLOAD IMAGES TO A COLLECTION

By taking advantage of HTML5’s native capabilities, you won’t need any Meteor-specific
code for uploading files in the client. Selecting a file will trigger the upload and hand
the file’s contents to a server-side method to store it in the database. As you can see in the
following listing, the code looks a bit complicated, so we’ll go through it line by line.

if (Meteor.isClient) {
 Template.upload.events({
 'change #file-upload': function (event, template) {
 var file = event.target.files[0];
 var name = event.target.files[0].name;

 var reader = new FileReader();
 reader.onload = function (file) {
 var result = reader.result;
 Meteor.call('saveFile', name, result);
 }
 reader.readAsDataURL(file);
 }
 });
}

The code listens for changes to an input field with the ID file-upload in the uploads
template. Although the FileReader API allows multiple files to be uploaded at one
time, this code supports only a single file at a time. The actual file is accessible via the
current event: event.target.files[0]. You can access the filename via the name
property of the object; this gets assigned to a variable. An instance of FileReader is cre-
ated (reader). The onload event is triggered when the file was successfully read,
which is when you can send the file contents to the server method saveFile. The
method takes two arguments: the filename and a Base64 string that holds the file con-
tents (result).

 To tell FileReader to load the file, you use the readAsDataURL() function. This
function reads binary data and automatically encodes it into Base64. When this action
finishes successfully, the onload() event is triggered.

 If you want, you can perform additional validations before calling the server
method, such as validating that the file in question is indeed an image:

if (!file.type.match('image.*')) {
 alert('Only image files are allowed');
 return;
}

The corresponding server method, saveFile (listing 10.18), should look quite famil-
iar to you; the only difference from the examples you saw earlier is that buffer holds a
lot more data and is Base64 encoded. All data is sent via DDP to methods, and this is
no exception. The upload is done completely via WebSockets and doesn’t use tradi-
tional HTTP.

Listing 10.17 Using FileReader to upload a file
Licensed to Mark Watson <nordickan@gmail.com>

249Summary
if (Meteor.isServer) {
 Meteor.methods({
 'saveFile': function (name, buffer) {
 FilesCollection.insert({
 name: name,
 base64: buffer
 })
 }
 });
}

All that’s left to do is display image content.

DISPLAYING IMAGES STORED IN A COLLECTION

At this point the remaining code is simple enough. The image will be returned like
any other collection document:

if (Meteor.isClient) {
 Template.file.helpers({
 'file': function () {
 return FilesCollection.findOne();
 }
 });
}

You added the template earlier, so you can test your new upload functionality now.
 Remember that this easy solution isn’t suitable for large files and high-traffic

environments, but it’s quite useful for implementing quick and portable upload
functionalities.

10.5 Summary
In this chapter, you’ve learned that

■ Even though Node.js is nonblocking by design, it’s possible to write blocking
code in Meteor applications.

■ Meteor uses fibers to make it easier to write asynchronous code.
■ When writing asynchronous code on the server, you’ll probably use unblock()

and wrapAsync. There are only rare cases where you should use bindEnvironment.
■ Calls to external APIs using the http package should be made asynchronously

to avoid blocking.
■ Asynchronous server functions may return errors back to the client via callbacks.
■ There are various options for handling file uploads. Without using community

packages, the easiest way is to use the application’s database.

Listing 10.18 saveFile method for storing files in a collection
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Part 3

Leaving the crater

The final two chapters of this book discuss building, debugging, and deploy-
ing applications. Chapter 11 explains how the build process works and teaches
you how to turn a web application into an app for phones and tablets. In chap-
ter 12 you’ll learn about the prerequisites for successful deployments, simple
load testing, and scaling options for Meteor applications.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Building and debugging
With the rise of the smartphone, web applications no longer require a web browser
because they also come as mobile applications. Meteor wouldn’t be an appropriate
tool for building modern applications if it didn’t offer support for mobile plat-
forms as well. Platforms that are capable of running Meteor applications can be the
server, browser, and even mobile devices like iOS and Android.

 Although there is no need to create an EXE file or application binaries, even
interpreted languages like JavaScript require some source code processing before
they can be run. One of the most familiar steps in building a JavaScript project is
minification, which reduces source files to a minimum so that network traffic is min-
imized at the cost of readability.

This chapter covers
■ Customizing the Meteor build process
■ Debugging using the server shell and

node-inspector

■ Creating browser applications
■ Creating mobile applications
253

Licensed to Mark Watson <nordickan@gmail.com>

254 CHAPTER 11 Building and debugging
 Turning source code into runnable applications is the job of a build tool, and in
Meteor it’s called Isobuild. This tool works mostly behind the scenes and allows you to
focus on coding rather than setting up build chains.

 In this chapter, we take a close look of two main aspects of Isobuild:

■ How the Meteor build process works
■ How to build apps for various platforms

Additionally, this chapter introduces debugging techniques that will allow you to get a
better understanding of what happens inside the application when it’s running.

 When you complete this chapter, you’ll be able to customize your workflow and
put your application on iOS and Android devices.

11.1 The Meteor build process
Whenever a Meteor project is run, Isobuild gets busy behind the scenes. It needs to
combine all files that contain HTML and JavaScript source code, put together styling
information, and merge the results intelligently with the content from all packages
present within the project. The output is an application that can be run on develop-
ment or production systems.

 Let’s revisit the graphic introduced in chapter 1 that showed the various parts that
make up the source of a Meteor application (see figure 11.1). Building an application

cordova-plugin-camera

cordova-plugin-battery

Isobuild

Business logic

Code

Blaze

Tracker

DDP

Livequery

Full stack DB drivers

…

Styles

Templates

Assets

cordova-plugin-camera

cordova-plugin-battery

Application

Isobuild puts together the pieces of your application

Server

Mobile devices

Browser

Cordova packages

Fibers

NPM packages

Isopacks

Figure 11.1 Isobuild takes all parts that compose a Meteor application and turns them into
applications for various platforms.
Licensed to Mark Watson <nordickan@gmail.com>

255The Meteor build process
means taking the contents from the box on the left side and processing them so they
may run on any or all of the platforms shown on the right. Isobuild takes care of this
transformation. It’s a complete tool chain for turning source code into programs that
may run on various platforms.

 For a platform to be isomorphic, all functionality that’s added via packages must
behave the same on multiple—or ideally all—components of the stack. Certainly there
are exceptions—for example, accessing the phonebook of a mobile phone on a server
platform is hardly possible. But most other functions, like fetching contents from a web
service, must be called in exactly the same way, regardless of where they take place.
Instead of you having to use jQuery.get() in a browser and http.request() on the
server, Meteor provides an abstract API that allows you to use HTTP.get() anywhere
and achieve the same results. It’s not just the same language that’s used across the
entire stack—it’s the same API so that the same code can run anywhere.

All the code we’ve written in the previous chapters and all assets that were added
(remember the images we used for the fridge in chapter 2?) are considered business
logic. For some Meteor functionality we use packages (Isopacks) and—if needed—also
npm packages. The default target platforms for all Meteor applications are server and

Why does Meteor have its own build system?
The JavaScript world knows a large number of build tools—npm, jake, bower, grunt,
and gulp. Why doesn’t Meteor use one of these instead of Isobuild?

Building Meteor applications requires a build tool that works equally well for server
and client code. Most tools focus on only one of these environments, so they’re a
poor fit for a full-stack platform, especially when they must cater to the isomorphic
nature of the code.

Packages for Meteor aren’t limited to using JavaScript, Spacebars, and CSS but also
use CoffeeScript, Jade, or LESS. These require an additional build step to translate
the contents into the former languages. Furthermore, Isopacks may contain not only
code but also assets such as font files or images. That means injecting resources
into the client bundle becomes necessary.

Another shortcoming of package managers is the paradox of choice. With many pack-
ages offering similar functionality, it becomes hard to tell which is the best (and still
maintained) option to choose. The Meteor Development Group addresses this issue
by using a two-level namespace for packages. Every package that prefixes a curator
in the curator:packagename style is considered a community package. Once these
become widely tested and commonly accepted, they drop the curator prefix and are
considered safe bets, thereby making it much easier for developers to pick the most
reliable package from a list of alternatives.

Because none of the existing solutions were capable of satisfying all the requirements
for a full-stack build and package manager, Meteor 0.9 introduced the Isobuild system.
Licensed to Mark Watson <nordickan@gmail.com>

256 CHAPTER 11 Building and debugging
browser, and neither supports Cordova packages. These are needed to access mobile
hardware such as the camera or contacts from the phone’s address book when you
build an application for mobile platforms. Therefore, we’ll look at Apache Cordova/
PhoneGap in more detail later in this chapter.

NOTE Apache Cordova is an open source project that turns HTML5-based
applications into mobile apps and provides a JavaScript API to access device
functionality available to native apps but not from inside a web browser.
Adobe PhoneGap is a fork of this project and offers additional, for-pay fea-
tures. In the context of this book and for using Google search, both names
are used interchangeably.

11.1.1 Build stages

Whenever you run a Meteor application using the meteor run command, the build
process is triggered. While the Meteor server is running, any changes to the applica-
tion code will trigger a rebuilding of the application code. Up until this point we
haven’t paid close attention to what actually happens with our code during the build
process, so now we’ll look under the hood.

 Meteor goes through the following build stages:

1 Read project metadata.
2 Initialize the catalog.
3 Resolve constraints.
4 Download missing packages.
5 Build local packages.
6 Save changed metadata.

Let’s have a look at each of these stages.

STAGE 1: READING PROJECT METADATA

Before the build process performs any actions, it reads the current project configura-
tion. Every Meteor project has certain metadata that’s stored in the .meteor directory.
There are four files that hold all relevant information for the build process. You can
edit them manually, but the standard way to modify them is by using Meteor’s CLI tool
(see table below).

Table 11.1 Files used to store project metadata and their corresponding CLI commands

Filename Modified by command Contains information on…

.meteor/packages meteor list
meteor add
meteor remove

Meteor packages used by this project,
one per line

.meteor/platforms meteor list-platforms
meteor add-platform
meteor remove-platform

Target platforms to build the project for
Licensed to Mark Watson <nordickan@gmail.com>

257The Meteor build process
Every project has a base version of the Meteor framework,1 which is stored inside the
release file. It gets updated when you first create a new project and every time you per-
form an update command in the project root folder. This is the starting point for the
Version Solver component that determines which package versions are known to work
well together (refer back to chapter 9 for more details on Version Solver).

 Whenever you add or remove a package with the meteor command, it’ll trigger an
edit of the packages file. By default new projects start with the three packages meteor-
platform, autopublish, and insecure. Packages can depend on other packages. For
example, the meteor-platform package consists of multiple others, but they aren’t
listed inside the packages file. They are managed implicitly by Isobuild.

 Adding a new package will add a new line at the end of the file, so the contents of
this file are ordered chronologically, not alphabetically.

 In the versions file, Meteor keeps track of all packages that are needed to build the
current project, regardless whether they were added explicitly or came in as a depen-
dency. Therefore, a package such as tracker isn’t listed inside the packages file but
only inside versions. If you wish to update all packages used in your project to the lat-
est version, you use meteor update. You shouldn’t edit this file manually—it’ll be man-
aged by Isobuild.2 Packages in the versions file are ordered alphabetically; they’re the
result of processing the packages file that takes place in stage 3.

NOTE In case you only need to update packages to their latest version but not
the Meteor release, add the --packages-only option to the update command.

When you issue a meteor run command, the first thing that happens is that those four
files are read.

STAGE 2: INITIALIZING THE CATALOG

In the build context, the catalog is basically the versions file. Here all the Isopacks
required to build the project are listed. When a new package is added to or removed
from the packages file and meteor run is called, the appropriate package needs to also be

.meteor/release meteor create
meteor update

Meteor release version to be used for
this project

.meteor/versions meteor update Package requirements and versions
determined by the Version Solver com-
ponent of Isobuild

1 Instead of the word platform we’ll use framework here to avoid confusing target platforms with the Meteor
platform.

2 When you add a package with a specific version constraint using meteor add, the contents of the versions file
will be updated. Because it doesn’t affect the build process, we won’t go into the specifics of this case.

Table 11.1 Files used to store project metadata and their corresponding CLI commands (continued)

Filename Modified by command Contains information on…
Licensed to Mark Watson <nordickan@gmail.com>

258 CHAPTER 11 Building and debugging
added or removed from the versions file. In case a package brings in additional depen-
dencies, then those need to be brought in as well, which happens in the next stage.

STAGE 3: RESOLVING CONSTRAINTS

The purpose of the resolving constraints stage is to determine dependencies in regard
to both packages and versions. All locally available packages are stored inside the
Meteor installation folder and not the current project folder. To resolve constraints,
each package configuration is read. If a package configuration references another
package or a version that’s not available locally, additional packages are marked as
required and will be retrieved in the next stage.

STAGE 4: DOWNLOADING MISSING PACKAGES

In case packages aren’t present on disk yet, Meteor will attempt to download them
automatically from the internet. All packages will be stored in the Meteor installation
folder rather than the current project folder. That way, all Meteor projects on the
same machine can share packages.

 Eventually the full set of required Isopacks is available so that the build process
can begin.

STAGE 5: BUILDING LOCAL PACKAGES

When all packages are available on the build system, they’re built for the current pro-
ject. Code and assets (fonts, images, and so forth) will be added to the project in the
.meteor/local folder. Also, source maps are created for each JavaScript file. Source maps
allow you to view the original sources in the browser, even if the files used are minified.

STAGE 6: SAVING CHANGED METADATA

Once all build steps have been executed, the current state is persisted inside the ver-
sions and packages files.

RINSE AND REPEAT: WATCHING FOR CHANGES

Although technically not a build stage, the run command will continue to monitor any
changes to application files and reexecute the build process if needed. Meteor han-
dles client and server changes differently. Client changes are processed and get sent
directly to the browser using hot code push. All changes that affect the server cause an
actual relaunch of the application. Note that this also executes all Meteor.startup()
functions in the server context.

 Meteor uses an advanced method to detect file modifications that’s similar to the
way it uses the MongoDB oplog to monitor changes to the database. On Mac OS X, a
kernel extension named kqueue is used; on Linux inotify informs Meteor of all file
operations that took place. On Windows there is no such mechanism available.

 When Meteor can use either kqueue or inotify, it falls back to a 5000 ms interval
to check for possible changes it may have missed, which is much easier on CPU and
disk operations than the default setting of 500 ms. On remote filesystems that are
mounted via NFS or shared with a virtual (such as a Vagrant3) machine, the kernel

3 See appendix A for more details on how to use Vagrant.
Licensed to Mark Watson <nordickan@gmail.com>

259The Meteor build process
extensions may miss changes. If it takes up to 5 seconds for the Meteor process to pick
up on any changes, it’s likely that the watcher doesn’t work properly. In these rare
cases you can use two environment variables to define polling behavior (that is, regu-
larly checking for changes). In the same terminal session where you’ll start the meteor
process, issue the following commands to force polling regardless of whether kqueue
or inotify is found, and set the interval to 10 seconds:

$ export METEOR_WATCH_FORCE_POLLING=t
$ export METEOR_WATCH_POLLING_INTERVAL_MS=10000

NOTE The environment variable METEOR_WATCH_FORCE_POLLING expects a
single t, which sets it to true; otherwise it defaults to false. The polling inter-
val is defined in milliseconds, and when not set, it defaults to 5000 ms (500 ms
if polling is forced).

11.1.2 Running with the --production flag

If you’re using a more complex file structure for your project, you can see that using
meteor run will hardly change the number or structure of your files at all. They’ll sim-
ply be copied over to the .meteor/local/build directory structure.

 This behavior is convenient for development purposes on a local system because a
simple copy operation doesn’t add a lot of overhead for each file change. In produc-
tion environments, though, the fewer files you need to serve, the better the initial
page loads are. Therefore, in a web environment all files of the same type are usually
merged so that only three files must be sent to the browser:

■ One JavaScript file
■ One CSS file
■ One HTML file

Also, the contents of these files are minified, which again decreases transfer times.
Unfortunately, merging and minifying source files can lead to some unexpected behav-
iors such as messed-up styles or crashing applications. To avoid surprises when suppos-
edly finished code is deployed, run a local project with the --production flag:

$ meteor run --production

Using this flag triggers additional build steps. All code that’s sent to the client will be
merged into a single file for each type (JS, CSS, HTML) and given a random, 41-character
name. Server code isn’t merged because these files aren’t sent over the network and
combining them wouldn’t yield noticeable performance benefits.

 The additional build steps make restarting the server and performing hot-code pushes
slower, so use --production for testing purposes rather than during development.
Licensed to Mark Watson <nordickan@gmail.com>

260 CHAPTER 11 Building and debugging
11.1.3 Load order

With the freedom of creating files and folders using any directory hierarchy, it’s
important to understand precedence in Meteor’s loading process. Especially when cli-
ent files are merged using the --production flag, having the wrong load order can
lead to crashes and bugs.

 Meteor’s load order is based on both naming conventions and folder hierarchy.
This load order is applicable only the business logic of an application. The load order
in packages is defined manually inside the package definition (refer to chapter 9 for
more details).

 As a rule of thumb, Meteor loads files in subdirectories before files in parent direc-
tories. The deeper a file is inside a project hierarchy, the sooner it gets loaded. Conse-
quently, files in the root directory are loaded last. Within the same hierarchy level or
directory, files are loaded in alphabetical order by filename.

 There are some exceptions to this general rule:

■ All files in folders named lib/ are loaded before all other folder contents. If
multiple lib folders exist, they’re ordered by level (deepest first) as well as
alphabetically. As such, client/lib/file1.js gets loaded before client/scripts/
views/file2.js, even though the general rule suggests that file2 should be loaded
first due to the position in the hierarchy.

■ The client/compatibility/ directory is reserved for libraries that rely on vari-
ables declared with var at the top level being exported as globals. Files in this
directory are executed without being wrapped in a new variable scope. These
files are executed before other client-side JavaScript files but after the contents
from lib/.

■ All files that start with main.* are loaded after everything else: client/lib/valida-
tions.js comes before client/lib/main.helper.js.

■ Any content inside the private/, test/, and public/ directories isn’t automati-
cally loaded and won’t be processed by the build process.

Depending on whether Meteor is running in the server or client context, some files
may not be loaded at all. Meteor ignores certain folder contents to prevent sending all
code to the browser, even if it’s never executed there. Table 11.2 lists all folders that
are either ignored on the server or not even sent to the client.

Debug-only packages
Some packages add functionality that’s useful only in a development context. In case
they expose easy access to internal data or execute tests, they can even be danger-
ous to deploy to production. For this purpose packages can set a debugOnly flag that
advises Meteor to exclude those packages from the build process when running with
the --production option.
Licensed to Mark Watson <nordickan@gmail.com>

261The Meteor build process
Figures 11.2 and 11.3 show the load order in action. Each file is logging its name to
the console once it’s loaded. As you can see, only two files are loaded on the server
(common.js and server.js), whereas the client loads a total of eight JavaScript files. All
directories with the same hierarchical level are sorted alphabetically and loaded in
order. The special directories private, public, and test are excluded from loading any
JavaScript code.

 The client uses a more sophisticated file structure. Regardless of their position
inside the hierarchy, all contents from directories named lib come first, which is why
its files come before everything else. Then all files from the deepest hierarchy level to
the highest are loaded; on the same level directories and files are sorted alphabeti-
cally. That means client/views/edit/edit.js comes before client/views/client.js. All
files with a main.* prefix are moved to the very end of the loading cycle. So even if

Table 11.2 Directories ignored in server and client contexts

Excluded in server context Excluded in client context

client/ server/

public/ public/

private/ private/

tests/ tests/

Application sources

Server load order

1. Alphabetical sorting

2. private, public, and
tests are ignored.

Figure 11.2 Visualizing the load order for JavaScript files on the server using console messages
Licensed to Mark Watson <nordickan@gmail.com>

262 CHAPTER 11 Building and debugging
main.helper.js is stored inside lib/ it will only be loaded after all other files. All these
rules apply to the server environment as well.

11.1.4 Adding build stages via packages

The easiest way to extend the build process with additional stages is to add one of the
core packages to your project that add language support.

 The following core packages can be used to add stages to the build process:

■ The package coffeescript adds transpiling4 of *.coffee files to JS.
■ The package less or stylus adds processing of *.less or *.sty files to CSS.

4 The term transpiling is used to describe source-to-source compilation. Generally, when compiling a file the
level of abstraction is reduced—for example, when turning C code into Assembly. When transpiling the level
of abstraction stays the same—that is, when going from CoffeeScript to JavaScript.

Application sources

4. Files starting with
main.* come last
regardless of level.

1. All files inside
lib/ come first.

3. Alphabetical sorting
on the same level:
compatibility
before views

2. Deeper levels
take precedence.

Client load order

Figure 11.3 Visualizing the load order for JavaScript files on the client using console messages
Licensed to Mark Watson <nordickan@gmail.com>

263The Meteor build process
For additional language support, a variety of community packages are also available.
Check the official package repository to see whether your preferred language is avail-
able already.

 As a third option, you can choose to write your own package that enhances the
build process.

COFFEESCRIPT

Many JavaScript developers prefer using CoffeeScript instead of plain JavaScript. Cof-
fee uses a different syntax with fewer brackets and semicolons and requires transpiling
into plain JavaScript so it can be executed in the browser and inside Node.js.

 Using CoffeeScript with a Meteor project is as simple as adding the coffeescript
package:

$ meteor add coffeescript

Once the package is available in a Meteor project, all files with a .coffee extension are
automatically transpiled (translated) into JavaScript whenever they’re modified. That
way, regular JavaScript files can be used along with code written in CoffeeScript—for
example, when adding external libraries to a lib/ folder.

 Except for the fact that Meteor supports another file extension and adds a transla-
tion stage, the rest of the build process stays exactly the same, including the load
order of files.

LESS OR STYLUS

Static style files using CSS are supported by Meteor out of the box. If you add the cor-
responding packages, the dynamic styling languages LESS and Stylus can also be used.
These languages are called preprocessors, and they’re used to enhance style sheets with
variables and mixins. Mixins allow you to use style snippets that can be easily reused,
thus shortening the overall code that you have to write. In combination with using
variables, this makes customizing designs much easier, which is why many developers
prefer dynamic preprocessors over plain CSS.

 LESS and Stylus need to be translated into plain CSS for a browser to be able to
interpret them. Let’s start by adding either of the packages using the CLI:

$ meteor add less
$ meteor add stylus

As a result of adding either of the packages, files with a .less or .sty extension are prop-
erly identified and processed by Meteor. Both preprocessors behave exactly the same
in regard to the build process.

 Meteor concatenates all style files into one, following the aforementioned load
order. To gain more control over the load order, you can import individual files from
a style file. If a file has the extension *.import.less or *.import.sty, then Meteor won’t
process it during the build unless these files are directly referenced from a style file.

 In practice you’ll end up with a single styles.less file that may look similar to list-
ing 11.1. Obviously the referenced files must exist in order to import them.
Licensed to Mark Watson <nordickan@gmail.com>

264 CHAPTER 11 Building and debugging
@bg-color: #ff9900;

.rounded_top_mixin {
 -webkit-border-top-left-radius: 5px;
 -webkit-border-top-right-radius: 5px;
 -moz-border-radius-topleft: 5px;
 -moz-border-radius-topright: 5px;
 border-top-left-radius: 5px;
 border-top-right-radius: 5px;
}

.tab {
 background: @bg-color;
 .rounded_top_mixin;
}

@import "variables.import.less";

11.1.5 Adding a custom build stage

In version 1.1, the possible ways to extend Meteor’s build stages are limited to watch-
ing for changes to files with a specific extension. Changes to a file may trigger an
action associated with the watcher configured for the specific file extension, such as
transpiling one language to another.

 Essentially adding a custom build stage requires using a package. Build steps are
added during stage 5, the building of local packages. In the package.js file Package
.registerBuildPlugin() is used to identify that a package extends the build process.
Listing 11.2 shows the code used by the coffeescript package as an example.

■ name is the identifier for this build stage. A package may contain multiple build
plug-ins as long as they have unique names.

■ use references Meteor Isopacks that this build stage may depend on as a string
or array of strings.

■ sources contains an array of strings that defines which files are part of the
plug-in.

■ npmDependencies is an object that holds npm package names and versions that
the plug-in may depend on.

In case you need to write your own build plug-in—say, for transpiling TypeScript
(another shorthand notation for JavaScript) to plain JavaScript—you need to replace
the coffee-script npm dependency with the ts-compiler module. Additionally, you
need to adjust the name and source file accordingly.

Package.registerBuildPlugin({
 name: "compileCoffeescript",
 use: [],

Listing 11.1 Sample style file using the LESS preprocessor

Listing 11.2 Registering a build plug-in with CoffeeScript support in package.json

Declaring
a variable

Declaring
a mixin

Using a variable

Using a mixin

Importing additional
.less files
Licensed to Mark Watson <nordickan@gmail.com>

265The Meteor build process
 sources: [
 'plugin/compile-coffeescript.js'
],
 npmDependencies: {"coffee-script": "1.7.1", "source-map": "0.1.32"}
});

In the source files of a build plug-in, you can use Plugin.registerSourceHandler()
to define what actions to execute if files with a particular extension are changed. If the
plug-in is supposed to monitor files with a .ts extension, then it must be specified as a
source handler. Listing 11.3 outlines the essentials parts of a build plug-in. Using
compileStep, it’s possible to either read or write to the currently processed files.5

//file: plugin/compile-typescript.js
var typescript = Npm.require('ts-compile');

Plugin.registerSourceHandler('ts', handler);

var handler = function (compileStep) {
 var fileContents = compileStep.read().toString('utf8');
 // transpiling logic, result stored inside jsCode
 compileStep.addJavaScript({
 path: outputPath,
 sourcePath: compileStep.inputPath,
 data: jsCode
 });
};

NOTE As of version 1.1 there’s a limitation on the source handler that only
one build plug-in per file extension can be used. There can’t be multiple
plug-ins that add a build step for JavaScript files, for example.

If you add a package to a project that turns TypeScript or CoffeeScript into JavaScript,
the build and run process will look like this:

1 Isobuild determines which file has changed.
2 It looks at the filename extension and checks if a compileStep is associated with

it. There may only be one step per file extension.
3 If an associated compileStep is found, Isobuild executes it and saves the output

as defined by the build plug-in.

Listing 11.3 Skeleton for transpiling TypeScript to JavaScript during the build

5 The official documentation for using compileStep can be found at https://github.com/meteor/meteor/
wiki/CompileStep-API-for-Build-Plugin-Source-Handlers.

A single source file is
used for this plug-in.

Two npm modules are required
to execute the plug-in.

Required npm modules must
be included via NPM.require.

The file extension is used
without the first dot.

compileStep gives the handler
access to the current file.

addJavaScript writes the
result of the build step
into a JavaScript file.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/meteor/meteor/wiki/CompileStep-API-for-Build-Plugin-Source-Handlers
https://github.com/meteor/meteor/wiki/CompileStep-API-for-Build-Plugin-Source-Handlers

266 CHAPTER 11 Building and debugging
4 If you use the build command or run Meteor with the --production flag,
merging and minification run independently and after completing all steps of
the build plug-in.

11.2 Accessing running applications
In previous chapters you’ve used the browser console to send commands to a running
application, such as to check the values of a Session variable. In this section, we’ll
explore possible options to access the server side of a running application as well to
allow better debugging capabilities.

11.2.1 Using the interactive server shell

Whenever you issue meteor run in a terminal session, you can view all server output in
the same terminal window. All console logging that takes place on the server side is
shown, but it doesn’t allow you to send any commands. Instead, whenever you need to
check the current state of variables you can add a console.log() to the JavaScript
files, which triggers a server restart.

 For locally running applications, the Meteor CLI tool can open an interactive shell ses-
sion, where you can send commands to the server just like inside the browser console.

INVOKING THE INTERACTIVE SHELL

Open a terminal session and navigate to the Meteor project folder. Run the server
using the following:

$ meteor run

You can now see all server messages scroll by as the project starts up. Open a second
terminal session and navigate to the same project folder. Now issue this command:

$ meteor shell

This command opens up an interactive shell, as shown in figure 11.4.

Figure 11.4 Invoking
the interactive server
shell using the meteor
command
Licensed to Mark Watson <nordickan@gmail.com>

267Accessing running applications
USING THE INTERACTIVE SHELL

All shell commands start with a leading dot. They can be used to execute any code
that you would otherwise put inside a file. For example, during development you can
query external APIs, call helper functions, or easily remove content from the database
using Collection.remove(). That way, you can also use the Meteor syntax instead of
the slightly different MongoDB syntax and you don’t need an additional MongoDB
connection using RoboMongo or meteor mongo.

 The shell supports autocompletion of all Meteor globals when you use the Tab key.
You can also access a complete history of all commands by using the up and down
arrow keys. The shell history is stored in the project folder in the .meteor/local/shell-
history file. Using the .save and .load commands, you can store a sequence of com-
mands for reuse. All commands from the current session will be saved. This can be
useful for saving scenarios like filling in fixtures or resetting the application state to a
certain point. Saving and loading requires a unique name. To store a sequence of
commands under the bootstrap identifier, you could use the following:

> PostsCollection.insert({title: 'first test article'})
'i4xZb8WM8Lr63KwA4'
> PostsCollection.insert({title: 'second test article'})
'PvRkekuDuBn6Wx5kY'
> .save bootstrap

Whenever you want to re-execute these commands, you can do so by issuing .load
bootstrap inside the shell. The saved REPL6 files can be found in the project/
.meteor/local/build/programs/server/ folder. Multiple shells may be opened for the
same project.

NOTE Both the shell-history file and the REPL files are ignored by Git by
default. If you want to add them to your source code repository, you must
adjust the .gitignore file accordingly.

11.2.2 Debugging using node-inspector

If you need to perform more sophisticated server-side debugging of an application,
node-inspector is a handy utility. It’s a browser-based debugger interface for Node.js
that you can use to set breakpoints, inspect source files, step through program execu-
tion, and inspect values and variables.

 Passing the debug command to the meteor CLI tool provides a simple way to use
node-inspector. Make sure you are in a project’s root directory and that it’s currently
not running. Then issue this command:

$ meteor debug

6 REPL stands for Read-Eval-Print-Loop and refers to the fact that it isn’t a fully interactive shell where, for
example, your commands could query additional user input during execution. They’re simply read and exe-
cuted, and the result is printed to the screen.
Licensed to Mark Watson <nordickan@gmail.com>

268 CHAPTER 11 Building and debugging
Any WebKit-based browser is capable of running node-inspector, which means both
Chrome and Safari can be used to access the debugging URL. You can’t use Firefox or
Internet Explorer.

NOTE Accessing the application using http://localhost:3000 is still possible in
debug mode. Additionally, you can open the debugger interface using http://
localhost:8080/debug?port=5858.

Once the server starts up, you can access both the app and the debugging interface. If
you don’t see your application starting up, go to the debugging URL and check the
current execution status. If code execution is paused, you’ll see a message icon at the
top of the right sidebar, just like in figure 11.5. Click the pause arrow at the left of the
icon bar to continue program execution.

 The application will run as usual, but you’ll now be able to use the debugging
console to inspect what happens during code execution on the server. Two of the
most important tools are setting breakpoints and inspecting and modifying vari-
able content.

 Breakpoints are markers that define where code execution should be paused so
that each step can be executed individually to identify the actual behavior of a func-
tion or code section. You can set them either in the browser window by clicking an
individual line number of a file or by using the debugger; statement. Listing 11.4
shows a simple example where the variable status is assigned the value initialized,
and immediately after code execution is paused. Using node-inspector, you can then
inspect the content of the status variable.

Use the icons to
continue and pause
or step through
function calls.

Step over next
function call.

Step into next
function call.

Step out of
current function.

Deactivate
breakpoints.

Shows whether
code execution is
currently paused

Figure 11.5 The icons on the top of the right sidebar enable stepping through functions and pausing
execution.
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:3000
http://localhost:8080/debug?port=5858
http://localhost:8080/debug?port=5858

269Accessing running applications
if (Meteor.isServer) {
 Meteor.startup(function () {
 var status = 'initialized';
 debugger;
 if (status === 'initialized'){
 status = 'done'
 }
 console.log('status is now ' + status);
});

Hover the mouse cursor over the variable name, and its contents will be displayed in a
yellow pop-up as well as on the right side under Scope Variables (where you can change
the value to something else). For setting breakpoints or inspecting variable content
from other files, open the file navigator using the top-left icon (see figure 11.6).

TIP If node-inspector doesn’t seem to behave like it should, try refresh-
ing the browser. If that doesn’t work, restart Meteor with the debug com-
mand again.

node-inspector is a powerful tool that enables you to gain valuable insight into your
application’s behavior. To understand all its features, take a look at the documentation
at the project’s GitHub page: https://github.com/node-inspector/node-inspector.

Listing 11.4 Setting breakpoints using debugger;

When running with
meteor debug, this will
cause the app to pause.

Click a line
number to set
a breakpoint.

Change the variable here.

Hover the mouse
cursor to see
the contents of
a variable.

Open the navigator
to select other files.

Figure 11.6 Inspecting and changing the contents of a variable with node-inspector
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/node-inspector/node-inspector

270 CHAPTER 11 Building and debugging
11.3 Creating browser applications
Applications may support one or more platforms. By default, all new projects have the
server and browser platforms enabled. As mentioned earlier, you can view a list of all
supported platforms for a project by issuing this command:

$ meteor list-platforms

Unless you’ve added additional platforms already, the output will show browser and
server. To deploy an application to a server, you have to bundle it first. The output is
similar to that of meteor run --production, but there’s no need to run continuously
and watch for file changes.

NOTE In version 1.0 Meteor projects must always contain the server platform.
It’s not possible to build for the browser platform only.

11.3.1 Application configuration using Meteor.settings

Earlier we talked about storing configuration data like API keys and secrets only on
the server side. But there are scenarios where multiple server environments exist—
dedicated development, testing, and production environments. Each may require dif-
ferent settings, which is why it’s not efficient to store configuration data in the code
files but rather in a configuration file. Meteor can take a JSON file and expose its con-
tents via the Meteor.settings object. That means you can use code like Meteor
.settings.oauth.twitter.apikey instead of a string. The following listing shows the
structure of a configuration file for Meteor settings.

{
 "oauth": {
 "twitter": {
 "apikey": "123abc",
 "secret": "abc123"
 }
 },
 "public": {
 "version": "v1"
 }
}

Meteor doesn’t use a settings file by default. The settings file must be specified on the
command line using the --settings parameter.

 To use a file named settings.json, start the project with this:

$ meteor run --settings settings.json

Alternatively, you can store the JSON configuration object in an environment variable
called Meteor.settings. Either way, you can access properties of the settings object,
as shown in listing 11.6.

Listing 11.5 Setting configuration options for applications via settings.json
Licensed to Mark Watson <nordickan@gmail.com>

271Creating browser applications
NOTE When you’re using Meteor.settings always provide the settings object
upon start of the Meteor server or you’ll run into errors.

if (Meteor.isServer) {
 console.log("Using the following API Key for Twitter");
 console.log(Meteor.settings.oauth.twitter.apikey);
}

The configuration file isn’t available on the client, but you can access all configuration
settings stored inside a public field by using Meteor.settings.public. Any content
that is stored outside the public field won’t be accessible on the client and can be
safely be used for sensitive configuration settings.

 Using different settings files, you can easily run applications in staging and produc-
tion environments with different databases and API connections.

11.3.2 Building Meteor projects

Meteor can create bundles of an application using the meteor build command. The
output is a fully contained Node.js application in the form of a tarball. If needed,
the build command can be changed to create a directory with the same contents
as the tarball.

 Creating the bundle is as simple as navigating to the application root directory and
calling the command with an argument specifying you want to create the output file.

TIP When you’re creating a tarball, it’s usually fine to place the output in the
current project folder, but for various reasons it might be better to put it else-
where. First, you could accidentally add it to the source code repository unless
you explicitly add a rule to ignore this file. Second, if you decide to create a
directory instead of a file or build for another platform, the resulting files will
be interpreted as additional source files when you use meteor run and pro-
duce error messages.

To place the archived bundle file for your Meteor application at the parent folder of
the current project in a directory called builds, use the following commands:

$ cd myMeteorProject
$ meteor build ../builds

The tar.gz file contains the compiled Meteor application, which you can put on a
server, extract, and run (see chapter 12 for more details).

 You’ll notice that the entire directory structure has changed significantly from the
original project organization (see figure 11.7). Instead of client, server, and public
folders, you’ll now see two main folders: programs and server. All relevant code is
located in the programs folder, organized by platforms. In the server folder, all mod-
ules, packages, and assets are stored. The contents from the assets and private folders

Listing 11.6 Using Meteor.settings with values from a JSON configuration file
Licensed to Mark Watson <nordickan@gmail.com>

272 CHAPTER 11 Building and debugging
are treated differently because they’re moved into an assets directory inside the bun-
dle. All other contents are moved to the app directory; the tests folder is an exception
because it isn’t put into production bundles.

 All resources that are sent to the browser are stored in the web.browser folder.
Running meteor build implies using the --production option, so there are three
important files: one each for HTML, CSS, and JavaScript. Also, the static resources
from the public directory are copied for the client platform and can be found in the
app directory.

 You’ll notice several other files are available that weren’t present before, such as
main.js. These files are generated automatically and include the main components
needed to run the project as a regular Node.js application.

Files in assets and private

are moved to assets

All files from client are

merged and minified into

3 files inside web.browser

All other content goes to

the app directory

tests is not included in a build

Application sources Application bundleIsobuild

Figure 11.7 The output of meteor build
Licensed to Mark Watson <nordickan@gmail.com>

273Creating mobile applications
 Although meteor build is simple to use, it does have some limitations in regard to
portability. As long as you don’t rely on platform-specific, binary npm modules, you
shouldn’t experience any problems moving an app from a Mac OS X development sys-
tem to an Ubuntu Linux server. In some advanced cases that require truly portable
Node.js applications, demeteorizer is the more flexible tool. Take a look at chapter 12
for further information on how to use it.

11.4 Creating mobile applications
Apps running on smartphones and tablets are often similar to web applications.
Instead of using a browser, they embed the application in an app container. That way,
they combine aspects of server/client-oriented websites based on HTML5 and native
apps, which is why they’re called hybrid apps. Meteor leverages the power of Cordova
to add mobile platform support.

11.4.1 Hybrid apps with Cordova

Cordova7 is a framework that converts HTML, JavaScript, and CSS into a native
application that can run on mobile platforms such as iOS or Android. It provides a
native wrapper around a web view (think of it as an embedded browser) and offers
access to hardware features like the camera or GPS. To a user, apps built on Cor-
dova look and behave exactly like native apps. They’re distributed via app stores, so
in order to sell mobile Meteor apps you must be part of Apple’s or Google’s devel-
oper program.

 Because it’s an Apache project, Cordova is open source and free to use. There’s
also PhoneGap, which is often used to describe the same tool. Technically PhoneGap
is a distribution of Cordova that’s maintained by Adobe and offers some paid features.
For the purpose of putting Meteor applications on mobile devices, we’ll refer only to
Cordova from here on, but on Google and Stack Overflow most of the time you can
use both terms interchangeably.

CORDOVA FEATURES

The most important advantage Cordova can add to a Meteor app is the web browser
shell that’ll make it look and behave like an app. This shell allows apps to be bought
in the app stores and started without you having to know which server URL to navi-
gate to.

 By using plug-ins, Cordova can access a device’s hardware or exchange data with
other apps on a device. These plug-ins provide APIs to use the camera, access contacts,
or even enable in-app purchases.

7 If you want to learn more about Cordova, refer to Raymond K. Camden’s Apache Cordova in Action (Manning,
2015).
Licensed to Mark Watson <nordickan@gmail.com>

274 CHAPTER 11 Building and debugging
 A full list of all available plug-ins for Cordova can be found at http://plugins
.cordova.io/. Some of the plug-ins are available as Meteor packages as well. The Meteor
Development Group provides the following:

■ mdg:camera—Allows an app to access the device’s camera
■ mdg:geolocation—Provides a reactive interface to the device’s GPS location
■ mdg:reload-on-resume—Delays hot-code pushes until the app is closed and

reopened

CORDOVA LIMITATIONS

Although Cordova makes it easy to turn HTML5 applications into mobile apps, it’s still
the same as browsing a website. Don’t expect the same performance from the DOM
rendering as from a graphic-intensive action game written in Java. That said, many
apps will certainly do fine with modern devices.

 Because Cordova only shells web applications, it doesn’t provide a UI framework or
enforce design guidelines.

11.4.2 Adding mobile platforms

Meteor supports two mobile platforms: Android and iOS. When either of them is
added to a project, the build command will take care of creating not only a tarball but
also a valid Android Studio or Xcode project. During development, there’s no need to
open either of those tools because Meteor is capable of running an application inside
simulators as well.

PREREQUISITES

Before you can add mobile platforms to a project, you must install the SDKs for each
platform on your development machine. The iOS SDK is available only on Mac OS X
and requires you to also install Apple’s Xcode. It’s not possible to build iOS applica-
tions on Linux or Windows. You install the SDKs by using these meteor commands:

$ meteor install-sdk ios
$ meteor install-sdk android

You have to accept the license agreement for the iOS SDK. If you get an error mes-
sage, try opening Xcode and click on the agreement. The Android SDK has a dedi-
cated configuration interface, which can be invoked by the meteor CLI tool as well.
You can use this interface to download updates or manage devices that can be used
with the simulator. It’s not necessary to perform any configuration before you can
start bringing an application to Android, so we won’t look into the details of this
tool. Should you ever need the Android SDK Manager, you can start it with this
command:

$ meteor configure-android
Licensed to Mark Watson <nordickan@gmail.com>

http://plugins.cordova.io/
http://plugins.cordova.io/

275Creating mobile applications
ADDING PLATFORMS

Making a Meteor application run on mobile devices requires adding the correspond-
ing platform to the project. To do so, use one or both of these commands:

$ meteor add-platform ios
$ meteor add-platform android

The Meteor build process will automatically be configured to include the required
steps to produce mobile apps for either platform. But meteor run won’t automatically
run your application for a mobile platform; you need to add the platform name as an
argument to the run command like this:

$ meteor run ios
$ meteor run android

This command will compile the application and open it in a simulated iPhone or
Android device. Although the application itself won’t make use of any UI guidelines
for the platform, all input fields like drop-down lists and text boxes will rely on the
devices’ default interfaces (see figure 11.8).

 If you prefer to run the Meteor app on an actual device, you’ll need to use Xcode
(https://developer.apple.com/library/mac/documentation/IDEs/Conceptual/App
DistributionGuide/LaunchingYourApponDevices/LaunchingYourApponDevices.html)

Android iOSBrowser

Figure 11.8 Cordova apps use device-specific input UIs by default, such as when using drop-down lists.
Licensed to Mark Watson <nordickan@gmail.com>

https://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/LaunchingYourApponDevices/LaunchingYourApponDevices.html
https://developer.apple.com/library/mac/documentation/IDEs/Conceptual/AppDistributionGuide/LaunchingYourApponDevices/LaunchingYourApponDevices.html

276 CHAPTER 11 Building and debugging
or follow the instructions for setting up an Android device for testing (http://developer
.android.com/tools/device.html#setting-up). The run command must include a device
as a parameter to tell Meteor to use actual hardware instead of a simulator:

$ meteor run ios-device
$ meteor run android-device

When it’s time to release your project to mobile devices, issue the meteor build com-
mand to create the required Xcode (when publishing for iOS) or Android Studio
project files. In fact, all available platforms are built by this command. Because mobile
devices don’t allow users to enter URLs like browsers do, the build command requires
an additional parameter to specify the server during build time:

$ meteor build ../builds --server=http://mobile.meteorinaction.com

Be sure that a Meteor app is available at the server URL or the app may run perfectly
fine inside the simulator but not once it’s deployed to an actual hardware device. Also,
before submitting your app to the stores check that the server URL is correct.

11.4.3 Configuring mobile applications

You can customize mobile applications by changing the default configuration. App
icons, launch screens, application meta information, and plug-in settings may be man-
aged using a mobile-config.js file at the root level of a project.

Submitting to the app stores
Meteor won’t create a finished mobile application that can be submitted to the app
stores. For both Android and iOS, you’ll still need to complete the necessary steps
for publishing the applications just as you would for any other mobile app. But you
won’t have to write any code in Xcode or Android Studio. You can only make the fin-
ishing touches to distribute your app using these tools.

The first prerequisite to get your mobile Meteor application on a smartphone or tablet
is to join the developer program. For both platforms, doing so involves registration
and paying a fee; you’ll then be able to submit applications to the Google Play Store
or the Apple iTunes Store.

The specifics may change, so you should consult the official process of creating an
application, but these are the basic steps you need to follow. Once you have a devel-
oper account, you’ll obtain a certificate that you can use to sign your application
code. This certificate verifies that your application is your app and that someone else
isn’t distributing it under your name. The certificate usually accompanies a distribu-
tion profile that lists company information and, most important, a unique identifier
for your application.
Licensed to Mark Watson <nordickan@gmail.com>

http://developer.android.com/tools/device.html#setting-up
http://developer.android.com/tools/device.html#setting-up

277Creating mobile applications
APPLICATION META INFORMATION USING APP.INFO()
App.info() holds an object that contains further information regarding an app. It
uses the following properties:

■ id—Unique reverse-domain identifier
■ version—Full version number using x.y.z notation
■ name—Displayed on the device’s home screen and used in app stores
■ description—Used in app stores
■ author—Used in app stores
■ email—Used to further specify the author information in app stores
■ website—Used to further specify the author information in app stores

All keys take a string value, as shown in the following listing.

App.info({
 id: 'com.meteorinaction.mobile.app',
 version: '1.0.0',
 name: 'Meteor in Action Mobile App',
 description: 'This is a mobile app for Meteor in Action',
 author: 'Stephan Hochhaus',
 email: 'stephan@meteorinaction.com',
 website: 'http://meteorinaction.com'
});

ICONS AND LAUNCH SCREENS

To customize both the logo that’s shown on the home screen of a device and the screen
shown during the startup of an application, use the API commands App.icons() and
App.launchScreens(). When those blocks are not filled, the default Meteor icons
and launch screens are used. Different devices use different resolutions, which is why
both commands take a variety of properties. For distribution in app stores, all screen
sizes must have a dedicated icon and launch screen configured. Check the mobileApp
project from this chapter’s code samples for a full list of all currently supported device
types. The following listing shows how they’re used in the mobile-config.js file.

App.icons({
 'iphone': 'icons/iphone.png',
 'android_ldpi': 'icons/android-launcher.png',
 });

App.launchScreens({
 'iphone': 'icons/splash-iphone.png',
 'android_ldpi_portrait': 'icons/splash-ldpi_portrait.png',
});

Listing 11.7 Sample App.info() for a mobile app

Listing 11.8 Setting up icons and launch screens in mobile.config.js
Licensed to Mark Watson <nordickan@gmail.com>

278 CHAPTER 11 Building and debugging
WHITELISTING URLS

In web browsers your application may request additional information from various
URLs without you noticing it. For security reasons Cordova applications are not allowed
to access arbitrary URLs. Only URLs that are whitelisted in the mobile-config.js file can
be accessed. Each allowed URL is defined using App.accessRule using the syntax

App.accessRule(domainRule, {launchExternal: false})

The domainRule can be any URL, using placeholders for subdomains. Setting options
is not required. The only possible option is launchExternal, which allows the Cor-
dova apps to launch a URL in an external application on the mobile device. Listing 11.9
gives an example of typical access rules.

NOTE Whenever your mobile application relies on content from external
APIs, you must declare access rules in order to allow your app to access the
remote URL.

App.accessRule('https://*.googleapis.com/*');
App.accessRule('https://*.google.com/*');
App.accessRule('https://*.gstatic.com/*');

App.accessRule('https://pbs.twimg.com/*');

App.accessRule('http://graph.facebook.com/*');
App.accessRule('https://graph.facebook.com/*');

CONFIGURING CORDOVA PLUG-INS

Besides Isopacks and npm modules, Meteor supports Cordova plug-ins. The mobile-
config.js file can also be used to configure these plug-ins. You can set the configura-
tion of the WebKit container via App.setPreference(). Technically it allows you to set
values for the preference tag inside Cordova’s config.xml file.

 Cordova plug-ins can be configured using App.configurePlugin(). They also use
a rather simple key-value style for configuration, so the command takes two argu-
ments: the name of a plug-in and a config object providing key-value pairs.

 The following listing shows how to configure both global preferences as well as a
plug-in called facebookconnect.

App.setPreference('BackgroundColor', '0xff0000ff');
App.setPreference('HideKeyboardFormAccessoryBar', true);

App.configurePlugin('com.phonegap.plugins.facebookconnect', {
 APP_ID: '1234567890',
 API_KEY: 'apikey'
});

Listing 11.9 Declaring URL access rules in mobile.config.js

Listing 11.10 Configuring app behavior and Cordova plug-ins

Allow access to Google
APIs such as Maps.

Allow access to Twitter
profile images.

Allow access to Facebook’s
profile images.
Licensed to Mark Watson <nordickan@gmail.com>

279Creating mobile applications
11.4.4 Adding mobile functionality

Although turning an existing browser application into a mobile app isn’t difficult, so
far we haven’t shown you how to add any mobile-specific functionality. Similar to the
isServer() and isClient() methods, you can use a Meteor.isCordova() function to
run code exclusively on mobile platforms:

if (Meteor.isCordova) {
 console.log('Printed only in mobile cordova apps');
}

Using this conditional is the simplest way to add mobile-only functionality, but it
doesn’t enable access to a device’s features. To do so, you have to enhance the exist-
ing application.

 Cordova is similar to Meteor because it uses a small core set of functionality that’s
extended by plug-ins. If a feature can be added by using an Isopack such as mdg:geo-
location, its usage is like most other packages.

 Any functionality that relies on a Cordova/PhoneGap plug-in should wrap code in
a Meteor.startup() block. In case of mdg:geolocation, you’d need code like this:

Meteor.startup(function () {
 Geolocation.currentLocation();
});

Without going into the details of using specific packages, we’ll look at another way to
extend the application’s functionality by integrating Cordova plug-ins into an app.
There are two types of plug-ins: those that are bundled with the core (which can be
identified by their name prefix, org.apache.cordova) and third-party plug-ins, which can
be found in the official plug-in registry at http://plugins.cordova.io/ and on GitHub.

NOTE Don’t wrap mobile code inside an isServer() block or put it in the
server folder because eventually it must run on the mobile client device.

Let’s look at an example of how to use plain Cordova plug-ins with Meteor. We’ll use
the dialogs plug-in, which provides native UI dialog elements to an application. First,
add it via meteor add. Because it’s a Cordova plug-in, it uses the cordova: prefix by
definition. Meteor doesn’t perform the same consistency and compatibility checks as
it does with Isopacks, so you must specify a specific version instead of relying on Ver-
sion Solver to determine the correct one:

$ meteor add cordova:org.apache.cordova.dialogs@0.3.0

The dialogs plug-in will now be listed along with all other packages when issuing
meteor list. Listing 11.11 shows how to create a native dialog based on Meteor’s
default project. In the event map you add an additional dialog to the change event on
a select box and wrap it in an isCordova() block to prevent it from being executed in
the browser. Meteor can use the plug-in as is; there’s no need to wrap it in API calls.
The same navigator.notification.alert that can be used in regular Cordova apps
Licensed to Mark Watson <nordickan@gmail.com>

http://plugins.cordova.io/

280 CHAPTER 11 Building and debugging
can be used here. It takes four arguments: the dialog message in the form of a string, a
callback function when the alert is dismissed (here, null), a dialog title (which defaults
to Alert), and the button name (which defaults to OK).

Template.select.events({
 'change #platform': function (evt) {
 var selectedPlatform = evt.currentTarget.value;
 if (Meteor.isCordova) {
 navigator.notification.alert(
 'You picked ' + selectedPlatform,
 null,
 'Your choice',
 'I know'
);
 navigator.notification.alert(
 'You selected',
 selectedPlatform
);
 } else {
 console.log('selected ' + selectedPlatform)
 }
 }
});

11.5 Summary
In this chapter, you’ve learned that

■ Although JavaScript isn’t a compiled language, Meteor apps need to be built
before running them.

■ When you use the --production flag with the run command, all files will
be minified.

■ The file load order is based on hierarchical position and filenames.
■ The build process can be extended by using packages such as coffeescript

or less.
■ By default, all projects are built for a server-browser scenario.
■ Adding mobile platforms extends the build process to create hybrid apps for

iOS or Android using Cordova.
■ Cordova plug-ins can be used directly with Meteor; they don’t have to be wrapped

inside Isopacks.

Listing 11.11 Adding the Cordova dialogs plug-in to a change event

Only execute this code
block on mobile devices.

Create a
dialog box.

Message
text Callback function when

alert is acknowledged

Dialog box title

Button text
Licensed to Mark Watson <nordickan@gmail.com>

Going into production
When all features are implemented and all bugs ironed out, it’s time to go into pro-
duction. This chapter covers all the essentials of deploying a Meteor application.
We won’t go into the specifics of server administration, but we’ll explore typical
architectures and possible options in regard to small as well as scalable deploy-
ments, so you know what to do when your app becomes a success.

 In an ideal world, you’ll already have thought about the “go-live” of your
application even before you started writing a single line of code. If you haven’t,
now is the time to revisit expectations and requirements. You’ll notice that your

This chapter covers
■ Organizing your code to ease deployments
■ Integrating testing frameworks using Velocity
■ Estimating and testing load
■ Understanding deployment options, from

simple to highly available
■ Using Meteor UP to deploy an application
■ Using environment variables to configure

the server
■ Architecting highly available architectures
281

Licensed to Mark Watson <nordickan@gmail.com>

282 CHAPTER 12 Going into production
deployment options are greatly influenced by the requirements you have. But because
most of the largest applications started small as well, we’ll begin by looking at the sim-
plest deployment scenarios and introduce larger scale and the complexity it intro-
duces as a second step.

12.1 Preparing for production
At the most basic level, putting your project into production means copying it to a
remote server and giving users access. From this moment on, you’ll notice bugs, plan
additional features, deploy patches, receive user feedback—you’ll be working in two
worlds: the production environment and the development environment. Before you
copy code to any servers, let’s walk through some essential techniques that are useful
for running an application in production.

12.1.1 Using version control

From the moment you issue the first meteor create command, you’re preparing for
production. Unless you’re at a hackathon and will never again look at the code you
created, place your project under version control, especially if it consists of more than
just a few lines of code or is developed by more than a single person. Systems such as
Git, Subversion, or IBM ClearCase give you a safety net that also helps with develop-
ment as well as deployment.

 The benefits of source control for deployment may not be as apparent when you
first copy your files to a server. But how do you know what revision is available to users
and whether a bug raised from a paying customer still exists or has already been fixed
before you go on a two-week vacation?

TIP Add your Meteor project not at the root of your repository but in an app
folder. That way, you can also add non-application resources such as configu-
ration files to the same repository.

Once you’re ready to go into production you should have a dedicated master
branch that represents production-quality code and tag it every time you deploy it
into production. That approach makes it easy to see what code base is used for your
running app.

 Using Git we’ll walk you through the steps required. Many people do all work on
the master branch, which makes merging changes much more complicated than it
could be. Instead, use a branch for all development or error fixing and let only work-
ing code make it into the master branch.

TIP When using Git be sure the master branch always contains only the most
recent and stable code. No development work should be done on the master
but on dedicated development or feature branches.

In a Git repository, a simple project may look similar to figure 12.1.
Licensed to Mark Watson <nordickan@gmail.com>

283Preparing for production
All development takes place in a dedicated branch called devel. Once development is
finished and all tests are passed, the code is merged over to master and is tagged with
a version number (such as v1.0).

 The advantage of using multiple branches is that you can add features to your
application that you don’t yet want to deploy but still be able to fix critical issues in
your production code without risking mixing untested development code with a live
environment.

 In our scenario, you’ve successfully deployed stable code into production and
tagged it v1.0. While working on the next version, 2.0, a critical issue is reported and
requires a hotfix. To work on the hotfix, you create a new branch called hotfix-v1.0.
Once you correct and test the code in the hotfix branch, you merge it back into mas-
ter. All this is unaffected by anything that might happen in the devel context.1

1 You can find a more in-depth explanation of this branching model at http://nvie.com/posts/a-successful-git-
branching-model/.

Master always
contains
stable code.

Master
branch

Feature
branches

Hotfixes use a
dedicated branch.

Tags indicate
production releases.

Figure 12.1 Using multiple branches for development and hotfixes in Git
Licensed to Mark Watson <nordickan@gmail.com>

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

284 CHAPTER 12 Going into production
 The greater the number of people working on a project or the more complex your
application becomes, the more branches might be used. Just be sure that you can eas-
ily keep track of the code used in production at all times.

 Some providers such as Heroku make it the default to deploy your application
from source control. Just as in the previous example, they assume that the master
branch contains stable code.

12.1.2 Testing functionality: the Velocity framework

All code that you merge into the master branch should be sufficiently tested. Tagging
your code makes it easier to keep track of testing candidates as well, especially if the
person testing your application isn’t the app’s developer.

 There are various flavors of testing, including unit testing, which isolates small
parts of the application; integration testing, which ensures all parts work together well;
and the user-focused approach of behavior-driven tests (BDT, also known as accep-
tance tests). In recent years, several testing tools for JavaScript applications have estab-
lished themselves to cover all of these areas. With the exception of Tinytest, Meteor
uses the same tools for testing that you may know from other projects: Jasmine,
Mocha, Robot Framework in combination with Selenium, and Cucumber.

 Take a look at table 12.1, which gives you an overview of the testing frameworks
and what areas they’re used for. It also lists the package name for using them within
Meteor. Each of these frameworks has quite extensive documentation available, so
we won’t discuss their use, but we’ll show you how to integrate them into your
Meteor projects. To get a better understanding of how these individual tools work,
you can visit the Velocity page at http://velocity.meteor.com or look at each project’s
documentation.

Meteor’s official testing framework is called Velocity. Technically it’s a test runner that
includes specific testing frameworks. Written by a team of developers in the Meteor

Table 12.1 Overview of functional test tools for Meteor

Framework Package name Unit testing
Integration

testing
Acceptance

testing

Tinytest tinytest Server, client
(Isopacks only)

— —

Jasmine sanjo:jasmine Server Client —

Mocha mike:mocha — Server, client —

Robot
Framework

rsbatech:robotframework — — Client

Cucumber xolvio:cucumber — — Client
Licensed to Mark Watson <nordickan@gmail.com>

http://velocity.meteor.com

285Preparing for production
community, Velocity lets you define automated tests2 using any mix of established test-
ing libraries.

 The Velocity framework is added via packages, and it even integrates directly in the
application’s UI. Whenever you add a testing framework from table 12.1 to your appli-
cations, you also bring in Velocity. To use Jasmine, you’d issue the following:

$ meteor add sanjo:jasmine

All framework packages include an HTML reporter that displays the results of your
tests in an overlay. This reporter is added by default in all frameworks except Jasmine.
To add it explicitly for Jasmine, use this:

$ meteor add velocity:html-reporter

Running meteor will now display a green dot in the upper-right corner of the page.
This is the HTML reporter, which can be accessed by clicking the dot, as shown in fig-
ure 12.2. The reporter shows the test results of all installed Velocity test frameworks. If

2 If you plan on doing regular updates to your production environment, it pays off to set up a continuous inte-
gration (CI) or continuous delivery (CD) environment to perform all tests at the push of a button and option-
ally deploy to your target systems. Take a look at Travis or Jenkins if you want to start using the benefits of a
CI environment.

A click on the
color reference brings up
Velocity’s HTML Reporter.

Figure 12.2 Velocity has an HTML reporter that overlays the actual application with a full test report.
Licensed to Mark Watson <nordickan@gmail.com>

286 CHAPTER 12 Going into production
no tests have been defined yet, the Jasmine package allows you to create a set of sam-
ple tests. Once a test is available, this view shows each test result (pass or fail). It
updates reactively if test results change. Integration and unit tests will typically be
rerun every time your code is saved, to enable real-time feedback on whether code is
passing or failing tests.

 All tests live in a folder called tests at the root level of a Meteor application. They
aren’t added to the application when build is executed or the --production flag is
used to run the server. That means you don’t have to remove tests before deploying
your application.

 Although you should have unit tests in place, they don’t ensure that users are able
to perform all actions in your application without errors. When testing your applica-
tion don’t forget to include negative tests—test for what happens if users do unex-
pected things such as entering letters into a digit-only field. Use the 70/20/10 rule3

for testing: 70 percent unit tests, 20 percent integration tests, and 10 percent accep-
tance, or end-to-end, tests.

TIP Unless you have specific reasons to use Mocha or Robot Framework, you
can cover all areas of testing with both Jasmine and Cucumber.

At the end of the day, testing your code and tracking issues is all about transparency.
You need to know whether the application is ready for launch. If there are still open
issues, you need to decide whether they’ll prevent your application from going into
production or if they’re acceptable. Only code that’s sufficiently tested and free of any
bugs that prevent it from going into production should be tagged for deployment.

12.1.3 Estimating and testing load

If you haven’t thought about the expected number of users for your application,
now is the time. Certainly you have a good understanding of the users of your appli-
cation in terms of functionality, but now you’ll have to focus on scale by asking
three questions:

■ How many (concurrent) users do you have?
■ How much data (and load) does a single user generate?
■ Where are your users?

WORST, BEST, AND REALISTIC SCENARIOS

Even though it may be hard to guess the exact number of users, chances are you can
at least give somewhat reasonable numbers for the first months. A common approach
to estimating the visitors of a site is to assume three scenarios: best case, worst case,
and realistic case. In a best case, you come up with the maximum number of users you

3 See also this entry at the Google Testing Blog: http://googletesting.blogspot.de/2015/04/just-say-no-to-
more-end-to-end-tests.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://googletesting.blogspot.de/2015/04/just-say-no-to-more-end-to-end-tests.html
http://googletesting.blogspot.de/2015/04/just-say-no-to-more-end-to-end-tests.html

287Preparing for production
can expect if your marketing campaign is extremely successful. You shouldn’t consider
slashdotting4 unless you explicitly aim for it. The worst case marks the low end of the
spectrum, where the least number of people accesses your site, whereas the realistic
scenario is somewhere in the middle. If you already have a similar web presence, you
can use your existing server logs as a starting point.

 To illustrate how to estimate the number of users, let’s consider an online game
where users play a game of Scrabble against one another. Our worst-case scenario
expects 100 users per day (3,000/month), realistically 1,000 a day (30,000/month) will
be playing, and in the best scenario there might be 10,000 per day (300,000/month).

 What do these numbers tell you? At first you’ll use them to calculate possible stor-
age requirements. If every user can upload an avatar image and you expect them to
have detailed statistics about each game played as well as the words they used, you’ll
use 1 MB per user as your baseline. That tells you that you need between 3 and 300 GB
of storage for your application (see table below).

Unless you figure out the number of concurrent users, you can’t come up with any
sensible server requirements when it comes to load or memory. Making assumptions
and using simple math, you can determine a number of concurrent users, which is an
essential figure when designing your server setup.

ESTIMATING CONCURRENT USERS

To determine the required resources, you need to know a bit more about your users’
behavior. The numbers alone don’t tell you whether all players are evenly distributed
or whether they’re only active each Saturday night. This information is important
because you must also design your deployment to handle any spike loads, if you can
know about them in advance.

 Your Scrabble application will be a casual game, so you expect users to mostly play
during their nonworking hours. That means more traffic between 12 a.m. and 1 p.m.
(for a quick game during lunch break) and in the evening, from 6 p.m. to 11 p.m.
That leaves you with a six-hour window in which most games will be played. Because

4 The Slashdot effect, also known as slashdotting, occurs when a popular website links to a smaller site, causing
a massive increase in traffic. See http://en.wikipedia.org/wiki/Slashdot_effect.

Table 12.2 User estimates for a deployment

Worst case Realistic case Best case

Users/month 3,000 30,000 300,000

Users/day 100 1,000 10,000

Storage/user 1 MB 1 MB 1 MB

Overall storage requirements 3 GB 30 GB 300 GB
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Slashdot_effect

288 CHAPTER 12 Going into production
you’re still estimating, you can safely ignore all times outside this window and pretend
all users stay inside it.

 For the number of concurrent users, you’ll have to make one more assumption:
the average time a user spends playing.

 In a worst-case scenario, you have now 100 users who are distributed across six
hours. From the beta tests, you know that players typically spend 10 minutes playing
the game, and that on average four players take part per game. Six hours translate
into 360 minutes. You’ll use this number to calculate the maximum concurrency by
taking the number of users within your window and dividing it by the duration of the
number of games that fit into the time window:

Concurrent Users = Expected number of users / (Time Window / Average Game
Length)

Now you know that your servers should be capable of handling 3, 28, or 278 concur-
rent users, depending on the scenario (see table below).

The next step is to conduct load testing to figure out the amount of server resources
needed to serve that many concurrent users.

LOAD TESTING

Load testing is a complex task, especially if some of the processing is outsourced to a
client, as is the case with Meteor. Traditional tools that generate HTTP load such as
Apache Bench (ab) or Siege can’t be used to test JavaScript applications reliably.

 The solution is to use load simulation by generating DDP messages that would be
sent from the clients or to simulate the clients directly, such as using PhantomJS.
meteor-load-test (https://github.com/alanning/meteor-load-test), the first load-
testing tool for Meteor, sends DDP messages to stress an application. It uses Grinder, a
Java load-testing framework that can also be used to flexibly test APIs. meteor-down
(https://github.com/meteorhacks/meteor-down) is an alternative tool that allows you
to write Node.js applications that can directly subscribe to Meteor publications and
execute methods.

Table 12.3 Calculating concurrent users

Worst case Realistic case Best case

Users 100 1,000 10,000

Time window (mins) 360 360 360

Average players per game 4 4 4

Average game length (mins) 10 10 10

Concurrent games (rounded) 1 7 70

Concurrent users (rounded) 3 28 278
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/alanning/meteor-load-test
https://github.com/meteorhacks/meteor-down

289Preparing for production
 An example for using PhantomJS in combination with CasperJS is meteor-parties-
stresstest (https://github.com/yauh/meteor-parties-stresstest). The most important
part of load testing is to monitor the results and know how to interpret them.

 As a result of a load test, you can get to know important information about your
application. It’ll become clear where possible bottlenecks sit and whether your serv-
ers should have a bigger CPU or more RAM. Because this topic can become over-
whelming very quickly, a simple way to perform a load test is to find out how the
application scales.

 Try to find out whether your application scales in a linear fashion. Let five users
run concurrently against your app and see how much CPU and memory the server
consumes. Now increase by five users and check again. Perform this test at least two
more times; the more values you have, the more accurate your predictions will be.
Increase the number of users until you max out either RAM or CPU on the machine
under load.

 Eventually you should have values for 10, 20, 50, and perhaps more concurrent
users. Then you can draw a simple diagram that shows how the server behaves
under load. This will tell you what to look for in a server and give you an idea of the
cost to expect.

LOCATION

Last but not least, you should take into consideration where your users are located. If
you deploy an application where the user base comes from a small geographic region,
then you should take care that your hosting isn’t thousands of miles away. Reducing
network times is still an important factor to improve user experience, so make sure
your servers stay close to your users.

 If your users come from all over the world, you should take a look at hosting that
supports multiple servers in different geographical locations. Alternatively, a content
delivery network can help to reduce network traffic.

TIP Network latency is a huge factor that impacts user experience. Be sure to
not only use sufficiently dimensioned servers but also place them as close to
your target users as possible.

12.1.4 Server administration

Most software developers aren’t interested in running and managing servers, and they
shouldn’t. Thankfully you don’t have to be a server expert—there are many Platform-
as-a-Service (PaaS) offerings where you rent a Meteor or Mongo instance rather than
managing your own server. You do need to know enough about the overall architec-
ture, though, so you’ll be able to estimate the effort and cost involved in running
your application.

 If you don’t choose a full-service PaaS provider, you must decide who will manage
the application servers, monitor the load and possible outages, apply security updates,
and renew SSL certificates. Cloud providers often take care of these things, but you’ll
have to pay for the comfort.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/yauh/meteor-parties-stresstest

290 CHAPTER 12 Going into production
BACKUP

What happens when your servers crash and all data is lost? Your application source
code is safe in your version control system, but all user-contributed data is gone unless
you have some sort of backup strategy in place. Typically there are two types of data
that need to be backed up with a Meteor project:

■ MongoDB/your database
■ File uploads

Backing up MongoDB is fairly straightforward. You could create a replica set and run
another MongoDB instance off-site to achieve pretty much instant backups. Alterna-
tively, you perform a traditional backup. For a typical backup of MongoDB, you can
use mongodump and mongorestore to back up and restore the database.

 Backing up files isn’t different from any other web project. Just make sure you
include all relevant configuration files as well, if they aren’t under version control
(where they should be!). If your hosting doesn’t come with a backup solution,
it’s best to create your own rolling backup—for example, using rsnapshot (http://
www.rsnapshot.org/). Be aware that even though cloud providers claim to be secure,
they too may lose data and it’s always safer to have your own backup, especially if you
can’t afford to lose important customer data. Running off a RAID-1 drive is not a sub-
stitute for regular (daily or at least weekly) backups.

12.1.5 Checklist

You can use this simple checklist to make sure you’re ready to go into production. You
should be able to answer all questions with yes.

1 Are you using a version control system for your code?
2 Are there no issues with your software that prevent a go-live?
3 Do you know how many (concurrent) users to expect?
4 Did you conduct load testing to determine how much CPU/memory a single

user requires?
5 Did you calculate the amount of required disk space?
6 Do you know where your users are located?
7 Do users only exchange data via the database? If not, do you have a plan to

secure traffic between server instances?
8 Do you have dedicated and trained staff to manage the servers?
9 Do you have a backup strategy planned?

10 Did you test your backup strategy by performing a successful restore?

12.2 Setup and deployment
Now it’s time to put your application on a live server. Depending on the criticality of
your application and the number of users you expect, you can choose between three
Licensed to Mark Watson <nordickan@gmail.com>

http://www.rsnapshot.org/
http://www.rsnapshot.org/

291Setup and deployment
main deployment options. To help you decide on an approach, table 12.4 shows the
pros and cons of each.

For quick prototypes, the Meteor.com infrastructure is the easiest way to go, although
it’s not a good choice for production use because you get no guaranteed availability and
scaling is rather complicated. Your application may be offline or unresponsive at any
time. On the other hand, it’s a free option and so you’ll probably use it at some point.

 If you don’t want to spend significant overhead on system administration, one of
the existing cloud providers might be a good fit. Besides not having to work on system
configurations, they often offer push-button scalability that allows you to add more
instances almost instantly. Keep in mind that you won’t be able to control all settings
of the underlying infrastructure because it’s often shared among multiple applica-
tions. Some unconventional requirements may come at a hefty price, if they’re possi-
ble at all.

 When you’re familiar with running servers and have dedicated people who can fix
things on short notice, a manual setup is the most flexible. If you’re hosting multiple
projects, it can become the best option, even if no exotic configuration settings are
required. You’ll have to put some more thought into what resources you require,
though—you pay for the entire setup, not just your usage. Adding more instances also
takes significantly more time than clicking a single button.

12.2.1 The simplest deployment: meteor.com

To deploy to meteor.com, all you need is the Meteor CLI tool. When your application
is ready, the following command will send it to the Meteor.com infrastructure:

$ meteor deploy <subdomain>

Replace <subdomain> with the name of the subdomain that’s going to be used to
access your application. Meteor.com uses developer accounts to make sure that once
you’ve deployed to a free subdomain nobody else will be able to overwrite your appli-
cation. The subdomain will be connected to your Meteor.com developer account. If

Table 12.4 Pros and cons of Meteor server options

Deployment to Advantages Disadvantages

Meteor.com Easiest deployment
No hosting cost

No guaranteed availability
No custom URL

Cloud provider (such as Modulus,
Heroku, or Nodejitsu)

Low administration overhead
Quick and easy scalability
Pay per actual usage

Limited control over configura-
tion options

Manual setup (such as Amazon
EC2, Rackspace, or your own
hardware)

Full flexibility
Ability to reuse existing resources
across different applications

Requires administration
knowledge
Scaling requires more time
Licensed to Mark Watson <nordickan@gmail.com>

292 CHAPTER 12 Going into production
you don’t have one yet—which is generally the case for a first deployment—you’ll be
asked to automatically set one up during the deployment process. All you need to do
is provide your email address, and you’ll then be able to set a username and password
on the meteor.com website (see figure 12.3).

 If you have multiple developers who are able to deploy to a meteor.com subdo-
main, you can add them to an organization. Every member of the organization will
have the same permissions on your project.

NOTE In case you need to debug a deployed application, you can also use
meteor deploy <subdomain> --debug, which will allow you to use the browser-
based debugger and keep your breakpoints.

When you try to deploy to an existing subdomain, meteor deploy will prompt you to
enter a username and password to authenticate. Once you’re successfully authenti-
cated, Meteor will remember your account on the local system. That way, you don’t
need to log in for subsequent deployments, even if they’re to other sites that are asso-
ciated with your current login account. You can see a list of all subdomains you’re
authorized for by entering this:

$ meteor list-sites

Figure 12.3 Setting up your Meteor developer account
Licensed to Mark Watson <nordickan@gmail.com>

293Setup and deployment
To manage an application on the meteor.com infrastructure, you can use the CLI tool
to access the server log files (see figure 12.4) and even the database shell. This is done
with the following commands:

$ meteor logs <subdomain>

and

$ meteor mongo <subdomain>

NOTE Although it’s convenient to use the meteor.com infrastructure, it’s not
yet ready for production-grade deployments.

Getting a MongoDB connection string for meteor.com
Let’s say you deployed an application to meteor.com to test it with other users and
it becomes a great success. Now you want to migrate your data away to a dedicated
database, but you don’t know how to access the remote database.

When you pass the --url parameter to meteor mongo, the return value is a Mon-
goDB connection string—for example:

$ meteor mongo --url mysubdomainname.meteor.com
mongodb://client-b4898462:4f69301a-8be4-7196-a2db-23816e785e9e@

➥ production-db-a2.meteor.io:27017/mysampleappon_meteor_com

This URL can be used in any MongoDB client such as Robomongo or passed to the
mongodump command to access and extract data. The URL expires after one minute,
though, so you need to use it quickly or the username and password will be denied.
As such, it’s not useful to share this connection string via email with others.

Figure 12.4 Deploying and accessing the logs from the command line
Licensed to Mark Watson <nordickan@gmail.com>

294 CHAPTER 12 Going into production
12.2.2 All-inclusive hosting: cloud providers

Although dedicated Meteor hosting isn’t widely available yet, there are already many
platforms to run Node.js applications. Because Meteor applications can be quickly
converted to run on a plain Node.js server, you can use any provider that’s capable of
hosting Node.js.

 If you’re using the infrastructure of a cloud provider (see table 12.5 for a short
list), there’s no need to set up any components and processes on your own. Often-
times providers will also offer MongoDB in their portfolio, which allows you to host all
components with a single company.

To get Meteor up and running with a Node.js provider, you need to prepare your
application for the deployment process. The preparation depends on your provider of
choice; some can directly host a Meteor app, but most of them require you to convert
your project to a regular Node.js application first.

HIGHLY PORTABLE NODE.JS BUNDLES WITH DEMETEORIZER

The demeteorizer project was started by the engineers behind the cloud provider
Modulus. Demeteorizer wraps and extends the build command by creating a stan-
dard Node.js application.

 To create highly portable Node.js bundles with demeteorizer, you first need to
install it on your development system. Because it comes in form of a node module, it
can be installed via npm:

$ npm install -g demeteorizer

Once demeteorizer is available on your system, it works similarly to the build com-
mand introduced in chapter 11. Navigate to your project root folder and call it from
the command line:

$ cd myMeteorProject
$ demeteorizer -t myApp.tar.gz

In contrast to the build command, demeteorizer creates a directory by default,
which is why the –t switch is needed to create a tarball. By default it’ll create a new

Table 12.5 Node.js-as-a-Service providers

Provider URL

Modulus https://modulus.io/

Heroku www.heroku.com/

Nodejitsu www.nodejitsu.com/
Licensed to Mark Watson <nordickan@gmail.com>

https://modulus.io/
https://www.heroku.com/
https://www.nodejitsu.com/

295Setup and deployment
directory called .demeteorized, where it creates a structure like the one shown in fig-
ure 12.5.

 The resulting archive can be uploaded and extracted to the server. Some providers
such as Modulus.io will allow you to directly upload the archive via a web interface.
Thanks to the presence of the package.json file in the root of the project, either all
node modules will be installed automatically—if your provider supports it—or you’ll

The difference between meteor build and demeteorizer
Both commands create a Node.js application, but there’s a subtle but important dif-
ference. meteor build creates an application that includes npm modules. demete-
orizer doesn’t bundle any npm modules but includes a meta file (packages.json)
that specifies which npm modules are needed to run the application.

Most providers that offer Node.js hosting require a package.json file and install npm
modules using npm install rather than including them with the application sources.
Therefore, demeteorizer is required when deploying to a regular Node.js provider.

No

package.json

in bundle

No

node_modules

in demeteorizer
Licensed to Mark Watson <nordickan@gmail.com>

296 CHAPTER 12 Going into production
navigate to the root folder of the project on the deployment server and issue the
install command:

$ cd /var/www/myDemeteorizedApp
$ npm install

Now that you have the application running, you can set up the database. Because the
exact procedure varies between providers, we won’t cover it in detail here. You can use
any MongoDB instance you like with your application; it doesn’t even have to be
hosted with the same provider.

MONGODB-AS-A-SERVICE

Sometimes it’s necessary to split the hosting of Meteor and MongoDB. A Node.js pro-
vider might not offer a feature for MongoDB that you’d like to use (such as oplog tail-
ing), or perhaps they’re too expensive compared to the competition. In that case,
there are many MongoDB-as-a-Service providers (see table 12.6) that might just be for
you. Some start with a completely free plan, which makes them an ideal starting point
for small projects; you can easily scale at a later stage with usually a single click.

Figure 12.5 The resulting folder structure of demeteorizer
Licensed to Mark Watson <nordickan@gmail.com>

297Setup and deployment
ADVANTAGES

You don’t need to know a lot about MongoDB and its internals, so using a provider will
get you started very quickly. Minimal overhead for administration is involved. You get
all the features of high availability and load balancing out of the box, so you can focus
on your application alone. Also, switching to the next bigger database size is easy.

 Oftentimes less commonly used features are cheaper with a specialized database
provider, and for low-traffic sites there are even free tiers with some of them.

DOWNSIDES

Network latency between your application servers and the MongoDB instances will
be much higher compared to hosting your own database on the next machine. But
because many providers use Amazon or Rackspace infrastructure, there may be no
noticeable effect at all if you’re using the same infrastructure for your own servers
as well.

 The comfort of not having to administer the infrastructure will cost you, especially
if you go beyond the sizes available on the price list. For optimum performance, you’ll
want to include oplog tailing for your Meteor application, but some providers charge
a hefty extra for it because it requires a dedicated replica set and they can’t use a
shared shard for your data.

12.2.3 Full flexibility: manual setup

Setting up Meteor manually on a server is straightforward. If you’re running Ubuntu,
Debian, or OpenSolaris on your server, it gets even easier with meteor-up, also known
as mup. If you can’t use mup or need more flexibility, all it takes to start running your
project on your own servers is a regular Node.js server in combination with the bun-
dling functionality discussed in the previous section.

METEOR-UP

meteor-up is a community project. The tool lets you both set up servers and deploy
Meteor. First you initialize a new project, configure the environment, initiate the
server installation, and finally deploy your project. Additional information can be
found at GitHub: https://github.com/arunoda/meteor-up.

Table 12.6 MongoDB-as-a-Service providers

Provider URL

MongoLab https://mongolab.com/

Compose.io www.compose.io/

MongoSoup www.mongosoup.de/en/

ObjectRocket www.objectrocket.com/

Elastx http://elastx.com/
Licensed to Mark Watson <nordickan@gmail.com>

https://mongolab.com/
https://www.compose.io/
https://www.mongosoup.de/en/
http://www.objectrocket.com/
http://elastx.com/
https://github.com/arunoda/meteor-up

298 CHAPTER 12 Going into production
 You install meteor-up via npm:

$ npm install –g mup

Use a terminal to navigate to your Meteor application folder and initialize a new pro-
ject with this command:

$ mup init

Now you have two JSON files in the current directory:

■ mup.json—This file is used to define the servers that’ll be used as deployment
targets and to specify what components to install.

■ settings.json—This file is used to define deployment-specific configuration options
available in Meteor.settings. It can be used for API keys or server credentials,
for example.

Although it you don’t have to use settings.json, you must adjust the contents of mup.json
to reflect your own server setup. You’ll use two hosts in this example (listing 12.1), but
you don’t want to set up MongoDB on either of them.

{
 // Server authentication info
 "servers": [
 {
 "host": "host1.meteorinaction.com",
 "username": "stephan",
 //"password": "password"
 // prefer pem file (ssh based authentication)
 "pem": "~/.ssh/id_rsa"
 },
 {
 "host": "host2.meteorinaction.com",
 "username": "stephan",
 "pem": "~/.ssh/id_rsa"
 }
],

 // Install MongoDB in the server, does not destroy local MongoDB on future
setup

 "setupMongo": true,

 // WARNING: Node.js is required!
 // Only skip if you already have Node.js installed on server.
 "setupNode": true,

 // WARNING: If nodeVersion omitted will setup 0.10.36 by default.
 // Do not use v, only version number.
 "nodeVersion": "0.10.36",

 // Install PhantomJS in the server
 "setupPhantom": true,

Listing 12.1 mup.json configuration

You can define one or
multiple servers that will
be used for deployment.

SSH keys or passwords
may be used for
authentication.

mup can also set up a
MongoDB without replication.

PhantomJS isn’t required
but is used in conjunction
with some packages.
Licensed to Mark Watson <nordickan@gmail.com>

299Setup and deployment

Wh
an
M
d

co
stri

envi
va

u
op

d

 // Application name (No spaces)
 "appName": "meteorinaction",

 // Location of app (local directory)
 "app": "/Users/stephan/Code/meteorinaction",

 // Configure environment
 "env": {
 "ROOT_URL": "http://www.meteorinaction.com"
 "PORT": "3000"
 "MONGO_URL": "mongodb://user:password@192.168.2.210/meteor"
 "MONGO_OPLOG_URL": "mongodb://oploguser:password@192.168.2.210/
 ➥ local?authSource=admin"
 },

 // Meteor Up checks if the app comes online just after the deployment
 // before mup checks that, it will wait for no. of seconds configured below
 "deployCheckWaitTime": 15
}

With the settings you see in listing 12.1, mup will deploy to the servers host1.meteori-
naction.com and host2.meteorinaction.com using an SSH key for the user "stephan".
For security reasons. you should avoid using passwords and rely on the more secure
SSH keys.5

NOTE Although it’s tempting to use passwords for test deployments, you
should consider switching to SSH keys instead of passwords for production
deployment.

In this example, you’ll set up both MongoDB 2.6 and Node.js in version 0.10.36. You’ll
also install PhantomJS, which is used by some packages like spiderable to improve
visibility for search engines. The application name is used to identify the node process
on the server. You can use mup to deploy multiple node processes to the same machine
from different mup.json configurations, and the application name is how you can dif-
ferentiate between them. The location of your app relates to the project you want to
deploy from your local workstation or laptop. Using the environment variables, you
can fine-tune the Meteor runtime environment.

 In case you have a multicore server, you may want to deploy multiple Meteor
instances on the same machine so that all cores are used. In that case you need to use
a different port and application name for each instance, which in turn requires multiple

5 SSH keys can be used on Linux, Mac OS X, and Windows. You can read more about working with keys at
https://help.ubuntu.com/community/SSH/OpenSSH/Keys.

If you deploy multiple Meteor instances to
the same machine, you can differentiate
between them using different names.

Path to your application source code
on the local machine, not the server

Environment variables to be
used for this application

Optionally
specify the
port Meteor
should use.

en using
 external
ongoDB,
efine the
nnection
ng as an
ronment
riable; if
sed, the

log must
also be

eclared.

Number of seconds to wait to see
whether a deployment was successful
Licensed to Mark Watson <nordickan@gmail.com>

https://help.ubuntu.com/community/SSH/OpenSSH/Keys

300 CHAPTER 12 Going into production
mup.json files. To avoid any conflicts, use a dedicated directory for each core. For a
dual-core system, the structure might look like this:

.
├── client
├── core1
│ └── mup.json
├── core2
│ └── mup.json
├── public
├── server
└── settings.json

The content of both mup.json files would be exactly the same—only the application
name and the setting for the PORT environment variable would be different.

 Without a local MongoDB instance, you need to specify the URL for the database as
an environment variable. If you’re using the oplog, you can define it there as well.

 Once the configuration is finished, you can set up the environment using the
following:

$ mup setup

This will take care of all server configurations and installation for you. Meteor Up also
ensures that all server processes are started upon boot. Additionally, it uses forever to
restart a node in case it crashes. It doesn’t yet copy your application over to the server.

 Bundling and deploying the application is the final step (see figure 12.6):

$ mup deploy

Figure 12.6 Setting up a server with Meteor Up
Licensed to Mark Watson <nordickan@gmail.com>

301Connecting the pieces
Besides init and deploy there are commands for starting and stopping the applica-
tion (start/stop/restart) and a way to access the Node.js logs (logs). When pass-
ing the –f option to logs, you can monitor the log file continuously, similar to using
the tail –f command.

12.3 Connecting the pieces
When running an application server, you can configure a number of things. You may
need to change the port a server listens on, define the root URL, or include connec-
tion details to the database server or mail transports. All settings that need to take
effect upon server start are passed to Meteor in form of environment variables.

12.3.1 Environment variables

Depending on which packages you use with your application, you can set environ-
ment variables that’ll influence the way your Meteor application behaves. The most
common environment variables are listed in the table below.

Most cloud providers have a web interface for you to define names and values of envi-
ronment variables (see figure 12.7).

12.3.2 Connecting Meteor to MongoDB

Once you have a running Node.js server and a MongoDB instance, you can configure
Meteor so it knows how to access the database. You can specify both the regular database
and oplog access individually by using the variables MONGO_URL and MONGO_OPLOG_URL,
respectively. Both use the same syntax of a standard MongoDB connection string:

mongodb://<username>:<password>@<host>/<database>?<options>

■ mongodb:// is the required prefix and indicates that this is a string in the stan-
dard connection format.

■ username:password@ are optional. If present, they’ll be used to log into a spe-
cific database.

Table 12.7 Common environment variables

Variable name Description

PORT Network port to bind to (default: 3000)

BIND_IP IP address to bind to (default: all)

ROOT_URL Base URL for the application

MONGO_URL Connection string for MongoDB

MONGO_OPLOG_URL Connection string for MongoDB oplog

MAIL_URL SMPT connection string for the mail server (default: STDOUT)

NODE_ENV Some cloud providers use this, typically set to production
Licensed to Mark Watson <nordickan@gmail.com>

302 CHAPTER 12 Going into production
■ host is the only required part. If no port is specified, the default will be used
(27017). You can define multiple hosts, separated by a comma.

■ /database is required in combination with username:password and specifies
the database you want to log into after successfully connecting to the server. If
not specified, the admin database is used by default.

■ options are connection options in the form of name=value pairs separated by &.

Let’s assume the environment described in the table below.

Table 12.8 Example MongoDB connection information

Key Value

MongoDB server address mongo.local.lan

Database name meteordb

Database user meteoruser

Database password drowssap

Oplog user oploguser

Oplog password drowssap

Figure 12.7 Defining environment variables with Modulus
Licensed to Mark Watson <nordickan@gmail.com>

303Scaling strategies
Based on those values, the connection strings look like this:

$ export MONGO_URL=mongodb://meteoruser:drowssap@mongo.local.lan/meteordb
$ export MONGO_OPLOG_URL=mongodb://oploguser:drowssap@mongo.local.lan/
local?authSource=admin

Notice that in the MONGO_URL definition you specify the database Meteor is going to
use, which is meteordb. In contrast, the name of the application database is irrelevant
for the MONGO_OPLOG_URL—it always uses local. This is because the oplog is kept in
the local database. Because users can’t authenticate against the local database, you
need to pass another option, authSource, to the connection string in order to use the
admin database as the authentication source instead.

12.4 Scaling strategies
System architecture is as complex as writing software. Without going into too much
detail, this section introduces you to the main concepts of scalability. There are two
different aspects:

■ Reliability—No single component failure will break the system.
■ Availability—Every request can be processed.

At first glance it may look as though both are the same, but they serve quite different
purposes. Both can be translated to high availability (HA), but reliability focuses on
redundant components and availability is often achieved by means of load balancing.

12.4.1 Active-passive high availability with redundancy

When an application is running in production, it’s expected to be available 24/7.
Depending on the nature of your application, you’ll start losing users or even
money when your application isn’t available. That’s why most production deploy-
ments will be architected to be highly available. It boils down to your setup not hav-
ing any single points of failure. Each single component may go down at any point in
time without any significant impact for the user. Operations will be able to continue
even without an admin having to fix things immediately. Not only is this approach
helpful in a case of failure, but also regular updates can be applied without taking
the entire system offline. Figure 12.8 illustrates the steps required to achieve highly
available applications.

 You often find active-passive combinations in HA environments: one server does
the actual work and another stands idly by, ready to take over should the first server
ever go down. If you find yourself maxing out server resources—meaning a single
server isn’t able to handle all requests anymore—you’ll need to scale vertically (also
known as scaling up), which means you add more server resources such as CPU or
memory. If you were running on Amazon EC2, you’d upgrade your server from a
medium to a large instance. But you can’t scale up forever; if you’re very successful
you’ll reach a point where no single server will be able to handle the load by itself.
Licensed to Mark Watson <nordickan@gmail.com>

304 CHAPTER 12 Going into production
ACTIVE-ACTIVE HIGH AVAILABILITY WITH LOAD BALANCING

If only a single instance can ever be active at the same time, it doesn’t leave you with any
real options to handle more load. Exchanging a small server for a bigger one usually
takes time, which is why you should consider scaling horizontally (scaling out) as well.

 In load-balanced environments, you find servers running as active-active pairs,
meaning both servers actively get and process requests. Unfortunately, managing
dependencies gets more complicated if both active servers influence the data or pro-
cessing that’s currently going on with the other server. In the Scrabble application
introduced earlier in this chapter, you need to consider how two players on two differ-
ent servers could be able to play the same game.

12.4.2 Single-component deployments

When you run Meteor locally, there’s a single Meteor application and a single Mon-
goDB instance. This offers the advantage of having a fairly simple setup that doesn’t
share any session data or users between multiple machines. It also makes an ideal
setup for development environments, because you know exactly where to look in log
files and locate potential bugs. There’s no need to first analyze on which of your serv-
ers errors might have happened or whether any balancing components may have
caused their own bugs.

 The downside of having single instances is that this architecture isn’t failsafe and it
doesn’t scale. If your MongoDB goes down, the entire application will stop working
properly. The same goes for the Meteor server. Also, as the number of (concurrent)
users increases, you only have one real scaling solution: buy a bigger server.

Users

Step 1:
Single instances

Step 2:
Highly available database

Step 3:
Always on

Meteor

Users

Meteor

DB

Redis

Redis

DB

Users

Meteor Meteor

Load balancer

DBDBDB

Figure 12.8 From single instances to high availability
Licensed to Mark Watson <nordickan@gmail.com>

305Scaling strategies
12.4.3 Redundancy and load balancing

The first step to better scalability and high availability is to make sure the database is
always available. If you use a PaaS provider for your database, they’ll ensure that you
can always access your data. If you need to set up a highly available database yourself,
or if you want to know more about what goes on inside a MongoDB cluster, check out
appendix B.

 The second step in achieving high availability is making sure the application itself
is always accessible. This requires scaling out Meteor servers. Because the Meteor
application server is a Node.js server, all of the principles for hosting Node.js applica-
tions apply to Meteor as well. Depending on the expected number of users, you
should set up two or more server instances. Because you can’t ask users to either
access server 1 or server 2, you can add an automatic dispatcher or load balancer that
distributes all requests to a single URL across all application servers.

BALANCING LOAD

It’s a common best practice to run web applications behind load balancers. A large
range of established tools is available, reaching from open source software such as
HAProxy or nginx to dedicated hardware boxes from F5 or Cisco. The principle is the
same as with query routers in MongoDB6: any number of actual worker processes (or
applications) run as a logical group and all requests from clients are sent to either of
these workers.

 Meteor is different from the traditional way of serving web pages. In the traditional
approach, connections are stateless; it makes no difference which application server
responds to any request in a series. With Meteor, though, each connection maintains
state and therefore switching between servers for different requests of the same client
will break things, because any information regarding the context is lost. No matter
which load-balancing approach you choose to implement, you must ensure that a cli-
ent doesn’t move across servers unless you have a way to exchange state information
between all nodes.

 The simplest form of keeping a user on the same server is to remember a user in
the load balancer—for example, by associating an IP address with an application
server. All requests from IP 192.168.2.201 will go to server A only, no matter how much
load it currently has. Alternatively, the load balancer can set a cookie to remember
which server a client should stick to.

COMMON LOAD-BALANCING ALGORITHMS

Knowing the most important algorithms for distributing requests will help you choose
the best for your application. Many people are familiar with round robin, which means
that all requests are evenly distributed between servers by count: Request 1 goes to
server A, the second request to server B, the third to server A again, 4 to B, and so on.
That works well if all your servers have the same specs, but if one of them is more

6 See appendix B for more information on query routers in MongoDB.
Licensed to Mark Watson <nordickan@gmail.com>

306 CHAPTER 12 Going into production
powerful, a weighted round robin might be the better choice. You might configure server
A to retrieve twice as many requests because it has double the memory and CPU.

 Unfortunately, these algorithms don’t take into account any load a server might
currently have—for example, because users have ended their session already. Typically
a load balancer won’t know about the status of the nodes it redirects requests to. Some
can determine how long a server takes to respond and avoid sending any more users
to an already unresponsive server. A load balancer may also be configured to distrib-
ute users based on the actual number of connections. That brings the least connection
algorithm into play; the load balancer actively checks how many users are currently
connected to a server and distributes users evenly.

 All algorithms have their specific uses. If in doubt, the best way is to start out with
round robin and enable session stickiness. Consult appendix C for configuration
examples.

SINGLE THREADS

To help you avoid dealing with the complexity of multithreaded architectures, Node.js
was designed to run in a single thread. That means it will only run on a single core
and a single thread of the CPU, regardless of how many cores exist. That’s a major
roadblock for scaling up—you can’t simply use a bigger machine with more CPUs if
your application is becoming slow; you have to scale horizontally. Although there’s a
Node.js cluster package, it isn’t yet production ready.7 If you happen to have a multi-
core server, you can take advantage of all cores by running multiple Meteor processes
on the same server. Using different ports, the load balancer will be able to distribute
requests between multiple instances on the same machine just like it would between
different physical servers. Usually the operating system will take care of running the dif-
ferent processes on different cores, but if you want direct control over which Meteor
instance runs on which core, you can use the taskset package on Linux.

TIP Running multiple instances of Meteor on the same server will allow you
to use more than a single CPU core, but it won’t provide true high availability
unless you use two or more separate servers.

SECURE CONNECTIONS: SSL
Although Node.js supports SSL connections, Meteor itself does not. To provide secure
connections, SSL can still be used on the load balancer facing the clients. All traffic
between the load balancer and the application server will then be unencrypted,
which is referred to as SSL offloading. All messages between a user and the datacenter
will still be fully secure, but inside the datacenter you need to trust the provider of
the infrastructure.

 Be careful when load balancing across datacenters. If the load balancer is located
in the United States but it redirects to a Meteor server in Japan, it must not terminate
SSL in the U.S. but instead redirect the SSL request to Japan and use a local load

7 As of this writing the Node.js cluster package was marked as Stability: 1 – Experimental.
Licensed to Mark Watson <nordickan@gmail.com>

307Scaling strategies
balancer to offload the SSL. Otherwise, the users may see an HTTPS connection, but
in truth it will go halfway across the world just like any other unsecured request.

 In many environments nginx is used for SSL offloading, so it shields the Meteor
application from handling any infrastructure concerns and concentrates on a single
purpose: running the application.

SESSION STATE

Coming back to our Scrabble game, we assume four players are logging in on two
load-balanced servers. Two of the players are now on server A and two on server B, but
they should all join the same game. The simplest way to share information between all
instances is to use the database as the central place of information exchange. Though
from the application perspective it may seem like an ideal approach, it adds a lot of
load to the database servers, requiring many disk operations for reading and writing,
which can eventually lead to a noticeable lag for the user. After all, it doesn’t make
sense to persist data that’s only short-lived, such as the position of your opponent’s
mouse cursor or whether they’re currently typing.

 A better solution to exchanging volatile data between application servers is to use
Redis, an in-memory database. In a nutshell, Redis is a simple key-value storage. It’s
similar to MongoDB because it supports sharding and provides a means to fail over to
another server if the primary process is unavailable. The key difference is that all data
is kept in memory, which removes all disk I/O and makes Redis a fast and efficient way
to store all session-relevant data.

PROXY SERVERS

Although technically not part of high availability, a good way to increase performance
and eventually enable your application to run with less resource usage is to introduce
proxy servers.

 Node.js is great for serving dynamic content, but it doesn’t work equally efficiently
for static files. All resources that are the same for all users should be served by a proxy
server instead. That includes image files, fonts, and ideally also CSS and JavaScript
files. If the requirements aren’t too demanding, both load balancing and serving static
content can be accomplished by a single process such as nginx.

12.4.4 Bulletproof availability

In comparison, it’s relatively easy to design a system to be 99 percent available. That
gives you 3.65 days a year or over 7 hours a month that your application may be
offline. Going from two 9s to five 9s (which means from 99 to 99.999 percent) reduces
possible unavailability of your application to less than 5.5 minutes in an entire year.
Achieving the last 1 percent is exponentially more expensive and rarely worth the
effort, unless your application is of vital importance to health or business.

 Probability is a driving factor for any decision in system architecture. The more
components are highly available, the less likely it is that the entire system will shut
down. Of course, network routers can fail as well. Brownouts may happen; even entire
datacenters have been flooded in the past. If you absolutely can’t live with any outages,
Licensed to Mark Watson <nordickan@gmail.com>

308 CHAPTER 12 Going into production
then you should go the extra mile and make sure your servers are in separate datacen-
ters and all cables are connected redundantly. For most use cases, though, it’s suffi-
cient to worry about server processes and leave the infrastructure to your provider.

12.5 Summary
In this chapter, you learned to

■ Use version control and a dedicated branch for managing production-ready
code.

■ Reuse established JavaScript testing frameworks with the Velocity framework.
■ Make assumptions to estimate the expected load and determine the required

architecture.
■ Decide whether to use a PaaS provider or set up your own infrastructure.
■ Use environment variables to determine what components the application server

connects to.
■ Understand that an availability of 99 percent is relatively easy, but going beyond

requires a lot of effort.
Licensed to Mark Watson <nordickan@gmail.com>

appendix A
Installing Meteor

In this appendix we’ll highlight the prerequisites of Meteor and walk you through
installing it. Unless you’re on Windows, you can issue a single command to get
started with Meteor, but we’ll cover all major platforms.

A.1 Prerequisites
In contrast to many other web development tools, Meteor is a self-contained instal-
lation and doesn’t require any particular software to be present. The installer will
put Node.js as well as MongoDB in your home directory so they won’t conflict with
any other instances installed by package managers such as brew or apt-get. To
ensure a fully working environment, Meteor will always use the binaries it installed.

 Currently supported platforms include the following:

■ Mac OS X 10.7 and later
■ Microsoft Windows 7, Windows 8.1, Windows Server 2008, and Windows

Server 2012
■ Linux (x86 and x86_64 systems)

This appendix covers
■ Prerequisites for installing Meteor
■ How to install Meteor on a development

machine
309

Licensed to Mark Watson <nordickan@gmail.com>

310 APPENDIX A Installing Meteor
BSD and other operating systems aren’t supported. Using virtualization—for example,
by running a Vagrant box (we’ll discuss Vagrant in a moment)—it’s possible to install
Meteor and start developing on unsupported systems as well.

 If you can’t install Meteor or prefer to run it on the cloud, you can use Nitrous
(http://nitrous.io/). It offers an IDE in the cloud without the need to install anything
locally.

A.2 Installing Meteor on Linux and Mac OS X
Meteor supports Mac OS X 10.7 and later as well as Linux x86 and x86_64 systems. The
installation for the supported systems involves entering just one line in the terminal:

$ curl https://install.meteor.com/ | sh

This code downloads and installs the entire Meteor platform onto the system and
makes the CLI tool globally available (see figure A.1).

 For the installation you shouldn’t need to have administrator privileges, but you
may have to provide your password for Meteor to be able to create a symbolic link to
/usr/local/bin/meteor so all users on your computer can use the meteor command.

TIP If you ever need to uninstall Meteor, you can do so by deleting the file
/usr/local/bin/meteor as well as the .meteor/ directory inside your home
directory.

Figure A.1 Installation of Meteor on Mac OS X
Licensed to Mark Watson <nordickan@gmail.com>

http://nitrous.io/

311Running Meteor using Vagrant
A.3 Installing Meteor on Windows
Download the official Meteor installer from https://install.meteor.com/windows. A
simple double-click on the InstallMeteor.exe file starts the installation process (fig-
ure A.2). During the process you’ll be asked to provide your Meteor developer cre-
dentials or create a new account. You can skip this step if you want to.

 Once the installation has finished you can use the Meteor CLI tool just as you
would on a Linux or Mac OS X system.

A.4 Running Meteor using Vagrant
If you want to run Meteor on an unsupported platform or use the same operating sys-
tem for testing as you’ll use on your production servers, then you can use a virtual
machine to enhance your development environment. One possible way is to use
Vagrant, which allows you to use portable development environments in the form of
virtual machines that are tightly integrated into your host system. That way, you can
easily exchange files and run commands such as meteor.

 You can download the Vagrant installer from https://www.vagrantup.com. You’ll also
need to install Oracle’s VirtualBox, which you can find at https://www.virtualbox.org.
Furthermore, you should have an SSH client installed. This can either be PuTTY or the
ssh command provided by Cygwin.

 Once you’ve finished your installations, you can add a Ubuntu Linux box to your
system with this command:

C:\Users\stephan\> vagrant init hashicorp/trusty32

Figure A.2 Installing Meteor on Windows
Licensed to Mark Watson <nordickan@gmail.com>

https://install.meteor.com/windows
https://install.meteor.com/windows
https://www.vagrantup.com
https://www.virtualbox.org

312 APPENDIX A Installing Meteor
This will create a configuration file named Vagrantfile in the current directory. This
file is a Ruby program (with most of the lines commented out) and contains the con-
figuration settings for your machine. Besides some general configuration settings, it
includes the blueprint that should be used for setting up the virtual machine—in this
case, a 32-bit image of Ubuntu 14.04 (codename: Trusty Tahr), which is provided by
HashiCorp, the creator of Vagrant.

TIP Even if you’re running a 64-bit OS, you can still use a 32-bit guest OS with
Vagrant, but not vice versa. In some cases it’ll be more efficient to use 32 bit,
especially if you assign only a small amount of RAM to the guest.

The default value for the guest’s RAM is 512 MB, and it uses a single core of your
CPU, which is usually sufficient for small development environments. But if you
need to increase the memory size or core count, you can adjust the Vagrantfile and
add the following just before the last end (resulting in the two last lines both having
end in them):

config.vm.provider "virtualbox" do |v|
 v.memory = 1024
 v.cpus = 2
end

To open your Meteor application in your Windows browser, you need to set up port
forwarding. To do so, uncomment (remove the # symbol) the line starting with con-
fig.vm.network and adjust the settings as follows:

config.vm.network "forwarded_port", guest: 3000, host: 3000

You can also assign an IP address to the virtual machine by adding the following line to
the configuration file:

config.vm.network :private_network, ip: "192.168.33.31"

That way, you can access the Vagrant machine just like any other remote server
via SSH.

 When the Vagrant box is running, this will forward all requests to your local
machine (host) on port 3000 to the virtual box (guest) on port 3000. Just navigate your
browser to http://localhost:3000 once you’ve started Meteor inside the virtual box.

 To start your virtual box, issue this command (see table A.1 for an overview of the
most common commands):

C:\Users\stephan\> vagrant up

Vagrant will now fetch the box blueprint defined in the Vagrantfile from the internet
and store it as a reusable image (which will speed up all future executions of the
vagrant up command). You’ll only need to be connected to the internet for the initial

RAM size in MB

CPU cores to assign
to the guest
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:3000

313Running Meteor using Vagrant
download of the box image. Vagrant will set up your virtual machine and allow you to
access it via SSH (the default password for most boxes is vagrant):

C:\Users\stephan\> vagrant ssh

From here on, you’re basically inside a real, virtualized Linux system. The beauty of
using Vagrant is that files are instantly shared, so you can use your editor of choice on
Windows and also use your local browser. By default, your user’s home directory is
shared with the virtual box so that all files you store in C:\Users\<your username>\ are
accessible inside the guest system within /vagrant.

 You can now install Meteor in the same way as described in the previous section.
 Vagrant can be used to clearly separate the Meteor environment from the rest of

your system.

Table A.1 Common Vagrant commands

Command Description

init Initializes the current directory to be a Vagrant environment by creating an initial
Vagrantfile if one doesn’t already exist. Passes the box name as an argument.

up Creates and configures guest machines according to your Vagrantfile.

ssh Uses SSH to access a running Vagrant machine and gives you access to a shell.

suspend Saves the exact point-in-time state of the machine so that when you resume it later, it
begins running immediately from that point, rather than doing a full boot.

resume Continues running a suspended Vagrant box.

halt Shuts down the running machine Vagrant is managing.

destroy Stops the running machine and destroys all resources that were created during the
machine creation process. After running this command, your computer should be left
at a clean state, as if you’d never created the guest machine in the first place.
Licensed to Mark Watson <nordickan@gmail.com>

appendix B
The anatomy of

MongoDB

Out of the box, Meteor works hand in hand with MongoDB. If you consider hosting
your own database server, you should first know the basic components of a MongoDB
installation, how it scales, and how it integrates with Meteor.

 This appendix introduces you to more advanced topics. They
assume you have a basic understanding of system architecture and
administration. By the end of this appendix, you’ll be familiar
with the most important aspects of setting up and running your
own MongoDB instance.

B.1 The MongoDB components
A MongoDB database is fairly simple. You access it via an end-
point, authenticate with a user and password, and query for what
looks like JSON objects. The simplest way to deploy MongoDB is to
use a single instance (see figure B.1).

This appendix covers
■ Scalable MongoDB architectures
■ How to set up MongoDB with oplog tailing

mongod

Database

Meteor

application

Figure B.1 The
simplest way to
use MongoDB
with Meteor
314

Licensed to Mark Watson <nordickan@gmail.com>

315The MongoDB components
 In a production environment, where you want to make sure the database is always
available, you need to look behind the scenes to identify the requirements for high
availability. Although the database itself is often referred to in singular, there are in
fact multiple processes running. With MongoDB we differentiate between the follow-
ing components:

■ mongod

■ mongos

■ mongoc

B.1.1 mongod: databases and shards

The mongod process is the database process and takes care of data replication. In the
simplest setup, it’s the only process required for running MongoDB. Once a database
becomes too big for a single instance, it needs to be scaled out. MongoDB does that by
splitting the data between multiple servers, the so-called shards. Shards typically con-
tain only a part of the overall database, a subset of all available documents.

 Imagine you’re going to store a worldwide phonebook in your database. Because
there are a lot of entries, you’ll partition the data to be stored across three servers.
The entries for names starting with A–J will be placed on shard 1, K–S on shard 2, and
T–Z on shard 3. Each of the shards contains roughly the same amount of data to
evenly balance the load.

B.1.2 mongos: query routing

Because there are now multiple database processes, a routing component will be
needed to direct requests to the appropriate mongod instance. The Meteor applica-
tion should have only a single connection and be unaware of any internal database.
In a sharded cluster, the way an application can access the database is through a pro-
cess called MongoDB Shard, or simply mongos. From an application point of view, it
behaves just like the mongod process and takes care of distributing data to the
correct shard. The application won’t know whether it was redirected to any other
mongod instance.

 If you decide to add a new entry in the phonebook, your application will need to
access the database through mongos and write a new entry. But how does mongos know
where to redirect the request and store the data?

B.1.3 mongoc: configuration servers

A sharded cluster also needs an instance that knows which data resides in which shard.
This is where mongoc comes in. This process is referred to as the config server and
technically it’s a special kind of mongod instance. It’s crucial that the config servers be
available at all times, although they don’t handle a lot of load because the routing
instances cache all relevant data for performance purposes. When the routing servers
are started, they contact the config servers to retrieve cluster metadata. Sometimes a
Licensed to Mark Watson <nordickan@gmail.com>

316 APPENDIX B The anatomy of MongoDB
MongoDB database will use balancing techniques to split or migrate some data to
another shard, which is when data gets written to the configuration servers. The cre-
ators of MongoDB recommend using three mongoc instances in a production environ-
ment. If you decide you don’t want to use sharding, you don’t have to use any
configuration servers.

 In the phonebook example, the mongoc process ensures that all documents start-
ing with R are stored on shard 2, so the mongos instance knows to redirect the applica-
tion’s write request to the corresponding machine.

B.1.4 Replica sets

When designing for high availability, you can’t risk losing a single shard. To prevent
the unavailability of data when any single process dies, you can use replica sets. Replica
sets can have members of three types:

■ Primary—All write operations are performed on the primary member only.
The primary member also maintains the oplog, which is the foundation of all
replication action and is used by Meteor as a better alternative to the poll-and-
diff approach.

■ Secondary—Secondary members maintain an identical dataset from the primary.
In case the primary member becomes unavailable, they can take over as a new pri-
mary. Failover requires the remaining members to vote on the new primary.

■ Arbiter—Although technically not a real member of a replica set, the arbiter has
a vote when electing a new primary member. It doesn’t maintain a copy and
can’t become a new primary member. An arbiter is a special mongod process.

Each replica set requires a dedicated mongod process. Multiple processes can run on
the same physical or virtual machine, but they must use different ports.

 In the phonebook example, you have three mongod instances running on each of
the shards. The primary replica set is the one that’s writable, and depending on the
exact configuration of the cluster all others will be used as backups for automatic
failovers or even as read-only instances for optimum load balancing.

 When a primary replica set becomes unavailable, it can automatically be replaced by
a secondary member. The remaining nodes will vote on which secondary member will
be the new primary. Because a member can’t vote for itself, an uneven number of mem-
bers is required in a replica set. When you have three replica sets and one goes down,
the remaining two will elect the new primary. If for whatever reasons you need to use an
even number of replica sets—for example, when two are sufficient and you don’t want
the additional network and disk I/O overhead of another instance—then using an arbi-
ter will help reach an uneven number. Otherwise, if there’s an uneven number of sets
already, you most likely don’t need an arbiter. Consequently, there should never be more
than one arbiter associated with one replica set. Arbiters vote, but they don’t put addi-
tional load for replication processes on either of the machines. There’s no need for an
arbiter in figure B.2 because an uneven number of replica set members (three) exists.
Licensed to Mark Watson <nordickan@gmail.com>

317The MongoDB components
OPLOG

Replica sets aren’t limited to sharded deployments. Even in single shard deploy-
ments—such as when you’re running the meteor CLI tool—replica sets are useful
because they enable the oplog (operations log), which is an important way to enhance
the performance of a Meteor application running on multiple servers.

 In the phonebook example, an administrator might want to import a whole
batch of names and other data directly into the database without going through the
web application. Also, two instances of the application could be running in paral-
lel, so both can change data at the same time. In both cases, the application will
only know about any changes if and when it makes a dedicated request (such as
“find all entries”). The standard behavior for Meteor is to poll the database every
10 seconds.

mongod

Query routers

Cluster metadata

Configuration servers

Shards

Meteor

application

mongos mongos

Primary

replica set 2

mongod

Secondary

replica set 1

Shard 2

mongod

Secondary

replica set 3

mongod

Primary

replica set 3

mongod

Secondary

replica set 1

Shard 3

mongod

Secondary

replica set 2

mongod

Primary

replica set 1

mongod

Secondary

replica set 2

Shard 1

mongod

Secondary

replica set 3

mongoc

mongoc

mongoc

Figure B.2 A production-ready setup for MongoDB
Licensed to Mark Watson <nordickan@gmail.com>

318 APPENDIX B The anatomy of MongoDB
 Performing such an operation regularly puts unnecessary load on the database as
well as on the Meteor server and adds noticeable lag, which is why Meteor is capable
of using a much cleverer approach: hooking directly into the replication stream by
subscribing to the oplog. The oplog is a special collection that keeps a rolling record
of all operations that modify the data stored in your databases.

COMPONENT DISTRIBUTION

A production-grade MongoDB consists of multiple servers, physical or virtual. A mini-
mum of three servers is required to run the config servers. The mongod instances could
also run on the same servers, although typically you should use a dedicated machine.
For the query routing mongos, you can decide between two best practices:

■ Dedicated routing servers, at least two on different servers
■ One mongos instance deployed on each Meteor server

When running on dedicated routing servers, all instances must listen to the same
address, because each Meteor server should use only one dedicated connection string.
Therefore, a load balancer such as HAProxy or nginx should be used in front of the
mongos. Doing so introduces another single point of failure, which means the load bal-
ancer must also be highly available.

 To avoid an overly complex scenario, you can simply decide to install mongos on
every Meteor server you’re going to use. Using system tools, you can configure the
mongos process to restart if it ever crashes, which makes this approach much simpler
to manage.

B.2 Setting up MongoDB
Although we can’t cover all the details for deploying a fully production-ready cluster
for MongoDB with sharding and query routers, this section covers the specifics for
Meteor. We’ll focus on setting up a single instance with a replica set so that you can
take advantage of tailing the oplog. You’ll find further instructions on how to set up
MongoDB in the official documentation or by checking out MongoDB in Action (Man-
ning, 2011), by Kyle Banker.

SETTING UP OPLOG TAILING

The oplog is stored in a system database called local. If you haven’t defined any rep-
lica sets, you won’t have a collection called oplog.rs (see figure B.3). To initialize the
collection you must define a replica set, but you don’t need to add multiple mem-
bers—you can use a single primary member only.

 Each mongod instance has its own configuration.1 First open the mongodb configura-
tion file /etc/mongodb.conf. At the very end of the file add two lines:

replSet=rs0
oplogSize=100

1 If you’re running multiple mongod processes on the same machine, make sure you’re editing the correct con-
fig file.
Licensed to Mark Watson <nordickan@gmail.com>

319Setting up MongoDB
The first parameter defines the name of the replica set (replSet) to be used by this
mongod instance. oplogSize defines the amount of disk space to be used for the collec-
tion, 100 MB in this example. If you don’t specify oplogSize it defaults to 5 percent of
your free disk space.

 Next, restart the mongod process and open a mongo shell. You can use either a tool
such as Robomongo or the command line. Once you’re connected, switch to using
the local database:

> use local

The next step is to initialize the replica set and thereby enable the oplog:

> rs.initiate({
 _id: "rs0",
 members: [{
 _id: 0,
 host: "localhost:27017"
 }]
})

You can always check the status of the current replica set by using rs.status() and
view the full configuration and member list using rs.config(). After a successful ini-
tialization, these commands should show a replica set with a single member, similar to
figure B.4.

Figure B.3 Accessing the oplog with Robomongo
Licensed to Mark Watson <nordickan@gmail.com>

320 APPENDIX B The anatomy of MongoDB
As you can see in figure B.4, two additional collections will be created: oplog.rs and
system.replset. Also, the shell prompt will change to reflect the replica set name
and its member status (rs0:PRIMARY).

 MongoDB now automatically tracks all write operations in the oplog.rs collection.
Once the specified size is reached, it’ll purge old entries.

SETTING UP AN OPLOG USER

By default, MongoDB doesn’t require a user to authenticate. In such an environment
you can also access the oplog without credentials, so you could skip this step. But in
production environments you should add users to provide a means of access control.

rs.status()
shows
no active
replica set.

rs.initiate()
configures
the replica
set with
localhost.

rs.status()
shows a
healthy
replica set.

The command
prompt includes
the current name
and status of
this server’s
replica set.

Figure B.4 Initializing a replica set from the mongo shell
Licensed to Mark Watson <nordickan@gmail.com>

321Setting up MongoDB
 For the purpose of tailing the oplog, you need a dedicated user that’s allowed to
access the local database, which is where the oplog.rs collection is.

NOTE Even though the oplog user has access to the local database, it’s tech-
nically created inside the admin database. This is because the local database
doesn’t allow any users to be created inside it.

Create an oplog user with the following command:

db.createUser({
 user:'oplog',
 pwd:'password',
 roles:[
 { role: "read", db: "local" }
]
})

Set the desired
username.

Set a password.

Read privileges on
the local database.
Licensed to Mark Watson <nordickan@gmail.com>

appendix C
Setting up nginx

Although Node.js—Meteor’s underlying server technology—is great for handling
events, it’s not optimized to handle static content such as images well. Even though
it’s possible to use SSL with a Node.js application, it’s not yet possible with Meteor.
The fact that Node.js is a single-threaded application that won’t take advantage of
the full power of multicore processors might be enough to convince you that scal-
ing Meteor will be complicated.

 Thankfully it doesn’t require much to build a production environment for run-
ning a Meteor application that takes care of all these shortcomings. In this appen-
dix, you’ll learn how to use the lightweight web server nginx to accomplish all you
need to run a rock-solid Meteor project.

C.1 Load balancing with nginx
Some of the most popular choices for running software load balancers are nginx
and HAProxy. Both are available as free open source packages, but because HAProxy

This appendix covers
■ Setting up nginx as a load balancer
■ Serving static content from nginx
■ Enabling SSL for Meteor applications
322

Licensed to Mark Watson <nordickan@gmail.com>

323Load balancing with nginx
is built as a load balancer and nginx is a web server that’s also capable of load balanc-
ing, HAProxy provides more advanced features should you need them.1

 Our example uses nginx because it’s more versatile and it can do everything you
need to ensure your Meteor application is always available. You can reduce the com-
plexity of your setup by just adding a single application to address all your produc-
tion challenges.

C.1.1 Installing nginx on Ubuntu

On all major Linux distributions, nginx can be installed using a package manager. On
Ubuntu and Debian the command is as follows:

$ sudo apt-get install nginx

Meteor uses WebSockets, and nginx only supports WebSockets starting with version
1.3, so ensure that you’re using a recent version (see figure C.1).

C.1.2 Installing on Debian 7 (Wheezy)

On Debian 7 (Wheezy), the default nginx version is too old to support WebSockets, so
you should install it from the Dotdeb repository instead. Simply add these two lines to
the end of the /etc/apt/sources.list file:

deb http://packages.dotdeb.org wheezy all deb-src http://packages.dotdeb.org
wheezy all

Then issue these two commands to fetch and install the Dotdeb GPG key:

$ wget http://www.dotdeb.org/dotdeb.gpg
$ sudo apt-key add dotdeb.gpg

1 Note that the commercial variant nginx plus offers more advanced functionality, but it’s not available as open
source. More details on the differences between the free and the paid versions of nginx can be found at
http://nginx.com/products/feature-matrix/.

Figure C.1 Installing nginx
Licensed to Mark Watson <nordickan@gmail.com>

http://nginx.com/products/feature-matrix/

324 APPENDIX C Setting up nginx
Once you run apt-get update you’ll be able to install the most recent stable version
of nginx with this:

apt-get install nginx

Next, you’ll configure nginx to listen to requests for the meteorinaction.com site,
define back-end servers running Meteor, and forward requests to them. Also, nginx
mustn’t send any requests to a back-end server that’s not available.

NOTE Debian 8 (Jessie) ships with nginx 1.6. There’s no need to add addi-
tional repositories; you can use apt-get install nginx without the prepara-
tory steps.

C.2 Configuring as a load balancer
Similar to Apache, nginx uses a general server configuration file and ideally every
virtual host should be configured inside an individual file. You don’t have to touch
the general main config file—you’ll create an additional configuration file for your
Meteor application.

C.2.1 Creating a site configuration file

First, you create a new file in the /etc/nginx/sites-available directory named meteor-
inaction.com. To listen to any requests, you define the server name and port at which
nginx should listen.

 Also, you want to redirect all incoming requests to have a www prefix.2 The corre-
sponding file is shown in the following listing.

server {
 listen 80;
 server_name meteorinaction.com;
 return 301 http://www.meteorinaction.com$request_uri;
}

server {
 listen 80;
 server_name www.meteorinaction.com;
}

2 Although it’s convenient for users to drop the www from an address, any site running on a “naked” top-level
domain can create scalability issues. If you don’t use a subdomain, the DNS system will lock you into assigning
a single IP address to your domain, which is why we rewrite all traffic to use a subdomain. Users can still access
your site without it; they’ll be automatically redirected. Find out more at www.yes-www.org/why-use-www/.

Listing C.1 nginx site configuration

Listen on
port 80.

Apply this configuration only when
meteorinaction.com is requested.

Redirect the request to the www-
subdomain, maintain the URI string,

and use a 301 HTTP status.

Apply this configuration to
www.meteorinaction.com
and all other requests.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.yes-www.org/why-use-www/
http://www.meteorinaction.com

325Configuring as a load balancer
C.2.2 Defining Meteor servers

To let nginx know which servers to forward requests to, you use a module called
upstream. Because any server configuration can use any upstream group, it must not
be inside a server {} block. At the very beginning of the configuration file, place the
following block:

upstream meteor_servers {
 server 192.168.2.221:3000;
 server 192.168.2.222:3000;
 ip_hash;
}

You can think of upstream as an array of servers. Each line starting with server
defines a new instance. The first parameter is the actual address of the server. The
machine running nginx must be able to access it, but it’s not required that the
upstream server can be accessed from the internet. Therefore, you can also use a local
Meteor instance at 127.0.0.1 as an upstream. In this example, both instances are acces-
sible only from a private network in the 192.168.2.0/24 range.

 All incoming requests will now be distributed equally between both back-end serv-
ers. You can further specify parameters such as weight to fine-tune the settings for
your environment. Across all requests you need to keep in mind that they’re stateful
and that moving between servers may break a user session. The easiest way to make
sure users aren’t moving back and forth between servers from one request to another
is to use the ip_hash directive. By adding it to your configuration block, you tell nginx
to always send requests from the same IP to the same upstream server.

NOTE If you expect many requests from the same IP, using the ip_hash direc-
tive may result in uneven distribution of users across your servers. In that
case you should include the sticky module in your nginx configuration in
combination with the least_conn directive instead. You can find out more at
https://bitbucket.org/nginx-goodies/nginx-sticky-module-ng/overview. Alter-
natively, HAProxy might be the better solution for you.

C.2.3 Forwarding requests to the back-end servers

Once nginx listens to requests and knows about the upstream servers, you can define
how you want to forward requests. In the configuration block for www.meteorinaction
.com, you add a new location for root (/) (see the following listing).

server {
...
location / {
 proxy_pass http://meteor_server;
 proxy_redirect off;

Listing C.2 Location for request forwarding in nginx

Choose a unique name for
your upstream group.

Each line corresponds to
one Meteor server instance.

Specify how to
distribute requests.
Licensed to Mark Watson <nordickan@gmail.com>

https://bitbucket.org/nginx-goodies/nginx-sticky-module-ng/overview
http://www.meteorinaction.com

326 APPENDIX C Setting up nginx
 proxy_http_version 1.1;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }
}

Let’s go through this configuration line by line:

■ proxy_pass is used to tell nginx that it should forward requests to this location.
It uses the name of the upstream group (meteor_server) and not a real URL.

■ proxy_redirect can be used to rewrite the URL request in more complex sce-
narios. It’s not needed in your setup so you switch it off.

■ proxy_http_version sets the HTTP version to 1.1 (the default is 1.0), which is
required for WebSockets functionality.

■ proxy_set_header allows you to add or modify some headers that’ll be sent to
the Meteor server. X-Forwarded-For contains the IP address of the user making
the request. Especially when nginx is on the same host as your Meteor server,
you need to set this. Host passes the hostname for the actual request to the
Meteor server. Both Upgrade and Connection are used to allow forwarding of
WebSocket connections.

C.2.4 Activating the nginx site

The final step in configuring the load balancer is to activate the site. First you’ll create
a symbolic link of the configuration that’ll be placed in the /etc/nginx/sites-
enabled/ directory:

$ sudo ln -s /etc/nginx/sites-available/meteorinaction.com
 /etc/nginx/sites-enabled/meteorinaction.com

Next you test if the configuration is good to go by calling nginx with the –t parameter:

$ sudo nginx –t

If there are no errors, you can reload the configuration without having to restart
nginx:

$ sudo nginx –s reload

C.3 Serving static content with nginx
Even if you only expect a small number of users, serving content from a content deliv-
ery network or using a reverse proxy to serve static files can greatly decrease wait times
for the users of your application. If your application is already using an nginx load bal-
ancer, it requires just some lines of configuration to enable it as a reverse proxy.
Licensed to Mark Watson <nordickan@gmail.com>

327Serving static content with nginx

d

 Meteor shouldn’t have to serve any static files, so you’ll configure nginx to process
all requests for media files and images as well as CSS and JavaScript files. Additionally
you’ll enable gzip compression.

C.3.1 Serving CSS and JavaScript

The meteor build command automatically minifies and compiles all CSS and Java-
Script files and places them in the folder bundle/programs/web.browser. If nginx is
to serve these files, they must be accessible from the nginx server. If Meteor is deployed
to a different server, you can either copy the files to the nginx machine or configure a
folder share using Network File System (NFS). If you copy the files, remember that you
need to repeat this every time you deploy the application. Because each build com-
mand will create new random filenames, there’s no need to delete the old files; this
allows for a smoother transition between deployments.

 To configure serving static application files and styles, you must define a new loca-
tion block in your nginx configuration file:

server {
...
 location ~* "^/[a-z0-9]{40}\.(css|js)$" {
 root /home/meteor/app/bundle/programs/web.browser/app;
 access_log off;
 expires 30d;
 add_header Pragma public;
 add_header Cache-Control "public";
 }
}

During the bundling process, all CSS and JavaScript files get a new and unique name
consisting of 40 characters (letters and digits), and only they will be served from the
proxy. Adjust the value for root to the directory where nginx can find these files. Log-
ging will be deactivated for these static files and clients may cache these files for 30
days (expires in combination with the added headers for Pragma and Cache-Control
are responsible for this). The next bundling process will result in new filenames, so
you won’t run into clients having stale cached files even if you deploy a new version of
your app before the 30 days of caching are over.

NOTE Nginx must have direct access to the files created by Meteor in order
to be able to serve them as a proxy. If nginx can’t access these files locally, you
need to leave out this configuration block.

C.3.2 Serving media files and images

The contents of the public folder should also be served from nginx. Because the pub-
lic folder is accessible at the root of your application, you’ll use file extensions to

This catches all requests for files
with names that are 40 characters
long and end with js or css.

The files
can be
found
in this

irectory.

No logging of these
files to reduce disk I/O

Clients may cache
these files for 30 days.

Adds a header that sets
Pragma to public

Adds a header for Cache-
Control to be set to public
Licensed to Mark Watson <nordickan@gmail.com>

328 APPENDIX C Setting up nginx
determine whether a request will be served statically or from Meteor. The configura-
tion is similar to the block you saw earlier:

 location ~ \.(jpg|jpeg|png|gif|mp3|ico|pdf) {
 root /home/meteor/app/bundle/programs/web.browser/app;
 access_log off;
 expires 30d;
 add_header Pragma public;
 add_header Cache-Control "public";
 }

You may add all file extensions to the regular expression in the location line. During
the bundling process, all contents from the public folder go into bundle/programs/
web.browser/app so you must use this as the root path for the location.

 Again, if nginx has no access to these files locally, you should copy them over manu-
ally, use a shared storage such as an NFS export, or leave out this configuration part.

C.3.3 Enabling gzip compression

The last optimization for serving static files from an nginx reverse proxy is enabling gzip
compression. Even when minified, text files can be compressed efficiently; in particular,
users with less bandwidth (such as mobile users) benefit greatly from using compres-
sion. Configuration is done outside any location blocks but inside a server block:

server{
 ...
 gzip on;
 gzip_disable "msie6";
 gzip_vary on;
 gzip_proxied any;
 gzip_comp_level 6;
 gzip_types text/plain text/css application/json application/x-javascript

text/xml application/xml application/xml+rss text/javascript;
 }

The first line activates gzip compression and the second disables it for Internet
Explorer 6. Enabling vary and proxied ensures that even requests going through
proxy servers that may be used along the way to the client will be handled correctly. In
this example, you set the compression level to 6 (on a scale from 1 to 9). Finally, you
define the MIME types that should be compressed.

C.4 Setting up SSL with nginx
Because Meteor doesn’t support SSL, you’ll configure nginx for SSL offloading, which
means the SSL connection will terminate at the load-balancing proxy server. It doesn’t
matter whether you use a self-signed certificate or one that was issued by Thawte,
StartSSL, or any other certificate authority (CA). You must copy both the certificate file
(with the .crt extension) and the key file (with the .key extension) to your nginx server.

 Your Meteor application and server will run exactly the same as before—no
changes required. The only configuration you’ll need to make is in the nginx site file.
Licensed to Mark Watson <nordickan@gmail.com>

329Setting up SSL with nginx
 In the server configuration block you’ll switch the port to 443, turn SSL on, and
configure the certificate files to be used (see the following listing).

server {
 listen 443;
 server_name www.meteorinaction.com;
 ssl on;
 ssl_certificate /path/to/my.crt;
 ssl_certificate_key /path/to/my.key;
 ssl_verify_depth 3;

 ...
}

Just like in the non-SSL configuration, you have to define both the port and server
name. When ssl is set to on, you must also provide a certificate and a key file. Some-
times the instructions issued by a CA ask you to combine multiple files into one. In
order for nginx to accept and verify this combined file, you should adjust the
ssl_verify_depth parameter. This parameter defines the maximum number of inter-
mediate certificate issuers—that is, the depth of how many CA certificates may be
looked up while verifying the client certificate. When combining your own with a pri-
mary and a secondary intermediate certificate, the depth should be 3; self-signed cer-
tificates have a depth of 0.

 Additionally, you should add a server that listens on port 80 and forwards all non-
SSL traffic to the SSL port:

server {
 listen 80;
 server_name meteorinaction.com www.meteorinaction.com;
 return 301 https://www.meteorinaction.com$request_uri;
}

Now your configuration file should have two server blocks: one that listens on port
443 and the other that listens on port 80 and forwards all requests to the SSL server.
Test and reload the configuration and you’re good to go.

NOTE This SSL configuration is very limited—there are ways to make connec-
tions even more secure. Take a look at the code accompanying this book for a
full example that’ll provide maximum security while being compatible with
most browsers.

Listing C.3 SSL setup for nginx

Listen on default
SSL port 443.

Enable SSL.

Path to the
certificate file

Path to the
key file

When using concatenated
certificates, the depth
must be adjusted.

Add both variants with
and without www.

All requests are forwarded
to the URL containing www.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

index
Symbols

: (colon) 189
$() shortcut 45
{ } curly braces 55
@= operator 210
> sign 57

A

acceptance tests 284
accounts-Facebook package 143
accounts-password package 132, 134
accounts-ui package 132
active routes 194–195
active-active high availability 304
active-passive high availability 303–304
added() method 163
$addtoSet modifier 99
aggregate() function 163
aggregated data

creating reactive data source from
165–167

publishing 162–165
aggregation pipeline 162
alanning:roles package 210
aldeed:autoform package 210
aldeed:collection2 package 210
allow functions 149–150
Amazon EC2 291, 303
Android 274, 276
Angular 14, 109
Apache Bench 288
app stores 276
App.accessRule 278
App.configurePlugin() 278

App.icons() 277
App.info() 277
App.launchScreens() 277
App.setPreference() 278
application ID 142
applications

browser
building project 271–273
configuration via Meteor.settings

270–271
overview 270

mobile
adding platforms 274–276
configuration 276–278
hybrid apps with Cordova 273–274
mobile-specific functionality 279

starting 25
apt-get 309
asynchronous code 9, 230–232
Atmospherejs.com 209–210
audit-argument-checks package 173
authentication

defined 131
email services for

customizing messages 139–141
overview 137–138
sending address verification emails 139
server configuration 138–139

OAuth
alternative providers 147–148
Facebook 143–147
overview 141–143

overview 130–132
password authentication 132
registration

process configuration 135–136
331

Licensed to Mark Watson <nordickan@gmail.com>

INDEX332
authentication (continued)
users collection 134–135
using profile data 136–137

templates for 132–133
authorization

defined 131
user permissions

allow and deny functions 149–150
deleting user account 152
overview 148–152
removing messages from whiteboard

151–152
sending messages to user 150–151

authSource option 303
autopublish package 40, 78–79, 156
autorun() function 127

B

backups 290
bcrypt 135
BDT (behavior-driven tests) 284
bengott:avatar package 210
BIND_IP environment variable 301
bindEnvironment() function 164, 238–240
Blaze engine 14–15, 53–54
block tags

each tag 62–63
if tag 60–62
overview 60
unless tag 60–62
with tag 62–63

blur event 68
Bootstrap 132, 181, 210
brew 309
browser applications

building project 271–273
configuration via Meteor.settings

270–271
overview 270
processing in 9–11

bubbling, event 70
build command 271
build process

building local packages 258
CoffeeScript 263
custom build stages 264–265
downloading missing packages 258
initializing catalog 257–258
LESS or Stylus 263–264
load order and 260–262
overview 254–256
--production flag 259
reading project metadata 256–257
resolving constraints 258

saving changed metadata 258
watching for changes 258–259

build-time compiler 54

C

CA (certificate authority) 328
call() method 171
callbacks 235–236
Cascading Style Sheets. See CSS
CasperJS 289
CDN (content delivery network) 44
certificate authority. See CA
cfs:filesystem package 246
cfs:gridfs package 246
cfs:s3 package 246
cfs:standard-packages package 210
change event 68
changed() method 163, 165
check() function 160
Chrome

accessing console 39
V8 JavaScript engine 228

CLI (command-line interface) 5, 17
click event 68
client code 17–19
clients and timestamps 120
client-side routing 180
cloud hosting 294–297
CoffeeScript 6, 17, 263, 265
collections

defined 38
displaying data within form 115–118
MongoDB

creating 93
displaying data in template 95–98
functions for 92–93
overview 89–91
querying 91–92, 94–95
removing data 102
updating data 98–101

reactive updates using local
event map for fieldset template 121–123
event map for form template 119–121
overview 118–119

staging changes in local collection 111–114
command-line interface. See CLI
community packages 207
Compose.io 297
computations 82
configure() function 185
connect() function 157
console 39, 86
container template 36
content delivery network. See CDN
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 333
controllers 196–197
cooperative multitasking 233
Cordova 204, 256, 273–274
core packages 207
CRUD (create, read, update and delete) 77,

118
CSS (Cascading Style Sheets) 52, 327
Cucumber 284, 286
curly braces { } 55
cursors 93, 167
Cygwin 311

D

data- attributes 46
data exchange

Meteor methods
overview 169–170
removing insecure package 170–171
using methods to write data to

collections 171–174
overview 153–155
publications

aggregated data 162–165
creating reactive data source from

aggregation publication 165–167
limiting visibility by user ID 167–169
overview 155–156
removing autopublish 156
setting up 156–157

subscriptions
dynamic 160–162
global 157–158
overview 155–156
parameterizing 159–162
removing autopublish 156
template-level 158–159

data storage
data sources

reactive contexts 81–82
reactivity of 80
volatile vs. persistent 79–80

houseSitter app
connecting to database 85–86
overview 82–84
templates for 84–85

overview 76–79
Session object

creating reactive context using
Tracker.autorun 89

overview 86–87
storing selected drop-down values 87–88

staging changes in local collection
111–114

database everywhere principle 106

databases
collections (MongoDB)

creating 93
displaying data in template 95–98
functions for 92–93
overview 89–91
querying 94–95
querying documents 91–92
removing data 102
updating data 98–101

connecting to 85–86
database anywhere principle 15–16
My fridge! example

defined set of products for startup 43–44
retrieving data 40–42
storing items 38–40

dblclick event 68
DDP (Distributed Data Protocol) 5, 10, 15,

157
Debian 297, 323–324
debugging using node-inspector 267–269
debugOnly flag 260
default browser behavior, preventing 71–72
demeteorizer 273, 294–296
deny functions 149–150
dependencies 211, 217, 258
deploy command 48
deployment

accessing running applications
debugging using node-inspector 267–269
interactive server shell 266–267

browser applications
building project 271–273
configuration via Meteor.settings

270–271
overview 270

build process
building local packages 258
CoffeeScript 263
custom build stages 264–265
downloading missing packages 258
initializing catalog 257–258
LESS or Stylus 263–264
load order and 260–262
overview 254–256
--production flag 259
reading project metadata 256–257
resolving constraints 258
saving changed metadata 258
watching for changes 258–259

cloud hosting options 294–297
connecting to MongoDB 301–303
environment variables 301
manual setup 297–301
meteor.com 48, 291–293
Licensed to Mark Watson <nordickan@gmail.com>

INDEX334
deployment (continued)
mobile applications

adding platforms 274–276
configuration 276–278
hybrid apps with Cordova 273–274
mobile-specific functionality 279

production
backups 290
checklist for 290
load testing 286–289
server administration 289–290
testing functionality using Velocity

framework 284–286
using version control 282–284

scaling
active-active high availability with load

balancing 304
active-passive high availability with

redundancy 303–304
load balancing 305–307
overview 303, 307
redundancy 305–307
single-component deployments 304

server options for 290–301
describe metadata block 215
devel branch 283
Developer Console 40
dialogs plug-in 279
Distributed Data Protocol. See DDP
document-oriented databases 90
DOM (Document Object Model) 9

reactive editing vs. DOM manipulation 107–111
scoped parsing with jQuery 45

Don’t repeat yourself principle. See DRY principle
double-braced tags 55–56
drag and drop

adding jQuery-UI to project 44
defining drop targets 44–47
making items draggable 47–48

DRY (Don’t repeat yourself) principle 196
dynamic subscriptions 160–162

E

each tag 62–63, 87
ecwyne:polymer-elements package 210
edgee:slingshot package 246
Elastx 297
else block tag 61
email

customizing messages 139–141
overview 137–138
sending address verification emails 139
server configuration 138–139

EMAIL_ONLY setting 135

emails package 137
Ember 14, 109
encodeURIComponent() function 138
environment variables 301
equals() function 86
ETL (extract, transform, and load) 21
event handling

event propagation 70–71
overview 68–69
preventing default behavior 71–72
reactive updates using local

event map for fieldset template 121–123
event map for form template 119–121

template event maps 69–70
event loop 8, 232–235
events() function 29
expressions

double-braced tags 55–56
triple-braced tags 56–57

external APIs
calling using asynchronous methods 242–244
calling using synchronous methods 242
making RESTful calls with http package 241

extract, transform, and load. See ETL

F

Facebook authentication
adding accounts-Facebook package 143
adding Facebook information to user

profile 146–147
configuration 144–146
creating Facebook application 143–144
overview 143

Facebook Messenger 4
falsey values 60
fibers

binding callbacks to 235–236
creating 238–240
defined 9
multitasking and event loop 232–235
overview 232
unblocking method calls for single client

237–238
fields property 94
file uploads

displaying images stored in collection 249
limitations of 246
limiting publication to single file 247
overview 244–246
template for 246
using FileReader API 248–249

find() function 40, 91–93, 167
findOne() function 39, 91–92, 95, 113, 167
Firefox 39
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 335
focus event 68
FRP (functional reactive programming) 14
full-stack platform 255
functions 92–93
futures 233

G

git 282
GitHub authentication 141
global helpers 65
global subscriptions 157–158
Google authentication 141
Google Maps 4
GridFS 245–246
gzip compression 328

H

HA (high availability)
active-active with load balancing 304
active-passive with redundancy 303–304

Handlebars 54
HAProxy 322, 325
helloWorld application

helloWorld.css 26
helloWorld.html 26–27
helloWorld.js 27

helpers
custom block helpers 66–67
defined 27, 63
global helpers 65
local template helpers 63–65
using logic in 67–68

helpers() function 41
Heroku 284, 291, 294
high availability. See HA
home route 181
hooks 197–199
horizontal scaling 304
hot code pushes 89, 258
hotfixes 283
houseSitter app

connecting to database 85–86
overview 82–84
reactive editing

displaying collection data within form
115–118

DOM manipulation vs. 107–111
notifications system 124–127
reactive updates using local collection

118–123
staging changes in local collection 111–114
workflow for 106–107

templates for 84–85

HTML5 (Hypertext Markup Language 5) 15
HTMLJS 57
HTTP (Hypertext Transfer Protocol) 13, 15, 18
http package 205, 241
hybrid apps 273–274
Hypertext Markup Language 5. See HTML5

I

IBM ClearCase 282
if tag 60–62
$inc modifier 99
inclusion tags

dynamically included templates 59
modular templates 58–59
monolithic templates 58
overview 57–58

inotify 258
insecure package 40, 78, 149, 170–171
insert() function 92, 101, 113
installation

on Linux 310
on Mac OS X 310
nginx 323–324
prerequisites 309–310
using Vagrant 311–313
on Windows 311

Internet Explorer 39
iOS 274, 276
IRLibloader object 195
Iron.Router package

active routes 194–195
adding package to project 180–181
client-side routing overview 180
creating routes 181–183
data context depending on route 187–190
data subscriptions with 190–192
defining layout depending on route

defining template for named regions
186–187

multiple layouts 185
single layout 183–185

extending route process using hooks
197–199

link helpers 193
named routes 192–193
organizing routes as controllers 196–197
overview 176–177
plug-ins for 199–200
waiting for external libraries to load

195–196
web applications and 177–180

isCordova() function 279
Isobuild 254–255
isomorphic platforms 7–9
Licensed to Mark Watson <nordickan@gmail.com>

INDEX336
Isopacks
adding and removing 210–211
build process and 255
creating

adding functionality 217–220
describe metadata block 215
onTest metadata block 217
onUse metadata block 215–216
overview 213–214
testing using tinytest 220–224

defined 13
overview 205
publishing

general discussion 224
initial publication 224–225
unpublishing 225
updating 225

searching on Atmospherejs.com 209–210
searching using CLI tool 207
semantic versioning 205–206
types of 207
updating 212

isSelected helper 87
isSimulation() function 171

J

Jasmine 284, 286
Java 15
JavaScript 327
JBoss 5
jQuery 14, 20, 45, 107
jQuery-UI 44
JSON (JavaScript Object Notation) 13, 90

K

keydown/keyup events 69
kqueue extension 258

L

LAMP (Linux, Apache, MySQL, PHP) stack 6
lastsave attribute 125
latency 289
layout

creating 34–35
defining based upon route

defining template for named regions
186–187

multiple layouts 185
single layout 183–185

least connection algorithm 306
LESS 6, 17, 263–264
libraries, external 195–196

linkTo template helper 193
Linux installation 310
Linux, Apache, MySQL, PHP stack. See LAMP stack
Livequery 15, 107
load balancing 304–307

activating site 326
creating site configuration file 324
defining Meteor servers 325
forwarding requests to back-end servers

325–326
installing on Debian 7 323–324
installing on Ubuntu 323

load order 260–262
load testing 286–289
loadingTemplate option 191
local database 318
local template helpers 63–65
localStorage 86
long-running operations 7
lookback.io 23

M

Mac OS X 310
MAIL_URL environment variable 137, 301
MDG (Meteor Development Group) 5, 177, 206
mdg:camera package 274
mdg:geolocation package 274, 279
mdg:reload-on-resume package 274
MEAN stack 4–5
Meetup authentication 141
metadata 256–258
Meteor

Blaze 14–15
CLI tool 17
client code vs. server code 17–19
cons of 21–22
creating projects 24–25
database anywhere principle 15–16
DDP 15
framework stack 5–7
helloWorld application 26–27
history of 4–5
as isomorphic platform 7–9
Livequery 15
overview 3–4, 12–14
processing in browser 9–11
pros 19–20
reactive programming 11–12
real-life usage examples 22–23
starting applications 25

Meteor Development Group. See MDG
Meteor Version Solver 205, 211
meteor.com 48, 291–293
Meteor.settings object 270–271
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 337
meteor-down 288
meteorhacks:npm package 212
meteoric:ionic package 210
meteor-load-test 288
meteor-parties-stresstest 289
meteorsteam:meteor-postgres package 210
meteor-up project 297–301
methods, Meteor

overview 169–170
removing insecure package 170–171
using methods to write data to collections

171–174
mike:mocha package 284
minification 253
Minimongo

application flow using 16
defined 7

mixins 263
mobile applications

adding platforms 274–276
configuration 276–278
hybrid apps with Cordova 273–274
mobile-specific functionality 279

Mocha 284, 286
modular templates 58–59
Modulus 291, 294
MONGO_OPLOG_URL environment

variable 301
MONGO_URL environment variable 89, 301
MongoDB

aggregation support 163
collections 38

creating 93
displaying data in template 95–98
functions for 92–93
overview 89–91
querying 94–95
querying documents 91–92
removing data 102
updating data 98–101

component distribution among servers 318
connecting production application to 301–303
defined 6
enabling oplog 317–320
GridFS support 245
mongoc process 315–316
mongod process 315
mongos process 315
providers offering database as service 296
replica sets 316–317

mongodump 290
MongoLab 297
mongorestore 290
MongoSoup 297
monolithic templates 58

mouse events 68
mrt: prefix 207
msavin:mongol package 210
multi option 98
multitasking 232–235
mup 297
My fridge! example

creating layout 34–35
database storage

defined set of products for startup 43–44
retrieving data 40–42
storing items 38–40

deploying to meteor.com 48
moving items into fridge

adding jQuery-UI to project 44
defining drop targets 44–47
making items draggable 47–48

overview 32–33
setting up project 32–33
templates for 35–38

MySQL 22

N

named routes 192–193
NFS (Network File System) 327
nginx 307

load balancing
activating site 326
creating site configuration file 324
defining Meteor servers 325
forwarding requests to back-end servers

325–326
installing on Debian 7 323–324
installing on Ubuntu 323

serving static content
CSS 327
enabling gzip compression 328
JavaScript 327
media files 327–328

setting up SSL 328
Nitrous 310
NODE_ENV environment variable 301
Node.js 7

asynchronous code 230–232
fibers

binding callbacks to 235–236
creating 238–240
multitasking and event loop 232–235
overview 232
unblocking method calls for single

client 237–238
overview 227–228
static content and 322
synchronous code 228–230
Licensed to Mark Watson <nordickan@gmail.com>

INDEX338
node-inspector 267–269
Nodejitsu 291, 294
NoSQL databases 79
notifications system

handling concurrent saves 124–125
status property 125–126
template for 125
triggering using Session variable 127

npm packages 212–213, 217
numtel:mysql package 210

O

OAuth (Open Authentication)
alternative providers 147–148
Facebook

adding accounts-Facebook package 143
adding Facebook information to user

profile 146–147
configuration 144–146
creating Facebook application 143–144
overview 143

overview 141–143
Objective-C 15
ObjectRocket 297
observeChanges() function 166
onAfterAction hook 198
onBeforeAction hook 198–199
onCreated callback 72
onCreateUser() function 136
onDestroyed callback 73
ongoworks:security package 210
onRendered callback 72
onRerun hook 198
onRun hook 198
onStop hook 198
onTest metadata block 217
onUse metadata block 215–216
Open Authentication. See OAuth
OpenSolaris 297
Opera 39
oplog (MongoDB) 317–320

P

PaaS (Platform-as-a-Service) 289
PACKAGE_DIRS environment variable 219
packages

adding and removing 210–211
in build process 258
creating

adding functionality 217–220
describe metadata block 215
onTest metadata block 217
onUse metadata block 215–216

overview 213–214
testing using tinytest 220–224

npm packages 212–213
overview 204–205
publishing

general discussion 224
initial publication 224–225
unpublishing 225
updating 225

searching on Atmospherejs.com 209–210
searching using CLI tool 207
semantic versioning 205–206
types of 207
updating 212

--packages-only option 212, 257
paradox of choice 255
partials

dynamically included templates 59
modular templates 58–59
monolithic templates 58
overview 57–58

password authentication 132
passwords vs. SSH keys 299
passwordSignupField setting 135
pathFor template helper 192
permissions

allow and deny functions 149–150
deleting user account 152
overview 148–152
removing messages from whiteboard 151–152
sending messages to user 150–151

persistent data storage 79–80
PhantomJS 288–289, 299
PhoneGap 256, 273
placeholders 52
Platform-as-a-Service. See PaaS
plug-ins, Cordova 274
PORT environment variable 301
PostgreSQL 22
preprocessors 263
preventDefault() function 71, 101, 119
production deployment

backups 290
checklist for 290
cloud hosting options 294–297
connecting to MongoDB 301–303
environment variables 301
load testing 286–289
manual setup 297–301
meteor.com 291–293
scaling

active-active high availability with load
balancing 304

active-passive high availability with
redundancy 303–304
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 339
production deployment (continued)
load balancing 305–307
overview 303, 307
redundancy 305–307
single-component deployments 304

server administration 289–290
server options for 290–301
testing functionality using Velocity

framework 284–286
using version control 282–284

--production flag 259
profiles, user

adding Facebook information to
146–147

overview 136–137
projections 92
projects, creating 24–25, 32–33
promises 233
proxy servers 307
public folder 36
publications

aggregated data 162–165
creating reactive data source from

aggregation publication 165–167
limiting visibility by user ID 167–169
overview 155–156
removing autopublish 156
setting up 156–157

publish command 224–225
publish() function 164
publishing packages

general discussion 224
initial publication 224–225
unpublishing 225
updating 225

$pull modifier 99
$push modifier 99
Python 15

Q

queries
document-based databases 91–92
for collections 94–95

R

Rackspace 291
React 14
ReactionCommerce.com 23
reactive contexts 81–82, 89
reactive editing

displaying collection data within form
115–118

DOM manipulation vs. 107–111

notifications system
handling concurrent saves 124–125
status property 125–126
template for 125
triggering using Session variable 127

reactive updates using local collection
event map for fieldset template 121–123
event map for form template 119–121
overview 118–119

staging changes in local collection 111–114
workflow for 106–107

reactive programming 11–12
ReactiveVar package 96
Read-Eval-Print-Loop. See REPL
ready() method 157, 163
Redis 307
redundancy 303–307
regions 185
registerHelper() function 114
registration, user

process configuration 135–136
users collection 134–135
using profile data 136–137

remote procedure calls. See RPCs
remove() function 92, 102–103
removed() method 163, 165
$rename modifier 99
render() function 187
REPL (Read-Eval-Print-Loop) 267
replica sets 316–317
resolving constraints stage 258
responsiveness 20
REST (Representational State Transfer)

making calls with http package 241
server-side routing with 200

RoboMongo 134, 293
Robot Framework 284, 286
ROOT_URL environment variable 141, 301
round robin algorithm 305
route() function 183
routing

active routes 194–195
adding Iron.Router package 180–181
client-side 180
creating Iron.Router plug-ins 199–200
creating routes 181–183
data context depending on route 187–190
data subscriptions with Iron.Router 190–192
defining layout depending on route

defining template for named regions
186–187

multiple layouts 185
single layout 183–185

extending route process using hooks 197–199
link helpers 193
Licensed to Mark Watson <nordickan@gmail.com>

INDEX340
routing (continued)
named routes 192–193
organizing routes as controllers 196–197
server-side routing with REST API 200
waiting for external libraries to load

195–196
web applications and 177–180

RPCs (remote procedure calls) 169
rsbatech:robotframework package 284
rsnapshot 290
run command 256, 258
running applications

debugging using node-inspector 267–269
interactive server shell 266–267

runtime API 54

S

Safari 39
sanitizing data 57
sanjo:jasmine package 284
scaling

active-active high availability with load
balancing 304

active-passive high availability with
redundancy 303–304

load balancing 305–307
overview 303, 307
redundancy 305–307
single-component deployments 304

search command 207, 225
secret key 142
Secure Sockets Layer. See SSL
selectors 91
semantic versioning 205–206
sendmail 139
separation of concerns 52
server administration 289–290
server code 17–19
server load 20
server-side routing with REST API 200
Session object

common usage of 79
creating reactive context using

Tracker.autorun 89
overview 86–87
scope of 96
storing selected drop-down values 87–88
triggering notifications using Session

variable 127
$set modifier 99
setDefault() function 86
setTimeout() function 231
--settings parameter 270
shards 315

Share911.com 22
short-lived data 79
show command 208
Siege 288
simulations 171
single-component deployments 304
single-page applications 7
Skybreak 5
SockJS 13
source maps 258
Spacebars

defined 32
Handlebars and 54

splendido:accounts-meld package 210
SSH keys 299
SSL (Secure Sockets Layer) 328
SSL offloading 306
ssl_verify_depth parameter 329
StartSSL 328
startup() block 85
static content

CSS 327
enabling gzip compression 328
JavaScript 327
media files 327–328

status property 125–126
stop() method 157
stopImmediatePropagation() function 71
Stylus 263–264
subscribe() function 155, 157
subscriptions

dynamic 160–162
global 157–158
overview 155–156
parameterizing 159–162
removing autopublish 156
template-level 158–159

Subversion 282
synchronous code 228–230

T

tap:i18n package 210
taskset package 306
Telescope 23
Telize 241
template helpers 28
Template object 41
Template.instance() function 45
templates

Blaze engine 53–54
block tags

each tag 62–63
if tag 60–62
overview 60
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 341
templates (continued)
unless tag 60–62
with tag 62–63

displaying queried data in 95–98
event handling

event propagation 70–71
overview 68–69
preventing default behavior 71–72
template event maps 69–70

expressions
double-braced tags 55–56
triple-braced tags 56–57

helpers
custom block helpers 66–67
defined 63
global helpers 65
local template helpers 63–65
using logic in 67–68

for houseSitter app 84–85
inclusion tags

dynamically included templates 59
modular templates 58–59
monolithic templates 58
overview 57–58

life cycle 72–74
My fridge! example 35–38
organizing files 54–55
overview 52–53
Spacebars 32
tags in 55
template-level subscriptions 158–159
for user management 132–133

testing
framework for 21
functionality, using Velocity framework 284–286
packages, using tinytest 220–224

Thawte 328
timestamps 120
tinytest package 220–224, 284
tomi:upload-jquery package 246
tomi:upload-server package 246
Tracker package 80–81
Tracker.autorun() function 89, 127
triple-braced tags 56–57
Twitter authentication 141
two-way data binding 109–111
TypeScript 264–265

U

Ubuntu 297, 323
unblocking method calls 237–238
Underscore 20
unless tag 60–62
unmigrated setting 225

unpublishing packages 225
$unset modifier 99
update command 224, 257
update() function 92, 98–99, 113, 118–119
upsert option 98
upsert() function 92, 113
upstream module 325
--url parameter 293
urlFor template helper 193
user management

email services for
customizing messages 139–141
overview 137–138
sending address verification emails 139
server configuration 138–139

OAuth authentication
alternative providers 147–148
Facebook 143–147
overview 141–143

overview 130–132
password authentication 132
permissions

allow and deny functions 149–150
deleting user account 152
overview 148–152
removing messages from whiteboard

151–152
sending messages to user 150–151

registration
process configuration 135–136
users collection 134–135
using profile data 136–137

templates for 132–133
userId() function 134
USERNAME_AND_EMAIL setting 135
USERNAME_AND_OPTIONAL_EMAIL

setting 135
USERNAME_ONLY setting 135
usernames 214

V

V8 JavaScript engine 227
Vagrant 311–313
validation, input 173
Velocity framework 284–286
version control 282–284
versioning, semantic 205–206
VirtualBox 311
volatile data storage 79–80

W

waitOn function 191, 195
WebSockets 13, 323
Licensed to Mark Watson <nordickan@gmail.com>

INDEX342
Weibo authentication 141
weighted round robin algorithm 306
Windows 311
with tag 62–63
withIndex helper 117
Workpop.com 22
wrapAsync() function 235–236

X

Xcode 274
Xen 5
xolvio:cucumber package 284

Y

yield template helper 185
Licensed to Mark Watson <nordickan@gmail.com>

The Meteor stack is a member of the MEAN family, which means it’s powered by
Node.js, an event-driven, highly scalable runtime for JavaScript on the server.

Meteor uses a single codebase to create applications on the server, the browser,
and mobile devices.

Applications can take advantage
of many packages that provide
functionality, such as OAuth logins,
reactive UIs, and request routing.

The CLI tool manages
the build process,
package management,
app deployment, and
other common tasks.

Server

Browser

Mobile

CLI tool

The same codebase is used
to deploy applications to the
web and mobile devices.

MongoDB

Node.js

Application code

App
Hybrid

app

Node.js is an event-driven,
highly scalable runtime
environment for JavaScript
on the server.

MongoDB is the default database
for Meteor. As a NoSQL database
it stores documents rather
than tables.

cordova-plugin-camera

cordova-plugin-battery

Isobuild

Business logic

Code

Blaze

Tracker

DDP

Livequery

Full stack DB drivers

…

Styles

Templates

Assets

cordova-plugin-camera

cordova-plugin-battery

Application

A single codebase for all deployment targets

Server

Mobile devices

Browser

Cordova packages

Fibers

NPM packages

Isopacks

Licensed to Mark Watson <nordickan@gmail.com>

After transferring all files over HTTP, Meteor uses a WebSocket connection to exchange
data with all clients. It uses the standardized DDP protocol.

Clients get their data from the server by subscribing to publications.

In order to send data back to the server or to execute remote functions, Meteor uses methods.
Method calls are simulated on the client as well to add latency compensation to applications.

Static after assets HTML, JS, CSS, JPG,

PNG, etc.

Remote procedure calls

Initial page request

Data subscriptions

The initial request and all static
resources are transferred via HTTP.

Clients call server functions
via DDP over WebSockets,
and the server returns
data as JSON objects.

Livequery watches for
changes and pushes data
to all subscribed clients.

Tracker triggers reactive
updates, e.g., in the UI
powered by Blaze.

Database

Server Client

App

Livequery

MiniDB

App

Tracker

Blaze

MongoDB Minimongo
Return 3

docs

Server

Subscribe

to

workouts

Publish

data for

workouts

Meteor.publish('workouts', function () {

return Collection.find({},{limit: 3});

});

Publication

Collection = new Mongo.Collection('workouts');

Collection: Same on server and client

Meteor.subscribe('workouts');

Subscription

Documents
Documents

Put

documents into

workouts

Client

Documents

Documents

Potentially unsafe content

is sent to the server.

Database

Server Client

App

Livequery

MiniDB

App

5. Call method to

store comment

6. Validate data 2. Validate data
1. Submit

comment

4. Update

view

7. Store to DB 3. Simulate

storing to DB

8. Confirm success
Tracker

Blaze

Licensed to Mark Watson <nordickan@gmail.com>

RELATED MANNING TITLES
JavaScript Application Design
A Build First approach
by Nicolas G. Bevacqua

ISBN: 9781617291951
344 pages, $39.99
January 2015

Node.js in Action
by Mike Cantelon, Marc Harter,

T.J. Holowaychuk, Nathan Rajlich

ISBN: 9781617290572
416 pages, $44.99
October 2013

Node.js in Practice
by Alex Young and Marc Harter

ISBN: 978-1-933988-05-4
424 pages, $49.99
December 2014

Ionic in Action
Hybrid Mobile Apps with Ionic and AngularJS
by Jeremy Wilken

ISBN: 9781633430082
325 pages, $44.99
September 2015
For ordering information go to www.manning.com

Licensed to Mark Watson <nordickan@gmail.com>

https://www.manning.com/books/javascript-application-design
https://www.manning.com/books/node-js-in-action
https://www.manning.com/books/node-js-in-practice
https://www.manning.com/books/ionic-in-action
https://www.manning.com/books/javascript-application-design
https://www.manning.com/books/node-js-in-action
https://www.manning.com/books/node-js-in-practice
https://www.manning.com/books/ionic-in-action

YOU MAY ALSO BE INTERESTED IN
Rails 4 in Action
Revised Edition of Rails 3 in Action
by Ryan Bigg, Yehuda Katz,

Steve Klabnik, Rebecca Skinner

ISBN: 9781617291098
576 pages, $49.99
August 2015

jQuery in Action, Third Edition
by Bear Bibeault, Yehuda Katz,

Aurelio De Rosa

ISBN: 9781617292071
504 pages, $44.99
August 2015

HTML5 in Action
by Rob Crowther, Joe Lennon,

Ash Blue, Greg Wanish

ISBN: 9781617290497
466 pages, $39.99
February 2014

AngularJS in Action
by Lukas Ruebbelke

ISBN: 9781617291333
192 pages, $44.99
July 2015
For ordering information go to www.manning.com

Licensed to Mark Watson <nordickan@gmail.com>

https://www.manning.com/books/rails-4-in-action
https://www.manning.com/books/html5-in-action
https://www.manning.com/books/angularjs-in-action
https://www.manning.com/books/jquery-in-action-third-edition
https://www.manning.com/books/rails-4-in-action
https://www.manning.com/books/jquery-in-action-third-edition
https://www.manning.com/books/html5-in-action
https://www.manning.com/books/angularjs-in-action

Hochhaus ● Schoebel

Y
ou might call Meteor a reactive, isomorphic, full-stack
web development framework. Or, like most developers
who have tried it, you might just call it awesome. Meteor

is a JavaScript-based framework for both client and server web
and mobile applications. Meteor applications react to changes
in data instantly, so you get impossibly responsive user expe-
riences, and the consistent build process, unifi ed front- and
back-end package system, and one-command deploys save you
time at every step from design to release.

Meteor in Action teaches you full-stack web development with
Meteor. It starts by revealing the unique nature of Meteor’s
end-to-end application model. Through real-world scenarios,
you’ll dive into the Blaze templating engine, discover Me-
teor’s reactive data sources model, learn routing techniques,
and practice managing users, permissions, and roles. Finally,
you’ll learn how to deploy Meteor on your server and scale
effi ciently.

What’s Inside
● Building your fi rst real-time application
● Using MongoDB and other reactive data sources
● Creating applications with Iron Router
● Deploying and scaling your applications

Readers need to know the basics of JavaScript and understand
general web application design.

Stephan Hochhaus and Manuel Schoebel are veteran web devel-
opers who have worked with Meteor since its infancy.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/meteor-in-action

$44.99 / Can $51.99 [INCLUDING eBOOK]

Meteor IN ACTION

JAVASCRIPT

M A N N I N G

“An enjoyable and
 approachable book.”
—From the Foreword by
Matt DeBergalis, Founder

Meteor Development Group

“An invaluable guide
for any developer,

 from beginner to expert.”
—John Griffi ths, UXGent.co

“The only source you need
to develop reactive,

 commercial-grade apps.”
—David DiMaria
Collective Sessions

“The defi nitive resource on
Meteor. The book’s depth

is unparalleled and the
examples are real-world
and comprehensive.”—Subhasis Ghosh, ISACA

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Prerequisites
	Code
	Author Online
	About the authors
	About the title

	about the cover illustration
	Part 1—Look—a shooting star!
	1 A better way to build apps
	1.1 Introducing Meteor
	1.1.1 The story behind Meteor
	1.1.2 The Meteor stack
	1.1.3 Isomorphic frameworks: full-stack JavaScript
	1.1.4 Processing in the browser: running on distributed platforms
	1.1.5 Reactive programming

	1.2 How Meteor works
	1.2.1 Core projects
	1.2.2 Isobuild and the CLI tool
	1.2.3 Client code vs. server code

	1.3 Strengths and weaknesses
	1.3.1 Where Meteor shines
	1.3.2 Challenges when using Meteor

	1.4 Creating new applications
	1.4.1 Setting up a new project
	1.4.2 Starting the application

	1.5 Dissecting the default project
	1.5.1 helloWorld.css
	1.5.2 helloWorld.html
	1.5.3 helloWorld.js

	1.6 Summary

	2 My fridge! A reactive game
	2.1 Application overview
	2.2 Initial setup
	2.2.1 Setting up a new project

	2.3 Creating a layout
	2.3.1 Setting the styles
	2.3.2 Adding the templates

	2.4 Adding content to the database in real time
	2.4.1 Storing items in the database
	2.4.2 Connecting data to templates
	2.4.3 Adding a defined set of products

	2.5 Moving items into the fridge
	2.5.1 Adding jQuery-UI to the project
	2.5.2 Defining drop targets for items
	2.5.3 Allowing items to be draggable

	2.6 Deploying to meteor.com and using the fridge
	2.7 Summary

	Part 2—3, 2, 1—impact!
	3 Working with templates
	3.1 Introduction to templates
	3.2 Working with templates
	3.2.1 The Blaze engine
	3.2.2 Organizing template files

	3.3 Creating dynamic HTML templates
	3.3.1 Double and triple-braced tags (expressions)
	3.3.2 Inclusion tags (partials)
	3.3.3 Block tags
	3.3.4 Helpers

	3.4 Handling events
	3.4.1 Template event maps
	3.4.2 Event propagation
	3.4.3 Preventing the browser’s default behavior

	3.5 The template life cycle
	3.6 Summary

	4 Working with data
	4.1 Meteor’s default data sources
	4.1.1 What makes a data source reactive?
	4.1.2 How reactive data is connected to functions

	4.2 Building a house-sitter app
	4.2.1 Setting up templates
	4.2.2 Connecting to a database and declaring collections

	4.3 Working with the Session object
	4.3.1 The Session object
	4.3.2 Using Session to store selected drop-down values
	4.3.3 Creating a reactive context using Tracker.autorun

	4.4 Working with MongoDB collections
	4.4.1 Querying documents in MongoDB
	4.4.2 Working with Meteor collections
	4.4.3 Initializing a collection
	4.4.4 Querying collections
	4.4.5 Display collection data in a template
	4.4.6 Updating data in a collection
	4.4.7 Inserting new data into a collection
	4.4.8 Removing data from a collection

	4.5 Summary

	5 Fully reactive editing
	5.1 The reactive editing workflow
	5.2 Reactive front ends vs. DOM manipulation
	5.3 Staging changes in a local collection
	5.4 Displaying collection data within a form
	5.4.1 Adding array index information to an #each loop

	5.5 Reactive updates using a local collection
	5.5.1 Event map for the houseForm template
	5.5.2 Event map for the plantFieldset template

	5.6 Implementing a simple notifications system
	5.6.1 Adding a notifications template
	5.6.2 Adding a status property
	5.6.3 Using a Session variable to trigger notifications

	5.7 Summary

	6 Users, authentications, and permissions
	6.1 Adding users to an application
	6.1.1 Adding password authentication
	6.1.2 Registration and password reset
	6.1.3 Setting up email

	6.2 Authenticating users with OAuth
	6.2.1 An introduction to OAuth
	6.2.2 Integrating Facebook authentication
	6.2.3 Integrating other OAuth providers

	6.3 Managing user permissions, roles, and groups
	6.3.1 Managing permissions with allow/deny

	6.4 Summary

	7 Exchanging data
	7.1 Publications and subscriptions
	7.1.1 publish() and subscribe()
	7.1.2 Global subscriptions
	7.1.3 Template-level subscriptions
	7.1.4 Parameterizing subscriptions
	7.1.5 Publishing aggregated data to a client-only collection
	7.1.6 Turning an aggregation publication into a reactive data source
	7.1.7 Limiting data visibility by user ID

	7.2 Meteor methods
	7.2.1 Removing the insecure package
	7.2.2 Using methods to write data to collections

	7.3 Summary

	8 Routing using Iron.Router
	8.1 Routing in web applications
	8.2 Client-side routing
	8.2.1 Adding Iron.Router
	8.2.2 Creating your first routes
	8.2.3 Defining a layout depending on a route
	8.2.4 Setting the data context depending on a route
	8.2.5 Data subscriptions with Iron.Router

	8.3 Advanced routing methods
	8.3.1 Using named routes and link helpers
	8.3.2 Working with active routes for better navigation links
	8.3.3 Waiting for external libraries to load
	8.3.4 Organizing routes as controllers
	8.3.5 Extending the route process using hooks
	8.3.6 Creating an Iron.Router plug-in

	8.4 Server-side routing with a REST API
	8.5 Summary

	9 The package system
	9.1 The foundation of all applications
	9.2 Using Isopacks
	9.2.1 Version Solver and semantic versioning
	9.2.2 Finding packages
	9.2.3 Adding and removing Isopacks
	9.2.4 Updating packages

	9.3 Using npm packages
	9.4 Creating an Isopack
	9.4.1 Creating a package
	9.4.2 Declaring package metadata
	9.4.3 Adding package functionality
	9.4.4 Testing Isopacks using tinytest
	9.4.5 Publishing

	9.5 Summary

	10 Advanced server methods
	10.1 Reintroducing Node.js
	10.1.1 Synchronous code
	10.1.2 Asynchronous code

	10.2 Asynchronous functions using fibers
	10.2.1 Introducing multitasking to the event loop
	10.2.2 Binding callbacks to a fiber with wrapAsync
	10.2.3 Unblocking method calls for a single client
	10.2.4 Creating fibers with bindEnvironment

	10.3 Integrating external APIs
	10.3.1 Making RESTful calls with the http package
	10.3.2 Using a synchronous method to query an API
	10.3.3 Using an asynchronous method to call an API

	10.4 Uploading files to a collection
	10.4.1 Uploading files to the database

	10.5 Summary

	Part 3—Leaving the crater
	11 Building and debugging
	11.1 The Meteor build process
	11.1.1 Build stages
	11.1.2 Running with the --production flag
	11.1.3 Load order
	11.1.4 Adding build stages via packages
	11.1.5 Adding a custom build stage

	11.2 Accessing running applications
	11.2.1 Using the interactive server shell
	11.2.2 Debugging using node-inspector

	11.3 Creating browser applications
	11.3.1 Application configuration using Meteor.settings
	11.3.2 Building Meteor projects

	11.4 Creating mobile applications
	11.4.1 Hybrid apps with Cordova
	11.4.2 Adding mobile platforms
	11.4.3 Configuring mobile applications
	11.4.4 Adding mobile functionality

	11.5 Summary

	12 Going into production
	12.1 Preparing for production
	12.1.1 Using version control
	12.1.2 Testing functionality: the Velocity framework
	12.1.3 Estimating and testing load
	12.1.4 Server administration
	12.1.5 Checklist

	12.2 Setup and deployment
	12.2.1 The simplest deployment: meteor.com
	12.2.2 All-inclusive hosting: cloud providers
	12.2.3 Full flexibility: manual setup

	12.3 Connecting the pieces
	12.3.1 Environment variables
	12.3.2 Connecting Meteor to MongoDB

	12.4 Scaling strategies
	12.4.1 Active-passive high availability with redundancy
	12.4.2 Single-component deployments
	12.4.3 Redundancy and load balancing
	12.4.4 Bulletproof availability

	12.5 Summary

	Appendix A—Installing Meteor
	A.1 Prerequisites
	A.2 Installing Meteor on Linux and Mac OS X
	A.3 Installing Meteor on Windows
	A.4 Running Meteor using Vagrant

	Appendix B—The anatomy of MongoDB
	B.1 The MongoDB components
	B.1.1 mongod: databases and shards
	B.1.2 mongos: query routing
	B.1.3 mongoc: configuration servers
	B.1.4 Replica sets

	B.2 Setting up MongoDB

	Appendix C—Setting up nginx
	C.1 Load balancing with nginx
	C.1.1 Installing nginx on Ubuntu
	C.1.2 Installing on Debian 7 (Wheezy)

	C.2 Configuring as a load balancer
	C.2.1 Creating a site configuration file
	C.2.2 Defining Meteor servers
	C.2.3 Forwarding requests to the back-end servers
	C.2.4 Activating the nginx site

	C.3 Serving static content with nginx
	C.3.1 Serving CSS and JavaScript
	C.3.2 Serving media files and images
	C.3.3 Enabling gzip compression

	C.4 Setting up SSL with nginx

	index
	Symbol
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Back cover

