
[1]

www.allitebooks.com

http://www.allitebooks.org

Mastering RabbitMQ

Master the art of developing message-based
applications with RabbitMQ

Emrah Ayanoglu

Yusuf Aytaş

Dotan Nahum

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering RabbitMQ

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1211215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-152-6

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Emrah Ayanoglu

Yusuf Aytaş

Dotan Nahum

Reviewers
Steve Fosdal

Van Thoai Nguyen

Jorge Puente-Sarrín

Ken Taylor

Héctor Veiga

Commissioning Editor
Ashwin Nair

Acquisition Editor
Reshma Raman

Content Development Editor
Anish Sukumaran

Technical Editor
Abhishek R. Kotian

Copy Editor
Pranjali Chury

Project Coordinator
Mary Alex

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Emrah Ayanoglu has been into technology since a young age, when he was
programming with his Tandy 1000 using Basic language. His deep interest and
passion for programming lead to him pursue computer engineering at Bilkent
University, Ankara. He now works as a software engineer and heavily works on
integrating software systems using RabbitMQ.

He frequently speaks at different tech conferences about scalability and real-time
web applications where RabbitMQ has a major role. Additionally, he participates in
different open source projects.

For the future, he hopes to participate more in open source projects and work on the
real-time scalable applications.

Yusuf Aytaş is a software engineer. He completed his B.S. and M.S. in computer
science from Bilkent University, Ankara. He has worked in both early stage startups
and multinational companies. He is proficient in agile methodologies, continuous
delivery, and software development best practices.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Steve Fosdal has been writing software for over 10 years. He joined Slalom
Consulting as a Solution Architect in late 2015.

His work has included building scalable, distributed applications for traffic prediction
and real-time data integration using Akka, Scala, RabbitMQ, and Apache Spark.

He is also the primary contributor to camel-metrics, an open source Apache Camel
component for route metrics.

I would like to thank my wife, Hilary, for her support and
encouragement in everything that I do. Without her, I would not be
able to be who I am today.

Van Thoai Nguyen has worked in the software industry for a decade in various
domains. In 2012, he joined BuzzNumbers as one of the core senior software
engineers, where he had opportunities to design, implement, and apply many
cool technologies, tools, and frameworks. A RabbitMQ cluster was employed as
the backbone of the real-time data processing platform, which includes various
data collectors, data filtering, enrichment, and storage using a sharded cluster of
MongoDB and SOLR. He is still maintaining the open source .NET RabbitMQ client
library—Burrow.NET (https://github.com/vanthoainguyen/Burrow.NET)—
which he built during the time he worked for BuzzNumbers. This library is still
being used in many different applications in that company. He is interested in
clean code and design, SOLID principle, and big data. You can find his blog at
http://thoai-nguyen.blogspot.com.au/.

He is currently reviewing the book Learning RabbitMQ by Packt Publishing.

www.allitebooks.com

https://github.com/vanthoainguyen/Burrow.NET
http://thoai-nguyen.blogspot.com.au/
http://www.allitebooks.org

Jorge Puente-Sarrín is from Peru and is a software developer at RebelMouse.
Prior to RebelMouse, he worked at Red Científica Peruana (RCP) and El Comercio,
where he lead the adoption and integration of MongoDB into the company's IT
infrastructure. He is a passionate developer focused on building distributed systems
solutions using asynchronous programming with Python and .NET. Also, he has
been contributing toward the translation of documentation projects and online
courses into Spanish. He is a proud member of Masters of MongoDB, a group of
persons promoting MongoDB around the world. He has also technically reviewed
RabbitMQ Cookbook, by Packt Publishing.

Ken Taylor has worked in software development and technology for over 15 years.
During the course of his career, he has worked as a systems analyst on multiple
software projects for several industries as well as U.S. government agencies. He
has successfully used RabbitMQ for messaging on multiple projects. He previously
reviewed the books RabbitMQ Cookbook and RabbitMQ Essentials by Packt Publishing.
He is a member and speaker of the 757 Ruby user's group and the Hampton Roads
.NET user's group (HRNUG). He holds an A.S. in computer science from Paul D.
Camp Community College and was awarded a U.S. Patent for a real estate financial
software product. He is currently working at Outsite Networks Inc. in Norfolk,
Virginia. He lives in Virginia Beach with his lovely wife, Lucia, and his two sons,
Kaide and Wyatt.

I would like to thank my family for being a constant support in all of
my endeavors.

www.allitebooks.com

http://www.allitebooks.org

Héctor Veiga Ortiz is a Software Engineer specializing in real-time data integration.
Recently, he has focused his work on different cloud technologies (AWS, Heroku,
OpenShift, etc.) to develop scalable, resilient and high-performing applications able
to handle high-volume real-time data in diverse protocols and formats. Additionally,
he has a strong foundation in messaging systems knowledge, such as RabbitMQ
and AMQP. Lately, he has been focusing his work on the Akka, Apache Spark and
Apache Flink. Also, Héctor has a master's degree in Telecommunication Engineering
from the Universidad Politécnica de Madrid and a master's degree in Information
Technology and Management from the Illinois Institute of Technology.

Héctor currently works at HERE as part of Global Data Integrations and is actively
developing scalable applications to consume and preprocess data from several
different sources. HERE heavily utilizes RabbitMQ to address their messaging
requirements. In the past, Héctor worked at Xaptum Technologies, a company
dedicated to M2M technologies.

Héctor has also worked on reviewing RabbitMQ Cookbook, Learning RabbitMQ, and
RabbitMQ Essentials all by Packt Publishing.

I would like to thank Laura for her support. She keeps inspiring me
and supporting me with everything I do. Without her, this would
not have been possible.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started 1

Message brokers and message queue 2
Message brokers 2
Message Queues 3

An introduction to the advanced message queue protocol 4
An overview of RabbitMQ 5
Installation of RabbitMQ 6

Windows 8
Mac OS X 10
Ubuntu 12
Fedora 13
Amazon elastic compute cloud (EC2) 14

Starting RabbitMQ 15
Starting RabbitMQ on Windows 16
Other OSes (Linux, Mac OS X) 17

Summary 18
Chapter 2: Configuring RabbitMQ 19

Overall configuration of RabbitMQ 19
The RabbitMQ environment variables 20

Common environment variables 22
Unix-specific default location 24
Windows-specific default location 25

The configuration file 26
Runtime parameters 31

Parameter management 32
Policy management 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Memory management 33
Summary 33

Chapter 3: Architecture and Messaging 35
Messaging and its use cases 35

Coupling of the software systems 36
Heterogeneous integration 37
Addressing scalability 38

Enterprise messaging 39
Messaging-related software architectures 40

Message oriented middleware – Architecture 41
Event-driven architecture 42

Messaging concepts 44
Message producers 45
Message brokers 45
Message consumers 46
Messages 46

Advanced Message Queuing Protocol (AMQP) 47
AMQ elements 48

Message flow 49
Exchanges in AMQ 50
Message queues 50
Bindings 50

Functional specifications of AMQP 51
AMQP messages 51
Virtual hosts 52
Exchange types 52

Summary 55
Chapter 4: Clustering and High Availability 57

High reliability in RabbitMQ 58
Federation in RabbitMQ 59
Clustering in RabbitMQ 60
Creating clusters 61
Checking the cluster status 63
Changing the cluster node types 66
Updating cluster nodes 67
Clustering the settings of RabbitMQ 69
Load balancing for high availability of queues 70
Summary 72

Chapter 5: Plugins and Plugin Development 73
Plugin management and default plugins 73

Enabling and disabling plugins 74

Table of Contents

[iii]

Installing plugin from third-party sources 76
Default plugin list 77

Plugin configuration 79
Custom plugin development 80

Basics of Erlang 81
Variables and expressions 82
Tuples and lists 83
Functions and modules 84
Conditionals 85
Looping in Erlang 86
Concurrent programming 87

Simple RabbitMQ metronome plugin 90
Summary 97

Chapter 6: Managing Your RabbitMQ Server 99
Management via a command line 100

Cluster commands 100
User commands 101
Virtual host and permission commands 101
Miscellaneous commands 102

Management via a web plugin 104
Management via a REST API 109
Summary 118

Chapter 7: Monitoring 119
RabbitMQ command-line tools 119
Web plugins 126
Nagios 127
Munin 130
Zabbix 131
Summary 134

Chapter 8: Security in RabbitMQ 135
An brief introduction to security in RabbitMQ 135

Vulnerabilities 136
Information leakage 136
Session management 136
Authentication and authorization 136

Solutions to the vulnerabilities 137
Fixing information leakage 137
Session management 137
Authentication and authorization 137

Applying access control 138
Providing SASL authentication 140

Table of Contents

[iv]

SSL support in RabbitMQ 141
Keys, certificates, and CA certificates 141
Enabling SSL support 142

Summary 142
Chapter 9: Java RabbitMQ Client Programming 143

Case study 144
Use cases 144
Interaction diagram – sequence diagram 145

Application language – Java 146
Java Message Service (JMS) 147

RabbitMQ Java client API 148
Client package in detail 149

Connection 149
Channel 150
Exchanges 151
Queues 151
Publishing messages 151
Consuming messages 153

Case study – client implementations 155
Model classes 155

JSONMessage interface 155
Message model 156
File message 157
Task 158

Single message 159
Sender 160
Receiver 161

Group message – routing 162
Sender 163
Receiver 164

Bulk message – PubSub 165
Sender 166
Receiver 167

File message 169
Sender 169
Receiver 171

RPC message 173
RPC client 173
RPC server 175

Creating tasks – manual acknowledgment 177
Task creator 177
Task handler 179

Creating distributing tasks 180
Task creator 181
Task handler clients 182

Table of Contents

[v]

Spring framework and RabbitMQ 183
Spring AMQP 184

Single message 184
Spring config 185
Sender 186
Receiver 187

PubSub messages 187
Spring config 188

Private messages – routing 190
Spring config 190

Summary 192
Chapter 10: Ruby Client Programming 193

Case study 193
Small data 194
Big data 194
Medium data 195
Solving all data problems 195

Bunny and Ruby 196
Installing Ruby 196

Linux 196
Windows 196
OSX/Mac 197
Rbenv 197
Installing Bunny 197

Using Bunny 198
Bunny producer 198
Bunny consumer 200

Exploring the AMQP model with Bunny 201
Workers 201
Publish – subscribe 204
Routing 206

The real-time processing 209
Sneakers 209

Installing 210
Lambda architecture 214
The real-time processors 215

Key performance indicators (KPIs) 216
Building averaging workers 217

Windows 219
Linux 219
Mac OS X 219

Building the IP2Location worker 221

Table of Contents

[vi]

Exploring sneakers 222
Timeouts 223
Job handling 223
Metrics 223

Summary 224
Chapter 11: Python Client Programming 225

Case study 225
Getting Python dependencies 226

Pika 226
Installing Pika 226
Our first Pika client 227
A consumer 229

Introducing the web scraper 231
Scheduler 231
Scraper 232

Implementing the scheduler 232
Implementing the scraper 234

Running the scraper 236
Handling failure 237
Using acknowledgement 238
The Pika API 239

Connecting 239
Using connection adapters 241

BlockingConnection 241
BlockingChannel 242

Declaring queues and exchanges 243
Authentication 244

Plain credentials 245
SSL and external credentials 245
Certificate authentication 245

Background processing 246
Celery 246

Installation 247
Celery scraper 249
Celery scheduler 249
Exploring Celery 252

Scheduling 252
HTTP hook tasks 253
Other Celery features 254

Summary 255
Index 257

[vii]

Preface
RabbitMQ is an open source messaging broker. It's often referred to as a message-
oriented middleware that implements the Advanced Message Queuing Protocol
(AMQP). Fundamentally, RabbitMQ provides a common platform for sending and
receiving messages, where it guarantee the safety of messages until they are received.
By playing an intermediary role between message consumers and producers, AMQP
makes it easy to decouple applications.

Out of the box, RabbitMQ provides support for many messaging patterns.
RabbitMQ guarantees data delivery, provides non-blocking operations, and sends
push notifications. Moreover, it provides infrastructure for publish/subscribe,
asynchronous processing, and work queues.

RabbitMQ provides a variety of features, including the tuning of application
performance, clustering, flexible routing, federation, and so on. If you need specific
features, RabbitMQ has several plugins that cater different needs. The RabbitMQ
plugins extend its features in different ways, and you can also write your own plugin.

Through this book, we aim to give you a deep understanding of RabbitMQ and its
use cases by providing multiple opportunities to learn about the message-oriented
middleware, messaging architecture, messaging patterns, and solutions to real-life
scenarios using RabbitMQ.

What this book covers
This book covers many aspects of software development with RabbitMQ. It provides
thorough understanding of messaging, RabbitMQ, message-oriented software
development, and so on.

Chapter 1, Getting Started, introduces you to message queues, message brokers,
AMQP, and RabbitMQ.

Preface

[viii]

Chapter 2, Configuring RabbitMQ, covers the configuration opportunities in RabbitMQ
in detail.

Chapter 3, Architecture and Messaging, goes over RabbitMQ components—Producer,
Message Broker, Consumer and the Message. This chapter provides learning
opportunities for interoperability, heterogeneous integration, scalability, and so on.

Chapter 4, Clustering and High Availability, provides opportunities to tune RabbitMQ
for high availability, federation, and much more.

Chapter 5, Plugins and Plugin Development, highlights several important features of
RabbitMQ and gives an insight into creating your own plugin.

Chapter 6, Managing Your RabbitMQ Server, covers in detail the management of
RabbitMQ using the command-line tools, management plugin, and rest API.

Chapter 7, Monitoring, discusses the methods to monitor RabbitMQ instances through
a command line, management plugin, and well-known monitoring software.

Chapter 8, Security in RabbitMQ, covers the details about potential security
vulnerabilities and securing RabbitMQ.

Chapter 9, Java RabbitMQ Client Programming, talks about developing RabbitMQ client
using the Java platform.

Chapter 10, Ruby Client Programming, talks about developing a RabbitMQ client using
Ruby.

Chapter 11, Python Client Programming, demonstrates developing a RabbitMQ client
using Python.

What you need for this book
For this book, you need an understanding of software development—how to
write functions, classes, and debugging skills. Moreover, you also need hands-on
experience in developing applications.

Who this book is for
If you are an intermediate-level RabbitMQ developer and want to achieve
professional-level expertise in the subject, this book is for you. You'll also need to
have a decent understanding of message queuing.

Preface

[ix]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We have the dpkg dependency management tool for installing RabbitMQ."

A block of code is set as follows:

tcp {
 upstream cluster {
 # simple round-robin
 server 192.168.1.1:5672;
 server 192.168.1.2:5672;
 check interval=3000 rise=2 fall=5 timeout=1000;
 }
 server {
 listen 5672;
 proxy_pass cluster;
 }
}

Any command-line input or output is written as follows:

mastering-rabbitmq1$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq1 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq1]}]},

 {running_nodes,[rabbit@mastering-rabbitmq1]},

 {partitions,[]}]

...done.

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In
Windows, we should use the environment variables of the System Properties for
modifying the environment variables of RabbitMQ."

Preface

[x]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

[1]

Getting Started
Scalability is one of the major problems of our time, and messaging is an integral part
of the solution. It finally comes down to the message broker software to manage and
control messaging between applications, processes, and threads. Message brokers
can help to solve scalability issues and architectural issues, such as coupling.

RabbitMQ is one of the most powerful open source message broker software that is
widely used in the tech companies such as Mozilla, VMware, Google, AT&T, and so
on. RabbitMQ is a highly configurable messaging platform developed and supported
by a knowledgeable and committed community.

Before diving into the details and technologies behind the RabbitMQ, let's introduce
you to the topics that we will cover in this chapter:

• A brief introduction to message brokers and the message queue
• An introduction to advanced message queue protocol
• Getting started with RabbitMQ
• Installing RabbitMQ
• Starting RabbitMQ
• Summary

Getting Started

[2]

Message brokers and message queue
Recently, software systems evolved dramatically. Applications have to communicate
with other applications, these applications can be internal and external to the
application itself. For the same application, we may have different type of
clients, such as browsers, mobile clients, and so on. Hence, we absolutely need a
communication layer between internal applications and between applications and
clients. We need to deliver different messages to different applications or clients.
Delivering messages can be a bottleneck if the communication layer isn't scalable.
Pursuing scalable systems for communication layer leads us to Message Brokers and
Message Queues. Let's now discuss what Message Brokers and Message Queues are.

Message brokers
A Message Broker is an architectural pattern that can receive messages from multiple
destinations, determine the correct destination, and route the message along the
correct route, as stated in the book Enterprise Integration Patterns by Hohpe and
Woolf. Message brokers enable systems to deal with messaging and routing by
mediating communication among components. Once applications implement a
message broker pattern, it decreases the coupling between application components.

Message Brokers are centralized, in the architectural sense, to control and manage
all messages. Therefore, all of the incoming and outgoing messages are sent
through Message Brokers, which analyze and deliver the messages to their correct
destination. This procedural step can be understood with the following diagram:

Message Broker

Chapter 1

[3]

Message Brokers address the following concerns in the communication layer:

• Transforming messages to alternative formats
• Routing messages to destinations
• Supporting different types of patterns to send messages
• Receiving and responding to events
• Performing message aggregation
• Persisting the message states
• Ensuring the receiving and sending of message
• Decoupling the destination software systems

Many tasks of the Message Broker need a Message Queue for exchanging or passing
data to the destination. The next section covers Message Queues. We will talk about
the mechanism behind Message Brokers in Chapter 3, Architecture and Messaging.

Message Queues
A Message Queue is, briefly, a queue for messaging. Queue is the basic data structure
behind the functioning of a Message Queue. Message Queue operations are similar
to Queue data structure operations, such as the enqueue and dequeu operations. An
enqueue operation leads to adding an element to the back of the queue. A dequeue
operation leads to the deletion of an element from the front of the queue.

Message Queues provide concurrent and asynchronous operations to scale
applications. In a message queue, messages wait up until a message is retrieved by
an application. Let's take a look at the following diagram:

Message Queue

Different types of standards and protocols define the Message Queuing
specifications. Some protocols are open to everyone; however, some protocols are
closed. Let's come back to our topic. RabbitMQ uses Advanced Message Queuing
Protocol (AMQP) that determines the policies of the Message Queues. The next topic
will cover detailed information on AMQP. Chapter 3, Architecture and Messaging,
covers the detailed explanation of Message Queues.

Getting Started

[4]

An introduction to the advanced
message queue protocol
John O'Hara from J. P. Morgan started AMQP in 2003. He put incredible amount of
work into it. Then, J. P. Morgan approached other firms to establish an organization
for creating open standards in messaging. According to AMOP's official website
(http://www.amqp.org), AMQP is an open standard for passing messages between
applications or organizations. So, AMQP just defines the messaging properties,
queue properties, how messages are routed between applications and clients, how
Message Brokers ensure that the message is received or sent, and other concerns such
as reliability and security.

According to the AMQP website (http://www.amqp.org), AMQP has lots of
capabilities to accomplish goals:

• Security
• Reliability
• Interoperability
• Standard
• Open standard

Interoperability and reliability are very important for today's software engineering
problems. The power of AMQP comes from its features like interoperability,
reliability and so forth. Especially, with interoperability, we can use different types of
technologies in sender and receiver. The main problem for most of the Internet giants
is scalability. Scalability has direct relationship to reliability. Chapter 3, Architecture
and Messaging, covers the details and specifications of AMQP.

http://www.amqp.org
http://www.amqp.org

Chapter 1

[5]

An overview of RabbitMQ
As mentioned earlier, RabbitMQ is an open source Message Broker software that
tries to solve messaging problems by implementing the AMQP. RabbitMQ is
licensed with Mozilla Public License. RabbitMQ became part of GoPivotal in May
2013 and the community has helped in the development of RabbitMQ. Since then,
the community has been trying to improve RabbitMQ.

 RabbitMQ logo

As we explained, RabbitMQ solves messaging problems; however, you may
ask yourself what kind of messaging problems RabbitMQ solves. In summary,
RabbitMQ has the following functionalities to solve messaging problems:

• Ensures that messages are sent and received
• Routes the messages to the correct destinations
• Saves the state of the messages
• Supports multiple transportation protocols (AMQP, MQTT, STOMP, HTTP)
• Supports clustering
• Highly scalable, reliable and available
• Extendible with plugins
• Supports clients for almost any of language
• Large community support also provides commercial support

Now that we have discussed the concepts behind the RabbitMQ, let's try to install
and use RabbitMQ on your computer.

Getting Started

[6]

Installation of RabbitMQ
Installation of RabbitMQ is not distinctly different from other software in different
operation systems. Unix-based operating systems can build RabbitMQ from source
code and Microsoft Windows can run the standard MSI installers. RabbitMQ
installation files can be found in the download webpage of the RabbitMQ website,
as shown in the following image:

]

Download Webpage of RabbitMQ

Chapter 1

[7]

The only prerequisite for the RabbitMQ installation is the Erlang runtime
environment because RabbitMQ runs on the Erlang VM. Therefore, we have to
install Erlang before installing the RabbitMQ. Erlang can be downloaded from
the Erlang download webpage, as shown in the following image, and installation
instructions will be covered in the topics that follow:

Download Webpage of Erlang

Now, let's to talk about the installation of both RabbitMQ and Erlang on Windows,
Mac OS X, Ubuntu, Fedora, and Amazon Web Services.

Getting Started

[8]

Windows
RabbitMQ runs on both 32-bit and 64-bit machines from the same package. Erlang
is installed either as 32-bit and 64-bit. So, RabbitMQ can be easily installed on the
Windows operating system. Let's install these stuff for running RabbitMQ.

Firstly, we should install the Erlang runtime environment on Windows. Erlang has
Windows installers for 32-bit and 64-bit as shown in the previous image. We can
easily download the related binary file to our computer and install Erlang using it:

Installation of Erlang in Windows

Chapter 1

[9]

After installing the Erlang runtime environment, we've completed the requirements
of RabbitMQ installation. The next step is to download and install the RabbitMQ
binary file with related the Windows version:

Installation of Erlang in Windows

We can find the related Windows installer for RabbitMQ with the help of RabbitMQ
download webpage as shown in the screenshot showing the download webpage of
RabbitMQ. Then, we just need to click and install the RabbitMQ on our Windows
computer. Besides installing using the installer, we can install using the Windows
binary file that is served within the RabbitMQ download webpage. The following
instructions will be enough for installing RabbitMQ without the installer:

• Download the binary file for RabbitMQ Windows binary files
• Extract the downloaded RabbitMQ zip file to our local folder

It is possible to install the RabbitMQ on your Windows computer in both ways. Note
that you may add the RabbitMQ binaries directory to the windows system path in
the system/environment variable settings.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[10]

Mac OS X
As we specified, we only have one requirement to install RabbitMQ on our computers.
In Mac OS X, we have package managers and we have the opportunity to compile
from the source for both Erlang runtime environment and RabbitMQ.

Firstly, both Erlang and RabbitMQ can be easily installed on Mac OS X using
package managers. Although we have lots of package managers on Mac OS X,
Homebrew and MacPort are the ones that are mostly used in Mac OS X. So, we'll
talk about the installation using Homebrew and MacPorts.

Homebrew has both RabbitMQ and Erlang on its repository. As RabbitMQ has
a dependency with Erlang, Homebrew finds its dependent software and installs
them together.

Homebrew is just another package manager for Mac OS X. Homebrew is
quite easy to install on Mac OS X and has lots of packages. So, you would
find your application in its repository. Check it out at http://brew.sh

So, we just need to install RabbitMQ in Homebrew using the brew install
rabbitmq command on our terminal as shown in the following image:

Homebrew Installation of RabbitMQ

MacPorts has the similar method of operation with Homebrew. MacPorts also
installs the software with its dependencies. Therefore, we just need to install
RabbitMQ in MacPorts using the port install rabbitmq-server command on
our terminal, as shown in the following image:

http://brew.sh

Chapter 1

[11]

MacPorts Installation of RabbitMQ

Another way to install RabbitMQ and Erlang is by compiling the source codes in
Mac OS X. Before compiling, we need the following to compile Erlang source code:

• The GNU make
• The GNU C compiler
• Perl 5

After downloading and unzipping the source codes of the Erlang, we just need
common commands on the Erlang folder for compiling from source code, as follows:

./configure

make

make install

Finally, we just need to download and unzip the RabbitMQ binary files.

Getting Started

[12]

Ubuntu
Ubuntu is just another Linux distribution based on Debian. Similar instructions as the
ones we discussed for the installation on the Mac OS X would be applied for Ubuntu.

Ubuntu has a package manager called Advanced Packaging Tool (apt-get) and has
a Debian package manager called dpkg. So, we are able to install RabbitMQ and
Erlang runtime environment using apt-get. Moreover, similar to Mac OS X, we can
compile from source codes of Erlang.

Firstly, as we said in the previous paragraph, we can install RabbitMQ using apt-
get and dpkg. Before installing RabbitMQ, we should add the RabbitMQ repository
to the APT repository using the following line (add the following line to /etc/apt/
sources.list):

deb http://www.rabbitmq.com/debian/ testing main

Now, we are ready to install RabbitMQ and its dependency Erlang runtime
environment, as shown in the following image:

sudo apt-get install rabbitmq-server

Ubuntu Installation of RabbitMQ

Also, we have the dpkg dependency management tool for installing RabbitMQ.
RabbitMQ has packages for dpkg in its download webpage. We can download it
from its website then run the following command:

dpkg –i rabbitmq-server.deb

Chapter 1

[13]

Secondly, we have another option, which was explained in the Mac OS X topic.
That is, compiling from source codes. We just need to compile the downloaded
Erlang source code, and we are ready to run the downloaded binary files of
RabbitMQ. You can look at the details in the Mac OS X section.

Fedora
Fedora is yet another Linux distribution based on Red Hat. Installation instructions
of Fedora are similar to Ubuntu's installation. Fedora has package managers called
rpm and yum.

Firstly, we are able to install RabbitMQ with its dependency Erlang using package
managers. Before using yum, we should run the following command to add
RabbitMQ repository:

wget -O /etc/yum.repos.d/epel-erlang.repo
http://repos.fedorapeople.org/repos/peter/erlang/epel-erlang.repo

Then, we can install RabbitMQ using the following command as shown in the
following screenshot:

sudo yum install rabbitmq-server

Fedora Installation of RabbitMQ

Getting Started

[14]

Fedora has another package manager, which comes from Red Hat, called rpm. As
RabbitMQ publishes package as rpm, we can easily install using the rpm package
manager. After downloading the rpm package from RabbitMQ webpage, we can
install RabbitMQ with Erlang, using following command:

rpm –ivh rabbitmq-server.rpm

Secondly, we have another option, which was explained in the Mac OS X topic.
That is compiling from source code. We just need to compile the downloaded Erlang
source code and we are ready to run the downloaded binary files of RabbitMQ. You
can look at the details in the Mac OS X section.

Amazon elastic compute cloud (EC2)
Amazon Web Services (AWS) is cloud-computing platform offered from Amazon.
AWS has lots of features for developers such as autoscaling. Besides RabbitMQ,
AWS also offers their own messaging service called Simple Queue Service:
however, RabbitMQ has lots of advantages over Amazon SQS. For instance,
RabbitMQ has an extendable plugin system, whereas SQS capabilities are short.
RabbitMQ implements a standard approach to message acknowledgement and
consumption, whereas SQS has its own standards.

Anyway, we can easily install our RabbitMQ to the AWS EC2 instance and can save
images of the RabbitMQ installed operating system. In AWS EC2, we choose one of
the operating systems from the list or any other instance that we used earlier.

Amazon EC2 would be a good choice for your servers. In a scalable
architecture, we need clusters of Message Brokers, databases, caches,
and so on. EC2 gives you great API, and it's really quite easy to create
clusters using EC2. We will talk about the clusters of RabbitMQ using
EC2 in Chapter 4, Clustering and High Availability.

Chapter 1

[15]

As we explained, we are able to install RabbitMQ on Windows, Linux, and Mac OS
X, we just need to follow the instructions for AWS EC2 that are explained well in the
preceding sections. Let's take a look at the following screenshot:

Amazon EC2

Starting RabbitMQ
As we can see, the installation part of RabbitMQ is quite easy and starting RabbitMQ
is similar to its installation. Some package managers in Linux, Mac OS X, and
Windows installer add configuration parameters to operation system's configuration
for automatic startup. In such a case, we don't need to run the RabbitMQ command
manually; however, if we install RabbitMQ manually, we need to run the RabbitMQ
commands manually.

Getting Started

[16]

Starting RabbitMQ on Windows
If we use the Windows installer of RabbitMQ, the installer already makes
configurations for starting automatically. Therefore, we don't need to run RabbitMQ
manually; however, whenever we'd like to control the status of the server, we just
need to run following command on the sbin folder of RabbitMQ:

rabbitmqctl status

Status of RabbitMQ in Windows

You may have installed RabbitMQ manually on your Windows and you might
wonder how you can run the RabbitMQ server. You should run the following
command to start RabbitMQ (you have to run this command with an administrative
user). Moreover, you can install the RabbitMQ server as a Windows service:

rabbitmq-server

Chapter 1

[17]

Other OSes (Linux, Mac OS X)
There's isn't much difference in running RabbitMQ on Windows and other operating
systems. If we have RabbitMQ already installed using package managers, such as
apt-get, yum, and so on, we don't need to run the RabbitMQ manually because
RabbitMQ has already started automatically. So, we'd like to check the status of the
RabbitMQ using the following command:

sudo rabbitmqctl status

Status of RabbitMQ in Unix

Getting Started

[18]

After controlling the RabbitMQ status, if we get a message that says that RabbitMQ
isn't running, then we should run RabbitMQ using the following command on the
sbin folder of RabbitMQ installation folder:

rabbitmq-server

Starting of RabbitMQ in Unix

Summary
We finally finished our first chapter, which introduces messaging concepts along
with brief details about Message Queues and Message Brokers, and the protocol
called AMQP that defines the functionalities of a Message Queue. Finally, our
chapter introduces the RabbitMQ, providing information about its installation on
different types of operating systems and how we can run the RabbitMQ server.
Now, we are ready to jump into the details of RabbitMQ, starting from its
configuration in the next chapter.

[19]

Configuring RabbitMQ
Configuration is one of the crucial parts for administrating RabbitMQ. With an
excellent configuration, RabbitMQ can send and receive messages effectively
between applications, processes, and threads.

There are three ways to configure RabbitMQ. The first way is to use the RabbitMQ
environment variables that lie on the environment variables of the operating system,
the second way is through the configuration file provided by RabbitMQ, and the last
way is to use runtime parameters. This configuration diversity gives full control of
RabbitMQ on server side and operating system side.

This chapter covers the overall idea behind the configuration of RabbitMQ and three
ways to configure it. So, we'll cover the following points:

• The overall configuration of RabbitMQ
• The RabbitMQ environment variables
• The configuration file
• The runtime parameters

Overall configuration of RabbitMQ
RabbitMQ's configuration is quite important to ensure the performance, high
availability, and scalability within the installed operating system. In order to utilize
RabbitMQ, we have three configuration ways:

• Environment variables: These are specified in the networking parameters
and file locations

• Configuration file: This expresses the server component settings for
permissions, limits, plugins, and clusters

Configuring RabbitMQ

[20]

• Runtime parameters: These define the cluster settings that would change at
run time

Before diving into each configuration type, we should check whether the
configuration file exists or not. In Unix-based systems, you can find the configuration
file in the following folder:

/etc/rabbitmq/rabbitmq.config

In Windows, you can find the configuration file in the following folder:

C:\Program Files (x86)\RabbitMQ_Server\etc\rabbitmq.config

After checking the configuration file, we are now ready to talk about configuration
types one by one.

The RabbitMQ environment variables
RabbitMQ environment variables is one of the configuration ways of RabbitMQ.
Every operating system has its own set of environment variables for each user.
Although operating systems has the ability to have environment variables, the way
in which environment variables are changed is slightly different across operating
systems.

In Unix-based operating systems, we can change the environment variables rather
easily using the rabbitmq-env.conf file. In the environment configuration file, we
can add the environment parameters as follows:

CONFIG_FILE=/etc/rabbitmq/testfile

After changing the rabbitmq-env.conf file, we have to restart the RabbitMQ server
to reload the environment variables.

In Windows, we should use the environment variables of the System Properties
for modifying the environment variables of RabbitMQ. We can access to the
Environment Variables by navigating to Settings | Control Panel | System
Properties | Advanced | Environment Variables, where we use pipes to show
transitions. You can see this in the following screenshot:

Chapter 2

[21]

Windows Environment Parameters

We are now accessing the environment variables of different operating systems.
Although, RabbitMQ gives us lots of different environment variables, we will cover
the most important ones.

Configuring RabbitMQ

[22]

Common environment variables
RabbitMQ gives us lots of great environment variables to control all of the parts of
its engine. We don't have enough time to discuss all of the environment variables;
however, we will talk about the most important ones. Furthermore, some variables
have different default values for Unix and Windows operating systems; we'll
consider these variables in the following parts of the topic. Anyway, let's dive into
the important variables:

• RABBITMQ_BASE: This variable basically locates the directory of RabbitMQ.
This directory has the database and log files.

• RABBITMQ_CONFIG_FILE: Although the configuration file of RabbitMQ
has a default location, you can change its location using this environment
variable.

• RABBITMQ_LOGS: RabbitMQ supports different levels of logs. Whenever
RabbitMQ is creating a log file, it has a default location; however, you can
change its location using this environment variable.

• RABBITMQ_NODE_IP_ADDRESS: RabbitMQ binds to all network interfaces
as a default property. As RabbitMQ gives us a full control over network
interfaces, we can easily change its binding network using this variable, such
as 127.0.0.1.

• RABBITMQ_NODE_PORT: RabbitMQ has a default port, 5672; however, we have
sometimes collision on ports, so we should change the ports that RabbitMQ
binds. We can change RabbitMQ's binding port using this variable.

• RABBITMQ_PLUGINS_DIR: RabbitMQ has many very useful plugins that will
be enabled through RabbitMQ. RabbitMQ has a default location for these
Erlang coded plugins; however, you can change its location.

The RabbitMQ Environment Variables:

Name Default Value Description
RABBITMQ_BASE *(default) This is the directory

in which RabbitMQ
server's database and
log files are located.

RABBITMQ_CONFIG_FILE * This is the name of
configuration
file. The name doesn't
consist of the extension
".config".

Chapter 2

[23]

Name Default Value Description
RABBITMQ_CONSOLE_LOG This variable can have

one of the two values:
"new" or "reuse".
These variables are
used to decide the
console log file
whether create a new
log file or reuse the
old log file. If these
variables are not set,
the console output will
not be saved.

RABBITMQ_LOGS * This is the directory of
the RabbitMQ log file.

RABBITMQ_LOG_BASE * This is the base
directory that holds
the log files. If
RABBITMQ_LOGS or
RABBITMQ_SASL_
LOGS is set, then this
variable has no effect
on configuration.

RABBITMQ_MNESIA_BASE * This expresses the base
location of the Mnesia
databases files. If
RABBITMQ_MNESIA_
DIR is set, then this
variable has no effect
on configuration.

RABBITMQ_MNESIA_DIR * This variable specifies
the location of Mnesia
database files.

RABBITMQ_NODE_IP_
ADDRESS

The empty string means that
this binds to all network
interfaces.

This is the binding
address. You should
change this attribute
when you'd like
to bind to a single
network interface.

RABBITMQ_NODENAME On Unix: rabbit@hostname
On Windows:
rabbit@%COMPUTERNAME%

This is the node name
of RabbitMQ server.
This should be unique
per Erlang node and
machine combination.

Configuring RabbitMQ

[24]

Name Default Value Description
RABBITMQ_NODE_PORT 5672 This is the binding port

of RabbitMQ server.
RABBITMQ_PLUGINS_DIR * The location where

plugins of RabbitMQ
server are located.

RABBITMQ_SASL_LOGS * This is the location
of RabbitMQ server's
System Application
Support Libraries' log
files.

RABBITMQ_SERVICENAME On Windows Service:
RabbitMQ

On Unix:
rabbitmq-server

This variable specifies
the service name that is
installed on the service
system of operating
system.

RABBITMQ_SERVER_
START_ARGS

None Erlang parameters
are used for the erl
command when
invoking the RabbitMQ
server. This variable
will not override
RABBITMQ_SERVER_
ERL_ARGS.

Cells marked with* will be explained in the Unix and Windows section

Unix-specific default location
The following table describes the Unix-specific default locations of the given
environment variables. Most of the locations are related to the installed location.

Default locations of environment variables for Unix:

Name Location
RABBITMQ_BASE This variable is not used for Unix
RABBITMQ_CONFIG_FILE ${install_prefix}/etc/rabbitmq/rabbitmq

RABBITMQ_LOGS $RABBITMQ_LOG_BASE/$RABBITMQ_NODENAME.log

RABBITMQ_LOG_BASE ${install_prefix}/var/log/rabbitmq

RABBITMQ_MNESIA_BASE ${install_prefix}/var/lib/rabbitmq/mnesia

Chapter 2

[25]

Name Location
RABBITMQ_MNESIA_DIR $RABBITMQ_MNESIA_BASE/$RABBITMQ_NODENAME

RABBITMQ_PLUGINS_DIR $RABBITMQ_HOME/plugins

RABBITMQ_SASL_LOGS $RABBITMQ_LOG_BASE/$RABBITMQ_NODENAME-
sasl.log

Windows-specific default location
In contrast to Unix, Windows default values of the RabbitMQ environment variables
are related to the other environment variables of RabbitMQ. The following table
shows the Windows default locations.

Default locations of environment variables for Windows:

Name Location
RABBITMQ_BASE %APPDATA%\RabbitMQ

RABBITMQ_CONFIG_FILE %RABBITMQ_BASE%\rabbitmq

RABBITMQ_LOGS %RABBITMQ_LOG_BASE%\%RABBITMQ_NODENAME%.
log

RABBITMQ_LOG_BASE %RABBITMQ_LOG_BASE%\log

RABBITMQ_MNESIA_BASE %RABBITMQ_BASE%\db

RABBITMQ_MNESIA_DIR %RABBITMQ_MNESIA_BASE%\%RABBITMQ_NODENAME%

RABBITMQ_PLUGINS_DIR %RABBITMQ_BASE%\plugins

RABBITMQ_SASL_LOGS %RABBITMQ_LOG_BASE%\%RABBITMQ_NODENAME%-
sasl.log

RabbitMQ environment variables are highly dependent on operating system
environment variables. As an example, Computer Name in Unix and Hostname in
Windows set the environment variable RABBITMQ_SERVICENAME and RABBITMQ_
NODENAME. Anyway, the following table describes the dependent environment
variables:

Name Default Value Description
COMPUTERNAME Unix:

env hostname

This is the
name of current
machine for
Windows
machines.

Configuring RabbitMQ

[26]

Name Default Value Description
ERLANG_SERVICE_MANAGER_PATH Windows Service:

%ERLANG_HOME%\erts-
x.x.x\bin

This is the
location
where the
Erlang service
wrapper script
is located.

HOSTNAME Windows:
localhost

This is the
name of the
current location
for Unix
machines.

The configuration file
The RabbitMQ environment variables mostly gives the control of location of files
and directories, whereas the RabbitMQ configuration file gives the control of the
engine, such as authentication, performance, memory limit, disc limit, exchanges,
queues, bindings, and so on. The configuration file is by default located in /etc/
rabbitmq/rabbitmq.config for Unix-based computers and $RABBITMQ_SERVER\
etc\rabbitmq.config for Windows-based computers, as discussed in the previous
sections.

RabbitMQ has many configuration variables; however, we will discuss the most
important ones here:

• auth_mechanisms: This is used to supports different types of authentication
mechanisms. You can change the different type of authentication mechanism
using this variable.

• default_user: This is used as a default user to access the RabbitMQ server
using the RabbitMQ client. The default_user variable simply defines the
username of the default user.

• default_pass: This is similar to the default_user variable, as it simply
defines the default user's password.

• default_permission: This is similar to default_user and default_pass.
This variable describes the permissions of the default user.

• disk_free_limit: This is used to controls the disk size for storing the
messages into the disk. This variable defines the free disk size to give an alert
to the RabbitMQ server administrator.

Chapter 2

[27]

• heartbeat: This is a configuration variable that indicates the time interval
between beats. A beat is a packet sent from the broker to the client, and back
so that the broker can understand whether a client is still connected or not
and to keep a line open where some network equipment may cut it due to
inactivity. In other protocols, such as the old and time-tested Internet Relay
Chat (IRC) , this trick was also known as ping-pong.

• hipe_compile: As a default property, RabbitMQ is compiled with the default
Erlang compiler; however, we can compile with the high performance Erlang
compiler. RabbitMQ server is compiled at startup. Hipe compiling results
in later start; however, Hipe Compile gives 20%-40% performance gain on
message broker operations. With hipe_compile variable, we can control
whether RabbitMQ will be compiled through high performance Erlang
compiler or not.

• log_levels: We have logs to control and trace the application for each of
the software applications. Logs have different levels to show log messages
according to its log level, that is, error, warning, and information. With this
variable, you can decide on the log level.

• tcp_listeners: This is the same as the server applications, such as FTP
server, Mail server, and so on. The RabbitMQ server binds on the IP and port
of the operating system. You can change its binding port and IP with the
tcp_listeners variable.

• ssl_listeners: Whenever clients listen to the server with SSL, the
RabbitMQ server uses a different IP and port. The ssl_listeners variable
just defines the IP and port of the SSL client connections.

• vm_memory_high_watermark: Free memory size is reasonably important for
the RabbitMQ server. RabbitMQ alerts the memory problem with the given
free memory ratio in vm_memory_high_watermark.

The following table describes the most of the important variables with given default
values:

Configuration Variables:

Variable Name Description
auth_mechanisms This variable specifies the SASL

authentication mechanisms.
Default value: ['PLAIN', 'AMQPLAIN']

Configuring RabbitMQ

[28]

Variable Name Description
auth_backends This variable specifies the authentication

databases to use in SASL. Other databases
would be used with this plugin support.
Default value: [rabbit_auth_backend_
internal]

collect_statistics This variable specifies the statistics collection
mode.
Default value: none
Possible values:

• none

• coarse

• fine

collect_statistics_interval This variable specifies the statistics collection
interval in miliseconds.
Default value:
5000

default_pass This variable specifies the default password
for the RabbitMQ server to create a user in a
scratched database.
Default value:
Guest

default_permission This variable specifies the default permissions
of the default user.
Default value:
[".*", ".*", ".*"]

default_user This variable specifies the default username
for the RabbitMQ server to create a user in a
scratched database.

disk_free_limit This variable specifies the disk's free space
limit of the partition on which RabbitMQ
has stored the data. If available disk space
is lower than the disk free limit, then flow
control is triggered. Moreover, the value
should be related to the memory size.
Default value:
50000000

Chapter 2

[29]

Variable Name Description
heartbeat This variable specifies the heartbeat delay in

seconds.
Default value:
580

Possible values:
0 means heartbeats are disabled

hipe_compile This variable specifies whether precompile
parts of RabbitMQ with the high performance
Erlang compiler or not. This variable directly
affects the performance of the message
rate. Hipe is supported only on Unix-based
machines.
Default value:
False

log_levels This variable specifies the granularity of
logging.
Default value:
[{connection, info}]

Possible values:
• none
• error
• warning
• info

msg_store_file_size_limit This variable specifies the file size limit of
storing each message.
Default value:
16777216

tcp_listeners This variable specifies the ports that listen
for AMQP connections without SSL. This
variable may contain integers like 5672
that describes only the port and dictionary
structure that describes both the IP and the
port, for example, {"127.0.0.1", 5672}.
Default value:
[5672]

www.allitebooks.com

http://www.allitebooks.org

Configuring RabbitMQ

[30]

Variable Name Description
tcp_listen_options This variable specifies the socket options.

Default value:
[binary, {packet, raw},
 {reuseaddr, true},
 {backlog, 128},
 {nodelay, true},
 {exit_on_close, false}]

server_properties This variable specifies the key-value pairs
that is to announce to clients on starting
connection
Default Value:
[]

ssl_listeners This variable specifies the ports that listen for
AMQP connections with SSL. This variable
may contain integers like 5672 that describes
only the port and dictionary structure that
describes both the ip and port, such as,
{"127.0.0.1", 5672}.
Default value:
[]

ssl_options This variable specifies the configuration for
the SSL type.
Default value:
[]

reverse_dns_lookup This variable specifies whether RabbitMQ
performs a reverse DNS lookup on client
connections or not.
Default value:
False

vm_memory_high_watermark This variable specifies the memory threshold.
Default value:
0.4, that is, 4/10

Chapter 2

[31]

Runtime parameters
RabbitMQ provides environment variables and configuration variables to configure
RabbitMQ when starting the RabbitMQ server. In addition to these configurations,
RabbitMQ allows us to change parameters, which were set in the environment
variables and configuration variables in the runtime using the runtime parameters.

We can use the command-line tool for managing the RabbitMQ broker for changing
the runtime parameters, as shown in the following screenshot:

Image 2: Command Line Tool for Managing a RabbitMQ broker

Configuring RabbitMQ

[32]

Parameter management
Parameter management is a way to configure RabbitMQ by setting the parameter
values. We are able to change parameters using the set_parameter command
of rabbitmqctl. Moreover, we can change the different types of components of
RabbitMQ with the given component_name attribute. The following tables shows the
parameters and description of the runtime parameters:

Parameter Description
set_parameter [-p vhostpath]
{component_name} {name} {value}

The set_parameter parameter performs
the setting of the parameters of a given
component at runtime.

clear_parameter [-p vhostpath]
{component_name} {key}

The clear_parameter parameter removes
all of the parameters of a given component at
runtime.

Policy management
Policy management is configuration of the RabbitMQ policy values. RabbitMQ gives
us an opportunity to change its policies for message queues in the runtime, and its
policies are applicable for exchange and queues. You can set the new policies using
"set_policy", whereas you can clear all the policies using "clear_policy".

Parameter Description
set_policy [-p vhostpath]
[--priority priority] [--apply-
to apply-to] {name} {pattern}
{definition}

The set_policy parameter performs a
change of the behavior of the queues and
exchanges by setting the given pattern and
definition.

clear_policy [-p vhostpath]
{name}

The clear_policy parameter removes all
of the policies, which is given with the name
parameter.

Chapter 2

[33]

Memory management
Memory management is the configuration of RabbitMQ memory values. Memory
management can be done through the RabbitMQ configuration file parameters as
we saw in the previous sections. But, sometimes we have to change the memory
threshold to a lower value for many client attractions. RabbitMQ gives an option to
the change memory threshold using the "set_vm_memory_high_watermark" runtime
parameter as shown in the following table:

Parameter Description
set_vm_memory_high_watermark
{fraction}

The set_vm_memory_high_watermark
parameter changes the memory threshold
fraction.

Summary
Configuration is an important part of administrating RabbitMQ. We can
achieve a decent configuration over RabbitMQ using its different configuration
types to different parts of RabbitMQ. We can control the file locations and
network configuration using environment variables; express the server settings,
authentication, permissions, and limits through configuration variables in
configuration file of RabbitMQ; and finally, we can change these parameters at the
runtime using runtime parameters.

Now, we have completed the configuration part of RabbitMQ. We are ready to dive
into the technical and architectural structure of RabbitMQ in the next chapter.

[35]

Architecture and Messaging
RabbitMQ server simply solves messaging problems. But what is the meaning
of messaging itself? Sometimes, the term messaging is confused with real-time
messaging such as chat messages, SMS messages, and so on. These systems also
have the messaging system in their subsystems; however, we are talking about a
somewhat different issue.

By the dictionary definition, messaging is a short communication transmitted by
words, signals, or other means from one person, station, or group to another. In
computer engineering, definition of messaging seems like the dictionary definition.
Messaging simply takes the messages from a producer and sends it to the consumers
by the computer engineering definition. In messaging systems, we are using some
architecture related to messaging and elements. Moreover, we have different
functionalities of the elements in the messaging system. So, we will start our most
important chapter with the messaging concepts and their roots, and then we'll dive
into the details of AMQP that describes the RabbitMQ mechanism. The following list
shows the structure of this chapter:

• Messaging and use cases of messaging
• Enterprise messaging
• Messaging related software architectures
• Messaging concepts
• Advanced message queuing protocol (AMQP)

Messaging and its use cases
As we discussed in the introduction of this chapter and in the first chapter,
messaging is simply defined as communication between the message producer and
the consumer of the message. Message broker is defined as a module that controls
messaging flow. Controlling action isn't that simple, so message brokers needs lots of
skills to accomplish this messaging functionality.

Architecture and Messaging

[36]

Before talking about the Message Broker functionalities, we need to know the
problems that we have with the messaging. The problems change with respect to the
domain of the software system; however, most of the problems are the same within
the different types of messaging functionalities of the software systems. Let's list
all of the common problems of messaging and how we solve these problems using
message brokers.

Coupling of the software systems
Nowadays, coupling is generally referred to as the expression of dependency
between two modules with respect to each other. Coupling, or more specifically
tangling code, is bad because it makes it harder to maintain software. Any change
on dependent component may result in changes, bugs, version upgrades, and so on.
Tight coupling can be at the code level, and at the service/architecture level. For both
code and architectural coupling, solutions exist. Code level coupling can be solved
with dependency injection. Architectural coupling can be solved with message
brokers. We need to create an abstraction between modules for messaging issue. The
following screenshot shows us the coupled messaging modules that interact with the
other modules without using Message Broker. Whenever you change one method of
the module, you have to propagate this change to the other modules:

Coupling of messaging modules

Message Broker is an awesome solution for the well-known problem of high-coupled
software systems that is communicated between modules. Message Broker creates
an abstraction between modules, so that messaging functionality is controlled
and managed by the Message Broker itself. Modules are not aware of the sending
or receiving of messages; they only send their messages to the right receiver via
Message Broker. Message Broker routes these messages to the right module and
transforms them to the appropriate messaging format.

Chapter 3

[37]

As a consequence, Message Broker is defined as messaging middleware that
simply makes a transition of high-coupled messaging modules to the low-coupled
messaging modules by creating the intermediate layer between modules. As shown
in the following screenshot, modules are sending and receiving messages from each
other without knowing the functionality of the intermediate layer, which sends the
messages to Message Broker and routes them to the right module:

Decoupling of messaging modules using message broker

Heterogeneous integration
Nowadays, every software systems are using different types of technologies, such as
Java Platform, .Net Framework, Mainframes, and so on. Also, the mobility and web
gives us the opportunity to add new clients to our software systems. Therefore, we
have to merge these technology stacks in software architecture and connect them to
each other; for instance, connecting Java Platform to .Net Framework. Then, we have
another problem in our software system: Heterogeneous Integration.

Architecture and Messaging

[38]

We have great web service solutions to guarantee the Heterogeneous Integration
between technology stack and different types of clients; however, all of them have
bottlenecks; so we have another great solution: Message Broker. Message Broker
has a capability to send and receive messages without analyzing the details of the
sender and receiver. Message Broker just sends the messages in a given format to the
right module. The receiver module just needs to parse the message into their format.
Thus, Message Broker just gives us the combination of different stacks into one
architecture, and it gives us another solution for well-known software engineering
problem: Interoperability. The following screenshot will show you how Message
Broker communicates between different programming languages:

Heterogeneous Integration

As a consequence, not only Message Broker sends the messages to right receiver,
but it also satisfies the Heterogeneous Integration to combine different types of
technologies in our stack.

Addressing scalability
In dictionary definition, Scalability simply means that the software or network
system can adapt to increased demands. Scalability is our modern software
engineering problem; lots of academic papers have aimed to solve this well-known
issue. Scalability is not an easy problem and doesn't have a single solution. Although
scalability differs from financial software systems to real time web applications,
they have a similar problem: communicating between modules or processes. Then it
comes to Message Brokers, which solve this scalability problem.

Chapter 3

[39]

We all know that Message Brokers can address part of the scalability problem, but
we need to know how it addresses this. Message Brokers gives us these items in
its muscle:

• It increases the overall throughput of the system, which reduces the response
time of the software system

• Multiple message receiver and sender capability of Message Broker gives us
an opportunity to cope with concurrent messages

• It allows us to create an Asynchronous System, so we have an opportunity to
control messaging in our modules in an event-driven manner

Consequently, Message Broker eases well-known problem scalability by delivering
high throughput, less response time, and highly concurrent system.

So, we showed the three different problems that we aim to solve using Message
Brokers. Message Brokers not only solve these well-known problems, but also aim to
solve all of the messaging problems between applications, modules, and processes.
Note that messaging itself can become single point of failure. Scaling messaging is
where brokers are expected to be effective.

Enterprise messaging
Enterprise applications such as customer relationship management applications,
business intelligence applications, project management applications, human
resource management applications, and so on have to integrate with other enterprise
applications. You can see the overall diagram of communication between enterprise
applications with the following screenshot. Moreover, we have to guarantee that all
systems should be scalable. So, we have problems such that we talked before.

Sample financial application before message broker

Architecture and Messaging

[40]

Message Brokers mainly attempt to solve these kinds of problems in enterprise
applications. In enterprise messaging, we have to guarantee that the message is
sent and received, since each of the messages is very important for our system's
robustness. Message Brokers have a functionality to store all messages permanently
to satisfy this kind of requirement. You can see the overall diagram of the software
architecture with the following screenshot:

Sample financial application after message broker

As a result, enterprise messaging is not very different from the other types of
messaging applications. Thus, we are able to solve enterprise-messaging problems
using the Message Brokers.

Messaging-related software architectures
As we went through how problems are addressed with Messaging and Message
Brokers, we are now ready to dive into the software architectures that are parallel
with these solutions. Message Brokers create an abstraction between modules,
applications, and processes. The abstraction, which is created with Message Brokers,
is simply defined as Message Oriented Middleware. As we know, Message
Brokers has a functionality to apply asynchronous patterns on the affected modules,
applications, and processes. Then, it comes to Event Driven Architecture that is
strictly related with the asynchronous system. After defining these related software
architectures, let's dive into this amazing stuff.

Chapter 3

[41]

Message oriented middleware – Architecture
Message Oriented Middleware is simply defined as a component that allows
software components, which have been placed on the same or different network, to
communicate with one another. In a Producer/Consumer pattern, producers send
their message to different consumers with the help of Message Oriented Middleware,
guaranteeing the message received as shown in the next screenshot. If we look at
the definition deeply, Message Oriented Middleware tries to solve some software
engineering problems such as interoperability, monitoring, enterprise integration of
software systems, abstraction, reliability, security, and so on.

Interoperability is defined as systems and devices that can exchange data
without knowing each other's functionality. In an interoperable system, we have
heterogeneous software components rather than homogeneous components.
Message Oriented Middleware integrates all of the heterogeneous components
and interacts with them in a scalable way. As we talked before, we are now using
different technologies in our technology stack. With the help of Message Oriented
Middleware, we are able to interact with these different types of technologies.

Application performance management is widely described as monitoring and
management of performance and availability of software applications. Nowadays,
we need to monitor performance metrics closely in most software systems. Message
Oriented Middleware can ease up monitoring and tuning performance. So, both
consumers and producers are partly relieved from problems like monitoring,
logging, and tuning.

Today, we are using different software systems from different companies. Especially
in financial area, we have to use customer relationship management software,
enterprise resource planning software, human resource management software,
and so on. Also, every director needs to combine these software systems in a single
software architecture. This is done by enterprise integration of software systems.
This integration has many software architectures, and Message Oriented Middleware
is one of the architectures that satisfy the enterprise integration of software systems.

Architecture and Messaging

[42]

As a consequence, Message Oriented Middleware that is provided with the Message
Brokers is responsible to solve some software engineering problems such as
interoperability, enterprise integration of software systems, and so on. We are able
to use Message Oriented Middleware in our software system whenever using the
Message Brokers. You can see an overview of message oriented architecture in the
following screenshot:

Message Oriented Middleware architecture

Event-driven architecture
In an asynchronous system, operations take place independent of other operations;
therefore, operations can take place without waiting for others. Since Message
Broker's support asynchronous operations, they can be easily used in an Event
Driven Architecture. Before defining Event Driven Architecture (EDA), let's talk
about the problems before EDA.

Chapter 3

[43]

As we discussed in the messaging concept, producers send message to the
consumers. Before EDA, consumers always await their incoming messages from
producers. Then, one of the processes had to control the waiting process. With EDA,
we have listeners, whose duty is to trigger the listener event whenever a message is
received. Now we are ready to define the EDA. EDA is a push-based communication
between producer and consumer, which gives reaction to the events.

The structure of EDA consists of four elements: event creator or producer, event
consumer, event manager, and event. The following is an explanation of these
elements:

• Event creator is just the source of event
• Event consumer is a listener of event that needs to know the event has

occurred
• Event manager is a middleware between creator and consumer, which is the

controller of the events and triggers the related event consumers
• Event is an action that is detected by a Event listener or consumer.

These structures could be seen in an example in the preceding screenshot. Note that
arrows between components are events.

EDA solves lots of software engineering problems, for example, scalability, high
availability, and so on. So, it is good to list the benefits of the EDA:

• EDA has a capacity to support large numbers of creators and consumers
• It responses to information in near real time
• It prevents the blocking or waiting in the consumer phase
• It shapes the architecture as an extremely loosely-coupled architecture

Architecture and Messaging

[44]

Consequently, Message Brokers support asynchronous software system. Then, we
are able to use Event Driven Architecture in our software system to gather great
solutions to well-known problems such as scalability. You can see an overview of
event driven architecture in the following screenshot:

Image 7: Event Driven Architecture

Messaging concepts
So far, we talked about messaging, problems solved by the message brokers, and
finally, the details of the software architectures that is related or created with the
message brokers. Now, we are ready to dive into the concepts of the messaging.
The following screenshot describes the overall picture of messaging concepts. We
have Producers, who are responsible for creation of messages; Message Brokers,
who are responsible for ensuring the message sending from Producer to Consumer;
Consumers, who are responsible for receiving the messages; and messages, who are
the entity that will be sent and received.

Chapter 3

[45]

Image 8: Producer, Message Broker and Consumer

Message producers
A message producer, as implied the functionality by its name, produces the
messages. It just sends the message to the consumer via Message Broker. Mainly,
software applications, modules, and processes form producers.

A producer doesn't have a limit for messages, so it can send a large number of
messages. Moreover, it clarifies the receiver. However, routing to the right receiver
is not the producer's duty. Finally, one of the duties of the producer is to specify the
Message Broker's network address such as IP address and its port address.

Consequently, Producer has the least duty in the messaging concepts. It has mainly
one duty that is sending the message.

Message brokers
Message Brokers are the managers of messaging. They have heavy duties, such as
routing the message to the right queue, controlling the size of queues, and ensuring
the message sending. Thus, Message Brokers control and manage the messaging
activity between producers and consumers.

Message Brokers behave like middleware between producers and consumers.
Therefore, many software engineers called the message broker's place in the
software system architecture as Message Oriented Middleware. As discussed before,
Message Oriented Middleware solves some software engineering problems such as
interoperability, enterprise integration of software systems, abstraction, and so on.

The functionalities of the Message Brokers are many, but it is good to list the most
important ones:

• Ensuring the message sending to the right receiver
• Routing the message to the right queue and right receiver
• Supporting the different routing algorithms such as Pub-Sub, Direct,

Topic based, and so on

Architecture and Messaging

[46]

• Scaling and the Queues
• Providing the temporary and permanent storage to the messages

As a result, Message Brokers are the brain of the messaging system. So, they are the
most important concept of the system. Message Brokers affect all of the subsystems
of the messaging system

Message consumers
Producers send message and Message Brokers manage the messaging functionality
and routes message to the right consumer. Finally, consumer has one main
responsibility which is receiving messages or listening to messages in messaging
terms. Consumers await the upcoming messages, then process the message into the
meaningful format and use it.

Consumers are the last point of the messaging systems. Therefore, every message
has recipient or recipients, which are formed by the consumers. As we exactly
determined the functions of the consumers, we should now talk about how
consumers perform this listening functionality. As we know that message brokers
are able to satisfy both synchronous system and asynchronous system, consumers
can listen to the messages in a blocking or non-blocking way. Blocking the
complete system is not preferable for all software systems; it is always good to
implement asynchronous system (non-blocking) if possible. We will talk about both
synchronous and asynchronous ways in the client chapters starting from Chapter 9,
Java RabbitMQ Client Programming.

Consequently, consumers are the end point of the messaging system. They have the
ability to listen to messages in both asynchronous and synchronous way. We are
now ready to talk about the last concept in messaging, that is, Messages.

Messages
Messages are the main entity in the messaging systems. Producers can send
messages, Message Brokers then process the messages and route the messages
through queues, and lastly, consumers listen to the messages. So, every other concept
in messaging operates with messages.

Messages have some information in them. Messages have headers, which have
information about the sender, receiver, and message format. Moreover, messages
have bodies, which have the exact information that producers send to the consumers.
Message bodies could be in different types of formats such as XML, JSON, binary
data, and so on.

Chapter 3

[47]

In conclusion, Messages are fundamental to messaging system. They are container
entities in the information flow.

Advanced Message Queuing Protocol
(AMQP)
AMQP is the abbreviation of Advanced Message Queuing Protocol. AMQP creates
the interoperability between Producer, Message Broker, and Consumer. First of
all, we need to answer this question: Why we need AMQP? Since different types of
message formats and different types of routing formats need to be standardized,
AMQP organization creates a well-defined industry-wide messaging middleware
standard.

As we discussed, AMQP's main responsibility is the interoperability of the systems
inside the messaging systems. Therefore, we need to explain the scope of the AMQP
as explained in the AMQP Specification Document:

• A defined set of messaging capabilities
• A network wire-level protocol

AMQP organization created the standard with the help of the requirements from
well-known companies such as Cisco Systems, JPMorgan Chase, Red Hat, and so
on. The most important requirements of the Advanced Message Queuing Model are
listed as follows, taken from the AMQP Specification Document:

• To guarantee interoperability
• To provide explicit control
• To allow complete configuration

Moreover, AMQP organization clarifies the requirements of the AMQP transport
layer as follows, taken from the AMQP Specification Document:

• To use binary encoding
• To handle messages
• To be long-lived
• To allow asynchronous system
• To be easily extended

From now on, we will dive into the details of the AMQP, starting with AMQ Model
Architecture and its elements.

Architecture and Messaging

[48]

AMQ elements
As we talked before, AMQ stands for Advanced Message Queuing, and we are
now talking about the elements of AMQ and its main architecture. We can express
the main architecture of the middleware as follows: producer/publisher creates or
sends messages; then, messages arrive at Exchanges; after that, messages are routed
through the Message Queues with related Bindings to the right consumer. So, we
have four model elements:

• Message Flow: It explains the message life cycle
• Exchanges: It accepts messages from publisher, and then routes to the

Message Queues
• Message Queues: It stores messages in memory or disk and delivers

messages to the consumers
• Bindings: It specifies the relationship between an exchange and a message

queue that tells how to route messages to the right Message Queues

We are now ready to talk about the details of each AMQ Element. In addition, you
can find the well-defined AMQ elements in the following screenshot:

AMQP Stack

Chapter 3

[49]

Message flow
In a nutshell, Message Flow starts when the Producer creates message and sends it
to the Exchange. Then, Exchange routes to the related Message Queue with given
Bindings. Finally, Consumer receives the sent message. The well-defined explanation
of the Message Flow is listed as follows:

1. Message: This is produced by the Publisher application using AMQP Client
with placing related information such as Content, Properties, and Routing
Information to the Message.

2. Exchange: This receives the Message, which is sent from the Producer, then
routes message to the right Queues, which is set on the message's Routing
Information. Message will be sent to multiple queues, since it is determined
with the Bindings.

3. Message Queue: This receives the Message and adds it to their waiting list.
As soon as possible, Message Queue sends message to the related consumer.
If Message Queue cannot send the Message, it stores the Message in a disk or
memory.

4. Consumer: This receives the Message and sends Acknowledgement Message
(usually it is sent automatically) to the Publisher.

You can find the well-defined Message Flow in the following screenshot:

Message Flow

Architecture and Messaging

[50]

Exchanges in AMQ
Exchanges generally take message and route it into zero or more message queues.
The routing algorithm can be determined with the bindings, which is well discussed
in the Functional Specification topic in this chapter.

Exchanges are declared with following important properties:

• Name: Usually, server gives its name automatically
• Durable: Message Queue remains present or not, depending on whether

durable is set or transient is set
• Auto-delete: When all queues finish, exchanges are deleted automatically

Message queues
Message Queue in AMQ is similar to the other messaging systems or task queuing
systems. They store the messages in a First-In-First-Out (FIFO) way that is well
defined in the queue data structure. Different from Queue data structure, if multiple
readers from a queue is active, then one of the reader sometimes has a priority over
another. Then, prior one takes the message before the other readers. Therefore,
message queue in AMQ model is called as weak-FIFO.

Message Queues have the properties like Exchanges. The most important ones are
listed as follows:

• Name: Defines the name of Message Queue
• Durable: If set, the Message Queue can't lose any message
• Exclusive: If set, the Message Queue will be deleted after connection is closed
• Auto-delete: If set, the Message Queue is deleted after last consumer has

unsubscribed

Bindings
Bindings are rules that Exchanges use to route messages between message queues.
Thus, bindings clarify in which message queue the message will be sent. The binding
is determined with routing key.

As an example of the Bindings in real life, for instance, you have three different
ways to go to your favorite restaurant, and you have to decide one of the ways. The
decision is determined with the help of Bindings.

AMQ supports different type of Bindings, which will be discussed in the next section.

Chapter 3

[51]

Functional specifications of AMQP
After defining each AMQ elements, we are now ready to express functions of each
element. As a brief introduction, Messages are the main element of the system,
Virtual Hosts is a way to execute more than one RabbitMQ Server instance in a
server, and Exchanges routes the messages. Let's dive into the functional details of
each element.

AMQP messages
Message is the main entity of messaging system as well as AMQP. It is the atomic
unit of processing of the middleware routing and queuing system according to
AMQP specification.

A Message consists of these following attributes:

• Content that is a binary data
• Header
• Properties

The following screenshot gives the general idea of the AMQP Message:

AMQP Message

Architecture and Messaging

[52]

Because of storing binary data on AMQP's content, AMQP has the capability to
transfer file, creating application level message, and data streaming such as video
streaming. Messages may be persistent if set, and may have priority level, which
gives high priority messages to be sent ahead of lower priority messages waiting
in the same message queue.

Virtual hosts
AMQP has a functionality to have multiple isolated environments, which have
groups of users, exchanges, message queues, and so on with the help of Virtual
Hosts. It is really similar to the Virtual Hosts of any Web Server in the enterprise.

Clients have an option to select a Virtual Host from the Virtual Host list. The
command line tool rabbitmqctl manages Virtual Hosts. Authorization mechanism
of each Virtual Host could be different. Clients have to choose one of the Virtual
Hosts, since a Client cannot be allowed to connect to another Virtual Host while
connected to one Virtual Host.

Exchange types
As explained in the AMQ Elements, Exchanges is a message routing agent within a
Virtual Host. Exchanges receive the messages and route to the zero or more Message
Queues. Exchanges have properties, which is well defined in the previous topic. The
routing algorithm is determined using exchange type. We have five exchanges types
in AMQP. Note that these are the types by default, but you can extend AMQP and
create your own type of exchange. Exchange Types with their functionalities are
listed as follows.

The direct exchange type – amq.direct
The flow of direct exchange type (as shown in the following screenshot) is as follows:

1. A message queue binds to the exchange using a routing key, K.
2. Then, a publisher sends the Exchange a message with the routing key, R.
3. The message is passed to the message queue if K equals to R.

Chapter 3

[53]

Direct Exchange Routing

The fan-out exchange type – amq.fanout
The flow of direct exchange type(as shown in the previous screenshot) is as follows:

1. A message queue binds to the exchange with no arguments.
2. Whenever a publisher sends the Exchange a message, the message is passed

to the message queues unconditionally:

Fanout Exchange Routing

Architecture and Messaging

[54]

The topic exchange type – amq.topic
The flow of direct exchange type (as shown in the previous screenshot) is as follows:

1. A message queue binds to the Exchange using a routing pattern, P.
2. A publisher sends the exchange a message with the routing key, R.
3. The message is passed to the message queue if R matches P.
4. Matching algorithm works as follows: The routing key used for a topic

exchange must consist of zero or more words delimited by dots such as
"news.tech". The routing pattern works like a regular expression such as
"*" matches single word and # matches zero or more words. For instance,
"news.*" matches the "news.tech".

The headers exchange type – amq.match
Headers Exchange Type is the most powerful exchange type in AMQP. Headers
exchange route messages based on the matching message headers. Exchange ignores
the routing key. Whenever creating the exchanges, we specify the related headers
on the exchanges, so message's headers are matched with the exchange headers
using "x-match" argument. We will be looking at this Exchange Type in the Client
Chapters.

Topic Exchange Routing

Chapter 3

[55]

Summary
In conclusion, Messaging and Message Brokers are able to solve today's problems of
software engineering such as Interoperability, Heterogeneous Integration, Scalability,
and so on. Moreover, Message Brokers give us high level software architectures to
make our software systems more abstract.

Today, we have more complicated software systems. Moreover, we have to
combine different software systems. Messaging systems is just what we need in our
integration of different software systems.

We learned that Messaging has four main components: Producer, Message Broker,
Consumer, and the Message. Message Broker was our manager of the messaging
system; however, we had to define its standards and functionalities. Then it came
to AMQP. AMQP just clarifies how Message Broker works, how clients (consumers
and producers) talk with the server, and how each components of the AMQP interact
with each other.

From now on, we are starting the functionalities of the RabbitMQ Server, beginning
with Chapter 4, Clustering and High Availability.

[57]

Clustering and High
Availability

Dan Kegel published his well-known problem, C10K in 1999. The problem simply
arose from handling 10k simultaneous clients on the web servers. Currently, we have
to handle more than 100k simultaneous clients on our web servers or on our software
systems.

C10K is a great start to solve the scalability problem; however, we have a much
bigger problem on our hands now. If we return to messaging systems and
RabbitMQ, we have to handle lots of simultaneous messages; however, we don't
have a chance to handle all simultaneous messages in a single RabbitMQ server.

Anyway, RabbitMQ has great skills to handle lots of messages in a single machine,
such as more than 50k messages per second according to VMware Performance
Bookmarks; however, as we said earlier, we need more than that. So we have to use
multiple RabbitMQ servers. As a result, we need to create clusters of the RabbitMQ
server to handle lots of messages per second. High availability is directly related
to the scalability issue. As we make progress on the performance of the RabbitMQ
using the clusters, we enhance the availability of the messaging system. Furthermore,
RabbitMQ gives us a chance to control the queues for high availability.

Let's briefly define concepts that we will discuss here. High availability is generally
regarded as any component or system that is operational for a specified length of
time. High reliability means that a system performs consistently. A cluster is a group
of computers that tries to solve the same problem unanimously.

Clustering and High Availability

[58]

We will cover the following topics and their solutions in this chapter:

• High reliability in RabbitMQ
• Federation in RabbitMQ
• Clustering in RabbitMQ
• Clustering settings of RabbitMQ
• High availability of queues

High reliability in RabbitMQ
As we declared the general problems of running a single instance of RabbitMQ
server on a single server, it gives us another chance to solve this problem using
different ways of distribution. One of the ways is Federation, which simply means
the transmission of messages between brokers. Another way to solve this problem
is clustering, that is, running multiple nodes of RabbitMQ with coordination. Both
ways have different advantages and disadvantages. Clustering is done naturally
in RabbitMQ servers; however, federation needs a plugin of RabbitMQ to interact
between its servers. Before diving into federation in RabbitMQ, let's talk a little
bit about Shovel. Shovel allows configuring a number of shovels which act like a
client application. A shovel connects to its source and destination, reads and writes
messages, and it also handles connection failures. Shovel needs a plugin to run:

Distributing in RabbitMQ

Chapter 4

[59]

Federation in RabbitMQ
Federation is one of the powerful ways of handling lots of messages while using
multiple RabbitMQ servers. Going by the declaration from the RabbitMQ website,
the main goal of Federation is to transmit messages between brokers without
the need of clustering. Now, we should answer the question, why do we need
federation? The following are the main reasons:

• Loose coupling
• WAN-friendly
• Scalability
• Specificity

With specificity, a broker can contain federated and local-only components. You
don't need to federate everything. If you don't want to federate, you can leave it.

The Federation plugin is available with the standard RabbitMQ server installation.
You can enable the Federation plugin using the following command:

rabbitmq-plugins enable rabbitmq_federation

Moreover, if you use the management plugin of the RabbitMQ server, you have
a chance to monitor the federation using the same management plugin using the
following command:

rabbitmq-plugins enable rabbitmq_federation_management

Federation-related information and configuration will be stored in the RabbitMQ
database. Three levels of configuration are involved in federation according to the
RabbitMQ website:

• Upstreams: This defines how to connect to another RabbitMQ
• Upstream sets: This sets the upstream groups
• Policies: This is a set of rules of the Federation

We can control the Federation using the management console. For instance, we can
define an upstream using the following command:

rabbitmqctl set_parameter federation-upstream my-upstream
\'{"uri":"amqp://localhost","expires":72000}'

Clustering and High Availability

[60]

Moreover, you can set the policies of Federation using the following command of the
management console:

rabbitmqctl set_policy --apply-to exchanges federate-me "^amq\."
\'{"federation-upstream-set":"all"}'

Federation in RabbitMQ

Clustering in RabbitMQ
Clustering is our main solution for handling client requests over the server
applications. The RabbitMQ server also gives us cluster mechanism. Cluster
mechanism replicates all the data/states across all the nodes for reliability and
scalability. The general structure of the clusters would be changed dynamically,
according to the addition or removal of any clusters from the systems. Furthermore,
RabbitMQ tolerates the failure of each node.

Nodes should choose one of the Node type that affect the storage place; these are
disk nodes or RAM nodes. If an administrator chooses a RAM node, RabbitMQ
stores its state in memory. However, if an administrator chooses to store its state in a
disk, then RabbitMQ stores its state on both, memory and disk.

Chapter 4

[61]

 Clustering in RabbitMQ

Creating clusters
After describing the clustering in detail, we are now ready to create clusters of
RabbitMQ servers on our system. Firstly, we need to start each of our RabbitMQ
servers within the nodes using the following commands:

mastering-rabbitmq1$ rabbitmq-server –detached

mastering-rabbitmq2$ rabbitmq-server -detached

mastering-rabbitmq3$ rabbitmq-server –detached

mastering-rabbitmq4$ rabbitmq-server –detached

Clustering and High Availability

[62]

Then, with the help of cluster_status attribute of management console, we are
ready to check whether our single node of cluster has started or not. As you can
see in the following command, the management console replies to our command,
provided that the single node is running:

mastering-rabbitmq1$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq1 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq1]}]},

 {running_nodes,[rabbit@mastering-rabbitmq1]},

 {partitions,[]}]

...done.

We can also check the second, third, and fourth nodes with the management console
as we can see here.

For Node 2 run the following command on the console:

mastering-rabbitmq2$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq2 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq2]}]},

 {running_nodes,[rabbit@mastering-rabbitmq2]},

 {partitions,[]}]

...done.

For Node 3 run the following command on the console:

mastering-rabbitmq3$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq3 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq3]}]},

 {running_nodes,[rabbit@mastering-rabbitmq3]},

 {partitions,[]}]

...done.

For node 4 run the following command on the console:

mastering-rabbitmq4$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq4 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq4]}]},

 {running_nodes,[rabbit@mastering-rabbitmq4]},

 {partitions,[]}]

...done.

Chapter 4

[63]

After checking the status of each node, we should go on with adding the first
cluster onto another cluster. For doing this, we should first stop the application and
then join clusters through the management console. Finally, we should start the
application again to start the clusters:

mastering-rabbitmq2$ rabbitmqctl stop_app

Stopping node rabbit@mastering-rabbitmq2 …done.

mastering-rabbitmq2$ rabbitmqctl join_cluster rabbit@mastering-

rabbitmq1

Clustering node rabbit@mastering-rabbitmq2 with [rabbit@mastering-
rabbitmq1] …done.

mastering-rabbitmq2$ rabbitmqctl start_app

Starting node rabbit@mastering-rabbitmq2 …done.

Checking the cluster status
After joining and starting the node, we can check the status of each node to see
if nodes are joined to clusters or not using the cluster_status parameter of
rabbitmqctl as shown by the following command:

mastering-rabbitmq1$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq1 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq1]}],
{disc,[rabbit@mastering-rabbitmq2]}]},

},{running_nodes,[rabbit@mastering-rabbitmq1,rabbit@mastering-
rabbitmq2]},{partitions,[]}]

...done.

mastering-rabbitmq2$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq2 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq2]}],
{disc,[rabbit@mastering-rabbitmq1]}]},

},{running_nodes,[rabbit@mastering-rabbitmq2,rabbit@mastering-
rabbitmq1]},{partitions,[]}]

...done.

Clustering and High Availability

[64]

A third node can also be joined to the other clusters in the same way.

mastering-rabbitmq3$ rabbitmqctl stop_app

Stopping node rabbit@mastering-rabbitmq3 …done.

mastering-rabbitmq3$ rabbitmqctl join_cluster rabbit@mastering-
rabbitmq1

Clustering node rabbit@mastering-rabbitmq3 with [rabbit@mastering-
rabbitmq1] …done.

mastering-rabbitmq3$ rabbitmqctl start_app

Starting node rabbit@mastering-rabbitmq3 …done.

Now, we have three clusters. We will check each of these clusters through the
management console of the RabbitMQ server:

mastering-rabbitmq1$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq1 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq1]}],
{disc,[rabbit@mastering-rabbitmq2]},{disc,[rabbit@mastering-
rabbitmq3]}]}},{running_nodes,[rabbit@mastering-
rabbitmq1,rabbit@mastering-rabbitmq2, rabbit@mastering-
rabbitmq3]},{partitions,[]}]

...done.

mastering-rabbitmq2$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq2 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq2]}],
{disc,[rabbit@mastering-rabbitmq1]},{disc,[rabbit@mastering-
rabbitmq3]}]}},{running_nodes,[rabbit@mastering-
rabbitmq2,rabbit@mastering-rabbitmq1, rabbit@mastering-
rabbitmq3]},{partitions,[]}]

...done.

mastering-rabbitmq3$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq3 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq3]}],
{disc,[rabbit@mastering-rabbitmq1]},{disc,[rabbit@mastering-
rabbitmq2]}]}},{running_nodes,[rabbit@mastering-
rabbitmq3,rabbit@mastering-rabbitmq1, rabbit@mastering-
rabbitmq2]},{partitions,[]}]

...done.

Chapter 4

[65]

In the same manner, the fourth and the last cluster of our software system can be
joined to the clusters. After joining the last one, we are now ready to check whether
all of the are joined or not.

The following code shows how to join one cluster to another cluster and monitor
their status on the different clusters:

mastering-rabbitmq4$ rabbitmqctl stop_app

Stopping node rabbit@mastering-rabbitmq4 …done.

mastering-rabbitmq4$ rabbitmqctl join_cluster rabbit@mastering-
rabbitmq1

Clustering node rabbit@mastering-rabbitmq4 with [rabbit@mastering-
rabbitmq1] …done.

mastering-rabbitmq4$ rabbitmqctl start_app

Starting node rabbit@mastering-rabbitmq4 …done.

mastering-rabbitmq1$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq1 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq1]}],
{disc,[rabbit@mastering-rabbitmq2]},{disc,[rabbit@mastering-
rabbitmq3]},{disc,[rabbit@mastering-
rabbitmq4]}]}},{running_nodes,[rabbit@mastering-
rabbitmq1,rabbit@mastering-rabbitmq2, rabbit@mastering-
rabbitmq3,rabbit@mastering-rabbitmq4]},{partitions,[]}]

...done.

mastering-rabbitmq2$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq2 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq2]}],
{disc,[rabbit@mastering-rabbitmq1]},{disc,[rabbit@mastering-
rabbitmq3]},{disc,[rabbit@mastering-
rabbitmq4]}]}},{running_nodes,[rabbit@mastering-
rabbitmq2,rabbit@mastering-rabbitmq1, rabbit@mastering-
rabbitmq3,rabbit@mastering-rabbitmq4]},{partitions,[]}]

...done.

mastering-rabbitmq3$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq3 ...

Clustering and High Availability

[66]

[{nodes,[{disc,[rabbit@mastering-rabbitmq3]}],
{disc,[rabbit@mastering-rabbitmq1]},{disc,[rabbit@mastering-
rabbitmq2]},{disc,[rabbit@mastering-
rabbitmq4]}]}},{running_nodes,[rabbit@mastering-
rabbitmq3,rabbit@mastering-rabbitmq1, rabbit@mastering-
rabbitmq2,rabbit@mastering-rabbitmq4]},{partitions,[]}]

...done.

mastering-rabbitmq4$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq4 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq4]}],
{disc,[rabbit@mastering-rabbitmq1]},{disc,[rabbit@mastering-
rabbitmq2]},{disc,[rabbit@mastering-
rabbitmq3]}]}},{running_nodes,[rabbit@mastering-
rabbitmq4,rabbit@mastering-rabbitmq1, rabbit@mastering-
rabbitmq2,rabbit@mastering-rabbitmq3]},{partitions,[]}]

...done.

Changing the cluster node types
As we specified the details of the cluster node types, we can also change the node
type with the help of the management console. The change_cluster_node_type
attribute of the management console helps us to change its node type from RAM to
disk or disk to RAM. Before changing the attribute, we need to stop the application
and then start the application again.

The following command shows can be used to change the type of storage of the
cluster:

mastering-rabbitmq3$ rabbitmqctl stop_app

Stopping node rabbit@mastering-rabbitmq3 …done.

mastering-rabbitmq3$ rabbitmqctl change_cluster_node_type ram

Turning rabbit@mastering-rabbitmq2 into a ram node

…done.

Chapter 4

[67]

RabbitMQ clusters, which are joined, are able to stop on their own. This wouldn't be
affected by the other clusters. Moreover, the nodes automatically catch up with the
running nodes when they start up. You can check this high functionality using the
management console and stopping and starting a node of the RabbitMQ server:

mastering-rabbitmq3$ rabbitmqctl start_app

Starting node rabbit@mastering-rabbitmq3 …done.

mastering-rabbitmq3$ rabbitmqctl stop_app

Stopping node rabbit@mastering-rabbitmq3 …done.

mastering-rabbitmq4$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq4 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq4]}], {disc,[rabbit@mastering-
rabbitmq1]},{disc,[rabbit@mastering-
rabbitmq2]},{disc,[rabbit@mastering-
rabbitmq3]}]}},{running_nodes,[rabbit@mastering-
rabbitmq4,rabbit@mastering-rabbitmq1, rabbit@mastering-
rabbitmq2]},{partitions,[]}]

...done.

Updating cluster nodes
Sometimes, we need to remove the cluster from the other clusters because of
the failure of the provided cluster or any other problem occurring on it. In such
scenarios, we simply remove this node from the other clusters.

With the help of the management console, we are able to remove the provided node
with the given reset attribute of console. In the following commands, you can find a
related example, which resets the RabbitMQ server to remove node from the clusters.

mastering-rabbitmq4$ rabbitmqctl stop_app

Stopping node rabbit@mastering-rabbitmq4 …done.

mastering-rabbitmq4$ rabbitmqctl reset

Resetting node rabbit@mastering-rabbitmq4

…done.

Clustering and High Availability

[68]

mastering-rabbitmq4$ rabbitmqctl start_app

Starting node rabbit@mastering-rabbitmq4 …done.

mastering-rabbitmq1$ rabbitmqctl cluster_status

Cluster status of node rabbit@mastering-rabbitmq1 ...

[{nodes,[{disc,[rabbit@mastering-rabbitmq1]}],
{disc,[rabbit@mastering-rabbitmq2]},{disc,[rabbit@mastering-
rabbitmq3]}]}},{running_nodes,[rabbit@mastering-rabbitmq1,
rabbit@mastering-rabbitmq2]},{partitions,[]}]

...done.

Furthermore, we have another property of the management console that is for
removing the nodes remotely. This is an amazing functionality of RabbitMQ to deal
with an unresponsive node:

mastering-rabbitmq4$ rabbitmqctl forget_cluster_node
rabbit@mastering-rabbitmq3

Removing node rabbit@mastering-rabbitmq3 from cluster …

…done.

Finally, sometimes we need to create clusters on our personal computer or we have
a single instance to run the RabbitMQ server. As such, we might come across the
question, how do we run multiple RabbitMQ servers on the same computer? The
answer is changing the instance names and instance ports.

In the following block of code, you can find the answer to have multiple instance at
one machine with the provided environment settings for port and instance names.
The other operations are specified previously is as follows:

mastering-rabbitmq1$ RABBITMQ_NODE_PORT=5672 RABBITMQ_NODENAME=rabbit1-
node rabbitmq-server –detached

mastering-rabbitmq1$ RABBITMQ_NODE_PORT=5673 RABBITMQ_NODENAME=rabbit2-
node rabbitmq-server –detached

mastering-rabbitmq1$ rabbitmqctl –n rabbit2-node stop_app

Stopping node rabbit2-node@mastering-rabbitmq1 …done.

mastering-rabbitmq1$ rabbitmqctl –n rabbit2-node join_cluster
rabbit@'hostname -s'

Clustering node rabbit2-node@mastering-rabbitmq1 with [rabbit1-node@
mastering-rabbitmq1] …done.

mastering-rabbitmq1$ rabbitmqctl –n rabbit2-node start_app

Starting node rabbit2-node@mastering-rabbitmq3 …done.

Chapter 4

[69]

Clustering the settings of RabbitMQ
As we explained the joining process, resetting process, and the other processes of
RabbitMQ server, all these need a change in settings. Clustering settings can be
done using the management console, which changes at runtime and through the
RabbitMQ configuration file. The following structure simply describes the settings
structure of the RabbitMQ clustering.

Cluster Settings in RabbitMQ

The management console attributes are well specified in the previous sections and
we'd like to talk about the configuration file more. If we want to start our nodes and
join them at the startup, we should add configuration parameters to the RabbitMQ
configuration file. The cluster_nodes attribute of the RabbitMQ configuration
file specifies each node of the cluster with the provided cluster node type.
Furthermore, we can specify the network partition-handling mode with the provided
cluster_partition_handling parameter of the RabbitMQ configuration file.
Let's take a look at the following table:

Variable Variable Description
cluster_nodes If the disk type is chosen, execute the following command:

[{rabbit,[{cluster_nodes,{['rabbit@mastering-
rabbitmq1', 'rabbit@mastering-rabbitmq2',
'rabbit@mastering-rabbitmq3', 'rabbit@
mastering-rabbitmq4'], disc}}]}].

If the RAM type is chosen, execute the following command:
[{rabbit,[{cluster_nodes,{['rabbit@mastering-
rabbitmq1', 'rabbit@mastering-rabbitmq2',
'rabbit@mastering-rabbitmq3', 'rabbit@
mastering-rabbitmq4'], ram}}]}].

www.allitebooks.com

http://www.allitebooks.org

Clustering and High Availability

[70]

Variable Variable Description
cluster_partition_
handling

This variable specifies how network partitions are handled.
• Default value: ignore
• Possible values: Ignore, pause_minority, or

autoheal

Load balancing for high availability of queues
A single node of RabbitMQ won't be enough for your requests, as we declared in the
introduction part. Moreover, clustering of RabbitMQ sometimes wouldn't be enough
for your heavy loaded software system. As such, you may ask, how do we balance
the loads of the RabbitMQ server instances? The answer is using the load balancing
systems. A load balancing system acts like a reverse proxy and distributes the load
between servers. We can make use of load balancers for RabbitMQ, but we need to
use the TCP load balancers since RabbitMQ uses the TCP protocol.

In the market, there are many load balancers for the HTTP protocols; however, we
haven't got too many load balancers for TCP. Finally, we have an amazing open
source TCP/HTTP load balancer, that is, HAProxy, which is used by well-known
companies. Furthermore, with the help of a module, our performance for the first
web server—Nginx—also supports the TCP load balancing with its mechanisms.

HAProxy has its own configuration for all TCP connections as well as RabbitMQ
server instances. Here, you can find the example configuration file of HAProxy for
the RabbitMQ server:

(HAProxy)

global
log 127.0.0.1 alert
log 127.0.0.1 alert debug

defaults
log global
mode http

Chapter 4

[71]

option dontlognull
option redispatch
retries 3
contimeout 5000
clitimeout 50000
srvtimeout 50000

listen rabbitmq 192.168.1.1:5000
mode tcp
stats enable
balance roundrobin
option forwardfor
option tcpka
server rabbit01 192.168.1.1:5672 check inter 5000 downinter 500
server rabbit02 192.168.1.2:5672 check inter 5000 backup
server rabbit03 192.168.1.3:5672 check inter 5000 backup

Furthermore, we can balance the loads of the RabbitMQ server instances using Nginx
with the module called nginx_tcp_proxy_module. If you'd like to use this module,
you have to compile Nginx from the source code.

Here, you can find the details of the configuration of Nginx for the RabbitMQ server:

(Nginx TCP)

tcp {
 upstream cluster {
 # simple round-robin
 server 192.168.1.1:5672;
 server 192.168.1.2:5672;
 check interval=3000 rise=2 fall=5 timeout=1000;
 }
 server {
 listen 5672;
 proxy_pass cluster;
 }
}

Clustering and High Availability

[72]

The following image shows the architecture of the clusters behind the proxy servers,
such as Nginx:

Load Balancing in RabbitMQ

Summary
Nowadays, scalability and real-time responsive software systems are our main
responsibility. Therefore, all parts of our software system should fit with the other
parts to sustain scalability and real-time responsivity. Moreover, the RabbitMQ
server part should sustain these terms.

RabbitMQ has two types of systems for handling the lots of messages in a second:
Federation and Clustering. As we explained, Federation is done by the RabbitMQ
plugin; whereas, Clustering is supported with the minimal installation of RabbitMQ.
Also, we should guarantee the balancing of the RabbitMQ servers. As RabbitMQ
uses the TCP, we need TCP load balancers, such as HAProxy and nginx_tcp_
proxy_module powered by Nginx. In the next chapter, we'll touch on RabbitMQ
plugins and RabbitMQ plugin development.

[73]

Plugins and Plugin
Development

Today, plugins are the main extending point of the software systems. As we know
from other software projects, plugins are used to extend the capability or add any
other skills to the software system.

RabbitMQ has its own plugin system, and it gives us default plugins as well.
Moreover, RabbitMQ gives us one more opportunity: developing our custom plugin
using RabbitMQ's API.

In this chapter, we will discuss the details of the plugins, default plugins and custom
plugin development, as the following list describes:

• Plugin management and default plugins
• Plugin configuration
• Custom plugin development

Plugin management and default plugins
RabbitMQ provides a number of tools that aid us in plugin management.
Additionally, RabbitMQ provides lots of default plugins to monitor, manage, add
features, and so on to RabbitMQ. Plugins are crucial because they introduce an
important set of new features, making RabbitMQ easier to use and manage.

Now, we are ready to talk about enabling and disabling plugins.

Plugins and Plugin Development

[74]

Enabling and disabling plugins
RabbitMQ provides a plugin management tool called rabbitmq-plugins. rabbitmq-
plugins is a command line tool to enable, disable, and list the plugins within the
RabbitMQ server. The rabbitmq-plugins command will enable or disable plugins
by updating the plugin configuration file. It will then contact the running server
to tell it to start or stop plugins as needed. You can use the -n option to specify a
different node, or use --offline to only change the file.

As all management tools of RabbitMQ need write permissions, rabbitmq-plugins
also needs write permissions to get allowed to be run by the user. General usage of
the tool is as follows:

rabbitmq-plugins {command} [command param1, command param2,…]

The functions and the parameters of rabbitmq-plugins are listed in the following
table:

Command Name Command Parameters Command Description
list -v, -m, -E, -e, pattern Lists all plugins with their versions and

dependencies.
-v parameter shows all the plugin
details.
-m parameter shows only plugin names.
-E parameter shows only explicitly
enabled plugins.
-e parameter shows only explicitly or
implicitly enabled plugins.
pattern parameter shows only the
plugins that match with the defined
pattern.
Example:
rabbitmq-plugins list

rabbitmq-plugins list -v

rabbitmq-plugins list -m

enable Plugin Name1, Plugin
Name2

Enables the provided plugins. We
can use multiple plugin names as a
parameter.
Example:
rabbitmq-plugins enable
rabbitmq_management

Chapter 5

[75]

Command Name Command Parameters Command Description
disable Plugin Name1, Plugin

Name2
Disables the provided plugins. We
can use multiple plugin names as a
parameter.
Example:
rabbitmq-plugins disable
rabbitmq_stomp

Table 1: rabbitmq-plugins commands and its parameters

The following screenshot of command line shows how to run listing command of
rabbitmq-plugins:

Listing of Plugins

Plugins and Plugin Development

[76]

In addition, the following screenshot of command line shows how to enable or
disable any plugin using the command of enable or disable of rabbitmq-plugins:

Enabling and Disabling of Plugins

Installing plugin from third-party sources
RabbitMQ gives us another opportunity to develop our own plugins using Erlang
language. Moreover, lots of plugins developed by individual developers can be
found on the Internet.

Now, it is time to show you how to install a plugin from source code to be enabled
on the RabbitMQ Server.

Firstly, we will choose one of the open source plugins called RabbitMQ Random
Exchange Type plugin, which can be fetched from git://github.com/jbrisbin/
random-exchange.git via Git source code management tool using the following
command:

git clone git://github.com/jbrisbin/random-exchange.git

cd random-exchange

make package

cp dist/*.ez $RABBITMQ_HOME/plugins

git://github.com/jbrisbin/random-exchange.git
git://github.com/jbrisbin/random-exchange.git

Chapter 5

[77]

Then, we go to the created folder called random-exchange. After that, we build the
source code and copy the built files to $RABBITMQ_HOME/plugins using the following
commands:

make package

cp dist/*.ez $RABBITMQ_HOME/plugins

Now, we are ready to enable our third party plugin using the following command
with the help of rabbitmq-plugins tool:

rabbitmq-plugins enable random-exchange

Default plugin list
RabbitMQ contributors publish the default plugins that will be helpful to add
new protocols, some authentication functionality on RabbitMQ Server, and so on.
Moreover, some experimental plugins published by the contributors are also a part
of these publications.

To talk in detail regarding the plugins, let's move on to the following table that
shows the default plugins and their description:

Plugin Name Plugin Description
rabbitmq_auth_backend_ldap To use external LDAP as authentication or

authorization functionality. This plugin will
be explained in detail in Chapter 8, Security
in RabbitMQ.

rabbitmq_auth_mechanism_ssl To add authentication mechanism using
SSL certificates. This plugin will be
explained in detail in Chapter 8, Security in
RabbitMQ.

rabbitmq_consistent_bash_exchange To provide the consistent hashing on the
exchanges to ensure that all queues bound
to exchange will receive an equal number
of messages.

rabbitmq_federation To transmit messages between brokers
without clustering within wide area
networks. Provides scalability skills. This
plugin was explained in detail in Chapter 3,
Architecture and Messaging.

Plugins and Plugin Development

[78]

Plugin Name Plugin Description
rabbitmq_federation_management To manage the federation plugin in

RabbitMQ Server with provided API and
UI. Federation Management plugin is active
when the RabbitMQ Management plugin is
also active.

rabbitmq_management To monitor and manage RabbitMQ using
web based applications. Applications use
RabbitMQ API, one of the most useful
plugins in RabbitMQ.

rabbitmq_management_agent To monitor and manage the clusters of the
RabbitMQ needs.

rabbitmq_mqtt Enables the supporting of MQTT 3.1
protocol in RabbitMQ. MQTT is simply
defined as lightweight publish/subscribe
messaging transport.

rabbitmq_shovel Enables the ability to continually consume
messages from one queue and publish
them to exchanges in another broker. This
plugin's functionality was explained in
Chapter 3, Architecture and Messaging.

rabbitmq_shovel_management To monitor and manage the shovel in
RabbitMQ Server with provided UI and
API. Shovel Management plugin is active
when the RabbitMQ Management plugin is
active.

rabbitmq_stomp Enables the gateway to expose the AMQP
functionality using the STOMP protocol
that provides an interoperable wire format.

As discussed earlier, contributors publish some experimental plugins; for instance,
supporting the AMQP version 1.0 plugin. The following table shows the details of
the experimental plugins and their description:

Chapter 5

[79]

Plugin Name Plugin Description
rabbitmq_amqp1_0 Enables the AMQP version 1.0 RabbitMQ

Server.
rabbitmq_jsonrpc_channel Enables the AMQP over HTTP protocol

using jsonrpc. Moreover, this
plugin provides JavaScript libraries to
communicate with RabbitMQ.

rabbitmq_jsonrpc_channel_
examples

To provide the examples of AMQP over
HTTP, such as shared whiteboard, chat
application, and some tests.

rabbitmq_management_visualizer Visualizes the broker topology using the
management web application by adding
the Visualizer tab.

rabbitmq_tracing Enables message tracing and logging.
rabbitmq_web_stomp To attach rabbitmq_stomp to web browsers

using the HTML 5 WebSockets layer
SockJS.

rabbitmq_web_stomp_examples To provide the rabbitmq_web_stomp
examples, such as simple collaboration tool.

Plugin configuration
As we know from Chapter 2, Configuring RabbitMQ, the configuration file locates
the plugin-related configuration. The following table shows the plugin-related
configuration parameters in the RabbitMQ configuration file:

Name Default Value Description
rabbitmq_plugins_
dir

$RABBITMQ_HOME/plugins The location where
plugins of RabbitMQ
Server are located.

rabbitmq_plugins_
expand_dir

$RABBITMQ_MNESIA_
BASE/$RABBITMQ_NODENAME-
plugins-expand

The location where
RabbitMQ expands—
plugins are zip files with
.ez extension—enabled
plugins when starting the
server.

Plugins and Plugin Development

[80]

Custom plugin development
As we discussed earlier about the custom plugin development, RabbitMQ gives
us a chance to develop our own plugins. Sometimes we need to access internal
functionality of RabbitMQ, which is not possible with AMQP interface. Therefore,
we need to design and develop our custom plugins.

Ok, we decided to develop our custom RabbitMQ plugin. Now, we should know
the requirements for custom plugin development in RabbitMQ. As RabbitMQ is
developed in Erlang, we have to know Erlang system and its design principles first.
After that, we have to know the internal API of RabbitMQ to use APIs in plugin. To
access the RabbitMQ APIs, we need a working RabbitMQ development environment.
Therefore, we need to download all source code using Mercurial source code
management tool and make the source code available using the following command:

http://hg.rabbitmq.com/rabbitmq-public-umbrella/hg clone
http://hg.rabbitmq.com/rabbitmq-public-umbrella/

cd rabbitmq-public-umbrella

make co

make

Output of the public umbrella plugin is as follows:

Making the RabbitMQ from Source Code

After preparing the development environment, we are now ready to talk about the
basics of Erlang.

Chapter 5

[81]

Basics of Erlang
Erlang was developed by Ericsson to manage telecom projects to support
distributed, real-time, high availability applications. Erlang is a purpose oriented
programming language that is concurrent and distributed naturally. The first
version of Erlang was released in 1986, and the first open source version of Erlang
was released in 1998. Erlang is a general-purpose, concurrent, garbage-collected
programming language and runtime system.

Erlang relies on a very simple concurrency model that allows individual blocks of
code to be executed multiple times on the same host. Additionally, Erlang provides
a failure model on its concurrency model to handle errors on the processes. Thus,
developing distributed, scalable, and highly fault tolerant software systems could be
easily done by Erlang.

Erlang is a functional programming language similar to Clojure, Scala, and so on.
After talking about the brief introduction of Erlang, let's now move on to the basics
of Erlang.

If you installed the RabbitMQ Server on your computer with the help of Chapter 1,
Getting Started, you also have Erlang runtime environment on your computer. If
not installed, please turn back to Chapter 1, Getting Started, and read the installation
instructions. When you run the following command on your Terminal or Command:

$ erl

You will get the following Erlang shell:

Erlang R16B03 (erts-5.10.4) [source] [64-bit] [smp:4:4] [async-
threads:10] [hipe] [kernel-poll:false]

Eshell V5.10.4 (abort with ^G)

1>

Then, if you add two integers with a stop point and press Enter key, you'll get the
sum of these integers as follows:

1> 10 + 27.

37

Single line comments on the Erlang can be shown with the percentage (%) symbol
such as:

% This is comment

Plugins and Plugin Development

[82]

Variables and expressions
Variables in Erlang are similar to any other dynamic interpreted programming
languages such as Python, Ruby, and so on. Number types are separated into two,
integers and float numbers, as shown in the following code:

2> 3+4.

7

3> 3.5 * 3.6.

12.6

Strings are described with the double or single quotation marks. Moreover, Erlang
has lots of helper functions for strings:

5> "ahmet".

"ahmet"

8> string:substr("ahmet",1,3).

"ahm"

9> string:join(["one","two","three"],", ").

"one, two, three"

The substr() function takes the substring of the string ("ahmet") within the given
range indexes. The Join() function takes the string list and joins them with a
separator. Erlang has lots of utility functions for String.

Erlang supports all Boolean expressions such as equality, more than, less than, and
so on. Examples of the Boolean expressions are listed in the following command
lines:

10> "abc" < "def".

true

11> "abc" == "def".

false

12> 5 == 5.

true

Lastly, Erlang has different variable type from other programming languages called
Atoms. Atoms are similar with the #define value in C. Atoms are named constants
and they are used for comparison. We'll see the usage of atom type variable in the
Function and Modules section.

Chapter 5

[83]

Tuples and lists
Tuples is the compound data type that stores the fixed number of elements. It
is similar to Python's tuples. The following examples show Tuple and its utility
functions that is provided by Erlang:

1> T = {test,32,{12,23,"emrah"}}.

{test,32,{12,23,"emrah"}}

2> element(1,T).

test

3> setelement(2,T,23).

{test,23,{12,23,"emrah"}}

4> tuple_size(T).

3

The element() function gets the related element with the given index. The
setelement() function sets the element with new value with given index. Lastly,
tuple size is showed with the tuple_size() function.

List is a compound data type that stores the variable number of elements. It is
similar to Tuples; however, some properties of List give advantages over Tuples. List
has head and tail structure, which are also a List data structure. Head and Tail of the
List is described as follows: [H|T]. The following examples show the List and its
helper functions that is provided by Erlang:

1> L1 = [a,2,{c,4}].

[a,2,{c,4}]

2> [H|T] = L1.

[a,2,{c,4}]

3> H.

a

4> T.

[2,{c,4}]

5> L2 = [d|T].

[d,2,{c,4}]

6> length(L1).

3

7> lists:append([L1,5]).

[a,2,{c,4}|5]

Plugins and Plugin Development

[84]

We first assign a list to a variable. In Erlang, after assignment of a variable, we
cannot assign to the variable again. In the second example, we were splitting the list
into head and tails lists. Moreover, we have the length() function to calculate the
length of the lists. Additionally, Erlang provides lots of list utility functions, and the
append() function is one of them. It appends an element onto the list.

Functions and modules
As we want to make our components reusable, we have to use such structures to
store functions, attributes, and so on. In Erlang, we are using Modules to reuse
our functional elements. A module in Erlang consists of attributes and function
declarations. The following example shows the Fibonacci series function within
module code:

%File Name: fact.erl
-module(fact). % module attribute
-export([fact/1]). % export attribute
fact(N) when N>0 -> % beginning of function declaration
N * fact(N-1);
fact(0) ->
1. % end of function declaration

As we look at fibo.erl in detail, we can see the module attributes, module, export, and
functions with their statements. The module attribute gives the name to the module
that will be useful when you import the module. The export attribute defines each
function with their length of parameters. If we want to import this code into the
Erlang shell, we can use the following:

1> c(fact).

{ok,fact}

2> fact:fact(5).

120

As you can see, we first compile the source code using the c function. Then, we are
able to call the function fact using the module name (fib.erl). Moreover, we can call
the same name function with the one parameter atom. However, functionality of the
function is different. The following example code shows these functions:

%Filename: fib.erl
-module(fib).
-export([fib/1]).

fib(0) -> 0;
fib(1) -> 1;
fib(N) when N > 1 -> fib(N-1) + fib(N-2).

Chapter 5

[85]

Finally, if we compile and run the Fibonacci sequence code, we'll get the following
result in our command line:

2> c(fib).

{ok,fib}

3> fib:fib(5).

5

4> fib:fib(10).

55

Functions in the Erlang simply match the parameters with the provided parameters
from the function users. If parameters are matched with the function, Erlang runtime
calls matched function. As you can see, functions of Erlang simply fit well with the
recursive algorithms. The last example code shows you how well-known Merge Sort
could be written in four lines of code:

%Filename: sorting.erl
-module(sorting).
-export([mergeSort/1]).

mergeSort(L) when length(L) == 1 -> L;
mergeSort(L) when length(L) > 1 ->
{L1, L2} = lists:split(length(L) div 2, L),
lists:merge(mergeSort(L1), mergeSort(L2)).

Will give the following output:

2> c(sorting).

{ok,sorting}

3> sorting:mergeSort([1,34,21,22,42,55]).

[1,21,22,34,42,55]

Conditionals
Erlang has the if clauses; however, its structure is somehow different from other
programming languages. The structure of the if clause can be seen in the following
example:

%Filename comp.erl
-module(comp).
-export([compare/2]).

compare(A,B) ->
 if

Plugins and Plugin Development

[86]

 A > B ->
 a_more_than_b;
 B > A ->
 b_more_than_a;
 A == B ->
 a_is_equal_to_b
 end.

After running the preceding code in Erlang shell, you will get the following
command line:

3> c(comp).

{ok,comp}

4> comp:compare(10,5).

a_more_than_b

5> comp:compare(5,5).

a_is_equal_to_b

6> comp:compare(5,7).

b_more_than_a

Looping in Erlang
As Erlang gives us a chance to develop our codes easily in a recursive way, we don't
need to use for loops similar to other programming languages. Therefore, if we
need to iterate over list or any other data structure, all we need to do is develop
recursive function.

The following example shows how to sum up all the elements within the list:

%Filename: sum.erl
-module(sum).
-export([sum/1]).

sum([]) ->
 0;
sum([H|T]) ->
 H + sum(T).

Note that, H and T are arguments to sum() function.

Chapter 5

[87]

Now, we are ready to compile and run the module in the Erlang shell:

12> c(sum).

{ok,sum}

13> sum:sum([1,3,2,4435,232,1]).

4674

14> sum:sum([]).

0

Erlang has some helper functions in its data structures. The foreach() function is
one of the helper functions of the list data structure. The following code is one of the
examples of foreach attribute:

%Filename: iter.erl
-module(iter).
-export([iter/1]).

iter(L) ->
 lists:foreach(fun
 (N) ->
 io:format("Value: ~p ",[N])
 end, L).

Now, we can compile and run the foreach code, as shown in the following example:

16> c(iter).

{ok,iter}

17> iter:iter([1,2,34,3,25,24]).

Value: 1 Value: 2 Value: 34 Value: 3 Value: 25 Value: 24 ok

18> iter:iter([1,6,32,32,2,34,13,67,25,24]).

Value: 1 Value: 6 Value: 32 Value: 32 Value: 2 Value: 34 Value: 13
Value: 67 Value: 25 Value: 24 ok

Concurrent programming
As earlier explained, one of the main reasons for developing in Erlang is its capacity
to handle concurrency and distributed programming. With concurrency, we can run
programs that will run in the numerous threads. Erlang gives us an amazing chance
to create parallel threads and communicate these threads with each other easily.
Erlang has no mutable data structures, which means no locks are need for threading.
This removes a lot of the complexity while programming concurrent programs. It also
means that every time you think you are changing a variable, you are actually getting
a new copy of the variable with new value, and not actually changing the value.

Plugins and Plugin Development

[88]

Erlang calls the threads of execution as process. Erlang creates the new threads using
the spawn() function. Definition of spawn function is as follows:

spawn (Module, Function, Arguments)

In the following example you can see the easy usage of creating the threads using
spawn:

% Filename: talk.erl
-module(talk).
-export([talk/2,run_concurrently/0]).

talk(Word, 0) ->
 done;
talk(Word, N) ->
 io:format("~p~n",[Word]),
 talk(Word, N - 1).

run_concurrently() ->
 spawn(talk, talk, [hello, 5]),
 spawn(talk, talk, [world, 4]).

The following command line is viewed after compiling and running the module and
function:

8> c(talk).

talk.erl:4: Warning: variable 'Word' is unused

{ok,talk}

9> talk:run_concurrently().

hello

world

hello

world

<0.74.0>

hello

world

hello

world

hello

Chapter 5

[89]

Erlang also gives us the opportunity to send and receive messages between threads,
using the receive construct. The receive construct has one role: to allow processes
to await messages from the other threads. The structure of receive is as follows:

receive
 pattern1 ->
 actions1;
 pattern2 ->
 actions2;
 pattern3 ->
 actions3
end.

Sending message is transmitted by the operator "!". The syntax of "!" is as follows:

Pid ! Message

The following code is an example to send and receive messages between threads
using the Erlang's helper message receiver structure:

% Filename: msg.erl
-module(msg).
-export([sender_func/2,receiver_func/0,start_func/0]).

sender_func(0, Sender_PID) ->
 Sender_PID ! finished,
 io:format("Sender is Finished~n",[]);
sender_func(N, Sender_PID) ->
 Sender_PID ! {sender_func, self()},
 receive
 receiver_func ->
 io:format("Sender received message~n",[])
 end,
 sender_func(N-1, Sender_PID).

receiver_func() ->
 receive
 finished ->
 io:format("Receiver finished~n",[]);
 {sender_func, Sender_PID} ->
 io:format("Receiver receives message~n",[]),
 Sender_PID ! receiver_func,
 receiver_func()
 end.

Plugins and Plugin Development

[90]

start_func() ->
 Receiver_PID = spawn(msg, receiver_func, []),

 spawn(msg, sender_func, [5, Receiver_PID]).

As you see in the preceding example code, we have two functions: sender_func
sends the messages in a recurrent way, while receiver_func receives the messages
and outputs them. Whenever we want to send message to the other thread, we have
to send the message with the destination's PID, where PID is process identifier.
Therefore, you can see the PID related information in the sending message structure.
Moreover, you see that the receive structure helps receive the message inside the
thread functions while filtering the message. The following command line shows the
compiled message code and its functions:

5> c(msg).

{ok,msg}

6> msg:start_func().

Receiver receives message

<0.55.0>

Sender received message

Receiver receives message

Sender received message

Receiver receives message

Sender received message

Receiver receives message

Sender received message

Receiver receives message

Sender received message

Sender is Finished

Receiver finished

Simple RabbitMQ metronome plugin
Now we have nearly learned to write code in Erlang. Our final task is to develop our
own RabbitMQ plugin called Metronome, which is an official custom plugin of the
RabbitMQ. It is published at https://www.rabbitmq.com/plugin-development.
html.

Metronome plugin simply declares an exchange called "metronome" and sends a
message every second with routing key in the form of yyyy.MM.dd.dow.hh.mm.ss.
Therefore, every RabbitMQ client receives the message which is bound to this queue
with routing key such as "*.*.*.*.*.*.20", "2014.*.*.*.*.*.*", and so on.

https://www.rabbitmq.com/plugin-development.html
https://www.rabbitmq.com/plugin-development.html

Chapter 5

[91]

You can download the metronome plugin from the rabbitmq-metronome repository
in RabbitMQ's official Mercurial repository into your RabbitMQ development
environment. Moreover, you need to make this plugin and enable the metronome
plugin. Finally, run the RabbitMQ Server, and you will see that RabbitMQ executes
the rabbitmq-metronome plugin. The following command lines show the process of
running the metronome plugin:

http://hg.rabbitmq.com/rabbitmq-metronome/hg clone
http://hg.rabbitmq.com/rabbitmq-metronome/

make

mkdir –p rabbitmq-server/plugins-folder

cd rabbitmq-server/plugins-folder

ln –s rabbitmq-erlang-client

ln –s rabbitmq-metronome

scripts/rabbitmq-plugins enable rabbitmq_metronome

make run

vagrant@precise32:~$ sudo rabbitmqctl status

Status of node rabbit@precise32 ...

[{pid,844},

 {running_applications,

 [{rabbitmq_management,"RabbitMQ Management Console","3.0.4"},

 {rabbitmq_web_dispatch,"RabbitMQ Web Dispatcher","3.0.4"},

 {rabbitmq-metronome, "Embedded Rabbit Metronome", "0.01"},

 {webmachine,"webmachine","1.9.1-rmq3.0.4-git52e62bc"},

 {mochiweb,"MochiMedia Web Server","2.3.1-rmq3.0.4-gitd541e9a"},

 {rabbitmq_management_agent,"RabbitMQ Management
 Agent","3.0.4"},

 {rabbit,"RabbitMQ","3.0.4"},

 {os_mon,"CPO CXC 138 46","2.2.7"},

 {inets,"INETS CXC 138 49","5.7.1"},

 {xmerl,"XML parser","1.2.10"},

 {mnesia,"MNESIA CXC 138 12","4.5"},

 {amqp_client,"RabbitMQ AMQP Client","3.0.4"},

 {sasl,"SASL CXC 138 11","2.1.10"},

 {stdlib,"ERTS CXC 138 10","1.17.5"},

Plugins and Plugin Development

[92]

 {kernel,"ERTS CXC 138 10","2.14.5"}]},

 {os,{unix,linux}},

 {erlang_version,

 "Erlang R14B04 (erts-5.8.5) [source] [rq:1] [async-threads:30]
 [kernel-poll:true]\n"},

 {memory,

 [{total,16283792},

 {connection_procs,2728},

 {queue_procs,25080},

 {plugins,48952},

 {other_proc,4756524},

 {mnesia,31508},

 {mgmt_db,25444},

 {msg_index,11208},

 {other_ets,521060},

 {binary,2784},

 {code,9136933},

 {atom,1027009},

 {other_system,694562}]},

 {vm_memory_high_watermark,0.4},

 {vm_memory_limit,154828800},

 {disk_free_limit,1000000000},

 {disk_free,77275533312},

 {file_descriptors,

 [{total_limit,924},{total_used,5},{sockets_limit,829},
 {sockets_used,1}]},

 {processes,[{limit,1048576},{used,190}]},

 {run_queue,0},

 {uptime,206}]

...done.

Now that we have seen that our custom plugin rabbitmq-metronome worked on the
RabbitMQ Server, let's move onto the details of this plugin and its codes.

Chapter 5

[93]

Firstly, we should look over each code in rabbitmq-metronome with the following
table:

Filename Description
rabbitmq_metronome.app.src This file simply defines the dependencies and the

module properties such as its name, its version,
and so on.

rabbitmq_metronome.erl This file presents the Erlang "application"
behavior and starts and stops the plugin with the
related Erlang VM.

rabbitmq_metronome_sup.erl This file presents the Erlang "supervisor"
behavior that monitors the worker process and
restarts it if it crashes.

rabbitmq_metronome_worker.
erl

This file is the core of the plugin. All of the work
is done by this code. In metronome plugin,
this code connects to the RabbitMQ Server and
creates a task that will be triggered every second.

rabbitmq_metronome_tests.
erl

This file represents the tests of the plugin. You
can run the tests with the following command
line:
make test

After talking about the overlook of the codes inside rabbitmq-metronome, we will
now go into the details of the important codes, starting with rabbitmq_metronome.
app.src:

% Filename: rabbitmq_metronome.app.src
{application, rabbitmq_metronome,
 [{description, "Embedded Rabbit Metronome"},
 {vsn, "0.01"},
 {modules, []},
 {registered, []},
 {mod, {rabbit_metronome, []}},
 {env, []},
 {applications, [kernel, stdlib, rabbit, amqp_client]}]}.

As we can see, this code simply defines the application name, version, its modules,
environment variables, and its dependencies. Every module should have this kind of
parameters to describe the module.

Plugins and Plugin Development

[94]

The following code shows the main functionality code called rabbit_metronome_
worker. First we will look at the code, and then we'll discuss the code in detail:

%% Filename: rabbit_metronome_worker.erl
%% Copyright (c) 2007-2013 GoPivotal, Inc.
%% You may use this code for any purpose.

-module(rabbit_metronome_worker).
-behaviour(gen_server).

-export([start_link/0]).

-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
 terminate/2, code_change/3]).

-export([fire/0]).

-include_lib("amqp_client/include/amqp_client.hrl").

-record(state, {channel}).

-define(RKFormat,
 "~4.10.0B.~2.10.0B.~2.10.0B.~1.10.0B.~2.10.0B.~2.10.0B.~2.10.
0B").

start_link() ->
 gen_server:start_link({global, ?MODULE}, ?MODULE, [], []).

%---------------------------
% Gen Server Implementation
% --------------------------

init([]) ->
 {ok, Connection} =
 amqp_connection:start(#amqp_params_direct{}),
 {ok, Channel} = amqp_connection:open_channel(Connection),
 amqp_channel:call(Channel, #'exchange.declare'{exchange =
 <<"metronome">>,type = <<"topic">>}),
 fire(),
 {ok, #state{channel = Channel}}.

handle_call(_Msg, _From, State) ->
 {reply, unknown_command, State}.

Chapter 5

[95]

handle_cast(fire, State = #state{channel = Channel}) ->
 Properties = #'P_basic'{content_type = <<"text/plain">>,
 delivery_mode = 1},
 {Date={Year,Month,Day},{Hour, Min,Sec}} =
 erlang:universaltime(),
 DayOfWeek = calendar:day_of_the_week(Date),
 RoutingKey = list_to_binary(
 io_lib:format(?RKFormat, [Year, Month, Day,
 DayOfWeek, Hour, Min, Sec])),
 Message = RoutingKey,
 BasicPublish = #'basic.publish'{exchange = <<"metronome">>,
 routing_key = RoutingKey},
 Content = #amqp_msg{props = Properties, payload = Message},
 amqp_channel:call(Channel, BasicPublish, Content),
 timer:apply_after(1000, ?MODULE, fire, []),
 {noreply, State};

handle_cast(_, State) ->
 {noreply,State}.

handle_info(_Info, State) ->
 {noreply, State}.

terminate(_, #state{channel = Channel}) ->
 amqp_channel:call(Channel, #'channel.close'{}),
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

%---------------------------

fire() ->
 gen_server:cast({global, ?MODULE}, fire).

The preceding code simply performs the opening connection on initializing the
server connection, and then, in every second, code sends message to the queue with
routing name equals to the date and time of the message sent. If the connection to
RabbitMQ Server is closed, then module's connection to the RabbitMQ Server also
terminates.

Connection to the server is opened in the init() function. The functions with their
names starting with "handle" are to be called in every RabbitMQ Server invocation.
Therefore, we need to implement our message sending code into these functions.
Finally, we should terminate our connection from the terminate() function.

Plugins and Plugin Development

[96]

The following code shows the supervisor code of the plugin. As said earlier, the
supervisor module monitors the functionality of the worker. First we'll look at the
source code, and then we'll dive into the code details:

%% Copyright (c) 2007-2013 GoPivotal, Inc.
%% You may use this code for any purpose.

-module(rabbit_metronome_sup).

-behaviour(supervisor).

-export([start_link/0, init/1]).

start_link() ->
 supervisor:start_link({local, ?MODULE}, ?MODULE, _Arg = []).

init([]) ->
 {ok, {{one_for_one, 3, 10},
 [{rabbit_metronome_worker,
 {rabbit_metronome_worker, start_link, []},
 permanent,
 10000,
 worker,
 [rabbit_metronome_worker]}
]}}.

Supervisor code just monitors the worker. Supervisor uses the start_link()
function. The following code describes starting and stopping the rabbitmq-
metronome plugin. RabbitMQ Server calls the start() function when RabbitMQ
enables the plugin, and it calls the stop() function when RabbitMQ disables the
plugin:

%% Copyright (c) 2007-2013 GoPivotal, Inc.
%% You may use this code for any purpose.

-module(rabbit_metronome).

-behaviour(application).

-export([start/2, stop/1]).

start(normal, []) ->
 rabbit_metronome_sup:start_link().

stop(_State) ->
 ok.

Chapter 5

[97]

Summary
RabbitMQ plugins are a great way to extend the functionalities of the RabbitMQ
server. Default plugins give us a chance to extend RabbitMQ in different ways such
as supporting another protocol and monitoring and managing the RabbitMQ easily.

RabbitMQ is written in the Erlang runtime environment. We have to write our
plugins in Erlang programming language. Thus, we talked about the basics of the
Erlang where we gave lots of codes. Moreover, we programmed a custom plugin that
is published by the RabbitMQ contributors called rabbitmq-metronome. It showed
us how to design and develop our own plugins onto the RabbitMQ Server.

We'll now talk about the management of RabbitMQ using different types of
techniques.

[99]

Managing Your RabbitMQ
Server

After talking about the details of the plugins and plugin development, we are now
ready to look into the management of the RabbitMQ server. To get the best out of
RabbitMQ, we need to manage it effectively. RabbitMQ provides support for the
following:

• Adding, updating, and showing users, virtual hosts, and permissions
• Declaring, listing, and deleting exchanges, queues, and bindings
• Sending and receiving messages
• Monitoring the queue length, message rates globally and per channel, data

rates per connection, and so forth
• Exporting/importing object definitions to JSON
• Forcing close connections
• Purging queues

We can manage the RabbitMQ server using command-line tool called rabbitmqctl
using a plugin called Management Plugin, that is provided by default from RabbitMQ
and accessing RabbitMQ using the REST APIs. Therefore, our chapter is designed
with the following topics:

• Management via a command line
• Management via a web plugin
• Management via a REST API

Managing Your RabbitMQ Server

[100]

Management via a command line
The most powerful tool for managing RabbitMQ is rabbitmqctl, which is a
command-line application that comes with the default RabbitMQ server installation
bundle. Using the RabbitMQ control tool is really simple; you just need to run the
tool with its parameters.

Cluster commands
In the following table, we present cluster commands:

Parameter Description

join_cluster {clusternode} [--
ram]

This joins the specified cluster to the
main node. If a ram attribute is provided,
RabbitMQ joins the cluster as a RAM node.
For example:
rabbitmqctl join_cluster newcl@
local --ram

forget_cluster_node [--offline]

This removes the cluster node remotely.
If an offline parameter is specified,
RabbitMQ enables node removal from an
offline node.

change_cluster_node_type {disc |
ram}

This changes the type of cluster node to
disc or RAM.

cluster_status This displays the status of the cluster.

update_cluster_nodes
{clusternode}

This updates all the clusters with the
latest information. If the clusternode
parameter is given, information of the
specific cluster is updated.

Chapter 6

[101]

User commands
In the following table, we present user commands:

Parameter Description

add_user <username> <password> This adds a new user with a given
username and password.

delete_user <username> This deletes the user that is specified by
the username.

change_password <username>
<password>

This changes the password with the new
password of the user, specified by the
username.

clear_password <username> This clears the password of the user,
specified by the username.

set_user_tags <username> <tag> This sets the new tags to the user that are
specified by the username.

list_users This lists all the users within the
RabbitMQ broker.

Virtual host and permission commands
In the following table, we present virtual host and permission commands:

Parameter Description

add_vhost <vhostpath> This adds the new virtual host to the
RabbitMQ with the given name.

delete_vhost <vhostpath> This deletes the virtual host that is
specified by the given name.

list_vhosts [<vhostinfoitem> …]

This lists all the virtual hosts within the
RabbitMQ broker. The vhostinfoitem
parameter specifies the information that is
listed with the virtual hosts.

set_permissions [-p <vhostpath>]
<user> <conf> <write> <read>

This sets the permission for the given
user with the specified permissions,
such as write and read. If vhostpath is
specified, the permission of user is set in
the specified virtual host.

clear_permissions [-p
<vhostpath>] <username>

This clears all the permissions for the
specified user. If vhostpath is specified,
permission of the user is cleared in the
specified virtual host.

Managing Your RabbitMQ Server

[102]

Parameter Description

list_permissions [-p <vhostpath>]
This lists all the permissions. If
vhostpath is specified, permissions are
listed in the specified virtual host.

list_user_permissions [-p
<vhostpath>] <username>

This lists the permissions of the given
user. If vhostpath is specified,
permission of the user is listed in the
specified virtual host.

Miscellaneous commands
In the following table, we present miscellaneous commands:

Parameter Description
set_parameter [-p vhostpath]
{component_name} {name} {value}

This sets a parameter specified by
component_name, name and value. If
vhostpath is specified, the parameter's
setting is only effective for the specified
virtual host.

clear_parameter [-p vhostpath]
{component_name} {key}

This clears the parameter specified
by component_name and the key. If
vhostpath is specified, the parameters
are cleaned, only effective for the specified
virtual host.

list_parameters [-p vhostpath] This lists all the parameters. If vhostpath
is specified, parameters are listed only for
the specified virtual host.

set_policy [-p vhostpath]
[--priority priority] [--apply-
to apply-to] {name} {pattern}
{definition}

This sets the policy by covering the
queues that are specified by the pattern
parameter.

clear_policy [-p vhostpath]
{name}

This clears the policy. If vhostpath
is specified, policies are cleared for the
specified virtual host.

list_policies [-p vhostpath] This lists the policies. If vhostpath
is specified, policies are listed for the
specified virtual host.

list_queues [-p <vhostpath>]
[<queueinfoitem> …]

This lists the queues. If vhostpath
is specified, queues are listed for the
specified virtual host.

Chapter 6

[103]

Parameter Description
list_exchanges [-p <vhostpath>]
[<exchangeinfoitem> …]

This lists the exchanges. If vhostpath
is specified, exchanges are listed for the
specified virtual host.

list_bindings [-p <vhostpath>]
[<bindinginfoitem> …]

This lists the bindings. If vhostpath
is specified, bindings are listed for the
specified virtual host.

list_connections
[<connectioninfoitem> …]

This lists the connections.

list_channels [<channelinfoitem>
…]

This lists the channels.

list_consumers [-p <vhostpath>] This lists the consumers. If vhostpath
is specified, consumers are listed for the
specified virtual host.

status This displays the current status of the
RabbitMQ broker.

environment This displays the environment variables in
the application environment.

report This generates a report that contains the
status of the system.
For example:
rabbitmqctl report > report.txt

eval <expr> This executes an arbitrary Erlang
expression.

close_connection <connectionpid>
<explanation>

This closes the connection that is
associated with the Erlang process ID
connectionpid.

trace_on [-p <vhost>] This starts the tracing. If vhost is
specified, tracing is enabled only on the
specified virtual host

trace_off [-p <vhost>] This ends the tracing. If vhost is specified,
tracing is disabled only on the specified
virtual host.

set_vm_memory_high_watermark
<fraction>

This sets the new memory threshold.
rabbitmqctl set_vm_memory_high_
watermark 0.4

As shown earlier, the table that lists all the parameters, we provide the parameters to
rabbitmqctl, and then we execute the command as the screenshots showed.

The rabbitmqctl command is really enough for managing all the parts of the
RabbitMQ servers. Therefore, it is widely used in the RabbitMQ users.

Managing Your RabbitMQ Server

[104]

Management via a web plugin
After talking the details of the management of RabbitMQ using a command-line
tool, we are now ready to talk about the management plugin. Management plugin
is simply a web application that is written in Erlang. You can monitor and control
RabbitMQ using the management web interface. Management plugin is provided as
default by the RabbitMQ installation; however, you need to enable the management
plugin to use it by performing the following steps:

1. Enable the management plugin with the help of the rabbitmq-plugins
command:
rabbitmq-plugins enable rabbitmq_management

2. You should restart the RabbitMQ Server with the following command:
rabbitmqctl stop

rabbitmq-server

3. Now, you are ready to open the management dashboard with the following
URL:
http://{your-ip-address}:15672/

4. The RabbitMQ server gives you a default username and password, that is,
guest:guest. Note that guest:guest won't work for remote a RabbitMQ
server later than version 3.3.

http://{your-ip-address}:15672/

Chapter 6

[105]

After locating the, management URL, you can see a dashboard, as shown here:

Dashboard of Management Web Interface

In the dashboard interface, you can view the RabbitMQ server statistics and
information related to current connections, channels, exchanges, queues, and
consumers. Additionally, the dashboard can be used for monitoring; we will cover
this in Chapter 7, Monitoring. Moreover, you have a menu on the header side that
redirects to the detailed part of each module.

Managing Your RabbitMQ Server

[106]

After clicking on the Connections tab on the menu, you can see the Connections
module in the following image:

Connections

You can find the related information for each of the connections. Moreover, you
are allowed to close the connection with the help of the Connections web page.
After clicking on the related connection, you can find a button titled Force Close.
Whenever you click on this button, the connection will be closed forcibly.

The following image simply describes the Channels tab and its web page:

Channels

Chapter 6

[107]

In the Channels web page, you can find the related information about each channel.
Each channel is monitored with its message rates, connections, and so on in this
web page.

The following image shows the Exchanges module and its web page in the
Management plugin:

Exchanges

In the Exchanges web page, we can monitor all of the exchanges in the current
RabbitMQ server with its related information. Moreover, if you click on each
exchange, you'll get detailed information about the clicked exchange item. You can
publish and delete a message through a selected exchange. Furthermore, you can
delete the selected exchange as well. In the Exchanges web page, you are allowed to
add a new exchange.

Managing Your RabbitMQ Server

[108]

The following image shows the Queues web page:

Queues

In the Queues web page, you can find the list of the queues and their related
information. Moreover, you can add a new queue with the Add a new queue
option and fill in the details in the required tabs. If you click on one of the queues
in this web page, you can find the detailed information about the selected queue.
Furthermore, you can add a new routing key for binding, publishing, and getting
a message from the queue.

Chapter 6

[109]

Let's talk about the last item of our Management plugins called the Users web page,
which is as shown in the following image:

Users

Our last web page is the admin part that is accessible for only administrators. You
can see the details of each user and add a new user with the help of the Admin web
page. Additionally, the Admin web page gives us an opportunity to control and
manage virtual hosts and policies as well.

Management via a REST API
Our last choice of management and controlling the RabbitMQ is using the REST
API. RabbitMQ supports REST API to get lots of information from the RabbitMQ
server and add, edit, and delete some parameters and properties on it.

As REST services rely on the HTTP protocol, we can easily communicate with
RabbitMQ using web pages with AJAX, HTTP clients on every language, and so on.
We'd like to show the examples that use RabbitMQ's REST API, using the Postman
that is a REST client for Google Chrome. Postman is a free extension on Google
Chrome, and you can add the Postman using the extension market of
Google Chrome.

Managing Your RabbitMQ Server

[110]

Before diving into the REST APIs, we'd like to talk about the authentication issue
and return of the REST API after solving the issue. REST API of the RabbitMQ uses
basic authentication and returns only JSON format. Therefore, we should configure
our custom monitoring and managing tool with respect to these authentication and
resource types. Lastly, RabbitMQ uses 55672 as a default port for the REST API port.

With the REST API, we can access the overview information about the RabbitMQ
server. You should provide a username and password for basic authentication and
just add the related URL for an overview of the REST API. Now, you are ready to
send the request using the Send button, ah shown in the following image:

Overview Request

Chapter 6

[111]

As we examined the screenshot of the overview result of REST API, we easily found
the information and its statistics for RabbitMQ. We also found a similar view using
the dashboard of the management web page.

Let's now move on to the queues and their details with the following image:

Queues Request

The queues service simply returns the list of all the queues, their information, and
statistics. We can use these statistics to monitor our queues.

Managing Your RabbitMQ Server

[112]

The following screenshot describes the connections service and type is JSON. The
connections service simply returns the statistics and information about the current
connections, which are established on the RabbitMQ server:

Connections Request

Chapter 6

[113]

Similarly, we can control and monitor the channels using the REST API. As you can
see in the following screenshot, we can fetch the information and statistics about the
channels in the RabbitMQ server:

Channels Request

Managing Your RabbitMQ Server

[114]

Statistics and information about the bindings can be easily fetched from the REST
API as well.

Bindings Request

Chapter 6

[115]

We sometimes need to view the permissions of the user within the RabbitMQ server
instance. With the help of RabbitMQ's REST service, we can easily fetch and show
the permissions of the user as shown in the following screenshot:

 Permissions Request

As seen in the screenshots, both the services and results are in the JSON format.
We can easily integrate them with our software system using the service-oriented
architectures.

The RabbitMQ REST API has lots of services. Therefore, we can't show all of the
services within screenshots of the each REST service. So, it is good to list all the
services in a table. The following table just shows each service of the REST API of
RabbitMQ with its HTTP methods and its description that explains the functionality
of these parameters:

URL path Available HTTP methods and description
/api/overview HTTP Method: GET

This returns the state and related information about the
RabbitMQ Broker.

/api/nodes/ HTTP Method: GET
This lists the nodes in the RabbitMQ cluster.

/api/nodes/name HTTP Method: GET
This returns the information about the node that is
specified with its name.

Managing Your RabbitMQ Server

[116]

URL path Available HTTP methods and description
/api/extensions/ HTTP Method: GET

This returns the list of extensions in the Management
plugin.

/api/definitions HTTP Method: GET, POST
If the GET method is used, server definitions such as
exchanges, queues, bindings, users, and virtual hosts are
returned.
The POST method is used for uploading the existing set of
definitions.

/api/connections HTTP Method: GET
This returns the list of open connections.

/api/connections/name HTTP Method: GET, DELETE
The GET method is used for fetching the information of
the connection that is specified with a name.
The DELETE method is used for closing the connection.

/api/channels HTTP Method: GET
This returns the list of all open channels.

/api/channels/channel HTTP Method: GET
This returns the information of the channel that is
specified with its name.

/api/exchanges HTTP Method: GET
This returns a list of the exchanges.

/api/exchanges/vhost HTTP Method: GET
This returns the list of the exchanges within the virtual
host that is specified by the vhost parameter.

/api/queues HTTP Method: GET
This returns the list of queues.

/api/queues/vhost HTTP Method: GET
This returns the list of the queues within the virtual host
that is specified by the vhost parameter.

/api/bindings HTTP Method: GET
This returns the list of bindings.

/api/bindings/vhost HTTP Method: GET
This returns the list of bindings within the virtual host,
specified by vhost parameter.

Chapter 6

[117]

URL path Available HTTP methods and description
/api/vhosts HTTP Method: GET

This returns the list of the virtual hosts.
/api/vhosts/name HTTP Method: GET, PUT, DELETE

If the GET method is used, it returns the information of
the virtual host that is specified by its name.
The DELETE method is used for deleting the virtual host
that is specified by its name.
The PUT method is used for putting a virtual host.

/api/users HTTP Method: GET
This returns the list of the users.

/api/users/name HTTP Method: GET, PUT, DELETE
If the GET method is used, it returns the information of
the users that is specified by its name.
The DELETE method is used for deleting the user that is
specified by its name.
The PUT method is used for putting a user.

/api/whoami HTTP Method: GET
This returns the information of the current authenticated
user.

/api/permissions HTTP Method: GET
This returns the list of permissions.

/api/permissions/
vhost/user

HTTP Method: GET, PUT, DELETE
If the GET method is used, it returns the information of
the permissions that is specified by its virtual host and
user.
The DELETE method is used for deleting the permissions
of the user.
The PUT method is used for putting a policy.

/api/parameters HTTP Method: GET
This returns the list of the parameters.

/api/parameters/
component

HTTP Method: GET
This returns the list of the parameters for the provided
component.

/api/policies HTTP Method: GET
This returns the list of policies.

Managing Your RabbitMQ Server

[118]

URL path Available HTTP methods and description
/api/policies/vhost HTTP Method: GET

This returns the list of policies within the virtual host that
is specified by the vhost parameter.

/api/aliveness-test/
vhost

HTTP Method: GET
This makes tests for the given virtual host of the
RabbitMQ server .

Summary
As we have seen, managing RabbitMQ is easy with the tools it provides. RabbitMQ
gives us three opportunities to manage it using its command-line tool rabbitmqctl,
Management plugin, and REST API. Therefore, we are comfortably managing our
RabbitMQ server instances using the RabbitMQ provided structures.

In the next chapter, we will introduce the monitoring of the RabbitMQ server
instances, such as monitoring the resource usage, monitoring the internal structures
of RabbitMQ, and so on.

[119]

Monitoring
A lot of software systems among the ones we use nowadays run on our server
instances. Each software system uses resources such as memory, CPU, and so on.
Therefore, we should check the resource usage of each software system. We now
come to the definition of monitoring. Monitoring simply means reporting or checking
the software systems, their resource usage, and alerting when these levels reach a
critical level so that the issue can be addressed. We need to monitor all our software
systems all the time; therefore, we should monitor our RabbitMQ server too.

RabbitMQ gives us amazing tools, such as the command-line application called
rabbitmqctl and the management web plugin. Furthermore, we also have general
tools for the monitoring of server instances such as Nagios, Munin, Zabbix, and so
on. In this chapter, we will look at each of the following monitoring tools one by one:

• The rabbitmqctl command-line application
• Management plugin
• Nagios
• Munin
• Zabbix

RabbitMQ command-line tools
RabbitMQ's powerful command-line tools have lots of skills, such as controlling,
managing, and monitoring. One of the command-line tools of RabbitMQ,
rabbitmqctl, gives us an opportunity to monitor the RabbitMQ in real-time.
We use the rabbitmqctl tool for its monitoring functions, such as reporting on
the RabbitMQ and displaying the status and specific functions of RabbitMQ.

Monitoring

[120]

The report function of the rabbitmqctl tool shows lots of details of RabbitMQ in
realtime. The report function shows the sum of all monitoring results of the
other functions of rabbitmqctl. We can find the running environment variables,
configuration parameters, and cluster statuses, as shown in the next command block.

Moreover, the report function shows the current state of each functional structure
of RabbitMQ, such as connections to RabbitMQ, channels in RabbitMQ, and so on,
as shown in the following code:

Cluster status of node rabbit@localhost ...
[{nodes,[{disc,[rabbit@localhost]}]},
 {running_nodes,[rabbit@localhost]},
 {cluster_name,<<"rabbit@yaytas">>},
 {partitions,[]}]

Application environment of node rabbit@localhost ...
[{amqp_client,[{prefer_ipv6,false},{ssl_options,[]}]},
 {inets,[]},
 {kernel,
 [{error_logger,tty},
 {inet_default_connect_options,[{nodelay,true}]},
 {inet_dist_listen_max,25672},
 {inet_dist_listen_min,25672}]},
 {mnesia,[{dir,"/usr/local/var/lib/rabbitmq/mnesia/rabbit@
localhost"}]},
 {mochiweb,[]},
 {os_mon,
 [{start_cpu_sup,false},
 {start_disksup,false},
 {start_memsup,false},
 {start_os_sup,false}]},
 {rabbit,
 [{auth_backends,[rabbit_auth_backend_internal]},
 {auth_mechanisms,['PLAIN','AMQPLAIN']},
 {backing_queue_module,rabbit_priority_queue},
 {channel_max,0},
 {cluster_keepalive_interval,10000},
 {cluster_nodes,{[],disc}},
 {cluster_partition_handling,ignore},
 {collect_statistics,fine},
 {collect_statistics_interval,5000},
 {credit_flow_default_credit,{200,50}},
 {default_permissions,[<<".*">>,<<".*">>,<<".*">>]},
 {default_user,<<"guest">>},
 {default_user_tags,[administrator]},

Chapter 7

[121]

 {default_vhost,<<"/">>},
 {delegate_count,16},
 {disk_free_limit,50000000},

On the other hand, RabbitMQ gives us another way to monitor each of the reporting
items one by one. As shown in the next command block, we can monitor the running
instance, configuration properties, and modules that run on the current RabbitMQ
with the help of the status function of the rabbitmqctl tool:

Cluster status of node rabbit@localhost ...
[{nodes,[{disc,[rabbit@localhost]}]},
 {running_nodes,[rabbit@localhost]},
 {cluster_name,<<"rabbit@yaytas">>},
 {partitions,[]}]

Application environment of node rabbit@localhost ...
[{amqp_client,[{prefer_ipv6,false},{ssl_options,[]}]},
 {inets,[]},
 {kernel,
 [{error_logger,tty},
 {inet_default_connect_options,[{nodelay,true}]},
 {inet_dist_listen_max,25672},
 {inet_dist_listen_min,25672}]},
 {mnesia,[{dir,"/usr/local/var/lib/rabbitmq/mnesia/
 rabbit@localhost"}]},
 {mochiweb,[]},
 {os_mon,
 [{start_cpu_sup,false},
 {start_disksup,false},
 {start_memsup,false},
 {start_os_sup,false}]},
 {rabbit,
 [{auth_backends,[rabbit_auth_backend_internal]},
 {auth_mechanisms,['PLAIN','AMQPLAIN']},
 {backing_queue_module,rabbit_priority_queue},
 {channel_max,0},
 {cluster_keepalive_interval,10000},
 {cluster_nodes,{[],disc}},
 {cluster_partition_handling,ignore},
 {collect_statistics,fine},
 {collect_statistics_interval,5000},
 {credit_flow_default_credit,{200,50}},
 {default_permissions,[<<".*">>,<<".*">>,<<".*">>]},
 {default_user,<<"guest">>},
 {default_user_tags,[administrator]},

Monitoring

[122]

 {default_vhost,<<"/">>},
 {delegate_count,16},
 {disk_free_limit,50000000},

yaytas:~ yaytas$ rabbitmqctl status
Status of node rabbit@localhost ...
[{pid,9430},
 {running_applications,
 [{rabbitmq_management_visualiser,"RabbitMQ
 Visualiser","3.5.5"},
 {rabbitmq_management,"RabbitMQ Management Console","3.5.5"},
 {rabbitmq_web_dispatch,"RabbitMQ Web Dispatcher","3.5.5"},
 {webmachine,"webmachine","1.10.3-rmq3.5.5-gite9359c7"},
 {mochiweb,"MochiMedia Web Server","2.7.0-rmq3.5.5-
 git680dba8"},
 {rabbitmq_mqtt,"RabbitMQ MQTT Adapter","3.5.5"},
 {rabbitmq_stomp,"Embedded Rabbit Stomp Adapter","3.5.5"},
 {rabbitmq_management_agent,"RabbitMQ Management
 Agent","3.5.5"},
 {rabbitmq_amqp1_0,"AMQP 1.0 support for RabbitMQ","3.5.5"},
 {rabbit,"RabbitMQ","3.5.5"},
 {mnesia,"MNESIA CXC 138 12","4.12.5"},
 {os_mon,"CPO CXC 138 46","2.3.1"},
 {inets,"INETS CXC 138 49","5.10.6"},
 {amqp_client,"RabbitMQ AMQP Client","3.5.5"},
 {xmerl,"XML parser","1.3.7"},
 {sasl,"SASL CXC 138 11","2.4.1"},
 {stdlib,"ERTS CXC 138 10","2.4"},
 {kernel,"ERTS CXC 138 10","3.2"}]},
 {os,{unix,darwin}},
 {erlang_version,
 "Erlang/OTP 17 [erts-6.4] [source] [64-bit] [smp:8:8] [async-
 threads:64] [hipe] [kernel-poll:true]\n"},
 {memory,
 [{total,43373712},
 {connection_readers,0},
 {connection_writers,0},
 {connection_channels,0},
 {connection_other,5616},
 {queue_procs,2808},
 {queue_slave_procs,0},
 {plugins,623056},
 {other_proc,13892360},
 {mnesia,62400},
 {mgmt_db,171400},

Chapter 7

[123]

 {msg_index,47680},
 {other_ets,1274264},
 {binary,16128},
 {code,20748464},
 {atom,711569},
 {other_system,5817967}]},
 {alarms,[]},
 {listeners,
 [{clustering,25672,"::"},
 {amqp,5672,"127.0.0.1"},
 {stomp,61613,"::"},
 {mqtt,1883,"::"}]},
 {vm_memory_high_watermark,0.4},
{vm_memory_limit,6216758067},
 {disk_free_limit,50000000},
 {disk_free,197295443968},
 {file_descriptors,
 [{total_limit,156},{total_used,5},{sockets_limit,138},
 {sockets_used,3}]},
 {processes,[{limit,1048576},{used,200}]},
 {run_queue,0},
 {uptime,754}]

Starting from the status function, we'll look at the current RabbitMQ interactions. For
instance, we need to monitor the current consumers in our RabbitMQ server instance.
As the rabbitmqctl tool lets us list all the consumers within the server instance using
the list_consumers function, as shown in the following command line:

vagrant@precise32:~$ sudo rabbitmqctl list_consumers

Listing consumers ...

stm.performance.queue <rabbit@precise32.2.312.0> amq.ctag-
PNwQde_aIWdpB2KVwTAG8A true []

stm.performance.queue <rabbit@precise32.2.316.0> amq.ctag-P7VHTEYl-
emdaPkfsYRlXw true []

...done.

Moreover, we sometimes need to check the current channels on the RabbitMQ
server. As shown in the following command line, the rabbitmqctl tool allows us
to monitor the current channels on the server instance using the list_channels
function:

vagrant@precise32:~$ sudo rabbitmqctl list_channels

Listing channels ...

<rabbit@precise32.2.312.0> guest 1 0

Monitoring

[124]

<rabbit@precise32.2.316.0> guest 1 0

...done.

Furthermore, we should check the current connected users. The rabbitmqctl
tool gives us another way to list the current connected users using the list_
connections function of RabbitMQ, as shown in the following command line:

vagrant@precise32:~$ sudo rabbitmqctl list_connections

Listing connections ...

guest 10.0.2.2 59144 running

...done.

Additionally, we have to control the current bindings on our queues in the
RabbitMQ instance. To monitor bindings on the RabbitMQ queues, we can use
rabbitmqctl to monitor the current bindings using the list_bindings function
as shown in the following command line:

vagrant@precise32:~$ sudo rabbitmqctl list_bindings

Listing bindings ...

exchange stm.performance.queue queue stm.performance.queue []

...done.

Exchanges are the most important functions of the RabbitMQ. We can control and
monitor the current exchanges. Therefore, the rabbitmqctl tool gives us another
function to monitor the current exchanges using list_exchanges, as shown in the
following command line:

vagrant@precise32:~$ sudo rabbitmqctl list_exchanges

Listing exchanges ...

direct

amq.direct direct

amq.fanout fanout

amq.headers headers

amq.match headers

amq.rabbitmq.log topic

amq.rabbitmq.trace topic

amq.topic topic

...done.

As we know that the queues are the main data structure of the message brokers, we
need to check the current queues on the RabbitMQ server instance. The following
command line simply describes the current queues on the RabbitMQ server instance
using rabbitmqctl's list_queues function:

Chapter 7

[125]

vagrant@precise32:~$ sudo rabbitmqctl list_queues

Listing queues ...

stm.performance.queue 0

...done.

Permissions are used for controlling the access for the different modules of the
RabbitMQ server. Permissions are covered in detail in Chapter 8, Security in
RabbitMQ. We should check the current permissions of the users on the RabbitMQ
server instance. Then, we come to rabbitmqctl's function for listing permissions, that
is, list_permissions:

vagrant@precise32:~$ sudo rabbitmqctl list_permissions

Listing permissions in vhost "/" ...

guest .* .* .*

monit .* .* .*

monitor .* .* .*

...done.

With the list_permissions function, we are able to list the permissions of the
users. Additionally, we need to list the current users with their tags that are related
with their roles. The rabbitmqctl tool gives us another function to list users, that is,
the list_users function, as shown in the following command line:

vagrant@precise32:~$ sudo rabbitmqctl list_users

Listing users ...

guest [administrator]

monit [administrator]

monitor [monitoring]

...done.

Finally, we need to list the virtual hosts on the RabbitMQ server instance. Our
powerful rabbitmqctl tool gives us another great function called list_vhosts
to list all the virtual hosts as shown in the following command line:

vagrant@precise32:~$ sudo rabbitmqctl list_vhosts

Listing vhosts ...

/

...done.

As we looked into the details of each of the function of RabbitMQ's powerful control
and monitoring command line called rabbitmqctl, we are able to monitor each
statistical information and details of the RabbitMQ with real-time support.

Monitoring

[126]

Web plugins
As we know from Chapter 6, Managing Your RabbitMQ Server, the RabbitMQ
management plugin provides an HTTP-based API for management and monitoring
of the RabbitMQ server with a browser-based web user interface and command-
line tool called rabbitmqadmin. The management plugin has a lot of monitoring
features, as listed here:

• Monitors queue length and message rates
• Monitors Erlang processes
• Monitors memory use
• Monitor connections and exchanges
• Monitor users and their permissions

The following screenshot describes the dashboard screen of the RabbitMQ management
web UI, where we can see number of connections, channels, exchanges, queues, and
current consumers:

RabbitMQ Management Web Interface

Chapter 7

[127]

Nagios
Before talking about the details of the Nagios RabbitMQ plugin and monitoring
with the help of Nagios, we'd like to dive into the basics of Nagios. Nagios is simply
defined as a powerful monitoring system that enables organizations to identify and
resolve IT problems before affecting the business processes. It is a powerful tool that
provides monitoring, alerting, reporting, maintenance, and planning of server.

Nagios has lots of functionalities as covered in the following list:

• Monitoring your entire infrastructure
• Responding to the issues for the limits and problems
• Automatically fixing the problems when they are detected
• Coordinating the technical team responses

Nagios is an extendable tool with its plugins. RabbitMQ can be bridged with
the Nagios plugin. The Nagios-RabbitMQ plugin is developed by James Casey.
It is an open source project and is published on Github. We need the RabbitMQ
management plugin to use this open source project in Nagios.

First, we will download the source code using the git scm tool. Then, we will
copy all of the scripts to the Nagios plugin directory, as shown in the following
command lines:

git clone https://github.com/jamesc/nagios-plugins-rabbitmq.git

cd nagios-plugins-rabbitmq/scripts

cp * /usr/lib/nagios/plugins/

As the Nagios-RabbitMQ plugin is developed in Perl, it requires a few Perl libraries
such as the Nagios plugin library and JSON library to communicate with RabbitMQ,
as shown in the following command line:

sudo apt-get install libnagios-plugin-perl libjson-perl

Monitoring

[128]

Note that the installation command can be different for different operating systems.
Now, we are ready to execute the scripts of the plugin. We should give the hostname,
port, username, and password as parameters to the scripts. The following image
shows how the overview script of RabbitMQ is executed:

Nagios RabbitMQ Command

After testing each command, we are now ready to integrate our commands with
RabbitMQ. We should define our commands in the commands configuration file
that is available in the directory of Nagios configuration files. We should define
the place of the command line and its parameters as given in the format of "$ARG1$".
For our plugin, we have to provide a hostname, port, username, password, and
other details with the parameter:

vi /etc/nagios/commands.cfg

define command {

 command_name check_rabbitmq_server

 command_line $USER1$/nagios-plugins-
 rabbitmq/scripts/check_rabbitmq_server -H $ARG1$ --port=$ARG2$ -u
 $ARG3$ -p $ARG4$

}

Moreover, we should define the service for Nagios. We can provide service-related
information and command-related parameters in the service definition file that is
saved in the services directory of the Nagios configuration files:

cat rabbitmq-service.cfg

define service {

 use generic-service

 host_name dev-db

 service_description RabbitMQ

Chapter 7

[129]

 contacts prodalert

 check_command check_rabbitmq_server!dev-
db!15672!guest!MySecretPassword

}

Finally, we completed the integration with RabbitMQ and Nagios with the help of
a plugin. After integration, if you check the Nagios web interface, you may not see
the information related to RabbitMQ. After some time, Nagios starts monitoring
the RabbitMQ using the commands that you specified, as shown in the following
screenshot:

Nagios web interface

Nagios is a widely market-accepted and powerful monitoring tool for the systems
and monitoring RabbitMQ is really simple using Nagios. In addition to check_
rabbitmq_server, there are other checks supported by this plugin:

• check_rabbitmq_aliveness

• check_rabbitmq_objects

• check_rabbitmq_overview

• check_rabbitmq_queue

• check_rabbitmq_watermark

www.allitebooks.com

http://www.allitebooks.org

Monitoring

[130]

Munin
Munin is another powerful tool for monitoring the systems. Munin is simply defined
as a networked resource monitoring tool that can help analyze resource trends, and
it is a detector of the performance problems according to the Munin official web site.
Munin is easily expandable with its plugins.

We can monitor the resource usage of RabbitMQ using Munin with the help of
Munin-RabbitMQ plugin. Ask Solem Hoel who is the employee of the Pivotal that
is the main contributor is the main contributor for Munin-RabbitMQ plugin. He
works for Pivotal which is main contributor to RabbitMQ. The plugin is open source
and is published on GitHub. Before the integration of the RabbitMQ and Munin,
we need to download all the source code using the git scm tool and copy all of the
RabbitMQ-related files to the directory of Munin plugins, as shown in the following
command line:

git clone https://github.com/ask/rabbitmq-munin.git

cd rabbitmq-munin

cp rabbitmq* /etc/munin/plugins/

After copying all of the files into the Munin plugin folder, we will introduce the
plugin to Munin with the help of the plugin configuration file that is located in the
Munin configuration folder. Each file has to be introduced to the configuration
file and a user has to to be provided:

[rabbitmq_connections]

user root

[rabbitmq_consumers]

user root

[rabbitmq_messages]

user root

[rabbitmq_messages_unacknowledged]

user root

[rabbitmq_messages_uncommitted]

user root

[rabbitmq_queue_memory]

user root

Chapter 7

[131]

After the initialization, we will be able to monitor our RabbitMQ resource usage with
the help of Munin dashboard, as shown in the following image:

Munin web interface

Zabbix
Another powerful tool for monitoring is called Zabbix. Zabbix is an open source
project and is released under the GPL license. Therefore, it is free of charge for both
commercial and noncommercial use. According to the Zabbix official website, Zabbix
is the ultimate enterprise-level software designed for monitoring availability and
performance of IT infrastructure. Zabbix is developed on the LAMP platform
(Linux, Apache, MySQL, and PHP).

Zabbix provides following functionalities:

• Collecting data from many kinds of sources

• Detecting problems
• Visualizing the collected data meaningfully
• Notifying the related users about the created events
• Supporting distributed monitoring

Monitoring

[132]

Let's take a look at the following screenshot:

Zabbix web interface

Zabbix is also developed in an expandable way. So, it is easy to expand Zabbix with
the provided plugins. As our topic is related to the monitoring of RabbitMQ, Zabbix
also provides monitoring for the RabbitMQ with the help of plugins.

Before integrating RabbitMQ with Zabbix, we will download the source code of the
plugin from its source Github using git. Then, we will copy all of the RabbitMQ-
related scripts to the Zabbix external script folder, as shown in the following
command line:

git clone https://github.com/adamlc/zabbix-rabbitmq.git

cd zabbix-rabbitmq

cp zabbix_* /ust/lib/zabix/externalscripts/

Chapter 7

[133]

Now, we are ready to configure the plugin with our custom properties such as
hostname, username, password, and so on as seen in the following source code:

// Zabbix Configuration
define('ZABBIX_HOSTNAME', 'localhost');

// RabbitMQ Configuration
define('API_HOSTNAME', 'localhost');
define('API_PORT', 15672);
define('API_USER', 'guest');
define('API_PASS', 'guest');

Finally, we need one configuration that is importing the plugin template to Zabbix to
monitor RabbitMQ, as shown in the following screenshot:

Importing template of RabbitMQ plugin of Zabbix

Monitoring

[134]

Summary
We have lots of software systems and integrations with other software systems in
our technology stack now. Therefore, it is really important to control, manage, and
monitor each of the software system in our server instances. Monitoring is crucial
to check the errors and resource usages in our server instances. We have gone over
software systems that provides monitoring capabilities.

RabbitMQ should be monitored since the main integration between systems can be
provided with RabbitMQ. Monitoring RabbitMQ is quite easy with the provided
tools called rabbitmqctl and the management plugin and also with the open
source tools such as Nagios, Munin, and Zabbix. In the next chapter, we'll cover
authentication and security.

[135]

Security in RabbitMQ
In worldwide computing areas, computer security or information security, which is
known as cyber security has gained more importance than ever. Gartner reported
that worldwide security expenses are increased by about 9% from 2012 to 2013.

As it is crucial to secure all software systems that we have, we should secure
our message brokers too. As brokers have information about many parts of the
dependent components, it's almost a must to secure RabbitMQ.

In this chapter, we will talk about the general vulnerabilities of the RabbitMQ servers
and how we can solve these kinds of problems. After that, we will talk about the
security mechanisms in the RabbitMQ, such as access control, SASL authentication,
and SSL support as the following list shows:

• An introduction to security in RabbitMQ
• Access control
• SASL authentication
• SSL support in RabbitMQ

An brief introduction to security in
RabbitMQ
Every server software system is allowed to access different types of software clients.
Additionally, some software systems are allowed to access clients through network
connections. Therefore, we should ensure the security of information behind the
server software systems.

RabbitMQ has properties to configure security easily. Yet, every server application
has some vulnerability. Therefore, we should use both RabbitMQ's solutions for the
security issues and common solutions for server software systems.

Security in RabbitMQ

[136]

Through this chapter, we'll dive deep into the vulnerabilities and their solutions for
RabbitMQ server instances.

Vulnerabilities
The vulnerabilities of RabbitMQ server instances are similar to that of any standard
server system. So, it is beneficial to list the current vulnerabilities of the server
systems that are related to RabbitMQ. A complete report for vulnerabilities of Cenzic
is published in Cenzic's Vulnerability Report 2014: http://www.cenzic.com/
downloads/Cenzic_Vulnerability_Report_2014.pdf

Information leakage
Information leakage is, simply put, an application that inappropriately discloses
sensitive data, such as messages of the message brokers, in our perspective,
RabbitMQ. So, we have to ensure the security of the message details and its integrity.

Session management
Session management is simply defined as an application that inappropriately allows
attackers to interject themselves as a logged in user of the software system. Therefore,
we have to control our session management systems to block invalid users.

Authentication and authorization
As you probably already know, logging on to any computer with some credentials
is authentication. Authorization is the process of verifying that you have access to
something.

Vulnerability for authentication and authorization is simply defined as an
application that does not properly ensure for unbreachable and unreplayable
authentication and authorized access to data. Hence, authentication and
authorization are to be properly enforced on the server side of the application. This
includes enforcement of proper encrypted communication of credentials, password
standards enforcement, feature and data access, ACL enforcements, and so on.

Message Brokers have authentication and authorization mechanism in their
structure. Therefore, they have to ensure the security of the authentication and
authorization of their own systems.

http://www.cenzic.com/downloads/Cenzic_Vulnerability_Report_2014.pdf
http://www.cenzic.com/downloads/Cenzic_Vulnerability_Report_2014.pdf

Chapter 8

[137]

Solutions to the vulnerabilities
After going over related problems for the RabbitMQ, we are now ready to solve
these problems using security technologies. As we know, without developing
solutions for the vulnerabilities, our messages are not secure and are allowed to
access from anyone who accesses our servers. Therefore, our main concern is to
find solutions for the given security problems.

Fixing information leakage
The solution to Information Leakage is protecting documents from unauthorized
people. As message brokers are highly data-oriented software systems, we have to
be careful about the information leakage. The following list describes the general
principles of preventing information leakage:

• Setting passwords to protect against unauthorized people
• Erasing or encrypting the information from leaking out
• Encrypting the messages within message brokers, where encryption is the

process of encoding messages
• Limiting the usage of managing the software system

These properties have to be provided to prevent information leakage from the
message broker.

Session management
Session Management is important for administering the message brokers and
accessing message brokers as clients. We authenticate through the message broker's
session management to send and receive messages. Therefore, we should ensure
that the session management cannot be hijacked. The most powerful solution to
prevent the hijacking of the session management is transmitting it over an encrypted
protocol. One of the well-known encrypted protocols is Secure Sockets Layer (SSL).
As a result, we have to use SSL to prevent session management hijacking.

Authentication and authorization
Authentication and authorization security is mostly related to the security of the
session management. We should ensure the security of these systems using a secure
protocol. As we discussed earlier in Session Management, we have to use SSL
protocol to encrypt all the data communication.

Security in RabbitMQ

[138]

Applying access control
RabbitMQ tries to solve problems, which we covered in the previous chapters,
with the help of its mechanisms and plugins. Access Control simply specifies the
permissions of the user within the virtual host. Each user has a different permission
for each virtual host, for instance, a user a has Read permission on the virtual host
TestVH.

We can manage access control using the rabbitmqctl command-line tool. The
Rabbitmqctl tool gives us an opportunity to list all of the permissions of the user,
as shown in the following command line:

vagrant@precise32:~$ sudo rabbitmqctl list_user_permissions guest

Listing permissions for user "guest" ...

/.* .*.*

...done.

Moreover, we have another chance to list permissions of the provided virtual host,
as shown in the following command line:

vagrant@precise32:~$ sudo rabbitmqctl list_permissions -p /

Listing permissions in vhost "/" ...

guest.*.*.*

monit.*.*.*

monitor.*.*.*

...done.

Furthermore, we can delete all of the permissions of the user within a provided
virtual host. The following command line shows the clearing permissions of the user
jack within the root virtual host:

vagrant@precise32:~$ sudo rabbitmqctl clear_permissions -p / jack

Clearing permissions for user "jack" in vhost "/" ...

...done.

Finally, we need to set new permissions for the user within the provided virtual host.
As you can see in the following command line, we can set new permissions to the
user jack within the root virtual host:

vagrant@precise32:~$ sudo rabbitmqctl set_permissions -p / jack ".*" ".*"
".*"

Setting permissions for user "jack" in vhost "/" ...

...done.

Chapter 8

[139]

Rabbitmqctl is a great tool for managing the RabbitMQ server and it is enough for
us to manage access control. Additionally, some administrators would like to use
graphical interfaces for administrating the RabbitMQ server. We have another use
of RabbitMQ's management plugin to list each user's permission and change their
permissions for the provided Virtual Host, as shown in the following image:

Figure:8.1: Access control of user

As a result, we should limit the user's activities within the provided virtual host.
Next, we move on to access control, which manages the user permissions for the
provided virtual host.

Security in RabbitMQ

[140]

Providing SASL authentication
The Simple Authentication and Security Layer (SASL) is a framework for
providing authentication and data security services in connection-oriented protocols
via replaceable mechanisms according to the official SASL protocol specification.
SASL specifies the structured interface between protocols and mechanisms. As SASL
is a framework on top of the other frameworks, we can use SASL into SMTP, LDAP,
XMPP, and other communication protocols. SASL provides the abstraction layer for
each of the communication protocols, as shown in the following image:

Figure 8.2: SASL framework

RabbitMQ has a plugin to support SASL authentication mechanisms. There are three
mechanisms built into the server:

• Plain: SASL PLAIN authentication provided. This is enabled by default in
the RabbitMQ server and clients.

• AMQPlain: This is nonstandard version of PLAIN that is defined in the
AMQP 0-8 specifications.

• Rabbit-CR-Demo: This is the nonstandard mechanism, which demonstrates
challenge-response authentication, is provided according to the RabbitMQ
documentation.

Chapter 8

[141]

• External: Custom mechanism to externally control authentication.
• SSL: In this case, the external mechanism is SSL, which can authenticate

users with certificate
• LDAP: In this case, the external mechanism is LDAP, which can authenticate

users using the LDAP database
• HTTP: In this case, the external mechanism is HTTP, which can authenticate

users from web server that knows the user credentials.

Before using the SASL plugin in your RabbitMQ server, you should choose the
mechanism in the configuration file. The default value of the auth_mechanisms key
is ['PLAIN', 'AMQPLAIN']; however, you can change the default values according
to your credential system.

Additionally, if you define an authentication mechanism for SASL, you should
connect to the servers from the client's setting SaslConfig properties of the API. In
Java API, you can find the current SASL config with the function getSaslConfig
of ConnectionFactory. Moreover, you can set the related mechanism using the
ConnectionFactory.AuthMechanisms object within C# API.

SSL support in RabbitMQ
Secure Sockets Layer (SSL) is a standard protocol for establishing an encrypted link
between a web server and a browser. SSL uses a cryptographic system that uses two
keys to encrypt data; one is public key known to everyone and the other is a private
key known only to the recipient of the message.

Keys, certificates, and CA certificates
OpenSSL is a software library to be used in applications that need to secure
communications. It has been widely adopted by the users for Internet web servers.
The library consists of open source implementations of SSL and TSL as well as
basic cryptographic functions. With the help of OpenSSL, RabbitMQ can establish
an encrypted communication channel and exchange signed certificates. In order to
verify a certificate, a chain of trust for certificates should be formed. The last element
of the chain is the root certificate, which is a self-signed certificate.

Security in RabbitMQ

[142]

Enabling SSL support
If we look at the SSL support in RabbitMQ, it has a built-in support for SSL;
however, we need to enable SSL support in RabbitMQ. To enable the SSL/TLS
support in RabbitMQ, we should provide the location of root certificate, the server's
certificate file and the server's key. We can provide the locations of these files in the
configuration file as shown in the following code snippet:

[
{rabbit, [
{ssl_listeners, [5671]},
{ssl_options, [{cacertfile, "/path/to/pathca/cacert.pem"},
{certfile, "/path/to/serverpath/cert.pem"},
{keyfile, "/path/to/serverpath/key.pem"},
{verify, verify_peer},
{fail_if_no_peer_cert, false}]}
]}
]

When you look at the details of the file snippet, you can find the location of the
certification files (/path/to/serverpath/cert.pem) and key files(/path/to/
serverpath/key.pem). Moreover, you can change the port of the SSL listener
using the ssl_listeners attribute.

In client programming, you should load the key and certification file to establish
in a trusted connection between RabbitMQ servers and clients. This issue will be
discussed in detail in the next chapters.

As a consequence, SSL is the de facto standard for securing the HTTP protocol.
So, it is really secure to use SSL support in RabbitMQ to ensure the security of all
communications between the clients and server.

Summary
Nowadays, we have lots of hacker attacks, such as distributed attacks, on our
software systems within newer technologies. So, we should ensure that we know
all our vulnerabilities to make our software system secure.

RabbitMQ is a server software, so it communicates with many clients. Therefore,
most of the server security problems are seen in the RabbitMQ. In order to ensure
the security in RabbitMQ, we had different type of authentications and securing the
protocol itself. With the help of SASL and SSL support, we provided security of our
messages and communication.

In the next chapter, we will talk about developing clients with real-world examples
in different programming languages.

[143]

Java RabbitMQ Client
Programming

We have discussed the internal structure of the RabbitMQ server, and managing,
monitoring, and so on of RabbitMQ server instances. Now, we are ready to dive
into the details of the development of clients using RabbitMQ in different languages
starting with Java.

RabbitMQ has clients for Java, Python, C#, Ruby, and so on. Using these clients,
messaging applications can be implemented in the simplest way. As we have talked
about the details of AMQP and how it's implemented in RabbitMQ in Chapter 3,
Architecture and Messaging, we can now implement all of the messaging capabilities
such as direct messaging, pub-sub messaging, routed messaging, and other
messaging capabilities.

To understand these capabilities thoroughly, we chose to develop our clients
according to a case study. Our case study is called Collaborative Application, where
messaging can be used extensively. We'll talk about the details of the case study in
this chapter. Moreover, we'll talk about the basics and the details of the RabbitMQ
Java Client API and developing our clients according to the case study's use cases.
Later on, we will discuss the Spring framework integration and Spring AMQP. The
following list shows the main themes of the present chapter:

• Case study
• Java
• Java Message Service (JMS)
• RabbitMQ Java client API
• Case study client implementations
• Spring framework and RabbitMQ
• Spring AMQP

Java RabbitMQ Client Programming

[144]

Case study
The chapters from here on have the goal of teaching you how to develop clients
for RabbitMQ. The easiest way to learn developing software is using a case study.
Therefore, we chose a case study that is called Collaborative Software.

According to Wikipedia, collaborative software is an application designed to help
people involved in a common task to achieve goals. In collaborative software, people
engage each other in real-time. They share documents, images, and other types of
files. Moreover, they talk to each other. Sometimes, managers would like to talk
with a specific person; and some other times, they would prefer talking with a group
of people. As a result, our collaboration software should integrate many software
systems and it is heavily based on messaging. Then, it comes to RabbitMQ that
integrates and scales the messaging facilities.

Before developing our collaborative software, we need to clarify our requirements
for our software using a use case diagram and interaction diagram (sequence
diagram). Then we are ready to develop our collaboration software according to
our software requirements and designs.

Use cases
Before developing the case study called collaboration software, we should look at the
requirements of our app. And for this, it is good to think about and design use cases.
As we analyze other collaboration applications, we will see that all apps have some
common features. These features might be sending the message to a single user,
sending group messages, sending bulk messages, sending file messages, or creating
some tasks such as changing the image format or parsing the documents to search.
We can find these use cases in the following use cases screenshot:

Chapter 9

[145]

Use Cases Diagram

Interaction diagram – sequence diagram
After defining the use cases, we should describe the sequence of actions throughout
each use cases. Then it come to interaction diagrams, which can picture a control
flow with nodes. We can describe the sequence of each use case with a sequence
diagram, which is an interaction diagram that shows how processes operate with
one another and in what order. For example, the following screenshot of a sequence
diagram clearly shows how a single message is sent to the right user:

Direct Message Sequence Diagram

Java RabbitMQ Client Programming

[146]

In the preceding screenshot, we can see that our Client A sends a message to Client
B using Message Sender. After that, a Message Sender object sets the routing key of
the Message Broker, which is RabbitMQ in our case, then sends the message through
the RabbitMQ Server. RabbitMQ finds the right client using the routing key, then
sends the message to the message listener called Message Receiver. Finally, Message
Receiver publishes the message to the attached client, which is Client B in our case.

As a consequence, our sequence within each use case behaves like the previous
sequence diagram. From now on, we will focus on explaining the technologies that
we will use in the current chapter and the implementation of our case study.

Application language – Java
Java is a well-known, widely accepted by enterprises, and currently one of the
most popular languages of our modern software systems. Moreover, Java is not
only a programming language; it also gives a great number of libraries that form
enterprises, mobiles, and web platforms. Therefore, we call Java a platform.

Java was developed by the company Sun that has now been acquired by Oracle.
Now Java's specifications are determined from Oracle and open source community.
As Java is the first choice for enterprise platforms, we aim to talk about RabbitMQ in
Java first. To be more specific, the Java platform has a messaging specification called
JMS within the Enterprise Edition of Java Platform. We will talk about the details of
the JMS and its similarities and differences between RabbitMQ, Java clients, and JMS
in the following topic. The following is the Java's logo:

Java Platform

Chapter 9

[147]

Java Message Service (JMS)
As our main concern is messaging and message brokers, we firstly look at the Java
Platform's answer to well-known messaging problems. Java for Enterprise Edition
(J2EE) framework supplies messaging protocol for messaging applications called
Java Message Service (JMS).

The JMS is a Java API that allows applications to create, send, receive, and read
messages. JMS defines the common set of interfaces that allow Java applications to
communicate with each other. We can list the properties of JMS as follows:

• Asynchronous
• Reliable
• Loosely coupled

The general structure of JMS applications can be seen in the following screenshot:

Java Message Service

JMS has connections that create sessions. Sessions are able to handle the production
of messages and consumption of messages by using defined interfaces within the
JMS API.

Java RabbitMQ Client Programming

[148]

JMS is commonly used to message API for Java Platforms. Therefore, we can use the
messaging facilities of the JMS within the Java applications. However, nowadays
we develop applications using different languages and different platforms, so, we
should integrate different types of software systems. This brings us to AMQP, that
allows integrating different types of software systems.

On the other hand, many of the modern Java applications use JMS as a messaging
structure. However, we need a more feature rich and portable distributed messaging
software than JMS. RabbitMQ and its protocol AMQP give you more advantages
than using the JMS with respect to message routing skills, message model skills, and
so on. Therefore, it is also good to use RabbitMQ as a message broker, and it could be
used within the JMS clients.

Lastly, RabbitMQ has a JMS API that was developed by VMware, and it could be
used with a commercial license. This API is well supported and it can be used with
RabbitMQ on top of JMS.

RabbitMQ Java client API
The RabbitMQ community and its main supporter company, Pivotal, provide an
official client library for Java called RabbitMQ Java Client. Client library provides
both the publishing of messages and receiving of messages. Moreover, Client library
supports both synchronous receiving and asynchronous receiving. The details will
be explained in the following topics.

If we look at the main packages of the RabbitMQ Java Client, we can see three
packages as shown in the following screenshot:

RabbitMQ Java Client Packages

Chapter 9

[149]

Let's take a look at the following explanation:

• com.rabbitmq.client package provides classes and interfaces for AMQP
connections, channels, and wire-protocol framing descriptions

• com.rabbitmq.tools provides classes and methods for non-core utilities and
administration tools

• Lastly, com.rabbitmq.utility provides helper classes which are mostly used
in the implementation of a library

As the most important package of the API is Client API, we cover the basics and the
internals of the API in the following topics:

Client package in detail
You can find each AMQP element in the Client package such as Connection,
Channel, Exchanges, Queues, and so on. You can find each functionality of AMQP
in the Client package too. Therefore, we would like to introduce you to each element
and its functions as follows:

Connection
Connection is an interface in the Client package. Connection interface directly
refers to the Connection element of AMQP. So, Connection interface covers the
functionalities of the Connection element of AMQP too. We can create a Connection
instance through the ConnectionFactory class as shown in the following code:

//ConnectionFactory initialization
ConnectionFactory factory = new ConnectionFactory();
//Setting the hostname
factory.setHost("localhost");
//Setting the Username
factory.setUsername("guest");
//Setting the Password
factory.setPassword("guest");
//Creating the connection using factory instance
Connection conn = factory.newConnection();

Java RabbitMQ Client Programming

[150]

The ConnectionFactory class has attributes that refer to hostname, port, username,
password, and virtual host. We can set each of the mandatory attributes, and then
we are ready to create our connection. Additionally, we can set each attribute using
the URI standards as follows:

//ConnectionFactory initialization
ConnectionFactory factory = new ConnectionFactory();
//Setting the Attributes using Uri
factory.setUri("amqp://guest:guest@localhost")
//Creating the connection using factory instance
Connection conn = factory.newConnection();

As we recall from the database connections, we should close our connection after
completing our tasks. In Connection class, we have the close() method to do the
same job as the following code example demonstrates:

//Creating the connection using factory instance
Connection conn = factory.newConnection();
//Closing the connection
conn.close();

Channel
Channel is another interface in the Client package. As Connection interface refers to
the Connection element of AMQP, Channel refers to the Channel element of AMQP.
As we discussed in Chapter 3, Architecture and Messaging, Channel's main role is to
serve as a logical connection inside of the network connection to the message broker.
Channel instances are thread safe.

The Channel instance could be initialized through the Connection instance as
shown in the following code example:

//Connection Init
Connection conn = factory.newConection();
//Initializing the Channel using Connection
Channel channel = conn.createChannel();

Because of the Channel's main responsibility, we can send message, receive message,
make queue operations, and so on using the Channel. Channel won't be available if
these operations fail. Code examples of channel could be presented in the following
topics.

Chapter 9

[151]

Exchanges
Exchanges are the main elements of AMQP that moderate the queues with given
functionalities. Exchanges are also available within the RabbitMQ Java Client API.
Exchanges' main responsibility is to receive the messages from producers and push
them to the related queues that are expressed by the rules. Although they have such
importance at AMQP 0.9.1, they don't exist in the AMQP 1.0 specification.

We are able to define each exchange type such as direct, fanout, headers, and so on
using the Java API. In Java API, we can create the exchanges via Channel instances
as shown in the following code example:

//Channel Initialization
Channel channel = conn.createChannel();
//Declaring Exchanges using the Channel
channel.exchangeDeclare("mastering.rabbitmq","fanout");

Queues
Message Brokers are nothing without queues. Queues are the most important part of
the Message Brokers and AMQP. Whenever a new message consumer or subscriber
is connected to the Exchange, RabbitMQ creates a queue for the related exchange
with the provided name.

As we discussed earlier, Channels are responsible for common operations of the
Queues. Therefore, we can declare, bind, unbind, purge, and delete queues with
the methods of the Channels as provided in the RabbitMQ Java API. The following
simple coding example shows how Queues are bound to given exchanges:

//Declare Exchange
channel.exchangeDeclare("mastering.rabbitmq", "fanout")
//Get the name of bound Queue
String queueName = channel.queueDeclare().getQueue()
//Bind the queue to the exchange without routing key
channel.queueBind(queueName, "mastering.rabbitmq","");

Publishing messages
Before talking about the details of sending messages within our case study, we
should look at how we send messages through RabbitMQ using RabbitMQ Java
Client API. Although we know that we have many methods such as pub-sub, routed
messaging, and so on to publish our message, we'd just like to show the simple
message sending.

Java RabbitMQ Client Programming

[152]

As we'd like to show simple message sending, we should declare queue and publish
message to the declared queue as shown in the following code example:

importcom.rabbitmq.client.ConnectionFactory;
importcom.rabbitmq.client.Connection;
importcom.rabbitmq.client.Channel;

publicclassSender {

 privatefinalstatic String QUEUE_NAME ="mastering.rabbitmq";

 publicstaticvoidmain(String[] argv)throws Exception {

 ConnectionFactory factory =new ConnectionFactory();
 factory.setHost("localhost"); //1
 Connection connection = factory.newConnection(); //2
 Channel channel = connection.createChannel(); //3

 channel.queueDeclare(QUEUE_NAME,false,false,false,null);//4
 String message ="Hello Mastering RabbitMQ!";
 channel.basicPublish
 ("",QUEUE_NAME,null,message.getBytes());//5
 System.out.println("Following Message Sent: "+ message);

 channel.close();
 connection.close();
 }
}

If we look at the details of the code that has numbered comments, we notice that:

• Connection Factory expresses the hostname of RabbitMQ Server
• The Connection instance created through ConnectionFactory instance
• The Channel instance initialized through the Connection instance
• Declaring a queue with a provided name
• Publishing message directly to the provided queue

Now, we've got the basics of the sending message, we're ready to move on to how
we receive a message that delivers from the connected queue.

Chapter 9

[153]

Consuming messages
Consuming messages from RabbitMQ is similar, but not identical to publishing.
Firstly, we initialize the connection through the ConnectionFactory instance and
declare the queue that is related to our receiver and sender. Then, the difference from
sender comes here, that is, the receiving message part. The receiving part could be
implemented in a synchronous way or asynchronous way. In a synchronous way, we
block the current thread to listen to message deliveries; however, in an asynchronous
way, a thread can't be blocked, so whenever a message is delivered, the consumer
method is called instantly in an event like manner.

Synchronously receiving messages
The consumer can receive messages synchronously, and we will go over an example
regarding this. As we look at the following code example, we block our thread to
listen to message deliveries by using the while loop. In a while loop, we fetch the
next incoming message using the QueueinConsumer instance. Then we can convert
the incoming message body to our custom object type:

importcom.rabbitmq.client.ConnectionFactory;
importcom.rabbitmq.client.Connection;
importcom.rabbitmq.client.Channel;
importcom.rabbitmq.client.QueueingConsumer;

publicclassReciever {

 privatefinalstaticStringQUEUE_NAME="mastering.rabbitmq";

 publicstaticvoidmain(String[]argv)throwsException {

 ConnectionFactoryfactory=newConnectionFactory();
 factory.setHost("localhost");
 Connectionconnection=factory.newConnection();
 Channelchannel=connection.createChannel();

 channel.queueDeclare(QUEUE_NAME,false,false,false,null);

 QueueingConsumerconsumer=newQueueingConsumer(channel);
 channel.basicConsume(QUEUE_NAME,true,consumer);

 while(true) {
 QueueingConsumer.Deliverydelivery=consumer.nextDelivery();
 Stringmsg=newString(delivery.getBody());
 System.out.println("Received Message:"+msg);
 }
 }
}

Java RabbitMQ Client Programming

[154]

Asynchronously receiving messages
The main functional difference between synchronous receiving and asynchronous
receiving is blocking. In asynchronous receiving, thread couldn't be blocked by the
listening part, so you can do anything with the current thread.

Non-blocking and event driven software systems are very popular for their
scalability. Therefore, it is good to use an asynchronous way in the receiving part.
RabbitMQ Java API gives us a DefaultConsumer method to control the deliveries.
In the following code example, you can find the inner class that implements the
DefaultConsumer method called handleDelivery:

importcom.rabbitmq.client.Connection;
importcom.rabbitmq.client.Channel;
importcom.rabbitmq.client.QueueingConsumer;

publicclassReciever {

 privatefinalstaticStringQUEUE_NAME="mastering.rabbitmq";

 publicstaticvoidmain(String[]argv)throwsException {
 ConnectionFactoryfactory=newConnectionFactory();
 factory.setHost("localhost");
 Connectionconnection=factory.newConnection();
 Channelchannel=connection.createChannel();

 channel.queueDeclare(QUEUE_NAME,false,false,false,null);

 channel.basicConsume(QUEUE_NAME, false, new
 DefaultConsumer(channel) {
 @Override
 public void handleDelivery(String consumerTag, Envelope
 envelope,
 AMQP.BasicProperties properties, byte[] body)throws
 IOException {
 String msg = new String(body);
 System.out.println("Received Message: " + msg);
 }
 });
 }
}

Chapter 9

[155]

Case study – client implementations
After showing the basics of our RabbitMQ Java Client API, we are now ready to
implement our collaboration application. In our collaboration application, we have
different functions that are well-defined in the use cases.

We'd like to focus on the messaging part, instead of focusing on all the parts, to
learn how to send and receive messages between our systems. Before diving into
the messaging parts, we'd like to introduce you to model classes that define our
Message class instances.

Model classes
In Model-View-Controller architecture, models are responsible for containing the
business logic. With the same idea, our model classes contain message logics such as
Message class which defines a simple message.

In messaging systems, you have to communicate through the binary format.
Therefore, we should use one of the serializing and de-serializing mechanisms.
In our collaboration application, we are going to use JavaScript Object Notation
(JSON) for its great support for easily serializing and de-serializing. There are many
JSON serialization libraries like Kryo and ProtoBuf.

JSONMessage interface
As we picked the JSON format to communicate within RabbitMQ sender and
receivers, we should append JSON format to String method in each message
model classe. We can ensure that each messaging model has JSON to String method
by implementing the JSONMessage interface that is defined in the following code
example:

package com.collaboration.model.json;

publicinterface JSONMessage {
 /**
 * @return String
 */
 public String toJSON();
}

Java RabbitMQ Client Programming

[156]

Message model
Message model simply expresses who sends the message, called the "from" variable
in our class; who receives the message, called the "to" variable in our class; header;
content; and message number that denotes the unique message number sequence.

Moreover, we need two methods: serializing to JSON String from JSON Object, and
de-serializing to Java objects from JSON String. We call them toJSON and fromJSON
methods. We make use of Google's JSON library for serialization.

Message model class is our main class that we use mostly in our collaboration
application. The following code shows the Message model class:

package com.collaboration.model;

import com.collaboration.model.json.JSONMessage;
import com.google.gson.Gson;

/**
 * @author Emrah Ayanoglu
 * Following code represents the simple message model
 *
 */
public class Message implements JSONMessage {
 private int msgNo;
 private String from;
 private String to;
 private String header;
 private String content;

 private static Gson gson = new Gson();

 public String toJSON() {
 return gson.toJson(this);
 }

 public static Message fromJSON(String msg) {
 Gson gson = new Gson();
 return (Message) gson.fromJson(msg, Message.class);
 }

Chapter 9

[157]

 public String toString() {
 return String.format("Message No: %d From: %s To: %s " +
 "Header: %s Content: %s",
 msgNo, from, to, header, content);
 }
}

File message
Although most of our messages have text contents, we also need file messages to
send our documents, pictures, and other important files to our group members in our
collaboration application. We should change the type of our content variable from
String to byte array to store the file content. The other variables remain the same:

package com.collaboration.model;

import java.io.UnsupportedEncodingException;

import com.collaboration.model.json.JSONMessage;
import com.google.gson.Gson;

/**
 * @author Emrah Ayanoglu
 * Following Code just represents the model of the message
 * that handles the binary messages
 */
public class FileMessage implements JSONMessage {
 private int msgNo;
 private String from;
 private String to;
 private String header;
 private byte[] file_content;

 public String toJSON() {
 Gson gson = new Gson();
 return gson.toJson(this);
 }

 public static FileMessage fromJSON(String msg) {
 Gson gson = new Gson();
 return (FileMessage) gson.fromJson(msg, FileMessage.class);
 }

Java RabbitMQ Client Programming

[158]

 public String toString() {
 try {
 return String.format("Message No: % From: %s To: %s " +
 "Header: %s File Content: \n %s UTF-8",
 msgNo,from, to, header, getFile_content());
 }
 catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 return "";
 }
 }
}

Task
Lastly, we mostly use background tasks that take lots of time to process our
documents, image processing, sending lots of e-mails at once, and so on. RabbitMQ
gives us another opportunity to control the background tasks too. Therefore, we
need to provide another message model class that expresses the tasks.

A Task class instance should have an ID that defines the unique identifier, hostname
of the application, delivery info, command that defines the command to be executed,
errback that expresses the error information, and lastly, expires that simply defines
the expiration time of the task as seen in the following example:

package com.collaboration.model;

import java.util.Date;
import java.util.UUID;

import com.collaboration.model.json.JSONMessage;
import com.google.gson.Gson;

/**
 * @author Emrah Ayanoglu
 *
 * Following code represents the task message model that
 * encapsulates the related information of task
 */
public class Task implements JSONMessage {
 private String id;
 private String hostname;
 private String delivery_info;
 private String command;
 private String errback;

Chapter 9

[159]

 private Date expires;

 public Task() {
 id = UUID.randomUUID().toString();
 hostname = "";
 delivery_info = "";
 command = "";
 errback = "";
 expires = new Date();
 }

 public static Task fromJSON(String msg) {
 Gson gson = new Gson();
 return (Task) gson.fromJson(msg, Task.class);
 }

 public String toJSON() {
 Gson gson = new Gson();
 return gson.toJson(this);
 }

 public String toString() {
 return "ID: " + getId() + " Hostname: " + getHostname()
 + " Delivery Info: " + getDelivery_info() + " Callbacks: "
 + getCommand() + " Expires: " + getExpires().toString();
 }
}

Single message
Our first use case of the collaboration app is to send the single message from one
user to another specific user. The common example of single message is private
messaging between two users. To accomplish this kind of use case, we just need to
send our message directly to the queue, which is bound to another user. Therefore,
our sender just connects to the right queue and enqueues the message, and our
receiver listens to the queue and dequeues the message from the queue, as seen in
the following screenshot:

Single Message Architecture

Java RabbitMQ Client Programming

[160]

Sender
As said earlier, our sender creates the connection to the RabbitMQ Server and
declares the queue that is bound to another client. Then, sender creates the Message
objects and serializes into the JSON format. Finally, our sender converts the JSON
string to the binary array and sends it to the queue, as shown in the following code:

package com.collaboration.sender;

import java.io.IOException;

import com.collaboration.model.Message;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;

publicclass Sender {
 privatefinalstatic String QUEUE_NAME = "mastering_rabbitmq";

 /**
 * @param argv
 * @throws IOException
 */
 publicstaticvoid main(String[] argv) throws IOException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 Connection connection = factory.newConnection();

 Channel channel = connection.createChannel();
 channel.queueDeclare(QUEUE_NAME, false, false, false, null);

 Message msg = new Message();
 msg.setFrom("John");
 msg.setTo("Nicky");
 msg.setHeader("Hello World");
 msg.setContent("Hello World Again");

 for(int i = 0; i < 5; i++) {
 msg.setMsgNo(i + 1);
 channel.basicPublish("", QUEUE_NAME, null,
 msg.toJSON().getBytes());
 }

Chapter 9

[161]

 System.out.println("Message is sent: " + msg.toString());

 channel.close();
 connection.close();
 }
}

Receiver
Our receiver creates the connection to the RabbitMQ Server and declares the queue
called mastering_rabbitmq. After this, we need to adopt our queue to listen to
the incoming messages. To handle the incoming messages, we should listen to the
incoming messages for all the time, which is handled in the blocking manner. Finally,
we fetch the delivered message and de-serialize it from the string to Message object
using JSON conversion:

package com.collaboration.receiver;

import java.io.IOException;

import com.collaboration.model.Message;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.ConsumerCancelledException;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.ShutdownSignalException;

public class Receiver {
 private final static String QUEUE_NAME = "mastering_rabbitmq";

 /**
 * @param argv
 * @throws IOException
 * @throws ShutdownSignalException
 * @throws ConsumerCancelledException
 * @throws InterruptedException
 */
 public static void main(String[] argv) throws IOException,
 ShutdownSignalException, ConsumerCancelledException,
 InterruptedException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");

Java RabbitMQ Client Programming

[162]

 Connection connection = factory.newConnection();
 Channel channel = connection.createChannel();

 channel.queueDeclare(QUEUE_NAME, false, false, false, null);

 System.out.println("Waiting for the messages.........");

 QueueingConsumer consumer = new QueueingConsumer(channel);
 channel.basicConsume(QUEUE_NAME, true, consumer);

 while (true) {
 QueueingConsumer.Delivery delivery =
 consumer.nextDelivery();
 String msg = new String(delivery.getBody());

 System.out.println("Received: " +
 Message.fromJSON(msg).toString());
 }
 }
}

Group message – routing
Another important use case of our collaboration app is to send message to the
specific group; for instance, we are a group of fans of a football team and our group
manager would like to send a message to the related group. In RabbitMQ terms, we
should use routed exchanges to send a group message. In routed exchanges, sender
sends message to the specific exchange providing a topic, such as a group name.
Then, all receivers within the same group are able to fetch the messages, as shown in
the following screenshot:

Group Message Architecture

Chapter 9

[163]

Sender
Sender just sends messages to their group in a routed messaging. To make it
possible, sender first connects to the RabbitMQ Server, and then declares exchange
with the topic functionality. Finally, sender sends its message to the exchange with
topic, which is "*.business.*" in our example. RabbitMQ exchanges fetch the
message from the sender and enqueue message to each queue that is bound with the
receivers. You can find the details of the sender in the following code example:

package com.collaboration.sender;

import java.io.IOException;

import com.collaboration.model.Message;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;

public class GroupSender {

 private final static String EXCHANGE_NAME =
 "mastering_rabbitmq_group";

 /**
 * @param args
 * @throws IOException
 */
 public static void main(String[] args) throws IOException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 Connection connection = factory.newConnection();

 Channel channel = connection.createChannel();
 channel.exchangeDeclare(EXCHANGE_NAME, "topic");

 Message msg = new Message();
 msg.setFrom("John");
 msg.setTo("Nicky");
 msg.setHeader("Hello World");
 msg.setContent("Hello World Again");

Java RabbitMQ Client Programming

[164]

 for(int i = 0; i < 5; i++) {
 msg.setMsgNo(i + 1);
 channel.basicPublish(EXCHANGE_NAME, "*.business.*", null,
 msg.toJSON().getBytes());
 }

 System.out.println("Message is sent: " + msg.toString());

 channel.close();
 connection.close();
 }
}

Receiver
Receiver listens to the incoming messages in the queue. Before, while listening to
the queue, we do the exact same thing with the sender. We connect to the RabbitMQ
Server and declare our exchanges with topic functionality, and bind to the queue
with the provided topic that is related with the group name. Then we are ready to
listen to the upcoming messages. You can follow the receiving implementation with
the following code example:

package com.collaboration.receiver;

import java.io.IOException;

import com.collaboration.model.Message;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.ConsumerCancelledException;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.ShutdownSignalException;

public class GroupReceiver {
 private final static String EXCHANGE_NAME =
 "mastering_rabbitmq_group";

 /**
 * @param args

Chapter 9

[165]

 * @throws IOException
 * @throws ShutdownSignalException
 * @throws ConsumerCancelledException
 * @throws InterruptedException
 */
 public static void main(String[] args) throws IOException,
 ShutdownSignalException, ConsumerCancelledException,
 InterruptedException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");

 Connection connection = factory.newConnection();
 Channel channel = connection.createChannel();

 channel.exchangeDeclare(EXCHANGE_NAME, "topic");
 String queueName = channel.queueDeclare().getQueue();
 channel.queueBind(queueName, EXCHANGE_NAME, "*.business.*");

 System.out.println("Waiting for the messages.........");

 QueueingConsumer consumer = new QueueingConsumer(channel);
 channel.basicConsume(queueName, true, consumer);

 while (true) {
 QueueingConsumer.Delivery delivery =
 consumer.nextDelivery();
 String msg = new String(delivery.getBody());

 System.out.println("Received: " +
 Message.fromJSON(msg).toString());
 }
 }
}

Bulk message – PubSub
Another important use case is sending a bulk message. The difference between bulk
message and routed message is that, bulk message sends a message to all of the
clients; however, routed message sends messages to the group of clients that
are defined.

Java RabbitMQ Client Programming

[166]

In message broker terms, bulk message is defined as PubSub, which is the
abbreviation of publish and subscribe. Sender behaves like a publisher, which
publishes messages to all the receivers that are called subscribers:

Bulk Message Architecture

Sender
The main responsibility of senders is publishing the message to the exchange that
directly enqueues messages to the subscribed queues. To get this done, we should
connect to the RabbitMQ Server first. Then, we declare the exchange with the fanout
functionality, which gives us PubSub. Finally, we send our messages to subscribers
with publishing the serialized message, as shown in the following code:

package com.collaboration.sender;

import java.io.IOException;

import com.collaboration.model.Message;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;

public class BulkSender {

 private final static String EXCHANGE_NAME =
 "mastering_rabbitmq_bulk";

Chapter 9

[167]

 /**
 * @param args
 * @throws IOException
 */
 public static void main(String[] args) throws IOException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 Connection connection = factory.newConnection();

 Channel channel = connection.createChannel();
 channel.exchangeDeclare(EXCHANGE_NAME, "fanout");

 Message msg = new Message();
 msg.setFrom("John");
 msg.setTo("Nicky");
 msg.setHeader("Hello World");
 msg.setContent("Hello World Again");

 for(int i = 0; i < 5; i++) {
 msg.setMsgNo(i + 1);
 channel.basicPublish(EXCHANGE_NAME, "", null,
 msg.toJSON().getBytes());
 }

 System.out.println("Message is sent: " + msg.toString());

 channel.close();
 connection.close();
 }
}

Receiver
Receiver is called subscriber. Subscriber's main role is to subscribe to the publisher
using its bound queue. Firstly, subscriber connects to the RabbitMQ Server. Next,
subscriber declares the specific exchange with the fanout functionality. Then,
subscriber waits for the incoming message in an infinite loop. Whenever a new
message is published to the queues, subscriber fetches the serialized message and
de-serialized message to the related Message object, as shown in the following
subscriber implementation:

Java RabbitMQ Client Programming

[168]

package com.collaboration.receiver;

import java.io.IOException;

import com.collaboration.model.Message;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.ConsumerCancelledException;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.ShutdownSignalException;

public class BulkReceiver {
 private final static String EXCHANGE_NAME =
 "mastering_rabbitmq_bulk";

 /**
 * @param args
 * @throws IOException
 * @throws ShutdownSignalException
 * @throws ConsumerCancelledException
 * @throws InterruptedException
 */
 public static void main(String[] args) throws IOException,
 ShutdownSignalException, ConsumerCancelledException,
 InterruptedException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");

 Connection connection = factory.newConnection();
 Channel channel = connection.createChannel();

 channel.exchangeDeclare(EXCHANGE_NAME, "fanout");
 String queueName = channel.queueDeclare().getQueue();
 channel.queueBind(queueName, EXCHANGE_NAME, "");

 System.out.println("Waiting for the messages.........");

 QueueingConsumer consumer = new QueueingConsumer(channel);
 channel.basicConsume(queueName, true, consumer);

 while (true) {

Chapter 9

[169]

 QueueingConsumer.Delivery delivery =
 consumer.nextDelivery();
 String msg = new String(delivery.getBody());

 System.out.println("Received: " +
 Message.fromJSON(msg).toString());
 }
 }
}

File message
In a collaboration application, we sometimes share a document, picture, or
presentation to our group members. In RabbitMQ terms, we need to cover the file
message inside the RabbitMQ Server to achieve the file message use case.

File message is not totally different with other message types. Moreover, you can
use any other message type with file message. In file message, we should convert our
files to the binary format.

Sender
As said earlier, sending file message is not different from other message types. We
only need to make our files suit the messaging. Therefore, we should convert our
files to the binary array. Then, we are ready to send our files into the messages, as
shown in the following code:

package com.collaboration.sender;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;

import com.collaboration.model.FileMessage;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;

publicclass FileSender {
 privatefinalstatic String QUEUE_NAME =
 "mastering_rabbitmq_file";

Java RabbitMQ Client Programming

[170]

 /**
 * @param argv
 * @throws IOException
 */
 publicstaticvoid main(String[] argv) throws IOException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 Connection connection = factory.newConnection();

 Channel channel = connection.createChannel();
 channel.queueDeclare(QUEUE_NAME, false, false, false, null);

 FileMessage msg = new FileMessage();
 msg.setFrom("John");
 msg.setTo("Nicky");
 msg.setHeader("Hello World");
 msg.setFile_content(readBytesFromFile(new File("/Users/
 emrahayanoglu/Desktop/Desktop/RequiredComputers.txt")));

 for (int i = 0; i < 5; i++) {
 msg.setMsgNo(i + 1);
 channel.basicPublish("", QUEUE_NAME, null,
 msg.toJSON().getBytes());
 }

 System.out.println("File Message is sent: " + msg.toString());

 channel.close();
 connection.close();
 }

 /**
 * @param file
 * @return
 * @throws IOException
 */
 publicstaticbyte[] readBytesFromFile(File file) throws
 IOException {
 InputStream is = new FileInputStream(file);

 // Get the size of the file
 long length = file.length();

Chapter 9

[171]

 // You cannot create an array using a long type.
 // It needs to be an int type.
 // Before converting to an int type, check
 // to ensure that file is not larger than Integer.MAX_VALUE.
 if (length > Integer.MAX_VALUE) {
 thrownew IOException("Could not completely read file "+
 file.getName() + " as it is too long (" + length+
 " bytes, max supported " + Integer.MAX_VALUE + ")");
 }

 // Create the byte array to hold the data
 byte[] bytes = newbyte[(int) length];

 // Read in the bytes
 int offset = 0;
 int numRead = 0;
 while (offset < bytes.length && (numRead = is.read(bytes,
 offset, bytes.length - offset)) >= 0) {
 offset += numRead;
 }

 // Ensure all the bytes have been read in
 if (offset < bytes.length) {
 thrownew IOException("Could not completely read file "+
 file.getName());
 }

 // Close the input stream and return bytes
 is.close();
 return bytes;
 }
}

Receiver
Considering that the sender of file messaging mostly seems like the other messaging
types, receiver also behaves like the receiver of other message types. The difference
between the receiver of file messaging and the other messaging types is de-
serializing part of the messages. Whenever a new message comes to our queue, we
should convert it from binary array to file, as shown in the following code example:

package com.collaboration.receiver;

import java.io.IOException;

Java RabbitMQ Client Programming

[172]

import com.collaboration.model.FileMessage;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.ConsumerCancelledException;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.ShutdownSignalException;

public class FileReceiver {
 private final static String QUEUE_NAME =
 "mastering_rabbitmq_file";

 /**
 * @param argv
 * @throws IOException
 * @throws ShutdownSignalException
 * @throws ConsumerCancelledException
 * @throws InterruptedException
 */
 public static void main(String[] argv) throws IOException,
 ShutdownSignalException, ConsumerCancelledException,
 InterruptedException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");

 Connection connection = factory.newConnection();
 Channel channel = connection.createChannel();

 channel.queueDeclare(QUEUE_NAME, false, false, false, null);

 System.out.println("Waiting for the messages.........");

 QueueingConsumer consumer = new QueueingConsumer(channel);
 channel.basicConsume(QUEUE_NAME, true, consumer);

 while (true) {
 QueueingConsumer.Delivery delivery =
 consumer.nextDelivery();
 String msg = new String(delivery.getBody());

 System.out.println("Received: " +
 FileMessage.fromJSON(msg).toString());
 }
 }
}

Chapter 9

[173]

RPC message
Remote Procedure Call (RPC) is a powerful technique for creating distributed,
client-server based applications. Today, many distributed applications rely on the
RPC. The main goal of RPC is to execute subroutine or procedure in the different
server without knowing the details of the remote interaction.

RPC has a step-by-step functionality, as follows:

1. Client application calls the service.
2. Server executes the service.
3. Whenever server finishes the execution, client continues its execution.

We have lots of technology improvements over RPC technology. Also, we can call
our services with the help of RabbitMQ, since it eases the communication between
client and server in RPC architecture. Therefore, it is a more convenient way of using
RabbitMQ between client and servers as seen in the following topics.

RPC client
RPC client's main aim is to request service calls and wait until it finishes executing.
Therefore, we need two message queues between RPC client and RPC server. One is
for sending requests to the RPC server and the other for upcoming finish replies for
the RPC client.

Firstly, we should create our queue and send our request to the RPC server. Then,
we should wait for the execution to finish, by means of listening to the queue for
incoming messages, as shown in the following code example:

package com.collaboration.receiver;

import java.io.IOException;

import com.rabbitmq.client.AMQP.BasicProperties;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.ConsumerCancelledException;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.ShutdownSignalException;

publicclass RPCClient {
 privatefinalstatic String QUEUE_NAME = "mastering_rabbitmq_rpc";

Java RabbitMQ Client Programming

[174]

 /**
 * @param args
 * @throws IOException
 * @throws ShutdownSignalException
 * @throws ConsumerCancelledException
 * @throws InterruptedException
 */
 publicstaticvoid main(String[] args) throws IOException,
 ShutdownSignalException, ConsumerCancelledException,
InterruptedException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 Connection connection = factory.newConnection();
 Channel channel = connection.createChannel();

 String replyQueueName = channel.queueDeclare().getQueue();
 QueueingConsumer consumer = new QueueingConsumer(channel);
 channel.basicConsume(replyQueueName, true, consumer);

 String response = null;
 String corrId = java.util.UUID.randomUUID().toString();

 BasicProperties props = new BasicProperties.Builder()
 .correlationId(corrId).replyTo(replyQueueName).build();

 String message = "10240000";

 channel.basicPublish("", QUEUE_NAME, props,
 message.getBytes());

 while (true) {
 QueueingConsumer.Delivery delivery =
 consumer.nextDelivery();
 if (delivery.getProperties().getCorrelationId().
 equals(corrId)) {
 response = new String(delivery.getBody());
 break;
 }
 }

 connection.close();
 }
}

Chapter 9

[175]

RPC server
RPC server's main role is to execute the given command, and after finishing the
execution, notify the RPC client. Therefore, RPC server listens to the incoming
message queue, and then executes the command. After finishing the execution,
RPC server sends a message to the queue that is bound with RPC client to notify, as
shown in the following code example:

package com.collaboration.sender;

import java.io.IOException;
import java.util.ArrayList;

import com.rabbitmq.client.AMQP.BasicProperties;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.ConsumerCancelledException;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.ShutdownSignalException;

public class RPCServer {
 private final static String QUEUE_NAME =
 "mastering_rabbitmq_rpc";

 /**
 * @param args
 * @throws IOException
 * @throws ShutdownSignalException
 * @throws ConsumerCancelledException
 * @throws InterruptedException
 */
 public static void main(String[] args) throws IOException,
 ShutdownSignalException, ConsumerCancelledException,
 InterruptedException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");

 Connection connection = factory.newConnection();
 Channel channel = connection.createChannel();

 channel.queueDeclare(QUEUE_NAME, false, false, false, null);

 channel.basicQos(1);

Java RabbitMQ Client Programming

[176]

 QueueingConsumer consumer = new QueueingConsumer(channel);
 channel.basicConsume(QUEUE_NAME, false, consumer);

 System.out.println(" [x] Waiting RPC requests");

 while (true) {
 QueueingConsumer.Delivery delivery =
 consumer.nextDelivery();

 BasicProperties props = delivery.getProperties();
 BasicProperties replyProps = new BasicProperties.Builder().
 correlationId(props.getCorrelationId()).build();

 String message = new String(delivery.getBody());
 int n = Integer.parseInt(message);

 System.out.println(" [.] nthPrimeList(" + message + ")");
 String response = "" + nthPrimeList(n);

 channel.basicPublish("", props.getReplyTo(), replyProps,
 response.getBytes());

 channel.basicAck(delivery.getEnvelope().getDeliveryTag(),
 false);
 }
 }

 /**
 * @param n
 * @return String
 */
 public static String nthPrimeList(int n) {
 ArrayList<Integer> primeList = new ArrayList<Integer>();
 for (int number = 2; number <= n; number++) {
 if (isPrime(number)) {
 primeList.add(number);
 }
 }
 return primeList.toString();
 }

 /**
 * @param number

Chapter 9

[177]

 * @return boolean
 */
 public static boolean isPrime(int number) {
 for (int i = 2; i < number; i++) {
 if (number % i == 0) {
 return false; // number is divisible so its not prime
 }
 }
 return true; // number is prime now
 }
}

Creating tasks – manual acknowledgment
Tasks are our main concern in our software systems nowadays. Processing
documents, image processing, backup databases, and so on are the main examples
of the tasks. As we discussed earlier, our main concern is to reply to requests in real-
time. So, tasks are the main headaches of the systems.

Although tasks are problems for real-time systems, we should use RPC-like systems
to solve the task problems, such as when some task handlers execute the incoming
tasks and then reply to the task creators. Hence, task creator is not able to block it
and execute its own work during the execution of the task.

RabbitMQ is the main part of the task queue systems. Task creator sends messages
to the RabbitMQ queue, and Task handler listens to the queue and executes the
dequeued task.

Task creator
Task creator's main responsibility is to create the related task along with sending
the task message to the RabbitMQ queue. So, task creator just declares a queue and
sends its task messages to the queue, as shown in the following code example:

package com.collaboration.sender;

import java.io.IOException;
import java.util.Calendar;
import java.util.Date;

import com.collaboration.model.Task;
import com.rabbitmq.client.Channel;

Java RabbitMQ Client Programming

[178]

import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;

publicclass TaskCreator {
 privatefinalstatic String QUEUE_NAME =
 "mastering_rabbitmq_task";

 /**
 * @param args
 * @throws IOException
 */
 publicstaticvoid main(String[] args) throws IOException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 Connection connection = factory.newConnection();

 Channel channel = connection.createChannel();
 channel.queueDeclare(QUEUE_NAME, true, false, false, null);

 Calendar cal = Calendar.getInstance();
 cal.setTime(new Date());
 cal.add(Calendar.HOUR_OF_DAY, 2);

 Task task = new Task();
 task.setExpires(cal.getTime());
 task.setCommand("dd if=//dev//zero of=output.dat bs=1024
 count=1024000");
 System.out.println(task.toJSON());

 for(int i = 0; i < 5; i++) {
 channel.basicPublish("", QUEUE_NAME, null,
 task.toJSON().getBytes());
 System.out.println("Task Request is sent: " +
 task.toString());
 }

 channel.close();
 connection.close();
 }
}

Chapter 9

[179]

Task handler
Task handler simply waits for the upcoming tasks and executes the task that is
dequeued from the RabbitMQ queue. The main difference between the simple sender
and receiver application and the task creator and task handler application is to
acknowledge manually. As you see in the following code example, after finishing the
execution of the task, channel acknowledges manually, which notifies the RabbitMQ
Server:

package com.collaboration.receiver;

import java.io.IOException;

import com.collaboration.model.Task;
import com.collaboration.utility.TaskRunner;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.ConsumerCancelledException;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.ShutdownSignalException;

public class TaskHandler {
 private final static String QUEUE_NAME =
 "mastering_rabbitmq_task";

 /**
 * @param argv
 * @throws IOException
 * @throws ShutdownSignalException
 * @throws ConsumerCancelledException
 * @throws InterruptedException
 */
 public static void main(String[] argv) throws IOException,
 ShutdownSignalException, ConsumerCancelledException,
 InterruptedException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");

 Connection connection = factory.newConnection();
 Channel channel = connection.createChannel();

Java RabbitMQ Client Programming

[180]

 channel.queueDeclare(QUEUE_NAME, true, false, false, null);

 System.out.println("Waiting for the tasks.........");

 QueueingConsumer consumer = new QueueingConsumer(channel);
 channel.basicConsume(QUEUE_NAME, false, consumer);

 while (true) {
 QueueingConsumer.Delivery delivery =
 consumer.nextDelivery();
 String msg = new String(delivery.getBody());

 System.out.println(msg);

 Task task = Task.fromJSON(msg);

 System.out.println("Received: " + task.toString());
 TaskRunner.runTask(task);
 System.out.println("Task is Done: " + task.toString());

 channel.basicAck(delivery.getEnvelope().getDeliveryTag(),
 false);
 }
 }
}

Creating distributing tasks
Sometimes, it is not enough to achieve real-time processing and scalability with the
single task handler. RabbitMQ comes to the rescue here. If a task handler executes a
task more than once, a group of task handlers behave like a distributed style. Hence,
we gain lots of time with the help of more task handlers.

Executing more than one task handler fetches task messages from the RabbitMQ
queue with round robin scheduling. Round robin scheduling is one of the algorithms
used for process and network scheduling in Computer Science. RabbitMQ distributes
the task messages to the handlers with round robin style, as seen in the following
task creator and task handler examples.

Chapter 9

[181]

Task creator
The implementation of task creator code is as follows:

package com.collaboration.sender;

import java.io.IOException;
import java.util.Calendar;
import java.util.Date;

import com.collaboration.model.Task;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;

publicclass TaskCreator {
 privatefinalstatic String QUEUE_NAME =
 "mastering_rabbitmq_task";

 /**
 * @param args
 * @throws IOException
 */
 publicstaticvoid main(String[] args) throws IOException {
 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");
 Connection connection = factory.newConnection();

 Channel channel = connection.createChannel();
 channel.queueDeclare(QUEUE_NAME, true, false, false, null);

 Calendar cal = Calendar.getInstance();
 cal.setTime(new Date());
 cal.add(Calendar.HOUR_OF_DAY, 2);

 Task task = new Task();
 task.setExpires(cal.getTime());
 task.setCommand("dd if=//dev//zero of=output.dat bs=1024
 count=1024000");
 System.out.println(task.toJSON());

Java RabbitMQ Client Programming

[182]

 for(int i = 0; i < 5; i++) {
 channel.basicPublish("", "MyKey", null,
 task.toJSON().getBytes());
 System.out.println("Task Request is sent: " +
 task.toString());
 }

 channel.close();
 connection.close();
 }
}

Task handler clients
The implementation of Task handler is as follows:

package com.collaboration.receiver;

import java.io.IOException;

import com.collaboration.model.Task;
import com.collaboration.utility.TaskRunner;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.ConsumerCancelledException;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.ShutdownSignalException;

public class DistributedTaskHandler {
 private final static String QUEUE_NAME =
 "mastering_rabbitmq_distributed_task";

 /**
 * @param argv
 * @throws IOException
 * @throws ShutdownSignalException
 * @throws ConsumerCancelledException
 * @throws InterruptedException
 */
 public static void main(String[] argv) throws IOException,
 ShutdownSignalException, ConsumerCancelledException,
 InterruptedException {

Chapter 9

[183]

 ConnectionFactory factory = new ConnectionFactory();
 factory.setHost("localhost");

 Connection connection = factory.newConnection();
 Channel channel = connection.createChannel();

 channel.queueDeclare(QUEUE_NAME, true, false, false, null);

 System.out.println("Waiting for the messages.........");

 QueueingConsumer consumer = new QueueingConsumer(channel);
 channel.basicConsume(QUEUE_NAME, false, consumer);

 while (true) {
 QueueingConsumer.Delivery delivery =
 consumer.nextDelivery();
 String msg = new String(delivery.getBody());

 Task task = Task.fromJSON(msg);

 System.out.println("Received: " + task.toString());
 TaskRunner.runTask(task);
 System.out.println("Task is Done: " + task.toString());

 channel.basicAck(delivery.getEnvelope().getDeliveryTag(),
 false);
 }
 }
}

Spring framework and RabbitMQ
Spring Framework is widely used in enterprise projects, and it is an open source
application framework and inversion of control container for Java platform.
Inversion of Control (IoC) provides consistency, that is, configuring and managing
Java objects using reflection. The container for Spring Framework is responsible for
creating these objects, calling their methods, and wiring them.

Spring Framework obtains the objects from the configuration file to initialize them,
and is called dependency injection. Dependency injection is a well-known pattern
that searches for the dependencies and injects the objects to the dependent objects
with the help of constructor, properties, or factory methods.

Java RabbitMQ Client Programming

[184]

Spring's amazing integration skills help libraries to integrate with systems more
easily than ever. After this, it comes to RabbitMQ and Spring Framework. RabbitMQ
client library can be injected to the dependent other systems easily with Spring
Framework too. Moreover, Spring Framework's subproject called Spring AMQP
aims to solve integration and injection problems of RabbitMQ, as discussed further
in the following topic.

Spring AMQP
Message brokers are the main concern and integration part of software systems, and
AMQP is the most popular messaging protocol that is backed by message brokers.
Because of the importance of the AMQP, Spring community wanted to start a new
project covering the AMQP integration within the Spring Framework. Then Spring
AMQP was born, with these activities.

Spring AMQP provides a template as a high level abstraction to send and receive
messages according to the Spring AMQP documentation. Spring AMQP gives us
amazing classes to develop sender and receiver applications easily, and it provides
two main classes:

• RabbitTemplate to send and receive messages
• RabbitAdmin to declare queues, exchanges, and bindings

The following case study examples show how to use Spring AMQP in developing
messaging applications.

Single message
As we know from the Java RabbitMQ Client library examples, we need one queue to
connect sender with receiver. To develop this kind of application in Spring AMQP,
we should define the connection with the help of rabbit:connection-factory and
rabbit:template.

We provide connection parameters such as hostname, port, username, and password
information to rabbit:connection-factory. Then, we need to define queue
with Rabbit Queue. Finally, we are ready to inject our connection and queue to the
rabbit:template instance. Now, we are able to inject the RabbitMQ template to our
senders and listeners. Listener container works as an asynchronous way in Spring
AMQP, which is called rabbit:listener-container. Additionally, Spring AMQP
provides message converters from JSON or XML, as shown in the following example
configuration and code.

Chapter 9

[185]

Spring config
A configuration for Spring can be specified as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-amqp="http://www.springframework.org/schema/
 integration/amqp"
 xmlns:rabbit="http://www.springframework.org/schema/rabbit"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:int-stream="http://www.springframework.org/schema/
 integration/stream"
 xsi:schemaLocation="http://www.springframework.org/schema/
 integration/amqp
 http://www.springframework.org/schema/integration/amqp/spring-
 integration-amqp.xsd
 http://www.springframework.org/schema/integration
 http://www.springframework.org/schema/integration/spring-
 integration.xsd
 http://www.springframework.org/schema/integration/stream
 http://www.springframework.org/schema/integration/stream/
 spring-integration-stream.xsd
 http://www.springframework.org/schema/rabbit
 http://www.springframework.org/schema/rabbit/spring-rabbit.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
 3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-
 3.0.xsd">

 <context:component-scan base-package="com.collaboration"/>

 <bean id="messageListener" class="com.collaboration.receiver.
 Receiver"/>

 <bean id="sender" class="com.collaboration.sender.Sender"/>

 <bean id="messageConverter" class="org.springframework.amqp.
 support.converter.JsonMessageConverter"/>

 <rabbit:queue id="masteringQueue" name="mastering.rabbitmq"/>

Java RabbitMQ Client Programming

[186]

 <rabbit:connection-factory id="rabbitConnectionFactory"
 username="guest" password="guest" host="localhost" port="5672"/>

 <rabbit:template id="rabbitTemplate" connection-
 factory="rabbitConnectionFactory"
 queue="masteringQueue" message-converter="messageConverter"/>

 <rabbit:admin id="admin" connection-
 factory="rabbitConnectionFactory"/>

 <rabbit:listener-container connection-factory=
 "rabbitConnectionFactory" message-converter="messageConverter">
 <rabbit:listener ref="messageListener"
 queues="masteringQueue"/>
 </rabbit:listener-container>

</beans>

Sender
Sender code is as follows:

package com.collaboration.sender;

import org.springframework.amqp.core.AmqpTemplate;
import org.springframework.beans.factory.annotation.Autowired;

/**
 * @author Emrah Ayanoglu
 *
 */
public class Sender {
 @Autowired
 private volatile AmqpTemplate amqpTemplate;

 /**
 * Sends new Message using AmqpTemplate
 */
 public void sendMessage(){
 amqpTemplate.convertAndSend("Hello World");
 }
}

Chapter 9

[187]

Receiver
Receiver code is as follows:

package com.collaboration.receiver;

import org.springframework.amqp.core.Message;
import org.springframework.amqp.rabbit.core.
ChannelAwareMessageListener;

import com.rabbitmq.client.Channel;

/**
 * @author Emrah Ayanoglu
 *
 */
public class Receiver implements ChannelAwareMessageListener {

 /* (non-Javadoc)
 * @see org.springframework.amqp.rabbit.core.
 ChannelAwareMessageListener#onMessage(org.springframework.
 amqp.core.Message, com.rabbitmq.client.Channel)
 */
 public void onMessage(Message message, Channel channel) throws
 Exception {
 System.out.println("A message is received : Receiver");
 String msgBody = new String(message.getBody());
 System.out.println("Message: " + msgBody);
 }

}

PubSub messages
Publish and Subscribe style messaging needs exchange and connected queues to the
provided exchange. In Spring AMQP, we have another opportunity to define pubsub
exchanges, which is rabbit:fanout-exchange. We should inject connected queues
to the rabbit:fanout-exchange with rabbit:bindings, as shown in the following
configuration example.

Java RabbitMQ Client Programming

[188]

Spring config
A configuration for spring can be specified as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-amqp="http://www.springframework.org/schema/
 integration/amqp"
 xmlns:rabbit="http://www.springframework.org/schema/rabbit"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:int-stream="http://www.springframework.org/schema/
 integration/stream"
 xsi:schemaLocation="http://www.springframework.org/schema/
 integration/amqp
 http://www.springframework.org/schema/integration/amqp/spring-
 integration-amqp.xsd
 http://www.springframework.org/schema/integration
 http://www.springframework.org/schema/integration/spring-
 integration.xsd
 http://www.springframework.org/schema/integration/stream
 http://www.springframework.org/schema/integration/stream/
 spring-integration-stream.xsd
 http://www.springframework.org/schema/rabbit
 http://www.springframework.org/schema/rabbit/spring-rabbit.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
 3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-
 3.0.xsd">

 <context:component-scan base-package="com.collaboration"/>

 <bean id="message1Listener" class=
 "com.collaboration.receiver.Receiver"/>
 <bean id="message2Listener" class=
 "com.collaboration.receiver.Receiver2"/>
 <bean id="message3Listener" class=
 "com.collaboration.receiver.Receiver3"/>

Chapter 9

[189]

 <bean id="sender" class="com.collaboration.sender.Sender"/>

 <bean id="messageConverter" class="org.springframework.amqp.
 support.converter.JsonMessageConverter"/>

 <rabbit:queue id="mastering1Queue" name="mastering1.rabbitmq"/>
 <rabbit:queue id="mastering2Queue" name="mastering2.rabbitmq"/>
 <rabbit:queue id="mastering3Queue" name="mastering3.rabbitmq"/>

 <rabbit:fanout-exchange name="broadcast.responses"
 xmlns="http://www.springframework.org/schema/rabbit">
 <rabbit:bindings>
 <rabbit:binding queue="mastering1Queue"/>
 <rabbit:binding queue="mastering2Queue"/>
 <rabbit:binding queue="mastering3Queue"/>
 </rabbit:bindings>
 </rabbit:fanout-exchange>

 <rabbit:connection-factory id="rabbitConnectionFactory"
 username="guest" password="guest" host="localhost" port="5672"/>

 <rabbit:template id="rabbitTemplate" connection-
 factory="rabbitConnectionFactory" exchange="broadcast.responses"
 message-converter="messageConverter"/>

 <rabbit:admin id="admin" connection-factory=
 "rabbitConnectionFactory"/>

 <rabbit:listener-container connection-factory=
 "rabbitConnectionFactory" message-converter="messageConverter">
 <rabbit:listener ref="message1Listener" queues=
 "mastering1Queue"/>
 <rabbit:listener ref="message2Listener" queues=
 "mastering2Queue"/>
 <rabbit:listener ref="message3Listener" queues=
 "mastering3Queue"/>
 </rabbit:listener-container>

</beans>

Java RabbitMQ Client Programming

[190]

Private messages – routing
In private messaging, that is, routed messaging in message broker terms, we use
topic exchange in RabbitMQ. Spring AMQP gives us another awesome template
for topic exchanges, which is called topic-exchange. Whenever binding queues
to the topic-exchange, we need to specify the pattern of each queue. Whenever a
new message is received from the topic exchange, it is delivered to the queues with
respect to the patterns. You can find the details of the topic-exchange in the following
example.

Spring config
A configuration for spring can be specified as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-amqp="http://www.springframework.org/schema/
 integration/amqp"
 xmlns:rabbit="http://www.springframework.org/schema/rabbit"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:int-stream="http://www.springframework.org/schema/
 integration/stream"
 xsi:schemaLocation="http://www.springframework.org/schema/
 integration/amqp
 http://www.springframework.org/schema/integration/amqp/spring-
 integration-amqp.xsd
 http://www.springframework.org/schema/integration
 http://www.springframework.org/schema/integration/spring-
 integration.xsd
 http://www.springframework.org/schema/integration/stream
 http://www.springframework.org/schema/integration/stream/
 spring-integration-stream.xsd
 http://www.springframework.org/schema/rabbit
 http://www.springframework.org/schema/rabbit/spring-rabbit.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
 3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-
 3.0.xsd">
 <context:component-scan base-package="com.collaboration"/>

Chapter 9

[191]

 <bean id="message1Listener" class=
 "com.collaboration.receiver.Receiver"/>
 <bean id="message2Listener" class=
 "com.collaboration.receiver.Receiver2"/>
 <bean id="message3Listener" class=
 "com.collaboration.receiver.Receiver3"/>

 <bean id="sender" class="com.collaboration.sender.
 SenderWithRoutingKey"/>

 <bean id="messageConverter" class="org.springframework.amqp.
 support.converter.JsonMessageConverter"/>
 <rabbit:queue id="mastering1Queue" name="mastering1.rabbitmq"/>
 <rabbit:queue id="mastering2Queue" name="mastering2.rabbitmq"/>
 <rabbit:queue id="mastering3Queue" name="mastering3.rabbitmq"/>

 <topic-exchange name="routing.responses"
 xmlns="http://www.springframework.org/schema/rabbit">
 <bindings>
 <binding queue="mastering1Queue" pattern="private"/>
 <binding queue="mastering2Queue" pattern="group"/>
 <binding queue="mastering3Queue" pattern="all"/>
 </bindings>
 </topic-exchange>

 <rabbit:connection-factory id="rabbitConnectionFactory"
 username="guest" password="guest" host="localhost" port="5672"/>

 <rabbit:template id="rabbitTemplate" connection-factory=
 "rabbitConnectionFactory" exchange="routing.responses" message-
 converter="messageConverter"/>

 <rabbit:admin id="admin" connection-factory=
 "rabbitConnectionFactory"/>

 <rabbit:listener-container connection-factory=
 "rabbitConnectionFactory" message-converter="messageConverter">
 <rabbit:listener ref="message1Listener" queues=
 "mastering1Queue"/>
 <rabbit:listener ref="message2Listener" queues=
 "mastering2Queue"/>
 <rabbit:listener ref="message3Listener" queues=
 "mastering3Queue"/>
 </rabbit:listener-container>

</beans>

Java RabbitMQ Client Programming

[192]

Summary
In this chapter, we learned how to develop RabbitMQ client using the Java platform
and Java programming language. RabbitMQ officially provides us with a Java Client
Library, and the library provides all of the functionality of AMQP within itself.
Library provides both synchronous and asynchronous listeners. We shared the basics
of developing the clients and also learned how to develop messaging facilities of the
collaboration application using the RabbitMQ Server.

In the second part, we dived into the Spring integration with Spring's new project,
Spring AMQP. Spring AMQP simplifies the developing clients by providing the
template classes for the RabbitMQ Server.

The next chapter will cover developing clients using the C# and .Net Framework.

[193]

Ruby Client Programming
In this chapter, we will explore the most harmonious combination of client-broker
there is (in my opinion), Ruby and RabbitMQ. You will quickly feel as if it's a match
made in heaven.

You will learn how to build a real-life data science pipeline using Lambda
Architecture, a worker fabric, and we will introduced to both Bunny—the de-facto
RabbitMQ library for Ruby and Sneakers—and my own high-level performance
background processing job library for Ruby.

In this chapter, you will learn how to the following:

• Use Bunny to implement each and every messaging semantics in Ruby
• Explore Lambda architecture and understand why this is the new way

forward in a world filled with Big data
• Understand the differences between Big, Medium, and Small data
• See how to build a solution that would really hold such an architecture
• Implement the solution with Sneakers and build an aggregator type

worker—an ip2location type worker; you will also understand how to go
much further than this

• Explore a bit more of the Sneakers library, and see why sometimes there's
way more to do in production other than just punch out code

Case study
For this study, we'll choose the world of Real Time Analytics. You will learn about
the challenges in real-time data, and how they can be solved with scalability in mind.
But first, let's talk about analytics, Small data, Medium data, and Big data.

Ruby Client Programming

[194]

Small data
Small data is when you have enough data to process, but fits into a single machine.
Any processing and analysis you want to run can finish in a reasonable amount of
time. Of course term "reasonable" may refer to different amount of time depending
on your business needs.

For example, if we want to generate a daily report, it is reasonable to assume that
we're still okay with it taking around 30 minutes to complete. This is because we
will still have 47 other tries to make it happen (we have 48 half hours within a
24 hour day).

However, it is unreasonable to agree to a job or series of interdependent jobs that
take more than, or very close to, 24 hours. In this case, you will seek to scale out of
your single machine or workstation and start thinking about Medium data. Having
said that, Small data is fun as it usually lets you get very high latencies. You can store
all data in RAM and have any aggregation or analysis finish in milliseconds.

We'll talk about Medium data last, you'll soon see why.

Big data
Big data is when the amount of data you have can only fit on a cluster of distributed
and coordinated machines. We refer to big data, when the amount of storage or
processing power simply can't be satisfied with a single machine. We also refer to big
data whenever the amount of time, or resources of jobs in any other setting (say, on
your own machine) is so big that jobs would simply fail, let alone be slow to complete.

Big data is not easy to solve; however, today it is mostly solved. With frameworks
such as Hadoop and Spark and well-mannered distributions such as Cloudera
Hadoop (CDH), the monster that is Hadoop DevOps is easily, or at least somewhat,
well-tamed.

The turnaround time with big data is slow. The development of jobs, the feedback
cycle, and actual job runs are slow. We, as a community, improved this with Spark
and Hive and Pig and Cascalog. However, it is still an unnatural development
workflow.

If you have a Big data problem, you mostly also have a real-time problem as the two
cannot live side by side. For this manner, we will introduce the Lambda architecture,
which is an emerging architecture to get great Big data pipeline performance as well
as real-time pipeline performance happening in the same time. Lambda architecture
is a generic, scalable, and fault-tolerant data processing, where it takes advantage of
both batch and stream processing methods. Lambda architecture consists of three
layers: the layer, and serving layers.

Chapter 10

[195]

The batch layer is designed to guarantee perfect accuracy by being able to process all
available data when generating views. The speed layer is designed to process data
streams in real-time and without the requirements of fix ups or completeness.
The speed layer sacrifices throughput as it aims to minimize latency by providing
real-time views into the most recent data. The serving layer responds to queries
using both stream and batch results.

Either way, this world has matured. Best practices are there for you to explore, and
you're probably going to be in good hands.

Medium data
As of today (somewhere around March 2015, as of the writing of this book), the tech
world is only starting to realize there's another world of data living between Small
and Big data.

The big problem is now converging to be Medium data. It is that state of limbo
when your company generates too much of Big data in order to compute on a single
machine, or a single, very costly and strong machine, and yet, it is too small to justify
the overhead and funding for a full-on Hadoop cluster.

Things such as AWS EMR, which is a Hadoop-on-demand, were put in place to tackle
this kind of scenario in terms of cost, but then you're still left with the unhappiness of
the slow development experience and the job run turn-around feedback.

What's more, you're left with no answer for real-time data, and you find yourself
trying a much optimized PostgreSQL database and make it perform to bootstrap for
this mission. Otherwise, you may acknowledge that you don't have the tech chops
of a DBA; if so, then try a huge MongoDB cluster (you'll need at least six machines,
three shards, each with master slave); people arguably say that it will crash and lose
data on you.

Solving all data problems
The smart thing to do is not to address Small, Big, or Medium data problems, but
to try to go our own separate way. We will see how to implement a solution for
an analytics engine that would precompute everything rather than push data to a
database, or a Hadoop cluster as we will dissect later.

We will see how RabbitMQ and the Ruby ecosystem lets you build a Lambda
architecture style solution with almost no effort. You can carry over this kind of
solution to any startup or company you're part of and it will always, always work.

But first, let's meet Bunny.

Ruby Client Programming

[196]

Bunny and Ruby
Bunny is the most used AMQP/RabbitMQ library within the Ruby ecosystem.
Bunny 0.9+ supports all RabbitMQ 3.x features. Moreover, the latest Bunny 0.9+ is
designed to make use of concurrency. On Ruby VMs that provide thread parallelism,
this means taking advantage of multiple cores and CPUs.

Installing Ruby
If you already have a modern Ruby installed (Ruby 1.9.x or 2.x), feel free to skip this
part. If you don't have Ruby installed, follow through this simple explanation:

Linux
On Linux, you can use the apt-get command:

$ sudo apt-get install ruby

This will probably bring in a Ruby 1.9.3 installation, and if you're lucky and have
a recent Linux distribution, a Ruby 2.0.0 (as of this writing, Ruby 2.2.0 exists, but I
don't expect it to be streamlined into every Linux distribution).

To verify this, try the following commands, which will tell you about your Ruby and
Rubygems versions (the Ruby's dependency manager):

$ ruby -v

ruby 1.9.3p392 (2013-02-22 revision 39386) [x86_64-darwin12.2.1]

$ gem -v

1.8.23

Windows
On Windows, I recommend using a one-click install, one of which exists here:

http://rubyinstaller.org.

Follow the wizard and then verify the installation in a Windows CMD window (your
output may vary, but take note of the versions):

c:\>ruby -v

ruby 2.2.0p0 (2014-12-25 revision 49005)

c:\>gem -v

1.8.23

http://rubyinstaller.org

Chapter 10

[197]

OSX/Mac
On a Mac, I adequately install everything with Homebrew. You'll do yourself a big
favor if you start using it and start installing development software with it. You can
install both Ruby and RabbitMQ with it.

To install Homebrew, visit http://brew.sh/ and follow the instructions at the
bottom of the page where we refer to brew.sh URL.

After you've got Homebrew provisioned on your machine, you can open a terminal
and type in the following:

$ brew install ruby

And here, again, you should verify that everything works as expected; run the
following commands in your terminal:

➜ ~ ruby -v

ruby 2.2.0p0 (2014-12-25 revision 49005) [x86_64-darwin13]

➜ ~ gem -v

2.4.5

Rbenv
There's another option for installing Ruby across all the platforms using a tool called
Rbenv; I personally use this. Rbenv will let you jump across Ruby versions easily
and install and test out new Ruby distributions with the help of Rbenv's plugin
called ruby-build.

Installing Rbenv is a bit out of the scope of this chapter, but I couldn't leave it out as
it is the Swiss army knife of every Rubyist. If you're feeling capable and adventurous,
feel free to follow the instructions for installing Rbenv at the RbenvGithub repository
at the following link: https://github.com/sstephenson/rbenv.

Installing Bunny
Let's move on to installing and verifying our Bunny installation. Firstly, let's use
Rubygems to install it:

$ gem install bunny

Fetching: bunny-1.7.0.gem (100%)

Successfully installed bunny-1.7.0

1 gem installed

http://brew.sh/
https://github.com/sstephenson/rbenv

Ruby Client Programming

[198]

Installing ri documentation for bunny-1.7.0...

Installing RDoc documentation for bunny-1.7.0...

Then, let's verify it by opening an interactive Ruby session using irb, a command
line Ruby tool:

$ irb

irb(main):001:0> require 'bunny'

=>true

irb(main):002:0>Bunny.new

=> #<Bunny::Session:70143003791640 guest@127.0.0.1:5672, vhost=/,
hosts=[127.0.0.1]>

We managed to acquire Bunny; that is, we can now use Bunny anywhere in our
Ruby code and then start a new Bunny session! However, Bunny.new command will
throw an error if there is no RabbitMQ running locally.

Using Bunny
Let's continue by building a sanity-level consumer and producer just to test things out.

Bunny producer
We will first have a taste of what a log aggregator producer looks like:

require "bunny"

conn = Bunny.new
conn.start

channel = conn.create_channel
queue = channel.queue("clicks")

channel.default_exchange.publish('{ "message":"hello" }', :routing_key
=> queue.name)
puts "* sent!"

conn.close

We start inquiring about Bunny so that we have access to the Bunny API. We then
initialize a Bunny instance, start a connection for the purpose of getting a reach at an
AMQP channel, and then through the channel, we declare a queue and get access to
an exchange.

Chapter 10

[199]

We use the default exchange for simplicity, which was accessed through the channel
we just got. We publish through a routing key that incidentally (or not) has the same
name as the queue in order to autoroute the message to that queue.

We send a message that looks like JSON, but this is just a hint at what's about to
come; for all intents and purposes, you can just send a plain string.

Let's make sure this runs:

$ rubyproducer.rb

W, [2015-03-06T18:33:11.838609 #34238] WARN --
#<Bunny::Session:70145632515880 guest@127.0.0.1:5672, vhost=/,
hosts=[127.0.0.1]>: Could not establish TCP connection to
127.0.0.1:5672:

/Users/dotan/.rbenv/versions/1.9.3-p392/lib/ruby/gems/1.9.1
/gems/bunny-1.7.0/lib/bunny/session.rb:302:in `rescue in start':
Could not establish TCP connection to any of the configured hosts
(Bunny::TCPConnectionFailedForAllHosts)

 from /Users/dotan/.rbenv/versions/1.9.3-p392/lib/ruby/gems/1.9.1
 /gems/bunny-1.7.0/lib/bunny/session.rb:264:in `start'

 from producer.rb:4:in `<main>'

Bam! It failed. I like to do this; you'll see this coming in the Python chapter as well.
I like the fact that the first encounter with a library should include errors. You should
be able to feel the limits of the context that you're working with, and it will make
learning a stronger and better experience just by bumping your head against an error
here and there.

In this case, we can easily glean that we can't connect to a broker. This is probably
because a broker isn't alive on my machine. If this happens to you too, start the
broker and continue.

Just again:

$ rubyproducer.rb

* sent!

Great, let's verify that we have a message in store:

$ rabbitmqctllist_queues

Listing queues ...

celery 0

clicks 1

downloads 0

foobar 1

Ruby Client Programming

[200]

logs 0

test_stress 0

testqueue 0

usages_ 0

webscraping 0

We have one message in the clicks queue right here. Awesome!

Bunny consumer
Let's make in the same vein a simple sanity Bunny consumer:

require "bunny"
require 'json'

conn = Bunny.new
conn.start

channel = conn.create_channel
queue = channel.queue("clicks")

puts "* Consumer started."
queue.subscribe(:block => true) do |delivery_info, properties,
msg|
puts "got message: #{ JSON.parse(msg)["message"] }"
end

Let's go over the code. First, we, again, require Bunny, which as you might recall,
lets us have a go at the Bunny's API. We then go through the same dance of getting a
Bunny instance, which lets us create a channel by establishing a connection.

Through the channel, we declare and bind to a queue, the same "clicks" queue that
we have used before in the producer of course and then we do something new—we
use the queue that we have obtained in order to subscribe.

Subscription in Bunny is very powerful. Powerful in the sense that Bunny will hand
out a set of objects to you, expect you to do something with it, and that's it. Bunny
hides away all of the ugly details from you using the channel by blocking through
the connection, working with the AMQP protocol, and hiding the execution model;
does each block run on a thread of its own or on a single thread?

With Bunny, you shouldn't really care, as you are presented with a simple Ruby-like
workflow, and this is why it is awesome.

Chapter 10

[201]

Back to the code, you're telling Bunny that you want to block. This means, you want
Bunny to keep doing the message loop endlessly (well, at least as long there's a good
connection open to your broker). It will then give out a delivery_info properties,
and message objects. All of these are part of the AMQP model, and trivially, you
should probably care about the message.

Once you get a message, you can process it in your processing block. Here, we just
spiced it up with trying and parsing the data within the message. As you recall, the
data is a simple JSON object that is serialized before getting pushed into the queue.

Here, we deserialize it using the standard Ruby JSON library (see our require 'JSON'
beforehand), and we pull the message property from it; job well done!

Let's start the consumer in your terminal type:

$ rubyconsumer.rb

* Consumer started.

got message: hello

Exploring the AMQP model with Bunny
Let's continue on with Bunny by exploring a bit more of the AMQP model. As it
stands, the AMQP model is so powerful that it will let you abstract out a lot of
messaging architectures pretty easily (I personally think that only ZeroMQ comes
close to it in the same way as being a building block of many other concepts within
the world of messaging).

Let's continue case by case.

Workers
Let's touch the concept of background queues and workers lightly. I say lightly
because I plan to introduce a popular and production grade background jobs library
called Sneakers – by yours truly, later on in this chapter.

The concept of workers is very close to what we've seen so far. We will only slightly
change the semantics of our producer and call it a manager (manager.rb):

require "bunny"

conn = Bunny.new
conn.start

channel = conn.create_channel

Ruby Client Programming

[202]

queue = channel.queue("jobs", :durable => true)

queue.publish("do this!", :persistent => true)
puts "* Sent."

conn.close

What's changed here is that we're now using a full-on queue to publish. We initialize
Bunny as usual and get a channel. Through the channel, we will create a durable
queue, which will be used to hold our jobs.

We select a durable queue because, as expected of a job queue, it should exist when
the broker crashes, and we can't afford to be in a situation where jobs are lost.

Continuing on, we then publish a persistent message. A note on publishing—
RabbitMQ will never promise to persist, but it will do its next best effort to do so. If
you really need a high degree of assurance, you should use Publish Confirms that
are available to you form RabbitMQ. However, there's a trade-off of durability and
performance.

Let's run our manager now:

$ rubymanager.rb

* Sent.

We will now have a message in the "jobs" durable queue. Let's continue to build
our actual worker:

require "bunny"

conn = Bunny.new
conn.start

channel = conn.create_channel
queue = channel.queue("jobs", :durable => true)

channel.prefetch(1)

queue.subscribe(:manual_ack => true, :block => true) do |delivery_
info, properties, msg|
work_for = rand
sleep(work_for)
puts "* Done with: '#{msg}' in #{work_for}sec"
channel.ack(delivery_info.delivery_tag)
end

Chapter 10

[203]

We start out again by requiring Bunny and making a connection and a channel as
usual. We create a durable "jobs" queue. We then define a prefetch level. A prefetch
level or window is the amount of messages our worker should fetch from the broker
in each trip. For example, if we say "50", we are telling the broker that our worker
wants to handle 50 messages in a bulk each time, and the broker will push down a
batch of 50 messages on each communication trip.

This means less overhead and less "nagging" from our client, which means
greater throughput. Our worker will be doing more actual work instead of more
communication work per job.

With this, of course, there are trade-offs. The trade-off here is that of latency versus
throughput. If we select a bigger batch, it will mean that a job X within the batch will
take more time to be reported as "complete" by the worker.

Usually, the rule of thumb is that if the character of a job is different to the worker
from job to job, for example—let's say one job is to "send an e-mail" and one job is
to "calculate 1+1", and the worker can never expect which job comes next—fix the
prefetch level at 1.

If the jobs are always similar, fix the prefetch level at a number which you feel
comfortable with after trial-and-error: 20, 50, or even 100. Choose anything that
works better for you in terms of latency and throughput.

Back to the code, we subscribe as before, but just with a new manual_ack flag set to
true. This means we want each worker to manually sign off the job as done when it
is actually done.

Within the worker block, we sleep for a random amount of time, and then when
we're ready, we report the job as done by specifying channel.ack and the required
delivery_tag flag.

This concludes our worker code; let's see it in practice. In one terminal push a few
messages on, as follows:

$ watch ruby manager.rb

Every 2.0s: ruby manager.rb

Fri Mar 6 19:27:05 2015

* Sent.

The watch command is a cool Unix trick (on OSX, run 'brew install watch')
that you can use in order to repeat a command with a specified interval. Here, we
will run 'ruby manager.rb' every two seconds, which will in turn push the same
message to our broker every two seconds—a perfect solution for a dummy manager.

Ruby Client Programming

[204]

Now, in a few other terminals, let's run a couple of workers, and let them compete
for jobs and pick off and sign off jobs from the job queue:

Here's one:

$ rubyworker.rb

* Done with: 'do this!' in 0.686646707588058sec

* Done with: 'do this!' in 0.5178492461693734sec

* Done with: 'do this!' in 0.38852506368321216sec

And here's another:

$ rubyworker.rb

* Done with: 'do this!' in 0.8007668590674376sec

* Done with: 'do this!' in 0.39105215729062026sec

* Done with: 'do this!' in 0.20513470050165317sec

* Done with: 'do this!' in 0.7273595184529634sec

* Done with: 'do this!' in 0.23883835990736701sec

Workers keep churning until the queue is depleted and all jobs are performed.
This completes our overview of manager/worker type of messaging semantics.
Remember the key points here—manual_ack flag and prefetch.

Publish – subscribe
Another type of messaging semantics which is very popular within Mobiles today is
pub/sub, publish-subscribe, or "push" as it's called in the Mobile domain (Google—
Android: GCM, Apple: APNS).

Bunny and RabbitMQ lets you effortlessly model pub/sub. Let's see how this
happens by starting off with a publisher:

require "bunny"

conn = Bunny.new
conn.start

channel = conn.create_channel
exchange = channel.fanout("push")

exchange.publish("testing: 1,2,3.")
puts "* Sent."

conn.close

Chapter 10

[205]

Let's skip to the meat. We're creating a new type of object here on demand. We've
created a fanout exchange. In general, this kind of exchange in RabbitMQ and
AMQP is used to implement a pub/sub type of semantics.

To refresh our memory, when we push messages to a fanout exchange, they will
appear on every bound queue.

We will need the subscribers to be able to hook into this stream of messages from this
kind of exchange easily. This will mean that our subscribers will have to be created
and killed without much drama. In other words, they will be transient, and we will
create and bind them to the exchange in a transient way. Let's see the code for the
subscriber now:

require "bunny"

conn = Bunny.new
conn.start

channel = conn.create_channel
exchange = channel.fanout("push")
queue = channel.queue('', :exclusive => true)

queue.bind(exchange)

sub_id = rand(1000)
puts "Subscribed to topic 'push'."
queue.subscribe(:block => true) do |delivery_info, properties,
msg|
puts "Subscriber(#{sub_id}): got #{msg}."
end

channel.close
conn.close

So, here again, as we are skipping the connection and channel creation ceremonies,
we are presented with a new kind of construct, as in the same case of the publisher.
We create and bind to a fanout exchange, but now we make a special kind of queue.

We choose not to name the queue and make it exclusive. This will create the effect of
building a kind of an anonymous queue that's held by our process only. Given that
we want to run several subscribers (remember that we are building a pub/sub hub),
this fits us perfectly.

Let's give this thing a run and see what we're getting. We will again use the most
useful Unix 'watch' command for messages to keep being pushed by our publisher.

Ruby Client Programming

[206]

So, in one terminal, let's run the following:

$ watch ruby publisher.rb

This will immediately spawn into a process that keeps running the same command,
by a default of 2.0 seconds.

In multiple terminals, let's run the following command:

$ rubysubscriber.rb

And the outputs will soon appear as the following on Terminal 1:

$ rubysubscriber.rb

Subscribed to topic 'push'.

Subscriber(131): got testing: 1,2,3..

Subscriber(131): got testing: 1,2,3..

Subscriber(131): got testing: 1,2,3..

Subscriber(131): got testing: 1,2,3..

And on the other terminal, Terminal 2, we will find this:

$ rubysubscriber.rb

Subscribed to topic 'push'.

Subscriber(908): got testing: 1,2,3..

Subscriber(908): got testing: 1,2,3..

Subscriber(908): got testing: 1,2,3..

Subscriber(908): got testing: 1,2,3..

As far as we're concerned, this works; we have two different subscribers that output
the same kind of message previously pushed by a publisher!

Routing
We'll move onto another pillar of AMQP—routing. Let's see how we can intelligently
route messages to different recipients. In this case, we will model an e-mail service,
where every process has its own inbox. This is a bit similar to modeling an RPC
mechanism (which we've explored earlier):

require "bunny"

conn = Bunny.new
conn.start

Chapter 10

[207]

channel = conn.create_channel
exchange = channel.direct("mailbox")

puts "Sending to #{ARGV[0]}"
exchange.publish("testing: 1,2,3", :routing_key => ARGV[0])

conn.close

Here, we are creating a direct exchange. This kind of exchange will help us model a
routing semantics at the top of AMQP. We will publish it with a route, or address,
that we get from the command line with ARGV[0]; the rest is just gluing things up so
that the publisher will push to this address. Let's run it:

$ruby sender.rbamsterdam

* Sending to amsterdam.

It works! Now, let's set up the more complex yet simple enough recipient, which will
listen on a specified address or route:

require "bunny"

conn = Bunny.new
conn.start

channel = conn.create_channel
exchange = channel.direct("mailbox")
queue = channel.queue("", :exclusive => true)

puts "* Accepting messages on address: #{ARGV[0]}"
queue.bind(exchange, :routing_key => ARGV[0])

queue.subscribe(:block => true) do |delivery_info, properties,
msg|
puts "* Got #{msg}"
end

Let's walk through this code. First, after getting a connection and a channel, we again
set up a direct exchange, which will allow us to bind onto a specific route.

We then, similar to what we did with the pub/sub model, create an exclusive and
anonymous queue and bind to this exchange. When we bind—this is the important
part—we bind to the desired route as well.

Next up is our by-now familiar piece of subscription code, which takes a message
and prints it.

Ruby Client Programming

[208]

Let's see how everything runs. Start three terminals, keep one for the sender, and run
two of the recipients, each on a different address:

$ rubyrecipient.rbparis

* Accepting messages on address: paris

And for the second recipient, do as follows:

$ rubyrecipient.rbamsterdam

* Accepting messages on address: amsterdam

Now, let's run our sender; each time we will deliver to a different address. Keep a
good eye on the couple of other terminals, and you'll see them light up in each turn:

$ rubysender.rbparis

* Sending to paris.

rubysender.rbamsterdam

* Sending to amsterdam.

And now, the desired output on each of the terminals is shown here:

* Accepting messages on address: paris

* Got testing: 1,2,3

* Accepting messages on address: amsterdam

 * Got testing: 1,2,3

Nice! Routing is a powerful concept—so powerful that a lot of products have
been implemented easily just by reusing RabbitMQ's routing engine. Take a look
at a product called Sensu, for example, a widely deployed, highly scalable cloud
monitoring product, which is considered an evolution of Zabbix and Nagios.Sensu.
It connects the output from "check" scripts with "handler" scripts to create a robust
monitoring and alert system. Check scripts can run on many nodes and can report on
whether a certain condition is met, such as Apache is running. The handler scripts
can take an action such as sending an alert e-mail.

At its first commit, it was no more than 400LOC, which mostly "ride" on RabbitMQ's
routing capabilities—a very smart move!

Chapter 10

[209]

The real-time processing
It is time to move on to our real-world solution for real-time processing. By now, we
should have a great grasp of what Bunny is, and what it allows us to do in the space
of RabbitMQ.

To do real-time processing, we will need to be able to use the job queue/workers
semantics that we've seen just earlier; but by having this, we may want to just
handle the actual logic—what can we do to avoid rewriting the boilerplate that is a
RabbitMQ worker?

Furthermore, what can we do to avoid the boilerplate that is a production-grade
RabbitMQ worker? Such a production-grade worker should have available
configuration, logging, metrics, and a good way to abstract away all of the AMQP/
RabbitMQ gritty detail so that we're left with a familiar Ruby-like programming
model.

When I started doing this, Ruby didn't have anything to offer. I ended up building
my own library, and I've called it Sneakers.

Sneakers
Sneakers is defined as a performance background processing library for Ruby and it
is exactly that. Sneakers has its place with other scalable solutions on other platforms,
such as Python's celery, and Ruby's own Sidekiq.Sneakers library uses a hybrid
process-thread model, where many processes are spawned and many threads are
used per process. Hence, all your cores max out and you have best of both worlds.

Sneakers have processed billions of messages per year at my production projects,
handling very critical data, such as billing, logging, and user-tracking data. I've
literally put my and my company's money-making data in Sneakers' hands.

You can always find Sneakers at http://sneakers.io.

http://sneakers.io

Ruby Client Programming

[210]

Installing
Let's see how we can set up our environment for Sneakers worker development.
First, install it using Rubygems:

$ gem install Sneakers

Fetching: sneakers-1.0.2.gem (100%)

Successfully installed sneakers-1.0.2

Parsing documentation for sneakers-1.0.2

Installing ri documentation for sneakers-1.0.2

Done installing documentation for sneakers after 0 seconds

1 gem installed

Running the Sneakers system is composed of specifying the type of work to do work
is the class of worker and TitleScraper is returning root file. TitleScraper can
include all of our code and its dependencies, and in this case, our actual worker code.

Here's how we run our worker using sneakers_worker.rb, which we will write in a
few moments (remember to have a local working RabbitMQ broker up):

$ sneakers work TitleScraper --require sneakers_worker.rb

 __

 ,--' > Sneakers

 `=====

Workers: TitleScraper

Log: Console

PID: sneakers.pid

 Process control

==

Stop (nicely): kill -SIGTERM `cat sneakers.pid`

Stop (immediate): kill -SIGQUIT `cat sneakers.pid`

Restart (nicely): kill -SIGUSR1 `cat sneakers.pid`

Restart (immediate): kill -SIGHUP `cat sneakers.pid`

Reconfigure: kill -SIGUSR2 `cat sneakers.pid`

Scale workers: reconfigure, then restart

Chapter 10

[211]

==

2015-03-07T16:46:47Z p-71531 t-ov268zh7k WARN: Loading runner
configuration...

2015-03-07T16:46:47Z p-71531 t-ov268zh7k INFO: New configuration:
#<Sneakers::Configuration...>

2015-03-07T16:46:47Z p-71531 t-ov268zh7k WARN: Loading runner
configuration...

2015-03-07T16:46:47Z p-71531 t-ov268zh7k INFO: New configuration:
#<Sneakers::Configuration...>

2015-03-07T16:46:47Z p-71531 t-ov268zh7k WARN: Loading runner
configuration...

2015-03-07T16:46:47Z p-71531 t-ov268zh7k INFO: New configuration:
#<Sneakers::Configuration...>2015-03-07T16:46:47Z p-71546 t-ov268zh7k
INFO: Heartbeat interval used (in seconds): 2

2015-03-07T16:46:47Z p-71547 t-ov268zh7k INFO: Heartbeat interval
used (in seconds): 2

2015-03-07T16:46:47Z p-71548 t-ov268zh7k INFO: Heartbeat interval
used (in seconds): 2

This is a whole lot of logging. We can see special unique IDs assigned per process
and per thread, a logging level, and some internal AMQP detail; these things are
expected from a production grade worker class systems.

Next, let's see what it takes to make this quick worker:

require 'sneakers'
require 'logger'
Sneakers.logger.level = Logger::INFO

classTitleScraper
include Sneakers::Worker
from_queue 'sneakers_jobs'

def work(msg)
puts "hello sneakers: #{msg}"
ack!
end
end

As you can see, we require Sneakers, then a logger in order to configure a good level
of logging for the book (we don't want too much logging here!).

Ruby Client Programming

[212]

From then on, it looks like a plain Ruby. The DSL is specially designed to remind
you of other and older background job libraries, such as delayed_job, Resque, or
the now-very-popular (but Redis based) Sidekiq.

You make a class with a simple work method; it is your worker, which you can run,
test, and maintain in a very streamlined fashion.

Then, tell the class from where to pull messages with from_queue and make it into
a worker by mixing it with the Sneakers::Worker mixin argument. Since we're
in full control, we also pass an explicit ack!; here, although specifically for your
Sneakers workers, ack is implicit.

And for the producer, do as follows:

require 'sneakers'
Sneakers.configure
publisher = Sneakers::Publisher.new
publisher.publish('hello', :to_queue => 'sneakers_jobs')

Sneakers includes a convenience class called Sneakers::Publisher, which you
can use explicitly or, if you use Rails, you can use the community contributed class
called the Sneakers ActiveJob interface (this is out of the scope of the book, but feel
free to explore it).

In our publisher, we simply create a new one and push a message called 'hello' with
a simple target queue instruction called to_queue. That's about it.

If we run everything, we get the following:

$ruby sneakers_publisher.rb

2015-03-07T17:01:49Z p-74143 t-ow79rce6o DEBUG: Sent protocol
preamble

2015-03-07T17:01:49Z p-74143 t-ow79rce6o DEBUG: Sent
connection.start-ok

2015-03-07T17:01:49Z p-74143 t-ow79rce6o DEBUG: Heartbeat interval
negotiation: client = 2, server = 580, result = 2

2015-03-07T17:01:49Z p-74143 t-ow79rce6o INFO: Heartbeat interval
used (in seconds): 2

Chapter 10

[213]

2015-03-07T17:01:49Z p-74143 t-ow79rce6o DEBUG: Sent connection.tune-
ok with heartbeat interval = 2, frame_max = 131072, channel_max =
65535

2015-03-07T17:01:49Z p-74143 t-ow79rce6o DEBUG: Sent connection.open
with vhost = /

2015-03-07T17:01:49Z p-74143 t-ow79rce6o DEBUG: Initializing
heartbeat sender...

2015-03-07T17:01:49Z p-74143 t-ow79w6rfs DEBUG: Session#handle_frame
on 1: #<AMQ::Protocol::Channel::OpenOk:0x007fbf7383c7c0
@channel_id="">

2015-03-07T17:01:49Z p-74143 t-ow79w6rfs DEBUG: Session#handle_frame
on 1: #<AMQ::Protocol::Exchange::DeclareOk:0x007fbf7382f0e8>

2015-03-07T17:01:49Z p-74143 t-ow79w6rfs DEBUG: Channel#handle_frame
on channel 1: #<AMQ::Protocol::Exchange::DeclareOk:0x007fbf7382f0e8>

2015-03-07T17:01:49Z p-74143 t-ow79rce6o INFO: publishing <hello> to
[sneakers_jobs]

This was on the publishing side. Now, let's examine our worker side's log that has
been waiting for messages this whole time:

2015-03-07T17:01:44Z p-74133 t-ow3bhml78 INFO: Heartbeat interval
used (in seconds): 2

2015-03-07T17:01:45Z p-74134 t-ow3bhml78 INFO: Heartbeat interval
used (in seconds): 2

hello sneakers: hello

So, we conclude our sanity check of making background jobs with Sneakers. There
are no connection set up ceremonies; we're left at the same model that we already
know from the Ruby world—classes and simple code maintenance.

Sneakers was designed for a polyglot environment in a microservice architecture,
where you potentially have many components, platforms, and programming
languages and you glue them all together using a unified messaging solution such
as RabbitMQ. This is why you should also probably keep your messages easily
digestible with a common format such as JSON.

Ruby Client Programming

[214]

Lambda architecture
As we have seen briefly, Lambda architecture is a useful framework to think about
when designing big data applications. Let's take a look at the following diagram:

This is the Lambda architecture. It is a bit complex, but rightly so, as it stands as an
almost-holy-grail of data processing.

Let's break it down:

• Endpoints: This is the web/mobile/any collectors that accepts data from
clients. They're in charge to persist these data to a cold storage and a
streaming data queue. Essentially, they're making a data split.

• The real-time processing:
 ° Queue: This is the main facility uses for stream-splitting
 ° Real-time Aggregator: This is the entity that is responsible to feed

off each stream and create its own world of data in a custom-specific
way

 ° Storage engines: For each data to be aggregated and queried in a
scalable manner, we need to persist custom data to custom data bases

 ° Real-time Views: This case is same as the custom stores; we probably
will need a custom way to query these

Chapter 10

[215]

• Batch processing:

 ° Storage: This is used for raw data/event storage
 ° Batch Pipeline: Batch data processing—ETL, aggregations, and view

materialization
 ° Batch Views: Query engine and view layer

The real-time subsystem of Lambda architecture is a secret. We're basically saying
that we want to treat a single stream of data S in N different ways. Maybe, we want
to aggregate a sum to count instances and signal alerts and so on. This means we will
also need to split the data into N similar steams and feed it to N different workers.

Know a way to do this? Yes. RabbitMQ will support a fanout, which will duplicate
our streams, and it will also support different queues and internal fanout between
exchanges. The world of messaging is wide open for us.

The real-time processors
In this chapter, we will focus on a part of Lambda architecture, the meat of it— real-
time processors. As you might have guessed, the queuing solution that we will
pick is RabbitMQ; now, all that is left is for us to pick a technology or a library to
implement the processors in. For this, we'll pick Sneakers.

First, let's sketch out our actual data; let's build a message modeling user-
interaction/clicks with the help of the following:

• IP
• User agent
• Channel
• Event type
• Event start
• Event duration
• Event content sample
• Content URL

Ruby Client Programming

[216]

This is the raw data. Our secret sauce (and probably others') is to take this simplistic
data and extract even more from it. Can you see how? Take a look at the following:

• IP: Using IP-to-location, we can get information about the location of the user.
• User agent: Using device detection, you can learn about the user's devices

and the segmentation of the user. For example, if the user using an iPhone 6,
he probably is a more of an early-adopter. On some industries (advertising),
an iPhone user is worth a lot more than Android.

• Event content sample: Although, the user didn't tell us anything about
his locale, we can do natural language processing on the item that he was
actually looking at, and then we can deduce his language. This is also
worth a lot in some industries, and we never need to "bother" the user
with useless questions.

So, let's make a sample message and format our messages in JSON:

{
 "ip": "8.8.8.8",
 "user_agent": "Mozilla/5.0....ari/534.30",
 "channel": "mobile",
 "event_type": "view",
 "event_start": 1425819361,
 "event_duration": 53,
 "content_sample": "Cistern had graphs back … he past.",
 "content_url": "http://misfra.me/state-of-the-state-part-iii"
}

Key performance indicators (KPIs)
KPIs is used to enhance and measure the organization's strategy; so, they must
be chosen with accuracy and be set up clearly in order to make them useful. We
generally refer to this term as things we would like to measure. In the real-time
model, we're inverting the query. We define beforehand the conclusions and things
that we would like to deduce from the data. For example, just by seeing this single
message, I can already say I would like to understand:

• Average event duration and how long a user spends on an item?
• What percentage of the users use which channel and what users go on

Mobile, on Web, and so on?

Chapter 10

[217]

• Where are most of my users located at?
• When do most users perform actions?
• What is the distribution of content sources my users consume?

Let's take one of these KPIs—averages. What would we need to understand
averages? Well, from our basic school education, we know that we need the total
number of users and a list of all of their session times. Then, we divide the sum of all
session times by the number of users to gain the average session time of all users.

However, when doing real-time computation, an engineer should really understand
that since she is dealing with streams—all algorithms should also be adapted to
streams. The simple math that we just described expects the data to be ready before
calculation.

In the case of Lambda architecture and the real-time processing model, we have a
stream of data that we don't know the size of. We don't know when it will end, and
most certainly, we can't expect which data we will find on its receiving end.

So, this is where I introduce moving-averages. Computing averages seems to be
great for a streaming context. You can take a partial average and given a new sample
of data, include it into computation, based on the previously consumed data.

Since averages also get "old", we want to drop old samples.

That is, if you have N samples and a kth sample comes along, you take the AVG(N)
that you already computed, multiply it by the total N that you already counted, and
then add it to the regular Average formula with your new data sample, but remove
the old one.

Building averaging workers
Before diving into our implementation, I'd like to give a little bit insight about Redis.
Redis is in-memory data structure store used as database, cache, and message broker.
It supports data structures, such as strings, hashes, lists, sets, sorted sets with range
queries, bitmaps, hyperlog logs, and geospatial indexes with radius queries.

Ruby Client Programming

[218]

For now, let's assume that our window is big enough so that we don't need to drop
off old samples. Let's build a worker that will sum up our events. First, let's look at
the code of such a completed worker:

require 'sneakers'
require 'redis'
require 'logger'
require 'json'
Sneakers.logger.level = Logger::INFO

$redis = Redis.new

classAveragesWorker
include Sneakers::Worker
from_queue 'averages_stream'

def work(msg)
event = JSON.parse(msg)
duration = event['event_duration'].to_i
event_count = ($redis.get('event:count') || 0).to_i
event_avg = ($redis.get('event:avg') || 0).to_f

new_count = event_count + 1
new_avg = (event_avg*event_count + duration) / new_count*1.0

 # we are not using #inc, in order to avoid
 # introducing a data race condition.
 $redis.set('event:count', new_count)
 $redis.set('event:avg', new_avg)

puts "Computed average: #{new_avg}, count: #{new_count}"
ack!
end
end

So, we build our worker as usual, requiring sneaks and creating a class that mixes in
Sneakers::Worker argument. We also specify our queue as averages_worker field,
having assumed that our averaging workers will be facing a dedicated data stream.

Next up, we implement our work method. We parse our JSON message that is
pushed onto the queue and extract the event_duration field. This field is in second
resolution.

Chapter 10

[219]

Next up, we fetch the existing data from Redis. Redis is a simple key/value store
that you can use, which will have very little requirements on your base system. Let's
install it now:

Windows
Download the Redis package from http://redis.io.

Linux
You can run the following command in order to install Redis on Linux:

$ sudo apt-get install redis

Mac OS X
With the most useful homebrew, run the following:

$ brew install redis

You can then run Redis locally as instructed by your own package manager. For
more information, use the documentation on http://redis.io.

Continuing with the code, we then get and set values onto Redis:

event_count = ($redis.get('event:count') || 0).to_i
event_avg = ($redis.get('event:avg') || 0).to_f

This means we fetch values from the event:count and event:avg keys, and if
they're nil, we normalize to '0', which is acceptable in case of averages.

Next up, we compute the new average based on the old average and store it back to
Redis.

If you already know Redis, you also know that there's a command called INC. We do
not use it because the state that we are modifying must be atomic. We must compute
the average and counts atomically, and this is why each worker will explicitly set
both overwriting, whatever value were there before on Redis.

We finally print the result for our convenience and end the work with ack!.

http://redis.io
http://redis.io

Ruby Client Programming

[220]

We also modified our publisher and created event_publisher.rb in the following
way:

require 'sneakers'
Sneakers.configure
publisher = Sneakers::Publisher.new
publisher.publish(File.read('sample_message.json'), :to_queue =>
'averages_stream')

Let's see whether it is actually working; start the worker as follows:

$ sneakers work AveragesWorker --require averages_worker.rb

And now, push a couple messages, as follows:

$ rubyevent_publisher.rb

2015-03-08T13:29:13Z p-97040 t-ovcjatdy8 INFO: publishing <{

 "ip": "8.8.8.8",

 "user_agent": "Mozilla/5.0 (Linux; U; Android 4.0.3; ko-kr; LG-
 L160L Build/IML74K) AppleWebkit/534.30 (KHTML, like Gecko)
 Version/4.0 Mobile Safari/534.30",

 "channel": "mobile",

 "event_type": "view",

 "event_start": 1425819361,

 "event_duration": 53,

 "content_sample": "Cistern had graphs back in October 2014. I think
 I used my metricstore package. I'm not sure because I think I was
 switching storage engines every other week! I had both BoltDB and
 SQLite in the source code at some points in the past.",

 "content_url": "http://misfra.me/state-of-the-state-part-iii"

}

>to [averages_stream]

If you jump over to the worker terminal, you will see that it computes, saves state,
and that everything simply works.

2015-03-08T13:29:10Z p-97009 t-ouxjwqw9k INFO: Heartbeat interval
used (in seconds): 2

2015-03-08T13:29:10Z p-97010 t-ouxjwqw9k INFO: Heartbeat interval
used (in seconds): 2

Computed average: 53.0, count: 2

Computed average: 53.0, count: 3

Chapter 10

[221]

That's it. You've build the first piece of the real-time component of your Lambda
architecture. What's the best part? It is completely independent. It is loosely coupled,
doesn't require anything else—any existing codebase, and it will maintain and
evolve separately even by a separate team.

As a bonus, this kind of solution scales to thousands of messages per second using a
standard AWS EC2-large server. Once this is deployed, you will probably never need
to tend to change it again, it will just keep working.

Building the IP2Location worker
Since everything here is modular, we can continue to build a new worker that does
something completely different, but with the same message!

We want to turn every IP into an address by a process called ip-to-location.

First, let's make sure we are set up to do ip-to-location. We will use the popular
Maxmindip-to-location data base provider. Maxmind sells and also gives a free
version of IP databases, which stores a map of all IPs on the Internet to their
originating address.

The gem to interact with this database in the Ruby world is called geoip. Let's
install it:

$ gem install geoip

Next, you will need a copy of the maxmind database that is available for free at
http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat.gz.

After you have downloaded and extracted it to the same folder as where your code
lives in, it is ready to use.

I will start by showing you the completed worker:

require 'sneakers'
require 'logger'
require 'json'
require 'geoip'

Sneakers.logger.level = Logger::INFO

$geo = GeoIP.new('GeoLiteCity.dat')

class Ip2locationWorker
include Sneakers::Worker

http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat.gz

Ruby Client Programming

[222]

from_queue 'ips_stream'

def work(msg)
event = JSON.parse(msg)
target_ip = event['ip']
city = $geo.city(target_ip)
puts city
ack!
end
end

Again, simplicity is a key here. We store the geo database within a globally-available
$geo variable, and then we just extract our IP and query against the database. Also,
notice that we gave this worker a stream of its own as a separate queue.

Let's see how this worker performs when a message is pushed:

2015-03-08T16:56:41Z p-12153 t-oux39f2z4 INFO: Heartbeat interval
used (in seconds): 2

#<structGeoIP::City request="8.8.8.8", ip="8.8.8.8",
country_code2="US", country_code3="USA", country_name="United
States", continent_code="NA", region_name="CA", city_name="Mountain
View", postal_code="94040", latitude=37.385999999999996, longitude=-
122.0838, dma_code=807, area_code=650,
timezone="America/Los_Angeles", real_region_name="California">

Bam! Within 5 minutes of a bit of glue code and work, we have a production grade
worker that can do ip-to-location on demand. Again, no other worker had to be
modified; this is pure modular design.

Exploring sneakers
You just saw how to create production grade workers to form a production grade
real-time processing pipeline. The idea of production grade shouldn't be taken
lightly, because you would spend 20% of your time on your logic and 80% of your
time making operational decisions and steps, such as deploying, figuring out why
stuff doesn't work, and so on. Like the old saying—the devil is in the detail, and the
goal of Sneakers was to package up solutions for most of these details out of box.

Next up, we will touch on a few more of Sneakers' production-oriented features.

Chapter 10

[223]

Timeouts
You can't have workers take jobs that hold them up forever. You must bind the
resources you are using. In addition to holding up RAM and CPU, one less-obvious
resource is time, and as they say—time is money.

A Sneakers worker has configuration to limit this with the timeout_jobs_after
flag, where you specify the number of seconds you allow this job to take at the
maximum.

For example, take a look at the following code:

classProfilingWorker
include Sneakers::Worker
from_queue 'downloads',
:ack => true,
:timeout_job_after => 1

And you can also configure this globally, like this:

Sneakers.configure :timeout_job_after => 1

Job handling
Each job or task can be handled differently in your work method. You can signal back
to RabbitMQ, which is the result that you arrived at as far as messaging is concerned:

• The job is done—ack!

• The job has failed (by design)—reject!

• The job has failed (an exceptional error)—nack!

Metrics
Even without you knowing, Sneakers will automatically measure critical information
about your background jobs, such as message sizes and average, time to complete,
and so on. Sneakers exposes it to a default metrics handler which is a no-op.

However, Sneakers comes with three metrics handlers out of box:

• Logging metrics: This spits metrics to your log console
• Newrelic metrics: This pushes metrics to New Relic, a popular metrics company

Ruby Client Programming

[224]

• Statsd metrics: This pushes metrics to your Statsd server (Etsy's open-source
metrics aggregation daemon)

You can plugin the one that you wish to use by specifying it in the central configuration:

Sneakers.configure(:metrics =>
Sneakers::Metrics::LoggingMetrics.new)

This will cause all of the metrics to be spilled out to your terminal, which is useful
when you're debugging or developing locally on your machine.

Summary
Using RabbitMQ from Ruby is a pleasure. I can personally say that this combination
represents a set of two technologies that look so fitting together that one may think
they belong together.

We saw how to develop easy workers and simple messaging topologies using the
AMQP semantics, Bunny, and a Ruby library for RabbitMQ, which is one of the most
advanced out there over multiple platforms and programming languages.

We also saw how to with the little details of AMQP, assuming you want to build on
the worker abstraction with background jobs, and you want to build a production
proven worker solution with Sneakers.

We also explored Lambda architecture, and we saw how Sneakers helps you build
more content into it and how it is able to invest in it for your data processing products.

I can say assuredly that you can take these solutions today and build your data
science pipelines on them. It's what I have been doing for the last few years myself.
The next chapter will cover Python client programming for RabbitMQ.

[225]

Python Client Programming
In this chapter, we will continue with our exploration into RabbitMQ clients, but this
time in Python.

Python provides an almost perfect environment into this work, because it is dynamic
in nature and over the (many) years, it has established itself as an almost de-facto
toolset for backend engineers and data scientists. It is only fitting that during earlier
time, it has allowed great tooling to evolve, and we'll explore them here.

In this chapter, you will learn the following topics:

• Using RabbitMQ from Python with the help of a library called Pika
• Using Pika to implement a sample use case project
• Exploring how Pika will help you tackle almost any AMQP-related task
• Understanding Celery—a powerful background task library
• Understanding how the work we did so far adapts into Celery, why it is

better, and how to use its more-advanced usage

Case study
For this study, we'll choose the world of web scraping. Python is universally known
for this use, because if you're a python programmer, you're one of the following:

• A full-stack Python programmer, developing client and server applications
• A data scientist, using NumPy, scikit-learn, and so on
• A systems programmer, as Python comes standard with most, if not all,

Linux distributions
• A big-data programmer, utilizing Hadoop and Python-Hadoop streaming or

Python for building map-reduce jobs

Python Client Programming

[226]

A successful web scraping infrastructure for a successful product generates a lot of
data (a big data programmer) that we can learn from (a data scientist); it is rather
taxying to properly build at scale (a systems programmer), and somehow, you'd
want to turn all this into a product (a full stack Python programmer).

As you see, once you cover web scraping, you can build a lot of products; you can
also get into a lot of technological domains in the same programming language
and platform. And if this is not enough, any of these domains are a hot recruitment
targets today.

I hope this is enough motivation to explore Python and how RabbitMQ fits into this
world.

Getting Python dependencies
One of the easy things do in Python is getting dependencies—the idea of using the
libraries that you've chosen to integrate into your code, their dependencies, and well,
you get the picture.

Python comes with a few tools to do this, and you can pick what you wish based on
what works for you the best. Some of these are as follows:

• pip: This is a Python dependency manager
• easy_install: This is yet another Python dependency manager
• apt-get: This is available on Debian and Ubuntu Linux; the standard

package manager can also install Python packages

Pika
We'll start with a Python RabbitMQ client called Pika that offers a good balance
between low-level and high-level APIs and developer happiness. Other libraries such
as py-amqplib and txAMQP are also good to use, but they provide a different kind of
balance (mostly towards low-level) and will not be covered here. As always, you are
free to try them out, but my recommendation is that you try to do it only after you
have grasped a good understanding of Pika.

Installing Pika
Let's install Pika on our workstations.

Before this, let's ensure we have an appropriate package manager already
provisioned on our machines.

Chapter 11

[227]

On Linux (Ubuntu), type this at your terminal:

$ sudo apt-get install python-pip git-core

On Windows, type this:

First, make sure to use the setup tools installer at https://pypi.python.org/pypi/
setuptools. Then, run this command:

>easy_install pip

Now, we can install Pika.

Type these commands into your machine's terminal:

On Linux (Ubuntu) type this at your terminal:

$ sudo pip install pika

On Windows type this:

>pip install pika

Our first Pika client
Let's verify that we've got Pika installed properly by building a simple client and
server, or in other words, a producer and consumer that connect to our local RabbitMQ
broker instance. Here's how our producer.py file looks like:

#!/usr/bin/env python
importpika

print "* Connecting to RabbitMQ broker"

connection = pika.BlockingConnection(pika.ConnectionParameters(host='
localhost'))

channel = connection.channel()

channel.queue_declare(queue='pages')

#default empty exchange with routing key equal to the queue name #
will route the message to that queue

channel.basic_publish(exchange='',
routing_key='pages',

https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/setuptools

Python Client Programming

[228]

body='testing: 1, 2, 3')

print "* Done sending!"
connection.close()

Let's overview what we've accomplished here. Shortly after the Python Shebang
(#!/usr/bin/env python), we import Pika. This lets us use the RabbitMQ API as
described by Pika's API documents.

We start, as always, by opening a connection; in this case, a blocking connection.
There's also a non-blocking connection called a Select Connection whose name
is inspired from kpoll/epoll operating system mechanisms, which allow us to do
asynchronous I/O very easily and efficiently. For now, we'll stay with the still-well-
performing Blocking Connection.

Next up, we will build a Channel, which is what we're going to send data on with
AMQP to declare a queue. A note about declaring a queue—we can either let the
process use and expect a queue to be there when it gets started, and, if it is missing, it
should crash; or, we can instruct the process to build the queue if it is missing.

The way we chose to negotiate this dilemma is through building the queue if it is
missing: hence, Declare. It is best practice to do this, and there is no harm in creating
a missing queue; however, there is a deep pitfall here to pay respect to. That is, a
queue or exchange, once declared dynamically is created with the default properties
of the given library (in this case, Pika). And sometimes, for example, in the case of an
exchange in order to change a property, you'll have to recreate the object that you're
unhappy with.

Let's run this code, and later, continue going over it:

$ python producer.py
Traceback (most recent call last):
 File "producer.py", line 5, in <module>
 host='localhost'))
 File "/usr/local/lib/python2.7/site-packages/pika/adapters/blocking_
connection.py", line 130, in __init__
super(BlockingConnection, self).__init__(parameters, None, False)
 File "/usr/local/lib/python2.7/site-packages/pika/adapters/base_
connection.py", line 72, in __init__
on_close_callback)
 File "/usr/local/lib/python2.7/site-packages/pika/connection.py",
line 600, in __init__
self.connect()
 File "/usr/local/lib/python2.7/site-packages/pika/adapters/blocking_
connection.py", line 230, in connect

Chapter 11

[229]

error = self._adapter_connect()
 File "/usr/local/lib/python2.7/site-packages/pika/adapters/blocking_
connection.py", line 301, in _adapter_connect
raiseexceptions.AMQPConnectionError(error)
pika.exceptions.AMQPConnectionError: Connection to fe80::1%lo0:5672
failed: [Errno 61] Connection refused

Whoa! It crashed on us. By the looks of, after following the stack trace, the most
familiar looking keyword here is AMQPConnectionError, and surely enough, we see
Connection refused following after it.

Our RabbitMQ host isn't really running at all. I'll let you amend the problem by
running your RabbitMQ host while I fix mine.

This method of failing fast is great for learning. I always like to explore by surprise,
and surely, familiarizing yourself with the common errors of a library or a
framework very early in the learning process is one of the better programmer's secret
weapons.

A consumer
Now that we've verified that we've a RabbitMQ broker well and running on our local
machine (on local host), let's continue with the following code:

$ python producer.py
* Connecting to RabbitMQ broker
* Done sending!

So, this time it works. There should be a message waiting for us in the pages queue.
Let's quickly build a consumer to see whether we can fetch the items in the queue.

First though, let's make sure we didn't goof up, and there are messages in our newly
created queue. We'll use the immensely helpful rabbitmqctl tool:

$ rabbitmqctllist_queues
Listing queues ...
logs 0
pages 1
test_stress 0
testqueue 0

I have emphasized the queue that we are interested in, the pages queue, and you can
easily see it contains a message.

Python Client Programming

[230]

Now, for the consumer, we've the following:

#!/usr/bin/env python
importpika

def handler(ch, method, properties, body):
print "-> Handled: [%s]" % (body)

connection = pika.BlockingConnection(pika.ConnectionParameters(host='
localhost'))

channel = connection.channel()

print '* Handling messages.'

channel.basic_consume(handler, queue='pages', no_ack=True)

channel.start_consuming()

Let's go over the code. We'll again start with Shebang and import Pika, but the next
interesting bit is our handler, which we'll use to process our messages with. This
is where the meat of your consumers will usually be, all the rest will find its space
within the boilerplate category.

Unlike the producer, this consumer assumes there already is a queue called pages on
the broker.

Next, we will introduce the a basic_consume bit. This is where Pika and other
similar libraries for other languages shine. Notice that we're working without being
acknowledged by specifying no_ack=True. We'll come back to this later.

Where these kinds of mid-level libraries shine is by allowing you to just specify a
handling function which takes a message and processes it, and they'll take care of
managing the actual, which is perhaps less interesting to you, and the technical bits
of AMQP against the broker.

Chapter 11

[231]

Introducing the web scraper
Let's review a simple web scraper architecture:

Scheduler
The web changes often. It is a huge and dynamic beast. The scheduler is responsible
to make sure that the scraper will always represent data that is fresh and not stale. It
is free to do so by deciding at what rate to scrape it for each website or the page that
is being scraped; in other words, when is the next scraping going to happen.

In reality, you would want the scheduler to feed from a persistent data store that
holds all sources and their upcoming scraping time.

For example, you could hold a record that specifies that the website acme.org
will have to be scraped once every 5 minutes. You could even pour some more
sophistication into it. You can state that acme.org has to be scraped every 5 minutes
at day time, but at night time, in order to save your resources, a 30-minute cycle
would be good enough.

Whatever your scheduling policy is, it is encapsulated within the Scheduler domain.

Python Client Programming

[232]

Scraper
A scraper is responsible to get a URL, fetch its content over the network, parse it, and
possibly extract important information from it.

After extraction, it persists or outputs the findings in any agreed-upon way.

The scraper should be stateless, because in scale, you would want to deploy as many
of these as required (think about AWS autoscaling), and perhaps you could kill off
some of them, when the processing power isn't really needed anymore.

This is why the worker model is perfect here.

Having said that and being armed with our producer/consumer models, we can
now easily step it up a bit and build a web scraper.

Implementing the scheduler
We will start off with the base code of the producer. If you can think about it, you'll
find that we're only missing the scheduling piece from it.

For actual scheduling, we'll use the cool schedule library. Let's get it with pip:

$ pip install schedule
Downloading/unpacking schedule
 Downloading schedule-0.3.1.tar.gz
 Running setup.py (path:/private/var/folders/gw/xp4xsqt97957cc7hcgxd
0w0c0000gn/T/pip_build_dotan/schedule/setup.py) egg_info for package
schedule

Installing collected packages: schedule
 Running setup.py install for schedule

Successfully installed schedule

And we're done. Here's how we can use schedule (from the documentation):

import schedule
import time

def job():
print("I'm working...")

Chapter 11

[233]

schedule.every(10).minutes.do(job)
schedule.every().hour.do(job)
schedule.every().day.at("10:30").do(job)
schedule.every().monday.do(job)
schedule.every().wednesday.at("13:15").do(job)

while True:
schedule.run_pending()
time.sleep(1)

Because schedule is so developer-friendly, it is quite easy to understand what's
going on; it is almost plain English.

In the previous example, we imported schedule and we' defined a function called
job that we'll use to run. Sounds like a create place to push a message, right?

Continuing, we're sticking schedule.run_pending() within a never-ending while
loop. 'This is how we are going to get an always-on daemon process.

I think we can now build a proper scheduler:

#!/usr/bin/env python
importpika
import schedule
import time

urls = ["http://ebay.to/1G163Lh"]

print "* Connecting to RabbitMQ broker"

connection = pika.BlockingConnection(pika.ConnectionParameters(host='
localhost'))

channel = connection.channel()

channel.queue_declare(queue='pages')

def produce():
forurl in urls:
print("* Pushed: [%s]" % (url))
channel.basic_publish(exchange='', routing_key='pages', body=url)

schedule.every(10).seconds.do(produce)

Python Client Programming

[234]

while True:
schedule.run_pending()
time.sleep(1)

connection.close()

This example proves how simple Pika can make our lives. It's simply a glue that
holds a schedule and message together.

Let's go over it now.

We'll be holding our intended URLs in a simple URL array. This is the place where
you can swap it out with a real persistence layer (for example, either via Postgres or
MongoDB).

For the sake of the scope of this book, we'll imagine that this URL array is our
persistence layer.

Next up, we'll opening a connection, creating a channel, and finding or creating a
queue called pages, just as we did before; however, this time we mean business. This
time, we need this queue to hold our real URLs so that the next guy in line—Scraper
will be able to digest them.

In order for the schedule library to work, we need to define a function that will pass to
it. This function, as hinted before, is actually going over the URLs and pushes them one
by one (in the example, for simplicity, we are holding just one) onto the pages queue.

In the following lines, we are actually defining the schedule and building a small
harness that will check the schedule, execute schedule items, and repeat this process
forever; this is what the while loop is doing there.

In any case, if ever the while loop stumbles on an exception, we are sure to close a
connection so that we let the broker know that it can clean up resources and, well, it
contributes for us being a well-behaved RabbitMQ citizen.

Implementing the scraper
Scraper would be a system of copying content of other websites using web scraping.
First, we want to state a few of the things that we want to accomplish:

• Downloading a web page
• Parsing HTML
• Cherry-picking attributes from the HTML
• Saving the results

Chapter 11

[235]

For a modern way to fetch content from the web, we will avoid the standard urllib
library and go directly with the nicer requests library from the Python community.

For parsing and drilling into web pages, we'll use the almost de-facto library for this
in the Python world—BeautifulSoup.

Let's fetch these via pip:

$ pip install requests beautifulsoup
Requirement already satisfied (use --upgrade to upgrade): requests in
/Library/Python/2.7/site-packages/requests-2.2.1-py2.7.egg
Downloading/unpacking beautifulsoup
 Downloading BeautifulSoup-3.2.1.tar.gz
 Running setup.py (path:/private/var/folders/gw/xp4xsqt97957cc7hcg
xd0w0c0000gn/T/pip_build_dotan/beautifulsoup/setup.py) egg_info for
package beautifulsoup

Installing collected packages: beautifulsoup
 Running setup.py install for beautifulsoup

Successfully installed beautifulsoup
Cleaning up...

And now, let's sketch out the scraper based on our consumer skeleton:

#!/usr/bin/env python
importpika
import requests
fromBeautifulSoup import BeautifulSoup

def handler(ch, method, properties, url):
print "-> Starting: [%s]" % (url)
 r = requests.get(url)
soup = BeautifulSoup(r.text)
print "-> Extracted: %s" % (soup.html.head.title)

print "-> Done: [%s]" % (url)

connection = pika.BlockingConnection(pika.ConnectionParameters(host='
localhost'))

channel = connection.channel()

print '* Handling messages.'

Python Client Programming

[236]

channel.basic_consume(handler, queue='pages', no_ack=True)

channel.start_consuming()

We're going to go over the code, but worry not, since every library that we've used is
pretty awesome, our code is highly readable and concise.

We start again with our Shebang and importing Pika, requests, and
beautifulsoup. Next up, we beef up our handler from the previous consumer
skeleton such that, as promised, all the real logic is contained within it.

Fetching a URL is made very easy with requests; the URL's content is available
on the response object return to use by the get call within the text field. This is a
simple text, non-parsed and non-digested.

We'll use bautifulSoup to turn this raw text into an HTML tree so that we can drill
into the meaning from code, rather looking at an array of characters.

Accessing the title is easy with beautifulSoup; by specifying soup.html.head.
title, we get prime access to it, and all that's left to do is output it somewhere.

We are skipping storing the findings (such as the title) to a persistent store for the
sake of brevity. As with the scheduler persistent store, a good look at Postgres or
MongoDB will make sense here, but we'll skip it for the scope of this chapter and
simply output to the standard output.

Running the scraper
Let's run our scheduler first. Wait a bit, and it will start pushing URLs for the scraper
to bite at:

$ python scheduler.py
* Connecting to RabbitMQ broker
* Pushed: [http://ebay.to/1G163Lh]
* Pushed: [http://ebay.to/1G163Lh]
* Pushed: [http://ebay.to/1G163Lh]
* Pushed: [http://ebay.to/1G163Lh]

On the other end, we'll start our scraper. Feel free to start it on a different terminal,
and position it such that you'll have parallel visuals of both the scheduler and
scraper.

http://ebay.to/1G163Lh

Chapter 11

[237]

Your scraper will immediately go to work:

$ python scraper.py
* Handling messages.
-> Starting: [http://ebay.to/1G163Lh]
-> Extracted: <title> Killer Rabbit of Death w Pointy Teeth Monty
Python Blinking Red Eyes | eBay </title>
-> Done: [http://ebay.to/1G163Lh]
-> Starting: [http://ebay.to/1G163Lh]
-> Extracted: <title> Killer Rabbit of Death w Pointy Teeth Monty
Python Blinking Red Eyes | eBay </title>
-> Done: [http://ebay.to/1G163Lh]

We see that it has downloaded a page, and we are actually pulling out the <title>
element from each page! The way from here to pulling out product details and
building a sophisticated data-driven product based on Ebay's data (of course, please
adhere to Ebay's terms of service) is very, very short.

Handling failure
When building a robust system such as a scraper that needs to be on 24 x 7 and
perform reliably, several things can fail, but surprisingly, they can also be easily
fixed:

• Website errors
• Network errors (RabbitMQ connectivity)
• Programmer error (typos)

Handling programmer errors can be easily fixed by having proper testing, so 'I'll
leave that one to you.

However, we can divide the web and network errors into two classes:

• Persistent errors
• Transient/temporary errors

A persistent error is something that's not fixable with ease, for example, a disk
failure. A transient error is something that'll probably be fixed without our
interfering. A website going down and returning errors to our scraper download
code is not something that we can fix; however, since it is transient, we can save the
drama for later, and retry it on a later occasion.

A network glitch, disconnecting our TCP socket and causing the connection to our
RabbitMQ broker to break is also transient, and we can solve it by retrying the
connection again.

http://ebay.to/1G163Lh

Python Client Programming

[238]

Using acknowledgement
In order to properly handle the case where a web server that we need to fetch data
from goes down, we need to understand one thing. Once a worker fetches a message
from RabbitMQ with a no_ack model, which we have been using so far (feel free to
reread the code if this is the first time you've seen it), and if it fails, it will take the
message with it.

Unless it will only take the message with it once it is really finished working with it.
For this to work, we need to use the acknowledgement model from RabbitMQ.

Each worker, once really done with a message, must acknowledge the message back
to RabbitMQ, and only then will RabbitMQ sign the message off and remove it from
the queue.

Let's update our worker code to acknowledge messages:

#!/usr/bin/env python
importpika
import requests
fromBeautifulSoup import BeautifulSoup

def handler(ch, method, properties, url):
print "-> Starting: [%s]" % (url)
 r = requests.get(url)
soup = BeautifulSoup(r.text)
print "-> Extracted: %s" % (soup.html.head.title)

ch.basic_ack(delivery_tag = method.delivery_tag)
print "-> Done: [%s]" % (url)

connection = pika.BlockingConnection(pika.ConnectionParameters(host='
localhost'))

channel = connection.channel()

print '* Handling messages.'

channel.basic_consume(handler, queue='pages', no_ack=False)

channel.start_consuming()

I have emphasized the parts that have changed. We instruct RabbitMQ to use
acknowledgements with no_ack=false, which really is a negative-negative and
means ack=True.

Chapter 11

[239]

We're also using the basic_ack API from Pika in order to transmit an ACK frame
back to RabbitMQ.

This way, if a worker crashes due to any kind of exception, the message remains on
the Queue and a new, fresh worker will be able to have a go at it instead.

The Pika API
In this section, we'll cover the various knobs, settings, and API surface area that Pika
exposes to you. The programmer Pika is a python implementation of the AMQP 0-9-
1 protocol that tries to stay fairly independent of the underlying network support
library. Pika doesn't require threads. It takes care of to forbidding them either. The
same goes for greenlets, callbacks, continuations, and generators. Pika is available for
download via PyPI and can be installed using easy_install or pip:

pip install pika

You can also use this:

easy_installpika

Connecting
There are two ways to set up a connection with Pika. One is to explicitly specify
the kind of options you want and expect RabbitMQ to respect as part of a
ConnectionParameters object, and the other is by specifying a URL that lines out all of
the various parameters that you'd like.

Specifying a connection option through a unified URL is a lot more useful these
days, as most PaaS platforms, such as Heroku and their add-on partners (such as a
RabbitMQaddon), expect you to do it in this way to the promote dynamic behavior
of your application by setting a simple environment variable.

Let's start by showing a few examples of the URL parameters configuration option:

amqps://www-data:rabbit_pwd@rabbit1/web_messages

This URL represents a simple authenticated connection, a host named rabbit1 and a
virtual host called web_messages:

amqps://www-data:rabbit_pwd@rabbit1/web_messages?heartbeat_interval=30

Python Client Programming

[240]

This URL represents a simple authenticated connection, a host named rabbit1,
a virtual host called web_messages, and an explicit heartbeat_interval of 30
seconds:

amqp://www-data:rabbit_pwd@rabbit1/web_messages?heartbeat_
interval=30&ssl_options=%7B%27keyfile%27%3A+%27%2Fetc%2Fssl%2Fmykey.pe
m%27%2C+%27certfile%27%3A+%27%2Fetc%2Fssl%2Fmycert.pem%27%7D

This URL represents a simple authenticated connection, a host named rabbit1,
a virtual host called web_messages, and an explicit heartbeat_interval of 30
seconds; an explicit SSL certificates for the secure connection setup.

To use the URL parameters method, we simply use Pika:

pika.URLParameters('amqps://www:pwd@rabbit1/web_messages')

Here are some other options you can set up at the query-param level:

• backpressure_detection: This disabled by default. Pass a value of that
specifies how to handle clients that are too fast (previously, flow control in
RabbitMQ).

• channel_ma: This is the maximum number of channels allowed for this
connection.

• connection_attempts: This is default 1.
• frame_max: This is maximum frame size and is useful for performance

tuning.
• heartbeat_interval: This is the client/server heartbeat interval. In the past,

a small value of 5 seconds used to be good, but today, it is encouraged to go
with a higher value of 30.

• locale: This is the client locale and is useful if you use a different locale.
• retry_delay: This is the time of seconds to wait between connection retries.

It usually goes with connection_attempts.
• socket_timeou: default 0.25.
• ssl_options: URL encoded dict of the following keys: ca_certs,

cert_reqs, certfile, keyfile, ssl_version.

The next way to connect to a RabbitMQbroker is via an explicit
ConnectionParameters object; which is much like what we did so far in our
scraper project.

Chapter 11

[241]

We initialize a ConnectionParameters object simply with Pika:

pika.ConnectionParameters(host='localhost')

However, once we customize it, we can use the same parameter that we just
described for the URL parameters method:

pika.ConnectionParameters(host='localhost', heartbeat_interval=30,
retry_delay=2)

In either case, once you have a parameter's object in your hands, you can pass
it down to the actual connection strategy that you've chosen, and then grab a
connection:

connection = pika.BlockingConnection(pika.ConnectionParameters(host='
localhost'))

Using connection adapters
In the previous examples, BlockingConnection represents a connection adapter. A
connection adapter is the abstraction that Pika uses in order to hide away the actual
strategy it uses for connections. That is, whether it is being a blocking connection,
an async I/O event loop, or plugging into the back end that you're using, such as
Tornado or Twisted.

To cover most cases, you should only focus on the standard BlockingConnection,
and the SelectConnection adapters.

BlockingConnection
Let's survey the API of BlockingConnection (some of these may directly be relevant
to other types of connections, such as SelectConnection, since they are both a
connection). Following are the parameters of BlockingConnection:

• add_backpressure_callback: This adds a callback to be called when the
client experiences a backpressure event from the broker

• basic_nack: This finds out if the broker supports nack with this
• channel: This creates a new channel
• close: This disconnects and returns reply_code and reply_text

(both are optional)
• is_closed/is_closing/is_open: This finds out whether the connection

is open, closed, or is closing with these

Python Client Programming

[242]

BlockingChannel
Let's survey the API of BlockingChannel. This channel is the concept that you'll work
against mostly in your programming with RabbitMQ:

• add_on_close_callback: This adds a callback to be called when the channel
gets closed.

• add_on_flow_callback: This adds a callback to be called when the client
receives a flow control event.

• add_on_return_callback: This adds a callback to be called when the
publishing client gets a rejected publish from the server. This is a useful
callback to set up, and many don't really treat failure for publishing with
RabbitMQ. It can create a very creepy environment for a really hard bug in
production.

• basic_ack / basic_nack: This one is important. When you're using
acknowledge in your message processing semantics, you'll have to use this.
When calling this, you should always specify delivery_tag, which you'll
get on the consuming callback handler.

• basic_consume: This is another big one parameter. When developing
consumers and workers, it is most likely that you'll end up just using basic_
consume. The API is tight enough to suffice in most use cases. With basic_
consume you should also list out the following:

 ° The consumer_callback that is your handler function
 ° The queue that is your queue name
 ° The no_ack that tells the broker whether we want to acknowledge or

not (Boolean)
 ° The exclusive means 'not to allow any other on this queue (boolean)
 ° The consumer_tag is your own consumer tag, mostly don't use this
 ° The arguments is custom arguments for consume, mostly don't

use this

• basic_get: This is just as basic_consume, but it gets a single message right
then and there, including the queue and no_ack parameters.

• basic_publish: This is the main entry point to push messages onto the
RabbitMQ broker. Here, we have several important parameters to describe;
they're as follows:

 ° exchange: This is used to publish.
 ° routing_key: This is the routing key to bind on.

Chapter 11

[243]

 ° body: This is the message body.
 ° mandatory: If this is false, the server silently drops a message that

cannot be routed to a queue; otherwise it will signal the client.
 ° Immediate: Same as preceding, but now the server will queue the

message with no guarantees.
 ° basic_qos– Through this API, the client can control the flow of

messages in order to tweak and control the overall performance of
processing messages. It can tell the broker to send less messages on a
batch, a smaller or bigger messages batch size, and can tell whether to
apply to all channels:

 ° prefetch_size: This is the window size in terms of message size. It
is invalid when specifying no_ack.

 ° prefetch_count: This is the window size in terms of all the
messages. It is invalid when specifying no_ack.

 ° all_channels: This applies rules to all channels.
 ° basic_recover: This asks the broker to redeliver all

unacknowledged messsages.

• basic_reject: This is used to reject a message against the broker. Must
supply a delivery_tag you can also tell the broker to requeue with the
requeue boolean flag.

Declaring queues and exchanges
In the next few bits, we'll look at the Pika API designated for creating or declaring
queues and exchanges. You'll usually make these kinds of calls at the prolog of your
consumers or producers, and they will mostly feel like a 'setup code'.

Let's take a look at these now:

• exhange_declare: This creates an exchange if it doesn't already exist. Note
that if one exist and you are specifying a new one with different parameters,
there will be an error representing that. Here are the important parameters
that you can specify:

 ° exchange: This is the exchange name
 ° exchange_type: This is the type to use (direct, and more); consult

the more-detailed RabbitMQ docs for the types and their semantics
 ° passive: This is used to see if an exchange exists, but it doesn't

create one

Python Client Programming

[244]

 ° durable: This is used to survive a broker reboot—persistent exchange
 ° auto_delete: Remove this when done using it (no queues bound)
 ° internal: This can only be published into by other exchanges

• queue_declare: This creates a queue if it is not existing with a specified
sharing, durability, and other properties, shown as follows:

 ° queue: This queues names
 ° passive: This is passive name
 ° durable: This survives reboots—persistent
 ° exclusive: This allows you to share between consumers
 ° auto_delete: Delete this after a consumer disconnects

• queue_bind: This binds a queue to a specified exchange. You should provide
the following parameters:

 ° queue: This is the queue name
 ° exchange: This is the exchange name
 ° routing_key: This is the routing key
 ° no_wait: Do not wait for a bind ok

This finalizes most of the API that you will use on a day-to-day basis. There's really
not much to it, since Pika has been carefully crafted to simplify AMQP, as did other
Pika clones (or maybe Pika is a clone of?), such as Ruby's immensely popular bunny
library, which I'm deeply fond of.

There are other edge-case API endpoints for the Pika Channel and Connection
abstractions, such as deletion of queues, exchanges, unbinding, and cleanups,
and more. Should you wish to explore further, refer to the official Pika API
documentation.

Authentication
When adopting RabbitMQ universally over your architecture and especially in the
enterprise environment, security and authentication comes up immediately.

A few organizations would never even adopt a technology unless it has some widely
recognized tiers of security built into them. This is why RabbitMQ grew to support
connection authentication and SSL across the board.

Chapter 11

[245]

Plain credentials
As we've seen with the URL Parameters before, we can use HTTP Basic
authentication lined right there on the URL that we pass to Pika. However, we can
also use a more programmatic approach using the PlainCredentials object:

importpika

credentials = pika.PlainCredentials('www', 'pwd')
parameters = pika.ConnectionParameters('rabbit1',
5672
'/',
credentials)

From here now, we can pass parameters back to our connection.

SSL and external credentials
For those requiring a more secure authentication model, RabbitMQ and Pika allow
an SSL-based connection.

Since we haven't seen it before, let's describe how we can get a secure connection
through the URL Parameters method. To do this, we need to use a special amqps
scheme (the part that specifies what we know as the protocol in the URL):

amqps_URI = "amqps://" amqp_authority ["/" vhost]

This means we can draw up URLs like this:

amqps://user:pass@host:10000/vhost

Certificate authentication
To get at this kind of functionality programmatically, we need to use the External
Credential object. We'll also take advantage of this example to show how to specify
custom SSL certificates along the line:

ssl_options = ({"ca_certs": "caroot.pem",
 "certfile": "client.pem",
 "keyfile": "key.pem"})

parameters = pika.ConnectionParameters(
host,
 5671,credentials=ExternalCredentials(),
ssl=True,
ssl_options=ssl_options)

Python Client Programming

[246]

Here, we are specifying ssl_options including CA-Root, a Client pem, and our
actual key. We are switching credentials to External with ExternalCredentials
since we have the help of PKI (private keys and certificates), which is arguably much
stronger than a simple user/password combination.

Note that if we double-back to the URL method, we can again opt to use the pem
keys and certificates to specify our SSL options in the same way. To do this, we'll
need to encode our ssl_optionsdict right there on our URL using urllib:

url = urllib.urlencode({'ssl_options': {'ca_certs': 'caroot.pem',
'certfile': 'client.pem', 'keyfile': 'key.pem'}})

Background processing
This concludes our exploration of the Pika API. Still, there are other Pika gems
to be found within its API, but rest assured, not many. You're free to explore the
nitty-gritty details at the official ReadTheDocs API, available at https://pika.
readthedocs.org.

We'll continue by jumping a lot higher in the abstraction model and move up to the
big shot tools that'll allow us to do background or queue-based processing without
really getting our hands dirty with the AMQP protocol or even close.

Having just explored the Pika API gives you immense advantage over anyone else
on this same space, since you know how stuff works, and well, sometimes, you don't
need a very big hammer for a very small nail.

And now, let's explore big hammers.

Celery
Celery is a Distributed Task Queue. What this means is that in the context of
RabbitMQ and AMQP, it takes the entire AMQP model and shapes it; it folds only
the best ideas from it into providing a world-class, production-grade background
queue library for you to use.

Celery allows for swappable backends, and one of them is RabbitMQ, which we'll
explore here.

https://pika.readthedocs.org
https://pika.readthedocs.org

Chapter 11

[247]

Celery is mind-numbingly used almost everywhere in nearly every Python-based
company or start-up to do background jobs; it's also used in big corporations,
such as Mozilla; see more information at: https://github.com/celery/celery/
wiki#companieswebsites-using-celery.

Hopefully, you're excited about exploring Celery as I am; I hope you'll be amazed at
Celery's conciseness.

Installation
First, let's install celery as 'we did before with pip:

$ pip install celery

Then, let's make sure we have a working installation by verifying with a simple client:

from celery import Celery

app = Celery('pages_celery', broker='amqp://guest@localhost//')

@app.task
def work(msg):
printmsg

Type or paste this code into a file named celery_client.py. Now, let's run it:

$ python celery_client.py

If you get no errors you're good to go; however, notice that nothing happens. Celery
is a bit different because you need the Celery runner in order to actually make it
work against a broker; it's different from what we've experienced with Pika, where
you just ran your code and it connected, fetched, and processed messages right off
the bat.

Let's run the client properly in the same celery_client.py folder; run this:

$ celery -A celery_client worker –loglevel=info

https://github.com/celery/celery/wiki#companieswebsites-using-celery
https://github.com/celery/celery/wiki#companieswebsites-using-celery

Python Client Programming

[248]

This means that celery starts at worker mode using our celery_client module, and
it uses an info log level to work with. You will then see this nifty Celery banner:

-------------- celery@jondot-mbp.local v3.1.17 (Cipater)
---- **** -----
--- * *** * -- Darwin-13.4.0-x86_64-i386-64bit
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: tasks:0x104c8abd0
- ** ---------- .> transport: amqp://guest:**@localhost:5672//
- ** ---------- .> results: disabled
- *** --- * --- .> concurrency: 4 (prefork)
-- ******* ----
--- ***** ----- [queues]
-------------- .> celery exchange=celery(direct) key=celery

Given that the following log information is not packed with any error ones, you're
good to go. However, you may or may not notice that there's no work really
happening just yet. Let's see how to throw jobs at this worker.

We'll use the interactive Python shell to push an item:

$ python
Python 2.7.9 (default, Dec 13 2014, 22:35:32)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.56)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>fromcelery_client import work
>>>work.delay("hello world")
<AsyncResult: 85eb0e88-cc6a-4c0a-a7e5-dcf8fabd810a>

We see here that we can import the same bit of code that we just created for the
worker, and use it from the producer side. This creates a reality where the same code
is maintained both for worker and work invocation; and overall, it makes a cleaner
code experience for a given team.

On the other end of the queue, let's switch over to the terminal where our worker is
still running and verify that a task has been executed:

[2015-03-01 11:51:55,816: INFO/MainProcess] Received task: celery_
client.work[85eb0e88-cc6a-4c0a-a7e5-dcf8fabd810a]
[2015-03-01 11:51:55,817: WARNING/Worker-2] hello world
[2015-03-01 11:51:55,818: INFO/MainProcess] Task celery_client.
work[85eb0e88-cc6a-4c0a-a7e5-dcf8fabd810a] succeeded in
0.00152281699957s: None

Chapter 11

[249]

We see our hello world message printed clearly! That's it, basically. You're left with
a clean, purposeful code, which doesn't leak any kind of AMQP implementation
detail on one side; and on the other side, you can trust that Celery packs a painfully
major punch for the future and could tackle any kind of background processing
scenario you might give it.

Let's sculpt our Pika-based scraper into Celery and hope to see how it cleans up our
code. To do this, we only need to change the worker. The producer will be a simple
call onto the worker, just as we did now.

Celery scraper
Let's start by rewriting our Pika scraper:

#!/usr/bin/env python
import requests
fromBeautifulSoup import BeautifulSoup
from celery import Celery

app = Celery('celery_pages', broker='amqp://guest@localhost//')

@app.task
def scrape(url):
print "-> Starting: [%s]" % (url)
 r = requests.get(url)
soup = BeautifulSoup(r.text)
print "-> Extracted: %s" % (soup.html.head.title)
print "-> Done: [%s]" % (url)

Wow. The code looks a lot cleaner and a lot shorter. Notice that we don't need to
specify a lot of implementation detail in terms of RabbitMQ/AMQP—just a broker's
location and a name of a queue. There's also no kind of job acknowledgement,
because the Celery framework takes care of it all.

Celery scheduler
We still need to schedule jobs in. We start again by rewriting the previous Pika
scraper:

#!/usr/bin/env python
import schedule
import time
from celery import Celery

Python Client Programming

[250]

fromcelery_scraper import scrape

app = Celery('celery_pages', broker='amqp://guest@localhost//')

urls = ["http://ebay.to/1G163Lh"]

def produce():
forurl in urls:
scrape.delay(url)
print("* Submitted: [%s]" % (url))

schedule.every(10).seconds.do(produce)

while True:
schedule.run_pending()
time.sleep(1)

Notice that we are reaching out to the celery_scraper module and pulling the
scrape task to later use it in our produce callback.

We again initialize Celery by pointing it to a broker location (using the familiar
AMQP URL) and queue.

Let's run and see how it all works together. Again, to highlight the process, we'll
spawn a worker (or any number of these as needed); we'll also spawn the scheduler
daemon in another terminal.

In production, you would automate such a thing using Foreman or an operating-
system's init mechanisms such as Upstart or Systemd under Linux.

So, here we go; let's start the scraper via the Celery runner:

$ celery -A celery_scraper worker –loglevel=info
-------------- celery@jondot-mbp.local v3.1.17 (Cipater)
---- **** -----
--- * *** * -- Darwin-13.4.0-x86_64-i386-64bit
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: celery_pages:0x102b6c9d0
- ** ---------- .> transport: amqp://guest:**@localhost:5672//
- ** ---------- .> results: disabled
- *** --- * --- .> concurrency: 4 (prefork)
-- ******* ----
--- ***** ----- [queues]

Chapter 11

[251]

-------------- .> celery exchange=celery(direct) key=celery

[tasks]
 . celery_scraper.scrape

[2015-03-01 12:02:22,015: INFO/MainProcess] Connected to amqp://
guest:**@127.0.0.1:5672//
[2015-03-01 12:02:22,030: INFO/MainProcess] mingle: searching for
neighbors
[2015-03-01 12:02:23,039: INFO/MainProcess] mingle: all alone
[2015-03-01 12:02:23,052: WARNING/MainProcess] celery@jondot-mbp.local
ready.

We see that it is up and running. And now, for the scheduler that will produce work,
we have the following code:

$ python celery_scheduler.py
* Submitted: [http://ebay.to/1G163Lh]
* Submitted: [http://ebay.to/1G163Lh]
* Submitted: [http://ebay.to/1G163Lh]

Now, let's see what happened in the worker world:

[2015-03-01 12:02:25,051: INFO/MainProcess] Received task: celery_
scraper.scrape[1a5dc8c3-a6c8-461a-9431-1a7690652a77]
[2015-03-01 12:02:25,052: INFO/MainProcess] Received task: celery_
scraper.scrape[d28f137f-3811-4dcc-a51b-f5ece53dfb40]
[2015-03-01 12:02:25,053: WARNING/Worker-1] -> Starting: [http://ebay.
to/1G163Lh]
[2015-03-01 12:02:25,053: WARNING/Worker-2] -> Starting: [http://ebay.
to/1G163Lh]
[2015-03-01 12:02:25,065: INFO/Worker-1] Starting new HTTP connection
(1): ebay.to
[2015-03-01 12:02:25,065: INFO/Worker-2] Starting new HTTP connection
(1): ebay.to
[2015-03-01 12:02:25,517: INFO/Worker-2] Starting new HTTP connection
(1): www.ebay.com
[2015-03-01 12:02:25,519: INFO/Worker-1] Starting new HTTP connection
(1): www.ebay.com
[2015-03-01 12:02:26,952: WARNING/Worker-2] -> Extracted: <title>
Killer Rabbit of Death w Pointy Teeth Monty Python Blinking Red Eyes |
eBay </title>
[2015-03-01 12:02:26,953: WARNING/Worker-2] -> Done: [http://ebay.
to/1G163Lh]

http://ebay.to/1G163Lh

Python Client Programming

[252]

[2015-03-01 12:02:26,953: INFO/MainProcess] Task celery_scraper.
scrape[1a5dc8c3-a6c8-461a-9431-1a7690652a77] succeeded in
1.901043879s: None
[2015-03-01 12:02:26,969: WARNING/Worker-1] -> Extracted: <title>
Killer Rabbit of Death w Pointy Teeth Monty Python Blinking Red Eyes |
eBay </title>
[2015-03-01 12:02:26,969: WARNING/Worker-1] -> Done: [http://ebay.
to/1G163Lh]
[2015-03-01 12:02:26,970: INFO/MainProcess] Task celery_scraper.
scrape[d28f137f-3811-4dcc-a51b-f5ece53dfb40] succeeded in
1.917738609s: None
[2015-03-01 12:02:31,226: INFO/MainProcess] Received task: celery_
scraper.scrape[721c2fbd-8625-45da-b690-822665961038]
[2015-03-01 12:02:31,227: WARNING/Worker-3] -> Starting: [http://ebay.
to/1G163Lh]
[2015-03-01 12:02:31,234: INFO/Worker-3] Starting new HTTP connection
(1): ebay.to
[2015-03-01 12:02:31,691: INFO/Worker-3] Starting new HTTP connection
(1): www.ebay.com
[2015-03-01 12:02:33,010: WARNING/Worker-3] -> Extracted: <title>
Killer Rabbit of Death w Pointy Teeth Monty Python Blinking Red Eyes |
eBay </title>
[2015-03-01 12:02:33,010: WARNING/Worker-3] -> Done: [http://ebay.
to/1G163Lh]
[2015-03-01 12:02:33,011: INFO/MainProcess] Task celery_scraper.
scrape[721c2fbd-8625-45da-b690-822665961038] succeeded in
1.784036434s: None

Our tasks are happily processed by our worker! To me this is awesome; Celery lets
you write only the code that you need, resulting in a very good signal-to-noise ratio
for you—the developer.

Exploring Celery
Just to give you an idea about the amount of work Celery does for you, let's breeze
through a couple of other things that you can do with the help of Celery

Scheduling
Well, surprise! The scheduler that we have implemented is so common a pattern
that the Celery framework already has a generic one in its ecosystem. Let's see how
to use it:

Chapter 11

[253]

fromcelery.schedules import crontab

CELERYBEAT_SCHEDULE = {
Executes every Monday morning at 7:30 A.M
'add-every-monday-morning': {
'task': 'tasks.add',
'schedule': crontab(hour=7, minute=30, day_of_week=1),
'args': (16, 16),
},
}

You'll notice that we can specify a schedule here using a crontab-style schedule, and
we can also mention the task and arguments that we want to schedule. This is quite
simple and efficient.

We can then start the scheduling service called beat. We then start it with the
following code:

$ celery -A proj beat

For more information regarding scheduling, see http://docs.celeryproject.org/
en/latest/userguide/periodic-tasks.html.

HTTP hook tasks
Some tasks will look the same no matter what frameworks you implement them for.
One of these is the task of integration between systems. A typical scenario would be
your code against another system that you don't have access to its code, belongs to a
different company, or is just written in another language.

The way to integrate this is with the help of a web hook. This means that the entity
you want to integrate with will expose functionality via a simple HTTP call that you
can make. A famous example by now would be Github's web hook, which allows
you to integrate against events such, as commits, pull requests, and so on.

What you would do in the context of Celery is just use a boilerplate task. But before
this, let's assume we have a simple route defined in Ruby on Rails (or any other
platform, as long as it is radically different than ours for the sake of this example):

def hello(p)
res = {:status =>'success', :retval => "hello #{p}"}
render :json => res
end

http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html.
http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html.

Python Client Programming

[254]

This will simply return the hello string in a JSON data structure when called via
HTTP (assuming we plug it into a controller and set up a route to it, but this is
beyond the scope for now).

You can then try it out in the interactive Python shell:

>>>fromcelery.task.http import URL

>>>res = URL('http://example.com/hello').get_async("world")

This concludes our session into hooks.

Other Celery features
Celery sports additional powerful features, shown as follows:

• Job Orchestration: When you arrive at the point where you're looking at a
complex mesh of jobs with interdependencies, Celery lets you describe this
graph with simple functional building blocks, such as group, map, mapstar,
and so on. It will then resolve these automatically for you, leaving you with a
single result to wait for.

• Task Routing: This is the place where Celery lets you touch at core
messaging semantics, such as fan-out, and apply them to your own tasks and
workers. Most of the functionalities relate directly to the RabbitMQ back end.

• Monitoring and Management: Celery packs its own tooling for this.
Although, RabbitMQ offers its own rabbitmqctl tool, Celery's tool offers
insights into the Celery model, such as all states of tasks, queues, and more.

• Advanced Worker Semantics: Celery maintains a gossip network of all
workers. This means that should you want, you could implement advanced
mechanics, such as worker to worker introspection, job stealing logic, and
shared worker state, among other things.

These just scratch the surface of what Celery packs. Since we cannot cover the
entirety of the framework, we'll sadly stop here. But, feel free to continue exploring
Celery. With this kind of framework, you can build very successful products and
even a career on, so it is worth while to know it well.

Chapter 11

[255]

Summary
To conclude this chapter, let's review what we have learned:

• Python and the python ecosystem: With regards to RabbitMQ, we have
shown how easy it is to have the first step into the AMQP world.

• Pika: We made a deep dive into Pika, shown how simple it is to implement
a common producer and consumer

• Scraper project: We have implemented a simple scraper backbone that
you can use in your future projects, using just Pika. Simplicity is key here,
because more often than not, people can over-complicate things.

• Pika API: We have covered the important surface of Pika's API and
understood which scenarios they might come useful for.

• Celery: We have introduced the de-facto background processing framework
for Python that relies on RabbitMQ primarily (as well as other backends)

• Celery Scraper: We have shown how we can easily, almost automatically
migrate the "old" Scraper code into Celery, and seen how cleaner the code is.

• Celery features: We went over some other celery features, including
scheduling and HTTP hooks. And saw that in some point, Celery even
implements our own custom code off-the-shelf (scheduler) within the
Scraper project.

After reading this chapter, I advise you to remember Celery and Pika and learn them
well in this order.

In your day-to-day Python work, using Celery will feel as a second language and
using such proper tooling for background jobs will give you the X-Factor against any
other Python programmer.

[257]

Index
A
access control

applying 138, 139
acknowledgement

using 238, 239
Advanced Message Queuing Protocol

(AMQP)
about 4, 47
elements 48
URL 4

Advanced Message Queuing Protocol
(AMQP), elements

bindings 50
exchanges 50
message flow 49
message queues 50

Advanced Message Queuing Protocol
(AMQP), functional specifications

about 51
exchange types 52
messages 51, 52
virtual hosts 52

Amazon elastic compute cloud (EC2) 14, 15
AMQP model

exploring, with Bunny 201
publish - subscribe 204-206
routing 206-208
workers 201-204

B
bindings 50
bulk message, Collaborative Software case

study
receiver 167

sender 166
sending 165, 166

Bunny
and Ruby 196
consumer 200, 201
installing 197, 198
producer 198-200
using 198

C
Celery

about 246, 247
features 254
HTTP Hook tasks 253, 254
installing 247-249
scheduler 249-252
scheduling 252, 253
scraper 249

Client package, RabbitMQ Java client API
about 149
Channel 150
Connection 149
exchanges 151
messages, consuming 153
messages, publishing 151, 152
messages, receiving asynchronously 154
messages, receiving synchronously 153
queues 151

cluster commands 100
clustering

about 60
cluster nodes, updating 67, 68
cluster node types, changing 66, 67
clusters, creating 61, 62

[258]

cluster status, checking 65
settings 69, 70

Collaborative Application case study 143
Collaborative Software case study

about 144
client implementations 155
sequence diagram 145, 146
use cases 144

Collaborative Software case study, client
implementations

bulk message 165, 166
distributed tasks, creating 180
file message 169
group message 162
model classes 155
RPC message 173
single message 159
tasks, creating 177

command line
management via 100

command-line tools 119-125
conditionals 85
configuration, RabbitMQ

about 19, 20, 26-30
configuration file 19
environment variables 19
runtime parameters 20

D
dependency injection 183
distributed tasks, Collaborative Software

case study
creating 180
task creator 181
task handler clients 182

E
Erlang

about 81
concurrent programming 87-90
conditionals 85
expressions 82
functions 84, 85
lists 83, 84

looping 86, 87
modules 84, 85
tuples 83, 84
variables 82

Event Driven Architecture (EDA) 40-43
exchange types, Advanced Message

Queuing Protocol (AMQP)
about 52
direct exchange type 52
fan-out exchange type 53
headers exchange type 54
topic exchange type 54

expressions 82

F
failure

handling 237
federation

about 58, 59
Policies 59
Upstreams 59
Upstream sets 59

file message, Collaborative Software
case study

receiver 171
sender 169
sending 169

First-In-First-Out (FIFO) 50

G
geoip 221
group message, Collaborative Software

case study
receiver 164
sender 163
sending 162

H
Homebrew

URL 10

I
Inversion of Control (IoC) 183
ip-to-location 221

[259]

J
Java 146
Java for Enterprise Edition framework

(J2EE) 147
Java Message Service (JMS) 147, 148
JavaScript Object Notation (JSON) 155

K
key performance indicators (KPIs) 216, 217
Kryo 155

L
Lambda architecture 214
lists, Erlang 83, 84

M
management, via command line

cluster commands 100
Miscellaneous commands 102, 103
user commands 101
virtual host and permission

commands 101, 102
management, via REST API 109, 118
management, via web plugin 104-109
message brokers 2, 3, 45, 46
message consumers 46
Message Oriented Middleware

(MOM) 40, 41
message producers 45
message queue 2, 3
messaging

about 35, 36, 46, 47
addressing scalability 38
enterprise messaging 39, 40
Event Driven Architecture (EDA) 42, 43
heterogeneous integration 37, 38
Message Oriented Middleware 41
software architectures 40
software systems, coupling 36, 37

messaging, concepts
about 44
message brokers 45, 46
message consumers 46
message producers 45
messages 46

metrics, Sneakers
logging 223
newrelic 223
statsd 224

metronome plugin 90-96
miscellaneous commands 102, 103
model classes, Collaborative Software

case study
defining 155
file message 157
JSONMessage interface 155
Message model 156
tasks 158

Munin 130, 131

N
Nagios 127-129

P
Pika

about 226
consumer 229, 230
first Pika client 227-229
installing 226, 227

Pika API
about 239
authentication 244
background processing 246
BlockingChannel 242, 243
BlockingConnection 241
certificate authentication 245, 246
connecting 239-241
connection adapters, using 241
credentials, plain 245
credentials, SSL and external 245
queues and channels, declaring 243, 244

[260]

plugins
configuring 79
custom plugin development 80
default list 77, 78
disabling 74, 76
enabling 74, 76
Erlang, basics 81
installing, from third party sources 76
managing 73
metronome plugin 90-96
rabbitmq-plugins 74
URL 90

ProtoBuf 155
PubSub 165
Python dependencies

getting 226

R
RabbitMQ

about 1, 5
clustering 60
cluster nodes, updating 67, 68
cluster node types, changing 66, 67
clusters, creating 61, 62
cluster status, checking 63-65
command-line tools 119-125
federation 59
high reliability 58
load balancing, for high availability of

queues 70, 71
security 135
settings, clustering 69
starting 15
starting, on Linux 17, 18
starting, on Mac OS X 17, 18
starting, on Windows 16
URL 12

rabbitmqadmin 126
rabbitmqctl 119
RabbitMQ environment variables

about 20, 21
common 22, 24
Unix-specific default location 24
Windows-specific default location 25

RabbitMQ, installing
about 6, 7
Amazon elastic compute cloud (EC2) 14, 15
on Fedora 13, 14
on Mac OS X 10, 11
on Ubuntu 12, 13
on Windows 8, 9

RabbitMQ Java client API
about 148
Client package 149
com.rabbitmq.client package 149
com.rabbitmq.tools 149
com.rabbitmq.utility 149

rabbitmq-plugins 74
RabbitMQ Random Exchange Type

plugin 76
Rbenv 197
Real Time Analytics

big data 194, 195
case study 193
data issues, solving 195
medium data 195
small data 194

real-time processing 209
Remote Procedure Call (RPC) 173
REST API

management via 109-118
routing 206-208
RPC message, Collaborative Software case

study
about 173
RPC client 173
RPC server 175

rpm 13
Ruby

and Bunny 196
installing, on Linux 196
installing, on OSX/Mac 197
installing, on Rbenv 197
installing, on Windows 196

runtime parameters
about 31
memory management 33
parameter management 32
policy management 32

[261]

S
scheduler

implementing 232-234
URL 253

scraper
implementing 234-236
running 236, 237

Secure Sockets Layer (SSL)
CA certificates 141
certificates 141
keys 141
support, enabling 142
support, in RabbitMQ 141

security
about 135
vulnerabilities 136

Shovel 58
Simple Authentication and Security Layer

(SASL) authentication 140, 141
Simple Queue Service 14
single message, Collaborative Software

case study
receiver 161
sender 160
sending 159

Sneakers
about 209
averaging workers, building 217-221
exploring 222
installing 210-213
IP2Location worker, building 221, 222
job handling 223
key performance indicators (KPI) 216, 217
Lambda architecture 214, 215
metrics 223, 224
real-time processors 215, 216
timeouts 223
URL 209

Spring AMQP
about 184
private messages, sending 190
PubSub messages, sending 187
receiver, coding 187
sender, coding 186

single message, sending 184
spring config, for private messages 190
spring config, for PubSub messages 188
spring config, for single message 185

Spring framework 183

T
tasks, Collaborative Software case study

creating 177
task creator 177
task handler 179

topic-exchange 190
tuples 83, 84

U
user commands 101

V
variables 82
virtual host and permission commands 101
vulnerabilities

about 136
for authentication and authorization 136
information leakage 136
session management 136
solutions 137
URL 136

vulnerabilities, solutions
authentication and authorization 137
information leakage, fixing 137
session management 137

W
weak-FIFO 50
web plugin

about 126
management via 104-109

web scraper
about 231
scheduler 231
scraper 232

web scraping 225, 226

[262]

Y
yum 13

Z
Zabbix 131-133

Thank you for buying
Mastering RabbitMQ

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Instant RabbitMQ Messaging
Application Development How-to
ISBN: 978-1-78216-574-3 Paperback: 54 pages

Build scalable message-based applications with
RabbitMQ

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Learn how to build message-based applications
with RabbitMQ using a practical Node.js
ecommerce example.

3. Implement various messaging patterns
including asynchronous work queues, publish
subscribe and topics.

RabbitMQ Cookbook
ISBN: 978-1-84951-650-1 Paperback: 288 pages

Over 70 practical recipes to help you develop
messaging applications using RabbitMQ with the
help of plenty of real-life examples

1. Create scalable distributed applications with
RabbitMQ.

2. Exploit RabbitMQ on both Web and mobile
platforms.

3. Deploy message services on cloud computing
platforms.

Please check www.PacktPub.com for information on our titles

RabbitMQ Essentials
ISBN: 978-1-78398-320-9 Paperback: 182 pages

Hop straight into developing your own messaging
applications by learning how to utilize RabbitMQ

1. Refresh your knowledge of the basics of
message-orientated architecture and witness
how powerful RabbitMQ can be when building
your messaging applications.

2. Discover the strategies behind increasing
the scalability and fault tolerance of your
applications.

3. Gain a deep and practical understanding of
RabbitMQ through the journey of Clever Coney
Media, a fictitious company with real-world
problems.

Play Framework Cookbook
ISBN: 978-1-84951-552-8 Paperback: 292 pages

Over 60 incredibly effective recipes to take you under
the hood and leverage advanced concepts of the Play
framework

1. Make your application more modular, by
introducing you to the world of modules.

2. Keep your application up and running in
production mode, from setup to monitoring it
appropriately.

3. Integrate play applications into your CI
environment.

4. Keep performance high by using caching.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Message brokers and message queue
	Message brokers
	Message Queues

	An introduction to the advanced message queue protocol
	An overview of RabbitMQ
	Installation of RabbitMQ
	Windows
	Mac OS X
	Ubuntu
	Fedora
	Amazon elastic compute cloud (EC2)

	Starting RabbitMQ
	Starting RabbitMQ on Windows
	Other OSes (Linux, Mac OS X)

	Summary

	Chapter 2: Configuring RabbitMQ
	Overall configuration of RabbitMQ
	The RabbitMQ environment variables
	Common environment variables
	Unix-specific default location
	Windows-specific default location

	The configuration file
	Runtime parameters
	Parameter management
	Policy management
	Memory management

	Summary

	Chapter 3: Architecture and Messaging
	Messaging and its use cases
	Coupling of the software systems
	Heterogeneous integration
	Addressing scalability

	Enterprise messaging
	Messaging-related software architectures
	Message oriented middleware – Architecture
	Event-driven architecture

	Messaging concepts
	Message producers
	Message brokers
	Message consumers
	Messages

	Advanced Message Queuing Protocol (AMQP)
	AMQ elements
	Message flow
	Exchanges in AMQ
	Message queues
	Bindings

	Functional specifications of AMQP
	AMQP messages
	Virtual hosts
	Exchange types

	Summary

	Chapter 4: Clustering and High Availability
	High reliability in RabbitMQ
	Federation in RabbitMQ
	Clustering in RabbitMQ
	Creating clusters
	Checking the cluster status
	Changing the cluster node types
	Updating cluster nodes
	Clustering the settings of RabbitMQ
	Load balancing for high availability of queues
	Summary

	Chapter 5: Plugins and Plugin Development
	Plugin management and default plugins
	Enabling and disabling plugins
	Installing plugin from third-party sources
	Default plugin list

	Plugin configuration
	Custom plugin development
	Basics of Erlang
	Variables and expressions
	Tuples and lists
	Functions and modules
	Conditionals
	Looping in Erlang
	Concurrent programming

	Simple RabbitMQ metronome plugin

	Summary

	Chapter 6: Managing Your RabbitMQ Server
	Management via a command line
	Cluster commands
	User commands
	Virtual host and permission commands
	Miscellaneous commands

	Management via a web plugin
	Management via a REST API
	Summary

	Chapter 7: Monitoring
	RabbitMQ command-line tools
	Web plugins
	Nagios
	Munin
	Zabbix
	Summary

	Chapter 8: Security in RabbitMQ
	An brief introduction to security in RabbitMQ
	Vulnerabilities
	Information leakage
	Session management
	Authentication and authorization

	Solutions to the vulnerabilities
	Fixing information leakage
	Session management
	Authentication and authorization

	Applying access control
	Providing SASL authentication
	SSL support in RabbitMQ
	Keys, certificates, and CA certificates
	Enabling SSL support

	Summary

	Chapter 9: Java RabbitMQ Client Programming
	Case study
	Use cases
	Interaction diagram – sequence diagram

	Application language – Java
	Java Message Service (JMS)

	RabbitMQ Java client API
	Client package in detail
	Connection
	Channel
	Exchanges
	Queues
	Publishing messages
	Consuming messages

	Case study – client implementations
	Model classes
	JSONMessage interface
	Message model
	File message
	Task

	Single message
	Sender
	Receiver

	Group message – routing
	Sender
	Receiver

	Bulk message – PubSub
	Sender
	Receiver

	File message
	Sender
	Receiver

	RPC message
	RPC client
	RPC server

	Creating tasks – manual acknowledgment
	Task creator
	Task handler

	Creating distributing tasks
	Task creator
	Task handler clients

	Spring framework and RabbitMQ
	Spring AMQP
	Single message
	Spring config
	Sender
	Receiver

	PubSub messages
	Spring config

	Private messages – routing
	Spring config

	Summary

	Chapter 10: Ruby Client Programming
	Case study
	Small data
	Big data
	Medium data
	Solving all data problems

	Bunny and Ruby
	Installing Ruby
	Linux
	Windows
	OSX/Mac
	Rbenv
	Installing Bunny

	Using Bunny
	Bunny producer
	Bunny consumer

	Exploring the AMQP model with Bunny
	Workers
	Publish – subscribe
	Routing

	The real-time processing
	Sneakers
	Installing
	Lambda architecture
	The real-time processors
	Key performance indicators (KPIs)

	Building averaging workers
	Windows
	Linux
	Mac OS X

	Building the IP2Location worker
	Exploring sneakers
	Timeouts
	Job handling
	Metrics

	Summary

	Chapter 11: Python Client Programming
	Case study
	Getting Python dependencies

	Pika
	Installing Pika
	Our first Pika client
	A consumer

	Introducing the web scraper
	Scheduler
	Scraper

	Implementing the scheduler
	Implementing the scraper
	Running the scraper

	Handling failure
	Using acknowledgement
	The Pika API
	Connecting
	Using connection adapters
	BlockingConnection
	BlockingChannel

	Declaring queues and exchanges
	Authentication
	Plain credentials
	SSL and external credentials
	Certificate authentication

	Background processing

	Celery
	Installation
	Celery scraper
	Celery scheduler
	Exploring Celery
	Scheduling
	HTTP hook tasks
	Other Celery features

	Summary

	Index

