
[1]

www.allitebooks.com

http://www.allitebooks.org

Mastering LibGDX Game
Development

Leverage the power of LibGDX to create a fully
functional, customizable RPG game for your own
commercial title

Patrick Hoey

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering LibGDX Game Development

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1241115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-936-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Patrick Hoey

Reviewers
Jason R Chandonnet

Richie Heng

Commissioning Editor
Veena Pagare

Acquisition Editor
Reshma Raman

Content Development Editor
Athira Laji

Technical Editor
Taabish Khan

Copy Editor
Trishya Hajare

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Patrick Hoey is a software engineer with over 15 years of professional experience,
contributing to the success of organizations from Fortune 500 companies to
startups. While working full time, he completed his master's degree in computer
science and then went on to graduate from law school, passed the bar exam, and
became a licensed attorney. He has also donated his services as a director at a
non-profit company.

Patrick started developing video games from the age of 12. The first video game that
he created was a crude hangman game for the Atari 800 home computer written
in Atari BASIC. He has developed demo programs throughout the years that
demonstrate certain features or exercise certain APIs of interest at the time,
such as OpenGL, DirectX, SDL, Allegro, Cocos2d-x, and recently LibGDX.

For entrepreneurial endeavors, Patrick ported video games to mobile phone
platforms. His latest adventure with LibGDX started in 2013, creating a game that he
always wanted to play called CityPunk: A Hacker's Story.

Patrick's research interests include game development, graphics programming,
intellectual property case law, data visualization, microcontrollers for embedded
devices, and machine learning.

Patrick loves photography, hiking, traveling, and creating short films.

Find out more about Patrick on his personal blog at http://www.patrickhoey.com.

www.allitebooks.com

http://www.patrickhoey.com
http://www.allitebooks.org

Acknowledgments

I would like to thank my loving mother, Jean, for being my biggest fan, for being
the light when all was dark, and for instilling in me a strong depth of character that
has enabled me to overcome all challenges. For these gifts, I am eternally grateful.
I would like to thank my wife and best friend, Samborn, for helping me realize
another dream with unending support and love. I could not ask for anything more
than to share this adventure called life with you. I would also like to thank my
good friends, Jason and Richie, for having unyielding faith in me and for joining
me on this amazing journey as technical reviewers. I would like to thank Reshma,
Ajinkya, and the rest of the great team at Packt with all their help, patience, and
resourcefulness throughout. Finally, I would like to thank Andrew Rios for creating
the DawnLike tileset, as well as the greater community of video game artists and
musicians contributing fantastic art and music under the Creative Commons license.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jason R Chandonnet is a software engineer with over 15 years of professional
experience. While working full-time, he completed his master's degree in computer
science. He was an inventor on several patents and started an independent website
development and hosting business. He also spent many years on the board of
Rebuilding Together Lowell, a non-profit organization that renovates houses of
people who are unable to pay for essential home repairs and much-needed updates.

Jason has been tinkering with computers and electronics since a very young
age. As soon as he was able to read, he would spend hours entering programs
from books and magazines on a Commodore 64. At age 11, he created a simple
shoot-em-up game on the Commodore 64 in BASIC. Here he learned the joy of
reading and writing registers to make the computer do what he wanted. He also
was infamous for his electronics experiments that were often a means to generate
high voltage.

While in college, Jason started building websites and web servers. This led him to join
an IT sales and service company to develop a product catalog web application. While
there he took on computer repair, UNIX system administration, and networking before
officially moving into software development. Over the years, he has worked on data
collection and processing systems, embedded systems, robotics, medical devices for
image-guided surgery, supported clinical trials, and cadaver studies. More recently,
he has been working on embedded Android devices customizing Android, as well as
designing and developing the suite of applications.

Jason loves the outdoors, hiking, traveling, raising poultry, playing music,
volunteering, and, of course, playing with microcontrollers, embedded systems,
or other gadgets.

www.allitebooks.com

http://www.allitebooks.org

Richie Heng is an information technology specialist living in the United States.
After finishing his bachelor of science degree in computer science from Seattle
University, Washington, he worked for both the private and public sectors. With
over 10 years of front and backend experience, he is currently working with the
government developing data visualization applications that impact legislative
decision making. Among his many projects, his favorite project is a Windows
application written in C# that captures immigration clients and their activities. In
his spare time, he likes having fun with his family, petting his dog named Onion,
playing chess, camping and hiking, and travelling.

I would like to thank Mr. Patrick Hoey for writing this book, and my
family and friends for giving me the support through the years.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 vii
Chapter 1: As the Prophecy Foretold, a Hero is Born	 1

Understanding the fundamentals of
role-playing games	 2

History	 2
RPG features	 5

Technologies used when developing a role-playing game	 8
Commercial game versus technology demo	 8
Target platforms	 9
Game framework versus game engine	 9
Budget	 11

Understanding the basics of a game architecture	 13
The high-level game loop of Adventure	 13
The high-level event-based loop	 16
The high-level game loop for a graphic-based video game	 17

Understanding the high-level component layout of LibGDX	 19
LibGDX backend modules	 20
LibGDX core modules	 22

Understanding the application lifecycle of LibGDX	 24
Setting up your development environment	 29

Prerequisite tool installation	 29
Running the LibGDX setup tool	 31

Understanding the build environment and project structure	 35
Why Gradle?	 35
Benefits of Gradle	 36
Project structure	 37
Version control systems	 41

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Running the default demo project	 43
See also	 46
Summary	 46

Chapter 2: Welcome to the Land of BludBourne	 47
Creating and editing tile-based maps	 47
Implementing the starter classes for BludBourne	 54

DesktopLauncher	 55
BludBourne	 57

Implementing asset management with loading textures and
tile-based maps	 58

Utility	 59
Implementing the camera and displaying a map in the render loop	 64

MainGameScreen	 64
Implementing map management with spawn points and a
portal system	 74

MapManager	 74
Implementing your player character with animation	 82

Entity	 82
Implementing input handling for player character movement	 92

PlayerController	 92
Summary	 99

Chapter 3: It's Pretty Lonely in BludBourne…	 101
The Entity Component System design pattern	 102

Using JSON scripts for NPC properties	 105
Entity	 107
Component interface	 112
PhysicsComponent	 113
GraphicsComponent	 118
InputComponent	 121
Entity selection	 125

Map design	 132
Summary	 137

Chapter 4: Where Do I Put My Stuff?	 139
Inventory and HUD layouts with skins	 139

PlayerHUD with Scene2D	 140
Developing UIs with LibGDX	 143
StatusUI	 150
Drag and drop	 155
InventoryUI	 162

Table of Contents

[iii]

Drag and drop usage	 167
Tooltip usage	 169
Menu screens	 170

Save and load game profiles	 171
Observer pattern	 176
Observer pattern usage example	 178

Summary	 180
Chapter 5: Time to Breathe Some Life into This Town	 181

Speech windows with dialog trees	 182
Theory behind conversation trees	 183
An overview of class hierarchy	 186

Conversation	 187
ConversationChoice	 188
ConversationGraphSubject and ConversationGraphObserver	 189
ConversationGraph	 190

UI structure	 196
Script support for conversations	 201
Triggering events	 203

Shop store UI with items and money transactions	 204
Summary	 216

Chapter 6: So Many Quests, So Little Time…	 217
The theory of dependency graphs	 218
The dependency graph implementation	 221

QuestTask	 222
QuestTaskDependency	 223
QuestGraph	 223

QuestUI	 233
The steps involved in creating a quest	 240
Summary	 250

Chapter 7: Time to Show These Monsters Who's the Boss	 251
The battle system implementation	 252
BattleState	 254

BattleSubject	 255
BattleObserver	 255
InventorySubject	 257

Consuming items	 259
MonsterFactory	 262

Monster entity	 263
MonsterZone	 265

Table of Contents

[iv]

BattleUI	 273
AnimatedImage	 275

LevelTable	 281
GameOverScreen	 284
Summary	 286

Chapter 8: Oh, No! Looks Like Drama!	 287
Class diagram overview	 288
Sound and music	 289

AudioObserver	 291
AudioSubject	 294
AudioManager	 297

Creating cutscenes	 301
Action	 301
CutSceneScreen	 303

Summary	 321
Chapter 9: Time to Set the Mood	 323

Screen transitions	 324
The ScreenTransitionActor class	 325
The ScreenTransitionAction class	 327
The PlayerHUD class	 329
The MainGameScreen class	 330

Camera shake	 331
Static lighting	 339

Lightmap creation	 340
The Map class	 343
The MapManager class	 343
The MainGameScreen class	 344

Day-to-night cycle	 347
The ClockActor class	 347
The MapManager class	 352

Particle effects	 354
Particle Editor	 354
The ParticleEffectFactory class	 359
The BattleUI class	 362

Summary	 365

Table of Contents

[v]

Chapter 10: Prophecy Fulfilled, Our Hero Awaits the
Next Adventure	 367

Digital distribution platforms	 368
Obfuscating the save game profiles	 369

Logging levels	 371
Creating an executable JAR	 372

Gradle	 372
IntelliJ IDEA	 372

Native launchers	 375
Packr	 376

Obfuscating the packaged JAR	 378
The proguard.cfg file	 379

Debugging tips	 381
The command line	 382
Attach to the running process	 382

Testing builds before release	 383
A smoke test	 383

BludBourne start and main menu	 383
Cutscene	 383
New game	 384
Inventory	 384
Town NPCs	 384
Conversation	 384
Quest	 384
Item purchase	 385
Battle	 385
Game over	 385
Consuming items	 386
Wand attack	 386
Lightmaps and day-to-night cycle	 386
Save game profiles	 386

The burn-in test	 386
Summary	 387

Index	 389

[vii]

Preface
"It is pitch black. You are likely to be eaten by a grue."

 - Zork

Some of my fondest video game memories belong to text-based adventure games.
Zork was my gateway game into the realm of role-playing games on the computer.
RPGs offered excitement and challenges of adventuring into unknown lands ripe
with unknown dangers, and helped fuel my imagination. This book is a testament
to that imagination, one which refused to be extinguished by age or experience. My
hope is that your RPG will keep the burning flames of imagination alive and provide
an experience with memories that will last for a lifetime.

The theory, implementation, and lessons taught within these pages should help
guide you through the development process of creating your own RPG game.
There are many moving parts that add to the complexity of developing a video
game, especially RPGs, but the intent of this book is to provide you with a step-
by-step guide to the development process. I developed BludBourne, the reference
implementation game for this book, at the same time I was writing this book. If there
were any issues that I came across during development, or if I found a nice design
pattern that solved a problem, I made sure to document the experience in this book
so that you would not have to deal with the same pitfalls.

You may have heard about various engines and frameworks, and even tried
them, but instead of creating a complete commercial game, you ended up in
disappointment, lost in a sea of technologies. Maybe you always wanted to create
an RPG, but found the creation process overwhelming. Maybe you would visit
forums and post questions, but all you ever got were common replies of derision,
such as "Just create your game in RPG Maker." This book simplifies this approach by
walking you through the process so that you can extend and customize BludBourne
for your own commercial release. The framework that will allow us to bridge the gap
from conception of an idea to an actual playable game is LibGDX.

Preface

[viii]

LibGDX is a Java-based framework developed with a heavy emphasis on
performance, and it includes cross-platform support out of the box (Windows, OS
X, Linux, iOS, Android, and HTML5), and provides all the low-level functionality
you need so that you can focus on developing your game instead of battling with
the platform. LibGDX also has an engaged and responsive community, active
maintenance, and is available for free without a prohibitive license. There are many
beginner tutorials using LibGDX, but the aim of this book is to make use of LibGDX
libraries for more advanced, complex features used in video games.

By the end of this book, you will have a foundation in game development principles
and a set of tools that will help you realize your dreams.

What this book covers
Chapter 1, As the Prophecy Foretold, a Hero is Born, introduces you to the fundamentals
and specific features of RPG video games, and discusses how this book will help
build foundational knowledge for a commercial RPG. This chapter will also walk
you through the basics of video game architecture, with a high-level overview of the
component layout and application lifecycle in LibGDX. Finally, after learning about
setting up your development and build environment, you will run your first demo
application.

Chapter 2, Welcome to the Land of BludBourne, initially discusses how to create maps for
BludBourne with a tile editor and how to load them using asset management classes.
You will then implement your main render loop with a camera for displaying your
loaded maps. We will then discuss some features specific to maps, including spawn
points and a portal system. Finally, you will learn about adding animation to your
player sprite and implementing input handling so that your player can move around
the game world.

Chapter 3, It's Pretty Lonely in BludBourne…, discusses how to implement the Entity
Component System design pattern for BludBourne. We will then cover scripting
support using JSON to define NPC properties. Finally, we will implement a
physics component with collision detection and an input component for the
NPCs' movement.

Chapter 4, Where Do I Put My Stuff?, covers HUD layouts with skins. We will learn
about integrating player stats into the UI. We will then apply this knowledge by
implementing a drag and drop inventory system for your player. Finally, we will
discuss how to persist player state with save and load game profiles.

Preface

[ix]

Chapter 5, Time to Breathe Some Life into This Town, discusses the theory behind dialog
trees and implements an interactive speech system for the NPC characters. Finally,
we will develop shop store UIs for the player with item and money transactions.

Chapter 6, So Many Quests, So Little Time…, discusses quest systems, including
dependency graph theory and implementation. Finally, we will create a quest log UI,
including the steps involved with creating scripts for quests.

Chapter 7, Time to Show These Monsters Who's the Boss, discusses how to implement a
battle system with a UI including enemy NPC battle mechanics. We will then look
at how we can connect HUD updates to state changes in BludBourne. We will cover
a few tricks for implementing the consumption of items from the player's inventory.
Finally, we will develop a leveling system for the player.

Chapter 8, Oh, No! Looks Like Drama!, discusses how to integrate sound and music into
the world of BludBourne. We will also look at how to create cutscenes and integrate
them into the game.

Chapter 9, Time to Set the Mood, covers an assorted list of special effects that can give
your RPG some nice polish. We will first learn about creating transitions between
screens. We will then learn about the theory behind a shake camera class and
implement it. We will then look at how a static lighting model fits into BludBourne,
including implementing a day-to-night cycle. Finally, we will cover particle effects
that can used to make the spells pop and torches smoke.

Chapter 10, Prophecy Fulfilled, Our Hero Awaits the Next Adventure, covers deployment
topics for your game, including discussing digital distribution platforms. We will
then look at security measures, including obfuscating save game profiles, executable
jars, native launchers, and obfuscating the final packaged JAR. Finally, we will look
at a few tips and tricks regarding test coverage for builds and some debugging tips.

What you need for this book
Throughout the book, I have mentioned various technologies and tools that can help
at certain stages in the development cycle. I have recommended mostly free software
tools and dependencies. However, keep in mind that some may require a separate
license for commercial purposes. As a testament to the open source community, I
created BludBourne entirely from these free resources.

LibGDX is a cross-platform game development framework that can run on a
Windows PC, Linux, Android device, or Mac OS X. The development for this book
specifically supports Windows (7/8), so keep this in mind when using the source
for BludBourne as there may be some platform-specific considerations outside of
Windows.

Preface

[x]

As a quick summary of tools and libraries used for this book, I have listed them here
(may not be an exhaustive list):

•	 LibGDX (v1.5.5): http://libgdx.badlogicgames.com/download.html
•	 Java Development Kit (v1.7): http://www.oracle.com/technetwork/java/

javase/downloads/index.html

•	 Git: http://git-scm.com/downloads
•	 SmartGit (v6.5.9): http://www.syntevo.com/smartgit/download
•	 IntelliJ IDEA IDE (v14.1.1): http://www.jetbrains.com/idea/download/
•	 Tiled (v0.11.0): http://www.mapeditor.org/download.html
•	 libgdx-texturepacker-gui (v3.2.0): http://code.google.com/p/libgdx-

texturepacker-gui/

•	 Android Studio (v1.0): http://developer.android.com/sdk/index.
html#Other

•	 Audacity (2.0.3): http://audacityteam.org/download
•	 Packr: http://libgdx.badlogicgames.com/packr
•	 Proguard (5.2.1): http://proguard.sourceforge.net/

The installation and usage instructions for additional tools are provided
where necessary.

Who this book is for
If you have always wanted to create an RPG video game but found the creation
process overwhelming, either due to lack of tutorials or by getting lost in a sea of
game-related technologies, engines or frameworks, then this book is for you.

This book will walk you through the entire development process of creating an RPG
title from scratch using the LibGDX framework and it can be used as a reference by
everyone from a team developing their first commercial title to the solo hobbyist.

This book does expect that you have software engineering experience, including
familiarity with object-oriented programming in the Java language and an
understanding of UML.

http://libgdx.badlogicgames.com/download.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://git-scm.com/downloads
http://www.syntevo.com/smartgit/download
http://www.jetbrains.com/idea/download/
http://www.mapeditor.org/download.html
http://code.google.com/p/libgdx-texturepacker-gui/
http://code.google.com/p/libgdx-texturepacker-gui/
http://developer.android.com/sdk/index.html#Other
http://developer.android.com/sdk/index.html#Other
http://audacityteam.org/download
http://libgdx.badlogicgames.com/packr
http://proguard.sourceforge.net/

Preface

[xi]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The processInput() method is the primary business logic that drives this class."

A block of code is set as follows:

public class DesktopLauncher {
 public static void main (String[] arg) {
 LwjglApplicationConfiguration config = new
 LwjglApplicationConfiguration();
 new LwjglApplication(new BludBourne(), config);
 }
}

 When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public class DesktopLauncher {
 public static void main (String[] arg) {
 LwjglApplicationConfiguration config = new
 LwjglApplicationConfiguration();
 new LwjglApplication(new BludBourne(), config);
 }
}

Any command-line input or output is written as follows:

C:\BludBourne>tree /F /A

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Adding a
new tileset is as easy as clicking on the New icon in the Tilesets area."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.allitebooks.com

http://www.allitebooks.org

Preface

[xii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. For the most current version, you can grab the
latest snapshot from this link: https://github.com/patrickhoey/BludBourne.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/MasteringLibGDXGameDevelopment_
ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/patrickhoey/BludBourne
https://www.packtpub.com/sites/default/files/downloads/MasteringLibGDXGameDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringLibGDXGameDevelopment_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringLibGDXGameDevelopment_ColorImages.pdf

Preface

[xiii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

As the Prophecy Foretold, a
Hero is Born

Our journey begins with you, our hero, adventuring into the unknown in the hopes
of starting and then finishing a role-playing game. We will discuss the history of
role-playing games, the game features that we will develop throughout the book,
and some considerations when evaluating the tools to help you develop your
game. We will learn a brief history of game architecture, and how it relates to and
differs from the architecture of LibGDX. Finally, we will look at the LibGDX project
structure and run the default application so that we hit the ground running in the
next chapter.

We will cover the following topics in this chapter:

•	 Understanding the fundamentals of role-playing games
•	 Technologies used when developing a role-playing game
•	 Understanding the basics of a game architecture
•	 Understanding the high-level component layout of LibGDX
•	 Understanding the application lifecycle of LibGDX
•	 Setting up your development environment
•	 Understanding the build environment and project structure
•	 Running the default demo project

As the Prophecy Foretold, a Hero is Born

[2]

Understanding the fundamentals of
role-playing games
A treatise on the history of role-playing games is beyond the scope of this book,
but a short jaunt through the origins of role-playing games (RPGs) that led to the
development of computer-based RPGs (CRPGs) over the years is necessary to fully
explain the type of game that this book covers. This history is covered in much more
detail in Neal Hallford's Swords & Circuitry: A Designer's Guide to Computer Role
Playing Games.

History
In the early twentieth century, two unrelated parallel developments eventually
converged into what we call RPGs today.

The first development was a set of simple rules written in 1913 by H.G. Wells in the
form of a war game called Little Wars. This type of game overhauled complicated
game systems at the time making this particular war game approachable by the
masses. Little Wars included units such as infantry, cavalry, and even artillery that
launched wooden projectiles. The rules included simplified mechanics for moving
and firing within a set time.

The second development during this time was in the form of a series of novels,
starting first with The Hobbit (1936) and continuing with The Lord of the Rings trilogy
(1954) written by J. R. R. Tolkien. The influence of these classic books cannot be
overstated as they established the "high fantasy" subgenre in literature, helping to
propel fantasy as a distinct and commercial genre. These novels created a world
with its own history, cultures, and traditions, at the center of which an epic battle
between good and evil waged. Adventures across this world, Middle Earth, included
elements of sacrifice and heroism, love and loss, beauty and terror.

Decades later, in the 1960s, Wells' Little Wars influence was still felt with ever-
increasing complex wargaming experiences, including large-scale board games with
hundreds of units. At this time, traditional wargaming revolved around real-world
historical scenarios, but people started substituting the more traditional campaigns
with recreations of the epic fictional battles from Tolkien's The Lord of the Rings
novels. These players were without a system that defined rules for integrating
magic or explaining the battle mechanics of flying dragons.

Chapter 1

[3]

Chainmail was published in 1971 by Gary Gygax and Jeff Perren out of this need for
a proper rule system for a fantasy-based wargaming experience. Chainmail had the
first set of wargaming rules for magic spells and fantasy creatures. Years later, Gary
Gygax and Dave Arneson collaborated and produced the first role-playing system,
Dungeons & Dragons (D&D), published in 1974. From the late 1970s to early 1980s, the
influence of Tolkien fiction and D&D seeped into the computer video game arena,
and started the evolution of modern day CRPGs that began with the creation of text
and graphic-based RPGs.

The first text-based adventure game was Colossal Cave Adventure (or Adventure for
short) created by Will Crowther and Don Woods in 1976 with the first commercial
release (renamed to The Original Adventure) in 1981. In Adventure, the player
navigated an interactive story that included Tolkien-inspired monsters, mazes
to explore, and puzzles to solve for treasure. The spirit of fantasy adventure in
Adventure continued with Infocom's release of the Zork series as well as the catalyst
for Roberta and Ken Williams in forming what would become Sierra Entertainment,
and developing graphic adventure titles such as King's Quest, Space Quest, and
Leisure Suit Larry.

The first graphic-based role-playing game, Akalabeth: World of Doom (Akalabeth) was
created by Richard Garriott (known as Lord British) and published in 1980 with
commercial success. The player assumed the role of the hero, traversing through
dungeon labyrinths, collecting gold pieces, slaying monsters, and completing quests.
The novel concepts at the time that set the standard for future CRPGs included first-
person gameplay in dungeons, required food to survive, had a top-down overhead
world view, and boasted procedurally generated dungeons.

Capitalizing on the success of Akalabeth, Garriott, after a year of development,
published Ultima I: The First Age of Darkness (Ultima) in 1981. With the commercial
success of Ultima, this game (and the series as a whole) became the defacto standard
that defined graphic CRPGs for decades, with core features and gameplay found
even in today's CRPGs. Aside from the features of its predecessor, such as dungeon
crawling, turn-based combat, overhead world view, loot collection, and hunger
management, Ultima also had new features including a character creation screen
with point allocation for player statistics, and choice selections for race, class, and
gender. Other features included proper leveling with experience points gained
through combat, randomly appearing enemies, hit point regeneration, and a magic
system managed with consumable one-time use items. Ultima even sported a first-
person space shooter for part of the game!

As the Prophecy Foretold, a Hero is Born

[4]

Wizardry: Proving Grounds of the Mad Overlord (Wizardry) was another influential
graphical CRPG published in 1981 and was developed by Andy Greenberg and
Robert Woodhead. This dungeon crawler was the first party-oriented CRPG with up
to six characters allowed for a party. Each character had three different alignments,
four classes to choose from, and also an option for prestige classes that, after meeting
certain requirements, would allow the character classes to be upgraded with hybrid
abilities. An interesting feature was that upon a total party kill, the new party sent
into the same dungeon could recover the bodies and belongings of the wiped party.

While the Ultima and Wizardry franchises satisfied the hunger of the home computer
market in the United States, they also played a large part in the success of home
console RPG development in Japan.

In 1986, Japanese company Enix published Dragon Quest (later renamed Dragon
Warrior for the American audiences) as the first console-based RPG that in turn
further fueled Japanese RPG (JRPG) development. Dragon Quest heavily drew on
inspiration from Ultima and Wizardry, while at the same time making the game
unique for Japanese audiences. Dragon Quest set the standard for the qualities that
define a JRPG including greater emphasis on storytelling, emotional involvement
of the player, and a streamlined interface. Dragon Quest was the game that set the
bar for NPC interaction because a significant portion of time was spent gathering
information for assorted places and events from the townspeople.

Inspired by Enix's commercially successful Dragon Quest, Final Fantasy received the
green light at Square, and with a team lead by Hironobu Sakaguchi, it was published
in 1987. Also heavily inspired by Ultima and Wizardry, Final Fantasy, which is one of
the staples of JRPGs, became one of the most commercially successful JRPGs due to
its mass appeal. The major features that set Final Fantasy apart from the rest include
turn-based combat with characters engaged from a two-dimensional side view (up
until that time, most combat featured a first-person perspective), and an epic story
that spanned three continents.

The next evolutionary jump in the features for RPGS continued with the inclusion
of three-dimensional environments, but for the purposes of this book, we will bring
our adventure through the halls of computer role-playing history to an end. By
understanding the historical precedent for CRPGs, you get a real perspective for the
evolution of CRPGS and why certain design choices were made. Instead of working
in a vacuum, we can learn from these genre-defining games, and begin to make more
informed choices with regard to features instead of bolting on random elements.

Chapter 1

[5]

RPG features
In general, asking people to define what makes an RPG an RPG, will spark an
endless debate without ever arriving at a satisfactory answer. For the sake of clarity,
a role-playing game, at its core, can be defined as a system with rules where you
primarily play a character in some setting with various goals depending on the story.

First, children's make believe, for instance, would be considered role playing, but
without rules, it cannot be considered a role-playing game. Once rules are added
though, we now have a system in place where people can role play, and this is
considered a role-playing game, specifically live action role-playing (LARP).

The second example of a role-playing game is where players assume the roles
of heroes playing out famous battles on a physical miniature battle field. This is
considered tabletop role-playing, which is the natural extension of wargaming that
began with Wells's Little Wars.

The third example of role-playing games would be the pen and paper systems that
D&D started and set the ground work for Tolkien-inspired fantasy systems with
magic and dragons.

Finally, the fourth example of role-playing games would be CRPGs that began
their popularity with text-based versions such as Adventure, and their graphical
counterparts, the Ultima and Wizardry series, with elements inspired from their pen
and paper parents.

With these definitions properly framed, let's lay some ground work for the type of
features that will define the core of a graphic CRPG. For the purposes of this book, I
will outline the types of qualities and features that most people can agree make up an
RPG, based on the precedent set from the most influential titles in the graphic CRPG
realm. Most likely, there will be some features from your favorite games that will
not be outlined in this book. This book is meant to give you a starting place to begin
to build out your RPG title with a functional model demonstrating most standard
features that have come to be expected in most RPGs.

As the Prophecy Foretold, a Hero is Born

[6]

In this book, we will be covering the following features:

•	 Develop characters with statistical attributes. Since Ultima, players have come
to expect some measurable ways to gauge their in-game character's progress.
As the player overcomes challenges, there should be some mechanism in
place for the player to augment their character, demonstrating mastery
as they hone their skills. For simplicity, we will only have to select a few
attributes, such as the strength attribute for determining weapon usage as
well as attack damage bonuses, and intelligence for determining magic usage
as well as spell damage bonuses. This attribute system will allow you to
easily expand upon later. Other attributes will include hit-points (determines
how much physical damage your character can take before dying), magic
points (determines how much magic damage your character can inflict before
running out), and experience points (at every level, there is a set amount of
points your character needs to earn through combat and quests in order to
progress to the next level).

•	 Develop a leveling system where your character grows in power throughout
the game, making earlier encounters much easier as the character levels up.
This is an important distinction from more modern RPGs such as Oblivion
(a leveling system where enemies level up and scale relative to your current
level). For the purposes of this book, the leveling will be similar to a game
such as Dragon Warrior where the character at level 10 will have no problem
with a level 1 green slime.

•	 Develop player movement, animation, physics, and collision detection.
These are critical to the player's interaction with the game world via their
game character. We will delve into the various libraries within LibGDX in
order to create the best player experience.

•	 Create interactive NPC characters with speech windows and immersion
via dialog trees. This particular element will draw inspiration from Dragon
Warrior for its interactions with townspeople, which plays a vital role in
gathering information about different locations and quests.

•	 Create interesting enemies with battle mechanics, spawn points, and AI
pathfinding. An RPG experience would not be complete without rescuing a
princess from the dark overlord, killing rats, or level grinding on wild pigs.

•	 Interact with the world through travelling portals and transition between
different areas in the map. As the player moves throughout our game
world, they should seamlessly be able to travel from shop in the town,
to the overworld map, and to a dark and dangerous cave.

Chapter 1

[7]

•	 Build inventory management systems for item pickup and equip. Resource
management is an important component in any RPG, from collecting animal
skins for the local shopkeeper, storing magic potions to replenish magic
points, to collecting treasure after vanquishing an evil troll.

•	 Develop save and load game profiles. Persistent profiles play an important
role in allowing the player to experience the game at their convenience over
the course of hundreds of potential quests.

•	 Create scripted cutscenes to add an element of story and drama. This feature
takes its inspiration from the Final Fantasy playbook in order to give the
player an epic story that introduces them to the world of your imagination.

•	 Develop a quest system to expand out the content of the game. This system
will create goals for the player to accomplish for experience and gold, as they
go out and explore the world.

•	 Build inventory and heads up display (HUD) layouts with customizable
skins and also build logic for updates to health and magic. Constructing
this streamlined interface will give the player all the tools they need during
gameplay in order to make the best decisions in and out of combat.

•	 Create a shop store user interface (UI) with items and money transactions.
The shop will demonstrate how to view, select, purchase, and sell items
as part of the resource management part of the game using the in-game
currency of gold coins.

•	 Create special effects to give the game extra "juiciness" and polish, and help
build atmosphere. These added effects will cover more advanced topics, but
will add a nice polish to your final game.

Based upon the style of the RPG that this book is focused on, the following features
will not be covered:

•	 There will be no character creation screens beyond a character name and
starting statistical attributes.

•	 There will be no class selection screens.
•	 The monster-leveling system in the game will be static in the sense that

the monsters will not dynamically level and scale based upon the player's
current level, but remain at their predetermined level from the outset.

•	 There will be no party-based system for dealing with multiple characters or
fighting multiple enemies.

•	 There will be no multilinear game story with multiple endings. The game
story will progress (with cutscenes) linearly as the player completes quests.

•	 There will be no skill trees as we are not dealing with skills at all.

www.allitebooks.com

http://www.allitebooks.org

As the Prophecy Foretold, a Hero is Born

[8]

•	 The combat will be turn-based, so there will be no real-time combat elements.
•	 The worlds will be built with tile editors and set quests from the beginning,

so there will be no procedural-based content generation for this RPG.
•	 There will be no persistent online world with other players. This RPG will be

a single player experience without networking support.

Technologies used when developing a
role-playing game
Understanding the different technologies available when creating a game can be
frustrating, especially when you feel that committing to one set of tools is locking
you into a solution. Sometimes, taking out the various engines or frameworks for a
test drive leaves your hard drive littered with unfinished platformer game projects.
Other times, when you search for help online, the only responses you get among
the forums are the standard smug look at the source code answers. These experiences
can be exhausting, especially without a plan. First, in order to properly evaluate any
solution, we need to properly frame the project goals with certain, pointed questions.

Commercial game versus technology demo
One of the first questions you should ask yourself when evaluating a software
solution for your game is one that gets overlooked: Are you interested in the
final product (that is, a complete video game for a commercial release), or are
you interested more in the implementation details of the game than the final
end product?

If you are the latter, then you might consider developing a game engine in your
favorite language to learn the core systems yourself, such as graphics, physics,
artificial intelligence (AI), and file input and output (I/O). This book will not delve
into the details of these different components. There are plenty of great books out
there that will guide you through this process, such as Programming Game AI
By Example by Mat Buckland and Game Engine Architecture by Jason Gregory.

If you are the former, then the rest of this section should help you make a better
decision given the myriad software solutions available. On the one hand, the
sheer amount of solutions for any aspiring indie developer or team opens many
doors that were not available years before. On the other hand, it is very easy to get
overwhelmed with all the options available.

Chapter 1

[9]

Target platforms
The second question you should ask yourself is, based on the project scope and
requirements, what are your target platforms? This question will drive not only the
project schedule, but also have a huge impact on the programming language choice
and in turn will determine the software solution for your game.

Years ago, this question used to be easy because there were only a limited amount of
available systems with a high barrier of entry for all of them. Today, when creating
a commercial game, there should at least be some consideration for all the available
channels for distribution. This includes personal computers and laptops running
Mac OSX or Windows, mobile devices that have most of the market share running
iOS, Android, or Windows Phone, and even home console development including
PS4 or Xbox One. Even with game frameworks and engines with cross-platform
compilation, you will still need to factor testing for the various platforms into
the schedule.

If you plan on adding a series of closed and open beta sessions to the project
roadmap (a good idea to gauge the fun factor from user feedback as well as a first
round of user bugs), there will be differences in how this process works across the
various platforms and it needs to be accounted for in your plan. Once the details
for target platforms have been ironed out, the choice of programming language
should be much clearer. Hopefully, the language is one that you prefer, but if
not, there needs to be additional time in the project schedule for training with the
programming language.

Game framework versus game engine
The third question you should ask yourself after you have decided that you
really want to develop a shippable commercial game, and decided on the target
platforms, is whether you would prefer a game engine or a game framework for
your solution? The primary motivation deals specifically with control and how this
affects your workflow.

A game engine is typically a closed black-box solution (even though sometimes there
are options for access to the source code) where you develop your game logic (in a
language dictated by the engine) around the scaffolding of the engine, and in turn,
the engine calls into your code during the game lifetime as the engine processes the
main game loop.

As the Prophecy Foretold, a Hero is Born

[10]

A game framework, on the other hand, is a collection of libraries with exposed
application program interfaces (APIs) into modules representing higher level
abstractions of the core system components, such as graphics and file I/O.
Developing with a game framework, in contrast to a game engine, gives control
to you, as the owner of the main game loop, to call into the libraries as needed
throughout your game lifetime. So, the question boils down to what kind of control
you want for developing your game. The answer is not a straightforward one, but
one that comes with tradeoffs for either solution.

The following table (Table 1) is just a small sampling of the solutions available today
for game projects:

Name Engine/framework Primary target
platforms

Primary
programming
language

Cocos2d Framework Windows, OS X, and
Linux Objective-C

LibGDX Framework
Windows, OS X,
Linux, iOS, Android,
and HTML5

Java

Source Engine

Windows, OS X,
Linux, iOS, Android,
Xbox 360, and
PlayStation 3

C++

Torque2D Engine
Windows, OS X,
Linux, iOS, Android,
and HTML5

TorqueScript
(proprietary scripting
language with a
C-like syntax)

Unity Engine

Windows, OS X,
Linux, iOS, Android,
Windows Phone,
HTML5, Xbox, and
PlayStation

C#

Unreal Engine Engine

Windows, OS X,
Linux, iOS, Android,
Windows Phone,
HTML5, Xbox, and
PlayStation

C++

Table 1

Chapter 1

[11]

Budget
The fourth question you should ask yourself is: What is the actual budget for the
development of my title? Table 1 is just a sampling of the options available for today's
game development teams, and most of the options are very reasonably priced even
for the indie developer bootstrapping their first commercial release (that is, free).
There are much more exhaustive lists out there, but this should give you a feeling for
the various programming languages, target platforms, and library support available.

With all the wonderful ideas and features for any commercial product, the Triple
Constraint will rear its ugly head and quickly ground the project, demanding that
you stay bound by time, cost, and quality. Any change to one attribute will affect the
other two, constantly maintaining a balance for the project.

For example, if you sourced and received estimates for artwork at $5000, but you
only budgeted say $100, this will significantly affect the quality (maybe you can
just mash together some programmer stick figures) of the art, as well as time (even
with stick figures, you will still need to draw them out, taking time away from
development). Commercial titles, even with 2D pixel art, still need to be original
and polished to really stand out. Stick figures might work as a gimmick to draw
attention, but most audiences have more sophisticated expectations today, even
with indie titles.

So, in summary, you really only have three courses when planning the budget:

•	 Develop a game relatively quickly with great art and music, but at an
expensive cost

•	 Develop a game quickly with stick figures for art and recorded tracks of you
singing, but live with the humiliation from friends and family

•	 Design a fun game with unique and stylistic graphics and a haunting
soundtrack with a team working for free, but know that this course of action
will take a substantial amount of time

Answering these questions and evaluating the choices available should lead to a
more straightforward and educated decision without getting lost in a sea of noise.
Originally, I wanted to develop my own game engine from the ground up.

After asking myself the first question, I realized that for me, shipping a commercial
game was more important than building a game engine from scratch. There are
many mature game frameworks and engines available, and the curiosity of building
something from scratch was simply outweighed by more battle-tested solutions
supporting multiple target platforms, once I committed to a commercial project.

As the Prophecy Foretold, a Hero is Born

[12]

This leads into the next question about target platforms because I realized, once
I started evaluating the different solutions, that the cross-platform ones would
significantly reduce my time on the deployment end. The cross-platform solutions
are nice because they abstract away platform specifics (and most of them optimize
under the covers based on build target), freeing me up to develop my game for
one platform without worrying about the scope of work involved in porting to the
mobile platforms later.

The third question regarding the preference of a game engine or framework was
a little clearer because I wanted control of the game loop. I didn't really want to
deal with the training time or cost associated with the various engines, and I didn't
want to deal with all the complexities that come with their specific ecosystems (or
idiosyncrasies).

Finally, the fourth question regarding budget was straightforward because as an
indie developer bootstrapping my way through this process, cost was a significant
factor, as I had a specific budget for art, and not much more especially for game
engine licensing or tool costs.

These decisions helped frame my choice to go with the LibGDX game framework
for my commercial game project. LibGDX is developed with a heavy emphasis on
performance, includes cross-platform support out of the box (Windows, OS X, Linux,
iOS, Android, and HTML5), provides low-level bookkeeping APIs that free me up
so that I focus on developing the gameplay, provides an engaged and responsive
community (not one where the forums have tumbleweeds blowing through), has
active maintenance (nightly builds instead of one zip from ten years ago), and is
available for free without a prohibitive license.

With all the decisions that need to be made when first starting a commercial RPG
game, this book aims to help you through the process by minimizing the constraints.
First, the time constraint can be reduced with this book by guiding you through the
process of creating an RPG from scratch using LibGDX.

By the end of this book, you will have a working base template that you can expand
on and add content to in order to make the game uniquely yours with support for
multiple target platforms. Also, time will be reduced during the development cycle
by developing modular pieces, such as scripting support, which can easily offload
the creation of dialogs, items, monsters, levels, and quests so that content can be
created in parallel with development without affecting the build process.

Second, recommendations on great free offerings, such as LibGDX, will be made
throughout this book keeping the overall project costs low. These recommendations
can be used in the toolchain of your development environment to enable you to stay
productive and give the biggest bang for your buck on the deployment end.

Chapter 1

[13]

Third, quality can be maximized due to minimizing the time constraint and thereby
allowing more time for collecting feedback on usability, beta testing, and overall
quality assurance.

Hopefully, the case has been made for adding LibGDX to your commercial endeavor
for your RPG game. We will now review some core features of LibGDX as we
continue our adventure developing the RPG game.

Understanding the basics of a game
architecture
In order to better understand the fundamentals of a typical game architecture at
a high level, we can begin with a historical perspective with the first text-based
adventure game Adventure.

The high-level game loop of Adventure
The following figure (Figure 1) describes the high-level game loop of Adventure type
text-based games where the game would block all updates for its lifetime until it
receives user-based text input on the command line:

Figure 1

Once the text was read from the command line (carriage returns were typically an
indication that the player was finished inputting text), the game would then parse
the entire string, breaking up the sentence into its component parts. The most basic
system would have a dictionary of actions, or verbs, that the player can do. Each of
the words in the sentence would be compared against that player's action list. The
same would be for objects, or nouns.

As the Prophecy Foretold, a Hero is Born

[14]

For example, if the player wanted to take the fresh water from a flask and pour it
over the dirty floor, they would type in the following command:

> pour water

The game would process the user input string, break it up into word chunks, and
compare against its verb and noun dictionaries (key-value mappings). We would
end up with two lists. The action list would contain one valid action, POUR. The
object list would contain one valid object, WATER.

POUR would be the primary action in this sentence with a rule similar to
the following:

POUR [OBJECT 1] IS SUCCESSFUL
IF PLAYER HAS [OBJECT 1] IN INVENTORY
AND [OBJECT 1] IS POURABLE

There would also be some extra data regarding certain properties of objects in the
game, such as whether an object is able to be carried in an inventory and whether
it is pourable, wearable, or throwable. These could be in the form of a subset list of
objects for each of the actions. For example, POUR would verify that WATER is in
the list POURABLE, while something such as FOOD would not. These edge case
checks with object attributes would prevent awkward word combinations as follows:

> pour food

Checking the words against action and object lists would also have the side-effect of
throwing out extraneous words that make English sentences complete. For instance,
in some text-based adventure games, the following two commands would work the
same way:

> go into the building

> go building

This model is the basic concept behind a two-way communication subsystem that
deals with NPC interaction, such as asking NPCs questions or viewing shop items.
This will be discussed more in-depth when developing a dialog tree system.

Chapter 1

[15]

The difficulty with a text-driven system is that because the syntax of the parser is so
specific, and because of the complexities with equally valid variations of an English
sentence, the player can lead down a rabbit hole of frustration, infamously referred
to as guess-the-verb or guess-the-noun, where most of the player's time is spent trying
to figure out why certain combinations of words do not work. One example of this
problem is best demonstrated with a recent session I had with an online version
of Adventure:

You are standing at the end of a road before a small brick

building. Around you is a forest. A small stream flows out

of the building and down a gully.

> look stream

I don't understand.

stream what?

> look at stream

I don't understand that!

> go into building

I don't understand that!

> go

Where?

> building

You are inside a building, a well house for a large spring.

There are some keys on the ground here.

There is a shiny brass lamp nearby.

There is tasty food here.

There is a bottle of water here.

As the Prophecy Foretold, a Hero is Born

[16]

Interestingly enough, when distilled down to its essence, this model is also how
event-driven systems such as user interfaces work today.

The high-level event-based loop
The primary target platform for this book is Microsoft Windows, even though
compiling for the other target platforms isn't much more effort. There are special
considerations to keep in mind when running your game on mobile devices, such
as graphic rendering performance, smaller screen real estate to work with for UIs,
touch screen controls instead of using a keyboard and mouse, limited access and size
constraints to external save game profiles, and smaller overall package size. Mobile
device optimizations are topics that deserve their own chapters, but will be beyond
the scope of this book.

The following figure (Figure 2) refers to an event loop, for instance, in how Windows
processes its graphical user interface events. This figure can even be generalized
across most platforms, including how Java processes its own event loop within the
Java Virtual Machine (JVM):

Figure 2

Chapter 1

[17]

At a high level, a graphical user interface (GUI) application processes events from
the event loop and only terminates when the application receives a quit message.
The operating system (OS) will generate an event message based on such events as
a mouse button click or keyboard key press and place the message in the message
queue. The message queue is processed by the GUI application by processing the
first element in the queue, on a first-in-first-out basis, with the newest event message
at the end of the queue. The GUI application will then in turn check the message
queue for a relevant message, process it if the event message is relevant to the
window, and then dispatch the message. The message dispatch will forward the
message to the registered callback procedure or message handler associated with
that specific event. So, just like the loop for text-based adventure games we saw
earlier, the event loop is really just a loop that runs indefinitely, responding to input
type events.

The high-level game loop for a graphic-based
video game
The following figure (Figure 3) demonstrates at a high level how a graphics-based
video game loop actually functions at its core:

Figure 3

As the Prophecy Foretold, a Hero is Born

[18]

Figure 3 demonstrates at a high level how a graphics-based video game loop actually
functions at its core. As previously discussed, a text-based game loop and a GUI
event loop share a common methodology of blocking, an interrupt-based approach
used for waiting on user input. This model would not work for graphics-based
games today because there is always something that needs to be updated every
cycle in the loop even if the player is idle, such as AI (NPC movements), physics,
or particle effects. Instead of waiting for user input, a game loop polls for events,
processing all user input available at that time. Once processed, the loop will then
step into the game objects that need to be updated based on the current state of the
game world, such as enemies moving and resolving collisions. Once these updates
are complete, the loop will then draw the graphics based on the update calculations
done previously, rendering them to the screen (or back buffer) when ready to
display. This loop then starts again for the next cycle in the game loop.

One cycle of the game loop, represented by Figure 3, is generally referred to as a
frame. The logical question is how fast can we cycle through each frame in the
game loop?

The term used to gauge how many cycles we can complete in a fixed amount of
time, measured in frames per second (FPS), is called the frame rate. The more
frames we are able to process per second, the better the perceived experience
will be for the player. The game will feel more responsive, there will be better
collision detection and enemy movement, and the graphics rendering will be much
smoother. This is because we are polling user input, updating, and rendering much
more frequently. The lower the frames per second, the more degraded the game
experience will be for the player. The player movement will be jerky and not as
responsive, there may be collisions that never get detected with objects appearing
to go through each other, enemies may appear to teleport across the screen, and the
graphics will appear to be very choppy. This is usually caused by polling much less
frequently than what is needed. In modern games today, for example, a frame rate of
30 FPS is standard for a good gameplay experience.

There are two primary factors that affect the frame rate of a game:

•	 The first factor is how fast the underlying target system can process each
frame. This factor is influenced by the system's hardware such as the clock
speed of the CPU, and whether there is a dedicated graphics processing
unit (GPU) available to offload rendering. Another factor is the software of
the target system, specifically how effective the OS is at parallelizing across
multiple cores and how efficient the scheduler is.

Chapter 1

[19]

•	 The second factor is determined by how much logic there is to process
every frame. Calculations for physics (used in collision detection or velocity
updates) and rendering high-fidelity graphics for lots of game objects can
affect the amount of work that needs to be accomplished every frame,
leading to a frame taking longer to render. Therefore, fewer frames are
completed every second.

Given the myriad platforms that the game can run on, these two factors will cause
very different experiences based on the platform it's running on. On a mobile phone,
the game may not have access to a dedicated GPU, and so the CPU becomes the
bottleneck for calculating all the user input, physics, AI, and rendering causing the
game to run at a low frame rate. On the flip side, if you have been developing your
game on a mid-range system for the last two years, when you release your game,
your game may run at a much higher frame rate on newer hardware than what you
are accustomed to in your testing. This not only can cause bugs you didn't expect,
but also high battery consumption on mobile devices and laptops or hot CPUs
and GPUs.

The typical, brute force solution for dealing with these factors that affect the frame
rate is to lock the frame rate so that the experience on the various platforms is a
consistent one. This is not an optimal solution though, because if the refresh rate of
the monitor is not synced with the locked frame rate, then you can get visual artifacts
such as screen tearing. Screen tearing usually occurs because multiple frames get
updated to the screen during draw calls before the monitor finishes its current
refresh cycle.

LibGDX addresses the problem of varying frame rates depending on the device,
by passing in a deltaTime value during each render call for a frame. This value
represents the total time in seconds that the game took to render the last frame. By
updating calculations using the deltaTime value, the gameplay elements should be
synchronized running more consistently across the different devices, using this time-
based approach instead of just locking the game to a specific frame rate.

Understanding the high-level component
layout of LibGDX
We are now going to review the architecture behind LibGDX. As a quick note, the
latest stable release of LibGDX that we are going to use throughout this book is
version 1.5.5, which was built on 19 March, 2015.

As the Prophecy Foretold, a Hero is Born

[20]

LibGDX backend modules
The following figure (Figure 4) is a diagram illustrating the core interfaces of
LibGDX. These are the highest level abstractions available that provide most of the
functionality you will need when creating your game (including their associated
module libraries):

Figure 4

These interfaces are implemented for each of the currently supported target
platforms, allowing you to develop your game once, using these APIs and not
having to worry about platform-specific issues. An overview of the functionality
that each interface contains (once implemented for each supporting platform) is
as follows:

•	 Application.java: This interface becomes the entry point that the platform
OS uses to load your game. Each implementation will be responsible for
setting up a window, handling resize events, rendering to the surfaces, and
managing the application during its lifetime. Specifically, Application.java
will provide the modules for dealing with graphics, audio, input and file I/O
handling, as well as logging facilities, memory footprint information, and
hooks for extension libraries.

Chapter 1

[21]

•	 Graphics.java: This interface contains numerous helper methods for
communicating with the platform's graphics processor, such as rendering
to the screen and querying for available display modes such as graphics
resolution and color depth. There are also convenience methods for
generating pixmaps and textures. One interesting note is that for cross-
platform support, the underlying graphics API (OpenGL ES 2.0 or OpenGL
ES 3.0) is emulated for the desktop by mapping OpenGL ES functions to the
desktop OpenGL functions.

•	 Audio.java: This interface contains numerous helper methods for creating
and managing various audio resources. This interface helps to create sound
effects, play music streams, and give direct access to the audio hardware for
PCM audio input and output.

•	 Files.java: This interface contains numerous helper methods for accessing
the platform's filesystem when managing game assets such as reading
and writing files. This abstraction over the different types of file locations
includes internal files (located in your game working directory) and external
files (external storage such as an SD card).

•	 Input.java: This interface contains numerous helper methods to poll (or
process events) for user input from not only standard input such as keyboard
key presses and mouse button clicks, but also mobile device input such as
touch screens and accelerometer updates. Other helper methods include
handling vibrations, compass access, on-screen keyboard input, and
cursor capture.

•	 Net.java: This interface contains numerous helper methods for performing
certain network-related operations, such as managing HTTP/HTTPS GET
and POST requests and creating TCP server/client socket connections.

•	 Preferences.java: This interface contains numerous helper methods for
storing and accessing application game setting values as a lightweight setting
storage mechanism.

As the Prophecy Foretold, a Hero is Born

[22]

LibGDX core modules
The rest of the functionality that you will use for your game belongs to a host of core
modules within the LibGDX framework:

Figure 5

The modules in the left column (audio, files, graphics, input, and net) in Figure 5
were already discussed previously in Figure 4. The other modules are as follows:

•	 Maps: This module contains classes for dealing with different level map
implementations, such as maps generated from Tiled (an XML-based
format called TMX) and Tide. The convenience methods include handling
the loading of the map and referenced assets, rendering the map, accessing
properties, and selecting different layers.

•	 Math: This module contains classes with convenient utility methods for
dealing with various mathematical calculations such as trigonometry,
linear algebra, and probability. These methods are also optimized to be
fast. Other classes include geometric classes for dealing with shapes, areas,
and volumes, collision detection tests such as intersection and overlap, and
interpolation algorithms.

Chapter 1

[23]

•	 Assets: This module contains classes for managing the loading and storing of
assets such as textures, bitmap fonts, particle effects, pixmaps, UI skins, tile
maps, sounds, and music. These classes will also deal with different caching
strategies to optimize the storage and use of your game assets.

•	 Scenes: This module contains classes for building 2D scene graphs used
in creating UIs such as game menus and HUD overlays. This module also
provides classes for managing the laying out, drawing, and handling input
for the different UIs.

•	 Utils: This module is more of a catchall for various miscellaneous pieces
of utility methods that don't quite fit anywhere else. This module supports
reading and writing in XML and JSON (with serialization support), custom
collections with primitive type support (which helps to avoid performance
hits when autoboxing types), timers, and object pools.

There are other libraries that come with LibGDX, but typically maintained by third
parties. These will fall under the extensions folder. The LibGDX extensions folder
includes the following:

•	 gdx-box2d: This is a physics engine for 2D rigid bodies
•	 gdx-bullet: This is a real-time physics simulation library
•	 gdx-controllers: This is for gamepad and joystick controller support
•	 gdx-freetype: This generates bitmap fonts on the fly from one TrueType

font (TTF) file
•	 gdx-jnigen: This allows C/C++ code to be written inline with Java

source code
•	 gdx-setup: This is the UI project setup application used to manage LibGDX

installs with the Gradle build system
•	 gdx-tools: This is a miscellaneous collection of tools to aid in the

development of your game, such as a particle effect editor, a texture packer
application, and a bitmap font creator utility

As the Prophecy Foretold, a Hero is Born

[24]

Understanding the application lifecycle
of LibGDX
With a better understanding of the core modules included with LibGDX, we can
now look at the application lifecycle of a typical game written with LibGDX for the
desktop illustrated by the following figure (Figure 6):

Figure 6

Chapter 1

[25]

This diagram represents the cycle of your game loop, where one loop through the
logic represents a frame. The following steps outline the various paths through the
game loop in this figure:

1.	 The LwjglApplication class will bootstrap itself with your starter class
instance and the configuration that was passed into its constructor. The
LwjglApplication constructor will instantiate the various subsystem
modules used in LibGDX, populating the Gdx (com.badlogic.gdx)
environment class with static instances of the Application, Graphics,
Audio, Input, Files, and Net modules described previously in Figure 4. The
LwjglApplication constructor will then spawn a thread, which we will
call the main loop, that will run until the game exits. This main loop thread
represents the lifecycle of your game and the instantiation is referred to by
the Game Start note for the initial node in the activity diagram. Now, we can
move onto step 2.

2.	 The next node in the diagram after the initial start is an action node
designated as create(). The create() method is an interface method that
you must implement when creating your game in order to hook into the
lifecycle of LibGDX. During the start of the game loop thread, create() will
be called only once. This is going to be where the initialization code for your
game should be located, including preloading assets, instantiating game
screens, and initializing the game subsystems. Now, we can move onto
step 3.

3.	 This step represents our first decision node in the loop that is checked at the
beginning of every cycle through the game loop, or once per frame. The test
is whether the game is still running or not and allows us to exit if the game
state has changed to not running. As a side note, in order to guarantee that
you properly exit your game, which allows the execution of cleanup code to
happen in the correct order, it is recommended that you follow the LibGDX
convention of exiting your game by using the following statement when
quitting:
Gdx.app.exit();

This call into the static instance of the application object will set the running
state of the game loop to false and subsequently move to the next step
allowing the graceful exit of your game. So, if the game is running, then we
can move to step 7. If the game is not running, then we can move to step 4.

4.	 The action node designated by pause() in the activity diagram is one of the
interface methods that must be implemented when you create your game.
This method guarantees that proper handling of the game will be done, such
as saving the current state of the game. After this finishes, we transition to
the next step.

As the Prophecy Foretold, a Hero is Born

[26]

5.	 The action node designated by dispose() in the activity diagram is an
interface method that guarantees proper cleanup of game resources still
in use when the game is in the process of being destroyed and is the
proper location to free those resources. For clarification, since this is a Java
environment, all objects that implement the Disposable interface (com.
badlogic.gdx.utils) should call their appropriate dispose() method here.
For example, a dispose() method call for an unmanaged Texture object,
under the covers, will delete the texture from the static OpenGL instance and
invalidate its handle. Now, we move onto step 6.

6.	 After dispose() has finished its work, the draw surface is destroyed along
with any audio hardware handles still in use and then runs System.exit().
This step is referred to in the previous figure by the Game Stop note for the
final node in the activity diagram.

7.	 The next step in the diagram brings us to a decision node where the game
loop figures out whether we are transitioning from a previous change in
a draw surface state. When the game loop starts, the previous state of the
draw surface is set to active as an initial placeholder and then the current
draw surface is checked to see whether we are active. The active state for the
draw surface, for the desktop, indicates whether the draw surface is in focus
(not behind another window) or maximized. If it is determined that we have
transitioned to a new state for the draw surface, then we move to the next
decision node on step 8. If there is no transition to a new state, then we can
continue onto step 11.

8.	 After it was determined that some change in the state has occurred since the
last frame (the last cycle of the loop), the next step in the diagram of the game
loop will determine whether we have transitioned from a previous state of
focused to the current state of not focused, or vice versa. If the draw surface
was focused in the last frame but now it is not, then we are minimized, so we
will transition to the action node designated by pause() in step 9. If the draw
surface was not focused in the last frame, but now is focused, then we are
maximized, so we will transition to the action node designated by resume()
in step 10.

9.	 During a cycle in the game loop, if the drawing surface state has changed
from being maximized or in focus to being minimized or not focused, then
pause() will be called by the game loop. After this completes, we move
onto step 11.

Chapter 1

[27]

10.	 During a cycle in the game loop, if the drawing surface state has changed
from being minimized or not in focus to being maximized or in focus, then
resume() will be called by the game loop. The action node designated by
resume() in the activity diagram is another interface method that must be
implemented by your game. This method will guarantee proper handling
from a previously paused state, such as reloading saved state information
from disk. On Android-based devices, this would also be where you would
reload unmanaged textures, but this is not a concern for the desktop. After
this completes, we move onto step 11.

11.	 The next node in the diagram represents a decision regarding whether or not
the dimensions of the current draw surface have changed since the last frame
update. If the dimensions have changed, then we move onto step 12. If the
dimensions have not changed, then we move onto step 13.

12.	 The size of the draw surface has changed since the last frame update, and
thus this will trigger a resize event. The action node designated by resize()
in the activity diagram is an interface method that must be implemented by
your game. This method's parameter list represents the new dimensions,
width and height in pixels, of the game screen. These dimensions are
typically passed through to the screen or draw surface to be updated on the
next render call. Once this step completes, we move onto step 13.

13.	 This action node deals with getting state information from the input devices.
This includes updating the deltaTime interval for the current frame,
updating the mouse cursor location and mouse button press events, and
updating the keyboard key press events. After this step completes, we move
onto step 14.

14.	 This action node deals with processing the state information from the input
devices. This primarily includes passing the mouse cursor location, mouse
button presses, and keyboard key presses up to the input event handler class,
InputProcessor. Your game will usually instantiate this class and set it in
the environment class, Gdx, so that you can access the input events every
frame. When this step completes, we can move onto step 15.

15.	 This action node deals with updating the audio resources for the current
frame. For the desktop, this is primarily used to update the music since
music will be playing across frames. When this step completes, we move
onto step 16.

www.allitebooks.com

http://www.allitebooks.org

As the Prophecy Foretold, a Hero is Born

[28]

16.	 This decision node deals specifically with a test for whether we should
render the draw surface or not. If we need to render (such as a game object's
position has changed this frame, or the mouse cursor has moved), then we
move onto step 17. Otherwise, if we do not need to render, then we have
completed one cycle of this game loop and we will start back at step 3 for the
next frame.

17.	 The action node designated by render() in the activity diagram is an
interface method that must be implemented by your game. This method
will be the most important one in the lifecycle of your game. Commands to
render your game scenes to the screen will live here, along with processing
UI components, physics calculation updates, AI routines, and game object
updates. Once this step completes and we have finished updating the current
frame, we will go back to step 3 to start a new one.

In summary, in the preceding figure, the actions designated as create(),
resize(), render(), pause(), resume(), and dispose()are all methods in the
ApplicationListener interface, as shown in the following figure (Figure 7):

Figure 7

This figure is a class diagram that describes the method names and their
corresponding signatures of the ApplicationListener interface that your game
must implement. These methods represent hooks that the main game loop, in
LibGDX, will call into based on certain system events triggered during the
lifetime of your game.

A quick recap of the responsibilities that these interface methods represent is
as follows:

•	 create(): This is called at the start only once during the lifetime of the game.
Typically, this is the proper place for initialization code (in preparation for
the start of your game) to live.

•	 resize(int width, int height): This is called every time the size of the
game screen is changed. The parameters both represent the new width and
height (in pixels) of the game screen.

Chapter 1

[29]

•	 render(): This method is called every time the game screen needs to
be rendered, such as a resize event or changes in the game screen. The
commands to render your game scenes to the screen should live here.

•	 pause(): On the desktop, this method is called when the game screen
is minimized, a key is pressed by the user, or when the game is exiting.
Typically, this is a good location for saving the game state.

•	 resume(): On the desktop, this method is called when the game screen is
maximized, from a previous state of being minimized.

•	 dispose(): This method is called when the game is being destroyed. This
would be the appropriate place to clean up and free all resources still in use.

Historically, LibGDX started out as a small library for Android-based devices,
which explains why LibGDX is event-driven in nature, since it is modeled after
Android's lifecycle. There is no explicit main loop for our game, but for the
purposes of defining the main loop, the render() method that you implement from
the ApplicationListener interface will, for all intents and purposes, be the main
body of your game.

Now that we have an overview of the packages and lifecycle of LibGDX, we can now
generate a starter project that we will develop throughout the remainder
of this book.

Setting up your development
environment
There are plenty of references available via online blog posts or other books that can
walk you through every nuance in the development environment setup and so we
will not go into in-depth detail here.

Prerequisite tool installation
We will start by discussing the core dependencies that you will need in order to
use LibGDX effectively. For clarity, we will only be concerned about the desktop
platform, specifically targeted for Windows. The steps are as follows:

1.	 First, you will need to install the latest Java Development Kit (JDK), which
includes tools for developing, debugging, and monitoring Java applications.
At the time of this writing, I am using the minimum supported version of
Java that works with LibGDX (version 1.5.5), which is JDK version 1.7. You
can get the latest installer from Oracle's website at http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

As the Prophecy Foretold, a Hero is Born

[30]

After installing the JDK, you can make sure that the environment variable,
JAVA_HOME, is set by opening a Command Prompt window and typing the
following in the command line:
java –version

If everything is set correctly, you should see something like the
following output:

java version "1.7.0_45"

Java(TM) SE Runtime Environment (build 1.7.0_45-b18)

Java HotSpot(TM) Client VM (build 24.45-b08, mixed mode, sharing)

2.	 Second, we will need to install and set up an integrated development
environment (IDE) in order to develop with LibGDX. Out of the box,
LibGDX generates the startup projects for the following IDEs:

°° IntelliJ IDEA: The community edition is free and can be found at
http://www.jetbrains.com/idea/download/. I am using IDEA
while writing this book and I am finding that it easily meets my
requirements during the development of the BludBourne project.

°° Eclipse: This is a well-known, free, and actively maintained open
source IDE. Eclipse can be found at http://www.eclipse.org/
downloads/.

°° NetBeans: This is another free and actively maintained open source
IDE. NetBeans can be found at http://netbeans.org/downloads/
index.html.

3.	 Third, we will need to download and run the gdx-setup tool, which with a
little configuration will generate our project files, platform-specific wrapper
class, and our starter classes. You can download the gdx-setup.jar file by
visiting http://libgdx.badlogicgames.com/download.html and then
clicking on the Download Setup App option. Just as a side note, you may get
a warning from your browser that the file is unsafe because this is a JAR file,
but this is the correct file that is integrated with the new build system (which
will be explained in the next section) for LibGDX.

http://www.jetbrains.com/idea/download/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://netbeans.org/downloads/index.html
http://netbeans.org/downloads/index.html
http://libgdx.badlogicgames.com/download.html

Chapter 1

[31]

Running the LibGDX setup tool
Luckily, LibGDX has a relatively straightforward method for generating the startup
classes that you will need so that you can get started. For every game that you create,
you will use a tool for LibGDX (gdx-setup) that generates boilerplate code for each of
the platform targets that you select, which wrap the main entry point for the game.
These classes represent the only platform-specific code that will be created for a
LibGDX-based game and interface with the backend modules mentioned earlier in
the figure illustrating the core interfaces of LibGDX (Figure 4). For the purposes of
this book, we will be focused primarily on the desktop, so we will only be concerned
with generating one project targeted for Desktop:

In a Command Prompt window, navigate to where you downloaded the gdx-
setup.jar file and run the following command:

java –jar gdx-setup.jar

You should see following UI (Figure 8) when you launch the gdx-setup tool:

Figure 8

As the Prophecy Foretold, a Hero is Born

[32]

The different settings for your LibGDX project setup are labeled for your
convenience as follows:

•	 Name (1): This is typically used for the customer facing name you wish to
present for your game. The standard convention is lower case with hyphens
representing spaces (for example, bludbourne-game). This value is not
really used by the build system for a desktop deployment target because
the desktop target is a self-executable JAR file (or a runnable JAR file) and
not a package. This value is used primarily for the mobile platforms, such as
Android (substitutes for the app_name variable in the AndroidManifest.xml
file) and iOS (substitutes for the app.name variable in the Info.plist.xml
file).

•	 Package (2): This will define the Java-based package name for your game.
The naming convention is described in detail at http://docs.oracle.com/
javase/tutorial/java/package/namingpkgs.html.
Generally, the package names start with a reversed Internet domain name
and are written as all lower case to avoid conflict with class names (for
example, com.packtpub.libgdx.bludbourne).

•	 Game class (3): This is the name of your main class that will implement
the ApplicationListener interface that will hook into the LibGDX game
lifecycle. This class name should also follow Java conventions, including
being a noun and mixed case with the first letter of each internal word
capitalized (for example, BludBourneGame).

•	 Destination (4): This will be the root directory (relative or absolute path) that
the gdx-setup tool will output the generated project into (for example, C:\
BludBourne_Project).

•	 Android SDK (5): This will be the directory path where the Android
SDK lives on your local system (for example, C:\Program Files (x86)\
Android\android-sdk). If the environment variable ANDROID_HOME is
set, then its value will be used to populate this field. We should not be
concerned with this property at this time. We will not be targeting Android
with our project, so when you uncheck the Android dependency in the Sub
Projects option, this box will become greyed out. You can always add this
dependency back later though.

•	 LibGDX Version (6): At the time of writing this book, this is a hardcoded
value that represents the version of LibGDX that the gdx-setup tool was
built against. So, in general, if you run this gdx-setup tool with the latest
gdx-setup.jar file, then you will get the latest release snapshot version
of LibGDX. I believe this is a placeholder until a more dynamic method
is implemented, which will then populate this drop-down list with
more versions.

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

Chapter 1

[33]

•	 Sub Projects (7): These represent the current deployment targets that
LibGDX actively supports with its backend modules. Currently, LibGDX
supports Desktop (Windows, Mac OS X, and Linux), Android, iOS, and
HTML 5. For the purposes of this book, we only need to have the Desktop
option checked.

•	 Extensions (8): These represent third-party support libraries that fall under
the LibGDX umbrella, but in general, are not part of the core libraries. These
libraries usually are not part of the core because they are either maintained
by third parties or have different release schedules. Currently, these
extensions are as follows:

°° Bullet: This is a real-time physics simulation library
°° Freetype: This generates bitmap fonts on the fly from one TrueType

font file
°° Tools: This is a miscellaneous collection of tools to aid in the

development of your game, such as a particle effect editor, a texture
packer application, and a bitmap font creator utility

°° Controllers: This is the gamepad and joystick controller support
°° Box2D: This is the physics engine for 2D rigid bodies
°° Box2DLights: This is a dynamic lighting library for 2D games
°° Ashley: This is a game entity-based framework

For the purposes of this book, we only need to have the Tools option checked
as we can always add other support packages later.

•	 Show Third Party Extensions (9): When selected, a table dialog will pop up
with a few more third-party libraries that are not part of the LibGDX core.
These selections are parsed from an extensions.xml file (found under com/
badlogic/gdx/setup/data). Currently, these extensions are as follows:

°° Overlap2D: This is a game-level creation tool and UI editor
°° VisUI: This is a UI toolkit library that includes flat skins and widgets

such as color pickers and file choosers

As the Prophecy Foretold, a Hero is Born

[34]

•	 Advanced (10): The following figure (Figure 9) represents a dialog box that
includes a few miscellaneous options for project setup, such as creating
IntelliJ IDEA projects, Eclipse projects, or overriding the default dependency
repository. For the purposes of this book, we only need to select the IDEA (or
Eclipse) project generation option here and click on Save when done:

Figure 9

•	 Generate (11): When all the configuration options are correctly populated,
execute the auto-creation process by pressing this button. Your output
should look something like the following:

Generating app in C:\BludBourne

Executing 'C:\BludBourne/gradlew.bat clean --no-daemon idea'

To honour the JVM settings for this build a new JVM will be
forked. Please consider using the daemon: http://gradle.org/
docs/2.2/userguide/gradle_daemon.html.

Configuration on demand is an incubating feature.

:core:clean UP-TO-DATE

:desktop:clean UP-TO-DATE

:ideaModule

:ideaProject

:ideaWorkspace

:idea

:core:ideaModule

:core:idea

:desktop:ideaModule

:desktop:idea

Chapter 1

[35]

BUILD SUCCESSFUL

Total time: 45.313 secs

Done!

To import in Eclipse: File -> Import -> General -> Exisiting
Projects into Workspace

To import to Intellij IDEA: File -> Open -> YourProject.ipr

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.
For the most current version, you can grab the latest snapshot from
https://github.com/patrickhoey/BludBourne.

Understanding the build environment
and project structure
Once the gdx-setup tool is finished generating the project files for us, we can look at
the general structure to get a better idea of the project layout. In order to understand
why certain files are in the project and how third-party dependencies are handled,
we will need an overview of Gradle, the dependency management and build system
that LibGDX currently uses.

Why Gradle?
In the beginning, the only build tool available for Java projects was Make. Projects
quickly became unmanageable as the requirements and dependencies exploded
along with the popularity of the language. Around the year 2000, Ant came to
the rescue with its control of the build process and its low learning curve with
much more readable build scripts. As great as Ant's procedural programming
methodology was for creating scripts, it proved difficult to maintain in part because
the XML-based script files tended to grow in complexity and verbosity. In 2004,
Maven came along to address the issues with Ant and improve upon it with its
simplicity. Dependency management was Maven's goal with a design that regards
all projects as having a specific structure, a set of supported task workflows, and the
ability to download dependencies over the network.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/patrickhoey/BludBourne

As the Prophecy Foretold, a Hero is Born

[36]

Maven didn't come without its own host of problems, including the inability to
correctly manage conflicts between different versions of the same library, and the
difficulty for someone to create customized build scripts because the scripts didn't
exactly fit Maven's rigid structure.

In 2012, Gradle came along and built upon the concepts of both Ant and Maven to
get a build tool that represents the best of both systems. First, Gradle uses a domain
specific language (DSL) based on Groovy instead of the XML-based build scripts.
This removes a lot of the verbosity that we had with XML build scripts, leading to
shorter and clearer scripts. Also, under the covers, Gradle creates a directed acyclic
graph to determine the order in which tasks can run, removing the rigidity of
Maven's lifecycle and the complexity of Ant's dependency with partial ordering.

Benefits of Gradle
What is one benefit of using Gradle with LibGDX? Well, before Gradle support
was added, all the LibGDX source, release, and native JAR files would live as part
of the project hierarchy. This was a problem because LibGDX essentially polluted
the source control system, testing the patience of whoever had to update to a later
version of LibGDX in order to get one bug fix. Gradle fixes these problems because
now LibGDX and all its dependencies live outside your project. If you want to
test your game build against a different version of LibGDX (or any of the other
dependencies), it is as easy as changing the build version number in the build.
gradle file in the root directory of your project. When you run the next build, Gradle
will pull in the updated libraries that you specified from a central repository and
then store them.

What if you missed a dependency when using the gdx-setup tool? All you need to do
is add the dependency declarations to your build.gradle file in your project's root
directory. The dependency declarations adhere to the following convention:

compile '<groupId>:<artifactId>:<version>:<classifier>'

You can search for third-party extension declarations at http://github.com/
libgdx/libgdx/wiki/Dependency-management-with-Gradle. After updating your
build.gradle file and rebuilding, you will now have the dependencies as part of
your project.

http://github.com/libgdx/libgdx/wiki/Dependency-management-with-Gradle
http://github.com/libgdx/libgdx/wiki/Dependency-management-with-Gradle

Chapter 1

[37]

Project structure
On Windows, if we open up a Command Prompt in the target directory where the
gdx-setup tool outputs our project, we can get a better idea of the project structure
with the following command:

C:\BludBourne>tree /F /A

The output will be something similar to the following (numbers were added for an
easier reference):

C:.

1)| .gitignore

2)| BludBourne.iml

3)| BludBourne.ipr

4)| BludBourne.iws

5)| build.gradle

6)| gradle.properties

7)| gradlew

8)| gradlew.bat

9)| settings.gradle

|

+---core

10)| | build.gradle

11)| | core.iml

| |

12) +---assets

| | badlogic.jpg

| |

| \---src

| \---com

| \---packtpub

| \---libgdx

| \---bludbourne

13)| BludBourne.java

|

+---desktop

As the Prophecy Foretold, a Hero is Born

[38]

14)| | build.gradle

15)| | desktop.iml

| |

| \---src

| \---com

| \---packtpub

| \---libgdx

| \---bludbourne

| \---desktop

16)| DesktopLauncher.java

|

\---gradle

 \---wrapper

17) gradle-wrapper.jar

18) gradle-wrapper.properties

This project structure is the initial project generated with gdx-setup for the reference
RPG for this book, called BludBourne, and is described as follows:

•	 .gitignore (1): This is a convenience file used by the source control system,
Git. Specifically, this file specifies the untracked (not under source control
yet) files to ignore. These would include files such as build output and
temporary files.

•	 BludBourne.iml (2): This file type is the project configuration information
for modules stored as part of the IntelliJ IDEA project. For instance, the initial
module will be a Java module that contains all the functionality to build Java
projects.

•	 BludBourne.ipr (3): This file type is the core project information and setting
for IntelliJ IDEA projects. This would include items such as project paths,
compiler options, and Javadoc generation settings. This file is also the launch
file type associated with IDEA.

•	 BludBourne.iws (4): This file type stores your personal workspace settings
for IntelliJ IDEA projects. It is recommended that this file is not checked into
your source control system.

•	 build.gradle (5): This is the primary Gradle build file. It defines all
dependencies and plugins to use in your build environment.

•	 gradle.properties (6): These are settings used to configure your Java build
environment. This would include items such as JVM memory settings and
setting the Java home (path to JDK).

Chapter 1

[39]

•	 gradlew (7): This file is the Gradle startup script for Unix-based systems.
•	 gradlew.bat (8): This file is the Gradle startup script for Windows. You can

pass command-line operations as well, including the following commands to
get information about projects:
gradlew -q projects

And:

gradlew core:tasks

•	 settings.gradle (9): This file defines all of the submodules for your project.
These are the subprojects that you defined in gdx-setup, including core.

•	 core/build.gradle (10): This is a Gradle build file specific to this
submodule. In general, you will not need to update these submodule
configuration files.

•	 core/core.iml (11): This is a configuration file for modules stored as part
of the IntelliJ IDEA project for this subproject. The information will include
items such as paths to the LibGDX libraries.

•	 core/assets (12): This is the directory where you will store all of your game
assets such as bitmaps, sprites, sound, music, and maps for the desktop.

•	 BludBourne.java (13): This is the starter class that is autogenerated for the
BludBourne project with the gdx-setup tool:
package com.packtpub.libgdx.bludbourne;

import com.badlogic.gdx.ApplicationAdapter;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;

public class BludBourne extends ApplicationAdapter {
 SpriteBatch batch;
 Texture img;

 @Override
 public void create () {
 batch = new SpriteBatch();
 img = new Texture("badlogic.jpg");
 }

 @Override
 public void render () {

As the Prophecy Foretold, a Hero is Born

[40]

 Gdx.gl.glClearColor(1, 0, 0, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
 batch.begin();
 batch.draw(img, 0, 0);
 batch.end();
 }
}

As we can see, the starter class BludBourne.java (whose instance was
passed to the backend constructor LwjglApplication in DesktopLauncher.
java) is a concrete implementation of the ApplicationListener interface
(or in this case inherits from the abstract base class ApplicationAdapter,
which in turn implements the interface with dummy stubs). This is also the
location where your source files will live.

•	 desktop/build.gradle (14): This is a Gradle build file specific to this
submodule. In general, you will not need to update these submodule
configuration files.

•	 desktop/desktop.iml (15): This is a configuration file for modules stored
as part of the IntelliJ IDEA project for this subproject. The information will
include items such as paths to the LibGDX libraries.

•	 DesktopLauncher.java (16): This is the only platform-specific class for the
desktop. Inside this class, we can see how our game fits into the beginning of
the LibGDX framework lifecycle:
package com.packtpub.libgdx.bludbourne.desktop;

import com.badlogic.gdx.backends.lwjgl.LwjglApplication;
import com.badlogic.gdx.backends.lwjgl.
LwjglApplicationConfiguration;
import com.packtpub.libgdx.bludbourne.BludBourne;

public class DesktopLauncher {
 public static void main (String[] arg) {
 LwjglApplicationConfiguration config = new
 LwjglApplicationConfiguration();
 new LwjglApplication(new BludBourne(), config);
 }
}

Chapter 1

[41]

This autogenerated class implements the main entry point of our game
and passes our starter class object, BludBourne, to the platform's backend
implementation of the Application interface. The backend implementation
of the Application interface for the desktop is LwjglApplication, which
is part of the LibGDX backend package for the desktop called LWJGL (com.
badlogic.gdx.backends.lwjgl).
LWJGL, an abbreviation for Lightweight Java Game Library, is a Java-based
open source game development library for accessing hardware resources on
the desktop. The driving philosophy is to expose underlying technology as a
thin wrapper in order to keep the API simple. LWJGL enables cross-platform
(Windows, Mac OS X, and Linux) access to popular native APIs such as
OpenGL for graphics and OpenAL for audio. As a side note, Minecraft was
originally developed using LWJGL.

•	 gradle-wrapper.jar (17): This is the main binary for Gradle execution on
the desktop that is included in the classpath in the gradlew.bat file.

•	 gradle-wrapper.properties (18): These properties define the version of
Gradle to fetch and install.

Version control systems
I highly recommend that you take a look at a version control system (VCS) and if
you have not used one in the past, take some time in ramping up with how to use
one. Nothing is worse than to make one small tweak to your game in a late hour
before a demo and all of the sudden, you find yourself with some game objects
passing through each other and you have no idea what changed. VCS systems also
help manage future content updates, such as patch releases and downloadable
content (DLC) for your game. They help you to clearly identify where changes were
made and what areas need to be tested, giving you better management over your
deadlines by eliminating the guess work.

The role of version control systems is definitely a must in order to have an audit
record of all changes made, and a mechanism to look at differences in the file
versions to find these subtle bugs. Today, this doesn't even have to affect your
budget for your game, as individual indie developers or small teams can usually use
these VCS solutions for free.

As the Prophecy Foretold, a Hero is Born

[42]

The following are some VCS solutions available today:

•	 Mercurial: This is a free, distributed source control management tool
(http://mercurial.selenic.com/)

•	 Perforce: This is a commercial, proprietary revision control system. Perforce
is free for up to 20 users, 20 workspaces, and unlimited files (http://www.
perforce.com/)

•	 Subversion: This is a software versioning and revision control system
distributed as free software under the Apache License (http://subversion.
apache.org/)

•	 Git: This is a free, distributed revision control system (http://git-scm.com/)

I have used many different types of VCS solutions throughout my career,
ranging from legacy, bloated, expensive ones, to free ones with limited features.
I have found Git to be easy to learn (once you ignore old source code repository
models such as a central host server) and very fast. I personally recommend Git,
and I will be using it for the BludBourne project. There is a host of information
available on how to use Git, but I found the book Pro Git, by Scott Chacon and Ben
Straub, most useful for quickly getting up to speed on Git (it is available for free
at http://git-scm.com/book/en/v2).

You can use Git from the command line, but for my purposes, I prefer GUI clients so
that I can see the differences between different check-ins and the history of particular
files more clearly. There are many different types of GUI clients available; most are
listed at http://git-scm.com/download/gui/linux. Some of them are as follows:

•	 GitHub for Windows: This is free and can be found at http://windows.
github.com/

•	 SmartGit: This is $79 per user or free for non-commercial use

I have personally found SmartGit easy to use, fast, and actively maintained. For the
BludBourne project, I will be using SmartGit as my Git client of choice.

I recommend that once you generate your project using the gdx-setup tool, you can
create a Git repository at the root project directory and then commit those changes
to your local master branch. This will allow you to make changes as you progress
through this book, and not worry about breaking your project.

http://mercurial.selenic.com/
http://www.perforce.com/
http://www.perforce.com/
http://subversion.apache.org/
http://subversion.apache.org/
http://git-scm.com/
http://git-scm.com/book/en/v2
http://git-scm.com/download/gui/linux
http://windows.github.com/
http://windows.github.com/

Chapter 1

[43]

Running the default demo project
Now that we have an overview of the project structure, we can now run the project
sample to make sure that your project is configured correctly, is building, and
can run.

You can either double-click on the BludBourne.ipr file in the project root directory
or launch your IDE and import the BludBourne project. In order to import with IDEA,
execute the following steps:

1.	 Choose File | New | Project From Existing Sources. Choose the root
directory of your project in the Select File or Directory to Import dialog.
Click on OK.

2.	 In the Import Project dialog, select Create project from existing sources and
click on Next.

3.	 On the next page of the wizard, give your project a name on the Import
Project dialog. Click on Next.

4.	 If source files have been detected, make sure they are selected in the Import
Project dialog. Click on Next.

5.	 Make sure the gradle-wrapper library is found at this stage with the Import
Project dialog. Click on Next.

6.	 Make sure the module structure includes both the core and desktop modules
in the Import Project dialog. Click on Next. You may get a popup dialog
asking whether to overwrite or reuse the files. I would recommend the reuse
option.

7.	 Select the proper Java project SDK in the next Import Project dialog. Click on
Next.

8.	 On the last page of the wizard, click on Finish.

If you are running IDEA, and you committed the initial project to Git, you may
see the following Gradle-based balloon notification when you start the IDE for
the first time:

Unregistered VCS root detected

The directory C:\BludBourne is under Git, but is not registered in the
Settings.

As the Prophecy Foretold, a Hero is Born

[44]

In order to resolve this, with the project open, go to File | Settings. Under the
Settings dialog, select Version Control. Your project should be listed under
Directory on the right panel, under Unregistered roots. Select your directory
and click on the + button on the right. Select Apply and OK when finished.

If you are running IDEA, you may also see a Gradle-based balloon notification when
you start the IDE for the first time:

Unlinked Gradle project?

 Import Gradle project, this will also enable Gradle Tool Window.

 Don't want to see the message for the project again: press here.

Click on the Import Gradle project link (in the balloon notification at the bottom).
In the Import Project from Gradle dialog, make sure that your root project build.
gradle is configured in the Gradle Project path. Also, make sure the Use default
gradle wrapper (recommended) option is enabled. Change the Project format:
option to .ipr (file based). Click on OK when finished.

If you are running IDEA, you may also come across this Gradle-based notification
when starting the IDE with a clone of the BludBourne project repository:

Error:Unable to make the module: <module>, related gradle configuration
was not found.

Please, re-import the Gradle project and try again.

In order to resolve this issue, go to View | Tool Windows | Gradle. Click on the
refresh button in order to synchronize all linked projects.

In IDEA, select Build | Make Project. You should now have successfully built the
startup project. We will now need to create a run target:

1.	 Select Run | Edit Configurations from the menu in IDEA.
2.	 Click on the + icon in the upper-left corner and choose Application.
3.	 You will be presented with the Run/Debug Configurations dialog.
4.	 You should give your run target a name, such as Run.
5.	 You will need to update the Main class: setting with DesktopLauncher.
6.	 You will also need to set the Working directory: path to <project root>\

core\assets. If you don't set this, you will get the following runtime error:
Exception in thread "LWJGL Application" com.badlogic.gdx.utils.
GdxRuntimeException: Couldn't load file: badlogic.jpg

 at com.badlogic.gdx.graphics.Pixmap.<init>(Pixmap.java:140)

 at com.badlogic.gdx.graphics.TextureData$Factory.
loadFromFile(TextureData.java:98)

Chapter 1

[45]

7.	 You will need to set the Use classpath of module option to Desktop since
this is where the main entry point of your game lives.

8.	 Click on OK when finished.

Now, everything should be configured to finally run. From the menu, select Run |
Run target. If all the dependencies are correct, with a proper Gradle build setup and
project configuration, you should see the following screen (Figure 10):

Figure 10

As the Prophecy Foretold, a Hero is Born

[46]

See also
•	 http://en.wikipedia.org/wiki/Little_Wars

•	 http://en.wikipedia.org/wiki/J._R._R._Tolkien

•	 http://en.wikipedia.org/wiki/Ultima_I:_The_First_Age_of_
Darkness

•	 http://en.wikipedia.org/wiki/Dungeons_%26_Dragons

•	 http://en.wikipedia.org/wiki/List_of_game_engines

•	 Hallford N., and Hallford J. Swords & Circuitry: A Designer's Guide to
Computer Role Playing Games. Roseville, CA: Prima Tech, 2001. Print.

•	 Nystrom R. Game Programming Patterns. Genever Benning. 9780990582908.
Web. 04 Apr. 2015.

Summary
This chapter gave some historical context for features that we will be developing
throughout this book for your next RPG title. We also covered some business cases
that help create a compelling narrative around how LibGDX can help meet your
requirements when building your next RPG title. We also reviewed a high-level
architecture of LibGDX, as well as how to successfully generate and run our
starter project.

In the next chapter, we will develop the infrastructure to load tile maps and move
our hero around in the game world.

http://en.wikipedia.org/wiki/Little_Wars
http://en.wikipedia.org/wiki/J._R._R._Tolkien
http://en.wikipedia.org/wiki/Ultima_I:_The_First_Age_of_Darkness
http://en.wikipedia.org/wiki/Ultima_I:_The_First_Age_of_Darkness
http://en.wikipedia.org/wiki/Dungeons_%26_Dragons
http://en.wikipedia.org/wiki/List_of_game_engines

[47]

Welcome to the Land of
BludBourne

Now that we have a high-level understanding of LibGDX, its modules, and a
working starter project, we will now jump into creating the world of BludBourne.
We will first learn some concepts and tools related to creating tile-based maps.
We will then explore our project source code for this chapter, which will include
managing the loading of game assets, including maps, and using player input for
character movement around our world.

We will cover the following topics in this chapter:

•	 Creating and editing tile-based maps
•	 Implementing the starter classes for BludBourne
•	 Implementing asset management with loading textures and tile-based maps
•	 Implementing the camera and displaying a map in the render loop
•	 Implementing map management with spawn points and a portal system
•	 Implementing your player character with animation
•	 Implementing input handling for player-character movement

Creating and editing tile-based maps
For the BludBourne project map locations, we will be using tilesets, which are terrain
and decoration sprites in the shape of squares. These are easy to work with, since
LibGDX supports tile-based maps with its core library. The easiest method to create
these types of maps is to use a tile-based editor.

Welcome to the Land of BludBourne

[48]

There are many different types of tilemap editors, but there are two primary ones
that are used with LibGDX because they have built-in support, as follows:

•	 Tiled: This is a free and actively maintained tile-based editor. I used
this editor for the BludBourne project. Download the latest version from
http://www.mapeditor.org/download.html.

•	 Tide: This is a free tile-based editor built using Microsoft XNA libraries.
The targeted platforms are Windows, Xbox 360, and Windows Phone 7.
Download the latest version from http://tide.codeplex.com/releases.

For the BludBourne project, we will be using Tiled. The following figure (Figure 1) is
a screenshot from one of the editing sessions when creating the maps for our game:

Figure 1

http://www.mapeditor.org/download.html
http://tide.codeplex.com/releases

Chapter 2

[49]

The following is a quick guide for how we can use Tiled for this project:

•	 Map View (1): The map view is the part of the Tiled editor where you
display and edit your individual maps. Numerous maps can be loaded at
once, using a tab approach, so that you can switch between them quickly.
There is a zoom feature available for this part of Tiled in the lower-right
hand corner, and can be easily customized depending on your workflow.
The maps are provided in the project directory (under \core\assets\maps),
but when you wish to create your own maps, you can simply go to File |
New. In the New Map dialog box, set the Tile size dimensions first that, for
our project, will be a width of 16 pixels and a height of 16 pixels. The other
setting is Map size that represents the size of your map in unit size, using the
tile size dimensions as your unit scale. An example would be creating a map
that is 100 units by 100 units, and if our tiles have a dimension of 16 pixels by
16 pixels, then this would give a map size of 1600 pixels by 1600 pixels. Later
on, in this chapter, we will be configuring the map renderer with this unit
referred to as the unit scale value.

•	 Layers (2): This represents the different layers of the currently loaded map.
You can think of creating a tile map like painting a scene, where you paint
the background first and build up the various elements until you get to the
foreground. For the maps for this chapter, we will define six different types
of layers:

°° Background_Layer: This tile layer represents the first layer created
for the tilemap. This will be the layer to create the ground elements,
such as grass, dirt paths, water, and stone walkways. Nothing else
will be shown below this layer.

°° Ground_Layer: This tile layer will be the second layer created for
the tilemap. This layer will be buildings built on top of the ground,
or other structures such as mountains, trees, and villages. The
primary reason is to convey a feeling of depth to the map, as well as
the fact that structural tiles such as walls have a transparency (alpha
channel) so that they look like they belong on the ground where they
are being created.

°° Decoration_Layer: This third tile layer will contain elements meant
to decorate the landscape in order to remove repetition and make
more interesting scenes. These elements include rocks, patches of
weeds, flowers, and even skulls.

Welcome to the Land of BludBourne

[50]

°° MAP_COLLISION_LAYER: This fourth layer is a special layer
designated as an object layer. This layer does not contain tiles, but
will have objects or shapes. This is the layer that you will configure
to create areas in the map that the player character and non-player
characters cannot traverse, such as walls of buildings, mountain
terrain, ocean areas, and decorations such as fountains.

°° MAP_SPAWNS_LAYER: This fifth layer is another special object
layer designated only for player and non-playable character spawns,
such as people in the towns. These spawns will represent the various
starting locations where these characters will first be rendered on
the map.

°° MAP_PORTAL_LAYER: This sixth layer is the last object layer
designated to trigger events in order to move from one map into
another. These will be locations where the player character walks
over, triggering an event that activates the transition to another
map. An example of using the portal would be in the village map.
When the player walks outside of the village map, they will find
themselves on the larger world map.

•	 Tilesets (3): This area of Tiled represents all of the tilesets you will work
with for the current map. Each tileset, or sprite sheet, will get its own tab in
this interface, making it easy to move between them. Adding a new tileset
is as easy as clicking on the New icon in the Tilesets area, and loading the
tileset image in the New Tileset dialog. Tiled will also partition out the
tilemap into the individual tiles after you configure the tile dimensions
in this dialog.

•	 Properties (4): This area of Tiled represents the different additional
properties that you can set for the currently selected map element, such
as a tile or object. An example of where these properties can be helpful is
when we create a portal object on the portal layer. We can create a property
defining the name of this portal object that represents the map to load. So,
when we walk over a small tile that looks like a town in the world overview
map, and trigger the portal event, we know that the map to load is TOWN
because the name property on this portal object is TOWN.

Chapter 2

[51]

After reviewing a very brief description of how we can use the Tiled editor for
BludBourne, the following images show the three maps that we will be using for this
project. The first image (Figure 2) is of the TOWN map that will be where our hero will
discover clues from the villagers, obtain quests, and buy armor and weapons. The
town has shops, an inn, as well as a few small homes of local villagers:

Figure 2

Welcome to the Land of BludBourne

[52]

The next image (Figure 3) is of the TOP_WORLD map that will be the location where
our hero will battle enemies, find clues throughout the land, and eventually make
way to the evil antagonist held up in his castle. The hero can see how the pestilence
of evil has started to spread across the lands and lay ruin upon the only harvestable
fields left:

Figure 3

Chapter 2

[53]

Finally, we make our way to the CASTLE_OF_DOOM map (Figure 4) where our hero,
once leveled enough, will battle the evil antagonist held up in his throne room of his
own castle. Here, the hero will find many high-level enemies, as well as high-valued
items for trade:

Figure 4

Welcome to the Land of BludBourne

[54]

Implementing the starter classes for
BludBourne
Now that we have created the maps for the different locations of BludBourne, we
can now begin to develop the initial pieces of our source code project in order to
load these maps, and move around in our world. The following diagram (Figure 5)
represents a high-level view of all the relevant classes that we will be creating for
this chapter:

Figure 5

Chapter 2

[55]

This class diagram is meant to show not only all the classes we will be reviewing
in this chapter, but also the relationships that these classes share so that we are not
developing them in a vacuum. The main entry point for our game (and the only
platform-specific class) is DesktopLauncher, which will instantiate BludBourne and
add it along with some configuration information to the LibGDX application lifecycle.
BludBourne will derive from Game to minimize the lifecycle implementation needed
by the ApplicationListener interface. BludBourne will maintain all the screens
for the game. For this chapter, we will only need one class that implements the
Screen interface, MainGameScreen. MainGameScreen will be the primary gameplay
screen that displays the different maps and player character moving around in them.
MainGameScreen will also create MapManager, Entity, and PlayerController.
MapManager provides helper methods for managing the different maps and map
layers. Entity will represent the primary class for our player character in the game.
PlayerController implements InputProcessor and will be the class that controls
the player’s input and controls on the screen. Finally, we have some asset manager
helper methods in the Utility class used throughout the project.

DesktopLauncher
The first class that we will need to modify is DesktopLauncher, which the gdx-setup
tool generated. This class can be found at desktop/src/com/packtpub/libgdx/
bludbourne/desktop/DesktopLauncher.java, relative to our project
root directory:

package com.packtpub.libgdx.bludbourne.desktop;

import com.badlogic.gdx.Application;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.backends.lwjgl.LwjglApplication;
import com.badlogic.gdx.backends.lwjgl.LwjglApplicationConfiguration;
import com.packtpub.libgdx.bludbourne.BludBourne;

The Application class is responsible for setting up a window, handling resize
events, rendering to the surfaces, and managing the application during its lifetime.
Specifically, Application will provide the modules for dealing with graphics, audio,
input and file I/O handling, logging facilities, memory footprint information, and
hooks for extension libraries.

Welcome to the Land of BludBourne

[56]

The Gdx class is an environment class that holds static instances of the Application,
Graphics, Audio, Input, Files, and Net modules as a convenience for access
throughout the game.

The LwjglApplication class is the backend implementation of the Application
interface for the desktop. The backend package that LibGDX uses for the desktop
is called LWJGL. This implementation for the desktop will provide cross-platform
access to native APIs for OpenGL. This interface becomes the entry point that the
platform OS uses to load your game.

The LwjglApplicationConfiguration class provides a single point of reference
for all the properties associated with your game on the desktop:

public class DesktopLauncher {
 public static void main (String[] arg) {
 LwjglApplicationConfiguration config = new
 LwjglApplicationConfiguration();

 config.title = “BludBourne”;
 config.useGL30 = false;
 config.width = 800;
 config.height = 600;

 Application app = new LwjglApplication(new BludBourne(),
 config);

 Gdx.app = app;
 //Gdx.app.setLogLevel(Application.LOG_INFO);
 Gdx.app.setLogLevel(Application.LOG_DEBUG);
 //Gdx.app.setLogLevel(Application.LOG_ERROR);
 //Gdx.app.setLogLevel(Application.LOG_NONE);
 }
}

The config object is an instance of the LwjglApplicationConfiguration class
where we can set top-level game configuration properties, such as the title to display
on the display window, as well as display window dimensions. The useGL30
property is set to false so that we use the much more stable and
mature implementation of OpenGL ES, version 2.0.

Chapter 2

[57]

The LwjglApplicationConfiguration properties object and our starter class
instance, BludBourne, are then passed to the backend implementation of the
Application class. An object reference is then stored in the Gdx class. Finally, we
will set the logging level for the game. There are four values for the logging levels
that represent various degrees of granularity for application level messages output
to standard out. LOG_NONE is a logging level where no messages are output. LOG_
ERROR will only display error messages. LOG_INFO will display all messages that
are not debug-level messages. Finally, LOG_DEBUG is a logging level that displays
all messages.

BludBourne
The next class to review is BludBourne, which can be found at core/src/com/
packtpub/libgdx/bludbourne/BludBourne.java. The class diagram for BludBourne
(Figure 6) shows the attributes and method signatures for our implementation:

Figure 6

The import packages for BludBourne are as follows:

package com.packtpub.libgdx.bludbourne;

import com.packtpub.libgdx.bludbourne.screens.MainGameScreen;
import com.badlogic.gdx.Game;

The Game class is an abstract base class that wraps the ApplicationListener
interface and delegates the implementation of this interface to the Screen class.
This provides a convenience for setting the game up with different screens,
including ones for a main menu, options, gameplay, and cutscenes.

Welcome to the Land of BludBourne

[58]

The MainGameScreen is the primary gameplay screen that the player will see as
they move their hero around in the game world. We will discuss this class at
length later on in this chapter:

public class BludBourne extends Game {

public static final MainGameScreen _mainGameScreen = new
MainGameScreen();

 @Override
 public void create(){
 setScreen(_mainGameScreen);
 }

 @Override
 public void dispose(){
 _mainGameScreen.dispose();
 }
}

The gdx-setup tool generated our starter class BludBourne. This is the first place
where we begin to set up our game lifecycle. An instance of BludBourne is passed
to the backend constructor of LwjglApplication in DesktopLauncher, which is
how we get hooks into the lifecycle of LibGDX.

BludBourne will contain all of the screens used throughout the game, but for now
we are only concerned with the primary gameplay screen, MainGameScreen. We
must override the create() method so that we can set the initial screen for when
BludBourne is initialized in the game lifecycle. The setScreen() method will check
to see whether a screen is already currently active. If the current screen is already
active, then it will be hidden, and the screen that was passed into the method will be
shown. In the future, we will use this method to start the game with a main menu
screen. We should also override dispose() since BludBourne owns the screen object
references. We need to make sure that we dispose of the objects appropriately when
we are exiting the game.

Implementing asset management with
loading textures and tile-based maps
The next class to review is Utility, which can be found at core/src/com/
packtpub/libgdx/bludbourne/Utility.java. The Utility class represents
a placeholder for various methods including dealing with the loading and
unloading of game assets.

Chapter 2

[59]

Utility
The class diagram for Utility (Figure 7) shows the attributes and method signatures
for our implementation:

Figure 7

The import packages for Utility are as follows:

package com.packtpub.libgdx.bludbourne;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.assets.loaders.TextureLoader;
import com.badlogic.gdx.assets.loaders.resolvers.
InternalFileHandleResolver;
import com.badlogic.gdx.maps.tiled.TiledMap;
import com.badlogic.gdx.maps.tiled.TmxMapLoader;
import com.badlogic.gdx.assets.AssetManager;

Since LibGDX is built upon OpenGL, we need to understand some nomenclature
from OpenGL in order to properly understand how certain classes work in LibGDX.

For our game, our graphics will be raster-based, which means that they will be
represented by pixels with specific color values. The alternative is to use vector-based
graphics where the graphics are created by executing various draw commands on
the fly. Vector graphics will not be used for the simple reason that the rendering
bottleneck from generating images on the fly would hinder performance. A raster
graphic or image is one large array of color pixel values. Due to the size of these pixel
values, especially with a large color space, different image formats were developed
to compress or reduce the overall size, such as JPEG, PNG, and BMP.

Welcome to the Land of BludBourne

[60]

In order to bridge the gap from an image represented by a 2D array to the 3D space of
OpenGL, all image assets must first be transformed into textures. This process involves
decoding the image format into raw color data. Then, since OpenGL represents 3D
space, we will also need to map this texture to a geometry that the GPU can process
and display, such as a 2D quad. Then, you would need to upload this data directly
to the platform’s GPU for rendering to the display. Luckily, LibGDX wraps all this
functionality for us and abstracts away all the complexity with the Texture class.

As one would imagine, constantly loading images, decoding, texture mapping, and
pushing the data to the GPU would cause significant performance issues due to
the limitations of a platform’s bus bandwidth and CPU speed. Typically, we would
want to load as much as possible at the beginning of our game to decrease the
performance hit of loading images during gameplay.

The Texture class will be used whenever we are loading image-based assets and
will help manage the graphic assets for the game.

The TextureLoader class represents the asset loader for textures. One note is that
the texture data is loaded by default asynchronously, so make sure before you use
an asset with TextureLoader that it has been loaded.

The InternalFileHandleResolver class is a nice convenience class for
managing file handles when resolving paths with assets relative to the current
working directory.

The TiledMap class inherits from the Map class that is a generic map implementation.
The Map base class only contains map properties that describe general attributes and
map layers. The TiledMap class extends this functionality with additional fields for
tiles and tilesets. These tiles are stored as a 2D array of cells that contain references
to the tile as well as rotation and flip attributes.

The TmxMapLoader class is a convenience class for loading TMX-based tilemaps
and storing them as the TiledMap instances.

The AssetManager class manages the loading and storing of assets such as textures,
bitmap fonts, particle effects, pixmaps, UI skins, tile maps, sounds, and music:

public final class Utility {

 public static final AssetManager _assetManager =
 new AssetManager();

Chapter 2

[61]

 private static final String TAG =
 Utility.class.getSimpleName();

 private static InternalFileHandleResolver _filePathResolver =
 new InternalFileHandleResolver();

 public static void unloadAsset(String assetFilenamePath){
 // once the asset manager is done loading
 if(_assetManager.isLoaded(assetFilenamePath)){
 _assetManager.unload(assetFilenamePath);
 } else {
 Gdx.app.debug(TAG, “Asset is not loaded; Nothing to unload:
 “ + assetFilenamePath);
 }
 }

The unloadAsset() method is a helper method that takes advantage of the fact that
there is one static instance of AssetManager for all game assets. This method will
check to see whether the asset is loaded, and if it is, then it will unload the asset from
memory. The unload() method of AssetManager will check the dependencies with
a given asset, and once the reference counter hits zero, call dispose() on the asset
and remove it from the manager:

public static float loadCompleted(){
 return _assetManager.getProgress();
}

public static int numberAssetsQueued(){
 return _assetManager.getQueuedAssets();
}

public static boolean updateAssetLoading(){
 return _assetManager.update();
}

public static boolean isAssetLoaded(String fileName){
 return _assetManager.isLoaded(fileName);

}

Welcome to the Land of BludBourne

[62]

The loadCompleted() method wraps the progress of AssetManager as a percentage
of completion. This can be used to update progress meter values when loading
asynchronously. The numberAssetsQueued() method wraps the number of assets
left to load from the AssetManager queue. The updateAssetLoading() wraps
the update call in AssetManager and can be called in a render() loop, if loading
assets asynchronously in order to process the preload queue. The isAssetLoaded()
method wraps the AssetManager method isLoaded() and will return a simple
Boolean value on whether the asset is currently loaded or not:

public static void loadMapAsset(String mapFilenamePath){
 if(mapFilenamePath == null || mapFilenamePath.isEmpty()){
 return;
 }

 //load asset
 if(_filePathResolver.resolve(mapFilenamePath).exists()){
 _assetManager.setLoader(
 TiledMap.class, new TmxMapLoader(_filePathResolver));

 _assetManager.load(mapFilenamePath, TiledMap.class);

 //Until we add loading screen,
 //just block until we load the map
 _assetManager.finishLoadingAsset(mapFilenamePath);
 Gdx.app.debug(TAG, “Map loaded!: “ + mapFilenamePath);
 }
 else{
 Gdx.app.debug(TAG, “Map doesn’t exist!: “ + mapFilenamePath);
 }
}

public static TiledMap getMapAsset(String mapFilenamePath){
 TiledMap map = null;

 // once the asset manager is done loading
 if(_assetManager.isLoaded(mapFilenamePath)){
 map =_assetManager.get(mapFilenamePath,TiledMap.class);
 } else {
 Gdx.app.debug(TAG, “Map is not loaded: “ + mapFilenamePath);
 }

return map;
}

Chapter 2

[63]

The loadMapAsset() method will take a TMX filename path relative to the working
directory and load the TMX file as a TiledMap asset, blocking until finished. We can
load these assets later asynchronously once we create a screen with a progress bar,
instead of blocking on the render thread. The loadMapAsset() method is paired
with the getMapAsset() method because once the TiledMap asset is loaded, we can
retrieve the asset for use by calling getMapAsset(). Separating the loading of an
asset from the retrieval gives us the flexibility in the future to load asynchronously
when we have a loading screen setup:

public static void loadTextureAsset(String textureFilenamePath){
 if(textureFilenamePath == null ||
 textureFilenamePath.isEmpty()){
 return;
 }
 //load asset
 if(_filePathResolver.resolve(textureFilenamePath).exists()){
 _assetManager.setLoader(Texture.class,
 new TextureLoader(_filePathResolver));

 _assetManager.load(textureFilenamePath, Texture.class);
 //Until we add loading screen,
 //just block until we load the map
 _assetManager.finishLoadingAsset(textureFilenamePath);
 }
 else{
 Gdx.app.debug(TAG, “Texture doesn’t exist!: “ +
 textureFilenamePath);
 }
}
public static Texture getTextureAsset(String textureFilenamePath){
 Texture texture = null;

 // once the asset manager is done loading
 if(_assetManager.isLoaded(textureFilenamePath)){
 texture =
 _assetManager.get(textureFilenamePath,Texture.class);
 } else {
 Gdx.app.debug(TAG, “Texture is not loaded: “ +
 textureFilenamePath);
 }
return texture;
}
}

The loadTextureAsset() method will take an image filename path relative to the
working directory and load the image file as a Texture asset, blocking until finished.
The loadTextureAsset() method is paired with the getTextureAsset() method
because once the Texture asset is loaded, we can retrieve the asset for use by calling
getTextureAsset().

Welcome to the Land of BludBourne

[64]

Implementing the camera and displaying
a map in the render loop
The next class to review is MainGameScreen, which can be found at core/src/
com/packtpub/libgdx/bludbourne/screens/MainGameScreen.java. The
MainGameScreen class is the first Screen implementation for our game and
represents the main gameplay screen used to display the game map, player
avatar, and any UI components.

MainGameScreen
The class diagram for MainGameScreen (Figure 8) shows all the attributes and
method signatures for our first pass:

Figure 8

The import packages for MainGameScreen are as follows:

package com.packtpub.libgdx.bludbourne.screens;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.Screen;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.OrthographicCamera;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.badlogic.gdx.maps.MapLayer;
import com.badlogic.gdx.maps.MapObject;
import com.badlogic.gdx.maps.objects.RectangleMapObject;
import com.badlogic.gdx.maps.tiled.renderers.

Chapter 2

[65]

OrthogonalTiledMapRenderer;
import com.badlogic.gdx.math.Rectangle;
import com.packtpub.libgdx.bludbourne.Entity;
import com.packtpub.libgdx.bludbourne.MapManager;
import com.packtpub.libgdx.bludbourne.PlayerController;

The Camera class deserves a more detailed discussion with how it works within the
LibGDX framework. We will walk through the following diagram (Figure 9) and
outline the important conceptual pieces that compose the Camera class:

Figure 9

Welcome to the Land of BludBourne

[66]

This diagram represents all the pieces that affect how your users will see your game
when they are moving around and interacting with your world:

•	 Camera (1): A virtual camera in the 3D graphics world is more akin to a
pinhole camera than the one for photography or movies. Photography and
movie cameras focus light through converging lenses and record the image
onto some light-sensitive medium. A pinhole camera, on the other hand, is a
simple light-proof box without a lens. This camera lets light through a small
hole, a single aperture or pinhole, and projects the image onto the other side.
The camera represented in the diagram is the OrthographicCamera class that
uses orthographic (also referred to as orthogonal or parallel) projection to
represent 3D objects in 2D space.

•	 Near clipping plane (2): This plane is the closest one to the camera. In a
perspective camera, objects closer to this plane will appear larger than objects
further away. In an orthographic camera, objects will appear the same size
regardless of how close they are to this plane as no adjustments are made
for distance from the camera with orthographic projections.

•	 Far clipping plane (3): This plane is the furthest one from the camera. In
a perspective camera, objects closer to this plane will appear smaller than
objects closer to the near clipping plane. In an orthographic camera, objects
will appear the same size regardless how far they are from the camera.

•	 View frustum (4): This is the cuboid volume whose depth is bounded by the
near and far clipping planes. Anything that is inside this volume, including
partially intersecting objects, will be rendered to the screen (unless the object
is occluded). Everything else outside this volume will not be rendered or
will be clipped. This is also referred to as frustum culling. The other item to
keep in mind is usually there is a z ordering (depth) of game objects starting
at the far clipping plane and moving in a positive direction towards the near
clipping plane.

•	 Orthographic projection of a sprite (5): An example of a Sprite object in
the frustum that visually demonstrates an orthographic projection onto
the viewport. This shows that no matter where objects are located within
the frustum, they will be rendered the same size without any perspective
correction. A Sprite class represents a flat 2D image that contains the
geometry, color, and texture information for drawing. This allows you
rotate and move the Sprite object around the screen.

Chapter 2

[67]

•	 Viewport (6): This is a 2D rectangular region of the screen used to project a
3D scene to the position of the camera. In LibGDX, the viewport width and
height has its origin located at the center of the screen. The diagram shows
a viewport with a width and height of 10 units each and a positive y axis
pointing up. In this example, we can see how the corresponding position
values change depending on what direction we are moving.

•	 Coordinate system (7): The coordinate system in LibGDX is bottom-left,
meaning that the origin coordinate point (0, 0) is located at the bottom-left
corner with the positive y axis pointing up.

•	 Map screen (8): This is an example of one of the Tiled (TMX format) maps
rendered to a Screen instance using the OrthogonalTiledMapRenderer
class in the render thread.

The source for MainGameScreen is as follows:

public class MainGameScreen implements Screen {
 private static final String TAG =
 MainGameScreen.class.getSimpleName();

 private static class VIEWPORT {
 static float viewportWidth;
 static float viewportHeight;
 static float virtualWidth;
 static float virtualHeight;
 static float physicalWidth;
 static float physicalHeight;
 static float aspectRatio;
 }

 private PlayerController _controller;
 private TextureRegion _currentPlayerFrame;
 private Sprite _currentPlayerSprite;

 private OrthogonalTiledMapRenderer _mapRenderer = null;
 private OrthographicCamera _camera = null;
 private static MapManager _mapMgr;

 public MainGameScreen(){

www.allitebooks.com

http://www.allitebooks.org

Welcome to the Land of BludBourne

[68]

 _mapMgr = new MapManager();
 }

 private static Entity _player;

 @Override
 public void show() {
 //_camera setup
 setupViewport(10, 10);

 //get the current size
 _camera = new OrthographicCamera();
 _camera.setToOrtho(false, VIEWPORT.viewportWidth,
 VIEWPORT.viewportHeight);

 _mapRenderer = new OrthogonalTiledMapRenderer
 (_mapMgr.getCurrentMap(), MapManager.UNIT_SCALE);
 _mapRenderer.setView(_camera);

 Gdx.app.debug(TAG, “UnitScale value is: “ +
 _mapRenderer.getUnitScale());

 _player = new Entity();
 _player.init(_mapMgr.getPlayerStartUnitScaled().x,
 _mapMgr.getPlayerStartUnitScaled().y);

 _currentPlayerSprite = _player.getFrameSprite();

 _controller = new PlayerController(_player);
 Gdx.input.setInputProcessor(_controller);
 }

 @Override
 public void hide() {
 }

There are two primary methods in the Screen class interface that you will need to
override: the show() and hide() methods. Whenever a new screen is set with the
setScreen() method in the BludBourne class, the hide() method will be called on
the current screen, and a show() method will be called on the new screen. For now,
because we have not currently implemented other screens, these member variables
can be instantiated in the show() method. In this show() method, we first set up the
viewport, which we saw in Figure 9, with the dimensions of 10 units for the width
and 10 units for the height. The setupViewport() method will be discussed in
depth later.

Chapter 2

[69]

A unit in this context is a unitScale attribute that maps the coordinate system on
the tiled map from screen pixel coordinates to world unit coordinates. One benefit of
using a unitScale attribute is that it simplifies collision detection and tile changes
on a tile-based map because they are abstracted into whole number indices. In other
words, you may have a position on the map that represents the pixel position (160,
320) that doesn’t easily give us information on which tile we are on relative to the tile
map. If all tiles are 16 pixel squares, I can set unitScale equal to 1/16, which means
that every one unit will represent a square with side lengths of 16 pixels. So, instead
of having a position of (160, 320) in pixel space, by setting unitScale to 1/16, I will
have a position of (10, 20) in unit space (160/16 for x, and 320/16 for y), meaning my
current position will be the tenth tile to the right (positive x) and the twentieth tile up
(positive y).

We are going to instantiate our Camera with a default constructor as an
OrthographicCamera that was discussed in detail with Figure 9. The setToOrtho()
method takes a Boolean as a first parameter that we should set to false so that our
coordinate system has the positive y facing up. The next two parameters set up our
viewport width and height dimensions, respectively. Now that we have defined our
orthographic camera to view our world, we now need to render the tile maps.

OrthogonalTiledMapRenderer, which was also discussed in Figure 9, will take
a TiledMap and a unit scale value. The TiledMap is already loaded from our
MapManager class, which will be discussed later, and in the future will load the
map that was set when saving the game progress. The unit scale is configured for
the pixel dimensions of our world, so every tile unit on the map will represent a
square with side lengths of 16 pixels. The setView() method bridges the rendered
map with the viewport of the camera, and so we pass in the OrthographicCamera
instance that we previously constructed.

MainGameScreen will also contain a static instance of Entity that represents the
player in the game. The lifetime of the player will persist as we load different
maps, so for now, it makes sense that the player object lives in this class. The next
initializations are specific to setting up our Entity object or the player character to
move around the map. We will discuss the Entity class more in depth later on:

@Override
public void render(float delta) {
 Gdx.gl.glClearColor(0, 0, 0, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 //Preferable to lock and center the _camera to the player’s
 position
 _camera.position.set(_currentPlayerSprite.getX(),
 _currentPlayerSprite.getY(), 0f);

Welcome to the Land of BludBourne

[70]

 _camera.update();

 _player.update(delta);
 _currentPlayerFrame = _player.getFrame();

 updatePortalLayerActivation(_player.boundingBox);

 if(!isCollisionWithMapLayer(_player.boundingBox)){
 _player.setNextPositionToCurrent();
 }
 _controller.update(delta);

 _mapRenderer.setView(_camera);
 _mapRenderer.render();

 _mapRenderer.getBatch().begin();
 _mapRenderer.getBatch().draw(_currentPlayerFrame,
 _currentPlayerSprite.getX(), _currentPlayerSprite.getY(),
 1,1);
 _mapRenderer.getBatch().end();
}

You will need to implement your own sorting algorithm in order to make sure
certain game objects get rendered in a particular order; otherwise they will be
rendered in the order that the draw calls are made. In the future, we will be making
draw calls similar to the painter’s algorithm where the background layer of the
TiledMap map will be drawn first all the way to the character sprites that will be
rendered last.

The render() method will be called every frame, and is the primary location for
rendering, updating, and checking for collisions in the game lifecycle. First, we will
make sure that we lock the viewport (camera position) to the current position of
our player character so that the player is always in the middle of the screen. We will
then check whether the player has activated a portal, which will be discussed later
on in more detail with the MapManager class. We will also check for collisions with
the collision layer of the map, and if there are collisions, then we will not update
the player’s position. We make sure that we update the camera information in the
OrthogonalTiledMapRenderer object and then render the TiledMap object first
because, as mentioned previously, the order in which you draw your objects matter.

Chapter 2

[71]

Finally, we will draw the character to the screen, making sure to use the getBatch()
call for when we have numerous objects to update. By drawing in a batch update, the
overhead of updating the textures will be minimal since the GPU will consume the
texture updates at one time instead of constantly throttling between updating and
rendering separate textures:

@Override
public void resize(int width, int height) {
}

@Override
public void pause() {
}

@Override
public void resume() {
}

@Override
public void dispose() {
 _player.dispose();
 _controller.dispose();
 Gdx.input.setInputProcessor(null);
 _mapRenderer.dispose();
}

private void setupViewport(int width, int height){
 //Make the viewport a percentage of the total display area
 VIEWPORT.virtualWidth = width;
 VIEWPORT.virtualHeight = height;

 //Current viewport dimensions
 VIEWPORT.viewportWidth = VIEWPORT.virtualWidth;
 VIEWPORT.viewportHeight = VIEWPORT.virtualHeight;

 //pixel dimensions of display
 VIEWPORT.physicalWidth = Gdx.graphics.getWidth();
 VIEWPORT.physicalHeight = Gdx.graphics.getHeight();

 //aspect ratio for current viewport

Welcome to the Land of BludBourne

[72]

 VIEWPORT.aspectRatio = (VIEWPORT.virtualWidth /
 VIEWPORT.virtualHeight);

 //update viewport if there could be skewing
 if(VIEWPORT.physicalWidth / VIEWPORT.physicalHeight >=
 VIEWPORT.aspectRatio){
 //Letterbox left and right
 VIEWPORT.viewportWidth = VIEWPORT.viewportHeight *
 (VIEWPORT.physicalWidth/VIEWPORT.physicalHeight);
 VIEWPORT.viewportHeight = VIEWPORT.virtualHeight;
 }else{
 //letterbox above and below
 VIEWPORT.viewportWidth = VIEWPORT.virtualWidth;
 VIEWPORT.viewportHeight = VIEWPORT.viewportWidth *
 (VIEWPORT.physicalHeight/VIEWPORT.physicalWidth);
 }

 Gdx.app.debug(TAG, “WorldRenderer: virtual: (“ +
 VIEWPORT.virtualWidth + “,” + VIEWPORT.virtualHeight + “)”);
 Gdx.app.debug(TAG, “WorldRenderer: viewport: (“ +
 VIEWPORT.viewportWidth + “,” + VIEWPORT.viewportHeight + “)”
);
 Gdx.app.debug(TAG, “WorldRenderer: physical: (“ +
 VIEWPORT.physicalWidth + “,” + VIEWPORT.physicalHeight + “)”
);
}

The setupViewport() method helps with the bookkeeping of our inner class
VIEWPORT. This is simply a convenience class for maintaining all the parameters
that compose our viewport for the camera. This class will also account for the
skewing that can occur depending on the width to height ratio and will update
the values accordingly:

private boolean isCollisionWithMapLayer(Rectangle boundingBox){
 MapLayer mapCollisionLayer = _mapMgr.getCollisionLayer();

 if(mapCollisionLayer == null){
 return false;
 }

 Rectangle rectangle = null;

 for(MapObject object: mapCollisionLayer.getObjects()){

Chapter 2

[73]

 if(object instanceof RectangleMapObject) {
 rectangle = ((RectangleMapObject)object).getRectangle();
 if(boundingBox.overlaps(rectangle)){
 return true;
 }
 }
 }

 return false;
}

The isCollisionWithMapLayer() method is called for every frame in the render()
method with the player character’s bounding box passed in. This is essentially the
rectangle that defines the hitbox of the player. We test the player’s hitbox against
all rectangle objects on the collision layer of the TiledMap map, and if any of the
rectangles overlap, then we know we have a collision and will return true:

private boolean updatePortalLayerActivation(Rectangle
 boundingBox){
 MapLayer mapPortalLayer = _mapMgr.getPortalLayer();

 if(mapPortalLayer == null){
 return false;
 }

 Rectangle rectangle = null;

 for(MapObject object: mapPortalLayer.getObjects()){
 if(object instanceof RectangleMapObject) {
 rectangle = ((RectangleMapObject)object).getRectangle();
 if(boundingBox.overlaps(rectangle)){
 String mapName = object.getName();
 if(mapName == null) {
 return false;
 }
 _mapMgr.setClosestStartPositionFromScaledUnits
 (_player.getCurrentPosition());
 _mapMgr.loadMap(mapName);
 _player.init(_mapMgr.getPlayerStartUnitScaled().x,
 _mapMgr.getPlayerStartUnitScaled().y);
 _mapRenderer.setMap(_mapMgr.getCurrentMap());

Welcome to the Land of BludBourne

[74]

 Gdx.app.debug(TAG, “Portal Activated”);
 return true;
 }
 }
 }

 return false;
}
}

The updatePortalLayerActivation() method is similar to the
isCollisionWithMapLayer(), in that we will walk through every rectangle on the
portal layer checking for collisions with the player’s hitbox. The primary difference
is that if a player walks over these special areas on the map, then an event will be
triggered letting us know that the player has activated the portal. When portal
activation occurs, we will first cache the closest player spawn in the MapManager
class. This will help when we transition out from the new location, back to the current
location. Then, we will load the new map designated by the portal activation name,
reset the player position, and set the new map to be rendered in the next frame.

Implementing map management with
spawn points and a portal system
The next class represented in our top-level class diagram is MapManager, which can
be found at core/src/com/packtpub/libgdx/bludbourne/MapManager.java.
This class has helper methods for loading the TiledMap maps, as well as methods
for accessing the different MapLayer, and MapObject objects in the layers.

MapManager
A class diagram that outlines the different attributes and helper methods is
represented by the following diagram (Figure 10):

Chapter 2

[75]

Figure 10

The import classes are as follows:

package com.packtpub.libgdx.bludbourne;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.maps.MapLayer;
import com.badlogic.gdx.maps.MapObject;
import com.badlogic.gdx.maps.objects.RectangleMapObject;
import com.badlogic.gdx.maps.tiled.TiledMap;
import com.badlogic.gdx.math.*;

import java.util.Hashtable;

Welcome to the Land of BludBourne

[76]

We are going to be using TiledMap (TMX format) maps that will then be rendered
to a Screen instance using the OrthogonalTiledMapRenderer class in the render
thread. Each map contains several MapLayer objects that are ordered with a 0-based
index. In the future, we will be drawing the MapLayer objects by first querying them
by name and then drawing them from the background up to the foreground MapLayer.
We have the other MapLayer objects (object layers in Tiled) that will not be rendered,
but contain the MapObject objects (or more specifically RectangleMapObjects) used
to test for collisions, portal triggers, and player spawns. We can also see how the
viewport only renders a portion of the total map (depending on the units used when
setting the width and height dimensions of the viewport).

We are also going to store state information regarding the player start position and
the current player position using the Vector2 class. This class is a convenience
class from the LibGDX math library that represents a 2D vector that we can use
for position information:

public class MapManager {
 private static final String TAG = MapManager.
 class.getSimpleName();

 //All maps for the game
 private Hashtable<String,String> _mapTable;
 private Hashtable<String, Vector2> _playerStartLocationTable;

 //maps
 private final static String TOP_WORLD = “TOP_WORLD”;
 private final static String TOWN = “TOWN”;
 private final static String CASTLE_OF_DOOM = “CASTLE_OF_DOOM”;

 //Map layers
 private final static String MAP_COLLISION_LAYER =
 “MAP_COLLISION_LAYER”;
 private final static String MAP_SPAWNS_LAYER =
 “MAP_SPAWNS_LAYER”;
 private final static String MAP_PORTAL_LAYER =
 “MAP_PORTAL_LAYER”;

 private final static String PLAYER_START = “PLAYER_START”;

 private Vector2 _playerStartPositionRect;

Chapter 2

[77]

 private Vector2 _closestPlayerStartPosition;
 private Vector2 _convertedUnits;

 private Vector2 _playerStart;
 private TiledMap _currentMap = null;
 private String _currentMapName;
 private MapLayer _collisionLayer = null;
 private MapLayer _portalLayer = null;
 private MapLayer _spawnsLayer = null;

 public final static float UNIT_SCALE = 1/16f;

 public MapManager(){
 _playerStart = new Vector2(0,0);
 _mapTable = new Hashtable();

 _mapTable.put(TOP_WORLD, “maps/topworld.tmx”);
 _mapTable.put(TOWN, “maps/town.tmx”);
 _mapTable.put(CASTLE_OF_DOOM, “maps/castle_of_doom.tmx”);

 _playerStartLocationTable = new Hashtable();
 _playerStartLocationTable.put(TOP_WORLD,
 _playerStart.cpy());
 _playerStartLocationTable.put(TOWN, _playerStart.cpy());
 _playerStartLocationTable.put(CASTLE_OF_DOOM,
 _playerStart.cpy());

 _playerStartPositionRect = new Vector2(0,0);
 _closestPlayerStartPosition = new Vector2(0,0);
 _convertedUnits = new Vector2(0,0);
 }

For this iteration of the MapManager class, we are going to have two primary containers
for managing the maps. The first container is a Hashtable for storing the relative
paths to the actual TMX files located under the assets directory. The keys used for the
hashing will be static strings defined by MapManager. These strings will also be used in
the name properties of the TMX maps, so we need to make sure that the strings match.
The second container is also a Hashtable that will be used for caching the closest
player spawn point in the current loaded map. The keys used for the hashing will be
the same static strings defined by MapManager.

Welcome to the Land of BludBourne

[78]

The reason why we need these cached values will be explained further down:

 public void loadMap(String mapName){
 _playerStart.set(0,0);

 String mapFullPath = _mapTable.get(mapName);

 if(mapFullPath == null || mapFullPath.isEmpty()) {
 Gdx.app.debug(TAG, “Map is invalid”);
 return;
 }

 if(_currentMap != null){
 _currentMap.dispose();
 }

 Utility.loadMapAsset(mapFullPath);
 if(Utility.isAssetLoaded(mapFullPath)) {
 _currentMap = Utility.getMapAsset(mapFullPath);
 _currentMapName = mapName;
 }else{
 Gdx.app.debug(TAG, “Map not loaded”);
 return;
 }

 _collisionLayer = _currentMap.getLayers().
 get(MAP_COLLISION_LAYER);
 if(_collisionLayer == null){
 Gdx.app.debug(TAG, “No collision layer!”);
 }

 _portalLayer = _currentMap.getLayers().
 get(MAP_PORTAL_LAYER);
 if(_portalLayer == null){
 Gdx.app.debug(TAG, “No portal layer!”);
 }

 _spawnsLayer = _currentMap.getLayers().
 get(MAP_SPAWNS_LAYER);

Chapter 2

[79]

 if(_spawnsLayer == null){
 Gdx.app.debug(TAG, “No spawn layer!”);
 }else{
 Vector2 start = _playerStartLocationTable.
 get(_currentMapName);
 if(start.isZero()){
 setClosestStartPosition(_playerStart);
 start = _playerStartLocationTable.
 get(_currentMapName);
 }
 _playerStart.set(start.x, start.y);
 }

 Gdx.app.debug(TAG, “Player Start: (“ + _playerStart.x +
 “,” + _playerStart.y + “)”);
 }

The loadMap() method is a straightforward helper method that verifies that the
string passed in is a valid path and checks to see whether the asset exists; if it does,
it loads it. At this point, we copy the object references of the different layers for fast
access later, such as the collision layer, portal layer, and spawn layer. One item of
note is near the end, we check to see whether the starting location is set to (0, 0). If it
is, we know that we have not cached a player location yet, meaning that this is the
first time we have loaded this map. At this point, we will cache a location closest to
this starting position:

 public TiledMap getCurrentMap(){
 if(_currentMap == null) {
 _currentMapName = TOWN;
 loadMap(_currentMapName);
 }
 return _currentMap;
 }

 public MapLayer getCollisionLayer(){
 return _collisionLayer;
 }

 public MapLayer getPortalLayer(){

Welcome to the Land of BludBourne

[80]

 return _portalLayer;
 }

 public Vector2 getPlayerStartUnitScaled(){
 Vector2 playerStart = _playerStart.cpy();
 playerStart.set(_playerStart.x * UNIT_SCALE,
 _playerStart.y * UNIT_SCALE);
 return playerStart;
 }

One item to keep note of in the getPlayerStartUnitScaled() method is that
when we set a player start location from the MapObject, the location will be in pixel
coordinates. We need to convert these coordinates to unit coordinates so that when this
method is called, the character will start in the correct location using the map units:

private void setClosestStartPosition(final Vector2 position){
 //Get last known position on this map
 _playerStartPositionRect.set(0,0);
 _closestPlayerStartPosition.set(0,0);
 float shortestDistance = 0f;

 //Go through all player start positions and choose closest to
 //last known position
 for(MapObject object: _spawnsLayer.getObjects()){
 if(object.getName().equalsIgnoreCase(PLAYER_START)){
 ((RectangleMapObject)object).getRectangle().
 getPosition(_playerStartPositionRect);
 float distance = position.dst2(_playerStartPositionRect);

 if(distance < shortestDistance ||
 shortestDistance == 0){
 _closestPlayerStartPosition.set(
 _playerStartPositionRect);
 shortestDistance = distance;
 }
 }
 }

Chapter 2

[81]

 _playerStartLocationTable.put(
 _currentMapName, _closestPlayerStartPosition.cpy());
}

The setClosestStartPosition() method will cache the closest spawn location to
the player on the current map. This is used when the portal activation occurs in order
to start the player in the correct location when transitioning out of the new location,
back to the previous location. For instance, there are two player start locations on the
TOP_WORLD map. One player’s start spawn is near the village represented by the TOWN
map, and the other one is outside the enemy’s castle, represented by the CASTLE_OF_
DOOM map. In order to resolve the ambiguity of which player start location we should
choose, we call this method when we are transitioning to another location. So, if you
enter the enemy castle and then leave, you will start at the player start spawn outside
the castle because when you first entered the castle, this player start spawn was the
closest to your location at that time.

Also, note that we used the dst2() method from the Vector2 class because, in
general, when checking distances between objects, we only care about the relative
distance, not the absolute distance. In order to get the absolute distance, we would
need to take the square root of the value, and in general, this is an expensive
operation. Small performance choices like this can add up to a large benefit
throughout your game:

public void setClosestStartPositionFromScaledUnits(
 Vector2 position){
 if(UNIT_SCALE <= 0)
 return;

 _convertedUnits.set(position.x/UNIT_SCALE,
 position.y/UNIT_SCALE);
 setClosestStartPosition(_convertedUnits);
 }
}

The setClosestStartPositionFromScaledUnits() method is a helper method
that wraps setClosestStartPosition() so that we can map the unit coordinate
location back into pixel coordinate space used in the map.

Welcome to the Land of BludBourne

[82]

Implementing your player character with
animation
The next class that we will look at in our class diagram hierarchy is the Entity class
that can be found at core/src/com/packtpub/libgdx/bludbourne/Entity.java.
The Entity class represents the primary game object, including the player character
and non-playable characters (NPCs), which can move around in the world and
interact with their environment.

Entity
The following class diagram demonstrates the relevant attributes and methods that
we are going to use for this chapter (Figure 11):

Figure 11

Chapter 2

[83]

We will discuss some of the imports from the source code of Entity:

package com.packtpub.libgdx.bludbourne;

import java.util.UUID;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.Animation;
import com.badlogic.gdx.graphics.g2d.Sprite;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.badlogic.gdx.math.Rectangle;
import com.badlogic.gdx.math.Vector2;
import com.badlogic.gdx.utils.Array;

First, TextureRegion will be used throughout the creation of the game and will be
the primary container for using image assets. The TextureRegion class is analogous
to using a sprite (TextureRegion) from a sprite sheet (Texture). The following
screenshot (Figure 12) visually outlines how the TextureRegion class can be used:

Figure 12

When we load an image asset, we will be storing the image asset as a Texture object in
the AssetManager class by using the loadTextureAsset() and getTextureAsset()
helper methods from our Utility class. The Texture object will include the entire
image consisting of 16 different sprites. In order to reference a specific sprite
(for rendering), TextureRegion can be used to get access to a subregion of the
Texture object.

Welcome to the Land of BludBourne

[84]

Second, the Animation class is another one that deserves a little more detailed
explanation. The Animation class is described visually in the following screenshot
(Figure 13):

Figure 13

Whenever we construct an Animation object, we will be passing in the frame
duration, the TextureRegion references, and the type of loop used in animating these
TextureRegion. Each TextureRegion is an indexed keyframe that represents one
frame in the animation cycle. An animation is composed of cycling over the keyframes
for the full animation duration. Depending on your individual needs, there are various
types of play loops that can be configured, such as playing the keyframes once in
order, backwards, continuously, or in a random order. The frame duration is going to
be the time between frames representing how long each frame will be displayed for, in
seconds. In our figure, each frame duration lasts a quarter of one second or 0.25. A full
play loop through all four keyframes will give us a total animation cycle of one second.
Figuring out the exact frame duration is a little more art than science, depending on
how you want the character to feel when moving around in a game:

public class Entity {

 private static final String TAG = Entity.class.getSimpleName();
 private static final String _defaultSpritePath =
 “sprites/characters/Warrior.png”;

 private Vector2 _velocity;
 private String _entityID;

 private Direction _currentDirection = Direction.LEFT;
 private Direction _previousDirection = Direction.UP;

 private Animation _walkLeftAnimation;
 private Animation _walkRightAnimation;

Chapter 2

[85]

 private Animation _walkUpAnimation;
 private Animation _walkDownAnimation;

 private Array<TextureRegion> _walkLeftFrames;
 private Array<TextureRegion> _walkRightFrames;
 private Array<TextureRegion> _walkUpFrames;
 private Array<TextureRegion> _walkDownFrames;

 protected Vector2 _nextPlayerPosition;
 protected Vector2 _currentPlayerPosition;
 protected State _state = State.IDLE;
 protected float _frameTime = 0f;
 protected Sprite _frameSprite = null;
 protected TextureRegion _currentFrame = null;

 public final int FRAME_WIDTH = 16;
 public final int FRAME_HEIGHT = 16;
 public static Rectangle boundingBox;

 public enum State {
 IDLE, WALKING
 }

 public enum Direction {
 UP,RIGHT,DOWN,LEFT;
 }

 public Entity(){
 initEntity();
 }

 public void initEntity(){
 this._entityID = UUID.randomUUID().toString();
 this._nextPlayerPosition = new Vector2();
 this._currentPlayerPosition = new Vector2();
 this.boundingBox = new Rectangle();
 this._velocity = new Vector2(2f,2f);

 Utility.loadTextureAsset(_defaultSpritePath);
 loadDefaultSprite();
 loadAllAnimations();
 }

 public void update(float delta){

Welcome to the Land of BludBourne

[86]

 _frameTime = (_frameTime + delta)%5; //Want to avoid overflow

 //We want the hitbox to be at the feet for a better feel
 setBoundingBoxSize(0f, 0.5f);
 }

This update() method will be called on any game object entity before it is rendered.
One of the states we need to maintain for smooth animation cycles is frameTime,
which is simply the accumulation of the deltas between frame updates. This allows
the animation to account for changes in the frame rate of the game. One quick
note is that depending on how long the game is playing, we don’t want to have a
value increasing for the entire lifetime of the game since there is the potential for an
overflow. One simple solution is to mod the value to 5, essentially resetting the
value every five seconds:

 public void init(float startX, float startY){
 this._currentPlayerPosition.x = startX;
 this._currentPlayerPosition.y = startY;

 this._nextPlayerPosition.x = startX;
 this._nextPlayerPosition.y = startY;
 }
 public void setBoundingBoxSize(float percentageWidthReduced,
 float percentageHeightReduced){
 //Update the current bounding box
 float width;
 float height;

 float widthReductionAmount = 1.0f - percentageWidthReduced;
 //.8f for 20% (1 - .20)
 float heightReductionAmount = 1.0f - percentageHeightReduced;
 //.8f for 20% (1 - .20)

 if(widthReductionAmount > 0 && widthReductionAmount < 1){
 width = FRAME_WIDTH * widthReductionAmount;
 } else{
 width = FRAME_WIDTH;
 }

 if(heightReductionAmount > 0 && heightReductionAmount < 1){
 height = FRAME_HEIGHT * heightReductionAmount;
 } else{

Chapter 2

[87]

 height = FRAME_HEIGHT;
 }

 if(width == 0 || height == 0){
 Gdx.app.debug(TAG, “Width and Height are 0!! “ + width +
 “:” + height);
 }

 //Need to account for the unitscale, since the map coordinates
 will be in pixels
 float minX;
 float minY;
 if(MapManager.UNIT_SCALE > 0) {
 minX = _nextPlayerPosition.x / MapManager.UNIT_SCALE;
 minY = _nextPlayerPosition.y / MapManager.UNIT_SCALE;
 } else{
 minX = _nextPlayerPosition.x;
 minY = _nextPlayerPosition.y;
 }

 boundingBox.set(minX, minY, width, height);
 }

The setBoundingBoxSize() method allows us to customize the hitbox for the
different entities. In our case, we currently only use this for our player character in
the game. Based on the tileset graphics, the default area of the hitbox for the player
is the width and height of the sprite. This could cause issues when trying to traverse
through forested areas with collision rectangles spread about, as well as when
blocking the player from moving along the bottom of mountain ranges or on the top
of lakes in the game. One solution is to reduce the height of the hitbox to half, which
gives us a hitbox of a rectangle from the waist to the bottom of the character. This
allows a better feeling movement of the player and also looks much better when
moving through obstacles:

 private void loadDefaultSprite()
 {
 Texture texture = Utility.getTextureAsset(_defaultSpritePath);
 TextureRegion[][] textureFrames = TextureRegion.split(texture,
 FRAME_WIDTH, FRAME_HEIGHT);
 _frameSprite = new Sprite(textureFrames[0][0].getTexture(),
 0,0,FRAME_WIDTH, FRAME_HEIGHT);

Welcome to the Land of BludBourne

[88]

 _currentFrame = textureFrames[0][0];
 }

private void loadAllAnimations(){
 //Walking animation
 Texture texture = Utility.getTextureAsset
 (_defaultSpritePath);
 TextureRegion[][] textureFrames = TextureRegion.split
 (texture, FRAME_WIDTH, FRAME_HEIGHT);
 _walkDownFrames = new Array<TextureRegion>(4);
 _walkLeftFrames = new Array<TextureRegion>(4);
 _walkRightFrames = new Array<TextureRegion>(4);
 _walkUpFrames = new Array<TextureRegion>(4);

 for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 4; j++) {
 TextureRegion region = textureFrames[i][j];
 if(region == null){
 Gdx.app.debug(TAG, “Got null animation frame “ + i +
 “,” + j);
 }
 switch(i)
 {
 case 0:
 _walkDownFrames.insert(j, region);
 break;
 case 1:
 _walkLeftFrames.insert(j, region);
 break;
 case 2:
 _walkRightFrames.insert(j, region);
 break;
 case 3:
 _walkUpFrames.insert(j, region);
 break;
 }
 }
 }

 _walkDownAnimation = new Animation(0.25f, _walkDownFrames,
 Animation.PlayMode.LOOP);
 _walkLeftAnimation = new Animation(0.25f, _walkLeftFrames,
 Animation.PlayMode.LOOP);

Chapter 2

[89]

 _walkRightAnimation = new Animation(0.25f, _walkRightFrames,
 Animation.PlayMode.LOOP);
 _walkUpAnimation = new Animation(0.25f, _walkUpFrames,
 Animation.PlayMode.LOOP);
 }

The loadAnimation() method should only be called when first instantiating the
entity objects. For this iteration of our game, we can assume that the sprite sheets
for the player character animation will look like Figure 12. The Texture will include
the entire image consisting of 16 different sprites, each row representing a different
direction animation of four frames, including walking down, walking to the left,
walking to the right, and walking up. When we want to use the individual sprites,
we can call the split() static method in the TextureRegion class by passing in the
Texture and the width and height dimensions representing one sprite. We will then
get back an array of TextureRegion objects that represent the individual keyframes
for the animation. We can render these objects since each TextureRegion references
a specific subregion of the Texture. We can then take these arrays of TextureRegion
objects and create four Animation objects, for each of the four cardinal directions:

 public void dispose(){
 Utility.unloadAsset(_defaultSpritePath);
 }

 public void setState(State state){
 this._state = state;
 }

 public Sprite getFrameSprite(){
 return _frameSprite;
 }

 public TextureRegion getFrame(){
 return _currentFrame;
 }

 public Vector2 getCurrentPosition(){
 return _currentPlayerPosition;
 }

 public void setCurrentPosition(float currentPositionX, float
 currentPositionY){
 _frameSprite.setX(currentPositionX);
 _frameSprite.setY(currentPositionY);

Welcome to the Land of BludBourne

[90]

 this._currentPlayerPosition.x = currentPositionX;
 this._currentPlayerPosition.y = currentPositionY;
 }

 public void setDirection(Direction direction, float
 deltaTime){
 this._previousDirection = this._currentDirection;
 this._currentDirection = direction;

 //Look into the appropriate variable when changing position

 switch (_currentDirection) {
 case DOWN :
 _currentFrame = _walkDownAnimation.getKeyFrame(_frameTime);
 break;
 case LEFT :
 _currentFrame = _walkLeftAnimation.getKeyFrame(_frameTime);
 break;
 case UP :
 _currentFrame = _walkUpAnimation.getKeyFrame(_frameTime);
 break;
 case RIGHT :
 _currentFrame = _walkRightAnimation.
 getKeyFrame(_frameTime);
 break;
 default:
 break;
 }
 }

The setDirection() method deals with updating the animation keyframes based
on our current cardinal direction. This method will be called every time we process
input from the event queue. During every frame of the render loop, the current
TextureRegion frame that represents the player character will be retrieved and
rendered. Based on the current facing direction, this method will guarantee that the
proper frame is set at that time:

 public void setNextPositionToCurrent(){
 setCurrentPosition(_nextPlayerPosition.x,
 _nextPlayerPosition.y);
 }

 public void calculateNextPosition(Direction currentDirection,
 float deltaTime){

Chapter 2

[91]

 float testX = _currentPlayerPosition.x;
 float testY = _currentPlayerPosition.y;

 _velocity.scl(deltaTime);

 switch (currentDirection) {
 case LEFT :
 testX -= _velocity.x;
 break;
 case RIGHT :
 testX += _velocity.x;
 break;
 case UP :
 testY += _velocity.y;
 break;
 case DOWN :
 testY -= _velocity.y;
 break;
 default:
 break;
}

 _nextPlayerPosition.x = testX;
 _nextPlayerPosition.y = testY;

 //velocity
 _velocity.scl(1 / deltaTime);
 }
}

The calculateNextPosition() method is called every time that player input is
detected. Sometimes, collisions are not detected during a frame update because the
velocity value is too fast to be calculated in the current frame. By the time the next
frame checks the collision, the game objects have already passed through each other.
Basically, this method represents one technique to deal with collisions between two
moving objects in the game world. We are going to “look ahead” and predict what
the next position value will be by using our current velocity and the time to render
the last frame. By multiplying the current velocity vector, _velocity, and by the
deltaTime scalar quantity using the scl() method, we get a value that represents
the distance we would travel (displacement). We add or subtract this distance to our
next position based upon our direction. If this new position collides with an object,
then it is not set to our current position. Otherwise, we will use that value as our
current position.

Welcome to the Land of BludBourne

[92]

Implementing input handling for player
character movement
Our final class that we need to implement for this chapter is PlayerController.
PlayerController is responsible for handling all of the input events and providing
mechanisms to process these events in the queue. This class can be found at core/
src/com/packtpub/libgdx/bludbourne/PlayerController.java.

PlayerController
A class diagram of this class is shown in the following screenshot (Figure 14):

Figure 14

Chapter 2

[93]

The source for PlayerController is listed here:

package com.packtpub.libgdx.bludbourne;

import java.util.HashMap;
import java.util.Map;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.Input;
import com.badlogic.gdx.InputProcessor;
import com.badlogic.gdx.math.Vector3;

InputProcessor is an interface that you should implement in order to process input
events such as mouse cursor location changes, mouse button presses, and keyboard
key presses from the input event handler. Your game will usually instantiate this
class and set it in the environment class, Gdx, so that you can process the input
events every frame:

public class PlayerController implements InputProcessor {

 private final static String TAG = PlayerController.
 class.getSimpleName();

 enum Keys {
 LEFT, RIGHT, UP, DOWN, QUIT
 }

 enum Mouse {
 SELECT, DOACTION
 }

 private static Map<Keys, Boolean> keys = new HashMap
 <PlayerController.Keys, Boolean>();
 private static Map<Mouse, Boolean> mouseButtons = new HashMap
 <PlayerController.Mouse, Boolean>();
 private Vector3 lastMouseCoordinates;

 //initialize the hashmap for inputs
 static {
 keys.put(Keys.LEFT, false);
 keys.put(Keys.RIGHT, false);
 keys.put(Keys.UP, false);
 keys.put(Keys.DOWN, false);

Welcome to the Land of BludBourne

[94]

 keys.put(Keys.QUIT, false);
 };

 static {
 mouseButtons.put(Mouse.SELECT, false);
 mouseButtons.put(Mouse.DOACTION, false);
 };

 private Entity _player;

 public PlayerController(Entity player){
 this.lastMouseCoordinates = new Vector3();
 this._player = player;
 }

 @Override
 public boolean keyDown(int keycode) {
 if(keycode == Input.Keys.LEFT || keycode == Input.Keys.A){
 this.leftPressed();
 }
 if(keycode == Input.Keys.RIGHT || keycode == Input.Keys.D){
 this.rightPressed();
 }
 if(keycode == Input.Keys.UP || keycode == Input.Keys.W){
 this.upPressed();
 }
 if(keycode == Input.Keys.DOWN || keycode == Input.Keys.S){
 this.downPressed();
 }
 if(keycode == Input.Keys.Q){
 this.quitPressed();
 }

 return true;
 }

 @Override
 public boolean keyUp(int keycode) {
 if(keycode == Input.Keys.LEFT || keycode == Input.Keys.A){
 this.leftReleased();
 }
 if(keycode == Input.Keys.RIGHT || keycode == Input.Keys.D){
 this.rightReleased();
 }

Chapter 2

[95]

 if(keycode == Input.Keys.UP || keycode == Input.Keys.W){
 this.upReleased();
 }
 if(keycode == Input.Keys.DOWN || keycode == Input.Keys.S){
 this.downReleased();
 }
 if(keycode == Input.Keys.Q){
 this.quitReleased();
 }
 return true;
 }

The keyDown() and keyUp() pair of methods will process specific key presses and
releases, respectively, by caching them in a Hashtable object. This allows us to
process the input later, without losing keyboard key press or release events and
appropriately removing redundant key events from the queue:

 @Override
 public boolean keyTyped(char character) {
 return false;
 }

 @Override
 public boolean touchDown(int screenX, int screenY, int pointer,
 int button) {

 if(button == Input.Buttons.LEFT || button ==
 Input.Buttons.RIGHT){
 this.setClickedMouseCoordinates(screenX, screenY);
 }

 //left is selection, right is context menu
 if(button == Input.Buttons.LEFT){
 this.selectMouseButtonPressed(screenX, screenY);
 }
 if(button == Input.Buttons.RIGHT){
 this.doActionMouseButtonPressed(screenX, screenY);
 }
 return true;
 }

 @Override
 public boolean touchUp(int screenX, int screenY, int pointer,
 int button) {
 //left is selection, right is context menu

Welcome to the Land of BludBourne

[96]

 if(button == Input.Buttons.LEFT){
 this.selectMouseButtonReleased(screenX, screenY);
 }
 if(button == Input.Buttons.RIGHT){
 this.doActionMouseButtonReleased(screenX, screenY);
 }
 return true;
 }

The touchDown() and touchUp() pair of methods will process specific mouse button
presses and releases, respectively, by caching the position in a Hashtable object. This
allows us to process the input later, without losing mouse button press or release
events and appropriately removing redundant mouse press events from the queue:

 @Override
 public boolean touchDragged(int screenX, int screenY, int
 pointer) {
 return false;
 }

 @Override
 public boolean mouseMoved(int screenX, int screenY) {
 return false;
 }

 @Override
 public boolean scrolled(int amount) {
 return false;
 }

 public void dispose(){

 }

 //Key presses
 public void leftPressed(){
 keys.put(Keys.LEFT, true);
 }

 public void rightPressed(){
 keys.put(Keys.RIGHT, true);
 }

 public void upPressed(){
 keys.put(Keys.UP, true);

Chapter 2

[97]

 }

 public void downPressed(){
 keys.put(Keys.DOWN, true);
 }
 public void quitPressed(){
 keys.put(Keys.QUIT, true);
 }

 public void setClickedMouseCoordinates(int x, int y){
 lastMouseCoordinates.set(x, y, 0);
 }

 public void selectMouseButtonPressed(int x, int y){
 mouseButtons.put(Mouse.SELECT, true);
 }

 public void doActionMouseButtonPressed(int x, int y){
 mouseButtons.put(Mouse.DOACTION, true);
 }

 //Releases

 public void leftReleased(){
 keys.put(Keys.LEFT, false);
 }

 public void rightReleased(){
 keys.put(Keys.RIGHT, false);
 }

 public void upReleased(){
 keys.put(Keys.UP, false);
 }

 public void downReleased(){
 keys.put(Keys.DOWN, false);
 }

 public void quitReleased(){
 keys.put(Keys.QUIT, false);
 }

 public void selectMouseButtonReleased(int x, int y){

Welcome to the Land of BludBourne

[98]

 mouseButtons.put(Mouse.SELECT, false);
 }

 public void doActionMouseButtonReleased(int x, int y){
 mouseButtons.put(Mouse.DOACTION, false);
 }

 public void update(float delta){
 processInput(delta);
 }

 public static void hide(){
 keys.put(Keys.LEFT, false);
 keys.put(Keys.RIGHT, false);
 keys.put(Keys.UP, false);
 keys.put(Keys.DOWN, false);
 keys.put(Keys.QUIT, false);
 }

 private void processInput(float delta){

 //Keyboard input
 if(keys.get(Keys.LEFT)){
 _player.calculateNextPosition(Entity.Direction.LEFT,
 delta);
 _player.setState(Entity.State.WALKING);
 _player.setDirection(Entity.Direction.LEFT, delta);
 } else if(keys.get(Keys.RIGHT)){
 _player.calculateNextPosition(Entity.Direction.RIGHT,
 delta);
 _player.setState(Entity.State.WALKING);
 _player.setDirection(Entity.Direction.RIGHT, delta);
 } else if(keys.get(Keys.UP)){
 _player.calculateNextPosition(Entity.Direction.UP, delta);
 _player.setState(Entity.State.WALKING);
 _player.setDirection(Entity.Direction.UP, delta);
 } else if(keys.get(Keys.DOWN)){
 _player.calculateNextPosition(Entity.Direction.DOWN,
 delta);
 _player.setState(Entity.State.WALKING);
 _player.setDirection(Entity.Direction.DOWN, delta);
 } else if(keys.get(Keys.QUIT)){
 Gdx.app.exit();

Chapter 2

[99]

 } else{
 _player.setState(Entity.State.IDLE);
 }

 //Mouse input
 if(mouseButtons.get(Mouse.SELECT)) {
 mouseButtons.put(Mouse.SELECT, false);
 }
 }
}

The processInput() method is the primary business logic that drives this class.
During the beginning of every frame in the render loop, processInput() will
be called before rendering any graphics. This will be where the cached values of
the keyboard and mouse input will be processed. We will first calculate the next
position, as explained in the previous section, in order to avoid issues with two
fast-moving game objects colliding and missing a collision check. Then, we set
the state and direction of the player character during this time.

Summary
In this chapter, we were able to start creating the foundation for our game and
actually see some real progress with moving around the world of BludBourne. We
first learned about tile-based maps and how to create them with the Tiled editor. We
then learned about the high-level architecture of the classes we would create for this
chapter and implemented starter classes that allowed us to hook into the LibGDX
application lifecycle. After that, we learned about textures, TMX formatted tile
maps, and how to manage them with the asset manager. We then learned how the
orthographic camera works within our game and how to display the map within the
render loop. We implemented a map manager that dealt with collision layers, spawn
points, and a portal system that allowed us to transition between different locations
seamlessly. Finally, we implemented a player character with animation cycles and
input handling for moving around the game map.

In the next chapter, we will begin to populate our world with NPCs, including
implementing their movements, handling collisions between game objects, and
adding player NPC selection capabilities.

[101]

It's Pretty Lonely in
BludBourne…

Now that we have begun to create some map locations and started to navigate
through our world using our player character, we can start to plan out how we are
going to populate this world with NPCs.

We will cover the following topics in this chapter:

•	 The Entity Component System (ECS) design pattern
•	 Using JSON scripts for defining NPC properties
•	 Physics component with entity collision handling
•	 Selecting NPCs for an interaction with the input component
•	 Overall map design

Following the standard object oriented design (OOD) methodologies, we could
just use the Entity class that we created as the base class for all in-game characters,
including NPCs and enemies. The reality with this standard approach is that we will
usually end up with a massive base class that tries to do everything, including wide
and deep hierarchies that become difficult to manage. One disastrous side-effect is
that when one tries to change one small property in the base class, the effects can
ripple out, touching every game object without knowing the total ramifications of
the change until play testing.

One possible solution to this problem is that instead of using inheritance to model
the game objects in our world, we can use composition that gives us much more
flexibility and adaptability for future changes. This decoupling approach requires
a refactoring of the original Entity class, including parceling out core logic into its
component parts. Hopefully, using the original Entity class as a starting place and
following the modifications in this chapter will give better insight into why these
changes are useful.

It's Pretty Lonely in BludBourne…

[102]

The following screenshot (Figure 1) demonstrates the final result of this chapter with
populating the town map with varying NPCs:

Figure 1

The Entity Component System design
pattern
The model that we are going to implement for our game objects is typically referred
to as the Entity Component System, which is a pattern that uses composition over
inheritance to manage the game objects. The entity defined in ECS is a general purpose
object that contains some unique ID and is a container for all the components. The
component defined in ECS determines how the entity interacts with the world and
owns its own domain, such as physics, graphic updates, or input handling. Finally, the
system defined in ECS determines how the entity and its constituent components get
updated throughout the lifetime of the game. As a quick note, this pattern is discussed
in much more detail in Game Programming Patterns by Robert Nystrom under the
Component chapter.

Chapter 3

[103]

Like most design decisions in software development, the ECS model doesn't come
without its own host of tradeoffs. One issue is since these entities are now composed
of different components without any common base class, how do these different
components communicate with each other? In this chapter, we will discuss one
solution that includes creating a messaging system across all components. Another
issue is the cost of iterating through all entities for updates. For a video game, we
would need to consider the cost of iterating through all entities that interact with the
game world anyways. One solution discussed in this chapter is to only load those
entities specific to the map (from a cache if previously loaded) currently loaded in
order to minimize the amount of entities to update.

The following class diagram (Figure 2) describes our refactored architecture that uses
the ECS pattern for our game:

Figure 2

It's Pretty Lonely in BludBourne…

[104]

The first class at the top of our hierarchy is the EntityFactory class that instantiates
and returns the Entity objects specified by the EntityType enum passed into the
static factory method getEntity(). The source for EntityFactory, which can be
found at core/src/com/packtpub/libgdx/bludbourne/EntityFactory.java,
relative to the current project directory for this chapter, is as follows:

package com.packtpub.libgdx.bludbourne;

import com.badlogic.gdx.utils.Json;

public class EntityFactory {

 private static Json _json = new Json();

 public static enum EntityType{
 PLAYER,
 DEMO_PLAYER,
 NPC
 }

 public static String PLAYER_CONFIG = "scripts/player.json";

 static public Entity getEntity(EntityType entityType){
 Entity entity = null;
 switch(entityType){
 case PLAYER:
 entity = new Entity(
 new PlayerInputComponent(),
 new PlayerPhysicsComponent(),
 new PlayerGraphicsComponent());
 entity.setEntityConfig(
 Entity.getEntityConfig(
 EntityFactory.PLAYER_CONFIG));
 entity.sendMessage(
 Component.MESSAGE.LOAD_ANIMATIONS,
 _json.toJson(entity.getEntityConfig()));
 return entity;
 case DEMO_PLAYER:
 entity = new Entity(
 new NPCInputComponent(),
 new PlayerPhysicsComponent(),
 new PlayerGraphicsComponent());
 return entity;
 case NPC:
 entity = new Entity(
 new NPCInputComponent(),

Chapter 3

[105]

 new NPCPhysicsComponent(),
 new NPCGraphicsComponent());
 return entity;
 default:
 return null;
 }
 }
}

EntityFactory provides a convenience for creating the different Entity objects
defined by their components. One example of the usefulness for this class is that, if we
were demonstrating the game at a kiosk, we could simply have a timer go off at the
main menu screen, and instead of loading the PLAYER type, we could get an Entity
type DEMO_PLAYER. The only difference between the PLAYER type and the DEMO_PLAYER
type is that the DEMO_PLAYER type contains NPCInputComponent for input instead of
the PlayerInputComponent. This means that the AI logic that controls the movement
of NPCs would be used to move our player around the screen in a "demo" mode
instead of waiting for user input. The flexibility with swapping out components and
recombining them in order to yield different behaviors is just one of the many benefits
using this model.

Using JSON scripts for NPC properties
The only piece of EntityFactory left to discuss is the inclusion of the Json class.
JavaScript Object Notation (JSON) is a standard human-readable data format for
transmitting data objects as attribute-value pairs. Despite its name, the JSON format
is language-independent and is supported natively in LibGDX. For our game, we will
be using scripts to load property information, instead of hardcoding specific values in
the source code. The primary reason for using scripts is that we avoid recompiling the
entire project every time one simple change is made. Rebuilding a project in order to
test and evaluate properties is not an efficient use of time nor is it very flexible when
testing features at runtime.

There are technologies available for scripting support. Our first option is to use Lua, a
fast, lightweight, embeddable scripting language commonly used in video games. For
the purposes of our game, we want to stick with a solution that has native support in
LibGDX and is cross-platform without requiring third-party libraries. A second option
would be to create a proprietary binary format that reads and writes the properties
and loads them into objects, but this would be reinventing the wheel as well, using up
resources to support this new format. Our third option would be to use XML, defining
the tags and attributes of the properties, but we would end up with bloated property
files given enough time. Finally, our fourth and best option is to use JSON since it is
simpler to use than XML, especially for data exchange including object serialization
and deserialization.

It's Pretty Lonely in BludBourne…

[106]

The following is an excerpt from core/assets/scripts/player.json, which
demonstrates how a JSON-based file is structured:

{
entityID : PLAYER
state : IDLE
direction : DOWN
animationConfig: [
 {
 frameDuration: 0.25
 animationType: WALK_DOWN
 texturePaths: [
 sprites/characters/Warrior.png
]
 gridPoints: [
 {
 x: 0
 y: 0
 }

 {
 x: 0
 y: 1
 }
 {
 x: 0
 y: 2
 }
 {
 x: 0
 y: 3
 }
]
 }
]
}

The player.json configuration script is very readable with simple mappings
between attributes and their corresponding values, including support for arrays
that will come in handy later when referencing multiple objects in one file.

Chapter 3

[107]

LibGDX handles all the complexities of JSON parsing and is set up to automatically
serialize and deserialize objects without having to create customized readers and
writers for JSON (a nice benefit of having Java Reflection). The only real requirement
for using these convenience features in LibGDX is to create a very basic property bag
class. This pattern is typically referred to as a plain old Java object (POJO), which
is sometimes referred to in the Java ecosystem as a JavaBean. POJOs typically have
a no argument constructor and allow access to the properties with getter and setter
methods. This allows an object to easily be serialized to JSON and deserialized from
JSON without any additional work.

An example of a POJO used when deserializing from JSON is the EntityConfig
class that can be found at core/src/com/packtpub/libgdx/bludbourne/
EntityConfig.java. The following class diagram (Figure 3) neatly outlines how
the EntityConfig class will load the data from the player.json file with the basic
setters and getters and using the member object names to map from the JSON file:

Figure 3

Entity
The next class in our hierarchy is Entity, which is the core shell class that binds the
different components together and acts as the top-level container class that passes
messages to all the components. The Entity class can be found at core/src/com/
packtpub/libgdx/bludbourne/Entity.java and the source code is as follows:

package com.packtpub.libgdx.bludbourne;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.g2d.Batch;

It's Pretty Lonely in BludBourne…

[108]

import com.badlogic.gdx.math.MathUtils;
import com.badlogic.gdx.math.Rectangle;
import com.badlogic.gdx.math.Vector2;
import com.badlogic.gdx.utils.Json;
import com.badlogic.gdx.utils.Array;
import com.badlogic.gdx.utils.JsonValue;
import java.util.ArrayList;

public class Entity {
 private static final String TAG = Entity.class.getSimpleName();
 private Json _json;
 private EntityConfig _entityConfig;

 public static enum Direction {
 UP,
 RIGHT,
 DOWN,
 LEFT;

 static public Direction getRandomNext() {
 return Direction.values()[
 MathUtils.random(Direction.values().length - 1)];
 }

 public Direction getOpposite() {
 if(this == LEFT){
 return RIGHT;
 }else if(this == RIGHT){
 return LEFT;
 }else if(this == UP){
 return DOWN;
 }else{
 return UP;
 }
 }
 }

 public static enum State {
 IDLE,
 WALKING,

 IMMOBILE;//This should always be last

 static public State getRandomNext() {

Chapter 3

[109]

 //Ignore IMMOBILE which should be last state
 return State.values()[
 MathUtils.random(State.values().length - 2)];
 }
 }

 public static enum AnimationType {
 WALK_LEFT,
 WALK_RIGHT,
 WALK_UP,
 WALK_DOWN,
 IDLE,
 IMMOBILE
 }

 public static final int FRAME_WIDTH = 16;
 public static final int FRAME_HEIGHT = 16;

 private static final int MAX_COMPONENTS = 5;
 private Array<Component> _components;

 private InputComponent _inputComponent;
 private GraphicsComponent _graphicsComponent;
 private PhysicsComponent _physicsComponent;

Entity contains not only the components that define the different aspects of its
behavior, but also an EntityConfig object that is populated from its corresponding
JSON properties file. There are a few state enums defined in Entity that are consistent
across all the Entity objects, such as Direction, State, and AnimationType:

 public Entity(InputComponent inputComponent, PhysicsComponent
 physicsComponent, GraphicsComponent graphicsComponent){
 _entityConfig = new EntityConfig();
 _json = new Json();

 _components = new Array<Component>(MAX_COMPONENTS);

 _inputComponent = inputComponent;
 _physicsComponent = physicsComponent;
 _graphicsComponent = graphicsComponent;

 _components.add(_inputComponent);
 _components.add(_physicsComponent);

It's Pretty Lonely in BludBourne…

[110]

 _components.add(_graphicsComponent);
 }

 public EntityConfig getEntityConfig() {
 return _entityConfig;
 }

Since EntityFactory defines the collection of components based on EntityType, we
will pass in the assorted components to the Entity constructor, allocate and assign
the object references, and finally store them in an Array container:

 public void sendMessage(Component.MESSAGE messageType, String ...
args){
 String fullMessage = messageType.toString();

 for (String string : args) {
 fullMessage += Component.MESSAGE_TOKEN + string;
 }

 for(Component component: _components){
 component.receiveMessage(fullMessage);
 }
 }

The sendMessage() method will collect the MessageType to be used as a header for
the message and then build the message string from the variable argument list passed
in. This gives us flexibility when a message needs to get sent to the components
without restricting us to one type of format. Each individual component can then
decide which messages it cares about in the abstract method receiveMessage(),
which each component needs to implement:

 public void update(MapManager mapMgr, Batch batch, float delta){
 _inputComponent.update(this, delta);
 _physicsComponent.update(this, mapMgr, delta);
 _graphicsComponent.update(this, mapMgr, batch, delta);
 }

The update() method simply passes the specific parameters to the relevant
components on every frame update. This delegates all the responsibility for the
most recent updates to the individual components:

 public void dispose(){
 for(Component component: _components){

Chapter 3

[111]

 component.dispose();
 }
 }

 public Rectangle getCurrentBoundingBox(){
 return _physicsComponent._boundingBox;
 }

This getCurrentBoundingBox() method returns the bounding box of the current
entity used in collision detection. This is one of those situations where we don't
want to cache the information in another component as it may be out of date by the
time we access it, so instead we will provide this convenience method and access
the bounding box directly. These are the type of tradeoffs we make in any design
because usually there is no black and white separation between parts:

 public void setEntityConfig(EntityConfig entityConfig){
 this._entityConfig = entityConfig;
 }

 static public EntityConfig getEntityConfig(String
 configFilePath){
 Json json = new Json();
 return json.fromJson(EntityConfig.class,
 Gdx.files.internal(configFilePath));
 }

The getEntityConfig() method will load the JSON script from disk and return
the object reference to the EntityConfig object, if it exists:

 static public Array<EntityConfig> getEntityConfigs(String
 configFilePath){
 Json json = new Json();
 Array<EntityConfig> configs = new Array<EntityConfig>();

 ArrayList<JsonValue> list = json.fromJson(ArrayList.class,
 Gdx.files.internal(configFilePath));

 for (JsonValue jsonVal : list) {
 configs.add(json.readValue(EntityConfig.class,
 jsonVal));
 }

 return configs;
 }
}

It's Pretty Lonely in BludBourne…

[112]

The getEntityConfigs() method is a convenience method for returning a collection
of EntityConfig objects from one JSON properties file. This proved convenient when
defining the properties of a number of town-folk NPCs that walk around the TOWN
map. We don't want to get lost dealing with scores of JSON files where every NPC is
defined in a separate JSON file, especially if they don't have many differences between
them. This method allows us to define any number of similar NPCs in one file. In our
example, we define 15 town folk entities in one town_folk.json file.

Component interface
The next class in our hierarchy in Figure 2 is the Component class, which provides
the interface for all subsequent component classes. This class can be found at core/
src/com/packtpub/libgdx/bludbourne/Component.java, and its source is
defined as follows:

package com.packtpub.libgdx.bludbourne;

public interface Component {

 public static final String MESSAGE_TOKEN = ":::::";

 public static enum MESSAGE{
 CURRENT_POSITION,
 INIT_START_POSITION,
 CURRENT_DIRECTION,
 CURRENT_STATE,
 COLLISION_WITH_MAP,
 COLLISION_WITH_ENTITY,
 LOAD_ANIMATIONS,
 INIT_DIRECTION,
 INIT_STATE,
 INIT_SELECT_ENTITY,
 ENTITY_SELECTED,
 ENTITY_DESELECTED
 }

 void dispose();
 void receiveMessage(String message);
}

Chapter 3

[113]

In Component, we define the structure of the messages with the MESSAGE_TOKEN
string, which acts as a parser token to separate out the message header from the rest
of the message string and defines all the different types of messages that can be sent
to the different components. Finally, we define two methods that each component
needs to override. The dispose() method will deal with cleaning up any objects
that need to be deallocated (or at least flagged for garbage collection) and the
receiveMessage() method will implement the logic necessary for parsing out the
message parameters for each component.

For this chapter, we have defined three core components that define the behavior for
the Entity objects: PhysicsComponent, GraphicsComponent, and InputComponent.
Each class implements the Component interface and handles common logic between
the player-based components and the NPC-based components as an abstract base
class. We can think of these classes as making up a Component layer in Figure 2.

PhysicsComponent
The first class that we will review from this layer is PhysicsComponent, which can be
found at core/src/com/packtpub/libgdx/bludbourne/PhysicsComponent.java.
Much of the source is refactored from the Entity class and it is already explained in
the last chapter. We will be looking at only a few excerpts (with … designating
the areas where the code is hidden) with the following source:

public abstract class PhysicsComponent implements Component{

 ...

 public abstract void update(Entity entity, MapManager mapMgr,
 float delta);

The update() interface method is simply delegated to the concrete derived class:

 ...

 public Rectangle _boundingBox;
 protected BoundingBoxLocation _boundingBoxLocation;

 public static enum BoundingBoxLocation{
 BOTTOM_LEFT,
 BOTTOM_CENTER,
 CENTER,

It's Pretty Lonely in BludBourne…

[114]

 }

 PhysicsComponent(){
 ...
 }

 protected boolean isCollisionWithMapEntities(Entity entity,
 MapManager mapMgr){
 Array<Entity> entities = mapMgr.getCurrentMapEntities();
 boolean isCollisionWithMapEntities = false;

 for(Entity mapEntity: entities){
 //Check for testing against self
 if(mapEntity.equals(entity)){
 continue;
 }

 Rectangle targetRect =
 mapEntity.getCurrentBoundingBox();
 if (_boundingBox.overlaps(targetRect)){
 //Collision
 entity.sendMessage(MESSAGE.COLLISION_WITH_ENTITY);
 isCollisionWithMapEntities = true;
 break;
 }
 }
 return isCollisionWithMapEntities;
 }

The isCollisionWithMapEntities() method is a method used to test whether the
current Entity object has collided with any other entities on the currently loaded map
location. We will iterate over all entities that are on the current map by first checking
to make sure we aren't testing for a collision with ourselves and then checking all other
entities. If there is an overlap between bounding boxes, we then send a message to the
components that we have a collision with an entity:

 protected boolean isCollision(Entity entitySource, Entity
 entityTarget){
 boolean isCollisionWithMapEntities = false;

 if(entitySource.equals(entityTarget)){
 return false;
 }

 if (entitySource.getCurrentBoundingBox().overlaps(

Chapter 3

[115]

 entityTarget.getCurrentBoundingBox())){
 //Collision
 entitySource.sendMessage(
 MESSAGE.COLLISION_WITH_ENTITY);
 isCollisionWithMapEntities = true;
 }

 return isCollisionWithMapEntities;
 }

The isCollision() method is similar to the previous
isCollisionWithMapEntities(), but is meant more of a convenience to test against
two specific entities instead of an entire collection. This method is primarily used to
test whether an NPC entity has collided with the player-character entity. The player-
character entity is not included in the currently loaded container of map entities
since its lifetime persists outside the current map:

 protected boolean isCollisionWithMapLayer(Entity entity,
 MapManager mapMgr){
 ...
 }

 protected void setNextPositionToCurrent(Entity entity){
 ...
 }

 protected void calculateNextPosition(float deltaTime){
 ...
 }

 protected void initBoundingBox(float percentageWidthReduced,
 float percentageHeightReduced){
 //Update the current bounding box
 float width;
 float height;

 float origWidth = Entity.FRAME_WIDTH;
 float origHeight = Entity.FRAME_HEIGHT;

 //.8f for 20% (1 - .20)
 float widthReductionAmount = 1.0f –
 percentageWidthReduced;

 //.8f for 20% (1 - .20)
 float heightReductionAmount = 1.0f –

It's Pretty Lonely in BludBourne…

[116]

 percentageHeightReduced;

 if(widthReductionAmount > 0 && widthReductionAmount < 1){
 width = Entity.FRAME_WIDTH * widthReductionAmount;
 }else{
 width = Entity.FRAME_WIDTH;
 }

 if(heightReductionAmount > 0 &&
 heightReductionAmount < 1){
 height = Entity.FRAME_HEIGHT * heightReductionAmount;
 }else{
 height = Entity.FRAME_HEIGHT;
 }

 if(width == 0 || height == 0){
 Gdx.app.debug(TAG, "Width and Height are 0!! " +
 width + ":" + height);
 }

 //Need to account for the unitscale, since the map
 //coordinates will be in pixels
 float minX;
 float minY;

 if(Map.UNIT_SCALE > 0) {
 minX = _nextEntityPosition.x / Map.UNIT_SCALE;
 minY = _nextEntityPosition.y / Map.UNIT_SCALE;
 }else{
 minX = _nextEntityPosition.x;
 minY = _nextEntityPosition.y;
 }

 _boundingBox.setWidth(width);
 _boundingBox.setHeight(height);

 switch(_boundingBoxLocation){
 case BOTTOM_LEFT:
 _boundingBox.set(minX, minY, width, height);
 break;
 case BOTTOM_CENTER:
 _boundingBox.setCenter(minX + origWidth/2,
 minY + origHeight/4);
 break;

Chapter 3

[117]

 case CENTER:
 _boundingBox.setCenter(minX + origWidth/2,
 minY + origHeight/2);
 break;
 }
 }

The methods for handling the bounding box have been refactored and split into two
separate methods. The first method, initBoundingBox(), is to be called from the
specific entities constructor to set up and initialize the initial position and size of the
bounding box. One of the new features here is that we can specify the position of the
bounding box, such as centering in the middle of the sprite or on the bottom using
the BoundingBoxLocation parameter:

 protected void updateBoundingBoxPosition(Vector2 position){
 //Need to account for the unitscale, since the map
 //coordinates will be in pixels
 float minX;
 float minY;

 if(Map.UNIT_SCALE > 0) {
 minX = position.x / Map.UNIT_SCALE;
 minY = position.y / Map.UNIT_SCALE;
 }else{
 minX = position.x;
 minY = position.y;
 }

 switch(_boundingBoxLocation){
 case BOTTOM_LEFT:
 _boundingBox.set(minX, minY,
 _boundingBox.getWidth(),
 _boundingBox.getHeight());
 break;
 case BOTTOM_CENTER:
 _boundingBox.setCenter(
 minX + Entity.FRAME_WIDTH/2,
 minY + Entity.FRAME_HEIGHT/4);
 break;
 case CENTER:
 _boundingBox.setCenter(
 minX + Entity.FRAME_WIDTH/2,
 minY + Entity.FRAME_HEIGHT/2);
 break;
 }

It's Pretty Lonely in BludBourne…

[118]

 }
}

Finally, the updateBoundingBoxPosition() method will be used from the
update() call of the component to update the bounding box position on every
frame update.

GraphicsComponent
The graphic-specific updates were refactored from the Entity class from the last
chapter and moved to the GraphicsComponent class, which can be found at core/
src/com/packtpub/libgdx/bludbourne/GraphicsComponent.java. The
excerpted code is as follows:

public abstract class GraphicsComponent implements Component {
 ...
 protected Hashtable<Entity.AnimationType, Animation>
 _animations;
 protected ShapeRenderer _shapeRenderer;

 protected GraphicsComponent(){
 ...
 }

 public abstract void update(Entity entity, MapManager
 mapManager, Batch batch, float delta);

 protected void updateAnimations(float delta){
 //Want to avoid overflow
 _frameTime = (_frameTime + delta)%5;

 //Look into the appropriate variable
 //when changing position
 switch (_currentDirection) {
 case DOWN:
 if (_currentState == Entity.State.WALKING) {
 Animation animation = _animations.get(
 Entity.AnimationType.WALK_DOWN);
 if(animation == null) return;
 _currentFrame = animation.getKeyFrame(
 _frameTime);
 }else if(_currentState == Entity.State.IDLE) {
 Animation animation = _animations.get(

Chapter 3

[119]

 Entity.AnimationType.WALK_DOWN);
 if(animation == null) return;
 _currentFrame = animation.getKeyFrames()[0];
 }else if(_currentState == Entity.State.IMMOBILE) {
 Animation animation = _animations.get(
 Entity.AnimationType.IMMOBILE);
 if(animation == null) return;
 _currentFrame = animation.getKeyFrame(
 _frameTime);
 }
 break;
 case LEFT:
 ...
 break;
 case UP:
 ...
 break;
 case RIGHT:
 ...
 break;
 default:
 break;
 }
 }

One of the changes to the GraphicsComponent class is that instead of defining every
single animation as a separate variable, we simply keep a Hashtable hashed by
AnimationType as the key. This allows us to load the AnimationType information
from the JSON property file and simply place it in this Hashtable to be accessed
later, depending on the Entities configuration information. For instance, if we
have an NPC in town that just stands in one location, then we can just get the
AnimationType of the NPC for when it's not moving, which in our case is defined
as IMMOBILE, and grab the relevant keyframe for that particular animation frame
update from the animation Hashtable:

 //Specific to two frame animations where each frame is stored
 //in a separate texture
 protected Animation loadAnimation(String firstTexture, String
 secondTexture, Array<GridPoint2> points, float
 frameDuration){
 Utility.loadTextureAsset(firstTexture);
 Texture texture1 = Utility.getTextureAsset(firstTexture);

 Utility.loadTextureAsset(secondTexture);

It's Pretty Lonely in BludBourne…

[120]

 Texture texture2 = Utility.getTextureAsset(secondTexture);

 TextureRegion[][] texture1Frames = TextureRegion.split(
 texture1,
 Entity.FRAME_WIDTH,
 Entity.FRAME_HEIGHT);
 TextureRegion[][] texture2Frames = TextureRegion.split(
 texture2,
 Entity.FRAME_WIDTH,
 Entity.FRAME_HEIGHT);

 Array<TextureRegion> animationKeyFrames = new
 Array<TextureRegion>(2);

 GridPoint2 point = points.first();

 animationKeyFrames.add(texture1Frames[point.x][point.y]);
 animationKeyFrames.add(texture2Frames[point.x][point.y]);

 return new Animation(frameDuration, animationKeyFrames,
 Animation.PlayMode.LOOP);
 }

 protected Animation loadAnimation(String textureName, Array
 <GridPoint2> points, float frameDuration){
 Utility.loadTextureAsset(textureName);
 Texture texture = Utility.getTextureAsset(textureName);

 TextureRegion[][] textureFrames = TextureRegion.split(
 texture,
 Entity.FRAME_WIDTH,
 Entity.FRAME_HEIGHT);

 Array<TextureRegion> animationKeyFrames = new
 Array<TextureRegion>(points.size);

 for(GridPoint2 point : points){
 animationKeyFrames.add(
 textureFrames[point.x][point.y]);
 }

 return new Animation(frameDuration, animationKeyFrames,
 Animation.PlayMode.LOOP);
 }
}

Chapter 3

[121]

Both loadAnimation() methods are convenience methods for loading the two
distinct kinds of animations that we have with our sprite sheets. Specifically, there
are some characters, such as our player hero and guard NPCs, that walk around the
town. For these scenarios, we need sprites that support all directions, depending on
the current direction the Entity is facing. For this scenario, we have four keyframes
for each of the directions, so a total of 16 sprites, or TextureRegion where we define
each TextureRegion with a whole number index defined with the GridPoint2 class.
The latter loadAnimation() method will correctly read from this configuration and
load the animations into the Animation container. The former loadAnimation()
method will load animations that are separated out into two sprite sheets, where the
first sprite sheet represents one keyframe and the second sprite sheet represents the
second keyframe, for a total of two keyframes of animation. These are intended for
more static characters in the game, such as an innkeeper or local blacksmith.

InputComponent
The final class in the component layer in Figure 2 is InputComponent, which can be
found at core/src/com/packtpub/libgdx/bludbourne/InputComponent.java.
The source is as follows:

package com.packtpub.libgdx.bludbourne;

import com.badlogic.gdx.utils.Json;

import java.util.HashMap;
import java.util.Map;

public abstract class InputComponent implements Component {

 protected Entity.Direction _currentDirection = null;
 protected Entity.State _currentState = null;
 protected Json _json;

 protected enum Keys {
 LEFT, RIGHT, UP, DOWN, QUIT
 }

 protected enum Mouse {
 SELECT, DOACTION
 }

 protected static Map<Keys, Boolean> keys = new
 HashMap<Keys, Boolean>();
 protected static Map<Mouse, Boolean> mouseButtons = new

It's Pretty Lonely in BludBourne…

[122]

 HashMap<Mouse, Boolean>();

 //initialize the hashmap for inputs
 static {
 keys.put(Keys.LEFT, false);
 keys.put(Keys.RIGHT, false);
 keys.put(Keys.UP, false);
 keys.put(Keys.DOWN, false);
 keys.put(Keys.QUIT, false);
 };

 static {
 mouseButtons.put(Mouse.SELECT, false);
 mouseButtons.put(Mouse.DOACTION, false);
 };

 InputComponent(){
 _json = new Json();
 }

 public abstract void update(Entity entity, float delta);

}

This component handles all input from the keyboard and mouse and also handles
the AI movement for the NPCs in the NPCInputComponent class.

We are now at the bottom of our ECS hierarchy in Figure 2. We won't get
into the specifics of the implementation of the NPC components (defined by
NPCPhysicsComponent, NPCGraphicsComponent, and NPCInputComponent) as their
source is available, but we will instead take a look at the player-based component
implementations. The first concrete implementation of the PhysicsComponent class
is the PlayerPhysicsComponent, which can be found at core/src/com/packtpub/
libgdx/bludbourne/PlayerPhysicsComponent.java. The excerpts of the source
are as follows:

package com.packtpub.libgdx.bludbourne;

...
import com.badlogic.gdx.math.collision.Ray;

public class PlayerPhysicsComponent extends PhysicsComponent {
...
 private Vector3 _mouseSelectCoordinates;
 private boolean _isMouseSelectEnabled = false;

Chapter 3

[123]

 private Ray _selectionRay;
 private float _selectRayMaximumDistance = 32.0f;

 public PlayerPhysicsComponent(){
 _mouseSelectCoordinates = new Vector3(0,0,0);
 _selectionRay = new Ray(new Vector3(), new Vector3());
 }

 @Override
 public void dispose(){
 }

 @Override
 public void receiveMessage(String message) {
 String[] string = message.split(Component.MESSAGE_TOKEN);

 if(string.length == 0) return;

 //Specifically for messages with 1 object payload
 if(string.length == 2) {
 if (string[0].equalsIgnoreCase(
 MESSAGE.INIT_START_POSITION.toString())) {
 _currentEntityPosition =
 _json.fromJson(Vector2.class, string[1]);
 _nextEntityPosition.set(_currentEntityPosition.x,
 _currentEntityPosition.y);
 } else if (string[0].equalsIgnoreCase(
 MESSAGE.CURRENT_STATE.toString())) {
 _state =
 _json.fromJson(Entity.State.class, string[1]);
 } else if (string[0].equalsIgnoreCase(
 MESSAGE.CURRENT_DIRECTION.toString())) {
 _currentDirection =
 _json.fromJson(Entity.Direction.class,
 string[1]);
 } else if (string[0].equalsIgnoreCase(
 MESSAGE.INIT_SELECT_ENTITY.toString())) {
 _mouseSelectCoordinates =
 _json.fromJson(Vector3.class, string[1]);
 _isMouseSelectEnabled = true;
 }
 }
 }

It's Pretty Lonely in BludBourne…

[124]

In the receiveMessage() method, we can see all the messages that
PlayerPhysicsComponent cares about, such as the initial starting position, the current
entity state, the current direction, and when we receive input from the mouse. All this
state information will be used when determining collision detections and rays used in
distance calculations. The PlayerPhysicsComponent is the primary class that handles
the selection of objects in our game:

 private void selectMapEntityCandidate(MapManager mapMgr){
 Array<Entity> currentEntities =
 mapMgr.getCurrentMapEntities();

 //Convert screen coordinates to world coordinates,
 //then to unit scale coordinates
 mapMgr.getCamera().unproject(_mouseSelectCoordinates);
 _mouseSelectCoordinates.x /= Map.UNIT_SCALE;
 _mouseSelectCoordinates.y /= Map.UNIT_SCALE;

 for(Entity mapEntity : currentEntities) {
 //Don't break, reset all entities
 mapEntity.sendMessage(MESSAGE.ENTITY_DESELECTED);
 Rectangle mapEntityBoundingBox =
 mapEntity.getCurrentBoundingBox();

 if (mapEntity.getCurrentBoundingBox().contains(
 _mouseSelectCoordinates.x,
 _mouseSelectCoordinates.y)) {
 //Check distance
 _selectionRay.set(_boundingBox.x, _boundingBox.y,
 0.0f, mapEntityBoundingBox.x,
 mapEntityBoundingBox.y, 0.0f);
 float distance = _selectionRay.origin.dst(
 _selectionRay.direction);

 if(distance <= _selectRayMaximumDistance){
 //We have a valid entity selection
 //Picked/Selected
 Gdx.app.debug(TAG, "Selected Entity! " +
 mapEntity.getEntityConfig().getEntityID());
 mapEntity.sendMessage(MESSAGE.ENTITY_SELECTED);
 }
 }
 }
 }

Chapter 3

[125]

Entity selection
The Ray class in LibGDX represents an object that has a starting position and a
unit length direction. This Ray object is used when implementing ray casting, a
technique that checks the coordinates along a line for any intersection with other
objects. This ray casting process is started with a left mouse button click. The
selectMapEntityCandidate() method is called if the mouse button has been
clicked and tests the intersection of the ray with the map entities. A part of this
intersection check includes testing for distance as well, since we only want to be
able to select entities close to the player.

The following sequence diagram (Figure 4) shows the typical flow of messages
when testing for ray cast intersections:

Figure 4

It's Pretty Lonely in BludBourne…

[126]

The PlayerInputComponent receives a mouse button click event and then sends an
INIT_SELECT_ENTITY message to the components. The PlayerPhysicsComponent
sees the message and parses out the mouse coordinates (serialized as JSON) from the
message. The PlayerPhysicsComponent then checks the mouse coordinates against
all entities to see if a ray intersects with any of the objects. If there is an intersection,
then we send a message to all the components of the NPC that the Entity has been
selected. Finally, the NPCGraphicsComponent will handle the ENTITY_SELECTED
message and draw the selection graphics for Entity:

 @Override
 public void update(Entity entity, MapManager mapMgr, float
 delta) {
 //We want the hitbox to be at the feet for a better feel
 updateBoundingBoxPosition(_nextEntityPosition);
 updatePortalLayerActivation(mapMgr);

 if(_isMouseSelectEnabled){
 selectMapEntityCandidate(mapMgr);
 _isMouseSelectEnabled = false;
 }

 if (!isCollisionWithMapLayer(entity, mapMgr) &&
 !isCollisionWithMapEntities(entity, mapMgr) &&
 _state == Entity.State.WALKING){
 setNextPositionToCurrent(entity);

 Camera camera = mapMgr.getCamera();
 camera.position.set(_currentEntityPosition.x,
 _currentEntityPosition.y, 0f);
 camera.update();
 }else{
 updateBoundingBoxPosition(_currentEntityPosition);
 }

 calculateNextPosition(delta);
 }

 private boolean updatePortalLayerActivation(MapManager
 mapMgr){

Chapter 3

[127]

 ...
 }
}

In the update() method, we check every frame if the mouse input was set for a
selection and also check for all collisions, including map entities and the collision
map layer.

The next concrete class is PlayerGraphicsComponent, which is an implementation
for the GraphicsComponent abstract base class that can be found at core/src/com/
packtpub/libgdx/bludbourne/PlayerGraphicsComponent.java. An excerpt
from PlayerGraphicsComponent is as follows:

public class PlayerGraphicsComponent extends GraphicsComponent {
...
 public PlayerGraphicsComponent(){
 }

 @Override
 public void receiveMessage(String message) {
 String[] string = message.split(MESSAGE_TOKEN);

 if(string.length == 0) return;

 //Specifically for messages with 1 object payload
 if(string.length == 2) {
 if (string[0].equalsIgnoreCase(
 MESSAGE.CURRENT_POSITION.toString())) {
 _currentPosition = _json.fromJson(Vector2.class,
 string[1]);
 } else if (string[0].equalsIgnoreCase(
 MESSAGE.INIT_START_POSITION.toString())) {
 _currentPosition = _json.fromJson(Vector2.class,
 string[1]);
 } else if (string[0].equalsIgnoreCase(
 MESSAGE.CURRENT_STATE.toString())) {
 _currentState = _json.fromJson(Entity.State.class,
 string[1]);
 } else if (string[0].equalsIgnoreCase(
 MESSAGE.CURRENT_DIRECTION.toString())) {
 _currentDirection = _json.fromJson(
 Entity.Direction.class, string[1]);

www.allitebooks.com

http://www.allitebooks.org

It's Pretty Lonely in BludBourne…

[128]

 } else if (string[0].equalsIgnoreCase(
 MESSAGE.LOAD_ANIMATIONS.toString())) {
 EntityConfig entityConfig = _json.fromJson(
 EntityConfig.class, string[1]);
 Array<AnimationConfig> animationConfigs =
 entityConfig.getAnimationConfig();

 for(AnimationConfig animationConfig :
 animationConfigs){
 Array<String> textureNames =
 animationConfig.getTexturePaths();
 Array<GridPoint2> points =
 animationConfig.getGridPoints();
 Entity.AnimationType animationType =
 animationConfig.
 getAnimationType();
 float frameDuration =
 animationConfig.
 getFrameDuration();
 Animation animation = null;

 if(textureNames.size == 1) {
 animation = loadAnimation(
 textureNames.get(0), points,
 frameDuration);
 }else if(textureNames.size == 2){
 animation =
 loadAnimation(textureNames.get(0),
 textureNames.get(1), points,
 frameDuration);
 }

 _animations.put(animationType, animation);
 }
 }
 }
 }

Chapter 3

[129]

In the receiveMessage() method, other than caching some state information,
PlayerGraphicsComponent is also responsible for loading and displaying the
animations. A LOAD_ANIMATIONS message is typically sent on the creation of Entity,
including loading the JSON property files from disk, deserializing the file into
EntityConfig objects, and then sending this message to the Entity components.
Here, the animation-specific properties are packaged with the message, such
as the texture filenames, the type of animation, frame duration, and the specific
TextureRegion objects. Depending on the number of texture filenames, the
corresponding loadAnimation() method from the base class is then called to
load the animations:

 @Override
 public void update(Entity entity, MapManager mapMgr, Batch
 batch, float delta){
 updateAnimations(delta);

 Camera camera = mapMgr.getCamera();
 camera.position.set(_currentPosition.x,
 _currentPosition.y, 0f);
 camera.update();

 batch.begin();
 batch.draw(_currentFrame, _currentPosition.x,
 _currentPosition.y, 1, 1);
 batch.end();

 ...
 }

 @Override
 public void dispose(){
 }
}

Finally, the update() method will update the correct keyframes by passing in the
delta time; it will also update the center of the camera position and draw the entity.

It's Pretty Lonely in BludBourne…

[130]

The final concrete class, PlayerInputComponent, implements InputComponent
and can be found at core/src/com/packtpub/libgdx/bludbourne/
PlayerInputComponent.java. A snippet of the source code is as follows:

public class PlayerInputComponent extends InputComponent
 implements InputProcessor {

 private final static String TAG = PlayerInputComponent.
 class.getSimpleName();
 private Vector3 _lastMouseCoordinates;

 public PlayerInputComponent(){
 this._lastMouseCoordinates = new Vector3();
 Gdx.input.setInputProcessor(this);
 }

Here, we instantiate a Vector3 object in order to store the latest mouse coordinates
captured from the input processor, which we set in the same constructor:

 @Override
 public void receiveMessage(String message) {
 String[] string = message.split(MESSAGE_TOKEN);

 if(string.length == 0) return;

 //Specifically for messages with 1 object payload
 if(string.length == 2) {
 if (string[0].equalsIgnoreCase(
 MESSAGE.CURRENT_DIRECTION.toString())) {
 _currentDirection =
 _json.fromJson(Entity.Direction.class, string[1]);
 }
 }
 }
 @Override
 public void dispose(){
 Gdx.input.setInputProcessor(null);
 }

 @Override
 public void update(Entity entity, float delta){
 //Keyboard input
 if(keys.get(Keys.LEFT)){
 entity.sendMessage(MESSAGE.CURRENT_STATE,

Chapter 3

[131]

 _json.toJson(Entity.State.WALKING));
 entity.sendMessage(MESSAGE.CURRENT_DIRECTION,
 _json.toJson(Entity.Direction.LEFT));
 } else if(keys.get(Keys.RIGHT)){
 entity.sendMessage(MESSAGE.CURRENT_STATE,
 _json.toJson(Entity.State.WALKING));
 entity.sendMessage(MESSAGE.CURRENT_DIRECTION,
 _json.toJson(Entity.Direction.RIGHT));
 } else if(keys.get(Keys.UP)){
 entity.sendMessage(MESSAGE.CURRENT_STATE,
 _json.toJson(Entity.State.WALKING));
 entity.sendMessage(MESSAGE.CURRENT_DIRECTION,
 _json.toJson(Entity.Direction.UP));
 } else if(keys.get(Keys.DOWN)){
 entity.sendMessage(MESSAGE.CURRENT_STATE,
 _json.toJson(Entity.State.WALKING));
 entity.sendMessage(MESSAGE.CURRENT_DIRECTION,
 _json.toJson(Entity.Direction.DOWN));
 } else if(keys.get(Keys.QUIT)){
 Gdx.app.exit();
 } else{
 entity.sendMessage(MESSAGE.CURRENT_STATE,
 _json.toJson(Entity.State.IDLE));
 if(_currentDirection == null){
 entity.sendMessage(MESSAGE.CURRENT_DIRECTION,
 _json.toJson(Entity.Direction.DOWN));
 }
 }

 //Mouse input
 if(mouseButtons.get(Mouse.SELECT)) {
 entity.sendMessage(MESSAGE.INIT_SELECT_ENTITY,
 _json.toJson(_lastMouseCoordinates));
 mouseButtons.put(Mouse.SELECT, false);
 }
 }
...
}

In the input() method, we can see where before, in the last chapter, we were setting
the member variables for the change in state directly. However, with our new model,
whenever the input changes, we send messages so that the pertinent components
process or save that state information for processing their logic.

It's Pretty Lonely in BludBourne…

[132]

Map design
The following class diagram (Figure 5) shows the top-level architecture for handling
the loading of multiple maps and their corresponding entities:

Figure 5

Here, we first start with the MapFactory class, which can be found at core/src/
com/packtpub/libgdx/bludbourne/MapFactory.java, with the source code as
follows:

package com.packtpub.libgdx.bludbourne;

import java.util.Hashtable;

public class MapFactory {
 //All maps for the game
 private static Hashtable<MapType,Map> _mapTable = new
Hashtable<MapType, Map>();

 public static enum MapType{
 TOP_WORLD,

Chapter 3

[133]

 TOWN,
 CASTLE_OF_DOOM
 }

 static public Map getMap(MapType mapType){
 Map map = null;
 switch(mapType){
 case TOP_WORLD:
 map = _mapTable.get(MapType.TOP_WORLD);
 if(map == null){
 map = new TopWorldMap();
 _mapTable.put(MapType.TOP_WORLD, map);
 }
 break;
 case TOWN:
 map = _mapTable.get(MapType.TOWN);
 if(map == null){
 map = new TownMap();
 _mapTable.put(MapType.TOWN, map);
 }
 break;
 case CASTLE_OF_DOOM:
 map = _mapTable.get(MapType.CASTLE_OF_DOOM);
 if(map == null){
 map = new CastleDoomMap();
 _mapTable.put(MapType.CASTLE_OF_DOOM, map);
 }
 break;
 default:
 break;
 }
 return map;
 }
}

MapFactory not only instantiates map objects, but also caches them in a local
Hashtable. This prevents us from having to reload maps from scratch once the player
has entered a previously visited location. Depending on requirements, we could limit
the amount of maps that are cached by flushing the cache once a certain limit threshold
is reached. Having a collection of loaded maps also makes persisting of the map state
much easier, especially when we implement the save and restore feature.

It's Pretty Lonely in BludBourne…

[134]

The original MapManager from the last chapter has also been refactored. The common
properties of the different maps have been localized to the abstract Map class, which
is primarily a container for properties with simple getters and setters. Most of the
methods have already been explained in the previous chapter, and so the following
is a class diagram (Figure 6) outlining how Map (found at core/src/com/packtpub/
libgdx/bludbourne/Map.java) is currently structured:

Figure 6

The MapManager class still exists, but is used mostly as a pass through for access to
the currently loaded map, with some convenience methods for things such as access
to the camera.

Chapter 3

[135]

Finally, we look at one of the concrete implementations of the Map class, TownMap.
With the current model, we can see how we will load and configure map-specific
items, demonstrated with the following source:

package com.packtpub.libgdx.bludbourne;

import com.badlogic.gdx.graphics.g2d.Batch;
import com.badlogic.gdx.math.Vector2;
import com.badlogic.gdx.utils.Array;

public class TownMap extends Map{
 private static final String TAG = PlayerPhysicsComponent.
 class.getSimpleName();

 private static String _mapPath = "maps/town.tmx";
 private static String _townGuardWalking =
 "scripts/town_guard_walking.json";
 private static String _townBlacksmith =
 "scripts/town_blacksmith.json";
 private static String _townMage = "scripts/town_mage.json";
 private static String _townInnKeeper =
 "scripts/town_innkeeper.json";
 private static String _townFolk = "scripts/town_folk.json";

We can define the map-specific JSON property files, including the NPCs that inhabit
the map:

 TownMap(){
 super(MapFactory.MapType.TOWN, _mapPath);

 for(Vector2 position: _npcStartPositions){
 _mapEntities.add(initEntity(Entity.getEntityConfig(
 _townGuardWalking), position));
 }

 //Special cases
 _mapEntities.add(initSpecialEntity(Entity.getEntityConfig(
 _townBlacksmith)));
 _mapEntities.add(initSpecialEntity(Entity.getEntityConfig(
 _townMage)));
 _mapEntities.add(initSpecialEntity(Entity.getEntityConfig(
 _townInnKeeper)));

 //When we have multiple configs in one file

It's Pretty Lonely in BludBourne…

[136]

 Array<EntityConfig> configs =
 Entity.getEntityConfigs(_townFolk);
 for(EntityConfig config: configs){
 _mapEntities.add(initSpecialEntity(config));
 }
 }

In the TownMap constructor, we first pass the map information to the Map base class
in order to load the TMX map file and store the information for the various layers
including start positions, portals, and the collision map. Then, we will initialize all
the entities for the map, including the walking guards, and special entities including
the blacksmith, mage, and innkeeper. Finally, we will load all the town folks that
populate the town:

 @Override
 public void updateMapEntities(MapManager mapMgr, Batch batch,
 float delta){
 for(int i=0; i < _mapEntities.size; i++){
 _mapEntities.get(i).update(mapMgr, batch, delta);
 }
 }

In the updateMapEntities() method, we iterate over the container of map entities
every frame:

 private Entity initEntity(EntityConfig entityConfig, Vector2
 position){
 Entity entity = EntityFactory.getEntity
 (EntityFactory.EntityType.NPC);
 entity.setEntityConfig(entityConfig);

 entity.sendMessage(Component.MESSAGE.LOAD_ANIMATIONS,
 _json.toJson(entity.getEntityConfig()));
 entity.sendMessage(Component.MESSAGE.INIT_START_POSITION,
 _json.toJson(position));
 entity.sendMessage(Component.MESSAGE.INIT_STATE,
 _json.toJson(entity.getEntityConfig().getState()));
 entity.sendMessage(Component.MESSAGE.INIT_DIRECTION,
 _json.toJson(entity.getEntityConfig().getDirection()));

 return entity;
 }

Chapter 3

[137]

The initEntity() method is a convenience method that gets a fresh Entity
object from EntityFactory and will then initialize the entities with their specific
EntityConfig values:

 private Entity initSpecialEntity(EntityConfig entityConfig){
 Vector2 position = new Vector2(0,0);

 if(_specialNPCStartPositions.containsKey(
 entityConfig.getEntityID())) {
 position = _specialNPCStartPositions.get(
 entityConfig.getEntityID());
 }
 return initEntity(entityConfig, position);
 }
}

The initSpecialEntity() method is a special purpose method that will use the
Entity object's ID to access the special NPC starting positions, and set that position
as the starting position if found.

Summary
In this chapter, we learned the Entity Component System model for managing the
entities in order to populate our world with NPCs. We learned how to implement
collision detection with these entities and also how to implement logic to make the
NPCs selectable by the player via mouse picking. We also learned how these NPC
characters can spawn from certain points on the map (spawn points) specified in
their JSON property file and move around on the map on their own (basic AI). As
part of this chapter, we also refactored the MapManager class in order to give us the
flexibility to generate map-specific entities and events.

In the next chapter, we will begin to look at GUI development including inventory
and HUD layouts with skins. We will also start looking into developing an inventory
management UI with character stats and saving and loading game profiles.

[139]

Where Do I Put My Stuff?
The next milestone in the development of our game will be to create some GUIs that
will help convey certain information on status and inventory items, presented to
the user in a heads-up display (HUD). This chapter will also discuss how to create
screens that help guide the user through the creation process for their initial game
profile and how to implement the logic to save and restore their game profiles.

We will cover the following topics in this chapter:

•	 Inventory and HUD layouts with skins
•	 Character design with stats
•	 Item equip with inventory management
•	 Save and load game profiles

Inventory and HUD layouts with skins
By the end of this chapter, you will have a functional UI that will display the player's
current status and an interactive inventory where the player can drag and drop
their items around the inventory slots, stack like items to conserve space, and
equip certain items such as armor and weapons.

Where Do I Put My Stuff?

[140]

The following screenshot demonstrates that end result (Figure 1):

Figure 1

PlayerHUD with Scene2D
We need to set the ground work in order to develop a UI with LibGDX. The first
item that we need to tackle in this chapter is the UI toolkit that comes with LibGDX,
Scene2D, and how we can use the tools provided to start creating the in-game
UI. The Scene2D library in LibGDX conceptually is a scene graph that can contain
hierarchies of widgets. This library contains classes for building game menus, HUD
overlays, tools, and other UIs. Scene2D also includes helper classes for laying out
and drawing widgets and also handling input.

Chapter 4

[141]

In our game, the player will need a means of interacting with their in-game
character's status and items. These UI elements start with a HUD that is typically
displayed at all times. The primary class from our project that implements this
functionality is PlayerHUD, and it is composed of two UI classes, StatusUI and
InventoryUI. PlayerHUD is our top-level class for receiving user input and
displaying our different UI windows.

Just as MainGameScreen is our primary screen for displaying game objects rendered
in the game loop, we need a similar mechanism for displaying the PlayerHUD
class. We need to consider that PlayerHUD needs to be viewed with consistent size
constraints on the viewing window and needs to sit on top of the viewing screen
(or MainGameScreen in our case). The best method for achieving this effect is to
configure PlayerHUD with its own separate camera. We initialize PlayerHUD with the
following code snippet from the MainGameScreen class:

public class MainGameScreen implements Screen {
 …
 private OrthographicCamera _hudCamera = null;
 private InputMultiplexer _multiplexer;
 private static PlayerHUD _playerHUD;

 public MainGameScreen(BludBourne game){
 …
 _hudCamera = new OrthographicCamera();
 _hudCamera.setToOrtho(
 false, VIEWPORT.physicalWidth, VIEWPORT.physicalHeight);
 _playerHUD = new PlayerHUD(_hudCamera, _player);

 _multiplexer = new InputMultiplexer();
 _multiplexer.addProcessor(_playerHUD.getStage());
 _multiplexer.addProcessor(_player.getInputProcessor());
 Gdx.input.setInputProcessor(_multiplexer);
 …
 }

Also, note that we need to set the input processor to use the InputMultiplexer
class. This allows us to process input based upon priorities, which are set in the order
they are added. This chaining of the InputProcessor objects gives top priority to the
first InputProcessor added, second priority to the second InputProcessor added,
and so on. In our case, the PlayerHUD class will receive the input first so we can
process the UI interactions, and then the player input will be processed next.

Where Do I Put My Stuff?

[142]

The implementation of the PlayerHUD class itself is minimal, described in the
following class diagram (Figure 2):

Figure 2

The item of note specific to PlayerHUD is the Stage class that manages all
the different aspects of a widget's lifecycle, such as drawing the widget and
distributing the relevant input events. The individual nodes that compose the
Scene2D scene graph are referred to as Actors (synonymous with widgets in our
case) that contain their own position, size, origin, scale, rotation, and color. The
following is a snippet from the PlayerHUD class demonstrating how the Stage
class is configured and used:

public class PlayerHUD implements Screen, ProfileObserver {
 ...
 private Stage _stage;
 private Viewport _viewport;

 public PlayerHUD(Camera camera, Entity player) {
 _viewport = new ScreenViewport(_camera);
 _stage = new Stage(_viewport);

 _statusUI = new StatusUI();
 _inventoryUI = new InventoryUI();

Chapter 4

[143]

 _stage.addActor(_statusUI);
 _stage.addActor(_inventoryUI);
 ...
 }

The ProfileObserver class will be explained later on in the Observer pattern section
of this chapter.

The StatusUI and InventoryUI classes derive from Window (a type of Actor) and so
we add them to the Stage class object so that they can be managed:

 @Override
 public void render(float delta) {
 _stage.act(delta);
 _stage.draw();
 }

The render() method is part of the Screen interface that needs to be implemented
in PlayerHUD. Here, we let the Stage class object handle the work for rendering our
widgets to the screen:

 @Override
 public void resize(int width, int height) {
 _stage.getViewport().update(width, height, true);
 }

In the case of a resize() event, we need to make sure that we pass the new width
and height parameters to the viewport of Stage so that the display changes get
propagated correctly:

 @Override
 public void dispose() {
 _stage.dispose();
 }
}

Finally, we need to make sure we call dispose on the Stage class object so that it can
manage its own cleanup.

Developing UIs with LibGDX
Previously, we have seen how PlayerHUD is a container class for the different UI
components for our game. This section will begin to discuss some preliminary
steps needed in order to take full advantage of the UI toolkit in LibGDX, including
recommendations for some free tools as part of our workflow.

Where Do I Put My Stuff?

[144]

Widget styles
When creating a UI with the widgets in LibGDX, we first need to consider the overall
look and feel of the widgets, such as the texture to apply, overall shape, color, and
other drawable attributes. These characteristics that define the look and feel of
widgets are called styles. Each widget in LibGDX, under the Scene2D.ui library,
defines a static nested class for all the configurable attributes of that widget. For
instance, one of the widgets we will use for our StatusUI is an ImageButton that
defines all of its attributes in its static nested class ImageButtonStyle, such as what
the ImageButton will present during a mouse pointer hover, when pressed down or
even when disabled.

The first part of creating styles is defining the attributes of the look and feel
properties. We are going to define the styles for the widgets used in StatusUI in a
JSON configuration file named statusui.json under the assets/skin directory.
We are going to define the colors of the displayed text, Bitmapfont type, Label
style, Window style, Imagebutton style, TextButton style, List style, and TextField
style. These properties are simple name/value pairs, where the name of the property
represents the name of the member variable in the widget's nested style class. The
value represents the key that will act as an index that references a texture or some
other property in the JSON file.

An example of the defined styles for an ImageButton from the statusui.json file is
described here:

{
...
"com.badlogic.gdx.scenes.scene2d.ui.ImageButton$ImageButtonStyle": {
"inventory-button":
{
 "imageUp": "inventory_button_closed",
 "imageChecked": "inventory_button_open" }
},
...
}

Texture atlas
The second part of creating styles is to generate a texture atlas that contains the
string-based keys for the values these style properties reference. For instance, for
our ImageButtonStyle style, we define values of imageUp and imageChecked,
with the index values inventory_button_closed and inventory_button_open,
respectively. These indices represent the named keys that reference the texture
names for the images.

Chapter 4

[145]

A texture atlas is an efficient way for managing textures because a sprite sheet
packed with images can be loaded as one texture and pushed to the GPU. The
alternative is constantly loading and unloading single image files as separate
textures, which can negatively impact performance. Using a texture atlas is the
better approach as it keeps the thrashing of the GPU pipeline to a minimum and is
a nice performance gain for your game. The texture atlas is composed of two pieces,
an image file (or sprite sheet) with all the images packed together and a text-based
description (typically designated with an .atlas file extension) of the properties
for each of these textures in the image, such as position, size, and offset values. For
example, the following image (Figure 3) represents the sprite sheet portion of the
texture atlas for the StatusUI (statusui.png):

Figure 3

The images referenced by the inventory_button_closed and inventory_button_
open values are clearly identified in red for illustration purposes in the preceding
screenshot. In the statusui.atlas file configuration, information for these two
textures are listed as follows:

statusui.png
format: RGBA8888
filter: Nearest,Nearest
repeat: none
…
inventory_button_closed
 rotate: false
 xy: 197, 9
 size: 16, 16
 orig: 16, 16
 offset: 0, 0
 index: -1
inventory_button_open
 rotate: false
 xy: 215, 9
 size: 16, 16

Where Do I Put My Stuff?

[146]

 orig: 16, 16
 offset: 0, 0
 index: -1

Creating a texture atlas by hand would be a tedious experience to say the least.
Luckily, there are a few ways to generate these texture atlas files, such as running
from the command line, from a GUI, or as a build target. I used a GUI tool called
libgdx-texturepacker-gui (version 3.2.0) for the purposes of this book. This project
includes an executable JAR (gdx-texturepacker.jar) for launching the GUI,
which can be found at http://code.google.com/p/libgdx-texturepacker-
gui/. The following screenshot (Figure 4) shows a sample session with the libgdx-
texturepacker-gui launched:

Figure 4

The default settings were fine for my purposes, but the wiki (http://github.com/
libgdx/libgdx/wiki/Texture-packer#settings) clearly identifies what each
setting means so that you can configure your project accordingly.

http://code.google.com/p/libgdx-texturepacker-gui/
http://code.google.com/p/libgdx-texturepacker-gui/
http://github.com/libgdx/libgdx/wiki/Texture-packer#settings
http://github.com/libgdx/libgdx/wiki/Texture-packer#settings

Chapter 4

[147]

First, I set the Input directory option to point to where all of my images (that I
wanted to be included for this specific texture atlas) were stored. One quick note
is that the filenames of the images will be used as the index (alias) names in the
texture atlas. Second, I set the Output directory option to point to my assets/skin
directory where both the texture atlas sprite sheet and configuration file (specified in
the File name field as statusui.atlas) will be stored once generated. Then, I just
clicked on Pack'em all and the process was done.

9-patch
When designing the UI for our game, creating and managing a fixed size image
texture for each of the different use cases, such as dialog boxes, buttons, inventory
windows, and status windows, can become cumbersome. These images can quickly
fill up your sprite sheet with a separate image for each use case, when in actuality
they are really just duplicates of a base image differentiated only by the different
sizes. We really want to reduce the overall bookkeeping of these types of images,
and 9-patch images help because they can be resized to accommodate the contents
of the view and the size of the screen. 9-patch images are natively supported within
LibGDX and so they are a natural fit to solve this image redundancy issue.

9-patch images are broken up into 9 separate pieces, defining the areas that are
static and those that are able to be repeated or stretched. The four corner pieces
are the static pieces of the overall image that will not be repeated. There are four
additional pieces that define the top, bottom, left, and right side of the image that
can be repeated or stretched on their respective sides. Finally, the middle of the
image defines the area that can be repeated in order to fill the inside of the image.
These 9 pieces or patches define a 9-patch image. We could programmatically create
these 9-patch images, but there is a What you see is what you get (WYSIWYG)
tool available that will generate the 9-patch image files for us with a little manual
configuration on our part.

The name of the tool that will generate the 9-patch images for us is Draw 9-patch
and it is bundled with the standalone Android SDK Tools, which is available at
http://developer.android.com/sdk/index.html#Other. Once installed, the
tool (launched by running the batch file draw9patch.bat) can be found in the SDK
installation directory under tools.

http://developer.android.com/sdk/index.html#Other

Where Do I Put My Stuff?

[148]

When you launch the tool, it should look similar to the following screenshot
(Figure 5):

Figure 5

There is a much more thorough tutorial of this tool available at http://developer.
android.com/tools/help/draw9patch.html. First, you drag and drop your image
that you want to convert to a 9-patch image into the main display screen. A preview
of what the buttons or dialog boxes will look like with the 9-patch will be displayed
on the right panel of the main display screen. Second, click within the 1-pixel
perimeter to draw the lines that define the stretchable patches and content area.
These selected parts of the image are scaled horizontally and vertically with green-
colored indicators drawn within the image. Third, when you are finished defining
the 9-patch areas, you can save with File | Save 9-patch and your image should be
saved with the .9.png filename.

As a quick note, we need to include this image in a texture atlas in order to use
this as a 9-patch image. The libgdx-texturepacker-gui tool will detect whether we
have a raw 9-patch file and correctly process the stretchable patches, adding this
information to the .atlas configuration file under the split property. Otherwise,
without this metadata, the LibGDX NinePatch class will not properly load the image
as a 9-patch.

http://developer.android.com/tools/help/draw9patch.html
http://developer.android.com/tools/help/draw9patch.html

Chapter 4

[149]

Skins
Every time you create a widget, you will need to set the style, or look and feel, of that
particular widget. We do this in LibGDX by passing a Skin object to the constructor
of the widget. The Skin class simply stores resources for later use. For example,
for the StatusUI, we define two paths. One for the texture atlas of all the images
associated with the StatusUI window and widgets (statusui.atlas) and one path
for the style information of the widgets (statusui.json):

public final class Utility {
 …
 private final static String STATUSUI_TEXTURE_ATLAS_PATH =
 "skins/statusui.atlas";
 private final static String STATUSUI_SKIN_PATH =
 "skins/statusui.json";

We then create both a TextureAtlas and a Skin object from the files that we have
created at this point:

 public static TextureAtlas STATUSUI_TEXTUREATLAS = new
 TextureAtlas(STATUSUI_TEXTURE_ATLAS_PATH);
 public static Skin STATUSUI_SKIN = new
 Skin(Gdx.files.internal(STATUSUI_SKIN_PATH),
 STATUSUI_TEXTUREATLAS);
}

Developing UI summary
Previously, we have defined the look and feel of our widgets with styles, referencing
images in a texture atlas . We also created and used 9-patch images for the buttons
and dialog boxes. All of these steps lay the ground work for creating widgets and
placing them in a layout.

When designing the placement of UI widgets, such as buttons and labels, we have to
position them within the window based on either fixed or relative positioning. Due
to the fact that screen resolutions can change, windows and widgets can be resized,
and other factors can change the position of UI elements, as a rule, we should be
using a relative position layout for the UI widgets. This relative positioning of UI
widgets in a toolkit is generally handled with a widget layout manager. Fortunately,
for us, LibGDX does include a class, Table, which can be used as a layout manager.

One item to keep note of is, when developing a UI, structure is important for
better readability that in turn helps to fix layout issues. So, the convention is to
first construct all of the widgets, then lay them all out, and finally implement any
listeners needed for the widgets, in that order.

Where Do I Put My Stuff?

[150]

StatusUI
The StatusUI class will allow the player to view their character's health status,
magic points, current experience, current level, and gold coins. The following image
(Figure 6) is a debug view of the StatusUI window with labels identifying the
important pieces of the window as we walk through the construction, layout, and
finally the button listeners:

Figure 6

Chapter 4

[151]

The code that Figure 6 represents is as follows:

package com.packtpub.libgdx.bludbourne.UI;

import com.badlogic.gdx.scenes.scene2d.ui.ImageButton;
import com.badlogic.gdx.scenes.scene2d.ui.Window;
import com.badlogic.gdx.scenes.scene2d.ui.Image;
import com.badlogic.gdx.scenes.scene2d.ui.WidgetGroup;
import com.badlogic.gdx.scenes.scene2d.ui.Label;
import com.badlogic.gdx.scenes.scene2d.utils.Align;
import com.packtpub.libgdx.bludbourne.Utility;

Let's go through the various widgets that are used in StatusUI. First, the
ImageButton widget is a button that contains an Image object to display an image.
Here, the ImageButton is represented by a chest that, when clicked on or checked,
will open up the InventoryUI screen. Second, the WidgetGroup widget can contain
other widgets; it is able to be used in a layout and has a z-order equal to the order in
which they were inserted into the group. Third, the Label widget is used to display
text:

public class StatusUI extends Window {

The StatusUI class derives from Window, which is a table that can be dragged
around the screen or act as a modal dialog with the top padding reserved for the
title label. This gives flexibility to the player if they wish to reposition the UI when
playing the game:

 private Image _hpBar;
 private Image _mpBar;
 private Image _xpBar;
 private ImageButton _inventoryButton;

 //Attributes
 private int _levelVal = 1;
 private int _goldVal = 0;
 private int _hpVal = 50;
 private int _mpVal = 50;
 private int _xpVal = 0;

Where Do I Put My Stuff?

[152]

These values represent UI text that will be updated when the values change. For
instance, when the player receives gold from a quest, a notification will be sent to the
StatusUI so that the gold value increases in relation to the value that was added:

 public StatusUI(){
 super("stats", Utility.STATUSUI_SKIN);

Here, we set the title of the StatusUI with the first parameter and then the overall
look and feel with our static Skin object for the second parameter:

 //groups
 WidgetGroup group = new WidgetGroup();
 WidgetGroup group2 = new WidgetGroup();
 WidgetGroup group3 = new WidgetGroup();

We construct our three WidgetGroup groups (representing health, magic, and
experience), which will be composed of two images as seen in Figure 6:

 //images
 _hpBar = new Image(
 Utility.STATUSUI_TEXTUREATLAS.findRegion("HP_Bar"));
 Image bar = new Image(
 Utility.STATUSUI_TEXTUREATLAS.findRegion("Bar"));
 _mpBar = new Image(
 Utility.STATUSUI_TEXTUREATLAS.findRegion("MP_Bar"));
 Image bar2 = new Image(
 Utility.STATUSUI_TEXTUREATLAS.findRegion("Bar"));
 _xpBar = new Image(
 Utility.STATUSUI_TEXTUREATLAS.findRegion("XP_Bar"));
 Image bar3 = new Image(
 Utility.STATUSUI_TEXTUREATLAS.findRegion("Bar"));

We get the assorted images from the TextureAtlas based on their string value in
preparation for adding them to their corresponding WidgetGroup:

 //labels
 Label hpLabel = new Label(" hp:", Utility.STATUSUI_SKIN);
 Label hp = new Label(
 String.valueOf(_hpVal), Utility.STATUSUI_SKIN);
 Label mpLabel = new Label(" mp:", Utility.STATUSUI_SKIN);
 Label mp = new Label(
 String.valueOf(_mpVal), Utility.STATUSUI_SKIN);
 Label xpLabel = new Label(" xp:", Utility.STATUSUI_SKIN);

Chapter 4

[153]

 Label xp = new Label(
 String.valueOf(_xpVal), Utility.STATUSUI_SKIN);
 Label levelLabel = new Label(
 " lv:", Utility.STATUSUI_SKIN);
 Label levelVal = new Label(
 String.valueOf(_levelVal), Utility.STATUSUI_SKIN);
 Label goldLabel = new Label(
 " gp:", Utility.STATUSUI_SKIN);
 Label goldVal = new Label(
 String.valueOf(_goldVal), Utility.STATUSUI_SKIN);

Here, we construct all the Label widgets used for displaying text in the StatusUI,
passing in a static Skin object for the label style:

 //buttons
 _inventoryButton= new ImageButton(
 Utility.STATUSUI_SKIN, "inventory-button");
 _inventoryButton.getImageCell().size(32, 32);

For the ImageButton, we defined the style in the statusui.json file for the opening
and checked the operations of the ImageButton with the name inventory-button.
The next step is to pass in that string in order to configure the widget with those
properties:

 //Align images
 _hpBar.setPosition(3, 6);
 _mpBar.setPosition(3, 6);
 _xpBar.setPosition(3, 6);

 //add to widget groups
 group.addActor(bar);
 group.addActor(_hpBar);
 group2.addActor(bar2);
 group2.addActor(_mpBar);
 group3.addActor(bar3);
 group3.addActor(_xpBar);

Once we finish adding the images to the WidgetGroup container, they are ready to be
added to the layout:

 //Add to layout
 defaults().expand().fill();

Where Do I Put My Stuff?

[154]

The defaults() method returns a cell that is comprised of default properties for all
cells in the table. The expand() method allows the cell to contain extra space in both
the x and y directions and distribute the space evenly. The fill() method allows a
widget to be sized to the cell in both the x and y directions:

 //account for the title padding
 this.pad(this.getPadTop() + 10, 10, 10, 10);

 this.add();
 this.add();
 this.add(_inventoryButton).align(Align.right);
 this.row();

Here, we add two cells so that we can add ImageButton to the third column, as seen
in Figure 6. We call row() so that we start the next part of the layout on the next row:

 this.add(group).size(bar.getWidth(), bar.getHeight());
 this.add(hpLabel);
 this.add(hp).align(Align.left);
 this.row();

 this.add(group2).size(bar2.getWidth(), bar2.getHeight());
 this.add(mpLabel);
 this.add(mp).align(Align.left);
 this.row();

 this.add(group3).size(bar3.getWidth(), bar3.getHeight());
 this.add(xpLabel);
 this.add(xp).align(Align.left);
 this.row();

We are adding the WidgetGroup container to the table, making sure we set the size to
the bar image, otherwise the preferred height and width may be zero. We then add
the corresponding Label to the next two columns for each WidgetGroup row:

 this.add(levelLabel).align(Align.left);
 this.add(levelVal).align(Align.left);
 this.row();
 this.add(goldLabel);
 this.add(goldVal).align(Align.left);

We put the final Label on the StatusUI representing the current player level and
current amount of gold coins:

 this.pack();

Chapter 4

[155]

Finally, we call the pack() method to make sure this table sizes itself to its preferred
width and height:

 }

 public ImageButton getInventoryButton() {
 return _inventoryButton;
 }
}

Drag and drop
The InventoryUI class will allow the user to interact with their inventory, move
items around, stack items, look at attributes of their items via tooltips, and equip
their new, shiny weapons and armor. The following screenshot (Figure 7) identifies
the important pieces that make up the drag and drop feature of the inventory and
the tooltip feature for the inventory items placed in the slots:

Figure 7

Where Do I Put My Stuff?

[156]

In order to get a high-level understanding of the structure, the following class
diagram (Figure 8) outlines the relationships across the different classes that compose
InventoryUI:

Figure 8

Chapter 4

[157]

InventorySlot
The InventoryUI class contains the InventorySlot objects that are derived
from the Stack class. The Stack class manages multiple child widgets by stacking
them one on top of the other with the last child widget added as the topmost widget
visible. The class diagram of InventorySlot is described in the following class
diagram (Figure 9):

Figure 9

InventorySlot keeps track of how many InventoryItem objects are stacked
and contains methods for adding and removing the InventoryItem objects. The
InventorySlot class even has a filter method, doesAcceptItemUseType(), in order
to only allow specific types of items to be added to the slot. In the InventoryUI
class, we also register the InventorySlotTooltipListener objects with the
InventorySlot objects so that when a mouse hovers over InventorySlot,
a notification can be routed to the InventorySlotTooltipListener and an
InventorySlotTooltip can be presented based on this event.

Where Do I Put My Stuff?

[158]

InventoryItem
The InventoryItem objects are images (loaded from the texture atlas files items.
atlas and items.png under the assets/skins directory) that contain some
metadata specific to the items. The class diagram (Figure 10) is as follows:

Figure 10

The InventoryItem objects are defined by the following:

•	 itemAttributes: This int type defines the item as consumable (used once
and gone), equippable (can be used in the equip slots in the inventory), or
stackable (can place more than one of the same type of item on top of each
other). Because these values represent an integer datatype, we can OR (|)
these values together so that an item can have multiple attributes and mask
out the values we want to check later on.

•	 itemUseType: This int type defines whether the item restores health or
magic and whether the item is an armor item or a weapon.

•	 itemTypeID: This defines a unique identifier for each of the items.
•	 itemShortDescription: This string defines a short description of the item,

usually used for the tooltip functionality.

Chapter 4

[159]

The InventoryItem objects are created by the InventoryItemFactory class, loading
the specified items from the inventory_items.json configuration file under the
assets/scripts directory. An example of an item specified in the inventory_
items.json file is as follows:

[
{
 itemAttributes: 2
 itemUseType: 128
 itemTypeID: SHIELD01
 itemShortDescription: Medium tier shield forged from copper
},
]

The InventoryUI class also contains a DragAndDrop object that manages the drag
and drop functionality for InventoryItem objects placed in an InventorySlot
location. The DragAndDrop class manages drag and drop operations through
registered drag sources and drop targets.

InventorySlotSource
The InventorySlotSource derives from Source and is the drag source for our
DragAndDrop implementation. The InventorySlotSource is described in the
following class diagram (Figure 11):

Figure 11

Where Do I Put My Stuff?

[160]

InventorySlotSource implements a few methods that warrant further detail in the
following code snippet:

public class InventorySlotSource extends Source {
@Override
 public Payload dragStart(InputEvent event, float x, float y,
 int pointer) {
 Payload payload = new Payload();

 _sourceSlot = (InventorySlot)getActor().getParent();
 _sourceSlot.decrementItemCount();

 payload.setDragActor(getActor());
 _dragAndDrop.setDragActorPosition(
 -x, -y + getActor().getHeight());

 return payload;
 }

The dragStart() method will be called once the mouse clicks on a registered
source (InventorySlotSource) on an InventorySlot and starts to drag the
InventoryItem across the UI. We make sure that the source slot updates its
item count to reflect the item being removed. We then set the payload (which is
InventoryItem in our case) to be handed off to the drop target and then we
make sure to set the InventoryItem position so that InventoryItem follows
the mouse cursor:

 @Override
 public void dragStop (InputEvent event, float x, float y, int
 pointer, Payload payload, Target target) {
 if(target == null){
 _sourceSlot.add(payload.getDragActor());
 }
 }
}

The dragStop() method will be called once the drag operation has stopped and the
InventoryItem is released. We want to make sure that if there are no viable drop
targets, that we put the InventoryItem back at its original location.

Chapter 4

[161]

InventorySlotTarget
The InventorySlotTarget derives from Target and is the drop target for our
DragAndDrop implementation. The InventorySlotTarget is described in the
following class diagram (Figure 12):

Figure 12

InventorySlotTarget implements a method described in further detail in the
following code snippet:

public class InventorySlotTarget extends Target {
 ...
 @Override
 public void drop(Source source, Payload payload, float x,
 float y, int pointer) {
 InventoryItem sourceActor = (InventoryItem)
 payload.getDragActor();
 InventoryItem targetActor =
 _targetSlot.getTopInventoryItem();
 InventorySlot sourceSlot =
 ((InventorySlotSource)source).getSourceSlot();

 if(sourceActor == null) {
 return;
 }

 //First, does the slot accept the source item type?
 if(!_targetSlot.doesAcceptItemUseType(
 sourceActor.getItemUseType())) {
 //Put item back where it came from,
 //slot doesn't accept item
 sourceSlot.add(sourceActor);
 return;
 }

Where Do I Put My Stuff?

[162]

 if(!_targetSlot.hasItem()){
 _targetSlot.add(sourceActor);
 }else{
 //If the same item and stackable, add
 if(sourceActor.isSameItemType(targetActor) &&
 sourceActor.isStackable()){
 _targetSlot.add(sourceActor);
 }else{
 //If they aren't the same items or
 //the items aren't stackable, then swap
 InventorySlot.swapSlots(
 sourceSlot, _targetSlot, sourceActor);
 }
 }
 }
}

In the drop() method of InventorySlotTarget, we go through a list of checks to
see whether the drag source InventoryItem is acceptable. As previously mentioned,
the InventorySlot class can filter itself to only accept certain item types. First, we
check to see whether the drop target accepts the InventoryItem. If the drop target
does not accept the item, then we place the InventoryItem object back at its source.
If the drop target does accept the InventoryItem object type, and it's empty, then
we just add the InventoryItem object to the InventorySlot location. If there are
currently InventoryItem objects in the InventorySlot location, then we check to
see whether they are the same type of items, and if they are, check to see whether
they are stackable. If neither of these conditions hold true, then we swap the items.

The design of InventoryUI can be partitioned into three segments: the
InventorySlot objects and how they are managed in the Table layout, the
DragAndDrop functionality for the inventory, and finally the InventorySlotTooltip
for inventory items.

InventoryUI
The following code snippet for InventoryUI outlines the widget creation and layout
for the UI:

public class InventoryUI extends Window {
…
private int _numSlots = 50;
private int _lengthSlotRow = 10;

Chapter 4

[163]

private Table _inventorySlotTable;
private Table _playerSlotsTable;
private Table _equipSlots;
private final int _slotWidth = 52;
private final int _slotHeight = 52;

public InventoryUI(){
 super("Inventory", Utility.STATUSUI_SKIN,
 "solidbackground");

 //create
 _inventorySlotTable = new Table();
 _inventorySlotTable.setName("Inventory_Slot_Table");

 _playerSlotsTable = new Table();
 _equipSlots = new Table();
 _equipSlots.setName("Equipment_Slot_Table");

 _equipSlots.defaults().space(10);

 InventorySlot headSlot = new InventorySlot(
 ItemUseType.ARMOR_HELMET.getValue(),
 new Image(Utility.ITEMS_TEXTUREATLAS.findRegion(
 "inv_helmet")));

 InventorySlot leftArmSlot = new InventorySlot(
 ItemUseType.WEAPON_ONEHAND.getValue() |
 ItemUseType.WEAPON_TWOHAND.getValue() |
 ItemUseType.ARMOR_SHIELD.getValue() |
 ItemUseType.WAND_ONEHAND.getValue() |
 ItemUseType.WAND_TWOHAND.getValue(),
 new Image(Utility.ITEMS_TEXTUREATLAS.findRegion(
 "inv_weapon"))
);

 InventorySlot rightArmSlot = new InventorySlot(
 ItemUseType.WEAPON_ONEHAND.getValue() |
 ItemUseType.WEAPON_TWOHAND.getValue() |
 ItemUseType.ARMOR_SHIELD.getValue() |
 ItemUseType.WAND_ONEHAND.getValue() |
 ItemUseType.WAND_TWOHAND.getValue(),

Where Do I Put My Stuff?

[164]

 new Image(Utility.ITEMS_TEXTUREATLAS.findRegion(
 "inv_shield"))
);

 InventorySlot chestSlot = new InventorySlot(
 ItemUseType.ARMOR_CHEST.getValue(),
 new Image(Utility.ITEMS_TEXTUREATLAS.findRegion(
 "inv_chest")));

 InventorySlot legsSlot = new InventorySlot(
 ItemUseType.ARMOR_FEET.getValue(),
 new Image(Utility.ITEMS_TEXTUREATLAS.findRegion(
 "inv_boot")));

Here, we are setting up the equip InventorySlot objects at the top of the
InventoryUI passing in ItemUseType values into the constructor, which act as filters
for acceptable item types. We can see the definition of ItemUseType (defined in the
InventoryItem class) in the following code snippet:

 public enum ItemUseType{
 ITEM_RESTORE_HEALTH(1),
 ITEM_RESTORE_MP(2),
 ITEM_DAMAGE(4),
 WEAPON_ONEHAND(8),
 WEAPON_TWOHAND(16),
 WAND_ONEHAND(32),
 WAND_TWOHAND(64),
 ARMOR_SHIELD(128),
 ARMOR_HELMET(256),
 ARMOR_CHEST(512),
 ARMOR_FEET(1024);

 private int _itemUseType;

 ItemUseType(int itemUseType){
 this._itemUseType = itemUseType;
 }

 public int getValue(){
 return _itemUseType;
 }
 }

Chapter 4

[165]

We make sure that each ItemUseType has a unique power of two integer value for its
ID so that we can OR the ItemUseType values together for the type of items that each
equip slot will accept. This will give us options to add multiple filtered items for one
slot, such as the arm slots, where we can have a weapon, shield, or even a wand for
magic attacks. If the player tries to drag and drop a weapon like a sword onto the
helmet equip slot, then the helmet equip slot will not accept the item because the
only type it accepts is ItemUseType.ARMOR_HELMET. We also pass in some images
that will act as placeholders in the equip slots to communicate to the user what type
of items are acceptable for those specific equip slots:

 _playerSlotsTable.setBackground(new Image(
 new NinePatch(Utility.STATUSUI_TEXTUREATLAS.createPatch(
 "dialog"))).getDrawable());

We wrap the inventory slots with a 9-patch texture that we created previously so that
there is no tearing or artifacts in the stretchable regions:

 //layout
 for(int i = 1; i <= _numSlots; i++){
 InventorySlot inventorySlot = new InventorySlot();
 _inventorySlotTable.add(
 inventorySlot).size(_slotWidth, _slotHeight);

 if(i % _lengthSlotRow == 0){
 _inventorySlotTable.row();
 }
 }

We construct all the slots for the inventory, adding them to the table as we
create them:

 _equipSlots.add();
 _equipSlots.add(headSlot).size(_slotWidth, _slotHeight);
 _equipSlots.row();

 _equipSlots.add(leftArmSlot).size(
 _slotWidth, _slotHeight);
 _equipSlots.add(chestSlot).size(_slotWidth, _slotHeight);
 _equipSlots.add(rightArmSlot).size(
 _slotWidth, _slotHeight);
 _equipSlots.row();

 _equipSlots.add();
 _equipSlots.right().add(legsSlot).size(
 _slotWidth, _slotHeight);

Where Do I Put My Stuff?

[166]

As part of the layout, we add the equip-based slots to the equip table, making sure
that they maintain their standard size:

 _playerSlotsTable.add(_equipSlots);

 this.add(_playerSlotsTable).padBottom(20).row();
 this.add(_inventorySlotTable).row();
 this.pack();
}

We add the equip-based slot table and the inventory table to the table of
InventoryUI, making sure to add a buffer between them for a better looking layout:

 public Table getInventorySlotTable() {
 return _inventorySlotTable;
 }

 public Table getEquipSlotTable() {
 return _equipSlots;
 }

 public void populateInventory(Table targetTable,
 Array<InventoryItemLocation> inventoryItems){
 Array<Cell> cells = targetTable.getCells();
 for(int i = 0; i < inventoryItems.size; i++){
 InventoryItemLocation itemLocation =
 inventoryItems.get(i);
 ItemTypeID itemTypeID = ItemTypeID.valueOf(
 itemLocation.getItemTypeAtLocation());
 InventorySlot inventorySlot =
 ((InventorySlot)cells.get(
 itemLocation.getLocationIndex()).getActor());
 inventorySlot.clearAllInventoryItems();

 for(int index = 0;
 index < itemLocation.getNumberItemsAtLocation();
 index++){
 inventorySlot.add(
 InventoryItemFactory.getInstance(
).getInventoryItem(itemTypeID));
 }
 }
 }

Chapter 4

[167]

The populateInventory() method is used when loading inventory items from a
save game profile. It will take an array of InventoryItem objects (rewrapped into a
POJO class named InventoryItemLocation) and a Table widget used for storing
the InventoryItem objects. Then, each of the InventoryItem objects will be placed
in their corresponding cell in the Table widget based on the position saved:

 public Array<InventoryItemLocation> getInventory(Table
 targetTable){
 Array<Cell> cells = targetTable.getCells();
 Array<InventoryItemLocation> items = new
 Array<InventoryItemLocation>();
 for(int i = 0; i < cells.size; i++){
 InventorySlot inventorySlot =
 ((InventorySlot)cells.get(i).getActor());
 if(inventorySlot == null) continue;
 int numItems = inventorySlot.getNumItems();
 if(numItems > 0){
 items.add(new InventoryItemLocation(i,
 inventorySlot.getTopInventoryItem(
).getItemTypeID().toString(), numItems));
 }
 }
 return items;
 }
}

The getInventory() method will take a table and return an array of the POJO
InventoryItemLocation objects. The InventoryItemLocation class includes
the location index where the InventoryItem object is stored, the type of
InventoryItem, and the number of items that were stored at that location. This
method simply iterates through all the table cells with InventorySlot locations,
populates an InventoryItemLocation object, and adds it to the array.

Drag and drop usage
The following snippet demonstrates how the DragAndDrop object is used to register
the source and target classes in order to use the drag and drop functionality:

public class InventoryUI extends Window {
…
private DragAndDrop _dragAndDrop;

Where Do I Put My Stuff?

[168]

public InventoryUI(){
 …
 _dragAndDrop = new DragAndDrop();

 _dragAndDrop.addTarget(new InventorySlotTarget(headSlot));
 _dragAndDrop.addTarget(new InventorySlotTarget
 (leftArmSlot));
 _dragAndDrop.addTarget(new InventorySlotTarget
 (chestSlot));
 _dragAndDrop.addTarget(new InventorySlotTarget
 (rightArmSlot));
 _dragAndDrop.addTarget(new InventorySlotTarget(legsSlot));

 //layout
 for(int i = 1; i <= _numSlots; i++){
 …
 _dragAndDrop.addTarget(new
 InventorySlotTarget(inventorySlot));
 }
}

When adding the InventorySlotTarget objects to the DragAndDrop member
variable, we need to make sure we pass in a reference to the corresponding
InventorySlot object so that once registered, the proper notifications get sent:

 public void populateInventory(Table targetTable,
 Array<InventoryItemLocation> inventoryItems){
…
 for(int i = 0; i < inventoryItems.size; i++){
 …
 for(int index = 0; index <
 itemLocation.getNumberItemsAtLocation(); index++){
 …
 _dragAndDrop.addSource(new
 InventorySlotSource(inventorySlot, _dragAndDrop));
 }
 }
 }
}

In the populateInventory() method, which is used when loading inventory items
from a save game profile, we need to make sure that we pass in an InventorySlot
reference when we register InventorySlotSource as a source for the DragAndDrop
member variable.

Chapter 4

[169]

Tooltip usage
Finally, we get to the construction and usage of InventorySlotTooltip. An
excerpted portion of the source for reference is discussed here:

public class InventoryUI extends Window {
…
private Array<Actor> _inventoryActors;
private InventorySlotTooltip _inventorySlotTooltip;

public InventoryUI(){
…
_inventoryActors = new Array<Actor>();

The array of Actor objects is a container primarily for the InventorySlotTooltip
window, as we need to pass this object back to the parent (PlayerHUD) so that the
window is displayed correctly on the screen:

_inventorySlotTooltip = new InventorySlotTooltip
 (Utility.STATUSUI_SKIN);

 headSlot.addListener(new InventorySlotTooltipListener(
 _inventorySlotTooltip));

 leftArmSlot.addListener(new InventorySlotTooltipListener(
 _inventorySlotTooltip));

 rightArmSlot.addListener(new InventorySlotTooltipListener(
 _inventorySlotTooltip));

 chestSlot.addListener(new InventorySlotTooltipListener(
 _inventorySlotTooltip));

 legsSlot.addListener(new InventorySlotTooltipListener(
 _inventorySlotTooltip));

//layout
for(int i = 1; i <= _numSlots; i++){
 …
 inventorySlot.addListener(new
 InventorySlotTooltipListener(_inventorySlotTooltip));
}

Where Do I Put My Stuff?

[170]

We make sure that all the InventorySlot objects register an
InventorySlotTooltipListener so that they can propagate the notifications to
the InventorySlotTooltip window when a tooltip event gets triggered (when the
mouse hovers over an InventoryItem):

_inventoryActors.add(_inventorySlotTooltip);
}
 public Array<Actor> getInventoryActors(){
 return _inventoryActors;
 }
}

Menu screens
Taking everything we have learned, we can now apply the knowledge to
constructing the screen UIs. The following screenshot (Figure 13) shows how we
switch between the different screens, depending on which callbacks were triggered
(a button widget press event):

Figure 13

Chapter 4

[171]

Note that when implementing the logic for the different screens, make sure
the appropriate show() and hide() methods are implemented for each screen.
When switching between the different screens, we make a single method call,
setScreen(), from the main entry point class, BludBourne.java. The setScreen()
method will call the hide() method on the currently visible screen and then call
show() on the new screen. This should cover most use cases for creating interactive
screens. In the future, we will learn how to add transition effects when loading
different map locations, as well as during screen changes.

Save and load game profiles
There are many different ways to implement the save/restore functionality in a game.
There is a spectrum of options in the solution space, with one end of the spectrum for
a minimalist approach for save/restore philosophy, specifically a simple name/value
pair approach, with values for persisting a high score or the current level number.
LibGDX supports this natively through the Preferences class in LibGDX that is
modeled after preferences on Android. The other end of the save/restore functionality
spectrum is a brute force approach where everything in-memory for the current game
state is dumped to some binary format. This approach has severe drawbacks with save
game sizes and also has a brittle state where one change in a class (patch update) can
render previous saves useless. Our philosophy approach for the purpose of this book is
one that adopts a little from both ends of the spectrum.

The primary class that will handle all of our serialization and deserialization efforts
is ProfileManager. This class is implemented as a Singleton as we need a single
global point of access when we first start the game for selecting from the existing
save game profiles, loading a profile, and accessing the current profile when saving
the current state.

Currently, there is one save game location for each profile. BludBourne
has a shorter game playthrough than what your finished title will have,
so having one profile to save to, adds an extra element of challenge for
the player. This can be augmented to include multiple save locations per
profile, depending on the requirements for your game.

Where Do I Put My Stuff?

[172]

The ProfileManager class can be found under the profiles directory off the source
root project directory. The source for ProfileManager is as follows:

package com.packtpub.libgdx.bludbourne.profile;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.files.FileHandle;
import com.badlogic.gdx.utils.Array;
import com.badlogic.gdx.utils.Json;
import com.badlogic.gdx.utils.ObjectMap;
import java.util.Enumeration;
import java.util.Hashtable;

The noteworthy item on the imports for ProfileManager is the ObjectMap class in
LibGDX. Since we are primarily dealing with JSON as the serializing data format (as
JSON is built for key/value pairs of data including support for arrays packed with
POJO data), LibGDX has a convenience class, ObjectMap, which is efficient at storing
and retrieving this type of data:

public class ProfileManager extends ProfileSubject {
 private Json _json;
 private static ProfileManager _profileManager;
 private Hashtable<String,FileHandle> _profiles = null;
 private ObjectMap<String, Object> _profileProperties = new
 ObjectMap<String, Object>();
 private String _profileName;

 private static final String SAVEGAME_SUFFIX = ".sav";
 public static final String DEFAULT_PROFILE = "default";

We will discuss the ProfileSubject base class later on as part of the Observer pattern
implementation. We will be storing two items in ProfileManager. The first item we
will be storing is Hashtable of all the profile file handles available for easy access
during loading and saving operations. The second item we will be storing is as an
ObjectMap of all the key/value pairs of properties we want to persist for the save/
restore functionality of our game:

 private ProfileManager(){
 _json = new Json();
 _profiles = new Hashtable<String,FileHandle>();
 _profiles.clear();
 _profileName = DEFAULT_PROFILE;

Chapter 4

[173]

 storeAllProfiles();
 }

 public static final ProfileManager getInstance(){
 if(_profileManager == null){
 _profileManager = new ProfileManager();
 }
 return _profileManager;
 }

The getInstance() method is the single point of access using lazy initialization
(initialized as late as possible, upon first usage) for the Singleton instance of
ProfileManager:

 public Array<String> getProfileList(){
 Array<String> profiles = new Array<String>();
 for (Enumeration<String> e = _profiles.keys();
 e.hasMoreElements();){
 profiles.add(e.nextElement());
 }
 return profiles;
 }

The getProfileList() method constructs an array of profile strings to display in
our selection UI dialog:

 public FileHandle getProfileFile(String profile){
 if(!doesProfileExist(profile)){
 return null;
 }
 return _profiles.get(profile);
 }

The getProfileFile() method will return the file handle (if available) for the
profile name passed in. We need to make a note to handle the null case if the file
handle does not exist:

 public void storeAllProfiles(){
 if(Gdx.files.isLocalStorageAvailable()){
 FileHandle[] files =
 Gdx.files.local(".").list(SAVEGAME_SUFFIX);

Where Do I Put My Stuff?

[174]

 for(FileHandle file: files) {
 _profiles.put(file.nameWithoutExtension(), file);
 }
 }else{
 return;
 }
 }

The storeAllProfiles() method will check to see whether local storage is
available, and if it is, store all available profile files into our member Hashtable for
access later:

 public boolean doesProfileExist(String profileName){
 return _profiles.containsKey(profileName);
 }

 public void writeProfileToStorage(String profileName, String
 fileData, boolean overwrite){
 String fullFilename = profileName+SAVEGAME_SUFFIX;

 boolean localFileExists =
 Gdx.files.internal(fullFilename).exists();

 //If we cannot overwrite and the file exists, exit
 if(localFileExists && !overwrite){
 return;
 }

 FileHandle file = null;

 if(Gdx.files.isLocalStorageAvailable()) {
 file = Gdx.files.local(fullFilename);
 file.writeString(fileData, !overwrite);
 }
 _profiles.put(profileName, file);
 }

The writeProfileToStorage() method will take a profile name string, a serialized
JSON string of data, and a boolean value whether or not we want to overwrite the
file if it exists. We construct the file based on the profile name and see if it exists. If
the file exists and we can overwrite the file, then we continue, otherwise we return.

Chapter 4

[175]

We then write out the serialized JSON string to the file and add this new file handle
to our Hashtable of profiles:

 public void setProperty(String key, Object object){
 _profileProperties.put(key, object);
 }

 public <T extends Object> T getProperty(String key, Class<T>
 type){
 T property = null;
 if(!_profileProperties.containsKey(key)){
 return property;
 }
 property = (T)_profileProperties.get(key);
 return property;
 }

The setProperty() method will add a key/value pair property to the ObjectMap
member object, _profileProperties. The convenience of this method cannot be
overstated as it allows us to pass in arrays with POJO data, simplifying the storage
of different types of properties. The getProperty() method takes a key string and a
class type as input parameters. If we cannot find the key in the ObjectMap property,
then we return null, otherwise we return the value found cast to the class type:

 public void saveProfile(){
 notify(this, ProfileObserver.ProfileEvent.SAVING_PROFILE);
 String text = _json.prettyPrint(
 _json.toJson(_profileProperties));
 writeProfileToStorage(_profileName, text, true);
 }

 public void loadProfile(){
 String fullProfileFileName = _profileName+SAVEGAME_SUFFIX;
 boolean doesProfileFileExist =
 Gdx.files.internal(fullProfileFileName).exists();

 if(!doesProfileFileExist){
 System.out.println("File doesn't exist!");
 return;
 }

 _profileProperties = _json.fromJson(
 ObjectMap.class, _profiles.get(_profileName));
 notify(this, ProfileObserver.ProfileEvent.PROFILE_LOADED);
 }

Where Do I Put My Stuff?

[176]

The saveProfile() method will first notify all observers with a SAVING_PROFILE
profile event. The observers that are subscribed to this notification will store their
current properties in preparation for serialization. The observer pattern is discussed
in more detail in the next section. We will then convert the ObjectMap that contains
all of our properties into a JSON string and then write it out to the profile file. One
item to note here is that the properties in ObjectMap should be restricted to simple
key/value pairs of objects and simple arrays with POJO data. Otherwise, if the data
is too complex, then the chances of having circular references increases, leading to a
scenario where the JSON serialization will fail with a stack overflow.

The loadProfile() method will verify that the profile file exists, and if it does,
deserialize the file into ObjectMap for all the properties. A notification with a
PROFILE_LOADED profile event is sent to all registered observers so that the classes
that own those properties can correctly initialize the data.

If we wanted a little obfuscation for the save game profiles, we could add Base64
encoding to the profiles at the serialization and deserialization steps in these
methods. For the purposes of this book, it is easier to understand the data we are
working with in a more readable format:

 public void setCurrentProfile(String profileName){
 if(doesProfileExist(profileName)){
 _profileName = profileName;
 }else{
 _profileName = DEFAULT_PROFILE;
 }
 }
}

Finally, the setCurrentProfile() method will set the profile string passed in as the
currently loaded profile (if it exists), otherwise we will load a default profile.

Observer pattern
One piece of this solution that we need to consider is which classes have ownership
of the properties we are storing. We want to try to avoid a scenario where we
duplicate properties in a class that acts as a property bag for easier serialization.
The main problem with this approach is when properties change, or are removed
altogether from the main class that uses the property, the changes might not get
propagated to the serializing class. So, we want to keep the ownership of the
properties with their corresponding classes without duplicating them.

Chapter 4

[177]

One solution to solving this problem is to implement an observer pattern where
we have classes subscribe or register themselves (the observers) with other classes
(the subject) in order to look for certain notifications. The overall class diagram
structure for this pattern implemented in our game is shown here (Figure 14):

Figure 14

Figure 14 first shows how ProfileManager extends from the base class
ProfileSubject, which is described in the following class diagram in Figure 15:

Figure 15

Where Do I Put My Stuff?

[178]

ProfileSubject is the subject class in our observer pattern that owns all the
observers that register themselves, storing them in an array. Once a notification is
created (a profile event in our case), the ProfileSubject class will iterate over all
registered observers and send them the notifications.

For the classes that wish to receive the ProfileSubject notifications (or profile
events in our case), they will implement the ProfileObserver interface, which is
described in the following class diagram (Figure 16):

Figure 16

This simplifies the saving/restoring logic because if a class has certain properties
it wants to persist, the class simply registers itself first by implementing the
ProfileObserver interface.

Observer pattern usage example
As an example usage of the observer pattern, let's say we want to save the current
map that's loaded so that when the player loads the game profile, they will start
from the current map location. We will need to define the property to store which,
in our case, will be currentMapType that represents the MapType enum defined in
MapFactory. First, we implement the ProfileObserver interface in the class that
owns the property, which is demonstrated with the following code snippet:

import com.packtpub.libgdx.bludbourne.profile.ProfileManager;
import com.packtpub.libgdx.bludbourne.profile.ProfileObserver;

public class MapManager implements ProfileObserver {
…
 @Override
 public void onNotify(ProfileManager profileManager,
 ProfileEvent event) {
 switch(event){
 case PROFILE_LOADED:
 String currentMap = profileManager.getProperty(
 "currentMapType", String.class);
 MapFactory.MapType mapType;
 if(currentMap == null || currentMap.isEmpty()){
 mapType = MapFactory.MapType.TOWN;

Chapter 4

[179]

 }else{
 mapType = MapFactory.MapType.valueOf(
 currentMap);
 }
 loadMap(mapType);
 break;
 case SAVING_PROFILE:
 profileManager.setProperty(
 "currentMapType",
 _currentMap._currentMapType.toString());
 break;
 default:
 break;
 }
 }
}

We make sure to handle the events for the ProfileEvent types. When saving
a profile (a SAVING_PROFILE event), we make sure to set the property for the
currentMapType. When loading the profile (a PROFILE_LOADED event), we load
the correct map based upon the currentMapType property. Second, after we have
implemented the logic to deal with the various ProfileEvent events for our
property, we then need to register it with the subject class, which in our case is
ProfileManager that implements ProfileSubject:

public class MainGameScreen implements Screen {
…
 public MainGameScreen(BludBourne game){
 …
 ProfileManager.getInstance().addObserver(_mapMgr);
 }
}

Now whenever a new profile is loaded or the current profile is saved, MapManager
will know to load the saved map or save the current map property, respectively. The
actual save game profile (JSON formatted) from this example will look similar to the
following excerpt:

{
 currentMapType: {
 class: java.lang.String
 value: TOWN
 }
}

This is the approach we will use in order to manage the persistence of all the various
properties for our game.

Where Do I Put My Stuff?

[180]

Summary
In this chapter, we first learned the basics of how UIs are created with LibGDX by
understanding widget styles, texture atlases, 9-patch images, and creating skins for
the widgets. We then took this foundation and implemented a HUD, a UI for player
status, a UI for player inventory, screen UIs for the main screen, and loading game
profiles. Finally, we implemented a save and restore solution in order to persist our
game profiles using the observer pattern.

In the next chapter, we will begin to look at speech windows and dialog trees
for NPC interaction and also implement a shop store UI with a buy and sell
transaction system.

[181]

Time to Breathe Some Life
into This Town

Up until now we have been building a general foundation for our game that includes
loading maps, displaying textures, persisting game state, and developing interactive
UIs. At this point, we will start to develop features more specific to RPGs. In this
chapter, we will explore conversation trees in order to add lore and backstory to our
adventures through the land of BludBourne, and also make the NPCs more interactive
and interesting. We will also look at developing the store inventory, which can be
used for not only dealing with money transactions, but also as a simple trade screen
with any NPC (if they have items).

In summary, we will cover the following topics in this chapter:

•	 Speech windows with dialog trees
•	 Shop store UI with items and money transactions

There is some theory that we will cover to better understand how conversation
trees work and then we will quickly move to the actual design and implementation
used in our game. We will take a step-by-step approach. We will first start with the
fundamental data structures that compose a conversation tree and then move
to the class overview used in our game. The classes include the basic UI dialog,
a graph-based data structure that contains the conversations, and event triggering
based upon choices made in the conversation. We will then discuss how the
conversations themselves will be created in script files for easy modification and
localization support.

Time to Breathe Some Life into This Town

[182]

Speech windows with dialog trees
The following image (Figure 1) shows an example of a conversation used in our
game, with the basic dialog text at the top-half of the UI window, and the various
selectable choices presented at the bottom-half:

Figure 1

Chapter 5

[183]

Theory behind conversation trees
In the general parlance of game development, the terms conversation tree or dialog
tree are commonly used to specify the UI dialogs that are presented when interacting
with NPC characters in a video game. This is a nice level of immersion because
this is a chance for the player to interact directly with an NPC based on choices of
dialog, instead of just stealing items from their homes or attacking them. The idea of
conversation trees has existed before video games started to use them, such as the
Which Way or Choose Your Own Adventure books, which gave the reader two choices
at the end of each chapter. This mechanic of branching dialog choices led to either a
good ending where the player was successful or a bad ending where various horrible
events befell the reader and forced them to start over.

In more modern games, conversations can include more dynamic choices, ones that
affect future interactions with an NPC. One example of these types of choices would
be Fallout 3 by Bethesda Softworks, where answering questions with threats can
cause the NPC to never talk to you again. Another example would be the Mass Effect
series where you could answer questions across a spectrum of intentions, such as
"Paragon" for "good" alignment options, "Renegade" for "bad" alignment options, or
the safe route with the neutral option. Since our game is in the spirit of older titles
that did not always have dynamic choices, we will support multiple dialog choices
that allow you to interact with the NPCs but without the persistence.

For our purposes, based on more modern gameplay mechanics, we want the ability
for the player to be able to go back to previous points in a conversation, even the
beginning, asking different questions or looking for different responses. We also
want the ability to have more than two choices, which makes for more interesting
dialog choices for the player than just having two clearly distinct choices. For these
reasons, we will not be developing a conversation tree, but a conversation graph,
since a graph supports more than two choices and can contain cycles (the option to
go back to a previous conversation).

Time to Breathe Some Life into This Town

[184]

I will not be going in depth into graph theory, as the book Algorithms (4th Edition by
Robert Sedgewick and Kevin Wayne), does an amazing job of describing data structures
and algorithms with examples in the Java language. Just as I had to brush up on
some basics of constructing graphs, I believe it is important enough to warrant a
brief explanation, starting with a basic graph in the following figure (Figure 2):

Figure 2

First, in computer science, a graph is defined as a data structure composed of a set
(or distinct collection) of vertices or nodes. In Figure 2, we have a set of five vertices,
designated as {A0, A1, A2, A3, A4}. These vertices are connected via edges or arcs
that create pairs of vertices or connections. In Figure 2, we have the following edges
or pairs of vertices: {(A0,A1), (A0,A2), (A1,A3), (A2,A3), (A3,A4), (A4,A0)}. Since
our edges have a direction, we end up with ordered pairs of vertices, thus making
our graph a directed graph. If we used an undirected model instead of a directed
model for our conversation graph, then we would lose control over the flow of
the conversation because of the bidirectionality of the connections between the
vertices. Since we want to maintain a specific, directed flow of logic surrounding
each decision that the player makes during a conversation, we want to use a directed
graph instead.

Chapter 5

[185]

The other feature of this graph is that it supports cycles. A cycle is when a series
of edges start and end with the same vertex. In Figure 2, one of the cycles follows
this sequence: {(A0,A1), (A1,A3), (A3,A4), (A4,A0)}. As you can see, our root vertex
of the graph starts at A0 and by following the connections, we end up back at A0.
Supporting cycles is useful; for example, when you have a lot of information that
you want the player to explore with the NPC, you can have the conversation cycle
back to a previous part of the conversation so the player can choose another path.
Cycles in our directed graph differentiates our conversation graph from a regular
conversation tree structure, since there are no cycles in a tree.

The next step is to substitute in a conversation into a graph structure to see how
everything fits together, as shown in the following figure (Figure 3):

Figure 3

Time to Breathe Some Life into This Town

[186]

This is a conversation retrofitted into the previous directed graph from Figure 2. I
did take some artistic license with the conversation that Matthew Broderick had
with Joshua in WarGames, but I believe it works in our example. As we can see, we
still have our vertices designated in the set {A0, A1, A2, A3, A4}. Here, each vertex
represents a question or statement that the NPC will ask or say, respectively, to you
in the process of your conversation. Your response to the NPC will be represented
as an edge that connects from the original question or statement to another part of
the conversation. As the player answers the question or selects a statement, that
connection will determine what the NPC will say or how the NPC will react during
the conversation.

Using this example as a model for a conversation graph for our game, we will now
take a deep dive into the overall object model and look at the implementation so that
we can start breathing some life into the NPCs.

An overview of class hierarchy
The following class diagram (Figure 4) gives an overview of the new classes created
for the conversation graph and also for a few existing classes used to facilitate
notifications throughout the UI:

Figure 4

Chapter 5

[187]

First, the ConversationGraph class is the graph data structure that loads new
conversations. The following is the class diagram (Figure 5) for ConversationGraph:

Figure 5

The ConversationGraph class is composed of Conversation and
ConversationChoice objects, each stored in a Hashtable for fast retrieval.

Conversation
The class diagram that describes the Conversation class is as follows (Figure 6):

Figure 6

Time to Breathe Some Life into This Town

[188]

This Conversation class represents the vertices of the ConversationGraph class.
Conversation is a POJO (for easy JSON serialization) that contains text for a piece of
dialog to be displayed on a particular vertex and also a unique ID for reference.

ConversationChoice
The class diagram that describes the ConversationChoice class is as follows
(Figure 7):

Figure 7

The ConversationChoice class represents the edges of the ConversationGraph
class. ConversationChoice is also a POJO, which connects two vertices (source
and destination) with a particular choice to be displayed to the player and manages
any events (ConversationCommandEvent) that occur from a particular choice. The
source and destination IDs represent the direction of the connection for our directed
graph, which directs the flow of the conversation as the player makes choices at each
Conversation vertex of the graph.

Chapter 5

[189]

ConversationGraphSubject and
ConversationGraphObserver
The ConversationGraph class extends from the base class
ConversationGraphSubject, which is used to send notifications to
ConversationGraphObserver as a player moves through the conversation
graph selecting different options. These two classes represent the observer
pattern that we discussed in Chapter 4, Where Do I Put My Stuff?

The following class diagram (Figure 8) outlines the interface for the
ConversationGraphObserver:

Figure 8

The PlayerHUD class acts as a hub for all the game UI, implementing the various
observer interfaces so that it can relay the appropriate notifications to the correct
destinations. In this class diagram (Figure 4), PlayerHUD implements both the
ConversationGraphObserver and ComponentObserver interfaces.

The ConversationGraphObserver interface sends notifications for
ConversationCommandEvents, such as when the conversation has ended or the
player wants to see a vendor's wares based on their conversation.

The following class diagram (Figure 9) outlines the interface for the
ConversationGraphSubject class:

Figure 9

Time to Breathe Some Life into This Town

[190]

ConversationGraphSubject implements the standard observer pattern as described
in Chapter 4, Where Do I Put My Stuff?

We will now do a code walkthrough of ConversationGraph (Figure 5) to see how all
these classes fit together.

ConversationGraph
The source for ConversationGraph is as follows:

package com.packtpub.libgdx.bludbourne.dialog;

import com.badlogic.gdx.utils.Json;

import java.util.ArrayList;
import java.util.Hashtable;
import java.util.Set;

public class ConversationGraph extends ConversationGraphSubject {
 private Hashtable<String, Conversation> conversations;
 private Hashtable<String, ArrayList<ConversationChoice>>
 associatedChoices;
 private String currentConversationID = null;

 public ConversationGraph(){
 }

Here, ConversationGraph derives from ConversationGraphSubject so that
we can hook in ConversationGraphObservers in order to get notifications from
the current graph.

The first Hashtable has a String type for a key, which represents the unique ID
of the vertex (represented by the Conversation class). As an example from Figure
3, conversations would have a size of 5 with the following keys: {A0, A1, A2, A3,
A4}. Each key would have access to a Conversation object with the dialog for its
respective vertex. For instance, the A0 key would return a Conversation object with
the dialog string "Shall we play a game?".

Chapter 5

[191]

The second Hashtable, associatedChoices, also has a String type for a key, which
represents the unique ID of the edge (represented by the ConversationChoice
class). associatedChoices contains an ArrayList of the ConversationChoice
objects. This is an adjacency list (a list of neighboring vertices) that maintains
ConversationChoice (edge) ArrayList indexed by the ID of the Conversation
objects (vertices). Essentially, this list represents the vertices connected by an edge
to each vertex. As another example from Figure 3, we can use A0 as a key value for
the associatedChoices Hashtable, which will return an ArrayList with two
ConversationChoice entries: one with a destination ID of A1 and a choice phrase of
"YES" and the other entry with a destination ID of A2 and a choice phrase of "NO".
Both of these entries would have A0 as the source ID.

We also keep a String ID, currentConversationID, around that represents the
current Conversation vertex for easier bookkeeping:

 public ConversationGraph(Hashtable<String, Conversation>
 conversations, String rootID){
 setConversations(conversations);
 setCurrentConversation(rootID);
 }

Here, we can populate the ConversationGraph via this constructor by passing in the
Hashtable already containing all the Conversation based vertices:

 public void setConversations(Hashtable<String, Conversation>
 conversations) {
 if(conversations.size() < 0){
 throw new IllegalArgumentException(
 "Can't have a negative amount of conversations");
 }

 this.conversations = conversations;
 this.associatedChoices = new Hashtable<
 String,
 ArrayList<ConversationChoice>>(conversations.size());

 for(Conversation conversation: conversations.values()){
 associatedChoices.put(
 conversation.getId(),
 new ArrayList<ConversationChoice>());
 }
 this.conversations = conversations;
 }

Time to Breathe Some Life into This Town

[192]

 public ArrayList<ConversationChoice> getCurrentChoices(){
 return associatedChoices.get(currentConversationID);
 }

 public String getCurrentConversationID(){
 return this.currentConversationID;
 }

Another option for populating our ConversationGraph is to simply call the default
constructor and use setter methods to populate the graph. Since we will be using
JSON serialization/deserialization to load ConversationGraph from script files, we
will end up using the default constructor with the setter methods automatically via
Java reflection used in conjunction with the LibGDX JSON libraries.

The setConversations() method will first make sure we have the Conversation
objects in the Hashtable and then initialize the associatedChoices Hashtable with
empty ArrayList containers:

 public boolean isValid(String conversationID){
 Conversation conversation =
 conversations.get(conversationID);
 if(conversation == null) return false;
 return true;
 }

 public boolean isReachable(String sourceID, String sinkID){
 if(!isValid(sourceID) || !isValid(sinkID)) return false;
 if(conversations.get(sourceID) == null) return false;

 //First get edges/choices from the source
 ArrayList<ConversationChoice> list =
 associatedChoices.get(sourceID);
 if(list == null) return false;
 for(ConversationChoice choice: list){
 if(choice.getSourceId().equalsIgnoreCase(sourceID) &&
 choice.getDestinationId().equalsIgnoreCase(sinkID)
){
 return true;
 }
 }
 return false;
 }

Chapter 5

[193]

 public Conversation getConversationByID(String id){
 if(!isValid(id)){
 System.out.println("Id " + id + " is not valid!");
 return null;
 }
 return conversations.get(id);
 }

 public void setCurrentConversation(String id){
 Conversation conversation = getConversationByID(id);
 if(conversation == null) return;
 //Can we reach the new conversation from the current one?

 //Make sure we check case
 //where the current node is checked against itself
 if(currentConversationID == null ||
 currentConversationID.equalsIgnoreCase(id) ||
 isReachable(currentConversationID, id)){
 currentConversationID = id;
 }else{
 System.out.println("New conversation node [" + id +
 "]is not reachable from current node [" +
 currentConversationID + "]");
 }
 }

We have two verification methods here. The first verification method is isValid(),
which simply uses the ID passed in as a key for the conversations Hashtable, and
if the Conversation vertex exists, then we return true, otherwise we return false.
The other verification method is isReachable(). We basically pass in two vertex
IDs and test whether there is a valid edge connection from the source vertex to the
destination vertex. We iterate over the adjacency list of ConversationChoice objects
comparing the vertex IDs, and if there is a match, then we know we have an edge
connection and will return true. Otherwise, the destination vertex is not reachable
from the source vertex and so we return false.

The getConversationByID() method will test to make sure the vertex ID exists,
and if it does, return it. Otherwise, if the Conversation vertex does not exist, we will
return a null object.

Time to Breathe Some Life into This Town

[194]

Finally, in the setCurrentConversation() method, we will run some validation
tests to make sure that the conversation we want to set is reachable (has a valid edge
connection) from the current Conversation. If we pass the validation tests, then we
update our bookkeeping variable currentConversationID with the ID passed in:

 public void addChoice(ConversationChoice conversationChoice){

 ArrayList<ConversationChoice> list =
 associatedChoices.get(conversationChoice.getSourceId());
 if(list == null) return;

 list.add(conversationChoice);
 }

The addChoice() method will add an edge connection between two vertices,
contained in the ConversationChoice object, to the current Conversation objects
adjacency list (ArrayList):

 public String displayCurrentConversation(){
 return conversations.get(
 currentConversationID).getDialog();
 }

The displayCurrentConversation() method will return the String object that
represents the dialog to be displayed from the current Conversation vertex:

 public String toString(){
 StringBuilder outputString = new StringBuilder();
 int numberTotalChoices = 0;

 Set<String> keys = associatedChoices.keySet();
 for(String id: keys){
 outputString.append(String.format("[%s]: ", id));

 for(ConversationChoice choice:
 associatedChoices.get(id)){
 numberTotalChoices++;
 outputString.append(String.format("%s ",
 choice.getDestinationId()));
 }
 outputString.append(
 System.getProperty("line.separator"));
 }

Chapter 5

[195]

 outputString.append(
 String.format("Number conversations: %d",
 conversations.size()));
 outputString.append(
 String.format(", Number of choices: %d",
 numberTotalChoices));
 outputString.append(System.getProperty("line.separator"));

 return outputString.toString();
 }

 public String toJson(){
 Json json = new Json();
 return json.prettyPrint(this);
 }
}

The toString() method was used in the initial implementation for an interactive
conversation session via the command line, before a UI was created to support
ConversationGraph. The following is a sample session of testing out the
ConversationGraph from the command line:

com.packtpub.libgdx.bludbourne.tests.ConversationGraphTest

[500]: 601 802

[250]:

[601]: 500

[802]: 500

Number conversations: 4, Number of choices: 4

Do you want to play a game?

601 YES

802 NO

>601

BOOM! Bombs dropping everywhere

500 Go to beginning!

>500

Do you want to play a game?

601 YES

802 NO

>802

Time to Breathe Some Life into This Town

[196]

Too bad!

500 Go to beginning!

>500

Do you want to play a game?

601 YES

802 NO

>250

New conversation node [250] is not reachable from current node [500]

Do you want to play a game?

601 YES

802 NO

>q

UI structure
The ConversationUI class is the dialog window that gets displayed when
a player selects an NPC, and that NPC has a conversation (in the form of a JSON
script file) available as shown in Figure 1. Each time a player selects an NPC, if
the NPC has a conversation script available, ConversationUI will deserialize the
JSON script and populate its ConversationGraph with the Conversation and
ConversationChoice objects.

The following diagram (Figure 10) outlines the important UI components that
ConversationUI is composed of:

Figure 10

Chapter 5

[197]

Let's take a look at how all these pieces fit together, between the ConversationGraph
class and the ConversationUI class with the following code:

package com.packtpub.libgdx.bludbourne.UI;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.scenes.scene2d.InputEvent;
import com.badlogic.gdx.scenes.scene2d.ui.Label;
import com.badlogic.gdx.scenes.scene2d.ui.List;
import com.badlogic.gdx.scenes.scene2d.ui.ScrollPane;
import com.badlogic.gdx.scenes.scene2d.ui.TextButton;
import com.badlogic.gdx.scenes.scene2d.ui.Window;
import com.badlogic.gdx.scenes.scene2d.utils.Align;
import com.badlogic.gdx.scenes.scene2d.utils.ClickListener;
import com.badlogic.gdx.utils.Json;
import com.packtpub.libgdx.bludbourne.EntityConfig;
import com.packtpub.libgdx.bludbourne.Utility;
import com.packtpub.libgdx.bludbourne.dialog.Conversation;
import com.packtpub.libgdx.bludbourne.dialog.ConversationChoice;
import com.packtpub.libgdx.bludbourne.dialog.ConversationGraph;

import java.util.ArrayList;

public class ConversationUI extends Window {
 private static final String TAG =
 ConversationUI.class.getSimpleName();

 private Label _dialogText;
 private List _listItems;
 private ConversationGraph _graph;
 private String _currentEntityID;
 private TextButton _closeButton;
 private Json _json;

 public ConversationUI() {
 super("dialog", Utility.STATUSUI_SKIN, "solidbackground");

 _json = new Json();
 _graph = new ConversationGraph();

 //create
 _dialogText = new Label("No Conversation",
 Utility.STATUSUI_SKIN);
 _dialogText.setWrap(true);
 _dialogText.setAlignment(Align.center);

Time to Breathe Some Life into This Town

[198]

We have a variable for Label that represents the current dialog of the
ConversationGraph that was previously loaded. To make the dialog more presentable
in the Window class, we need to make sure that the text is centered and set to wrap:

 _closeButton = new TextButton("X", Utility.STATUSUI_SKIN);

For our Window, we will add a TextButton widget with the "X" character set as the
text:

 _listItems = new List<ConversationChoice>(
 Utility.STATUSUI_SKIN);

The List class will contain all the ConversationChoice objects to be presented
to the player. A List is a list box that displays text-based items and highlights the
currently selected item. We use this in conjunction with the ScrollPane widget for
ease of use for the player:

 ScrollPane scrollPane = new ScrollPane(_listItems,
 Utility.STATUSUI_SKIN, "inventoryPane");
 scrollPane.setOverscroll(false, false);
 scrollPane.setFadeScrollBars(false);
 scrollPane.setScrollingDisabled(true, false);
 scrollPane.setForceScroll(true, false);
 scrollPane.setScrollBarPositions(false, true);

Here, we pass in the List of the ConversationChoice items to the ScrollPane to be
displayed to the player. We want to disable some of the features enabled by default,
such as the overscroll and fade scroll bar features for better control:

 //layout
 this.add();
 this.add(_closeButton);
 this.row();

Now, we will layout the widgets, since the Window class is derived from Table.
We will place the close button widget in the top-right corner of the window
(second column):

 this.defaults().expand().fill();
 this.add(_dialogText).pad(10, 10, 10, 10);
 this.row();
 this.add(scrollPane).pad(10,10,10,10);

Chapter 5

[199]

We will add the dialog text, which represents the current vertex dialog from
ConversationGraph, to the top-half of the Window class. Then, we will add
ScrollPane to the bottom-half of the Window class:

 this.pack();

 //Listeners
 _listItems.addListener(new ClickListener() {
 @Override
 public void clicked (InputEvent event, float x,
 float y) {
 ConversationChoice choice =
 (ConversationChoice)_listItems.getSelected();
 if(choice == null) return;

 _graph.notify(_graph,
 choice.getConversationCommandEvent());

 populateConversationDialog(
 choice.getDestinationId());
 }
 }
);
 }

Here, we add a listener (callback for the widget) for when a ListItem item is
selected. First, we get the ConversationChoice that the selection represents and
then send a notification to all observers if the current ConversationChoice has
some sort of event attached with it. For example, when a player states that they
want to look at the inventory of a vendor, the event for the choice will be sent to all
observers. This allows the PlayerHUD class (which is an observer for this event) to
present the StoreInventoryUI. Finally, we call populateConversationDialog() in
order to make the new destination ID (from the choice) the current Conversation:

 public TextButton getCloseButton(){
 return _closeButton;
 }

 public String getCurrentEntityID() {
 return _currentEntityID;
 }

Time to Breathe Some Life into This Town

[200]

 public void loadConversation(EntityConfig entityConfig){
 String fullFilenamePath =
 entityConfig.getConversationConfigPath();
 this.setTitle("");

 clearDialog();

 if(fullFilenamePath.isEmpty() ||
 !Gdx.files.internal(fullFilenamePath).exists()){
 Gdx.app.debug(TAG,
 "Conversation file does not exist!");
 return;
 }

 _currentEntityID = entityConfig.getEntityID();
 this.setTitle(entityConfig.getEntityID());

 ConversationGraph graph =
 _json.fromJson(ConversationGraph.class,
 Gdx.files.internal(fullFilenamePath));
 setConversationGraph(graph);
 }

The loadConversation() method is a utility method that handles loading the
conversation script file (described in the Script support for conversations section in
more depth) and initializing the ConversationGraph object for this dialog window:

 public void setConversationGraph(ConversationGraph graph){
 if(_graph != null) _graph.removeAllObservers();
 this._graph = graph;

 populateConversationDialog(
 _graph.getCurrentConversationID());
 }

 public ConversationGraph getCurrentConversationGraph(){
 return this._graph;
 }

 private void populateConversationDialog(String
 conversationID){
 clearDialog();

Chapter 5

[201]

 Conversation conversation =
 _graph.getConversationByID(conversationID);
 if(conversation == null) return;

 _graph.setCurrentConversation(conversationID);
 _dialogText.setText(conversation.getDialog());
 ArrayList<ConversationChoice> choices =
 _graph.getCurrentChoices();
 if(choices == null) return;
 _listItems.setItems(choices.toArray());
 _listItems.setSelectedIndex(-1);
 }

The populateConversationDialog() method is the primary driver that manages
the business logic for this class. An ID that represents the vertex ID of the
Conversation object to load is passed in. We set this Conversation as the current
conversation in the ConversationGraph data structure. We then set the dialog text
to be displayed in the dialog window from this Conversation object. Next, we set
the ListItem object with all the ConversationChoice objects associated with the
current Conversation class. Finally, we want to make sure no choice is already
selected by default, so we pass in -1 to the selected index of ListItem to indicate
that we do not want that default selection set:

 private void clearDialog(){
 _dialogText.setText("");
 _listItems.clearItems();
 }
}

Every time we load a new conversation or finish an existing one, we want to make
sure to clear the dialog text and all the ConversationChoice items.

Script support for conversations
As mentioned previously in the last section, the loadConversation() method in
the ConversationUI class is a utility method that handles loading a conversation
from a script file. The script file is a representation of the ConversationGraph
object, serialized into JSON format. In your game, as you make more complex
conversations, it is advisable to create a utility executable where the user can
create the Conversation objects in some visual form, connect them with the
ConversationChoice objects, and then serialize them out to a script file to be loaded
by our game.

Time to Breathe Some Life into This Town

[202]

For BludBourne, I created a graph by hand to keep track of the objects and then
created the JSON script file for ConversationGraph making sure to track the
conversation. We also update the EntityConfig class by adding a String property
conversationConfigPath that represents the full file path to the conversation script
file. If the entity does not have a script associated with it, then no conversation dialog
will be shown; otherwise, its configured script file will be loaded and presented in
the ConversationUI dialog window.

The following script file assets\conversations\conversation003.json is
presented here as an example of the form and structure you can use with the
existing implementation:

{
conversations: {
 1: {
 id: 1
 dialog: Hello Traveler. Would you like to see my
 wares?
 }
 2: {
 id: 2
 dialog: Ok
 }
 3: {
 id: 3
 dialog: Ok
 }
}

Here, at the beginning of our script, we define all the Conversation objects, each
representing a vertex of ConversationGraph. We make sure that we define a unique
ID and the dialog text to be displayed when that vertex of the graph is selected:

associatedChoices: {
 1: [
 {
 class: com.packtpub.libgdx.bludbourne.
 dialog.ConversationChoice
 sourceId: 1
 destinationId: 2
 choicePhrase: Yes
 conversationCommandEvent: LOAD_STORE_INVENTORY
 }
 {

Chapter 5

[203]

 class: com.packtpub.libgdx.bludbourne.
 dialog.ConversationChoice
 sourceId: 1
 destinationId: 3
 choicePhrase: No
 conversationCommandEvent: EXIT_CONVERSATION
 }
]
}

In this section, we define all the ConversationChoice objects, each representing
an edge that connects two vertices of ConversationGraph. We define the source
vertex ID and the destination source vertex that completes the edge connection.
We then add the text to be displayed for this particular ConversationChoice, such
as a "NO" or "YES" response choice in a standard conversation. Finally, we add a
field that defines the ConversationCommandEvent. The ConversationUI will emit
a notification to all observers every time a conversation script is loaded, so when
a player clicks on a choice, any observer looking for a particular event based on a
conversation will be able to run its business logic:

currentConversationID: 1
}

This field in the script file is important as it flags which of the Conversation vertices
is the root vertex or the vertex where the conversation will start initially.

Triggering events
In the previous section, one of the fields of the ConversationChoice class is
ConversationCommandEvent. This event facilitates communication between a
particular choice in the conversation with some event in the game. Let's take an
example based on the script file from the last section in this chapter. If a player says
"YES" in order to look at the inventory of the vendor, then a LOAD_STORE_INVENTORY
notification event gets emitted. The PlayerHUD, an observer of ConversationGraph,
will receive the notification and promptly display the StoreInventoryUI to the
player. The EXIT_CONVERSATION event is also received by PlayerHUD, which in turn
will trigger the closing of the ConversationUI dialog window.

Another area where these events can get triggered is when to display the
ConversationUI and figure out how to communicate selections made by the
player when clicking on various NPCs. The ComponentSubject class bubbles up
notifications from the Component objects that are owned by the Entity class.

Time to Breathe Some Life into This Town

[204]

These classes include InputComponent, PhysicsComponent, and
GraphicsComponent. Once the PlayerHUD class implements the ComponentObserver
and registers itself as an observer for the player-based entity object, the PlayerHUD
will begin to receive notifications from the player. For our purposes, this includes
notifications for when the player selects or deselects an NPC.

As we can see, the power of utilizing the observer pattern for communicating
changes and events cannot be overstated, as it decouples the logic from the event
and processes the event itself. This frees us up to make updates and changes without
worrying about how those pieces will be communicated to the rest of the game. The
responsibility will be on the classes that wish to receive the event, and all they need
to do is implement the observer interface in order to get those notifications.

Shop store UI with items and money
transactions
The final point of discussion in this chapter is the StoreInventoryUI class, as shown
the following screenshot (Figure 11):

Figure 11

Chapter 5

[205]

This class allows the player the ability to trade with various NPCs and is a
fundamental feature for any RPG. This class is also a good example of how
events can be triggered from a conversation, as we have discussed in the
previous section, such as when we wish to see the wares of a shopkeeper.

The overall class relationship is represented in the following class diagram
(Figure 12):

Figure 12

Time to Breathe Some Life into This Town

[206]

Again, PlayerHUD acts as a relay between the different UI windows that it owns,
communicating relevant notifications. One such communication is when the player's
money (GP) is updated, an event gets triggered. If the money is updated in the
StoreInventoryUI, the PlayerHUD will communicate that change to the StatusUI
and the player's GP will be updated accordingly, and vice versa. We will also have
observers on the InventorySlot items to keep track of when items are dropped onto
different target slots or removed from source slots. This is how StoreInventoryUI
will manage the trade-in value of the items for sale (which is lower than the market
price) or the market cost of items for the player to buy.

The general layout and widget structure is outlined in the following screenshot
(Figure 13):

Figure 13

Chapter 5

[207]

We will now step through the business logic for the StoreInventoryUI source here:

public class StoreInventoryUI extends Window implements
 InventorySlotObserver, StoreInventorySubject{
 …

Here, the StoreInventoryUI class implements the StoreInventorySubject class so
that the PlayerHUD class can add itself as a StoreInventoryObserver and relay any
changes to the player's total amount of GP to the StatusUI class. StoreInventoryUI
also implements the InventorySlotObserver class so that the notifications of
player-based items being placed in the store inventory to sell and items from the
store being placed in the player's inventory to buy, are captured with the appropriate
trade-in value or buy price, respectively, and are updated in the StoreInventoryUI:

 public StoreInventoryUI(){
 super("Store Inventory", Utility.STATUSUI_SKIN,
 "solidbackground");

 _observers = new Array<StoreInventoryObserver>();
 _json = new Json();

 this.setFillParent(true);

 //create
 _dragAndDrop = new DragAndDrop();
 _inventoryActors = new Array<Actor>();
 _inventorySlotTable = new Table();
 _inventorySlotTable.setName(STORE_INVENTORY);

 _playerInventorySlotTable = new Table();
 _playerInventorySlotTable.setName(PLAYER_INVENTORY);
 _inventorySlotTooltip = new InventorySlotTooltip(
 Utility.STATUSUI_SKIN);

For the StoreInventoryUI, we are going to have two distinct tables, one for the
store-owned items for sale (_inventorySlotTable) and one that represents the
player's inventory (_playerInventorySlotTable):

 _sellButton = new TextButton(SELL, Utility.STATUSUI_SKIN,
 "inventory");
 disableButton(_sellButton, true);

 _sellTotalLabel = new Label(SELL + " : " + _tradeInVal +

Time to Breathe Some Life into This Town

[208]

 GP, Utility.STATUSUI_SKIN);
 _sellTotalLabel.setAlignment(Align.center);

 _buyTotalLabel = new Label(BUY + " : " + _fullValue + GP,
 Utility.STATUSUI_SKIN);
 _buyTotalLabel.setAlignment(Align.center);

 _playerTotalGP = new Label(PLAYER_TOTAL + " : " +
 _playerTotal + GP,
 Utility.STATUSUI_SKIN);

 _buyButton = new TextButton(BUY, Utility.STATUSUI_SKIN,
 "inventory");
 disableButton(_buyButton, true);

 _closeButton = new TextButton("X", Utility.STATUSUI_SKIN);

 _buttons = new Table();
 _buttons.defaults().expand().fill();
 _buttons.add(_sellButton).padLeft(10).padRight(10);
 _buttons.add(_buyButton).padLeft(10).padRight(10);

 _totalLabels = new Table();
 _totalLabels.defaults().expand().fill();
 _totalLabels.add(_sellTotalLabel).padLeft(40);
 _totalLabels.add();
 _totalLabels.add(_buyTotalLabel).padRight(40);

 //layout
 for(int i = 1; i <= _numStoreInventorySlots; i++){
 InventorySlot inventorySlot = new InventorySlot();
 inventorySlot.addListener(
 new InventorySlotTooltipListener(
 _inventorySlotTooltip));

 inventorySlot.addObserver(this);
 inventorySlot.setName(STORE_INVENTORY);

 _dragAndDrop.addTarget(new
 InventorySlotTarget(inventorySlot));

Chapter 5

[209]

 _inventorySlotTable.add(
 inventorySlot).size(_slotWidth, _slotHeight);

 if(i % _lengthSlotRow == 0){
 _inventorySlotTable.row();
 }
 }

 for(int i = 1; i <= InventoryUI._numSlots; i++){
 InventorySlot inventorySlot = new InventorySlot();
 inventorySlot.addListener(
 new InventorySlotTooltipListener(
 _inventorySlotTooltip));

 inventorySlot.addObserver(this);
 inventorySlot.setName(PLAYER_INVENTORY);

 _dragAndDrop.addTarget(new
 InventorySlotTarget(inventorySlot));

 _playerInventorySlotTable.add(
 inventorySlot).size(_slotWidth, _slotHeight);

 if(i % _lengthSlotRow == 0){
 _playerInventorySlotTable.row();
 }
 }

Here, we first initialize the respective inventories, one for the store and one for
the player. There are two important pieces to keep in mind when initializing these
inventories. The first piece is that we need to make sure that every InventorySlot
registers itself as an observer, so that notifications of the InventoryItem objects
being added and removed from them can be handled by the StoreInventoryUI
class. The second piece is that we need to set the ownership for each of the
InventorySlot slots. This allows us to differentiate between the player-owned
InventoryItem objects being placed on the store-based InventorySlot slots that
will trigger a sale of an item, or the store-owned InventoryItem objects being placed
on the player-based InventorySlot slots that will trigger a purchase of an item:

 _inventoryActors.add(_inventorySlotTooltip);

 this.add();
 this.add(_closeButton);

Time to Breathe Some Life into This Town

[210]

 this.row();

 this.defaults().expand().fill();
 this.add(_inventorySlotTable).pad(10, 10, 10, 10).row();
 this.add(_buttons).row();
 this.add(_totalLabels).row();
 this.add(
 _playerInventorySlotTable).pad(10, 10, 10, 10).row();
 this.add(_playerTotalGP);
 this.pack();

 //Listeners
 _buyButton.addListener(new ClickListener() {

 @Override
 public void clicked(InputEvent event, float x, float y) {
 if(_fullValue > 0 && _playerTotal >= _fullValue) {
 _playerTotal -= _fullValue;
 StoreInventoryUI.this.notify(
 Integer.toString(_playerTotal),
 StoreInventoryEvent.PLAYER_GP_TOTAL_UPDATED);

 _fullValue = 0;
 _buyTotalLabel.setText(BUY + " : " + _fullValue +
 GP);
 checkButtonStates();

 InventoryUI.setInventoryItemNames(
 _playerInventorySlotTable, PLAYER_INVENTORY);

 savePlayerInventory();
 }
 }
 }
);

If the buy button is enabled and the player has clicked on the button, then we follow
the business logic for purchase. We do another check that the player indeed has
enough money for the transaction and then subtract the purchase amount from the
player's total. We will then send out a notification for any observers that the player's
GP amount has changed, and reset the buy button.

Chapter 5

[211]

Finally, we update the ownership of the InventoryItem by setting the name to
PLAYER_INVENTORY and then serialize the player's inventory so that the player's own
inventory can get updated:

_sellButton.addListener(new ClickListener() {
 @Override
 public void clicked(InputEvent event, float x, float y) {
 if(_tradeInVal > 0) {
 _playerTotal += _tradeInVal;
 StoreInventoryUI.this.notify(
 Integer.toString(_playerTotal),
 StoreInventoryEvent.PLAYER_GP_TOTAL_UPDATED);
 _tradeInVal = 0;

 _sellTotalLabel.setText(SELL + " : " + _tradeInVal +
 GP);

 checkButtonStates();

 Array<Cell> cells = _inventorySlotTable.getCells();

 for(int i = 0; i < cells.size; i++){
 InventorySlot inventorySlot =
 (InventorySlot)cells.get(i).getActor();
 if(inventorySlot == null) continue;
 if(inventorySlot.hasItem() &&
 inventorySlot.getTopInventoryItem().getName().
 equalsIgnoreCase(PLAYER_INVENTORY)){
 inventorySlot.clearAllInventoryItems(false);
 }
 }
 savePlayerInventory();
 }
 }
 }
);
}

Time to Breathe Some Life into This Town

[212]

The business logic for the sell button is similar to that of the buy button. If the sell
button is enabled and the player has clicked on the button, then we follow the
business logic for sale. We add the trade-in value amount of the item to the player's
total. We will then send out a notification for any observers that the player's GP
amount has changed, and reset the sell button. Finally, we remove any of the player's
items from the store inventory and then serialize the player's inventory so that the
player's own inventory can get updated:

 public TextButton getCloseButton(){
 return _closeButton;
 }

 public Table getInventorySlotTable() {
 return _inventorySlotTable;
 }

 public Array<Actor> getInventoryActors(){
 return _inventoryActors;
 }

 public void loadPlayerInventory(Array<InventoryItemLocation>
 playerInventoryItems){
 InventoryUI.populateInventory(
 _playerInventorySlotTable, playerInventoryItems,
 _dragAndDrop);
 }

 public void loadStoreInventory(Array<InventoryItemLocation>
 storeInventoryItems){
 InventoryUI.populateInventory(
 _inventorySlotTable, storeInventoryItems,
 _dragAndDrop);
 }

 public void savePlayerInventory(){
 Array<InventoryItemLocation> playerItemsInPlayerInventory =
 InventoryUI.getInventory(_playerInventorySlotTable,
 PLAYER_INVENTORY);
 Array<InventoryItemLocation> playerItemsInStoreInventory =
 InventoryUI.getInventory(_playerInventorySlotTable,
 _inventorySlotTable, PLAYER_INVENTORY);

Chapter 5

[213]

 playerItemsInPlayerInventory.addAll(
 playerItemsInStoreInventory);

 StoreInventoryUI.this.notify(
 _json.toJson(playerItemsInPlayerInventory),
 StoreInventoryEvent.PLAYER_INVENTORY_UPDATED);
 }

The savePlayerInventory() method is important to note, as this method covers
edge cases in the StoreInventoryUI. Specifically, when the player leaves their
items in the store inventory and then exits the store without selling them. The first
step is to capture those items by iterating through the store inventory slots, looking
for items owned by the player. The second step is a little more cumbersome, in that
we don't know where to place these items back into the player's inventory. One
solution is to check for all available slots in the player's inventory (empty cells)
and then iterate over the list of empty cells, placing the items as the empty cells
become available. Finally, after we have finished with combining the current player
InventoryItem objects with the player's items left in the store, we serialize the
items into a JSON string and send a notification out that the player's inventory
has changed:

 public void cleanupStoreInventory(){
 InventoryUI.removeInventoryItems(
 STORE_INVENTORY, _playerInventorySlotTable);
 InventoryUI.removeInventoryItems(
 PLAYER_INVENTORY, _inventorySlotTable);
 }

 @Override
 public void onNotify(InventorySlot slot, SlotEvent event) {
 switch(event)
 {
 case ADDED_ITEM:
 if(slot.getTopInventoryItem().getName(
).equalsIgnoreCase(PLAYER_INVENTORY) &&

 slot.getName().equalsIgnoreCase(
 STORE_INVENTORY)) {

 _tradeInVal += slot.getTopInventoryItem(
).getTradeValue();
 _sellTotalLabel.setText(SELL + " : " +

Time to Breathe Some Life into This Town

[214]

 _tradeInVal + GP);
 }
 if(slot.getTopInventoryItem().getName(
).equalsIgnoreCase(STORE_INVENTORY) &&
 slot.getName().equalsIgnoreCase(
 PLAYER_INVENTORY)) {
 _fullValue += slot.getTopInventoryItem(
).getItemValue();
 _buyTotalLabel.setText(BUY + " : " +
 _fullValue + GP);
 }
 break;
 case REMOVED_ITEM:
 if(slot.getTopInventoryItem().getName(
).equalsIgnoreCase(PLAYER_INVENTORY) &&
 slot.getName().equalsIgnoreCase(
 STORE_INVENTORY)) {
 _tradeInVal -= slot.getTopInventoryItem(
).getTradeValue();
 _sellTotalLabel.setText(SELL + " : " +
 _tradeInVal + GP);
 }
 if(slot.getTopInventoryItem().getName(
).equalsIgnoreCase(STORE_INVENTORY) &&
 slot.getName().equalsIgnoreCase(
 PLAYER_INVENTORY)) {
 _fullValue -= slot.getTopInventoryItem(
).getItemValue();
 _buyTotalLabel.setText(BUY + " : " +
 _fullValue + GP);
 }
 break;
 }  checkButtonStates();
 }

The onNotify() method handles the different events based on how the
InventoryItem objects are dragged and dropped around the StoreInventoryUI.

Chapter 5

[215]

The first event we need to check for is when an item is added. There are two specific
scenarios that we need to cover. The first scenario is when an InventoryItem
moves from the player's inventory to the store's inventory, which would trigger a
sell event so we increment the total trade-in value. The second scenario is when an
InventoryItem moves from the store's inventory to the player's inventory, which
would trigger a buy event, so we increment the total buy price.

The second event we need to check for is when an item is removed. There are two
scenarios to check. The first scenario is when a player-owned InventoryItem is
removed from the store inventory. In this situation, we need to update the trade-
in value by removing the trade-in value of the item from the total sell price. The
second scenario is when a store-owned InventoryItem is removed from the player
inventory. In this situation, we need to update the purchase price by removing the
purchase price of the item from the total buy price:

 public void checkButtonStates(){
 if(_tradeInVal <= 0) {
 disableButton(_sellButton, true);
 }else{
 disableButton(_sellButton, false);
 }

 if(_fullValue <= 0 || _playerTotal < _fullValue) {
 disableButton(_buyButton, true);
 }else{
 disableButton(_buyButton, false);
 }
 }

 private void disableButton(Button button, boolean disable){
 if(disable){
 button.setDisabled(true);
 button.setTouchable(Touchable.disabled);
 }else{
 button.setDisabled(false);
 button.setTouchable(Touchable.enabled);
 }
 }
 public void setPlayerGP(int value){
 _playerTotal = value;
 _playerTotalGP.setText(PLAYER_TOTAL + " : " +
 _playerTotal + GP);
 }

Time to Breathe Some Life into This Town

[216]

The disableButton() deserves a note because the setDisabled() method
for a button widget will only trigger a visual change to the button in a disabled
state, but will not disable the button callbacks themselves. In order to disable the
callbacks as well, you need to call setTouchable() and pass in an enum value
Touchable.disabled.

As we stepped through the code for the store inventory UI, we can see that there
are many edge cases to think of when developing such a feature, such as how we
would handle items that the player left in the store when exiting. The complexity
is compounded by item management across two different inventories and the
support for transactions with these items. The divide and conquer approach when
developing a feature with these complexities includes taking a step back and solving
the smaller pieces first, as we begin to build on the previous features.

First, we outlined the overall design and placed our widgets in their respective
cells in the layout. We then added notifications for when the items were dropped
into the inventory slots. After this, we started to build out the business logic for the
transactions via the sell and buy button listeners. Finally, we added cleanup code for
edge cases when exiting the StoreInventoryUI and serializing the player inventory
out for persistence.

Summary
In this chapter, we learned the fundamentals of a conversation graph,
ConversationGraph, and then implemented one for our game. We also implemented
a store inventory, StoreInventoryUI, which can be used for trade amongst the NPCs.
Finally, we developed a way to trigger events from the conversations themselves.

In the next chapter, we will begin to explore quests for BludBourne, including creating
quests, enabling NPCs to give quests, handling triggers and events for quests, and
giving quest rewards.

[217]

So Many Quests,
So Little Time…

As we begin to flesh out the remaining features of BludBourne, this chapter in
particular will focus on a core staple in most RPGs—the quest system. A quest
system defines the parameters for leveling a player character, with adventures such
as saving a princess or collecting animal carcasses. The quest rewards for completion
typically include gold, experience points, and other items in the game world. In this
chapter, you will learn a data structure used for quests, the dependency graph, and
also a few types of implemented quests to give you reference implementations for
your own game.

In summary, we will cover the following topics in this chapter:

•	 The theory of dependency graphs
•	 The dependency graph implementation
•	 QuestUI
•	 The steps involved in creating a quest

We will start by first describing the theory behind the dependency graph and
explain why this data structure is applicable for quest management. After discussing
the theory, we will then walk through the implementation and further explain the
details in order to hook the quest system up for BludBourne.

So Many Quests, So Little Time…

[218]

The following screenshot (Figure 1) shows the final product implemented in
this chapter:

Figure 1

The theory of dependency graphs
We are going to extend what we learned with the previous chapter when
constructing a conversation graph, and with a few (but significant) changes, create
a quest dependency graph that will store the completion state of its corresponding
tasks. A dependency graph is essentially a directed graph representing
dependencies of several objects with each other. The key difference of this graph
from the conversation graph is that the dependency graph does not contain any
cycles. A graph with circular dependencies would lead to a situation where no valid
evaluation order exists, since none of the vertices can be evaluated first. Without
cycles in a graph, we will end up using a directed acyclic graph (DAG).

Chapter 6

[219]

As explained later, we will make sure that we check for cycles every time we
add a new dependency, and if any of them are found, disregard that particular
dependency.

The following diagram (Figure 2) represents a sample dependency graph with four
total vertices and four total directed edge connections (dependencies):

Figure 2

In Figure 2, we have a set of four vertices, designated as {A0, A1, A2, A3}. You can
think of each vertex as a discrete autonomous task, one that can only be started
once its dependencies have been evaluated and completed. Dependency graphs
are used in all types of applications, such as spreadsheet calculators (to figure out
dependencies between cells for calculations), software installers, and software
project build systems. In Figure 2, A0 cannot be started until A1 and A2 have been
completed. A1 and A2 cannot be completed until A3 is finished. The vertex A3 does
not have any dependencies, and so this will be the first task to be completed. Once
A3 is complete, the A1 and A2 dependencies will have been satisfied, and so A1
and A2 can begin their tasks concurrently since they do not depend on each other.
Finally, once A1 and A2 have both finished their tasks, A0 can begin its task since all
other vertices have been evaluated.

So Many Quests, So Little Time…

[220]

To put this data structure in more concrete terms, the following diagram (Figure 3)
demonstrates the same graph, but with tasks, designated as vertices {A0,A1, A2, A3},
associated with a quest:

Figure 3

So, in Figure 3, based on the evaluation order of dependencies, the first task to be
completed will be task A3, since A3 does not have any dependencies. The player
will roam the countryside looking for the general area where the beast's lair will be
located. Once the player has walked over the area location, A3 will be complete. This
will trigger the next tasks to be started, which in our example would be the tasks
A1 and A2. The player will be able to collect the items for these quests in any order
since neither of them depends on the other. Even if the player gets all the furs and
completes the A1 task, the A0 task will not be unlocked or ready to be evaluated,
since A0 still has a dependency on A2, which has not been completed yet. Once the
player finds all the horns and completes A2, with both A1 and A2 completed, the
final task A0 will be ready to start.

Chapter 6

[221]

The dependency graph implementation
With the fundamentals of the dependency graph covered, we will now take a look
at the high-level class diagram (Figure 4), which describes the new classes and
relationships for implementing the quest system:

Figure 4

The left-half of this class diagram represents the notification propagation via the
observer pattern. For instance, when the player entity selects a quest item or walks
over a designated quest task area, those notifications bubble up to the PlayerHUD,
which is an observer for those ComponentEvent notifications. Depending on the
type of notification trigger, this will get passed to the QuestUI to update the current
quests. This mechanism has been described in more detail in the previous chapters.

From Figure 4, we can see how QuestUI loads QuestGraph, one graph for
each quest. Each QuestGraph is composed of multiple QuestTask and
QuestTaskDependency objects. The QuestTask objects represent the dependency
graph vertices. The QuestTaskDependency objects represent the edge connection
dependencies between vertices.

So Many Quests, So Little Time…

[222]

QuestTask
We will now take a dive into the implementation of this design starting with the two
POJO classes that together form QuestGraph. The following class diagram (Figure 5)
represents the first POJO class, QuestTask:

Figure 5

As stated previously, the QuestTask class represents the vertex of a dependency
graph, a task that needs to be completed in order to continue or finish a quest. Each
QuestTask has a unique ID (id) which clearly differentiates it from the other quest
tasks in the graph. The taskPhrase string type object represents the text displayed
in the quest log that clearly identifies the objective of that particular task, such as
"Collect 5 horns from the beast's lair". We also have a field for checking whether the
task is complete and also for setting the task complete.

The QuestType field identifies the general purpose of the task. The reference
implementation for this chapter currently supports the FETCH, RETURN, and DISCOVER
QuestType fields. The FETCH task is the type of task where the objective is to collect
some number of a particular item. The RETURN tasks have an objective to go back to
the quest giver in order to finish a quest or receive some item. The DISCOVER tasks
have an objective to go find a particular area in some map.

Chapter 6

[223]

Other QuestType types defined are KILL (objective to slay any number of a particular
beast), DELIVERY (bring some item to someone else), GUARD (defend some outpost
usually with a wave of enemies), and ESCORT (protect some NPC going to some other
location); this could easily be extended later.

The taskProperties member variable is an ObjectMap that maintains all the
QuestTaskPropertyType properties associated with any particular task. Currently,
the following QuestTaskPropertyType values are used: IS_TASK_COMPLETE,
TARGET_TYPE, TARGET_NUM, and TARGET_LOCATION. We also have methods for
getting and setting any particular property value for a given task.

QuestTaskDependency
The next class diagram (Figure 6) represents the other POJO class that the
QuestGraph class contains:

Figure 6

The QuestTaskDependency class plays a vital role in maintaining the evaluation
order of the QuestGraph by establishing dependencies between different QuestTask
objects. The simplicity of this class is also important as the only fields that need
defining are the source ID of the QuestTask and the destination ID of QuestTask
that the source depends on.

QuestGraph
The QuestGraph class is the heart of the quest system, tying together QuestTask and
QuestTaskDependency and creating a single point of access for all related queries for
the data structure.

So Many Quests, So Little Time…

[224]

The following snippet of source for QuestGraph will be explained in detail here:

…
public class QuestGraph {
 private static final String TAG =
 QuestGraph.class.getSimpleName();

 private Hashtable<String, QuestTask> questTasks;
 private Hashtable<String, ArrayList<QuestTaskDependency>>
 questTaskDependencies;
 private String questTitle;
 private String questID;
 private boolean isQuestComplete;
 private int goldReward;
 private int xpReward;

First, we will describe the member variables that get serialized in the JSON format
when creating a quest. The questTitle string type variable represents the text
displayed in the quest log for the name of the particular quest (on the left pane).
The questID represents the unique identifier for this particular quest, which can be
used as a reference value in order to map quest-related positions on a TMX map to
their item spawn placement for the quest. The isQuestComplete variable represents
a simple boolean value that gets set to true once all the tasks are completed.
The goldReward and xpReward represent two values for quest rewards once this
particular quest is finished.

The questTasks Hashtable contains all the tasks that need to be completed in order
to finish the particular quest, with the QuestTask unique ID used as a key value. The
questTaskDependencies Hashtable has a container of the QuestTaskDependency
objects that represent all the dependencies that a particular QuestTask needs to
satisfy in order to be considered complete. The questTaskDependencies Hashtable
uses a QuestTask unique ID as a key value, which will also be the sourceID for each
of its dependencies:

 ...
 public void setTasks(Hashtable<String, QuestTask> questTasks) {
 if(questTasks.size() < 0){
 throw new IllegalArgumentException(
 "Can't have a negative amount of conversations");
 }

 this.questTasks = questTasks;
 this.questTaskDependencies = new Hashtable<

Chapter 6

[225]

 String, ArrayList<QuestTaskDependency>>
 (questTasks.size());

 for(QuestTask questTask: questTasks.values()){
 questTaskDependencies.put(questTask.getId(), new
 ArrayList<QuestTaskDependency>());
 }
 }

The setTasks() method is used in the QuestGraphTest class under tests/ in
order to initialize the QuestGraph data structure. The QuestGraphTest shows how
to programmatically create the QuestTask and QuestTaskDependency objects that
compose a QuestGraph:

 public ArrayList<QuestTask> getAllQuestTasks(){
 Enumeration<QuestTask> enumeration =
 questTasks.elements();
 return Collections.list(enumeration);
 }

The getAllQuestTasks() method is a simple getter that returns a container of all
the QuestTask objects associated with the current QuestGraph object:

 public void clear(){
 questTasks.clear();
 questTaskDependencies.clear();
 }

The clear() method simply removes any of the QuestTask and
QuestTaskDependency objects associated with the current QuestGraph:

 public boolean isValid(String taskID){
 QuestTask questTask = questTasks.get(taskID);
 if(questTask == null) return false;
 return true;
 }

The isValid() method is a safety check mechanism to make sure a particular
unique ID actually exists as a valid QuestTask in the current QuestGraph:

 public QuestTask getQuestTaskByID(String id){
 if(!isValid(id)){
 System.out.println("Id " + id + " is not valid!");
 return null;
 }
 return questTasks.get(id);
 }

So Many Quests, So Little Time…

[226]

The getQuestTaskByID() will first check to make sure that the ID is valid, and if it
is, return the QuestTask object associated with the ID:

 public boolean doesCycleExist(
 QuestTaskDependency questTaskDep){
 Set<String> keys = questTasks.keySet();
 for(String id: keys){
 if(doesQuestTaskHaveDependencies(id) &&
 questTaskDep.getDestinationId().equalsIgnoreCase(
 id)){
 System.out.println("ID: " + id + " destID: " +
 questTaskDep.getDestinationId());
 return true;
 }
 }
 return false;
 }

The doesCycleExist() method will check whether the QuestTaskDependency
object passed in creates a cycle in the current graph. In order to determine
this, we iterate over all the current QuestTask IDs, checking all the QuestTask
objects for dependencies, and if they do have dependencies, check whether the
QuestTaskDependency destination ID passed in matches. If we match a destination
ID with a current QuestTask ID, then we know we have a cycle, and because of this
back reference, we will return true. This is an important method as the dependency
graph will fail the evaluation order if we do not catch circular dependencies early:

 public void addDependency(
 QuestTaskDependency questTaskDependency){
 ArrayList<QuestTaskDependency> list = questTaskDependencies.
 get(questTaskDependency.getSourceId());

 if(list == null) return;

 //Will not add if creates cycles
 if(doesCycleExist(questTaskDependency)){
 System.out.println("Cycle exists! Not adding");
 return;
 }

 list.add(questTaskDependency);
 }

Chapter 6

[227]

The addDependency() method is used to add the QuestTaskDependency object to
the Hashtable of QuestTaskDependency objects associated with the QuestGraph.
The important point here is that we check the object passed in to see if a cycle exists.
If a cycle exists, then we will ignore the QuestTaskDependency object:

 public boolean doesQuestTaskHaveDependencies(String id){
 QuestTask task = getQuestTaskByID(id);
 if(task == null) return false;

 ArrayList<QuestTaskDependency> list =
 questTaskDependencies.get(id);

 if(list.isEmpty() || list.size() == 0){
 return false;
 }else{
 return true;
 }
 }

The doesQuestTaskHaveDependencies() method checks whether the QuestTask is
associated with any dependencies:

 public boolean isQuestTaskAvailable(String id){
 QuestTask task = getQuestTaskByID(id);
 if(task == null) return false;
 ArrayList<QuestTaskDependency> list =
 questTaskDependencies.get(id);

 for(QuestTaskDependency dep: list){
 QuestTask depTask = getQuestTaskByID(
 dep.getDestinationId());
 if(depTask == null || depTask.isTaskComplete()){
 continue;
 }

 if(dep.getSourceId().equalsIgnoreCase(id)){
 return false;
 }
 }
 return true;
 }

So Many Quests, So Little Time…

[228]

The isQuestTaskAvailable() method will look at all the QuestTaskDependency
objects associated with a specific QuestTask and determine if all of the dependencies
are satisfied (completed dependency tasks):

 public void setQuestTaskComplete(String id){
 QuestTask task = getQuestTaskByID(id);
 if(task == null) return;
 task.setTaskComplete();
 }

The setQuestTaskComplete() method is a convenience method to set a particular
QuestTask as completed:

 public void update(MapManager mapMgr){
 ArrayList<QuestTask> allQuestTasks = getAllQuestTasks();

 for(QuestTask questTask: allQuestTasks) {

 if(questTask.isTaskComplete()) continue;

 //We first want to make sure the task is available and
 //is relevant to current location
 if (!isQuestTaskAvailable(questTask.getId()))
 continue;

 String taskLocation = questTask.getPropertyValue(
 QuestTask.QuestTaskPropertyType.
 TARGET_LOCATION.toString());

 if (taskLocation == null ||
 taskLocation.isEmpty() ||
 !taskLocation.equalsIgnoreCase(
 mapMgr.getCurrentMapType().toString()))
 continue;

 switch (questTask.getQuestType()) {
 case FETCH:
 String taskConfig = questTask.getPropertyValue(
 QuestTask.QuestTaskPropertyType.
 TARGET_TYPE.toString());
 if(taskConfig == null || taskConfig.isEmpty())
 break;

Chapter 6

[229]

 EntityConfig config = Entity.getEntityConfig(
 taskConfig);

 Array<Vector2> questItemPositions =
 ProfileManager.getInstance().getProperty(
 config.getEntityID(), Array.class);

 if(questItemPositions == null) break;

 //Case where all the items have been picked up
 if(questItemPositions.size == 0){
 questTask.setTaskComplete();
 Gdx.app.debug(TAG, "TASK : " +
 questTask.getId() +
 " is complete of Quest:" +
 questID);
 Gdx.app.debug(TAG, "INFO : " + QuestTask.
 QuestTaskPropertyType.
 TARGET_TYPE.toString());
 }
 break;
 case KILL:
 break;
 case DELIVERY:
 break;
 case GUARD:
 break;
 case ESCORT:
 break;
 case RETURN:
 break;
 case DISCOVER:
 break;
 }
 }
 }

The update() method is called when a particular event related to quests is triggered,
such as accepting a quest. We look at all the QuestTask objects, filtering out those
that are completed or not available (meaning they have dependencies that have not
been completed yet), and check whether a particular QuestTask is associated with
the current area. If all of these conditions have been satisfied, then we can check the
QuestTask objects for specific criteria.

So Many Quests, So Little Time…

[230]

Currently, for FETCH type quests, we check to see whether all the items
have been picked up. If all the items have been collected, then we can mark
the quest as completed:

 public boolean updateQuestForReturn(){
 ArrayList<QuestTask> tasks = getAllQuestTasks();
 QuestTask readyTask = null;

 //First, see if all tasks are available, meaning no
 //blocking dependencies
 for(QuestTask task : tasks){
 if(!isQuestTaskAvailable(task.getId())){
 return false;
 }

 if(!task.isTaskComplete()){
 if(task.getQuestType().equals(
 QuestTask.QuestType.RETURN)){
 readyTask = task;
 }else{
 return false;
 }
 }
 }
 if(readyTask == null) return false;

 readyTask.setTaskComplete();
 return true;
 }

The updateQuestForReturn() is one additional sanity check that is
made when returning a quest to the quest giver. Here, we check to make sure
that all the QuestTask objects have been completed, except for the RETURN type
QuestTask. If all the other tasks have been completed, and the only task left is
a RETURN task, then we set the final QuestTask as complete and return, as the
QuestGraph graph is ready for completion:

 public void init(MapManager mapMgr){
 ArrayList<QuestTask> allQuestTasks = getAllQuestTasks();

 for(QuestTask questTask: allQuestTasks) {

 if(questTask.isTaskComplete()) continue;

Chapter 6

[231]

 //We first want to make sure the task is available and
 //is relevant to current location
 if (!isQuestTaskAvailable(questTask.getId()))
 continue;

 String taskLocation = questTask.getPropertyValue(
 QuestTask.QuestTaskPropertyType.
 TARGET_LOCATION.toString());

 if (taskLocation == null ||
 taskLocation.isEmpty() ||
 !taskLocation.equalsIgnoreCase(
 mapMgr.getCurrentMapType().toString()))
 continue;

 switch (questTask.getQuestType()) {
 case FETCH:
 Array<Entity> questEntities = new
 Array<Entity>();
 Array<Vector2> positions = mapMgr.
 getQuestItemSpawnPositions(
 questID, questTask.getId());

 String taskConfig = questTask.
 getPropertyValue(
 QuestTask.QuestTaskPropertyType.
 TARGET_TYPE.toString());
 if(taskConfig == null || taskConfig.isEmpty())
 break;

 EntityConfig config = Entity.getEntityConfig(
 taskConfig);

 Array<Vector2> questItemPositions =
 ProfileManager.getInstance().getProperty(
 config.getEntityID(), Array.class);

 if(questItemPositions == null){
 questItemPositions = new Array<Vector2>();

 for(Vector2 position: positions){
 questItemPositions.add(position);

So Many Quests, So Little Time…

[232]

 Entity entity = Map.initEntity(
 config, position);
 entity.getEntityConfig().
 setCurrentQuestID(questID);
 questEntities.add(entity);
 }
 }else{
 for(Vector2 questItemPosition:
 questItemPositions){

 Entity entity = Map.initEntity(
 config, questItemPosition);
 entity.getEntityConfig().
 setCurrentQuestID(questID);
 questEntities.add(entity);
 }
 }

 mapMgr.addMapQuestEntities(questEntities);
 ProfileManager.getInstance().
 setProperty(config.getEntityID(),
 questItemPositions);
 break;
 case KILL:
 break;
 case DELIVERY:
 break;
 case GUARD:
 break;
 case ESCORT:
 break;
 case RETURN:
 break;
 case DISCOVER:
 break;
 }
 }
 }

Chapter 6

[233]

 public String toString(){
 return questTitle;
 }

 public String toJson(){
 Json json = new Json();
 return json.prettyPrint(this);
 }

}

The init() method is called when a quest is initially accepted and when the portal
system is activated with a new map location loaded. Every time we leave a particular
map, such as TOWN, we want to clear all items and events associated with the tasks
there. So, when loading a new map location, we want to check and load any quest
tasks specific to that location. Similar to the update() method, and as previously
stated, we look at all the QuestTask objects, filtering out those that are completed or
not available (meaning they have dependencies that have not been completed yet),
and check whether a particular QuestTask is associated with the current area. If all
of these conditions have been satisfied, then we can check the QuestTask objects for
specific criteria.

For instance, for the FETCH type quests, this is where we will take map spawn
positions that match the current QuestTask, use these positions as the starting
positions for the quest items, initialize the items, and then add them to the current
map location.

QuestUI
We need some way to communicate to the player what quests they have accepted so
they know what to finish and to whom to return the quest.

The QuestUI is composed of two primary panes. The left ScrollPane represents
all the quests the player currently has accepted or finished, where the QuestGraph
(each one representing a separate quest) is stored in a List. The right ScrollPane
represents all the tasks associated with a selected quest, where the QuestTask is also
stored in a List.

So Many Quests, So Little Time…

[234]

QuestUI can easily be extended with additional features that fit your specifications.
We will discuss a very basic quest log, QuestUI, starting with the following diagram
(Figure 7), which outlines the components of the quest log:

Figure 7

The following source snippet of QuestUI will outline some important functionality
that you may want to add to your own implementation:

package com.packtpub.libgdx.bludbourne.UI;
…
public class QuestUI extends Window {
 private static final String TAG =
 QuestUI.class.getSimpleName();

 public static final String RETURN_QUEST =
 "conversations/return_quest.json";
 public static final String FINISHED_QUEST =
 "conversations/quest_finished.json";
 private List _listQuests;
 private List _listTasks;
 private Json _json;
 private Array<QuestGraph> _quests;
 private Label _questLabel;
 private Label _tasksLabel;

Chapter 6

[235]

 public QuestUI() {
 super("Quest Log", Utility.STATUSUI_SKIN,
 "solidbackground");

 _json = new Json();
 _quests = new Array<QuestGraph>();

 //create
 _questLabel = new Label("Quests:", Utility.STATUSUI_SKIN);
 _tasksLabel = new Label("Tasks:", Utility.STATUSUI_SKIN);

 _listQuests = new List<QuestGraph>(Utility.STATUSUI_SKIN);

 ScrollPane scrollPane = new ScrollPane(
 _listQuests, Utility.STATUSUI_SKIN, "inventoryPane");
 scrollPane.setOverscroll(false, false);
 scrollPane.setFadeScrollBars(false);
 scrollPane.setForceScroll(true, false);

Here, we set up the left ScrollPane to store all the quests (the QuestGraph objects)
the player currently has accepted:

 _listTasks = new List<QuestTask>(Utility.STATUSUI_SKIN);

 ScrollPane scrollPaneTasks = new ScrollPane(
 _listTasks, Utility.STATUSUI_SKIN, "inventoryPane");
 scrollPaneTasks.setOverscroll(false, false);
 scrollPaneTasks.setFadeScrollBars(false);
 scrollPaneTasks.setForceScroll(true, false);

Here, we set up the right ScrollPane to store all the tasks associated with a quest
(the QuestTask objects) that the player must complete for a given quest:

 //layout
 this.add(_questLabel).align(Align.left);
 this.add(_tasksLabel).align(Align.left);
 this.row();
 this.defaults().expand().fill();
 this.add(scrollPane).padRight(15);
 this.add(scrollPaneTasks).padLeft(5);

 this.pack();

So Many Quests, So Little Time…

[236]

 //Listeners
 _listQuests.addListener(new ClickListener() {

@Override
public void clicked(InputEvent event, float x, float y) {
 QuestGraph quest = (QuestGraph) _listQuests.getSelected();

 if (quest == null) return;
 populateQuestTaskDialog(quest);
 }
 }
);
}

This listener will be triggered when the player selects a quest from the left
ScrollPane widget of the quest log. We will populate the right pane with all the
QuestTask objects associated with QuestGraph that the player has selected:

 public void questTaskComplete(String questID,
 String questTaskID){
 for(QuestGraph questGraph: _quests){
 if(questGraph.getQuestID().equalsIgnoreCase
 (questID)){
 if(questGraph.isQuestTaskAvailable(questTaskID)){
 questGraph.setQuestTaskComplete(questTaskID);
 }else{
 return;
 }
 }
 }
 }

The questTaskComplete() is a convenience method for certain triggers. In the
current implementation, this method is called when the player has discovered
a new area. The discovery of a new area triggers a ComponentEvent (QUEST_
LOCATION_DISCOVERED) when the player walks over the designated area in the
map. The QUEST_LOCATION_DISCOVERED event contains both the QuestGraph ID
and the QuestTask ID, and these values are passed into questTaskComplete().
If the QuestTask associated with the ID is available (meaning all dependencies are
satisfied), then the QuestTask object is set to complete:

 public QuestGraph loadQuest(String questConfigPath){
 if(questConfigPath.isEmpty() ||

Chapter 6

[237]

 !Gdx.files.internal(questConfigPath).exists()){
 Gdx.app.debug(TAG, "Quest file does not exist!");
 return null;
 }

 QuestGraph graph = _json.fromJson(QuestGraph.class,
 Gdx.files.internal(questConfigPath));
 if(doesQuestExist(graph.getQuestID())){
 return null;
 }

 clearDialog();
 _quests.add(graph);
 updateQuestItemList();
 return graph;
 }

The loadQuest() method is a utility method that will load a QuestGraph
(in JSON serialized format) from disk based on the file path passed into the
method. The QuestGraph is then added to the Hashtable and the QuestUI is
updated accordingly:

 public boolean isQuestReadyForReturn(String questID){
 if(questID.isEmpty()){
 Gdx.app.debug(TAG, "Quest ID not valid");
 return false;
 }

 if(!doesQuestExist(questID)) return false;

 QuestGraph graph = getQuestByID(questID);
 if(graph == null) return false;

 if(graph.updateQuestForReturn()){
 graph.setQuestComplete(true);
 }else{
 return false;
 }
 return true;
 }

So Many Quests, So Little Time…

[238]

The isQuestReadyForReturn() method is specific to when the player is returning
a quest to a quest giver. Here, we check to make sure the QuestGraph exists, is
valid, and verify that the final QuestTask is in fact a RETURN type task. Once these
conditions are met, we set the entire QuestGraph to complete:

 public QuestGraph getQuestByID(String questGraphID){
 for(QuestGraph questGraph: _quests){
 if(questGraph.getQuestID().equalsIgnoreCase(
 questGraphID)){
 return questGraph;
 }
 }
 return null;
 }

The getQuestByID() method is a convenience method that returns the QuestGraph
associated with the specific ID:

 public boolean doesQuestExist(String questGraphID){
 for(QuestGraph questGraph: _quests){
 if(questGraph.getQuestID().equalsIgnoreCase(
 questGraphID)){
 return true;
 }
 }
 return false;
 }

The doesQuestExist() is a check used to make sure the current QuestGraph ID is in
fact valid and is part of our quest log:

 public Array<QuestGraph> getQuests() {
 return _quests;
 }

 public void setQuests(Array<QuestGraph> quests) {
 this._quests = quests;
 updateQuestItemList();
 }

 public void updateQuestItemList(){
 clearDialog();

Chapter 6

[239]

 _listQuests.setItems(_quests);
 _listQuests.setSelectedIndex(-1);
 }

 private void clearDialog(){
 _listQuests.clearItems();
 }

The updateQuestItemList() method is called whenever changes are made, such
as adding an additional quest to the quest log. Here, we clear the current dialog and
then add the updated container for the QuestGraph object:

 private void populateQuestTaskDialog(QuestGraph graph){
 _listTasks.clearItems();

 ArrayList<QuestTask> tasks = graph.getAllQuestTasks();
 if(tasks == null) return;

 _listTasks.setItems(tasks.toArray());
 _listTasks.setSelectedIndex(-1);
 }

The populateQuestTaskDialog() method is called whenever a player has selected
a new QuestGraph object from the left pane List items. This will clear the current
QuestTask objects in the right pane and populate the List with the QuestTask
objects associated with the currently selected QuestGraph:

 public void initQuests(MapManager mapMgr){
 mapMgr.clearAllMapQuestEntities();

 //populate items if quests have them
 for(QuestGraph quest : _quests){
 if(!quest.isQuestComplete()){
 quest.init(mapMgr);
 }
 }
 ProfileManager.getInstance().setProperty(
 "playerQuests", _quests);
 }

So Many Quests, So Little Time…

[240]

The initQuests() method is called when specific events happen, such as accepting
a quest, changing map locations, or discovering a location. This basically resets all
the previous quest items and reinitializes all of them, including the new quest items:

 public void updateQuests(MapManager mapMgr){
 for(QuestGraph quest : _quests){
 if(!quest.isQuestComplete()){
 quest.update(mapMgr);
 }
 }
 ProfileManager.getInstance().setProperty(
 "playerQuests", _quests);
 }
}

The updateQuests() method is a more lightweight method than init(),
basically used to check up on the status of the QuestTask items. For instance,
updateQuests() is called whenever the player picks up a quest item and adds it to
their inventory. This method is called so that the current map removes the quest item
from the field of play.

The steps involved in creating a quest
This section will briefly review the steps involved in creating a quest using this
quest system implementation. We will discuss how to create the conversation that
initiates the quest, the quest script that defines the parameters set in the quest, create
the quest items for both the map and player's inventory, and finally return the quest
once completed.

First, we should identify who will be the quest giver for a particular quest and then
create their conversation graph to signify to the player that they are being asked to
complete a quest.

Chapter 6

[241]

The following screenshot (Figure 8) is an in-game screenshot of the conversation
created from the assets/conversations/conversation006.json file:

Figure 8

Second, we need to draw out (preferably create a quest builder application) the quest
tasks and their associated dependencies and create a serialized JSON version of the
QuestGraph. This following quest script is a simple FETCH quest and can be found in
the assets/quests/quest003.json file:

{
questTitle : "Give Me My Baby Back!"
questID : 3
goldReward : 20
xpReward : 20

So Many Quests, So Little Time…

[242]

isQuestComplete : FALSE
questTasks: {
 2: {
 taskProperties: {
 IS_TASK_COMPLETE: {
 class: java.lang.String
 value: "false"
 }
 TARGET_TYPE: {
 class: java.lang.String
 value: "scripts/quest003_task002.json"
 }
 TARGET_NUM: {
 class: java.lang.String
 value: "1"
 }
 TARGET_LOCATION: {
 class: java.lang.String
 value: "TOWN"
 }

 }
 id: 2
 taskPhrase: Please find my missing baby!
 questType : FETCH
 }
 1: {
 taskProperties: {
 IS_TASK_COMPLETE: {
 class: java.lang.String
 value: "false"
 }
 TARGET_TYPE: {
 class: java.lang.String
 value: "TOWN_FOLK2"
 }
 TARGET_LOCATION: {
 class: java.lang.String
 value: "TOWN"
 }
 }
 id: 1
 taskPhrase: Give me my baby!
 questType : RETURN
 }
}
questTaskDependencies: {
 1: [
 {

Chapter 6

[243]

 class: com.packtpub.libgdx.bludbourne.
 quest.QuestTaskDependency
 sourceId: 1
 destinationId: 2
 }
]
 2: []
}
}

One interesting feature of the current project is that we currently support the Entity
Component System for our player character and NPCs. When I was originally
creating the quest system, I was curious about using the ECS for quest items that
display on the map as well. I created an EntityConfig JSON script to define the
quest item, and the item showed up on the map with all the selection and popup
dialog features that I needed. This is another example of the power of using the ECS
model when developing a video game.

In the previous quest003.json script file, the TARGET_TYPE property for the quest
item is defined as scripts/quest003_task002.json. This is the EntityConfig
script for the quest item mentioned earlier, and is defined as follows:

{
entityID : QUEST003_TASK002
state : IMMOBILE
direction : DOWN
conversationConfigPath : "conversations/conversation005.json"
questConfigPath : ""
currentQuestID : ""
itemTypeID: BABY001
inventory : [
]
animationConfig: [
 {
 frameDuration: 1.0
 animationType: IMMOBILE
 texturePaths: [
 sprites/characters/Player0.png
 sprites/characters/Player1.png
]
 gridPoints: [
 {
 x: 1
 y: 1
 }
 {

So Many Quests, So Little Time…

[244]

 x: 1
 y: 1
 }
]
 }
]
}

Another benefit of being able to use EntityConfig is that I can easily add animation
for the quest item on the map screen, as demonstrated in the quest003_task002.json
file. The other interesting item of note is that I was able to use ConversationGraph
with a special ConversationCommandEvent called ADD_ENTITY_TO_INVENTORY, to
trigger the event to take the item on the map and add it to the player's inventory. The
following screenshot (Figure 9) is an in-game screenshot that shows not only the quest
item (defined as Entity), but also the item pickup conversation:

Figure 9

Chapter 6

[245]

Third, we need to hook the conversation from the first step and the quest itself
defined in the second step with the quest giver. We need to update the associated
properties in the EntityConfig script file for the NPC that will be the quest giver.
The following is a snippet with the changes from the assets/scripts/town_folk.
json file:

{
 entityID : TOWN_FOLK2
 …
 conversationConfigPath : "conversations/conversation006.json"
 questConfigPath : "quests/quest003.json"
 …
}

Fourth, we need to create the positions on the game map location where the items
will spawn. The following instructions will be specific to the setup using Tiled:

1.	 We start by creating an object layer named MAP_QUEST_ITEM_SPAWN_LAYER.
2.	 We then place a rectangle object in a position where you want the item to

spawn.
3.	 After setting the position, we need to set the name of the object to the

QuestGraph unique ID, which in our case would be 3.
4.	 You will need to create a custom property named taskID with the value that

represents the QuestTask unique ID, which in our case would be 2.

So Many Quests, So Little Time…

[246]

The following screenshot (Figure 10) contains a portion of map area in Tiled with the
object layer visible:

Figure 10

Fifth, for items that we pick up for the FETCH quests, we will need a version that is
compatible with InventoryItem objects. This will require a few small updates:

1.	 Update the ItemTypeID enum in src/com/packtpub/libgdx/bludbourne/
InventoryItem.java with the identifier for the quest item, which in our case
would be BABY001.

2.	 Update the script for inventory properties, assets/scripts/inventory_
items.json, which in our case would be as follows:
{
 itemAttributes: 4
 itemUseType: 2048
 itemTypeID: BABY001

Chapter 6

[247]

 itemShortDescription: Quest Item Baby
 itemValue: -1
},

3.	 Finally, add an image of the quest item to the item texture atlas, core/
assets/skins/items.atlas, by creating the image with the ItemTypeID as
BABY001 and using the libgdx-texturepacker-gui tool (version 3.2.0) to update
the atlas files.

The following in-game screenshot (Figure 11) shows how the quest item would look
once configured as an appropriate InventoryItem:

Figure 11

So Many Quests, So Little Time…

[248]

As we can see in the preceding screenshot, the quest item or, in our case, the poor
woman's baby is safely stowed away under the protection of the current caretaker, the
player, until safely returned to his mother. When returning to the baby's mother, the
quest giver will ask a simple question of whether you have finished the quest or not.
Once the items are verified as complete, the selection will progress to the next step.
This conversation is already configured for quests, but could be easily modified if your
requirements change, as shown in the following in-game screenshot (Figure 12):

Figure 12

Chapter 6

[249]

Once you have successfully given the baby back to his mother, she will give the
player the quest rewards, which include gold and experience. The GP and XP
amounts will increase with a visual indication on the XP bar in the StatusUI. All of
these are also persisted in the save game profile. The quest giver will also be forever
grateful for your efforts, as shown in the following screenshot (Figure 13):

Figure 13

We reviewed the five-step procedure for creating a quest with the current quest
system. First, we developed a conversation to start a quest. Second, we wrote a script
that defines the parameters set for the quest. Third, we created the quest items for
both the map players' inventory. Fourth, for fetch quests, we needed to make sure
to create positions for the quest items on the map. Fifth and finally, we generated
a mechanism for the player to return the quest once finished. This gives us a nice
overview of the steps involved in creating quests and sets up a framework for
creating other types of quests.

So Many Quests, So Little Time…

[250]

Summary
In this chapter, we learned the theory of dependency graphs and how they apply to a
quest system for an RPG. We then quickly moved into the practical implementation
of a dependency graph. First, we started with an overview of the new classes
involved and then looking into the QuestGraph in more detail. We then went
through an explanation of a very basic quest log, QuestUI, to help the player better
manage their quest experiences. Finally, we walked through the steps involved
when creating a quest for the current source so that we can better handle the content
creation from the start.

In the next chapter, we will get our hands dirty with battle mechanics and finally
start fighting some monsters to help free the people from their evil grasp.

[251]

Time to Show These
Monsters Who's the Boss

A core component of any RPG is a battle system in which a player's character fights
an enemy (or enemies) in hostile territory for the purpose of gaining experience
and gold and completing quests. This chapter will cover the topics involved in
creating this system, starting with the look and feel of the battle system as it relates
to BludBourne. Our retro look and feel is inspired by elements of Dragon Warrior with
a simple, but effective UI design. Other topics covered include handling leveling for
the player as they progress, updating status during a battle, creating randomized
monsters, and creating a flexible script for adding monsters in specific battle zones.

In summary, we will cover the following topics in this chapter:

•	 A battle system with enemy NPC creation and battle mechanics
•	 A battle UI used for encounters with monsters
•	 HUD updates tied with state changes in an environment such as damage

(health bar, magic bar, and experience bar)
•	 Consuming items from the inventory
•	 The leveling system
•	 The game over screen

Time to Show These Monsters Who's the Boss

[252]

The battle system implementation
There are many moving parts in implementing a battle system for an RPG, but
we will walk through the implementation step by step, starting with a high-level
overview of the relationships between the new classes for this chapter and delving
into specific details when warranted.

We will start with the following screenshot (Figure 1), which represents the battle
screen when a player encounters a monster in BludBourne:

Figure 1

Chapter 7

[253]

The classes that make this interaction from Figure 1 happen are outlined in this
chapter, taking you step by step in its implementation. There are some extra features,
such as consuming health potions, which are discussed in further detail as well.
The following class diagram (Figure 2) represents the relationships between the new
classes for the implementation of our battle system:

Figure 2

Time to Show These Monsters Who's the Boss

[254]

The grey-colored classes represent classes that we have already discussed in the
previous chapters, and are added to fully describe the relationships with the new
classes created specifically for the battle system. The first class that we will discuss
is BattleState, the primary driver for the logic involved during a player's battle
with a monster. The BattleUI class, shown previously in Figure 1, contains one
BattleState object to handle all the business logic such as calculating damage,
calculating the chance of running away, and sending notifications of changes to the
player's status. The BattleState uses the MonsterFactory to create a monster for
a particular battle, either with a specific reference to a MonsterEntityType, or to
return a random monster based on the particular MonsterZone (explained later).
Finally, BattleState also implements an observer pattern with BattleSubject
and BattleObserver so that the relevant BattleEvent notifications get propagated
to the correct classes. One note is that the BattleState class also implements the
InventoryObserver, which is another observer pattern created for the battle
system in order to get the currently equipped values for the attack and defense
points. This is important for this implementation, since a player can equip and
unequip items even during battle.

We will then discuss the AnimatedImage class that extends the LibGDX core class,
Image, which allows an actor to render animations when added to a UI layout.

We will also talk about how the StatusUI determines the level changes for the
player as they gain experience by using the LevelTable class as a reference for
certain attributes of each of the levels.

Finally, we will discuss the GameOverScreen that will be called when our player falls
in battle and also discuss how it connects with the LoadGameScreen.

BattleState
We will first look at the primary business logic that maintains the state and
calculations involved in determining the outcome of a particular player's battle with
an enemy. The following code snippet represents the BattleState class, which can
be found at core\src\com\packtpub\libgdx\bludbourne\battle\BattleState.
java:

package com.packtpub.libgdx.bludbourne.battle;

import com.badlogic.gdx.math.MathUtils;
import com.packtpub.libgdx.bludbourne.Entity;
import com.packtpub.libgdx.bludbourne.EntityConfig;
import com.packtpub.libgdx.bludbourne.UI.InventoryObserver;

Chapter 7

[255]

import com.packtpub.libgdx.bludbourne.profile.ProfileManager;

public class BattleState extends BattleSubject implements
 InventoryObserver {

We need a way to communicate changes that occur during a battle turn, such as loss
of HP or MP, a finished turn, or an escape attempt. We will use an observer pattern,
consisting of BattleSubject and BattleObserver, to send the relevant notifications
during a battle session. Here, BattleState extends from the BattleSubject base
class in order to create the mechanism to send notifications to the relevant classes.

BattleSubject
The following (Figure 3) is a class diagram of BattleSubject:

Figure 3

The observer pattern has been explained at length in the previous chapters, but the
essence is that, whenever the BattleState class wants to communicate changes in
state information to other classes, a simple notify() method will be called with the
appropriate information.

BattleObserver
The complement class to BattleSubject is represented by the following class
diagram (Figure 4):

Figure 4

Time to Show These Monsters Who's the Boss

[256]

The BattleObserver is simply an interface that will be implemented by the relevant
classes that wish to receive updates from the BattleSubject or the BattleState
class in our case. The classes that will use the state change information from
BattleObserver, for this chapter, are BattleUI and PlayerHUD. BattleUI will use
the information to make damage indications to the player and also disable or enable
buttons based on the current turn (for instance, once a player attacks, the attack
button will be disabled until the opponent finishes their turn, so the player can't
keep using the attack button). The PlayerHUD will use the information to determine
the flow as it relates to the game, such as changing screens to the GameOverScreen
if the player loses all their HP, updating rewards such as gold and experience for
conquering a foe, or even handling escaping if a battle gets too difficult.

The last piece of this observer pattern includes the definitions for the various types of
notifications that the BattleSubject can send during a session, as defined with the
following code snippet of the BattleEvent enum:

 public static enum BattleEvent{
 OPPONENT_ADDED,
 OPPONENT_HIT_DAMAGE,
 OPPONENT_DEFEATED,
 OPPONENT_TURN_DONE,
 PLAYER_HIT_DAMAGE,
 PLAYER_RUNNING,
 PLAYER_TURN_DONE,
 PLAYER_TURN_START,
 PLAYER_USED_MAGIC,
 NONE
 }

The following definitions are the different options available in this class:

•	 OPPONENT_ADDED: This is an initial condition used to signal that a battle zone
has been triggered and that a monster is queued up and ready for battle

•	 OPPONENT_HIT_DAMAGE: This is used to signal that the monster has been
successfully hit and has sustained a certain amount of damage

•	 OPPONENT_DEFEATED: This is used to signal that the monster has been
vanquished, in order to dismiss the BattleUI and give the player their
just rewards

•	 OPPONENT_TURN_DONE: This is a notification that the monster has finished
attacking, and the next round starts with the player's turn

Chapter 7

[257]

•	 PLAYER_HIT_DAMAGE: This is used to signal that the player has sustained
damage from the monster, in order to update the player's HP bar, and is the
point at which we can make a determination if the player has been killed

•	 PLAYER_RUNNING: This is used to signal that the player has successfully
escaped from the monster

•	 PLAYER_TURN_DONE: This is used to signal that the player has finished
attacking, and the second-half of the battle round starts with the
opponent's turn

•	 PLAYER_TURN_START: This is used to signal the beginning of a battle round
starting with the player's turn first

•	 PLAYER_USED_MAGIC: This is used to signal that the player has used magic
during the battle so that we can update the MP bar with the appropriate
value of magic used

The last part of the BattleState class declaration implements the
InventoryObserver interface. The InventoryObserver and InventorySubject
together compose an observer pattern for notifications sent from the InventoryUI.
For the purposes of our battle system, we need to determine the attack points of
weapons equipped and also the defense points of armor equipped, in order to make
the correct calculations to determine damage done in any one battle turn.

InventorySubject
The following class diagram (Figure 5) represents the first part of this observer
pattern, InventorySubject:

Figure 5

Time to Show These Monsters Who's the Boss

[258]

The InventoryUI class contains the drag and drop inventory of the user and
also includes the ability to equip certain items. The InventoryUI implements
InventorySubject and sends notifications when certain InventoryEvent
type events occur. The following class diagram (Figure 6) represents the
InventoryObserver:

Figure 6

The InventoryObserver class is the complement to InventorySubject, which
is needed to complete this observer pattern. The InventoryObserver class is
implemented by BattleState in order to keep track of the total attack points (AP)
tallied up with the currently equipped weapons and also the total defense points
(DP) with all the equipped armor. We want these notifications to be dynamic since
a player can equip and unequip during battle. Otherwise, if we set the values at
the start of the battle and the player changes armor or weapons, our AP or DP
values would be stale and therefore incorrect. The other class that implements the
InventoryObserver is PlayerHUD, in order to update the relevant status when a
player consumes an item from the inventory.

The following snippet is the complete enum for InventoryEvent:

 public static enum InventoryEvent {
 UPDATED_AP,
 UPDATED_DP,
 ITEM_CONSUMED,
 ADD_WAND_AP,
 REMOVE_WAND_AP,
 NONE
 }

The following definitions are the different options available in this class:

•	 UPDATED_AP: This represents a notification that the attack points have
changed, either from the player adding a new weapon, or removing a
previously equipped one

•	 UPDATED_DP: This represents a signal that the defense points have changed,
either from the player adding a new piece of armor, or removing a
previously equipped one

Chapter 7

[259]

•	 ITEM_CONSUMED: This is a notification that the player has consumed an item
from the inventory, such as a scroll to heal HP or a flask to replenish MP

•	 ADD_WAND_AP: This is a more specific notification of when a wand is added so
that we can track the amount of MP consumed during an attack

•	 REMOVE_WAND_AP: This is the complementary notification to signal when a
wand has been unequipped

One important note is related to the ITEM_CONSUMED enum that deserves an
explanation in the following section.

Consuming items
There are multiple ways to implement a feature that allows the player to use or
consume an item. Initially, I was checking for a mouse-click event from the player's
InputProcessor, but the better approach used in BludBourne is to add a listener on
the InventorySlot.

The first change is in InventoryUI, which can be found at core\src\com\
packtpub\libgdx\bludbourne\UI\InventoryUI.java. In the InventoryUI
constructor, for every InventorySlot that we create, we add the following listener:

...
public class InventoryUI extends Window implements
 InventorySubject, InventorySlotObserver{
 ...
 public InventoryUI(){
 ...
 inventorySlot.addListener(new ClickListener() {
 @Override
 public void touchUp (InputEvent event, float x, float y,
 int pointer, int button) {
 super.touchUp(event, x, y, pointer, button);
 if(getTapCount() == 2){
 InventorySlot slot = (InventorySlot)event.
 getListenerActor();
 if(slot.hasItem()){
 InventoryItem item = slot.
 getTopInventoryItem();

 if(item.isConsumable()){
 String itemInfo = item.getItemUseType()
 + Component.MESSAGE_TOKEN +
 item.getItemUseTypeValue();
 InventoryUI.this.notify(itemInfo,
 InventoryObserver.InventoryEvent.
 ITEM_CONSUMED);
 slot.remove(item);

Time to Show These Monsters Who's the Boss

[260]

 }
 }
 }
 }
 }
);
 }
}

We override the default ClickListener class method touchUp(), which occurs
on a release, but only when a touch (or press) down event is successfully returned
from the touchdown() method. We first pass the values through to the base class for
processing. We then get a counter value indicating how many times a touchUp()
event has occurred in succession, using the getTapCount() method. Since we are
looking for a double tap, we check for two successive taps. If we have a double
tap event, we check whether the InventorySlot contains an InventoryItem,
otherwise we ignore the event. If there is an item, we check whether the item has a
consumable attribute, otherwise we ignore. If these conditions are satisfied, we will
construct a notification message for an InventoryEvent event that contains the item
use type and value, send the message on its way, and then remove said item from
the InventorySlot location. If the items are stacked, then just the counter will be
updated, otherwise the slot will be shown as empty.

The PlayerHUD implements the InventoryObserver and checks specifically for
the ITEM_CONSUMED message. The following snippet of code represents the logic for
handling this event in PlayerHUD:

 @Override
 public void onNotify(String value, InventoryEvent event) {
 switch(event){
 case ITEM_CONSUMED:
 String[] strings =
 value.split(Component.MESSAGE_TOKEN);

 if(strings.length != 2) return;

 int type = Integer.parseInt(strings[0]);
 int typeValue = Integer.parseInt(strings[1]);

 if(InventoryItem.doesRestoreHP(type)){
 _statusUI.addHPValue(typeValue);
 }else if(InventoryItem.doesRestoreMP(type)){
 _statusUI.addMPValue(typeValue);
 }
 break;
 default:
 break;
 }
 }

Chapter 7

[261]

Here, we parse out the item type and item type value from the message. We check
whether the item type restores HP or MP and we update the proper status value
using the item use type value accordingly.

After discussing the class definition of BattleState, we continue on to look at the
class body:

 private Entity _currentOpponent;
 private int _currentZoneLevel = 0;
 private int _currentPlayerAP;
 private int _currentPlayerDP;
 private int _currentPlayerWandAPPoints = 0;
 private final int _chanceOfAttack = 25;
 private final int _chanceOfEscape = 40;
 private final int _criticalChance = 90;

We have an assortment of variables to maintain during any one battle, and they will
be discussed in turn. First, we keep an Entity object, _currentOpponent, which
represents the monster that the player will fight. The logic to select a particular
monster will be discussed later. We keep an int value, _currentZoneLevel, which
represents the current zone level that the player has entered. A zone level represents
an area of a map designated by a particular value, such as 1 or 5. Each zone will be
configured to have particular monsters, and so every time the player enters a new
zone, this value gets set; otherwise, if the player is not in a designated zone, the value
will be set to 0. The next three int values, _currentPlayerAP, _currentPlayerDP,
and _currentPlayerWandAPPoints, represent the currently equipped attack
points, defense points, and attack points from the wand, respectively, which will be
used when determining damage done to the monster and damage taken from the
monster. We then have the three int values, _chanceOfAttack, _chanceOfEscape,
and _criticalChance, which add some chance values to encounters. The first int
represents the chance that a monster will attack the player, which for now, we set to
25 for a 25% chance of having an encounter. The next value represents a 40% chance
that the player will be successful when they try to escape. The final value represents
a value where anything over 90% will be considered a critical value:

 public void setCurrentZoneLevel(int zoneLevel){
 _currentZoneLevel = zoneLevel;
 }

 public int getCurrentZoneLevel(){
 return _currentZoneLevel;
 }

Time to Show These Monsters Who's the Boss

[262]

The setCurrentZoneLevel() and getCurrentZoneLevel() represent the setter and
getter for the zone level that the player has entered into. As stated previously, this
value is important for determining the type of enemy that should fight the player at
any particular moment on the map:

 public void setCurrentOpponent(){
 Entity entity = MonsterFactory.getInstance().
 getRandomMonster(_currentZoneLevel);
 if(entity == null) return;
 this._currentOpponent = entity;
 notify(entity, BattleObserver.BattleEvent.OPPONENT_ADDED);
 }

The setCurrentOpponent() method will be called when the determination has been
made that the player will fight a monster. We first get a random monster from the
MonsterFactory based on the current zone level passed in. We set this entity as our
current opponent and then send a notification that we are ready for battle.

Before describing more of the BattleState source, now is a good time to discuss the
MonsterFactory class and one of its components, MonsterZone.

MonsterFactory
The following code snippet represents MonsterFactory, which can be found at
core\src\com\packtpub\libgdx\bludbourne\battle\MonsterFactory.java:

package com.packtpub.libgdx.bludbourne.battle;

import com.badlogic.gdx.math.MathUtils;
import com.badlogic.gdx.utils.Array;
import com.packtpub.libgdx.bludbourne.Entity;
import com.packtpub.libgdx.bludbourne.EntityConfig;

import java.util.Hashtable;

public class MonsterFactory {
 public static enum MonsterEntityType{
 MONSTER001,MONSTER002,MONSTER003,MONSTER004,MONSTER005,
 MONSTER006,MONSTER007,MONSTER008,MONSTER009,MONSTER010,
 MONSTER011,MONSTER012,MONSTER013,MONSTER014,MONSTER015,
 MONSTER016,MONSTER017,MONSTER018,MONSTER019,MONSTER020,
 MONSTER021,MONSTER022,MONSTER023,MONSTER024,MONSTER025,
 MONSTER026,MONSTER027,MONSTER028,MONSTER029,MONSTER030,
 MONSTER031,MONSTER032,MONSTER033,MONSTER034,MONSTER035,
 MONSTER036,MONSTER037,MONSTER038,MONSTER039,MONSTER040,
 MONSTER041, MONSTER042,
 NONE
 }

Chapter 7

[263]

In order to maintain a list of monster definitions, we add the monster types to the
MonsterEntityType enum:

 private static MonsterFactory _instance = null;

The MonsterFactory is implemented as a singleton with lazy initialization, so we
will save the static instance with the _instance variable:

 private Hashtable<String, Entity> _entities;

We will maintain a Hashtable of entities, where entityID is the key and the Entity
object itself is the value. The monsters defined in the MonsterEntityType enum
will be implemented as Entity objects. The following section briefly discusses
their configuration.

Monster entity
We define these monster Entity objects in a separate JSON script file called
monsters.json, which can be found at core\assets\scripts\. The following
is an excerpt from the script representing the first monster:

[
{
entityID : MONSTER001
state : IMMOBILE
direction : DOWN
conversationConfigPath : ""
questConfigPath : ""
currentQuestID : ""
itemTypeID: NONE
entityProperties: {
 ENTITY_HEALTH_POINTS: {
 class: java.lang.String
 value: 15
 }
 ENTITY_ATTACK_POINTS: {
 class: java.lang.String
 value: 40
 }
 ENTITY_DEFENSE_POINTS: {
 class: java.lang.String
 value: 5
 }
 ENTITY_XP_REWARD: {
 class: java.lang.String
 value: 5
 }
 ENTITY_GP_REWARD: {
 class: java.lang.String

Time to Show These Monsters Who's the Boss

[264]

 value: 5
 }
}
animationConfig: [
 {
 frameDuration: .5
 animationType: IMMOBILE
 texturePaths: [
 sprites/characters/Demon0.png
 sprites/characters/Demon1.png
]
 gridPoints: [
 {
 x: 0
 y: 0
 }

 {
 x: 0
 y: 0
 }
]
 }
]
},
]

As we can see, the definition of the monster type Entity is similar to that of the
NPCs and the player character. The only items that are new for the monster Entity
would be the properties. The entityProperties value is an ObjectMap of name
value pairs for any given Entity. Here, we define important properties for a monster
Entity: ENTITY_HEALTH_POINTS, ENTITY_ATTACK_POINTS, ENTITY_DEFENSE_
POINTS, ENTITY_XP_REWARD, and ENTITY_GP_REWARD. The ENTITY_HEALTH_POINTS
represents the total HP that the monster starts with at the beginning of the battle.
The ENTITY_ATTACK_POINTS represents the offensive strength that the monster
has in total. The ENTITY_DEFENSE_POINTS represents the total defensive capability
of the monster during the battle. The ENTITY_XP_REWARD and ENTITY_GP_REWARD
properties represent the rewards that the player receives once a particular monster
is vanquished.

Now that we see how the monster Entity objects are defined, we can continue with
the source for MonsterFactory:

 private Hashtable<String, Array<MonsterEntityType>>
 _monsterZones;

Chapter 7

[265]

Here, we maintain a Hashtable where the level of the monster zone is the key
and an Array container of the monster types are the values. This is a good place to
discuss exactly what I mean by a monster-level zone.

MonsterZone
First, conceptually, a MonsterZone is an area of a map that contains certain types
of monsters. We first create these zones with Tiled, by defining an object layer
called MAP_ENEMY_SPAWN_LAYER. We then add rectangular objects on the map that
represent the different regions where certain types of monsters roam. The following
screenshot (Figure 7) shows a subregion of the TOP_WORLD map with an assortment
of zones:

Figure 7

Each region or zone has a name defined that represents their level, such as 1 or 2, all
the way up to 10 (since 10 is the level cap for BludBourne). When a player walks over
any of these areas, a notification is triggered that the player is in a particular area and
the setCurrentZoneLevel() method of BattleState is called.

Time to Show These Monsters Who's the Boss

[266]

Second, we look at the mapping between the Tiled map values of the different
zone levels and how they relate to the game world. We define a POJO class called
MonsterZone. A class diagram (Figure 8) of MonsterZone is shown here:

Figure 8

Each MonsterZone object contains a unique zoneID, such as the zone named 1 in the
Tiled TOP_WORLD map in Figure 7. The other class member represents a container of
the different assorted MonsterEntityType types that an area is configured to have
roaming around in that particular area.

We define these POJO instances with a JSON-based script file monster_zones.json,
which can be found at core\assets\scripts\. This script file maps the different
zone levels with the different MonsterEntityType entities. The following excerpt
shows how the first zone is currently configured:

[
{
zoneID : 1
monsters: [
 {
 value: MONSTER001
 }
 {
 value: MONSTER002
 }
 {
 value: MONSTER003
 }
 {
 value: MONSTER004
 }
 {
 value: MONSTER005
 }
]
},
]

Chapter 7

[267]

So, from this example, we state that any region on the map named 1 for the zoneID
has the following MonsterEntityType entities roaming around inside: MONSTER001,
MONSTER002, MONSTER003, MONSTER004, and MONSTER005. This allows easy
configuration when playing with different combinations in order to give the player
a challenge, while at the same time minimizing the steep ramp up of difficulty. As a
small design choice, it is recommended that lower level enemies are localized near
the town, with an incremental difficulty increase as the maps expand out when the
player ventures out.

Now that we have reviewed the monster Entity and MonsterZone objects, the
construction of the MonsterFactory should make more sense in context:

 private MonsterFactory(){
 Array<EntityConfig> configs = Entity.getEntityConfigs(
 "scripts/monsters.json");
 _entities = Entity.initEntities(configs);

 _monsterZones = MonsterZone.getMonsterZones(
 "scripts/monster_zones.json");
 }

Here, in the MonsterFactory constructor, we initialize the monster entities defined
in the monster.json file and also the MonsterZone objects defined in the monster_
zones.json file:

 public static MonsterFactory getInstance() {
 if (_instance == null) {
 _instance = new MonsterFactory();
 }

 return _instance;
 }

The getInstance() gives us access to the static instance of our singleton class,
MonsterFactory:

 public Entity getMonster(MonsterEntityType monsterEntityType){
 Entity entity = _entities.get(
 monsterEntityType.toString());
 return new Entity(entity);
 }

Time to Show These Monsters Who's the Boss

[268]

The getMonster() method is a helper method to give us a deep copy instance of the
type of monster passed in. By using the copy constructor, this deep copy allows us
to have a unique instance for a particular battle without worrying about the values
persisting in case we had a reference instead:

 public Entity getRandomMonster(int monsterZoneID){
 Array<MonsterEntityType> monsters = _monsterZones.get(
 String.valueOf(monsterZoneID));
 int size = monsters.size;
 if(size == 0){
 return null;
 }
 int randomIndex = MathUtils.random(size - 1);

 return getMonster(monsters.get(randomIndex));
 }
}

The getRandomMonster() method is the primary method used to determine the type
of monster that the player will fight. Here, we first use the monster zone ID passed in
to access the container of monsters available for that particular area. Once we have a
container of available monsters, we then choose a random index in order to retrieve
a random monster from the Array. We then return the randomly chosen monster
Entity object.

With the MonsterFactory, the monster-based Entity objects, and the MonsterZone
objects covered, the use of these classes in BattleState should make much
more sense:

 public boolean isOpponentReady(){
 if(_currentZoneLevel == 0) return false;
 int randomVal = MathUtils.random(1,100);

 if(_chanceOfAttack > randomVal){
 setCurrentOpponent();
 return true;
 }else{
 return false;
 }
 }

Chapter 7

[269]

Here, in the isOpponentReady() method, we first check to see whether the zone
level was set. 0 is a special case that indicates that the player is currently not in a
zone with monsters. If the player is in a zone that contains monsters, then we check
to see whether the player encounters a monster based on a check against the chance
of attack value. If we fall within the chance of attack, then we will set the monster
and get ready for battle:

 public void playerAttacks(){
 if(_currentOpponent == null){
 return;
 }
 //Check for magic if used in attack;
 //If we don't have enough MP, then return
 int mpVal = ProfileManager.getInstance().getProperty(
 "currentPlayerMP", Integer.class);
 if(_currentPlayerWandAPPoints > mpVal){
 return;
 }else{
 mpVal -= _currentPlayerWandAPPoints;
 ProfileManager.getInstance().setProperty(
 "currentPlayerMP", mpVal);
 notify(_currentOpponent, BattleObserver.BattleEvent.
 PLAYER_USED_MAGIC);
 }

 notify(_currentOpponent, BattleObserver.BattleEvent.
 PLAYER_TURN_START);

 int currentOpponentHP = Integer.parseInt(_currentOpponent.
 getEntityConfig().getPropertyValue(
 EntityConfig.EntityProperties.
 ENTITY_HEALTH_POINTS.toString()));
 int currentOpponentDP = Integer.parseInt(_currentOpponent.
 getEntityConfig().getPropertyValue(
 EntityConfig.EntityProperties.
 ENTITY_DEFENSE_POINTS.toString()));

 int damage = MathUtils.clamp(
 _currentPlayerAP - currentOpponentDP, 0,
 _currentPlayerAP);

 currentOpponentHP = MathUtils.clamp(
 currentOpponentHP - damage, 0,

Time to Show These Monsters Who's the Boss

[270]

 currentOpponentHP);

 _currentOpponent.getEntityConfig().setPropertyValue(
 EntityConfig.EntityProperties.
 ENTITY_HEALTH_POINTS.toString(),
 String.valueOf(currentOpponentHP));

 _currentOpponent.getEntityConfig().setPropertyValue(
 EntityConfig.EntityProperties.
 ENTITY_HIT_DAMAGE_TOTAL.toString(),
 String.valueOf(damage));

 notify(_currentOpponent,
 BattleObserver.BattleEvent.OPPONENT_HIT_DAMAGE);

 if(currentOpponentHP == 0){
 notify(_currentOpponent,
 BattleObserver.BattleEvent.OPPONENT_DEFEATED);
 }

 notify(_currentOpponent,
 BattleObserver.BattleEvent.PLAYER_TURN_DONE);
 }

The playerAttacks() method represents the turn in the battle round for the
player, when they actually attack the monster. First, we do a quick sanity check
that a monster Entity has been initialized. We then check whether the player has
enough MP for a magic attack, which is enabled when the player equips a wand. If
the player does not have enough MP, then the attack fails. Otherwise, we subtract
the cost of using the wand from the MP and send a notification that the status for
the MP has changed (that is, gone down). We then send a notification with the
PLAYER_TURN_START BattleEvent that the player's turn has officially started and
get the current values for the monster's current health and defensive points. We
want to keep the damage calculation simple for this implementation so we subtract
the monster's DP from the player's AP total. We make sure to clamp the values in a
range to prevent errors. We then subtract the damage calculation from the health of
the monster. For this round, we save the updated HP of the monster entity, along
with the damage that the monster sustained. We send a notification that the monster
sustained some damage. Next, we check whether the monster is still alive, and if not,
send a notification that the monster has been defeated with the OPPONENT_DEFEATED
BattleEvent:

 public void opponentAttacks(){
 if(_currentOpponent == null){
 return;
 }

Chapter 7

[271]

 int currentOpponentAP = Integer.parseInt(
 _currentOpponent.getEntityConfig().
 getPropertyValue(EntityConfig.EntityProperties.
 ENTITY_ATTACK_POINTS.toString()));

 int damage = MathUtils.clamp(
 currentOpponentAP - _currentPlayerDP, 0,
 currentOpponentAP);

 int hpVal = ProfileManager.getInstance().getProperty(
 "currentPlayerHP", Integer.class);

 hpVal = MathUtils.clamp(hpVal - damage, 0, hpVal);
 ProfileManager.getInstance().setProperty(
 "currentPlayerHP", hpVal);

 notify(_currentOpponent,
 BattleObserver.BattleEvent.PLAYER_HIT_DAMAGE);

 notify(_currentOpponent,
 BattleObserver.BattleEvent.OPPONENT_TURN_DONE);
 }

The opponentAttacks() method is similar to the playerAttacks(), but without
most of the bookkeeping. First, we verify that the monster Entity has been
initialized. Since this is the part of the round that the monster attacks, we get
the monster's attack points and calculate the damage by subtracting the player's
defensive points. Again, we clamp the values to make sure they are in a valid range.
Then, we subtract the monster's damage from the player's health and update the
player's HP property. We then send a notification via BattleEvent that the player
was damaged and that the monster's turn is over:

 public void playerRuns(){
 int randomVal = MathUtils.random(1,100);
 if(_chanceOfEscape > randomVal) {
 notify(_currentOpponent,
 BattleObserver.BattleEvent.PLAYER_RUNNING);
 }else if (randomVal > _criticalChance){
 opponentAttacks();
 }else{
 return;
 }
 }

Time to Show These Monsters Who's the Boss

[272]

Here, the playerRuns() method is called when, during a battle, the player presses
the Run button. Since there is a small chance of escape, we check the chance of
escape value against a random number. If satisfied, then the player successfully
escapes and we send the PLAYER_RUNNING BattleEvent notification, in order to
differentiate this from a successful defeat of the monster (so no quest rewards).
Finally, if the player does not successfully escape, we then do another check to see
whether the monster has a chance to get a free attack on our hero by checking against
the critical chance value:

 @Override
 public void onNotify(String value, InventoryEvent event) {
 switch(event) {
 case UPDATED_AP:
 int apVal = Integer.valueOf(value);
 _currentPlayerAP = apVal;
 break;
 case UPDATED_DP:
 int dpVal = Integer.valueOf(value);
 _currentPlayerDP = dpVal;
 break;
 case ADD_WAND_AP:
 int wandAP = Integer.valueOf(value);
 _currentPlayerWandAPPoints += wandAP;
 break;
 case REMOVE_WAND_AP:
 int removeWandAP = Integer.valueOf(value);
 _currentPlayerWandAPPoints -= removeWandAP;
 break;
 default:
 break;
 }
 }
}

The onNotify() method implementation here is to enable the BattleState to
be an observer for the InventorySubject, looking for specific InventoryEvent
notifications. Since the player can swap out equipment during battle, we always
want to receive updates whenever the AP and DP values change, including whether
or not the player has equipped a wand in order to keep track of MP.

Chapter 7

[273]

We covered an assortment of topics in this section, including how we determine
calculations and monsters to fight in BattleState, how monsters are created as
Entity objects with the MonsterFactory class, how battle zones are configured with
the MonsterZone objects, and even how consuming items in the player's inventory is
implemented with a double click. Next, we look at how this business logic gets used
in the UI for battling these monsters.

BattleUI
As mentioned previously, BludBourne uses a simple interface for fighting monsters,
inspired from the first person's perspective of Dragon Warrior. The following
screenshot (Figure 9) represents the individually labeled components of the
BattleUI class:

Figure 9

Time to Show These Monsters Who's the Boss

[274]

The BattleUI class is composed primarily of an AnimatedImage custom class and
a Table with action TextButton widgets used by the player during the battle. The
BattleUI window is configured so that the player's StatusUI is always on top,
which gives the player access to their inventory so that they can equip items or use
consumables during battle. The StatusUI also indicates the current HP and MP left.

We will now walk through the source of the BattleUI implementation, which can be
found at core\src\com\packtpub\libgdx\bludbourne\UI\BattleUI.java:

package com.packtpub.libgdx.bludbourne.UI;

import com.badlogic.gdx.scenes.scene2d.InputEvent;
import com.badlogic.gdx.scenes.scene2d.Touchable;
import com.badlogic.gdx.scenes.scene2d.ui.Label;
import com.badlogic.gdx.scenes.scene2d.ui.Table;
import com.badlogic.gdx.scenes.scene2d.ui.TextButton;
import com.badlogic.gdx.scenes.scene2d.ui.Window;
import com.badlogic.gdx.scenes.scene2d.utils.Align;
import com.badlogic.gdx.scenes.scene2d.utils.ClickListener;
import com.packtpub.libgdx.bludbourne.Entity;
import com.packtpub.libgdx.bludbourne.EntityConfig;
import com.packtpub.libgdx.bludbourne.Utility;
import com.packtpub.libgdx.bludbourne.battle.BattleObserver;
import com.packtpub.libgdx.bludbourne.battle.BattleState;

public class BattleUI extends Window implements BattleObserver {

The BattleUI class derives from the Window widget class. In order to receive
notifications from the BattleState object, BattleUI also implements the
BattleObserver interface. As mentioned previously, the BattleUI class will use
the information to make damage indications to the player and also disable/enable
buttons based on the current turn (for instance, once a player attacks, the attack
button will be disabled until the opponent finishes their turn, so the player can't keep
using the attack button):

 private AnimatedImage _image;

The AnimatedImage class is a simple subclass of Image in order to get a nice effect of
the monster moving with their idle animation. We will take a short detour in order to
discuss the AnimatedImage class.

Chapter 7

[275]

AnimatedImage
The following code snippet represents the AnimatedImage class and can be found at
core\src\com\packtpub\libgdx\bludbourne\UI\AnimatedImage.java:

package com.packtpub.libgdx.bludbourne.UI;

import com.badlogic.gdx.graphics.g2d.Animation;
import com.badlogic.gdx.scenes.scene2d.ui.Image;
import com.badlogic.gdx.scenes.scene2d.utils.Drawable;
import com.badlogic.gdx.scenes.scene2d.utils.
 TextureRegionDrawable;

public class AnimatedImage extends Image {

The AnimatedImage class derives from Image, which is an Actor (widget) that
displays a Drawable object:

 protected Animation _animation = null;
 private float _frameTime = 0;

The two member variables that we need to keep track of is the actual Animation
object itself and also the current frame time so that we know which animation frame
to update to the screen:

 public AnimatedImage(){
 super();
 }

 public AnimatedImage(Animation animation){
 super(animation.getKeyFrame(0));
 this._animation = animation;
 }

The default AnimatedImage() constructor simply delegates to the super class. The
other AnimatedImage() constructor takes a specific Animation as a parameter,
passing the first frame to the base class constructor and setting the value:

 public void setAnimation(Animation animation){
 super.setDrawable(new TextureRegionDrawable(
 animation.getKeyFrame(0)));
 this._animation = animation;
 }

Time to Show These Monsters Who's the Boss

[276]

The setAnimation() method is a helper method for convenience so that we
can simply construct an AnimatedImage with a default constructor and set the
Animation object later. Again, we set the Drawable of the base class with the first
frame in the animation and then set the member variable:

 @Override
 public void act(float delta){
 Drawable drawable = this.getDrawable();
 if(drawable == null) return;
 _frameTime = (_frameTime + delta)%5;

 ((TextureRegionDrawable)drawable).
 setRegion(_animation.getKeyFrame(_frameTime, true));
 super.act(delta);
 }
}

Finally, we override the act() method. This method is called every frame by the
Stage class that owns the Actor object. We grab the Drawable (and check to make
sure it's valid) and then update the _frameTime value. We then update the Drawable
region with the frame based on the current _frameTime value and then the delegate
to the base class implementation by passing the delta value to the super class.

Now that we have a better understanding of the AnimatedImage class, we can
continue to take a look at the BattleUI class:

 private final int _enemyWidth = 96;
 private final int _enemyHeight = 96;

 private BattleState _battleState = null;
 private TextButton _attackButton = null;
 private TextButton _runButton = null;
 private Label _damageValLabel = null;

 private float _battleTimer = 0;
 private final float _checkTimer = 1;

 private float _origDamageValLabelY = 0;

Chapter 7

[277]

We first set the size constraints of the AnimatedImage by defining the width and
height values. We will be using the BattleState class to calculate the business
logic for the battle, and so the BattleUI will own the BattleState object. We
will have two action TextButton buttons, one for attacking and one for trying to
run away. A Label object, _damageValLabel, will be used to display the monster
damage sustained from the player as a nice visual indication to the user that their
attack was successful. Also, because the _damageValLabel member variable will
be moving vertically up during each frame update, we will reset this value with the
_origDamageValLabelY variable. Finally, we will maintain a simple float value, _
battleTimer, which represents the timer to check for an enemy periodically, defined
by _checkTimer:

 public BattleUI(){
 super("BATTLE", Utility.STATUSUI_SKIN, "solidbackground");

 _battleTimer = 0;
 _battleState = new BattleState();
 _battleState.addObserver(this);

 _damageValLabel = new Label("0", Utility.STATUSUI_SKIN);
 _damageValLabel.setVisible(false);

 _image = new AnimatedImage();
 _image.setTouchable(Touchable.disabled);

 Table table = new Table();
 _attackButton = new TextButton("Attack",
 Utility.STATUSUI_SKIN, "inventory");
 _runButton = new TextButton("Run", Utility.STATUSUI_SKIN);
 table.add(_attackButton).pad(20, 20, 20, 20);
 table.row();
 table.add(_runButton).pad(20, 20, 20, 20);

 //layout
 this.add(_damageValLabel).align(Align.left).
 padLeft(_enemyWidth / 2).row();
 this.add(_image).size(_enemyWidth, _enemyHeight).
 pad(10, 10, 10, _enemyWidth / 2);
 this.add(table);

 this.pack();

Time to Show These Monsters Who's the Boss

[278]

 _origDamageValLabelY = _damageValLabel.getY() +
 _enemyHeight;

 _attackButton.addListener(
 new ClickListener() {
 @Override
 public void clicked(InputEvent event, float x,
 float y) {
 _battleState.playerAttacks();
 }
 }
);
 _runButton.addListener(
 new ClickListener() {
 @Override
 public void clicked(InputEvent event, float x,
 float y) {
 _battleState.playerRuns();
 }
 }
);
 }

In the BattleUI() constructor, we initialize our member variables and put our
TextButton objects in a Table. We then construct the layout, by placing the damage
label in the first row (set to be over the center of the AnimatedImage object), placing
the AnimatedImage in the second row with the TextButton Table placed in the
second column next to the AnimatedImage. We then implement two listeners, one
for the TextButton Attack that calls the BattleState method playerAttacks()
and the second one for the TextButton Run that calls the BattleState method
playerRuns():

 public void battleZoneTriggered(int battleZoneValue){
 _battleState.setCurrentZoneLevel(battleZoneValue);
 }

The battleZoneTriggered() method relays messages from the PlayerHUD UI to
the BattleState member variable that the player has entered or exited a battle
zone area:

 public boolean isBattleReady(){
 if(_battleTimer > _checkTimer){
 _battleTimer = 0;
 return _battleState.isOpponentReady();
 }else{

Chapter 7

[279]

 return false;
 }
 }

Here, the isBattleReady() method is called every time the player moves in a zone
populated by monsters. We use the _battleTimer to reduce the frequency that a
check for a monster encounter is made. This gives the player a chance to explore
without battling enemies at every step. Once a certain amount of time has transpired,
we check whether the player has come across a monster or not, based on chance
criteria values previously discussed in the BattleState section:

 public BattleState getCurrentState(){
 return _battleState;
 }

 @Override
 public void onNotify(Entity entity, BattleEvent event) {
 switch(event){
 case PLAYER_TURN_START:
 _attackButton.setDisabled(true);
 _attackButton.setTouchable(Touchable.disabled);
 break;
 case OPPONENT_ADDED:
 _image.setAnimation(entity.getAnimation(
 Entity.AnimationType.IMMOBILE));
 this.setTitle("Level " +
 _battleState.getCurrentZoneLevel() + " " +
 entity.getEntityConfig().getEntityID());
 break;
 case OPPONENT_HIT_DAMAGE:
 int damage = Integer.parseInt(entity.
 getEntityConfig().getPropertyValue(
 EntityConfig.EntityProperties.
 ENTITY_HIT_DAMAGE_TOTAL.toString()));
 _damageValLabel.setText(String.valueOf(damage));
 _damageValLabel.setY(_origDamageValLabelY);
 _damageValLabel.setVisible(true);
 break;
 case OPPONENT_DEFEATED:
 _damageValLabel.setVisible(false);
 _damageValLabel.setY(_origDamageValLabelY);
 break;
 case OPPONENT_TURN_DONE:
 _attackButton.setDisabled(false);
 _attackButton.setTouchable(Touchable.enabled);

Time to Show These Monsters Who's the Boss

[280]

 break;
 case PLAYER_TURN_DONE:
 _battleState.opponentAttacks();
 break;
 default:
 break;
 }
 }

The onNotify() method is overridden for the BattleObserver implementation so
that the BattleUI can look for notifications relating to the BattleEvent events. If
we receive a PLAYER_TURN_START notification, then we disable the Attack button
until the next round starts, designated by the OPPONENT_TURN_DONE notification.
The OPPONENT_ADDED notification initializes the BattleUI with the new monster for
the encounter. The OPPONENT_HIT_DAMAGE notification gives us the value to display
over the AnimatedImage object when the player successfully hits the monster. We do
some cleanup with the OPPONENT_DEFEATED notification. Finally, when we receive
the PLAYER_TURN_DONE event, we initiate the monster's turn for attack:

 @Override
 public void act(float delta){
 _battleTimer = (_battleTimer + delta)%60;
 if(_damageValLabel.isVisible() &&
 _damageValLabel.getY() < this.getHeight()){
 _damageValLabel.setY(_damageValLabel.getY()+5);
 }
 super.act(delta);
 }
}

We override the act() method in order to do two things. First, we maintain a battle
timer that increments every frame. Second, if the monster damage Label is visible,
we display the Label, incrementing the vertical direction every frame for a nice
effect. We then delegate to the base class.

In this section, we learned how the BattleUI maintains a simple, yet intuitive
interface for battling monsters, and also how all the pieces from the BattleState
section work in conjunction with the UI. We also learned how we can create nice
effects such as an AnimatedImage for the monster and an animated damage label
moving over the monster.

Chapter 7

[281]

LevelTable
While completing quests that we learned to implement in Chapter 6, So Many Quests,
So Little Time…, and defeating legions of monsters on the battle field, the player will
receive experience points for helping out the local NPCs and making BludBourne a
better place overall. For the purposes of this chapter, a simple leveling system was
developed to reward and communicate to the player that they are in fact progressing
as their character develops.

The first part for handling the leveling is to develop the attributes that will change
according to the different levels. LevelTable is a POJO class that represents all of
these attributes for a level, including all the accessor methods. The following class
diagram (Figure 10) represents the LevelTable class (which can be found at core\
src\com\packtpub\libgdx\bludbourne\battle\LevelTable.java):

Figure 10

The primary attributes that we care about for BludBourne, and which could be easily
extended by you for your game, are the current level, the maximum experience
points for the level before we move onto the next level, and the maximum HP and
MP amounts for the current level.

Time to Show These Monsters Who's the Boss

[282]

When defining a LevelTable for each of the levels that your game supports, we
will update a configuration file in JSON format, which is core\assets\scripts\
level_tables.json. The following excerpt represents the values for these attributes
for level 1 and 2:

[
{
levelID : 1
xpMax : 200
hpMax : 50
mpMax : 50
},
{
levelID : 2
xpMax : 400
hpMax : 70
mpMax : 70
},
]

You will notice in the level_tables.json file that we only define up to level 10. For
BludBourne, being a shorter game, we set the level cap at level 10. As you start to add
different battle zones with different types of enemies, you may want to increase the
level cap in order to allow more progression for the player as they level up.

As an example of how to use this in practice, we can now take a look at the
StatusUI.java class for this chapter. The following represents the relevant
snippets of code for using the LevelTable objects in practice:

public class StatusUI extends Window implements StatusSubject {
...
 private Array<LevelTable> _levelTables;
 private static final String LEVEL_TABLE_CONFIG =
 "scripts/level_tables.json";

 public StatusUI(){
 ...
 _levelTables =
 LevelTable.getLevelTables(LEVEL_TABLE_CONFIG);
 }

Chapter 7

[283]

Here, in the StatusUI() constructor, we call a static convenience method in the
LevelTable class that will load the file, deserialize the JSON, and return a container
of the LevelTable objects:

public void addXPValue(int xpValue){
 this._xpVal += xpValue;

 if(_xpVal > _xpCurrentMax){
 updateToNewLevel();

 }
 ...
}

In the addXPValue() method, we add a check to see whether the current experience
value, _xpVal, is greater than the current level maximum. If it is, then we know that
we need to update our current level, and so we call updateToNewLevel():

public void updateToNewLevel(){
 for(LevelTable table: _levelTables){
 if(_xpVal > table.getXpMax()){
 continue;
 }else{
 setXPValueMax(table.getXpMax());

 setHPValueMax(table.getHpMax());
 setHPValue(table.getHpMax());

 setMPValueMax(table.getMpMax());
 setMPValue(table.getMpMax());

 setLevelValue(Integer.parseInt(table.getLevelID()));
 return;
 }
 }
}
 ...
}

The updateToNewLevel() method will walk through the container of the
LevelTable objects, checking to see which LevelTable contains the highest ceiling
value for the experience max value. This check will determine which level should we
be based on the current amount of experience points. Once this LevelTable is found,
we set all the values from this table, including the new level value and return.

This section gave us a concise overview of the leveling feature in BludBourne, and it is
a nice starting place for augmenting your own.

Time to Show These Monsters Who's the Boss

[284]

GameOverScreen
Finally, we need a mechanism to enable the game to end and allow the player
to reload from a previous save, since the element of the player character death
naturally comes with adding a battle system. The following screenshot (Figure
11) represents the game over screen for BludBourne when the HP for the player's
character reaches 0:

Figure 11

Chapter 7

[285]

This screen will load the LoadGameScreen when the Continue button is pressed,
allowing the user to reload from a previous save game. The screen will also load
the MainMenuScreen when the Main Menu button is pressed. The workflow for
enabling this screen starts with PlayerHUD receiving a notification that the player has
been damaged, as shown in the following code snippet:

public void onNotify(Entity enemyEntity, BattleEvent event) {
 switch (event) {
 ...
 case PLAYER_HIT_DAMAGE:
 int hpVal = ProfileManager.getInstance().getProperty(
 "currentPlayerHP", Integer.class);
 _statusUI.setHPValue(hpVal);

 if(hpVal <= 0){
 _battleUI.setVisible(false);
 MainGameScreen.setGameState(
 MainGameScreen.GameState.GAME_OVER);
 }
 break;
}
}

Here, once the player's HP has reached 0, we set the GameState to GAME_OVER.
This sets a flag in MainGameScreen:

 @Override
 public void render(float delta) {
 if(_gameState == GameState.GAME_OVER){
 _game.setScreen(_game.getScreenType(
 BludBourne.ScreenType.GameOver));
 }
 ...
 }

Since the render() method gets called every frame, we check for GAME_OVER at the
beginning, and if this value is set, we switch to the GameOverScreen (which hides the
current MainGameScreen and shows the GameOverScreen).

This section showed us a straightforward process for exiting from the current
MainGameScreen.

Time to Show These Monsters Who's the Boss

[286]

Summary
You now have the power to put down even the fiercest monsters in BludBourne,
and now it's up to you to be the hero that the town needs.

In this chapter, we went through the process of developing a battle system. We
started by implementing the business logic class, BattleState, to handle damage
calculations, chance calculations for an encounter, and also calculating chances for
escape. We then wrapped a UI, BattleUI, around this core logic, creating random
monster encounters for the player for gold, experience, and honor. We added a
leveling feature, using LevelTable, so that the player experiences progression as
they discover the world of BludBourne and also enable the player to consume health
scrolls and magic flasks to recover lost health and magic, respectively. Finally, we
walked through the code path flow to display a game over screen when the player
dies with GameOverScreen.

In the next chapter, we will add the final features to BludBourne with sound and
music and also add support for cutscenes.

[287]

Oh, No! Looks Like Drama!
What are some of the elements that players will talk about long after they have
beaten your game? The right music that plays at a critical moment, a sound that
makes an attack sound more powerful, or a cutscene that evokes some core emotion
for the player are just a few examples. With the foundation of knowledge that we
have learned over the course of developing BludBourne, there is something special to
be said for adding the finishing touches of sound, music, and even cutscenes to tell
your story. This chapter will show you how to add these important components to
your videogame, in order to give a nice polish to your final product. Luckily, for us,
LibGDX provides the tools that make this particular piece of your game simple to
implement.

In summary, we will cover the following topics in this chapter:

•	 Sound and music
•	 Creating cutscenes

Oh, No! Looks Like Drama!

[288]

Class diagram overview
The following class diagram (Figure 1) represents the classes involved with
implementing sound, music, and cutscene support:

Figure 1

As a note, the classes shaded in as grey are classes we have discussed in the previous
chapters, so we will not be discussing them in depth.

Chapter 8

[289]

The AudioManager class implements the AudioObserver interface and manages
the various commands, such as loading and playing music and sounds. The
corresponding AudioObserver objects are owned by the GameScreen, PlayerHUD,
and Map classes, which in turn send notification events when music or sound files are
involved.

The Map class implements the AudioSubject interface so that all the derived classes,
such as TownMap, TopWorldMap, and CastleDoomMap, have access to the music and
sound resources. PlayerHUD implements the AudioSubject interface as well so that
the appropriate sounds can be played, for instance, when the player is hit and loses
health or the player purchases items from the store. Finally, we have the GameScreen
class that implements the Screen interface and the AudioSubject interface, and it is
a new class that all current screens will extend.

The CutSceneScreen is derived from the base class MainGameScreen in order to take
advantage of loading different maps and camera settings for the various views.

Sound and music
The first item to note for this section is how the audio resources are managed within
the LibGDX framework. As explained in the previous chapters, the implementation
of the Application interface for the desktop is LwjglApplication, which is part of
the LibGDX backend package called LWJGL (com.badlogic.gdx.backends.lwjgl).
LWJGL not only includes OpenGL support for graphics, but also audio support via
OpenAL.

OpenAL was developed with a 3D environment in mind, and so velocity,
position, direction, and intensity are all parameters supported by this API. These
parameters allow more naturally sounding audio as the player moves through
their environment. Under the covers, the actual audio buffers contain audio data
in raw PCM format, in either mono or stereo format. As powerful as OpenAL is
for handling audio, the process of learning a new API, initializing devices, and
monitoring audio buffers can be daunting at first. Luckily, LibGDX abstracts away
all the underlying complexities into a nice, simple package, com.badlogic.gdx.
audio. The platform-specific implementation of these interfaces for the desktop can
be found in com.badlogic.gdx.backends.lwjgl.audio. Also, the audio library for
LibGDX supports the following container formats: MP3, OGG, and WAV.

Oh, No! Looks Like Drama!

[290]

The second item to note is that there may be times when you will need to edit either
the music or sound files. The editor that I used during the creation of BludBourne
is Audacity (version 2.0.3), which you can get at http://audacityteam.org/
download/. This is a great open source alternative that allows you to edit OGG, MP3,
and WAV container files, easily bring the dB volume down, and edit the bitrate,
among many other features. The following is a screenshot of Audacity in action
(Figure 2):

Figure 2

The third item to note for this section is that we have changed the standard use of the
observer pattern. Instead of having one subject class with various observer objects
waiting for changes, we now have one observer object with multiple subject classes.
This use of the observer pattern allows us to centralize all the sound and music
resources to one class, AudioManager.

We will discuss the audio-related classes for this chapter, AudioObserver,
AudioSubject, and AudioManager, in the following sections.

http://audacityteam.org/download/
http://audacityteam.org/download/

Chapter 8

[291]

AudioObserver
The following class diagram (Figure 3) represents the AudioObserver interface:

Figure 3

This interface is streamlined, but the parameters, AudioCommand and
AudioTypeEvent, deserve further explanation, starting with the following
AudioObserver source (which can be found at core\src\com\packtpub\libgdx\
bludbourne\audio\AudioObserver.java):

package com.packtpub.libgdx.bludbourne.audio;

public interface AudioObserver {
 public static enum AudioTypeEvent{
 MUSIC_TITLE("audio/10112013.wav"),
 MUSIC_TOWN("audio/Magic Town_0.mp3"),
 MUSIC_TOPWORLD("audio/n3535n5n335n35nj.ogg"),
 MUSIC_CASTLEDOOM("audio/Dark chamber.mp3"),
 MUSIC_BATTLE("audio/Random Battle.mp3"),
 MUSIC_INTRO_CUTSCENE("audio/Takeover_5.mp3"),
 MUSIC_LEVEL_UP_FANFARE(
 "audio/4 Open Surge score jingle - B.ogg"),

 SOUND_CREATURE_PAIN(
 "audio/27780_SFX_CreatureGruntInPain1.wav"),
 SOUND_PLAYER_PAIN(
 "audio/27678_SFX_ComicalSoundsTiredGrunt1.wav"),
 SOUND_PLAYER_WAND_ATTACK(
 "audio/26230_SFX_ProductionElementReverseWhoosh19.wav"),
 SOUND_EATING(
 "audio/17661_SFX_HumanEatingPotatoChips1.wav"),
 SOUND_DRINKING(
 "audio/27677_SFX_ComicalSoundsSwallowLiquid1.wav"),
 SOUND_COIN_RUSTLE(
 "audio/00954_SFX_MoneyCoinsDumpedInHand_final.wav"),
 NONE("");

Oh, No! Looks Like Drama!

[292]

 private String _audioFullFilePath;

 AudioTypeEvent(String audioFullFilePath){
 this._audioFullFilePath = audioFullFilePath;
 }
 public String getValue(){
 return _audioFullFilePath;
 }
 }

An AudioTypeEvent enum type represents a specific sound or music file to run
a command on. In order to maintain type safety for the different audio files, we
will implement them as an enum. There can be issues with defining the locations
for these files elsewhere, with the potential to load the wrong file location for a
particular AudioTypeEvent. In order to mitigate this potential issue, we will be
storing the file locations alongside their filename counterparts. So, for each defined
AudioTypeEvent enum type, we will pass a string that represents the file location
into its corresponding constructor. In order to access a particular AudioTypeEvent
file location, the getValue() method is provided as a convenient accessor for that
value.

The following list gives a brief explanation of where the music and sounds are used:

•	 MUSIC_TITLE: This retro track is played when the game starts up at the Main
Menu screen, and throughout the screens, until a game is loaded

•	 MUSIC_TOWN: This uplifting track is played as the player is walking around
the Town map

•	 MUSIC_TOPWORLD: This somber track is played as the player is walking
outside of town, on the TOP_WORLD map

•	 MUSIC_CASTLEDOOM: This ominous track is played as the player is walking
around the scene for the final fight, at the Castle of Doom

•	 MUSIC_BATTLE: This upbeat track is played when the player encounters an
enemy in the field of battle

•	 MUSIC_INTRO_CUTSCENE: This suspenseful track is played when a cutscene
is playing

•	 MUSIC_LEVEL_UP_FANFARE: This track is played when the player levels up or
completes a quest

•	 SOUND_CREATURE_PAIN: This sound is played when the player successfully
attacks the monster and the monster sustains damage

•	 SOUND_PLAYER_PAIN: This sound plays when the player was successfully
attacked by the monster and the player sustains damage

Chapter 8

[293]

•	 SOUND_PLAYER_WAND_ATTACK: This sound plays when the player successfully
attacks the monster with a wand and the monster sustains damage

•	 SOUND_EATING: This sound plays when the player consumes a scroll
(yummy) to heal their HP

•	 SOUND_DRINKING: This sound plays when the player consumes a vial to
recover their MP

•	 SOUND_COIN_RUSTLE: This sound plays when any money exchanges hands,
such as buying, selling, or receiving quest rewards

•	 NONE: This is a default enum for commands that do not require a specific
AudioTypeEvent

Take a look at the following snippet:

 public static enum AudioCommand {
 MUSIC_LOAD,
 MUSIC_PLAY_ONCE,
 MUSIC_PLAY_LOOP,
 MUSIC_STOP,
 MUSIC_STOP_ALL,
 SOUND_LOAD,
 SOUND_PLAY_ONCE,
 SOUND_PLAY_LOOP,
 SOUND_STOP
 }
 void onNotify(AudioCommand command, AudioTypeEvent event);
}

An AudioCommand enum type represents a specific command to run on the
AudioTypeEvent enum type passed in. The following list describes each command
in detail:

•	 MUSIC_LOAD: This represents the command to load a specific music file. The
separation between loading and playing a specific music file allows the front
loading of resources upon construction so that the music can be played later.

•	 MUSIC_PLAY_ONCE: This represents the command to only play the music file
once.

•	 MUSIC_PLAY_LOOP: This represents the command to continue to play the
music file on a continuous loop.

•	 MUSIC_STOP: This represents the command to stop a specific music file
currently playing.

Oh, No! Looks Like Drama!

[294]

•	 MUSIC_STOP_ALL: This represents the command to stop all music currently
playing. The AudioTypeEvent enum type to use in conjunction with this
command would be NONE, since the second parameter is not used.

•	 SOUND_LOAD: This represents the command to load a specific sound file. The
separation from loading and playing a specific sound file allows you to front
load the resources on construction and then play the sound later.

•	 SOUND_PLAY_ONCE: This represents the command to only play the sound file
once.

•	 SOUND_PLAY_LOOP: This represents the command to continue to play the
sound file on a continuous loop.

•	 SOUND_STOP: This represents the command to stop a specific sound file
currently playing.

The AudioObserver is slightly different than the other observer classes that we
have previously implemented because there are two enum type parameters in the
signature for onNotify(). This design allows us to issue simple commands on
specific files without worrying about the underlying details and makes issuing
commands throughout our game straightforward.

AudioSubject
The following class diagram (Figure 4) represents the AudioSubject interface:

Figure 4

For this chapter, the classes that implement the AudioSubject interface are Map,
PlayerHUD, and GameScreen.

Chapter 8

[295]

PlayerHUD implements the AudioSubject interface so that the appropriate sounds
can be played, for instance, when the player is hit and loses health or the player
purchases items from the store. The following code snippet is a quick review of how
we would implement the subject class for an observer pattern and also register the
observer:

...
public class PlayerHUD implements AudioSubject {
...
 private Array<AudioObserver> _observers;

 public PlayerHUD(Camera camera, Entity player,
 MapManager mapMgr) {
 _observers = new Array<AudioObserver>();
 ...
 this.addObserver(AudioManager.getInstance());
 }

Here, we initialize an empty array for the AudioObserver objects in the PlayerHUD
constructor and then add the AudioManager instance (which implements the
AudioObserver class) to this array by calling addObserver():

 ...

 @Override
 public void addObserver(AudioObserver audioObserver) {
 _observers.add(audioObserver);
 }

 @Override
 public void removeObserver(AudioObserver audioObserver) {
 _observers.removeValue(audioObserver, true);
 }

 @Override
 public void removeAllObservers() {
 _observers.removeAll(_observers, true);
 }

 @Override
 public void notify(AudioObserver.AudioCommand command,
 AudioObserver.AudioTypeEvent event) {
 for(AudioObserver observer: _observers){
 observer.onNotify(command, event);
 }
 }
}

Oh, No! Looks Like Drama!

[296]

This is a pretty standard implementation for the AudioSubject, and it is pretty
much all a class would need to implement in order to access the capabilities of the
AudioManager class via notifications.

The Map class implements the AudioSubject interface as well so that all derived
classes such as TownMap, TopWorldMap, and CastleDoomMap have access to the music
and sound resources. The one item to note is that a simple abstract interface was
created for Map so that each derived Map class can manage their own specific music.
The following is a snippet of this interface in Map:

public abstract class Map implements AudioSubject{
 ...
 abstract public void unloadMusic();
 abstract public void loadMusic();
}

The following is an example from TownMap that implements this interface:

public class TownMap extends Map{
 …
 @Override
 public void unloadMusic() {
 notify(AudioObserver.AudioCommand.MUSIC_STOP,
 AudioObserver.AudioTypeEvent.MUSIC_TOWN);
 }

 @Override
 public void loadMusic() {
 notify(AudioObserver.AudioCommand.MUSIC_LOAD,
 AudioObserver.AudioTypeEvent.MUSIC_TOWN);
 notify(AudioObserver.AudioCommand.MUSIC_PLAY_LOOP,
 AudioObserver.AudioTypeEvent.MUSIC_TOWN);
 }
}

As we can see, every time a new map loads in MapManager, MapManager will
first call unloadMusic(). This sends a notification to the AudioManager (which
implements the AudioObserver interface) to stop the currently playing music. Then,
a loadMusic() call is made on the new map to be loaded. This sends a notification to
the AudioManager to first load the music file and then start playing on a continuous
loop.

Finally, we have the GameScreen class that implements the Screen interface and the
AudioSubject interface, and it is a new class that all current screens will extend.

Chapter 8

[297]

Now that we understand the observer pattern for handling music and sound, we
can now look at the concrete implementation of the AudioObserver interface, that is,
AudioManager.

AudioManager
The following is the source from AudioManager, which can be found at core\src\
com\packtpub\libgdx\bludbourne\audio\AudioManager.java:

package com.packtpub.libgdx.bludbourne.audio;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.audio.Music;
import com.badlogic.gdx.audio.Sound;
import com.packtpub.libgdx.bludbourne.Utility;
import java.util.Hashtable;

The primary classes from LibGDX that the AudioManager will use to manage the
music and sound files are Music and Sound from the com.badlogic.gdx.audio
library.

A Music object (which supports the Music interface and the corresponding concrete
backend implementation) represents an audio file streamed from disk, instead of
loading the file into memory at once. This interface provides standard play, pause,
and stop functionality, and also has methods for panning, changing position, and
volume control.

A Sound object (which supports the Sound interface and the corresponding concrete
backend implementation) represents a short audio file that is fully loaded into
memory. This interface provides standard play, pause, and stop functionality, and
also pitch, panning, and volume control:

public class AudioManager implements AudioObserver {
 private static final String TAG =
 AudioManager.class.getSimpleName();

 private static AudioManager _instance = null;

 private Hashtable<String, Music> _queuedMusic;
 private Hashtable<String, Sound> _queuedSounds;

 private AudioManager(){
 _queuedMusic = new Hashtable<String, Music>();
 _queuedSounds = new Hashtable<String, Sound>();
 }

Oh, No! Looks Like Drama!

[298]

We are implementing the AudioManager as a Singleton instance to guarantee
that all notifications are funneled to this one manager type class. The only other
member variables that we will maintain are the two Hashtable data structures,
_queuedMusic and _queuedSounds, which will contain any music or sound files,
respectively, that we have previously loaded. This gives us a cache of the Music
and Sound objects that we can access later without reloading from disk. This also
provides us an easy method to dispose of the resources later. As your game grows
and the assets increase, one consideration is that you can implement functionality to
clear the cache on every load of a map, in order to minimize the memory footprint:

 public static AudioManager getInstance() {
 if (_instance == null) {
 _instance = new AudioManager();
 }

 return _instance;
 }

This getInstance() implements a lazy style initialization for the Singleton instance
of the AudioManager:

 @Override
 public void onNotify(AudioCommand command,
 AudioTypeEvent event) {
 switch(command){
 case MUSIC_LOAD:
 Utility.loadMusicAsset(event.getValue());
 break;
 case MUSIC_PLAY_ONCE:
 playMusic(false, event.getValue());
 break;
 case MUSIC_PLAY_LOOP:
 playMusic(true, event.getValue());
 break;
 case MUSIC_STOP:
 Music music = _queuedMusic.get(event.getValue());
 if(music != null){
 music.stop();
 }
 break;
 case MUSIC_STOP_ALL:
 for(Music musicStop: _queuedMusic.values()){
 musicStop.stop();
 }
 break;

Chapter 8

[299]

 case SOUND_LOAD:
 Utility.loadSoundAsset(event.getValue());
 break;
 case SOUND_PLAY_LOOP:
 playSound(true, event.getValue());
 break;
 case SOUND_PLAY_ONCE:
 playSound(false, event.getValue());
 break;
 case SOUND_STOP:
 Sound sound = _queuedSounds.get(event.getValue());
 if(sound != null){
 sound.stop();
 }
 break;
 default:
 break;
 }
 }

This onNotify() method is the single interface that needs to be implemented
for the AudioObserver. This method implements all the various AudioCommand
enum objects discussed in the previous section, where the commands wrap the
actual functionality from the Music and Sound classes. The second parameter,
AudioTypeEvent, provides the actual full file path, and is used as the key for the two
Hashtable member variables that act as a cache:

 private Music playMusic(boolean isLooping,
 String fullFilePath){
 Music music = _queuedMusic.get(fullFilePath);
 if(music != null){
 music.setLooping(isLooping);
 music.play();
 }else if(Utility.isAssetLoaded(fullFilePath)){
 music = Utility.getMusicAsset(fullFilePath);
 music.setLooping(isLooping);
 music.play();
 _queuedMusic.put(fullFilePath, music);
 }else{
 Gdx.app.debug(TAG, "Music not loaded");
 return null;
 }
 return music;
 }

Oh, No! Looks Like Drama!

[300]

The playMusic() method will essentially try to play the music file based on the
String file path passed in as a parameter. First, we check to see whether the Music
object is in the cache, and if it is, we use that to play the music file. If the Music
object was not previously used, or not cached, then we call a Utility method to see
whether it was loaded and is ready for use. If the music file was not cached or is not
loaded, then we send a message:

 private Sound playSound(boolean isLooping,
 String fullFilePath){
 Sound sound = _queuedSounds.get(fullFilePath);
 if(sound != null){
 long soundId = sound.play();
 sound.setLooping(soundId, isLooping);
 }else if(Utility.isAssetLoaded(fullFilePath)) {
 sound = Utility.getSoundAsset(fullFilePath);
 long soundId = sound.play();
 sound.setLooping(soundId, isLooping);
 _queuedSounds.put(fullFilePath, sound);
 }else{
 Gdx.app.debug(TAG, "Sound not loaded");
 return null;
 }
 return sound;
 }

The playSound() method will try to play the sound file based on the String file
path passed in as a parameter. First, we check to see whether the Sound object is in
the cache, and if it is, we use that to play the sound file. If the Sound object was not
previously used or not cached, then we call a Utility method to see whether it was
loaded and is ready for use. One difference from the Music class is that in order to
set properties on the Sound object after playing, we need to use a sound ID value. If
the sound file was not cached or is not loaded, then we send a message noting that
we don't have a valid sound:

 public void dispose(){
 for(Music music: _queuedMusic.values()){
 music.dispose();
 }

 for(Sound sound: _queuedSounds.values()){
 sound.dispose();
 }
 }
}

Chapter 8

[301]

Here, in the dispose() method, we iterate over our cache of the Music and Sound
objects and call their respective dispose() methods. Since these objects are a
managed resource, it is a good idea that once we are finished using them, we call
their appropriate dispose() method.

So, in this section, we have covered the basics of the audio library in LibGDX,
specifically with the use of the Music and Sound classes. We have also learned how
the observer pattern can be effectively used for a simple notification-based use of
the Music and Sound objects, using the AudioSubject and AudioObserver classes.
We have also covered how the AudioManager implements the AudioObserver and
simplifies the process of implementing music and sound support in your game.

Creating cutscenes
In any video game, cutscenes play an important part in order to convey emotion to
the player. They help to progress the story and immerse the players in your world.
This is even more important in an RPG, as the player needs to react to world events
and feel that they are making an impact in the world you are creating. For this
section, we will implement a cutscene that explains the influx of monsters over the
lands of BludBourne, but also leaves some unanswered questions to entice the player
to continue playing.

The basic idea is that we create a Screen class that renders a Stage object. We have
previously discussed the Stage class in Chapter 4, Where Do I Put My Stuff?. Basically,
the Stage class manages all the different aspects of an Actor object lifecycle, such
as drawing the Actor and distributing the relevant input events. The individual
nodes that compose the Scene2D scene graph are referred to as Actor objects and
they contain their own position, size, origin, scale, rotation, and color. In order to
manipulate the Actor objects on Stage, we will use classes from the Action class in
the LibGDX library com.badlogic.gdx.scenes.scene2d. These Action objects are
run during a Stage class method call, act(), on all the relevant Actor objects. These
actions happen over time, and so this act() call is made every frame, based on the
latest delta time between frames (the topic of frame update deltas is covered in more
detail in Chapter 2, Welcome to the Land of BludBourne).

Action
The Action class gives us the ability to run some task (small autonomous piece of
code) over time, such as moving objects around the screen or generating special
effects at a certain time. There are myriad types of Action objects available that
cover the full gamut of the types of tasks you may need done.

Oh, No! Looks Like Drama!

[302]

The following are top-level Action objects that apply to other Action objects:

•	 AddAction: This task will add a specific Action object to an Actor
•	 RemoveAction: This task will remove a specific Action object from an Actor
•	 DelayAction: This task delays the execution of an Action object for a certain

amount of time
•	 TimeScaleAction: This task multiplies the delta of an Action object, thus

speeding up or slowing down specific actions
•	 RepeatAction: This task will rerun an Action object a specified number of

times, or forever
•	 RunnableAction: This task will run a specific piece of code in a

Runnable object

The following are Action objects that manipulate some property of an Actor:

•	 MoveToAction: This task moves an Actor to a specific position
•	 MoveByAction: This task moves an Actor to a position relative to its

current position
•	 SizeToAction: This task resizes the width and height of an Actor
•	 SizeByAction: This task resizes the width and height an Actor relative to its

current size
•	 ScaleToAction: This task changes the scale of the x and y coordinates of

an Actor
•	 ScaleByAction: This task changes the scale of the x and y coordinates of an

Actor relative to its current scale values
•	 RotateToAction: This task changes the rotation angle of an Actor
•	 RotateByAction: This task changes the rotation angle of an Actor relative to

its current rotation
•	 ColorAction: This task changes the color of an Actor
•	 AlphaAction: This task changes the alpha channel of an Actor. It is useful

for fade in and fade out effects
•	 VisibleAction: This task changes whether an Actor is visible or not
•	 TouchableAction: This task changes whether an Actor is touchable or not
•	 RemoveActorAction: This task removes an Actor from the stage
•	 LayoutAction: This task will either enable or disable the layout of an Actor
•	 AfterAction: This task will run once all the other tasks associated with the

Actor have finished

Chapter 8

[303]

•	 AddListenerAction: This task will add a Listener object to an Actor
•	 RemoveListenerAction: This task will remove a Listener object from

an Actor

The following are Action objects that are composed of other Action objects:

•	 SequenceAction: This task will execute the Action objects in sequence,
one after the other

•	 ParallelAction: This task will execute the Action objects in parallel,
all at once

With a brief explanation of the Action library behind us, we can now look at the
implementation that uses some of these Action objects.

CutSceneScreen
For this section, we will be focusing on the CutSceneScreen class that can be found
at core\src\com\packtpub\libgdx\bludbourne\screens\CutSceneScreen.java.
The following is the source for CutSceneScreen:

public class CutSceneScreen extends MainGameScreen {
 private BludBourne _game;
 private Stage _stage;
 private Viewport _viewport;
 private Stage _UIStage;
 private Viewport _UIViewport;
 private Actor _followingActor;
 private boolean _isCameraFixed = true;
 private Dialog _messageBoxUI;
 private Label _label;
 private Image _transitionImage;

CutSceneScreen derives from the base class MainGameScreen so that we can get
access to an initialized MapManager for loading the different maps and also some
convenience methods.

Here, we create two Stage objects. One Stage object, _stage, will contain all the
Actor objects that will be in the cutscene. The other Stage object, _UIStage, will
contain any UI components that we need for the cutscene. In our case, we will be
using a simple Dialog object to act as the message box when the characters are
talking during the cutscene. We will also maintain a reference to the current Actor
in the scene, _followingActor, so that the camera can lock its coordinates to those
coordinates of the Actor. Otherwise, we will just keep the boolean member variable,
_isCameraFixed, set to true.

Oh, No! Looks Like Drama!

[304]

The only other variable of note would be the Image object, _transitionImage. This
will be explained more in depth a little further down, but in essence, this is an Image
that will cover the entire screen with a filled color during transitions between scenes:

 private Action _screenFadeOutAction;
 private Action _screenFadeInAction;
 private Action _introCutSceneAction;
 private Action _switchScreenAction;
 private Action _setupScene01;
 private Action _setupScene02;
 private Action _setupScene03;
 private Action _setupScene04;
 private Action _setupScene05;

Here, we list out the important Action object member variables that we will use
during the cutscene. The Action object _screenFadeOutAction will use the
AlphaAction class to transition the _transitionImage Actor from transparent to
filled. The Action object _screenFadeInAction will use the AlphaAction class
to transition the _transitionImage Actor from filled to transparent. The Action
object _introCutSceneAction is a SequenceAction composed of everything that
will happen during the cutscene. The Action object _switchScreenAction will be
used in an AfterAction object that will be run after the cutscene finishes, in order to
switch to the main menu. The last five Action objects are all RunnableAction objects
that will set up each of the different scenes:

 private AnimatedImage _animBlackSmith;
 private AnimatedImage _animInnKeeper;
 private AnimatedImage _animMage;
 private AnimatedImage _animFire;
 private AnimatedImage _animDemon;

The last five member variables are all AnimatedImage objects. The AnimatedImage
class was discussed in Chapter 7, Time to Show These Monsters Who's the Boss, and we
will be using it here to represent the different characters in the cutscene:

 public CutSceneScreen(BludBourne game) {
 super(game);

 _game = game;

 _viewport = new ScreenViewport(_camera);
 _stage = new Stage(_viewport);

 _UIViewport = new ScreenViewport(_hudCamera);

Chapter 8

[305]

 _UIStage = new Stage(_UIViewport);

 _label = new Label("Test", Utility.STATUSUI_SKIN);
 _label.setWrap(true);

 _messageBoxUI = new Dialog("",
 Utility.STATUSUI_SKIN, "solidbackground");
 _messageBoxUI.setVisible(false);
 _messageBoxUI.getContentTable().add(_label).
 width(_stage.getWidth()/2).pad(10, 10, 10, 0);
 _messageBoxUI.pack();
 _messageBoxUI.setPosition(
 _stage.getWidth() / 2 - _messageBoxUI.getWidth() / 2,
 _stage.getHeight() - _messageBoxUI.getHeight());

 _followingActor = new Actor();
 _followingActor.setPosition(0, 0);

 notify(AudioObserver.AudioCommand.MUSIC_LOAD,
 AudioObserver.AudioTypeEvent.MUSIC_INTRO_CUTSCENE);

In the CutSceneScreen constructor, we will first initialize the Stage objects for our
Actor objects and UI components. We will also send a notification to load the music
for this cutscene:

 Pixmap pixmap = new Pixmap(1, 1, Pixmap.Format.RGBA8888);
 pixmap.setColor(Color.BLACK);
 pixmap.fill();
 Drawable drawable = new TextureRegionDrawable(
 new TextureRegion(new Texture(pixmap)));

 _transitionImage = new Image();
 _transitionImage.setFillParent(true);
 _transitionImage.setDrawable(drawable);

We then construct Pixmap. A Pixmap object is an image represented in memory.
Here, we programmatically create an image with a width and height of 1
(a pixel). We then set the Pixmap object's color to black and fill the pixel with said
color. This gives us a Drawable that we can then pass into our Image object, _
transitionImage. Since the parent of _transitionImage will be the Stage object
_stage, we make sure to set the size of the Image to the entire screen. Now we have
an Actor, _transitionImage, which covers the entire screen with black:

 _screenFadeOutAction = new Action() {
 @Override

Oh, No! Looks Like Drama!

[306]

 public boolean act(float delta) {
 _transitionImage.addAction(
 Actions.sequence(
 Actions.alpha(0),
 Actions.fadeIn(3)
));
 return true;
 }
 };

 _screenFadeInAction = new Action() {
 @Override
 public boolean act(float delta) {
 _transitionImage.addAction(
 Actions.sequence(
 Actions.alpha(1),
 Actions.fadeOut(3)
));
 return true;
 }
 };

After creating _transitionImage, we can now create two different Action objects to
manipulate this Image at various times. The Action object _screenFadeOutAction
will use the AlphaAction to transition the _transitionImage Actor from
transparent to filled. This will simulate the effect of the cutscene screen fading to
black over three seconds. The Action object _screenFadeInAction will use the
AlphaAction to transition the _transitionImage Actor from filled to transparent.
This will simulate the effect of the black screen fading to the cutscene screen over
three seconds.

This is a nice simple trick in order to get the effect of screen transitions without the
complexity of overriding the Scene class and implementing your own draw() calls:

 _animBlackSmith = getAnimatedImage(EntityFactory.
 EntityName.TOWN_BLACKSMITH);
 _animInnKeeper = getAnimatedImage(EntityFactory.
 EntityName.TOWN_INNKEEPER);
 _animMage = getAnimatedImage(EntityFactory.
 EntityName.TOWN_MAGE);
 _animFire = getAnimatedImage(EntityFactory.

Chapter 8

[307]

 EntityName.FIRE);
 _animDemon = getAnimatedImage(MonsterFactory.
 MonsterEntityType.MONSTER042);

 //Actions
 _switchScreenAction = new RunnableAction(){
 @Override
 public void run() {
 _game.setScreen(_game.getScreenType(
 BludBourne.ScreenType.MainMenu));
 }
 };

Here, we construct RunnableAction for _switchScreenAction that will set the
screen to the main menu when run:

 _setupScene01 = new RunnableAction() {
 @Override
 public void run() {
 hideMessage();
 _mapMgr.loadMap(MapFactory.MapType.TOWN);
 _mapMgr.disableCurrentmapMusic();
 setCameraPosition(10, 16);

 _animBlackSmith.setVisible(true);
 _animInnKeeper.setVisible(true);
 _animMage.setVisible(true);

 _animBlackSmith.setPosition(10, 16);
 _animInnKeeper.setPosition(12, 15);
 _animMage.setPosition(11, 17);

 _animDemon.setVisible(false);
 _animFire.setVisible(false);
 }
 };

The RunnableAction scene objects are meant to demonstrate the initial setup for
each of the scenes. These different scene objects could have used other Action
objects, such as MoveToAction instead of setPosition(), but for the purposes of
clarity, they are implemented this way.

Oh, No! Looks Like Drama!

[308]

For our first scene, we will start by hiding the dialog box. We will load the TOWN
map and disable any default music for that particular map. We will then set a static
camera at a specific position, near the town square. This scene will include three
Actor objects, so we position them within the scene and then hide the other two
Actor objects that will come later:

 _setupScene02 = new RunnableAction() {
 @Override
 public void run() {
 hideMessage();
 _mapMgr.loadMap(MapFactory.MapType.TOP_WORLD);
 _mapMgr.disableCurrentmapMusic();
 setCameraPosition(50, 30);

 _animBlackSmith.setPosition(50, 30);
 _animInnKeeper.setPosition(52, 30);
 _animMage.setPosition(50, 28);

 _animFire.setPosition(52, 28);
 _animFire.setVisible(true);
 }
 };

For the second scene, we hide the dialog to start because we don't know if previous
Action objects already displayed the dialog box. We then load the TOP_WORLD
map and again disable the default map music. Again, we set a static camera to a
specific location. This scene takes place in a cemetery where our three characters
are conspiring to raise someone from the dead. In this scene, not only do we see our
three villagers, but also a mystical fire used in the spell:

 _setupScene03 = new RunnableAction() {
 @Override
 public void run() {
 _animDemon.setPosition(52, 28);
 _animDemon.setVisible(true);
 hideMessage();
 }
 };

For the third scene setup, we now set the boss demon as visible:

 _setupScene04 = new RunnableAction() {
 @Override

Chapter 8

[309]

 public void run() {
 hideMessage();
 _animBlackSmith.setVisible(false);
 _animInnKeeper.setVisible(false);
 _animMage.setVisible(false);
 _animFire.setVisible(false);

 _mapMgr.loadMap(MapFactory.MapType.TOP_WORLD);
 _mapMgr.disableCurrentmapMusic();

 _animDemon.setVisible(true);
 _animDemon.setScale(1, 1);
 _animDemon.setSize(16 * Map.UNIT_SCALE,
 16 * Map.UNIT_SCALE);
 _animDemon.setPosition(50, 40);

 followActor(_animDemon);
 }
 };

For the fourth scene, we hide any messages displayed and also the three villagers
and their mystical fire. We now load the TOP_WORLD map (we don't want to assume
that it was previously loaded, and if it was, we will return right away as it's already
loaded) and disable the default music. This time, we reset the demon's scale and size
to its original settings, reposition it over some trees after the cemetery, and then set
the camera to follow the demon:

 _setupScene05 = new RunnableAction() {
 @Override
 public void run() {
 hideMessage();
 _animBlackSmith.setVisible(false);
 _animInnKeeper.setVisible(false);
 _animMage.setVisible(false);
 _animFire.setVisible(false);

 _mapMgr.loadMap(MapFactory.
 MapType.CASTLE_OF_DOOM);
 _mapMgr.disableCurrentmapMusic();
 followActor(_animDemon);

 _animDemon.setVisible(true);
 _animDemon.setPosition(15, 1);
 }
 };

Oh, No! Looks Like Drama!

[310]

For the fifth and final scene, we again hide the message box and make sure all other
characters are hidden. We load the CASTLE_OF_DOOM map and disable the default
music. We then reposition the demon to the bottom of the map and set the camera to
follow the demon:

 //layout
 _stage.addActor(_animMage);
 _stage.addActor(_animBlackSmith);
 _stage.addActor(_animInnKeeper);
 _stage.addActor(_animFire);
 _stage.addActor(_animDemon);
 _stage.addActor(_transitionImage);
 _transitionImage.toFront();

 _UIStage.addActor(_messageBoxUI);
 }

We add all of our characters to the Stage object, making sure that the Image object, _
transitionImage, is always at the front since it will be used to transition in and out
of the different scenes:

 private Action getCutsceneAction(){
 _setupScene01.reset();
 _setupScene02.reset();
 _setupScene03.reset();
 _setupScene04.reset();
 _setupScene05.reset();
 _screenFadeInAction.reset();
 _switchScreenAction.reset();

There are two important points regarding the use of Action objects that deserve an
explanation here. First, every time an Action object is finished, it is removed from
the Actor it was associated with. Therefore, the Action object will not be run again
unless it is added back. The second point is that, even if you add an Action object
back to an Actor, if it was previously completed, it will not run again because a
completed flag was set. In order to reset the Actor object as if it was newly created,
you need to use reset() on the Action object before adding. These two points are
important if you wish to reuse Action objects, since these points are not obvious
when first using them.

The following is the entire cutscene example for BludBourne, encapsulated in
SequenceAction:

 return Actions.sequence(
 Actions.addAction(_setupScene01),

Chapter 8

[311]

 Actions.addAction(_screenFadeInAction),
 Actions.delay(3),
 Actions.run(
 new Runnable() {
 @Override
 public void run() {
 showMessage("BLACKSMITH: We have planned this
 long enough. The time is now! I have had
 enough
 talk...");
 }
 }),
 Actions.delay(7),

Here, we add the first scene Action object and also add the Action that will fade
from a black screen to the currently loaded map. We add a delay as well to make
sure the fade transition finishes before continuing. We then show the first piece of
dialog, and this sequence of actions can be seen in the following screenshot (Figure 5):

Figure 5

Oh, No! Looks Like Drama!

[312]

Consider the following code snippet:

 Actions.run(
 new Runnable() {
 @Override
 public void run() {
 showMessage("MAGE: This is dark magic you
 fool. We must proceed with caution, or this
 could end badly for all of us");
 }
 }),
 Actions.delay(7),
 Actions.run(
 new Runnable() {
 @Override
 public void run() {
 showMessage("INNKEEPER: Both of you
 need to keep it down. If we get
 caught using black magic, we will all
 be hanged!");
 }
 }),
 Actions.delay(5),
 Actions.addAction(_screenFadeOutAction),
 Actions.delay(3),

Here, we display the dialog as the characters communicate, making sure to add a
DelayAction so that the player has time to read the dialog (in our case, five to seven
seconds of delay seems to be appropriate):

 Actions.addAction(_setupScene02),
 Actions.addAction(_screenFadeInAction),
 Actions.delay(3),
 Actions.run(
 new Runnable() {
 @Override
 public void run() {
 showMessage("BLACKSMITH: Now, let's get on
 with this. I don't like the cemeteries
 very much...");
 }
 }
),
 Actions.delay(7),

Chapter 8

[313]

 Actions.run(
 new Runnable() {
 @Override
 public void run() {
 showMessage("MAGE: I told you, we can't rush
 the spell. Bringing someone back to life
 isn't simple!");
 }
 }
),
 Actions.delay(7),
 Actions.run(
 new Runnable() {
 @Override
 public void run() {
 showMessage("INNKEEPER: I know you loved
 your daughter, but this just isn't
 right...");
 }
 }
),
 Actions.delay(7),
 Actions.run(
 new Runnable() {
 @Override
 public void run() {
 showMessage("BLACKSMITH: You have never had
 a child of your own. You just don't
 understand!");
 }
 }
),
 Actions.delay(7),
 Actions.run(
 new Runnable() {
 @Override
 public void run() {
 showMessage("MAGE: You both need to
 concentrate, wait...Oh no, something is
 wrong!!");
 }
 }
),
 Actions.delay(7),

Oh, No! Looks Like Drama!

[314]

We fade out of scene 1 and fade into scene 2. We then display some dialog between
the characters. The previous sequence of Action objects for scene 2 is represented in
the following screenshot (Figure 6):

Figure 6

Consider the following code snippet:

 Actions.addAction(_setupScene03),
 Actions.addAction(Actions.fadeOut(2), _animDemon),
 Actions.delay(2),
 Actions.addAction(Actions.fadeIn(2), _animDemon),
 Actions.delay(2),
 Actions.addAction(Actions.fadeOut(2), _animDemon),
 Actions.delay(2),
 Actions.addAction(Actions.fadeIn(2), _animDemon),
 Actions.delay(2),
 Actions.addAction(Actions.fadeOut(2), _animDemon),
 Actions.delay(2),
 Actions.addAction(Actions.fadeIn(2), _animDemon),
 Actions.delay(2),
 Actions.addAction(Actions.scaleBy(40, 40, 5,

Chapter 8

[315]

 Interpolation.linear), _animDemon),
 Actions.delay(5),
 Actions.addAction(Actions.moveBy(20, 0),
 _animDemon),
 Actions.delay(2),
 Actions.run(
 new Runnable() {
 @Override
 public void run() {
 showMessage("BLACKSMITH: What...What have we
 done...");
 }
 }
),
 Actions.delay(3),

The setup for scene 3 animates the demon Actor with a sequence of fade-in and
fade-out actions and then scales the demon Actor to simulate the Actor flying
toward the camera and flying out of the frame. The following screenshot represents
scene 3 when the demon Actor first appears (Figure 7):

Figure 7

Oh, No! Looks Like Drama!

[316]

Consider the following code snippet:

 Actions.addAction(_screenFadeOutAction),
 Actions.delay(3),
 Actions.addAction(_setupScene04),
 Actions.addAction(_screenFadeInAction),
 Actions.addAction(Actions.moveTo(54, 65, 13,
 Interpolation.linear), _animDemon),
 Actions.delay(10),
 Actions.addAction(_screenFadeOutAction),
 Actions.delay(3),
 Actions.addAction(_screenFadeInAction),

We now set up scene 4 where the demon Actor will be flying over the world on
its way to the castle where it will begin its master plan for utter annihilation of the
inhabitants of BludBourne. We set the destination of the demon Actor and include
a linear interpolation so that the demon Actor object looks like it is flying over the
land. The following screenshot represents this scene (Figure 8):

Figure 8

Chapter 8

[317]

Consider the following code snippet:

 Actions.addAction(_setupScene05),
 Actions.addAction(Actions.moveTo(15, 76, 15,
 Interpolation.linear), _animDemon),
 Actions.delay(15),
 Actions.run(
 new Runnable() {
 @Override
 public void run() {
 showMessage("DEMON: I will now send my
 legions of demons to destroy these sacks
 of meat!");
 }
 }
),
 Actions.delay(5),

In the final scene, scene 5, we now have the demon Actor flying towards its final
resting place, on the throne of the Castle of Doom. The following screenshot shows
the final scene (Figure 9):

Figure 9

Oh, No! Looks Like Drama!

[318]

Consider the following code snippet:

 Actions.addAction(_screenFadeOutAction),
 Actions.delay(5),
 Actions.after(_switchScreenAction)
);
 }

The final Action object is used to switch to the Main Menu when the
cutscene completes:

 private AnimatedImage getAnimatedImage(
 EntityFactory.EntityName entityName){

 Entity entity = EntityFactory.getInstance().
 getEntityByName(entityName);
 return setEntityAnimation(entity);
 }

 private AnimatedImage getAnimatedImage(
 MonsterFactory.MonsterEntityType entityName){

 Entity entity = MonsterFactory.getInstance().
 getMonster(entityName);
 return setEntityAnimation(entity);
 }

 private AnimatedImage setEntityAnimation(Entity entity){
 final AnimatedImage animEntity = new AnimatedImage();
 animEntity.setEntity(entity);
 animEntity.setSize(animEntity.getWidth() * Map.UNIT_SCALE,
 animEntity.getHeight() * Map.UNIT_SCALE);
 return animEntity;
 }

These overloaded getAnimatedImage() methods are convenience methods to get
an Entity object by name and return a newly constructed AnimatedImage. The
setEntityAnimation() method is called by both of these methods in order to load
the animation for the Entity object and set the default size:

 public void followActor(Actor actor){
 _followingActor = actor;
 _isCameraFixed = false;
 }

Chapter 8

[319]

 public void setCameraPosition(float x, float y){
 _camera.position.set(x, y, 0f);
 _isCameraFixed = true;
 }

Both followActor() and setCameraPosition() are used in the operation of the
stage camera. If followActor() is set, then the camera will update its position
relative to the position of the Actor object, essentially locked to a specific Actor. If
setCameraPosition() is called instead, then the camera position will remain fixed:

 public void showMessage(String message){
 _label.setText(message);
 _messageBoxUI.pack();
 _messageBoxUI.setVisible(true);
 }

 public void hideMessage(){
 _messageBoxUI.setVisible(false);
 }

These two helper methods are used to show the dialog used throughout the cutscene:

 @Override
 public void render(float delta) {
 Gdx.gl.glClearColor(0, 0, 0, 1);
 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 _mapRenderer.setView(_camera);

 _mapRenderer.getBatch().enableBlending();
 _mapRenderer.getBatch().setBlendFunction(
 GL20.GL_SRC_ALPHA, GL20.GL_ONE_MINUS_SRC_ALPHA);

 if(_mapMgr.hasMapChanged()){
 _mapRenderer.setMap(_mapMgr.getCurrentTiledMap());
 _mapMgr.setMapChanged(false);
 }

 _mapRenderer.render();

 if(!_isCameraFixed){
 _camera.position.set(_followingActor.getX(),
 _followingActor.getY(), 0f);
 }

Oh, No! Looks Like Drama!

[320]

 _camera.update();

 _UIStage.act(delta);
 _UIStage.draw();

 _stage.act(delta);
 _stage.draw();
 }

The render() method overrides the base render() implementation from
MainGameScreen. Here, we update the map rendering information first. We then
check whether we need to update the camera coordinates based on whether we have
a fixed camera or one following an Actor object. Finally, we update the UI Stage
object and the Stage with all of our Actor objects:

 @Override
 public void show() {
 _introCutSceneAction = getCutsceneAction();
 _stage.addAction(_introCutSceneAction);

 notify(AudioObserver.AudioCommand.MUSIC_STOP_ALL,
 AudioObserver.AudioTypeEvent.NONE);
 notify(AudioObserver.AudioCommand.MUSIC_PLAY_LOOP,
 AudioObserver.AudioTypeEvent.MUSIC_INTRO_CUTSCENE);

 ProfileManager.getInstance().removeAllObservers();
 if(_mapRenderer == null){
 _mapRenderer = new OrthogonalTiledMapRenderer(
 _mapMgr.getCurrentTiledMap(), Map.UNIT_SCALE);
 }
 }

The show() method will be called when the CutSceneScreen is displayed. Every
time we are about to show the cutscene, we first need to get the Action objects that
will play out on the screen and then add them to the Stage object. We then stop all
music previously playing and start to play the music specific to this cutscene. Finally,
because we are extending from MainGameScreen, we want to make sure we remove
any observers that might have been added by the base class. Otherwise, we can end
up having updates that we don't want:

 @Override
 public void hide() {

Chapter 8

[321]

 notify(AudioObserver.AudioCommand.MUSIC_STOP,
 AudioObserver.AudioTypeEvent.MUSIC_INTRO_CUTSCENE);
 ProfileManager.getInstance().removeAllObservers();
 Gdx.input.setInputProcessor(null);
 }
}

Finally, when we exit the current CutSceneScreen, we make sure to stop the music
from playing, remove any observers that may have been added by our base class,
and return.

So, in this section, we have seen first-hand the power of the Action classes and how
they can be used to create an engaging cutscene that adds drama to our game.

Summary
In this chapter, we explored the LibGDX classes, Music and Sound, for playing
audio. We learned how the observer pattern can be used in a different way, with
AudioSubject and AudioObserver. We also implemented the AudioManager class
to manage the AudioObserver notifications from all the AudioSubject objects.
Finally, we learned about the Action objects and how these tasks can be used to
create cutscenes as implemented in CutSceneScreen.

In the next chapter, we will wrap up the last of the features for our game, including
a shake camera, static lighting, particle effects, screen transitions, and a day-night
cycle.

[323]

Time to Set the Mood
With all the features that have been implemented for BludBourne, arriving at a point
in the development where we can add the finishing details and special effects is
definitely exciting. In this chapter, we will discuss assorted topics that will give
your game the extra attention to detail, which will add to the experience for the
player. First, we will implement screen fade transitions between changing map
locations and cutscene transitions. Second, we will implement a nice special effect
where the UI and enemy will shake when hit. When coupled with the sound effects
from Chapter 8, Oh, No! Looks Like Drama!, the shaking when hit will really make
the blows feel impactful. Third, we will explore the static lighting model and how
we can implement it for the light sources in BludBourne. Fourth, we will add a nice
transitions in-game between the different points in the day based on the current
time. Finally, we will discuss the addition of particle effects and how they can really
make a scene stand out with minimal effort.

So, we will cover the following topics in this chapter:

•	 Screen transitions
•	 Shake camera
•	 Static lighting
•	 Day-to-night cycle
•	 Particle effects

Time to Set the Mood

[324]

Screen transitions
One simple but effective effect is to have a nice transition when the player travels
from one location to another. Sometimes, just appearing in another location can be
a jarring experience for the player. The following class diagram (Figure 1) shows
the relationships for the two classes we will develop for this transition effect,
ScreenTransitionActor and ScreenTransitionAction:

Figure 1

In order to develop ScreenTransitionActor and ScreenTransitionAction, we
will need to do a little refactoring from Chapter 8, Oh, No! Looks Like Drama!, and
move some of the core logic used in the cutscene transition into its logical component
class. The ScreenTransitionActor class derives from the Image class and will
essentially represent a black screen-sized transition. The ScreenTransitionAction
class derives from the Action class and will be used during the animation frame
cycle to update the ScreenTransitionActor object in order to display a nice
smooth transition for the player. A ScreenTransitionActor object will live in the
CutSceneScreen class for transitions between scenes as well as the PlayerHUD for
transitions between location changes and battle screens. Static method calls will
be made to the ScreenTransitionAction class to animate the transitions during
those events.

Chapter 9

[325]

The ScreenTransitionActor class
The following source for ScreenTransitionActor can be found in core\src\com\
packtpub\libgdx\bludbourne\sfx\:

package com.packtpub.libgdx.bludbourne.sfx;

import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.graphics.Pixmap;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.TextureRegion;
import com.badlogic.gdx.scenes.scene2d.Touchable;
import com.badlogic.gdx.scenes.scene2d.ui.Image;
import com.badlogic.gdx.scenes.scene2d.utils.
 TextureRegionDrawable;

public class ScreenTransitionActor extends Image {

The ScreenTransitionActor class extends from the Image class in order to satisfy
two requirements. First, an Actor needs to live in the Stage object of each relevant
class in order to take advantage of proper size and positioning on the screen as well
as frame updates. Second, we want to have a drawable type surface to render to the
screen during transitions:

 private Color _transitionColor = Color.BLACK;

This configurable Color object represents the color that the transition screen will be
during the transitions:

 public ScreenTransitionActor(){
 init();
 }

 public ScreenTransitionActor(Color color){
 this._transitionColor = color;
 init();
 }

Here, we have an overloaded constructor, ScreenTransitionActor(), for passing
in the default Color object during construction instead of setting the value later:

 private void init(){
 toFront();
 setFillParent(true);

Time to Set the Mood

[326]

 Pixmap pixmap = new Pixmap(1, 1, Pixmap.Format.RGBA8888);
 pixmap.setColor(_transitionColor);
 pixmap.fill();
 setDrawable(new TextureRegionDrawable(
 new TextureRegion(new Texture(pixmap))));
 clearListeners();
 setTouchable(Touchable.disabled);
 }

In general, for ScreenTransitionActor to be effective, it should be added to the
Stage at the end, in order to have a higher z-order, so that the transition screen
appears in front of all the other Actor objects, effectively occluding them. In the
init() method, we will first call toFront() to make sure that this object is added in
the correct order. We also want this Actor to fill the entire screen, so we make sure to
flag this behavior when updating the geometries in the layout for the Stage objects
by setting setFillParent() to true.

As stated in the previous chapter, we programmatically create an image with a width
and height of one pixel. We then set the Pixmap object's color to specified transition
color defined for our class, fill the pixel, and then fill our object with said color. This
gives us a Texture that we can use to update the Drawable of our class. Finally,
we clear any listeners and disable the Touchable attribute so that the user cannot
interact with the transition screen:

 public Color getTransitionColor() {
 return _transitionColor;
 }

 public void setTransitionColor(Color transitionColor) {
 this._transitionColor = transitionColor;
 }
}

Finally, we define the getter and setter accessor methods for the transition color,
getTransitionColor() and setTransitionColor(), respectively.

Once we define the ScreenTransitionActor, we need to implement the
second component in order to animate the transitions of the Actor, the
ScreenTransitionAction class.

Chapter 9

[327]

The ScreenTransitionAction class
The following source for ScreenTransitionAction.java can be found in core\
src\com\packtpub\libgdx\bludbourne\sfx\:

package com.packtpub.libgdx.bludbourne.sfx;

import com.badlogic.gdx.scenes.scene2d.Action;
import com.badlogic.gdx.scenes.scene2d.Actor;
import com.badlogic.gdx.scenes.scene2d.actions.Actions;
import com.badlogic.gdx.scenes.scene2d.actions.SequenceAction;

public class ScreenTransitionAction extends Action {

We want to take advantage of the autonomous tasks, called Action objects, which
we referred to in Chapter 8, Oh, No! Looks Like Drama!. We derive from the Action
class so that we can take advantage of this functionality:

 public static enum ScreenTransitionType{
 FADE_IN,
 FADE_OUT,
 NONE
 }

In the ScreenTransitionType enum, we define the two primary effects, FADE_IN
and FADE_OUT. We will use these to fade into a scene and fade out of a scene,
respectively:

 private ScreenTransitionType _transitionType =
 ScreenTransitionType.NONE;
 private float _transitionDuration = 3;

Here, we define two member variables that affect the animation. The first member
variable is the ScreenTransitionType enum that we just defined, and we set it to
a known default, ScreenTransitionType.NONE. The second member variable is a
float value that defines the total length of the transition effect, in order to correctly
update the interpolation values across frames:

 public ScreenTransitionAction(){
 }

 public ScreenTransitionAction(ScreenTransitionType type,
 float duration){
 this._transitionType = type;
 this._transitionDuration = duration;
 }

Time to Set the Mood

[328]

Here, we overload the ScreenTransitionAction constructor with the two
attributes defined for this class, the ScreenTransitionType enum value and the
corresponding duration of time:

 @Override
 public boolean act(float delta) {
 Actor actor = getTarget();
 if (actor == null) return false;
 switch(_transitionType){
 case FADE_IN:
 SequenceAction fadeIn = Actions.sequence(
 Actions.alpha(1),
 Actions.fadeOut(_transitionDuration));
 actor.addAction(fadeIn);
 break;
 case FADE_OUT:
 SequenceAction fadeOut = Actions.sequence(
 Actions.alpha(0),
 Actions.fadeIn(_transitionDuration));
 actor.addAction(fadeOut);
 break;
 case NONE:
 break;
 default:
 break;
 }
 return true;
 }

We override the act() method of the base class Action in order to
implement our transition effect based upon the ScreenTransitionType
type and duration. As previously discussed in Chapter 8, Oh, No! Looks Like
Drama!, the ScreenTransitionType enum type, FADE_IN, will transition the
ScreenTransitionActor target from filled to transparent. This will simulate the
effect of the screen fading from the target object's color over the transition duration
length to the scene. The ScreenTransitionType enum type, FADE_OUT, will
transition the ScreenTransitionActor target from transparent to filled. This will
simulate the effect of screen fading to the target object's color over the transition
duration length:

 public static ScreenTransitionAction transition (
 ScreenTransitionType type, float duration) {
 ScreenTransitionAction action =
 Actions.action(ScreenTransitionAction.class);

Chapter 9

[329]

 action.setTransitionType(type);
 action.setTransitionDuration(duration);
 return action;
 }

We define a static accessor here for the ScreenTransitionAction object in order
to take advantage of the object pool of Action objects. This helps us avoid the
performance hit of having to continually construct new single-use Action objects, as
well as the issues related to resetting previously used Action objects (as discussed
in Chapter 8, Oh, No! Looks Like Drama!). We grab the object from the pool and make
sure to update the two attributes, type and duration, before passing it back:

 public ScreenTransitionType getTransitionType() {
 return _transitionType;
 }

 public void setTransitionType(
 ScreenTransitionType transitionType) {
 this._transitionType = transitionType;
 }

 public float getTransitionDuration() {
 return _transitionDuration;
 }

 public void setTransitionDuration(float transitionDuration) {
 this._transitionDuration = transitionDuration;
 }
}

Here, we define the getter and setter accessor methods for the two attributes of this
class, ScreenTransitionType and float for duration.

The PlayerHUD class
The final piece is how these two classes fit into the other classes in order to be
used appropriately. The next code snippet shows how these classes are used in the
PlayerHUD class in order to transition the player from one map change to another:

...
public class PlayerHUD {
...
 private ScreenTransitionActor _transitionActor;

Time to Set the Mood

[330]

 public PlayerHUD(Camera camera, Entity player,
 MapManager mapMgr) {
 _transitionActor = new ScreenTransitionActor();
 ...
 _stage.addActor(_transitionActor);
 _transitionActor.setVisible(false);
 }

In the PlayerHUD class, we define and initialize the ScreenTransitionActor
(default color is black). We then make sure that we add this object to the stage
at the end:

 public void addTransitionToScreen(){
 _transitionActor.setVisible(true);
 _stage.addAction(
 Actions.sequence(
 Actions.addAction(ScreenTransitionAction.transition(
 ScreenTransitionAction.
 ScreenTransitionType.FADE_IN, 1),
 _transitionActor)));
 }
 ...
}

In the addTransitionToScreen() method, we first make sure our
ScreenTransitionActor object is visible. Then, we add a ScreenTransitionAction
to our stage, with the ScreenTransitionActor as our target. We define the two
attributes of this action, a FADE_IN effect and a total duration of one second.

The MainGameScreen class
The final code snippet is from the MainGameScreen class:

...
public class MainGameScreen {
...
 public void render(float delta) {
 ...
 if(_mapMgr.hasMapChanged()){
 ...
 _playerHUD.addTransitionToScreen();
 }
 }
}

Chapter 9

[331]

Finally, in the MainGameScreen class, every time the current map changes to another
one, we simply call addTransitionToScreen() on the _playerHUD object and the
transition effect will be rendered on the next frame.

Camera shake
The next effect deals with making the blows dealt and received in the game more
impactful. Sound effects definitely help, but some visual cues also can really add
to this effect. The ShakeCamera class will generate random coordinates based on a
starting position. At the beginning of a shake cycle, these positional changes will be
significant, but over time, these positional changes will get smaller until we reach
some defined threshold. These positional changes give the illusion that the target is
shaking on the screen.

The following class diagram (Figure 2) shows where the ShakeCamera class is
primarily used:

Figure 2

In BludBourne, the ShakeCamera class is used in two areas. The first area in which the
ShakeCamera class is used is in the PlayerHUD class, when the player has sustained
damage from an enemy during battle. The UI will shake for a specified amount of
time, signaling to the player that they have been hit. The second area in which the
ShakeCamera class is used is in the BattleUI class, when the enemy has sustained
damage from the player during battle. The enemy will shake for a specified amount
of time, signaling to the player that they have successfully hit and damaged the
enemy.

Time to Set the Mood

[332]

The basic idea behind the illusion of shaking is that the change in position will
happen around a hidden axis, with the positions changing based on a circular
positional offset. This not only allows us to see an object shake on the screen, but
gives us flexibility in controlling the area that the shaking will take place as well as
duration.

In order to better understand the source code for ShakeCamera, we will first review
some of the theory before diving into the implementation. This starts with some
trigonometry, specifically, SOHCAHTOA. SOHCAHTOA is a helpful mnemonic for
remembering the functions for calculating the sine, cosine, and tangent values for
an angle. SOH stands for the sine of an angle equal to the value of the opposite leg
over the hypotenuse of the triangle. CAH stands for the cosine of an angle equal to
the adjacent leg over the hypotenuse of the triangle. TOA stands for the tangent of
an angle equal to the opposite leg over the adjacent leg of a triangle. The following
formulas formally define these properties:

sin

cos

tan

opposite
hypotenuse
adjacent
hypotenuse
opposite
adjacent

θ

θ

θ

=

=

=

Why would we want to use these properties? Well, we have a position on the
screen defined by the coordinates x and y. We want to get random offsets to these
values, but in a circular pattern (to simulate the shaking). The easiest method for
getting these random offset values in a circular pattern is to map the values taken
from a circle (using Polar coordinates) to the coordinates on the screen (Cartesian
coordinates). The sine of the angle gives you a value that represents the rise above
the x axis, or a change in y. The cosine of the angle gives you a value that represents
the run along the x axis, or a change in x. In order to get the proper length from
the sine and cosine functions, we multiply by the radius in order to give us the
arc length. This arc length is the actual value we use to offset the current position
coordinates. This length will gradually get smaller as we decrease the length of the
radius in each iteration until we finally reach a threshold.

Chapter 9

[333]

The following diagram (Figure 3) shows a first iteration of the ShakeCamera, which
has already seeded some initial values:

Figure 3

In this example, we start off with a value of 30 for the _origShakeRadius. This value
affects the magnitude of the shakes. The larger the radius value, the larger the area
on the screen that the shakes will affect. The _randomAngle value is updated with a
new random value every iteration (or per shake). This guarantees that the shaking
appears random every time. The _origPosition value represents the coordinates
of the first position before the shaking starts. This is important because when the
shaking stops, we want to reset the position to the original position.

Also, in this example, we have already seeded a random angle value, 160. After
calculating the trig functions, we get a value of -0.939 for the x coordinate (cos(160))
and we get a value of 0.342 for the y coordinate (sin(160)). We multiply these values
by the current radius (30) in order to get the arc length, or the offset in position. The
x offset is -28.17 (-0.939 * 30) and the y offset is 10.26 (0.342 * 30). This gives us a new
position (after adding these offsets to the current position of (268, 244)) of 239.83 for x
and 254.26 for y.

Time to Set the Mood

[334]

The following diagram (Figure 4) shows how this example would map to the screen
during a battle:

Figure 4

Here, we superimpose Figure 3 onto an example battle in order to get an idea of how
the first calculation is accomplished when the shaking starts. We use the first position
(bottom-left corner) of the AnimatedImage object as the original position (268,244).
From Figure 3, we already seeded a random angle of 160, and when we start shaking,
based on this example, the next position will be (239.83, 254.26). This means on the
next cycle of the shake, the position will be updated, moving about 28 pixels to the
left, and 10 pixels up.

Chapter 9

[335]

The next example (Figure 5) demonstrates a sample run of five shakes (excluding the
start position, this gives us five changes in position):

Figure 5

Each of the numbers in Figure 5 represents a different position for AnimatedImage,
depending on which iteration we are in during the shaking cycle. As we can see, the
movement pattern roughly follows different locations around a hidden circle, which
gives us the illusion of random shaking.

Now that we have a better idea of the theory behind ShakeCamera, we can now look
at the source code located at core\src\com\packtpub\libgdx\bludbourne\sfx\
ShakeCamera.java:

package com.packtpub.libgdx.bludbourne.sfx;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.math.MathUtils;
import com.badlogic.gdx.math.Vector2;

Time to Set the Mood

[336]

public class ShakeCamera {
 private static final String TAG =
 ShakeCamera.class.getSimpleName();

 private boolean _isShaking = false;
 private float _origShakeRadius = 30.0f;
 private float _shakeRadius;
 private float _randomAngle;
 private Vector2 _offset;
 private Vector2 _currentPosition;
 private Vector2 _origPosition;

We need to update the ShakeCamera object in every frame while it is calculating the
next change in position. The boolean member variable, _isShaking, is set to true
when the shaking starts and is set to false once the ShakeCamera object reaches
a certain threshold. Once we reach this threshold, we can stop calculating the next
change in position. The _origShakeRadius is a float value that represents the
initial radius of the circle when the shaking starts. The larger the radius value, the
greater the magnitude of the shakes. The _shakeRadius is a float type which is
updated every iteration of the cycle, getting smaller with each consecutive shake.
The _randomAngle is a float type which represents a new angle of the circle and is
updated in every iteration of the shake cycle.

The _offset member variable is a Vector2 type, which is updated every iteration of
the shake cycle with the calculated changes in position from the previous iteration.
The _currentPosition member variable is a Vector2 type, which is also updated
every iteration of the shake cycle and includes the newly calculated offset values.
The _origPosition member variable is a Vector2 type, which contains the original
start position of the target before the shake cycle started. This is used to reset the
target once the shaking has stopped:

 public ShakeCamera(float x, float y, float shakeRadius){
 this._origPosition = new Vector2(x,y);
 this._shakeRadius = shakeRadius;
 this._origShakeRadius = shakeRadius;
 this._offset = new Vector2();
 this._currentPosition = new Vector2();
 reset();
 }

Chapter 9

[337]

In the ShakeCamera() constructor, we initialize the member variables and call
reset() in order to seed the first set of values:

 public boolean isCameraShaking(){
 return _isShaking;
 }

 public void startShaking(){
 _isShaking = true;
 }

The isCameraShaking() is a simple accessor method that returns true if the camera
is still processing shake values, or false if it has exceeded the minimal threshold
and stopped processing shake values. The startShaking() method starts the next
round of the shaking cycle:

 private void seedRandomAngle(){
 _randomAngle = MathUtils.random(1, 360);
 }

The seedRandomAngle() method sets a random angle based on the circumference of
a circle:

 private void computeCameraOffset(){
 float sine = MathUtils.sinDeg(_randomAngle);
 float cosine = MathUtils.cosDeg(_randomAngle);

 _offset.x = cosine * _shakeRadius;
 _offset.y = sine * _shakeRadius;
 }

Here, the computeCameraOffset() calculates the offset values to be added to the
current position using the calculations described in Figure 3:

 private void computeCurrentPosition(){
 _currentPosition.x = _origPosition.x + _offset.x;
 _currentPosition.y = _origPosition.y + _offset.y;
 }

Time to Set the Mood

[338]

The computeCurrentPosition() adds the offset values to the original position
values in order to get the new current position:

 private void diminishShake(){
 if(_shakeRadius < 2.0){
 reset();
 return;
 }

 _isShaking = true;
 _shakeRadius *= .9f;

 _randomAngle = MathUtils.random(1, 360);
 }

The diminishShake() method is used to check to see if we have reached the
minimum threshold for shaking. If we haven't, then we update values by reducing
the magnitude of the next shake and return. Here, our threshold for stopping the
shaking is _shakeRadius with a value less than 2. In each iteration of the shake
cycle, we reduce the current radius by 10% (multiply by 0.9) and eventually we will
be below our minimum threshold value of length 2. Finally, we seed another random
angle for the next iteration:

 public void reset(){
 _shakeRadius = _origShakeRadius;
 _isShaking = false;
 seedRandomAngle();
 _currentPosition.x = _origPosition.x;
 _currentPosition.y = _origPosition.y;
 }

The reset() method should be called every time a shake cycle ends. This resets the
current radius to the starting radius length. This method also seeds a new starting
angle for the next cycle, and resets the current positions to the starting points:

 public Vector2 getNewShakePosition(){
 computeCameraOffset();
 computeCurrentPosition();
 diminishShake();
 return _currentPosition;
 }
}

Chapter 9

[339]

The getNewShakePosition() method will calculate the offsets, set the new position
values, check whether we have met the minimum threshold of shaking, and finally
return with the updated values.

Static lighting
An effect that really enhances the mood of any video game is some lighting model,
either static or dynamic. Static lighting deals specifically with pre-rendered lightmap
layers which, when blended with the map layers, can produce a very nice effect
of having light sources baked into the rendered textures. Dynamic lighting gives
nice shadow effects to objects as well as light sources that are calculated every
frame. Dynamic lighting is much more involved than static lighting, dealing
with writing shaders (code segments) that are sent to the rendering pipeline and
eventually rasterized in the framebuffer. Due to the extra computation overhead
as well as additional complexity involved, we will focus in this section simply on
implementing a simple static lighting model that gives you the biggest gains for
minimum amount of work.

The following screenshot (Figure 6) shows three separate screens representing the
different parts of the process when implementing static lighting:

Figure 6

The first part on the left is a scene on the TOP_WORLD map of BludBourne right outside
the town. The second part in the middle represents a zoomed in section of the
lightmap for the same location of the TOP_WORLD map. The third part on the right is a
scene where the first and second part of the image are blended together to create the
illusion of a light source at night.

Time to Set the Mood

[340]

There are two primary parts to this process. The first part involves creating the
lightmaps themselves for each of the maps. The second part involves calling a
method for the individual lightmap layers, and then calling a blend method when
rendering. The blend method discussed here will respect the alpha channel and
blend the map layer with the lightmap layer accordingly.

Lightmap creation
The first part of the process is creating the lightmaps. First, you will need a reference
layer when creating the lightmap. In Tiled, you will first want to open the map you
want to create the lightmap for, and then export a copy of the map which will act as
a reference layer. Go to File | Save As Image. In the Save As Image dialog box, the
only option that should be checked is Only include visible layers as you just want
the background, ground, and decoration layers.

Then, open up your favorite paint program and load the reference layer of the map
exported from the previous step. Change the opacity to show just enough of the
details, and create a layer above this reference layer. Fill this layer with a color that
best represents the night in your game. For BludBourne, I chose a shade of dark blue
that gives a nice effect at night. Then, change the output opacity to something subtle.
For BludBourne, I set the lightmap layer opacity to 85%, which blended nicely with
the underlying map in the game.

Place filled oval shapes over all the different light sources on the reference map.
Choose fill colors for the ovals that best represent the lighting, such as white for
most candles, and a yellow-orange for lava pits. Finally, after all the oval shapes are
placed, add an effect, such as a Gaussian blur, to make the lighting more natural and
soft when blended with the underlying map. Finally, when you have finished, export
just this layer as your lightmap layer.

The following (Figure 7) screenshot shows the lightmap selected in Tiled:

Chapter 9

[341]

Figure 7

In order to use the lightmap layer in your game, you need to create an Image Layer
by clicking on the Add New layer icon under Layers, and selecting Add Image
Layer. Name this particular lightmap layer MAP_LIGHTMAP_LAYER_NIGHT. Go to
Properties | Image Layer, and add your newly created lightmap image (exported
from the previous step) by selecting the location on disk. Save the map with the
added lightmap.

Time to Set the Mood

[342]

The following screenshot represents the three lightmaps created for BludBourne:

Figure 8

All three of the lightmaps in Figure 8 have an opacity setting (when exported from
Photoshop) of 85%. The lightmap for TOWN represents all of the candles on the walls,
and the lantern lights on the ground at night. The lightmap for TOP_WORLD represents
white light sources for the lanterns on the ground, a blue area that gives the cemetery
an eerie feeling, several reddish spots that represent the lit skulls on the ground,
yellow-orange spots for the lava pits, and finally a greenish spot that represents
a special spot for a specific kind of enemy spawn. Finally, the CASTLE_OF_DOOM
lightmap has light sources for candles, lava pits, and the skulls on the ground.

Chapter 9

[343]

The Map class
The second part of adding static lighting to your game involves a few areas in the
source involved with rendering the lightmaps. The first source we will need to
update is in the Map class:

...
public abstract class Map {
 ...
 public final static String LIGHTMAP_NIGHT_LAYER =
 "MAP_LIGHTMAP_LAYER_NIGHT";
 protected MapLayer _lightMapNightLayer = null;

 Map(MapFactory.MapType mapType, String fullMapPath){
 _lightMapNightLayer =
 _currentMap.getLayers().get(LIGHTMAP_NIGHT_LAYER);

 if(_lightMapNightLayer == null){
 Gdx.app.debug(TAG, "No night lightmap layer found!");
 }
 }

 public MapLayer getLightMapNightLayer(){
 return _lightMapNightLayer;
 }
}

We define the layer that we named in the Tiled editor as MAP_LIGHTMAP_LAYER_
NIGHT. We then load the layer during construction of the Map class. Finally, we
provide an accessor method to access this layer.

The MapManager class
The following source shows the changes that need to be made to the MapManager
class:

...
public class MapManager {
...
 public MapLayer getCurrentLightMapLayer(){
 return _currentMap.getLightMapNightLayer();
 }
}

Time to Set the Mood

[344]

We need to get the lightmap layer from the current map, so we create a wrapper for
this method call in MapManager. This part will make a little more sense when we
implement the day-to-night cycle in the next section, and the current lightmap could
be one of four different types.

The MainGameScreen class
The final piece that we have to add is a call to the render method for the lightmap
layer in the MainGameScreen class. In order to properly blend the lightmap with the
game map, we need to separate out the render calls in order to guarantee a specific
order. The following source snippet shows the changes that need to be made to the
MainGameScreen class:

public class MainGameScreen {
...
 public void render(float delta) {

 TiledMapImageLayer lightMap = (TiledMapImageLayer)_mapMgr.
 getCurrentLightMapLayer();

 if(lightMap != null) {
 _mapRenderer.getBatch().begin();
 TiledMapTileLayer backgroundMapLayer =
 (TiledMapTileLayer)_mapMgr.
 getCurrentTiledMap().getLayers()
 .get(Map.BACKGROUND_LAYER);

 if(backgroundMapLayer != null){
 _mapRenderer.renderTileLayer(backgroundMapLayer);
 }

 TiledMapTileLayer groundMapLayer =
 (TiledMapTileLayer)_mapMgr.
 getCurrentTiledMap().getLayers().
 get(Map.GROUND_LAYER);

 if(groundMapLayer != null){
 _mapRenderer.renderTileLayer(groundMapLayer);
 }

 TiledMapTileLayer decorationMapLayer =
 (TiledMapTileLayer)_mapMgr.
 getCurrentTiledMap().getLayers().
 get(Map.DECORATION_LAYER);

 if(decorationMapLayer != null){
 _mapRenderer.renderTileLayer(decorationMapLayer);

Chapter 9

[345]

 }

 _mapRenderer.getBatch().end();

 _mapMgr.updateCurrentMapEntities(_mapMgr,
 _mapRenderer.getBatch(),delta);
 _player.update(_mapMgr, _mapRenderer.getBatch(), delta);

 _mapRenderer.getBatch().begin();

 _mapRenderer.getBatch().setBlendFunction(
 GL20.GL_DST_COLOR, GL20.GL_ONE_MINUS_SRC_ALPHA);
 _mapRenderer.renderImageLayer(lightMap);

 _mapRenderer.getBatch().setBlendFunction(
 GL20.GL_SRC_ALPHA, GL20.GL_ONE_MINUS_SRC_ALPHA);
 _mapRenderer.getBatch().end();
 }
 }
}

First, we want to draw the three layers of our game maps (background layer, ground
layer, and decoration layer) using the renderTileLayer() method. After this, we
draw all the map entities, as well as the player character. Finally, we render the
lightmap layer. As mentioned in Chapter 2, Welcome to the Land of BludBourne, we
use the getBatch() call when we have numerous objects to draw. By drawing in a
batch update, starting with a begin() and completing with an end() method, the
overhead of updating the textures will be minimized. The GPU will consume all the
texture updates at one time (batching the updates) instead of constantly throttling
between updating and rendering separate textures.

The method that makes all the magic happen with these lightmap layers is
setBlendFunction(). LibGDX wraps the OpenGL functions with a cleaner interface
abstracting away the underlying details. When we pass source and destination
values to setBlendFunction(), we are passing in integer values that map to specific
constant values. These constants define the parameters of the pixel arithmetic that
is calculated when blending the RGBA pixels to produce the desired color value.
The first parameter of setBlendFunction() is the source factor which represents
the incoming RGBA values, or in our case, the lightmap pixel values. The second
parameter of setBlendFunction() is the destination factor, which represents the
RGBA values already in the frame buffer, or in our case, the background, ground,
and decoration layers of the map.

The primary blending functions that we will use (defined in the LibGDX GL20
interface for OpenGL ES 2.0 support) are GL_ZERO, GL_ONE, GL_DST_COLOR, GL_ONE_
MINUS_DST_COLOR, GL_SRC_ALPHA, and GL_ONE_MINUS_SRC_ALPHA.

Time to Set the Mood

[346]

When dealing with textures without an alpha layer such as a lightmap, we set the
blend function to the following:

_mapRenderer.getBatch().setBlendFunction(
 GL20.GL_SRC_ALPHA, GL20.GL_ONE_MINUS_SRC_ALPHA);

When blending a specific lightmap with an alpha layer, we want to set the blend
function to the following:

_mapRenderer.getBatch().setBlendFunction(
 GL20.GL_DST_COLOR, GL20.GL_ONE_MINUS_SRC_COLOR);

Then, set the blend function back to the primary source and destination factors
after rendering.

The following figure (Figure 9) outlines the various combinations of source and
destination factors, and it includes the final output image after the blending:

Figure 9

Chapter 9

[347]

Day-to-night cycle
The day-to-night effect really helps add a sense of passage of time. The day-to-night
cycle is one in which, as the player plays your game, the environment changes
depending on the time of day. The first part of developing this feature is to have
some internal reference point for the time of day built into the game because in most
games, the passage of time is independent of the real world time. The second part
of this feature is to add some additional lightmaps that make the world feel as if it
is occurring at a specific time of day, such as a dark lightmap with light sources we
learned in the previous section, which gives the player the illusion of night.

The ClockActor class
The following class diagram (Figure 10) describes the class that we will implement
for the first part of this feature:

Figure 10

The ClockActor class derives from Label so that we get the benefits of using a
Label object in a Stage. We only need one ClockActor object and this object will
live in the PlayerHUD, since the clock time will be shown at all times to signal to the
player the specific time of day in the game.

Here's the source of ClockActor and it can be found at core\src\com\packtpub\
libgdx\bludbourne\sfx\ClockActor.java:

package com.packtpub.libgdx.bludbourne.sfx;

import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.math.MathUtils;

Time to Set the Mood

[348]

import com.badlogic.gdx.scenes.scene2d.ui.Label;
import com.badlogic.gdx.scenes.scene2d.ui.Skin;

public class ClockActor extends Label {

 public static enum TimeOfDay {
 DAWN,
 AFTERNOON,
 DUSK,
 NIGHT
 }

The TimeOfDay enum defines all of the different parts of a day in the world of
BludBourne, starting with DAWN for the morning, AFTERNOON for mid-day, DUSK for
when the sun starts to go down, and finally NIGHT for when the lights come on and
the monsters come out:

 private float _totalTime = 0;
 private float _rateOfTime = 1;
 private static String PM = "PM";
 private static String AM = "AM";
 private static String FORMAT = "%02d:%02d %s";
 private boolean _isAfternoon = false;

The first member variable is _totalTime, which is a float value that acts as an
accumulator of the time in seconds from when the player first starts playing the
game. This is the value that we will persist to the save game profile as well, as all
other time values can be calculated from this one. The next member variable is
_rateOfTime, which is a float type that represents the speed at which you want
time in the game to advance. For instance, a value of 1 would have the game running
at the normal speed, where 60 minutes in real time equals 60 minutes in game time.
A _rateOfTime value of 60 has a multiplier effect with the game running at a faster
rate, where 60 minutes in real time equals 3600 minutes (or 60 hours) in game time.
The PM and AM String values are simply constants we use to define which half of the
day we are currently in. The FORMAT String value is used as a template in how we
wish to display the time of day on the screen. We use two decimal places to represent
both the hour and minutes with a String value of AM or PM after it. Finally, we
have a simple boolean value, _isAfternoon, that designates whether we are in the
morning or afternoon half of the day:

 public ClockActor(CharSequence text, Skin skin) {
 super(text, skin);
 init();
 }

Chapter 9

[349]

 public ClockActor(CharSequence text, Skin skin,
 String styleName) {
 super(text, skin, styleName);
 init();
 }

 public ClockActor(CharSequence text, Skin skin,
 String fontName, Color color) {
 super(text, skin, fontName, color);
 init();
 }

 public ClockActor(CharSequence text, Skin skin,
 String fontName, String colorName) {
 super(text, skin, fontName, colorName);
 init();
 }

 public ClockActor(CharSequence text, LabelStyle style) {
 super(text, style);
 init();
 }

Here, we make sure to overload all the constructors for the Label class we are
deriving from:

 private void init(){
 String time = String.format(FORMAT, 0, 0,
 _isAfternoon?PM:AM);
 this.setText(time);
 this.pack();
 }

The init() method, used in the constructors for the ClockActor class, initializes
the String value to be displayed on the screen, sets it to be the current text for
the Label, and then packs the object so that the label correctly recalculates the
geometries:

 public float getTotalTime() {
 return _totalTime;
 }

 public void setTotalTime(float totalTime) {
 this._totalTime = totalTime;

Time to Set the Mood

[350]

 }

 public float getRateOfTime() {
 return _rateOfTime;
 }

 public void setRateOfTime(float rateOfTime) {
 this._rateOfTime = rateOfTime;
 }

The getTotalTime() and setTotalTime() methods are simple accessor methods
for getting and setting the total time (in seconds) that has transpired since the current
profile game has started. The getRateOfTime() and setRateOfTime() methods are
accessor methods for getting and setting the rate of time for how quickly or slowly
the in-game time moves relative to the real-world time:

 public TimeOfDay getCurrentTimeOfDay(){
 int hours = getCurrentTimeHours();
 if(hours >= 7 && hours <= 9){
 return TimeOfDay.DAWN;
 }else if(hours >= 10 && hours <=16){
 return TimeOfDay.AFTERNOON;
 }else if(hours >= 17 && hours <= 19){
 return TimeOfDay.DUSK;
 }else{
 return TimeOfDay.NIGHT;
 }
 }

The getCurrentTimeOfDay() method is a convenience method that provides a way
to query which part of the day is currently running in-game. We first call a helper
method to calculate the current time in a 24-hour format. From here, we partition
out the different parts of the day, starting with DAWN in the hours of 7 AM to 10 AM
in the morning. Then AFTERNOON is in the hours of 10 PM to 5 PM. DUSK is defined as
the time of day from 5 PM to 8 PM. Finally, NIGHT is in the hours of 8 PM to 7 AM:

 @Override
 public void act(float delta){
 _totalTime += (delta * _rateOfTime);

 int seconds = getCurrentTimeSeconds();
 int minutes = getCurrentTimeMinutes();
 int hours = getCurrentTimeHours();

Chapter 9

[351]

 if(hours == 24 || (hours/12) == 0){
 _isAfternoon = false;
 }else{
 _isAfternoon = true;
 }

 hours = hours % 12;

 if(hours == 0){
 hours = 12;
 }

 String time = String.format(FORMAT, hours, minutes,
 _isAfternoon ? PM : AM);
 this.setText(time);
 }

Here, we override the act() method for ClockActor, which will be called by the
Stage during a frame update. We first add the current difference between frames
to the current total time, making sure to multiply by the current rate of time. We
segment out the different components of the current time by seconds, minutes, and
hours. We then check to see which half of the day we are currently in to determine
the meridiem. Then, we mod the current hours (which are in 24-hour format) by 12
since we are using a 12-hour format for the display clock. Finally, we format the time
for the ClockActor object with the current in-game time and set the new value:

 public int getCurrentTimeSeconds(){
 return MathUtils.floor(_totalTime % 60);
 }

 public int getCurrentTimeMinutes(){
 return MathUtils.floor((_totalTime / 60) % 60);
 }

 public int getCurrentTimeHours(){
 int hours = MathUtils.floor((_totalTime / 3600) % 24);

 if(hours == 0){
 hours = 24;
 }

 return hours;
 }
}

Time to Set the Mood

[352]

The getCurrentTimeSeconds(), getCurrentTimeMinutes(), and
getCurrentTimeHours() helper methods calculate their respective values based
on the current _totalTime member variable.

The MapManager class
The last piece of this section is how we take advantage of the time of day in the
game. For each time of day, we create a separate lightmap layer for each map. For
BludBourne, TimeOfDay.DAWN has a filled yellow lightmap, TimeOfDay.AFTERNOON
has a filled white lightmap, TimeOfDay.DUSK has a filled orange lightmap, and
finally, TimeOfDay.NIGHT has a lightmap with a dark color and the assorted light
sources. These additional layers are added to each Tiled map, just as we did for the
NIGHT lightmap. After creating accessors for these MapLayer objects, we can now
create a method in MapManager that will be called every frame update. The following
source from MapManager outlines that method:

...
public class MapManager {
...
 private MapLayer _currentLightMap = null;
 private MapLayer _previousLightMap = null;
 private ClockActor.TimeOfDay _timeOfDay = null;
 private float _currentLightMapOpacity = 0;
 private float _previousLightMapOpacity = 1;
 private boolean _timeOfDayChanged = false;
...

In order to have a nice transition between the change in the time of day in
BludBourne, we set the new lightmap opacity to 0 so that it is fully translucent, and
set the previous lightmap (before the change) opacity to 1 so that it is fully opaque.
Then, over a period of time, we gradually bring up the current lightmap's opacity
until it reaches 1, and in parallel, gradually bring down the previous lightmap's
opacity until it reaches 0:

 public void updateLightMaps(ClockActor.TimeOfDay timeOfDay){
 if(_timeOfDay != timeOfDay){
 _currentLightMapOpacity = 0;
 _previousLightMapOpacity = 1;
 _timeOfDay = timeOfDay;
 _timeOfDayChanged = true;
 _previousLightMap = _currentLightMap;
 }

Chapter 9

[353]

In the updateLightMaps() method, if the current time of day does not match the
value passed in, then we know that the time of day has changed. During a time of
day change, we will want to reset our member variables that maintain the transition
state, including the _currentLightMapOpacity and _previousLightMapOpacity
values:

 switch(timeOfDay){
 case DAWN:
 _currentLightMap =
 _currentMap.getLightMapDawnLayer();
 break;
 case AFTERNOON:
 _currentLightMap =
 _currentMap.getLightMapAfternoonLayer();
 break;
 case DUSK:
 _currentLightMap =
 _currentMap.getLightMapDuskLayer();
 break;
 case NIGHT:
 _currentLightMap =
 _currentMap.getLightMapNightLayer();
 break;
 default:
 _currentLightMap =
 _currentMap.getLightMapAfternoonLayer();
 break;
 }

Previously, we copied the current lightmap to the previous lightmap member
variable. Now, we get the current lightmap based on the change in the time of day:

if(_timeOfDayChanged){
 if(_previousLightMap != null &&
 _previousLightMapOpacity != 0){

 _previousLightMap.setOpacity(_previousLightMapOpacity);
 _previousLightMapOpacity = MathUtils.clamp(
 _previousLightMapOpacity -= .05, 0, 1);

 if(_previousLightMapOpacity == 0){
 _previousLightMap = null;
 }
 }

Time to Set the Mood

[354]

 if(_currentLightMap != null &&
 _currentLightMapOpacity != 1) {

 _currentLightMap.setOpacity(_currentLightMapOpacity);
 _currentLightMapOpacity = MathUtils.clamp(
 _currentLightMapOpacity += .01, 0, 1);
 }
}else{
 _timeOfDayChanged = false;
}

Here, if there has been a change in the time of day, then we decrease the opacity of
the previous lightmap. At the same time, we increase the opacity of the new, current
lightmap.

Particle effects
The final effect that we will explore in this chapter really adds some nice special
effects to the game world, such as smoke, explosions, fire, and spell casts. Particle
effects are a very powerful tool in your toolbox. With a little effort and without
tons of experience as an artist, a developer can create nice special effects which
add a certain level of polish to a game. These particle effects are composed of
numerous particles, or small sprites, that have their own lifetimes and react to their
environment based on certain properties. The real power of particle effects becomes
apparent when you start to combine different sets of particle emitters to create a
composite particle effect.

There are two main parts to using particle effects. The first part is creating the particle
effect itself, and the second part is instantiating and rendering the particle in the game.

Particle Editor
Luckily, LibGDX has a very nice particle effects editor that comes with the installation
of LibGDX. A nice, detailed reference for creating particle effects in the editor can be
found at http://github.com/libgdx/libgdx/wiki/2D-Particle-Editor.

To use the Particle Editor application, you will need to first search for gdx-tools-
1.5.5.jar from your library home in your project path. From the top level of the
JAR, you will be able to find the Particle Editor at com\badlogic\gdx\tools\
particleeditor\. The main entry point for the editor is called ParticleEditor.
class. After running this class in your IDE (for IntelliJ, you can right-click and select
Run), the editor will launch, as shown the following screenshot(Figure 11):

http://github.com/libgdx/libgdx/wiki/2D-Particle-Editor

Chapter 9

[355]

Figure 11

There are four primary panels in the Particle Editor application. The first panel in
the top-left corner represents the final render of the current particle effect settings in
real time, in a preview window. Every time a new property is updated, this window
will update with the new values so that you can instantly view the changes that you
made. There is also some nice debug output so that you can better ascertain whether
the current particle effect is adversely affecting the frame rate, as well as the number
of particles available.

Time to Set the Mood

[356]

The second panel in the bottom-left corner is named Effect Emitters, and it displays
the current emitters used for the currently loaded particle effect. Emitters represent
the source of the particles, where the particles start from at the beginning of their
lifetime. One use case for using different emitters would be a torch fire that has
smoke emanating at different speeds from the fire. One emitter controls the fire
based particles that create the flame, and a second emitter controls the white smoke
coming from the flame.

The third panel in the top-right corner is named Editor Properties, and it controls
the top-level project properties of the current rendered particle effect (the preview
window). Those properties are as follows:

•	 Pixels per meter: This value translates between pixel units to world space
units making the particle effect easier to view details.

•	 Zoom level: This value affects how close or how far the render window
camera is relative to the particle effect.

•	 Delta multiplier: This value affects the delta time between frame renders in
the render window. The larger the value, the faster the render as the value
has a multiplicative effect. The smaller the value, the slower the render. A
value of 0.25 renders at a quarter the normal time, allowing one to see small
details in a particle effect render, for instance.

•	 Background color: These values control the background color of the render
window.

The fourth panel in the bottom-right section is named Emitter Properties, and it
controls all of the attributes that can affect the particle effect. These attributes are
listed as follows:

•	 Image: This property is the actual Sprite image that represents one particle
in a particle effect. There are two images under core\assets\sfx that can be
used. The first image, particle.png, will render the particles as soft, circular
shapes. The second image, particle_square.png, will render the particles
as soft, square shapes, giving a slightly more pixel-like style to the effects.

•	 Count: There are two values for this property which represent the range
in the number of particles to can be rendered at any one time, from the
minimum amount to the maximum. This property is important as the more
particle effects rendered on a screen, the more computation and memory
required adversely affecting the render times per frame.

•	 Delay: This is the length of time, in milliseconds, from when the effect is first
rendered to when the emitters will start generating particles for the particle
effect. This can be useful, for instance, when trying to sync different emitters
at the same time.

Chapter 9

[357]

•	 Duration: This is the length of time, in milliseconds, from when the emitter
first starts generating particles to when the emitter finishes generating
particles.

•	 Emission: This is the amount of particles that will be generated by the
emitter every second. You can set the minimum and maximum values
that will be used to select a random value in that range. The chart is used
to control the amount of particles over time relative to the duration of the
emitter.

•	 Life: This is the length of time, in milliseconds, in which one particle will
live (as a candidate for rendering during a frame update). You can set the
minimum and maximum values that will be used to select a random value in
that range.

•	 Life Offset: This offset is the length of time, in milliseconds, that one
particle's life will be consumed when first generated. You can set the
minimum and maximum values that will be used to select a random value in
that range.

•	 X Offset: This offset is used to calculate the starting x coordinate position, in
world units, of the particle.

•	 Y Offset: This offset is used to calculate the starting y coordinate position, in
world units, of the particle.

•	 Spawn: This is the starting shape that the emitter will use when spawning
particles.

•	 Spawn Width: This is the starting shape width, in world units, that the
emitter will use when spawning particles. You can set the minimum and
maximum values that will be used to select a random value in that range.
The chart is used to control the starting shape width of the particles over time
relative to the duration of the emitter.

•	 Spawn Height: This is the starting shape height, in world units, that the
emitter will use when spawning particles. You can set the minimum and
maximum values that will be used to select a random value in that range.
The chart is used to control the starting shape height of the particles over
time relative to the duration of the emitter.

•	 Size: This value is the particle size in world units. You can set the minimum
and maximum values that will be used to select a random value in that
range. The chart is used to control the size of a particle over the duration of
its lifetime.

Time to Set the Mood

[358]

•	 Velocity: This value is the particle speed in world units per second. You can
set the minimum and maximum values that will be used to select a random
value in that range. The chart is used to control the speed of a particle over
the duration of its lifetime.

•	 Angle: This value is the particle's direction of travel, in degrees, relative to
the emitter. You can set the minimum and maximum values which will be
used to select a random value in that range. The chart is used to control the
direction of a particle over the duration of its lifetime.

•	 Rotation: This value is the particle's rotation in degrees. You can set the
minimum and maximum values that will be used to select a random value
in that range. The chart is used to control the rotation of a particle over the
duration of its lifetime.

•	 Wind: This value represents the wind strength force, in world units per
second, applied to the particles along the x axis. You can set the minimum
and maximum values that will be used to select a random value in that
range. The chart is used to control the amount of wind force on a particle
over the duration of the particle's lifetime.

•	 Gravity: This value represents the gravity strength force, in world units per
second, applied to the particles along the y axis. You can set the minimum
and maximum values that will be used to select a random value in that
range. The chart is used to control the amount of gravity force on a particle
over the duration of the particle's lifetime.

•	 Tint: This property changes the particle's color. You can drag the slider on
the color bar to select the specific color. If you want to have a blended range
of colors, you can set the range of colors that you want with the two sliders
under the color bar.

•	 Transparency: This property changes the alpha value, or transparency, of the
particle over the duration of its lifetime.

In the Options section, we have a few more options that are applied over the entire
particle effect:

•	 Additive: When checked, this option enables additive blending. When
multiple colors are combined, adding up their RGB components in order to
get a final resultant color is known as additive blending. This is equivalent
to setting the blend function (discussed in the Static lighting section of this
chapter) with a source factor of GL_SRC_ALPHA and a destination factor of
GL_ONE.

•	 Attached: When checked, this option sets the positions of the particles in the
particle effect to be updated relative to the position of the emitter.

Chapter 9

[359]

•	 Continuous: When checked, this option enables the emitters to restart and
continue generating particles automatically after its duration has expired.

•	 Aligned: When checked, this option enables the particle's angle to be added to
the rotation. This will line up the particle's image with the direction of travel.

•	 Behind: When checked, this option enables the current particle effect emitter
to be queried later in order to determine if the particle effect should be drawn
over or behind another sprite.

•	 Premultiplied Alpha: When checked, this option enables a mixture of both
alpha and additive blending modes. This option overrides the Additive
option and will effectively ignore it. This is equivalent to setting the blend
function (discussed in the Static lighting section of this chapter) with a source
factor of GL_ONE and a destination factor of GL_ONE_MINUS_SRC_ALPHA.

In order to get an idea of how certain combinations of properties can affect a particle
effect, you can access the particle effects for BludBourne and load them into the editor
from core\assets\sfx. Once the particle effect has been created, click on Save.

The ParticleEffectFactory class
After we have created and saved the particle effect, we can now move onto the final
part: instantiating and rendering the particle effect in our game. The following class
diagram (Figure 12) describes the relationships with the ParticleEffectFactory
class that we will need to implement:

Figure 12

Time to Set the Mood

[360]

In this class diagram, the ParticleEffectFactory class is used to create
ParticleEffect objects for the environments of the Map objects, such as torch fire
and lava pit smoke. The ParticleEffectFactory class also creates single-use
ParticleEffect objects, such as a successful wand attack when the player damages
an enemy in the BattleUI.

Here's the source for the ParticleEffectFactory class:

package com.packtpub.libgdx.bludbourne.sfx;

import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.graphics.g2d.ParticleEffect;
import com.badlogic.gdx.math.Vector2;

public class ParticleEffectFactory {

 private static String SFX_ROOT_DIR = "sfx";

 public static enum ParticleEffectType{
 CANDLE_FIRE("sfx/candle.p"),
 LANTERN_FIRE("sfx/candle.p"),
 LAVA_SMOKE("sfx/smoke.p"),
 WAND_ATTACK("sfx/magic_attack.p"),
 NONE("");

 private String _fullFilePath;

 ParticleEffectType(String fullFilePath){
 this._fullFilePath = fullFilePath;
 }

 public String getValue(){
 return _fullFilePath;
 }
 }

Here, we define a ParticleEffectType enum type that represents all the different
types of particle effects that can be used in BludBourne. We pass into the constructor
of these enum types a String value, which represents the relative path to the specific
particle effect file in our project. The CANDLE_FIRE type is used for all locations on
the maps where there are candles burning, such as wall candles or desk candles. The
LANTERN_FIRE type is used for all locations on the maps where there are lanterns
anchored to the ground. The LAVA_SMOKE type is used for all locations on the maps
where there are active lava pits spewing toxins into the air. Finally, we have the
WAND_ATTACK type, which is used as a special effect when the player strikes an enemy
with a magic attack using the wand:

Chapter 9

[361]

 private static ParticleEffectFactory _instance = null;

 private ParticleEffectFactory(){
 }

 public static ParticleEffectFactory getInstance() {
 if (_instance == null) {
 _instance = new ParticleEffectFactory();
 }

 return _instance;
 }

The getInstance() method is a static method used to access the single static
instance of the ParticleEffectFactory class so that it can only be accessed as a
Singleton:

 public static ParticleEffect getParticleEffect(
 ParticleEffectType particleEffectType,float positionX,
 float positionY){

 ParticleEffect effect = new ParticleEffect();

 effect.load(Gdx.files.internal(
 particleEffectType.getValue()),
 Gdx.files.internal(SFX_ROOT_DIR));

 effect.setPosition(positionX, positionY);

 switch(particleEffectType){
 case CANDLE_FIRE:
 effect.scaleEffect(.04f);
 break;
 case LANTERN_FIRE:
 effect.scaleEffect(.02f);
 break;
 case LAVA_SMOKE:
 effect.scaleEffect(.04f);
 break;
 case WAND_ATTACK:
 effect.scaleEffect(1.0f);
 break;
 default:
 break;
 }

Time to Set the Mood

[362]

 effect.start();
 return effect;
 }

The getParticleEffect() method is a static method that returns a single
ParticleEffect instance based upon the ParticleEffectType passed in. The
first step is to instantiate a new ParticleEffect object, load the effect file from
disk specified by the ParticleEffectType, and then set the position based on
values passed in. Then, based on the ParticleEffectType, we can make additional
changes to the ParticleEffect object. The ParticleEffect object is enabled by
calling start(), and then returned:

 public static ParticleEffect getParticleEffect(
 ParticleEffectType particleEffectType, Vector2 position){
 return getParticleEffect(particleEffectType, position.x,
 position.y);
 }
}

Finally, the getParticleEffect() method is an overloaded method that takes a
Vector2 object for the position instead of two float values.

The BattleUI class
The following code snippet is from BattleUI and demonstrates the use of
ParticleEffectFactory as well as management of the resultant ParticleEffect
object:

...
public class BattleUI {
...

 private Array<ParticleEffect> _effects;

 public BattleUI(){
 _effects = new Array<ParticleEffect>();
 }

In the BattleUI class, we will first keep an Array container of ParticleEffect
objects, as they need to be updated and rendered every frame and periodically
checked and removed if not active:

 @Override
 public void onNotify(Entity entity, BattleEvent event) {
 switch(event){
 ...

Chapter 9

[363]

 case PLAYER_USED_MAGIC:
 float x = _currentImagePosition.x + (_enemyWidth/2);
 float y = _currentImagePosition.y + (_enemyHeight/2);
 _effects.add(ParticleEffectFactory.getParticleEffect(
 ParticleEffectFactory.ParticleEffectType.WAND_ATTACK,
 x,y));
 break;
 default:
 break;
 }
 }

In the onNotify() method, if we have received a BattleEvent event named
PLAYER_USED_MAGIC, then we need to render a magic attack, ParticleEffectType.
WAND_ATTACK, for the player. We first get the position values for where we want
the ParticleEffect to be rendered, making sure to offset the position so that the
ParticleEffect is rendered in the center of the enemy. We pass these values to
the ParticleEffectFactory and then add the instantiated ParticleEffect to our
Array container:

@Override
public void act(float delta){
 for(int i = 0; i < _effects.size; i++){
 ParticleEffect effect = _effects.get(i);

 if(effect == null) continue;

 if(effect.isComplete()){
 _effects.removeIndex(i);
 effect.dispose();
 }else{
 effect.update(delta);
 }
 }
}

Since the ParticleEffect objects need to be updated every frame, we need
to override the act() method. We iterate over the entire Array container of
ParticleEffect objects. If one of the objects has finished, we remove it from the
container and call dispose() so that the memory can be flagged for reclamation. If
the ParticleEffect is still running, then we update the object:

 @Override
 public void draw(Batch batch, float parentAlpha){
 super.draw(batch, parentAlpha);

Time to Set the Mood

[364]

 //Draw the particles last
 for(int i = 0; i < _effects.size; i++){
 ParticleEffect effect = _effects.get(i);
 if(effect == null) continue;
 effect.draw(batch);
 }
 }
}

Here, the draw() method is also overridden so we can guarantee that the
ParticleEffect objects will be rendered in the correct draw order. First, we call the
base class draw method making sure to pass in the appropriate parameters. Then, we
iterate over the Array container of ParticleEffect objects, calling the appropriate
draw() method.

The following screenshots (Figure 13 and Figure 14) show how the finished product of
using lightmaps with particle effects can really set the mood in your game:

Figure 13

Chapter 9

[365]

Figure 14

Summary
In this chapter, we delved into some special effects that can really make
your game stand out. We implemented ScreenTransitionActor and
ScreenTransitionAction for screen fade transitions when changing map locations.
Then, we implemented ShakeCamera to make various on-screen objects shake. Next,
we explored and implemented a static lighting model. We then took this lighting
model a step further and after implementing the ClockActor class, we were able to
show nice transitions across a typical day in BludBourne. The final topic we covered
was the addition of particle effects and how we were able to easily use them in
BludBourne by implementing the ParticleEffectFactory class.

In the next chapter, we will be wrapping up our journey with some deployment
tips for our game, and see what lies before us on the next adventure.

[367]

Prophecy Fulfilled, Our Hero
Awaits the Next Adventure

In our final chapter, we will first look at platform options for the digital distribution
of your game. We will also look at the different options for generating the final
package ready for distribution. We will then look at various security measures you
can use, from encoding save game profiles to obfuscating the final package ready for
distribution. We will also learn a few easy techniques for debugging these builds,
and also some simple techniques a developer can use to test their final builds.

In summary, we will cover the following topics in this chapter:

•	 Digital distribution platforms
•	 Obfuscating the save game profiles
•	 Creating an executable JAR
•	 Native launchers
•	 Obfuscating the packaged JAR
•	 Debugging tips
•	 Testing builds before release

Prophecy Fulfilled, Our Hero Awaits the Next Adventure

[368]

Digital distribution platforms
After completing your game, the final step is to package it up and deploy it to
the various digital distribution channels. The different distribution channels will
typically take a certain percentage of the sale price of your game for each unit
sold (revenue sharing model), such as Valve's Steam platform (http://store.
steampowered.com/). The model applies to other platforms as well, including
the mobile app space such as Apple's App Store (http://itunes.apple.com/
us/genre/ios/id36?mt=8) and Google's Play store (http://play.google.com/
store?hl=en). Some distribution channels (such as Apple) will require you to go
through a certification process, and others (such as Google) will allow you to upload
right away. One of the biggest challenges with a video game release will be
overcoming the discoverability issue, but being on one of these platforms
will help to some degree.

As part of your marketing ramp-up plan for release, each of these distribution
platforms will need to be evaluated, in order to better estimate your marketing
budget. Some of the platforms require a specific process in order to be accepted and
released on their platform. For instance, Steam requires a small upfront fee, but then,
in order to be released, your game will need to be voted on by the users of their
platform, under a community-based release process called GreenLight.

Since we have focused primarily on the Windows PC platform for this book, your
first release will most likely be on one of the desktop-based release platforms. The
following is a short list of the current PC-based digital distribution platforms:

•	 Steam (http://steamcommunity.com/greenlight/); a helpful FAQ is listed
at http://steamcommunity.com/workshop/about/?appid=765§ion=f
aq#developers

•	 GOG.com (http://www.gog.com/indie)
•	 The Humblestore (http://www.humblebundle.com/developer)
•	 Green Man Gaming (http://www.greenmangaming.com/); for publishing or

selling your game, click on the Support link
•	 itch.io (http://itch.io/)

http://store.steampowered.com/
http://store.steampowered.com/
http://itunes.apple.com/us/genre/ios/id36?mt=8
http://itunes.apple.com/us/genre/ios/id36?mt=8
http://play.google.com/store?hl=en
http://play.google.com/store?hl=en
http://steamcommunity.com/greenlight/
http://steamcommunity.com/workshop/about/?appid=765§ion=faq#developers
http://steamcommunity.com/workshop/about/?appid=765§ion=faq#developers
http://www.gog.com/indie
http://www.humblebundle.com/developer
http://www.greenmangaming.com/
http://itch.io/

Chapter 10

[369]

Obfuscating the save game profiles
One aspect of security when releasing your title is specific to the save game profiles.
When we first implemented the save game profiles, we had the JSON serialize
output from the ObjectMap object to a nice, readable format. This was intentional
so that you could easily modify the save game state in order to test out edge cases,
simplifying the process for duplicating bugs. For final release though, we will want
to make the save game profile more difficult to edit, thus making it more difficult for
a player to exploit the game.

Again, LibGDX makes this extremely easy with a few method calls using the
Base64Coder class. The Base64Coder class encodes and decodes String objects
using the Base64 format. The Base64 format is an encoding scheme where we take
some binary data and translate it into its numerical Base64 representation. The
following is a source snippet from ProfileManager.java with the changes:

import com.badlogic.gdx.utils.Base64Coder;
...
public class ProfileManager extends ProfileSubject {
...
 public void writeProfileToStorage(String profileName,
 String fileData, boolean overwrite){

 String fullFilename = profileName+SAVEGAME_SUFFIX;

 boolean localFileExists =
 Gdx.files.local(fullFilename).exists();

 //If we cannot overwrite and the file exists, exit
 if(localFileExists && !overwrite){
 return;
 }

 FileHandle file = null;

 if(Gdx.files.isLocalStorageAvailable()) {
 file = Gdx.files.local(fullFilename);
 String encodedString =
 Base64Coder.encodeString(fileData);
 file.writeString(encodedString, !overwrite);
 }

 _profiles.put(profileName, file);
 }

Prophecy Fulfilled, Our Hero Awaits the Next Adventure

[370]

Here, in the writeProfileToStorage() method, we encode the string by calling the
static method encodeString() from Base64Coder in order to translate the string
that we are going to write out to the save game profile:

 ...
 public void loadProfile(){
 if(_isNewProfile){
 notify(this, ProfileObserver.ProfileEvent.
 CLEAR_CURRENT_PROFILE);
 saveProfile();
 }

 String fullProfileFileName = _profileName+SAVEGAME_SUFFIX;

 boolean doesProfileFileExist =
 Gdx.files.local(fullProfileFileName).exists();

 if(!doesProfileFileExist){
 return;
 }

 FileHandle encodedFile = _profiles.get(_profileName);
 String s = encodedFile.readString();

 String decodedFile = Base64Coder.decodeString(s);

 _profileProperties = _json.fromJson(ObjectMap.class,
 decodedFile);
 notify(this, ProfileObserver.ProfileEvent.PROFILE_LOADED);
 _isNewProfile = false;
 }
}

Finally, in loadProfile(), we make sure to read the save game profile as a string.
We then decode this string using the static method, decodeString(), from the
Base64Coder class. Finally, we load the decoded string into the JSON parser and
update the property values in our ObjectMap object.

Chapter 10

[371]

Logging levels
A final item to note is that, in a final release, you may want to limit the debug
information that is output to standard out. This is one more area of security to
minimize the code paths that your game processes so that someone can't easily
develop a memory profile of your game state.

For internal debugging, and even for a beta group, you may want to keep the logging
level at LOG_DEBUG. The following is a source snapshot for DesktopLauncher.java
located at desktop\src\com\packtpub\libgdx\bludbourne\desktop:

public class DesktopLauncher {
 public static void main (String[] arg) {
 ...
 Gdx.app.setLogLevel(Application.LOG_DEBUG);
 }
}

For a final build of your game, you may want to update the logging level to LOG_
INFO instead:

public class DesktopLauncher {
 public static void main (String[] arg) {
 ...
 Gdx.app.setLogLevel(Application.LOG_INFO);
 }
}

Unfortunately, Java does not support conditional compilation where a different
segment of code would be compiled based on some external value. We could do a
workaround by defining a static String constant or static boolean type in a file and
set the variable to a different value, depending on the directory where it is located.
The release build target would only pick up the source from one directory and a
debug build target would pick up the other one.

Prophecy Fulfilled, Our Hero Awaits the Next Adventure

[372]

Creating an executable JAR
Java archives are referred to as JAR files. These JAR files are the packages that
contain the final bytecode generated from compiling the original source. There is
a type of JAR file, called an executable JAR, which can be run by simply double
clicking on the file as if it were any other Windows executable. The executable JAR
contains a manifest file that describes the main entry point of the application, and it
usually includes dependent libraries.

There are two primary methods for generating an executable JAR: using a Gradle
target or creating an artifact with IntelliJ's IDEA IDE.

Gradle
The first method, using a Gradle target, can be implemented with the following steps:

1.	 Open up a command window and navigate to your project root directory
where the gradlew.bat file lives. In Windows, holding down the left
Shift key while pressing the right mouse button will add an option, Open
Command Window Here, to the context window that pops up.

2.	 Execute the following command in the command prompt:
C:\BludBourne>gradlew desktop:dist

This command will build the distribution JAR for the desktop target.

3.	 The final JAR archive will be placed in desktop\build\libs relative to the
project root directory. Navigate to this directory for the next step.

4.	 You can execute this JAR using one of two different ways. The first is by
running the following command at the command prompt:
C:\BludBourne\desktop\build\libs\java –jar desktop-1.0.jar

The second way is to double click on the JAR file, desktop-1.0.jar, from a
Windows Explorer window.

IntelliJ IDEA
The second option is to create an artifact with IntelliJ's IDEA IDE. In IDEA, an artifact
is a compilation output, consisting of source code, binaries, libraries, and resources,
for a specific module packaged as a JAR. This JAR will be deployment-ready, meaning
that the JAR is suitable for deployment on whichever target is specified.

Chapter 10

[373]

The second method can be implemented with the following steps:

1.	 Navigate to your project root directory, using Windows Explorer, where the
BludBourne.ipr file lives.

2.	 Double-click on the IPR file in order to load the BludBourne project into the
IDEA IDE.

3.	 In the Project pane, make sure the top-level element of the project, named
BludBourne, is selected.

4.	 In the menu, select the File | Project Structure option.
5.	 In the Project Structure window, select Artifacts.
6.	 To add a new artifact, click on the + option in the middle pane.
7.	 In the New pop-up window, select Jar | From modules with

dependencies…. The resulting window is shown in the following
screenshot (Figure 1):

Figure 1

8.	 In the Create JAR from Modules dialog window, select All Modules from
the Module section.

9.	 For the Main Class section, select the com.packtpub.libgdx.bludbourne.
desktop.DesktopLauncher class.

10.	 For the JAR files from libraries section, select the extract to the target
JAR option.

Prophecy Fulfilled, Our Hero Awaits the Next Adventure

[374]

11.	 For the Directory for META-INF/MANIFEST.MF section, choose a path
where the manifest will reside. The recommended path is core\build\
resources\main\META-INF. The manifest.mf file will be generated here, so
verify that the directory is empty. This path also solves a possible error with
a manifest.mf file being overwritten, which causes a no main manifest
attribute, in BludBourne.jar error at execution.

12.	 Click on OK. We should now have an artifact called BludBourne.jar set up
in the window. Make note of the Output directory location. Using the default
path should suffice.

13.	 Under the Output Layout tab, make sure that the artifact project,
BludBourne.jar, (top-level) is selected.

14.	 Select the + | Directory Content option to add a copy of our assets folder.
15.	 In the Select Path dialog, select the root directory for all our project

resources, core\assets, and click on OK.
16.	 In the Project Structure window, you should have a configured build that

looks similar to the following screenshot (Figure 2):

Figure 2

Chapter 10

[375]

17.	 Click on Apply and then on OK in the Project Structure window.
18.	 Now we can build the artifact by selecting the Build | Build Artifacts…

option.
19.	 In the Build Artifact pop-up window, select BludBourne.jar.
20.	 In the Action popup window, select Build.
21.	 Using Windows Explorer, navigate to the output directory (relative to the

project root), which is out\artifacts\BludBourne_jar.
22.	 You can execute this JAR using one of two different ways. The first is by

running the following command in the command prompt:

C:\BludBourne\out\artifacts\BludBourne_jar\java –jar BludBourne.
jar

The second way is to double click on the JAR file, BludBourne.jar, from the
Windows Explorer window.

Native launchers
Generally, when distributing software, you will need to use an installer product
to create a package executable that will be installed by the user. Installer software
will generate a dependency graph while compiling the dependencies. A set of rules
(defined by you) will be used as checks to successfully generate the installer. The use
of an installer is beyond the scope of this chapter, but typically the various digital
distribution systems will provide the tools necessary for the final packaging.

One item for your game to always keep in mind is that injecting dependencies
directly into the final executable is usually preferable at the expense of a larger
file size. Making assumptions about the player's system, or at least, posting the
requirements for specific software dependencies can be a burdensome process for the
player. The file size of the final executable is more of a primary concern of systems
with limited space, such as mobile devices. For a Window's PC platform, file size is
not as large of a concern, and since a Java-based executable JAR will run in its own
JVM sandbox, we do not have to be concerned about dependency conflicts with
system resources.

When looking at distributing your game, one consideration to keep in mind is the
ease of use for the player to install your game. The player should not have to worry
about all the various resources related to your game. One tool that we can use to
create our final package for distribution is called Packr.

Prophecy Fulfilled, Our Hero Awaits the Next Adventure

[376]

Packr
The tool we will use next with our executable JAR (created in the last section) is
named Packr (http://github.com/libgdx/packr). In the last section, we used
either a Gradle target or an IntelliJ artifact to create an executable JAR. The problem
with the executable JAR is that it still requires the hosting system to have a Java
runtime installed. Packr adds the Java runtime as part of the final build so that the
player does not need to install or upgrade their own Java runtime.

The following steps demonstrate how to use Packr:

1.	 First, download the latest stable build JAR, typically copied to packr.jar for
distribution from http://libgdx.badlogicgames.com/packr.

2.	 Copy the packr.jar file to the build directory where the BludBourne.jar
file is located.

3.	 Open up a command window and navigate to where your packr.jar file
lives. In Windows, holding down the left Shift key while pressing the right
mouse button will add an option, Open Command Window Here, to the
context window that pops up.

4.	 Execute the following command at the command prompt:
C:\BludBourne\build>java -jar packr.jar \

-platform windows \

-jdk https://bitbucket.org/alexkasko/openjdk-unofficial- \

 builds/downloads/openjdk-1.7.0-u80-unofficial-windows-i586- \

 image.zip \

-executable BludBourne \

-appjar BludBourne.jar \

-mainclass "com/packtpub/libgdx/bludbourne/desktop/
DesktopLauncher" \

-vmargs "-Xmx1G" \

-minimizejre "soft" \

-outdir out

5.	 After the build, navigate to the out directory specified by the –outdir
parameter.

6.	 You can now run the native launcher, designated as BludBourne.exe,
without the need to have a Java runtime installed.

http://github.com/libgdx/packr
http://libgdx.badlogicgames.com/packr

Chapter 10

[377]

The files included in the out directory are as follows:

C:.

│ BludBourne.exe

│ BludBourne.jar

│ config.json

│ tmp.txt

│

└───jre

The native launcher that the user can just execute is BludBourne.exe. The dependent
JAR with all the bytecode and assets, BludBourne.jar, is located at the same level.
The config.json file allows some runtime configuration in how the application is
launched. Finally, the JRE directory contains the properly licensed OpenJDK package
that is used for the execution of the native launcher.

The following describes the parameters used with Packr in a little more detail:

•	 platform: This is the target platform for the build. Valid targets are windows
(only 32-bit for now), linux32, linux64, or mac.

•	 jdk: This is the path to a zipped version of or the URL to OpenJDK (license
allows redistribution with applications). Builds can be found at http://
github.com/alexkasko/openjdk-unofficial-builds.

•	 executable: This is the name you want for the final executable file (without
the extension).

•	 appjar: This is the file path for the executable JAR needed for the final native
launcher.

•	 mainclass: This is the fully qualified path for the entry point of the
application (the value used in the manifest.mf file). A forward slash is
currently used in between the package names instead of the dots.

•	 vmargs: These are all arguments that will be passed to the JVM during
runtime.

•	 outdir: This is the final output directory of the native launcher when
finished.

•	 resources: This is an optional parameter (not used in our example because
all the files are included in the JAR) for a list of files (and directories) to be
packaged next to the native executable.

•	 minimizejre: This parameter minimizes the memory footprint of the JRE by
removing the specified directories and files.

http://github.com/alexkasko/openjdk-unofficial-builds
http://github.com/alexkasko/openjdk-unofficial-builds

Prophecy Fulfilled, Our Hero Awaits the Next Adventure

[378]

Obfuscating the packaged JAR
Another consideration is the security of your game executable to prevent people, or
at the least, make the process more difficult for the player to exploit your game code.
A common technique used in the industry is to rename class member variables and
class names, or obfuscate the compiled bytecode of the distribution JARs. There is
a tool I have used in the past for obfuscating Android-based games, but can also be
applied to the desktop version of your game. Proguard (v5.2.1) still seems to be the
golden standard because it is configurable, relatively effective, and open source. The
main website for Proguard is http://proguard.sourceforge.net/.

The following steps demonstrate how to use Proguard:

1.	 Navigate to where the current build distribution JAR, BludBourne.jar,
is located.

2.	 Rename this JAR to BludBourne_ORIG.jar.
3.	 Download the latest Proguard zip file from http://sourceforge.net/

projects/proguard/files and unzip the archive.
4.	 Navigate into the unzipped archive to the root directory (which contains the

README file) and down into the bin directory.
5.	 Double-click on the proguardgui.bat batch file to execute the GUI tool

on Windows.
6.	 You should see the following splash screen after Proguard loads:

Figure 3

http://proguard.sourceforge.net/
http://sourceforge.net/projects/proguard/files
http://sourceforge.net/projects/proguard/files

Chapter 10

[379]

7.	 Load the predefined configuration file, proguard.cfg, from the root
directory of the project, under BludBourne/. We discuss the specifics of the
configuration file later in this section.

8.	 Click on the Input/Output button on the left pane.
9.	 Click on the Add input… button, navigate to where the current distribution

JAR is located, and select the source JAR file, in our case BludBourne_ORIG.
jar.

10.	 Click on the Add output… button, navigate to where the current
source distribution JAR is located (BludBourne_ORIG.jar), and type in
BludBourne.jar.

11.	 In the bottom pane, if you have chosen to use Packr, you will have external
dependencies (JRE) that will need to be added. Click on Add… and select the
jre directory (OpenJDK binaries) that is included with your distribution.

12.	 Click on the Process button on the left pane.
13.	 Click on the Process! button on the bottom-right of the Process window.
14.	 The target obfuscated distribution JAR, BludBourne.jar, will be located in

the output directory.

The proguard.cfg file
An explanation of all the configuration options is available at http://proguard.
sourceforge.net/index.html#manual/usage.html. The following is the
proguard.cfg file used for generating the final obfuscated distribution jar for
BludBourne:

-optimizationpasses 5
-verbose

-renamesourcefileattribute SourceFile
-keepattributes SourceFile,LineNumberTable,Signature

-dontwarn com.badlogic.gdx.jnigen.**
-dontwarn java.awt.**
-dontwarn com.badlogic.**
-dontwarn org.lwjgl.**

-dontnote java.awt.**
-dontnote com.badlogic.**
-dontnote org.lwjgl.**

http://proguard.sourceforge.net/index.html#manual/usage.html
http://proguard.sourceforge.net/index.html#manual/usage.html

Prophecy Fulfilled, Our Hero Awaits the Next Adventure

[380]

-keep class org.lwjgl.** { *; }
-keep class com.badlogic.** { *; }
-keep class * implements com.badlogic.gdx.utils.Json*

-keepnames class * implements java.io.Serializable

-keepclassmembers class * implements java.io.Serializable {
 static final long serialVersionUID;
 private static final java.io.ObjectStreamField[]
 serialPersistentFields;
 !static !transient <fields>;
 private void writeObject(java.io.ObjectOutputStream);
 private void readObject(java.io.ObjectInputStream);
 java.lang.Object writeReplace();
 java.lang.Object readResolve();
}

-keepclasseswithmembernames class * {
 native <methods>;
}

-keepclassmembers enum * {
 public static **[] values();
 public static ** valueOf(java.lang.String);
}

#BludBourne specific
-keep public class com.packtpub.libgdx.bludbourne.
 desktop.DesktopLauncher{
 public static void main(java.lang.String[]);
}

-keepclassmembers class com.packtpub.libgdx.bludbourne.
 EntityConfig{ *; }
-keepclassmembers class com.packtpub.libgdx.bludbourne.
 EntityConfig$AnimationConfig{ *; }
-keepclassmembers class com.packtpub.libgdx.bludbourne.
 dialog.ConversationGraph{ *; }
-keepclassmembers class com.packtpub.libgdx.bludbourne.
 quest.QuestGraph{ *; }

Chapter 10

[381]

-keepclassmembers class com.packtpub.libgdx.bludbourne.
 battle.LevelTable{ *; }
-keepclassmembers class com.packtpub.libgdx.bludbourne.
 battle.MonsterZone{ *; }
-keepclassmembers class com.packtpub.libgdx.bludbourne.
 InventoryItem{ *; }

-keep class com.packtpub.libgdx.bludbourne.
 dialog.ConversationChoice{ *; }
-keep class com.packtpub.libgdx.bludbourne.dialog.Conversation{ *;
 }
-keep class com.packtpub.libgdx.bludbourne.quest.QuestTask{ *; }
-keep class com.packtpub.libgdx.bludbourne.
 quest.QuestTaskDependency{ *; }

Most of the options here are standard for configurations involving LibGDX on the
desktop. The items to note are the ones that relate to BludBourne. Specifically, we
need to make sure that we keep the entry point for BludBourne so that it doesn't get
obfuscated. Otherwise, Proguard will not know how to map from the obfuscated
classes back to their original names.

The other classes that we have to keep from being obfuscated, specifically deal with
JSON. The reason is that when reading our JSON-based script files from disk, the
JSON parser cannot resolve the types inferred from the field names. Since we have
obfuscated the POJO class names and members, the parser will fail because the field
names do not match up with their POJO representations. This issue with obfuscation
is also only caught at runtime when the JSON parser is actually used.

Debugging tips
Sometimes, when first creating the executable JAR, there will be times when the
game will simply not execute. This is typically related to packaging issues; when
your game is trying to load resources and they cannot be found. Other times, there
may be issues with obfuscation and another rule will need to be added to the
proguard.cfg file. The following are a few tips for resolving these issues.

Prophecy Fulfilled, Our Hero Awaits the Next Adventure

[382]

The command line
We will want to run the binary from the command prompt using the following
command:

java -jar BludBourne.jar

This allows us to view any stack trace generated when an exception was thrown
during execution. I used this debugging method to find an issue with the initial
executable JAR created for BludBourne. When running BludBourne from the IDE on
Windows, the paths (and files) get resolved correctly because we are searching the
project paths on the filesystem, which is case-insensitive. However, when run from
the JAR, these same paths (and files) are resolved with case sensitivity in mind (for
portability reasons). I hand edited the TMX map files so that all the paths were lower
case; thus, matching up with the paths in the JAR and fixing the issue.

Attach to the running process
Another option is to attach to the running process in order to remote debug the JAR.
The following steps will demonstrate how to do this using IDEA:

1.	 Make sure the project is loaded in IDEA associated with the executable JAR
that you want to debug.

2.	 Select Run | Edit Configurations… from the menu.
3.	 In the Run/Debug Configurations window, click on the + symbol to add a

new configuration and select Remote.
4.	 The defaults for the remote configuration should be sufficient. Just make sure

to note all the options under Command line arguments for running remote
JVM and copy them.

5.	 Click on Apply and OK.
6.	 Now launch the executable JAR from the command line with the following

command (which adds the arguments copied from step 4):
java

-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,
address=5005

-jar desktop-1.0.jar

7.	 In IDEA, to attach to the running instance, select Run | Debug <Remote
target>.

Chapter 10

[383]

Testing builds before release
The final component in the verification step of your final release package is to run
some tests as a sanity check. These are standard tests that even developers should do,
before handing off to your quality assurance group, when checking in bug fixes or
after adding a new feature.

A smoke test
The first test, a smoke test, deals with a relatively straightforward and fast series of
steps for covering as much of the game mechanics and features as possible without a
lengthy review process.

BludBourne start and main menu
1.	 Verify we have a Proguard-processed archive BludBourne.jar.
2.	 Verify we have a Packr-generated native executable BludBourne.exe that

references the Proguard-processed archive.
3.	 Start BludBourne by running the native executable, BludBourne.exe.
4.	 Verify that the main menu is presented with the appropriate choices.
5.	 Verify music is playing at the main menu.
6.	 Select Exit.
7.	 Verify that BludBourne shuts down correctly.
8.	 Start BludBourne by running the native executable, BludBourne.exe.
9.	 Select Credits.
10.	 Verify that the credits run until the end.
11.	 Verify that you can navigate back to the main menu by clicking on the screen.

Cutscene
12.	 Click on Watch Intro.
13.	 Verify that the introduction cutscene plays through correctly, including

music, text, and graphics (~2 minutes).
14.	 Verify that when the cutscene fades out at the end, we are back at the main

menu.
15.	 Verify music is playing at the main menu.

Prophecy Fulfilled, Our Hero Awaits the Next Adventure

[384]

New game
16.	 Select New Game.
17.	 Enter a profile name quicktest and click on Start.
18.	 Verify that we are starting at the TOWN map and the time on the clock is

around 12:00 pm.
19.	 Verify that your character has 50 HP, 50 MP, 0 XP, Level 1, and 20 GP.
20.	 Verify that the music is playing for the TOWN map.

Inventory
21.	 Click on your inventory and verify that you have the default starting gear.
22.	 Verify that as you hover over inventory items, you can see tooltip

information.
23.	 Verify that you can drag and drop inventory items into your equip slots (add

armor and a sword).
24.	 Verify that the defense and attack points are updated.
25.	 Verify that you can stack your MP potions and HP scrolls.
26.	 Exit the inventory.

Town NPCs
27.	 Verify that there are NPCs walking around.
28.	 Verify that the lanterns and torch particle effects are active.
29.	 Select TOWN_FOLK10 and walk away far enough to verify that the selection is

gone.

Conversation
30.	 Start a conversation with TOWN_FOLK10.
31.	 Verify that you can go through the four options, one for each cardinal

direction.
32.	 Verify that you can exit the conversation by clicking on the Exit button.

Quest
33.	 Select TOWN_FOLK2 and accept the quest.
34.	 Verify that the quest shows up in your Quest Log.

Chapter 10

[385]

35.	 Verify the child spawns and that you can safely place the child in your
inventory.

36.	 Verify the child is in your inventory.
37.	 Return the child and finish quest.
38.	 Verify that the quest reward music plays.
39.	 Verify you receive money and experience.

Item purchase
40.	 Visit TOWN_BLACKSMITH and verify that you can see his items.
41.	 Drag and drop the cheapest shield and select BUY.
42.	 Verify that your GP has updated and that the coin sound effect is played.
43.	 Verify that you have received the item after exiting.
44.	 Exit TOWN.

Battle
45.	 Walk around and find a battle with a monster.
46.	 Click on RUN until you can successfully evade the monster.
47.	 Walk around and find a battle with a monster.
48.	 Attack the monster.
49.	 Verify that they shake when struck and the damage appears above their

head.
50.	 After defeating the monster, verify your experience has gone up.

Game over
51.	 Remove all items of defense from your equip slots.
52.	 Walk around and find a battle with a monster.
53.	 Verify that you receive damage and that the UI shakes.
54.	 Repeat the battles until you die.
55.	 Verify that you see a game over screen.
56.	 Select Continue.
57.	 Load quicktest.
58.	 Verify that you are starting in the TOP_WORLD map.

Prophecy Fulfilled, Our Hero Awaits the Next Adventure

[386]

Consuming items
59.	 Open your inventory and eat your scrolls for health.
60.	 Verify that your health goes up.
61.	 Verify that the scrolls in the inventory are removed.
62.	 Verify that you hear the sound effects when using the items.

Wand attack
63.	 Equip yourself with all defense and the wand.
64.	 Verify that when you attack, you see the particle effect.
65.	 Verify that your MP goes down.

Lightmaps and day-to-night cycle
66.	 Now, go back to TOWN until nightfall.
67.	 Verify that the lightmap in TOWN is enabled.
68.	 Quit the game.

Save game profiles
69.	 Open up the quicktest.sav save game profile in a text editor.
70.	 Verify that the file is not readable.
71.	 Start BludBourne by running the native executable, BludBourne.exe.
72.	 Select Load Game and quicktest.
73.	 Verify that the profile loads correctly.
74.	 Quit the game.

The burn-in test
Another test to run is one that involves running the game for a prolonged period of
time. This is a stress test or burn-in test that evaluates the overall stability of a build.
For a more detailed analysis of your game, you can run a memory profiler to pinpoint
the specific areas that may be causing issues. The steps for this test is as follows:

1.	 Start BludBourne by running the native executable, BludBourne.exe.
2.	 Select New Game.

Chapter 10

[387]

3.	 Enter a profile name burnintest and click on Start.
4.	 Verify that we are starting at TOWN and that the time on the clock is around

12:00 pm.
5.	 Launch the process explorer on the desktop and make a note of the current

memory footprint of the BludBourne.exe executable.
6.	 Let the game run without interruption for a specific length of time,

depending on your requirements.
7.	 Make a note of the current memory footprint and calculate the difference

from the initial size.
8.	 This measurement will tell you if you have serious memory leaks or if the

build is relatively stable with minimal memory overhead.

Summary
In this chapter, we first explored different options for digital distribution platforms
to host your game. We then addressed a few topics to minimize exploits of your
game code, including obfuscating the save game profiles using the Base64Encoder
class and minimizing the logging chatter output to standard out. Next, we looked at
the final packaging steps for generating an executable JAR and also native launchers,
using Packr, to eliminate third-party dependencies for the player. We then looked
at an additional layer of security by obfuscating our final package with Proguard.
There were some general debugging tips that can be useful during these different
steps in the process. Finally, we reviewed some tests used during the development of
BludBourne that, hopefully, can be helpful for you during your deployment phases.

This is where the road ends for our journey in the world of BludBourne. We have
learned much during our travels together, and I hope that you are armed with some
new knowledge that will aid you in your future adventures.

[389]

Index
A
Action objects

defining 302
Android SDK Tools

URL 147
animation

player character, implementing with 82
application program interfaces (APIs) 10
App Store, Apple

URL 368
App store, Google

URL 368
artificial intelligence (AI) 8
asset management

implementing, with loading textures 58
implementing, with tile-based maps 58

assets module 23
Audacity (version 2.0.3)

about 290
URL 290

AudioCommand enum type
list, defining 293, 294

B
backend modules

about 20, 21
Application.java interface 20
Audio.java interface 21
Files.java interface 21
Graphics.java interface 21
Input.java interface 21
Net.java interface 21
Preferences.java interface 21

BattleState class
BattleObserver 255-257
BattleSubject 255
defining 254, 255
InventorySubject 257-259
MonsterFactory 262, 263
MonsterZone 265-272
options, defining 256-258

battle system
implementing 252-254

BattleUI class
about 273, 274
AnimatedImage class 275-280

BludBourne
reviewing 57, 58
starter classes, implementing 54, 55

BludBourne project
executing 43, 44

build environment 35
builds

burn-in test 386
smoke test 383
testing, before release 383
URL 377

burn-in test 386

C
class diagram

defining 288, 289
class hierarchy

ConversationChoice class 188
Conversation class 187, 188
ConversationGraph class 190-195
ConversationGraphObserver class 189, 190

[390]

ConversationGraphSubject class 189, 190
defining 186, 187

commercial game
versus technology demo 8

computer-based RPGs (CRPGs) 2
conversation graph 183
conversations

script, supporting for 201-203
conversation trees

defining 183-186
core modules

about 22, 23
assets 23
maps 22
math 22
scenes 23
utils 23

cutscenes
Action class 301, 302
creating 301
CutSceneScreen class 303-320

D
day-to-night effect

ClockActor class 347-351
defining 347
MapManager class 352, 353

debugging tips
attaching, to running process 382
command line 382
defining 381

dependency graphs
defining 218-220
implementing 221
QuestGraph 223-233
QuestTask 222
QuestTaskDependency 223

DesktopLauncher
modifying 55, 56

development environment
LibGDX setup tool, running 31-35
prerequisite tool, installing 29, 30
setting up 29

dialog tree
defining 183

digital distribution platforms
defining 368

directed acyclic graph (DAG) 218
downloadable content (DLC) 41
drag and drop feature

defining 155, 156
InventoryItem 158, 159
InventorySlot 157
InventorySlotSource 159, 160
InventorySlotTarget 161, 162

DragAndDrop object
using 167, 168

Draw 9-patch
about 147
URL 148

E
Eclipse

about 30
URL 30

ECS design pattern
about 102-105
architecture 103
Component interface 112, 113
Entity, defining 107-112
Entity selection 125-131
GraphicsComponent 118-121
InputComponent 121-124
JSON, using for NPC properties 105-107
PhysicsComponent 113-117

Entity class
defining 82-90

events
triggering 203, 204

executable JAR
creating 372
Gradle 372
IntelliJ IDEA 372-375

extensions
Ashley 33
Box2D 33
Box2DLights 33
Bullet 33
Controllers 33
Freetype 33

[391]

Overlap2D 33
Tools 33
VisUI 33

F
frame rate 18
frames per second (FPS) 18

G
game architecture

about 13
high-level event-based loop 16
high-level game loop, for graphic-based

video game 17-19
high-level game loop, of Adventure

 type 13-16
game framework

versus game engine 9
GameOverScreen

defining 284, 285
game profiles

example, observer pattern 178, 179
loading 171-176
observer pattern 176-178
saving 171-176

gdx-setup tool
about 30
URL 30

Git
about 42
URL 42

GitHub, for Windows
URL 42

Gradle
benefits 36
overview 35, 36

graphical user interface (GUI) 17
graphics processing unit (GPU) 18
GUI clients

URL 42

H
heads-up display (HUD) 139
high-level component layout, LibGDX

about 19
backend modules 20, 21
core modules 22, 23

high-level event-based loop 16
high-level game loop

for graphic-based video game 17-19
of Adventure type game 13-16

I
input and output (I/O) 8
input handling

implementing, for player character
movement 92

integrated development environment (IDE)
Eclipse 30
installing 30
IntelliJ IDEA 30
NetBeans 30

IntelliJ IDEA
about 30
URL 30

inventory
and HUD layouts, with skins 139

InventorySubject
defining 257-259
items, consuming 259-262

InventoryUI
defining 162-166

J
Japanese RPG (JRPG) 4
Java-based package

naming convention, URL 32
Java Development Kit (JDK)

installing 29
URL 29

JavaScript Object Notation (JSON) 105
Java Virtual Machine (JVM) 16

[392]

L
layer types

defining 49, 50
LevelTable class

defining 281-283
LibGDX

about 107
application lifecycle 24-29

libgdx-texturepacker-gui
about 146
URL 146

Lightweight Java Game Library
 (LWJGL) 41, 56, 289

live action role-playing (LARP) 5

M
MainGameScreen

defining 64-74
Map design

defining 132-137
map editor

URL 48
map management

implementing, with portal system 74
implementing, with spawn points 74

MapManager
defining 74-81

maps module 22
math module 22
menu screens

defining 170, 171
Mercurial

about 42
URL 42

MonsterFactory
defining 262, 263
Monster entity 263-265

Music object 297

N
native launcher

defining 375
Packr 376, 377

NetBeans
about 30
URL 30

non-playable characters (NPCs) 82

O
object oriented design (OOD) 101
operating system (OS) 17
options section, particle effects

defining 358, 359

P
packaged JAR

obfuscating 378, 379
proguard.cfg file 379-381

Packr
about 375
parameters, using 377
URL 376
using 376

particle effects
attributes 356-358
BattleUI class 362-364
defining 354
Particle Editor 354-359
ParticleEffectFactory class 359-362
properties 356
URL 354

PC-based digital distribution platforms
GOG.com 368
Green Man Gaming 368
Humblestore 368
itch.io 368
references 368
Steam 368

Perforce
about 42
URL 42

plain old Java object (POJO) 107
player character

implementing, with animation 82
player character movement

input handling, implementing for 92
PlayerController class

defining 92-99

[393]

PlayerHUD
with Scene2D 140-143

portal system
map management, implementing with 74

Proguard
about 378
URL 378
using 378

Proguard zip file
URL 378

project structure 35-41

Q
quest

creating 240-249
QuestUI

defining 233-240

R
render loop

camera, implementing 64
map, displaying 64

role-playing games (RPGs)
features 5-7
fundamentals 2
history 2-4

S
save game profile

levels, logging 371
obfuscating 369, 370

scenes module 23
screen transitions

defining 324
MainGameScreen class 330
PlayerHUD class 329, 330
ScreenTransitionAction class 327-329
ScreenTransitionActor class 325, 326

settings, texture packer
URL 146

ShakeCamera class
defining 331-338

SmartGit 42

smoke test
about 383
Battle 385
BludBourne start and main menu 383
conversation 384
Cutscene 383
day-to-night cycle 386
Game over 385
game profiles, saving 386
Inventory 384
Item purchase 385
items, consuming 386
lightmap 386
New game 384
Quest 384
Town NPCs 384
Wand attack 386

sound and music
AudioManager 297-301
AudioObserver 291-294
AudioSubject 294-296
defining 289, 290
using 292, 293

spawn points
map management, implementing with 74

speech windows
defining, with dialog trees 182

starter classes
implementing, for BludBourne 54, 55

static lighting
about 339, 340
lightmap, creating 340-342
MainGameScreen class 344, 345
Map class 343
MapManager class 343

StatusUI class
defining 150-154

Steam platform, Valve
URL 368

store UI
shopping, with items and money

transactions 204-216
Subversion

about 42
URL 42

[394]

T
technologies, role-playing game

about 8
budget, planning 11-13
commercial game, versus technology

demo 8
game framework, versus game engine 9
target platforms 9

third-party extension, Gradle
URL 36

tide
URL 48

tile-based maps
creating 47-53
editing 47-53

tilemap editors, LibGDX
tide 48
tiled 48

tooltip
using 169, 170

TrueType font (TTF) file 23

U
UIs

developing, with LibGDX 143
UI structure

defining 196-201

UIs, with LibGDX
9-patch 147, 148
defining 143
skins 149
texture atlas 144-146
UI summary, developing 149
widget styles 144

unitScale attribute
benefits 69

user interface (UI) 7
Utility class

defining 59-63
utils module 23

V
version control system (VCS) 41, 42

W
What you see is what you get (WYSIWYG)

tool 147

Thank you for buying
Mastering LibGDX Game Development

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning LibGDX Game
Development
Second Edition
ISBN: 978-1-78355-477-5 Paperback: 478 pages

Wield the power of the LibGDX framework to create
a cross-platform game

1.	 Write your game code once and run it on a
multitude of platforms using LibGDX.

2.	 Learn about the key features of LibGDX that
will ease and speed up your development
cycles.

3.	 An easy-to-follow, comprehensive guide
that will help you develop games in LibGDX
successfully.

LibGDX Game Development
Essentials
ISBN: 978-1-78439-929-0 Paperback: 216 pages

Make the most of game development features
powered by LibGDX and create a side-scrolling action
game, Thrust Copter

1.	 Utilize the robust features of LibGDX to easily
create and publish cross-platform 2D and 3D
games that involve complicated physics.

2.	 Be the best cross-platform game developer with
the ability to create rich interactive applications
on all the leading platforms.

3.	 Develop a 2D side scrolling game, Thrust
Copter, add physics, and try to convert it to
3D while working on interesting LibGDX
experiments.

Please check www.PacktPub.com for information on our titles

Libgdx Cross-platform Game
Development Cookbook
ISBN: 978-1-78328-729-1 Paperback: 516 pages

Over 75 practical recipes to help you master cross-
platform 2D game development using the powerful
Libgdx framework

1.	 Gain an in-depth understanding of every
Libgdx subsystem, including 2D graphics,
input, audio, file extensions, and third-party
libraries.

2.	 Write once and deploy to Windows, Linux, Mac,
Android, iOS, and browsers.

3.	 Full of uniquely structured recipes that help
you get the most out of Libgdx.

Learning Libgdx Game
Development
ISBN: 978-1-78216-604-7 Paperback: 388 pages

Walk through a complete game development cycle
with practical examples and build cross-platform
games with Libgdx

1.	 Create a libGDX multi-platform game from
start to finish.

2.	 Learn about the key features of libGDX that
will ease and speed up your development
cycles.

3.	 Write your game code once and run it on a
multitude of platforms using libGDX.

4.	 An easy-to-follow guide that will help you
develop games in libGDX successfully.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: As the Prophecy Foretold, a Hero is Born
	Understanding the fundamentals of
role-playing games
	History
	RPG features

	Technologies used when developing a role-playing game
	Commercial game versus technology demo
	Target platforms
	Game framework versus game engine
	Budget

	Understanding the basics of a game architecture
	The high-level game loop of Adventure
	The high-level event-based loop
	The high-level game loop for a graphic-based video game

	Understanding the high-level component layout of LibGDX
	LibGDX backend modules
	LibGDX core modules

	Understanding the application lifecycle of LibGDX
	Setting up your development environment
	Prerequisite tool installation
	Running the LibGDX setup tool

	Understanding the build environment and project structure
	Why Gradle?
	Benefits of Gradle
	Project structure
	Version control systems

	Running the default demo project
	See also
	Summary

	Chapter 2: Welcome to the Land of BludBourne
	Creating and editing tile-based maps
	Implementing the starter classes for BludBourne
	DesktopLauncher
	BludBourne

	Implementing asset management with loading textures and tile-based maps
	Utility

	Implementing the camera and displaying a map in the render loop
	MainGameScreen

	Implementing map management with spawn points and a portal system
	MapManager

	Implementing your player character with animation
	Entity

	Implementing input handling for player character movement
	PlayerController

	Summary

	Chapter 3: It's Pretty Lonely in BludBourne…
	The Entity Component System design pattern
	Using JSON scripts for NPC properties
	Entity
	Component interface
	PhysicsComponent
	GraphicsComponent
	InputComponent
	Entity selection

	Map design
	Summary

	Chapter 4: Where Do I Put My Stuff?
	Inventory and HUD layouts with skins
	PlayerHUD with Scene2D
	Developing UIs with LibGDX
	StatusUI
	Drag and drop
	InventoryUI
	Drag and drop usage
	Tooltip usage
	Menu screens

	Save and load game profiles
	Observer pattern
	Observer pattern usage example

	Summary

	Chapter 5: Time to Breathe Some Life into This Town
	Speech windows with dialog trees
	Theory behind conversation trees
	An overview of class hierarchy
	Conversation
	ConversationChoice
	ConversationGraphSubject and ConversationGraphObserver
	ConversationGraph

	UI structure
	Script support for conversations
	Triggering events

	Shop store UI with items and money transactions
	Summary

	Chapter 6: So Many Quests,
So Little Time…
	The theory of dependency graphs
	The dependency graph implementation
	QuestTask
	QuestTaskDependency
	QuestGraph

	QuestUI
	The steps involved in creating a quest
	Summary

	Chapter 7: Time to Show These Monsters Who's the Boss
	The battle system implementation
	BattleState
	BattleSubject
	BattleObserver
	InventorySubject
	Consuming items

	MonsterFactory
	Monster entity

	MonsterZone

	BattleUI
	AnimatedImage

	LevelTable
	GameOverScreen
	Summary

	Chapter 8: Oh, No! Looks Like Drama!
	Class diagram overview
	Sound and music
	AudioObserver
	AudioSubject
	AudioManager

	Creating cutscenes
	Action
	CutSceneScreen

	Summary

	Chapter 9: Time to Set the Mood
	Screen transitions
	The ScreenTransitionActor class
	The ScreenTransitionAction class
	The PlayerHUD class
	The MainGameScreen class

	Camera shake
	Static lighting
	Lightmap creation
	The Map class
	The MapManager class
	The MainGameScreen class

	Day-to-night cycle
	The ClockActor class
	The MapManager class

	Particle effects
	Particle Editor
	The ParticleEffectFactory class
	The BattleUI class

	Summary

	Chapter 10: Prophecy Fulfilled, Our Hero Awaits the Next Adventure
	Digital distribution platforms
	Obfuscating the save game profiles
	Logging levels

	Creating an executable JAR
	Gradle
	IntelliJ IDEA

	Native launchers
	Packr

	Obfuscating the packaged JAR
	The proguard.cfg file

	Debugging tips
	The command line
	Attach to the running process

	Testing builds before release
	A smoke test
	BludBourne start and main menu
	Cutscene
	New game
	Inventory
	Town NPCs
	Conversation
	Quest
	Item purchase
	Battle
	Game over
	Consuming items
	Wand attack
	Lightmaps and day-to-night cycle
	Save game profiles

	The burn-in test

	Summary

	Index

