
www.allitebooks.com

http://www.allitebooks.org


Linux Shell Scripting Essentials

Learn shell scripting to solve complex shell-related 
problems and efficiently automate your day-to-day tasks

Sinny Kumari

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Linux Shell Scripting Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1161115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-444-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


Credits

Author
Sinny Kumari

Reviewers
Grigor Aslanyan

Mohamed Fawzy

John Kennedy

Commissioning Editor
Pramila Balan

Acquisition Editor
Sonali Vernekar

Content Development Editor
Shali Deeraj

Technical Editors
Naveenkumar Jain

Mitali Somaiya

Copy Editor
Trishya Hajare

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Priya Subramani

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org


About the Author

Sinny Kumari has been a GNU/Linux user since the beginning of her college 
days. Her passion is to contribute to free software that benefits millions of people. 
She is a KDE contributor, KDE e.V. member, Fedora packager, and a Google Summer 
of Code mentor.

To keep up her passion in open source, she has been working as a software engineer 
at Red Hat after completing her bachelor's degree in computer science in 2012. 
As part of her work, she contributes to the Libabigail project that helps with ABI 
analysis on ELF binaries. She also loves going to technical conferences and sharing 
her experiences by giving talks. Her blogs about almost all of these activities can be 
found at http://sinny.io/.

I want to thank my parents who have always supported, 
encouraged, and provided me with the best education. I would also 
like to thank my friends and family who were always around me  
to cheer me up. Special thanks to my friend, Shantanu Tushar,  
who clarified a few doubts I came across while writing this book.  
I would also like to thank the reviewers of this book and the entire 
PacktPub team.

www.allitebooks.com

http://sinny.io/
http://www.allitebooks.org


About the Reviewers

Grigor Aslanyan is a theoretical cosmologist with a strong focus on computational 
methods for data analysis. He has a PhD in physics from the University of California, 
San Diego, and is currently a postdoctoral research fellow at the University of 
Auckland in New Zealand.

Grigor was born and raised in Armenia. He obtained both bachelor's and master's 
degrees in physics and computer science at Yerevan State University, before moving 
to California for his PhD studies. He has also worked as a software engineer for three 
years at Ponté Solutions (a company later acquired by Mentor Graphics).

Grigor's research focuses on studying the theory of the very early universe by using 
experimental data from cosmic microwave background radiation and galaxy surveys. 
His research requires the development and implementation of complex numerical 
tools used to analyze the data on large computational clusters, with the ultimate goal 
of learning about the theory of the early universe. Grigor's current research is focused 
on applying advanced data science and machine learning techniques to improve data 
analysis methods in cosmology, making it possible to analyze the large amounts of 
data expected from the current and future generation experiments.

Grigor has implemented the publicly available numerical library Cosmo++ that 
includes general mathematical and statistical tools for data analysis as well as 
cosmology-specific packages. The library is written in C++ and is publicly available 
at http://cosmopp.com.

I would like to thank the University of Auckland and my supervisor 
Richard Easther for supporting my work on this book.

www.allitebooks.com

http://cosmopp.com
http://www.allitebooks.org


Mohamed Fawzy is an open source geek who adores working with servers. 
He has been working with Linux since 2013—working and delivering training in 
Linux system engineering. He has many contributions in open source communities, 
especially in Egypt where he is a Fedora project contributor and ambassador.  
He currently lives in Egypt and studies in Mansoura University.

I would like to express my deepest appreciation to all those who 
have provided me the opportunity to achieve my life goals.

I want to express my warm thanks to my family, especially my 
father who always supports me. I would like to thank my friends, 
Mohamed Desoky and Yomna Hafez who are engineers, and also 
my team, CatReloaded, and its core members, especially Amira, 
for my graduation project, Fedora. I would also like to thank all the 
contributors who work as friends, Levex, Zoltan, and others, for 
their support and guidance in my life.

Special gratitude I give to our project manager, Sanchita Mandal, 
who coordinated the project well, the writer who did her best to 
write this book, and Packt Publishing.

Thanks to you all for being in my life.

www.allitebooks.com

http://www.allitebooks.org


John Kennedy has worked with UNIX and Linux since 1998. He has been shell 
scripting since 2001. His preferred language is BASH, although he has dabbled  
in Python.

He has been reviewing and tech-editing books in his spare time since 2001 and has 
about 20 books under his belt. He believes the best part of reviewing is that he learns 
something from every book he works on. 

John was born in the US and grew up in Northern Virginia. He spent some time  
in the US Air Force and has lived in Germany and the United Kingdom. He is 
married to Michele and has two children, Denise and Kieran. He currently lives  
in Northern Virginia.

I would like to thank my family including my nephews, Aiden and 
Mason, and my niece, Harriet, for supporting all the silly things I do 
and for giving me the time to work on this.

I would also like to thank Sanchita Mandal who possesses great 
patience and flexibility and was very supportive. Also, my thank go 
to the author, Sinny Kumari who made this book easy to review and 
educational to read. Everyone at Packt also deserves recognition for 
all the titles and hard work that goes into producing them.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit  
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,  
sign up for a range of free newsletters and receive exclusive discounts and offers  
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org


[ i ]

Table of Contents
Preface ix
Chapter 1: The Beginning of the Scripting Journey 1

Hello World in shell 3
Interacting with shell 3
Let's make it scripted 5

Define variables of choice 6
Nomenclature 6
Assigning a value 6
Accessing a value 7
Constant variables 8
Reading variables from a user input 8

Builtin shell variables 10
Operators 12

The assignment operator 13
Arithmetic operators 13
Logical operators 14
Comparison operators 15

Shell expansions 16
~ (Tilde) 17
* (Asterisk) 18
? (Question mark) 18
[ ] (Square brackets) 19
{ } (Curly brackets) 20

Construct commands using eval 21

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Make bash behave using set 22
Exit on the first failure 23
Enabling/disabling symbolic link's resolution path 24
Setting/unsetting variables 24

Summary 25
Chapter 2: Getting Hands-on with I/O, Redirection Pipes,  
and Filters 27

Standard I/O and error streams 28
File descriptors 29

Redirecting the standard I/O and error streams 30
Redirecting standard output 30
Redirecting standard input 31
Redirecting standard errors 32
Multiple redirection 33

Pipe and pipelines – connecting commands 35
Pipe 35
Pipeline 35

Regular expressions 36
Regular expression metacharacters 36
Character ranges and classes 37

Character ranges 37
Matching dates in mm-dd-yyyy format 38
Regex for a valid shell variable 39

Filtering an output using grep 40
Syntax 41
Looking for a pattern in a file 42
Looking for a pattern in multiple files 43
A few more grep usages 45

Searching in a binary file 45
Searching in a directory 46
Excluding files/directories from a search 46
Display a filename with a matching pattern 47
Matching an exact word 47

Editing output using sed 48
String substitution using s 48
Multiple substitutions 50

Duplicating a stream using tee 50
Writing an output to stdout and appending to a file 52
Sending an output to multiple commands 52



Table of Contents

[ iii ]

Sorting and finding unique text 53
Sorting an input text 53

Sorting a single file 54
Redirecting output to sort 56

Filtering unique elements 58
Unique elements in a file 58

Character-based translation using tr 61
Deleting input characters 61
Squeezing to a single occurrence 62
Inverting a character set to be translated 63

Filtering based on lines—head and tail 63
Printing lines using head 63
Printing the first few lines 64

Printing the first few bytes 64
Printing lines using tail 66

Checking log entries 66
Finding any line in a file 68

The Cut-based selection 68
Cutting across columns 69
Text selection in files 70

Summary 71
Chapter 3: Effective Script Writing 73

Exiting from scripts and exit codes 74
Exit codes 74
Exit codes with a special meaning 75
Script with exit codes 76

Testing expressions with a test 79
File checks 79
Arithmetic checks 81
String checks 82
Expression checks 83

Using conditional statements with if and else 84
Simple if and else 85
The if, elif, and else statements 86
Nested if 87

Indexed arrays and associative arrays 89
Indexed arrays 89

Array declaration and value assignment 89
Operations on arrays 89



Table of Contents

[ iv ]

The associative array 91
The declaration and value assignment 91
Operations on arrays 91

Looping around with for 93
Simple iteration 93
Iterating over a command output 94
Specifying a range to the for loop 95
Small and sweet for loop 95

The select, while, and until loops 96
Loop using select 96
The while loop 97
The until loop 98

Switch to my choice 99
Passing stdout as a parameter using xargs 101

Basic operations with xargs 101
Using xargs to find a file with the maximum size 102
Archiving files with a given pattern 103

Using functions and positional parameters 103
Calling a function in bash 104
Passing parameters to functions 105

Alias 106
Creating alias 106
Listing all aliases 108
Removing an alias 108

pushd and popd 109
Summary 110

Chapter 4: Modularizing and Debugging 111
Modularizing your scripts 112

Source to a script file 112
Syntax 112
Creating a shell script library 113
Loading a shell script library 114

Passing command line parameters to script 117
Reading arguments in scripts 117
Shifting command line arguments 119
Processing command line options in a script 120

Debugging your scripts 121
Debugging using echo 122
Debugging an entire script using -x 123
Debugging sections of a script using the set options 125



Table of Contents

[ v ]

Command completion 128
Managing bash completion with complete 129

Viewing the existing bash completion 129
Modifying default bash completion behavior 130
Removing bash completion specification 130

Writing bash completion for your own application 131
An example of bash completion 133
Running the created bash completion 134

Summary 135
Chapter 5: Customizing the Environment 137

Knowing the default environment 138
Viewing a shell environment 138

printenv 138
env 139

Differences between shell and environment variables 139
Modifying a shell environment 140

Creating environment variables 140
Modifying environment variables 142
Deleting environment variables 143

Using bash startup files 144
.bashrc 144
.bash_profile 147
.bash_logout 150

Knowing your history 150
Shell variables controlling the history 150
The history builtin command 151
Modifying the default history behavior 153
Handy shortcuts for seeing the history 154

[Ctrl + r] 154
Up and down arrow key 154
!! 155
!(search_string) 155
!?(search_string) 155

Task management 155
Running tasks in the background 156
Sending a running task to the background 156
Listing background tasks 157
Moving tasks to the foreground 158
Terminating tasks 159

Summary 160



Table of Contents

[ vi ]

Chapter 6: Working with Files 161
Performing basic file operations 162

Creating files 162
Directory file 162
Regular file 162

Modifying files 164
Viewing files 165

Viewing content using cat 165
more and less 166

Deleting files 166
Deleting a regular file 167
Deleting a directory 167

Moving and copying files 168
Moving files 168

Moving a directory to a new location 169
Renaming a file 169

Copying files 169
Copying files locally 169
Copying files remotely 170

Comparing files 171
Files comparison using diff 172

Example 172
Finding files 174

Searching files according to use case 175
Finding and deleting a file based on inode number 176

Links to a file 176
Soft link 177
Hard link 177
Difference between hard link and soft link 178

Special files 178
The block device file 179
Named pipe file 180
Socket file 181

Temporary files 182
Creating a temporary file using mktemp 182

Permission and ownership 183
Viewing the ownership and permission of files 183
Changing permission 185
Changing the owner and group 186

Changing a file's owner 186
Changing group ownership 187

Getting the list of open files 188
Knowing the files opened by a specific application 188



Table of Contents

[ vii ]

Listing the applications that opened a file 189
Knowing the files opened by a user 190

Configuration files 190
Viewing and modifying configuration files 190

Summary 191
Chapter 7: Welcome to the Processes 193

Process management 194
Process creation and execution 194
Process termination 195

Using the kill command 195
Using the killall command 196

Using the pkill command 196
Listing and monitoring processes 197

Listing processes 198
Syntax 198
Listing all processes with details 199
Listing all processes run by a user 200
Processes running in the current terminal 200
Listing processes by a command name 200

Tree format display of processes 201
Monitoring processes 202

Process substitution 206
Diffing the output of two processes 206

Process scheduling priorities 207
Changing scheduling priorities 208

Using nice 208
Using renice 209

Signals 211
Available signals 212

Traps 214
Inter-process communication 215

Information on IPC using ipcs 216
Listing information provided by IPCs 216
Knowing processes' PID who recently did IPCs 218

Summary 219
Chapter 8: Scheduling Tasks and Embedding Languages  
in Scripts 221

Running tasks at a specific time 222
Executing scripts using at 222

Scheduling commands 223
Scheduling a script file 225

Listing scheduled tasks 226



Table of Contents

[ viii ]

Removing scheduled tasks 226
Cron jobs 227

Cron daemon 227
Cron configuration 227
Crontab entries 229

Special strings in Crontab 230
Managing the crontab entry 231

Listing crontab entries 231
Editing crontab entries 232
Removing crontab entries 235

systemd 236
systemd units 236
Managing services 237

Status of a service 237
Enabling and disabling services 239
Start and stop a service 239

Viewing system logs 241
Viewing the latest log entries 241
Viewing logs of a particular time interval 242

Embedding languages 242
Embedding Python language 243
Embedding AWK language 245

Summary 248
Index 249



[ ix ]

Preface
The shell on a GNU/Linux system is arguably the most powerful tool for any user. 
In general terms, the shell serves as an interface between the system's user and the 
operating system kernel. We use the shell to run commands in order to perform 
tasks and frequently save the output to files. While these simple use-case are easy 
to achieve by just using some commands on the shell, sometimes the task at hand is 
more complex than that.

Enter shell scripting, the magical tool that allows you to write step-by-step 
instructions to the shell on how to perform a complex task. However, just learning 
the syntax to write scripts is not enough unless you know the commands at your 
disposal. Only then would scripts be reusable, efficient, and easy to use. When 
one has mastered the commands available on a GNU/Linux system, what follows 
is a frenzy to automate daily tasks—be it finding documents or cleaning up old 
movies that have long been watched. Whether you're an expert with other scripting 
languages or you're doing this for the first time, this book will show you how to do 
magic with shell scripts!

What this book covers
Chapter 1, The Beginning of the Scripting Journey, tells you about the importance of 
writing shell scripts along with a simple Hello World shell script program. It also 
covers the basic and essential shell script topics such as defining a variable, built-in 
variables, and operators. It also contains a detailed explanation of shell expansion 
that occurs with characters such as ~, *, ?, [], and {}.

Chapter 2, Getting Hands-on with I/O, Redirection Pipes, and Filters, talks about the 
standard input, output, and error streams for a command and shell script. It also 
has instructions on how to redirect them to other streams. One of the most powerful 
concepts, namely regular expressions, is also covered. It serves as instructions to 
commands such as grep, sed, uniq, and tail for filtering useful data from input data.



Preface

[ x ]

Chapter 3, Effective Script Writing, provides an insight into structuring shell scripts to 
organize tasks. After talking about script exit codes, it talks about basic programming 
constructs such as conditionals and loops. It then goes on to discuss the organization 
of code into functions and aliases. Finally, it wraps up with details on how xargs, 
pushd, and popd works.

Chapter 4, Modularizing and Debugging, talks about making shell scripts modular by 
using common code that can be sourced. It also covers the details of command line 
arguments to scripts and how one can debug their scripts when they malfunction. 
This chapter also contains information on how the user can implement custom 
command completion.

Chapter 5, Customizing the Environment, moves on to talk about the shell 
environment—what it contains, its significance, and finally how to modify it. It also 
takes the reader through the different initialization files that bash uses at startup. 
Finally, we talk about how to check command history and manage running tasks.

Chapter 6, Working with Files, talks about files, which are the entities that most of any 
UNIX system is composed of. It covers the basic philosophy of "everything is a file" 
and takes the reader through basic file operations, comparing files, finding them, and 
creating links. This chapter then explains what special files and temporary files are, 
and the details involved in file permissions.

Chapter 7, Welcome to the Processes, talks about executable files that come alive—and 
become processes. From listing and monitoring running processes, it goes on to 
talk about how to exploit process substitution. Next, it covers process scheduling 
priorities, signals, traps, and how processes can communicate with each other.

Chapter 8, Scheduling Tasks and Embedding Languages in Scripts, discusses scheduling 
tasks at appropriate times by using the system Cron. Next, it covers systems that are 
responsible for orchestrating startup tasks in most modern Linux systems. Finally, 
this chapter contains instructions on how to embed scripts from other scripting 
languages into a shell script.

What you need for this book
The reader doesn't require any previous knowledge to understand this book, though 
some familiarity with Linux will help. On the software side, a recent enough Linux 
distribution with bash 4 should be able to try out all examples in this book.



Preface

[ xi ]

Who this book is for
This book is aimed at administrators and those who have the basic knowledge of 
shell scripting and want to learn how to get the most out of writing shell scripts.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"We can also use the printf command in shell programming for printing."

A block of code is set as follows:

$ name=foo
$ foo="Welcome to foo world"
$ echo $name
foo
$ new_name='$'$name    #new_name just stores string value $foo
$ echo $new_name
$foo
$ eval new_name='$'$name  # eval processes $foo string into variable 
and  prints                 # foo variable value
Welcome to foo world

Any command-line input or output is written as follows:

$ ps -p $$

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.allitebooks.com

http://www.allitebooks.org


Preface

[ xii ]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or  
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


Preface

[ xiii ]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.





[ 1 ]

The Beginning of the 
Scripting Journey

Unix, Unix-like, or Linux-based OS provide a lot of powerful features to work upon. 
Among them, the most powerful and important feature is executing a wide range 
of commands to perform a task quickly and easily; for example, ls, cat, sort, 
grep, and so on. We will come to know about a subset of commands and usages 
throughout this book. In order to run a command, we need an interface that is 
widely known as shell.

Shell is a program that acts as an interface between the users (we) and the OS kernel 
(Linux, Unix, and so on). Understanding in terms of Windows OS, shell serves a 
similar purpose DOS does. Different shells are available for Unix, Unix-like, or Linux 
OS. Some of the popular shells are Bourne shell (sh), C shell (csh), Korn shell (ksh), 
Bourne Again shell (bash), and Z shell (zsh).

In this book, we will be using Linux OS and Bourne Again shell, popularly known  
by its acronym bash. Linux-based systems generally have bash already installed.  
In case bash is not installed, try installing the bash package from your distribution's 
package manager. In order to know which shell currently your Linux console is 
using, run the following command in terminal:

$ ps -p $$

The output is as follows:

  PID TTY          TIME CMD

12578 pts/4    00:00:00 bash

In the preceding ouput, we see that the CMD column has value bash. This means,  
we are currently using bash shell in our current console.



The Beginning of the Scripting Journey

[ 2 ]

If your console is not using the bash shell, then you can run the following command:

$ bash

Also, your shell will be bash now. To make bash as a default login shell, run the 
following command:

$ chsh -s /bin/bash

The output obtained is as follows:

Changing shell for user.

Password:******

Shell changed.

We are now set with bash shell and ready to learn shell scripting in detail. Shell 
scripts are nothing but plain text files with a series of commands that are run by bash 
in a specified order. Writing shell scripts is very useful when you have to perform 
a series of tasks by running various commands, as bash will read each line from a 
script file and run it without any need of user intervention. The general file extension 
used for shell scripts are .sh, .bash, .zsh, .ksh, and so on. Rather than using a file 
extension for shell scripts, it's preferred to keep a filename without extension and 
let an interpreter identify the type by looking into shebang (#!). Shebang is used in 
scripts to indicate an interpreter for execution. It is written in the first line of a script 
file, for example:

#! /bin/bash

It means use the bash shell to execute a given script. To run a shell script, make  
sure it has execute permission. To provide execute permission to an owner of a file, 
run the following command:

$ chmod u+x foo

Here, foo is the shell script file. After running this command, foo will have execute 
permission for the owner of the file.

Now, we are ready to proceed further on learning shell scripting concepts in  
detail. Each topic and subtopic covered in the chapters with examples will lead  
us progressively towards a good shell script programmer.

In this chapter, we will talk broadly about the following topics:

• Hello World in shell
• Define variables of choice
• Builtin shell variables



Chapter 1

[ 3 ]

• Operators
• Shell expansions
• Construct commands using eval
• Make bash behave using set

Hello World in shell
Whenever we learn a new programming language, we first learn how to write 
the Hello World program in it. It is the best way to know and interact with a new 
language. This also helps in confirming that the basic environment for a program in a 
given language has been set up and you are good to dive deep inside this language.

Interacting with shell
We can print the output of commands in console in an interactive way. Console 
is also known as a standard input and output stream. To print anything in a bash 
console, use the echo command followed by what is to be printed:

$ echo Hello World

Hello World

Alternatively, put the text to be printed in double quotes:

$  echo "Hello World"

Hello World

You can also put the text to be printed in single quotes:

$ echo 'Hello World'

Hello World

We can also use the printf command in shell programming for printing.  
The printf command also supports formatted printing, similar to what we  
have in C programming language— the printf( ) function:

$ printf "Hello World"

Hello World$

Here, after the output, we see the command prompt ($) because printf doesn't add 
a default newline after execution while echo does. So, we have to explicitly add the 
newline (\n) in the printf statement to add a newline:

$ printf "Hello World\n"

Hello World



The Beginning of the Scripting Journey

[ 4 ]

Similar to the C printf( ), we can specify formatted  printing in bash. The syntax 
of bash printf is as follows:

printf FORMAT [ARGUMENTS]

FORMAT is a string that describes the format specifications and is specified within 
double quotes. ARGUMENTS can be the value or a variable corresponding to format 
specification. Format specification consists of the percentage (%) sign followed by 
format specifier. Format specifiers are explained in the following table:

Format 
specification

Description

%u This prints an unsigned integer value
%i or %d This prints an associated argument as a signed number
%f This prints an associated argument as a floating point number
%o This prints an unsigned octal value
%s This prints a string value
%X This prints an unsigned hexadecimal value (0 to 9 and A to F)
%x This prints an unsigned hexadecimal value (0 to 9 and a to f)

The following examples demonstrate how to use format specification for printing 
different data type format in shell:

$ printf "%d mul %f = %f\n" 6 6.0 36.0

6 mul 6.000000 = 36.000000

$ printf "%s Scripting\n" Shell

Shell Scripting

We can also optionally specify a modifier in format specification to align an output to 
provide better formatting to the output. Format modifiers are placed between % and 
the format specifier character. The following table explains format modifiers:

Format 
Modifiers

Description

N This is any number that specifies a minimum field width.
. This is used together with field width. The field doesn't expand when the 

text is longer.
- This is the left-bound text printing in the field.
0 This is used to fill padding with zeros (0) instead of whitespaces.  

By default, padding is done with whitespaces.



Chapter 1

[ 5 ]

The following example demonstrates how to use format modifiers to improve 
printing formatting:

$ printf "%d mul %.2f = %.2f\n" 6 6.0 36.0

6 mul 6.00 = 36.00

Let's make it scripted
Interactive printing is good if we have to print one or two lines, but for a lot of 
printing, it's good and preferred to write a script file. A script file will contain all  
the instructions and we can run a script file to perform the needed task.

Now, we are going to create a bash script file that makes use of the echo and printf 
commands and print messages:

#!/bin/bash
#Filename: print.sh
#Description: print and echo

echo "Basic mathematics"
printf "%-7d %-7s %-7.2f =\t%-7.2f\n" 23 plus 5.5 28.5
printf "%-7.2f %-7s %-7d =\t%-7.2f\n" 50.50 minus 20 30.50 
printf "%-7d %-7s %-7d =\t%-7d\n" 10 mul 5 50
printf "%-7d %-7s %-7d =\t%-7.2f\n" 27 div 4 6.75

The first line in bash script represents the path of the interpreter used. The second 
line is a comment line telling the filename of a script file. In shell script, we use # to 
add a comment. Furthermore, the echo command will print strings written within 
double quotes. For the rest, we have used printf to print formatted output.

To run this script, we will first provide execute permission to a user/owner of  
this script:

$ chmod u+x print.sh

Then, run the script file in console as follows:

$ ./print.sh

The result after running this script will look as follows:



The Beginning of the Scripting Journey

[ 6 ]

Define variables of choice
Now we know how to write a simple hello world shell script. Next, we will be 
getting familiar with variables in shell and how to define and use variables in shell.

Nomenclature
A variable name can be a combination of alphanumeric and underscore. Also, the 
name of the variable can't start with a number. The variable names in shell script 
are case-sensitive. Special characters, such as *, -, +, ~, ., ^, and so on, are not used 
in variable names because they have a special meaning in shell. The following table 
illustrates the correct and incorrect ways of naming a variable:

Correct variable names Incorrect variable names
variable 2_variable
variable1 2variable
variable_2 variable$
_variable3 variable*^

Assigning a value
We can assign a value to a variable by using an assignment (=) operator and followed 
by a value. While assigning a variable value, there shouldn't be any space before and 
after the assignment operator. Also, a variable can't be declared alone; it has to be 
followed by its initial value assignment:

$ book="Linux Shell Scripting"  # Stores string value
$ book = "Linux Shell Scripting"  # Wrong, spaces around = operator
$ total_chapters=8    # Stores integer value
$ number_of_pages=210    # Stores integer value
$ average_pages_per_chapter=26.25    # Stores float value

So, it's quite easy to declare and assign a value to a variable in shell script. You don't 
have to worry about the data type of a variable on the left-hand side. Whatever value 
you provide on the right-hand side, the variable stores that value.

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you 
can visit http://www.packtpub.com/support and register to 
have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support


Chapter 1

[ 7 ]

Accessing a value
To access a variable value, use a dollar sign ($) operator followed by a variable name:

#!/bin/bash
#Filename: variables.sh
#Description: Basic variable definition and accessing them

book="Linux Shell Scripting"
total_chapters=8
number_of_pages=210
average_pages_per_chapter=26.25

echo "Book name - $book"
echo "Number of Chapters - $total_chapters"
printf "Total number of pages in book - $number_of_pages\n"
printf "Average pages in each chapter - %-.2f\n" $average_pages_per_
chapter

The result of this script will look as follows:

Book name - Linux Shell Scripting
Number of Chapters - 8
Total number of pages in book - 210
Average pages in each chapter – 26.25

We can remove the value of a variable using the unset keyword in bash.  
Using unset to a variable deletes and resets it to null:

#!/bin/bash
#Filename: unset.sh
#Description: removing value of a variable

fruit="Apple"
quantity=6
echo "Fruit = $fruit , Quantity = $quantity"
unset fruit
echo "Fruit = $fruit , Quantity = $quantity"

The result after running this script will look as follows:

Fruit = Apple , Quantity = 6
Fruit =  , Quantity = 6

www.allitebooks.com

http://www.allitebooks.org


The Beginning of the Scripting Journey

[ 8 ]

It's clear that we used unset on a fruit variable, so when we try to access a variable 
fruit after unsetting it in line no. 8, it prints nothing. The quantity variable still 
retains its value because we haven't used unset on it.

Constant variables
We can also create the constant variable in bash whose value can't be changed.  
The readonly keyword is used to declare a constant variable. We can also use 
declare -r followed by a variable name to make it constant:

#!/bin/bash

#Filename: constant.sh

#Description: constant variables in shell

readonly text="Welcome to Linux Shell Scripting"

echo $text

declare -r number=27

echo $number

text="Welcome"

The result after running this script will look as follows:

Welcome to Linux Shell Scripting
27
constant.sh: line 9: text: readonly variable

From the error message, it's clear that we can't change the value of a constant 
variable, and also we can't unset the value of the constant variable.

Reading variables from a user input
We can ask the user to provide input using the read shell built in command. The 
number of inputs to be given by a user is equivalent to the number of arguments 
provided to read. The value inserted by a user is stored in respective parameters 
passed to read. All parameters act as variables in which the corresponding user 
input value is stored.

The syntax of read is as follows:

read [options] var1 var2  … varN

If no variable in an argument is specified, the input value by a user will be stored in 
the inbuilt variable REPLY and can be accessed further using $REPLY.



Chapter 1

[ 9 ]

We can read a user input in its input variable as follows:

$ read
    Hello World
$ echo $REPLY
    Hello World

We can read a value from user input as follows:

$ read text
    Hello
$ echo $text
    Hello

We can read multiple values from user input as follows:

$ read name usn marks
    Foo 345 78
$ echo $name $usn $marks
    Foo 345 78

We can read only the n characters and don't wait for the user to input a complete line 
as follows:

$ read -n 5    # option -n number takes only 5 characters from user 
input
    Hello$
$ echo $REPLY
    Hello

We can prompt the user a message before reading user input as follows:

$ read -p "What is your name?"    # -p allows to prompt user a message
    What is your name?Foo
$  echo $REPLY
    Foo

Hiding an input character when reading in console:

$  read -s -p "Enter your secret key:"  # -s doesn't echo input in 
console
Enter your secret key:$    #Pressing enter key brings command prompt $
echo $REPLY
foo



The Beginning of the Scripting Journey

[ 10 ]

The following example shows the read command's usage:

#!/bin/bash

#Filename: read.sh

#Description: Find a file in a path entered by user

read -p "Enter filename to be searched:"

filename=$REPLY

read -p "Enter path for search:" path

echo "File $filename search matches to"

find $path -name $filename

The following is the result of running the read.sh script in bash:

Enter filename to be searched:read

Enter path for search:/usr/bin

File read search matches to

/usr/bin/read

Here, the find command has been used to search for the filename in the specified 
path. The detailed discussion of the command find will be done in Chapter 6, 
Working with Files.

Builtin shell variables
Builtin shell variables are predefined and are global variables that we can use in our 
script at any point of time. These are reserved shell variables and some of them may 
have a default value assigned by bash. Some variables' value will depend upon your 
current shell environment setup. The different type of shell may have a few specific 
reserved variables to it. All builtin shell variables' name will be in uppercase.

A few reserved shell variables available in bash shell are as follows:

Shell variables available in bash Description
BASH This is the absolute path of the current bash being 

invoked
BASH_VERSION This is the version number of bash
BASHPID This is the process ID of the current bash process
EUID This is the effective user ID of the current user, 

which is assigned during startup



Chapter 1

[ 11 ]

Shell variables available in bash Description
HOME This is the current user's home directory
HOSTNAME This is the name of the current host
PATH This is the colon-separated list of directories where 

shell will look for commands
PPID This is the process ID of the shell's parent
PWD This is the present working directory

More shell variables can be found in man bash.

We will see what values these shell variables contain by printing its value in a  
shell script:

#!/bin/bash
#Filename: builtin_shell_variables.sh
#Description: Knowing about builtin shell variables

echo "My current bash path - $BASH"
echo "Bash version I am using - $BASH_VERSION"
echo "PID of bash I am running - $BASHPID"
echo "My home directory - $HOME"
echo "Where am I currently? - $PWD"
echo "My hostname - $HOSTNAME"

After running this script, the output may vary depending upon what the value of 
these variables is set in your system. The sample output will be as follows:

My current bash path - /bin/sh
Bash version I am using – 4.3.33(1)-release
PID of bash I am running - 4549
My home directory - /home/sinny
Where am I currently? - /home/sinny/Documents/
My hostname – localhost.localdomain

The shell variables, such as PWD, PATH, HOME, and so on, are very useful and help 
in getting the information quickly by just echoing a value in it. We can also add or 
modify the value of some of shell variables, such as PATH, in order to add a custom 
path in which we want shell to look for commands.



The Beginning of the Scripting Journey

[ 12 ]

One of the use-cases of modifying the PATH variable value is: suppose, I have 
compiled a source code that generates a few binaries such as, foo and bar. Now, if I 
want shell to search in that particular directory for command as well, then add this 
directory path in the PATH variable and we are done. The following small shell script 
example shows how to do this:

#!/bin/bash
#Filename: path_variable.sh
#Description: Playing with PATH variable

echo "Current PATH variable content - $PATH"
echo "Current directory - $PWD"
echo "Content of current directory\n`ls`"
PATH=$PATH:$PWD
echo "New PATH variable content - $PATH"
# Now execute commands available in current working diectory

The output after running this script will be somewhat as follows:

Current PATH variable content - /usr/lib64/qt-3.3/bin:/bin:/usr/bin:/
usr/local/bin:/usr/local/sbin:/usr/sbin:/home/sinny/go/source_code/go/
bin:/home/sinny/.local/bin:/home/sinny/bin
Current directory - /home/sinny/test_project/bin
Content of current directory – foo bar
New PATH variable content - /usr/lib64/qt-/usr/lib64/qt-3.3/bin:/
bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/sbin:/home/sinny/
go/source_code/go/bin:/home/sinny/.local/bin:/home/sinny/bin: /home/
sinny/test_project/bin

We see from the output that a new PATH variable has my custom path added. From 
the next time, whenever I run the foo or bar commands with this custom PATH 
variable set, the absolute path of the foo and the bar command/binary won't 
be required. Shell will find out these variables by looking into its PATH variable. 
This is true only during the current session of shell. We will see this in Chapter 5, 
Customizing Environment in recipe, Modifying a shell environment.

Operators
Similar to other programming languages, shell programming also supports various 
types of operators to perform tasks. Operators can be categorized as follows:

• Assignment operator



Chapter 1

[ 13 ]

• Arithmetic operators
• Logical operators
• Comparison operators

The assignment operator
Equal to an operator (=) is the assignment operator that is used to initialize or change 
the value of a variable. This operator works on any data such as a string, integer, 
float, array, and so on. For example:

$ var=40           # Initializing variable var to integer value

$ var="Hello"    # Changing value of var to string value

$ var=8.9        # Changing value of var to float value

Arithmetic operators
Arithmetic operators are used for doing arithmetic operations on integers. They are 
as follows:

• + (plus)
• - (minus)
• * (multiplication)
• / (division)
• ** (exponentiation)
• % (modulo)
• += (plus-equal)
• -= (minus-equal)
• *= (multiplication-equal)
• /= (slash-equal)
• %= (mod-equal)

To perform any arithmetic operation, we prefix the expr and let keywords before 
the actual arithmetic expression. The following example shows how to perform an 
arithmetic operation in bash:

#!/bin/bash
#Filename: arithmetic.sh
#Description: Arithmetic evaluation



The Beginning of the Scripting Journey

[ 14 ]

num1=10 num2=5
echo "Numbers are num1 = $num1 and num2 = $num2"
echo "Addition = `expr $num1 + $num2`"`"
echo "Subtraction = `expr $num1 - $num2`"
echo "Multiplication = `expr $num1 \* $num2`"
echo "Division = `expr $num1 / $num2`"
let "exponent = $num1 ** num2"
echo "Exponentiation = $exponent" 
echo "Modulo = `expr $num1 % $num2`"
let "num1 += $num2"
echo "New num1 = $num1"
let "num1 -= $num1"
echo "New num2 = $num2"

The result after running this script will look as follows:

Numbers are num1 = 10 and num2 = 5
Addition = 15
Subtraction = 5
Multiplication = 50
Division = 2
Exponentiation = 100000
Modulo = 0
New num1 = 15
New num2 = 5

Logical operators
Logical operators are also known as Boolean operators. They are:

! (NOT), && (AND), and || (OR)

Performing a logical operation returns a Boolean value as true (1) or false (0) 
depending upon the values of variable(s) on which the operation is done.

One of the useful use-case is: suppose that we want to execute a command if the first 
command or operation returns successfully. In this case, we can use the && operator. 
Similarly, if we want to execute another command, irrespective of the first command 
that got executed or not, then we can use the || operator between two commands. 
We can use the ! operator to negate the true value. For example:

$ cd ~/Documents/ && ls



Chapter 1

[ 15 ]

The cd command is used to change the current path to the specified argument.  
Here, the cd ~/Documents/ command will change the directory to Documents  
if exists. If it fails, then ls won't get executed, but if cd to Documents succeeds, 
the ls command will display the content of Documents directory:

$ cat ~/file.txt  || echo "Current Working directory $PWD"

cat: /home/skumari/file.txt: No such file or directory

Current Working directory /tmp/

The cat command displays the content of file.txt if it exists. Irrespective of the 
cat ~/file.txt command execution, later the command that is echo "Current 
Working directory $PWD" will be executed:

$  ! cd /tmp/foo && mkdir /tmp/foo

bash: cd: /tmp/foo: No such file or directory

By running the preceding commands, first it will try to change the directory to /tmp/
foo. Here, ! cd /tmp/foo means if change directory to /tmp/foo doesn't succeed, 
then run the second command, which  is mkdir /tmp/foo. The mkdir command 
is used to create a new directory. As a result of proceeding command execution, 
directory /tmp/foo will be created if it doesn't exist.

$ cd /tmp/foo

Since the /tmp/foo directory has been created, a successful change of the directory 
will occur.

Comparison operators
Comparison operators compare two variables and check whether a condition is 
satisfied or not. They are different for integers and strings.

Comparison operators that are valid for integer variables (consider a and b as two 
integer variables; for example, a=20, b=35) are as follows:

• -eq (is equal to)              -  [ $a -eq $b ]
•  -ne (is not equal to)              -  [ $a -ne $b ]
• -gt (is greater than)              -  [ $a -gt $b ]
•  -ge or >= (is greater than or equal to)  -  [ $a -ge $b ]
•  -lt (is less than)               -  [ $a -lt $b ]
•  -le (is less than or equal to)          -  [ $a -le $b ]
• < (is less than)              -  (($a < $b))



The Beginning of the Scripting Journey

[ 16 ]

• <= (is less than or equal to)              -  (($a <= $b))
• > (is greater than)              -  (($a > $b))
• >= (is greater than or equal to)         -  (($a >= $b))

Comparison operators that are valid for string variables (consider a and b as two 
string variables; for example, a="Hello" b="World") are as follows:

• = (is equal to); for example, [ $a = $b ]
• != (is not equal to); for example, [ $a != $b ]
• < (is less than); for example, [ $a \< $b ] or [[ $a \< $b ]] or (( $a \< $b ))
• > (is greater than); for example,[ $a \> $b ] or [[ $a > $b ]] or (( $a \> $b ))
• -n (string is non-empty); for example,[ -n $a ]
• -z (string has zero length or null); for example,[ -z $a ]

Shell uses the < and > operators for redirection, so it should be used with an escape 
(\) if used under [ … ]. Double parentheses, (( ... )) or  [[ … ]], doesn't need an escape 
sequence. Using [[ … ]] also supports pattern matching.

We will see the usage and examples of operators in more detail in Chapter 3, Effective 
Script Writing.

Shell expansions
While working with shell, we perform a lot of similar and repetitive tasks. For 
example, in the current directory, there are 100 files but we are interested only in 
shell script whose file extension is .sh. We can execute following command to view 
only shell script files in current directory:

$ ls *.sh

This will show all the files ending with .sh. An interesting take away from here is 
the * wildcard. It means a match list of files whose name can be anything and that 
ends with .sh.

Shell expands all wildcard patterns. A list of the latest wildcard patterns are as follows:

• ~ (Tilde)
• * (Asterisk)
• ? (Question mark)
• [ ] (Square brackets)
• { } (Curly brackets)



Chapter 1

[ 17 ]

To explain shell expansion for different wildcards, we will create a test folder in  
our home directory using the mkdir command containing different files mentioned  
as follows:

$ mkdir  ~/test && cd ~/test

$ touch a ab foo bar hello moo foo.c bar.c moo.c hello.txt foo.txt bar.sh 
hello.sh moo.sh

The touch command creates an empty file if it doesn't exist. If a file exists, then the 
file timestamp changes:

$ ls

a  ab  bar  bar.c  bar.sh  foo  foo.c  foo.txt  hello  hello.sh  hello.
txt  moo  moo.c  moo.sh

Running the preceding commands will create a test directory, and inside test 
directory creates files given as parameter to the touch command.

~ (Tilde)
~ (Tilde) gets expanded by bash when it is present at the beginning of an unquoted 
string. The expansion depends upon what tilde-prefix is used. Tilde prefixes  
are characters until the first unquoted (/) slash. Some of the bash expansions are  
as follows:

• ~: This is the user's home directory; the value is set in the $HOME variable
• ~user_name: This is the home directory of the user's user_name
• ~user_name/file_name: This is the file/directory file_name in the user's 

user_name home directory
• ~/file_name: This is the file/directory file_name in the home directory that 

is $HOME/file_name
• ~+: This is the current working directory; the value is set in the $PWD variable
• ~-: This is the old or last working directory; the value is set in the  

$OLDPWD variable
• ~+/file_name: This is the file/directory file_name in the current directory 

that is $PWD/file_name
• ~-/file_name: This is the file/directory file_name in the old/last working 

directory that is $OLDPWD/file_name



The Beginning of the Scripting Journey

[ 18 ]

* (Asterisk)
It matches zero or more characters. Take a test directory as an example:

• Display all files as follows:
$ ls *

a  ab  bar  bar.c  bar.sh  foo  foo.c  foo.txt  hello  hello.sh  
hello.txt  moo  moo.c  moo.sh

• Display the C source files as follows:
$ ls *.c

bar.c  foo.c  moo.c

• Display files that have a in its name, as follows:
$ ls *a*

a  ab  bar  bar.c  bar.sh

• Deleting files with an extension .txt as follows:

$ rm *.txt

$ ls

a  ab  bar  bar.c  bar.sh  foo  foo.c  hello  hello.sh  moo  moo.c  
moo.sh

? (Question mark)
It matches any single character: ? (single question mark will match a single 
character), ?? (double question mark matches any two characters), and so on.  
Take a test directory as an example:

$ touch a ab foo bar hello moo foo.c bar.c moo.c hello.txt foo.txt bar.sh 
hello.sh moo.sh

This will recreate files that were removed during the previous example, and also 
update the access and modification time of the existing files:

• Get files whose name length is irrespective of what the extension file has:
$ ls ??

ab

• Get files whose name length is 2 or 5:
$ ls ?? ?????

ab  bar.c  foo.c  hello  moo.c



Chapter 1

[ 19 ]

• Delete files whose name is four characters long:
$ rm ????

rm: cannot remove '????': No such file or directory

This error is because there is no file name with 4 character

• Move files to the /tmp directory whose name is at least three characters long:

$ mv ???* /tmp

$ ls

a ab

We see only two files in the test directory because the rest of the files were of the 
length 3 or more.

[ ] (Square brackets)
Square brackets match any character from the characters mentioned inside the 
square brackets. Characters can be specified as a word or range.

A range of characters can be specified using - (hyphen). For example:

• [a-c]: This matches a, b, or c
• [a-z]: This matches any character from a to z
• [A-Z]: This matches any character from A to Z
• [0-9]: This matches any character from 0 to 9

Take a test directory as an example and recreate files in a test directory:

$ touch a ab foo bar hello moo foo.c bar.c moo.c hello.txt foo.txt bar.sh 
hello.sh moo.sh

Get files whose name starts with a, b, c, or d with the following command:

$ ls [a-d]*

a  ab  bar  bar.c  bar.sh

Get files whose name starts with any letter and ends with a letter o or h, with the 
following command:

$  ls [a-zA-Z]*[oh]

foo  hello  hello.sh  moo  moo.sh



The Beginning of the Scripting Journey

[ 20 ]

Get files that have at least the letter o twice in its name, with the following command:

$ ls *[o]*[o]*

foo  foo.c  foo.txt  moo  moo.c  moo.sh

[!characters] (Exclamation mark) is used to match a character that is not part of a 
charter set mentioned inside square brackets.

Get files that don't have a number in its name, with the following command:

$  ls [!0-9]*

a  ab  bar  bar.c  bar.sh  foo  foo.c  foo.txt  hello  hello.sh  hello.
txt  moo  moo.c  moo.sh

{ } (Curly brackets)
It creates multiple wildcard patterns to match. A brace expression may contain either 
a comma-separated list of strings, a range, or a single character.

A range can be specified by using the following:

• {a..z}: This matches all the charterer from a to z
• {0..6}: This matches numbers 0, 1, 2, 3, 4, 5 and 6

Take a test directory as an example and recreate files in the test directory:

$ touch a ab foo bar hello moo foo.c bar.c moo.c hello.txt foo.txt bar.sh 
hello.sh moo.sh

Get files that have the file extension .sh or .c, with the following command:

$ ls {*.sh,*.c}

bar.c  bar.sh  foo.c  hello.sh  moo.c  moo.sh

Copy bar.c to bar.html by using the following command:

$ cp bar{.c,.cpp}  # Expands to cp bar.c bar.cpp

$ ls bar.*

bar.c  bar.cpp  bar.sh

Print the number from 1 to 50 by using the following command:

$ echo {1..50}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50



Chapter 1

[ 21 ]

Create 10 files that start with hello and has an extension .cpp:

$ touch hello{0..9}.cpp

$ ls *.cpp

hello0.cpp  hello1.cpp  hello2.cpp  hello3.cpp  hello4.cpp  hello5.cpp  
hello6.cpp  hello7.cpp  hello8.cpp  hello9.cpp

To avoid shell expansion of a wildcard, use backslash (\) or write a string within a 
single quote (' ').

Construct commands using eval
The eval command is a shell builtin command used to construct a command by 
concatenating arguments passed to eval. A concatenated command is further 
executed by shell and returns a result. If no arguments are given to eval, it returns 0.

The syntax of the eval command is as follows:

eval [arg …]

The following example shows the expansion of a variable to the name of another 
variable using eval:

$ name=foo
$ foo="Welcome to foo world"
$ echo $name
foo
$ new_name='$'$name    #new_name just stores string value $foo
$ echo $new_name
$foo
$ eval new_name='$'$name  # eval processes $foo string into variable 
and  prints                 # foo variable value
Welcome to foo world

Another example where eval can be useful is as follows:

$ pipe="|"
$  df $pipe wc  # Will give error because 
df: '|': No such file or directory
df: 'wc': No such file or directory
$ eval df $pipe wc  # eval executes it as shell command
12      73     705



The Beginning of the Scripting Journey

[ 22 ]

Here, the df command shows a system disk's usage:

A shell script showing the use of eval is as follows:
#!/bin/bash
#Filename: eval.sh
#Description: Evaluating string as a command using eval

cmd="ls /usr"
echo "Output of command $cmd -"
eval $cmd   #eval will treat content of cmd as shell command and 
execute it
cmd1="ls /usr | wc -l"
echo "Line count of /usr -"
eval $cmd1

expression="expr 2 + 4 \* 6"
echo "Value of $expression"
eval $expression

Running the script will give you the following result:

Output of command ls /usr -
avr  bin  games  include  lib  lib64  libexec  local  sbin  share  src  
tmp
Line count of /usr -
12
Value of expr 2 + 4 \* 6
26

Make bash behave using set
The set command is a shell builtin command that is used to set and unset a value of 
the local variables in shell.

The syntax of using set is as follows:

 set [--abBCefhHkmnpPtuvx] [-o option] [arg …]

Some of the option values are allexport, braceexpand, history, keyword, 
verbose, and xtrace.



Chapter 1

[ 23 ]

Using set without any option displays the name and value of all shell variables and 
functions, in a format that can be reused as an input for setting and unsetting the 
currently set variables.

Exit on the first failure
In a shell script, by default, the next line is executed if an error occurs in the current 
line. Sometimes, we may want to stop running a script further after an error has been 
encountered. The -e option of set ensures to exit a script once any of the commands 
in a pipeline fails.

In the following shell script, do_not_exit_on_failure.sh doesn't use set with the 
option -e:

$ cat do_not_exit_on_failure.sh

#!/bin/bash
# Filename: do_not_exit_on_failure.sh
# Description: Resume script after an error

echo "Before error"
cd /root/       # Will give error
echo "After error"

After running this script, the output is as follows:

Before error
do_not_exit_on_failure.sh: line 6: cd: /root/: Permission denied
After error

We see that the command after the error gets executed as well. In order to stop the 
execution after an error is encountered, use set -e in the script. The following script 
demonstrates the same:

$ cat exit_on_failure.sh

#!/bin/bash
# Filename: exit_on_failure.sh
# Description: Exits script after an error

set -e
echo "Before error"
cd /root/       # Will give error
echo "After error"



The Beginning of the Scripting Journey

[ 24 ]

The output after running the preceding script is as follows:

Before error
exit_on_failure.sh: line 7: cd: /root/: Permission denied

We can see that the script has been terminated after encountering an error at the  
line number 7.

Enabling/disabling symbolic link's resolution 
path
Using set with the -P option doesn't resolve symbolic links. Following example 
demonstrate how we can enable or disable symbolic link resolution of /bin directory 
which is symbolic link of /usr/bin/ directory:

$ ls -l /bin

lrwxrwxrwx. 1 root root 7 Nov 18 18:03 /bin -> usr/bin

$ set –P    # -P enable symbolic link resolution

$ cd /bin

$ pwd

/usr/bin

$ set +P   # Disable symbolic link resolution

$ pwd

/bin

Setting/unsetting variables
We can use the set command to see all local variables accessible for the current 
process. The local variables are not accessible in the subprocess.

We can create our own variable and set it locally as follows:

$ MYVAR="Linux Shell Scripting"

$ echo $MYVAR

 Linux Shell Scripting

$ set | grep MYVAR  # MYVAR local variable is created

MYVAR='Linux Shell Scripting'

$ bash    # Creating a new bash sub-process in current bash

$ set | grep MYVAR

$    # Blank because MYVAR is local variable



Chapter 1

[ 25 ]

To make a variable accessible to its subprocesses as well, use the export command 
followed by the variable to be exported:

$ MYVARIABLE="Hello World"

$ export  MYVARIABLE

$ bash    # Creating a new bash sub-process under bash

$ echo $MYVARIABLE

Hello World

This will export the MYVARIABLE variable to any subprocess that ran from that process. 
To check whether MYVARIABLE has exported or not, run the following command:

$ export |grep MYVARIABLE

declare -x MYVARIABLE="Hello World"

$ export | grep MYVAR

$MYVAR variable is not present in sub-process but variable MYVARIABLE is 
present in sub-process.

To unset local or exported variables, use the unset command and it will reset the 
value of the variable to null:

$ unset MYVAR        # Unsets local variable MYVAR

$ unset  MYVARIABLE    # Unsets exported variable MYVARIABLE

Summary
After reading this chapter, you understood how to write simple shell script in 
bash by printing, echoing, and asking user input. You should now have a good 
understanding of defining and using variables in shell and what builtin shell 
variables exist. You are now familiar with what operators are available in shell and 
how they can create and evaluate their own expression. With information about 
wildcards available in this chapter, it makes work easier for you while you are  
dealing with similar kind of data or pattern. The shell builtin command set  
enables modifying shell variables easily.

This chapter has built a foundation for upcoming chapters. Now, in next chapter, 
you will get to know about standard inputs, outputs, and errors. Also, there will  
be a detailed coverage of how to use an output from commands and then filter/
transform them to show the data according to your need.





[ 27 ]

Getting Hands-on with I/O, 
Redirection Pipes, and Filters

In day-to-day work, we come across different kinds of files such as text files, source 
code files from different programming languages (for example, file.sh, file.c, 
and file.cpp), and so on. While working, we often perform various operations on 
files or directories such as searching for a given string or pattern, replacing strings, 
printing few lines of a file, and so on. Performing these operations is not easy if we 
have to do it manually. Manual searching for a string or pattern in a directory having 
thousands of files can take months, and has high chances of making errors.

Shell provides many powerful commands to make our work easier, faster, and  
error-free. Shell commands have the ability to manipulate and filter text from 
different streams such as standard input, file, and so on. Some of these commands 
are grep, sed, head, tr, sort, and so on. Shell also comes with a feature of 
redirecting output from one command to another with the pipe ('|'). Using pipe 
helps to avoids creation of unnecessary temporary files.

One of the best qualities of these commands is that they come along with the man 
pages. We can directly go to the man page and see what all features they provide by 
running the man command. Most of the commands have options such as --help to 
find the help usage and --version to know the version number of the command.

This chapter will cover the following topics in detail:

• Standard I/O and error streams
• Redirecting the standard I/O and error streams
• Pipe and pipelines—connecting commands
• Regular expressions

www.allitebooks.com

http://www.allitebooks.org


Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 28 ]

• Filtering output using grep
• Editing output using sed
• Duplicating a stream using tee
• Sorting and finding unique text
• Character-based translation using tr
• Filtering based on lines—head and tail
• Cut-based selection

Standard I/O and error streams
In shell programming, there are different ways to provide an input (for example, via 
a keyboard and terminal) and display an output (for example, terminal and file) and 
error (for example, terminal), if any, during the execution of a command or program.

The following examples show the input, output, and error while running  
the commands:

• The input from a user by a keyboard and the input obtained by a program 
via a standard input stream, that is terminal, is taken as follows:
$ read -p "Enter your name:"
Enter your name:Foo

• The output printed on the standard output stream, that is terminal,  
is as follows:
$ echo "Linux Shell Scripting"
Linux Shell Scripting

• The error message printed on the standard error stream, that is terminal,  
is as follows:

$  cat hello.txt
cat: hello.txt: No such file or directory

When a program executes, by default, three files get opened with it which are  
stdin, stdout, and stderr. The following table provides a short description of  
each of these:

File descriptor number File name Description
0 stdin This is standard input being read from the terminal
1 stdout This is standard output to the terminal
2 stderr This is standard error to the terminal 



Chapter 2

[ 29 ]

File descriptors
File descriptors are integer numbers representing opened files in an operating 
system. The unique file descriptor numbers are provided to each opened files.  
File descriptors' numbers go up from 0.

Whenever a new process in Linux is created, then standard input, output, and error 
files are provided to it along with other needed opened files to process.

To know what all open file descriptors are associated with a process, we will 
consider the following example:

Run an application and get its process ID first. Consider running bash as an example 
to get PID of bash:

$ pidof bash
2508 2480 2464 2431 1281

We see that multiple bash processes are running. Take one of the bash PID example, 
2508, and run the following command:

$  ls -l /proc/2508/fd

total 0
lrwx------. 1 sinny sinny 64 May 20 00:03 0 -> /dev/pts/5
lrwx------. 1 sinny sinny 64 May 20 00:03 1 -> /dev/pts/5
lrwx------. 1 sinny sinny 64 May 19 23:22 2 -> /dev/pts/5
lrwx------. 1 sinny sinny 64 May 20 00:03 255 -> /dev/pts/5

We see that 0, 1, and 2 opened file descriptors are associated with process  
bash. Currently, all of them are pointing to /dev/pts/5. pts, which is pseudo 
terminal slave.

So, whatever we will do in this bash, input, output, and error related to this PID, 
output will be written to the /dev/pts/5 file. However, the pts files are pseudo  
files and contents are in memory, so you won't see anything when you open the file.



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 30 ]

Redirecting the standard I/O and error 
streams
We have an option to redirect standard input, output, and errors, for example, to a 
file, another command, intended stream, and so on. Redirection is useful in different 
ways. For example, I have a bash script whose output and errors are displayed on 
a standard output—that is, terminal. We can avoid mixing an error and output by 
redirecting one of them or both to a file. Different operators are used for redirection. 
The following table shows some of operators used for redirection, along with  
its description:

Operator Description
> This redirects a standard output to a file
>> This appends a standard output to a file
< This redirects a standard input from a file
>& This redirects a standard output and error to a file
>>& This appends a standard output and error to a file
| This redirects an output to another command

Redirecting standard output
An output of a program or command can be redirected to a file. Saving an output 
to a file can be useful when we have to look into the output in the future. A large 
number of output files for a program that runs with different inputs can be used in 
studying program output behavior.

For example, showing redirecting echo output to output.txt is as follows:

$ echo "I am redirecting output to a file" > output.txt

$

We can see that no output is displayed on the terminal. This is because output was 
redirected to output.txt. The operator '>' (greater than) tells the shell to redirect  
the output to whatever filename mentioned after the operator. In our case, it's 
output.txt:

$ cat output.txt

I am redirecting output to a file



Chapter 2

[ 31 ]

Now, let's add some more output to the output.txt file:

$ echo "I am adding another line to file" > output.txt

$ cat output.txt

I am adding another line to file

We noticed that the previous content of the output.txt file got erased and it only 
has the latest redirected content. To retain the previous content and append the latest 
redirected output to a file, use the operator '>>':

$ echo "Adding one more line" >> output.txt

$ cat output.txt 

I am adding another line to file

Adding one more line

We can also redirect an output of a program/command to another command in bash 
using the operator '|' (pipe):

 $ ls /usr/lib64/ | grep libc.so

libc.so

libc.so.6

In this example, we gave the output of ls to the grep command using the '|' (pipe) 
operator, and grep gave the matching search result of the libc.so library:

Redirecting standard input
Instead of getting an input from a standard input to a command, it can be redirected 
from a file using the < (less than) operator. For example, we want to count the 
number of words in the output.txt file created from the Redirecting standard  
output section:

$ cat  output.txt

I am adding another line to file

Adding one more line

$  wc -w < output.txt 

11

We can sort the content of output.txt:

$ sort < output.txt    # Sorting output.txt on stdout

Adding one more line

I am adding another line to file



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 32 ]

We can also give a patch file as an input to the patch command in order to apply 
a patch.diff in a source code. The command patch is used to apply additional 
changes made in a file. Additional changes are provided as a diff file. A diff file 
contains the changes between the original and the modified file by running the diff 
command. For example, I have a patch file to apply on output.txt:

$ cat patch.diff    # Content of patch.diff file

2a3
> Testing patch command
$ patch output.txt < patch.diff   # Applying patch.diff to output.txt
$ cat output.txt    # Checking output.txt content after applying patch
I am adding another line to file
Adding one more line
Testing patch command

Redirecting standard errors
There is a possibility of getting an error while executing a command/program in 
bash because of different reasons such as invalid input, insufficient arguments,  
file not found, bug in program, and so on:

$ cd /root  # Doing cd to root directory from a normal user

bash: cd: /root/: Permission denied

Bash prints the error on a terminal saying, permission denied.

In general, errors are printed on a terminal so that it's easy for us to know the reason 
for an error. Printing both the errors and output on the terminal can be annoying 
because we have to manually look into each line and check whether the program 
encountered any error:

$ cd / ; ls; cat hello.txt; cd /bin/; ls *.{py,sh}

We ran a series of commands in the preceding section. First cd to /, ls content of /, 
cat file hello.txt, cd to /bin and see files matching *.py and *.sh in /bin/. The 
output will be as follows:

bin  boot  dev  etc  home  lib  lib64  lost+found  media  mnt  opt  
proc  root  run  sbin  srv  sys  tmp  usr  var
cat: hello.txt: No such file or directory 
alsa-info.sh        kmail_clamav.sh    sb_bnfilter.py  sb_mailsort.py      
setup-nsssysinit.sh    amuFormat.sh      kmail_fprot.sh   sb_bnserver.
py    sb_mboxtrain.py    struct2osd.sh      core_server.py  kmail_sav.
sh     sb_chkopts.py      sb_notesfilter.py  



Chapter 2

[ 33 ]

We see that hello.txt doesn't exist in the / directory and because of this there is an 
error printed on the terminal as well, along with other output. We can redirect the 
error as follows:

$ (cd / ; ls; cat hello.txt; cd /bin/; ls *.{py,sh}) 2> error.txt

bin  boot  dev  etc  home  lib  lib64  lost+found  media  mnt  opt  
proc  root  run  sbin  srv  sys  tmp  usr  var
alsa-info.sh        kmail_clamav.sh    sb_bnfilter.py  sb_mailsort.py      
setup-nsssysinit.sh    amuFormat.sh      kmail_fprot.sh   sb_bnserver.
py    sb_mboxtrain.py    struct2osd.sh      core_server.py  kmail_sav.
sh     sb_chkopts.py      sb_notesfilter.py  

We can see that the error has been redirected to the error.txt file. To verify,  
check the error.txt content:

$ cat error.txt

cat: hello.txt: No such file or directory

Multiple redirection
We can redirect stdin, stdout, and stderr together in a command or script or a 
combination of some of them.

The following command redirects both stdout and stder:

$ (ls /home/ ;cat hello.txt;) > log.txt 2>&1

Here, stdout is redirected to log.txt and error messages are redirected to log.txt 
as well. In 2>&1, 2> means redirect an error and &1 means redirect to stdout.  
In our case, we have already redirected stdout to the log.txt file. So, now both  
the stdout and stderr outputs will be written into log.txt and nothing will be 
printed on the terminal. To verify, we will check the content of log.txt:

$ cat log.txt

lost+found

sinny

cat: hello.txt: No such file or directory

The following example shows the stdin, stdout, and stderr redirection:

$  cat < ~/.bashrc > out.txt 2> err.txt

Here, the .bashrc file present in the home directory acts as an input to the cat 
command and its output is redirected to the out.txt file. Any error encountered  
in between is redirected to the err.txt file.



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 34 ]

The following bash script will explain stdin, stdout, stderr, and their redirection 
with even more clarity:

#!/bin/bash
# Filename: redirection.sh
# Description: Illustrating standard input, output, error
# and redirecting them

ps -A -o pid -o command > p_snapshot1.txt
echo -n "Running process count at snapshot1: "
wc -l < p_snapshot1.txt
echo -n "Create a new process with pid = "
tail -f /dev/null &  echo $!    # Creating a new process
echo -n "Running process count at snapshot2: "
ps -A -o pid -o command > p_snapshot2.txt
wc -l < p_snapshot2.txt
echo
echo "Diff bewteen two snapshot:"
diff p_snapshot1.txt p_snapshot2.txt

This script saves two snapshots of all running processes in the system and generates 
diff. The output after running the process will look somewhat as follows:

$ sh redirection.sh

Running process count at snapshot1: 246
Create a new process with pid = 23874
Running process count at snapshot2: 247

Diff bewteen two snapshot:
246c246,247
< 23872 ps -A -o pid -o command
---
> 23874 tail -f /dev/null
> 23875 ps -A -o pid -o command



Chapter 2

[ 35 ]

Pipe and pipelines – connecting 
commands
The outputs of the programs are generally saved in files for further use. Sometimes, 
temporary files are created in order to use an output of a program as an input to 
another program. We can avoid creating temporary files and feed the output of a 
program as an input to another program using bash pipe and pipelines.

Pipe
The pipe denoted by the operator | connects the standard output of a process in 
the left to the standard input in the right process by inter process communication 
mechanism. In other words, the | (pipe) connects commands by providing the 
output of a command as the input to another command.

Consider the following example:

$ cat /proc/cpuinfo | less

Here, the cat command, instead of displaying the content of the /proc/cpuinfo file 
on stdout, passes its output as an input to the less command. The less command 
takes the input from cat and displays on the stdout per page.

Another example using pipe is as follows:

$ ps -aux | wc -l    # Showing number of currently running processes in 
system

254

Pipeline
Pipeline is a sequence of programs/commands separated by the operator ' | ' where 
the output of execution of each command is given as an input to the next command. 
Each command in a pipeline is executed in a new subshell. The syntax will be  
as follows:

command1 | command2 | command3 …

Examples showing pipeline are as follows:

$ ls /usr/lib64/*.so | grep libc | wc -l

13



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 36 ]

Here, we are first getting a list of files from the /usr/lib64 directory that has the 
.so extension. The output obtained is passed as an input to the next grep command 
to look for the libc string. The output is further given to the wc command to count 
the number of lines.

Regular expressions
Regular expression (also known as regex or regexp) provides a way of specifying a 
pattern to be matched in a given big chunk of text data. It supports a set of characters 
to specify the pattern. It is widely used for a text search and string manipulation. A 
lot of shell commands provide an option to specify regex such as grep, sed, find, 
and so on.

The regular expression concept is also used in other programming languages such as 
C++, Python, Java, Perl, and so on. Libraries are available in different languages to 
support regular expression's features.

Regular expression metacharacters
The metacharacters used in regular expressions are explained in the following table:

Metacharacters Description
* (Asterisk) This matches zero or more occurrences of the previous character
+ (Plus) This matches one or more occurrences of the previous character
? This matches zero or one occurrence of the previous element
. (Dot) This matches any one character
^ This matches the start of the line
$ This matches the end of line
[... ] This matches any one character within a square bracket
[^... ] This matches any one character that is not within a square bracket
| (Bar) This matches either the left side or the right side element of |
\{X\} This matches exactly X occurrences of the previous element
\{X,\} This matches X or more occurrences of the previous element
\{X,Y\} This matches X to Y occurrences of the previous element
\(...\) This groups all the elements
\< This matches the empty string at the beginning of a word
\> This matches the empty string at the end of a word
\ This disables the special meaning of the next character



Chapter 2

[ 37 ]

Character ranges and classes
When we look into a human readable file or data, its major content contains 
alphabets (a to z) and numbers (0 to 9). While writing regex for matching a pattern 
consisting of alphabets or numbers, we can make use character ranges or classes.

Character ranges
We can use character ranges in a regular expression as well. We can specify a range 
by a pair of characters separated by a hyphen. Any characters that fall in between 
that range, inclusive, are matched. Character ranges are enclosed inside square 
brackets.

The following table shows some of character ranges:

Character range Description
[a-z] This matches any single lowercase letter from a to z
[A-Z] This matches any single uppercase letter from A to Z
[0-9] This matches any single digit from 0 to 9
[a-zA-Z0-9] This matches any single alphabetic or numeric characters
[h-k] This matches any single letter from h to k
[2-46-8j-lB-M] This matches any single digit from 2 to 4 or 6 to 8 or any letter 

from j to l or B to M

Character classes: Another way of specifying a range of character matches is by 
using Character classes. It is specified within the square brackets [:class:]. The 
possible class value is mentioned in the following table:

Character Class Description
[:alnum:] This matches any single alphabetic or numeric character; for 

example, [a-zA-Z0-9]
[:alpha:] This matches any single alphabetic character; for example, 

[a-zA-Z]
[:digit:] This matches any single digit; for example, [0-9]
[:lower:] This matches any single lowercase alphabet; for example, [a-z]
[:upper:] This matches any single uppercase alphabet; for example, [A-Z]
[:blank:] This matches a space or tab
[:graph:] This matches a character in the range of ASCII—for example 

33-126—excluding a space character
[:print:] This matches a character in the range of ASCII—for example. 

32-126—including a space character



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 38 ]

Character Class Description
[:punct:] This matches any punctuation marks such as '?', '!', '.', ',', and so 

on
[:xdigit:] This matches any hexadecimal characters; for example, 

[a-fA-F0-9]
[:cntrl:] This matches any control characters

Creating your own regex: In the previous sections of regular expression, we discussed 
about metacharacters, character ranges, character class, and their usage. Using these 
concepts, we can create powerful regex that can be used to filter out text data as per 
our need. Now, we will create a few regex using the concepts we have learned.

Matching dates in mm-dd-yyyy format
We will consider our valid date starting from UNIX Epoch—that is, 1st January 
1970. In this example, we will consider all the dates between UNIX Epoch and 30th 
December 2099 as valid dates. An explanation of forming its regex is given in the 
following subsections:

Matching a valid month
• 0[1-9] matches 01st to 09th month
• 1[0-2] matches 10th, 11th, and 12th month
• '|' matches either left or right expression

Putting it all together, the regex for matching a valid month of date will be 0[1-
9]|1[0-2].

Matching a valid day
• 0[1-9] matches 01st to 09th day
• [12][0-9] matches 10th to 29th day
• 3[0-1] matches 30th to 31st day
• '|' matches either left or right expression
• 0[1-9]|[12][0-9]|3[0-1] matches all the valid days in a date

Matching the valid year in a date
• 19[7-9][[0-9] matches years from 1970 to 1999
• 20[0-9]{2} matches years from 2000 to 2099
• '|' matches either left or right expression
• 19[7-9][0-9]|20[0-9]{2} matches all the valid years between 1970 to 2099



Chapter 2

[ 39 ]

Combining valid months, days, and years regex to form 
valid dates
Our date will be in mm-dd-yyyy format. By putting together regex formed in the 
preceding sections for months, days, and years, we will get regex for the valid date:

(0[1-9]|1[0-2])-(0[1-9]|[12][0-9]|3[0-1])-(19[7-9][0-9]|20[0-9]{2})

There is a nice website, http://regexr.com/, where you can also validate regular 
expression. The following screenshot shows the matching of the valid date among 
the given input:

Regex for a valid shell variable
In Chapter 1, Beginning of Scripting Journey, we learned nomenclature of variables 
in shell. A valid variable name can contain a character from alphanumeric and 
underscore, and the first letter of the variable can't be a digit.

Keeping these rules in mind, a valid shell variable regex can be written as follows:

^[_a-zA-Z][_a-zA-Z0-9]*$

Here, ^ (caret) matches the start of a line.

The regex [_a-zA-Z] matches _ or any upper or lower case alphabet [_a-zA-Z0-9]* 
matches zero or multiple occurrences of _,any digit or upper and lower case alphabet 
$ (Dollar) matches the end of the line.

In character class format, we can write regex as ^[_[:alpha:]][_[:alnum:]]*$.

http://regexr.com/


Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 40 ]

The following screenshot shows valid shell variables using regex formed:

• Enclose regular expression in single quotes (') to avoid  
pre-shell expansion.

• Use back slash (\) before a character to escape the special 
meaning of metacharacters.

• Metacharacters such as ?, +, {, |, (, and ) are known to be 
extended regex. They lose their special meaning when used in 
basic regex. To avoid this, use them with backslash '\?', '\+', '\
{', '\|', '\(', and '\)'.

Filtering an output using grep
One of the powerful and widely used command in shell is grep. It searches in an 
input file and matches lines in which the given pattern is found. By default, all 
the matched patterns are printed on stdout that is usually terminal. We can also 
redirect the matched output to other streams such as file. Instead of giving an input 
from a file, grep can also take the input from the redirected output of the command 
executed on the left-hand side of '|'.



Chapter 2

[ 41 ]

Syntax
The syntax of using the grep command is as follows:

grep [OPTIONS] PATTERN [FILE...]

Here, FILE can be multiple files for a search. If no file is given as an input for a 
search, it will search the standard input.

PATTERN can be any valid regular expression. Put PATTERN within single quotes (') 
or double quotes (") as per need. For example, use single quotes (') to avoid any bash 
expansion and double quotes (") for expansion.

A lot of OPTIONS are available in grep. Some of the important and widely used 
options are discussed in the following table:

Option Usage
-i This enforces case insensitive match in both pattern and input file(s)
-v This displays the non-matching line
-o This displays only the matched part in the matching line
-f FILE This obtains a pattern from a file, one per line
-e PATTERN This specifies multiple search pattern
-E This considers pattern as an extended regex (egrp)
-r This reads all the files in a directory recursively, excluding resolving of 

symbolic links unless explicitly specified as an input file
-R This reads all the files in a directory recursively and resolving symbolic  

if any
-a This processes binary file as a text file
-n This prefixes each matched line along with a line number
-q Don't print anything on stdout
-s Don't print error messages
-c This prints the count of matching lines of each input file
-A NUM This prints NUM lines after the actual string match. (No effect with  

the -o option)
-B NUM This prints NUM lines before the actual string match. (No effect with  

the -o option)
-C NUM This prints NUM lines after and before the actual string match. (No effect 

with the -o option)



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 42 ]

Looking for a pattern in a file
A lot of times we have to search for a given string or a pattern in a file.  
The grep command provides us the capability to do it in a single line.  
Let's see the following example:

The input file for our example will be input1.txt:

$ cat input1.txt  # Input file for our example

This file is a text file to show demonstration
of grep command. grep is a very important and
powerful command in shell.
This file has been used in chapter 2

We will try to get the following information from the input1.txt file using the  
grep command:

• Number of lines
• Line starting with a capital letter
• Line ending with a period (.)
• Number of sentences
• Searching sub-string sent lines that don't have a periodNumber of times 

the string file is used

The following shell script demonstrates how to do the above mentioned tasks:

#!/bin/bash
#Filename: pattern_search.sh
#Description: Searching for a pattern using input1.txt file

echo "Number of lines = `grep -c '.*' input1.txt`"
echo "Line starting with capital letter:"
grep -c ^[A-Z].* input1.txt
echo
echo "Line ending with full stop (.):"
grep '.*\.$' input1.txt
echo
echo -n "Number of sentence = "
grep -c '\.' input1.txt
echo "Strings matching sub-string sent:"
grep -o "sent" input1.txt
echo
echo "Lines not having full stop are:"
grep -v '\.' input1.txt
echo
echo -n "Number of times string file used: = "
grep -o "file" input1.txt | wc -w



Chapter 2

[ 43 ]

The output after running the pattern_search.sh shell script will be as follows:

Number of lines = 4
Line starting with capital letter:
2

Line ending with full stop (.):
powerful command in shell.

Number of sentence = 2
Strings matching sub-string sent:

Lines not having full stop are:
This file is a text file to show demonstration
This file has been used in chapter 2

Number of times string file used: = 3

Looking for a pattern in multiple files
The grep command also allows us to search for a pattern in multiple files as an input. 
To explain this in detail, we will head directly to the following example:

The input files, in our case, will be input1.txt and input2.txt.

We will reuse the content of the input1.txt file from the previous example:

The content of input2.txt is as follows:

$ cat input2.txt

Another file for demonstrating grep CommaNd usage.
It allows us to do CASE Insensitive string test
as well.
We can also do recursive SEARCH in a directory
using -R and -r Options.
grep allows to give a regular expression to
search for a PATTERN.
Some special characters like . * ( ) { } $ ^ ?
are used to form regexp.
Range of digit can be given to regexp e.g. [3-6],
[7-9], [0-9]



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 44 ]

We will try to get the following information from the input1.txt and input2.txt 
files using the grep command:

• Search for the string command
• Case-insensitive search of the string command
• Print the line number where the string grep matches
• Search for punctuation marks
• Print one line followed by the matching lines while searching for the  

string important

The following shell script demonstrates how to follow the preceding steps:

#!/bin/bash
# Filename: multiple_file_search.sh
# Description: Demonstrating search in multiple input files

echo "This program searches in files input1.txt and input2.txt"
echo "Search result for string \"command\":"
grep "command" input1.txt input2.txt
echo
echo "Case insensitive search of string \"command\":"
# input{1,2}.txt will be expanded by bash to input1.txt input2.txt
grep -i "command" input{1,2}.txt
echo
echo "Search for string \"grep\" and print matching line too:"
grep -n "grep" input{1,2}.txt
echo
echo "Punctuation marks in files:"
grep -n [[:punct:]] input{1,2}.txt
echo
echo "Next line content whose previous line has string \"important\":"
grep -A 1 'important' input1.txt input2.txt



Chapter 2

[ 45 ]

The following screenshot is the output after running the shell script  
pattern_search.sh. The matched pattern string has been highlighted:

A few more grep usages
The following subsections will cover a few more usages of the grep command.

Searching in a binary file
So far, we have seen all the grep examples running on text files. We can also search 
for a pattern in binary files using grep. For this, we have to tell the grep command 
to treat a binary file as a text file too. The option -a or –text tells grep to consider a 
binary file as a test file.

We know that the grep command itself is a binary file that executes and gives a 
search result.



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 46 ]

One of the option in grep is --text. The string --text should be somewhere 
available in the grep binary file. Let's search for it as follows:

$ grep --text '\-\-text' /usr/bin/grep 

 -a, --text                equivalent to –binary-files=text

We saw that the string --text is found in the search path /usr/bin/grep.  
The character backslash ('\') is used to escape its special meaning.

Now, let's search for the -w string in the wc binary. We know that the wc command 
has an option -w that counts the number of words in an input text.

$ grep -a '\-w' /usr/bin/wc

  -w, --words            print the word counts

Searching in a directory
We can also tell grep to search into all files/directories in a directory recursively 
using the option -R. This avoids the hassle of specifying each file as an input text file 
to grep.

For example, we are interested in knowing at how many places #include <stdio.
h> is used in a standard include directory:

$ grep -R '\#include <stdio\.h>' /usr/include/ | wc -l

77

This means that the #include <stdio.h> string is found at 77 places in the /usr/
include directory.

In another example, we want to know how many Python files (the extension .py) in 
/usr/lib64/python2.7/ does "import os". We can check that as follows:

$ grep -R "import os" /usr/lib64/python2.7/*.py | wc -l

93

Excluding files/directories from a search
We can also specify the grep command to exclude a particular directory or file from 
search. This is useful when we don't want grep to look into a file or directory that 
has some confidential information. This is also useful in the case where we are sure 
that searching into a certain directory will be of no use. So, excluding them will 
reduce search time.



Chapter 2

[ 47 ]

Suppose, there is a source code directory called s0, which uses the git version 
control. Now, we are interested in searching for a text or pattern in source files. In 
this case, searching in the .git subdirectory will be of no use. We can exclude .git 
from search as follows:

$  grep -R  --exclude-dir=.git "search_string" s0

Here, we are searching for the search_string string in the s0 directory and telling 
grep to not to search in the .git directory.

Instead of excluding a directory, to exclude a file, use the --exclude-from=FILE 
option.

Display a filename with a matching pattern
In some use-case, we don't bother with where the search matched and at how many 
places the search matched in a file. Instead, we are interested in knowing only the 
filename where at least one search matched.

For example, I want to save filenames that have a particular search pattern found in 
a file, or redirect to some other command for further processing. We can achieve this 
using the -l option:

$ grep -Rl "import os" /usr/lib64/python2.7/*.py > search_result.txt

$ wc -l search_result.txt

79

This example gets name of the file in which import os is written and saves result in 
file search_result.txt.

Matching an exact word
The exact matching of the word is also possible using word boundary that is \b on 
both the sides of the search pattern.

Here, we will reuse the input1.txt file and its content:

$ grep -i --color "\ba\b" input1.txt

The --color option allows colored printing of the matched search result.

The "\ba\b" option tells grep to only look for the character a that is alone. In search 
results, it won't match the character a present as a sub-string in a string.



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 48 ]

The following screenshot shows the output:

Editing output using sed
The sed command is a non-interactive stream editor that allows you to modify  
the content of the standard input or file. It performs an operation on each line in  
a pipeline. The syntax will be:

sed [OPTIONS]... {script} [input-file …]

By default, the output is displayed on stdout, but can be redirected to a file  
if specified.

The input-file are the files on which sed needs to be run. If no files are specified,  
it reads from stdin.

The script can be a command or a file with multiple commands to pass to sed,  
and OPTIONS to sed are described in the following table:

Option Description
-n This suppresses automatic printing of pattern space
-e script This allows multiple scripts to be executed
-r This uses the extended regex in the script
-l N This specifies line wrap length 
--posix This disables all GNU extensions
-u This loads the minimal amounts of data from input and flushes 

output buffers frequently

String substitution using s
The sed command is widely used for string substitution in a text file. Programmers 
frequently use this feature while renaming a variable in a huge source code. It saves 
a lot of programmers' time by avoiding manual renaming.

The substitution command s has the following field:

s/regex/replacement/



Chapter 2

[ 49 ]

Here, s means perform substitution, / acts as separator, and regex is a regular 
expression that needs to be replaced. A simple string can also be specified here.  
The last field replacement is with what matched results should be replaced.

By default, sed will replace only the first occurrence of a matched pattern in a 
line. To replace all occurrences, use the g flag after the end of /—, that is, s/regex/
replacement/g.

Some of the flags that can be used are mentioned in the following table:

Flag Description
g This applies replacement to all the matches in a line
p This prints a new pattern space, if substitution occurs
w filename This writes substituted pattern space to a filename
N This replaces only the Nth matched result in a matched line

We have the sed.sh file for our example. The content of this file is as follows:

$ cat sed.sh

#!/bin/bash

var1="sed "
var1+="command "
var1+="usage"

echo $var1

This is a shell script, where the variable var1 has been used at four places. Now,  
we want to rename the variable var1 to variable. We can do this very easily  
using the sed command:

$ sed -i 's/var1/variable/g' sed.sh

$ cat sed.sh

#!/bin/bash

variable="sed "
variable+="command "
variable+="usage"

echo $variable

Here, the -i option is used to replace an input file.



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 50 ]

Multiple substitutions
We can also specify multiple commands to be executed for substitution using -e 
followed by a command.

For example, consider the sed.txt file. The content of this file is as follows:

$ cat sed.txt
The sed command is widely used for string
substitution in text file. Programmers frequently
use this feature while renaming a variable in huge source code.
It saves lot of programmers time by avoiding manual renaming.

Now, we want to replace '.' with ',' and delete the line containing a string manual:

$ sed -e 's/\./,/g' -e '/manual/d' sed.txt

The sed command is widely used for string

substitution in text file, Programmers frequently

use this feature while renaming a variable in huge source code,

In sed.txt file, the s/\./,/g command first replaces '.' with ',' and /manual/d 
deletes further the line containing the string manual.

Duplicating a stream using tee
In some cases, it's necessary to print an output on stdout and save an output in a 
file. In general, command output can either be printed or can be saved in a file. To 
solve it, the tee command is used. This command reads from the standard input and 
writes to both standard output and files. The syntax of tee will be as follows:

tee [OPTION] [FILE …]

The tee command copies the output to each FILE and also to stdout. The OPTIONS 
can be as follows:

Option Description
-a, --append This appends to the FILE instead of overwriting 
-i, --ignore-interrupts This ignores interrupt signals, if any



Chapter 2

[ 51 ]

Writing an output to stdout and file: In general, to write an output to stdout 
and file, we will call the same command twice, with and without redirection. For 
example, the following command shows how to print an output on stdout and save 
it to a file:

$  ls /usr/bin/*.pl  # Prints output on stdout

/usr/bin/rsyslog-recover-qi.pl  /usr/bin/syncqt.pl

$  ls /usr/bin/*.pl> out.txt    # Saves output in file out.txt

We can do both the tasks by running the ls command once using the tee command 
as follows:

$  ls /usr/bin/*.pl| tee  out.txt    # Output gets printed to stdout and 
saved in out.txt

/usr/bin/rsyslog-recover-qi.pl

/usr/bin/syncqt.pl

$ cat out.txt      #Checking content of out.txt

/usr/bin/rsyslog-recover-qi.pl

/usr/bin/syncqt.pl

We can also specify multiple filenames to tee for an output to be written in each file. 
This copies the output to all files:

$ ls /usr/bin/*.pl| tee  out1.txt out2.txt

/usr/bin/rsyslog-recover-qi.pl

/usr/bin/syncqt.pl

By running the above commands, the output will be also written to the out1.txt 
and out2.txt files:

$ cat out1.txt

/usr/bin/rsyslog-recover-qi.pl

/usr/bin/syncqt.pl

$ cat out2.txt

/usr/bin/rsyslog-recover-qi.pl

/usr/bin/syncqt.pl



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 52 ]

Writing an output to stdout and appending to 
a file
The tee command also allows you to append the output to a file instead of 
overwriting a file. This can be done using the -a option with tee. Appending an 
output to a file is useful when we want to write an output of various commands or 
an error log of different command execution in a single file.

For example, if we want to keep the output of running the ls and echo commands in 
the out3.txt file and also display results on stdout, we can do as follows:

$ echo "List of perl file in /usr/bin/ directory" | tee out3.txt

List of perl file in /usr/bin/ directory

$ ls /usr/bin/*.pl| tee  -a out3.txt

/usr/bin/rsyslog-recover-qi.pl

/usr/bin/syncqt.pl

$ cat out3.txt    # Content of file

List of perl file in /usr/bin/ directory

/usr/bin/rsyslog-recover-qi.pl

/usr/bin/syncqt.pl

Sending an output to multiple commands
We can also use the tee command to provide an output of a command as an input to 
multiple commands. This is done by sending the tee output to pipe:

$ df -h | tee out4.txt | grep tmpfs | wc -l

7

Here, the output of the df -h command is saved to the out4.txt file, the stdout 
output is redirected to the grep command, and the output of the search result from 
grep is further redirected to the wc command. At the end, the result of wc is printed 
on stdout.



Chapter 2

[ 53 ]

Sorting and finding unique text
Shell provides different ways to sort the input text using the sort command. It's also 
possible to remove repeated lines from sorted/unsorted input text using the uniq 
command. The input text to sort and uniq commands can be given from a file, or 
redirected from another command.

Sorting an input text
The lines in the input text are sorted in the following order:

• Numbers from 0 to 9
• Uppercase letters from A to Z
• Lowercase letters from a to z

The syntax will be as follows:

sort [OPTION] [FILE …]

Single or multiple input files can be provided to sort for sorting.

The sort command takes multiple options to provide flexibility in sorting. The 
popular and important OPTION to sort have been discussed in the following table:

Option Description
-b This ignores leading blanks
-d This considers only blanks and alphanumeric characters
-f This ignores a case
-i This ignores a non-printable character
-M This compares months that are unknown (for example, < JAN  < FEB… < 

DEC)
-n  This sorts on the basis of numerical values
-r This sorts in reverse order
-h This sorts on human-readable numbers; for example, 9K, 5M, 1G, and so on.
-u This gets unique lines
-o file This writes an output to a file instead of stdout
-m This merges the already sorted file without resorting it
-k n This sorts data according to the given column n



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 54 ]

Now, we will see with the help of examples, how different sorting can be done on 
the input text data.

Sorting a single file
In our example, we will consider the sort1.txt file for sorting. The content of this 
file is as follows:

$ cat sort1.txt

Japan

Singapore

Germany

Italy

France

Sri Lanka

To sort the content alphabetically, we can use the sort command without  
any option:

$ sort sort1.txt

France

Germany

Italy

Japan

Singapore

Sri Lanka

To sort the content in reverse order, we can use the –r option:

$ sort -r sort1.txt

Sri Lanka

Singapore

Japan

Italy

Germany

France

Sorting multiple files: We can also sort multiple files collectively, and the sorted 
output can be used for further queries.



Chapter 2

[ 55 ]

For example, consider sort1.txt and sort2.txt files. We will reuse the content  
of the sort1.txt file from the previous example. The content of sort2.txt is  
as follows:

$ cat sort2.txt

India

USA

Canada

China

Australia

We can sort both the files together alphabetically as follows:

$ sort sort1.txt sort2.txt

Australia

Canada

China

France

Germany

India

Italy

Japan

Singapore

Sri Lanka

USA

We can also use the -o option to save the sorted output of files in a file instead of 
displaying it on stdout:

$ sort sort1.txt sort2.txt -o sorted.txt

$ cat sorted.txt

Australia

Canada

China

France

Germany

India

Italy

Japan

Singapore

Sri Lanka

USA



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 56 ]

Redirecting output to sort
We can sort an output redirected from another command. The following example 
shows the sorting of the df -h command output:

$ df -h    #  Disk space usage in human readable format

The following command sorts output of df by its 2nd column content:

$ df -h | sort -hb -k2  #. Sorts by 2nd column according to size available:

We can sort the ls -l output according to the last modification day and month:

$ ls -l /var/cache/    # Long listing content of /var/cache



Chapter 2

[ 57 ]

To sort the ls -l output, first sort according to the month that is the 6th field using 
the -M option, and if the month for two or more row is the same, then sort according 
to the day that is the 7th field using -n for numerical sort:

$ ls -l /var/cache/ | sort -bk 6M -nk7



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 58 ]

Filtering unique elements
In many use-case, we need to remove duplicate items and keep only one occurrence 
of items. It is very useful when the output of a command or input file is too big, and 
it contains lot of duplicate lines. To get unique lines from a file or redirected output, 
the shell command uniq is used. One important point to note is that, in order to get 
the uniq output, input should be sorted, or first run the sort command to make it 
sorted. The syntax will be as follows:

sort [OPTION] [INPUT [OUTPUT]]

An input to uniq can be given from a file or another command's output.

If an input file is provided, then an optional output file can also be specified on a 
command line. If no output file is specified, the output will be printed on stdout.

The options that uniq supports are discussed in the following table:

Option Description
-c This prefixes lines with the number of occurrences
-d This prints duplicate lines only once
-f N This skips the comparison of the first N fields
-i This is case-insensitive comparison of items
-u This prints only unique lines
-s N This avoids comparing the first N characters in line
-w N This compares only N characters in line

Unique elements in a file
Consider the unique.txt file as an example on which we will run the uniq 
command with its options. The content of unique.txt is as follows:

$ cat unique.txt

Welcome to Linux shell scripting

1

Welcome to LINUX shell sCripting

2

Welcome To Linux Shell Scripting

4

2

4

Welcome to Linux shell scripting



Chapter 2

[ 59 ]

2

3

Welcome to Linux shell scripting

2

Welcome to Linux shell scripting

Welcome to LINUX shell sCripting

To remove duplicate lines from the unique.txt file, we can do the following:

• Firstly, sort the file and then redirect the sorted text to the uniq command:
$ sort unique.txt | uniq

• Use the -u option with the sort command:

$ sort  -u unique.txt

The output from running either of the commands will be the same, as follows:

We can use the -c option to print the number of occurrences of each line in the  
input file:

$ sort unique.txt | uniq -c



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 60 ]

Using the options -c and -i will print the uniq lines along with the occurrence 
count. A comparison for unique line will be done case-insensitive:

$ sort unique.txt | uniq -ci

To get only those lines in file that have appeared only once, the -u option is used:

$ sort unique.txt | uniq -u

1

3

Welcome To Linux Shell Scripting

Similarly, to get the lines that have been appeared more than once in a file, -d  
is used:

$  sort unique.txt | uniq -d

2

4

Welcome to Linux shell scripting

Welcome to LINUX shell sCripting

We can also tell the uniq command to find unique lines based on comparing only the 
first N character of the line:

$ sort unique.txt | uniq -w 10
1
2
3
4
Welcome to Linux shell scripting
Welcome To Linux Shell Scripting

• The uniq command does not detect the repeated lines unless they 
are adjacent.

• To find unique lines, first sort the input using the sort command 
and then apply the uniq command.



Chapter 2

[ 61 ]

Character-based translation using tr
Another interesting shell command is tr. This translates, squeezes, or deletes 
characters from the standard input. The syntax will be as follows:

tr [OPTION]... SET1 [SET2]

The options for the tr commands are explained in the following table:

Option Description
-c, -C Use complement of SET1
-d This deletes a range of characters specified in SET1.
-s This replaces consecutive multiple occurrences of characters in SET1 

with a single occurrence.
-t This truncates SET1 to the length of SET2. Any extra characters in SET1 

will be not considered for translation.

SETs are a string of characters that can be specified using the following:

• A character class: [:alnum:], [:digit:], [:alpha:] and so on
• A character range: 'a-z', 'A-Z', and '0-9'
• An escape character: \\, \b, \r, \n, \f, \v, and \t

To provide an input text from a file and an output to a file, we can use the file 
redirection operators: < (less than for input) and > (greater than for output).

Deleting input characters
Sometimes, removing a few unnecessary characters from an input text is important. 
For example, our input text is in the tr.txt file:

$ cat tr.txt

This is a text file for demonstrating

tr command.

This input file contains digit 2 3 4 and 5

as well.

THIS IS CAPS LINE

this a lowercase line



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 62 ]

Suppose we want to remove all the caps letters from this file. We can use the -d 
option with SET1 as 'A-Z':

$ tr -d 'A-Z' < tr.txt

This is a text file for demonstrating

tr command.

This input file contains digit 2 3 4 and 5

as well.

   

this a lowercase line

We see that the output doesn't have any caps letter. We can also removed a new line 
and space from a file as follows:

$ tr -d ' \n' < tr.txt > tr_out1.txt

Here, we have redirected the output to tr_out1.txt:

$ cat tr_out1.txt

Thisisatextfilefordemonstratingtrcommand.
Thisinputfileconatainsdigit234and5aswell.THISISCAPSLINEthisalowercaseline

Squeezing to a single occurrence
The -s option is useful when we don't want to delete a character throughout the 
input text, instead we want to squeeze down to a single occurrence if consecutive 
multiple occurrences of the given character is there.

One of the use-case where it will prove useful is when we have multiple spaces in 
between two words that we want to bring down to a single space between any two 
words/strings in the input text. Consider the tr1.txt file as an example:

$ cat tr1.txt
India            China              Canada
USA    Japan               Russia
Germany        France               Italy
Australia   Nepal

By looking into this file, it's quite clear that texts are not properly aligned. There are 
multiple spaces between two words. We can squeeze multiple spaces to one space 
using the tr option with -s:

$ tr -s ' ' < tr1.txt 
India China Canada
USA Japan Russia
Germany France Italy

Australia Nepal



Chapter 2

[ 63 ]

Inverting a character set to be translated
Command tr also provides the -c or -C options to invert a character set to be 
translated. This is useful when we know what is not to be translated.

For example, we want to keep only alphanumeric, newline, and white-space in the 
text string. Everything should be deleted from the input text. Here, it's easy  
to specify what not to delete rather than what to delete.

For example, consider the tr2.txt file whose content is as follows:

$ cat tr2.txt

This is an input file.

It conatins special character like ?, ! etc

&^var is an invalid shll variable.

_var1_ is a valid shell variable

To delete characters other than alphanumeric, newline, and white-space, we can run 
the following command:

tr -cd '[:alnum:] \n' < tr2.txt

This is an input file

It conatins special character like   etc

var is an invalid shll variable

var1 is a valid shell variable

Filtering based on lines—head and tail
To display the content of a file, we will use the cat command. The cat command 
displays the whole file content on stdout. However, sometimes, we are interested in 
viewing only a few lines of a file. In this case, using cat will be tedious because we 
will have to scroll down to particular lines that we are interested in.

Shell provides us the head and tail commands to print only the lines in which we 
are interested in. The main difference between both the commands is, head prints the 
lines from the beginning of the files, and tail prints the lines from the end of the files.

Printing lines using head
The syntax is as follows:

head [OPTION] [FILE …]



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 64 ]

By default, head prints first 10 lines of each FILE to stdout. If no file is mentioned or 
'-' is specified, the input is taken from stdin.

The options available in head can be used to change how much of the content to be 
printed. The options available are described in the following table:

Option Description
-c [-] K This prints first K bytes of a file. If -K is used, then you can output all 

contents except the last K bytes.
-n [-]K This prints first K lines of each file. If -K is used, then you can output all 

lines except the last n lines.
-q This prevents name of input files from being printed.
-v This always outputs the header having the filename of each file.

Printing the first few lines
Let's see how many files /usr/lib64/ directory contains -:

$ ls /usr/lib64 | wc

3954

We see that /usr/lib64 has 3954 files. Suppose, we don't want all the libraries 
names, but just the first five library names. We can use a head command for this  
as follows:

$ ls /usr/lib64 | head -n 5

akonadi

alsa-lib

ao

apper

apr-util-1

Printing the first few bytes
We use the -c option to print the first few bytes of a file, as follows:

$  head -c50 /usr/share/dict/linux.words /usr/share/dict/words

==> /usr/share/dict/linux.words <==

1080

10-point

10th

11-point

12-point



Chapter 2

[ 65 ]

16-point

18-p
==> /usr/share/dict/words <==
1080
10-point
10th
11-point
12-point
16-point
18-p

This first prints 50 bytes of the /usr/share/dict/linux.words and /usr/share/
dict/words files.

We can eliminate the printing of the header having a filename using –q:

$ head -c50 -q  /usr/share/dict/linux.words /usr/share/dict/words

1080
10-point
10th
11-point
12-point
16-point
18-p1080
10-point
10th
11-point
12-point
16-point
18-p

For a single file, command head doesn't print name of file in output. To see it,  
use –v option:

$ head -c50 -v  /usr/share/dict/linux.words
==> /usr/share/dict/linux.words <==
1080
10-point
10th
11-point
12-point
16-point
18-p



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 66 ]

Printing lines using tail
The syntax for tail is as follows:

tail [OPTION] [FILE …]

By default, tail prints the last 10 lines of each FILE to stdout. If no file is mentioned 
or '-' is specified, the input is taken from stdin.

The options available in tail can be used to change how much of the content to be 
printed. The available options are described in the following table:

Option Description
-c [+]K This prints the last K byte of each file. If +K is used, then print 

from Kth byte of each file.
-n [+]K This prints the last K lines of each file. If +K is used, then 

output from Kth line of each file.
 -f 
[{name|descriptor}]

The outputs the appended data as the file grows.

--retry This keeps trying to open a file if it is inaccessible.
--max-unchanged-
stats=N

With the -f name, reopen the file that has not opened. This 
shows the changed size after N iterations (default 5).

--pid=PID With -f, terminate if PID dies.
-q Don't output header having filename of each file.
-F This is the same as the -f name --retry option.
-s N This sleeps for N seconds between iterations. With –pid=PID, 

check the process at least once in N seconds.
-v This always outputs the header having a filename of each file.

Checking log entries
The tail command is frequently used to check the error or message log for the last 
few run of commands. With each new run, logs are appended at the end of the line.

We will see in following example that kernel log entries are made when a new  
USB drive is added and when it is removed:

$ dmesg | tail -n7    # Log when USB was attached

[120060.536856] sd 10:0:0:0: Attached scsi generic sg1 type 0
[120060.540848] sd 10:0:0:0: [sdb] 1976320 512-byte logical blocks: 
(1.01 GB/965 MiB)
[120060.541989] sd 10:0:0:0: [sdb] Write Protect is off
[120060.541991] sd 10:0:0:0: [sdb] Mode Sense: 23 00 00 00



Chapter 2

[ 67 ]

[120060.543125] sd 10:0:0:0: [sdb] Write cache: disabled, read cache: 
enabled, doesn't support DPO or FUA
[120060.550464]  sdb: sdb1
[120060.555682] sd 10:0:0:0: [sdb] Attached SCSI removable disk

$ dmesg | tail -n7  # USB unmounted

[120060.540848] sd 10:0:0:0: [sdb] 1976320 512-byte logical blocks: 
(1.01 GB/965 MiB)
[120060.541989] sd 10:0:0:0: [sdb] Write Protect is off
[120060.541991] sd 10:0:0:0: [sdb] Mode Sense: 23 00 00 00
[120060.543125] sd 10:0:0:0: [sdb] Write cache: disabled, read cache: 
enabled, doesn't support DPO or FUA
[120060.550464]  sdb: sdb1
[120060.555682] sd 10:0:0:0: [sdb] Attached SCSI removable disk
[120110.466498] sdb: detected capacity change from 1011875840 to 0

We saw that when USB was unmounted, a new log entry was 
added:[120110.466498] sdb: detected capacity change from 1011875840 to 0  
To check the last 10 yum logs in an RPM-based system, we can do the following:

#  sudo tail -n4 -v /var/log/yum.log

==> /var/log/yum.log-20150320 <==
Mar 19 15:40:19 Updated: libgpg-error-1.17-2.fc21.i686
Mar 19 15:40:19 Updated: libgcrypt-1.6.3-1.fc21.i686
Mar 19 15:40:20 Updated: systemd-libs-216-21.fc21.i686
Mar 19 15:40:21 Updated: krb5-libs-1.12.2-14.fc21.i686

To see real-time logs, we can use the -f option. For example, the /var/log/
messages file shows the general system activities. With tail -f, appended log 
messages in /var/log/messages will be printed on stdout as well:

$ tail -f /var/log/messages

Jun  7 18:21:14 localhost dbus[667]: [system] Rejected send message, 
10 matched rules; type="method_return", sender=":1.23" (uid=0 pid=1423 
comm="/usr/lib/udisks2/udisksd --no-debug ") interface="(unset)" 
member="(unset)" error name="(unset)" requested_reply="0" 
destination=":1.355" (uid=1000 pid=25554 comm="kdeinit4: dolphin 
[kdeinit] --icon system-fil   ")
Jun  7 18:21:14 localhost systemd-udevd: error: /dev/sdb: No medium 
found
Jun  7 18:21:14 localhost systemd-udevd: error: /dev/sdb: No medium 
found
Jun  7 18:27:10 localhost kernel: [135288.809319] usb 3-1.2: USB 
disconnect, device number 14
Jun  7 18:27:10 localhost kernel: usb 3-1.2: USB disconnect, device 
number 14
Jun  7 18:27:10 localhost systemd-udevd: error opening USB device 
'descriptors' file

www.allitebooks.com

http://www.allitebooks.org


Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 68 ]

The command prompt won't return back.  Instead, the output will keep getting 
updated whenever there is new content in /var/log/messages.

Finding any line in a file
We can use head and tail to find any line of a file.

We will consider the /usr/share/dict/words file as an example.

Now, to find the 10th line of this file, we can do the following:

$ head -10 /usr/share/dict/words | tail -n1  # 10th line

20-point

$ head -200000 /usr/share/dict/words | tail -n1  #  200000th line

intracartilaginous

The Cut-based selection
We can also select a text from each line of single/multiple files using the cut 
command. The cut command allows us to select a column based on delimiters. By 
default, TAB is used as delimiter. We can also select a portion of the text in a line by 
specifying the characters or range. The syntax is as follows:

cut OPTION [FILE …]

The cut command works on the single and multiple files. By default, the output is 
printed on stdout.

The options for the cut command are explained in the following table:

Option Description
-b LIST This selects bytes that are specified in LIST.
-c LIST This selects characters that are specified in LIST.
-d DELIM This uses delimiter as DELIM instead of TAB. It also prints lines 

that don't have a delimiter.
-f LIST This only selects fields specified in LIST.
--complement This complements a set of selected bytes, characters, or fields.
-s Don't print lines that don't have a delimiter.
--output-
delimiter=STRING

This uses STRING as the output delimiter. By default, the input 
delimiter is used.



Chapter 2

[ 69 ]

LIST is made up of a range or many ranges separated by a comma. A range is 
specified as follows:

Range Meaning
N This is the Nth byte, character, or field, counted from 1
N- This is from the Nth byte, character, or field, to the end of the line
N-M This is from the Nth to Mth byte (including M and N), character, or field.
-M This is from the first to Mth (include) byte, character, or field.

Cutting across columns
A lot of Linux command outputs are formatted in such a way that the results have 
multiple fields and each field is separated by space or tabs. The outputs of each field 
can be viewed by looking down into a particular field column.

Execute the ls -l ~ command and observe the following output:

$ ls -l ~

Now, we are interested only in knowing the modification time and filename.  
To achieve this, we will need the column 6 to 9:

$ ls -l ~ | tr -s ' ' |cut -f 6-9 -d ' '

By default, TAB is used as a delimiter. Here, there are multiple spaces between any 
two columns in the ls -l output. So, first using tr -s, we will squeeze multiple 
whitespace into single whitespace and then we will cut the column field range 6-9 
with a delimiter as whitespace.



Getting Hands-on with I/O, Redirection Pipes, and Filters

[ 70 ]

Text selection in files
Consider the cut1.txt file as an example. The content of the file is as follows:

$ cat cut1.txt

The output will be:

Now, we are interested in knowing the names of the students. We can get this by 
fetching the first column. Here, each column is separated by Tab. So, we will not  
have to specify the delimiter in our command:

$ cut -f1 cut1.txt

Name

Foo

Bar

Moo

Bleh

Worm

Lew

Another interesting thing to do is to get unique department names. We can do this 
by using the following set of commands on the cut1.txt file:

$ cut -f4 cut1.txt | tail -n +2 | sort -u

Civil

CSE

ECE

Mechanical

We can see that there are four unique departments mentioned in the cut1.txt file.

Another interesting thing we can do is find out who received the highest marks,  
as follows:

$ cut -f1,3 cut1.txt | tail -n +2 | sort -k2 -nr | head -n1

Worm    99



Chapter 2

[ 71 ]

To find out who scored the highest mark, we first select the first and third column 
from the cut1.txt file. Then, we exclude the first line using tail -n +2, which tells 
us what this file is about, because we do not need this. After that, we do numerical 
sorting of the second column in reverse order, which contains the marks of all the 
students. Now, we know that the first column contains the details of those who 
scored the highest marks.

Knowing the speed of your system processor is interesting in order to know the 
various details of your system. Among all, one of them knows the speed of your 
processor. The first thing to know is that all processor details are available in the  
/proc/cpuinfo file. You can open this file and see what all details are available. For 
example, we know that the processor's speed is mentioned in the "model name" field.

The following shell script will show the speed of the processor:

#!/bin/bash
#Filename: process_speed.sh
#Description: Demonstrating how to find processor speed ofrunning 
system

grep -R "model name" /proc/cpuinfo | sort -u > /tmp/tmp1.txt
tr -d ' ' </tmp/tmp1.txt > /tmp/tmp2.txt
cut -d '@' -f2 /tmp/tmp2.txt

Running this script will output the processor speed of your system:

$ sh processor_speed.sh
2.80GHz

We can also do without using temporary files:

$ grep -R "model name" /proc/cpuinfo | sort -u | cut -d '@' -f2
2.80GHz

Summary
After reading this chapter, you should know how to provide an input to commands 
and print or save its result. You should also be familiar with redirecting an output 
and input from one command to another. Now, you can easily search, replace strings 
or pattern in a file, and filter out data based on needs.

From this chapter, we now have a good control on transforming/filtering text data. 
In next chapter, we will learn how to write more powerful and useful shell scripts 
by learning loops, conditions, switch, and the most important function in shell. We 
will also know how important it is to know the exit status of a command. In the 
next chapter, we will also see more advanced examples of commands that we have 
learned in this chapter.





[ 73 ]

Effective Script Writing
To write an effective script in shell, it is very important to know about the different 
utilities that shell provides. Similar to other programming languages, shell 
programming also requires a way to specify skipping or running certain commands 
under certain conditions. To perform a certain task on the list of elements, looping 
constructs are needed in shell as well.

In this chapter, we will cover topics such as if, else, case, and select that can be 
used to run a certain block of commands according to the condition. We will see 
the for, while, and until constructs, which are used to loop over a certain block 
of commands in a script. We will see how the exit code, after the execution of a 
command or script, plays an important role in knowing whether a command was 
executed successfully or not. We will also see how a function can be defined in shell, 
which will allow us to write modular and reusable code from now on.

This chapter will cover the following topics in detail:

• Exiting from scripts and exit codes
• Testing expressions with a test
• Using conditional statements with if and else
• Indexed arrays and associative arrays
• Looping around with for
• The select, while, and until loops
• Switching to your choice
• Using functions and positional parameters
• Passing stdout as a parameter using xargs
• Aliases
• pushd and popd



Effective Script Writing

[ 74 ]

Exiting from scripts and exit codes
We are now well familiar with shell script files, commands, and running them in 
bash to get the desired output. Until now, whatever shell script examples we have 
seen, they run line by line until the end of the file. While writing real-world shell 
scripts, it may not always be the case. We may need to exit a script in between, for 
example, when some error occurs, doesn't satisfy a certain condition, and so on. To 
exit from the script, the exit shell builtin is used with an optional return value. The 
return value tells the exit code, which is also known as return status or exit status.

Exit codes
Every command returns an exit code when it gets executed. Exit code is one of 
the ways to know whether a command is executed successfully or if some error 
has occurred. As per the POSIX (Portable Operating System Interface) standard 
convention, a command or program with successful execution returns 0, and 1  
or a higher value for failed execution.

In bash, to see the exit status of the last command executed, we can use "$?".

The following example shows the exit code of the successful command execution:

$ ls /home  # viewing Content of directory /home

foo

Now, to see the exit code of the last executed command, that is, ls /home, we will 
run the following command:

$ echo $?

0

We see that the exit status of the ls command execution is 0, which means it has 
executed successfully.

Another example showing the exit code of the unsuccessful command execution  
is as follows:

$  ls /root/

ls: cannot open directory /root/: Permission deniedWe see that the ls 
command execution was unsuccessful with the Permission denied error. To 
see the exit status, run the following command:

$ echo $?

2

The exit status code is 2, which is higher than 0, representing unsuccessful execution.



Chapter 3

[ 75 ]

Exit codes with a special meaning
In different situations, a different exit code is returned by a script or command. 
Knowing the meaning of the exit code is useful while debugging a script or 
command. The following table explains which exit code is conventionally  
returned in different conditions of command or script execution:

Exit code Description
0 Successful execution
1 General error
2 Error when using shell builtin commands
126 Permission issues while executing a command; we can't invoke the 

requested command
127 Could not invoke requested command
128 Specifying invalid argument to exit in script. Only value from 0 to 255 is 

valid exit code
128+n Fatal error with the signal 'n'
130 Terminating script using Ctl + C
255* Out of the range exit code

Exit codes 0, 1, 126-165, and 255 are reserved and we should use other than these 
numbers when we return the exit code in script files.

The following examples show the different exit codes returned by commands:

• Exit code 0: The following is the successful execution of the echo command:
$ echo "Successful Exit code check"

Successful Exit code check

$ echo $?

0

• Exit code 1: Copying files from /root have no permissions as shown:
$  cp -r /root/ .

cp: cannot access '/root/': Permission denied

$ echo $?

1



Effective Script Writing

[ 76 ]

• Exit code 2: Use read shell builtin with an invalid parameter as follows:
$ echo ;;

bash: syntax error near unexpected token ';;'

$ echo $?

2

• Exit code 126: Run a /usr/bin directory as a command that is actually not  
a command:
$ /usr/bin

bash: /usr/bin: Is a directory

$ echo $?

126

• Exit code 127: Run a command named foo that is not actually present in  
the system:
$ foo

bash: foo: command not found

$ echo $?

127

• Exit code 128+n: Terminate a script by pressing Ctrl + C:

$ read

^C

$ echo $?

130

Here, Ctrl + C sends the SIGQUIT signal whose value is 2. So, the exit code is 130  
(128 + 2).

Script with exit codes
We can also exit shell builtin along with an exit code to know whether a script ran 
successfully or it encountered any error. Different error codes can be used to know 
the actual reason of an error while debugging your own script.



Chapter 3

[ 77 ]

When we don't provide any exit code in a script, the exit code of the script is 
determined by the last executed command:

#!/bin/bash                                                                                                                                             
                  
# Filename: without_exit_code.sh                                                                                                                                          
# Description: Exit code of script when no exit code is mentioned in 
script                                                                                                
                                                                                                                                                      
                    
var="Without exit code in script"
echo $var

cd /root

The preceding script doesn't specify any exit code; running this script will give the 
following output:

$ sh without_exit_code.sh

Without exit code in script

without_exit_code.sh: line 8: cd: /root: Permission denied

$ echo $?  # checking exit code of script

1

The exit code of this script is 1 because we didn't specify any exit code and the last 
executed command was cd /root, which failed due to a permission issue.

Taking the next example that returns the exit code 0, irrespective of any error that 
occurs—that is, script ran successfully:

#!/bin/bash                                                                                                                                             
                  
# Filename: with_exit_code.sh                                                                                                                                          
# Description: Exit code of script when exit code is mentioned in scr# 
ipt                                                                                                
                                                                                                                                                      
                    
var="Without exit code in script"
echo $var

cd /root

exit 0



Effective Script Writing

[ 78 ]

Running this script will give the following result:

$ sh with_exit_code.sh 
Without exit code in script
with_exit_code.sh: line 8: cd: /root: Permission denied
echo $?
0

Now, the script file returns the exit code as 0. We now know what a difference 
adding an exit code in script can make.

Another example with the exit status code is as follows:

#!/bin/bash
# Filename: exit_code.sh                                                                                                                                          
# Description: Exit code of script                                                                                            
                                                                                                                                                      
                    
cmd_foo # running command not installed in system
echo $?

cd /root # Permission problem
echo $?

echo "Hello World!" # Successful echo print
echo $?

exit 200 # Returning script's exit code as 200

The output after running this script is as follows:

$ sh exit_status.sh

exit_code.sh: line 5: cmd_foo: command not found

127

exit_code.sh: line 8: cd: /root: Permission denied

1

Hello World!

0

$ echo $?  # Exit code of script

200

If no exit code is specified in a script, the exit code will be the exit status of the last 
command ran in the script.



Chapter 3

[ 79 ]

Testing expressions with a test
The shell builtin command test can be used to check file types and compare 
expressions value. The syntax is test EXPRESSION or the test command is also 
equivalent to [ EXPRESSION ].

It returns the exit code 1 (false) if the EXPRESSION result is 0, and 0 (true) for a  
non-zero EXPRESSION result.

If no EXPRESSION is provided, the exit status is set to 1 (false).

File checks
Different kinds of checks can be done on the file using the test command; for 
example, file existence test, directory test, regular file check, symbolic link check,  
and so on.

The options available to do various checks on a file are explained in the  
following table:

Option Description

-e fileChecks whether the file exists
-f file The file is a regular fil
-d file The file exists and is a directory
-h, -L file The file is a symbolic link
-b file The file is block special
-c file The file is character special
-S file The file is a socket
-p file The file is a named pipe
-k file Sticky bit of the file is set
-g file set-group-ID (sgid) bit of the file is set
-u file set-user-id (suid) bit of the file is set
-r file Read permission on the file exists
-w file Write permission on the file exists
-x file Execute permission on the file exists
-t fd File descriptor fd is open on terminal
file1 -ef file2 file1 is hard link to file2
file1 -nt file2 file1 is more recent compared to file2
file1 -ot file2 The modification time of file1 is older than file2



Effective Script Writing

[ 80 ]

Shell script performs different checks on the files as follows:

#!/bin/bash
# Filename: file_checks.sh
# Description: Performing different check on and between files

# Checking existence of /tmp/file1
echo -n "Does File /tmp/file1 exist? "
test -e /tmp/file1
echo $?

# Create /tmp/file1
touch /tmp/file1 /tmp/file2
echo -n "Does file /tmp/file1 exist now? "
test -e /tmp/file1
echo $?

# Check whether /tmp is a directory or not
echo -n "Is /tmp a directory? "
test -d /tmp
echo $?

# Checking if sticky bit set on /tmp"
echo -n "Is sticky bit set on /tmp ? "
test -k /tmp
echo $?

# Checking if /tmp has execute permission
echo -n "Does /tmp/ has execute permission ? "
test -x /tmp
echo $?

# Creating another file /tmp/file2
touch /tmp/file2

# Check modification time of /tmp/file1 and /tmp/file2
echo -n "Does /tmp/file1 modified more recently than /tmp/file2 ? "
test /tmp/file1 -nt /tmp/file2
echo $?



Chapter 3

[ 81 ]

The output of running this script is as follows:

Does File /tmp/file1 exist? 1
Does file /tmp/file1 exist now? 0
Is /tmp a directory? 0
Is sticky bit set on /tmp ? 0
Does /tmp/ has execute permission? 0
Does /tmp/file1 modified more recently than /tmp/file2 ? 1

In our output, 0 and 1 are the exist status after running a test command on files. 
The output 1 means the test failed and 0 means the test was successfully passed.

Arithmetic checks
We can also perform arithmetic checks between integer numbers. Comparison 
possible on integers is explained to following table:

Comparison Description
INTEGER1 -eq INTEGER2 INTEGER1 is equal to INTEGER2
INTEGER1 -ne INTEGER2 INTEGER1 is not equal to INTEGER2
INTEGER1 -gt INTEGER2 INTEGER1 is greater than INTEGER2
INTEGER1 -ge INTEGER2 INTEGER1 is greater than or equal to INTEGER2
INTEGER1 -lt INTEGER2 INTEGER1 is lesser than INTEGER2
INTEGER1 -le INTEGER2 INTEGER1 is lesser than or equal to INTEGER2

Shell script shows various arithmetic checks between two integers as follows:

#!/bin/bash
# Filename: integer_checks.sh
# Description: Performing different arithmetic checks between integers

a=12 b=24 c=78 d=24
echo "a = $a , b = $b , c = $c , d = $d"

echo -n "Is a greater than b ? "
test $a -gt $b
echo $?

echo -n "Is b equal to d ? "
test $b -eq $d
echo $?



Effective Script Writing

[ 82 ]

echo -n "Is c not equal to d ? "
test $c -ne $d
echo $?

The output of running this script is as follows:

a = 12 , b = 24 , c = 78 , d = 24
Is a greater than b ? 1
Is b equal to d ? 0
Is c not equal to d ? 0

Also, here the test returns the exit status after running a comparison test between 
integers, and returns 0 (true) on success and 1 (false) if the test fails.

String checks
A command test also allows you to perform checks on and between strings.  
The possible checks are described in the following table:

Comparison Description
-z STRING The length of the string is zero
-n STRING The length of the string is non-zero
STRING1 = STRING2 STRING1 and STRING2 are equal
SRING1 != STRING2 STRING1 and STRING2 are not equal

Shell script shows various string checks on and between strings as follows:

#!/bin/bash
# Filename: string_checks.sh
# Description: Performing checks on and between strings

str1="Hello" str2="Hell" str3="" str4="Hello"
echo "str1 = $str1 , str2 = $str2 , str3 = $str3 , str4 = $str4"

echo -n "Is str3 empty ? "
test -z $str3
echo $?

echo -n "Is str2 not empty? "
test -n $str2
echo $?



Chapter 3

[ 83 ]

echo -n "Are str1 and str4 equal? "
test $str1 = $str4
echo $?

echo -n "Are str1 and str2 different? "
test $str1 != $str2
echo $?

The output of running this script is as follows:

str1 = Hello , str2 = Hell , str3 =  , str4 = Hello
Is str3 empty ? 0
Is str2 not empty? 0
Are str1 and str4 equal? 0
Are str1 and str2 different? 0

Here, the test returns 0 exit status if the string checks are true, else returns 1.

Expression checks
The test command also allows you to perform checks on and between expressions. 
An expression itself can contain multiple expressions to evaluate as well. The 
possible checks done are explained in the following table:

Comparison Description
( EXPRESSION ) This EXPRESSION is true
! EXPRESSION This EXPRESSION is false
EXPRESSION1 -a 
EXPRESSION2

Both the expressions are true (the AND operation)

EXPRESSION1 -o 
EXPRESSION2

Either one of the expressions is true  
(the OR operation)

Shell script shows various string checks on and between strings as follows:

#!/bin/bash
# Filename: expression_checks.sh
# Description: Performing checks on and between expressions

a=5 b=56
str1="Hello" str2="Hello"

echo "a = $a , b = $b , str1 = $str1 , str2 = $str2"



Effective Script Writing

[ 84 ]

echo -n "Is a and b are not equal, and str1 and str2 are equal? "
test ! $a -eq $b -a  $str1 = $str2
echo $?

echo -n "Is a and b are equal, and str1 and str2 are equal? "
test $a -eq $b -a  $str1 = $str2
echo $?

echo -n "Does /tmp is a sirectory and execute permission exists? "
test -d /tmp -a  -x /tmp
echo $?

echo -n "Is /tmp file is a block file or write permission exists? "
test -b /tmp -o -w /tmp
echo $?

The output of running this script is as follows:

a = 5 , b = 56 , str1 = Hello , str2 = Hello
Is a and b are not equal, and str1 and str2 are equal? 0
Is a and b are equal, and str1 and str2 are equal? 1
Does /tmp is a sirectory and execute permission exists? 0
Is /tmp file is a block file or write permission exists? 0

Similar to other checks with the test command, the 0 exit code means the expression 
evaluated is true and 1 means false evaluation.

Using conditional statements with if and 
else
Shell provides if and else to run conditional statements depending upon whether 
the evaluation is true or false. It is useful if we want to perform certain tasks only 
if a certain condition is true.

The test condition to if can be given using a test condition or [condition]. We have 
already learned multiple use cases and examples of testing an expression in the 
previous section, Testing expressions with a test.



Chapter 3

[ 85 ]

Simple if and else
The syntax of the if condition is as follows:

if [ conditional_expression ]
then
  statements
fi

If conditional_expression is true—that is, the exit status is 0—then the 
statements inside it get executed. If not, then it will be just be ignored and the  
next line after fi will be executed.

The syntax of if and else is as follows:

if [ conditional_expression ]
then
  statements
else
  statements
fi

Sometimes, when a condition is not true, we might want to execute some statements. 
In such cases, use if and else. Here, if conditional_statement is true, statements 
within if get executed. Otherwise, statements within else will be executed.

The following shell script prints the message if a file exists:

#!/bin/bash
# Filename: file_exist.sh
# Description: Print message if file exists

if [ -e /usr/bin/ls ]
then
        echo "File /usr/bin/ls exists"
fi

The output after running the script is as follows:

File /usr/bin/ls exists



Effective Script Writing

[ 86 ]

Another example shows the greater one among two integers as follows:

#!/bin/bash
# Filename: greater_integer.sh
# Description: Determining greater among two integers

echo "Enter two integers a and b"
read a b        # Reading input from stdin
echo "a = $a , b = $b"
# Finding greater integer
if test $a -gt $b
then
        echo "a is greater than b"
else
        echo "b is greater than a"
fi

The following is the output after running the script:

$ sh greater_integer.sh
Enter two integers a and b
56 8
a = 56 , b = 8
a is greater than b

The if, elif, and else statements
In some cases, more than two choices exist, of which only one needs to be executed. 
The elif allows you to use another if condition instead of using else if a condition 
is not true. The syntax is as follows:

if [ conditional_expression1 ]
then
  statements
elif [ conditional_expression2 ]
then
  statements
elif [ conditional_expression3 ]
then
  statements
  # More elif conditions
else
  statements



Chapter 3

[ 87 ]

The following shell script will make the elif usage more clear. This script asks  
a user to input a valid file or directory name with the absolute path. On a valid 
regular file or directory, it displays the following content:

#!/bin/bash
# Filename: elif_usage.sh
# Description: Display content if user input is a regular file or a 
directoy

echo "Enter a valid file or directory path"
read path
echo "Entered path is $path"

if [ -f $path ]
then
   echo "File is a regular file and its content is:"
   cat $path
elif [ -d $path ]
then
   echo "File is a directory and its content is:"
   ls $path
else
   echo "Not a valid regular file or directory"
fi

The output after running the script is as follows:

Enter a valid file or directory path
/home/
Entered path is /home/
File is a directory and its content is:
lost+found  sinny

Nested if
In many cases, multiple if conditions are required because the execution  
of a condition depends upon the result of another condition. The syntax will  
be as follows:

if [ conditional_expression1 ]
then
  if [ conditional_expression2 ]
  then



Effective Script Writing

[ 88 ]

     statements
     if [conditional_expression3 ]
     then
       statements
     fi
  fi
fi

The following script example explains the nested if in more detail. In this script,  
we will see how to find the greatest one of the three integer values:

#!/bin/bash
# Filename: nested_if.sh
# Description: Finding greatest integer among 3 by making use of 
nested if

echo "Enter three integer value"
read a b c
echo "a = $a , b = $b, c = $c"

if [ $a -gt $b ]
then
   if [ $a -gt $c ]
   then
      echo "a is the greatest integer"
   else
     echo "c is the greatest integer"
   fi
else
  if [ $b -gt $c ]
  then
    echo "b is the greatest integer"
  else
    echo "c is the greatest integer"
  fi
fi

The output after running the script will be as follows:

Enter three integer value
78 110 7
a = 78 , b = 110, c = 7
b is the greatest integer



Chapter 3

[ 89 ]

Indexed arrays and associative arrays
Bash provides a feature to declare a list (or array) of variables in a one-dimensional 
array that can be an indexed array or associative array. The size of an array can  
be 0 or more.

Indexed arrays
An indexed array contains variables that may or may not have been initialized 
continuously. Indices of an indexed array start from 0. This means that the first  
element of an array will start at an index 0.

Array declaration and value assignment
An indexed array can be declared by just initializing any index as follows:

array_name[index]=value

Here, an index can be any positive integer or an expression must be evaluated to a 
positive integer.

Another way of declaring is by using the declare shell built in as follows:

declare -a array_name

We can also initialize an array with values during a declaration. Values are enclosed 
within parentheses and each value is separated with a blank space as follows:

declare -a array_name=(value1 value2 value3 …)

Operations on arrays
Initializing and declaring values to a variable is not sufficient. The actual usage of an 
array is when we perform different operations on it to get the desired result.

The following operations can be done on an indexed array:

• Accessing an array element by an index: An element of an array can be 
accessed by referring to its index value:
echo ${array_name[index]}

• Printing the array's contents: The contents of an array can be printed if an 
index of an array is given as @ or *:
echo ${array_name[*]}

echo ${array_name[@]}



Effective Script Writing

[ 90 ]

• Obtaining the length of an array: The length of an array can be obtained 
using $# with the array variable:
echo ${#array_name[@]}

echo ${#array_name[*]}

• Obtaining the length of an array element: The length of an array element can 
be obtained using $# on nth index:
echo ${#array_name[n]}

• Deleting an element or an entire array: An element can be removed from an 
array using the unset keyword:

unset array_name[index]  # Removes value at index

unset array_name  # Deletes entire array

The following shell script demonstrates the different operations on an indexed array:

#!/bin/bash
# Filename: indexed_array.sh
# Description: Demonstrating different operations on indexed array

#Declaring an array conutries and intializing it
declare -a countries=(India Japan Indonesia 'Sri Lanka' USA Canada)

# Printing Length and elements of countries array
echo "Length of array countries = ${#countries[@]}"
echo ${countries[@]}

# Deleting 2nd element of array
unset countries[1]
echo "Updated length and content of countries array"
echo "Length = ${#countries[@]}"
echo ${countries[@]}

# Adding two more countries to array
countries=("${countries[@]}" "Indonesia" "England")
echo "Updated length and content of countries array"
echo "Length = ${#countries[@]}"
echo ${countries[@]}



Chapter 3

[ 91 ]

The output after executing this script is as follows:

Length of array countries = 6
India Japan Indonesia Sri Lanka USA Canada
Updated length and content of countries array
Length = 5
India Indonesia Sri Lanka USA Canada
Updated length and content of countries array
Length = 7
India Indonesia Sri Lanka USA Canada Indonesia England

The associative array
The associative array contains a list of elements in which each element has a  
key-value pair. The elements of an associative array are not referred by using 
an integer value 0 to N. It is referred by providing a key name that contains a 
corresponding value. Each key name should be unique.

The declaration and value assignment
The declaration of an associative array is done by using the -A option with the 
declare shell builtin as follows:

declare -A array_name

An associate array uses a key instead of an index within a square bracket in order  
to initialize a value as follows:

array_name[key]=value

Multiple values can be initialized in the following way:

array_name=([key1]=value1 [key2]=value2 ...)

Operations on arrays
A few operations on an associative array can be done similar to how an indexed 
array does, such as printing the length and content of an array. The operations  
are as follows:

• Accessing an array element by the key name; to access an element of an 
associative array, use a unique key as follows:
echo ${array_name[key]}



Effective Script Writing

[ 92 ]

• Printing associative array content: The following syntax is used to print an 
associative array:
echo ${array_name[*]}
echo ${array_name[@]}
Obtaining the length of an array:
echo ${#array_name[@]}
echo ${#array_name[*]}

• Getting the value and length of a given key:
echo ${array_name[k]}  # Value of key k
echo ${#array_name[k]}  # Length of value of key k

• Adding a new element; to add a new element in an associative array,  
use the += operator as follows:
array_name+=([key]=value)

• Deleting an element of an associative array with the k key as follows:
unset array_name[k]

• Deleting an associative array array_name as follows:

unset array_name

The following shell script demonstrates the different operations on an  
associative array:

#!/bin/bash
# Filename: associative_array.sh
# Description: Demonstrating different operations on associative array

# Declaring a new associative array
declare -A student

# Assigning different fields in student array
student=([name]=Foo [usn]=2D [subject]=maths [marks]=67)

# Printing length and content of array student
echo "Length of student array = ${#student[@]}"
echo ${student[@]}

# deleting element with key marks
unset student[marks]



Chapter 3

[ 93 ]

echo "Updated array content:"
echo ${student[@]}

# Adding department in student array
student+=([department]=Electronics)
echo "Updated array content:"
echo ${student[@]}

The output after executing this script is as follows:

Length of student array = 4
Foo 67 maths 2D
Updated array content:
Foo maths 2D
Updated array content:
Foo maths Electronics 2D

Looping around with for
The for loop can be used to iterate over the items in a list or till the condition is true.

The syntax of using the for loop in bash is as follows:

for item in [list]
do
   #Tasks
done

Another way of writing the for loop is the way C does, as follows:

for (( expr1; expr2; expr3 ))
  # Tasks
done

Here, expr1 is initialization, expr2 is condition, and expr3 is increment.

Simple iteration
The following shell script explains how we can use the for loop to print the values  
of a list:

#!/bin/bash
# Filename: for_loop.sh
# Description: Basic for loop in bash



Effective Script Writing

[ 94 ]

declare -a names=(Foo Bar Tom Jerry)
echo "Content of names array is:"
for name in ${names[@]}
do
   echo -n "$name "
done
echo

The output of the script is as follows:

Content of names array is:
Foo Bar Tom Jerry

Iterating over a command output
We know that a lot of commands give multiline output such as ls, cat, grep,  
and so on. In many cases, it makes sense to loop over each line of output and do 
further processing on them.

The following example loops over the content of '/' and prints directories:

#!/bin/bash
# Filename: finding_directories.sh
# Description: Print which all files in / are directories

echo "Directories in / :"
for file in 'ls /'
do
  if [ -d "/"$file ]
  then
     echo -n  "/$file "
  fi
done
echo

The output after running this script is as follows:

Directories in / :
/bin /boot /dev /etc /home /lib /lib64 /lost+found /media /mnt /opt /
proc /root /run /sbin /srv /sys /tmp /usr /var



Chapter 3

[ 95 ]

Specifying a range to the for loop
We can also specify a range of integers in the for loop with an optional increment 
value for it:

#!/bin/bash
# Filename: range_in_for.sh
# Description: Specifying range of numbers to for loop

echo "Numbers between 5 to 10 -"
for num in {5..10}
do
  echo -n "$num "
done

echo
echo "Odd numbers between 1 to 10 -"
for num in {1..10..2}
do
  echo -n "$num "
done
echo

The output after running this script is as follows:

Numbers between 5 to 10 -
5 6 7 8 9 10 
Odd numbers between 1 to 10 -
1 3 5 7 9

Small and sweet for loop
In some cases, we don't want to write a script and then execute it; rather, we prefer to 
do a job in shell itself. In such cases, it is very useful and handy to write the complete 
for loop in one line, rather than making it multiline.

For example, printing the multiples of 3 between 3 to 20 numbers can be done with 
the following code:

$ for num in {3..20..3}; do echo -n "$num " ; done

3 6 9 12 15 18 



Effective Script Writing

[ 96 ]

The select, while, and until loops
The select, while and until loops are also used to loop and iterate over each item 
in a list or till the condition is true with slight variations in syntax.

Loop using select
The select loop helps in creating a numbered menu in an easy format from which a 
user can select one or more options.

The syntax of the select loop is as follows:

select var in list
do
   # Tasks to perform
done

The list can be pre-generated or specified while using the select loop in the form 
[item1 item2 item3 …].

For example, consider a simple menu listing the contents of '/' and asking a user to 
enter an option for which you want to know whether it is a directory or not:

#!/bin/bash
# Filename: select.sh
# Description: Giving user choice using select to choose

select file in 'ls /'
do
   if [ -d "/"$file ]
   then
     echo "$file is a directory"
   else
     echo "$file is not a directory"
  fi
done



Chapter 3

[ 97 ]

The following is the screenshot of the output after running the script:

To exit from the script, press Ctrl + C.

The while loop
The while loop allows you to do repetitive tasks until the condition is true.  
The syntax is very similar to what we have in the C and C++ programming  
language, which is as follows:

while [ condition ]
do
   # Task to perform
done

For example, read the name of the application and display pids of all the running 
instances of that application, as follows:

#!/bin/bash
# Filename: while_loop.sh
# Description: Using while loop to read user input

echo "Enter application name"
while read line
do
  echo -n "Running PID of application $line :"
  pidof $line
done



Effective Script Writing

[ 98 ]

The output after running this script is as follows:

Enter application name
firefox
Running PID of application firefox : 1771
bash
Running PID of application bash : 9876 9646 5333 4388 3970 2090 2079 
2012 1683 1336
ls
Running PID of application ls: 
systemd
Running PID of application systemd : 1330 1026 1

To exit from the script, press Ctrl + C.

The until loop
The until loop is very similar to the while loop, but the only difference is  
that it executes code block until the condition executes to false. The syntax of  
until is as follows:

until condition
do
     # Task to be executed
 done

For example, consider that we are interested in knowing pid of an application 
whenever any instance of it is running. For this, we can use until and check pidof 
of an application at a certain interval using sleep. When we find pid, we can exit 
from the until loop and print pid of the running instance of the application.

The following shell script demonstrates the same:

#!/bin/bash
# Filename: until_loop.sh
# Description: Using until loop to read user input

echo "Enter application name"
read app
until  pidof $app
do
  sleep 5
done
echo "$app is running now with pid 'pidof $app'"



Chapter 3

[ 99 ]

The output after executing this script is as follows:

Enter application name
firefox
1867
firefox is running now with pid 1867

Switch to my choice
Switch is used to jump and run a certain case as per the result of the condition  
or expression is evaluated. It acts as an alternative to using multiple if in bash  
and keeps bash script much clear and readable.

The syntax of switch is as follows:

case $variable in
  pattern1)
  # Tasks to be executed
  ;;
  pattern2)
  # Tasks to be executed
  ;;
  …
  pattern n)
  # Tasks to be executed
  ;;
  *)
esac

In syntax, $variable is the expression or value that needs to be matched among  
the list of choices provided.

In each choice, a pattern or a combination of patterns can be specified. The ;; tells 
bash that end of given choice block. The esac keyword specify end of case block.

The following is an example to count the number of files and directories in a  
given path:

#!/bin/bash
# Filename: switch_case.sh
# Description: Using case to find count of directories and files in a 
# path



Effective Script Writing

[ 100 ]

echo "Enter target path"
read path
files_count=0
dirs_count=0

for file in 'ls -l $path | cut -d ' ' -f1'
do
  case "$file" in

        d*)
        dirs_count='expr $dirs_count + 1 '
        ;;
        -*)
        files_count='expr $files_count + 1'
        ;;
        *)
  esac
done

echo "Directories count = $dirs_count"
echo "Regular file count = $files_count"

The output after running this script is as follows:

Enter target path
/usr/lib64
Directories count = 134
Regular file count = 1563

In this example, we first read an input path from a user using the read shell 
builtin. Then, we initialize the counter variable of files and directories count to 0. 
Furthermore, we use ls -l $path | cut -d ' ' -f1 to get a long list of file 
attributes of the path content and then retrieve its first column. We know that the 
first character of the first column of ls -l tells the type of the file. If it is d, then it is a 
directory, and - represents a regular file. The dirs_count or files_count variables 
get incremented accordingly.



Chapter 3

[ 101 ]

Passing stdout as a parameter using 
xargs
The xargs command is used to build and execute a command line from a  
standard input. Commands such as cp, echo, rm, wc, and so on, don't take input  
from a standard input or redirected output from another command. In such 
commands, we can use xargs to provide an input as an output of another  
command. The syntax is as follows:

xargs [option]

Some of options are explained in the following table:

Option Description
-a file This reads items from a file instead of stdin
-0, --null Inputs are null-terminated instead of whitespace
-t, --verbose Prints a command line on a standard output before executing
--show-limits This displays the limit on the length of the command line 

imposed by OS
-P max-procs Runs upto the max-procs processes one at a time
-n max-args This at most uses the max-args argument per command line

Basic operations with xargs
The xargs command can be used without any option. It allows you to enter an  
input from stdin, and when ctrl + d is called, it prints whatever was typed:

$ xargs

Linux shell

scripting 

ctrl + d

Linux shell scripting



Effective Script Writing

[ 102 ]

The --show-limits option can be used to know the limit of the command  
line length:

$ xargs --show-limits

Your environment variables take up 4017 bytes

POSIX upper limit on argument length (this system): 2091087

POSIX smallest allowable upper limit on argument length (all systems): 
4096

Maximum length of command we could actually use: 2087070

Size of command buffer we are actually using: 131072

Using xargs to find a file with the maximum 
size
The following shell script will explain how xargs can be used to get a file with the 
maximum size in a given directory recursively:

#!/bin/bash
# Filename: max_file_size.sh
# Description: File with maximum size in a directory recursively

echo "Enter path of directory"
read path
echo "File with maximum size:"

find $path -type f | xargs du -h | sort -h | tail -1

The output after running this script is as follows:

Enter path of directory
/usr/bin
File with maximum size:
12M     /usr/bin/doxygen

In this example, we are using xargs to pass each regular file obtained from the find 
command for size calculation. Furthermore, the output of du is redirected to the sort 
command for a human-numeric sort and then we can print the last line or sort to get 
the file with a maximum size.



Chapter 3

[ 103 ]

Archiving files with a given pattern
Another useful example of using xargs is to archive all the files that we are 
interested in, and these files can be kept as back files.

The following shell script finds all the shell script in a specified directory and  
creates tar of it for further reference:

#!/bin/bash
# Filename: tar_creation.sh
# Description: Create tar of all shell scripts in a directory

echo "Specify directory path"
read path

find $path -name "*.sh" | xargs tar cvf scripts.tar

The output after running the script is as follows:

Specify directory path
/usr/lib64
/usr/lib64/nspluginwrapper/npviewer.sh
/usr/lib64/xml2Conf.sh
/usr/lib64/firefox/run-mozilla.sh
/usr/lib64/libreoffice/ure/bin/startup.sh

In this example, all the files with an extension .sh are searched and passed as 
parameters to the tar command to create an archive. The file scripts.tar is  
created in the directory from where the scripts are being called.

Using functions and positional 
parameters
Similar to other programming languages, function is a way to write a set of actions 
once and use it multiple times. It makes the code modular and reusable.

The syntax of writing a function is as follows:

function function_name

 {

  # Common set of action to be done

 }



Effective Script Writing

[ 104 ]

Here, function is a keyword to specify a function and function_name is the name 
of the function; we can also define a function in the following ways:

function_name()

{

  # Common set of action to be done

}

The actions written within curly braces are executed whenever a particular function 
is invoked.

Calling a function in bash
Consider the following shell script that defines the my_func()function:

#!/bin/bash
# Filename: function_call.sh
# Description: Shows how function is defined and called in bash

# Defining my_func function
my_func()
{
  echo "Function my_func is called"
  return 3
}

my_func # Calling my_func function
return_value=$?
echo "Return value of function = $return_value"

To call my_func() in shell script, we just have to write a function's name:

my_func

The my_func function has a return value as 3. The return value of a function  
is the exit status of a function. In the preceding example, the exit status of the  
my_func function is assigned to the return_value variable.

The result of running the preceding script is as follows:

Function my_func is called
Return value of function = 3



Chapter 3

[ 105 ]

The return value of a function is what the return shell builtin is specified in its 
argument. If no return is used, then the exit code of the last command is executed in 
the function. In this example, the exit code will be the exit code of the echo command.

Passing parameters to functions
An argument to a function can be provided by specifying the first name of the 
function followed by space-separated arguments. A function in shell doesn't use 
parameters by its name but by positions; we can also say that the shell function takes 
positional parameters. Positional parameters are accessed by the variable names $1, 
$2, $3, $n, and so on, inside a function.

The length of arguments can be obtained using $#, a list of arguments passed can be 
fetched together using $@ or $*.

The following shell script explains how parameters are passed to the function  
in bash:

#!/bin/bash
# Filename: func_param.sh
# Description: How parameters to function is passed and accessed in 
bash

upper_case()
{
   if [ $# -eq 1 ]
   then
     echo $1 | tr '[a-z]' '[A-Z]'
   fi
}

upper_case hello
upper_case "Linux shell scripting"

The output of the preceding script is as follows:

HELLO
LINUX SHELL SCRIPTING

In the preceding shell script example, we called the upper_case() method twice 
with the hello and Linux shell scripting parameters. Both of them get 
converted to uppercase. In a similar way, other functions can be written to avoid 
writing repetitive work again and again.



Effective Script Writing

[ 106 ]

Alias
Alias in shell refers to giving another name to a command or group of commands. 
It is very useful when a name of a command is long. With the help of alias, we 
can avoid typing a bigger name and invoke a command by a name as per your 
convenience.

To create an alias, alias shell builtin command is used. The syntax is as follows:

alias alias_name="Commands to be aliased"

Creating alias
To print a disk space in a human-readable format, we use the df command with the 
-h option. By making alias of df -h to df, we can avoid typing again and again df 
-h.

The output of the df command before aliasing it to df -h is shown in the  
following screenshot:

$ df

Now, to create alias for df -h to df, we will execute the following command:

$ alias df="df -h" # Creating alias

$ df



Chapter 3

[ 107 ]

The output obtained is as follows:

We see that after creating alias of df -h to df, a default disk space is printed in a 
human-readable format.

Another useful example can be aliasing the rm command to rm -i. Using rm with  
the -i option asks the user for a confirmation before deleting them:

#!/bin/bash
# Filename: alias.sh
# Description: Creating alias of rm -i

touch /tmp/file.txt
rm /tmp/file.txt        # File gets deleted silently
touch /tmp/file.txt     # Creating again a file
alias rm="rm -i" # Creating alias of rm -i
rm /tmp/file.txt

The output after executing the preceding script is as follows:

rm: remove regular empty file '/tmp/file.txt'? Y

We can see that after alias creation, rm asks for a confirmation before deleting  
the /tmp/file.txt file.



Effective Script Writing

[ 108 ]

Listing all aliases
To see the aliases that are already set for the current shell, use an alias without any 
argument or with the –p option:

$ alias
alias df='df -h'
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'
alias ls='ls --color=auto'
alias vi='vim'

We can see that the df alias that we created still exists, along with the already other 
existing aliases.

Removing an alias
To remove an already existing alias, we can use the unalias shell builtin command:

$ unalias df  # Deletes df alias
$ alias -p  # Printing existing aliases
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'
alias ls='ls --color=auto'
alias vi='vim'

We see that the df alias has been removed. To remove all aliases, use unalias with 
the a option:

$ unalias -a  # Delets all aliases for current shell

$ alias -p

We can see that all aliases have now been deleted.



Chapter 3

[ 109 ]

pushd and popd
Both pushd and popd are shell builtin commands. The pushd command is used to 
save the current directory into a stack and move to a new directory. Furthermore, 
popd can be used to return back to the previous directory that is on top of the stack.

It is very useful when we have to switch between two directories frequently.

The syntax of using pushd is as follows:

pushd [directory]

If no directory is specified, pushd changes the directory to whatever is on the top of 
the stack.

The syntax of using popd is as follows:

popd

Using the popd switch, we can go back to the previous directory that is on top of the 
stack and pop that directory from stack.

The following example counts the number of files or directories in a specified 
directory until one level:

#!/bin/bash
# Filename: pushd_popd.sh
# Description: Count number of files and directories

echo "Enter a directory path"
read path

if [ -d $path ]
then
   pushd $path > /dev/null
   echo "File count in $path directory = 'ls | wc -l'"
   for f in 'ls'
   do
      if [ -d $f ]
      then
         pushd $f > /dev/null
         echo "File count in sub-directory $f = 'ls | wc -l'"



Effective Script Writing

[ 110 ]

         popd > /dev/null
      fi
   done
   popd > /dev/null
else
  echo "$path is not a directory"
fi

The output after running the preceding script is as follows:

Enter a directory path
/usr/local   
File count in /usr/local directory = 10
File count in sub-directory bin = 0
File count in sub-directory etc = 0
File count in sub-directory games = 0
File count in sub-directory include = 0
File count in sub-directory lib = 0
File count in sub-directory lib64 = 0
File count in sub-directory libexec = 0
File count in sub-directory sbin = 0
File count in sub-directory share = 3
File count in sub-directory src = 0

Summary
After reading this chapter, you should now be confident enough to write an 
effective shell script by using conditional statements, loops, and so on. Now, you 
can also write a modular and reusable code using the function in shell. Having the 
knowledge of exit code will help in knowing whether the command was executed 
successfully or not. You should also know a few more useful shell builtins such as 
alias, pushd, and popd.

In the next chapter, we will learn more about modularizing our script by knowing 
how to write a reusable shell script itself, which can be used in shell scripts. We will 
also see how we can debug our shell scripts to fix problems.



[ 111 ]

Modularizing and Debugging
In the real world, when you write code, you either maintain it forever or someone 
takes ownership of it later and makes changes into it. It is very important that you 
write a good quality shell script so that it's easier to maintain it further. It is also 
important that the shell script is bug-free in order to get the work done as expected. 
Scripts running on production systems are very critical because any error or wrong 
behavior of the script may cause minor or major damage. To solve such critical 
issues, it is important to get it fixed as soon as possible.

In this chapter, we will see how we can write modular and reusable code so that 
maintaining and updating our shell script application can be done quickly and 
without any hassle. We will also see how easily and quickly bugs in shell scripts can 
be solved using different debugging techniques. We will see how we can provide  
our users different choices for different tasks by providing support for command  
line options in a script. The knowledge of how to provide command line completion 
in a script will even increase the ease of using the script.

This chapter will cover the following topics in detail:

• Modularizing your scripts
• Passing command line parameters to script
• Debugging your scripts
• Command completion



Modularizing and Debugging

[ 112 ]

Modularizing your scripts
While writing a shell script, there is one stage when we feel that a shell script file has 
become too big to read and manage. To avoid such a scenario in our shell script, it is 
very important to keep the script modular.

In order to keep the script modular and maintainable, you can do the following:

• Create functions instead of writing the same code again and again
• Write a common set of functions and variables in a separate script and then 

source to use it

We have already seen how to define and use a function in Chapter 3, Effective Script 
Writing. Here, we will see how to divide a bigger script into smaller shell script 
modules and then use them by sourcing. In other words, we can say creating 
libraries in bash.

Source to a script file
Source is a shell built in command that reads and executes a script file in the current 
shell environment. If a script calls a source on another script file, all functions and 
variables available in that file will be loaded for use in calling script.

Syntax
The syntax of using the source is as follows:

source <script filename> [arguments]

OR:

. <script filename> [arguments]

The script filename can be with or without a path name. If the absolute or relative 
path is provided, it will look only into that path. Otherwise, a filename will be 
searched in the directories specified in the PATH variable.

The arguments are treated as positional parameters to the script filename.

The exit status of the source command will be the exit code of the last command 
executed in the script filename. If the script filename doesn't exist or there is no 
permission, then the exit status will be 1.



Chapter 4

[ 113 ]

Creating a shell script library
A library provides a collection of features that can be reused by another application 
without rewriting from scratch. We can create a library in shell by putting our 
functions and variables to be reused in a shell script file.

The following shell_library.sh script is an example of a shell library:

#!/bin/bash
# Filename: shell_library.sh
# Description: Demonstrating creation of library in shell

# Declare global variables
declare is_regular_file
declare is_directory_file

# Function to check file type
function file_type()
{
  is_regular_file=0
  is_directory_file=0
  if [ -f $1 ]
  then
    is_regular_file=1
  elif [ -d $1 ]
  then
    is_directory_file=1
  fi
}

# Printing regular file detail
function print_file_details()
{
   echo "Filename - $1"
   echo "Line count - `cat $1 | wc -l`"
   echo "Size - `du -h $1 | cut -f1`"
   echo "Owner - `ls -l $1 | tr -s ' '|cut -d ' ' -f3`"
   echo "Last modified date - `ls -l $1 | tr -s ' '|cut -d ' ' -f6,7`"
}

# Printing directory details
function print_directory_details()
{



Modularizing and Debugging

[ 114 ]

   echo "Directory Name - $1"
   echo "File Count in directory - `ls $1|wc -l`"
   echo "Owner - `ls -ld $1 | tr -s ' '|cut -d ' ' -f3`"
   echo "Last modified date - `ls -ld $1 | tr -s ' '|cut -d ' ' 
-f6,7`"
}

The preceding shell_library.sh shell script contains the is_regular_file and 
is_directory_file global variables that can be used to know whether a given file 
is a regular file or directory after invoking the file_type()function. Furthermore, 
depending upon the type of the file, useful detailed information can be printed.

Loading a shell script library
Creating shell libraries are of no use unless it is used in another shell script.  
We can either use a shell script library directly in shell or within another script file. 
To load a shell script library, we will use the source command or. (period character) 
followed by shell script library.

Calling a shell library in bash
To use the shell_library.sh script file in shell, we can do the following:

$ source  shell_library.sh

OR:

$ . shell_library.sh

Calling any of them will make functions and variables available for use in the  
current shell:

$ file_type /usr/bin
$ echo $is_directory_file
1
$ echo $is_regular_file
0
$ if [ $is_directory_file -eq 1 ]; then print_directory_details /usr/
bin; fi
Directory Name - /usr/bin
File Count in directory - 2336
Owner - root
Last modified date - Jul 12



Chapter 4

[ 115 ]

When the file_type /usr/bin command is executed, the file_type()function 
with the /usr/bin parameter will be called. As a result, the global variable is_
directory_file or is_regular_file will get set to 1 (true), depending upon 
the type of the /usr/bin path. Using the shell if condition, we test whether the 
is_directory_file variable is set to 1 or not. If set to 1, then call the print_
directory_details() function with /usr/bin as a parameter to print its details.

Calling shell library in another shell script
The following example explains the usage of the shell library in a shell script file:

#!/bin/bash
# Filename: shell_library_usage.sh
# Description: Demonstrating shell library usage in shell script

# Print details of all files/directories in a directory
echo "Enter path of directory"
read dir

# Loading shell_library.sh module
. $PWD/shell_library.sh

# Check if entered pathname is a directory
# If directory, then print files/directories details inside it
file_type $dir
if [ $is_directory_file -eq 1 ]
then
   pushd $dir > /dev/null       # Save current directory and cd to 
$dir
   for file in `ls`
   do
     file_type $file
     if [ $is_directory_file -eq 1 ]
     then
       print_directory_details $file
       echo
     elif [ $is_regular_file -eq 1 ]
     then
       print_file_details $file
       echo
     fi
   done
fi



Modularizing and Debugging

[ 116 ]

The output after running the shell_library_usage.sh script is as follows:

$ sh  shell_library_usage.sh # Few outputs from /usr directory
Enter path of directory
/usr
Directory Name - bin
File Count in directory - 2336
Owner - root
Last modified date - Jul 12

Directory Name - games
File Count in directory - 0
Owner - root
Last modified date - Aug 16

Directory Name - include
File Count in directory - 172
Owner - root
Last modified date - Jul 12

Directory Name - lib
File Count in directory - 603
Owner - root
Last modified date - Jul 12

Directory Name - lib64
File Count in directory - 3380
Owner - root
Last modified date - Jul 12

Directory Name - libexec
File Count in directory - 170
Owner - root
Last modified date - Jul 7

To load a shell script library, use source or . followed by  
script_filename.
Both source and .(period  character) execute a script in the current 
shell. ./script is not the same as . script because ./script 
executes the script in a subshell, while . script executes in a shell 
from where it was invoked.



Chapter 4

[ 117 ]

Passing command line parameters to 
script
So far, we have seen the usage of the commands such as grep, head, ls, cat, and 
many more. These commands also support passing arguments to a command via 
a command line. Some of command line arguments are input files, output files, 
and options. Arguments are provided as per output needs. For example, ls -l 
filename is executed to get a long listing output, while ls -R filename is used to 
display recursively the contents of a directory.

Shell script also supports providing command line arguments that we can process 
further by a shell script.

The command line arguments can be given as follows:

<script_file> arg1 arg2 arg3 … argN

Here, script_file is a shell script file to be executed, and arg1, arg2, arg3, argN, 
and so on, are command line parameters.

Reading arguments in scripts
Command line arguments are passed to a shell script as positional parameters.  
So, arg1 will be accessed in a script as $1, arg2 as $2, and so on.

The following shell demonstrates the usage of the command line arguments:

#!/bin/bash
# Filename: command_line_arg.sh
# Description: Accessing command line parameters in shell script

# Printing first, second and third command line parameters"
echo "First command line parameter = $1"
echo "Second command line parameter = $2"
echo "Third command line parameter = $3" 

The following output is obtained after running the command_line_arg.sh script 
with arguments:

$  sh command_line_arg.sh Linux Shell Scripting
First command line parameter = Linux
Second command line parameter = Shell
Third command line parameter = Scripting



Modularizing and Debugging

[ 118 ]

The following table shows special variables that are useful to get more information 
about command line parameters:

Special variables Description
$# Number of the command line arguments
$* Complete set of command line arguments in a single  

string—that is, '$1 $2 … $n'
$@ Complete set of command line arguments, but each argument 

is enclosed in separate quotes—that is, '$1' '$2' … '$n'
$0 Name of the shell script itself
$1, $1, … $N Refers to argument1, argument2, …, argumentN, respectively

Using $# in a script to check the number of command line arguments will be very 
helpful to process arguments further.

The following is another shell script example that takes command line arguments:

#!/bin/bash
# Filename: command_line_arg2.sh
# Description: Creating directories in /tmp

# Check if at least 1 argument is passed in command line
if [ $# -lt 1 ]
then
  echo "Specify minimum one argument to create directory"
  exit 1
else
  pushd /tmp > /dev/null
  echo "Directory to be created are: $@"
  mkdir $@      # Accessing all command line arguments
fi

The following output is obtained after executing the command_line_arg2.sh script:

$  sh command_line_arg2.sh a b

Directory to be created are: a b

$  sh command_line_arg2.sh

Specify minimum one argument to create directory



Chapter 4

[ 119 ]

Shifting command line arguments
To shift command line arguments towards the left, the shift built in can be used. 
The syntax is as follows:

shift N

Here, N is the number of arguments by which it can shift to the left.

For example, suppose the current command line arguments are arg1, arg2, arg3,  
arg4 and arg5. They can be accessed in a shell script as $1, $2, $3, $4, and $5, 
respectively; the $# value is 5. When we call shift 3, arguments get shifted by 3. 
Now, $1 contains arg4 and $2 contains arg5. Also, the $# value is now 2.

The following shell script demonstrates the usage of shift:

#!/bin/bash
# Filename: shift_argument.sh
# Description: Usage of shift shell builtin

echo "Length of command line arguments = $#"
echo "Arguments are:"
echo "\$1 = $1, \$2 = $2, \$3 = $3, \$4 = $4, \$5 = $5, \$6 = $6"
echo "Shifting arguments by 3"
shift 3
echo "Length of command line arguments after 3 shift = $#"
echo "Arguments after 3 shifts are"
echo "\$1 = $1, \$2 = $2, \$3 = $3, \$4 = $4, \$5 = $5, \$6 = $6"

The following output is obtained after running the shift_argument.sh script  
with the arguments a b c d e f:

$ sh shift_argument.sh a b c d e f

Length of command line arguments = 6

Arguments are:

$1 = a, $2 = b, $3 = c, $4 = d, $5 = e, $6 = f

Shifting arguments by 3

Length of command line arguments after 3 shift = 3

Arguments after 3 shifts are

$1 = d, $2 = e, $3 = f, $4 = , $5 = , $6 = 



Modularizing and Debugging

[ 120 ]

Processing command line options in a script
Providing command line options make shell scripts more interactive. From the 
command line arguments, we can also parse options for further processing by a  
shell script.

The following shell script shows the command line usage with options:

#!/bin/bash
# Filename: myprint.sh
# Description: Showing how to create command line options in shell 
script

function display_help()
{
  echo "Usage: myprint [OPTIONS] [arg ...]"
  echo "--help  Display help"
  echo "--version       Display version of script"
  echo  "--print        Print arguments"
}

function display_version()
{
  echo "Version of shell script application is 0.1"
}

function myprint()
{
  echo "Arguments are: $*"
}

# Parsing command line arguments

if [ "$1" != "" ]
then
   case $1 in
        --help ) 
             display_help
             exit 1
            ;;
        --version )
             display_version
             exit 1
             ;;



Chapter 4

[ 121 ]

        --print )
             shift
             myprint $@
             exit 1
            ;;
    *)
    display_help
    exit 1
   esac
fi

The following output is obtained after executing the myprint.sh script:

$ sh myprint.sh --help
Usage: myprint [OPTIONS] [arg ...]
--help      Display help
--version     Display version of script
--print         Print arguments
$ sh myprint.sh --version
Version of shell script application is 0.1
$ sh myprint.sh --print Linux Shell Scripting
Arguments are: Linux Shell Scripting

Debugging your scripts
We write different shell scripts to perform different tasks. Have you ever 
encountered any errors while executing a shell script? The answer would be mostly 
yes! This is to be expected as it is practically impossible to always write perfect shell 
scripts, without errors or bugs.

For example, the following shell script is a buggy script while execution:

#!/bin/bash
# Filename: buggy_script.sh
# Description: Demonstrating a buggy script

a=12 b=8
if [ a -gt $b ]
then
  echo "a is greater than b"
else
  echo "b is greater than a"
fi



Modularizing and Debugging

[ 122 ]

The following output is obtained after executing buggy_script.sh:

$ sh buggy_script.sh 

buggy_script.sh: line 6: [: a: integer expression expected

b is greater than a

From the output, we see that the error [: a: integer expression expected 
occurred at line 6. It's not always possible to know the reason of the error by just 
looking into an error message, especially when seeing an error for the first time. 
Also, looking manually into the code and rectifying an error is difficult when  
dealing with a lengthy shell script.

To overcome all kinds of troubles while resolving an error or bug in a shell script,  
it's preferred to debug code. Debugging ways to debug a shell script are as follows:

• Using echo in an expected buggy area of a script to print the contents of the 
variables or commands to be executed

• Debugging an entire script using -x while running a script
• Debugging a section of a script using set builtin command with the -x and +x 

options inside the script

Debugging using echo
The echo command is very useful as it prints whatever arguments are provided to 
it. When we encounter an error while executing a script, we know the line number 
with an error message. In such a case, we can use echo to print what is going to be 
executed before the actual execution.

In our previous example, buggy_script.sh, we got an error at line 6—that is if [ a 
-gt $b ]—while execution. We can use the echo statement to print what is actually 
going to be executed at line 6. The following shell script adds echo in line 6, to see 
what will be executed finally at line 6:

#!/bin/bash
# Filename: debugging_using_echo.sh
# Description: Debugging using echo

a=12 b=8
echo "if [ a -gt $b ]"
exit
if [ a -gt $b ]
then



Chapter 4

[ 123 ]

  echo "a is greater than b"
else
  echo "b is greater than a"
fi

We will now execute the debugging_using_echo.sh script as follows:

$ sh debugging_using_echo.sh

if [ a -gt 8 ]

We can see that the character a is getting compared with 8, while we were expecting 
the value of the variable a. This means that, by mistake, we forgot to use $ with a to 
extract the value of the variable a.

Debugging an entire script using -x
Using echo to debug is easy if the script is small, or if we know where exactly the 
problem is. Another disadvantage of using echo is that every time we make changes, 
we will have to open a shell script and modify the echo command accordingly. After 
debugging, we will have to remember to delete the extra echo lines added for the 
purposes of debugging.

To overcome these problems, bash provides the -x option that can be used while 
executing a shell script. Running a script with the -x option runs a script in the 
debug mode. This prints all the commands that are going to be executed along  
with the output of the script.

Consider the following shell script as an example:

#!/bin/bash
# Filename : debug_entire_script.sh
# Description: Debugging entire shell script using -x

# Creating diretcories in /tmp
dir1=/tmp/$1
dir2=/tmp/$2
mkdir $dir1 $dir2
ls -ld $dir1
ls -ld $dir2
rmdir $dir1
rmdir $dir2



Modularizing and Debugging

[ 124 ]

Now, we will run the preceding script as follows:

$ sh debug_entire_script.sh pkg1

mkdir: cannot create directory '/tmp/': File exists

drwxrwxr-x. 2 skumari skumari 40 Jul 14 01:47 /tmp/pkg1

drwxrwxrwt. 23 root root 640 Jul 14 01:47 /tmp/

rmdir: failed to remove '/tmp/': Permission denied

It gives an error that the /tmp/ directory already exists. By looking into the error,  
we can't say why it is trying to create the /tmp directory. To trace the entire code,  
we can run the debug_entire_script.sh script with the -x option:

$ sh -x debug_entire_script.sh pkg1

+ dir1=/tmp/pkg1

+ dir2=/tmp/

+ mkdir /tmp/pkg1 /tmp/

mkdir: cannot create directory '/tmp/': File exists

+ ls -ld /tmp/pkg1

drwxrwxr-x. 2 skumari skumari 40 Jul 14 01:47 /tmp/pkg1

+ ls -ld /tmp/

drwxrwxrwt. 23 root root 640 Jul 14 01:47 /tmp/

+ rmdir /tmp/pkg1

+ rmdir /tmp/

rmdir: failed to remove '/tmp/': Permission denied

We can see that dir2 is /tmp/. This means that no input is given to create the  
second directory.

Using the -v option along with -x makes debugging even more verbose  
because -v displays input lines as it is:

$ sh -xv debug_entire_script.sh pkg1
#!/bin/bash
# Filename : debug_entire_script.sh
# Description: Debugging entire shell script using -x

# Creating diretcories in /tmp
dir1=/tmp/$1
+ dir1=/tmp/pkg1
dir2=/tmp/$2



Chapter 4

[ 125 ]

+ dir2=/tmp/
mkdir $dir1 $dir2
+ mkdir /tmp/pkg1 /tmp/
mkdir: cannot create directory '/tmp/': File exists
ls -ld $dir1
+ ls -ld /tmp/pkg1
drwxrwxr-x. 2 skumari skumari 40 Jul 14 01:47 /tmp/pkg1
ls -ld $dir2
+ ls -ld /tmp/
drwxrwxrwt. 23 root root 640 Jul 14 01:47 /tmp/
rmdir $dir1
+ rmdir /tmp/pkg1
rmdir $dir2
+ rmdir /tmp/
rmdir: failed to remove '/tmp/': Permission denied

With verbose output, it is quite clear that the dir1 and dir2 variables are  
expecting a command line argument. So, two arguments must be provided  
from a command line:

$  sh  debug_entire_script.sh pkg1 pkg2

drwxrwxr-x. 2 skumari skumari 40 Jul 14 01:50 /tmp/pkg1

drwxrwxr-x. 2 skumari skumari 40 Jul 14 01:50 /tmp/pkg2

Now, the script works without any errors.

Instead of passing the -xv options to bash from a command line, 
we can add it in the shebang line in the script file—that is, #!/
bin/bash -xv.

Debugging sections of a script using the set 
options
To debug a shell script, it's not necessary to debug the entire script all the time. 
Sometimes, debugging a partial script is more useful and time-saving. We can 
achieve partial debugging in a shell script using the set builtin command:

set -x  (Start debugging from here)
set +x  (End debugging here)

We can use set +x and set -x inside a shell script at multiple places depending 
upon the need. When a script is executed, commands in between them are printed 
along with the output.



Modularizing and Debugging

[ 126 ]

Consider the following shell script as an example:

#!/bin/bash
# Filename: eval.sh
# Description: Evaluating arithmetic expression

a=23
b=6
expr $a + $b
expr $a - $b
expr $a * $b

Executing this script gives the following output:

$ sh eval.sh
29
17
expr: syntax error

We get the syntax error with an expression that is most likely the third  
expression—that is, expr $a * $b.

To debug, we will use set -x before and set +x after expr $a * $b.

Another script partial_debugging.sh with partial debugging is as follows:

#!/bin/bash
# Filename: partial_debugging.sh
# Description: Debugging part of script of eval.sh

a=23
b=6
expr $a + $b

expr $a - $b

set -x
expr $a * $b
set +x



Chapter 4

[ 127 ]

The following output is obtained after executing the partial_debugging.sh script:

$  sh partial_debugging.sh
29
17
+ expr 23 eval.sh partial_debugging.sh 6
expr: syntax error
+ set +x

From the preceding output, we can see that expr $a * $b is executed as  
expr 23 eval.sh partial_debugging.sh 6. This means, instead of doing 
multiplication, bash is expanding the behavior of * as anything available in the 
current directory. So, we need to escape the behavior of the character * from  
getting expanded—that is, expr $a \* $b.

The following script eval_modified.sh is a modified form of the eval.sh script:

#!/bin/bash
# Filename: eval_modified.sh
# Description: Evaluating arithmetic expression

a=23
b=6
expr $a + $b
expr $a - $b
expr $a \* $b

Now, the output of running eval_modified.sh will be as follows:

$  sh eval_modified.sh 
29
17
138

The script runs perfectly now without any errors.

Other than what we have learned in debugging, you can also use the bashdb 
debugger for even better debugging of the shell script. The source code and 
documentation for bashdb can be found at http://bashdb.sourceforge.net/.

www.allitebooks.com

http://bashdb.sourceforge.net/
http://www.allitebooks.org


Modularizing and Debugging

[ 128 ]

Command completion
While working on a command line, everyone has to do a common task such as 
typing, which includes commands, its options, input/output file path, and other 
arguments. Sometimes, we write a wrong command name because of a spelling 
error in the command name. Also, typing a long file path will be very difficult 
to remember. For example, if we want to look recursively into the contents of a 
directory present at the path /dir1/dir2/dir3/dir4/dir5/dir6, we will have  
to run the following command:

$ ls -R /dir1/dir2/dir3/dir4/dir5/dir6

We can see that the path of this directory is very long and there is a high chance 
of making an error while typing the full path. Due to these issues, working on a 
command line will take a longer time than expected.

To solve all these problems, shell supports a very nice feature called command 
completion. Along with the other shell, bash also has a very good support of 
command completion.

Most of the Linux distributions, for example, Fedora, Ubuntu, Debian, and CentOS 
have a pre-installed bash completion for core commands. If not available, it can 
be downloaded using the corresponding distribution package manager with the 
package name bash-completion.

Command completion in shell allows you to autocomplete the rest of the characters 
of the partially typed command, suggesting possible options associated with the 
given command. It also suggests and autocompletes the partially typed file path.

To enable autocompletion feature in bash, the Tab key is used. While typing  
a command, a single TAB autocompletes the command if the single command 
matches, and double [TAB] lists all the possible commands starting with a  
partially typed command.

For example:

$ gr[TAB]      # Nothing happens

$ gre[TAB]      # Autocompletes to grep

$ grep[TAB][TAB]  # Lists commands installed in system and starts with 
grep

grep            grep-changelog  grepdiff 



Chapter 4

[ 129 ]

Now, suppose we want to see the contents of the /usr/share/man/ directory,  
we will have to type ls /usr/share/man/. Using bash completion, type the 
following command:

$ ls /u[TAB]/sh[TAB]/man

Bash completion will auto-complete the missing partial path and the command  
will become:

$ ls /usr/share/man

Managing bash completion with complete
The complete is a shell builtin that can be used to see the available bash completion 
specification for the available commands in a system. It is also used to modify, 
delete, and create bash completion.

Viewing the existing bash completion
To know the existing bash completion, use the complete command with or without 
the–p option:

$ complete -p

The following are some of the outputs of the preceding command:

complete cat  # No completion output

complete -F _longopt grep  # Completion as files from current directory

complete -d pushd  # Completion as directories from current directory

complete -c which  # Completion as list of all available commands

To see bash completion on these commands, type the following command:

This lists all files/directories, including hidden files/directories:

$ grep [TAB][TAB]

This lists all files/directories, including hidden files/directories:

$ cat [TAB][TAB]



Modularizing and Debugging

[ 130 ]

This tries to list all the available commands in a system. Pressing y will display 
commands and n will display nothing.

$ complete -c which [TAB][TAB]

     Display all 3205 possibilities? (y or n)

Modifying default bash completion behavior
We can also modify the existing bash completion behavior of a given command 
using the complete shell builtin command.

The following command is used to change the behavior of the which command to 
not display any options:

$ complete which

$ which [TAB][TAB]  # No auto completion option will be shown

The following command is used to change the ls command tab behavior to show 
only the directories list as bash completion:

$ ls ~/[TAB][TAB]    # Displays directories and file as  auto-completion

file1.sh file2.txt dir1/ dir2/ dir3/

$ complete -d ls

$ ls ~/[TAB][TAB]    # Displays only directory name as  auto-completion

dir1/ dir2/ dir3/

Removing bash completion specification
We can remove bash completion specification for a command using the shell builtin 
complete with the –r option.

The syntax is as follows:

complete -r command_name

Consider the following as an example:

$ complete | grep which  # Viewing bash completion specification for 
which

complete -c which

$ complete -r which     # Removed bash completion specification for which

$ complete | grep which  # No output



Chapter 4

[ 131 ]

If no command_name is given as an argument to complete -r, all the completion 
specifications are removed:

$ complete -r

$ complete

Writing bash completion for your own 
application
The bash-completion package doesn't provide autocompletion feature for any 
external tools. Suppose that we want to create a tool that has multiple options and 
arguments. To add a bash-completion feature to its options, we will have to create 
our own bash completion file and source into it.

For example, package managers such as dnf and apt-get have its own bash 
completion file to support autocompletion for its options:

$ dnf up[TAB][TAB]

update      updateinfo  update-to   upgrade     upgrade-to 

$ apt-get up[TAB][TAB]

update upgrade

Consider the following shell script as an example:

#!/bin/bash
# Filename: bash_completion_example.sh
# Description: Example demonstrating bash completion feature for 
command options

function help()
{
  echo "Usage: print [OPTIONS] [arg ...]"
  echo "-h|--help    Display help"
  echo "-v|--version Display version of script"
  echo "-p|--print     Print arguments"
}

function version()
{
  echo "Version of shell script application is 0.1"
}



Modularizing and Debugging

[ 132 ]

function print()
{
  echo "Arguments are: $*"
}

# Parsing command line arguments

while [ "$1" != "" ]
do
   case $1 in
        -h | --help ) 
             help
             exit 1
            ;;
        -v | --version )
             version
             exit 1
             ;;
        -p | --print )
             shift
             print $@
             exit 1
            ;;
    *)
    help
    exit 1
   esac
done

To know about the supported options in bash_completion_example.sh, we will 
run the --help option:

$ chmod +x bash_completion_example.sh # Adding execute permission to 
script

$ ./bash_completion_example.sh --help

Usage: print [OPTIONS] [arg ...]

-h|--help    Display help

-v|--version Display version of script

-p|--print     Print arguments

So, the supported options are -h, --help, -v, --version, -p, and --print.



Chapter 4

[ 133 ]

To write bash completion, information of the following bash internal variables are 
required:

Bash variables Description
COMP_WORDS An array of words that is typed on the command line
COMP_CWORD An index of the word containing the current cursor position.
COMPREPLY An array that holds the completion results that get displayed 

after pressing [TAB][TAB]

The compgen is a shell builtin command that displays the possible completions 
depending on the options. It is used in shell functions to generate possible 
completions.

An example of bash completion
A bash-completion file for our shell script bash_completion_example will be  
as follows:

# Filename: bash_completion_example
# Description: Bash completion for bash_completion_example.sh

_bash_completion_example()
{
    # Declaring local variables
    local cur prev opts
    # An array variable storing the possible completions
    COMPREPLY=()
    # Save current word typed on command line in  cur variable
    cur="${COMP_WORDS[COMP_CWORD]}"
    # Saving previous word typed on command line in prev variable
    prev="${COMP_WORDS[COMP_CWORD-1]}"
    # Save all options provided by application in variable opts
    opts="-h -v -p --help --verbose --print"

    # Checking "${cur} == -*" means that perform completion only if 
current
    # word starts with a dash (-), which suggest that user is trying 
to complete an option.
    # Variable COMPREPLY contains the match of the current word 
"${cur}" against the list



Modularizing and Debugging

[ 134 ]

    if [[ ${cur} == -* ]] ; then
        COMPREPLY=( $(compgen -W "${opts}" -- ${cur}) )
        return 0
    fi
}

# Register _bash_completion_example to provide completion
# on running script bash_completion_example.sh
complete -F _bash_completion_example ./bash_completion_example.sh

As per convention, a bash-completion function name should start with an underscore 
(_) followed by the name of the application—that is, _bash_completion_example. 
Furthermore, we reset the bash variable COMPREPLY to clean up any previous left out 
data. Then, we declare and set the cur variable to the current word of the command 
line and the prev variable to the previous word in the command line. Another 
variable opts is declared and initialized with all the options that are recognized by 
an application; in our case, they are -h -v -p --help --verbose –print. The 
condition if [[ ${cur} == -* ]] checks whether the current word is equal to 
-* because our option starts with - followed by any other character. If true, then 
display all the matching options using the compgen shell builtin with the -W option.

Running the created bash completion
In order to run the created bash completion, the easiest way is to source into source 
bash_completion_example shell script and then run the script or command:

$ source ./bash_completion_example

Now,  execute shell script:

$ ./bash_completion_example.sh -[TAB][TAB]

-h         --help     -p         --print    -v         --verbose

$ ./bash_completion_example.sh --[TAB][TAB]

--help     --print    --verbose

$  ./bash_completion_example.sh –-p[TAB]

Here, --p[TAB] gets auto-completed to -–print.



Chapter 4

[ 135 ]

Summary
After reading this chapter, you should now able to write a shell script that can be 
easy to maintain and modify by others. Now, you know how to use an existing 
shell script library in your own script by using the source command. You also got 
familiarity with fixing errors and bugs in a shell script by making use of the different 
debugging techniques. You should also know how to write a script by taking 
command line arguments and providing bash completion features for it.

In the next chapter, we will see how to view, change, create, and delete environment 
variables in order to meet the requirement of running our applications.





[ 137 ]

Customizing the Environment
In a default system, we get certain settings that are preconfigured. As time 
progresses, we often feel the need to modify some of the default settings provided. 
Similar needs arise when we are working in a shell to get things done, for example, 
modifying the environment according to the needs of the application. Some of the 
features are so irresistible that we may need them every time, for example, the editor 
of our choice used by an application. While working on an important task, it may 
happen that we forget a command that we used a few days ago. In such cases, we try 
to recall that command as soon as possible to get work done. If we can't remember, 
we consume time and effort searching on the Internet or in text books for the exact 
command and syntax.

In this chapter, we will see how, by adding or changing the existing environment 
variables, we can modify the environment as per our application needs. We will also 
see how a user can modify the .bashrc, .bash_profile, and .bash_logout files to 
make the setting changes available permanently. We will see how we can search and 
modify the history of previously executed commands. We will also see how to run 
multiple tasks from a single shell and manage them together.

This chapter will cover the following topics in detail:

• Knowing the default environment
• Modifying the shell environment
• Using bash startup files
• Knowing your history
• Managing tasks



Customizing the Environment

[ 138 ]

Knowing the default environment
Setting up a proper environment is very important for running a process. An 
environment consists of environment variables that may or may not have a default 
value set. The required environment is set by modifying the existing environment 
variables or creating new environment variables. Environment variables are 
exported variables that are available to the current process and also its child 
processes. In Chapter 1, The Beginning of the Scripting Journey, we learned about some 
of the builtin shell variables that can be used in our application as environment 
variables to set the environment.

Viewing a shell environment
To view the current environment in the shell, we can use the printenv or env 
commands. Environment variables may have no value, a single value, or a multiple 
value set. If multiple values exist, each value is separated by a colon (:).

printenv
We can use printenv to print the value associated with a given environment 
variable. The syntax is as follows:

$ printenv [VARIABLE]

Consider the following as examples:

$ printenv SHELL    # Prints which shell is being used

/bin/bash

$ printenv PWD    # Present working directory

/home/foo/Documents

$ printenv HOME    # Prints user's home directory

/home/foo

$ printenv PATH    # Path where command to be executed is searched

/usr/lib64/qt-3.3/bin:/usr/lib64/ccache:/bin:/usr/bin:/usr/local/bin:/
usr/local/sbin:/usr/sbin:/home/foo

$ printenv USER HOSTNAME  # Prints value of both environment variables

foo

localhost



Chapter 5

[ 139 ]

If no VARIABLE is specified, printenv prints all environment variables as follows:

$ printenv  # Prints all environment variables available to current shell

env
We can also use the env command to view environment variables as follows:

$ env

This displays all environment variables defined for a given shell.

To view value(s) of a specific environment variable, the echo 
command can also be used followed by an environment variable name 
prefixed with a dollar symbol ($). For example, echo $SHELL.

Differences between shell and environment 
variables
Both shell and environment variables are variables that are accessible and set for 
a given shell that may be used by an application or a command running in that 
shell. However, there are a few differences between them, which are set out in the 
following table:

Shell variables Environment variables
Both local and exported variables are shell 
variables

Exported shell variables are environment 
variables

The set builtin command is used to see 
the name and corresponding value of a shell 
variable

The env or printenv command is used 
to see the name and corresponding value 
of an environment variable

Local shell variables are not available for 
use by their child shells

Child shells inherit all environment 
variables present in the parent shell

A shell variable is created by specifying 
a variable name on the left and value(s) 
separated by a colon (:) on the right-hand 
side of an equal operator (=)

An environment variable can be created 
by prefixing an export shell built - in 
command to the existing shell variable,  
or while creating a new shell variable



Customizing the Environment

[ 140 ]

Modifying a shell environment
When a new shell is launched, it has the initial environment set that will be used by 
any application or command that gets executed in a given shell. We now know that 
the env or setenv shell builtin command can be used to view which environment 
variables are set for this shell. The shell also provides the capability to modify the 
current environment. We can also modify the current bash environment by creating, 
modifying, or deleting environment variables.

Creating environment variables
To create a new environment variable in a shell, the export shell builtin command  
is used.

For example, we will create a new environment variable ENV_VAR1:

$ env | grep ENV_VAR1  # Verifying that ENV_VAR1 doesn't exist

$ export ENV_VAR1='New environment variable'

A new environment variable with the name ENV_VAR1 is created. To view a new 
environment variable, we can call the printenv or env command:

$ env | grep ENV_VAR1

ENV_VAR1=New environment variable

$ printenv ENV_VAR1    # Viewing value of ENV_VAR1 environment variable

New environment variable

We can also use the echo command to print the value of an environment variable:

$ echo $ENV_VAR1  # Printing value of ENV_VAR1 environment variable

New environment variable

A local shell variable can also be exported further as an environment variable.  
As an example, we will create the ENV_VAR2 and LOCAL_VAR1 variables:

$ ENV_VAR2='Another environment variable'

$ LOCAL_VAR1='Local variable'

$ env | grep ENV_VAR2  # Verifying if ENV_VAR2 is an environment variable



Chapter 5

[ 141 ]

No environment variable is found with the name ENV_VAR2. This is because while 
creating ENV_VAR2, it wasn't exported. Therefore, it will be created as a local variable 
of a shell:

$ set | grep ENV_VAR2

ENV_VAR2='Another environment variable'

$ set | grep  LOCAL_VAR1

LOCAL_VAR1='Local variable'

Now, to make the ENV_VAR2 shell variable as an environment variable, we can use 
the export command:

$ export ENV_VAR2    # Becomes environment variable

$ printenv ENV_VAR2    # Checking of  ENV_VAR2 is an environment variable

Another environment variable

$ printenv LOCAL_VAR1

The variable LOCAL_VAR1 is not an environment variable.

One of the important features of environment variables is that it is available to all of 
its child shells. We can see this in the following example:

$ bash  # creating a new bash shell

$ env | grep ENV_VAR2  # Checking if  ENV_VAR2 is available in child 
shell

ENV_VAR2=Another environment variable

$ env | grep ENV_VAR1

ENV_VAR1=New environment variable

$ env | grep LOCAL_VAR1

We can see that the environment variables from a parent shell got inherited by  
a child shell—for example, ENV_VAR1, ENV_VAR2—while the local variable, such as 
LOCAL_VAR1, remains available only to a shell in which the variable was created.



Customizing the Environment

[ 142 ]

Modifying environment variables
Shell provides flexibility for modifying any existing environment variable. For 
example, consider the HOME environment variable. By default, the HOME environment 
variable contains the path of the current logged in user's home directory:

$ printenv HOME

/home/foo

$ pwd    # Checking current working directory

/tmp

$ cd $HOME    # Should change directory to /home/foo

$ pwd    # Check now current working directory

/home/foo

Now, we will modify the HOME environment variable value to /tmp:

$ HOME=/tmp    # Modifying HOME environment variable

$ printenv HOME    # Checking value of HOME environment variable

/tmp

$ cd $HOME    # Changing directory to what $HOME contains

$ pwd    # Checking current working directory

/tmp

We can also append a value to an environment variable. To do this, make sure  
the new value is separated with a colon (:). For example, consider the PATH 
environment variable:

$ printenv PATH

usr/lib64/ccache:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/sbin:/
home/foo/.local/bin:/home/foo/bin

Now, we want to add a new path to the PATH variable—for example, /home/foo/
projects/bin—so that, while looking for a program or command, the shell can 
search the specified path too. To append a path to the PATH environment variable, 
use a colon (:) followed with a new path name:

$ PATH=$PATH:/home/foo/projects/bin  # Appends new path

$ printenv PATH

usr/lib64/ccache:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/sbin:/
home/foo/.local/bin:/home/foo/bin:/home/foo/projects/bin



Chapter 5

[ 143 ]

We can see that the new path has been appended to the existing values of the  
PATH variable.

We can also append multiple values to an environment variable; for that,  
each value should be separated by a colon (:).

For example, we will add two more application paths to the PATH variable:

$ PATH=$PATH:/home/foo/project1/bin:PATH:/home/foo/project2/bin

$ printenv PATH

usr/lib64/ccache:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin:/usr/sbin:/
home/foo/.local/bin:/home/foo/bin:/home/foo/projects/bin:/home/foo/
project1/bin:PATH:/home/foo/project2/bin

The two new paths, /home/foo/project1/bin and /home/foo/project2/bin,  
have been added to the PATH variable.

Deleting environment variables
We can delete or reset a value of an environment variable using the unset shell  
builtin command.

For example, we will create an environment variable called ENV1:

$ export ENV1='My environment variable'

$ env | grep ENV1  # Checking if ENV1 environment variable exist

ENV1=My environment variable

$ unset ENV1    # Deleting ENV1 environment variable

$ env | grep ENV1

The environment variable ENV1 gets deleted by the unset command. Now, to reset 
an environment variable, assign it a blank value:

$ export ENV2='Another environment variable'

$ env | grep ENV2

ENV2=Another environment variable

$ ENV2='' # Reset ENV2 to blank

$ env | grep ENV2

ENV2=



Customizing the Environment

[ 144 ]

Using bash startup files
Until now, to perform a task or set anything for a given shell, we had to execute the 
needed commands in a shell. One of the main limitations to this approach is that 
the same configuration won't be available in a new shell. In a lot of cases, a user 
may want that whenever he or she launches a new shell, whereas instead a new 
customized configuration on top of the default configuration is available for use. 
For customizing bash, three files are available in a user's home directory that get 
executed by default whenever a user launches a new bash. These files are bashrc, 
.bash_profile, and .bash_logout.

.bashrc
In a graphical system, mostly a non-login shell is used by a user. To run a non-login 
shell, we don't need the login credentials. Starting a shell in a graphical system 
provides a non-login shell. When a bash is invoked in non-login mode, the ~/.bashrc 
file is invoked and the configuration available in it is executed and applied in any bash 
shell being launched. Settings that are needed in both the login and non-login shell are 
kept in the ~/.bashrc file.

For example, on a Fedora 22 system default, the ~/.bashrc file looks as follows:

# .bashrc

# Source global definitions
if [ -f /etc/bashrc ]; then
        . /etc/bashrc
fi

# Uncomment the following line if you don't like systemctl's auto-
paging feature:
# export SYSTEMD_PAGER=

# User specific aliases and functions

Any addition done in ~/.bashrc will be reflected only to the current user's bash 
shell. We can see that the .bashrc file also checks whether the etc/bashrc file 
is available. If available, that gets executed too. The /etc/bashrc file contains 
configuration applied to a bash shell for all users—that is, systemwide. Sysadmin 
can modify the /etc/bashrc file if any configuration needs to be applied to all users' 
bash shells. 



Chapter 5

[ 145 ]

The file /etc/bashrc also looks into the script files available in /etc/profile.d, 
which can be confirmed by the following code snippet taken from the /etc/bashrc 
file:

 for i in /etc/profile.d/*.sh; do
        if [ -r "$i" ]; then
            if [ "$PS1" ]; then
                . "$i"

The following example shows a modified .bashrc file. Name this file  
custom_bashrc:

# custom_bashrc

# Source global definitions
if [ -f /etc/bashrc ]; then
        . /etc/bashrc
fi

# Uncomment the following line if you don't like systemctl's auto-
paging feature:
# export SYSTEMD_PAGER=

# User added settings
# Adding aliases
alias rm='rm -i'  # Prompt before every removal
alias cp='cp -i'  # Prompts before overwrite
alias df='df -h'  # Prints size in human readable format
alias ll='ls -l'  # Long listing of file

# Exporting environment variables
# Setting and exporting LD_LIBRARY_PATH variable
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/libs
# Setting number of commands saved in history file to 10000
export HISTFILESIZE=10000

# Defining functions
# Function to calculate size of current directory
function current_directory_size()
{
echo -n "Current directory is $PWD with total used space "
du -chs $PWD 2> /dev/null | grep total | cut -f1
}



Customizing the Environment

[ 146 ]

The LD_LIBRARY_PATH environment variable is used to give the runtime  
shared library loader (ld.so) an extra set of directories to look for when searching 
for shared libraries. You can learn more about the shared library at http://tldp.
org/HOWTO/Program-Library-HOWTO/shared-libraries.html.

Make a backup of your original ~/.bashrc file before modifying it:

$ cp ~/.bashrc ~/.bashrc.bak

Now, copy the custom_bashrc file to ~/.bashrc:

$ cp custom_bashrc ~/.bashrc

To apply modified settings, open a new bash shell. To apply a new .bashrc in the 
same bash shell, you can source into a new ~/.bashrc file:

$ source ~/.bashrc

We can check whether the new settings are available or not:

$ ll /home  # Using alias ll which we created

total 24
drwx------.  2 root    root    16384 Jun 11 00:46 lost+found
drwx--x---+ 41 foo  foo      4096  Aug  3 12:57 foo

$ alias  # To view aliases

alias cp='cp -i'
alias df='df -h'
alias ll='ls -l'
alias ls='ls --color=auto'
alias rm='rm -i'
alias vi='vim'

The alias command displays aliases that we added in .bashrc—that is,  
rm, cp, df, and ll.

Now, call the current_directory_size()function that we added in .bashrc:

$ cd ~ # cd to user's home directory

$ current_directory_size

Current directory is /home/foo with total used space 97G

$ cd /tmp

$  current_directory_size

Current directory is /tmp with total used space 48K

http://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
http://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html


Chapter 5

[ 147 ]

Make sure to move back the original .bashrc file whose backup we created at 
the beginning of this example, and source into it to get the settings reflected in the 
current shell session. This is required if you don't want any of the configuration 
changes that we did while playing out the preceding example:

$ mv ~/.bashrc.bak ~/.bashrc

$ source ~/.bashrc

When bash is invoked as a non-login shell, it loads the configuration 
available in the ~/.bashrc, /etc/bashrc, and /etc/
profile.d/*.sh files.

.bash_profile
In a non-graphical system, after a successful login, the user gets a shell. Such a shell 
is called a login shell. When a bash is invoked as a login shell, first the /etc/profile 
file gets executed; this runs the script available in /etc/profile.d/ as well. The 
following code snippet taken from /etc/profile also mentions this:

for i in /etc/profile.d/*.sh ; do
    if [ -r "$i" ]; then
        if [ "${-#*i}" != "$-" ]; then 
            . "$i"
        else

These are global settings applied to any user's login shell. Furthermore, ~/.bash_
profile gets executed for a login shell. On a Fedora 22 system, the default content  
of the ~/.bash_profile file looks as follows:

# .bash_profile

# Get the aliases and functions
if [ -f ~/.bashrc ]; then
        . ~/.bashrc
fi

# User specific environment and startup programs

PATH=$PATH:$HOME/.local/bin:$HOME/bin

export PATH



Customizing the Environment

[ 148 ]

From the contents, we can see that it looks for the .bashrc file in a user's home 
directory. If the .bashrc file is available in a home directory, it gets executed. We 
also know that the ~/.bashrc file executes the /etc/bashrc file as well. Next, we 
see that .bash_profile appends the PATH variable with the $HOME/.local/bin 
and $HOME/bin values. Furthermore, the modified PATH variable is exported as an 
environment variable.

A user can modify the ~/.bash_profile file as per his/her customized 
configuration needs, such as default shell, editor for login shell, and so on.

The following example contains a modified configuration in .bash_profile.  
We will use bash_profile as its filename:

# .bash_profile

# Get the aliases and functions
if [ -f ~/.bashrc ]; then
        . ~/.bashrc
fi

# User specific environment and startup programs

PATH=$PATH:$HOME/.local/bin:$HOME/bin

export PATH

# Added configuration by us
# Setting user's default editor
EDITOR=/usr/bin/vim
# Show a welcome message to user with some useful information
echo "Welcome 'whoami'"
echo "You are using $SHELL as your shell"
echo "You are running 'uname ' release 'uname -r'"
echo "The machine architecture is 'uname -m'"
echo "$EDITOR will be used as default editor"
echo "Have a great time here!"

Changes are made after the Added configuration by us comment. Before we apply 
this new configuration to ~/.bash_profile, we will first make a backup of the 
original file. This will help us in restoring the original content of the .bash_profile 
file:

$ cp ~/.bash_profile ~/.bash_profile.bak



Chapter 5

[ 149 ]

A new file .bash_profile.bak will be created in the home directory. Now, we will 
copy our new configuration to ~/.bash_profile:

$ cp bash_profile ~/.bash_profile

To see the reflected changes in a login shell, we can either login as a non-graphical 
interface or just perform ssh into the same machine to run a login shell. SSH (Secure 
Shell) is a cryptographic network protocol for initiating text-based shell sessions 
on remote machines in a secure way. In UNIX and Linux-based systems, SSH to a 
local or remote machine can be done using the ssh command. The man page of ssh 
(man ssh) shows all the capabilities provided by it. To do a remote login on the same 
machine, we can run ssh username@localhost:

$ ssh foo@localhost    #  foo is the username of user

Last login: Sun Aug  2 20:47:46 2015 from 127.0.0.1
Welcome foo
You are using /bin/bash as your shell
You are running Linux release 4.1.3-200.fc22.x86_64
The machine architecture is x86_64
/usr/bin/vim will be used as default editor
Have a great time here!

We can see that all the details added by us are printed in a login shell. Another way 
to quickly test our new .bash_profile is by doing source to it:

$ source ~/.bash_profile

Welcome foo
You are using /bin/bash as your shell
You are running Linux release 4.1.3-200.fc22.x86_64
The machine architecture is x86_64
/usr/bin/vim will be used as default editor
Have a great time here!

To reset changes done in the ~/.bash_profile file, copy from the ~/.bash_
profile.bak file that we created at the beginning of this example and source  
into it to get the changes reflected in the current shell:

$ mv ~/.bash_profile.bak ~/.bash_profile

$ source ~/.bash_profile



Customizing the Environment

[ 150 ]

When bash is invoked as a login shell, it loads the configuration 
available in the /etc/profile, /etc/profile.d/*.sh, 
~/.bash_profile, .~/.bashrc, and ~/etc/bashrc files.

.bash_logout
The .bash_logout file present in a user's home directory gets executed every  
time a login shell exits. This is useful when a user has logged in remotely or has  
a non-graphical interface. A user can add clean-up tasks to be performed before  
he/she logs off from a system. A clean-up task may include removing the temporary 
files created, clearing environment variables, logging off important data, archiving or 
encrypting certain tasks, uploading onto the Web, and so on.

Knowing your history
Shells provide an interesting feature that allows you to find out the history of all 
commands you have executed previously in a shell. It often happens that we forget 
what command was typed on the previous day to perform a task. We may or may 
not be able to recall the exact syntax, but it is very convenient that we can refer to  
the history saved by the shell.

Shell variables controlling the history
There are shell variables that can be altered to change what and how much history  
a user can see. These shell variables are mentioned in the following table:

Name Value
HISTFILE Name of file in which by default history will be saved
HISTFILESIZE Number of commands to be kept in history file
HISTSIZE Number of history to be stored in memory for current session
HISTCONTROL A colon-separated list of values controlling how commands 

are saved on the history list



Chapter 5

[ 151 ]

The value of the HISTCONTROL shell variable can be:

Value Description
ignorespace Lines which starts with a blank space, doesn't save in history list
ignoredups Don't save lines which matches in previous saved history list
ignoreboth Applies both ignorespace and ignoredups
erasedups Remove all previous lines from history matching current line 

before saving it in history file

Let's see what values these shell variables may contain:

$  echo $HISTFILE

/home/foo/.bash_history

$ echo $HISTFILESIZE

1000

$ echo $HISTSIZE

1000

$ echo $HISTCONTROL

ignoredups

From the value obtained, we can see that the default history is saved into the  
.bash_history file of a user's home directory, with the maximum history command 
lines saved as 1000. Also, any duplicate history that is already present in the previous 
history line isn't saved.

The history builtin command
Shells provide the history builtin command so that a user will know the history of 
commands executed up to now.



Customizing the Environment

[ 152 ]

Running the history without any options, prints all the previously typed commands 
on stdout. The sequence of commands are provided oldest to latest as we go from 
top to bottom of the output:

$ history  # Prints all commands typed previously on stdout

$ history | tail -n10    # Prints last 10 commands executed

The following table explains the options available with the history shell  
built - in command:

Option Description
-a Append the new history lines into history immediately
-c Clears history from current list
 -d offset Deletes history from offset specified
-r Append the content of saved history to current list
-w Write the current history list to the history file after overwriting 

existing saved history contents

To see the last five commands executed, we can also perform the  
following commands:

$ history 5

  769  cd /tmp/

  770  vi hello

  771  cd ~

  772  vi .bashrc 

  773  history 5



Chapter 5

[ 153 ]

We will find that all the commands executed match a given string from the history 
file. For example, search for commands having the set string in them:

$ history | grep set 

  555  man setenv

  600  set | grep ENV_VAR2

  601  unset ENV_VAR2

  602  set | grep ENV_VAR2

  603  unset -u  ENV_VAR2  

  604  set -u  ENV_VAR2

  605  set | grep ENV_VAR2

  737  set |grep HIST

  778  history | grep set

To clear all the history of commands saved and to append the history available  
in the current list, we can do the following (don't run the following commands  
if you don't want to loose the saved command history):

$ history -c  # Clears history from current list

$ history -w  # Overwrite history file and writes current list which is 
empty

Modifying the default history behavior
By default, shell has some values set for managing the history. In the previous section, 
we saw that a maximum of 1000 lines of history will be stored in the history file. If a 
user spends most of his time working with a shell, he may have used 1000 or above 
commands in one or two days. In such a case, he will not be able to look at the history 
if he has typed a command ten days ago. Depending upon the individual use-case,  
a user can modify the number of lines to be stored in the history file.

Executing the following command will set the maximum number of lines the history 
file may have to 100000:

$ HISTFILESIZE=100000

Similarly, we can change where the history file should be saved. We saw that, by 
default, it is saved in the .bash_history file in the home directory. We can modify 
the HISTFILE shell variable and set it to whatever location we want our command 
history to be saved to:

$  HISTFILE=~/customized_history_path



Customizing the Environment

[ 154 ]

Now the executed command history will be saved in the customized_history_path 
file in the home directory instead of the ~/.bash_history file.

To make these changes reflect to all the shells being launched by a user and for all 
sessions, add these modifications to the ~/.bashrc file.

Handy shortcuts for seeing the history
Depending upon a user's history size setting, the number of commands available in 
the history may be large. If a user wants to look for a specific command, he or she 
will have to look through the entire history, which can sometimes be troublesome. 
Shells provide some shortcuts to help us find a specific command previously 
executed. Knowledge of these shortcuts can save time in finding previously executed 
commands in the history.

[Ctrl + r]
While working in a shell, the [Ctrl + r] shortcut allows you to search for a command 
in the history. Start typing a command after pressing [Ctrl + r]; the shell shows a 
complete command that matches the substring of the command typed. To move 
forward to the next match, type [Ctrl + r] on the keyboard again and so on:

$ [ctrl + r]

(reverse-i-search)'his': man history

We can see that typing his, suggested from history man history that we  
previously typed.

Up and down arrow key
The up and down arrow keys available on the keyboard can be used to go back and 
forward in the history of commands previously executed by the user. For example, 
to get the previous command, press the up arrow key once. To go back even further, 
press the up arrow key again and so on. Further, to go forward in the history use the 
down arrow key.



Chapter 5

[ 155 ]

!!
The shortcut !! can be used to reexecute the last command executed in the shell:

$ ls /home/

lost+found  foo

$ !!

ls /home/

lost+found  foo

!(search_string)
This shortcut executes the last command starting with search_string:

$ !l

ls /home/

lost+found  skumari

$ !his

history 12

!?(search_string)
This shortcut executes the last command found with the substring search_string:

$ !?h

ls /home/

lost+found  skumari

Task management
When an application runs, it is possible that it will run for a long period of time or 
run until the computer shuts down. While running an application in a shell, we 
know that a shell prompt only comes back when running a program in the shell 
completes successfully or terminates due to some error. Unless we get a shell prompt 
back, we can't run another command in the same shell. We can't even close that shell 
because it will close the running process. 



Customizing the Environment

[ 156 ]

Also, to run another application, we will have to open another shell in a new 
terminal and then run it. It can become difficult and tedious to manage if we have to 
run a lot of tasks. Shells provide ways to run a task in the background and suspend, 
kill, or move back in the foreground.

Running tasks in the background
A task can be started as a background in a shell by appending an ampersand (&).

For example, we want to search for a string in the entire filesystem. Depending upon 
the filesystem's size and the number of files, it may take a lot of time. We can call 
the grep command to search for a string and save the result in a file. A filesystem 
hierarchy in Linux starts from the root('/').

$ grep -R "search Text" / 2>/dev/null >  out1.txt &

[1] 8871

$

Here, the grep searches for a string in the entire filesystem, sends any error message 
to /dev/null, and saves the search result into the out1.txt file. An ampersand (&) 
at the end sends the entire job to the background, prints PID of the started task, and 
returns back the shell prompt.

Now, we can do other work in the same opened shell and perform other tasks.

Sending a running task to the background
It often happens that we run a task in a shell normally—that is, as a foreground 
task—but later we want to move it to the background. It is possible to do this by  
first suspending the current task using [Ctrl + z] and then using bg to move the task 
to the background.

Consider the last text search as an example. We start a search normally as follows:

$  grep -R "search Text" / 2>/dev/null >  out2.txt

We will not see anything happening on the shell and we will just keep waiting  
for a shell prompt to return. Alternatively, we can suspend the running job using 
[Ctrl + z]:

[ctrl + z]

[2]+  Stopped            grep -R "search Text"  / 2> /dev/null > out2.txt



Chapter 5

[ 157 ]

Then, to send a suspended task to continue running in the background, use the  
bg command:

$ bg

[2]+ grep -R "search Text"  / 2> /dev/null > out2.txt

Listing background tasks
To find out which tasks are running in the background or suspended in the current 
shell, jobs shell built - in is used as follows:

$ jobs

[1]-  Running        grep -R "search Text" / 2> /dev/null > out1.txt &
[2]+ Running         grep -R "search Text" / 2> /dev/null > out2.txt &

Here, index [1] and [2] are job numbers.

The character '+' identifies the job that would be used as a default by the fg or bg 
command, and the character '-' identifies the job that would become a default if the 
current default job exits or terminates.

Create another task and suspend it using the following commands:

$ grep -R "search Text" / 2>/dev/null >  out3.txt 

[ctrl + z]
[3]+  Stopped        grep -R "search Text"  / 2> /dev/null > out3.txt
$ jobs
[1]   Running        grep -R "search Text" / 2> /dev/null > out1.txt &
[2]-  Running        grep -R "search Text" / 2> /dev/null > out2.txt &
[3]+ Stopped         grep-R "search Text" / 2> /dev/null > out3.txt

To view PID of all background and suspended tasks, we can use the –p option:

$ jobs -p

8871
8873
8874



Customizing the Environment

[ 158 ]

PID of jobs is in sequence. To view only the tasks running in the background,  
the -r option is used as follows:

$ jobs -r

[1]   Running                 grep -R "search Text" / 2> /dev/null > 
out1.txt &
[2]-  Running                 grep -R "search Text" / 2> /dev/null > 
out2.txt &

To view only the suspended tasks, the -s option is used as follows:

$ jobs -s

[3]+ Stopped                grep-R "search Text" / 2> /dev/null > 
out3.txt

To view a particular index job, use an index number with the jobs command:

$ jobs 2

[2]-  Running                 grep -R "search Text" / 2> /dev/null > 
out2.txt &

Moving tasks to the foreground
We can move a background or suspended task to the foreground using the shell  
built - in command fg:

$ jobs  # Listing background and suspended tasks

[1]   Running                 grep -R "search Text" / 2> /dev/null > 
out1.txt &
[2]-  Running                 grep -R "search Text" / 2> /dev/null > 
out2.txt &
[3]+ Stopped                grep-R "search Text" / 2> /dev/null > 
out3.txt

The character '+' is mentioned in the job index 3. This means, running the fg 
command will run the third job in the foreground:

$ fg

$ grep -R "search Text" / 2> /dev/null > out3.txt

[ctrl + z]

[3]+  Stopped                 grep -R "search Text" / 2> /dev/null > 
out3.txt



Chapter 5

[ 159 ]

The following command suspends the third task:

$ jobs

[1]   Running                 grep -R "search Text" / 2> /dev/null > 
out1.txt &

[2]-  Running                 grep -R "search Text" / 2> /dev/null > 
out2.txt &

[3]+ Stopped                grep-R "search Text" / 2> /dev/null > out3.
txt

To move a particular job to the foreground, use fg with a task index number:

$  fg 1  # Moving first tasks to foreground

$ grep -R "search Text" / 2> /dev/null > out1.txt

[ctrl + z]

[1]+  Stopped            grep -R "search Text" / 2> /dev/null > out1.txt

Terminating tasks
We can also delete a running or suspended task if it's no longer needed. This can be 
done by using the disown shell built - in command:

$ jobs  # List running or suspended tasks in current shell

[1]+  Stopped        grep -R "search Text" / 2> /dev/null > out1.txt
[2]   Running        grep -R "search Text" / 2> /dev/null > out2.txt &
[3]-  Stopped        grep -R "search Text" / 2> /dev/null > out3.txt

Using disown without any option, deletes a task that has the character '+' mentioned 
with a task:

$ disown

bash: warning: deleting stopped job 1 with process group 8871

$ jobs  # Listing available jobs

[2]-   Running       grep -R "search Text" / 2> /dev/null > out2.txt &
[3]+  Stopped        grep -R "search Text" / 2> /dev/null > out3.txt



Customizing the Environment

[ 160 ]

To delete running tasks, the -r option is used:

$ disown -r

jobs
[3]-  Stopped                 grep -R "search Text" / 2> /dev/null > 
out3.txt

To remove all tasks, the -a option is used as follows:

$ disown -a  # Gives warning for deleting a suspended task

bash: warning: deleting stopped job 3 with process group 8874

$ jobs

The output of jobs shows nothing because all the suspended and running tasks got 
deleted by the -a option.

Summary
After reading this chapter, you now know how to create and modify environment 
variables in a shell. You also know how .bashrc and .bash_profile help in making 
changes that are available permanently for all sessions of a user. You learned how to 
search the history of commands that we have previously executed and also how to run 
and manage different tasks in a shell by using the fg and bg shell built - in commands.

In the next chapter, we will see what important types of files are available on  
Linux-based systems and what operations can be performed on them to get 
meaningful results.



[ 161 ]

Working with Files
For simplicity, everything in UNIX and Linux-based operating systems is treated as a 
file. Files in the filesystem are arranged in a hierarchical tree like a structure with the 
root of the tree denoted by '/' (forward slash). A node of the tree is either a directory 
or file where the directory is also a special type of file containing inode numbers and a 
corresponding filename entry of the list of files inside it. An inode number is an entry 
in an inode table that contains metadata information related to the file.

In this chapter, we will take a closer look at the important and commonly used file 
types. We will see how we can create, modify, and perform other useful operations 
on files. We will also see how to monitor a list of files opened by a process or user.

This chapter will cover the following topics in detail:

• Performing basic file operations
• Moving and copying files
• Comparing files
• Finding files
• Links to a file
• Special files
• Temporary files
• Permission and ownership
• Getting the list of open files
• Configuration files



Working with Files

[ 162 ]

Performing basic file operations
Most commonly used files are regular files and directories. In the following 
subsection, we will see the basic file operations.

Creating files
We can create both regular files and directories in shell using different shell 
commands.

Directory file
A directory is a special type of file that contains a list of filenames and a 
corresponding inode number. It acts as a container or folder to hold files  
and directories.

To create a new directory through shell, we can use the mkdir command:

$ mkdir dir1

We can also provide multiple directories' name as arguments to the mkdir  
command as follows:

$ mkdir dir2 dir3 dir4  # Creates multiple directories

We can create a parent directory if the specified pathname to mkdir is not present. 
This is done using the -p option in mkdir:

$ mkdir -p /tmp/dir1/dir2/dir3

Here, if dir1 and dir2 are the parent directories for dir3 and don't exist already, the 
-p option will create the dir1 directory first and then dir2 subdirectory inside dir1 
and the dir3 subdirectory inside dir2.

Regular file
In general, text and binary files are known as regular files. In shell, a regular file can 
be created in multiple ways. Some of them are mentioned in the following sections.



Chapter 6

[ 163 ]

Touch command
A new regular file can also be created using the touch command. It is mainly  
used to modify the timestamp of the existing file, but if the file doesn't exist,  
a new file is created:

$ touch newfile.txt  # A new empty file newfile.txt gets created

$ test -f newfile.txt && echo File exists  # Check if file exists

File exists

Using the command line editors
We can open any command line editor; for example, vi/vim, emacs, nano in shell, 
write content, and save content in file.

Now, we will create and write a text using the vi editor:

$ vi foo.txt  # Opens vi editor to write content

Press the key I to enter the INSERT mode of vi and then type the text as shown in the 
following screenshot:

After writing the text, press the Esc key and then type the :wq command to save and 
exit from the vi editor. To know vi/vim in detail, refer to its man page or the online 
documentation (http://www.vim.org/docs.php):

http://www.vim.org/docs.php


Working with Files

[ 164 ]

Using the cat command
We can even use the cat command to write the content into an existing or a new 
regular file, as follows:

$ cat > newfile1.txt

We are using cat command

to create a new file and write into                         

it

[Ctrl + d]    # Press Ctrl + d to save and exit

$ cat newfile1.txt  # See content of file

We are using cat command

to create a new file and write into

it

By using the >> operator instead of >, we can append instead of overwriting the  
file's content.

Redirecting the command's output
While executing a command in bash or script, we can redirect results into an  
existing or a new file:

$ ls -l /home > newfile2.txt  #File gets created containing command 
output

$ cat newfile2.txt

total 24

drwx------.     2    root    root   16384  Jun  11  00:46   lost+found

drwx—x---+  41  foo     foo    4096   Aug  22  12:19   foo

Modifying files
To modify the content of a regular file in shell, open a file in an editor,  
make the required changes, and then save and exit. We can also use the  
>> operator to append the command's output to the specified file:

Command >> file.txt

For example, we will save the ls output of /home in the ls_output.txt file:

$ ls /home/ >> ls_output.txt

$ cat ls_output.txt  # Viewing content of file

lost+found

foo



Chapter 6

[ 165 ]

Now, we will append the ls output of another directory /home/foo/ as follows:

$ ls /home/foo >> ls_output.txt

lost+found

foo

Desktop

Documents

Downloads

Pictures

We saw that the ls_output.txt file gets modified by appending the content of  
the ls command output.

Viewing files
To view the content of a regular file, we can simply open a file in an editor such  
as vi/vim, emacs and nano. We can also use the cat, less and more commands  
to view the file's content.

To view the contents of a directory, we use the ls command:

$ ls /home/

lost+found  foo

To view the contents of a directory recursively, use ls with the -R or  
--recursive option.

Viewing content using cat
We can use the cat command to view the content of the file as follows:

$ cat newfile1.txt

We are using cat command

to create a new file and write into

it

$ cat -n newfile1.txt    # Display line number as well

     1  We are using cat command

     2  to create a new file and write into

     3  it



Working with Files

[ 166 ]

more and less
The more and less commands are very useful and handy to view a large file that 
doesn't fit on the current terminal.

The more command displays the content of a file in page format, in which we can 
scroll up and down to view the remaining contents of the file:

$ more /usr/share/dict/words

A file path is passed as an argument to the more command. In the above example, 
it will display the content of the file words available in the /usr/share/dict/ 
directory.

The key s is used to skip forward k lines of text. The key f is used to skip forward k 
screenful of text. The key b is used to skip backward k screenful of text.

The less command is more popular and widely used to view the content of large 
files. One of the advantages of using the less command is that it doesn't load entire 
files in the beginning and as a result, viewing the content of large files is faster.

The usage of less is very similar to the more command:

$ less  /usr/share/dict/words

Navigation is much easier while using the less command. It also has more options 
to customize the filtered view of a file's content.

The more and less commands can take an input from stdin if no input file is 
provided. Use a pipe ('|') to give an input from stdin:

$ cat /usr/share/dict/words | more    #  cat output redirected to more

$ grep ^.{3}$ /usr/share/dict/words | less  # Matches all 3 character 
words

See the man page of more and less for the detailed usage.

The behavior of the more command may vary on different systems 
because of its different implementations.

Deleting files
We can also delete regular files and directories if they are no longer required.



Chapter 6

[ 167 ]

Deleting a regular file
To delete a regular file, we use the rm command in shell.

The rm command deletes the file if it exists, otherwise it prints an error on stdout  
if it doesn't exist:

$ rm newfile1.txt    # Deletes if file exists

$ rm newfile1.txt    # Prints error message if file doesn't exist

rm: cannot remove 'newfile1.txt': No such file or directory

To ignore an error message, rm can be used with the –f option:

$ rm -f newfile1.txt

$ rm -i  newfile.txt   # Interactive deletion of file

rm: remove regular empty file 'newfile.txt'? 

Enter the key y to delete a file and n to skip the deletion of a file.

Deleting a directory
To delete a directory, we can use the rmdir and rm commands. We will consider 
directories that are created in the Directory files under the File creation subtopic:

$ rmdir dir2/  # Deletes directory dir2

$ rmdir dir1/  #  Fails to delete because of non-empty directory

rmdir: failed to remove 'dir1/': Directory not empty

To delete a nonempty directory, first delete the contents and then remove the 
directory. We can also use rm to remove an empty or a nonempty directory.

The –d option removes an empty directory as follows:

$ ls dir3/  # Directory dir3 is empty

$ rm -d dir3/  # Empty diretcory dir3 gets deleted

$ ls dir1/  # Diretcory dir1 is not empty

dir2

$ rm -d dir1/  # Fails to delete non-empty directory dir1

rm: cannot remove 'dir1': Directory not empty



Working with Files

[ 168 ]

The option -r, -R, or --recursive removes the directory and its contents recursively:

$ rm -ri dir1/  # Asks to remove directory dir1 recursively

rm: descend into directory 'dir1'?  Y

Typing y confirms that dir1 should be deleted.

Use rm carefully with the -r option. If possible, use it with the -i option 
to avoid an accidental deletion of an entire directory's contents.

Moving and copying files
We often need to copy or move files from one location to another in order to arrange 
files according to the need. We also can copy our computer data to an external drive 
or another computer available locally or remotely in order to keep the backup of the 
important data.

Moving files
Moving regular files and directories is useful when we want to keep exactly one 
copy of the data at a new location. The mv command is used to move files from one 
location to another.

The syntax of using the mv command is as follows:

mv [option] source... destination

Here, source is the file or directory to be moved. Multiple source files can be 
specified and destination is the location in which the files and directories  
should be moved.

Some of the important options of the mv command are explained in following table:

Option Description
-n Don't overwrite an existing file
-i Prompt before overwriting an existing file
-f Don't prompt while overwriting an existing file
-u Move a source file only when the source is newer than the 

destination or when the destination is missing
-v Print name of the files being moved



Chapter 6

[ 169 ]

Moving a directory to a new location
To move a directory from one location to another, execute the following command:

$ mkdir ~/test_dir1  # Directory test_dir1 created in home directory

$ mv ~/test_dir1/ /tmp # moving directory to /tmp

The test_dir1 directory has been moved to /tmp and no copy of test_dir1 exists 
in the home directory now.

Now, we will create a directory called test_dir1 again in the user's home directory:

$ mkdir ~/test_dir1  # Directory test_dir1 created in home directory

Try again to move test_dir1 in /tmp with the –i option:

$ mv -i ~/test_dir1/ /tmp

mv: overwrite '/tmp/test_dir1'?

We can see that the -i option asks a user explicitly whether we want to overwrite an 
existing directory with a new directory or not.

Use the mv command with the -i option to avoid an accidental 
overwrite of a file.

Renaming a file
We can also use the mv command to rename a filename. For example, we have the 
test_dir1 directory in the /tmp directory. Now, we want to rename it as test_dir. 
We can execute the following command:

$ mv  /tmp/test_dir1/  /tmp/test_dir  # directory got renamed to test_dir

Copying files
Creating copies of files is a very common operation that can be performed locally or 
to a remote system.

Copying files locally
To copy the files on a local machine, the cp command is used.

The syntax of using the cp command is as follows:

cp [option] source … destination



Working with Files

[ 170 ]

Here, source can be a single file, multiple file, or a directory, while destination can 
be a file if source is a single file. Otherwise, destination will be a directory.

Some of important options to the cp command are as follows:

Options Description
-f Don't prompt while overwriting an existing file
-i Prompt before overwriting an existing file
-R Copy directories recursively
-u Copy a source file only when the source is newer than the destination or 

when the destination is missing
-p Preserve attributes of a copied file with the original file
-v Verbose output of which file is being copied

Copying a file to another location
To copy a file to another location, execute the following command:

$ touch ~/copy_file.txt    # Creating a file

$ cp ~/copy_file.txt /tmp/  # Copying file to /tmp

Now, we have two copies of the copy_file.txt file that are at the user's home 
directory and the /tmp directory.

To copy a directory, we use cp with the -R option:

$ mkdir ~/test_dir2  # Creating a test diretcory

$ cp -R ~/test_dir2 /tmp/

The test_dir2 directory gets copied to /tmp along with all the contents available in 
the directory.

Copying files remotely
To copy files on a remote machine, the scp command is used. It copies files between 
hosts on a network. The scp command uses ssh to authenticate the target host and 
transfer data.

The simple syntax of scp is as follows:

scp [option] user1@host1:source user2@host2:destination



Chapter 6

[ 171 ]

Here, in user1@host1:source, user1 is the username of the source from where a 
file will be copied and host1 is the hostname or IP address; source can be a file or a 
directory to be copied.

In user2@host2:destination, user2 is the username of the target host where files 
should be copied and host2 is the hostname or IP address; destination can be a file 
or directory where it gets copied. If no destination is specified, a copy will be made 
in the target host's home directory.

If no remote source and destination to provided, a copy will be made locally.

A few important options of scp are discussed in the following table:

Option Description
-C Enable compression while transferring data over a network
-l limit Limit the used bandwidth specified in Kbit/s
-p Preserve attributes of a copied file with the original file
-q Don't print any progress output on stdout
-r Copy directory recursively
-v Verbose output while the copy is in progress

Copying files to a remote server
To copy files to a remote server, it is very important that the ssh server is already 
running on the server. If it is not, make sure to start the ssh server. To copy files,  
use the scp command as follows:

$ scp -r ~/test_dir2/ foo@localhost:/tmp/test_dir2/

Here, we have made a copy to a local machine. So, the hostname used is localhost. 
Now, we have another directory test_dir2 inside /tmp/test_dir2/:

$ ls -l /tmp/test_dir2

total 0

drwxrwxr-x. 2 foo foo 40 Aug 25 00:44 test_dir2

Comparing files
A comparison between two similar files makes sense in order to know what 
differences exist between the two files. For example, comparing the results obtained 
by a command ran on two sets of data. Another example can be comparing an older 
and a newer version of a shell script file in order to know what modifications have 
been made in script. Shell provides the diff command for file comparison.



Working with Files

[ 172 ]

Files comparison using diff
The diff command is used to compare files line by line. The syntax of using the 
diff command is as follows:

diff [option] file1 file2

Where, file1 and file2 are the files to be compared.

The options of the diff command are explained in the following table:

Option Description
-q Only print if files differ
-s Print a message on stdout if the two files are identical
-y Display the diff results side by side
-i Do case-insensitive comparison of the files' content
-b Ignore changes in the number of whitespace
-u NUM Output NUM (default 3) lines of unified context
-a Consider files as text files while comparison 

Example
The diff command shows the comparison results for the added, removed,  
and modified lines between two files.

We will consider the comparison_file1.txt and comparison_file2.txt text files 
as an example:

$ cat comparison_file1.txt # Viewing content of file

This is a comparison example.

This line should be removed.
We have added multiple consecutive blank spaces.
THIS line CONTAINS both CAPITAL and small letters

$ cat comparison_file2.txt # Viewing content of file

This is a comparison example.
We have added       multiple consecutive blank spaces.
this line contains both CAPITAL and small letters
Addition of a line



Chapter 6

[ 173 ]

Now, we will compare the comparison_file1.txt and comparison_file2.txt 
files:

$ diff  comparison_file1.txt  comparison_file2.txt

2,5c2,4
< 
< This line should be removed.
< We have added multiple consecutive blank spaces.
< THIS line CONTAINS both CAPITAL and small letters
---
> We have added       multiple consecutive blank spaces.
> this line contains both CAPITAL and small letters
> Addition of a line

Here, < (less than) means removed lines and > (greater than) means added lines.

Using the -u option makes the diff output even more readable as follows:

$ diff -u comparison_file1.txt comparison_file2.txt 

--- comparison_file1.txt        2015-08-23 16:47:28.360766660 +0530
+++ comparison_file2.txt        2015-08-23 16:40:01.629441762 +0530
@@ -1,6 +1,5 @@
 This is a comparison example.
-
-This line should be removed.
-We have added multiple consecutive blank spaces.
-THIS line CONTAINS both CAPITAL and small letters
+We have added       multiple consecutive blank spaces.
+this line contains both CAPITAL and small letters
+Addition of a line

Here, '-' tells the lines available in an older file (comparison_file1.txt), but which 
is no longer present in the newer file (comparison_file2.txt).

The '+' tells lines being added in newer file (comparison_file2.txt).



Working with Files

[ 174 ]

We can even do a case-insensitive comparison of the content using the –i option:

$ diff -i comparison_file1.txt comparison_file2.txt 

2,4c2
< 
< This line should be removed.
< We have added multiple consecutive blank spaces.
---
> We have added       multiple consecutive blank spaces.
5a4
> Addition of a line

To ignore multiple blank spaces, use diff with make -b option:

$ diff -bi  comparison_file1.txt  comparison_file2.txt

2,3d1
< 
< This line should be removed.
5a4
> Addition of a line

Finding files
In a filesystem, there is huge number of files available. Sometimes, there are external 
devices that are attached as well, which may also contain huge number of files. 
Imagine that there are millions and billions of files in a system and in which we have 
to search for a specific file or pattern of a file. Manual searching of a file is possible if 
the number of files is from 10 to 100, but it is almost impossible to search in millions 
of files. To solve this problem, UNIX and Linux provide the find command. It is a 
very useful command for searching files in a computer.

The syntax of using the find command is as follows:

find search_path [option]

Here, in search_path, specify the path in which find should search for  
file_search_pattern.



Chapter 6

[ 175 ]

A few important options are mentioned in the following table:

Option Description
-P Don't follow symbolic link. This is default behavior
-L Follow symbolic link while searching
-exec cmd ; Execute command cmd passed as parameter to -exec
-mount Don't search in other file system
-executable Matches executable files
-group gname File belongs to group gname
-user uname Files owned by user uname
-name pattern Search file for given pattern
-iname pattern Case insensitive search of file for given pattern
-inum N Search file with inode number N
-samefile name File with same inode number as name
-regex pattern Match files with given regular expression pattern. Matches for  

whole path.
-iregex pattern Case insensitive match of files with given regular expression pattern. 

Matches for whole path.

Searching files according to use case
The following shell script shows some use cases of how to use the find command:

#!/bin/bash
# Filename: finding_files.sh
# Description: Searching different types of file in system

echo -n "Number of C/C++ header files in system: "
find / -name "*.h" 2>/dev/null |wc -l
echo -n "Number of shell script files in system: "
find / -name "*.sh" 2>/dev/null |wc -l
echo "Files owned by user who is running the script ..."
echo -n "Number of files owned by user $USER :"
find / -user $USER 2>/dev/null |wc -l
echo -n "Number of executable files in system: "
find / -executable 2>/dev/null | wc -l



Working with Files

[ 176 ]

The following is the sample output after executing the preceding finding_files.sh 
script:

Number of C/C++ header files in system: 73950
Number of shell script files in system: 2023
Files owned by user who is running the script ...
Number of files owned by user foo :341726
Number of executable files in system: 127602

Finding and deleting a file based on inode 
number
The find command can be used to find a file based on its inode number.

$ find ~/ -inum 8142358

/home/foo/Documents

The -inum option is good to use with exec to delete files that cannot be deleted  
by a filename. For example, a file named -test.txt can't be deleted using the  
rm command:

$  ls -i ~ |grep  test  # Viewing file with its inode number

8159146 -test.txt

To delete the -test.txt file, execute the following command:

$ find ~/ -inum 8159146 -exec rm -i {} \;  # Interactive deletion

rm: remove regular file '/home/skumari/-test.txt?' y

Links to a file
A link to a file means referring the same file by different filenames. In Linux and 
Unix-based system, the following two types of links exist:

• A soft link or a symbolic link
• A hard link

To create links between files, the ln command can be used. The syntax is as follows:

ln [option] target link_name

Here, target is the filename for which a link has to be created and link_name is the 
name by which a link has to be created.



Chapter 6

[ 177 ]

Soft link
A soft link is a special kind of file that just points to another file. This makes it easier 
to create a shortcut of a file and easy accessibility of a file to a different location in  
a filesystem.

To create a symbolic link of a file, the ln command is used with the -s option. For 
example, we will create a symbolic link of the /tmp directory in our home directory:

$ ln -s /tmp ~/local_tmp

Now, we have a symbolic link of the /tmp directory in our home directory by the 
name local_tmp. To access the /tmp data, we can also cd into the ~/local_tmp 
directory. To know whether a file is a symbolic link or not, run ls -l on a file:

$ ls -l ~/local_tmp

lrwxrwxrwx. 1 foo foo 5 Aug 23 23:31 /home/foo/local_tmp -> /tmp/

If the first character of the first column is l, then it means it is a symbolic link.  
Also the last column says /home/foo/local_tmp -> /tmp/, which means  
local_tmp is pointing to /tmp.

Hard link
A hard link is a way to refer a file with different names. All such files will have the 
same inode number. An inode number is an index number in an inode table that 
contains metadata about a file.

To create a hard link of a file, use the ln command without any option. In our case, 
we will first create a regular file called file.txt:

$ touch file.txt

$ ls -l file.txt

-rw-rw-r--. 1 foo foo 0 Aug 24 00:13 file.txt

The second column of ls tells the link count. We can see that currently it is 1.

Now, to create a hard link of file.txt, we will use the ln command:

$ ln file.txt hard_link_file.txt

To check whether a hard link is created for file.txt, we will see its link count:

$ ls -l file.txt

-rw-rw-r--. 2 foo foo 0 Aug 24 00:13 file.txt



Working with Files

[ 178 ]

Now, the link count is 2 because a hard link has been created with the name  
hard_link_file.txt.

We can also see that the inode number of the file.txt and hard_link_file.txt 
files are the same:

$ ls -i file.txt hard_link_file.txt

96844   file.txt

96844   hard_link_file.txt

Difference between hard link and soft link
The following table shows a few important differences between a hard link and  
a soft link:

Soft link Hard link
The inode number of the actual file and 
the soft link file are different.

The inode number of the actual file and the 
hard link file are the same.

A soft link can be created across different 
filesystems.

A hard link can only be created in the same 
filesystem.

A soft link can link to both regular files 
and directories.

A hard link doesn't link to directories.

Soft links are not updated if the actual 
file is deleted. It keeps pointing to a 
nonexistent file.

Hard links are always updated if the actual 
file is moved or deleted.

Special files
The files other than regular files, directories, and link files are special files. They are 
as follows:

• The block device file
• The character device file
• The named pipe file
• The socket file



Chapter 6

[ 179 ]

The block device file
A block device file is a file that reads and writes data in block. Such files are  
useful when data needs to be written in bulk. Devices such as hard disk drive, 
USB drive, and CD-ROM are considered as block device files. Data is written 
asynchronously and, hence, other users are not blocked to perform the write 
operation at the same time.

To create a block device file, mknod is used with the option b along with providing 
a major and minor number. A major number selects which device driver is being 
called to perform the input and output operation. A minor number is used to 
identify subdevices:

$ sudo mknod  block_device b 0X7 0X6

Here, 0X7 is a major number and 0X6 is a minor number in hexadecimal format:

$ ls -l block_device

brw-r--r--. 1 root root 7, 6 Aug 24 12:21 block_device

The first character of the first column is b, which means it is a block device file.

The fifth column of the ls output is 7 and 6. Here, 7 is a major number and 6 is a 
minor number in decimal format.

A character device file is a file that reads and writes data in character-by-character 
fashion. Such devices are synchronous and only one user can do the write operation 
at a time. Devices such as keyboard, printer, and mouse are known as character 
device files.

Following command will create a character special file:

$ sudo  mknod  character_device  c 0X78 0X60

Here, 0X78 is a major number and 0X60 is a minor number that is in  
hexadecimal format.

$ ls -l character_device  # viewing attribute of  character_device file

crw-r--r--. 1 root root 120, 96 Aug 24 12:21 character_device

The first character of the first column is c, which means it is a character device file. 
The fifth column of the ls output is 120 and 96. Here, 120 is a major number and 96 
is a minor number in decimal format.



Working with Files

[ 180 ]

Named pipe file
Named pipe files are used by different system processes to communicate with each 
other. Such communication is also known as interprocess communication.

To create such a file, we use the mkfifo command:

$ mkfifo pipe_file    # Pipe file created

$ ls pipe_file      # Viewing file content

prw-rw-r--. 1 foo foo 0 Aug 24 01:41 pipe_file

Here, the first character of the first column is 'p', which means it is a pipe file.  
There are a lot of pipe files available in the /dev directory.

We can also create a named pipe using the mknod command with the p option:

$ mknod   named_pipe_file p

$ ls -l  named_pipe_file

prw-rw-r--. 1 foo foo 0 Aug 24 12:33 named_pipe_file

The following shell script demonstrates a reading message from a named pipe. The 
send.sh script creates a named pipe called named_pipe, if it doesn't exist, and then 
sends a message on it:

#!/bin/bash

# Filename: send.sh

# Description: Script which sends message over pipe

pipe=/tmp/named_pipe

if [[ ! -p $pipe ]]

then

  mkfifo $pipe

fi

echo "Hello message from Sender">$pipe



Chapter 6

[ 181 ]

The receive.sh script checks whether a named pipe with the name named_pipe 
exists, reads a message from a pipe, and displays on stdout:

#!/bin/bash
#Filename: receive.sh
# Description: Script receiving message from sender from pipe file

pipe=/tmp/named_pipe

if [[ ! -p $pipe ]]
then
  echo "Reader is not running"
fi

while read line
do
  echo "Message from Sender:"
  echo $line
done < $pipe

To execute it, run send.sh in a terminal and receive.sh in another terminal:

$ sh send.sh  # In first terminal

$ sh receive.sh  # In second terminal

Message from Sender:

Hello message from Sender

Socket file
A socket file is used to pass information from one application to another. For 
example, if Common UNIX Printing System (CUPS) daemon is running and my 
printing application wants to communicate with it, then my printing application 
will write a request to a socket file where CUPS daemon is listening for upcoming 
requests. Once a request is written to a socket file, the daemon will serve the request:

$ ls -l /run/cups/cups.sock  # Viewing socket file attributes

srw-rw-rw-. 1 root root 0 Aug 23 15:39 /run/cups/cups.sock

The first character in the first column is s, which means it is a socket file.



Working with Files

[ 182 ]

Temporary files
Temporary files are the files that are needed for a short interval of time while an 
application is running. Such files are being used to keep intermediate results of 
running a program and they are no longer needed after the program execution is 
complete. In shell, we can create temporary files using the mktemp command.

Creating a temporary file using mktemp
The mktemp command creates a temporary file and prints its name on stdout. 
Temporary files are created by default in the /tmp directory.

The syntax of creating a temporary file is as follows:

$ mktmp

/tmp/tmp.xEXXxYeRcF

A file with the name tmp.xEXXxYeRcF gets created into the /tmp directory. We can 
further read and write into this file in an application for temporary use. Using the 
mktemp command instead of using a random name for a temporary filename avoids 
accidental overwrite of an existing temporary file.

To create a temporary directory, we can use the -d option with mktemp:

$ temp_dir=mktemp -d

$ echo $temp_dir

/tmp/tmp.Y6WMZrkcj4

Furthermore, we can explicitly delete it as well:

$ rm -r /tmp/tmp.Y6WMZrkcj4

We can even specify a template to use for a temporary file by providing an argument 
as name.XXXX. Here, name can be any name by which a temporary file should begin, 
and XXXX tells the length of a random character to be used after a dot (.). In general, 
while writing an application if temporary files are needed, the application name is 
given as the temporary file name.

For example, a test application needs to create a temporary file. To create a 
temporary file, we will use the following command:

$ mktemp test.XXXXX

test.q2GEI



Chapter 6

[ 183 ]

We can see that the temporary file name begins with test and contains exactly five 
random letters.

The time when temporary files will be cleaned up is 
distribution-specific.

Permission and ownership
As a user of a system, to access a file in Linux and UNIX, it is important that a user 
has the required permission for that specific file or directory. For example, as a 
regular user, perform cd into /root:

$ cd /root

bash: cd: /root/: Permission denied

We were not able to do so because of the permission denied error:

$ cd ~/

We were successfully able to do cd into the user's home directory because a user had 
the permission to access its own home directory.

Every file in UNIX or Linux has an owner and an associated group. It also has a set 
of permissions (read, write, and execute) with respect to the user, group, and others.

Viewing the ownership and permission of files
The ls command with the -l option is used to view the ownership and  
permission of a file:

$ touch permission_test_file.txt    #  Creating a file

$ ls -l  permission_test_file.txt    # Seeing files' attributes

-rw-rw-r-- 1 foo foo 0 Aug 24 16:59 permission_test_file.txt

Here, the first column of ls contains the permission information—that is, -rw-
rw-r--.



Working with Files

[ 184 ]

The first character specifies a file's type, which is dash (-) in this example.  
A dash means that it is a regular file. It can have other characters as follows:

• p: This means it is a named pipe file
• d: This means it is a directory file
• s: This means it is a socket file
• c: This means it is a character device file
• b: This means it is a block device file

The next three characters belong to a user's or owner's permission. It can be 
either rwx or dash at any of these spaces. The permission r specifies that the read 
permission is available, w specifies that the write permission is available, and x 
specifies that the execute permission is available over the given file. If a dash is 
present, then the corresponding permission is missing. In the above example, an 
owner's permission is rw-, which means the owner has read and write permission on 
the permission_test_file.txt file but no execute permission.

The next three characters belong to a group's permission. It can be rwx or dash at any 
of these places if the corresponding permission is missing. In the preceding example, 
the permission given to a group is rw-, which means the read and write permissions 
are present and the execute permission is missing.

The next three characters belong to other's permission. In the preceding example, the 
permission given to others is r--, which means other users can read the content of 
the permission_test_file.txt file but can't modify or execute it.

The next column in the ls -l output—that is, the second column specifies who the 
owner of file is. In our example, the second column value is foo, which means foo 
has the ownership of the file. By default, the ownership of a file is given to whoever 
has created that file.

The third column in the ls -l output that specifies the group to which a file belongs 
to. In our case, the group of the permission_test_file.txt file is foo.



Chapter 6

[ 185 ]

Changing permission
To change the permission of a file, the chmod command is used. The syntax of using 
chmod is as follows:

chmod [option] mode[,mode] file

Or,

chmod [option] octal-mode file

An important option of chmod is -R, which means change the files and directories 
permission recursively.

The mode can be [ugoa][-+][rwx].

Here, u is the owner, g is the group, o is other, and a is all users—that is, ugo.

Specifying - (minus) removes the specified permission and specifying +(plus)  
adds the specified permission.

The letters r(read), w(write), and x(execute) specify permissions.

The octal-mode specifies the rwx permission of a user together in octal format, 
which can be from 0 to 7. The following table explains the octal representation  
of a permission to a specific user:

Octal Value Binary representation Meaning
0 000 No read, write, and execute permissions 

(---)
1 001 Only execute permission (--x)
2 010 Only write permission (-w-)
3 011 Write and execute permissions (-wx)
4 100 Only read permission (r--)
5 101 Read and execute permissions (r-x)
6 110 Read and write permissions (rw-)
7 111 Read, write, and execute permissions (rwx)

To demonstrate the changing permission on a file, we will create a file as follows:

$ touch test_file.txt

$ ls -l test_file.txt    # Checking permission of file

-rw-rw-r--. 1 foo foo 0 Aug 24 18:59 test_file.txt



Working with Files

[ 186 ]

The default permission given to a regular file is the Read permission to an  
owner, group, and other. The Write permission is given to the owner and group.  
No execute permission is given to anyone.

Now, we want to modify a permission in such a way that only the owner can have 
the write permission, and keeping the other permission as it is. We can do this in  
the following way:

$ chmod 644 test_file.txt

$ ls -l tst_file.txt

-rw-r--r--. 1 foo foo 0 Aug 24 19:03 test_file.txt

Now, we can see that only an owner can modify test_file. While using octal mode, 
we have to specify the exact permission that we want to see further. In chmod, we 
gave octal_mode as 644; here the first octal digit, that is, 6 signifies the read, write, 
and execute permissions of the owner. Similarly, the second octal digit 4 specifies the 
permissions for the group and the third digit specifies the permission for others.

There is another way to modify a permission, which is by using mode. Mode is 
specified as [ugoa][-+][rwx]. Here, we only have to specify which permission we 
want to add or remove.

For example, we want to remove the write permission from an owner and add the 
execute permission to all. We can do this as follows:

$ chmod u-w,a+x test_file.txt

$ ls -l test_file.txt

-r-xr-xr-x. 1 foo foo 0 Aug 24 19:03 test_file.txt

Changing the owner and group
We can also change the owner and group ownership of a file. This allows flexibility 
to further modify the group and owner of a file.

Changing a file's owner
To change the owner of a command, chown is used. This is useful for sysadmin in 
different cases. For example, a user is working on a project and now the user is going 
to discontinue working on that project. In such a case, sysadmin can modify the 
ownership to a new user who is responsible for continuing that project. Sysadmin 
can change the ownership of a file to a new user for all the related files in a project.



Chapter 6

[ 187 ]

In our previous example, foo is the owner of the test_file.txt file. Now, we want 
to transfer the ownership of a file to user bar.

If the user bar doesn't exist in a system, a new user bar can be created using the 
useradd command. The useradd command needs the root access.

Following command will create a new user called bar:

$ sudo useradd bar  # New user bar will be created

We can change ownership of test_file.txt file to user bar by executing the 
following command as root or sudo:

$ sudo chown bar test_file.txt  # Changing ownership of file to user bar

$ ls -l  test_file.txt

-r-xr-xr-x. 1 bar foo 0 Aug 24 19:03 test_file.txt

We can see that the ownership of a file is changed to bar.

Changing group ownership
To modify the group ownership of a file, we can either use the chown or chgrp 
command. To create a new group, the groupadd command is used as sudo or root. 
For example, we want to create a new group called test_group:

$ sudo groupadd test_group

Now, we will change the group of the example file test_file.txt by using the 
chown command. This can be done by executing the following command:

$ sudo chown :test_group test_file.txt  # Modifying group ownership

$ ls -l test_file.txt

-r-xr-xr-x. 1 bar test_group 0 Aug 24 19:03 test_file.txt

We can see that the group has been modified to test_group. To change the group 
using the chgrp command, we can execute the following command:

$  sudo chgrp bar test_file.txt  # Changing group ownership to bar

$ ls -l test_file.txt

-r-xr-xr-x. 1 bar bar 0 Aug 24 19:03 test_file.txt



Working with Files

[ 188 ]

Now, we will revert back the owner and group to foo for the test_file.txt file:

$ sudo chown foo:foo test_file.txt

$ ls -l test_file.txt

-r-xr-xr-x. 1 foo foo 0 Aug 24 19:03 test_file.txt

The new owner name is provided before : (colon) and the group name after : ,while 
modifying the owner and group ownership using the chown command.

Getting the list of open files
We know that there can be millions of files available in a system, which can  
be binary files, text files, directories, and so on. When a file is not in use, they are  
just available on a storage device as 0 and 1. To view or process a file, it needs to  
be opened. An application that is executing may open multiple files. Knowing what 
files are opened by a running application is very useful. To know the list of opened 
files, the lsof command is used.

Executing the following command gives the list of all opened files:

$ lsof

This gives a huge output of all the opened files.

Knowing the files opened by a specific 
application
To know the list of files opened by a specific application, first get the Process ID 
(PID) of the running application:

$ pidof application_name

For example, let's run cat without any parameter:

$ cat

In another terminal, run the following commands:

$ pidof cat

15913

$ lsof -p 15913



Chapter 6

[ 189 ]

Alternatively, we can directly write the following command:

$ lsof -p 'pidof cat'

The following is a sample screenshot of the lsof output:

In the output, we see that there are various columns of results. The first column 
is COMMAND—that is, for the application this file has been opened, the PID column 
specifies the PID with which the file has been opened, USER tells which user has 
opened the file, FD is the file descriptor, TYPE specifies the type of file, DEVICE 
specifies the device number with values separated by a comma, SIZE/OFF specifies 
the size of the file or the file offset in bytes, and NAME is the filename with the 
absolute path.

In the output, we can see that the application has opened cat binary from /usr/
bin. It has also loaded the shared library files such as libc-2.21.so and ld-2.21.
so available in /usr/lib64/. Also, there is a character device dev/pts/2 that has 
been opened.

Listing the applications that opened a file
We can also find out which all applications opened a file. This can be done by 
executing the following command:

$ lsof /usr/bin/bash

The following is the sample output:

From the output, we can see that the bash file has been opened by six running 
applications.



Working with Files

[ 190 ]

Knowing the files opened by a user
To know the list of files opened by a specific user, run lsof with the -u option.  
The syntax is as follows:

lsof -u user_name

For example, consider the following command:

$ lsof -u foo | wc -l

525

This means, currently 525 files are opened by the user root.

Configuration files
Configuration or config files are regular files that contain settings for an application. 
During the initial stage of execution, many applications in Linux and UNIX read 
settings from config file(s) and configure the application accordingly.

Viewing and modifying configuration files
Configuration files are generally present in the /etc/ directory and can be viewed 
using the cat command.

For example, consider viewing the resolv.conf config file:

$ cat /etc/resolv.conf

# Generated by NetworkManager
search WirelessAP
nameserver 192.168.1.1

The resolv.conf file contains the order in which to contact DNS servers.

We can also modify a configuration file to meet our requirements. For example, 
we can add another DNS entry in the /etc/resolv.conf file with the DNS value 
8.8.8.8, if some of network URLs are accessible via 192.168.1.1. The modified cat 
/etc/resolv.conf will look like the following:

$ cat /etc/resolv.conf

# Generated by NetworkManager
search WirelessAP
nameserver 192.168.1.1
nameserver 8.8.8.8



Chapter 6

[ 191 ]

There are a lot of other config files available in a system such as ssh, passwd, 
profile, sysconfig, crontab, inittab, and so on, in the /etc/ directory.

Summary
After reading this chapter, you should now know that the UNIX and Linux-based 
operating system treats everything as files that can be further categorized as regular, 
directory, link, block device, character device, socket, and pipe files. You should also 
know how to perform basic operations on any of these files. Now, you should have 
good knowledge of how to view and modify the permissions and ownership of a file. 
You should also know how to monitor and manage the list of open files in a system 
using the lsof command.

In the next chapter, you will learn how a process gets created in a system  
and how to monitor and manage all running processes. We will also see how  
two or more processes communicate with each other using Inter Process 
Communication (IPC) mechanism.





[ 193 ]

Welcome to the Processes
A program under execution is known as process. When an operating system gets 
booted up, multiple processes get started in order to provide various functionalities 
and user interfaces so that a user can easily perform the required tasks. For example, 
when we start a command line server, we will see a terminal with bash or any other 
shell process that has been started.

In Linux, we have full control over processes. It allows us to create, stop, and kill 
processes. In this chapter, we will see how a process is created and managed by 
using commands such as top, ps, and kill and by changing its scheduling priority. 
We will also see how a signal can lead to the sudden termination of a process and 
also the ways to handle signals in a script using the command trap. We will also see 
one of the beautiful features of processes called Inter-process communication, which 
allows them to communicate with each other.

This chapter will cover the following topics in detail:

• Process management
• Listing and monitoring processes
• Process substitution
• Process scheduling priorities
• Signals
• Traps
• Inter-process Communication



Welcome to the Processes

[ 194 ]

Process management
Managing processes is very important because processes are what consumes system 
resources. System users should be careful about the processes they are creating, in 
order to ensure that a process is not affecting any other critical processes.

Process creation and execution
In bash, creating a process is very easy. When a program is executed, a new process 
is created. In a Linux or Unix-based system, when a new process is created, a unique 
ID is assigned to it, which is known as PID. A PID value is always a positive number 
starting from 1. Depending upon a system having init or systemd, they always get 
the PID value 1 because this will be the first process in a system and it is the ancestor 
of all other processes.

The maximum value of PID is defined in the pid_max file, which should be available 
in the /proc/sys/kernel/ directory. By default, the pid_max file contains the value 
32768 (max PID + 1), which means a maximum of 32767 processes can exist in a 
system simultaneously. We can change the value of the pid_max file depending  
upon needs.

For understanding the process creation better, we will create a new process vi  
from bash:

$ vi hello.txt

Here, we have created a new process vi that opens the hello.txt file in editor to 
read and write text. Calling the vi command causes the binary file /usr/bin/vi 
to execute and perform the needed tasks. A process that creates another process is 
known as the parent of the process. In this example, vi was created from bash, so 
bash is the parent of the process vi. The method of creating a child process is known 
as forking. During the process of fork, a child process inherits the properties of its 
parents such as GID, real and effective UID and GID, environment variables, shared 
memory, and resource limit.

To know the PID of the vi process created in the preceding section, we can use the 
commands such as pidof and ps. For example, run the following command in a new 
terminal to know the pid of the vi process:

$ pidof vi  # Process ID of vi process

21552

$ ps -o ppid= -p 21552 # Knowing parent PID of vi process

1785



Chapter 7

[ 195 ]

Once a task is completed, a process gets terminated and PID is free to get assigned to 
a new process based on need.

The detailed information about each process is available in the /proc/ directory.  
A directory with the PID name gets created for each process in /proc/ containing  
its detailed information.

A process can be in any of the following states during its lifetime:

• Running: In this state, a process is either running or ready to run
• Waiting: A process is waiting for a resource
• Stopped: A process has been stopped; for example, after receiving a signal
• Zombie: A process has exited successfully, but its state change wasn't yet 

acknowledged by the parent

Process termination
In normal circumstances, after completing tasks, a process terminates and frees up 
the allocated resources. If the shell has forked any subprocesses, then it will wait 
for them to finish their task first (other than a background process). In some cases, a 
process may not behave normally and it can be waiting or consuming resources for a 
longer time than expected. In some other cases, it may happen that a process is now 
no longer required. In such cases, we can kill the process from a terminal and free  
up resources.

To terminate a process, we can use the kill command. The killall and pkill 
commands can also be used if available on a system.

Using the kill command
The kill command sends the specified signal to the specified processes. If no signal 
is provided, the default SIGTERM signal is sent. We will see more about signals 
further down in this chapter.

The following is the syntax of using the kill command:

kill PID

AND

kill -signal PID



Welcome to the Processes

[ 196 ]

To kill a process, first get the PID of that process as follows:

$ pidof firefox    # Getting PID of firefox process if running
1663
$ kill 1663    # Firefox will be terminated
$ vi hello.txt  # Starting a vi process
$ pidof vi
22715
$ kill -SIGSTOP 22715  # Sending signal to stop vi process
[1]+  Stopped                 vi

Here, we used the SIGSTOP signal to stop the process instead of killing it. To kill,  
we can use the SIGKILL signal or the associated value to this signal, which is 9.

$ kill -9 22715  # Killing vi process

OR

$ kill -SIGKILL 22715  # Killing vi process

Using the killall command
It's easy to remember a process by name rather than by PID. The killall command 
makes it easier to kill a process since it takes the command name as a parameter to 
kill a process.

The following is the syntax of the killall command:

killall process_name

AND

killall -signal process_name

For example, we can kill the firefox process by name, as follows:

$ killall firefox  # Firefox application gets terminated

Using the pkill command
The pkill command can also be used to kill a process by its name. Unlike the 
killall command, by default the pkill command finds all the processes  
beginning with the name specified in its argument.

For example, the following command demonstrates how pkill kills the firefox 
process from its partial name specified in an argument:

$ pkill firef    # Kills processes beginning with name firef and hence 
firefox



Chapter 7

[ 197 ]

The pkill command should be used carefully because it will kill all the matching 
processes, which may not be our intention. We can determine which processes are 
going to be killed by pkill, using the pgrep command with the -l option. The 
pgrep command finds processes based on its name and attributes. Run the following 
commands to list all process names and its PID whose name begin with the firef 
and fire strings, respectively:

$ pgrep firef

    8168 firefox

Here, firefox is the matching process name and its PID is 8168:

$ pgrep fire

    747 firewalld

    8168 firefox

We can also tell pkill to kill a process with exact match of process name using the  
--exact or -x option as follows:

$ pgrep -x -l  firef  # No match found

$ pkill -x fire  # Nothing gets killed

$ pgrep --exact -l firefox   # Process firefox found

8168 firefox

$ pkill --exact firefox  # Process firefox will be killed

The pkill command can also send a specific signal to all matching processes with the 
-signal_name option as follows:

$  pkill -SIGKILL firef

The preceding command sends the SIGKILL signal to all processes whose name 
begins with firef.

Listing and monitoring processes
In a running system, we often notice that suddenly a system is responding slowly. 
This can be because a running application is consuming a lot of memory or a process 
is doing CPU-intensive work. It's hard to predict which application is causing the 
system to respond slower. To know the reason, it is good to know what all processes 
are running and also know the monitoring behavior (such as the amount of CPU or 
memory being consumed) of processes.



Welcome to the Processes

[ 198 ]

Listing processes
To know a list of processes running in the system, we can use the ps command.

Syntax
The syntax of the ps command is as follows:

ps [option]

There are a lot of options to use the ps command. The commonly used options are 
explained in the following table.

Simple process selection
The following table shows the multiple options that can be clubbed together and 
used to get a better selection of results:

Option Description
-A, -e Selects all processes
-N Selects all processes that don't fulfill a condition—that is, negate selection
T Selects the processes associated with the current terminal
r Restricts selection to only running processes
x Selects processes that have no controlling terminal such as daemons 

launched during booting
a Selects the processes on a terminal including all users

Process selection by list
The following options accept a single argument in the form of a blank-separated or 
comma-separated list; they can be used multiple times:

Option Description
-C cmdlist Selects the process by its name. The list of names for selection is 

provided in cmdlist.
-g grplist Selects the process by an effective group name provided in the 

list of the grplist arguments.
-G grplist Selects the process by a real group name provided in the list of 

the grplist arguments. 
-p pidlist Selects the process by its PID mentioned in pidlist.
-t ttylist Selects the process by a terminal mentioned in ttylist.



Chapter 7

[ 199 ]

Option Description
-U userlist Selects the process by a real user ID or name mentioned in 

userlist.
-u userlist Selects the process by an effective user ID or name mentioned 

in userlist.

Output format control
The following options are used to choose how to display the ps command output:

Option Description
-j Shows the job format.
-f This is used for a full format listing. It also prints the argument passed 

to the command.
u Displays user-oriented format.
-l Displays long format.
v Displays the virtual memory format.

Listing all processes with details
To know all processes on a system, the -e option can be used. To have a more 
detailed output, use it with the u option:

$ ps -e u | wc -l    # Total number of processes in system

211

$ ps -e u | tail -n5  # Display only last 5 line of result

We can see from the output that all users' processes are displayed. The command 
that is actually displaying the output—that is, ps -e u | tail -n5—is also mentioned  
in the ps output as two separate running processes.

In BSD style, use the aux option to get the result that we get from -e u:

$ ps aux

On a Linux-based operating system, aux as well as -e u options will work fine.



Welcome to the Processes

[ 200 ]

Listing all processes run by a user
To know which processes are being by a specific user, use the -u option followed by 
the username. Multiple usernames can also be provided separated by a comma (,).

$ ps u -u root | wc -l

130

$ ps u -u root | tail -n5 # Display last 5 results

The preceding command displays the following result:

We see that all processes are running as the user root. The rest of the users' processes 
have been filtered out.

Processes running in the current terminal
It is useful to know which processes are running in the current terminal. It can help 
in deciding whether to kill a running terminal or not. We can make a list of processes 
running in the current terminal using the T or t option.

$ ps ut

The output for the following command as follows:

We can see from the output that bash and the ps uT command (which we just 
executed to display the result) are only running processes in the current terminal.

Listing processes by a command name
We can also know process details by its name using the -C option followed by the 
command name. Multiple command names can be separated by a comma (,):

$ ps u -C firefox,bash



Chapter 7

[ 201 ]

The following output is obtained:

Tree format display of processes
The pstree command displays running processes in a tree structure, which makes it 
very easy to understand the parent and child relationship of processes.

Running the pstree command with the -p option shows processes in the tree format 
with its PID number as follows:

$ pstree -p

From the pstree output, we see that the parent process of all processes is systemd. 
This is started as the first process that is responsible for executing the rest of the 
processes. In parenthesis, the PID number of each process is mentioned. We can see 
that the systemd process got PID 1 that is always fixed. On the init based-operating 
system, init will be the parent of all processes and have PID 1.



Welcome to the Processes

[ 202 ]

To see processes process the tree of a particular PID, we can use pstree with the PID 
number as an argument:

$ pstree -p 1627  # Displays process tree of PID 1627 with PID number

Use the pstree command with the -u option to see when the UID of the process and 
parent differs:

$ pstree -pu 1627

We can see that initially, bash is being run by the user skumari with the PID 1627. 
Further down in the tree, the sudo command is running as a root.

Monitoring processes
It is very important to know how much memory and CPU a process is consuming 
while running, in order to ensure there is no leak of memory and over-CPU 
computation happening. There are commands such as top, htop, and vmstat that 
can be used to monitor the memory and CPU consumed by each process. Here,  
we will discuss the top command because it is preinstalled in a Linux-based 
operating system.

The top command displays the dynamic real-time usage of the CPU, memory, swap, 
and the number of tasks currently running with their state.

Running top without any options gives the following result:

$ top



Chapter 7

[ 203 ]

In the top command output, the first line tells us about the length of time since the 
system last booted, the number of users, and the load average.

The second line tells us about the number of tasks and their statuses—running, 
sleeping, stopped, and zombie.

The third line gives us the details of the CPU usage in percentage. The different CPU 
usages are shown in the following table:

Value Description
us % of the CPU time spent in running un-niced user processes
sy % of the CPU time spent in kernel space—that is running kernel processes
ni % of the CPU time running niced user processes
id % of the time spent idle
wa % of the time spent waiting for the I/O completion
hi % of the time spent servicing the hardware interrupt
si % of the time spent servicing the software interrupts
st % of the time consumed by a virtual machine

The fourth line tells us about the total, free, used, and buffered RAM memory usage.

The fifth line tells us about the total, free and used swap memory.



Welcome to the Processes

[ 204 ]

The remaining lines give the detailed information about running processes.  
The meaning of each column is described in the following table:

Column Description
PID Process ID
USER Effective user name of task's owner
PR Priority of task (lower the value, more is the priority)
NI Nice value of task. Negative nice value means more priority and positive 

means lesser priority
VIRT Virtual memory size used by process
RES Non-swapped physical memory a process
SHR Amount of shared memory available to a process
S Process status – D (uninterruptible sleep ), R (Running), S(Sleeping), T 

(Stopped by job control signal), t (Stopped by debugger), Z (Zombie)
%CPU % of CPU currently used by process
%MEM % of Physical memory currently used by process
TIME+ CPU Time, hundredths
COMMAND Command name

We can also reorder and modify the output when the top is running. To see  
help, use the ? or h key and the help window will be displayed, which contains 
following details:



Chapter 7

[ 205 ]

To sort on the basis of a specific field, the easiest method is to press the f key while 
top is running. A new window opens showing all the columns. The opened window 
looks as follows:

Use the up and down arrows to navigate and select a column. To sort on the basis  
of a particular field, press the s key and then press q to switch back to the top  
output window.

Here, we have selected NI and then pressed the s key and the q key. Now, the top 
output will be sorted with nice number. The output of the top after sorting with the 
column NI looks as follows:



Welcome to the Processes

[ 206 ]

Process substitution
We know that we can use a pipe to provide the output of a command as an input to 
another command. For example:

$ cat file.txt | less

Here, the cat command output—that is, the content of file.txt—is passed to 
the less command as an input. We can redirect the output of only one process (cat 
process in this example) as an input to another process.

We may need to feed the output of multiple processes as an input to another process. 
In such a case, process substitution is used. Process substitution allows a process to 
take the input from the output of one or more processes rather than a file.

The syntax of using process substitution is as follows:

To substitute input file(s) by list

<(list)

OR

To substitute output file(s) by list

>(list)

Here, list is a command or a pipeline of commands. Process substitution makes a 
list act like a file, which is done by giving list a name and then substituting that name 
in the command line.

Diffing the output of two processes
To compare two sets of data, we use the diff command. However, we know that 
the diff command takes two files as an input for producing diff. So, we will have to 
first save the two sets of data into two separate files and then run diff. Saving the 
content for diff adds extra steps, which is not good. To solve this problem, we can 
use the process substitution feature while performing diff.

For example, we want to know the hidden files in a directory. In a Linux and Unix-
based system, files that starts with . (dot) are known as hidden files. To see the 
hidden files, the -a option is used with the ls command:

$ ls -l ~  # Long list home directory content excluding hidden files

$ ls -al ~   # Long list home directory content including hidden files



Chapter 7

[ 207 ]

To get only the hidden files in a directory, run the diff command on the sorted 
output obtained from the preceding two commands:

$ diff  <(ls -l ~ | tr -s " " | sort -k9) <(ls -al ~ | tr -s " " | sort 
-k9)

Here, we have fed the commands ls -l ~ | tr -s " " | sort -k9 and ls -al 
~ | tr -s " " | sort -k9 as input data to the diff command instead of passing 
the two files.

Process scheduling priorities
During a process lifetime, it may need CPU and other resources to keep executing 
normally. We know that multiple processes are running simultaneously in a system 
and they may need a CPU to complete an operation. To share the available CPUs and 
resources, process scheduling is done so that each process gets a chance to make use 
of the CPU. When a process gets created, an initial priority value is set. Depending 
upon the priority value, the process gets the CPU time.

The process scheduling priority range is from -20 to 19. This value is also called 
a nice value. The lower the nice value, the higher is the scheduling priority of a 
process. So, the process with -20 will have the highest scheduling priority and the 
process with the nice value 19 will have the lowest scheduling priority.

To see the nice value of a process, the ps or top command can be used.  
The corresponding nice value of a process is available in the NI column:

$ ps -l

In the ps output, we can see in the NI column that the nice value of bash and the ps 
processes is 0.



Welcome to the Processes

[ 208 ]

Changing scheduling priorities
Every process in a system has some priority assigned that depends upon its nice 
value. Based on priority, the process gets CPU time and other resources to use. 
Sometimes, it may happen that a process needs to be executed quickly, but it is 
waiting for CPU resources to be freed for long time because of a lower scheduling 
priority. In such cases, we may want to increase its scheduling priority in order to 
finish a task sooner. We can change the scheduling priority of a process by using the 
nice and renice commands.

Using nice
The nice command launches a process with a user-defined scheduling priority.  
By default, processes created by a user get the nice value 0. To verify this, run  
the nice command without any option:

$ nice

0

Let's create a new firefox process that actually consumes CPU and resources:

$ killall firefox  # Terminate any firefox if already running

$ firefox &    # Firefox launched in background

$ top

We can see that the nice value of firefox is 0 and the CPU usage is 8.7%.

Now, we will kill the current firefox and launch another firefox with the  
nice value 10. This means, firefox will have a lower priority than other  
user-created processes.



Chapter 7

[ 209 ]

To create a process with a different nice value, the -n option is used with nice:

$ killall firefox

$ nice -n 10 firefox &

OR

$ nice -10 firefox &

To see what nice value firefox has now, check the top output:

$ top

We can see that the firefox process has the 10 nice value. To provide more 
scheduling priority—that is, setting a negative nice value to a process—root  
privilege is required.

The following example sets the firefox process as a higher scheduling priority:

$  nice -n -10 firefox

OR

$ sudo  nice --10 firefox

Using renice
The nice command can only modify a nice value during the launch of a process. 
However, if we want to change a running process scheduling priority, then the 
renice command should be used. The renice command alters the scheduling 
priority of one or more running processes.

The syntax of using renice is as follows:

renice [-n] priority [-g|-p|-u] identifier



Welcome to the Processes

[ 210 ]

Here, the -g option considers succeeding an argument—that is, identifier as GIDs.

The -p option considers succeeding an argument—that is, identifier as PIDs.

The -u option considers succeeding an argument—that is, identifier as usernames  
or UIDs.

If none of the options—-g, -p, or -u—are provided, identifiers are considered  
as PIDs.

For example, we will change the priority of all the processes belonging to a user. 
Firstly, see the current priority of processes owned by the user:

$  top -u skumari    # User is skumari

Now, we will modify the priority of all processes using renice with the –u option:

$ sudo renice -n -5 -u skumari



Chapter 7

[ 211 ]

Let's view a new nice value of processes owned by the user skumari:

$ top -u skumari

To modify the scheduling priority of a few processes, modify using the process's 
PIDs. The following example modifies the process plasmashell and Firefox having 
the PIDs 1505 and 5969 respectively:

$ sudo renice -n 2 -p 1505 5969

$ top -u skumari

Now, we can see that the nice values of the process plasmashell and Firefox are 2.

Signals
A signal is a software interrupt to notify processes that an external event has occurred. 
In a normal execution, processes keeps running as expected. Now, for some reason, 
a user may want to cancel a running process. When the process is started from a 
terminal, it will terminate when we hit the Ctrl + c keys or run the kill command.

When we press Ctrl + c keys while process is running in a terminal, a signal SIGINT 
is generated and sent to the process running in foreground. Also, when the kill 
command is called on process, the SIGKILL signal is generated and the process  
is terminated.



Welcome to the Processes

[ 212 ]

Available signals
Among all available signals, we will discuss the frequently used signals here:

Signal name Value Default Action Description
SIGHUP 1 Term This signal is used to Hangup or death of 

controlling process
SIGINT 2 Term This signal is used to interrupt from keyboard 

like ctrl + c, ctrl + z
SIGQUIT 3 Core This signal is used to quit from keyboard
SIGILL 4 Core It is used to for Illegal instruction
SIGTRAP 5 Core This signal is used to trace or breakpoint trap
SIGABRT 6 Core It is used to abort signal
SIGFPE 8 Core Floating point exception
SIGKILL 9 Term Process terminates immediately
SIGSEGV 11 Core Invalid memory reference
SIGPIPE 13 Term Broken pipe
SIGALRM 14 Term Alarm signal
SIGTERM 15 Term Terminate the process
SIGCHLD 17 Ign Child stopped or terminated
SIGSTOP  19 Stop This signal is used to stop the process
SIGPWR 30 Term Power failure

In the preceding table, we mentioned the signal name and value. Any of them can 
be used while referring to a signal. The meaning of terms used in the Default action 
section are as follows:

• Term: Terminate
• Core: Terminate the process and dump core
• Ign: Ignore the signal
• Stop: Stop the process

Depending upon what kind of signal it is, any of the following actions can be taken:

• A signal can be ignored by a process, which means no action will be taken. 
Most of the signals can be ignored, except SIGKILL and SIGSTOP. The 
SIGKILL and SIGSTOP signals can't be caught, blocked, or ignored. This 
allows the kernel to kill or stop any process at any point of time.



Chapter 7

[ 213 ]

• A signal can be handled by writing a signal handler code specifying the 
required action to be taken after a particular signal is received.

• Each signal has a default action, so let the signal perform the default action; 
for example, terminate the process in case the SIGKILL signal is sent.

To know all signals and its corresponding value, use the kill command with  
the–l option:

$ kill -l

The kill command also provides a way to convert a signal number to a name when 
used in the following way:

kill -l signal_number

$ kill -l 9

KILL

$ kill -l 29

IO

$ kill -l 100  # invalid signal number gives error

bash: kill: 100: invalid signal specification

To send a signal to process(es), we can use the kill, pkill, and kilall commands:

$ kill -9 6758  # Sends SIGKILL process to PID 6758

$ killall -1 foo  # Sends SIGHUP signal to process foo

$ pkill -19 firef  # Sends SIGSTOP signal to processes' name beginning 
with firef



Welcome to the Processes

[ 214 ]

Traps
When a process is running and in between we kill the process, the process terminates 
instantly without doing anything further. A programmer who writes a program may 
want to do some tasks before a program actually terminates; for example, a clean up 
of the temporary directories created, saving applications' state, saving logs, and so 
on. In such a case, a programmer would like to listen to signals and do the required 
task before actually allowing you to terminate the process.

Consider the following shell script example:

#!/bin/bash
# Filename: my_app.sh
# Description: Reverse a file

echo "Enter file to be reversed"
read filename

tmpfile="/tmp/tmpfile.txt"
# tac command is used to print a file in reverse order
tac $filename > $tmpfile
cp $tmpfile $filename
rm $tmpfile

This program takes an input from a user file and then reverses the file content. This 
script creates a temporary file to keep the reversed content of the file and later copies 
it to the original file. At the end, it deletes the temporary file.

When we execute this script, it may be waiting for a user to input a text filename 
or maybe in between reversing the file (a large file takes more time to reverse the 
content). During this, if processes are terminated, then the temporary file may not get 
deleted. It is the programmer's task to make sure that temporary files are deleted.

To solve such a problem, we can handle the signal, perform the necessary tasks, and 
then terminate the process. This can be achieved by using the trap command. This 
command allows you to execute a command when a signal is received by a script.

The syntax of using trap is as follows:

$ trap action signals

Here, we can provide trap action to be performed. An action can be an executing 
command (s).

In the preceding syntax of trap, signals refers to providing one or more signal 
names for which an action has to be performed.



Chapter 7

[ 215 ]

The following shell script demonstrates how trap is used to perform tasks before a 
process suddenly exits on receiving a signal:

#!/bin/bash
# Filename: my_app_with_trap.sh
# Description: Reverse a file and perform action on receiving signals

echo "Enter file to be reversed"
read filename

tmpfile="/tmp/tmpfile.txt"
# Delete temporary file on receiving any of signals
# SIGHUP SIGINT SIGABRT SIGTERM SIGQUIT and then exit from script
trap "rm $tmpfile; exit" SIGHUP SIGINT SIGABRT SIGTERM SIGQUIT
# tac command is used to print a file in reverse order
tac $filename > $tmpfile
cp $tmpfile $filename
rm $tmpfile

In this modified script, when any of the signals such as SIGHUP, SIGINT, SIGABRT, 
SIGTERM, or SIGQUIT are received, then rm $tmpfile; exit will be executed. This 
means that a temporary file will first be deleted and then you can exit from the script.

Inter-process communication
A process alone can do a certain things, but not everything. It will be a very useful 
and good resource utilization if two or more processes can communicate with each 
other in the form of sharing results, sending or receiving messages, and so on. In a 
Linux or Unix-based operating system, two or more processes can communicate with 
each other using IPC.

IPC is the technique by which processes communicate with each other and are 
managed by kernel.

IPC is possible to do by any of the following ways:

• Named pipes: These allow processes to read from and write into it.
• Shared memory: This is created by one process and is further available for 

read from and write to this memory by multiple processes.
• Message queue: This is a structured and an ordered list of memory segments 

where processes store or retrieve data in queue fashion.



Welcome to the Processes

[ 216 ]

• Semaphores: This provides a synchronizing mechanism for processes that 
are accessing the same resource. It has counters that are used to control the 
access to shared resources by multiple processes.

While discussing named pipes in Chapter 6, Working with Files, we learned how 
processes can communicate using named pipes.

Information on IPC using ipcs
The ipcs command provides information about IPC facilities for which a calling 
process has the read access. It can provide information on three resources: shared 
memory, message queue, and semaphore.

The syntax of using ipcs is as follows:

ipcs option

Where options are as follows:

Option Description
-a Displays information for all resources—shared memory, message 

queue, and semaphore
-q Displays information about active message queues
-m Displays information about active shared memory segments
-s Displays information about active semaphore sets
-i ID Shows the detailed information for an ID. Use it with the -q, -m or 

-s option.
-l Shows resource limits
-p Shows PIDs of the resource creator and last operator
-b Prints sizes in bytes
--human Print sizes in a human-readable format

Listing information provided by IPCs
We can use the ipcs command without an option or with –a:

$ ipcs

OR

$ ipcs -a



Chapter 7

[ 217 ]

To see only the shared memory segment, we can use ipcs with the –m option:

$ ipcs -m --human

Here, the --human option made a size column in a more readable format by 
providing the size in KB and MB instead of giving it in bytes.



Welcome to the Processes

[ 218 ]

To find out detailed information about a resource ID, use ipcs with the -i option 
followed by the resource ID:

$ ipcs -m -i 393217

Knowing processes' PID who recently did IPCs
We can know the PID of the processes that have recently accessed a specific IPC 
resource using the -p option:

$ ipcs -m -p

Here, the cpid column shows pid of the processes that created the shared memory 
resource, and lpid refers to the PID of the processes that last accessed the shared 
memory resource.



Chapter 7

[ 219 ]

Summary
After reading this chapter, you will understand what process is in a Linux and 
UNIX-based system. You should now know how to create, stop, terminate, and 
monitor processes. You should also know how to send signals to a process and 
manage the received signals in your shell script with the trap command. You have 
also learned how different processes communicate with each other using IPC on 
mechanism in order to share resources or to send and receive messages.

In the next chapter, you will learn about the different ways in which tasks can 
be automated and how they run at a specified time without any further human 
intervention. You will also learn how and why start-up files are created, and how  
to embed other programming languages such as Python in a shell script.





[ 221 ]

Scheduling Tasks and 
Embedding Languages in 

Scripts
Until now, we learned about various useful shell utilities and how to write them 
into a shell script in order to avoid writing the same instructions again and again. 
Automating tasks by writing into scripts reduces the tasks up to a certain extent, but 
still we will have to run those scripts whenever required. Sometimes, it happens that 
we want to run a command or script at a particular time, for example, sysadmin has to 
run a clean-up and maintenance of a system available in the data center at 12:30 AM. 
To perform the required operation, sysadmin will login into a machine around 12:30 
AM and do the necessary work. But what if his or her home network is down and the 
data center is far? It will be inconvenient and tough to perform a task at that moment. 
There are also a few tasks that need to be performed on daily or hourly basis, for 
example, monitoring the network usage of each user, taking a system backup,  
and so on. It will be very boring to execute repetitive tasks again and again.

In this chapter, we will see how to solve such issues by scheduling tasks at a specific 
time or interval of time by using utilities at and crontab. We will also see how 
systemd (the first process started after a system is booted up with PID 1) manages 
processes needed after system start-up. We will also see how systemd manages 
different services and system logs. At the end, we will learn how we can embed 
other scripting languages in a shell script to get extra capabilities in the shell script.



Scheduling Tasks and Embedding Languages in Scripts

[ 222 ]

This chapter will cover the following topics in detail:

• Running tasks at a specific time
• Cron jobs
• Managing Crontab entry
• systemd
• Embedding languages

Running tasks at a specific time
In general, when we run a command or script, it starts executing instantly. However, 
what if we want it to run later at a specific time? For example, I want to download 
large data from the Internet, but don't want to slow down my Internet bandwidth 
while I am working. So, I would like to run my download script at 1:00 AM since 
I won't be using the Internet for any kind of work after 1:00 AM. It is possible to 
schedule download scripts or commands later at a specified time using the at 
command. We can also list scheduled tasks using the atq command or remove  
any scheduled tasks using the atrm command.

Executing scripts using at
We will use the at command to run tasks at a given time. The syntax of using the at 
command is as follows:

at [Option] specified_time

In the preceding syntax, specified_time refers to the time at which a command or 
script should run. The time can be in the following format:

Time format Description
HH:MM The specific time of the day in hours (HH) and minutes (MM). 

If the time is already past, then the next day is assumed. Time is 
specified in 24 hours format.

noon At 12:00 during day time.
teatime At 16:00 or 4 pm in afternoon.
midnight At 12:00 at night.
today Refers to the current time on same day.
tomorrow Refers to the current time on the next day.
AM or PM Suffixed with the time to specify time in 12-hour format, for 

example, 4:00PM.



Chapter 8

[ 223 ]

Time format Description
now + count time-
units

Run a script at the same time after a certain time-unit. Count 
can be an integer number. Time units can be in minutes, hours, 
days, weeks, months, or years.

Date A date can be given in the form of month-name, day, and 
optional year. Date can be in one of the following formats: 
MMDD[CC]YY, MM/DD/[CC]YY, DD.MM.[CC]YY, or [CC]
YY-MM-DD.

The options to the at command are explained in the following table:

Option Description
-f FILE Specify a script file to be executed.
-l Alias to the atq command.
-m Send an e-mail to the user on job completion.
-M Don't send an e-mail to the user.
-r Alias to the atrm command.
-t time Run a job at the time. The format of time is given as [[CC]

YY]MMDDhhmm[.ss].
-c job_number Print the job associated with job_number on a standard 

output.
-v Print the time at which the job will be executed.

Scheduling commands
The following command is scheduled to run at 14:00, which stores the filesystem's 
usage in a file called file_system_usage.log in a user's home directory:

$ at 14:00

warning: commands will be executed using /bin/sh

at> df > ~/file_system_usage.log

at> <EOT>

job 33 at Mon Sep 21 14:00:00 2015

When we run the at command as shown, a warning message warning: commands 
will be executed using /bin/sh is printed, which specifies which shell will be used to 
execute commands. In the next line, we will see at prompt where we can specify the 
list of commands to be executed at 14:00. In our case, we entered the df > ~/file_
system_usage.log command, which means run the df command and save its result 
in the file_system_usage.log file. 



Scheduling Tasks and Embedding Languages in Scripts

[ 224 ]

Once the list of commands to be entered is finished, press the Enter key and then, in 
the next line, use the Ctrl + d keys to exit from at prompt. Before getting a normal 
shell prompt, we will see the message saying created job number and time stamp at 
which the job will be executed. In our case, the job number is 33 and the time stamp 
is Mon Sep 21 14:00:00 2015.

We can check the content of the file_system_usage.log file once the time stamp 
we specified is over.

We can print on stdout what is going to be executed when a particular scheduled 
job runs:

$ at -c 33  # Lists content of job 33

We can see that the df > ~/file_system_usage.log command will be executed. 
The rest of the lines specify in what environment a task will be executed.

Now, consider a job scheduled by the root user:

# at -v 4am

Mon Sep 21 04:00:00 2015

warning: commands will be executed using /bin/sh

at> reboot

at> <EOT>

job 34 at Mon Sep 21 04:00:00 2015

The job with the number 34 is scheduled by the user root. This job system will  
reboot at 4am.



Chapter 8

[ 225 ]

Scheduling a script file
We can schedule a script file for execution at a specific time using the -f option with 
the at command.

For example, we want to run the loggedin_user_detail.sh script next week at 4 
pm. This script lists logged in users and what processes they are running when the 
script gets executed at a scheduled time. The content of the script is as follows:

$ cat  loggedin_user_detail.sh

#!/bin/bash

# Filename: loggedin_user_detail.sh

# Description: Collecting information of loggedin users

users_log_file=~/users_log_file.log

echo "List of logged in users list at time 'date'" > $users_log_file

users=('who | cut -d' ' -f1 | sort | uniq')

echo ${users[*]} >> $users_log_file

for i in ${users[*]}

do

  echo "Processes owned by user $i" >> $users_log_file

  ps u -u $i >> $users_log_file

  echo

done

$ chmod +x  loggedin_user_detail.sh  # Provide execute permission

Now, to run the preceding script at 4 pm next week, we will run the  
following command:

$at -f loggedin_user_detail.sh 4pm + 1 week

warning: commands will be executed using /bin/sh

job 42 at Sun Sep 27 16:00:00 2015

We can see that the job has been scheduled to run one week later.



Scheduling Tasks and Embedding Languages in Scripts

[ 226 ]

Listing scheduled tasks
Sometimes, it happens that a task has been scheduled to run at a specific time,  
but we forget the time at which a task is supposed to run. We can see the already 
scheduled tasks using one of the atq or the at command with the -l option:

$ atq

33      Mon Sep 21 14:00:00 2015 a skumari

42      Sun Sep 27 16:00:00 2015 a skumari

The atq command displays jobs scheduled by the current user with the job number, 
time, and user's name:

$ sudo atq

34      Mon Sep 21 04:00:00 2015 a root

33      Mon Sep 21 14:00:00 2015 a skumari

42      Sun Sep 27 16:00:00 2015 a skumari

Running atq with sudo, lists jobs scheduled by all users.

Removing scheduled tasks
We can also remove a scheduled task if the task is no longer required to be 
performed. Removing a task is also useful when we want to the modify time at 
which a task is to be executed. To modify time, first remove the scheduled task  
and then create the same task again with the new time.

For example, we don't want to reboot a system at 1 am instead of 4 am. For this,  
the root user will first remove the job 34 using the atrm command:

# atrm 34

$ sudo atq    # Updated lists of tasks

    33      Mon Sep 21 14:00:00 2015 a skumari

    42      Sun Sep 27 16:00:00 2015 a skumari

# at 1am

warning: commands will be executed using /bin/sh

    at> reboot

    at> <EOT>

job 47 at Mon Sep 21 01:00:00 2015

$ sudo atq



Chapter 8

[ 227 ]

    33      Mon Sep 21 14:00:00 2015 a skumari

    42      Sun Sep 27 16:00:00 2015 a skumari

    47      Mon Sep 21 01:00:00 2015 a root

We can see that the task scheduled by the root user will now run at 1 am instead  
of 4 am.

Cron jobs
Cron jobs are jobs or tasks that run at regular intervals of time unlike the at 
command. For example, in office, my job is to keep all the detailed information of 
company employees that is confidential. To keep it secure and updated without 
any loss of information, I will have to take the backup of the latest data in external 
devices such as a hard disk or a flash drive. Depending upon the number of 
employees, I may have to take the backup on a minute, hour, daily or weekly basis. 
It's hard, tedious, and a waste of time to back up manually every time. By having the 
knowledge of how to schedule a cron job, it can be very easily achieved. A Cron job 
creation is frequently done by system administrators to schedule tasks that are to be 
performed at regular intervals, for example, taking the backup of a system, saving 
logs of each user who is logged in, monitoring and reporting the network usage of 
each user, performing system clean-up, scheduling system update, and so on.

Cron consists of two parts: cron daemon and cron configuration.

Cron daemon
The cron daemon automatically starts when a system is booted and keeps running  
in the background. Daemon process is known as crond and is started by systemd 
or the init process, depending upon what your system has. Its task is to check 
configuration files regularly at one minute intervals and check whether any  
tasks are to be completed.

Cron configuration
Cron configuration contains files and directories where the Cron jobs to be scheduled 
are written. They are available in the /etc/ directory. The most important file 
associated with cron configuration is crontab. In a Linux system, configuration  
files related to cron are as follows:

• /etc/cron.hourly/: This contains the scripts to be run each hour
• /etc/cron.daily/: This contains the scripts to be run once in a day



Scheduling Tasks and Embedding Languages in Scripts

[ 228 ]

• /etc/cron.weekly/: This contains the scripts to be run once in a week
• /etc/cron.monthly/: This contains the scripts to be run once in a month
• /etc/crontab: This contains commands and the interval at which  

they should run
• /etc/cron.d/: This is the directory with files having commands and the 

interval at which they should run

Scripts can be directly added into any of the directories such as cron.hourly/, 
cron.daily/, cron.weekly/, or cron.monthly/, in order to run them at an hourly, 
daily, weekly, or monthly basis respectively.

The following is a simple shell script firefox_memcheck.sh, which checks whether 
a Firefox process is running or not. If Firefox is running and its memory usage is 
greater than 30 percent, then restart Firefox:

#!/bin/sh
# Filename: firefox_memcheck.sh
# Desription: Resatrts application firefix if memory usage is more 
than 30%

pid='pidof firefox' # Get pid of firefox
if [ $pid -gt 1 ]
then
  # Get current memory usage of firefox
  current_mem_usage='ps -u --pid $pid| tail -n1 | tr -s ' ' | cut -d ' 
' -f 4'
  # Check if firefox memory  usage is more than 30% or not
  if [ $(echo "$current_mem_usage > 30" | bc) -eq 1 ]
  then
    kill $pid   # Kill firefox if memory usage is > 30%
    firefox &   # Launch firefox
  fi
fi

We can add this script into the /etc/cron.hourly/ directory of the system and it 
will keep checking our Firefox memory usage. This script can be modified to monitor 
the memory usage for other processes too.



Chapter 8

[ 229 ]

Crontab entries
By putting scripts into cron.{hourly, daily, weekly, monthly}, we can only 
set tasks at an interval of an hour, day, week, and month. What if a task has to run at 
2-day intervals, 10-day intervals, 90 minute intervals, and so on? To achieve this, we 
can add tasks into the /etc/crontab file or the /etc/cron.d/ directory. Each user 
may have their own crontab entry and files related to each users are available in /
var/spool/.

A crontab entry looks as follows:

We can see from the preceding screenshot that a crontab entry has five asterisks. 
Each asterisk defines a specific duration. We can replace * with a value suggested 
against each of them or leave it as it is. If * is mentioned in a field, then it means 
consider all the instances of that field.

The timing syntax can also be described as follows:

• Specify the minutes value between 0 to 59
• Specify hours that can range from 0 to 23
• Specify days that can range from 1 to 31
• Specify months that can range from 1 to 12 or we can write Jan, Feb, … Dec
• Specify the day of a week that can range from 0 to 6 or we can write sun (0), 

mon (1), …, sat (6)

All five fields are separated by blank spaces. It is followed by a username that 
specifies by which user the command will be executed. Specifying the username is 
optional and by default it is run as a root. The last field is command that is scheduled 
for execution.

An example demonstrating how to write the crontab entry is as follows:

20 7 * * 0 foo command



Scheduling Tasks and Embedding Languages in Scripts

[ 230 ]

Each field can be explained as follows:

• 20: 20th minute
• 7: 7AM
• *: Each day
• *: Each month
• 0: On Sunday
• foo: This command will run as the foo user
• command: This is the specified command to be executed

So, the command will run as root at 7:20 AM every Sunday.

We can specify multiple instances of a filed using a comma (,):

30 20,22 * * * command

Here, command will run at 8:30 PM and 10:30 PM every day.

We can also specify a range of time in a field using a hyphen (-) as follows:

35 7-11 * * 0-3 command

This means, the run command is at 7:35, 8:35, 9:35, 10:35, and 11:35 on Sunday, 
Monday, Tuesday, and Wednesday.

To run a script at a specific interval, we can specify the forward slash (/) as follows:

20-45/4 8 9 4 * command

The command will run on 9th April between 8:20 AM to 8:45 AM at an interval  
of 4 minutes.

Special strings in Crontab
Crontab may have the following strings specified as well:

String Description
@hourly Run once in an hour, equivalent to 0 * * * *
@daily or @midnight Run once in a day, equivalent to 0 0 * * *
@weekly Run once in a week, equivalent to 0 0 * * 0
@monthly Run once in a month, equivalent to 0 0 1 * *
@yearly or @annually Run once in a year, equivalent to 0 0 1 1 *
@reboot Run at system start-up



Chapter 8

[ 231 ]

Managing the crontab entry
We don't add or modify an entry of a crontab directly. It is done by using the 
crontab command that allows you to add, modify, and list crontab entries. Each 
user can have their own crontab where they can add, delete, or modify tasks. By 
default, it is enabled for all users, but if a system administrator wants to restrict  
some of the users, he or she can add that user in the /etc/cron.deny file.

The syntax of using the crontab command is as follows:

crontab [-u user] file

crontab [-u user] [option]

The options of the crontab are explained in the following table:

Option Description
-u user Appends the name of the user whose crontab is to be modified
-l Displays the current crontab on stdout
-e Edit the current crontab using an editor specified by the 

EDITOR env

-r Remove the current crontab
-i Interactive removal of the current crontab when used with the 

-r option

Listing crontab entries
To list the crontab entries, we use the -l option for the current user:

$ crontab -l

no crontab for foo

The output says that there is no crontab entry for the user foo. It means the user  
foo has not added any task in his or her crontab yet.

To view crontab as the root user, type the following command:

# crontab -l

no crontab for root

Alternatively, use the following command:

$ sudo crontab -l



Scheduling Tasks and Embedding Languages in Scripts

[ 232 ]

Editing crontab entries
Crontab of the current user can be edited or modified by using the -e option  
with crontab:

$ crontab -e

After executing the preceding command, an editor will open where the user can 
add tasks into the crontab file. In our case, the vi editor is launched. The following 
entries have been added into the user foo crontab entry:

After saving and exiting from the editor, the output obtained is as follows:

no crontab for foo - using an empty one
crontab: installing new crontab

To view the modified crontab entry of the user foo, run the –l option again:

$ crontab -l



Chapter 8

[ 233 ]

To create the crontab entry of the user root, we can run crontab with the -e option 
as the root:

# crontab -e

OR

$ sudo crontab -e

After running the preceding command, the editor opens to modify crontab for the 
user root that looks as follows after adding entries:

To view the crontab entry of the root, we can use crontab -l as the root user:

# crontab -l

The root user can also view and modify the crontab entry of another user.  
This is done by specifying the -u option followed by the username:

# crontab -u foo -e  # Modifying crontab of user foo as root



Scheduling Tasks and Embedding Languages in Scripts

[ 234 ]

Crontab of the user foo will be opened for modification as follows:

To view the crontab entry of another user, run the -l option with –u as follows:

# crontab -u foo -l

We can display the crontab of the user foo as follows:

Crontab entries are created using the crontab command and are stored in the  
/var/spool/cron/ directory. A file is created by the name of the user:

# ls /var/spool/cron

root  foo

We can see that a file is created for the users root and foo.



Chapter 8

[ 235 ]

Removing crontab entries
We can also remove crontab using the -r option with the crontab command.  
By default, crontab of the current user is deleted. Using the option with -i allows 
the interactive removal of crontab:

# crontab -i -r

crontab: really delete root's crontab? Y

By running the preceding command, the crontab entry of the user root has been 
deleted. We can verify this by running the -l option:

# crontab -l

no crontab for root

#  ls /var/spool/cron

foo

The user root can also delete crontab of other users by specifying the user in  
the–u option:

# crontab -r -i -u foo

crontab: really delete foo's crontab? n

We specified 'n' (no) instead of 'y' (yes), so the removal of the user foo crontab  
will be aborted.

Let's delete this now:

# crontab -r -i -u foo

crontab: really delete foo's crontab? Y

Now, the crontab entry of the user foo has been removed. To verify, run the 
following command:

$  crontab -l

no crontab for foo



Scheduling Tasks and Embedding Languages in Scripts

[ 236 ]

systemd
Nowadays, most of the Linux distribution systems such as Fedora, Ubuntu, Arch 
Linux, Debian, openSUSE, and so on, have switched from init to systemd. systemd 
is the first process that gets started after system boot-up with PID 1. It controls and 
manages other processes that should be started after the system boot-up. It is also 
known as basic building block for an operating system. To learn about an init-based 
system, refer to the Wikipedia link at https://en.wikipedia.org/wiki/Init.

systemd units
systemd has several units, each containing a configuration file with information 
about a service, socket, device, mount point, swap file or partition, start-up target, 
and so on.

The following table explains some of unit files:

Unit type File extension Description
Service unit .service A system service
Device unit .device A device file recognized by kernel
Mount unit .mount A file system mount point
Timer unit .timer A systemd timer
Swap unit .swap A swap file

To list all the installed unit files in a system, run the systemctl command with the 
list-unit-files option:

$ systemctl list-unit-files | head -n 12

https://en.wikipedia.org/wiki/Init


Chapter 8

[ 237 ]

To list unit files of a unit type, use the list-unit-files and --type options. Running 
the following command will show only a service unit available in the system:

$ systemctl list-unit-files --type=service | head -n 10

Managing services
systemd manages all the available services in a system, from the time of Linux kernel 
boot up till the shutdown of the system. A service in a Linux system is an application 
that runs in the background or is waiting to be used. Service management files have 
the suffix .service in its file name.

In systemd-based Linux system, a user or an administrator can manage services 
using the systemctl command.

Status of a service
To list the current status of services and check whether it is running or not, use 
systemctl status:



Scheduling Tasks and Embedding Languages in Scripts

[ 238 ]

For example, to see the status of my NetworkManager service, run the  
following command:

$ systemctl status -l NetworkManager.service 

We can see that the NetworkManager service is running and is in active state. It also 
provides detailed information associated with the current NetworkManager service.

Let's see status of another service called the sshd. The sshd service controls whether 
ssh connection is possible to a system or not:

$ systemctl status sshd.service

This shows that service sshd is inactive currently.



Chapter 8

[ 239 ]

If no verbose output is required, then we can just use the is-active option to  
see a service status:

$ systemctl is-active sshd.service 

unknown

$ systemctl is-active NetworkManager.service

active

Here, active means a service is running and unknown means a service is  
not running.

Enabling and disabling services
When a system is booted, systemd automatically starts some of the services.  
A few of the services may not be running as well. To enable a service to run after a 
system is booted, use systemctl enable and to stop a service running by a system 
during boot time, use systemctl disable.

Executing the following command will allow systemd to run the sshd service after a 
system is booted up:

# systemctl enable sshd.service

Executing the following command will allow systemd to not run sshd.service 
when a system is booted up:

# systemctl disable sshd.service

To check whether a service is enabled or not, run the systemctl is-enabled 
command:

$ systemctl is-enabled sshd.service

disabled

$ systemctl is-enabled NetworkManager.service

enabled

It means that the sshd service is disabled currently during the system start-up,  
while the NetworkManager service is enabled during the start-up by systemd.

Start and stop a service
When a system is running, sometimes we may need some services running.  
For example, to do ssh in my current system from another system, the sshd  
service must be running.



Scheduling Tasks and Embedding Languages in Scripts

[ 240 ]

For example, let's see what the current status of the sshd service is:

$ systemctl is-active sshd.service

unknown

The sshd service  is not running currently. Let's try to do ssh in a system:

$ ssh foo@localhost  # Doing ssh to same machine  # Doing ssh to same 
machine

 ssh: connect to host localhost port 22: Connection refused

We can see that the ssh connection has been refused.

Now, let's start running the sshd service. We can start a service by using the 
systemctl start command as follows:

# systemctl start sshd.service 

$ systemctl is-active sshd.service

active

Now, the sshd service is running. Try doing ssh into the machine again:

$ ssh foo@localhost

Last login: Fri Sep 25 23:10:21 2015 from 192.168.1.101

Now, the login has been done successfully.

We can even restart a running service using the systemctl restart command.  
This is required when a service has been modified. Then, to enable the modified 
setting, we can just restart it.

#  systemctl restart sshd.service

The preceding command will restart the sshd service.

When ssh is no longer required, it's safe to stop running it. This avoids an anonymous 
access to a machine. To stop running a service, run the systemctl stop command:

# systemctl stop sshd.service

$ systemctl is-active sshd.service

unknown



Chapter 8

[ 241 ]

Viewing system logs
To check whether a user is working on an individual or enterprise machine, 
viewing system logs is very important in order to trace a problem and get detailed 
information of activities happening in a system. Viewing system logs plays an 
important role in monitoring and ensuring network traffics are not vulnerable. 
On a systemd-based system, system logs are collected and managed by one of its 
component called journald. Its task is to collect a log of applications and kernel.  
Log files are available in the /var/log/journal/ directory.

To view a log collected by journald, the journalctl command is used:

# journalctl

Running the preceding command displays all system logs collected, starting from 
old and grows down to newer logs.

Viewing the latest log entries
To see the latest log entries and continuously printing new entries as appended to 
the journal, use the –f option:

$ journalctl -f



Scheduling Tasks and Embedding Languages in Scripts

[ 242 ]

To see the log entries captured since the last boot of a system, use the –b option:

$ journalctl -b

Viewing logs of a particular time interval
We can also view logs of a particular time interval. For example, to view logs of the 
last 1 hour, we can run the following command:

$  journalctl --since "1 hour ago" --until now

To view log entries since July 1, 2015 until now, we can run the following command:

$ journalctl --since 2015-07-01

To view logs from Aug 7, 2015 at 7:23 PM to Aug 9, 2015 at 7 AM, we can run the 
following command:

$ journalctl --since "2015-08-07 19:23:00" --until "2015-08-09 7:00:00" 

Embedding languages
Shell scripting provides a certain set of features as compared to what we get in other 
scripted programming languages such as Python, Ruby, Perl, and AWK. These 
languages provide additional features as compared to what we get in a shell script 
language. On Linux and UNIX-based system, to use these languages, we have to 
install them separately if they are not preinstalled.



Chapter 8

[ 243 ]

Consider a simple example: there is a json or XML file and we want to parse it and 
retrieve the data stored in it. It's very hard and error-prone to do this using shell and 
its commands, but if we are aware of the Python or Ruby languages, we can easily do 
it and then embed it into a shell script. Embedding another language in a shell script 
should be done to reduce the effort and also to achieve better performance.

The syntax for embedding other languages in a shell script is as follows:

Scripting language The syntax of embedding into a shell script
Python (Python version 2) python -c ' '. Inside single quotes write the Python code 

to be processed
Python3 python3 -c ' '. Inside single quotes write the Python 

version 3 code to be processed
Perl perl -e ' '. Inside single quotes write the Perl code.
Ruby ruby -e ' '. Inside single quotes write the Ruby code.
AWK This can be used as a command utility. Refer to the awk 

man page for available options.

Embedding Python language
To embed Python language inside a shell script, we will use python -c " Python 
Code". To learn about Python, refer to the official website at https://www.python.
org/.

A simple Python example would be printing Hello World in Python, which is  
done as follows:

print "Hello World"

To embed this in a shell script, we can write the code as follows

#!/bin/bash
# Filename: python_print.sh
# Description: Embeding python in shell script

# Printing using Python
python -c 'print "Hello World"'

We will now execute the python_print.sh script as follows:

$ sh python_print.sh

Hello World

https://www.python.org/
https://www.python.org/


Scheduling Tasks and Embedding Languages in Scripts

[ 244 ]

To embed multiple lines of Python code in a shell script, use the following code:

 python -  <<EOF
# Python code
EOF

Here, python -  instructs the python command to take the input from stdin and  
EOF is a label that instructs to take the stdin input until it encounters the EOF text.

The following example embeds Python language in a shell script and fetches unread 
e-mails from the user's Gmail account:

#!/bin/bash
# Filename: mail_fetch.sh
# Description: Fetching unread email from gmail by embedding python in 
shell script

# Enter username and password of your gmail account
echo Enter your gmail username:
read USER
echo Enter password:
read -s PASSWD

echo Running python code
python - <<CODE
# Importing required Python module

import urllib2
import getpass
import xml.etree.ElementTree as ET

# Function to get unread messages in XML format
def get_unread_msgs(user, passwd):
    auth_handler = urllib2.HTTPBasicAuthHandler()
    auth_handler.add_password(
        realm='mail.google.com',
        uri='https://mail.google.com',
        user=user,
        passwd=passwd
    )
    opener = urllib2.build_opener(auth_handler)
    urllib2.install_opener(opener)



Chapter 8

[ 245 ]

    feed = urllib2.urlopen('https://mail.google.com/mail/feed/atom')
    return feed.read()

xml_data = get_unread_msgs("$USER", "$PASSWD")
root = ET.fromstring(xml_data)

# Getting Title of unread emails
print "Title of unread messages:"
print "........................"
count=0
for e in root.iter('{http://purl.org/atom/ns#}title'):
    print e.text

CODE

echo "Done!"

After executing this script, the sample output looks as follows:

$ sh mail_fetch.sh
Enter your gmail username:
foo@gmail.com
Enter password:

Running python code
Title of unread messages:
.....................……………..
Gmail - Inbox for foo@gmail.com
Unread message1
unread message2
Unread message3
Done!

Embedding AWK language
Awk is a programming language designed for text processing and is mainly  
used for fetching relevant data and for reporting tools. To learn more about  
AWK programming language, refer to its man page or visit the website at  
http://www.gnu.org/software/gawk/manual/gawk.html.

http://www.gnu.org/software/gawk/manual/gawk.html


Scheduling Tasks and Embedding Languages in Scripts

[ 246 ]

The Awk language can be very easily used in a shell script. For example, consider the 
output of the df command on a running system:

$ df -h

To fetch the fourth column—that is, the Avail field using awk—we can write a shell 
script using awk as follows:

#!/bin/bash
# Filename: awk_embed.sh
# Description: Demonstrating using awk in shell script

# Fetching 4th column of command df output
df -h |awk '{ print $4 }'

Consider another example in which we will use an input file that will be the  
/etc/passwd file of a system. This file contains the basic information about each  
user or account on a Linux or UNIX-based system.

Each line of a /etc/passwd file looks as follows:

root:x:0:0:root:/root:/bin/bash

There are seven fields and each field is separated by a colon (:). To learn the detailed 
meaning of each field, refer to the Wikipedia link at https://en.wikipedia.org/
wiki/Passwd.

https://en.wikipedia.org/wiki/Passwd
https://en.wikipedia.org/wiki/Passwd


Chapter 8

[ 247 ]

The following shell script makes use of awk features and displays some useful 
information from the /etc/passwd file. For example, we will consider the  
following as the content of the passwd file:

$ cat passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

$ cat passwd_file_info.sh    # Shell script content

#!/bin/bash

# Filename: passwd_file_info.sh

# Desciption: Fetches useful information from /etc/passwd file using awk

# Fetching 1st and 3rd field i.e. Username and UID and separate them with 
blank space

awk -F":" '{ print "Username: " $1 "\tUID:" $3 }' passwd

# Searching line whose user is root

echo "User root information"

awk '$1 ~ /^root/' passwd

Running this script gives following result:

$ sh passwd_file_info.sh

Username: root  UID:0

Username: bin   UID:1

Username: daemon        UID:2

Username: adm   UID:3

Username: lp    UID:4

Username: sync  UID:5



Scheduling Tasks and Embedding Languages in Scripts

[ 248 ]

Username: shutdown      UID:6

Username: halt  UID:7

User root information

root:x:0:0:root:/root:/bin/bash  

It is also possible to use compiled languages such as C, C++, 
and Java in a shell script. To do so, write commands to compile 
and execute the code.

Summary
After reading this chapter, you should now know how to schedule a task to be 
performed at a specific time using the at command. You should also know the 
benefits of creating Cron jobs, which need to be performed multiple times. You 
should have also learned how to use the crontab command to add, modify, list, and 
remove crontab entries. You also have a good understanding of systemd—the first 
process created on a system—and how it manages other system processes, services, 
and logs. You should also know how to embed other scripting languages such as 
Python, AWK, Ruby, and so on, in a shell script.

After reading all of these chapters and practicing the examples, you should now 
be confident in shell scripting. Being a master of the command line, you are now 
capable of writing your own shell scripts to solve your day-to-day tasks. Finally, if 
anything is not covered in this book, you know that you should look into the man 
page of any command for help.



[ 249 ]

Index
A
alias

about  106
creating  106, 107
listing  108
removing  108

arithmetic operators  13
assignment operator  13
associative array

about  91
declaration  91
operations  91-93
value assignment  91

at command
used, for executing scripts  222, 223

AWK language
embedding  245-247
URL  245

B
bash completion

bash completion specification,  
removing  130, 131

created bash completion, running  134
default bash completion behavior,  

modifying  130
example  133, 134
existing bash completion, viewing  129
managing, with complete  129

bash startup files
.bash_logout  150
.bash_profile  147-149
.bashrc  144-146
using  144

basic file operations
about  162
files, creating  162
files, deleting  166
files, modifying  164
files, viewing  165

block device file
about  179
creating  179

builtin shell variables
defining  10-12

C
cat command  63
character based translation

character set, inverting  63
input characters, deleting  61
squeezing, to single occurrence  62
tr, using  61

character classes
[:alnum:]  37
[:alpha:]  37
[:blank:]  37
[:digit:]  37
[:graph:]  37
[:lower:]  37
[:print:]  37
[:punct:]  38
[:upper:]  37
[:xdigit:]  38
about  37
matching dates, in mm-dd-yyyy format  38

character device file
about  179
creating  179



[ 250 ]

character ranges
[0-9]  37
[2-46-8j-lB-M]  37
[a-z]  37
[A-Z]  37
[a-zA-Z0-9]  37
[h-k]  37
about  37
regex, for valid shell variable  39

command completion
about  128
bash completion, managing with  

complete  129
bash completion, writing for  

application  131-133
command line parameters

arguments, reading in script  117, 118
command line arguments, shifting  119
command line options, processing  

in script  120, 121
passing, to script  117

commands
scheduling  223, 224

Common UNIX Printing  
System (CUPS)  181

comparison operators  15
conditional statements

elif statement  86, 87
else statement  86
if statement  86
nested if  87, 88
using, with if and else  84-86

configuration files
about  190
modifying  190
viewing  190

construct commands
defining, eval used  21, 22

cron configuration  227, 228
cron daemon  227
Cron jobs

cron configuration  227, 228
cron daemon  227
crontab entries  229
defining  227

crontab entries
editing  232-234

listing  231
managing  231
removing  235
special strings  230
writing  229

cut-based selection
about  68, 69
text selection, in files  70, 71

cut command, options
-b LIST  68
-c LIST  68
--complement  68
-d DELIM  68
-f LIST  68
--output-delimiter=STRING  68
-s  68

D
debugging, scripts

echo command used  122, 123
entire script, debugging with  

-x option  123-125
performing  121, 122
section, debugging with  

set options  125-127
default environment

defining  138
default history behavior

modifying  153
diff command

options  172
directory file  162

E
effective script

writing  73
environment variables

about  139
versus shell variables  139

exit codes
about  74
Exit code 0  75
Exit code 1  75
Exit code 2  76
Exit code 126  76
Exit code 127  76



[ 251 ]

Exit code 128+n  76
with special meaning  75, 76

expressions, testing with test command
about  79
arithmetic checks  81, 82
expression checks  83, 84
file checks  79-81
string checks  82, 83

F
files

comparing  171
comparing, diff command used  172, 173
configuration files  190
content, viewing with cat command  165
copying  168, 169
copying locally  169
copying remotely, scp command used  170
copying, to another location  170
copying, to remote server  171
creating  162
deleting  166
directory, deleting  167
directory file  162
directory, moving to new location  169
finding and deleting, based on inode  

number  176
link, creating  176
moving  168
opened files list, obtaining  188
ownership  183
permissions  183
regular file  162
regular file, deleting  167
renaming  169
searching  174, 175
searching, according to use case  175, 176
special files  178
temporary files  182
viewing  165
viewing, less command used  166
viewing, ls command used  165
viewing, more command used  166

for loop
about  93
command output, iterating over  94

range, specifying  95
simple iteration  93, 94

format modifiers
defining  4

format specification
used, for printing different data  

type format  4
functions

calling in bash  104
parameters, passing to  105
using  103, 104

G
grep command

exact word, matching  47
filename, displaying with matching  

pattern  47
files/directories, excluding from  

search  46, 47
multiple substitutions  50
output, editing with sed command  48, 49
searching, in a binary file  45, 46
searching, in a directory  46
syntax  41-43
used, for filtering output  40
uses  45

grep command, options
-a  41
-A NUM  41
-B NUM  41
-c  41
-C NUM  41
-E  41
-e PATTERN  41
-f FILE  41
-i  41
-n  41
-o  41
-q  41
-r  41
-R  41
-v  41
s  41
pattern, searching in multiple files  43-45



[ 252 ]

H
head command

about  63
used, for finding lines  68
used, for printing lines  63-68

head command, options
-c [-] K  64
-n [-]K  64
-q  64
-v  64

Hello world
bash script file, creating  5
defining, in shell  3
interacting, with shell  3, 4

history builtin command  151-153
history, shell

defining  150
shortcuts  154

history shell builtin command
defining  152

I
indexed array

about  89
array declaration  89
operations  89-91
value assignment  89

init-based system
URL  236

input text
multiple files, sorting  54
output, redirecting to sort  56
single file, sorting  54, 55
sorting  53

inter-process communication
about  215, 216
IPC definition, ipcs command used  216
information, listing  216-218
message queue  215
named pipes  215
PID of processes, defining  218
semaphores  216
shared memory  215

K
killall command  196
kill command  195

L
languages

embedding  242, 243
links, between files

hard link  177
hard link, versus soft link  178
soft link  177

logical operators  14

M
matching dates

valid day, matching  38
valid month, matching  38
valid months, combining with days  

and regex  39
valid year in date, matching  38

metacharacters, regular expression
defining  36

N
named pipe file

about  180
creating  180

nice command  208

O
opened files

applications, listing  189
files opened by specific application,  

listing  188, 189
files opened by specific user, listing  190
list, obtaining  188

operators
<  30
>&  30
>>  30
>>&  30



[ 253 ]

|   30
arithmetic operators  13
assignment operator  13
comparison operators  15
defining  12
logical operators  14

options, at command
-c job_number  223
-f FILE  223
-l  223
-m  223
-M  223
-r  223
-t time  223
-v  223

options, crontab
-e  231
-i  231
-l  231
-r  231
-u user  231

ownership, files
about  183
group ownership, changing  187
owner, changing  186, 187
viewing  183

P
parameters

passing, to functions  105
permissions, files

about  183
changing  185, 186
viewing  183, 184

pipe  35
pipeline  35, 36
popd command  109, 110
positional parameters

using  103, 104
POSIX (Portable Operating System  

Interface)  74
processes

listing  197
monitoring  202-205

processes, listing
about  198

output format control  199
processes by command name  200
processes run by user  200
processes running in current terminal  200
processes with details  199
process selection by list  198
simple process selection  198
syntax  198
tree format display  201, 202

Process ID (PID)  188
process management

about  194
process, creating  194
process, executing  194
process, terminating  195

process scheduling priorities
about  207
changing  208
changing, nice command used  208, 209
changing, renice command used  209-211

process substitution
about  206
output of two processes,  

comparing  206, 207
process termination

killall command, used  196, 197
kill command, used  195
performing  195

pstree command  201
pushd command  109
Python language

embedding  243-245

R
ranges

-M  69
N  69
N-  69
N-M  69

regular expression
about  36
character ranges  38
classes  37, 38
creating  38
metacharacters  36
URL  39



[ 254 ]

regular file
about  162
cat command, using  164
command line editors, using  163
command output, redirecting  164
touch command  163

renice command  209
resolution path, symbolic link

disabling  24
enabling  24

S
scheduled tasks

listing  226
removing  226

scp command
options  171

script file
scheduling  225

scripts
debugging  121
executing, at command used  222, 223
exiting from  74
modularizing  112
source  112
with exit codes  76-78

sed command, flags
g  49
N  49
p  49
w filename  49

sed command, options
-e script  48
-l N  48
-n  48
--posix  48
-r  48
-u  48

select loop
using  96

services
disabling  239
enabling  239
managing  237
starting  239, 240
status  237-239

stopping  240
set command

exit, on first failure  23
using  22

shared library
URL  146

shell environment
env  139
environment variables, creating  140, 141
environment variables, deleting  143
environment variables, modifying  142, 143
modifying  140
printenv  138
viewing  138

shell expansions
* (Asterisk)  18
{ } (Curly brackets)  20, 21
? (Question mark)  18, 19
[ ] (Square brackets)  19, 20
~ (Tilde)  17
defining  16, 17

shell script library
calling, in another shell script  115, 116
calling, in bash  114
creating  113, 114
loading  114

shell variables
about  139
used, for controlling history  150
used, in bash shell  10
versus environment variables  139

shell variables, bash shell
BASH  10
BASHPID  10
BASH_VERSION  10
EUID  10
HOME  11
HOSTNAME  11
PATH  11
PPID  11
PWD  11

shortcuts, shell
!!  155
[Ctrl + r]  154
!?(search_string)  155
!(search_string)  155
defining  154



[ 255 ]

up and down arrow key  154
signals

about  211
Default action section  212
frequently used signals  212

socket file  181
sort command, options

-b  53
-d  53
-f  53
-h  53
-i  53
-k n  53
-m  53
-M  53
-n  53
-o file  53
-r  53
-u  53

source
about  112
syntax  112

special files
about  178
block device file  179
character device file  179
named pipe file  180
socket file  181

standard I/O and error streams
about  28
file descriptors  29
redirecting  30, 31
standard error, redirecting  32, 33
standard input, redirecting  31
stderr file  28
stdin file  28
stdout file  28

stdout
passing as parameter, xargs used  101

stream
appending, to file  52
duplicating, with tee command  50, 51
output, sending to multiple commands  52
output, writing, to stdout  52

switch
about  99
syntax  99, 100

systemd
defining  236
unit files, defining  236

system logs
latest log entries, viewing  241
particular time interval logs, viewing  242
viewing  241

T
tail command  63
tail command, options

-c [+]K  66
-F  66
 -f [{name|descriptor}]  66
--max-unchanged-stats=N  66
-n [+]K  66
--pid=PID  66
-q  66
--retry  66
-s N  66
-v  66

task management
background tasks, listing  157
defining  155
running task, sending to background  156
tasks, moving to foreground  158, 159
tasks, running in background  156
tasks, terminating  159, 160

tasks
running, at specific time  222

tee command
used, for duplicating stream  50, 51

temporary files
about  182
creating, mktemp used  182

traps  214, 215
tr command

used, for character based translation  61
tr commands, options

-c  61
-C  61
-d  61
-s  61
-t  61



[ 256 ]

U
uniq command, options

-c  58
-d  58
-f N  58
-i  58
-s N  58
-u  58
-w N  58

unique text
finding  53
input text, sorting  53
sorting  53
unique elements, filtering  58-60

unit files
defining  236

until loop
about  98
using  98

V
variables

constant variables  8
defining  6
nomenclature  6
reading, from user input  8, 9
setting  24, 25
unsetting  24, 25
value, accessing  7
value, assigning  6

vim
reference link  163

W
while loop

about  97
using  97

X
xargs command

about  101
basic operations  101
files, archiving with given pattern  103
for finding file with maximum size  102
syntax  101



Thank you for buying  
Linux Shell Scripting Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around open source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.packtpub.com


Linux Mint Essentials
ISBN: 978-1-78216-815-7              Paperback: 324 pages

A practical guide to Linux Mint for the novice to  
the professional

1. Learn to use Linux Mint like a pro, starting 
with the installation and going all the way 
through maintaining your system.

2. Covers everything you need to know in  
order to be productive, including browsing  
the Internet, creating documents, and  
installing software.

3. Hands-on activities reinforce your knowledge.

Linux Mint System Administration 
Beginner's Guide
ISBN: 978-1-84951-960-1             Paperback: 146 pages

A practical guide to learn basic concepts,  
techniques, and tools to become a Linux Mint  
system administrator

1. Discover Linux Mint and learn how to  
install it.

2. Learn basic shell commands and how  
to deal with user accounts.

3. Find out how to carry out system  
administrator tasks such as monitoring, 
backups, and network configuration.

Please check www.PacktPub.com for information on our titles



Web Penetration Testing with  
Kali Linux
ISBN: 978-1-78216-316-9            Paperback: 342 pages

A practical guide to implementing penetration testing 
strategies on websites, web applications, and standard 
web protocols with Kali Linux

1. Learn key reconnaissance concepts needed  
as a penetration tester.

2. Attack and exploit key features, authentication, 
and sessions on web applications.

3. Learn how to protect systems, write reports, 
and sell web penetration testing services.

Kali Linux – Assuring Security  
by Penetration Testing
ISBN: 978-1-84951-948-9             Paperback: 454 pages

Master the art of penetration testing with Kali Linux

1. Learn penetration testing techniques with an 
in-depth coverage of Kali Linux distribution.

2. Explore the insights and importance of testing 
your corporate network systems before the 
hackers strike.

3. Understand the practical spectrum of security 
tools by their exemplary usage, configuration, 
and benefits.

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Beginning of theScripting Journey
	Hello World in shell
	Interacting with shell
	Let's make it scripted

	Define variables of choice
	Nomenclature
	Assigning a value
	Accessing a value
	Constant variables
	Reading variables from a user input

	Builtin shell variables
	Operators
	The assignment operator
	Arithmetic operators
	Logical operators
	Comparison operators

	Shell expansions
	~ (Tilde)
	* (Asterisk)
	? (Question mark)
	[ ] (Square brackets)
	{ } (Curly brackets)

	Construct commands using eval
	Make bash behave using set
	Exit on the first failure
	Enabling/disabling symbolic link's resolution path
	Setting/unsetting variables

	Summary

	Chapter 2: Getting Hands-on with I/O, Redirection Pipes, and Filters
	Standard I/O and error streams
	File descriptors

	Redirecting the standard I/O and error streams
	Redirecting standard output
	Redirecting standard input
	Redirecting standard errors
	Multiple redirection

	Pipe and pipelines – connecting commands
	Pipe
	Pipeline

	Regular expressions
	Regular expression metacharacters
	Character ranges and classes
	Character ranges
	Matching dates in mm-dd-yyyy format
	Regex for a valid shell variable


	Filtering an output using grep
	Syntax
	Looking for a pattern in a file
	Looking for a pattern in multiple files
	A few more grep usages
	Searching in a binary file
	Searching in a directory
	Excluding files/directories from a search
	Display a filename with a matching pattern
	Matching an exact word


	Editing output using sed
	String substitution using s
	Multiple substitutions

	Duplicating a stream using tee
	Writing an output to stdout and appending to a file
	Sending an output to multiple commands

	Sorting and finding unique text
	Sorting an input text
	Sorting a single file
	Redirecting output to sort

	Filtering unique elements
	Unique elements in a file

	Character-based translation using tr
	Deleting input characters
	Squeezing to a single occurrence
	Inverting a character set to be translated

	Filtering based on lines—head and tail
	Printing lines using head
	Printing the first few lines
	Printing the first few bytes

	Printing lines using tail
	Checking log entries

	Finding any line in a file

	The Cut-based selection
	Cutting across columns
	Text selection in files

	Summary

	Chapter 3: Effective Script Writing
	Exiting from scripts and exit codes
	Exit codes
	Exit codes with a special meaning
	Script with exit codes

	Testing expressions with a test
	File checks
	Arithmetic checks
	String checks
	Expression checks

	Using conditional statements with if and else
	Simple if and else
	The if, elif, and else statements
	Nested if

	Indexed arrays and associative arrays
	Indexed arrays
	Array declaration and value assignment
	Operations on arrays

	The associative array
	The declaration and value assignment
	Operations on arrays


	Looping around with for
	Simple iteration
	Iterating over a command output
	Specifying a range to the for loop
	Small and sweet for loop

	The select, while, and until loops
	Loop using select
	The while loop
	The until loop

	Switch to my choice
	Passing stdout as a parameter using xargs
	Basic operations with xargs
	Using xargs to find a file with the maximum size
	Archiving files with a given pattern

	Using functions and positional parameters
	Calling a function in bash
	Passing parameters to functions

	Alias
	Creating alias
	Listing all aliases
	Removing an alias

	pushd and popd
	Summary

	Chapter 4: Modularizing and Debugging
	Modularizing your scripts
	Source to a script file
	Syntax
	Creating a shell script library
	Loading a shell script library


	Passing command line parameters to script
	Reading arguments in scripts
	Shifting command line arguments
	Processing command line options in a script

	Debugging your scripts
	Debugging using echo
	Debugging an entire script using -x
	Debugging sections of a script using the set options

	Command completion
	Managing bash completion with complete
	Viewing the existing bash completion
	Modifying default bash completion behavior
	Removing bash completion specification

	Writing bash completion for your own application
	An example of bash completion
	Running the created bash completion


	Summary

	Chapter 5: Customizing the Environment�
	Knowing the default environment
	Viewing a shell environment
	printenv
	env

	Differences between shell and environment variables

	Modifying a shell environment
	Creating environment variables
	Modifying environment variables
	Deleting environment variables

	Using bash startup files
	.bashrc
	.bash_profile
	.bash_logout

	Knowing your history
	Shell variables controlling the history
	The history builtin command
	Modifying the default history behavior
	Handy shortcuts for seeing the history
	[Ctrl + r]
	Up and down arrow key
	!!
	!(search_string)
	!?(search_string)


	Task management
	Running tasks in the background
	Sending a running task to the background
	Listing background tasks
	Moving tasks to the foreground
	Terminating tasks

	Summary

	Chapter 6: Working with Files
	Performing basic file operations
	Creating files
	Directory file
	Regular file

	Modifying files
	Viewing files
	Viewing content using cat
	more and less

	Deleting files
	Deleting a regular file
	Deleting a directory


	Moving and copying files
	Moving files
	Moving a directory to a new location
	Renaming a file

	Copying files
	Copying files locally
	Copying files remotely


	Comparing files
	Files comparison using diff
	Example


	Finding files
	Searching files according to usecase
	Finding and deleting a file based on inode number

	Links to a file
	Soft link
	Hard link
	Difference between hard link and soft link

	Special files
	The block device file
	Named pipe file
	Socket file

	Temporary files
	Creating a temporary file using mktemp

	Permission and ownership
	Viewing the ownership and permission of files
	Changing permission
	Changing the owner and group
	Changing a file's owner
	Changing group ownership


	Getting the list of open files
	Knowing the files opened by a specific application
	Listing the applications that opened a file
	Knowing the files opened by a user

	Configuration files
	Viewing and modifying configuration files

	Summary

	Chapter 7: Welcome to the Processes
	Process management
	Process creation and execution
	Process termination
	Using the kill command
	Using the killall command

	Using the pkill command

	Listing and monitoring processes
	Listing processes
	Syntax
	Listing all processes with details
	Listing all processes run by a user
	Processes running in the current terminal
	Listing processes by a command name

	Tree format display of processes
	Monitoring processes

	Process substitution
	Diffing the output of two processes

	Process scheduling priorities
	Changing scheduling priorities
	Using nice
	Using renice


	Signals
	Available signals

	Traps
	Inter-process communication
	Information on IPC using ipcs
	Listing information provided by IPCs
	Knowing processes' PID who recently did IPCs


	Summary

	Chapter 8: Scheduling Tasks and Embedding Languages in Scripts
	Running tasks at a specific time
	Executing scripts using at
	Scheduling commands
	Scheduling a script file

	Listing scheduled tasks
	Removing scheduled tasks

	Cron jobs
	Cron daemon
	Cron configuration
	Crontab entries
	Special strings in Crontab


	Managing the crontab entry
	Listing crontab entries
	Editing crontab entries
	Removing crontab entries

	systemd
	systemd units
	Managing services
	Status of a service
	Enabling and disabling services
	Start and stop a service

	Viewing system logs
	Viewing the latest log entries
	Viewing logs of a particular time interval


	Embedding languages
	Embedding Python language
	Embedding AWK language

	Summary

	Index



