
Dave Taylor

Learning
Unix for OS X
GOING DEEP WITH THE TERMINAL AND SHELL

2nd Edition

Covers El Capitan

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Dave Taylor

Boston

Learning Unix for OS X
SECOND EDITION

www.allitebooks.com

http://www.allitebooks.org

978-1-491-93998-7

[LSI]

Learning Unix for OS X
by Dave Taylor

Copyright © 2016 Dave Taylor. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Nicole Shelby
Copyeditor: Sonia Saruba
Proofreader: Rachel Head

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

January 2016: Second Edition
September 2012: First Edition

Revision History for the Second Edition
2016-01-19: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491939987 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Unix for OS X, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491939987
http://www.allitebooks.org

Table of Contents

Preface. ix

1. Why Use Unix?. 1
The Power of Unix 1

Batch Renames and Extracting File Lists 4
Finding Hidden Files 5

Folders or Directories? 6
Thousands of Free Applications 7

Power Internet Connections 7
Commands Included with Unix 9

Displaying All Unix Commands 9
The 10 Most Common Unix Commands 9

A Simple Guided (Unix) Tour 10

2. Using the Terminal. 13
Launching the Terminal 13

Syntax of a Unix Command 14
Exercise: Entering a Few Commands 16
Types of Commands 17
Changing the Terminal’s Preferences 18
Features of the Terminal 21

Customizing Your Terminal Session 23
Setting the Terminal’s Title 23
Using AppleScript to Manipulate the Terminal 24
Working with .terminal Files 24

Working with the Terminal 25
The Shell Prompt 27
Entering a Command 27

iii

www.allitebooks.com

http://www.allitebooks.org

Recalling Previous Commands 28
Completing File and Directory Names 29
Running Multiple Commands on the Command Line 29
Correcting a Command 30
Ending Your Session 31
Problem Checklist 31

Customizing the Shell Environment 32
Picking a Login Shell 32
Changing the Command Prompt 33

Advanced Shell Customization 35
Shell Configuration Settings 35
Creating Aliases 38

The Unresponsive Terminal 39

3. Exploring the Filesystem. 41
The OS X Filesystem 41

Your Home Directory 42
Your Working Directory 42
The Directory Tree 43
Absolute Pathnames 44
Relative Pathnames 45
Changing Your Working Directory 47
Files in the Directory Tree 49

Listing Files and Directories 51
The All-Powerful ls Command 51
Trying Out the ls Command 52
Using the -l Option 55
File Permissions 57

Calculating File Size and Disk Space 59
Calculating Available Disk Space 62
Exercise: Exploring the Filesystem 63

Protecting and Sharing Files 64
File Access Permissions 66
Setting Permissions with chmod 67
Changing the Group and Owner 70

Changing Your Password 71
Superuser Privileges with sudo 72
Exploring External Volumes 73

4. File Management. 75
File and Directory Names 75
File and Directory Wildcards 78

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Looking Inside Files 80
cat 80
less 81
grep 83

Creating and Editing Files 85
Text Editors and Word Processors 85
The vi Text Editor 87
vi Basics 89
A Simpler vi Alternative: Pico 95
The More Complex Option: Emacs 95

Managing Files 96
Creating Directories with mkdir 97
Copying Files 98
Renaming and Moving Files with mv 100
Removing Files and Directories 101
Working with Links 103
Compressing and Archiving Files 105
Files on Other Operating Systems 107

5. Finding Files and Information. 109
Searching Inside Files with the grep Command 109

Useful grep Options 110
Working with Regular Expressions 112

Finding Files with locate 116
Fast Filename Search with locate 116

Using find to Explore Your Filesystem 117
Matching by File Size 118
Exploring find Permission Strings 121
Using find to Identify Recently Changed Files 122
find’s Faithful Sidekick: xargs 124
Further Refinements to find 126

Shining a Light on Spotlight 126
Listing Spotlight Metadata with mdls 127
Finding Files with mdfind 131
Making Spotlight Useful 132

6. Redirecting I/O. 135
Standard Input and Standard Output 135

Putting Text in a File 137
Pipes and Filters 141

wc 142
tr 143

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

grep 144
head and tail 145
sort 145
uniq 147
Piping Output to a Pager 148

Printing 149
The Unix Way 149

7. Multitasking. 153
Running a Command in the Background 154
Checking on a Process 155

ps 155
top 158

Canceling a Process 160
kill 161
killall 162

Launching GUI Applications 163
open 163
Useful Starting Options for Use with open 165
Making open More Useful 166

8. Taking Unix Online. 169
Remote Logins 169

Web Access 172
Remote Access to Other Unix Systems 173

Transferring Files 176
scp and rcp 176
FTP 177
Easy Shortcuts with New Remote Connection 183

9. Of Windows and X11. 187
X11 188

Using X11 189
Differences Between OS X and X11 192
Customizing X11 193

GIMP, the X11 Graphics Editor 195

10. Where to Go from Here. 197
Documentation 197

The man Command 197
Documentation on the Internet 200
Books 202

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Customizing Your Unix Experience 202
Shell Aliases and Functions 202
Programming 203
Perl, Python, and Ruby 205
C and C++ 205

Index. 207

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

Fifteen years ago, when Apple jumped from Mac OS 9 to Mac OS X (pronounce that
“oh-ess ten” to sound cool), the entire experience of using a Mac system changed dra‐
matically. Heck, many of you reading this have never known a non–OS X Mac inter‐
face! There were a lot of interface changes, but the biggest update when Apple
switched operating systems was that every machine gained multitasking and multi‐
user capabilities.

Beneath the shiny graphical interface of OS X lies an operating system called Unix
(pronounced “you-nicks”): specifically, UC Berkeley’s BSD Unix and the Mach ker‐
nel, a multiuser, multitasking operating system. Being multiuser means OS X allows
multiple users to share the same system, each with their own settings, preferences,
and separate areas in the filesystem, secured from other users’ prying eyes. Being
multitasking means OS X can easily run many different applications at the same time,
and if one of those applications crashes or hangs, the entire system doesn’t need to be
rebooted. Instead, you just force quit the application that’s causing the “Spinning
Beach Ball of Death” (you know, when the mouse pointer turns into a spinning color
wheel that just won’t stop rotating) and either relaunch it or proceed with your work
in other apps.

Other than the aforementioned advantages, the fact that OS X has Unix under the
hood doesn’t matter to users who simply want to use its slick graphical interface to
run their applications or manage their files. But it opens up a world of possibilities for
users who want to dig a little deeper. The Unix command-line interface, which is
accessible through the Terminal application (you can find this app in /Applications/
Utilities), provides an enormous amount of power for intermediate and advanced
users. What’s more, once you’ve learned to use Unix in OS X, you’ll also be able to use
the command line in other versions of Unix, such as FreeBSD (from which OS X
derives its Unix core) or even the hugely popular Linux.

This book is designed to teach Mac users the basics of Unix. You’ll learn how to use
the command line (which Unix users refer to as the shell) and the filesystem, as well

ix

as some of Unix’s most useful commands. I’ll also give you a tour of some useful Unix
commands that Apple’s team has written and are included with every Mac system—
utilities that let you really gain control over your system.

Unix is a complex and powerful system, so I can only scratch the surface, but I’ll also
tell you how to deepen your Unix knowledge once you’re ready for more.

Who This Book Is For
This book is for savvy Mac users who are comfortable in their current world (the
Finder and other GUI applications) but also want to learn more about the “Power of
Unix.” Here, you’ll learn all the basic commands you need to get started with Unix.
Rather than weighing you down with lots of details, however, I want to help you get
comfortable in the Unix environment as soon as possible. So, I cover each command’s
most useful features instead of describing all its options in detail. And let me tell you,
Unix has thousands of commands with millions of options. It’s very powerful! Fortu‐
nately, though, it’s just as powerful and helpful even if you just focus on a subset of
commands and gradually learn more as you need additional power and capabilities.

Who This Book Isn’t For
If you’re seeking a book that talks about how to build Mac software applications, this
isn’t it (although it’s quite helpful for developers to have a firm grasp of Unix essen‐
tials, because you never know when you’re going to need them). And if you’re a com‐
plete beginner and are still stymied by left-clicking versus right-clicking your mouse,
you might be better off putting this book on the shelf until you’re more comfortable
with your Macintosh.

Finally, if you live and breathe Unix every day, this book is probably too basic for you.
I don’t cover either Unix system administration or Mac system administration from
the command line. For example, if you already know what a PID is and how to kill a
program, this book is probably beneath your skill level. But if you don’t know what
those terms mean, or if you’re somewhere in between, you’ve found the right book!

A Brief History of Unix
The Macintosh started out with a single-tasking operating system that allowed simple
switching between applications through an application called the MultiFinder. More
recent versions of the Mac OS have supported multiple applications running simulta‐
neously, but it wasn’t until the landmark release of Mac OS X in 1999 that true multi‐
tasking arrived in the Macintosh world. With OS X, Macintosh applications run in
separate memory areas; the Mac is a true multiuser system that also includes proper
file-level security.

x | Preface

To accomplish these improvements, OS X made the jump from a proprietary under‐
lying operating environment to Unix. OS X is built on top of Darwin, a version of
Unix based on BSD 4.4 Lite, FreeBSD, NetBSD, and the Mach microkernel.

Unix itself was invented more than 40 years ago for scientific and professional users
who wanted a very powerful and flexible OS. It has evolved since then through a
remarkably circuitous path, with stops at Bell Telephone Labs, UC Berkeley, and
research centers in Australia and Europe, and also received some funding from the
US Department of Defense Advanced Research Projects Agency (DARPA). Because
Unix was designed by experts for experts (or “geeks,” if you prefer), it can be a bit
overwhelming at first. But after you get the basics (from this book!), you’ll start to
appreciate some of the reasons to use Unix. For example:

• It comes with a huge number of powerful programs, and you can get many others
for free on the Internet. (The Fink project, available from SourceForge, brings
many open source packages to OS X.) You can thus do much more at a much
lower cost.

• Unix is pretty much the same on the command line, regardless of whether you’re
using it on OS X, FreeBSD, or Linux, or even in tiny embedded systems or on a
giant supercomputer. After you read this book, you’ll not only know how to har‐
ness the power of Unix, but you’ll also be ready to use many other kinds of Unix-
based computers without having to learn new commands for each one.

Versions of Unix
There are many different versions of Unix. Some past and present commercial ver‐
sions include Solaris, AIX, and HP/UX. Freely available versions include Linux,
NetBSD, OpenBSD, and FreeBSD. Darwin, the free Unix version underneath OS X,
was built by grafting an advanced version called Mach onto BSD, with a light sprin‐
kling of Apple magic for the Aqua interface.

Although GUIs and advanced features differ among Unix systems, you should be able
to use much of what you learn from this introductory handbook on any system. Don’t
worry too much about what’s from which version of Unix. Just as English borrows
words from French, German, Japanese, Italian, and even Hebrew, OS X’s Unix bor‐
rows commands from many different versions of Unix—and you can use them all
without paying attention to their origins.

From time to time, I explain features of Unix on other systems. Knowing the differ‐
ences can help you if you ever want to use another type of Unix system. When I write
“Unix” in this book, I mean “Unix and its versions,” unless I specifically mention a
particular version.

Preface | xi

http://fink.sourceforge.net

Interfaces to Unix
Unix can be used as it was originally designed: on typewriter-like terminals, from a
prompt on a command line. Most versions of Unix also work with window systems,
or graphical user interfaces (GUIs). These allow each user to have a single screen with
multiple windows—including “terminal” windows that act like the original Unix
interface.

OS X includes a simple terminal application for accessing the command-line level of
the system. That application is called the Terminal and is closely examined in Chap‐
ter 2.

While you can use your Mac quite efficiently without issuing commands in the Ter‐
minal, that’s where we’ll spend all of our time in this book. Why?

• Every Macintosh has a command-line interface. If you know how to use the com‐
mand line, you’ll always be a power user.

• As you become a more advanced Unix user, you’ll find that the command line is
actually much more flexible than the graphical Mac interface. Unix programs are
designed to be used together from the command line—as “building blocks”—in
an almost infinite number of combinations, to do an infinite number of tasks. No
window system I’ve seen has this tremendous power.

• You can launch and close any Mac program from the command line.
• Once you learn to use the command line, you can use those same techniques to

write scripts. These little (or big!) programs automate jobs you’d have to do man‐
ually and repetitively with a window system (unless you understand how to pro‐
gram a window system, which is usually a much harder job). See Chapter 10 for a
brief introduction to scripting.

• In general, text-based interfaces are much easier than graphical computing envi‐
ronments for visually impaired users.

I’m not saying that the command-line interface is right for every situation. For
instance, using the Web—with its graphics and links—is usually easier with a GUI
web browser within OS X. But the command line is the fundamental way to use Unix.
Understanding it will let you work on any Unix system, with or without windows. A
great resource for general OS X information (the GUI you’re probably used to) is OS
X El Capitan: The Missing Manual, by David Pogue (Pogue Press/O’Reilly).

How This Book Is Organized
This book will help you learn Unix on your Mac fast. It is organized in a way that gets
you started quickly and then expands your Unix horizons, chapter by chapter, until
you’re comfortable with the command line and with X11-based open source applica‐

xii | Preface

http://shop.oreilly.com/product/0636920036326.do
http://shop.oreilly.com/product/0636920036326.do

tions and able to push further into the world of Unix. Specific commands, for exam‐
ple, may be previewed in earlier chapters and then explained in detail in later
chapters (with cross-references so you don’t get lost). Here’s how it’s all laid out:

Chapter 1, Why Use Unix?
Graphical interfaces are useful, but when it’s time to become a power user—really
forcing your Mac to do exactly what you want, when you want it—nothing beats
the power and capability of the Unix command line. You’ll see exactly why that’s
the case in this first chapter.

Chapter 2, Using the Terminal
It’s not the sexiest application included with OS X, but the Terminal, found in
the /Applications/Utilities folder, opens up the world of Unix on your Mac and
lets you peek inside the inner workings. This chapter explains how to best use it
and customize it for your own requirements.

Chapter 3, Exploring the Filesystem
Once you start using Unix, you’ll be amazed at how many more files and directo‐
ries are on your Mac—information that’s hidden from the graphical interface
user. This chapter takes you on a journey through your Mac’s filesystem, showing
you how to list files, change directories, and explore the hidden nooks and cran‐
nies of El Capitan.

Chapter 4, File Management
Now that you can move around in your filesystem, it’s time to learn how to look
into individual files; copy or move files around; and even create, delete, and
rename directories. This is your first introduction to some of the most powerful
Unix commands, too, including the text-based vi editor.

Chapter 5, Finding Files and Information
If you’ve ever looked for a file with the Finder or Spotlight, you know that some
types of searches are almost impossible. Looking for a file that you created exactly
30 days ago? Searching for that file with the Finder will prove to be an exercise in
futility. But that’s exactly the kind of search you can do with Unix’s find, locate,
and grep commands, as well as Spotlight’s command-line utilities.

Chapter 6, Redirecting I/O
One of the most powerful elements of the Unix command line is that you can
easily combine multiple commands to create new and unique “super-commands”
that perform exactly the task you seek. You’ll learn exactly how you can save a
command’s output to a file, use the content of files as the input to Unix com‐
mands, and even hook multiple commands together so that the output of one is
the input of the next. You’ll see that Unix is phenomenally powerful, and easy,
too!

Preface | xiii

Chapter 7, Multitasking
As mentioned earlier, Unix is a multitasking operating system that allows you to
have lots of applications running at the same time. In this chapter, you’ll see how
you can manage these multiple tasks, stop programs, restart them, and modify
how they work, all from the Unix command line.

Chapter 8, Taking Unix Online
Much of the foundation of the Internet was created on Unix systems, and it’s no
surprise that you can access remote servers, surf the Web, and interact with
remote filesystems, all directly from the command line. If you’ve always wanted
more power when interacting with remote sites, this chapter dramatically
expands your horizons.

Chapter 9, Of Windows and X11
The graphical interface in OS X is the best in the industry. Elegant and intuitive,
it’s a pleasure to use. But it turns out that there’s another Unix-based graphical
interface lurking in your Mac system, called the X Window System, or X11 for
short. This chapter shows you how to install X11 and gives you a quick tour of a
couple of the very best X11 applications available for free on the Internet.

Chapter 10, Where to Go from Here
With all its commands and command-line combinations, and the addition of
thousands of open source utilities free for the downloading, you can spend years
learning how to best take advantage of the Unix environment. In this final chap‐
ter, I offer you some directions for your further travels, including recommenda‐
tions for books, websites, and similar resources to investigate.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Control).

Italic
Indicates new terms, URLs, email addresses, pathnames, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

xiv | Preface

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

Menus/navigation
Menus and their options are referred to in the text as File→Open, Edit→Copy,
etc. Arrows are also used to signify a navigation path when using window
options; for example, System Preferences→Screen Effects→Activation means you
would launch System Preferences, click on the icon for the Screen Effects prefer‐
ences panel, and select the Activation pane within that panel.

Pathnames
Pathnames are used to show the location of a file or application in the filesystem.
Directories (or folders for Mac and Windows users) are separated by forward
slashes. For example, if you see something like “launch the Terminal application
(/Applications/Utilities)” in the text, that means the Terminal application can be
found in the Utilities subfolder of the Applications folder.

↲
A carriage return (↲) at the end of a line of code is used to denote an unnatural
line break; that is, you should not enter these as two lines of code, but as one con‐
tinuous line. Multiple lines are used in these cases due to printing constraints.

Menu symbols
When looking at the menus for any application, you will see some symbols asso‐
ciated with keyboard shortcuts for a particular command. For example, to open a
document in Microsoft Word, you could go to the File menu and select Open
(File→Open), or you could issue the keyboard shortcut ⌘-O.

Figure P-1 shows the symbols used in the various menus to denote a keyboard
shortcut.

Rarely will you see the Control symbol used as a menu command option; it’s
more often used in association with mouse clicks to emulate a right-click on a
two-button mouse or for working with the bash shell.

Figure P-1. Keyboard accelerators for issuing commands

Preface | xv

$, #
The dollar sign ($) is used in some examples to show the user prompt for the
bash shell; the hash mark (#) is the prompt for the root user.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning Unix for OS X, by Dave
Taylor. Copyright 2016 Dave Taylor, 978-1-4919-3998-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both
book and video form from the world’s leading authors in tech‐
nology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

xvi | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable
database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
Course Technology, and dozens more. For more information about Safari Books
Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learn-unix-osx-2.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

The Evolution of This Book
This book is loosely based on the original O’Reilly title Learning the Unix Operating
System, by Jerry Peek, Grace Todino, and John Strang. There are lots of differences in
this book to meet the needs of OS X users, but the fundamental layout and explana‐
tions are the same. The El Capitan edition is the sixth OS X custom edition of this
title. As OS X keeps getting better, so does this little book!

Preface | xvii

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://bit.ly/learn-unix-osx-2
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://shop.oreilly.com/product/9780596002619.do
http://shop.oreilly.com/product/9780596002619.do

Acknowledgments
I’d like to acknowledge the work of Meghan Blanchette and Brian Jepson at O’Reilly.
Without their work constantly explaining the nuances of the version tracking system
we’ve used, I would have given up and made a really long YouTube video about the
command line instead. Thanks to Tim O’Reilly for the opportunity to help revise the
popular Learning the Unix Operating System book for the exciting world of OS X, all
those years ago, and a special “ta, mate!” to Dave Kitabjian for helping with the tech
edit process, too.

xviii | Preface

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Why Use Unix?

Why would any sane person want to type in a bunch of funny-looking Unix com‐
mands when you can just use the trackpad? After all, OS X has one of the—if not the
—best-looking user interfaces out there, so what would compel you, a Mac user
through and through, to use the Unix command line? That’s a tough sell, but you can
boil it down to just one word: power.

Lying underneath the OS X interface is a powerful Unix system, ready to leap into
action at a moment’s notice. All you have to do is command Unix to take action. One
of the greatest pleasures of using Unix within OS X is that you get the benefit of a
truly wonderful graphical environment and the underlying power of the Unix com‐
mand line. There’s no denying it’s a match made in heaven. Even Apple promotes OS
X with the tagline, “Built for power. From the ground up.”

This chapter sets the stage for the rest of the book, answering the question: “Why use
Unix when you have a perfectly good Mac graphical interface?” It’s an important
question, but I think that if you give it a try, you’ll agree that joining the Unix world is
really like learning that you have a completely separate (and even more powerful)
operating system lurking inside your machine.

The Power of Unix
It’s quite reasonable to question why you should have to remember commands and
type them in. If you’re a long-time Mac user who is familiar and happy with the capa‐
bilities and logic of the Aqua interface, you might need some convincing that Unix is
your friend. Here’s why: dipping into the primarily text-based Unix tools on your OS
X system gives you more power and control over both your computer and your com‐
puting environment. There are other reasons, too, including:

1

• There are thousands of open source and otherwise freely downloadable Unix-
based applications. Can’t afford Adobe Photoshop but still want a powerful
graphics editor? The GNU Image Manipulation Program (GIMP) offers a viable
alternative (see Chapter 9).

• Want to search for files by when they were created, or by whom? Difficult in the
Finder or Spotlight, but it’s a breeze with Unix (see Chapter 5).

• How about managing your files and file archives in an automated fashion? Tricky
to set up with the GUI tools, but in Unix, you can set up a cron job to handle this
at night while you sleep.

Fundamentally, Unix is all about power and control. As an example, consider the dif‐
ference between using Force Quit from the Apple menu and the Unix programs ps
and kill. While Force Quit is more attractive, as shown in Figure 1-1, notice that it
lists only graphical applications.

Figure 1-1. Force Quit doesn’t show all running applications

By contrast, the ps (process status—say “pea-ess” to sound like a Unix guru) com‐
mand used from within the Terminal application (/Applications/Utilities/Terminal)
shows a complete and full list of every application, utility, and system process run‐
ning on your Mac, as shown here:

$ ps -acx
 PID TTY TIME CMD

2 | Chapter 1: Why Use Unix?

 1 ?? 0:10.28 launchd
 11 ?? 0:01.41 UserEventAgent
 12 ?? 0:01.86 kextd
 14 ?? 0:01.15 notifyd
 15 ?? 0:02.83 securityd
 16 ?? 0:00.24 diskarbitrationd
 ...
 1526 ?? 0:51.39 iTunes
 1573 ?? 0:00.07 taskgated
 1583 ?? 0:24.08 Google Chrome Helper
 1539 ttys000 0:00.04 login
 1540 ttys000 0:00.04 -bash
 1568 ttys000 0:00.21 vi
 1586 ttys001 0:00.03 login
 1587 ttys001 0:00.02 -bash

That’s more than the few applications Force Quit shows you. Of course, the next thing
that’s probably running through your head is, “Sure, but what does all that output in
the Terminal mean to me, and what do I do with it?” This is the key reason to learn
and work with the Unix side of OS X: to really know what your Mac’s doing and be
able to make it match what you want and need your Mac to do.

Okay, now let’s go back and look at the output from running the ps -acx command.
First off, you’ll see that we added some options (or flags or switches) to the ps com‐
mand; the options are the -acx bit. Flags are spoken by letter, so this would be pro‐
nounced as “pea-ess minus aye-sea-ex.” These options tell ps to display all of the
programs and processes being run by all of the users (including you and the system
itself) on the system. When the Terminal displays the results of the ps -acx command,
you’ll see that it adds a line of “headers” or column titles to the output:

$ ps -acx
 PID TTY TIME CMD
 16 ?? 0:00.24 diskarbitrationd

Think of the headers the same way you would when looking at a Numbers spread‐
sheet with a bunch of columns. Each column in that spreadsheet should have a col‐
umn head to help define what you see underneath. The same applies here. In the very
first line of the information returned, you’ll see the following headers:

PID

Lists the command’s process identification number (or PID, for short).

TTY

Tells you the terminal the process is running in. If you see two question marks
(??), that means the process isn’t associated with a specific Terminal window or
display: typically it’s a system-level command or utility, as is the disk arbitration
program listed above (diskarbitrationd—the final “d” stands for daemon, an
always-running system-level task).

The Power of Unix | 3

TIME

Tells you the amount of time it took to run that particular process, or how long
that process has been running, in minutes and seconds. For example, the 0:00.24
you see in the preceding output means that it took, roughly, a quarter of a second
for the diskarbitrationd process to start and run.

CMD

Gives you the specific command that’s being run. You can also ask for the entire
pathname to the process that’s running, including any starting flags or options
that might have been invoked. For example, /sbin/diskarbitrationd tells you that
the process that’s running is diskarbitrationd, located in the /sbin directory.

Great! So now you know what all that means, but you still don’t know how this relates
to Force Quit, right? Be patient, we’re getting there!

Once you know the PID number of a process, you can then issue the Unix kill com‐
mand to, well, kill that process. For example, let’s say that Microsoft Word decides to
lock up on you and you’re stuck with the Spinning Beach Ball of Death (SBBoD).
After you finish tearing out your hair in frustration, you need to kill Microsoft Word,
but in order to do so, you first need its process number. For this, we’ll use the grep
command, which is basically a Unix search tool that you use to search for words or, as
numbers in files, or in this case, the output of a command:

$ ps -ax | grep Word
 1634 ?? 0:02.50 /Applications/Microsoft Office 2011/Microsoft
 Word.app/Contents/MacOS/Microsoft Word -psn_0_766139
 1645 ttys002 0:00.00 grep Word

This tells us that Microsoft Word’s PID is 1634, as noted by the first number in the
command output. Now all you need to do to kill Word is issue the following com‐
mand:

$ kill 1634

After typing that and hitting the Return key (an activity known as “entering a com‐
mand”), Microsoft Word promptly quits, closing all its windows. It won’t save any‐
thing you’ve done since your last save, but since Word was locked in a deep freeze
you wouldn’t have been able to save your changes anyway, right? And if you had used
the Force Quit window, you wouldn’t have been able to save changes there, either.

Batch Renames and Extracting File Lists
Here’s another example. Suppose you just received a thumb drive from a client with
hundreds of files in a single folder. Now let’s say that you only need those files that
have the sequence -nt- or -dt- as part of their filenames, and that you want to copy
them from the thumb drive to your home directory. Within the Finder, you’d be

4 | Chapter 1: Why Use Unix?

doomed to going through the list manually, a tedious and error-prone process. But on
the Unix command line, this becomes a breeze:

$ cd /Volumes/Thumb
$ cp *-dt-* *-nt-* ~

The first command, cd /Volumes/Thumb, takes you to the Volumes directory, which is
where the thumb drive (named Thumb) is actually mounted on your Mac’s filesystem.
The second command, cp *-dt-* *-nt-* ~, breaks down as follows:

cp
This is Unix’s copy command.

-dt- *-nt-*
This tells the cp command to look for any items on the thumb drive that contain
either -dt- or -nt- in their filenames. Unix recognizes the asterisks (*) as wildcards
in the command string. By placing an asterisk before and after each item (*-dt-*
and *-nt-*), you’re telling Unix to find any file that has either -dt- or -nt-
anywhere in its filename.

~
The tilde character (or squiggle, in Unix-speak) simply refers to the current user’s
home folder (or directory).

By placing the tilde (~) at the end of the command line, you’re telling cp to copy each
file it finds that has -dt- or -nt- in its filename to your home directory.

Fast, easy, and doable by any and all OS X users.

There are a million reasons why it’s helpful to know Unix as an OS X power user, and
you’ll see them demonstrated time and again throughout this book.

Finding Hidden Files
You might not realize it if you only work in the Finder, but your system has thou‐
sands of additional files and directories that are hidden from view, but easily found
from the command line. Most of these hidden files are known in the Unix world as
dot files, because each file or directory has a period (.) as the first character of its
name. For example, in your home directory you probably have a file called .profile
that contains specific instructions on how you want your command shell set up when
it’s launched. But when you view your home folder in the Finder, this file is hidden, as
shown in Figure 1-2. Instead, all you see are the default set of folders (Desktop, Docu‐
ments, Movies, Music, Pictures, Public) along with any additional files and folders
you’ve created.

To view the dot files in the Terminal, type the file listing command (ls), along with its
-a option (for list all, which shows the hidden dot files). Suddenly you’ll see that there
are lots more files in that directory:

The Power of Unix | 5

$ ls -aF
./ .dropbox/ .vuescanrc Music/
../ .dvdcss/ Applications/ Pictures/
.CFUserTextEncoding .lesshst Desktop/ Presentations/
.DS_Store .nchsoftware/ Documents/ Public/
.Trash/ .profile Downloads/ VirtualBox VMs/
.android/ .ssh/ Dropbox/ bin/
.bash_history .subversion/ Library/
.cups/ .viminfo Movies/

Figure 1-2. The Finder doesn’t show hidden files and folders that you can see in the Ter‐
minal with standard Unix commands

Personally, though I don’t always need the power, I like knowing that I can get to,
view, and even edit every file on my computer if I need to. All I need to do is launch
the Terminal application (which I actually have permanently available in my Dock, so
it’s always just one click away), type in a few simple commands, and I’m on my way.

Folders or Directories?
If you’re new to the whole Unix thing, you’re going to need to learn Unix-speak. In
the graphical world, such as with OS X or Windows, you’re used to working with a
graphical user interface (GUI) that lets you see everything visually. When you create a
new file, it gets stored in a folder of some sort, even if you save the file to your Desk‐
top (which is, in its own right, a folder).

But in Unix, folders are referred to as directories. That’s right, folders and directories
are one and the same. It’s an odd sort of translation, but when Unix was first devel‐
oped, there was no GUI; all you had was a text-based terminal to type into, and you
were darned happy to have that, especially as you were walking 10 miles uphill in the
snow to and from school each day. But I digress!

6 | Chapter 1: Why Use Unix?

Directories were set up as part of the hard drive’s filesystem, or the structure in which
directories and files are stored on the system. And the way you get to a folder (er,
directory) in Unix is to enter its file path, using forward slashes between the directory
names. For example, the file path to your home directory (again, think folder) is
actually:

/Users/your_name

where your_name would be replaced by your short username. Or use the power user
shortcut ~, as shown earlier!

At the very top of your Mac’s filesystem, you have the root directory, denoted with a
single forward slash (/). As noted in the previous example, to specify a particular
directory or file, all you need to do is place the path after this leading slash.

This takes a little getting used to, but once you get the hang of entering Unix file
paths, you’ll find that it’s actually a faster way to get around (particularly if you can
type faster than it takes you to move the cursor around in the graphical world).

Just remember: folders are directories, and when working on the Unix side of your
Mac, we’ll refer to folders as directories throughout the book.

Thousands of Free Applications
This should appeal to anyone who is a part of the Macintosh community: by warming
up to Unix and its command line, you are joining the much-lauded free software
movement, since OS X is based on a free, open source Unix operating system called
Darwin. What’s excellent is that there are thousands of different applications available
for open source operating systems, including design, development, scientific, and
business applications that compare quite favorably to expensive commercial alterna‐
tives. And don’t make the mistake of assuming that all open source applications are
command-line tools and utilities! Some of the very best applications, like the GIMP
graphics editor and the NeoOffice suite, are designed to work either within the X
Window System (also known as X11), a standard Unix graphical interface that Apple
includes with your OS X system, or directly in OS X El Capitan’s graphical environ‐
ment.

Power Internet Connections
If you’re someone who uses the Internet daily, you already know that there are a
bunch of useful Mac OS X applications available to help you be more efficient.
Unfortunately, lots of them seem to have a price tag attached—even a simple FTP
program like Fetch. But why spend $29 on an application when you can use OS X’s
built-in ftp command-line utility for free?

Thousands of Free Applications | 7

http://www.gimp.org
http://www.gimp.org
http://www.neooffice.org
http://www.fetchsoftworks.com

For example, if you wanted to download the cover image for this book from O’Reilly’s
website, you could use the following commands (as noted in bold type):

$ ftp ftp.oreilly.com
Connected to ftp.oreilly.com.
220 ProFTPD 1.3.1rc3 Server (ftp.oreilly.com) [172.17.107.51]
Name (ftp.oreilly.com:taylor): anonymous
331 Anonymous login ok, send your complete email address as your password
Password:
230-Welcome to the O'Reilly Media, Inc. FTP Archive.

 Local date and time: Sat Oct 03 20;00:16 2015

 --> Hello 71.237.2.63 <--
 --> There are 2 users out of 100 allowed in your usage class. <--

 Check us out on the web at http://oreilly.com
230 Anonymous access granted, restrictions apply
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd /pub/graphics/book-covers/low-res
250 CWD command successful
ftp> get 9781449332310.gif
local: 0596009151.gif remote: 0596009151.gif
229 Entering Extended Passive Mode (|||62244|)
150 Opening BINARY mode data connection for 0596009151.gif (27259 bytes)
100% |***| 261 KiB
 430.20 KiB/s 00:00 ETA
226 Transfer complete
267646 bytes received in 00:00 (389.56 KiB/s)
ftp> bye
221 Goodbye.

That downloads the image file for the cover of this book to your Mac, which is nice,
but what if you want to look at it? Sure, you could go to the Finder, find the file, and
then double-click on the file’s icon to open it in Preview, but that’s a lot of work.
Instead, with a little help from Unix, you can just type in the following command:

$ open 9781449332310.gif

The open command, which is special to OS X, examines the file it’s supposed to open
(9781449332310.gif), detects which application should open it by default (something
you can see in a file’s Get Info window), and then opens the graphical file in Preview
—all in a fraction of a second! See how much time Unix just saved you (not to men‐
tion the $29!)?

From logging in to your Mac from remote locations to transferring files from your
system to a server using an encrypted connection, OS X’s Unix command line is quite
powerful. But don’t take my word for it—Chapter 8 takes you on a detailed tour of
Internet command-line utilities.

8 | Chapter 1: Why Use Unix?

Commands Included with Unix
While this book covers only about 50 of the most basic Unix commands, there are
over a thousand Unix commands included with OS X—and you can’t see most of
them without accessing the command line. From sophisticated software development
environments to web browsers, file transfer utilities to encryption and compression
utilities, almost everything you can do in the Aqua interface—and more—can be
done with a few carefully chosen Unix commands.

Displaying All Unix Commands
To quickly see all of the binary executables—Unix programs—on your system, open
the Terminal, hold down the Shift key, and press Esc-?, or press Control-X followed
by Shift-1 (using Shift-1 to get an exclamation mark).

Before the commands are displayed in the Terminal, however, you’ll first be promp‐
ted (asked) to make a choice:

$
Display all 1453 possibilities? (y or n)

If you press the n key on your keyboard, you’ll be taken back to a command prompt
and nothing else will happen. However, if you press the y key, you’ll see a multicol‐
umn list of Unix commands stream past in the Terminal window. At the bottom of
the screen, you’ll see:

--More--

This lets you know that there’s more to display. If you hit the space bar, the next
“page” of commands scrolls into view. Keep pressing the space bar to view the entire
list of commands; or, if you’re getting tired of that, just hit q to quit the output and go
back to the command prompt.

If you’re a software developer or are just curious about programming, for example,
you’ll want to install the optional Xcode Tools, available as a free download from the
Apple Developer’s Site. The Xcode Tools give you a full, professional-grade software
development environment that lets you develop new applications in Swift, Objective-
C, C, or C++. Pretty nice for something free from Apple, eh?

The 10 Most Common Unix Commands
If you want to just jump in and try things out, here are the 10 most common com‐
mands, with a very short summary of what each does:

ls
Lists files or directories.

Commands Included with Unix | 9

http://developer.apple.com

cp original_file copied_file
Copies the original_file (or files) from one location to another.

mv original_file new_file
Moves a file or files; the original is deleted once the operation is complete.

rm filename
Removes a file, set of files, or folder(s) full of files.

Use the rm command with caution; there’s no “Trash” to which
things are moved. Once you’ve used rm to delete something, it’s
gone forever.

pwd
Displays your present working directory; this is where you currently are in the
filesystem.

cd directory_name
Changes to the specified directory in the filesystem. Without any arguments, it’s a
shortcut for changing back to your home directory.

man command_name
Accesses OS X’s built-in documentation for the Unix commands. To read the
manpage for the ls command, for example, type man ls.

less filename
Displays a long text file, one screen at a time. Pressing the space bar gets the next
page when you’re ready, and pressing q at any time quits the program and returns
you to the command prompt.

grep pattern filename(s)
Searches for the specified pattern across as many files as you desire—a fast way to
find that email message you sent to Uncle Linder, for example.

top
Shows you which applications and processes are running on your system, includ‐
ing those that the Finder’s Force Quit window ordinarily hides.

A Simple Guided (Unix) Tour
Enough talking about what Unix can do; it’s time to flex your fingers, open up your
Mac, and try a few commands so you can get a sense of how it all works!

10 | Chapter 1: Why Use Unix?

www.allitebooks.com

http://www.allitebooks.org

The first step is to launch the Terminal application through which you’ll interact with
the command shell. Terminal is tucked into the Utilities folder within your Applica‐
tions folder.

Since you’ll be using the Terminal application throughout this book (and hopefully in
the future, as you grow more comfortable with Unix), you should drag the Terminal’s
icon to the Dock so it’s always at the ready. Or, if the Terminal’s already running, you
can Control-click on its icon in the Dock (or just click and hold down the button for
a few seconds) and select Options→Keep in Dock, as shown in Figure 1-3.

Figure 1-3. Control-click the Terminal’s Dock icon, and select “Keep in Dock” from the
Options menu so it will always be there when you need it

Throughout the following examples, type in the commands you see in bold, pressing
the Return key after each one (again, this is known as “entering a command” in Unix-
speak). Preceding each command, I’ve included some comments to let you know
what you’re about to do.

Without any arguments, the cd command moves you to your home directory:

$ cd

The pwd (present working directory) command shows you the path for the directory
you’re currently in:

$ pwd
/Users/taylor

Use the ls command to list the files in your home directory; compare this listing with
the picture of the Finder window shown in Figure 1-2. If you omit the -a option, all
the hidden dot files stay hidden in this directory:

$ ls
Applications Downloads Movies Presentations bin
Desktop Dropbox Music Public
Documents Library Pictures VirtualBox VMs

A Simple Guided (Unix) Tour | 11

Now let’s change directories to your Library folder:

$ cd Library

Use the ls command again to see what’s inside (there’s very little here you’ll need to
mess with):

$ ls
Accounts Fonts Preferences
Address Book Plug-Ins Fonts Disabled Printers
Application Scripts GameKit PubSub
Application Support Google Safari
Assistants Group Containers Saved Application State
Audio IdentityServices Screen Savers
Autosave Information Input Methods Services
Caches Internet Plug-Ins Social
Calendars Keyboard Layouts Sounds
ColorPickers Keychains Spelling
Colors LanguageModeling StickiesDatabase
Compositions LaunchAgents Suggestions
Containers Logs SyncedPreferences
Cookies Mail VirtualBox
CoreData Messages Voices
Dictionaries Metadata WebKit
Favorites Mobile Documents com.apple.nsurlsessiond
Filters Network iMovie
FontCollections PreferencePanes iTunes

Now let’s go back a directory. For this, use the .. shortcut for moving up one directory
in the filesystem. In this case, since you were in your Library folder (e.g., /Users/
taylor/Library, or just ~/Library), the following command moves you back to your
home directory (as noted by the pwd command that follows):

$ cd ..
$ pwd
/Users/taylor

Finally, when it’s time to quit the Terminal, use the exit command rather than just
quitting the application with ⌘-Q:

$ exit

Don’t worry if you aren’t sure exactly what each of those commands does; we’ll
explore each one in great detail as the book proceeds.

There’s a whole world of Unix inside your OS X system, and it’s time for you to jump
in and learn how to be more productive and more efficient, and gain remarkable
power as a Mac user. Ready? Let’s go!

12 | Chapter 1: Why Use Unix?

CHAPTER 2

Using the Terminal

With a typical Unix system, a staff person has to set up an account for you before you
can use it. With OS X, however, the operating system installation process automati‐
cally creates a default user account. The account is identified by your username,
which is usually a single word or an abbreviation. Think of this account as your office
—it’s your personal place in the Unix environment.

When you log in to your OS X system, you’re automatically logged into your Unix
account as well. In fact, your Desktop and other customized features of your OS X
environment have corresponding underpinnings in the Unix environment. Your files
and programs can be accessed either through the Finder or through a variety of Unix
command-line utilities that you can use in OS X’s Terminal application.

In this chapter, you’ll not only learn about the Terminal and how to customize it for
your own needs, but you’ll also gain an understanding of the command-line nature of
OS X when accessed through the Terminal. If you’re used to moving your cursor
around and clicking on buttons, this might seem wonderfully—or awkwardly—retro,
but as is so often the case, the differences between the Finder and the Terminal are
part of what makes the Terminal, and Unix, so remarkably powerful.

Launching the Terminal
The way you use Unix on OS X is through an application known as the Terminal, or,
to Mac geeks, Terminal.app (pronounced “Terminal dot app”). Open a Finder win‐
dow, head to Applications, then look in Utilities, as shown in Figure 2-1. Double-click
on “Terminal” and it will start up, presenting you with a dull, uninspiring white win‐
dow with black text that says “Last login:” and a shell prompt.

13

Figure 2-1. Finding Terminal in the Utilities folder

By default, the Terminal uses bash as its shell. If you’d like to con‐
figure it to use a different shell, you can do so by selecting Termi‐
nal→Preferences and specifying the shell to use. I talk about that in
“What Is a Shell?” on page 19, later in this chapter.

Most OS X applications you’ve run to this point probably have a pretty graphical
interface and allow you to move the cursor around with your mouse or trackpad.
Move it over something you want to do, and you can simply click for the action to
take place. The Terminal is different, though: your mouse gets a rest for a while as
you type in the commands on your keyboard, ending each line with a Return.

Syntax of a Unix Command
Unix command lines can be simple, one-word entries, such as the date command.
They can also be more complex; you may need to type more than the command or
program name. The command can be the name of a Unix program (such as date), or
it can be a command that’s built into the shell (such as exit). You probably don’t need
to worry about this!

A Unix command can have arguments. An argument can be an option or a filename.
The general format for a Unix command line is:

 command option(s) filename(s)

There isn’t a single set of rules for writing Unix commands and arguments, but these
general rules work in most cases:

14 | Chapter 2: Using the Terminal

• Enter commands in lowercase. Unix is case-sensitive, so echo and ECHO are not
synonymous.

• Options modify the way in which a command works. Options are often single let‐
ters, prefixed with a dash (-, also called a “hyphen” or “minus”) and set off by any
number of spaces or tabs. Multiple options in one command line can be set off
individually (such as -a -b). In most cases, you can combine them after a single
dash (such as -ab), but most command documentation won’t tell you whether
this will work; you’ll have to try it.
Some commands also have options made from complete words or phrases and
starting with two dashes, such as --delete or --confirm-delete. When you enter a
command line, you can use this option style, the single-letter options (which
each start with a single dash), or both.

• The argument filename is the name of a file you want to use. Most Unix pro‐
grams also accept multiple filenames, separated by spaces or specified with wild‐
cards (see Chapter 4). If you don’t enter a filename correctly, you may get a
response such as “filename: no such file or directory” or “filename: cannot
open.”
Some commands, such as who, have arguments that aren’t filenames.

• You must type spaces between commands, options, and filenames. You’ll need to
“quote” filenames that contain spaces. For more information, see Chapter 4.

• Options come before filenames.
• In a few cases, an option has another argument associated with it; type this spe‐

cial argument just after its option. Most options don’t work this way, but you
should know about them. The sort command is an example of this feature: you
can tell sort to write the sorted text to a filename given after its -o option. In the
following example, sort reads the file sortme (given as an argument), and writes
to the file sorted (given after the -o option):

$ sort -o sorted -n sortme

I also used the -n option in that example, but -n is a more standard option speci‐
fying a numeric rather than alphabetic sort; it has nothing to do with the final
argument (sortme) on that command line. So, I also could have written the com‐
mand line this way:

$ sort -n -o sorted sortme

Don’t be too concerned about these special cases, though. If a command needs an
option like this, its documentation will say so.

• Command lines can have other special characters, some of which you’ll see later
in this book. They can also include several separate commands. For instance, you
can write two or more commands on the same command line, each separated by

Launching the Terminal | 15

a semicolon (;). Commands entered this way are executed one after another by
the shell.

OS X has a lot of commands! Don’t try to memorize all of them. In fact, you’ll proba‐
bly need to know just a few commands and their options. As time goes on, you’ll
learn these commands and the best way to use them for the work you need to do.

Let’s look at a sample command. The ls program displays a list of files. You can use it
with or without options and arguments. If you enter:

$ ls

you’ll see a list of filenames. But if you enter:

$ ls -l

there will be an entire line of information for each file. The -l option (a dash and a
lowercase letter “L”) changes the normal ls output to a long format. You can also get
information about a particular file by using its name as the second argument. For
example, to find out about a file called chap1, enter:

$ ls -l chap1

Many Unix commands have more than one option. For instance, ls has the -a (all)
option for listing hidden files. You can use multiple options in either of these ways:

$ ls -a -l
$ ls -al

You must type at least one space between the command name and the dash that
introduces the options. If you enter ls-al, the shell reports back with:

ls-al: command not found

Exercise: Entering a Few Commands
The best way to get used to the Terminal is to enter some commands. To run a com‐
mand, type the command and then press the Return key. Remember that almost all
Unix commands are typed in lowercase. Try issuing the commands shown in
Table 2-1 to see what results are produced in the Terminal.

Table 2-1. Sample Unix commands to test out

Task Command

Get today’s date and time. date

List logged-in users. who

Obtain more information about users. who -u, finger, or w

16 | Chapter 2: Using the Terminal

Task Command

Find out who is at your terminal. who am i

Enter two commands in the same line. who am i;date

Mistype a command. woh

In this session, you’ve tried several simple commands and seen the results on the
screen.

Types of Commands
When you use a program, you’ll want to know how to control it. How can you tell it
what job you want done? Do you give instructions before the program starts, or after
it’s started? There are several general ways to run programs on an OS X system, and
it’s good to be aware of them:

Graphical programs
Some programs work only within the graphical window environment. On OS X,
you can run these programs using the open command. For instance, when you
type open -a Chess at a command prompt, the Chess application (/Applications)
launches and opens one or more windows on your screen. The program has its
own way to receive your input—through menus and buttons on its windows, for
instance. Although you can’t interact with these graphical programs using tradi‐
tional Unix utilities, OS X includes the osascript utility, which lets you run Apple‐
Script commands from the Unix shell.

Noninteractive Unix programs
You can run many Unix programs (though we generally call them “commands”
when they’re being typed in) directly at a shell prompt. These programs work
within a specific command window and you control them from the Unix com‐
mand line—that is, by typing options and arguments at a shell prompt before you
start the program. After you start the program, wait for it to finish; you generally
don’t interact with it.

Interactive Unix programs
Some Unix programs that work in the Terminal window have commands of their
own. (For examples, see Chapters 3 and 4.) These programs may accept options
and arguments on their command lines, but once you start a program, it prints
its own prompt and/or menus, and it understands its own commands. It also
takes instructions from your keyboard that weren’t given on its command line.

For instance, if you enter ftp at a shell prompt (refer back to the example in “Power
Internet Connections” on page 7), you’ll see a new prompt from the ftp program. At

Launching the Terminal | 17

this prompt, you can enter certain FTP commands for transferring files to and from
remote systems. When you enter the special command quit to quit the ftp program
(or you can use bye), ftp stops prompting you for more input. Once you quit FTP,
you’re returned to the standard Unix shell prompt, where you can enter other Unix
commands.

Changing the Terminal’s Preferences
To change the Terminal’s preferences, go to Terminal→Preferences. This opens the
complicated Preferences window, as shown in Figure 2-2.

Figure 2-2. The Terminal Preferences window lets you configure the settings for your
Terminal windows

At the top of the window is a row of buttons that let you select which options to con‐
figure: General, Profiles, Window Groups, and Encodings. The names suggest what
each does, but let’s have a closer look anyway, particularly since some of these settings
definitely should be changed (in my view).

General
When you first open the Terminal Preferences, the General settings are displayed, as
shown in Figure 2-2. This lets you manage the overall behavior of a window, includ‐

18 | Chapter 2: Using the Terminal

ing its color scheme (my default is “Ocean”), what shell you’d like to use, and even
what happens when you open a specific tab.

What Is a Shell?
A shell, at least in the Unix world, is the environment in which you work on the Unix
side of things. To put this into context, when you’re using the graphical user interface
for OS X, you’re using OS X’s native “environment.” With Unix, however, everything
is text-based, and the shell offers you an interface in which to issue commands, and to
configure how your shell environment works and behaves.

Shells also offer their own scripting languages, which allow you to write mini-
programs for mundane things, such as displaying a message to tell you to clean the
litter box, or much larger tasks, such as backing up your computer. With shell scripts,
you’re basically using the shell’s environment to run Unix commands—or other shell
scripts—to automate tasks and processes.

If you want to learn more about the bash shell and how to program shell scripts with
it, look to the venerable Learning the bash Shell by Cameron Newham and Bill Rose‐
nblatt (O’Reilly). Don’t let the age of this book fool you. And if you want to see what
you can do with shell scripts, I’d recommend picking up a copy of Wicked Cool Shell
Scripts (No Starch Press), authored by yours truly and still a timely and popular
scripting reference.

The choice of shells in OS X includes: /bin/bash, /bin/csh, /bin/ksh, /bin/tcsh, /bin/zsh,
and /bin/sh. Unix fans will no doubt find a shell to their liking, but if you’re just learn‐
ing, stick with bash (/bin/bash) and you’ll be able to follow every example in this book
without a hiccup.

Profiles
The Profiles pane (shown in Figure 2-3) shows lots of different appearance options,
including nice visual thumbnails of the many different predefined color schemes
available in the Terminal. The left side of the Profiles window shows the different
color profiles, but the right side is where the action is. It’s split into six sections: Text,
Window, Tab, Shell, Keyboard, and Advanced.

The Text section is where you can specify what typeface you want to use: what size,
what color, etc. You can see all of the options in Figure 2-4.

Launching the Terminal | 19

http://shop.oreilly.com/product/9780596009656.do

Figure 2-3. Terminal Preferences Profiles pane

Figure 2-4. Terminal Profiles pane: Text preferences

20 | Chapter 2: Using the Terminal

If you use a predefined profile, of course, you don’t have to tweak any of the color
settings, but I know that some people can spend hours fiddling and tweaking to get it
just so.

The most interesting section of the Profiles pane of the Preferences window is the
Window section, shown in Figure 2-3. Here, you can add useful information to the
Terminal window, change the background of the Terminal window to a graphic or
photo (though I can’t imagine why you would!), and change the default window size.
The standard size is 25 lines by 80 characters, but that’s just a historical artifact from
the early Neolithic era of computing. Setting the size to 100 characters wide by 40 or
50 lines makes it considerably easier to work in the Terminal.

One really nice thing that the Terminal does is save the textual information that
scrolls off the top of the screen so you can scroll up and review what’s transpired ear‐
lier. In the old days, once it was off the top, it was off, gone, kaput. Now you can go
back and review your command-line interaction from days or even weeks ago,
depending on your available memory. You can also configure the size of the scroll‐
back buffer in the Window section; by default, it is unlimited.

Other sections of the Profiles pane are worth exploring too. In particular, the Shell
section is useful for fine-tuning how your Terminal works. The most important set‐
ting here is under “Ask before closing.” There are three options that let you choose
whether or not the Terminal prompts you before closing its windows.

Set “Ask before closing” to “Always” if you’d like the Terminal to always ask before
closing the window, or set it to “Never” to prevent it from ever asking. You can also
use the “If there are processes other than the login shell and” setting (the default) to
ignore the programs shown in the list (you can add items to or remove items from
this list). If there’s something still running in the window other than the programs
defined in this list, a dialog box pops up asking if you’re sure you want to quit. This
feature is very helpful if you are prone to accidentally clicking the wrong window ele‐
ment or pushing the wrong key sequence.

The last two sections are Keyboard and Advanced. There’s nothing there that you’ll
need to change or modify to fully explore all the capabilities of Unix on your Mac
system, so we’ll skip them.

Features of the Terminal
There are quite a few nifty Terminal features worth mentioning before I move further
into the world of Unix.

Secure Keyboard Entry
While the vast majority of OS X users ignore this feature, the Terminal has a very nice
security feature called Secure Keyboard Entry (enable it with Terminal→Secure Key‐

Launching the Terminal | 21

board Entry). When enabled, Secure Keyboard Entry ensures that keyboard “sniffers”
(or other applications that monitor your keystrokes) cannot see what you type within
the Terminal. This means that the OS X utility that calculates whether your computer
is in use or ready to sleep won’t know you’re working, for example, but that could be a
small price to pay for the added security of circumventing possible spyware on your
system.

More cool Terminal features
In addition to using the Secure Keyboard Entry option from the Terminal menu,
some other features you’ll find quite useful include:

Shell→New Command
If you need to run a Unix command but don’t want to launch a new Terminal
window or have its output appear in the current window (manpages are an excel‐
lent example), you’ll appreciate knowing about the New Command option avail‐
able on the Shell menu, shown in Figure 2-5. Choose that (or use the keyboard
shortcut ⌘-Shift-N) and enter the command you’d like to run, and its output will
be displayed in a new window that you can then easily close without affecting
anything else.

Edit→Paste Escaped Text
One of the common challenges of working with Unix within the OS X environ‐
ment is that while the Finder has no problems with spaces embedded in file‐
names, Unix can be rather testy about even a single space. When you’re copying
and pasting filenames, however, you don’t have to worry about remembering to
escape each and every space by preceding it with a backslash: just use Paste Esca‐
ped Text (^-⌘-V), and a filename like taylor/Desktop/My Favorite Martian is
automatically pasted as taylor/Desktop/My\ Favorite\ Martian.

Edit→Paste Selection
If you want to copy and paste just what you’ve selected from a window, rather
than everything visible in the Terminal window, use Paste Selection without a
Copy, and it’ll save you a step. The keyboard shortcut for this one is worth
remembering, too: ⌘-Shift-V.

22 | Chapter 2: Using the Terminal

Figure 2-5. Shell menu options

Customizing Your Terminal Session
There are a number of different ways that you can customize your Terminal session
beyond what’s been shown so far in this chapter. These are more advanced techni‐
ques, and you can safely flip past them if they seem too complex (though I’d still
encourage you to read through the material, just so you can see what capabilities are
included within the Terminal application).

Setting the Terminal’s Title
You can change the current Terminal title using the following cryptic sequence of
characters:

echo '^[]2;My-Window-Title^G'

To type the ^[characters in bash, use the key sequence Control-V Escape (press
Control-V and release, then press the Escape key). To type ^G, use Control-V
Control-G. The vi editor supports the same key sequences.

Such cryptic sequences of characters are called ANSI escape sequences. An ANSI
escape sequence is a special command that manipulates some characteristic of the
Terminal, such as its title. ^[is the ASCII ESC character (which begins the sequence),
and ^G is the ASCII BEL character. (The BEL character is used to “ring” the Terminal
bell, but in this context, it terminates the escape sequence.)

Customizing Your Terminal Session | 23

Using AppleScript to Manipulate the Terminal
AppleScript is a powerful programming language used to automate OS X applica‐
tions. The OS X Terminal is one such application. You can run AppleScript com‐
mands at the shell prompt using the osascript utility. The \ character at the end of an
input line tells the shell that the command line will continue on the next input line
and therefore not to start executing when it receives the subsequent Return
key (when you use this, the shell will prompt you with a > character). The format is as
follows:

osascript -e \
'tell app "Terminal" to set option of first window to value'

For example, to minimize your current Terminal window:

$ osascript -e \
> 'tell app "Terminal" to set miniaturized of first window to true'
$

For a complete list of properties you can manipulate with AppleScript, open the
Script Editor (/Applications/Utilities/Script Editor) and select File→Open Dictionary.
Open the Terminal dictionary and examine the properties available under window, as
shown in Figure 2-6. If a property is marked r/o, it is read-only, which means you
can’t modify it on the fly.

Figure 2-6. The Terminal’s AppleScript dictionary

Working with .terminal Files
One useful feature of the Terminal is the ability for you to customize the appearance
and behavior of a specific Terminal window, and then save that configuration as

24 | Chapter 2: Using the Terminal

a .terminal file. Later, you can simply double-click on the .terminal file and you’ll have
your Terminal window back and ready to go, exactly as you set it up previously. Even
better, you can set up multiple windows and have them all saved into a single .termi‐
nal file, then collectively relaunched when you restart the Terminal program.

As an example, suppose you set up the main Terminal window to display large, white
text on a blue background. To save this configuration as a .terminal file, choose
Shell→Export Settings, and you’ll be prompted for a filename.

More interesting is a slight variation on this command that saves all the windows
you’ve set up. To achieve this, choose Window→Save Windows as a Group. You’ll be
prompted for a filename, as shown in Figure 2-7.

Figure 2-7. Saving a windows group .terminal file

Perhaps the most interesting option is the checkbox “Use window group when Termi‐
nal starts.” Set things up the way you want, and you could find a half dozen different-
sized and different-colored windows on your Desktop, all ready to go, every time you
start up the Terminal. You can even have some windows start up running specific
commands. A popular command to use is top or tail -f /var/log/system.log, to help you
keep an eye on how your system is performing.

Working with the Terminal
To get into the Unix environment, launch the Terminal application. Hopefully you’ve
already added it to your Dock, as explained earlier!

Once the Terminal is running, you’ll see a window like the one in Figure 2-8.

Working with the Terminal | 25

Figure 2-8. The Terminal window

You can have a number of different Terminal windows open, if that helps your work‐
flow. Simply use ⌘-N to open each one, and ⌘-~ to cycle between them without
removing your hands from the keyboard. Or you can have the different sessions
neatly organized in tabs. Use ⌘-T to open new tabs as needed.

Once you have a window open and you’re typing commands, it’s helpful to know that
regular OS X copy and paste commands work, so it’s simple to send an email message
to a colleague showing your latest Unix interaction, or to paste some text from a web
page into a file you’re editing with a Unix text editor such as vi.

If you have material in your scroll buffer that you want to find, use ⌘-F (or select
Find→Find from the Edit menu) and enter the specific text. ⌘-G (Edit→Find→Find
Next) lets you search down the scroll buffer for the next occurrence, and Shift-⌘-G
(Edit→Find→Find Previous) lets you search up the scroll buffer for the previous
occurrence. You can also search for material by highlighting a passage and entering
⌘-E (Find→Use Selection for Find), or jump to the selected material with ⌘-J (Find →
Jump to Selection). You can save an entire Terminal session as a text file with
Shell→Export Text As, and you can print the entire session with Shell→Print.

Study the menus in the Terminal too: there are symbols you might not have seen
before in your OS X exploration. For example, the upward-facing diagonal arrow for
View→Scroll to Top is the Top or Home key on your keyboard, and the downward-
facing diagonal arrow for View→Scroll to Bottom is the End key. You can move up a
page with View→Page Up (or ⌘-Page Up), and down a page with View→Page Down
(or ⌘-Page Down). To move up or down lines, use ⌘-up arrow or ⌘-down arrow, as
needed.

26 | Chapter 2: Using the Terminal

The Shell Prompt
When the system is ready to run a command, the shell outputs a prompt to tell you
that you can enter a command.

The default prompt in bash is the computer name (which might be something auto‐
matically generated, such as dhcp-254-108, or a name you’ve given your system), the
current directory (which might be represented by ~, Unix’s shorthand for your home
directory), your login name, and a dollar sign. For example, the complete prompt
might look like this:

Dave-Taylors-MacBook-Pro:~ taylor$

The prompt can be customized, though, so your own shell prompt may be different.
I’ll show you how to customize your prompt later in this chapter.

A prompt that ends with a hash mark (#) usually means you’re logged in as the super‐
user. The superuser doesn’t have the protections for standard users that are built into
the Unix system. If you don’t know Unix well, you can inadvertently damage your
system software when you are logged in as the superuser. In this case, I highly recom‐
mend that you stop work until you’ve found out how to access your personal Unix
account.

The simplest solution is to open a new Terminal window (Shell→New Window) and
work in that window. If you’ve still got the superuser prompt, it means that either you
logged in to OS X as the superuser or your shell prompt has been customized to end
with a #, even when you’re not the superuser. To figure out which is the case, try log‐
ging out of OS X completely (Apple Menu→Log Out, or Shift-⌘-Q) and logging back
in as yourself.

Entering a Command
Entering a command line at the shell prompt tells the computer what to do. Each
command line includes the name of a Unix program. When you press Return, the
shell interprets your command line and executes the program.

The first word that you type at a shell prompt is always a Unix command (or program
name). Like most things in Unix, program names are case-sensitive; if the program
name is lowercase (and most are), you must type it in lowercase. Some simple com‐
mand lines have just one word, which is the program name.

date
An example of a single-word command is date. Entering the command date displays
the current date and time:

$ date
Sat Oct 3 14:57:19 MDT 2015

Working with the Terminal | 27

As you type a command line, the system simply collects your keyboard input. Press‐
ing the Return key tells the shell that you’ve finished entering text, and it can run the
command.

who
Another simple command is who. It displays a list of each logged-on user’s username,
terminal number, and login time. Try it now, if you’d like.

The who program can also tell you which account is currently using the Terminal
application, in case you have multiple user accounts on your Mac. The command line
for this is who am i. This command line consists of the command (who, the program’s
name) and its arguments (am i). (Arguments are explained in “Syntax of a Unix
Command” on page 14, earlier in this chapter.) For example:

$ who am i
taylor ttys002 Oct 3 14:55

The response shown in this example says that:

• taylor is the username. The username is the same as the Short Name you define
when you create a new user with System Preferences→Accounts→+.

• Virtual terminal ttys002 is in use. The cryptic ttys002 syntax is a holdover from
the early days of Unix. All you need to know as a Unix beginner is that each time
you open a new Terminal window, the number at the end of the name gets incre‐
mented by one. The first is ttys001, the second ttys002, and so on. The terminal
ID can also be included in the title bar of the Terminal window, if desired.

• A new Terminal window was opened at 14:55 (or 2:55 p.m.) in the afternoon on
Oct 3.

Recalling Previous Commands
Modern Unix shells remember commands you’ve typed previously. They can even
remember commands from previous login sessions. This handy feature can save you
a lot of retyping of common commands. As with many things in Unix, though, there
are several different ways to do this; I don’t have room to show and explain them all,
but you can get more information from the sources listed in Chapter 10.

After you’ve typed and executed several commands, try pressing the up arrow key on
your keyboard. You will see the previous command after your shell prompt, just as
you typed it. Pressing the up arrow key again recalls the command before that one,
and so on. Also, as you’d expect, the down arrow key will recall more recent com‐
mands.

28 | Chapter 2: Using the Terminal

To execute one of these remembered commands, just press the Return key. (Your cur‐
sor doesn’t even have to be at the end of the command line.)

Once you’ve recalled a command, you can edit it as necessary, usually by moving left
and right with the left or right arrow keys, then inserting or deleting characters as
needed. If you don’t want to execute any remembered commands, cancel the com‐
mand shown either with the Mac-standard ⌘-. (Command-period) or with the Unix-
standard Control-C.

Completing File and Directory Names
Most Unix shells can complete a partially typed file or directory name for you. If
you’re using the default shell in OS X (i.e., bash), just type the first few letters of the
word, then press Tab. (Different shells have different methods.) If the shell finds just
one way to complete the word, it will do so; your cursor moves to the end of the new
word, where you can continue typing or just press Return to run the command.

You can also edit or erase the completed name by hitting the Delete
key or moving the cursor back and forth with the left and right
arrow keys.

What happens if more than one file or directory name matches what you’ve typed so
far? In this case, the shell will beep at you to let you know that it couldn’t find a
unique match. To get a list of all possible completions, simply press the Tab key again
and you will see a list of all names starting with the characters you’ve typed so far
(you won’t see anything if there are no matches). Here’s an example from the bash
shell:

$ cd /usr/bin
$ ma<Tab><Tab>
 macbinary machine make man
 macerror mail makeinfo manpath
 macerror5.16 mailq malloc_history
 macerror5.18 mailx malloc_history32
$ ma

At this point, you could type another character or two—an i, for example—and then
press Tab once more to list only the mail-related commands.

Running Multiple Commands on the Command Line
An extremely helpful facet of working with the Unix system is the ability to specify
more than one command on a single command line. Perhaps you want to run a com‐
mand and find out how long it took to complete. This can be done by calling date
before and after the command, or using the time command, but let’s stick with date

Working with the Terminal | 29

for this demonstration. If you hunt-and-peck out date each time, the timing is hardly
going to be accurate. Much better is to put all three commands on the same line:

$ cd ~; date ; du -s . ; date
Sat Oct 3 15:04:38 MDT 2015
715163360 .
Sat Oct 3 15:06:03 MDT 2015

This example shows four different commands all strung together on a single com‐
mand line, using the semicolon character (;) to separate each command. First, cd ~
moves you into your home directory (as would cd by itself, as it happens), then date
shows the current date and time. Next, the du -s command figures out how much disk
space is used by the current directory, as denoted by the period (.). A second date
command then shows the time after the du command has run.

Now you know it takes exactly 1 minute and 25 seconds to calculate the disk space
used by your home directory—much more useful than knowing it takes 25 seconds
for you to type the date command, for du to run, and for you to type date again.

Correcting a Command
What if you make a mistake in a command line? Suppose you type dare instead of
date and press the Return key before you realize your error. If you haven’t entered a
command that happens to be a misspelled version of another command (which is
theoretically possible, I suppose!), the shell displays the following error message:

$ dare
-bash: dare: command not found

Don’t be too concerned about getting error messages. Sometimes you’ll get an error
even if it appears that you typed the command correctly. This can be caused by acci‐
dentally typing control characters that are invisible on the screen. Once the prompt
returns, simply reenter your command.

As mentioned earlier, you can recall previous commands and edit command lines.
Use the up arrow key to recall a previous command, then, to edit the command line,
use the left and right arrow keys to move your cursor to the point where you want to
make a change. You can use the Delete key to erase characters to the left of the cursor,
and type in changes as needed.

If you have logged in to your Macintosh remotely from another system (see Chap‐
ter 8), your keyboard may be different. The erase character differs between systems
and accounts, and can be customized. The most common erase characters are:

• Delete or Del
• Control-H

30 | Chapter 2: Using the Terminal

www.allitebooks.com

http://www.allitebooks.org

Control-C (or ⌘-.) interrupts or cancels a command, and can be used in many (but
not all) cases when you want to quit what you’re doing.

Other common control characters are:

Control-U
Erases the whole input line; you can start over.

Control-S
Pauses output from a program that’s writing to the screen. This can be confusing,
so I don’t recommend using Control-S.

Control-Q
Restarts output after a Control-S pause.

Control-D
Signals the end of input for some programs (such as cat, explained in “Putting
Text in a File” on page 137) and returns you to a shell prompt. If you type
Control-D at a shell prompt, it quits your shell. Depending on your preferences,
your Terminal window will either close or sit there, which is generally useless,
until you manually close the window.

Ending Your Session
To end a Unix session, you must exit the shell. You should not end a session just by
quitting the Terminal application or closing the Terminal window. It’s possible that
you might have started a process running in the background (see Chapter 7), and
closing the window could therefore interrupt the process so it won’t complete—or,
worse, leave a program running stray, without a parent shell or terminal. Instead, type
exit at the shell prompt and hit Return. The window will either close or simply not
display any sort of prompt; you can then safely quit the Terminal application. If
you’ve started a background process, you’ll instead get one of the messages described
in the next section.

Problem Checklist
The first few times you use OS X, you aren’t likely to have the following problems.
But you may encounter these problems later, as you do more advanced work:

You get another shell prompt, or the shell says “logout: not login shell.”
You’ve been using a subshell (a shell created by your original Terminal shell).
Type exit (or just type Control-D) to close each subshell until the Terminal win‐
dow closes.

Working with the Terminal | 31

The shell says “There are stopped jobs” or “There are running jobs.”
OS X and many other Unix systems have a feature called job control that lets you
suspend a program temporarily while it’s running or keep it running separately in
the “background.” One or more programs you ran during your session has not
ended but is stopped (paused) or in the background. Enter fg to bring each stop‐
ped job into the foreground, then quit the program normally. (See Chapter 7 for
more information.)

The Terminal application refuses to quit, saying “Closing this window will terminate the
following processes inside it,” followed by a list of programs.

The Terminal tries to help by not quitting when you’re in the middle of running a
command. Cancel the dialog box and make sure you don’t have any commands
running that you’ve forgotten about. If need be, type jobs to see what’s running.

Customizing the Shell Environment
The Unix shell reads a number of configuration files when it starts up. These configu‐
ration files are really shell programs, so they are extraordinarily powerful. Shell
programming is beyond the scope of this book.

But let’s look at what you can customize without having to become a full-fledged Unix
geek, shall we?

Picking a Login Shell
The default login shell for OS X is the ever-popular bash shell, but many Unix fans
prefer to use the Korn shell (ksh) instead. As mentioned earlier, OS X offers a host of
different shells, including /bin/bash, /bin/csh, /bin/ksh, /bin/tcsh, /bin/zsh, and /bin/sh.

To change your login shell, you can either use the Unix chsh command (enter chsh on
the command line and you’ll be asked which shell you’d like, starting the next time
you log in) or just change the shell setting in the Terminal Preferences, as shown ear‐
lier, in Figure 2-2.

Why Some Folks Love the Korn Shell
From the perspective of typing in commands and even working with command his‐
tory or aliases, almost all shells are alike. In a rather old interview on the popular geek
website SlashDot, David Korn (author of the Korn shell) even says: “It is hard to argue
that ksh is any better for interaction... but the scripting features in ksh93 are far more
advanced than any other shell.”

If you spend a lot of time writing advanced shell scripts, ksh can be an excellent
choice, because it offers some remarkably sophisticated capabilities—features that
you’d only expect in a highly advanced programming environment like Java or C++.

32 | Chapter 2: Using the Terminal

http://www.slashdot.org

The bash shell also has many sophisticated programming features, and it’s my shell of
choice, but in some Unix circles ksh is the preferred shell.

For more information on the Korn shell, see Learning the Korn Shell, by Bill
Rosenblatt and Arnold Robbins (O’Reilly).

Changing the Command Prompt
The easiest customization you can make to the shell is to change your command
prompt. By default, bash on OS X has a shell prompt made up of your computer’s
hostname, your current working directory, your account name, and a dollar sign. For
example:

Dave-Taylors-MacBook-Pro:~ taylor$

If you’d rather have something shorter, like just the dollar sign ($), enter the following
command:

Dave-Taylors-MacBook-Pro:~ taylor$ PS1="$ "
$

This command gives you a simple, sparse $ prompt, and nothing else. It isn’t neces‐
sary to use the dollar sign as your prompt; you could use a colon (:), a greater-than
sign (>), or any character you like. Just remember to include a space after the charac‐
ter you’ve chosen to use as the prompt, because that helps you differentiate between
the command prompt and the actual command you’re typing in.

If you want this change to take effect every time you start a shell,
use the vi editor to create a file called .profile in your home direc‐
tory (/Users/your_name), and then add the following to the end of
the file: export PS1="$ ". (You can read more about the vi editor
in Chapter 4.)

Of course, if that were all you could do to your command prompt, it wouldn’t be very
interesting. There are a number of special character sequences that, when used to
define the prompt, cause the shell to print out various bits of useful data. Table 2-2
shows a partial list of these special character sequences for fine-tuning your prompt.

Table 2-2. Favorite escape sequences for bash prompts

Value Meaning

\w The current working directory

\W The trailing element of the current working directory, with ~ substitution

Customizing the Shell Environment | 33

http://shop.oreilly.com/product/9781565920545.do

Value Meaning

\! The current command history number

\H The full hostname

\h The hostname up to the first dot

\@ The time of day in 12-hour (a.m./p.m.) format

\A The time of day in 24-hour format

\u The username

\$ A # if the effective user ID is zero (root), or a $ otherwise

Experiment and see what sorts of interesting Unix prompts you can create. For many
years, a popular Unix prompt was:

$ PS1="Yes, Master? "

It might be a bit obsequious, but on the other hand, how many people in your life call
you “Master”?

One prompt sequence that I like is:

$ PS1="\w \! \$ "

This prompt sequence shows the current working directory, followed by a space and
the current history number, and then a $ or # to remind the user that this is bash and
whether they’re currently running as root. (The # is for when you’re running as root,
the administrator account, and the $ is for when you aren’t root.) For example, the
prompt might read:

~ 55 $

This tells you immediately that ~ (in my case, /Users/taylor) is the current directory,
and that this will be the 55th command you’ll execute. Because you can use the up or
down arrow keys to scroll back or forward, respectively, through your previous com‐
mands, as described in “Recalling Previous Commands” on page 28, this is not as
important in the Terminal as it is in other command-line environments, but there is a
very powerful command history syntax built into bash that allows you to recall a pre‐
vious command by number. If you’re familiar with this syntax, making the command
history number part of the prompt can be handy.

On multiuser systems, it’s not a bad idea to put the username into the prompt as well.
That way, you’ll always know who the system thinks you are. And if you routinely use

34 | Chapter 2: Using the Terminal

more than one computer system, you should also consider including the hostname in
the prompt so you’ll always know which system you’re logged in to.

Advanced Shell Customization
There’s not much more you can do to customize the Terminal application than what’s
shown in this chapter, but there’s an infinite amount of customization possible with
the bash shell (or any other shell you might have picked). Remember, the Terminal is
the program you’re using to access the command line on your Mac system, and the
shell is the actual program being run that lets you submit requests and have them
processed.

Here are a few directions to get you started.

Shell Configuration Settings
Because Unix is a multiuser system, there are two possible locations for the configu‐
ration files: one applies to all users of the system and another to each individual user.

The system-wide setup files that are read by bash, the default shell for OS X, are
found in /etc (profile and bashrc). You only have permission to change these system-
wide files if you use sudo (see “Superuser Privileges with sudo” on page 72, in Chap‐
ter 3). However, you can create another file called .profile in your home directory that
will add additional commands to be executed whenever you start a new Terminal
window. (If you configure the Terminal to use another shell, such as the Bourne shell,
the C shell, or the Z shell, you’ll need to set up different configuration files. See the
manpage for your selected shell to learn the necessary details. To learn more about
csh, for example, use the command man csh.)

The system-wide setup files are read first, then the user-specific ones, so commands
in your .profile file can override those in the system-wide files. The system-wide
bashrc file is succinct:

$ cat /etc/bashrc
System-wide .bashrc file for interactive bash(1) shells.
if [-z "$PS1"]; then
 return
fi

PS1='\h:\W \u\$ '
Make bash check its window size after a process completes
shopt -s checkwinsize

[-r "/etc/bashrc_$TERM_PROGRAM"] && . "/etc/bashrc_$TERM_PROGRAM"

Your own profile file—prefaced with a . to hide it from the Finder—can contain any
shell command that you want to run automatically whenever you open a new Termi‐

Advanced Shell Customization | 35

nal window. Some typical examples include changing the shell prompt, setting envi‐
ronment variables (values that control the operation of other Unix utilities), setting
aliases, or adding to the search path (where the shell searches for programs to be
run). My .profile file looks like this:

PS1="\w (\!): "

export PATH=$HOME/bin:/opt/local/bin:/opt/local/sbin:$PATH

export SVN_EDITOR=/usr/bin/vi

alias scale=~/bin/scale.sh
alias ls="ls -F"
alias vps="ssh dtaylor@intuitive.com"

date

This line tells the shell to use a different prompt than the standard one. I
explained the details of prompt setting in “Changing the Command Prompt” on
page 33, earlier in this chapter. This particular sequence offers me a succinct
prompt that’s also informative: /bin (518):.

This line sets a shell variable that the shell itself uses as its search path for finding
commands that are typed in. Usually the default PATH is fine, but since I have
some local programs and scripts I’ve written, this lets me use them without speci‐
fying their location in the filesystem each time.

Similarly, this line specifies what editor the SVN command should use by default
(vi). Not all commands recognize environment variables, but for those that do,
this type of environment variable setting saves you the trouble of typing the
options on every command line.

These three lines define new custom commands that the shell will recognize just
as if they were built-in Unix commands. Aliases are a great way to save shorthand
names for long, complicated Unix command lines, or even to fix common mis‐
takes you might make when typing command lines. These particular aliases cre‐
ate a command for launching my image-scaling shell script (scale.sh), add a
favorite flag to the ls command, and let me invoke the secure shell utility (ssh)
with the account information I need as a shortcut. A brief tutorial on creating
aliases can be found in the next section.

This line simply runs the date command to print the time and date when a new
Terminal window is opened. You might not want to do this, but it’s good for you
to see that you can include any command that you could type at the shell prompt
and have it automatically be executed whenever a new shell starts up.

36 | Chapter 2: Using the Terminal

By default, the .profile file doesn’t yet exist in your home directory, and only the
system-wide configuration files are read each time a Terminal window is opened. But
if you create this file in your home directory, it will be read and its contents executed
the next time you start a shell. You can create or change this file with a text editor
such as vi (see Chapter 4).

Don’t use a word processor like Microsoft Word that breaks long
lines or puts special nontext codes into the file. TextEdit can work
if you really insist, but you need to ensure that you chose For‐
mat→Make Plain Text (Shift-⌘-T) before you save the file to ensure
that no additional formatting information is added by the
application.

Any changes you make to your shell setup files will take effect when you open a new
Terminal window. Unfortunately, it’s not always easy to know which shell setup file
you should change, and an editing mistake in your shell setup file can interfere with
the normal startup of the Terminal window itself. It is recommended that beginners
get help from experienced users before tweaking these files. Also, you shouldn’t make
changes to these files at all if you’re about to do some critical work with your account,
unless there’s some reason you have to make the changes immediately.

You can execute any customization command discussed here from
the command line as well, rather than making a more permanent
change by editing .profile. In this case, the changes remain in effect
only until you close the window you’re using or quit the Terminal.

For example, to change the default options for the other less command so it clears the
Terminal window before showing each new page of text, you could add the -c option
to the LESS environment variable. The command looks something like this:

$ export LESS='eMqc'

If you don’t want some of the less options shown here, you can
leave those options out.

Unix has many other configuration commands to learn about; the books and websites
listed in Chapter 10 can help you identify which modifications you can make and
how they can help you produce an optimal computing environment for yourself.

Just as you can execute the setup commands from the command line, you can specify
that any command that you can execute from the command line be executed auto‐

Advanced Shell Customization | 37

matically when you log in by placing it in your setup file. (Running interactive com‐
mands such as vi or ftp from your setup file isn’t a good idea, though, in case you ever
log in from a system that can’t display a full-screen editor window. That would leave
you rather stuck.)

Creating Aliases
The flexibility of Unix is simultaneously its greatest strength and greatest downfall;
the operating system can do just about anything you can imagine (the command-line
interface is certainly far more flexible than the Finder!), but it’s very difficult to
remember every single option to every command. That’s where shell aliases can be a
real boon. A shell alias is a simple mechanism that lets you create your own com‐
mand names that act exactly as you desire.

For example, I like the -a and -F options to be included every time I list a directory
with ls, so I created the following alias:

$ alias ls="/bin/ls -aF"

Now every time I enter ls in the shell, the command is run and the -a and -F options
are specified automatically. To have this available in your next session, make sure you
remember to also add the alias to your .profile file.

You can also have aliases that let you jump quickly to common locations, a particu‐
larly helpful trick in OS X. For example:

$ alias desktop="cd ~/Desktop"

With that alias in place, all you need to do is enter desktop at the command prompt,
and you’re taken to your Desktop directory. The shell looks at its .profile file, sees that
desktop is an alias, and runs the commands found in the quotes (in this case,
cd ~/Desktop).

Another set of useful aliases is to automatically set the rm, cp, and mv commands into
interactive mode, using their -i option. (Chapter 4 describes the cp, mv, and rm com‐
mands, which copy, move, and remove files, respectively.) Each of these supports the
-i option, which prompts you before overwriting or deleting a file. You can use aliases
to always enable this option:

$ alias rm="rm -i"
$ alias cp="cp -i"
$ alias mv="mv -i"

You can list all active aliases by typing alias without any arguments:

$ alias
alias cp='cp -i'
alias desktop='cd ~/Desktop'
alias ls='/bin/ls -a'

38 | Chapter 2: Using the Terminal

Have an alias you want to get rid of? You can use the unalias command for that.
For example, unalias ls removes the -aF options added earlier. To remove them per‐
manently, however, you’ll likely have to delete that line from your .bashrc or .profile
file.

The Unresponsive Terminal
During your Unix session, your terminal may fail to respond when you type a com‐
mand, or the display on your screen may stop at an unusual place. That’s called a
“hung” or “frozen” terminal or session. Note that most of the techniques in this sec‐
tion apply to a Terminal window, but not to non-Terminal windows, such as a web
browser.

A session can hang for several reasons. For instance, your computer can get too busy,
and the Terminal application has to wait its turn. In that case, your session will
resume after a few moments. Do not try to “un-hang” the session by entering extra
commands, because those commands will all take effect after the Terminal comes
back to life.

If your display becomes garbled, press Control-L. In the shell, this
will clear the screen and display the prompt. In a full-screen pro‐
gram, such as a text editor, this keyboard shortcut redraws the
screen.

If the system doesn’t respond for quite a while (how long that is depends on your
individual situation; if you’re not sure, ask other users about their experiences), the
following solutions usually work. Try these steps in the order shown until the system
responds:

Press the Return key once
You may have typed text at a prompt (for example, a command line at a shell
prompt) but not yet pressed Return to say that you’re done typing and your text
should be interpreted.

Try job control (see Chapter 7); type Control-Z
This suspends the program running in the foreground and gives you a new shell
prompt.

Press Control-C or ⌘-.
This interrupts a program that may be running. (Unless the program is run in the
background; as described in Chapter 7, the shell waits for a background program
to finish before giving a new prompt. A long-running background program may
thus appear to hang the Terminal.) If this doesn’t work the first time, try it once
more; doing it more than twice usually won’t help.

The Unresponsive Terminal | 39

Type Control-Q
If output has been stopped with Control-S, this restarts the previously paused
process. Note that some systems automatically issue a Control-S if they need to
pause output; this sequence may not have been typed from the keyboard.

Type Control-D once at the beginning of a new line
Some programs (such as mail) expect text from the user. A program may be wait‐
ing for an end-of-input character from you to tell it that you’ve finished entering
text. Typing Control-D may cause you to log out, so you should try this only as a
last resort.

If all else fails, close your Terminal window (⌘-W) and open a new one.

40 | Chapter 2: Using the Terminal

CHAPTER 3

Exploring the Filesystem

Once you launch the Terminal, you can use the many facilities that OS X provides at
the command line—an environment that’s quite a bit more powerful than the graphi‐
cal interface you may be used to viewing. As a user, you have an account that gives
you:

• A place in the filesystem where you can store your files
• A username that identifies you and lets you control access to files
• An environment you can customize

In this chapter, you’ll see how all the thousands of files on your Mac are organized,
how to learn more details about any given file, and how to move around through OS
X’s filesystem. You’ll see that the Finder has been hiding quite a lot of information
from you: there are entire directories with thousands of files that are invisible from
the Finder but easily found and explored within the Terminal.

The OS X Filesystem
A file is the unit of storage in OS X. A file can hold anything: text (a report you’re
writing, a to-do list), a program, digitally encoded pictures or sound, and so on. All of
those are just sequences of raw data until they’re interpreted by the right program.

Files are organized into directories (more commonly referred to as folders on the
Aqua side of the Mac). A directory is actually a special kind of file where the system
stores information about other files. You can think of a directory as a place, so that
files are said to be contained in directories, and you work inside a directory. It’s
important that you realize that everything is a file in Unix. Whether you’re working
with a directory (perhaps moving files around) or editing a document, Unix funda‐
mentally looks at everything as the same sort of container of information.

41

A filesystem includes all the files and directories on a mounted volume, such as your
system’s hard disk, Dropbox, Google Drive, or your iCloud account (all of which you
mount on your system with a little help from WebDAV). This section introduces OS
X’s filesystem, showing you how all the files on your Mac are organized and how to
use Unix commands to explore your Mac’s filesystem. Later sections show how you
can look in files and protect them. Chapter 4 has more information about file man‐
agement.

Your Home Directory
When you launch the Terminal, you’re placed in a directory called your home direc‐
tory. This directory, which can also be viewed in the Finder by clicking the Home
icon, contains personal files, application preferences, and application data such as
Safari’s bookmarks. In your home directory, you can create your own files, create
other subdirectories, and so on. Like folders in a file cabinet, directories offer a way
for you to organize your files.

You can find out where your home directory is at any time by typing the following
command:

$ echo $HOME
/Users/taylor

As you can see, this tells me that my home directory (taylor) is found within the Users
directory (/Users). In Unix, a forward slash (/) is used to separate directory names,
with just a single slash signifying the very top, or root level, of your Mac’s filesystem.
For example, to change directories to the root level of your hard drive, use the follow‐
ing command:

$ cd /

For more information on the filesystem’s structure and the root directory, see “The
Directory Tree” on page 43.

Your Working Directory
Your working directory (also called your current directory) is the directory in which
you’re currently working. Every time you open a new Terminal window, your home
directory is your working directory. When you change to another directory, the
directory you move to becomes your working directory, and so on.

Unless you specify otherwise, all commands that you enter apply to the files in your
working directory. In the same way, when you create files, they’re created in your
working directory unless you specify another directory. For instance, if you type the
command vi report, the vi editor starts and a file named report is created in your
working directory once you’ve saved your changes. (Unless, of course, a report file

42 | Chapter 3: Exploring the Filesystem

already exists there, in which case that file will be opened in vi.) But if you enter the
following command:

$ vi /Users/john/Documents/report

a report file is created in your Documents directory—all without your having to
change from your current working directory. You’ll learn more about this when we
cover pathnames, later in this chapter.

Here’s something that’s important for you to recognize: if you have more than one
Terminal window open, each shell has its own working directory. Changing the
working directory in one shell doesn’t affect other Terminal windows.

You can find out your working directory at any time by entering the pwd command:

$ pwd
/Users/taylor

The Directory Tree
All directories in OS X are organized into a hierarchical structure that you can imag‐
ine as a family tree. The parent directory of the tree (the directory that contains all
other directories) is known as the root directory and is written as a forward slash (/).
The root directory is what you see if you open a new Finder window, click the Com‐
puter icon, and then open your hard disk.

The root directory contains several other directories. Figure 3-1 shows a visual repre‐
sentation of the top of OS X’s filesystem tree: the root directory and some directories
under the root.

Applications, Library, System, and Users are some of the subdirectories (child directo‐
ries) of the root directory. There are several other directories that are invisible in the
Finder but visible at the shell prompt (you can see them if you use the ls / command).
These subdirectories are standard Unix directories bin, dev, etc, sbin, tmp, usr, and
var; they contain Unix system files. For instance, bin contains many Unix programs
(also known as binaries, hence the “bin” directory name).

In a Figure 3-1, the parent directory of Users (one level above) is the root directory.
Users has two subdirectories (one level below), john and carol. On an OS X system,
each directory has only one parent directory, but it may have one or more subdirecto‐
ries. The root directory at the top of the tree is its own parent and is just known as
“slash.” A subdirectory (such as carol) can have its own subdirectories (such as Docu‐
ments and Music).

The OS X Filesystem | 43

Figure 3-1. Example of a directory tree

To specify a file or directory location, write its pathname. A pathname is essentially
the address of the directory or file in the filesystem. For more on pathnames, see the
upcoming sections “Absolute Pathnames” and “Relative Pathnames”.

On a basic OS X system, all files in the filesystem are stored on disks connected to
your computer. OS X also has a way to access files on other computers: a networked
filesystem. Networked filesystems make a remote computer’s files appear as if they’re
part of your computer’s directory tree. You can also mount shared directories from
other Macs, Windows machines, or even Unix and Linux servers (from the Finder’s
menu bar, select Go→Connect to Server). These also appear in the /Volumes direc‐
tory, as will other disks, including any external drives plugged directly into your Mac
and any removable media (CDs, DVDs) you have available.

Absolute Pathnames
As you saw earlier, the Unix filesystem organizes its files and directories in an inver‐
ted tree structure with the root directory at the top. An absolute pathname tells you
the path of directories through which you must travel to get from the root to the
directory or file you want. In a pathname, slashes (/) are used between the directory
names.

For example, /Users/john is an absolute pathname. It identifies one (only one!) direc‐
tory. Here’s how:

• The root directory is the first slash (/).
• The directory Users (a subdirectory of the root directory) is second.
• The directory john (a subdirectory of Users) is last.

44 | Chapter 3: Exploring the Filesystem

Be sure that you do not type spaces anywhere in the pathname. If
there are spaces in one or more of the directory names, you need to
either quote the entire directory pathname, or preface each space
with a backslash (\) to ensure that the shell understands that the
spaces are part of the pathname itself. The backslash is known as an
escape character for just this reason.

In Figure 3-2, you’ll see that the directory john has a subdirectory named Documents.
Its absolute pathname is /Users/john/Documents.

Figure 3-2. Absolute path of directory john

The root directory is always indicated by the slash (/) at the start of
the pathname. In other words, an absolute pathname always starts
with a slash.

Relative Pathnames
You can also locate a file or directory with a relative pathname. A relative pathname
gives the location relative to your working directory.

Unless you use an absolute pathname (a path that starts with a slash), Unix assumes
that you’re using a relative pathname. Like absolute pathnames, relative pathnames
can go through more than one directory level by naming the directories along the
path.

For example, if you’re currently in the /Users directory (see Figure 3-2), the relative
pathname to the carol directory is simply carol:

$ pwd
/Users
$ cd carol
$ pwd
/Users/carol

The OS X Filesystem | 45

If carol wanted to move from her home directory to the Music directory, the relative
pathname to the Music directory would be as follows:

$ cd Music
$ pwd
/Users/carol/Music

Or, she could just use the following command to get from /Users to carol/Music:

$ cd carol/Music
$ pwd
/Users/carol/Music

In these examples, notice that none of the pathnames we are specifying to the cd com‐
mand start with a slash. That’s what makes them relative pathnames! Relative path‐
names start at the working directory, not the root directory. Just remember, a relative
pathname never starts with a slash.

Relative pathnames up
You can go up the tree with the Unix shorthand .. (two periods, commonly referred to
in Unix lingo as “dot dot”) for the parent directory. As you saw earlier, you can also
go down the tree by using subdirectory names. In either case (up or down), separate
each level by a forward slash (/).

Figure 3-3 shows part of Figure 3-1. If your working directory in the figure is Docu‐
ments, then there are two pathnames you can use to navigate to the Music subdirec‐
tory of carol. You already know how to write the absolute pathname, /Users/carol/
Music. You can also go up one level (with ..) to carol, then go down the tree to Music.
Figure 3-3 illustrates this.

The relative pathname would be ../Music. It would be wrong to give the relative
address as carol/Music. Using carol/Music would say that carol is a subdirectory of
your working directory instead of what it is in this case: the parent directory.

Absolute and relative pathnames are interchangeable. Unix pro‐
grams simply follow whichever path you specify to wherever it
leads. If you use an absolute pathname, the path starts from the
root. If you use a relative pathname, the path starts from your cur‐
rent working directory. Choose whichever is easier at the moment.

46 | Chapter 3: Exploring the Filesystem

Figure 3-3. Relative pathname from Documents to Music

Pathname Puzzle
Here’s a short but important question. The previous examples explain the relative
pathname carol/Music. What do you think Unix would say about the pathname /carol/
Music? (Look again at Figure 3-1.)

Unix would say “No such file or directory.” Why? (Please think about that a little bit;
this is very important, and it’s one of the most common mistakes made by Unix new‐
bies.) The answer is because the path starts with a slash. The pathname /carol/Music is
an absolute pathname that starts from the root. It says to look in the root directory (/)
for a subdirectory named carol. But since the root directory has no subdirectory
named carol, the pathname is wrong. The only absolute pathname to the Music direc‐
tory is /Users/carol/Music.

Changing Your Working Directory
Once you know the absolute or relative pathname of a directory where you’d like to
work, you can move up and down the OS X filesystem to reach it. The following sec‐
tions explain some helpful commands for navigating through a directory tree.

pwd
To find which directory you’re currently in, use pwd (print working directory), which
prints the absolute pathname of your working directory. The pwd command takes no
arguments:

$ pwd
/Users/john

The OS X Filesystem | 47

cd
You can change from your present working directory to any directory (including
another user’s directory, if you have permission) with the cd (change directory) com‐
mand, which has the form:

cd pathname

The argument is an absolute or a relative pathname (whichever is easier) for the
directory you want to change to:

$ cd /Users/carol
$ pwd
/Users/carol
$ cd Documents
$ pwd
/Users/carol/Documents

The command cd, with no arguments, takes you to your home
directory from wherever you are in the filesystem. It’s identical to
typing in cd $HOME and also identical to typing in cd ~, as shown
earlier.

Note that you can only change to another directory that you have permission to
access. If you try to change to a directory that you’re otherwise shut out of, you’ll see
an error:

$ cd /Users/john
-bash: cd: /Users/john: Permission denied

You also cannot cd to a filename. If you try, your shell (in this example, bash) gives
you an error message:

$ cd /etc/aliases
-bash: cd: /etc/aliases: Not a directory.

If you’re curious, /etc/aliases is a file that contains system-level
email aliases for your Mac system.

One neat trick worth mentioning is that you can quickly give the Terminal a file or
directory path by dragging a file or folder icon from the Finder onto the Terminal
window. This is particularly helpful for those times when you’d have to type an extra-
long pathname. For example, if you wanted to change directories to an album in your
iTunes collection, you’d have to type something like the following:

$ cd /Users/taylor/Music/iTunes/iTunes\ Media/Music/Maroon\ 5/Hands\ All\ Over

48 | Chapter 3: Exploring the Filesystem

Sure, like you’re going to remember that pathname off the top of your head!

To make this easier, you could just type cd followed by a space in a Terminal window,
and then drag the folder in question from a Finder window onto the Terminal win‐
dow, as shown in Figure 3-4. When you let go of the file or folder you’re dragging into
the Terminal window, the pathname gets added to the command prompt.

Figure 3-4. Dragging a folder from the Finder to a Terminal window saves you from
having to type long and complex paths

Files in the Directory Tree
A directory can hold subdirectories. And, of course, a directory can hold files.
Figure 3-5 is a close-up of the filesystem around john’s home directory. Six directories
are shown, along with the mac-rocks file created by using the touch command, as
explained in the sidebar “Two Ways to Explore Your Filesystem” on page 50.

Pathnames to files are constructed the same way as pathnames to directories. As with
directories, file pathnames can be absolute (starting from the root directory) or rela‐
tive (starting from the working directory). For example, if your working directory
is /Users, the relative pathname to the Documents directory would be john/Docu‐
ments. The relative pathname to the mac-rocks file would be john/mac-rocks.

The OS X Filesystem | 49

Figure 3-5. Files in the directory tree

Unix filesystems can also hold things that aren’t directories or files, such as symbolic
links (similar to aliases in OS X), devices (the /dev directory contains entries for devi‐
ces attached to the system), and sockets (network communication channels). You
may see some of them as you explore the filesystem. These advanced topics aren’t
covered in this little book, however, because they’re more complex, and overloading
you with advanced stuff right now just wouldn’t be fair.

Two Ways to Explore Your Filesystem
Every file and folder that you view from the Finder is also accessible from the Unix
shell. Changes made in one environment are reflected (almost) immediately in the
other. For example, the Desktop folder is also the Unix directory /Users/your_name/
Desktop.

Just for fun, open a Finder window, move to your home folder, and keep it visible
while you type these commands at the shell prompt:

$ cd
$ touch mac-rocks

Switch back to the Finder (you can click on the Desktop) and watch a file called mac-
rocks appear magically. (The touch command creates an empty file with the name you
specify, unless it already exists, in which case it updates the last modified time.)

Now type:

$ rm mac-rocks

Return to the Finder, and watch the file disappear. The rm command removes the file.

50 | Chapter 3: Exploring the Filesystem

Listing Files and Directories
To use the cd command, you must know which entries in a directory are subdirecto‐
ries and which are files. The ls command lists entries in the directory tree and can
also show you which are which.

The All-Powerful ls Command
When you enter the ls command, you get a list of the files and subdirectories con‐
tained in your working directory. The syntax is:

ls options directory-and-filenames

If you’ve just moved into an empty directory, entering ls without any arguments may
seem to do nothing. This isn’t surprising; if you have no files, nothing is displayed.
Instead, you’ll simply get a new shell prompt:

$ ls
$

But if you’re in your home directory, ls displays the names of the files and directories
in that directory. The output depends on what’s in your directory. The screen should
look something like what I see in my own home directory:

$ ls
Applications Downloads Movies Presentations bin
Desktop Dropbox Music Public
Documents Library Pictures VirtualBox VMs

Sometimes ls might display filenames in a single column. If yours does, you can make
a multicolumn display with the -C option (multicolumn, sorted down) or the -x
option (multicolumn, sorted across). ls has a lot of options that change the informa‐
tion and display format.

The -a (all) option is guaranteed to show you some more files, as in the following
example:

$ ls -a
. .profile Movies
.. .ssh Music
.CFUserTextEncoding .viminfo Pictures
.DS_Store Applications Presentations
.Trash Desktop Public
.bash_history Documents VirtualBox VMs
.bash_sessions Downloads bin
.cups Dropbox
.dropbox Library

When you use ls -a, you’ll always see at least two entries named . (dot) and .. (dot,
dot). As mentioned earlier, .. is always the relative pathname to the parent directory.
A single . always represents the current directory; believe it or not, this is useful with

Listing Files and Directories | 51

commands such as cp (see Chapter 4). There may also be other files, such
as .bash_history or .Trash. Any entry whose name begins with a dot is a hidden file—
it’s listed only if you add the -a flag to the ls command and is always hidden from the
Finder.

Trying Out the ls Command
Since the ls command is such an important part of the Terminal, let’s practice using
some of the different options.

Open the Terminal application, and then type along to see what your system shows
you:

$ ls
Applications Downloads Movies Presentations bin
Desktop Dropbox Music Public
Documents Library Pictures VirtualBox VMs
$ ls -1
Applications
Desktop
Documents
Downloads
Dropbox
Library
Movies
Music
Pictures
Presentations
Public
VirtualBox VMs
bin

The -1 option (that’s the number one, not a lowercase “L”) causes ls to output the list
of files in one-file-per-line format, which can be useful if you’re going to paste the list
into a Word document or other material.

One problem with ls is that, unlike the Finder with its helpful icons, the output from
ls doesn’t let you differentiate between files and directories. That’s where the helpful
-F option comes in handy:

$ ls -F
Applications/ Downloads/ Movies/ Presentations/ bin/
Desktop/ Dropbox/ Music/ Public/
Documents/ Library/ Pictures/ VirtualBox VMs/

The -F option shows you which entries are directories by appending a forward slash
(/) to the end of their names. If there were any executable programs or scripts in this
directory, -F would append an asterisk (*) after their filenames; an at symbol (@)
would denote a symbolic link.

52 | Chapter 3: Exploring the Filesystem

The -s option indicates the size of each file, in units of 512 bytes. Why 512 bytes?
Well, that’s what the original Unix filesystem used as its block size all those years ago,
and since then that’s just what the ls -s command uses. If you really want to use -s but
aren’t interested in 512-byte blocks, you can set the environment variable BLOCKSIZE
to 1024 to make the resultant listings use the more logical 1-kilobyte size. The results
of this command may be somewhat unexpected.

$ ls -s
total 0
0 Applications 0 Library 0 Public
0 Desktop 0 Movies 0 VirtualBox VMs
0 Documents 0 Music 0 bin
0 Downloads 0 Pictures
0 Dropbox 0 Presentations

Directories and empty files are always shown as having zero blocks used. You need to
use the du (disk usage) command, as discussed a bit later in this chapter, to find out
the size of a directory.

Truth be told, most Unix users skip the -s flag to ls in favor of using du. Let’s try this
again on a directory that we know contains files that aren’t empty (Library/Preferen‐
ces):

$ ls -sF Library/Preferences/
total 43672
 8 2BUA8C4S2C.com.agilebits.onepassword4-helper.plist
 0 ByHost/
 72 CD Info.cidb
 0 Epson/
 8 Lingsoft
 0 Macromedia/
 0 Microsoft/
 8 MobileMeAccounts.plist
 32 QuickTime Preferences
 8 SafariCloudHistoryPushAgent.plist
 0 VMware Fusion/
 8 callservicesd.plist
 8 com.884e51b2-8cd1-4d52-88a3-df0ac5fcc4db.plist
 8 com.Echostar.Sling.plist
 8 com.TechSmith.Snagit.LSSharedFileList.plist
 2720 com.TechSmith.Snagit.plist
...
 8 org.bitcoin.Bitcoin-Qt.plist
 8 org.cups.PrintingPrefs.plist
 8 org.m0k.transmission.LSSharedFileList.plist
 8 org.m0k.transmission.plist
 0 org.videolan.vlc/
 24 org.videolan.vlc.LSSharedFileList.plist
 16 org.videolan.vlc.plist
 8 org.virtualbox.app.VirtualBox.plist

Listing Files and Directories | 53

This is much more useful. You can see that the directories Microsoft, VMware Fusion,
ByHost, etc., are all zero size, as expected, but notice that some of the preference files,
notably CD Info.cidb and SnagIt.plist, are bigger than the other files. The difference?
Some applications have quite a bit of information that they store as preferences, while
others save only preference settings that are different from the default configuration.

A more interesting place to look is your logfile directory, /var/log:

$ ls -s /var/log
total 17232
 8 CDIS.custom
 0 CoreCapture
 0 DiagnosticMessages
 336 SleepWakeStacks.bin
 8 accountpolicy.log
 8 accountpolicy.log.0.gz
 8 accountpolicy.log.1.gz
 8 accountpolicy.log.2.gz
 0 alf.log
 0 apache2
 8 appfirewall.log
 0 asl
 48 authd.log
 8 authd.log.0.gz
 8 authd.log.1.gz
 16 bluetooth.pklg
 0 com.apple.clouddocs.asl
 0 com.apple.revisiond
 0 com.apple.xpc.launchd
 536 commerce.log
 16 corecaptured.log
...

Notice that the first line of output with the -s option is always a sum of the size of all
files in the specified directory. This shows that there are 17,232 512-byte blocks,
which you can easily divide by 2 to get kilobytes (8,616 KB). The largest file in this
directory is install.log, which was created after you installed OS X.

Now let’s see if there’s a directory called Library in the current working directory:

$ ls Library
Accounts Fonts Preferences
Address Book Plug-Ins Fonts Disabled Printers
Application Scripts GameKit PubSub
Application Support Google Safari
Assistants Group Containers Saved Application State
Audio IdentityServices Screen Savers
Autosave Information Input Methods Services
Caches Internet Plug-Ins Social
Calendars Keyboard Layouts Sounds
ColorPickers Keychains Spelling
Colors LanguageModeling StickiesDatabase

54 | Chapter 3: Exploring the Filesystem

Compositions LaunchAgents Suggestions
Containers Logs SyncedPreferences
Cookies Mail VirtualBox
CoreData Messages Voices
Dictionaries Metadata WebKit
Favorites Mobile Documents com.apple.nsurlsessiond
Filters Network iMovie
FontCollections PreferencePanes iTunes

This is a classic conundrum with the ls command; you want to see whether a folder
exists or not, but you don’t actually want to see what’s inside the folder. To accomplish
this, you can’t just specify the name of the folder because, as shown, you end up see‐
ing what’s inside. Instead, use the -d option to indicate that it’s the directory informa‐
tion you want, not its contents:

$ ls -d Library
Library
$ ls -d
.

That second example is interesting because it confirms that the current directory is
indeed the period (.) shorthand, as explained earlier.

Using the -l Option
To get more information about each item that ls lists, add the -l option (that’s a lower‐
case “L” for “long”). This option can be used alone, or in combination with -a, as
shown in Figure 3-6.

Figure 3-6. Output from ls -al

Listing Files and Directories | 55

The long format provides the following information about each item:

Total n
States the amount of storage space (n) used by everything in this directory. This
is measured in blocks. On OS X, blocks are 512 bytes in size. If you want to know
the total size of everything in a directory, however, the du command is more
accurate.

Type
Tells whether the item is a directory (d) or a plain file (-). (There are other less
common types as well.)

Access modes
Specifies whether or not the file owner, any members of the group associated
with the file, and all other users are allowed to read (r), write (w), or execute (x)
the listed files and directories. We’ll talk more about access modes in the next
section.

Links
Lists the number of files or directories linked to this file or directory. (This isn’t
the same as a web page link, as you’ll see in “Working with Links” on page 103 in
Chapter 4.)

Owner
States the user who owns this file or directory.

Group
Lists the group that owns the file or directory (usually the group that the file or
directory owner belongs to, but group ownership can be changed as needed).

Size (in bytes)
States the size of the file or directory. (A directory is actually a special type of file.
Here, the “size” of a directory is that of the directory file itself, not the total of all
the files in that directory.)

Modification date
States the date when the file was last modified or when the directory contents last
changed (when something in the directory was added, renamed, or removed). If
an entry was modified more than six months ago, ls shows the year instead of the
time.

Name
Gives the name of the file or directory.

56 | Chapter 3: Exploring the Filesystem

File Permissions
In Figure 3-6, notice especially the columns that list the owner and group of the files,
and the access modes (also called permissions). Unless changed afterward, the person
who creates a file is its owner; if you’ve created any files, this column should show
your short username. You also belong to a group. Files you create are marked either
with the name of your group or, in some cases, the group that owns the directory.

The file mode indicates what type of file the item is (such as a directory or a regular
file), as well as who can read, write, or execute the file or directory. The file mode has
10 characters, as shown in Figure 3-7. The first character shows the file type (d for
directory or - for a plain file). The other characters come in sets of three.

Figure 3-7. A detailed look at file permissions

The first set, characters 2 through 4, shows the permissions for the file’s owner (which
is you, if you created the file). The second set, characters 5 through 7, shows permis‐
sions for other members of the group that is associated with the file, such as all people
in the marketing team or everyone on Project Alpha in your firm. The third set, char‐
acters 8 through 10, shows permissions for all other users on the system.

The Finder shows directory permissions in the Get Info dialog box. Figure 3-8 shows
the Get Info permissions information for the Documents directory. Compare this to
the ls -l output shown in Figure 3-7.

For example, the permissions for .DS_Store in Figure 3-6 are -rw-r--r--. The first
hyphen, -, indicates that it’s a plain file. The next three characters, rw-, mean that the
owner, taylor, has both read (r) and write (w) permissions, but cannot execute the file,
as noted by the hyphen following the rw. The next two sets of permissions are both
r--, which means that other users who belong to the file’s group, taylor, as well as all
other users of the system, can only read the file; they don’t have write or execute per‐
missions, which means they can’t make changes to the file, and if it’s a program (such
as a shell script), they can’t execute it either.

Listing Files and Directories | 57

Figure 3-8. The Finder’s Get Info window shows directory permissions much differently
from how they appear in the Terminal

In the case of directories, x means the permission to access the directory—for exam‐
ple, to run a command that reads a file there or to access a subdirectory. Notice that
the first directory shown in Figure 3-6, Desktop, is executable (accessible) by taylor,
but completely closed off to everyone else on the system. A directory with write (w)
permission allows deleting, renaming, or adding files within the directory. Read (r)
permission allows listing the directory with ls.

58 | Chapter 3: Exploring the Filesystem

You can use the chmod command to change the permissions of
your files and directories (see “Protecting and Sharing Files” on
page 64).

If you need to know only which files are directories and which are executable files,
you can use the -F option with ls. If you give the pathname to a directory, ls lists the
directory but does not change your working directory. The pwd command, shown
here, illustrates this:

$ cd /Applications
$ ls -F ~
Applications/ Downloads/ Movies/ Presentations/ bin/
Desktop/ Dropbox/ Music/ Public/
Documents/ Library/ Pictures/ VirtualBox VMs/
$ pwd
/Applications

As noted earlier, the ls -F command places a slash (/) at the end of each directory
name displayed in the output. (The directory name doesn’t really have a slash in it;
that’s just the shorthand ls -F uses to identify a directory.) In this example, every entry
other than the hidden “dot” files is a directory. You can verify this by using ls -l and
noting the d in the first field of the output. Files with an execute status (x), such as
programs, are marked with an asterisk (*).

The ls -R (recursive) command lists a directory and all its subdirectories. This gives
you a very long list, especially when you list a directory near the root! (Piping the
output of ls to a pager program—such as more or less—solves this problem. There’s an
example in “Pipes and Filters” on page 141.) You can combine other options with -R;
for instance, ls -RF marks each directory and file type, while recursively listing files
and directories.

Calculating File Size and Disk Space
You can find the size of a file with the du (disk usage) command:

$ du Documents/Outline.doc
300 Documents/Outline.doc

The size is reported in 512-byte blocks, so Outline.doc is 150 KB in size.

If you give du the name of a directory, it calculates the sizes of everything inside that
directory, including any subdirectories and their contents:

$ du Library
5920 Library/Accounts
24 Library/Address Book Plug-Ins/SkypeABDialer.bundle/Contents/MacOS
16 Library/Address Book Plug-Ins/SkypeABDialer.bundle/Contents/Resources/bg.lproj

Calculating File Size and Disk Space | 59

16 Library/Address Book Plug-Ins/SkypeABDialer.bundle/Contents/Resources/ca.lproj
16 Library/Address Book Plug-Ins/SkypeABDialer.bundle/Contents/Resources/cs.lproj
16 Library/Address Book Plug-Ins/SkypeABDialer.bundle/Contents/Resources/da.lproj
...

This means that it’s not a great idea to type du /, unless you want to
see a lot of information stream past your screen at a lightning pace!

If you want the total for the directory, use -s (summarize):

$ du -s Library
91704304 Library

If you’d like separate totals for all directories and files, including hidden ones, use a
wildcard pattern that ignores the current (.) and parent (..) directories, as discussed
earlier in this chapter:

$ du -s * .[^.]*
1704 Applications
6976480 Desktop
113934056 Documents
2410512 Downloads
34819944 Dropbox
91704048 Library
77745816 Movies
181162848 Music
...
57900360 .Trash
24 .bash_history
192 .bash_sessions
8 .cups
542088 .dropbox
8 .profile
8 .ssh
16 .viminfo

To gain information about the size of the standard user applications in OS X, use the
pattern /Applications/*.app:

$ du -s /Applications/*.app
135352 /Applications/1Password 5.app
262440 /Applications/Amazon Music.app
1633400 /Applications/Aperture.app
3808 /Applications/App Store.app
20192 /Applications/Automator.app
49688 /Applications/Bitcoin-Qt.app
5104 /Applications/Calculator.app
29816 /Applications/Calendar.app
...

60 | Chapter 3: Exploring the Filesystem

24464 /Applications/Transmission.app
224168 /Applications/VLC.app
1515904 /Applications/VMware Fusion.app
487368 /Applications/VirtualBox.app
53520 /Applications/iBooks.app
4100200 /Applications/iMovie.app
384056 /Applications/iTunes.app

Notice that the output is in alphabetical order, but all the uppercase filenames are sor‐
ted before the lowercase filenames (that is, VLC appears before iMovie in a case-
sensitive sort).

One option that’s worth keeping in mind when using du -s is -h, which produces
more human-readable output:

$ du -sh Library/*
2.9M Library/Accounts
672K Library/Address Book Plug-Ins
4.0K Library/Application Scripts
 36G Library/Application Support
 0B Library/Assistants
 0B Library/Audio
 0B Library/Autosave Information
1.1G Library/Caches
176M Library/Calendars
...
 20K Library/Spelling
4.0K Library/StickiesDatabase
 23M Library/Suggestions
748K Library/SyncedPreferences
 72K Library/VirtualBox
 0B Library/Voices
 0B Library/WebKit
132K Library/com.apple.nsurlsessiond
 0B Library/iMovie
 48K Library/iTunes

While this is a bit more readable, the enormous Library/Application Support, at 36
GB, doesn’t jump out as it would if the -h flag wasn’t used and the output of 74488432
blocks was shown instead. It’s probably best to include the -h flag, but remember to
scan the suffix letters to see if anything jumps out as being ridiculously large.

You can also sort the largest directories to the top of the results
with a command sequence like du -s /Library/* | sort -rn, or, better,
only view the top 10 results with du -s /Library/* | sort -rn | head.
I’ll explain command pipes and the tremendously useful sort com‐
mand a bit later.

Calculating File Size and Disk Space | 61

Calculating Available Disk Space
You can calculate your system’s free disk space with df -h (the -h produces more user-
friendly output):

$ df -h
Filesystem Size Used Avail Capacity iused ifree %iused
/dev/disk1 446Gi 383Gi 63Gi 86% 100398174 16481408 86%
devfs 188Ki 188Ki 0Bi 100% 649 0 100%
map -hosts 0Bi 0Bi 0Bi 100% 0 0 100%
map auto_home 0Bi 0Bi 0Bi 100% 0 0 100%
/dev/disk2s2 118Gi 32Gi 86Gi 27% 8324429 22589863 27%

Here’s the breakdown for the output from the command:

• The first column (Filesystem) shows the Unix device name for the volume.
• The second column (Size) shows the total disk size, and it’s followed by the

amount of disk space used up (Used) and the amount that’s available (Avail).
• The Capacity column shows the percentage of disk space used. Many devices are

shown at 100% because they’re not regular disks, but special Unix devices. All
you really need to pay attention to is your main hard drive (mine is /dev/disk0s2).

• Filesystems are built from chained sets of blocks of data: the larger the file, the
more blocks are connected in the chain. Each block on a filesystem is referred to
as an inode, and you can see that for each filesystem, df shows iused, ifree, and
%iused. You can safely ignore these values.

• The Mounted on column displays the paths for the volumes mounted on your
computer. The / is the root of your filesystem (a volume that is named Macintosh
HD by default). /dev contains files that correspond to hardware devices, and /.vol
exposes some internals of the OS X filesystem called the HFS+ file ID.

Notice that I have one hard disk on my system, /dev/disk1 (which is 446 GB in size, of
which 383 GB are used and 63 GB are still available).

The df command has a second, more friendly output that uses the more common
divide-by-10 rule for calculating sizes, rather than the more mathematically precise
divide-by-2 rule of the -h flag:

$ df -H
Filesystem Size Used Avail Capacity iused ifree %iused
/dev/disk1 479G 411G 67G 86% 100406706 16472876 86%
devfs 192k 192k 0B 100% 649 0 100%
map -hosts 0B 0B 0B 100% 0 0 100%
map auto_home 0B 0B 0B 100% 0 0 100%
/dev/disk2s2 127G 34G 93G 27% 8324429 22589863 27%

These figures make more sense because I know that the hard disk mounted at /dev/
disk1 is actually 500 GB in size (note that it shows up as 479 instead of 500 GB

62 | Chapter 3: Exploring the Filesystem

because the filesystem itself consumes some of the space for housekeeping). You
might prefer the more accurate -h output, but many people prefer -H since the
reported disk sizes are more in line with drive capacity expectations.

Yet another way to look at the data is to use the -m flag to have df show you 1 MB
blocks, which rounds down all the tiny OS partitions like devfs and .vol to zero:

$ df -m
Filesystem 1M-blocks Used Available Capacity iused ifree %iused
/dev/disk1 456560 391971 64339 86% 100408782 16470800 86%
devfs 0 0 0 100% 649 0 100%
map -hosts 0 0 0 100% 0 0 100%
map auto_home 0 0 0 100% 0 0 100%
/dev/disk2s2 120758 32517 88241 27% 8324429 22589863 27%

Finally, in addition to raw disk space, another factor to keep track of with your OS X
system is the number of inodes available. Inodes are the fundamental disk blocks that
are grafted together to make space for all the different-sized files in your filesystem. A
given disk in Unix has a finite number of files and directories that can be created, and
even if there’s additional disk space available, running out of inodes effectively stops
the disk from being used. This unusual event can happen if you have lots and lots
(I’m talking millions and millions) of tiny files.

The -i flag to df shows how you’re doing with inodes, providing details on how many
inodes are allocated and available on each filesystem.

Generally disks have plenty of unused inodes, so there’s nothing to worry about. For
example, as you can see here, disk 0s2 has 20,315,203 available inodes:

$ df -i
Filesystem 512-blocks Used Available Capacity iused ifree %iused
/dev/disk1 935036672 802769344 131755328 86% 100410166 16469416 86%
devfs 375 375 0 100% 649 0 100% /dev
map -hosts 0 0 0 100% 0 0 100% /net
map auto_home 0 0 0 100% 0 0 100% /home
/dev/disk2s2 247314352 66595448 180718904 27% 8324429 22589863 27%

Exercise: Exploring the Filesystem
Now that you’re equipped with some basic commands, it’s time to explore the filesys‐
tem with cd, ls, and pwd. Take a tour of the directory system, as detailed in Table 3-1,
hopping one or many levels at a time, with a mixture of cd and pwd commands.

Calculating File Size and Disk Space | 63

Table 3-1. Take this guided tour of your filesystem; read each task (left column) and then
enter the Unix command (right column) to see where you go

Task Command

Go to your home directory. cd

Find your working directory. pwd

Change to a new working directory with its absolute pathname. cd /bin

List files in the new working directory. ls

Change directory to root and list it in one step. (Use the command separator: a semicolon.) cd /; ls

Find your working directory. pwd

Change to a subdirectory; use its relative pathname. cd usr

Find your working directory. pwd

Change to a subdirectory. cd lib

Find your working directory. pwd

Give a wrong pathname. cd xqk

List files in another directory. ls /bin

Find your working directory (notice that ls didn’t change it). pwd

Return to your home directory. cd

Protecting and Sharing Files
OS X makes it easy for users on the same system to share files and directories. For
instance, all users in a group can read documents stored in one of their manager’s
directories without needing to make their own copies (if the manager has allowed
such access). The advantage of this is that you don’t need to send files via email as
attachments. Instead, if the files and directories have open permissions, anyone can
access them with a little help from the Unix filesystem.

Here’s a brief introduction to file security and sharing. If you have critical security
needs, or you just want more information, talk to your system staff, or see a book on
Unix security such as Practical Unix and Internet Security, by Simson Garfinkel, Gene
Spafford, and Alan Schwartz (O’Reilly).

64 | Chapter 3: Exploring the Filesystem

http://shop.oreilly.com/product/9780596003234.do

Any user with admin privileges can use the sudo command (see
“Superuser Privileges with sudo” on page 72 to do anything to any
file at any time—regardless of what its permissions are. Access per‐
missions won’t keep your private information safe from everyone,
although let’s hope that you can trust the other folks who share
your Macintosh! This is one reason that you’ll want to be thought‐
ful about those directory access permissions.

A directory’s access permissions help to control access to the files and subdirectories
in that directory:

• A user who has read permission (r) for a directory can run ls to see what’s in the
directory and use wildcards to match files in it.

• A user who has write permission (w) for a directory can add, rename, and delete
files in the directory.

• To access a directory (that is, to read or write the files in the directory or to run
the files if they’re programs), a user needs execute permission (x) for that direc‐
tory. The user must also have execute permission for all of the directory’s parent
directories—all the way up to the root.

OS X includes a shared directory for all users: /Users/Shared. Any
user can create files in this directory and modify files they put
there. However, you cannot modify a file that’s owned by another
user. Instead, you’ll have to copy that file from /Users/Shared to
another directory in which you have write permissions (such as
your Documents directory).

In practice, there are three directory permissions you’ll see in Unix:

• --- means that the user cannot access the directory.
• r-x means that the user can access the directory with read-only permission, but

cannot add or delete files, or modify the directory.
• rwx means that the user has read, write, and access permission.

For example, here are the default permissions for a home directory, courtesy of ls -l:
$ ls -ld $HOME
drwxr-xr-x 25 taylor staff 850 Oct 3 14:55 /Users/taylor

This shows that the owner, taylor, has read, write, and access permission for this
directory, while the group, staff, and everyone else on the system are restricted to
read-only access. To be candid, OS X doesn’t really use groups much, so you can
safely ignore them in most instances.

Protecting and Sharing Files | 65

In contrast, the following example shows that user taylor has complete access, but
everyone else is shut out from browsing the Documents directory:

$ ls -ld $HOME/Documents
drwx------ 51 taylor staff 1734 13 Dec 14:46 /Users/taylor/Documents/

The Finder shows directory permissions in the Get Info dialog box. Figure 3-9 shows
the Get Info permissions information for both $HOME and $HOME/Documents.

Figure 3-9. The Finder’s Get Info window shows directory permissions differently

File Access Permissions
The access permissions on a file control what can be done to the file’s contents. Like‐
wise, the access permissions on the directory where the file is kept control whether
the file can be renamed or removed. If this seems confusing, think of it this way: the
directory is actually a list of files. Adding, renaming, or removing a file changes the
contents of the directory. If the directory isn’t writable, you can’t change that list.

Read permission controls whether you can read a file’s contents. Write permission lets
you change a file’s contents. A file shouldn’t have execute permission unless it’s a pro‐
gram or a script.

Let’s have a look at a few file permissions examples. First, a “dot file” in my home
directory:

66 | Chapter 3: Exploring the Filesystem

$ cd ~
$ ls -l .viminfo
-rw------- 1 taylor staff 2159 27 Dec 11:07 .viminfo

This shows that user taylor can read from the file or write to the file, but everyone else
is prevented from touching, or even seeing, its contents.

Next, let’s look at the operating system “kernel,” the program that really contains the
heart of the operating system itself. It’s rather hidden, but that’s okay—we can find it:

$ ls -l /System/Library/Kernels/kernel
-rwxr-xr-x 1 root wheel 10705248 Aug 26 18:00 kernel

This file, a part of the operating system core (known in Unix-geek circles as
the kernel), is owned by root, who has read, write, and execute permission. Everyone
else has read and execute permission.

Finally, consider this security database file that belongs to the operating system. The
owner, root, has read-only permission, as does anyone in the wheel group, but the file
is off-limits to anyone else on the computer:

$ ls -l /etc/sudoers
-r--r----- 1 root wheel 2299 Aug 22 16:39 /etc/sudoers

Setting Permissions with chmod
Once you know what permissions a file or directory needs, provided you’re the owner
(listed in the third column of ls -l output), you can change the permissions with the
chmod program. If you select a file or folder in the Finder and then choose File→Get
Info (⌘-I), you can also change the permissions using the Sharing & Permissions sec‐
tion of the Get Info dialog (see Figure 3-9). One reason to use the Finder method is
because changing the permissions of files and directories inside the directory is easy
to accomplish by clicking the “Apply to Enclosed Items” button (this can be done on
the command line using the find command or the -R flag to chmod, but they’re both
beyond the scope of this book).

There are two ways to change permissions: by specifying the permissions to add or
delete, or by specifying the exact permissions to apply. For instance, if a directory’s
permissions are almost correct, but you also need to make it writable by its group, tell
chmod to add group-write permission. But if you need to make more than one
change to the permissions—for instance, if you want to add read and execute permis‐
sion but delete write permission—it’s easier to set all the permissions explicitly
instead of changing them one by one. The syntax is:

chmod permissions directory_or_filename(s)

Let’s start with the rules, followed by some examples a little later. The permissions
argument has three parts, which you must give in order, with no spaces in between:

Protecting and Sharing Files | 67

1. The category of permissions you want to change. There are three: the owner’s
permissions (which chmod calls “user,” abbreviated u), the group’s permissions
(g), or others’ permissions (o). To change more than one category, string the let‐
ters together, such as go for “group and others,” or simply use a to mean “all”
(same as ugo).

2. Whether you want to add (+) the permission, delete (-) it, or specify it exactly
(=).

3. What permissions you want to affect: read (r), write (w), or execute (x). To
change more than one permission, string the letters together—for example, rw
for “read and write.”

Some examples should make this clearer. In the following command lines, you can
replace dirname or filename with the pathname (absolute or relative) of the directory
or file. An easy way to change permissions on the working directory is by using its
relative pathname, . (dot), as in chmod o-w ..

You can combine two permission changes in the same chmod command by separat‐
ing them with a comma (,), as shown in the final example in the following list:

• To protect a file from accidental editing, delete everyone’s write permission with
the command:

chmod a-w filename

• On the other hand, if you own an unwritable file that you want to edit, but you
don’t want to change other people’s write permissions, you can add “user”
(owner) write permission with:

chmod u+w filename

• To keep yourself from accidentally removing files (or adding or renaming files)
in an important directory of yours, delete your own write permission with the
command:

chmod u-w dirname

• If other users have that permission, too, you could delete everyone’s write per‐
mission with:

chmod a-w dirname

• If you want you and your group to be able to read and write all the files in your
working directory—but those files have various permissions now, so adding and
deleting the permissions individually would be a pain—this is a good place to use

68 | Chapter 3: Exploring the Filesystem

the = operator to set the exact permissions you want. Use the filename wildcard *,
which means “everything in this directory” (explained in “File and Directory
Wildcards” on page 78 in Chapter 4), and type:

chmod ug=rw *

• If your working directory has any subdirectories, though, that command would
be wrong; it would take away execute permission from the subdirectories, so they
couldn’t be accessed anymore. In that case, you could try a more specific wild‐
card, or simply list the filenames whose permissions you want to change, separa‐
ted by spaces, as in:

chmod ug=rw filename1 filename2 filename3

• To protect the files in a directory and all its subdirectories from everyone else on
your system, but still keep the access permissions you have there, you could use:

chmod go-rwx dirname

to delete all “group” and “others” permissions to read, write, and execute. A sim‐
pler way is to use the command:

chmod go= dirname

to set “group” and “others” permissions to nothing.

• Finally, suppose you want full access to a directory. Other people on the system
should be able to see what’s in the directory (and read or edit the files if the file
permissions allow it), but not rename, remove, or add files. To do that, give your‐
self all permissions, but give “group” and “others” only read and execute permis‐
sions. Use the command:

chmod u=rwx,go=rx dirname

After you change permissions, it’s a good idea to check your work with ls -l filename,
ls -ld dirname (without the -d option, ls lists the contents of the directory instead of
its permissions and other information), or by using the Finder’s Get Info window.

Problem checklist
Here are some problems you might encounter while working with chmod, along with
some solutions:

I get the message “chmod: Not owner.”
Only the owner of a file or directory (or the superuser) can set its permissions.
Use ls -l to find the owner, or use superuser privileges (see “Superuser Privileges
with sudo” on page 72).

Protecting and Sharing Files | 69

A file is writable, but my program says it can’t be written.
Check the file permissions with ls -l and be sure you’re in the category (user,
group, or others) that has write permission.

The problem may also be in the permissions of the file’s directory. Some programs
need permission to write more files into the same directory (for example, temporary
files) or to rename files (for instance, making a file into a backup) while editing. If it’s
safe to add write permission to the directory (if other files in the directory don’t need
protection from removal or renaming), try that. Otherwise, copy the file to a writable
directory (with cp), edit it there, and then copy it back to the original directory.

Changing the Group and Owner
Group ownership lets a certain group of users have access to a file or directory. But
sometimes you’ll need to let a different group have access. The chgrp program sets the
group owner of a file or directory. You can set the group to any of the groups to
which you belong. Because you’re likely to be administering your system, you can
control the list of groups you’re in. (If this isn’t the case, the system administrator will
control the list of groups you’re in.) The groups program lists your groups.

For example, if you’re a designer creating a directory named images for several illus‐
trators, the directory’s original group owner might be admin. Suppose you’d like the
illustrators, all of whom are in the group named staff, to be able to access the direc‐
tory, but members of other groups should have no access. To achieve this, you can use
commands such as the following:

$ groups
gareth admin
$ mkdir images
$ ls -ld images
drwxr-xr-x 2 gareth admin 68 Oct 3 16:45 images
$ chgrp staff images
$ chmod o= images
$ ls -ld images
drwxr-x--- 2 gareth staff 68 Oct 3 16:45 images

OS X also lets you set a directory’s group ownership so that any
files you later create in that directory will be owned by the same
group that owns the directory. Try the command chmod g+s
dirname. The permissions listing from ls -ld should now show an s
in place of the second x, as in drwxr-s---.

The chown program changes the owner of a file or directory. Only the superuser can
use chown (see “Superuser Privileges with sudo” on page 72):

$ chown eric images
chown: changing

70 | Chapter 3: Exploring the Filesystem

www.allitebooks.com

http://www.allitebooks.org

 ownership of `images': Operation not permitted
$ sudo chown eric images
Password:

If you have permission to read another user’s file, however, you can make a copy of it
(with cp; see “Copying Files” on page 98 in Chapter 4), and you’ll own the copy.

Changing Your Password
The ownership and permissions system described in this chapter depends on the
security of your username and password. If others get hold of your username and
password, they can log in to your account and do anything you can, and if you have
admin privileges, that could be anything—including deleting all your files. They’ll be
able to read private information, corrupt or delete important files, send email mes‐
sages as if they came from you, and more. If your computer is connected to a network
—whether to the Internet or a local network inside your organization—intruders may
also be able to log in without sitting at your keyboard! See “Remote Logins” on page
169 in Chapter 8 for one way this can be done.

Anyone may be able to get your username—it’s often part of your email address, for
instance, and it will show up for any files you own in a long directory listing. Your
password is what keeps others from logging in as you. Don’t leave a written record of
your password anywhere around your computer. Don’t give your password to anyone
who asks you for it, unless you’re sure he’ll preserve your account security. Also, don’t
send your password by email; it can be stored, unprotected, on other systems and on
backup tapes, where other people may find it and then break in to your account.

If you think that someone knows your password, you should probably change it right
away—although if you suspect that a computer “cracker” (or “hacker”) is using your
account to break in to your system, you should ask your system administrator for
advice first, if possible. You should also change your password periodically. Every few
months is recommended.

A password should be easy for you to remember but hard for other people (or
password-guessing programs) to guess. Here are some guidelines. A password should
be between six and eight characters long. It should not be a word in any language, a
proper name, your phone number, your address, or anything anyone else might know
or guess that you’d use as a password. It’s best to mix upper- and lowercase letters,
punctuation, and numbers. A good way to come up with a unique but memorable
password is to think of a phrase that has personal significance to you, and use the first
letters of each word (and punctuation) to create the password. For example, consider
the password MlwsiF! (“My laptop was stolen in Florence!”).

To change your password, you can use Apple Menu→System Preferences→Users &
Groups, but you can also change it from the command line using the passwd com‐

Changing Your Password | 71

mand. After you enter the command, you’re prompted to enter your old password. If
the password is correct, you’re asked to enter a new password—twice, to be sure there
is no typing mistake:

$ passwd
Changing password for taylor.
Old password:
New password:
Retype new password:

For security, neither the old nor the new passwords appear as you type them.

Superuser Privileges with sudo
Most OS X user accounts run with restricted privileges; there are parts of the filesys‐
tem to which you don’t have access, and there are certain activities that are prohibited
until you supply a password. For example, when you run the Software Update utility
from System Preferences, OS X may ask you for your password before it proceeds.
This extra authentication step allows Software Update to run installers with superuser
privileges.

You can invoke these same privileges at the command line by prefixing a command
with sudo (short for “superuser do”), a utility that prompts you for your password and
executes the command as the superuser. You must be an administrative (or admin, for
short) user to use sudo. The user you created when you first set up your Mac is an
admin user. You can add new admin users or grant admin status to a user in System
Preferences→Accounts, as shown in Figure 3-10.

You may need to use sudo when you install certain Unix utilities, or if you want to
modify a file you don’t own. Suppose you accidentally created a file in the /Users
directory while you were doing something else as the superuser. You won’t be able to
modify it with your normal privileges, so you’ll need to use sudo:

$ ls -l logfile.out
-rw-r--r-- 1 root wheel 1784064 Nov 6 11:25 logfile.out
$ rm logfile.out
override rw-r--r-- root/wheel for logfile.out? y
rm: logfile.out: Permission denied
$ sudo rm logfile.out
Password:
$ ls -l logfile.out
ls: logfile.out: No such file or directory

72 | Chapter 3: Exploring the Filesystem

Figure 3-10. When checked, the “Allow user to administer this computer” option in the
Accounts preference panel gives a user administrative privileges and allows use of the
sudo command

If you use sudo again within five minutes, it won’t ask for your password. Be careful
using sudo, since it gives you the ability to modify protected files, all of which are pro‐
tected to ensure the system runs properly.

I commonly find myself using sudo when I want to search across the entire filesystem
without worrying about disk permissions. For example, suppose makewhatis was
once in /usr/sbin, but looking in that directory reveals it has been moved somewhere
else. To find it, I can search the entire filesystem using the find command (as dis‐
cussed in Chapter 5) with sudo:

$ sudo find / -name makewhatis -print
Password:
/usr/libexec/makewhatis

Without the use of sudo, I would see hundreds of error messages as the command
tried to peek into directories that, I as a regular user, don’t have permission to visit.

Exploring External Volumes
Earlier I mentioned that additional hard disks on your system and any network-based
disks are all mounted onto the filesystem under the /Volumes directory. Let’s take a
closer look to see how this works:

$ ls /Volumes
BigHD MobileBackups red

Exploring External Volumes | 73

$ ls -l /Volumes
total 8
lrwxr-xr-x 1 root admin 1 Oct 1 10:02 BigHD -> /
drwxrwxrwx 0 root wheel 0 Oct 3 16:51 MobileBackups
drwxrwxr-x@ 38 taylor staff 1360 Sep 5 20:08 red

There are three disks available, one of which is actually the root (or boot) disk:
BigHD. Notice that the entry for BigHD is different from the others, with the first
character shown as an l rather than a d. This means it’s a link (see “Working with
Links” on page 103 in Chapter 4), which is confirmed by the fact that it’s shown as
BigHD in the regular ls output, while the value of the alias is shown in the long listing
(you can see that BigHD actually points to /).

If you insert a CD or DVD into the system, it also shows up in /Volumes:
$ ls -l /Volumes
total 12
lrwxr-xr-x 1 root admin 1 Oct 1 10:02 BigHD -> /
dr-xr-xr-x 4 unknown nogroup 136 Aug 17 2015 CITIZEN_KANE
drwxrwxrwx 0 root wheel 0 Oct 3 16:51 MobileBackups
drwxrwxr-x@ 38 taylor staff 1360 Sep 5 20:08 red

Plugging in an iPhone and a digital camera produces the following results:

$ ls -l /Volumes
total 44
lrwxr-xr-x 1 root admin 1 Oct 1 10:02 BigHD -> /
dr-xr-xr-x 4 unknown nogroup 136 Aug 17 2015 CITIZEN_KANE
drwxrwxrwx 0 root wheel 0 Oct 3 16:51 MobileBackups
drwxrwxrwx 1 taylor admin 16384 Aug 17 20:54 NIKON D100
drwxr-xr-x 15 taylor unknown 510 Apr 17 09:37 Zephyr
drwxrwxr-x@ 38 taylor staff 1360 Sep 5 20:08 red

Here, Zephyr is the name of the iPod, and NIKON D100 is the camera.

74 | Chapter 3: Exploring the Filesystem

CHAPTER 4

File Management

The previous chapter introduced the Unix filesystem, including an extensive discus‐
sion of the directory structure, the ls command for seeing what files are on your sys‐
tem, and how to move around using cd and pwd. This chapter focuses on Unix
filenaming schemes—which aren’t the same as those used in the Finder, as you’ll see
—and how to view, edit, rename, copy, and move files.

File and Directory Names
As Chapter 3 explained, both files and directories are identified by their names. A
directory is really just a special kind of file, so the rules for naming directories are the
same as the rules for naming files.

Unix filenames may contain almost any character except /, which is reserved as the
separator between files and directories in a pathname. Filenames are usually made up
of upper- and lowercase letters, numbers, dots (.), and underscores (_). Other charac‐
ters (including spaces) are legal in a filename, but they can be hard to use because the
shell gives them special meanings or otherwise forces you to constantly be changing
how you work with these filenames on the command line.

Spaces are a standard part of Macintosh file and folder names, so while I recommend
using only letters, numbers, dots, and underscores in filenames, the reality is that you
will probably have to work with spaces in file and directory names because Mac peo‐
ple are used to including them. That is, rather than naming a file myFile.txt, as a Unix
person would, most Mac folks would call it my file.txt. Also be aware that the Finder
dislikes colons (which older versions of OS X used as a directory separator, just as
Unix uses the forward slash). If you display a file called test:me in the Finder, the
name is shown as test/me instead. (The reverse is also true: if you create a file in the
Finder whose name contains a slash, it will appear as a colon in the Terminal.)

75

Though it may be tempting to include spaces in filenames as you
do in the Finder, if you’re planning on doing any substantial
amount of work on the Unix side, get used to using dashes or
underscores in place of spaces in your filenames. It’s 99 percent as
legible, and considerably easier to work with.
Further, in the interest of having files correctly identified in both
the Finder and Unix, you’d be wise to get into the habit of using the
appropriate file extensions (i.e., .doc for Microsoft Word docu‐
ments, .txt for text files, .xls for Excel spreadsheets, and so on). As
an added bonus, this makes life easier for your less fortunate
(Windows-using) friends when you send them files.

If you have a file with a space in its name, that space confuses the shell if you enter it
as part of the filename. That’s because the shell breaks commands into separate words
with spaces as delimiters, just as we do in English. To tell the shell not to break an
argument at spaces, you can either put quotation marks around a filename that
includes spaces (for example, “my file.txt”), or escape the spaces by prefacing each one
with a backslash (\).

For example, the rm program, covered later in this chapter, removes Unix files. To
remove a file named a confusing name, the first rm command in the following snippet
doesn’t work, but the second does. The third example illustrates how to avoid the
shell incorrectly interpreting the filename another odd name by escaping the spaces
with backslashes:

$ ls -l
total 2
-rw-r--r-- 1 taylor staff 324 Feb 4 23:07 a confusing name
-rw-r--r-- 1 taylor staff 64 Feb 4 23:07 another odd name
$ rm a confusing name
rm: a: no such file or directory
rm: confusing: no such file or directory
rm: name: no such file or directory
$ rm "a confusing name"
$ rm another\ odd\ name

You also need to escape any of the following characters with a backslash, because they
have special meaning to the shell:

* # ` " ' \ $ | & ? ; ~ () < > ! ^

My recommendation is to simply avoid using any of these characters in your file‐
names—along with spaces—to make your life easier. Indeed, that’s why most Unix file
and directory names are composed exclusively of lowercase letters, dashes, and
underscores.

76 | Chapter 4: File Management

Open a Terminal window and change directories to your Library directory. You’ll see
files with names that contain spaces, though the other punctuation characters are
more unusual components of filenames:

$ cd Library
$ ls
Accounts Fonts Preferences
Address Book Plug-Ins Fonts Disabled Printers
Application Scripts GameKit PubSub
Application Support Google Safari
Assistants Group Containers Saved Application State
Audio IdentityServices Screen Savers
Autosave Information Input Methods Services
Caches Internet Plug-Ins Social
Calendars Keyboard Layouts Sounds
ColorPickers Keychains Spelling
Colors LanguageModeling StickiesDatabase
Compositions LaunchAgents Suggestions
Containers Logs SyncedPreferences
Cookies Mail VirtualBox
CoreData Messages Voices
Dictionaries Metadata WebKit
Favorites Mobile Documents com.apple.nsurlsessiond
Filters Network iMovie
FontCollections PreferencePanes iTunes
$ cd App<TAB>
$ cd Application\ S

The last example shows a useful trick: hitting the Tab key after entering a few charac‐
ters of the filename invokes the shell’s filename completion feature. When you hit the
Tab key, the shell automatically includes the backslashes required to escape any spaces
as it completes the file or directory name. Darn handy!

One place where you can find all sorts of peculiar filenames is within your iTunes
library, because iTunes uses the song titles as the filenames for the corresponding
MP3- or AAC-encoded files. Here are a few examples of filenames from my own
library that would be incredibly difficult to work with on the command line:

The Beatles/Sgt. Pepper's /Being For The Benefit of Mr. Kite!.mp3
The Art of Noise/In No Sense? Nonsense!/How Rapid?.mp3
Joe Jackson/Look Sharp!/(Do The) Instant Mash.mp3

True Unix diehards are undoubtedly cringing at those filenames, which include spe‐
cific wildcard characters and other elements that are important to the shell, all of
which would have to be escaped. Those filenames are ugly enough now, but just
imagine them like this:

The\ Beatles/Sgt\.\ Pepper\'s\ /Being\ For\ The\ Benefit\ of\ Mr\.\ Kite\!\.mp3
The\ Art\ of\ Noise/In\ No\ Sense\?\ Nonsense\!/How\ Rapid\?\.mp3
Joe\ Jackson/Look\ Sharp\!/\(Do\ The\)\ Instant\ Mash\.mp3

File and Directory Names | 77

Not pretty.

One more thing: a filename must be unique inside its directory, but other directories
can have files with the same name. For example, you may have files called chap1.doc
and chap2.doc in the directory /Users/carol/Documents and also have different files
with the same names in /Users/carol/Desktop.

This can cause confusion for people who are used to just having all their files on their
Desktop or in the topmost level of the Documents directory. In that situation, an
attempt to save a file as chap1.doc would just generate a warning that the file already
exists, but if you create different directories for different projects, it’s quite feasible
that you’ll end up with a dozen or more files with the exact same name.

File and Directory Wildcards
When you have a number of files named in series (for example, chap1.doc to
chap12.doc) or filenames with common characters (such as aegis, aeon, and aerie),
you can use wildcards to save yourself lots of typing and match multiple files at the
same time. These special characters are the asterisk (*), question mark (?), square
brackets ([]), and curly braces ({ }). When used in a file or directory name given as
an argument in a command line, the characteristics detailed in Table 4-1 are true.

Table 4-1. Shell wildcards

Notation Definition

* An asterisk stands for any number of characters in a filename. For example, ae* matches any filename that begins
with “ae” (such as aegis, aerie, aeon, etc.) if those files are in the same directory. You can use this to save typing for
a single filename (for example, al* for alphabet.txt) or to choose many files at once (as in ae*). An asterisk by itself
matches all file and subdirectory names in a directory, with the exception of any starting with a period. To match
all your dot files, try .* as your pattern.

? A question mark stands for any single character (so h?p matches hop and hip, but not hp or help).

[] Square brackets can surround a choice of single characters (i.e., one digit or one letter) you’d like to match. For
example, [Cc]hapter would match either Chapter or chapter, but chap[12] would match chap1 or chap2. Use a
hyphen (-) to separate a range of consecutive characters. For example, chap[1-3] matches chap1, chap2, or chap3.

{,} Curly braces are used to provide a list of two or more subpatterns, separated by commas, that are matched as
alternatives. The pattern a{b,c,d}e would match abe, ace, and ade, but not aee because the middle e isn’t inside the
curly braces. This is most commonly used to reference multiple files within a subdirectory, as in Mail/{drafts,inbox},
which is functionally identical to typing both Mail/drafts and Mail/inbox.

The following examples show how to use wildcards. The first command lists all the
(nonhidden) entries in a directory, and the rest use wildcards to list just some of the

78 | Chapter 4: File Management

entries. The second-to-last one is a little tricky; it matches files whose names contain
two (or more) a’s:

$ ls
chap0.txt chap2.txt chap5.txt cold.txt
chap1a.old.txt chap3.old.txt chap6.txt haha.txt
chap1b.txt chap4.txt chap7.txt oldjunk
$ ls chap?.txt
chap0.txt chap4.txt chap6.txt
chap2.txt chap5.txt chap7.txt
$ ls chap[3-7]*
chat3.old.txt chap4.txt chap5.txt chap6.txt chap7.txt
$ ls chap??.txt
chap1b.txt
$ ls *old*
chap1a.old.txt chap3.old.txt cold.txt oldjunk
$ ls *a*a*
chap1a.old.txt haha.txt
$ ls chap{3,6}.txt
chap3.txt chap6.txt

Wildcards are useful for more than listing files. Most Unix programs accept more
than one filename, and you can use wildcards to name multiple files on the command
line. For example, both the cat and less programs display files on the screen. cat
streams a file’s contents until end of file, while less shows the contents one screen at a
time. (By “screen,” I’m referring to what the less command actually shows inside the
Terminal window—this term stems from the early days of Unix when you didn’t have
any windows and had only one screen.) Let’s say you want to display the files
chap3.old.txt and chap1a.old.txt. Instead of specifying these files individually, you
could enter the command as:

$ less *.old.txt

Which is equivalent to:

$ less chap1a.old.txt chap3.old.txt

Wildcards match directory names, too. You can use them anywhere in a pathname—
absolute or relative—though you still need to remember to separate directory levels
with forward slashes (/). For example, let’s say you have subdirectories named Jan,
Feb, Mar, and so on. Each has a file named summary. You could read all the summary
files by typing less */summary. That’s almost equivalent to less Jan/summary Feb/
summary Mar/summary... However, there’s one important difference when you use
less */summary: the names will be alphabetized, so Apr/summary will be first in the
list, not your January summary.

Using wildcards can also be useful if you have lots of files to match. A classic example
of where the shell is way more powerful than the Finder is when it comes to moving a
subset of files in a directory that match a specific pattern. For instance, if all the JPEG
image files in a directory should be moved to a new subdirectory called JPEG Images,

File and Directory Wildcards | 79

while the TIFF and PNG image files should remain in the current directory, the fast
command-line solution is:

$ mv *.{jpg,JPG} JPEG\ Images

Compare this to a tedious one-by-one selection process in the Finder!

Looking Inside Files
By now, you’re probably tired of looking at files from the outside. It’s like visiting a
bookstore and never getting to open a book and read what’s inside. Fortunately, it
doesn’t have to be this way. In this section, we’ll look at three different programs for
looking inside text files.

Why “text files” rather than “all files”? Since Unix treats everything
as a file, it’ll let you “look at” image data, executable programs, and
even the actual bits of the directory structure itself. It’s not really
useful to look at any of these, though, and while there is a program
called strings that helps you snoop around in these datafiles, it’s not
at all commonly used in the world of OS X and Terminal.

cat
The most rudimentary of the programs that let you look inside a file is called cat, not
for any sort of feline, but because that’s short for concatenate, a fancy word for “put a
bunch of stuff together.” The cat command is useful for peeking at short files, but
because it doesn’t care how long the file is or how big your Terminal window is, using
cat to view a long file results in the top lines scrolling right off the screen before you
can even read them.

In its most basic form, you list one or more files, and cat displays the contents on the
screen:

$ cd /etc
$ cat notify.conf
#
Notification Center configuration file
#

reserve com.apple.system. 0 0 rwr-r-
monitor com.apple.system.timezone /etc/localtime
monitor com.apple.system.info:/etc/hosts /etc/hosts
monitor com.apple.system.info:/etc/services /etc/services
monitor com.apple.system.info:/etc/protocols /etc/protocols

In this case, I’ve moved to the /etc administrative directory and used cat to display the
contents of the notify.conf configuration file.

80 | Chapter 4: File Management

Using a wildcard pattern (shown earlier), I can look at a couple of different configura‐
tion files with a single invocation of cat:

$ cat {syslog,nfs,ftpd}.conf
Note that flat file logs are now configured in /etc/asl.conf

install.* @127.0.0.1:32376
#
nfs.conf: the NFS configuration file
#
match umask from OS X Server ftpd
umask all 022

One serious drawback of using cat to view more than one file in this manner should
be obvious: there’s no indication of where one file ends and the next begins. The pre‐
vious listing is actually three different files, all just dumped to the screen.

There are a couple of useful options for the cat command: most notably, -n to add
line numbers, and -v, which ensures that everything displayed is printable (though
not necessarily readable).

The split between files is more obvious when the -n option adds line numbers to the
output. For example:

$ cat -n {syslog,nfs,ftpd}.conf
 1 # Note that flat file logs are now configured in /etc/asl.conf
 2
 3 install.* @127.0.0.1:32376
 1 #
 2 # nfs.conf: the NFS configuration file
 3 #
 1 # match umask from OS X Server ftpd
 2 umask all 022

Here you can see that the line numbers for each file are printed to the left of the file’s
contents. So, to find out where a file begins, just look for the number 1, as that’s the
first line of a file. This output shows us that syslog.conf is three lines long, nfs.conf has
three lines, and ftpd.conf is just two lines long.

less
If you want to “read” a long plain-text file in a Terminal window, you can use the less
command to display one “page” (a Terminal window filled from top to bottom) of
text at a time.

Or, if you don’t like less, you can use a program named more. In fact, the name less is a
play on the name of more, which came first (but less has more features than more).
Here’s an OS X secret, though: more is less. Really. The more utility is actually the very
same program, just with a different name and slightly different default behavior. The
ls command shows the truth:

Looking Inside Files | 81

$ ls -l /usr/bin/{more,less}
-rwxr-xr-x 1 root wheel 129152 Sep 17 01:07 /usr/bin/less
-rwxr-xr-x 1 root wheel 129152 Sep 17 01:07 /usr/bin/more

To avoid confusion, I’ll just stick with less. The syntax for less is:

less options files

less lets you move forward or backward in the files that you’re viewing by any number
of pages or lines; you can also move back and forth between two or more files speci‐
fied on the command line. When you invoke less, the first “page” of the file appears,
and a prompt appears at the bottom of the Terminal window, as in the following
example:

$ less ch03
A file is the unit of storage in Unix, as in most other systems.
A file can hold anything: text (a report you're writing,
 .
 .
 .
:

The basic less prompt is a colon (:), although for the first screen, less displays the file’s
name as a prompt. The cursor sits to the right of this prompt as a signal for you to
enter a less command to tell less what to do. To quit, type q.

Like almost everything about less, the prompt can be customized. For example, using
the -M starting flag on the less command line makes the prompt show the filename
and your position in the file (as a percentage) at the end of each page.

If you want this to happen every time you use less, you can set the
LESS environment variable to M (without a dash) in your shell setup
file. See “Shell Configuration Settings” on page 35 for details.

You can set or unset most options temporarily from the less prompt. For instance, if
you have the short less prompt (a colon), you can enter -M while less is running. less
responds Long prompt (press Return), and for the rest of the session less prompts
with the filename, line number, and percentage of the file viewed.

To display the less commands and options available on your system, press h (for
“help”) while less is running. Table 4-2 lists some simple (but quite useful) com‐
mands.

82 | Chapter 4: File Management

Table 4-2. Useful less commands

Command Description

Space bar Display next page

v Start the vi editor

Return Display next line

Control-L Redisplay current page

n f Move forward n lines

h Display help

g Go to beginning of file

G Go to end of file

b Move backward one page

:n Go to next file on command line

n b Move backward n lines

:p Go back to previous file on command line

/word Search forward for word

q Quit less

?word Search backward for word

I quite commonly use the /word search notation, for instance, when using the man
command, which uses less behind the scenes to display information one page at a
time. For example, instead of flipping through bash’s manpage for information on file
completion, typing /file completion at the colon prompt while reading the bash
manpage lets you skip straight to what you seek. Gone too far? Use b to go back to the
previous page.

grep
Instead of having the entire contents of the file dumped to your screen or having to
step through a file one line at a time, you will undoubtedly find it useful to be able to

Looking Inside Files | 83

search for specific patterns within a file or set of files. This is done with the oddly
named grep command.

grep gains its name from an old line-editor command, global/regu‐
lar expression/print, which was used to list only the lines in the file
being edited that matched a specified pattern. With the name
g/re/p, it wasn’t much of a stretch to end up with grep, and the pro‐
grammer who created the command actually imagined it’d be
mnemonic for his user community. Imagine!

grep uses a different pattern language than the filename patterns shown earlier in this
chapter: a more sophisticated pattern language called regular expressions. Regular
expressions are discussed in the next chapter; for now, let’s just look at how to use
grep to find word fragments or specific words in a set of files.

Since we’re already in the /etc directory, let’s look to see if there’s any mention of fire‐
walls by using grep:

$ grep firewall *conf
asl.conf:# Facility com.apple.alf.logging gets saved in appfirewall.log
asl.conf:? [= Facility com.apple.alf.logging] file appfirewall.log file_max=5M
all_max=50M

Within the set of configuration files, there were two matches, as shown. In the output,
the matching filename is shown, followed by a colon, followed by the actual matching
line in the file.

You can search a lot more than just the configuration files by changing the filename
pattern. If you broaden this search, though, you’ll inevitably get error messages about
grep trying to search directory entries rather than files, “operation not permitted”
errors, along with “permission denied” errors for files that you don’t have permission
to search in the first place (remember sudo from the last chapter?). To sidestep the
“operation not permitted” problem, grep’s -s option causes it to be quieter in its opera‐
tion:

$ grep firewall *
grep: aliases.db: Permission denied
grep: apache2: Is a directory
grep: asl: Is a directory
asl.conf:# Facility com.apple.alf.logging gets saved in appfirewall.log
asl.conf:? [= Facility com.apple.alf.logging] file appfirewall.log file_max=5M
all_max=50M
...
$ grep -s firewall *
asl.conf:# Facility com.apple.alf.logging gets saved in appfirewall.log
asl.conf:? [= Facility com.apple.alf.logging] file appfirewall.log file_max=5M
all_max=50M
pf.os:# the case that X is a NAT firewall. While nmap is talking to the

84 | Chapter 4: File Management

pf.os:# device itself, p0f is fingerprinting the guy behind the firewall
pf.os:# caused by a commonly used software (personal firewalls, security
pf.os:# KEEP IN MIND: Some packet firewalls configured to normalize outgoing
pf.os:# system (and probably not quite to the firewall either).
services:csccfirewall 40843/udp # CSCCFIREWALL
services:csccfirewall 40843/tcp # CSCCFIREWALL

We’ll look at grep in much greater detail in Chapter 5.

Creating and Editing Files
There are lots of ways to create and edit files when you’re working on a Macintosh.
You can use TextEdit, BBEdit, Microsoft Word, and any number of other applications
within the Aqua graphical environment. Or, if you’d like to stick to the command line,
it turns out that there are a bunch of text-only, Terminal-friendly editors included
with OS X.

Chief among these options is an editor called vi that can be a bit tricky to learn but is
powerful, fast, and available on a wide range of Unix and Linux systems, too. Because
vi is so powerful and ubiquitous across all *nix systems, that’s what we’ll focus on in
this section; however, we’ll take a quick look at a few alternatives too.

Text Editors and Word Processors
A text editor lets you add, change, and rearrange text easily. Three popular Unix edi‐
tors included with OS X are vi (pronounced “vee-eye”), Pico, (“pea-co”), and Emacs
(“e-max”; no relation to Apple’s eMac). By contrast, a word processor has all sorts of
fancy layout and presentation capabilities, typically built around a “what you see is
what you get” (WYSIWYG, or “wizzy-wig”) model similar to Microsoft Word. They
work great for lots of things but are useless for creating files within the Terminal.

You should choose an editor you’re comfortable with. vi is probably the best choice,
because all Unix systems have it, but Emacs is also widely available and is preferred by
many developers because of the features it offers. If you’ll be doing simple editing,
you should also consider Pico: although it’s much less powerful than vi or Emacs, it’s
a lot easier to learn. I’ll focus on the rudiments of vi here, since it’s the most widely
available Unix editor, and there’s a terrific version included with OS X called vim.

None of these plain-text editors has the same features as popular word-processing
software, but vi and Emacs are sophisticated, extremely flexible editors for all kinds of
plain-text files: programs, email messages, and so on. By “plain text,” I mean a file
with only letters, numbers, and punctuation characters, and no formatting such as
point size, bold and italics, or embedded images. Unix systems use plain-text files in
many places: in the redirected input and output of Unix programs (see Chapter 6), as
shell setup files (see Chapter 2), for shell scripts, for system configuration, and more.

Creating and Editing Files | 85

Of course, you can opt to use a graphical text editor such as BBEdit
or TextEdit (/Applications) with good results, too, if you’d rather
just sidestep editing while within the Terminal application. If you
do, try using the open command within the Terminal to launch
TextEdit with the proper file already loaded. For example, the fol‐
lowing command opens the specified file in TextEdit:

open -e myfile.txt

It’s critical that you select Format→Make Plain Text (Shift-⌘-T)
within TextEdit to ensure that no extraneous formatting characters
or information is included in the text file when you save your
changes.

Text editors edit these plain-text files without a hitch. When you use a word pro‐
cessor, though, while on the screen it may look as if the file is only plain text, it will
inevitably have some hidden codes in it, too. That’s often true even if you tell the
word processor to “Save as plain text.”

One easy way to check for nontext characters in a file is by reading
the file with less; look for characters in reversed colors, codes such
as <36>, and so on.

Fixing Those Pesky Carriage Returns
Switching between Finder applications and Unix tools for editing can be a hassle,
because you might end up having to translate file formats along the way. Fortunately,
this is easy with the Unix command line.

One of the more awkward things about Apple putting a Mac graphical environment
on top of a Unix core is that the two systems use different end-of-line sequences. If
you ever open up a file in a Finder application and see lots of little boxes at the end of
each line, or if you try to edit a file within Unix and find that it’s littered with ^M
sequences, you’ve hit the end-of-line problem.

To fix it, create the following command aliases:

alias m2u="tr '\015' '\012'"
alias u2m="tr '\012' '\015'"

Now, whenever you’re working with Unix editing tools and you need to fix a Mac-
format file, simply use m2u (Mac to Unix), as in:

$ m2u < mac-format-file > unix-friendly-file

86 | Chapter 4: File Management

http://www.barebones.com

And if you find yourself in the opposite situation, where you’re editing a Unix file in a
Mac tool and it has some carriage-return weirdness, use the reverse u2m (Unix to
Mac) within the Terminal before opening the file for editing:

$ u2m < unix-friendly-file > mac-format-file

You can add these aliases to your future login sessions by copying the two alias defini‐
tion lines into your .profile file.

Also worthy of note is the helpful tr command, which makes it easy to translate all
occurrences of one character to another. Use man tr to learn more about this power‐
ful utility.

If you need to do word processing—making documents, address labels, and so on—
your best bet is to work with a program designed for that purpose. While TextEdit is
surprisingly powerful (it can read and write Word files), you might want to opt for
something more powerful, such as Pages (which comes with Apple’s iWork), Micro‐
soft Office 2016, or NeoOffice, an open source suite of applications similar to Micro‐
soft Office.

The vi Text Editor
The vi editor, originally written by Bill Joy at the University of California, Berkeley, is
easy to use once you master the fundamental concept of a modal editor. OS X actually
includes a version of vi called vim that has many useful new features. We’ll focus on
vi’s basic commands here, but if you become a vi master you’ll enjoy vim’s powerful
extensions.

To learn more about vi, I’d recommend picking up a copy of Learn‐
ing the vi and Vim Editors, by Arnold Robbins, Elbert Hannah, and
Linda Lamb (O’Reilly), or the vi and Vim Editors Pocket Reference,
by Arnold Robbins (O’Reilly). These books are packed with useful
information about vi, and the Learning book includes a handy
quick-reference card of commands you can use with vi. Though
focused on vi, they offer extensive information about vim as well,
and will get you up to speed in no time. Or, if you have a Safari
account, you can read the books online.

Before we start looking at what you can do with vi, however, let’s talk about modality.
Modes can best be explained by analogy to your car stereo. When you have a CD in,
the “1” button does one task, but if you are listening to the radio, the very same but‐
ton does something else (perhaps jumping to preprogrammed station number 1). The
vi editor is exactly the same: in Command mode, pressing the i key on the keyboard
switches you into Insert mode, but in Insert mode, the very same keystroke inserts an

Creating and Editing Files | 87

http://www.apple.com/mac/pages
http://www.neooffice.org
http://shop.oreilly.com/product/9780596529833.do
http://shop.oreilly.com/product/9780596529833.do
http://shop.oreilly.com/product/0636920010913.do
http://safari.oreilly.com
http://safari.oreilly.com

“i” into the text itself. The handiest key on your keyboard while you’re learning vi is
unquestionably the Escape key (Esc), located at the upper-left corner of your key‐
board. If you’re in Insert mode, Esc switches you back to Command mode, and if
you’re in Command mode, it’ll beep to remind you that you’re already in Command
mode. Use Esc often, until you’re completely comfortable keeping track of what mode
you’re in.

Jump-start your learning by using OS X’s included vimtutor: just
type in vimtutor on the command line for a guided tour of the vi
editor.

Start vi by typing its name; the argument is the filename you want to create or edit.
For instance, to edit your shell’s .profile setup file, you would cd to your home direc‐
tory and enter:

$ vi .profile

The Terminal fills with a copy of the file (and, because the file is short, some empty
lines, too, as denoted by the ~ at the beginning of these lines), as shown in Figure 4-1.

Figure 4-1. vi display while editing

At the bottom of the window is the status line, which indicates what file you’re edit‐
ing: ".profile" 14L, 210C. This indicates that the file has 14 lines (14L) with a total
of 210 characters (210C). Quit the program by typing :q and pressing Return while in
Command mode.

88 | Chapter 4: File Management

vi Basics
Let’s take a tour through vi. In this example, you’ll create a new text file. You can call
the file anything you want, but it’s best to use only letters and numbers in the file‐
name. For instance, to make a file named sample, enter the following command:

$ vi sample

Now, let’s start the tour…

Your screen should look something like Figure 4-1, but the cursor should be on the
top line and the rest of the lines will have the tilde character (~) at the start to denote
that they are blank. The bottom status line indicates the following:

"sample" [New File]

To start entering text in the file, press i to switch from Command mode to Insert
mode. Now type something. Make some lines too short (press Return before the line
gets to the right margin). Make others too long; watch how vi wraps long lines. If you
have another Terminal window open with some text in it, or if you have an applica‐
tion like Word or TextEdit open, you can use your mouse to copy text from another
window and paste it into the Terminal window where you’re working with vi. (Always
make sure you’re in Insert mode before you do this, however, or you could irrevoca‐
bly mess up your file since the text will be interpreted as a sequence of relatively ran‐
dom commands.) To get a lot of text quickly, paste the same text more than once.

Figure 4-2 shows how the sample file looks after I copied and pasted the previous
paragraph into vi’s buffer.

Figure 4-2. vi with some text pasted into the buffer

Creating and Editing Files | 89

To move the cursor around in the file, you’ll need to leave Insert mode by pressing
Esc once. Press it again and you’ll hear a beep, reminding you that you are already in
Command mode.

In Command mode, press Control-G to produce a useful status
line that shows the filename, the number of lines in the file, and
where the cursor is relative to the file buffer.

You can use the arrow keys on your keyboard to move around the file, but most vi
users have taught themselves to move around with the h, j, k, and l motion keys (left,
down, up, and right, respectively). They may seem unintuitive, but not having to
move your hand off the main keyboard area can produce a dramatic increase in edit‐
ing speed as you get more used to them.

Unless you have enabled “Option click to position cursor” in the
Terminal’s preferences, vi ignores your mouse if you try to use it to
move the cursor.

If you’ve entered a lot of text, you can experiment with some additional movement
commands: H to jump to the first line on the screen, and G to jump to the very last line
of the file. You should also try the w and b commands to move forward and backward
one word at a time (for example, to move forward three words, press the w key three
times), and 0 (zero) to jump to the beginning of the line, and $ to jump to the end.

Searching in vi
While vi is proving to be a worthy text editor, you’re probably thinking that it’s lack‐
ing one feature that many graphical text editors have: the ability to use ⌘-F to search
through the file for some text. Actually, you can search for text strings in vi; it’s just a
little different. vi’s search command is accessed by typing a forward slash (/) while in
Command mode, followed by the pattern you want to search for. It’s handy even in a
short file, where it can be quicker to type / and a word than it is to use the cursor-
moving commands. For example, if you wanted to search through a text file for the
word “cheese,” you would first press the Esc key twice (just to make sure you’re out of
Insert mode and in Command mode) and then type:

/cheese

You’ll see this string appear at the bottom of your Terminal window. When you hit
Return, vi searches through the file, starting at the current cursor location, for the
word “cheese.” If it finds it, vi places the cursor at the beginning of the word. You can

90 | Chapter 4: File Management

then press the n key to repeat the search; if vi finds another occurrence of that word,
it moves the cursor to that word.

Invoking external Unix commands
One fabulous feature of vi is that it’s easy to invoke Unix commands and have their
output included in the file you’re editing. That said, vi also makes it easy to send some
of the text in its buffer to a Unix command, ultimately replacing that text with the
output of the command. Sound confusing? It’s really not so bad.

For example, to include the current date in your file, type o in Command mode to
open up a blank line immediately below the line that the cursor is sitting on, hit the
Esc key to get out of Insert mode, and then enter !!date. As you type this, the cursor
drops to the bottom of the screen and shows :.!date there. Press Return, and the
blank line is replaced by the output from the date command.

What if you want to justify a paragraph of text? You can do this by feeding it to the
external Unix fmt command. Make sure you’re in Command mode (hit Esc just to be
safe), then use the arrow keys to move the cursor to the beginning of the paragraph
and type !}fmt. (vi’s status line won’t change until you press the } character.) Now the
lines of the paragraph should flow and fit neatly between the margins. Figure 4-3
shows what happened when I moved to the top of the file (using the H command)
then typed in !}fmt to reflow the text in the document.

Figure 4-3. Reformatted text using the Unix fmt command

More powerful capabilities

You can delete text in a file by using x to delete the character that’s under the cursor,
or use the powerful d command:

Creating and Editing Files | 91

dd

Deletes lines

dw

Deletes individual words

d$

Deletes to the end of the line

d0

Deletes to the beginning of the line

dG

Deletes to the end of the file (if you’re seeing a pattern and thinking that it’s d +
motion key, you’re absolutely correct)

To undo the deletion, press u. You can also paste the deleted text with the p com‐
mand.

The first step to copying text is to position your cursor at the beginning of the word
or line (or series of lines) you want to copy. In vi, you don’t copy, you “yank” the text.
The yw command copies (“yanks”) one word, yy yanks the line, yyn yanks n lines (for
example, yy5 yanks five lines), y1 yanks a single character, and ynw yanks n words
(y5w yanks five words, for example). Move the cursor to the line you want to copy
and press yy. After repositioning your cursor to the line below which you’d like the
text copied, press p to paste the text.

Yanking does not cut the text; it only copies it to vi’s paste buffer. If
you want to move the text, you’ll have to go back to the lines you’ve
yanked (copied) and delete them with the aforementioned d com‐
mands.

As with any text editor, it’s a good idea to save your work from vi every 5 or 10
minutes. That way, if something goes wrong on the computer or network, you’ll be
able to recover the edited buffer from the last time you saved it.

If the editor, the Terminal, or the computer does crash, you can recover the saved
temporary edit buffer by using the -r option when you next launch the program. If
there is a file that can be recovered, vi shows specific information about it:

$ vi -r
Swap files found:
 In current directory:
1. .sample.swp
 owned by: taylor dated: Mon May 7 23:06:23 201r
 file name: ~taylor/sample

92 | Chapter 4: File Management

 modified: YES
 user name: taylor host name: Dave-Taylors-MacBook-Pro.local
 process ID: 8085
 In directory ~/tmp:
 -- none --
 In directory /var/tmp:
 -- none --
 In directory /tmp:
 -- none --

To recover this file, just type vi -r sample and you’ll move into the vi editor with the
recovered version of the file.

In vi, to save your work to disk, you use the write command by typing :w followed by
Return. The bottom of the display shows the filename saved and the number of lines
and characters in the file.

For some reason, saving the edited file sometimes confuses vi beginners. It’s really
very simple: if you want to save the file with the same name it had when you started,
just press :w and Return. That’s all! If you’d rather use a different filename, type :w
followed by the new filename (for example, :w new.sample). Press Return, and it’s
saved.

Finally, if you try to exit vi when you have unsaved changes with the usual :q com‐
mand, the program will beep, warning you that the modified file has not been saved.
If you want to override the warning and discard the changes that you’ve made since
the last time the file was saved, type :q!. If you want to save the changes and don’t
need to rename the output file, you can use a shortcut: :wq writes out your changes
and quits vi. In fact, there’s a shortcut for that shortcut, too. Type ZZ (uppercase, and
no : needed) and you’ll write and quit if the file’s been modified, or just quit without
disturbing the file if it hasn’t been changed. That’s it!

Of course, there’s a lot more to learn about vi. In Table 4-3, you’ll find a handy listing
of some of the most common vi commands and their descriptions.

Table 4-3. Common vi editing commands

Command Meaning

/ pattern Search forward for specified pattern. Repeat search with n.

:q Quit the edit session.

:q! Quit, discarding any changes.

:w Write (save) any changes out to the file.

:wq or ZZ Write out any changes, then quit (shortcut).

Creating and Editing Files | 93

Command Meaning

a Move into Append mode (like Insert mode, but you enter information after the cursor, not before).

b Move backward one word.

w Move forward one word.

d1G Delete from the current point back to the beginning of the file.

dd Delete the current line.

dG Delete through end of file.

dw Delete the following word.

Esc Move into Command mode.

h Move backward one character.

l Move forward one character.

i Switch to Insert mode (Esc switches you back to Command mode).

j Move down one line.

k Move up one line.

O Open up a line above the current line and switch to Insert mode.

o Open up a line below the current line and switch to Insert mode.

P Put (paste) deleted text before the cursor.

p Put (paste) deleted text after the cursor.

X Delete the character to the left of the cursor.

x Delete the character under the cursor.

yw Yank (copy) from the cursor to the end of the current word. You can then paste it with p or P.

yy Yank (copy) the current line. You can then paste it with p or P.

94 | Chapter 4: File Management

A Simpler vi Alternative: Pico
If the section on vi has left you longing for the safety and logic of the graphical world,
you might want to explore the simple editing alternative of Pico. Originally written as
part of a text-based email system called Pine (which itself was based on an email pro‐
gram called Elm that I wrote in the mid-1980s), Pico has taken on a life of its own
and is included in many Unix distributions, including OS X. Figure 4-4 shows the
sample file from the earlier example opened in Pico.

The GNU nano editor is actually included with OS X as a fully
functional free software version of Pico. You can type nano instead
of pico if you’d like.

Figure 4-4. Pico, a simpler alternative to vi

Pico offers a menu-based approach to editing, with on-screen help. It’s a lot friendlier
than vi, whose primary way to tell you that you’ve done something wrong is to beep.
Pico offers a comfortable middle ground between text editors such as TextEdit and
hardcore Unix text editors such as vi. It’s a friendly editor that you can launch from
the command line and never have to take your hands off the keyboard to use. To
learn more about Pico, type Control-G while within the editor, or use man pico to
read the manpage.

The More Complex Option: Emacs
If Pico is the simpler alternative to vi, then Emacs is the more complex alternative.
Originally written as part of an artificial intelligence environment and including its

Creating and Editing Files | 95

own powerful programming language built atop LISP, Emacs is one of the most pow‐
erful editors available on any computer system. Indeed, hardcore Emacs users never
leave the editor, and there are Emacs extensions for browsing the Web (albeit in text-
only mode), reading and responding to email, chatting via an instant messaging sys‐
tem, and more. Figure 4-5 shows Emacs with the sample file in the edit buffer.

Figure 4-5. Emacs is the Ferrari of Unix text editors

But with great power comes great complexity, and Emacs not only is built upon a
completely different paradigm—it’s a nonmodal editor—but requires you to memo‐
rize dozens of different Control, Meta, and Option key sequences.

If you are interested in trying out the Emacs editor, it’s now
included with OS X, so you can launch it by typing emacs on the
command line. It’s not easy to figure out, however, so I’d recom‐
mend you consider picking up the book Learning GNU Emacs by
Debra Cameron, James Elliott, Marc Loy, Eric S. Raymond, and Bill
Rosenblatt (O’Reilly).

Managing Files
The tree structure of the Unix filesystem makes it easy to organize your files. After
you create and edit some files, you may want to copy or move files from one directory
to another, or rename files to distinguish different versions. You may even want to
create new directories each time you start a different project. To save typing, it’s worth
knowing that if you copy a file into a directory, the shell is smart enough to use the
same filename for the new file.

96 | Chapter 4: File Management

http://shop.oreilly.com/product/9780596006488.do

In addition to its efficiency, the command line is much more precise, offering greater
control than the Finder’s drag-and-drop interface. For example, if you want to create
a new folder in the Finder, you need to mouse up to the File menu and choose New
Folder or use a nonmnemonic keystroke combination. On the command line, it’s just
mkdir to create a new directory. Even more to the point, if you have a folder full of
hundreds of files and want to move just those that have temp in their filenames into
the Trash, that’s a tedious and error-prone Finder task, while the command-line
equivalent is the simple rm *temp*.

A directory tree can get cluttered with old files you don’t need. If you don’t need a file
or a directory, delete it to free storage space on the disk. The following sections
explain how to make and remove directories and files.

Creating Directories with mkdir
It’s handy to group related files in the same directory. If you were writing a spy novel
and reviewing restaurants for a local newspaper, for example, you probably wouldn’t
want your intriguing files mixed with restaurant listings. You could create two direc‐
tories: one for all the chapters in your novel (spy, for example) and another for restau‐
rants (boston.dine).

To create a new directory, use the mkdir program. The syntax is:

mkdir dirname(s)

where dirname is the name of the new directory. To make several directories, put a
space between each directory name. To continue this example, you would enter:

$ mkdir spy boston.dine

This means that if you want to create a directory with a space in the name, you’ll need
to escape the space just as you had to earlier when you referenced filenames with
spaces in them. To create the directory My Favorite Music, you’d use:

$ mkdir "My Favorite Music"

Another trick is that you can create a new directory and include a bunch of subdirec‐
tories within that directory, all from a single command. For example, your spy novel
most likely has a few chapters in it, and let’s say that you need separate directories for
each chapter to hold the chapter file itself, any illustrations you want to add, research
notes, whatever. You could use the following command to create the spy novel’s main
directory and individual subdirectories for the various chapters:

$ mkdir -p spy/ch{01,02,03,04,05,intro,toc,index,bio}

The curly braces ({ }) are used to specify the names of the subdirectories: in this case,
each name will consist of the string ch, with one of the values in the comma-
delimited list in the enclosed set of curly braces appended to it. Run the following
command to see the list of directories and subdirectories you’ve created:

Managing Files | 97

$ ls -F spy
ch01/ ch03/ ch05/ chindex/ chtoc/
ch02/ ch04/ chbio/ chintro/

Try doing that in the Finder! You’d have to first create a folder named spy, open that,
and then create and rename all those subfolders. Talk about time-consuming! But
here, the power of Unix goes into action and saves the day.

Copying Files
If you’re about to edit a file, you may want to save a copy of it first. That makes it easy
to get back the original version should the edit go haywire. To copy files, use the cp
program.

The cp program can put a copy of a file into the same directory or into another direc‐
tory. cp doesn’t affect the original file, so it’s a good way to keep an identical backup of
a file.

To copy a file, use the command:

cp old new

Here, old is the pathname to the original file and new is the pathname you want for
the copy. For example, to copy the /etc/passwd file into a file called password in your
home directory, you would enter:

$ cp /etc/passwd ~/password

You can also use the form:

cp old dir

This puts a copy of the original file old into an existing directory, dir. The copy has
the same filename as the original.

If there’s already a file with the same name as the copy, cp replaces the old file with
your new copy. This is handy when you want to replace an old copy of a file with a
newer version, but it can cause trouble if you accidentally overwrite a copy you
wanted to keep. To be safe, use ls to list the directory before you make a copy there.

Also, cp has an -i (interactive) option that asks you before overwriting an existing file.
It works like this:

$ cp -i master existing-file.txt
overwrite existing-file.txt? no

(You have to either type yes or no to respond to the question; you can also just type y
or n and press Return.)

You can copy more than one file at a time to a single directory by listing the path‐
names of each file you want copied, with the destination directory at the end of the

98 | Chapter 4: File Management

command line. You can use relative or absolute pathnames (see “Absolute Pathnames”
on page 44 and “Relative Pathnames” on page 45), as well as simple filenames. For
example, let’s say your working directory is /Users/carol (from the filesystem diagram
in Figure 3-3). To copy three files called ch1.doc, ch2.doc, and ch3.doc from /Users/
john to a subdirectory called Documents (that’s /Users/carol/Documents), assuming
you have the appropriate access permissions, enter:

$ cp ../john/ch1.doc ../john/ch2.doc ../john/ch3.doc Documents

Or you could use wildcards and let the shell find all the appropriate files. This time,
let’s add the -i option for safety:

$ cp -i ../john/ch[1-3].doc Documents
cp: overwrite ../john/ch2.doc ? n

This tells you that there is already a file named ch2.doc in the Documents directory.
When cp asks, answer n to prevent copying ch2.doc. Answering y overwrites the old
ch2.doc. As you saw in Chapter 3, the shorthand form . (a single dot or period) refers
to the working directory, and .. (dot, dot) refers to the parent directory. For example,
the following puts the copies into the working directory:

$ cp ../john/ch[1-3].doc .

One more possibility: when you’re working with home directories, you can use the
convenient shorthand ~account to represent John’s and Carol’s home directories (and
~ by itself to represent your own). So here’s yet another way to copy those three files:

$ cp ~john/ch[1-3].doc Documents

cp can also copy entire directory trees with the help of the -R (recursive) option.
There are two arguments after the option: the pathname of the top-level directory
from which you want to copy, and the pathname of the place where you want the top
level of the copy to be.

As an example, let’s say that a new employee, Asha, has joined John and Carol. She
needs a copy of John’s Documents/work directory in her own home directory. (See the
filesystem diagram in Figure 3-3.) Her home directory is /Users/asha. If Asha’s own
work directory doesn’t exist yet (this is important!), she could type the following com‐
mands:

$ cd /Users
$ cp -R john/Documents/work asha/work

Or, from her home directory, she could use:

$ cp -R ~john/Documents/work work

Either way, Asha now has a new subdirectory, /Users/asha/work, that contains copies
of all the files and subdirectories in /Users/john/Documents/work.

Managing Files | 99

If you give cp -R the wrong pathnames, it could end up copying a
directory tree into itself and running forever until your filesystem
fills up!

When cp copies a file, the new copy has its ownership changed to the user running
the cp command, too, so not only does Asha have the new files, but they’re also
owned by her. This doesn’t always work in your favor, depending on directory per‐
missions, so remember that cp also has the -p flag to retain original permissions and
ownership, as needed. In this case, however, it’s good. Here’s an example of how that
works:

$ ls -l /etc/shells
-rw-r--r-- 1 root wheel 179 Aug 22 15:35 /etc/shells
$ cp /etc/shells ~
$ ls -l ~/shells
-rw-r--r-- 1 taylor staff 179 Oct 3 07:59 /Users/taylor/shells

Notice that the ~ shortcut for the home directory can also be used as a target direc‐
tory with a cp command. Very helpful!

Problem checklist
The following tips should help you diagnose any error messages cp throws your way:

The system says something like “cp: cannot copy file to itself.”
If the copy is in the same directory as the original, the filenames must be differ‐
ent.

The system says something like “cp: filename: no such file or directory.”
The system can’t find the file you want to copy. Check for a typing mistake. If a
file isn’t in the working directory, be sure to use its pathname.

The system says something like “cp: permission denied.”
You may not have permission to copy a file created by someone else or to copy it
into a directory that does not belong to you. Use ls -l to find the owner and the
permissions for the file, or use ls -ld to check the destination directory. If you feel
that you should be able to copy a file, ask the file’s owner or use sudo (see “Super‐
user Privileges with sudo” on page 72 in Chapter 3) to change its access modes.

Renaming and Moving Files with mv
To rename a file, use mv (move). The mv program can also move a file from one
directory to another.

The mv command has the same syntax as the cp command:

mv old new

100 | Chapter 4: File Management

Here, old is the old name of the file and new is the new name. mv writes over existing
files, which is handy for updating old versions of a file.

If you don’t want to overwrite an old file, be sure that the new name is unique. Like
cp, mv also has an -i option for moving and renaming files interactively, which can
help you avoid accidentally overwriting files that you want to keep:

$ mv chap1.doc intro.doc
$ mv -i chap2.doc intro.doc
mv: overwrite `intro.doc'? n

The previous example changed the name of the file chap1.doc to intro.doc, and then
tried to do the same with chap2.doc (answering n canceled the last operation). If you
list your files with ls, you’ll see that the filename chap1.doc has disappeared, but
chap2.doc and intro.doc are intact.

The mv command can also move a file from one directory to another. As with the cp
command, if you want to keep the same filename, you need only give mv the name of
the destination directory. For example, to move the intro.doc file from its present
directory to your Desktop, use the following command:

$ mv intro.doc ~/Desktop

Or, to move the file to your Desktop and rename it at the same time, use a command
like this:

$ mv intro.doc ~/Desktop/preface.doc

Removing Files and Directories
You may finish work on a file or directory and see no need to keep it, or the contents
may become obsolete. Periodically removing unwanted files and directories frees
storage space and saves you from getting confused when there are too many versions
of files on your disk.

rm
The rm program removes files. One important thing to point out here, though, is that
rm permanently removes the file from the filesystem. It doesn’t move the file to the
Trash, from which it can be recovered (at least until you select “Empty Trash” from
the Finder menu). Once you hit Return, that file is gone, so make darn sure that the
file you’re deleting with rm is something you really want to get rid of. Let me say that
again: rm does not offer a way to recover deleted files.

The syntax is simple:

rm filename(s)

rm removes the named files, as the following example shows:

Managing Files | 101

$ ls
chap10 chap2 chap5 cold
chap1a.old chap3.old chap6 haha
chap1b chap4 chap7 oldjunk
$ rm *.old chap10
$ ls
chap1b chap4 chap6 cold oldjunk
chap2 chap5 chap7 haha
$ rm c*
$ ls
haha oldjunk

When you use wildcards with rm, be sure you’re deleting the right files! If you acci‐
dentally remove a file you need, you can’t recover it unless you have a copy in another
directory or in your backups.

Do not enter rm * carelessly. It deletes all the files in your working
directory.
Here’s another easy mistake to make: you want to enter a command
such as rm c* (remove all files with names starting with “c”), but
instead enter rm c * (remove the file named c and all the other files
in the current directory!).
It’s good practice to list the files with ls before you remove them.
Or, if you use rm’s -i (interactive) option, rm asks you whether you
want to remove each file.

If you’re security-conscious, rm’s -P option might appeal to you: it causes files to be
overwritten three times, with zeros, ones, and then zeros again, before they’re
removed. This makes it just about impossible for the data to be recovered, even by the
most earnest malicious user. The flag doesn’t produce any additional output or con‐
firm that it’s done a safe delete, however:

$ ls
haha oldjunk
$ rm -P haha

rmdir
Just as you can create new directories with mkdir, you can remove them with the
rmdir program. As a precaution, rmdir won’t let you delete directories that contain
any files or subdirectories; the directory must first be empty. (The rm -r command
removes a directory and everything in it, but use the -r flag with caution: it can be
dangerous.)

The syntax is:

rmdir dirname(s)

102 | Chapter 4: File Management

If you try to remove a directory that contains files, you’ll get the following message:

rmdir: dirname not empty

To delete a directory that contains files or subdirectories:

1. Enter cd dirname to get into the directory you want to delete.
2. Enter rm * to remove all files in that directory.
3. Enter cd .. to go to the parent directory.
4. Enter rmdir dirname to remove the unwanted directory.

One error you might encounter when using rmdir is that you still get the dirname not
empty message, even after you’ve deleted all the files inside. If this happens, use ls -a
to check that there are no hidden files (names that start with a period) other than .
and .. (the working directory and its parent). The following command is good for
cleaning up hidden files (which aren’t matched by a simple wildcard such as *). It
matches all hidden files except for . (the current directory) and .. (the parent direc‐
tory):

$ rm -i .[^.]*

Working with Links
If you’ve used the Mac for a while, you’ll be familiar with aliases, which are empty
files that point to other files on the system. A common use of aliases is to have a copy
of an application on the Desktop, or to have a shortcut in your home directory.
Within the graphical environment, you make aliases by Control-clicking on an item
(a file, folder, application, whatever), and then choosing Make Alias from the context
menu. This creates a file with a similar name in the same directory. The only differ‐
ence is that the alias has the word alias at the end of its filename. For example, in the
Terminal, you might see something like the following:

$ ls -l *3*
-rw-r--r-- 1 taylor taylor 1546099 Oct 3 20:58 fig0403.pdf
-rw-r--r-- 1 taylor taylor 0 Oct 3 08:34 fig0403.pdf alias

In this case, the file fig0403.pdf alias is an alias pointing to the actual file fig0403.pdf in
the same directory. Opening this file will display the same contents as the original file,
even though it appears to be an empty file: the size is shown as zero bytes.

If you have a tendency to delete the alias part of a filename, as I do,
one quick technique for identifying whether a file is an alias or not
is to check out its file size: if it’s size 0 but there’s actually content
when you look at it with less, it’s an alias. Failing that, check out its
directory in the Finder—use open . as a shortcut—and look for the
telltale arrow on the icon.

Managing Files | 103

Unix works with aliases differently; on the Unix side, we talk about links, not aliases.
There are two types of links possible in Unix, hard links and symbolic links, and both
are created with the ln command.

The syntax is:

ln [-s] source target

The -s option indicates that you’re creating a symbolic link, so to create a second file
that links to the file fig0403.pdf, the command would be:

$ ln -s fig0403.pdf neato-pic.pdf

and the result would be:

$ ls -l *pdf
-rw-r--r-- 1 taylor taylor 1532749 Oct 3 20:47 fig0401.pdf
-rw-r--r-- 1 taylor taylor 1539493 Oct 3 20:52 fig0402.pdf
-rw-r--r-- 1 taylor taylor 1546099 Oct 3 20:58 fig0403.pdf
lrwxr-xr-x 1 taylor taylor 18 Oct 4 08:40 neato-pic.pdf -> fig0403.pdf

One way to think about symbolic links is that they’re akin to notes saying “the info
you want isn’t here, it’s in file X.” This also implies a peculiar behavior of symbolic
links (and Aqua aliases): move, rename, or remove the item being pointed to, and you
have an orphan link. The system doesn’t automatically remove or update symbolic
links.

The other type of link is a hard link, which creates a second name for the exact same
contents. That is, if you create a hard link to fig0403.pdf, you can then delete the orig‐
inal file using rm, and its contents will remain accessible through the second file‐
name. Essentially, they’re different doors into the same room (as opposed to a note
taped on a door telling you to go to the second door, as would be the case with a sym‐
bolic link). Hard links are also created with the ln command, except you omit the -s
option:

$ ln mypic.pdf copy2.pdf
$ ls -l mypic.pdf copy2.pdf
-rw-r--r-- 2 taylor staff 1546099 Oct 3 08:45 copy2.pdf
-rw-r--r-- 2 taylor staff 1546099 Oct 3 08:45 mypic.pdf
$ rm mypic.pdf
$ ls -l copy2.pdf
-rw-r--r-- 1 taylor staff 1546099 Oct 3 08:45 copy2.pdf

Notice that both files are exactly the same size when the hard link is created. This
makes sense because they’re both names pointing to the same underlying set of data,
so they should be identical. Then, when the original is deleted, the data survives with
the second name now as its only name. The only difference is that the second field in
the preceding output, the link count, shows 2 when there are two filenames pointing
to the same data, but when the original is deleted, the link count of the second entry,
copy2.pdf, goes back to 1.

104 | Chapter 4: File Management

Compressing and Archiving Files
Aqua users commonly use the ZIP archive capability of OS X itself (Control-click and
choose “Compress filename" from the context menu, and your Mac promptly creates
a .zip archive), but Unix users have many other options worth exploring when it
comes to compressing and archiving files and directories.

Even though OS X is far superior to Windows 8, we unfortunately live in a Windows
world, which means you’re going to occasionally send email attachments to and
receive them from Windows users. It’s also not uncommon to download shareware
from a web or FTP site that’s been zipped (a file with a .zip extension). OS X gives you
many ways to create your own ZIP archives (and to unzip the ones you receive, too).
And if you’re interacting with other Unix users (such as Linux, FreeBSD, or even OS
X users), OS X offers a suite of command-line utilities for batching and unbatching
files.

There are three compression programs included with OS X, though the most popular
is gzip (the others are compress and bzip2; read their manpages to learn more about
how they differ). There’s also a very common Unix archive format called tar that I’ll
cover briefly.

gzip
Though it may initially confuse you into thinking that it’s part of the ZIP archive tool‐
set, gzip has nothing to do with the ZIP archive files created by OS X’s Make Archive
capability. Instead, gzip is actually a compression program that does a very good job
of shrinking down individual files for storage and transmission. If you’re sending a
file to someone with a slow Internet connection, for example, running the file
through gzip can significantly reduce its size and make it much more portable. Just as
importantly, it can help save space on your disk by letting you compress files you
want to keep but aren’t using currently. gzip works particularly well with tar, too, as
you’ll see.

The syntax is:

gzip [-v] file(s)

The -v flag offers verbose output, letting the program indicate how much space it
saved by compressing the file. Very useful information, as you may expect! Here’s an
example:

$ ls -l ch06.doc
-rwxr-xr-x 1 taylor staff 138240 Oct 4 08:52 ch06.doc
$ gzip -v ch06.doc
ch06.doc: 75.2% -- replaced with ch06.doc.gz
$ ls -l ch06.doc.gz
-rwxr-xr-x 1 taylor staff 34206 24 Oct 4 08:52 ch06.doc.gz

Managing Files | 105

You can see that gzip did a great job compressing the file, reducing its size by over 75
percent. Notice that it has automatically appended a .gz filename suffix to indicate
that the file is now compressed. To uncompress the file, just use gunzip:

$ gunzip ch06.doc.gz
$ ls -l ch06.doc
-rwxr-xr-x 1 taylor staff 138240 Oct 4 08:52 ch06.doc

The amount of space saved by compression varies significantly based on the format of
the original data in the file. Some file formats lend themselves to compression, but
with others, the compressed version ends up being just as big as the original file:

$ ls -l 10*.m4a
-rw-r--r-- 1 taylor staff 4645048 Oct 4 21:29 10 Serpentine Lane.m4a
$ gzip -v 10*.m4a
10 Serpentine Lane.m4a: 0.9% -- replaced with 10 Serpentine Lane.m4a.gz
$ ls -l 10*
-rw-r--r-- 1 taylor staff 4603044 Oct 4 21:29 10 Serpentine Lane.m4a.gz

This example resulted in a space savings of less than one percent of the file size.

tar
In the old days, Unix system backups were done to streaming tape devices (today you
can only see these units in cheesy 1960s sci-fi films, the huge round tape units that
randomly spin as data is accessed). The tool of choice for creating backups from Unix
systems onto these streaming tape devices was tar, the tape archiver. Fast-forward to
OS X, and tar continues its long tradition as a useful utility, but now it’s used to create
files that contain directories and other files within them, as an archive. It’s similar to
the ZIP format, but tar differs from gzip because its job is to create a file that contains
multiple files and directories. gzip, by contrast, makes an existing file shrink as much
as possible through compression.

The tar program is particularly helpful when combined with gzip, actually, because it
makes creating archive copies of directories simple and effective. Even better, if you
use the -z flag to tar, it automatically invokes gzip to compress its output without any
further work. Here’s a fun bit of jargon, too: compressed tar archives are known in the
Unix community as tarballs.

The syntax is:

tar [c|t|x] [flags] files_and_directories_to_archive

The tar program is too complex to fully explain here (as always, man tar produces
lots more information about tar’s options), but in a nutshell, tar -c creates archives,
tar -t shows what’s in an existing archive, and tar -x extracts files and directories from
an archive. The -f file flag is used to specify the archive name, and the -v flag offers
verbose output to let you see what’s going on:

106 | Chapter 4: File Management

$ du -s Masters\ Thesis
6704 Masters Thesis
$ tar -czvf masters.thesis.tgz "Masters Thesis"
Masters Thesis/
Masters Thesis/.DS_Store
Masters Thesis/analysis.doc
...
Masters Thesis/Web Survey Results.doc
Masters Thesis/web usage by section.doc
$ ls -l masters.thesis.tgz
-rw-r--r-- 1 taylor staff 853574 Oct 4 09:20 masters.thesis.tgz

Notice that we gave tar the directory name, rather than a list of
files. This ensures that when the directory is unpacked, the files are
placed in a new directory (Masters Thesis), rather than filling the
current directory. This is a good habit for people who make lots of
archives.

In this example, the directory Masters Thesis is 6.7 MB in size, and hasn’t been
accessed in quite a while. This makes it a perfect candidate for a compressed tar
archive. This is done by combining the following options: -c (create), -z (compress
with gzip), -v (verbose), and -f file (output filename; notice that we added the .tgz
suffix to avoid later confusion about the file type). In under 10 seconds, a new archive
file is created that is less than 1 MB in size, yet contains all the files and directories in
the original archive. To unpack the archive, use the following command:

$ tar -xvzf masters.thesis.tgz

Files on Other Operating Systems
Chapter 8 explains ways to transfer files across a network—possibly to non-Unix
operating systems. OS X has the capability of connecting to a variety of different file‐
systems remotely, including Microsoft Windows, other Unix systems, and even web-
based filesystems.

If the Windows-format filesystem is mounted with your other filesystems, you’ll be
able to use its files by typing a Unix-like pathname. For instance, if you’ve mounted a
remote Windows system’s C: drive over a share named winc, you can access the Win‐
dows file C:\WORD\REPORT.DOC through the pathname /Volumes/winc/word/
report.doc. Indeed, most external volumes are automatically mounted within the /
Volumes directory.

Managing Files | 107

CHAPTER 5

Finding Files and Information

One of the fundamental challenges of using modern computers is finding files and
information with ever-larger storage systems. Whether you’re highly organized and
use wonderfully mnemonic names for every file and directory you create or you have
lots of letter1, letter2, and work files and directories scattered around your filesystem,
there will undoubtedly come a time when you need to find something on your com‐
puter based on its contents, filename, or some other attribute.

It turns out that there are four different ways in Unix to search for—and hopefully
find—what you seek. To look inside files, you need to use the grep command, intro‐
duced briefly in the previous chapter. To find files by filename, the fastest solution is
the locate command. A more sophisticated filename and attribute search can be done
with the Unix power user’s find command. And finally, OS X includes a search system
called Spotlight that has a powerful command-line component that’s worth exploring.

Searching Inside Files with the grep Command
The grep program searches the contents of files for lines that match the specified pat‐
tern. The syntax is:

grep pattern [file(s)]

The simplest use of grep is to search for lines within files that contain a particular
word by feeding grep a pattern and a list of files in which to search. For example, let’s
search all the files in the working directory (using the wildcard *) for the word
“Unix”:

$ grep "Unix" *
ch01:Unix is a flexible and powerful operating system
ch01:When the Unix designers started work, little did
ch05:What can we do with Unix?

109

Note that grep understands plain text—and that’s all. Feeding it nontext files can pro‐
duce puzzling and peculiar results. For example, Word files (and those created by
other WYSIWYG editors) contain characters that, when sent to the Terminal, mess
up your display in strange and occasionally interesting ways.

One way to search such files from the command line is to extract
only the printable characters using the strings program (see man
strings for details).

grep can be used in a pipe, which enables grep to scan the output of a different com‐
mand. This makes it so only those lines of the input stream containing a given pattern
are sent to the output stream in the pipe. Pipes are denoted with the | symbol (which
can be found above the \ on a standard Apple keyboard layout) and are a method of
joining the output of one command to the input of another (in the following exam‐
ple, the output of the ls command to the input of the grep command), flowing data
between them just as a plastic pipe transports water from a water main to a sprinkler
head in your garden.

When grep searches multiple files, it shows the name of the file where it finds each
matching line of text. Alternatively, if you don’t give grep a filename to read, it reads
its standard input; that’s the way all filter programs work (standard input and output
are discussed in Chapter 6):

$ ls -l | grep "Aug"
drwxr-xr-x+ 5 taylor staff 170 Aug 11 2015 Public/
drwxr-xr-x+ 5 taylor staff 170 Aug 11 2015 Sites/

First, this example runs ls -l to list your working directory. The standard output of
ls -l is piped to grep, which outputs only lines that contain the string "Aug" (that is,
files or directories that were last modified in August and any other lines that contain
the pattern “Aug”).

Useful grep Options
Table 5-1 lists some of grep’s options, which you can use to modify your searches.

Table 5-1. Some grep options

Option Description

-A n Show n lines after the matching line.

-B n Show n lines before the matching line.

-C n Show n lines before and after the matching line.

110 | Chapter 5: Finding Files and Information

Option Description

-v Print only lines that do not match the pattern.

-n Print the matched line and its line number.

-l Print only the names of files with matching lines (this is the lowercase letter “L”).

-c Print only the count of matching lines.

-i Match either upper- or lowercase.

In the previous search, a file named aug-finances.xls wouldn’t have matched, because
by default, grep is case-sensitive. That means a search for “aug” wouldn’t match “Aug”,
either. To make the search case-insensitive, add grep’s -i option.

Though it may seem odd, being able to invert the search logic with the -v flag and
show lines that don’t match the given pattern can be quite useful. You can also make it
so the grep command outputs only matching filenames (rather than the lines in those
files that contain the search pattern) by adding the -l option. To find all the files in the
current directory that don’t mention Jane, for example, the command would be:

 $ grep -lv Jane *
 sample
 diary.txt
 myprogram.c

This has the same potential case-sensitivity issues, though, so an even better set of
command flags would be -lvi, which would also match “jane” and possibly filter out
even more files.

Matching context
When searching for specific lines in a file, you may actually want to also see a line or
two above or below the matching line, rather than just the matching line itself. This
can be accomplished in three ways, depending on whether you want lines above, lines
below, or both, by using -A, -B, and -C, respectively.

For example, to show one additional line above and below the matching line (and add
line numbers too, by using the -n option), you could use a command like this:

$ grep -n -C1 Aqua sample
3-watch how vi wraps long lines. If you have another Terminal window
4:open with some text in it, or if you have an Aqua application open,
5-you can also use your mouse to copy text from another window and

Searching Inside Files with the grep Command | 111

Notice that the line that has a match has a colon after the line number, while the other
context lines are preceded with a dash. Very subtle, but knowing what to look for
helps you find your match instantly!

Matches in color
One great feature of OS X’s grep command is that it automatically highlights the
matching passage in each line if you use the verbose --color=always option. Here’s
how it looks (well, it’s not in color here because we’re in a book, but try this example
yourself to see how it shows the results in an interesting manner!):

$ grep --color=always text sample
Enter some lines of text. Make some lines too short (press Return
open with some text in it, or if you have an Aqua application open,
you can also use your mouse to copy text from another window and
your file.) To get a lot of text quickly, paste the same text more

In this command, you’re searching for the word “text” within the sample file. Because
you’ve added the --color=always option, any instances of the word “text” are highligh‐
ted in bold red text in the output. To take permanent advantage of this feature, you
can create a new grep alias that includes the --color=always option, or set an environ‐
ment variable in your .profile or .login file, depending on your shell. For example, if
you use bash, you could add the following to your .profile file:

GREP_OPTIONS="--color=always";export GREP_OPTIONS

Now whenever you use grep, your results will come back in cheery color.

Counting matches rather than showing matching lines
When you’re going through a large file and have a lot of matches, it’s often quite use‐
ful to just get a report of how many lines matched rather than having all the output
stream past on your screen. This is accomplished with the -c option:

$ grep -c "kernel" /var/log/system.log
160

You can also accomplish this result by piping the output to the wc command, as
shown in “wc” on page 142, but this is considerably faster!

Working with Regular Expressions
You can use simple patterns with the grep program—patterns like “Jane” or “hot
key”—but grep actually has the ability to match incredibly complex and sophisticated
patterns because it uses regular expressions, an entire language for specifying pat‐
terns. Let’s spend some time talking about regular expressions so you can see how
powerful they are.

112 | Chapter 5: Finding Files and Information

A word of warning, though: regular expressions are not the same as
file-matching patterns in the shell, and some patterns are inter‐
preted quite differently in regular expressions than they are at the
command line. This can be confusing when you have a command
like grep regexp filematchpattern, with two different styles of pat‐
terns on the same line.

The fundamental building blocks of regular expressions are symbols and sequences
that are intended to match a specific character. Almost all characters automatically
match themselves, so the pattern Jane is a regular expression that matches J, a, n, and
e. Some characters are more powerful, however. For example, a . (a period) matches
any single character.

To specify any one of a range of characters, use the set operator (brackets) to group
them: [Jj]ane matches both Jane and jane, for example. You can also do ranges
within brackets, so J[aeiou]ne and j[a-z]ne are both valid expressions; the first
matches Jane, Jene, Jine, Jone, and June, and the second matches any occurrence of
j followed by a lowercase letter, followed by ne.

Many classes of characters are already predefined for your currently set language
(remember, your Mac and the underlying Unix system work with dozens of lan‐
guages), so [:alnum:], which is Unix shorthand for “alphanumeric,” is equivalent to
[a-zA-Z0-9] in English, [:digit:] is the same as [0-9], [:upper:] is the same as
[A-Z], and so on.

The big reason for using named character ranges is that by using them you ensure
that your regular expression will work in other languages in addition to English.
Specifically, [a-z] won’t include the Spanish ñ, for example, but [:lower:] will, if the
locale is set to Spanish. Table 5-2 lists the most important named character ranges.

Table 5-2. Named character ranges in regular expressions

Option Matches

[:alnum:] Upper- and lowercase letters and numeric digit values (0–9)

[:alpha:] Upper- and lowercase letters

[:digit:] Numeric digit values (0–9)

[:lower:] Lowercase letters

[:print:] Printable (visible) characters

[:punct:] Punctuation characters

Searching Inside Files with the grep Command | 113

Option Matches

[:space:] The set of characters that can serve as a space, including the space, tab, and carriage return

[:upper:] Uppercase letters

[:xdigit:] Hexadecimal digit values (0–9, plus a–f and A–F)

Named character ranges are considered an element in a range expression, so the ear‐
lier pattern j[a-z]ne is correctly written as j[[:lower:]]ne. You can also negate the
value of a range by prefacing it with the caret symbol (^), which you get with Shift-6.
So, j[^aeiou]ne matches everything that has a j, followed by any letter that isn’t a
vowel, followed by ne.

The period matches any single character, and the \w expression denotes a word that’s
a sequence of letters—almost synonymous with :alnum:, but it also matches under‐
scores. When not used in a character range, the ^ matches the beginning of the line,
and the $ matches the end of the line.

If you want to find blank lines that have no content, the pattern ^$ does the trick.
Lines that begin with a digit? Start the pattern with ^ followed by a set operator, fol‐
lowed by a named character range, like this: ^[[:digit:]].

Each expression can be followed by what’s called a repetition operator, which indicates
how often the pattern can or should occur for a match to be found. For example:

• ? means that the preceding is optional and may be matched at most one time.
• * matches zero or more times.
• + matches one or more times.
• {n} matches exactly n times.
• {n,m} matches between n and m times.

To put these to the test, here’s a pattern that matches exactly five digits followed by
the letter M:

[[:digit:]]{5}M

And here’s a pattern that matches J, followed by any number of lowercase letters
(including none at all), followed by a period:

J[[:lower:]]*\.

Notice you need to escape the period (.) with the backslash so it’s not seen as a
request to match any single character.

114 | Chapter 5: Finding Files and Information

The pattern jpe?g matches both jpeg and jpg, while jpe*g matches both of those
words, also matching sequences like jpeeeg and jpeeeeeeeeeg.

You can list multiple patterns in an OR configuration by separating them with a pipe
(|). This is almost always done by grouping the expression in parentheses. For exam‐
ple, (cat|dog)house matches both cathouse and doghouse, and [[:digit:]]+(am|
pm) matches any one-or-more-digit value followed by am or pm.

Quite a complex language, isn’t it?

Let’s use a few regular expressions to see how they work in practice. This one tells
grep to find lines containing root, followed by zero or more other characters (abbre‐
viated in a regular expression as .*), followed by Aug:

$ ls -l | grep "root.*Aug"
drwxr-xr-x@ 3 root admin 102 Aug 1 2015 opt/

Next, let’s look at the logfile for my Q&A website, http://www.AskDaveTaylor.com.
Visitors who enter data and submit questions on the site invoke what’s called an
HTTP POST action when they use the contact form, which is differentiated from the
GET of most page retrieval transactions in the Hypertext Transport Protocol (HTTP).
Finding all the POST transactions in the logfile is therefore simple:

$ grep POST access_log
178.73.212.114 - - [06/May/2015...] "POST /how_do_i_get..." "...Firefox/3.0.14"
78.47.115.26 - - [06/May/2015...] "POST /tag/latino.tra..." "...Firefox/3.0.1"
78.47.115.26 - - [06/May/2015...] "POST /tag/latino.zim..." "...Firefox/3.0.1"
62.212.85.36 - - [06/May/2015...] "POST /RPC2 HTTP/1.1"..." "...Safari/535.11"

If you look closely at that output, you’ll see that an identification string from the
actual browser that the visitor is using is included near the end of each line. The first
match is Firefox running on Windows, the second and third are Firefox running on a
Linux system, and the last is Safari.

By using grep with a regular expression, we can identify those queries originating
from Firefox or Apple’s Safari (use the -E flag, as shown, to force proper regular
expressions):

$ grep -E "POST.*(Safari|Firefox)" access_log
178.73.212.114 - - [06/May/2015...] "POST /how_do_i_get..." "...Firefox/3.0.14"
178.73.212.114 - - [06/May/2015...] "POST /whats_a_goog..." "...Firefox/3.0.14"
178.73.212.114 - - [06/May/2015:...] "POST /how_can_i_a..." "...Firefox/3.0.14"
78.47.115.26 - - [06/May/2015...] "POST /tag/latino.tra..." "...Firefox/3.0.1"

What’s more, it’s possible to figure out how many forms were submitted and then
break them down into MSIE (Internet Explorer) and non-MSIE submissions with
just a few grep queries, coupled with a simple pipe and the wc word count program
(both of which are discussed in more detail in Chapter 6):

Searching Inside Files with the grep Command | 115

http://www.AskDaveTaylor.com

$ grep -E POST access_log | wc -l
 272
$ grep -E "POST.*MSIE" access_log | wc -l
 3
$ grep -E "POST.*(Firefox)" access_log | wc -l
 9
$ grep -E "POST.*(Safari)" access_log | wc -l
 258

This shows that of the 272 submissions, 3 were done with MSIE, 9 were done with
Firefox, and 258 were done with Safari.

Of course, while having to enter all of those commands separately is fine if you’re
only doing this occasionally, if you’re going to need this sort of information more
often, you should consider pulling the commands together in a shell script. That way,
all you’ll need to do is execute the shell script, and it will run the commands sepa‐
rately and provide you with output that shows the results.

There’s a lot more to regular expressions than I can fit into a few
pages in this book. If you really want to become a regular expres‐
sion maven, I suggest that you read the book Mastering Regular
Expressions, by Jeffrey E. F. Friedl (O’Reilly).
If you’d like to learn more about shell scripts, I invite you to start
with my own book Wicked Cool Shell Scripts (No Starch).

Finding Files with locate
Sometimes, you’ll create a file, save it someplace, and forget about it. Then, when you
need that file six months later, you can’t remember where you saved it. For situations
like this, OS X includes the locate program to help you find files quickly. You can use
locate to search part or all of a filesystem for a file with a certain name. locate doesn’t
actually search the filesystem, though; rather, it searches through a prebuilt index of
every single file and directory on the system. This is a good thing, because the com‐
mand doesn’t have to traverse each and every directory in your filesystem. This
makes locate very fast. However, it’s also a potential problem because the locate data‐
base can get old and out of sync with the actual files on your system.

The first step, therefore, is to build the locate database. To learn how to do that on
your OS X system, check the manpage: man 8 locate.updatedb.

Fast Filename Search with locate
Once you have updated the database, you can search it with the locate command. For
instance, if you’re looking for a file named alpha-test, alphatest, or something like
that, try this:

116 | Chapter 5: Finding Files and Information

http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/9780596528126.do
http://shop.oreilly.com/product/9781593276027.do

$ locate alpha
/Users/alan/Desktop/alpha3
/usr/local/projects/mega/alphatest
/usr/share/man/man3/alphasort.3
/usr/share/man/man3/isalpha.3
/usr/share/man/man3/iswalpha.3
/Volumes/Hello/Applications/Cool Stuff/Mail.app/Contents/Resources/
alphaPixel.tiff
/Volumes/Hello/sw/fink/10.1/unstable/main/finkinfo/editors/
emacs-alpha-21.1-3.info
/Volumes/Hello/sw/share/doc/tar/README-alpha
/Volumes/Hello/usr/share/man/man3/alphasort.3
/Volumes/Hello/usr/share/man/man3/isalpha.3
/Volumes/Hello/usr/share/man/man3/iswalpha.3

You’ll get the absolute pathnames of any files and directories with alpha in their
names. (If you get a lot of output, add a pipe to less. See “Pipes and Filters” on page
141 in Chapter 6.) locate may or may not list protected, private files.

Unfortunately, you can’t specify regular expressions with locate. For example, the fol‐
lowing command doesn’t return any results:

$ locate "/man/.*alpha"

You instead need to use a series of grep commands in a pipeline to pick through the
locate output.

Note that a pipeline is where the output of one command is used as the input to the
next, as denoted by the “|” symbol and shown in the following example.

To accomplish the task of identifying which matches to the pattern alpha are from
the /man/ directory, do this:

$ locate alpha | grep "/man/"
/usr/share/file/magic/alpha
/usr/share/man/man3/alphasort.3
/usr/share/man/man3/isalpha.3
/usr/share/man/man3/isalpha_l.3
/usr/share/man/man3/iswalpha.3
/usr/share/man/man3/iswalpha_l.3

This ability to combine commands is at the heart of Unix’s great power. You aren’t
constrained to just the specific commands that others have written; you can combine
them with pipes to create exactly the function or capability you seek. We’ll spend a lot
more time on this powerful concept later in the book, so stay tuned!

Using find to Explore Your Filesystem
Reading about the limitations of the locate command undoubtedly caused you to
wonder if there was a more powerful option: a command that could let you search
through the actual, live filesystem to find what you seek. The find command lets you

Using find to Explore Your Filesystem | 117

search for files not only by filename patterns, but by a remarkable number of addi‐
tional criteria, too—though since it’s not using a previously saved filename database,
as locate does, it is definitely going to be slower.

find has a completely different syntax than any of the Unix commands we’ve exam‐
ined to this point in the book, so the best place to start is with the find command syn‐
tax itself:

find flags pathname expression

Expressions are where the complexity shows up, because a typical expression is a
“primary” followed by a relevant value, and there are dozens of different primaries
that can be combined in thousands of different ways. For example, to match files that
end with .html, you would use something like:

find -name "*.html"

To search for all HTML files starting at the current directory on an OS X system,
here’s how the command would look:

$ find . -name "*.html" -print
./Documents/Books/Learning OSX Unix/lumch04A.html
./Library/Mail Downloads/Aéropostale - Checkout.html
./Library/Mail Downloads/Mail Attachment.html
./Library/PreferencePanes/MusicManager.prefPane/Contents/Resources/
thirdparty.html
./Library/Widgets/Local Weather.wdgt/index.html
./Sites/index.html

Notice that the pathname specified is the current working directory (.), so find only
searches that directory and anything within it, not the entire filesystem. Change this
to your home directory ($HOME), and the find command traverses everything within
that directory looking for matches. Rather than listing all the matches, however, I’m
going to feed the output of the command to the ever-helpful wc (word count) pro‐
gram to just get a count of matching entries:

$ find $HOME -name "*.html" -print | wc -l
 1291

As you can see, I have a lot of web content in my home directory—there are over a
thousand files that match the filename pattern *.html. That’s a lot of web pages!

Matching by File Size
Another primary that can be tested is the file size, using -size. This is a typically com‐
plex find primary in that the default unit for specifying size is 512-byte blocks, so -size
10 matches files that are 10*512 bytes, or 5,120 bytes, in size. To match a specific
number of bytes, append a c; for example, -size 10c matches files that are exactly 10
bytes in size. That’s not particularly useful, but it turns out you can specify “more

118 | Chapter 5: Finding Files and Information

than” or “less than” by prefacing the number with a + or -, respectively. Now that is
useful!

For example, to match only files that are greater than 5 KB in size, you can use either
-size +10 or -size +5120c, and to find files that are less than 100 bytes, you can use
-size -100c.

Let’s look at the executable commands in /bin to see which are greater than 30 KB in
size:

$ find /bin -size +30k -print
/bin/bash
/bin/chmod
/bin/csh
/bin/dd
/bin/ed
/bin/ksh
/bin/launchctl
/bin/ls
/bin/pax
/bin/ps
/bin/sh
/bin/stty
/bin/sync
/bin/tcsh
/bin/zsh

This is just the tip of the iceberg with find primaries, however, so let’s have a closer
look. The most useful primaries are listed in Table 5-3. This isn’t an exhaustive list; if
you want to know about every single possible primary, check the manpage for find.

Table 5-3. The most useful find primaries

Option Description

-cmin time True if the file has been modified within the last time minutes.

-ctime time Same as -cmin, but for units of hours, not minutes.

-delete Delete matching files. Use with caution!

-exec Invoke the specified command for matching filenames.

-group name True if the file is owned by group name (which can be specified as a group name or group ID).

-iname pattern Identical to -name except tests are case-insensitive.

-iregex regex Identical to -regex, but the regular expression is evaluated as case-insensitive.

-ls Produces ls -l output for matching files.

Using find to Explore Your Filesystem | 119

Option Description

-name pattern True if the filename matches the specified pattern.

-newer file True if the file is newer than the specified reference file.

-nouser True if the file belongs to an unknown user (that is, a user ID that doesn’t appear in either /etc/passwd or
NetInfo).

-perm mode True if the file matches the specified permission. This complex primary is explained later in this chapter.

-print Prints the full pathname of the current file.

-print0 Special version of -print that compensates for spaces and other nonstandard characters in filenames. An
important addition for OS X find usage.

-regex regex Same as -name, but allows full regular expressions rather than just simple filename pattern matches.

-size n True if the file’s size matches the specified size. Default unit is 512-byte blocks; append c for bytes, and
prepend + for “more than” or - for “less than” tests.

-type t True if the file is of the specified type. Common types are d for directories, and f for regular files.

-user name True if the file is owned by the specified user. name can be a username or user ID number.

One of the more useful options listed in Table 5-3 that most Unix users ignore is -ls.
Here’s a more complex find command that uses this very primary, along with a test to
ensure that the matching files are regular files, not symbolic links and so on:

$ find /bin -size +60 -type f -ls
21849474 688 -r-xr-xr-x 1 root wheel 628496 Sep 17 01:07 /bin/bash
21849476 24 -rwxr-xr-x 1 root wheel 33904 Sep 17 01:07 /bin
/chmod
21849478 408 -rwxr-xr-x 1 root wheel 378624 Sep 17 01:07 /bin/csh
21849480 24 -rwxr-xr-x 1 root wheel 31856 Sep 17 01:07 /bin/dd
21849484 56 -rwxr-xr-x 1 root wheel 53872 Sep 17 01:07 /bin/ed
21849488 1496 -r-xr-xr-x 1 root wheel 1394432 Sep 17 01:07 /bin/ksh
21849489 88 -rwxr-xr-x 1 root wheel 119936 Sep 17 01:07 /bin
/launchctl
21849492 32 -rwxr-xr-x 1 root wheel 38512 Sep 17 01:07 /bin/ls
21849495 112 -rwxr-xr-x 1 root wheel 110800 Sep 17 01:07 /bin/pax
21849496 40 -rwsr-xr-x 1 root wheel 51008 Sep 17 01:07 /bin/ps
21849501 688 -r-xr-xr-x 1 root wheel 632672 Sep 17 01:07 /bin/sh
21849503 24 -rwxr-xr-x 1 root wheel 32048 Sep 17 01:07 /bin
/stty
21849504 16 -rwxr-xr-x 1 root wheel 42320 Sep 17 01:07 /bin
/sync
21849505 408 -rwxr-xr-x 1 root wheel 378624 Sep 17 01:07 /bin

120 | Chapter 5: Finding Files and Information

/tcsh
21849509 680 -rwxr-xr-x 1 root wheel 573600 Sep 17 01:07 /bin/zsh

This output is slightly different from a regular ls -l listing, but it does show the file
permissions, owner and group information, file size, and last modification date.

Exploring find Permission Strings
find lets you search for files that match specific permission settings, but this is one of
the most confusing primaries for Unix neophytes. To try to keep you from sinking
into the mire, let’s just consider the symbolic permission notation that’s shared with
the chmod command (as discussed in “Setting Permissions with chmod” on page 67).

In this model, permissions are specified as a sequence of:

who op perm

where who can be any of a (all), u (user), g (group), or o (other, that is, everyone who
isn’t the user or in the user’s group). The op value for find permission strings can only
be =, but in the chmod command itself there are other op possibilities. The possible
values for perm are shown in Table 5-4.

Table 5-4. Symbolic permission values for perm

Option Description

r Read permission

w Write permission

x Execute permission

s Special set-user-ID-on-execution or set-group-ID-on-execution permission

Let’s experiment with the -perm primary to get a better sense of how these different
permission strings can be specified. To find all files in the /usr/bin directory whose
names start with the letter z and that you have write permission for, use the following:

$ find /usr/bin -name "z*" -type f -perm +u=w -print
/usr/bin/zcat
/usr/bin/zcmp
/usr/bin/zdiff
/usr/bin/zegrep
/usr/bin/zfgrep
/usr/bin/zforce
/usr/bin/zgrep
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipdetails

Using find to Explore Your Filesystem | 121

/usr/bin/zipdetails5.16
/usr/bin/zipdetails5.18
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit
/usr/bin/zless
/usr/bin/zmore
/usr/bin/znew
/usr/bin/zprint

What’s going on here? We don’t have write permission on any of these files:

$ ls -l /usr/bin/zcat
-rwxr-xr-x 1 root wheel 52736 Sep 17 01:07 /usr/bin/zcat

The problem is that find takes the test literally: it looks for files that have write per‐
mission for their owner. When I said “that you have write permission for,” I was mis‐
stating the test, in a way that’s quite common for Unix folk. To tighten this find search
to files for which you actually have write permission, you need to add a -user predi‐
cate. To make this as general as possible, you can use the $USER variable:

$ find /usr -type f -user $USER -perm +u=w

Try this on your system. If you see any results, you have a problem with the permis‐
sions on the files and directories in the /usr tree and you need to fix it. Since OS X
fixes disk permissions automatically in El Capitan, try just restarting your system—
that should fix any issues. Making sure your disk permissions are correct keeps appli‐
cations from telling you that you don’t have permission to save a file when you know
darn well you do, and keeps security problems and obscure application behavior from
cropping up, too.

Using find to Identify Recently Changed Files
One of the most common uses of find is to identify files that have been changed
within a certain amount of time. This is obviously quite useful for doing system back‐
ups, but it can also help ensure that files shared across multiple machines stay in sync,
and it’s just generally helpful to be able to list which of your files have been updated
recently.

Just like the permissions test, the time tests in find behave quite differently depending
on whether you specify an exact value, a value prefaced with a -, or a value prefaced
with a +. Let’s have a look:

$ find . -cmin 60 -print
$ find . -cmin -60 -print -type f
./Desktop/LearnUnixOSX
./Desktop/LearnUnixOSX/.ch05.asc.swp
./Desktop/LearnUnixOSX/ch05.asc

122 | Chapter 5: Finding Files and Information

./Library/Application Support/AddressBook

./Library/Application Support/AddressBook/.database.lockN

These first two tests are for files that were changed exactly 60 minutes ago (no sur‐
prise, there aren’t any) and files that have changed within the last 60 minutes (speci‐
fied by adding the - to the time), of which there are five. (Depending on how many
files you’ve worked on in the last hour and your current directory, your output from
this command will differ.) One of the matches is the directory ./Library/Application
Support/AddressBook. You can easily remove that from the list by using -type f as
another primary if all you seek in your results is actual files (perhaps for backing up
to a DVD).

What do you think will happen if you specify -cmin +60? If you’re thinking that this
command will give your Mac some level of clairvoyance and tell you which files
you’re going to work on in the next hour, think again. It’ll list out all the files that
have been changed more than 60 minutes ago, which for me is, well, quite a few files:

$ find . -cmin +60 | wc -l
 442435

To narrow that down to just plain files that haven’t been changed, again I’ll just add
the -type f primary:

$ find . -cmin +60 -type f | wc -l
 369990

The difference in these two values indicates that there are over 72,000 directories and
other nonstandard files on my system that are being matched in the first test. That’s
quite a few!

This sort of time test can also be cast across the entire filesystem to see what’s been
changing. The following command identifies all the files owned by root that have
been changed in the last 10 minutes:

$ sudo find / -cmin -10 -type f -user root -print
.fseventsd/00000000005169e5
/.MobileBackups/Computer/2013-05-06-075950/Volume/Users/taylor/Library/
 Containers/com.fiplab.facetabpro/Data/Library/Preferences/
 com.fiplab.facetabpro.plist
/.MobileBackups/Computer/2013-05-06-075950/Volume/Users/taylor/Library/
 Mail/V2/Mailboxes/Deleted Messages (Intuitive.com (IMAP))
 .mbox/965F1F99-FAB0-4EFE-9635-E04F1D6A4D84/Data/3/9/2/Messages/293416.emlx
/.MobileBackups/Computer/2013-05-06-075950/Volume/Users/taylor/Library/
 Preferences/com.zeobit.MacKeeper.Helper.plist
/.MobileBackups/Computer/2013-05-06-085722/Volume/private/
 var/db/.TimeMachine.Results.plist
...
/private/var/log/asl/StoreData
/private/var/log/DiagnosticMessages/2013.05.06.asl
/private/var/log/DiagnosticMessages/StoreData
/private/var/log/system.log

Using find to Explore Your Filesystem | 123

/private/var/run/.autoBackup
/private/var/run/utmpx

If you’d rather work with time units of hours rather than minutes, just use -ctime
instead of -cmin.

find’s Faithful Sidekick: xargs
One primary that you might have immediately noticed is missing is a -grep or other
primary that lets you look inside the files to find which contain specific text. It’s miss‐
ing because find doesn’t know how to actually open any files; it can only test
attributes.

If grep were smart enough to accept a list of filenames from standard input, the solu‐
tion to searching the contents of a set of files matched by find would be ridiculously
easy: find | grep. Unfortunately, though, that’s not one of grep’s many skills. So, you’re
presented with a dilemma: you can generate a list of files to search, but there’s no easy
way to actually give that list to grep in a way that the program can understand.

The solution is to use xargs, a partner program to find. The xargs program turns a
stream of filenames into iterative calls to whatever program is specified, with a subset
of the filenames listed on the command line itself. This is confusing, so let me step
you through a very simple example.

Let’s say that the output of find is a list of four files: one, two, three, and four. Using
xargs, these files could be given to grep two at a time by using:

find | xargs grep pattern

grep sees this as the following two invocations:

grep pattern one two
grep pattern three four

Make sense? Let’s try it out so you can see how this tremendously powerful find part‐
ner program helps you become a real power command-line user!

$ find /var/log -not -name "*.gz" -type f -size +0 -print
/var/log/asl/2015.05.05.G80.asl
/var/log/asl/2015.05.05.U0.asl
/var/log/asl/2015.05.05.U0.G80.asl
/var/log/asl/2015.05.05.U501.asl
/var/log/asl/2015.05.05.U502.asl
/var/log/asl/2015.05.05.U503.asl
...
/var/log/opendirectoryd.log
/var/log/opendirectoryd.log.0
/var/log/performance/StoreData
/var/log/system.log
/var/log/system.log.0.bz2
/var/log/weekly.out

124 | Chapter 5: Finding Files and Information

/var/log/wifi.log
/var/log/wifi.log.0.bz2
/var/log/zzz.log

This is a delightfully complex find command, but we can step through it together, so
I’m sure it’ll make sense to you. First off, a sneak preview: you can reverse the logic of
any find test by prefacing it with the -not primary, so the first test is to find all files
whose names do not match the pattern *.gz. That ensures we don’t search in com‐
pressed (gzip’d) files.

Next, -type f matches just plain files, and -size +0 matches files that aren’t zero bytes in
size. The end result can be summed up as “show me a list of all plain files in this
directory that don’t have a .gz file extension and are greater than zero bytes in size.”

If you wanted to scan through all these files for any possible security warnings, your
first attempt might be:

$ find /var/log -not -name "*gz" -type f -size +0 -print | ↩
 grep -i warning

But that won’t work, of course, because it’s scanning the filename list itself for the pat‐
tern, and none of the filenames themselves contain the word “warning.” To look
inside the files, use xargs to pass these filenames to grep instead, and since you’re
going to be looking inside these files, add a sudo invocation, too:

$ find /var/log -not -name "*gz" -type f -size +0 -print | ↩
 sudo xargs grep -i warning
/var/log/com.apple.launchd/launchd-shutdown.system.log:19014 com.apple.launchd
 1 com.apple.AppleGraphicsWarning 0 Removed
/var/log/install.log:May 5 21:35:24 Macintosh installd[515]:
 kextcache: Warning: Error 12 rebuilding /System/Library/Caches/
 com.apple.corestorage/EFILoginLocalizations
/var/log/install.log:May 5 21:36:31 Macintosh installd[515]:
 PackageKit: Touched bundle System/Library/CoreServices/
 AppleGraphicsWarning.app
/var/log/system.log:May 6 09:10:41 Daves-MBP sudo[1581]:
 taylor : TTY=ttys001 ; PWD=/Users/taylor ; USER=root ;
 COMMAND=/usr/bin/xargs grep -i warning

That’s the general pattern that you’ll use for searching inside lots of files matched by
the find command, which might include shell scripts, plain-text files, email message
archives, and more.

Using find to Explore Your Filesystem | 125

Because Mac OS users often add spaces to filenames, there are
times when the find | xargs grep command will fail with all sorts of
scary “file not found” error messages. Not to worry, just switch
from -print to -print0 and then add a -0 (zero) flag to xargs:

$ find $HOME -name "html" -print0 | xargs -0 grep -i ↩
 intuitive.com

This finds all HTML files in my home directory, and searches
through them all for references to the intuitive.com domain. Better
yet, it’s smart enough to handle spaces in the filenames, too.

Further Refinements to find
You’ve already seen the -not primary that lets you switch the logic of a find primary,
but there are a few more refinements that can help you create highly sophisticated
filtering patterns. If you don’t mind escaping the character, you can use ! as a substi‐
tute for -not, but if you don’t use it as \! the shell inevitably interprets it and generates
some screwy error messages.

You can also group one or more tests with parentheses, which is useful given that you
can also specify an -or to allow logical OR tests, rather than the default AND test
between each primary. This is particularly useful with filename matches. For example,
you can find all files that end with either .txt or .htm with this find test:

$ find . -type f \(-name "*.txt" -or -name ".htm" \) -print

Notice that you must escape the elements of the expression so the shell doesn’t try to
interpret them and end up messing up your command completely. The easy way?
Always quote expressions that include the asterisk, and backslash-escape the parens.

Shining a Light on Spotlight
A key feature included in OS X since the release of Mac OS X Tiger is Spotlight,
which indexes and stores metadata for all of the files on your system. This means that
if you’re looking for a file by name, you can use locate or find, but if you’re looking for
all images taken with a Nikon camera, or all PDF files that are more than 10 pages
long, then Spotlight and its command-line tools are for you.

Spotlight builds what Apple calls a metadata database that has a lot of information
about the files on the system, in addition to their filenames. Whenever you conduct a
Spotlight search—either through the graphical interface or on the command line—
this metadata is searched to reveal information about the files on your system and
offer up results. The two Spotlight commands that are analogous to the regular Unix
commands ls and find are logically called mdls and mdfind.

126 | Chapter 5: Finding Files and Information

Let’s start with the mdls command—you’re going to be quite impressed!

What’s Metadata?
If you’ve been using computers for even a short time, you’re used to certain data being
associated with each file you create. The filename, file size, date of creation—that’s all
file-related data that’s familiar to you. But many files have additional, supplemental
information.

For example, Microsoft Word records the name and address of the file creator; Adobe
Photoshop remembers what version of Photoshop you last used to edit an image file;
and even digital cameras write out additional information for each image saved,
including the camera name, the date and time the shot was taken, and often the film
speed and lens focal length, all in EXIF format. This supplemental information is
known as metadata, and it’s at the heart of Spotlight.

Listing Spotlight Metadata with mdls
Some of the most interesting types of files to explore with mdls are the pictures you
take with a digital camera. Here’s what the ls command has to say about the JPEG file
IMG_1912.jpg: on my system.

$ ls -l IMG_1912.JPG
-rwxrwxrwx 1 taylor staff 2030063 Oct 2 16:33 IMG_1783.JPG

Not particularly useful in terms of what’s actually inside the file. By comparison, here’s
what the mdls command reports:

$ mdls IMG_1912.JPG
_kMDItemOwnerUserID = 501
kMDItemAcquisitionMake = "Canon"
kMDItemAcquisitionModel = "Canon PowerShot S95"
kMDItemAperture = 2
kMDItemBitsPerSample = 32
kMDItemColorSpace = "RGB"
kMDItemContentCreationDate = 2015-10-02 22:33:56 +0000
kMDItemContentModificationDate = 2015-10-02 22:33:56 +0000
kMDItemContentType = "public.jpeg"
kMDItemContentTypeTree = (
 "public.jpeg",
 "public.image",
 "public.data",
 "public.item",
 "public.content"
)
kMDItemDateAdded = 2015-10-04 16:02:28 +0000
kMDItemDescription = " "
kMDItemDisplayName = "IMG_1783.JPG"
kMDItemEXIFVersion = "2.3"

Shining a Light on Spotlight | 127

kMDItemExposureMode = 0
kMDItemExposureTimeSeconds = 0.07692307692307693
kMDItemFlashOnOff = 0
kMDItemFNumber = 2
kMDItemFocalLength = 6
kMDItemFSContentChangeDate = 2015-10-02 22:33:56 +0000
kMDItemFSCreationDate = 2015-10-02 22:33:56 +0000
kMDItemFSCreatorCode = ""
kMDItemFSFinderFlags = 0
kMDItemFSHasCustomIcon = (null)
kMDItemFSInvisible = 0
kMDItemFSIsExtensionHidden = 0
kMDItemFSIsStationery = (null)
kMDItemFSLabel = 0
kMDItemFSName = "IMG_1783.JPG"
kMDItemFSNodeCount = (null)
kMDItemFSOwnerGroupID = 20
kMDItemFSOwnerUserID = 501
kMDItemFSSize = 2030063
kMDItemFSTypeCode = ""
kMDItemHasAlphaChannel = 0
kMDItemISOSpeed = 1600
kMDItemKind = "JPEG image"
kMDItemLogicalSize = 2030063
kMDItemOrientation = 0
kMDItemPhysicalSize = 2031616
kMDItemPixelCount = 9980928
kMDItemPixelHeight = 2736
kMDItemPixelWidth = 3648
kMDItemProfileName = "sRGB IEC61966-2.1"
kMDItemRedEyeOnOff = 0
kMDItemResolutionHeightDPI = 180
kMDItemResolutionWidthDPI = 180
kMDItemWhiteBalance = 0

Quite a bit more useful information, thanks to Spotlight and its smart file parsing
modules! Note that mdls offers the following details:

• The camera used (Canon PowerShot S95), as noted by kMDItemAcquisitionMo
del

• The dimensions of the image (3648 x 2736), as noted by the kMDItem-PixelWidth
and kMDItemPixelHeight items, respectively

• The resolution of the image (180 DPI), as noted by kMDItemResolution
HeightDPI and kMDItemResolutionWidthDPI

• Various other digital photo data, including exposure time (kMDItemExposureTime
Seconds), focal length of the lens (kMDItemFocalLength), etc.

Here’s another example of mdls output, this time with a PDF file:

128 | Chapter 5: Finding Files and Information

$ mdls HXR-MC50U\ Manual.pdf
kMDItemAuthors = (
 "Sony Corporation"
)
kMDItemContentCreationDate = 2015-07-15 15:52:50 +0000
kMDItemContentModificationDate = 2015-07-15 15:52:50 +0000
kMDItemContentType = "com.adobe.pdf"
kMDItemContentTypeTree = (
 "com.adobe.pdf",
 "public.data",
 "public.item",
 "public.composite-content",
 "public.content"
)
kMDItemDateAdded = 2015-07-15 16:10:30 +0000
kMDItemDisplayName = "HXR-MC50U Manual.pdf"
kMDItemEncodingApplications = (
 "Mac OS X 10.6.8 Quartz PDFContext"
)
kMDItemFSContentChangeDate = 2015-07-15 15:52:50 +0000
kMDItemFSCreationDate = 2015-07-15 15:52:50 +0000
kMDItemFSCreatorCode = ""
kMDItemFSFinderFlags = 0
kMDItemFSHasCustomIcon = (null)
kMDItemFSInvisible = 0
kMDItemFSIsExtensionHidden = 0
kMDItemFSIsStationery = (null)
kMDItemFSLabel = 0
kMDItemFSName = "HXR-MC50U Manual.pdf"
kMDItemFSNodeCount = (null)
kMDItemFSOwnerGroupID = 20
kMDItemFSOwnerUserID = 501
kMDItemFSSize = 9732347
kMDItemFSTypeCode = ""
kMDItemKind = "Portable Document Format (PDF)"
kMDItemLogicalSize = 9732347
kMDItemNumberOfPages = 139
kMDItemPageHeight = 515.906
kMDItemPageWidth = 362.835
kMDItemPhysicalSize = 9736192
kMDItemSecurityMethod = "None"
kMDItemTitle = "HXR-MC50U/MC50N"
kMDItemVersion = "1.4"

For a PDF document, the information includes the number of pages (as noted with
kMDItemNumberOfPages; this document has 139), the application used to encode the
PDF (Mac OS X 10.6.8 Quartz PDFContext, as noted by kMDItemEncodingApplica
tions), and the date and time that the PDF file was created (2015-07-15 15:52:50, as
noted by kMDItemFSCreationDate).

Shining a Light on Spotlight | 129

Let’s peek at one more file type before we explore what you can actually do with the
Spotlight data, shall we? This time, it’s an MP3 file from my iTunes library:

$ mdls "1-12 Can We Still Be Friends.mp3"
_kTimeMachineIsCreationMarker = 1
kMDItemAlbum = "The Very Best Of
Todd Rundgren"
kMDItemAlternateNames = (
 "/Users/taylor/Music/iTunes/iTunes Media/Music/Todd Rundgren/The Very Best ↩
 Of Todd Rundgren/1-12 Can We Still Be Friends.mp3"
)
kMDItemAudioBitRate = 227000
kMDItemAudioChannelCount = 2
kMDItemAudioSampleRate = 44100
kMDItemAudioTrackNumber = 12
kMDItemAuthors = (
 "Todd Rundgren"
)
kMDItemComment = "reference libFLAC 1.2.1 20070917"
kMDItemContentCreationDate = 2015-06-04 22:26:40 +0000
kMDItemContentModificationDate = 2015-06-04 22:26:50 +0000
kMDItemContentType = "public.mp3"
kMDItemContentTypeTree = (
 "public.mp3",
 "public.audio",
 "public.audiovisual-content",
 "public.data",
 "public.item",
 "public.content"
)
kMDItemDateAdded = 2015-06-19 13:06:55 +0000
kMDItemDisplayName = "Can We Still Be Friends"
kMDItemDurationSeconds = 218.4881632653061
kMDItemFSContentChangeDate = 2015-06-04 22:26:50 +0000
kMDItemFSCreationDate = 2015-06-04 22:26:40 +0000
kMDItemFSCreatorCode = ""
kMDItemFSFinderFlags = 0
kMDItemFSHasCustomIcon = (null)
kMDItemFSInvisible = 0
kMDItemFSIsExtensionHidden = 0
kMDItemFSIsStationery = (null)
kMDItemFSLabel = 0
kMDItemFSName = "1-12 Can We Still Be Friends.mp3"
kMDItemFSNodeCount = (null)
kMDItemFSOwnerGroupID = 20
kMDItemFSOwnerUserID = 501
kMDItemFSSize = 6323093
kMDItemFSTypeCode = ""
kMDItemKind = "MP3 audio"
kMDItemLogicalSize = 6323093
kMDItemMediaTypes = (
 Sound

130 | Chapter 5: Finding Files and Information

www.allitebooks.com

http://www.allitebooks.org

)
kMDItemMusicalGenre = "(17)"
kMDItemPhysicalSize = 6324224
kMDItemRecordingYear = 1997
kMDItemTitle = "Can We Still Be Friends"
kMDItemTotalBitRate = 227000

Encoded in each audio file is the artist (kMDItemAuthors), album (kMDItemAlbum),
song name (kMDItemTitle), genre (kMDItemMusicalGenre), length of track (kMDItem
DurationSeconds), and much more, all accessible thanks to Spotlight and mdls.

Finding Files with mdfind
Knowing that there’s so much valuable and interesting information available through
Spotlight, how do you actually do something useful with it? The answer is by using
the mdfind command. However, while find has weird syntax, mdfind’s is even weirder
and more unfriendly.

The mdfind command matches files in the filesystem that meet a specific criterion or
set of criteria, specified as:

"metadata_field_name == 'pattern'"

For example, to find all photographs taken with a Nikon camera, you’d use the follow‐
ing:

$ mdfind "kMDItemAcquisitionModel == 'NIKON*'" | head
/Users/taylor/Library/Mail/V3/IMAP-d1taylor@imap.gmail.com/[Gmail].mbox/
Bin.mbox/0CE78AA8-AE4A-4E62-96D9-D8507B834E99/Data/8/8/Attachments/88376/2
/ValorieCurry.jpg
/Users/taylor/Library/Mail/V3/IMAP-d1taylor@imap.gmail.com/[Gmail].mbox/
Bin.mbox/0CE78AA8-AE4A-4E62-96D9-D8507B834E99/Data/6/8/Attachments/86888/4
/TaraSummers_82873_6.jpg
/Users/taylor/Library/Mail/V3/IMAP-d1taylor@imap.gmail.com/[Gmail].mbox/
Bin.mbox/0CE78AA8-AE4A-4E62-96D9-D8507B834E99/Data/4/8/Attachments/84006/4
/TaraSummers_82873_6 (1).jpg
/Users/taylor/Library/Mail/V3/IMAP-d1taylor@imap.gmail.com/[Gmail].mbox/
All Mail.mbox/0CE78AA8-AE4A-4E62-96D9-D8507B834E99/Data/5/8/Attachments/85629
/1.2/Women of Below Her Mouth.jpg
/Users/taylor/Pictures/Taylor-Web (photos from Peter)/Taylor-Web-6410.jpg
/Users/taylor/Pictures/Taylor-Web (photos from Peter)/Taylor-Web-6406.jpg
/Users/taylor/Pictures/Taylor-Web (photos from Peter)/Taylor-Web-6401.jpg
/Users/taylor/Pictures/Taylor-Web (photos from Peter)/Taylor-Web-6392.jpg
/Users/taylor/Pictures/Taylor-Web (photos from Peter)/Taylor-Web-6391.jpg
/Users/taylor/Pictures/Taylor-Web (photos from Peter)/Taylor-Web-6385.jpg

Want to constrain the search to a specific subdirectory? You might be tempted to
specify this directly as you would in find, but that’s not how it’s done. Instead, you
need to use a flag called -onlyin, followed by a directory name. To find all the songs in
your Jazz collection, use:

Shining a Light on Spotlight | 131

$ mdfind -onlyin ~/Music "kMDItemMusicalGenre == 'Jazz'"

You can also specify that you want a specific word anywhere in the metadata info by
specifying just that word:

$ mdfind -onlyin ~ Jazz | head
/Users/taylor/Library/Mail/V3/Mailboxes/Deleted Messages (taylor@intuitive.com)
.mbox/0CE78AA8-AE4A-4E62-96D9-D8507B834E99/Data/1/5/2/Messages/251740.emlx
/Users/taylor/Library/Mail/V3/Mailboxes/Deleted Messages (taylor@intuitive.com)
.mbox/0CE78AA8-AE4A-4E62-96D9-D8507B834E99/Data/1/5/2/Messages/251684.emlx
/Users/taylor/Library/Containers/com.apple.Notes/Data/Library/CoreData/
ExternalRecords/C4B83507-DA59-4500-8793-91E7369D1EFD/ICNote/_records/0
/p10.notesexternalrecord
/Users/taylor/Library/CoreData/ExternalRecords/4AA0727E-5B99-4012-A8DD-
29D8F90E7E80/IMAPNote/_records/0/p29.notesexternalrecord
/Users/taylor/Library/Mail/V3/IMAP-d1taylor@imap.gmail.com/[Gmail].mbox/
All Mail.mbox/0CE78AA8-AE4A-4E62-96D9-D8507B834E99/Data/5/8/Messages/85442.emlx
/Users/taylor/Library/Mail/V3/IMAP-d1taylor@imap.gmail.com/[Gmail].mbox/
All Mail.mbox/0CE78AA8-AE4A-4E62-96D9-D8507B834E99/Data/5/8/Messages/85444.emlx
/Users/taylor/Library/Mail/V3/IMAP-d1taylor@imap.gmail.com/[Gmail].mbox/
All Mail.mbox/0CE78AA8-AE4A-4E62-96D9-D8507B834E99/Data/5/8/Messages/85682.emlx
/Users/taylor/Library/Mail/V3/IMAP-d1taylor@imap.gmail.com/[Gmail].mbox/
Spam.mbox/0CE78AA8-AE4A-4E62-96D9-D8507B834E99/Data/4/8/Messages/84599.emlx
/Users/taylor/Library/Mail/V3/IMAP-d1taylor@imap.gmail.com/[Gmail].mbox/
Spam.mbox/0CE78AA8-AE4A-4E62-96D9-D8507B834E99/Data/4/8/Messages/84742.emlx
/Users/taylor/Library/Mail/V3/IMAP-d1taylor@imap.gmail.com/[Gmail].mbox/
Bin.mbox/0CE78AA8-AE4A-4E62-96D9-D8507B834E99/Data/8/8/Messages/88241.emlx

This output is quite interesting because it matches not only files where the word
“Jazz” is part of the Spotlight metadata (as in the iTunes files), but also files that have
“Jazz” in their name (the BlogWorld Expo document jazz-performances.doc), and
even a plain-text file where the word “Jazz” appears in the text itself (art_dolls.txt).
Pretty nifty, eh?

Making Spotlight Useful
Before leaving Spotlight, and certainly before we give up and assume that it’s only
useful on the command line, let’s have a look at a couple of simple Unix commands
that can extract useful information from the mdls information stream.

Curious about the size in pixels of your JPEG files? You can quickly ascertain their
height and width by using grep:

$ mdls IMG_1912.JPG | grep -E '(PixelHeight|PixelWidth)'
kMDItemPixelHeight = 4752
kMDItemPixelWidth = 3168

You can identify the duration of an audio file without loading it into iTunes or any
other audio player by using:

$ mdls "06 Elise affair.mp3" | grep Duration
kMDItemDurationSeconds = 280.9774

132 | Chapter 5: Finding Files and Information

You can also use find and xargs to identify files by name and then extract specific
characteristics:

$ find . -name "*jpg" -print0 | xargs -0 mdls | grep FocalLength

Or, you can actually use mdfind in the same manner (it does have a -0 option that
makes it possible to match filenames that have spaces without things breaking):

$ mdfind -0 "kMDItemFocalLength == '35'" | xargs -0 mdls | ↩
 grep -E '(PixelHeight|PixelWidth|DisplayName)'
kMDItemDisplayName = "Little-Hand.jpg"
kMDItemPixelHeight = 532
kMDItemPixelWidth = 800
kMDItemDisplayName = "Peanut.jpg"
kMDItemPixelHeight = 531
kMDItemPixelWidth = 800

This last search matches all pictures on the entire system with a focal length of 35
(meaning, they were taken with a 35 mm lens), and then displays the name, height,
and width of each of the images it finds.

These commands really beg for a simple shell script or two, where you could actually
parse the output and reformat it as desired. We’ll talk about writing shell scripts a bit
later in the book, but here’s a sneak preview of what such a script could do:

$ photosize Peanut.jpg
800x531 at 300DPI

The Spotlight commands accessible from the command line still haven’t been refined
quite yet. You can get started with the information shown here, but don’t be surprised
if future revisions turn the Spotlight commands into really powerful tools you can use
for all sorts of tasks.

Shining a Light on Spotlight | 133

CHAPTER 6

Redirecting I/O

Many Unix programs read input (such as from a file) and write output in a standard
way that lets them work with one another. This exchange of information is com‐
monly known in Unix circles as I/O (pronounced “eye-oh,” which is short for input/
output). In this chapter, we discuss some of these tools and learn how to connect pro‐
grams and files in new and powerful ways.

This chapter generally doesn’t apply to programs, such as the vi editor, that take con‐
trol of your entire Terminal window. (less does work in this way, however.) It also
doesn’t apply to graphical programs that open their own windows on your screen,
such as iTunes or Safari. On the other hand, the vast majority of Unix commands that
you use on the command line are line-oriented, and they’re exactly why I/O redirec‐
tion is included in OS X’s Unix.

The difference between “screen-oriented” and “line-oriented” is a bit tricky to figure
out when you’re just starting. Think of it this way: if you can use arrow keys to move
up and down, it’s a screen-oriented program. The vi editor is the classic example of a
screen-oriented program. If the input or output is all shown line by line, as in the ls
command’s output, then it’s a line-oriented command. Almost all Unix commands
are line-oriented, as you’ll see in this chapter.

Standard Input and Standard Output
What happens if you don’t give a filename argument in a command line? Most pro‐
grams take their input from your keyboard instead (after you press Return to start the
program running, that is). The keyboard you use to type commands into the Termi‐
nal is what’s called the program’s standard input. As soon as you hit that Return key,
you’re providing the shell with input.

135

As a program runs, the results are usually displayed on your Terminal screen. What
you see displayed in the Terminal is the program’s standard output. So, by default,
each of these programs takes its information from the standard input and sends the
results to the standard output. It turns out that where programs read their informa‐
tion from and where their output goes to can both be changed, depending on what
you type on the command line. In Unix terminology, this is called I/O redirection.

If a program writes to its standard output (normally the screen), you can make it
write to a file instead by using the greater-than symbol (>) operator, followed by the
name of the file to which the output should be saved. If you’d prefer connecting the
output of one program to the input of another—as you saw in “Pipes and Filters” on
page 141 when the output of find was given to the wc (word count) program to count
the total number of output lines rather than just listing them all—you can build a
pipe. Command pipes are specified by using a pipe operator (|), which connects the
standard output of one program to the standard input of the next program in the
pipeline. We’ll look at this in more detail shortly.

If a program doesn’t normally read from files, but reads from its standard input, you
can direct it to read from a file instead by using the less-than symbol (<) operator,
followed by the name of the file.

Input/output redirection is one of the most powerful and flexible
features of the Unix system and a big reason why power users still
prefer its command-line interface to a graphical interface.

The tr (character translator) program allows us to demonstrate input redirection,
because it reads from standard input, normally the keyboard. Here’s how to use the
input redirection operator to convert all vowels to x’s in the todo file:

$ cat todo
1. Wake up
2. Look in mirror
3. Sigh
4. Go back to bed.
$ tr '[aeiou]' '[xxxxx]' < todo
1. Wxkx xp
2. Lxxk xn mxrrxr
3. Sxgh
4. Gx bxck tx bxd.

Can you see what’s happened here? The cat command shows what’s in the file, a sim‐
ple four-step to-do list. The second command, tr, replaces every vowel in the input
file (todo, which replaced standard input because of the < notation) with the corre‐
sponding character in the second set (all x’s), displaying the output on the standard
output (the Terminal window).

136 | Chapter 6: Redirecting I/O

Putting Text in a File
Instead of always letting a program’s output come to the screen, you can redirect out‐
put to a file. This is useful when you’d like to save program output or when you put
files together to make a bigger file.

cat
cat, which is short for “concatenate,” reads files and outputs their contents one after
another, without stopping. To display files on the standard output (your screen), use:

cat file(s)

For example, let’s display the contents of the file /etc/bashrc. This system file is the
global login file for the bash shell:

$ cat /etc/bashrc
System-wide .bashrc file for interactive bash(1) shells.
if [-z "$PS1"]; then
 return
fi

PS1='\h:\W \u\$ '
Make bash check its window size after a process completes
shopt -s checkwinsize

[-r "/etc/bashrc_$TERM_PROGRAM"] && . "/etc/bashrc_$TERM_PROGRAM"

With cat, you cannot go back to view the previous screens, as you can when you use a
pager program such as less (unless you’re using a Terminal window with a sufficiently
large scrollback buffer, that is). Because of this, cat is mainly used with redirection, as
we’ll see in a moment.

If you enter cat without a filename, it just sits there without a system prompt, leaving
you to wonder what’s happening. Nothing’s broken, however; cat simply reads from
the keyboard (as we mentioned earlier) until the end-of-file character is sent, and
echoes each line of what you type to standard output (normally your screen). You can
exit by pressing Control-D, which ends the input file for the program.

When you add > filename to the end of a command line, the program’s output is
diverted from the standard output to a file. The > symbol is called the output redirec‐
tion operator.

For example, let’s use cat with the output redirection operator. The file contents that
you’d normally see on the screen (from the standard output) are diverted into another
file, which we’ll then read by using cat again, this time without any redirection:

$ cat /etc/bashrc > mybashrc
$ cat mybashrc
System-wide .bashrc file for interactive bash(1) shells.

Standard Input and Standard Output | 137

if [-z "$PS1"]; then
 return
fi

PS1='\h:\W \u\$ '
Make bash check its window size after a process completes
shopt -s checkwinsize

[-r "/etc/bashrc_$TERM_PROGRAM"] && . "/etc/bashrc_$TERM_PROGRAM"

Don’t Step on Your Files!
When you use the > operator, be careful not to accidentally overwrite a file’s contents.
Your system may let you redirect output to an existing file. If so, the old file’s contents
will be lost forever (or, in Unix lingo, “clobbered”). Be careful not to overwrite a
much-needed file!

Many shells can protect you from this risk. In bash (the default shell for OS X), use
the command set noclobber. Enter the command at a shell prompt to have it take
effect for the current session, or put it in your shell’s ~/.profile file for it to take effect
for each new session you start. After that, the shell won’t allow you to redirect onto an
existing file and overwrite its contents.

Note that this doesn’t protect against overwriting by Unix programs such as cp; it
works only with the > redirection operator. For more protection, you can set Unix file
access permissions (see “Setting Permissions with chmod” on page 67).

An earlier example showed how cat /etc/bashrc displays the file /etc/bashrc on-screen.
The example here adds the > operator, so the output of cat goes to a file called
mybashrc in the working directory. Displaying the mybashrc file shows that its con‐
tents are the same as the file /etc/bashrc (in this simple case, the effect is the same as
using the copy command cp /etc/bashrc mybashrc).

You can use the > redirection operator with any program that sends text to its stan‐
dard output—not just with cat. For example:

$ who > users
$ date > today
$ ls
mylogin today users ...

Here, we’ve sent the output of who to a file called users, and the output of date to the
file named today. Listing the directory shows the two new files. Let’s look at the out‐
put from the who and date programs by reading these two files with cat:

$ cat users
taylor console Oct 1 10:03
taylor ttys000 Oct 5 12:26

138 | Chapter 6: Redirecting I/O

$ cat today
Mon Oct 5 12:29:37 MDT 2015

You can also use the cat program and the > operator to make a small text file. I told
you earlier to type Control-D if you accidentally enter cat without a filename, because
in this case, the cat program takes whatever you type on the keyboard as input.

That means the following command takes input from the keyboard and redirects it to
a file:

cat > filename

Try the following example:

$ cat > new-todo
Finish report by noon
Lunch with Ashley at WF
Swim at 5:30
^D
$

cat takes the text that you typed as input (in this example, the three lines that begin
with Finish, Lunch, and Swim), and the > operator redirects it to a file called new-
todo. Type Control-D once, on a new line by itself, to signal the end of the text. You
should get a shell prompt.

You can also create a bigger file from smaller files with the cat command and the >
operator. This form creates a file newfile, consisting of file1 followed by file2:

cat file1 file2 > newfile

This highlights that the name cat comes from concatenate, meaning, “put a bunch of
things together.” Here’s what I mean:

$ cat today todo > diary
$ cat diary
Mon Oct 5 12:29:37 MDT 2015
1. Wake up
2. Look in mirror
3. Sigh
4. Go back to bed.

Standard Input and Standard Output | 139

You shouldn’t use redirection to add a file to itself. For example,
you might hope that the following command would merge today’s
to-do list with tomorrow’s, but this example isn’t going to give you
what you expect:

$ cat todo todo.tomorrow > todo.tomorrow

It works, but it will run for all eternity because it keeps copying the
file over itself. If you cancel it with Control-C and use ls to examine
the file, you’ll see that it’s gotten quite large:

^C
$ ls -sk todo*
 4 todo
 61436 todo.tomorrow

ls -sk shows the size in kilobytes, so it’s grown to about 61 mega‐
bytes! The right way to do this is to either use a temporary file (as
you’ll see in a later example) or simply use a text editor program.

You can add more text to the end of an existing file, instead of replacing its contents,
by using the >> (append redirection) operator. Use it as you would the > (output redi‐
rection) operator. So, the following appends the contents of file2 to the end of file1:

cat file2 >> file1

This doesn’t affect the contents of file2 since it is being read from, not written to.

For example, let’s append the contents of the file users and the current date and time
to the file diary. Here’s what it looks like:

$ cat users >> diary
$ date >> diary
$ cat diary
Mon Oct 5 12:29:37 MDT 2015
1. Wake up
2. Look in mirror
3. Sigh
4. Go back to bed.
taylor console Oct 1 10:03
taylor ttys000 Oct 5 12:26
Mon Oct 5 12:29:37 MDT 2015

Unix doesn’t have a redirection operator that adds text to the beginning of a file, but
you can accomplish the same thing by renaming the old file, then rebuilding the con‐
tents of the file as needed. For example, maybe you’d like each day’s entry to go at the
beginning of your diary file. To achieve this, simply rename diary to something like
older.diary, make a new diary file with today’s entries, then append older.diary (with
its old contents) to the new diary. For example:

$ mv diary older.diary
$ date > diary
$ cat users >> diary

140 | Chapter 6: Redirecting I/O

$ cat older.diary >> diary
$ rm older.diary

This example could be shortened by combining the two cat commands into one, giv‐
ing both filenames as arguments to a single cat command. That wouldn’t work,
though, if you were making a real diary with a command other than cat users.

Pipes and Filters
We’ve seen how to redirect input from a file and output to a file. You can also connect
two programs together so the output from one program becomes the input of the
next, without ever being written to disk. Two or more programs connected in this
way form a pipe. To make a pipe, place a vertical bar (|) on the command line
between the two commands.

When a pipe is set up between two commands, the standard output of the command
to the left of the pipe symbol becomes the standard input of the command to the
right of the pipe symbol. Any two commands can form a pipe, as long as the first pro‐
gram writes to standard output and the second program reads from standard input.
For example:

$ ls -l $HOME | colrm 1 30
 170 Sep 27 19:24 Applications/
 510 Oct 5 12:05 Desktop/
2788 Sep 24 11:07 Documents/
 612 Oct 5 11:43 Downloads/
 612 Oct 2 18:27 Dropbox/
2074 Oct 5 12:19 Library/
 646 Jun 19 12:30 Movies/
 238 Sep 20 10:54 Music/
1530 Oct 4 20:40 Pictures/
2516 Sep 22 20:15 Presentations/
 170 Jun 19 01:06 Public/
 136 Jun 20 16:35 VirtualBox VMs/
 578 Oct 13 2014 bin/
 29 Oct 5 12:31 diary
 68 Oct 3 16:45 images/
 265 Oct 5 12:28 mybashrc
 59 Oct 5 12:30 new-todo
 760 Oct 3 23:40 sample
 179 Oct 3 23:46 shells
 29 Oct 5 12:29 today
 64 Oct 5 12:29 users

This example combines ls -l with the colrm (column remove) command to give you a
listing that just includes file size, modification date, and name.

Pipes and Filters | 141

You could take this example one step further and redirect its output
to a file, as in:

$ ls -l $HOME | colrm 1 30 > homedirlist.txt

That command line starts by listing the files, uses colrm to strip out
the extraneous information that ls -l returns, and then redirects the
remaining information into a new file, named homedirlist.txt.
You just can’t do that in the Finder!

When a program takes its input from another program, performs some operation on
that input, and writes the result to the standard output (or pipes it to yet another pro‐
gram), it is referred to as a filter. A common use of filters is to modify output. Just as
a common filter culls unwanted items, Unix filters can restructure output so you get
just what you need.

Most Unix programs can be used to form pipes. Some programs that are commonly
used as filters are described in the next sections. (Note that these programs aren’t
used only as filters or parts of pipes, though; they’re also useful in their own right.)

wc
The wc program is one of the most useful pipe programs, believe it or not. By default,
the program counts characters, words, and lines in the input file or standard input,
but you can constrain the output to report just characters (-c), words (-w), or lines
(-l). Counting lines turns out to be wonderfully useful.

A classic example is identifying how many “core” files are in the filesystem.

Core files are identified with the suffix .core; they’re crashed pro‐
gram debugging datafiles and can be deleted to free up disk space
as needed.

This is done with a call to find with the output piped to wc:

$ sudo find / -name "*.core" -print | wc -l
13

sudo helps sidestep any permissions problems here and will probably prompt you for
the administrative password when used.

A more common use of find and wc together is to count larger output streams. For
example, are you wondering how many directories you have within your Documents
directory? You might be surprised:

$ find ~/Documents -type d -print | wc -l
 1002

142 | Chapter 6: Redirecting I/O

You can see how having a single number displayed is far superior to having all 1,002
directory names stream past!

tr
Another simple and helpful program for command pipes is tr, the translator utility.
The most common use for this command is to replace all occurrences of one charac‐
ter with another character. Here’s how you would replace all occurrences of x with y:

tr "x" "y"

More usefully, tr can also work with sets of characters (you can either list them all in a
range or specify a named range like lower or alpha), so it’s an easy way to turn all low‐
ercase text into uppercase:

tr "[:lower:]" "[:upper:]" < file1

For example:

$ tr "[:lower:]" "[:upper:]" < todo
1. WAKE UP
2. LOOK IN MIRROR
3. SIGH
4. GO BACK TO BED.

The tr command has a number of different options for power users, including -c to
invert the specified pattern (that is, if you specify tr -c “abc”, the program outputs any‐
thing other than a, b, or c) and -d to delete any characters from the first pattern speci‐
fied.

To remove all vowels from the input, you could use:

$ tr -d "[aeiou]" < todo
1. Wk p
2. Lk n mrrr
3. Sgh
4. G bck t bd.

The tr command can be quite useful in other situations, too. Wondering how many
words appear in a large text file? tr can figure this out with a little help from the -s
flag, which tells it to output only one occurrence of a character if more than one is
found:

$ tr -cs "[:alpha:]" "\n" < alice.txt | wc -l
29061

Here, we can see that Lewis Carroll’s Alice’s Adventures in Wonderland contains just
over 29,000 words.

Pipes and Filters | 143

You can download this text for yourself at http://intuitive.com/
wicked/scripts/alice.txt.gz.

Like the wc command, tr may not seem too useful by itself, but when you start build‐
ing up more complex pipes, you’ll be surprised by how frequently it’s useful to trans‐
late case and fix similar problems.

grep
As you learned in the previous chapter, grep searches the contents of files for lines
that contain a certain pattern. The syntax is:

grep "pattern" file(s)

Most of the earlier discussion, however, focused on how grep can help you search
through files to find lines that match a specified pattern. In fact, grep is a tremen‐
dously useful command for pipes, too, because it can help you easily weed out the few
lines you care about from hundreds or thousands of lines of information.

As an example, let’s use the mdfind command to identify files on the system that ref‐
erence the word “ipod” (mdfind, a part of Spotlight, is discussed in “Shining a Light
on Spotlight” on page 126). The default command with wc reveals that there are 1,310
matches:

$ mdfind ipod | wc -l
 1310

It turns out that many of these are actually related to the scripting Automator utility
and other library files. They’re easily identified by their Library directory location,
however, so grep, with its useful -v option (which returns everything but lines that
match this pattern), helps us identify how many files aren’t in the Library subdirec‐
tory:

$ mdfind ipod | grep -v "Library" | wc -l
 204

Of those 204, how many are within my home directory?

$ mdfind ipod | grep -v "Library" | grep "/taylor/" | wc -l
 191

Notice here that you can build pipes that are 2, 3, 4, or even 10 or 20 commands long.
Unix has no limit on how complex your pipes can be, and I commonly work with
pipes that are six or seven commands long.

144 | Chapter 6: Redirecting I/O

http://intuitive.com/wicked/scripts/alice.txt.gz
http://intuitive.com/wicked/scripts/alice.txt.gz

head and tail
When you have output of hundreds or thousands of lines, being able to peek in and
see the first few or last few lines is critically important. Those two tasks are enabled by
the helpful head and tail commands. With both commands, the default action is to
show 10 lines (the first 10 for head, and the last 10 for tail). You can change this by
specifying n, where n is the desired number of lines. To see just the first three lines,
use head -3, and to see the last 15, use tail -15.

For example, we can see that the last 15 words of Alice’s Adventures in Wonderland
are:

$ tr -cs "[:alpha:]" "\n" < alice.txt | tail -15
in
all
their
simple
joys
remembering
her
own
child
life
and
the
happy
summer
days

In addition to using head and tail to view the beginning or end of files, with a little bit
of fancy footwork, you can use them to view any range of lines in a file. Want to see
lines 250–255? You could use:

$ head -255 alice.txt | tail -5
it so very much out of the way to hear the Rabbit say to itself,
'Oh dear! Oh dear! I shall be late!' (when she thought it over
afterwards, it occurred to her that she ought to have wondered at
this, but at the time it all seemed quite natural); but when the
Rabbit actually took a watch out of its waistcoat-pocket, and looked

This could also be accomplished by using other Unix commands, and that’s part of
the power of Unix: there’s usually more than one way to solve a problem at the com‐
mand line.

sort
The sort program arranges lines of text alphabetically or numerically. The following
example sorts the lines in the food file alphabetically. sort doesn’t modify the file itself;
it just reads the file and displays the result on standard output (in this case, the Ter‐
minal):

Pipes and Filters | 145

$ sort food
Afghani Cuisine
Bangkok Wok
Big Apple Deli
Isle of Java
Mandalay
Sushi and Sashimi
Sweet Tooth
Tio Pepe's Peppers

By default, sort arranges lines of text alphabetically. Many options control the sorting,
and Table 6-1 lists some of them.

Table 6-1. Some sort options

Option Description

-n Sort numerically (for example, 10 sorts after 2); ignore blanks and tabs.

-r Reverse the sorting order.

-f Sort upper- and lowercase together.

-k x Sort by the key at position x.

Don’t forget that more than two commands may be linked together with a pipe. Tak‐
ing a previous pipe example using grep, you can further sort the files modified in Jan‐
uary by order of size. The following pipe uses the commands ls, grep, and sort:

$ ls -l | grep "Jan" | sort -n -k 5
drwx------ 2 taylor taylor 264 Jan 13 10:02 Music/
drwx------ 4 taylor taylor 264 Jan 29 22:33 Movies/
drwxr-xr-x 3 taylor taylor 264 Jan 24 21:24 Public/
drwx------ 95 taylor taylor 3186 Jan 29 22:44 Pictures/

Both grep and sort are used here as filters to modify the output of the ls -l command.
This pipe sorts all files in your working directory modified in January by order of
size, and prints them to the Terminal screen. The sort option -n forces a numeric
(rather than alphabetic) sort, and -k 5 uses the fifth field as the sort key. So, the output
of ls, filtered by grep, is sorted by the file size (this is the fifth column, starting with
264).

sort is also a powerful tool for identifying the extremes of a list. A common use is to
identify the largest files on the system, which can be done by using find and xargs to
generate a list of all files, one per line, including their size in 512-byte blocks, then
feeding that to sort -rn (reverse, numeric) and looking at the top few:

$ find . -type f -print0 | xargs -0 ls -s1 | sort -rn | head
29015568 ./Movies/iMovie Events.localized/Nest Thermo Upgrade (raw)/
clip-2015-09-28 10;49;07.mov

146 | Chapter 6: Redirecting I/O

14435072 ./VirtualBox VMs/Solaris 11/sol-11_2-vbox-disk1.vmdk
12043048 ./Movies/iMovie Events.localized/New Event 9-4-15 - Day 3/
clip-2015-09-04 10;15;15.mov
11295976 ./Movies/Untitled.fcpbundle/galileo/Transcoded Media/High Quality
Media/2014-02-06 10_32_44 (id).mov
8673216 ./Movies/DVD Images/MOMO and the Thieves of Time DVD.img
8305664 ./Documents/Virtual Machines.localized/Windows 10 x64.vmwarevm/Virtual
Disk-s020.vmdk
8305664 ./Documents/Virtual Machines.localized/Windows 10 x64.vmwarevm/Virtual
Disk-s018.vmdk
8305664 ./Documents/Virtual Machines.localized/Windows 10 x64.vmwarevm/Virtual
Disk-s017.vmdk
8305536 ./Documents/Virtual Machines.localized/Windows 10 x64.vmwarevm/Virtual
Disk-s021.vmdk
6340608 ./Documents/Virtual Machines.localized/Windows 10 x64.vmwarevm/Windows
8 x64-25a2bb34.vmem

Coupled with the power of find, you should be able to see how you can identify not
only the largest files, but also the largest files owned by a particular user (hint: use
find -user username to match all files owned by that user).

uniq
Another command that’s quite useful in pipes is the oddly named uniq (which would
be easier to remember if it were spelled correctly: unique). Give uniq a stream of
input, and it silently eliminates consecutive duplicate lines. Add the -c flag, and uniq
not only removes duplicate lines, but also lists a count of how frequently each line
occurs.

If you’re thinking that sort and uniq are a good pair, you’re absolutely correct! For
example, figuring out how many unique words occur in the book Alice’s Adventures in
Wonderland is a simple task:

$ tr -cs "[:alpha:]" "\n" < alice.txt | uniq | wc -l
 29033

Or is it? That’s not correct, because in this situation, uniq needs to have the input sor‐
ted. Add that step and the number changes dramatically:

$ tr -cs "[:alpha:]" "\n" < alice.txt | sort | uniq | wc -l
 3285

Further, we should also ensure that all the letters are lowercase, so that “Hello” and
“hello,” for example, are counted as one word, not two. This can be done by using our
friend tr to translate everything to lowercase:

$ tr -cs "[:alpha:]" "\n" < alice.txt | tr "[A-Z]" "[a-z]" | sort | uniq | wc -l
 2900

So now you know—the entire novel is written using only 2,900 different words.

Pipes and Filters | 147

Piping Output to a Pager
The less program, which we met in Chapter 4, can also be used as a filter. A long out‐
put normally zips by you on the screen, but if you run text through less, the display
stops after each page or screen of text (that’s why such programs are called pagers:
they let you see the output page by page).

Let’s assume that you have a long directory listing. (If you want to try this example
and need a directory with lots of files, use cd first to change to a system directory
such as /bin or /usr/bin.) To make it easier to read the sorted listing, pipe the output
through less:

$ cd /bin
$ ls -l | sort -nk 5 | less
total 5168
-rwxr-xr-x 1 root wheel 17984 Sep 17 01:07 sleep
-rwxr-xr-x 1 root wheel 18032 Sep 17 01:07 echo
-rwxr-xr-x 1 root wheel 18064 Sep 17 01:07 rmdir
-rwxr-xr-x 1 root wheel 18080 Sep 17 01:07 wait4path
-r-xr-xr-x 1 root wheel 18144 Sep 17 01:07 domainname
-rwxr-xr-x 1 root wheel 18176 Sep 17 01:07 pwd
...
-rwxr-xr-x 1 root wheel 378624 Sep 17 01:07 tcsh
-rwxr-xr-x 1 root wheel 573600 Sep 17 01:07 zsh
-r-xr-xr-x 1 root wheel 628496 Sep 17 01:07 bash
-r-xr-xr-x 1 root wheel 632672 Sep 17 01:07 sh
-r-xr-xr-x 1 root wheel 1394432 Sep 17 01:07 ksh
 :

less reads a screen of text from the pipe (consisting of lines sorted by order of file
size), then prints a colon (:) prompt. At the prompt, you can type a less command to
move through the sorted text. less reads more text from the pipe, shows it to you, and
even enables you to go backward to reread previous text if you want. When you’re
done viewing the sorted text, type the q command at the colon prompt to quit less.
Table 6-2 contains a list of useful commands to use along with less.

Table 6-2. Useful less commands to remember

Command Meaning

d Scroll down (forward) one half of the screen size.

u Scroll up (backward) one half the screen size.

b Scroll back one screen.

f Scroll forward one screen.

g Jump to the beginning of the file.

148 | Chapter 6: Redirecting I/O

Command Meaning

G Jump to the end of the file.

/pat Scroll forward until a line containing the specified pattern is found.

?pat Scroll back until a line containing the specified pattern is found.

n Repeat previous search.

:n Move to the next file in the file list (if more than one file was specified).

v Open up the file in the vi editor.

q Quit.

Printing
Sometimes there’s no substitute for hard copy for information that’s sent to your
printer and printed on a piece of paper. You can generate printouts from within the
Terminal, of course, though it prints everything in the buffer, not just the text that’s
visible in the Terminal window itself. You can also select a portion of text, choose
Shell→Export Selected Text As, then open that file in TextEdit and print it, but that’s
rather a hassle.

Instead, it turns out that you can print files directly from the Unix command line in
OS X, and there are two ways to do this. If you want the pure Unix solution, use the lp
command series; but if you have a Bonjour network and one or more printers acces‐
sible through Bonjour, you can queue up printouts from the command line, too.

The Unix Way
The command used for sending information to the printer is lp, and there are a set of
lp-related commands that you’ll need to become familiar with if you want to actually
print something. To start, you need to ensure that you have at least one printer con‐
figured in OS X. If you haven’t done so yet, set up your printer by going to Apple
Menu→System Preferences→Printers & Scanners, then clicking on the “+” button to
add a printer to your system. Once you have at least one printer configured, you can
identify it by name with the lpstat command.

lpstat
With the -a flag, lpstat shows everything about the known printers:

$ lpstat -a
EPSON_Artisan_837 accepting requests since Thu Jul 23 07:36:53 2015

Printing | 149

Samsung_ML_191x_252x_Series___MiniMe accepting requests since Mon Oct 5
00:01:15 2015

In this case, you can see that I have two printers, both online and accepting print jobs.
To see which of your possible printers is the default, use the -d option:

$ lpstat -d
system default destination: Samsung_ML_191x_252x_Series___MiniMe

If you have printers hooked up through Bonjour, lpstat will see
them too, which is particularly helpful!

If you really want to learn a lot about your printers, print queues, and more, use the -t
option:

$ lpstat -t
scheduler is running
system default destination: Samsung_ML_191x_252x_Series___MiniMe
device for EPSON_Artisan_837: dnssd://EPSON%20Artisan%20837._ipp._tcp.local./
?uuid=cfe92100-67c4-11d4-a45f-a4ee573ee596
device for Samsung_ML_191x_252x_Series___MiniMe: dnssd:
//Samsung%20ML-191x%20252x%20Series%20%40%20MiniMe._ipps._tcp.local./printers/
Samsung_ML_191x_252x_Series?uuid=0acc075d-b11a-3b36-4b7c-f5317fefa479
EPSON_Artisan_837 accepting requests since Thu Jul 23 07:36:53 2015
Samsung_ML_191x_252x_Series___MiniMe accepting requests since Mon Oct 5
00:01:15 2015
printer EPSON_Artisan_837 is idle. enabled since Thu Jul 23 07:36:53 2015
printer Samsung_ML_191x_252x_Series___MiniMe is idle. enabled since Mon Oct 5
00:01:15 2015

Everything looks good!

lp
You actually add a job to the printer queue by using the lp command. Printing the
output of an ls -l command is easy:

$ ls -l | lp
request id is Samsung_ML_191x_252x_Series___MiniMe-93 (0 file(s))

The request ID is rather ugly, but unless you need to remove a job because you’ve
changed your mind, you shouldn’t need to pay attention to anything more than that
the print job has been accepted.

A few seconds later, your printout should emerge from the printer.

The first time you print out more than a single page of content, you’ll realize that lp is
a crude printing tool without any capability to paginate, add any sort of header or
footer, and so on.

150 | Chapter 6: Redirecting I/O

pr
The pr program does minor formatting of files on the Terminal or for a printer. For
example, if you have a long list of names in a file, you can format it on-screen into
two or more columns.

The syntax is:

pr option(s) filename(s)

pr changes the format of the file only on the screen or on the printed copy; it doesn’t
modify the original file. Table 6-3 lists some pr options.

Table 6-3. Some pr options

Option Description

-n Produces n columns of output.

-d Double-spaces the output.

-h header Prints header at the top of each page.

-t Eliminates printing of header and top/bottom margins.

Other options allow you to specify the width of columns, set the page length, and so
on. For a complete list of options, see the manpage (man pr).

Before we get into using pr, here are the contents of a sample file named food:

$ cat food
Sweet Tooth
Bangkok Wok
Mandalay
Afghani Cuisine
Isle of Java
Big Apple Deli
Sushi and Sashimi
Tio Pepe's Peppers

Let’s use some pr options to make a two-column report with the header “Restau‐
rants”:

$ pr -2 -h "Restaurants" food

Oct 5 12:30 2015 Restaurants Page 1

Sweet Tooth Isle of Java
Bangkok Wok Big Apple Deli
Mandalay Sushi and Sashimi
Afghani Cuisine Tio Pepe's Peppers

Printing | 151

The text is output in two-column pages. The top of each page has the date and time,
the header (if none is specified, the name of the file is used as the header), and the
page number. To send this output to the default OS X printer instead of to the Termi‐
nal screen, create a pipe to the lpr printer program:

$ pr -2 -h "Restaurants" food | lpr

152 | Chapter 6: Redirecting I/O

CHAPTER 7

Multitasking

OS X can do many jobs at once, dividing the processor’s time between running appli‐
cations and system processes so quickly that it looks as if everything is running at the
same time. This is called multitasking. As new applications are launched, processes
are started, and others go idle or shut down entirely, the system monitors each of
these tasks and doles out memory and CPU resources on the fly to make sure every‐
thing runs smoothly.

Most users think of multitasking in terms of the way OS X handles applications like
Adobe Photoshop, Microsoft Word, Mail, Messages, Safari, and so on—allowing you
to have multiple applications open, each with its own windows. But on the Unix side,
OS X allows you to run multiple Unix programs and/or processes at the same time as
well. These processes can all be run and managed through a single Terminal window,
with a little help from something called job control. Even if you’re using a window sys‐
tem, you may want to use job control to do several things inside the same Terminal
window. For instance, you may prefer to do most of your work from one Terminal
window, instead of having multiple Terminal windows open when you really don’t
need to.

Why else would you want job control? Suppose you’re launching a Unix program that
takes a long time to run. On an old-school, single-task operating system, you would
enter the command and wait for the job to finish, returning you to the command
prompt (which is your indication that you’re free to enter a new command). In OS X
and other modern operating systems, however, you can enter new commands in the
“foreground” while one or more programs are running in the “background.”

When you enter a command as a background process, the shell prompt reappears
immediately so that you can enter a new command. The original program runs in the
background, but you can use the same Terminal window to do other things during
that time. Depending on your system and your shell, you may be able to close the

153

Terminal window or even completely log off from OS X while the background pro‐
cess completes.

Running a Command in the Background
Running a program as a background process is most often done to free a Terminal
when you know the program is going to take a long time to complete. It’s also done
whenever you want to launch a new application from an existing Terminal window,
so you can keep working in the existing Terminal window, as well as within the new
application.

To run a program in the background, all you need to do is add the & character at the
end of the command line before pressing the Return key. The shell then assigns and
displays a process ID (PID) number for the program:

$ sort bigfile > bigfile.sort &
[1] 372

Sorting is a good example, because it can take a while to sort huge files.

The PID for this program is 372. The PID is useful when you want to check the status
of a background process or if you need to cancel it. To check on the status of the pro‐
cess, use the ps command with the following two options: -f to have expanded output,
and -p because you’re specifying a process ID. The full command for this example is:

$ ps -fp 372
 UID PID PPID C STIME TTY TIME CMD
 501 372 16901 0 10:12AM ttys001 0:00.00 sort

To cancel a process, use the kill command, followed by the PID of the process you
want to cancel. In this instance, the command would look like:

$ kill 372

Fortunately, you don’t need to remember the PID every time, because there are Unix
commands (explained in the next section) to check on the processes you have run‐
ning. Also, bash writes a status line to your screen when a background process fin‐
ishes.

In bash, you can put an entire sequence of commands separated by semicolons (;)
into the background by putting an ampersand (&) at the end of the command line. In
other shells, enclose the command sequence in parentheses before adding the
ampersand:

(command1; command2) &

OS X’s Unix shells also have a feature (mentioned earlier) called job control that allows
you to use the suspend character (usually Control-Z) to suspend a program running
in the foreground. The program pauses, and you get a new shell prompt. You can

154 | Chapter 7: Multitasking

then do anything else you like, including putting the suspended program into the
background using the bg command. The fg command brings a suspended or back‐
ground process to the foreground.

For example, you might start sort running on a big file, then decide you want to edit
another file. You can stop sort with Control-Z, and then put it in the background with
the bg command. The shell then gives you another shell prompt, at which you can
start using vi while sort runs merrily in the background:

$ sort hugefile1 hugefile2 > sorted
...time goes by...
^Z
Stopped
$ bg
[1] sort hugefile1 hugefile2 > sorted &
$ vi test.txt

Checking on a Process
If a background process seems to be taking forever to run, or if you change your
mind and want to stop a process, you can check the status of the process and even
cancel it.

ps
When you enter the ps (process status) command, you get a variety of useful informa‐
tion about the processes that are running, including how long a process has been
active and the Terminal from which it was launched. Not sure you’re the person who
launched a process? The tty program shows the name of the Terminal where you’re
logged in. This is especially helpful when you’re logged in to multiple machines, as
the following code shows:

$ ps
 PID TTY TIME CMD
 409 ttys000 0:00.04 -bash
 813 ttys001 0:00.02 -bash
$ tty
/dev/ttys000

In the preceding output, s000 corresponds to the Terminal window for ttys000
(which is the current window, as the tty command shows), and s001 denotes a second
Terminal window. In its basic form, ps lists the following:

Process ID (PID)
A unique number assigned by Unix to the process

Terminal name (TTY)
The Unix name for the terminal from which the process was started

Checking on a Process | 155

Runtime (TIME)
The amount of CPU time (in minutes and seconds) that the process has used

Command CMD
The name of the process

In Unix, each Terminal window has its own name. The previous example shows pro‐
cesses running in two windows: s000 and s001. If you want to see the processes that a
certain user is running, use the following construct:

ps -U username

where username is the username of someone logged in to the system.

To see all processes running on the system, use ps -ax. The -a option shows processes
from all users, and the -x option shows processes that are not connected with a Ter‐
minal session. Many of these processes are a core part of OS X, while others may be
graphical programs you are running, such as Safari. The head -20 in the following
command line limits the output to the first 20 lines:

$ ps -ax | head -20
 PID TTY TIME CMD
 1 ?? 9:41.93 /sbin/launchd
 42 ?? 2:05.18 /usr/libexec/UserEventAgent (System)
 43 ?? 3:46.72 /usr/sbin/syslogd
 45 ?? 0:07.54 /usr/libexec/kextd
 46 ?? 1:55.25 /System/Library/Frameworks/CoreServices.framework/
Versions/A/Frameworks/FSEvents.framework/
Versions/A/Support/fseventsd
 50 ?? 0:02.28 /System/Library/CoreServices/appleeventsd --server
 51 ?? 2:18.30 /usr/libexec/configd
 52 ?? 0:19.18 /System/Library/CoreServices/powerd.bundle/powerd
 57 ?? 2:04.30 /usr/libexec/airportd
 59 ?? 0:01.35 /usr/libexec/warmd
 60 ?? 8:53.56 /System/Library/Frameworks/CoreServices.framework/
Frameworks/Metadata.framework/Support/mds
 64 ?? 0:00.72 /System/Library/CoreServices/iconservicesd
 65 ?? 0:00.05 /System/Library/CoreServices/iconservicesagent
 66 ?? 0:40.39 /usr/libexec/diskarbitrationd
 68 ?? 1:34.73 /usr/libexec/coreduetd
 69 ?? 0:00.04 /usr/libexec/wdhelper
 71 ?? 13:52.00 /System/Library/CoreServices/backupd.bundle/Contents/
Resources/mtmfs --tcp --resvport --listen localhost --oneshot --noportmap
--nobrowse
 72 ?? 1:53.06 /usr/libexec/opendirectoryd
 73 ?? 0:00.28 /usr/sbin/wirelessproxd

The output of ps -ax can be baffling, since almost all the processes listed are the low-
level system tasks required for OS X to run happily on your system.

156 | Chapter 7: Multitasking

In the preceding list, notice the OS kernel extensions module kextd,
the configuration management daemon configd, the audio utility
coreaudiod, the low-level disk management program diskarbitra‐
tiond, the CoreServices, etc. These are processes that a regular user
shouldn’t have to worry about. Just beware before you try killing
one of these processes; doing so could cause your system to crash.

You can find out what processes are being run as root by using -U root:
$ ps -ax -U root | head
 PID TTY TIME CMD
 1 ?? 9:42.22 /sbin/launchd
 42 ?? 2:05.19 /usr/libexec/UserEventAgent (System)
 43 ?? 3:46.73 /usr/sbin/syslogd
 45 ?? 0:07.54 /usr/libexec/kextd
 46 ?? 1:55.26 /System/Library/Frameworks/CoreServices.framework/
Versions/A/Frameworks/FSEvents.framework/Versions/A/Support/fseventsd
 50 ?? 0:02.28 /System/Library/CoreServices/appleeventsd --server
 51 ?? 2:18.30 /usr/libexec/configd
 52 ?? 0:19.18 /System/Library/CoreServices/powerd.bundle/powerd
 57 ?? 2:04.30 /usr/libexec/airportd

You can also change the output, of course, by specifying yourself as the account with
the $LOGNAME environment variable (ps -ax -U $LOGNAME | head), though the
results will probably look identical until you get to the last few processes on the list.
And if you want to see more information about the process names, try using the -w
flag. You can even use it more than once to get even more, like -ww or -www.

When you’re just learning how to interpret the oft-confusing output of the ps com‐
mand, you might find it quite helpful to simultaneously run the Activity Monitor
(/Applications/Utilities), shown in Figure 7-1.

It’s useful to change the filter at the top of the Activity Monitor from the default of
“My Processes” to “All Processes” using the View menu in the program. This gives
you a much better sense of what’s happening on your computer, and if you do have a
runaway application or one that’s locked, it often doesn’t show up in the My Processes
view anyway.

Checking on a Process | 157

Figure 7-1. The Activity Monitor also shows running processes

top
A better way to see what applications are running and which are taking up the most
resources is to use the helpful top command. Figure 7-2 shows top in action.

Figure 7-2. The top command shows processes running, sorted by CPU usage

If you’re curious what commands consume the most system resources, leave top run‐
ning in a Terminal window while you work. However, do be aware that top itself con‐
sumes some system resources, so if you’re not paying attention to its output, you can

158 | Chapter 7: Multitasking

quit top by typing q. You can always start it up again if things seem to be oddly slow
on your computer.

top packs a lot of information into its display—considerably more than we have space
to explain here. However, look at the first few lines and you’ll get some quick insight
into how well your system configuration matches the needs of the processes you’re
running. You can grab a snapshot of the first seven lines of output with this com‐
mand (the flag used is a lowercase “L” followed by the digit one):

$ top -l 1 | head -8
Processes: 316 total, 3 running, 12 stuck, 301 sleeping, 1615 threads
2015/10/06 13:16:09
Load Avg: 0.44, 0.59, 0.71
CPU usage: 4.31% user, 12.94% sys, 82.73% idle
SharedLibs: 204M resident, 21M data, 28M linkedit.
MemRegions: 82102 total, 5634M resident, 125M private, 2340M shared.
PhysMem: 15G used (2442M wired), 570M unused.
VM: 889G vsize, 467M framework vsize, 1408(0) swapins, 7488(0) swapouts.

What you should look for here is high CPU usage (anything over about 25 percent is
usually considered high, unless you’re running something like Photoshop or some
other CPU-intensive task) or too little free memory (I have 570M free—as shown at
the end of the second-to-last line—out of a 16 GB RAM configuration, not a ton of
space).

Swapping is based on the idea that the memory needed for an appli‐
cation can be broken into pages, as many as needed for the app at
that particular moment. As multiple processes compete for the sys‐
tem memory, memory pages that haven’t been accessed for a while
are temporarily copied to a special place on the hard disk, and
those pages are given to applications that need them now. The pro‐
cess of swapping an older page for a newer one is called a pageout
or swapout.

To display processes sorted by CPU usage (rather than process ID), use:

$ top -o cpu

If you find this view to be more useful than top’s traditional view, you can add this as
an alias to your .profile file:

alias top='/usr/bin/top -s 5 -o cpu'

This updates top’s display every five seconds rather than the default of every second,
and sorts the results by highest CPU usage to lowest. For more information on top,
visit its manpage (man top).

Checking on a Process | 159

If you see a process in top that seems to be a resource hog, you can give its PID value
to ps to find out more about that specific job. If you know that Apple Mail is running
as process 317, for example, ps -p 317 will give you more process-related information.

Watching System Processes
The ps -ax command tells you which system processes are running, but if you want to
see what they are up to, you’ll need to look in the system log. To view the system log,
use the command tail. If you use the -f option, tail follows the file as it grows. So, if
you open up a new Terminal window and issue the following command, you can
monitor the informational messages that come out of system utilities:

$ tail -f /var/log/system.log
Oct 6 13:15:45 Daves-MacBook-Pro Kiwi for Gmail[35036]: [d1taylor@gmail.com]
GOT MESSAGE. RESTARTING IDLE
Oct 6 13:15:45 Daves-MacBook-Pro Kiwi for Gmail[35036]: [d1taylor@gmail.com]
STARTING IDLE
Oct 6 13:15:45 Daves-MacBook-Pro Kiwi for Gmail[35036]: [d1taylor@gmail.com]
GMFeed updateUnreadCountImportantUsingImap
Oct 6 13:15:45 Daves-MacBook-Pro Kiwi for Gmail[35036]: [d1taylor@gmail.com]
GMFeed updateUnreadCountImportantUsingImap: searchResult != nil
Oct 6 13:15:55 Daves-MacBook-Pro Kiwi for Gmail[35036]: [d1taylor@gmail.com]
GMFeed getMessagesUsingImap - BEFORE
Oct 6 13:15:55 Daves-MacBook-Pro Kiwi for Gmail[35036]: [d1taylor@gmail.com]
GMFeed getMessagesUsingImap - ON START with info count 10
Oct 6 13:15:55 Daves-MacBook-Pro Kiwi for Gmail[35036]: [d1taylor@gmail.com]
getMessages starting from uid: 238151
Oct 6 13:15:55 Daves-MacBook-Pro Kiwi for Gmail[35036]: [d1taylor@gmail.com]
getMessagesUsingImap[fetchOperation] - BEFORE
Oct 6 13:15:55 Daves-MacBook-Pro Kiwi for Gmail[35036]: [d1taylor@gmail.com]
getMessagesUsingImap[fetchOperation] msg count: 1
Oct 6 13:16:35 Daves-MacBook-Pro syslogd[43]: ASL Sender Statistics

When you’re done, use Control-C to quit tail’s monitoring and get a new command
prompt. You can also see some system messages by running the Console application
(/Applications/Utilities). Launch the Console, then click on the Show Logs List icon in
the toolbar. You’ll see that there’s a nice list of all the logfiles on your Mac, and if you
click on one, you can read through it for critical errors or just monitor what’s been
written to the logfile, exactly as you can with the tail -f command.

Canceling a Process
You may decide that you shouldn’t have put a process in the background, or that the
process is taking too long to execute. You can cancel a background process if you
know its PID.

160 | Chapter 7: Multitasking

kill
The kill command terminates a process. This has the same basic result as using the
Finder’s Force Quit option, though it can be more graceful, as you’ll see. To kill a pro‐
cess, use the following format:

kill PID(s)

OS X includes a very helpful utility called Force Quit, accessible
from the Apple menu (Apple Menu→Force Quit, or Option-⌘-
Esc), which can be quite useful when applications are stuck or non‐
responsive. However, commands entered into the Terminal
window can only be canceled from the command line—they don’t
show up in the Force Quit window. Additionally, Force Quit
doesn’t show you administrative processes. To stop Unix programs
and administrative processes, you must use either the command
line or the Activity Monitor (/Applications/Utilities).

kill terminates the designated PIDs (shown under the PID heading in the ps listing). If
you do not know the PID of the process you want to kill, you should first run ps to
display the status of your processes.

The following example illustrates how to enter two commands—sleep and who—on
the same line, and designate those to run as a background process. The sleep n com‐
mand simply causes a process to “go to sleep” for n seconds:

$ (sleep 60;who) &
[1] 981
$ ps
 PID TTY TIME CMD
 409 ttys000 0:00.09 -bash
 981 ttys000 0:00.00 -bash
 982 ttys000 0:00.00 sleep 60
 813 ttys001 0:00.02 -bash
 912 ttys001 0:00.58 vi ch07.asc
$ kill 981
[1]+ Terminated: 15 (sleep 60; who)

Here, I decided that 60 seconds was too long to wait for the output of who. The ps
listing showed that sleep had the PID number 982, so I used this PID to kill the sleep
process. You should see a message like “Terminated” or “Killed”; if you don’t, use
another ps command to make sure the process has been killed (or that you killed the
right process).

Now who executes immediately—as it’s no longer waiting on sleep—and displays a list
of users logged in to the system.

Canceling a Process | 161

killall
If you’d rather not worry about finding the PID for a particular process, you can
always use the killall command, which lets you kill processes by name instead. Since
it’s possible to inadvertently kill a different process with the same name (like your
Terminal application or your shell), I strongly recommend that you always start by
using the -s option so killall shows you what it’ll do without actually killing anything:

$ (sleep 60;who) &
[2] 990
$ killall -s make
No matching processes belonging to you were found
$ killall -s who
No matching processes belonging to you were found
$ killall -s sleep
kill -TERM 991
kill -TERM 986

Did it surprise you that there’s no match to killall -s who even though sleep;who is
running in the background? The reason it didn’t match is because the who command
itself isn’t yet running, but the sleep command is; you can see that it’s matched by the
third instance of killall.

If you have eagle eyes, you’ll notice that the sleep command’s PID isn’t the same as the
PID given by the shell when the sleep;who command was dropped into the back‐
ground. That’s because when a job is put into the background, the shell copies itself,
and then the copy shell (Unix folk call that the subshell) manages the commands. It’s
the subshell that has PID 990, and sleep is a subprocess of that shell, so it gets a differ‐
ent PID: 991. When sleep finishes and the who command runs, that’ll have yet
another PID (most likely 992).

To kill the sleep process, simply remove the -s flag from the killall command, or, if
you’re curious, replace it with -v so you can see what the program does:

$ killall sleep
-bash: line 52: 995 Terminated: 15 sleep 60
taylor console May 14 10:50
taylor ttys000 May 14 11:39
taylor ttys001 May 14 11:56
$ killall -v sleep
No matching processes belonging to you were found
[1]+ Done (sleep 60; who)

Notice that the first killall killed the sleep process, which immediately caused who to
be run. When I tried to use killall again with the -v flag, it was too late and there was
no longer a sleep command running.

162 | Chapter 7: Multitasking

The Process Didn’t Die When I Told It To
Some processes can be hard to kill. If a normal kill is not working, try entering:

kill -9 PID

Or, if you’re using killall, try:

killall -9 name

This is a sure kill, and can destroy almost anything, including the shell itself. Most
Unix folk refer to the -9 option as “terminate with extreme prejudice,” a nod to the
popular James Bond movie series.

Also, if you’ve run an interpreted program (such as a shell script), you may not be
able to kill all dependent processes by killing the interpreter process that got it all
started. You may need to kill them individually; however, killing a process that is feed‐
ing data into a pipe generally kills any processes receiving that data.

Launching GUI Applications
One great feature of OS X’s Unix command line is that you can interact with the
graphical applications in Aqua. For example:

• Drag a file or folder from the Finder onto a Terminal window and watch as its
full pathname gets dropped in after the command prompt.

• Want to use vi to edit a text file that’s on your Desktop? Just type vi on the com‐
mand line, followed by a space, and then drag the file onto the Terminal window.

• When viewing a file in the Finder, you’ll see what’s known as a proxy icon in the
Finder’s title bar that shows you what directory you’re in. Type cd followed by a
space, then drag the proxy icon into the Terminal window and press Return;
you’ll be taken to that same exact location, just in the Terminal.

If you can have the Finder interact with the Terminal, it should be no surprise to you
that you can also have the Terminal interact with other graphical applications on the
Mac. For this, OS X offers the open command.

open
By default, the open command works identically to double-clicking an icon in the
Finder. To open up a picture file called peanut.jpg in your default picture editor, use:

$ open peanut.jpg

Launching GUI Applications | 163

If you don’t have a graphics-editing application like Photoshop installed, the image
opens in Preview (/Applications). If Preview is already running, the peanut.jpg image
file opens in a new window.

The open command also lets you work at the command line with file matching, since
it accepts more than one filename at a time. For example, if you need to open up a
bunch of Microsoft Word files in a directory, just use:

$ open *.doc

You can, however, get things a bit confused, because sometimes the system doesn’t
know what to do with certain files. For example, try issuing the following command:

$ open .profile

The default application that’s used when there’s no specific binding is TextEdit, which
works in this instance, but look what happens when you try to open something it
can’t recognize:

$ open .sample.swp
No application knows how to open /Users/taylor/Desktop/.sample.swp.

In this case, open just couldn’t figure out what to do with this temporary scratch file
from the vi editor. That’s because open uses a file’s creator and/or type code to deter‐
mine which application should be used to open a particular file. Since vi’s scratch files
don’t have a creator or type code, the command gets confused and ends up doing
nothing.

What Are Creator and Type Codes?
Unlike other operating systems, whenever you create and save a file with an applica‐
tion on the Mac, the application you use assigns its creator and type codes to the file.
These codes are four characters in length and can contain upper- and lowercase let‐
ters, numbers, and even spaces. OS X uses these codes to figure out which icon gets
assigned to certain files and, more importantly, to determine the default application
for opening that file.

For example, in the Terminal, you can create a blank file on your Desktop with the
following command:

$ touch ~/Desktop/myFile.txt

As you can see from the file extension (.txt), this is a plain-text file. If you were to
double-click on this file, and if you didn’t have another graphical text editor on your
system, the file would open in TextEdit.

However, if you rename that file and give it a .doc extension:

$ mv myFile.txt myFile.doc

164 | Chapter 7: Multitasking

you can trick the system into thinking that it’s a Word file. Don’t believe me? Just try
double-clicking the file and see which application opens it!

If you’ve installed the Xcode Tools on your Mac, you can use a couple of special
command-line utilities to peek inside a file to see its creator and type codes. For
example, the following displays the output of the GetFileInfo command (located
in /usr/bin) when used on a Word file:

$ GetFileInfo Column.42.docx
file: "/Users/taylor/Documents/Linux Journal/Column.42.docx"
type: "W8BN"
creator: "MSWD"
attributes: avbstclinmedz
created: 09/02/2015 20:45:22
modified: 09/07/2015 20:45:22

Here you can see that the creator code is MSWD, short for Microsoft Word. Note that
some of this information is also available with mdls, as explored in “Listing Spotlight
Metadata with mdls” on page 127.

Useful Starting Options for Use with open
The open command has a lot of power accessible through command options. For
example, if you want to stream a bunch of input into a text file then open it in an
Aqua file, you can do so by using the -f option:

$ mdfind NIKON | open -f

This quick call to Spotlight generates a list of all filenames that reference or include
NIKON. It would be easy to generate a printout with TextEdit, too.

The most useful option for use with open is -a, which is used to specify an application
to open. For example, you can launch Messages with the generic open command, but
you need to know where it’s located on your system:

$ open messages
The file /Users/taylor/Desktop/messages does not exist.

Add the -a option, though, and open knows that you’re talking about an application,
so it’ll search in the /Applications directory to find and launch it:

$ open -a messages

Notice that open is smart enough to ignore case: the actual application is called Mes‐
sages. You can also use the open -a command to open applications that are in a sub‐
directory of /Applications. Want to launch the Console (located in /Applications/
Utilities)? Use open -a console. Ready to compare the output of Activity Monitor to
the ps command, as discussed earlier in this chapter? Launch Activity Monitor with
open -a “activity monitor”.

Launching GUI Applications | 165

https://developer.apple.com/technologies/tools/

If you want to open a file with TextEdit, there’s another option to open that’s worth
knowing: use open -e, and whatever you specify will be opened with the TextEdit pro‐
gram, regardless of its type. For example, if you wanted to open an HTML file in
TextEdit instead of with BBEdit, you could use the following:

$ open -e ~/Sites/someFile.html

The open command will then look in your Sites folder for the file someFile.html and
open it in TextEdit.

Making open More Useful
open makes it a breeze to launch your favorite applications, but because it requires
that you type in the full application name, a few aliases are in order:

alias word="open -a Microsoft\ Word"
alias excel="open -a Microsoft\ Excel"
alias gc="open -a GraphicConverter\ 9"

With these added to your .profile file, you can easily launch Graphic Converter by just
entering gc, and launch Microsoft Excel with excel and Microsoft Word with word.

A more sophisticated approach would be to use a shell script wrapper that would give
its arguments to open and, if they failed, try to figure out what application you were
talking about. It’s an advanced topic, but here’s how that script might look:

#!/bin/sh

open2 - a smart wrapper for the cool OS X 'open' command
to make it even more useful. By default, open launches the
appropriate application for a specified file or directory
based on the Aqua bindings, and has a limited ability to
launch applications if they're in the /Applications dir.

first off, whatever argument we're given, try it directly:

open=/usr/bin/open

if ! $open "$@" >/dev/null 2>&1 ; then
 if ! $open -a "$@" >/dev/null 2>&1 ; then

 # More than one arg? Don't know how to deal with it: quit
 if [$# -gt 1] ; then
 echo "open: Can't figure out how to open or launch $@" >&2
 exit 1
 else
 case $(echo $1 | tr '[:upper:]' '[:lower:]') in
 acrobat) app="Acrobat Reader" ;;
 address*) app="Contacts" ;;
 chat) app="Messages" ;;
 cpu) app="Activity Monitor" ;;
 dvd) app="DVD Player" ;;

166 | Chapter 7: Multitasking

 word) app="Microsoft Word" ;;
 excel) app="Microsoft Excel" ;;
 prefs) app="System Preferences" ;;
 qt|quicktime) app="QuickTime Player" ;;
 *) echo "open: Don't know what to do with $1" >&2
 exit 1
 esac
 echo "You asked for $1 but I think you mean $app." >&2
 $open -a "$app"
 fi
 fi
fi

exit 0

This script has a simple table of nicknames for common applications, allowing you to
use open2 qt to launch QuickTime Player, for example.

This script is based on one in my book, Wicked Cool Shell Scripts
(No Starch Press), which explains 101 powerful and interesting
shell scripts. You can learn about the book, and download this
script for yourself, at http://intuitive.com/wicked/.

Launching GUI Applications | 167

http://intuitive.com/wicked/

CHAPTER 8

Taking Unix Online

A network lets computers communicate with each other, share files, send email, and
much more. Unix systems have been networked for more than 30 years, and OS X has
had networking as an integral part of the system design from day one. In fact, Apple‐
Talk was the first computer network that let computers connect directly together
without needing a server in the middle.

This chapter introduces Unix networking: remotely accessing your Mac from other
computers and copying files between computers. It also shows you how the Termi‐
nal’s “New Remote Connection” feature can make common connections a breeze
once you’ve set them up initially.

Remote Logins
There may be times when you need to access your Mac, but you can’t get to the desk
it’s sitting on. If you’re working on a different computer, you may not have the time or
inclination to stop what you’re doing, walk to your Mac, and log in (laziness may not
be the only reason for this: perhaps someone else is using your Mac when you need to
get on it, or perhaps your Mac is miles away). OS X’s File Sharing (System Preferen‐
ces→Sharing→File Sharing) lets you access your files, but there may also be times you
want to use the computer interactively, perhaps to move files around, search for a
particular file, or perform a system maintenance task.

If you enable Remote Login (System Preferences→Sharing→Remote Login), as
shown in Figure 8-1, you can access your Mac’s Unix shell from any networked com‐
puter that can run the Secure Shell (ssh) client.

169

Figure 8-1. Enabling Remote Login in the Sharing preferences panel

The ssh client program is included with OS X (access it from within the Terminal)
and all Unix and Linux systems. And just in case you need to access your Mac from a
Windows system, there are a number of different ssh applications available, the two
best of which are:

• SSH
• OpenSSH

Figure 8-2 shows how remote login programs such as ssh work. In a local login, you
interact directly with the shell with the Terminal application. In a remote login, you
run a remote-access program (such as SSH) on your local system, and that program
lets you interact with a shell program on the remote system. When you enable
Remote Login, the Sharing panel displays instructions for logging in to your Mac
from another computer. This message is shown in Figure 8-1, roughly in the middle
of the window:

To log in to this computer remotely, type "ssh taylor@172.31.98.38".

170 | Chapter 8: Taking Unix Online

http://www.ssh.com
http://www.openssh.com/

Figure 8-2. Local login, remote login

To log in to your Mac from a remote Unix system, use the command displayed in the
Sharing panel, as shown in the following sample session. Here, a user on a Red Hat
Linux system is connecting to an OS X computer (the first time you connect, you’ll be
asked to vouch for your Mac’s authenticity):

$ ssh taylor@172.31.98.38
The authenticity of host '172.31.98.38 (172.31.98.38)' can't be established.
ECDSA key fingerprint is SHA256:Ktu5bcJtQfn8ZBsPqZaUs0xkhTi9gVlXi5xZX/kgrL8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '172.31.98.38' (ECDSA) to the list of known hosts.
Password:
Last login: Tue Oct 6 23:43:07 2015

If you have a firewall running, you need to open up a network port
to allow remote connections into your computer from outside your
network if you want it to work bidirectionally. If you’re just using
ssh to connect outwards, you should be fine regardless of firewall
settings. You can learn more about how to do this by starting with
Apple’s Help system. In the Finder, use Command-? to launch Help
Viewer, then search for “firewall.”

To log in to your Mac from a Windows machine using PuTTY, launch the PuTTY
application, specify SSH (the default on the latest version, but not older versions of
PuTTY), and type in your OS X system’s IP address, as shown in the Mac’s Sharing
panel. PuTTY prompts you for your OS X username and password. Figure 8-3 shows
a sample PuTTY session.

Remote Logins | 171

Figure 8-3. Connecting to OS X with PuTTY

For the most part, being connected via ssh is identical to using the Terminal applica‐
tion itself. You can even use the open command (discussed in Chapter 7) to launch
applications on the Macintosh system, which can surprise the heck out of anyone
who might be watching the screen! Of course, you won’t be able to use the applica‐
tions if you’re remote.

To run OS X applications remotely from another Mac, enable
Screen Sharing in System Preferences→Sharing. In the Screen
Sharing description, you can also click Computer Settings to enable
access from non-Mac computers using Virtual Network Comput‐
ing (VNC) software. Once you’ve enabled Screen Sharing, open the
Finder on another Mac on the same network, and find your Mac in
the list. You’ll see an option to connect to the screen. If you’ve got
“Back to My Mac” enabled under iCloud, you don’t even need to be
on the same network to connect from one Mac to another!

One of the very few differences is that the system records the Internet address of the
system from which you’re connected remotely, as shown in this who output:

$ who
taylor console Oct 13 16:56
taylor ttys000 Oct 13 17:00
taylor ttys001 Oct 13 17:10 (1)72.31.98.38

The third entry is a remote connection by a user on a different computer.

Web Access
Unlike previous editions of OS X, El Capitan does not include an option for starting
the web server automatically. You can either install OS X Server from the Mac App

172 | Chapter 8: Taking Unix Online

Store, or you can start the web server manually from the Terminal, with this com‐
mand:

$ sudo apachectl start

Use this command to make sure that the web server starts each time you boot the
computer:

$ sudo defaults write /System/Library/LaunchDaemons/org.apache.httpd \ ↩
 Disabled -bool false

Remote Access and the Outside World
If your Macintosh has an IP address that was assigned by an AirPort Base Station or
other type of network router running the Dynamic Host Control Protocol (DHCP),
then it’s probable that your machine is inaccessible to the outside world. Because of
this, you will be able to connect to your Mac only from machines on your local net‐
work. You can allow remote users to connect by using the AirPort Utility (if you have
an AirPort Base Station) and following these steps:

1. Select your Base Station and click Edit.
2. Click the Network button in the toolbar.
3. Under Port Settings, click the Add (+) button to add a public TCP port that you

want to map to a private IP address and TCP port on your local network.

In older versions of the AirPort Utility, or in configuration utilities for other network
routers or access points, the configuration steps will be similar. Just look for Port For‐
warding.

For Remote Login via ssh, you must map port 22 to your Macintosh; use port 80 for
Personal Web Sharing. Other gateways may support this feature as well.

If you use this technique, the IP address shown in the Sharing preferences panel will
be incorrect. You should use your AirPort Base Station’s WAN address when you con‐
nect from a computer outside your local network.

Remote Access to Other Unix Systems
You can also connect to other systems from OS X. To do so, launch the Terminal
application, and then start a program that connects to the remote computer. In addi‐
tion to ssh, some typical programs for connecting over a computer network include
telnet, rsh (remote shell), and rlogin (remote login). All of these are supported by and
included with OS X. In any case, when you log off of the remote computer, the
remote login program quits and you get another shell prompt from your Mac in the
Terminal window.

Remote Logins | 173

My websites are running on a remote NetBSD system, and I use ssh from the Termi‐
nal window on my Mac so often that I have an alias to make it easy to pop on and
tweak things:

alias vps="ssh dtaylor@intuitive.com"

While you can use ssh, telnet, rsh, or rlogin to connect to a remote
system, security experts highly discourage the use of anything other
than ssh, because none of the others are as secure. This means that
when you type in your username and password, the information
could be sent “in the clear” to the remote system, exposing you to
possible “sniffers,” who will then be able to log in as if they were
you. Better safe than sorry: insist that the remote system support
ssh, and use it exclusively!

The syntax for ssh is:

ssh remote-user@remote-hostname

For example, when Dr. Nelson wants to connect to the remote computer named
biolab.medu.edu, her first step is to launch the Terminal. Next, she’ll need to use the
ssh program to reach the remote computer. Her session will look something like this:

Welcome to Darwin!

$ ssh nelson@biolab.medu.edu
nelson@biolab.medu.edu's password:

biolab$
.
.
.
biolab$ exit
Connection to biolab.medu.edu closed.
$

As you can see, the shell prompt from her account on the biolab server includes the
hostname. This is helpful, because it reminds her when she’s logged in remotely, and
after exiting the remote system, she’ll also know when she’s back in her own territory.
If you use more than one system but don’t have the hostname in your prompt, see
“Changing the Command Prompt” on page 33 in Chapter 2 to find out how to add it.

When you’re logged on to a remote system, keep in mind that the commands you
type take effect on the remote system, not on your local one! For instance, if you use
lpr to print a file (see “Printing” on page 149), the printer it comes out from won’t be
the one sitting under your desk, but one that might be hundreds or thousands of
miles away.

174 | Chapter 8: Taking Unix Online

The programs rsh, rlogin, and ssh generally don’t give you a login: prompt. These
programs assume that your remote username is the same as your local username. If
they’re different, you’ll need to provide your remote username on the command line
of the remote login program, as shown earlier for ssh.

You may be able to log in without typing your remote password or passphrase. In ssh,
you can run an agent program, such as ssh-agent, that asks for your passphrase once,
then handles authentication every time you run ssh or scp (secure copy) afterward.
Otherwise, you’ll be prompted after entering the remote login command line.

The following are four sample ssh and rsh command lines. The first pair shows how
to log in to the remote system biolab.medu.edu when your username is the same on
both the local and remote systems. The second pair shows how to log in if your
remote username is different (in this case, jdnelson). Note that the OS X versions of
ssh and rsh may support both syntaxes shown, depending on how the remote host is
configured:

$ ssh biolab.medu.edu
$ rsh biolab.medu.edu
$ ssh jdnelson@biolab.medu.edu
$ rsh -l jdnelson biolab.medu.edu

About Security
Today’s Internet and other public networks have users who try to break into comput‐
ers and snoop on other network users. While the popular media calls these people
hackers, the correct term to use is crackers. (Most hackers are self-respecting pro‐
grammers who enjoy pushing the envelope of technology, but never cause trouble on
remote systems.)

Keep in mind that with ssh, telnet, and related programs, the “shell” you’re in, the pro‐
grams you run, and the CPU you utilize are all on the remote system. What you see
on your local Terminal screen is essentially just a bunch of text characters being
transmitted back and forth across the network to show you what’s going on remotely.

Most remote login programs (and file transfer programs, which we cover in the next
section) were designed 25 or more years ago, when networks were friendly places
with cooperative users. Those programs (many versions of telnet and rsh, for
instance) make a cracker’s job easy. They transmit your data, including your pass‐
word, across the network in a way that allows even the most inexperienced cracker to
read it. Worse, some of these utilities can be configured to allow access without pass‐
words, opening up a huge security hole.

SSH is different; it was designed with security in mind. It sends your password (and
everything else transmitted or received during your SSH session) in a secure way. For
more details on SSH, start with the ssh manpage; then, if you want to know (lots)

Remote Logins | 175

more, I recommend the book SSH, The Secure Shell: The Definitive Guide, by Daniel J.
Barrett, Richard Silverman, and Robert G. Byrnes (O’Reilly).

Transferring Files
You may need to copy files between computers. For instance, you can put a backup
copy of an important file you’re editing onto a computer in another building or
another city, or copy a file from your local computer onto a central computer, where
your colleagues can access it. Or you might want to download 20 files from an FTP
server, but don’t want to go through the tedious process of clicking on them one by
one in a web browser.

If you need to do this sort of thing often, you may be able to set up a networked file‐
system connection; then you’ll be able to use the Finder or local programs such as cp
and mv to help you move files around on your own network. But Unix systems also
have command-line tools such as scp and rcp for transferring files between comput‐
ers. These often work more quickly than most graphical applications, and believe it or
not, they’re pretty easy to use, as we’ll explore in this section.

scp and rcp
OS X includes both scp (secure copy) and rcp (remote copy) programs for copying
files between two computers. In general, you must have accounts on both computers
to use these commands. The syntax of both scp and rcp is similar to that of cp, but
they also let you add the remote hostname to the start of a file or directory pathname.
The syntax of each argument is:

hostname:pathname

hostname is needed only for remote files. You can copy from a remote computer to
the local computer, from the local computer to a remote computer, or between two
remote computers (aka “third-party copy”).

The scp program is much more secure than rcp, so I suggest using scp to transfer pri‐
vate files over insecure networks such as the Internet. For privacy, scp encrypts the
file and your passphrase during the transfer of the data.

The general syntax for scp is:

scp [[user@]host1:]FromFile [[user@]host2:]ToFile

For both the From and To files, if either is on a remote host, you need to specify the
hostname. And if any remote host involves a different username than what you are
currently using locally, you must specify that as well.

176 | Chapter 8: Taking Unix Online

http://shop.oreilly.com/product/9780596008956.do

For example, suppose you want to copy the files report.may and report.june from your
home directory on the computer named w2.intuitive.com and put the copies into
your working directory (.) on the machine you’re presently logged into. If you haven’t
set up an SSH agent that lets you use scp without typing your passphrase (password),
scp asks you for it:

$ scp w2.intuitive.com:report.may w2.intuitive.com:report.june .
Enter passphrase for RSA key 'taylor@mac':

To use wildcards in the remote filenames, put quotation marks ("name") around each
remote name. Quotes tell the local shell not to interpret special characters, such as
wildcards, in the filename. The wildcards are passed, unquoted, to the remote shell,
which interprets them there.

You can use absolute or relative pathnames; if you use relative pathnames, they start
from your home directory on the remote system. For example, to copy all files from
your remote w2 account’s food/lunch subdirectory into your local working directory
(.), enter:

$ scp "w2.intuitive.com:food/lunch/*" .

Unlike cp, the OS X versions of scp and rcp don’t have an -i safety option. If the files
you’re copying already exist on the destination system (in the previous example, that’s
your local machine), those files are overwritten. To be safe, always use ls to check
what’s in the destination directory before you copy files.

Two useful command options for use with scp are -p, which preserves the creation
and modification dates of the original file in the copy, and -r, which lets you recur‐
sively copy folders and their contents to the remote system. For example, to copy
everything in my Pictures directory to the w2 server, I would use:

$ scp -r ~/Pictures w2.intuitive.com:.

If your system has rcp, your system administrator may not want you to use it for sys‐
tem security reasons. Another program, ftp, is more flexible than rcp (but much less
secure than scp, which is itself less secure than sftp).

FTP
The File Transfer Protocol, or FTP, is a standard way to transfer files between two
computers. Many users of earlier Mac OS versions are familiar with Fetch, a share‐
ware graphical FTP client that runs on all versions of OS X. There are also a number
of graphical FTP programs available from the Mac App Store (search for “ssh” or
“ftp”). While Fetch offers an easy-to-use interface, it also comes with a price tag,
which begs the question: why spend your hard-earned cash on Fetch when you get
FTP services for free with Unix?

Transferring Files | 177

http://www.fetchsoftworks.com

The Unix ftp program does FTP transfers from the command line. Since it’s fast, easy,
and portable, I’ll cover the standard ftp program here.

To start ftp, identify yourself to the remote computer by giving the username and
password for your account on that remote system.

Sending your username and password over a public network with
ftp means that snoopers might see them, and then use them to log
in to your account on that system. Instead, you should use sftp,
because it uses SSH for an encrypted, secure FTP connection.

A special kind of FTP, anonymous FTP, happens if you log in to the remote server
with the username anonymous. The password is your email address, such as tay‐
lor@intuitive.com. (The password isn’t usually required; it’s a courtesy to the remote
server.) Anonymous FTP lets anyone log in to a remote system and download pub‐
licly accessible files to their local systems.

Command-line ftp
To start the standard Unix ftp program, provide the remote computer’s hostname:

ftp hostname

ftp prompts for your username and password on the remote computer. This is some‐
thing like a remote login (see “Remote Logins” on page 169, earlier in this chapter),
but ftp doesn’t start your usual shell. Instead, ftp has its own prompt and uses a spe‐
cial set of commands for transferring files. Table 8-1 lists the most important ftp com‐
mands.

Table 8-1. Some ftp commands

Command Description

put filename Copies the file filename from your local computer to the remote computer. If you give a second
argument, the remote copy will have that name.

mput filenames Copies the named files (you can use wildcards) from the local computer to the remote computer.

get filename Copies the file filename from the remote computer to your local computer. If you give a second
argument, the local copy will have that name.

mget filenames Copies the named files (you can use wildcards) from the remote computer to the local computer.

178 | Chapter 8: Taking Unix Online

Command Description

prompt A “toggle” command that turns prompting on or off during transfers with the mget and mput
commands. By default, mget and mput will prompt you with mget filename ? or mput filename ? before
transferring each file; you answer y or n each time. Typing prompt once, from an ftp> prompt, stops
the prompting; all files will be transferred without question until the end of the ftp session. Or, if
prompting is off, typing prompt at an ftp> prompt resumes prompting.

hash Displays progress marks on file uploads and downloads so you can gauge progress. Particularly helpful
with large transfers.

cd pathname Changes the working directory on the remote machine to pathname (ftp typically starts at your home
directory on the remote machine).

lcd pathname Changes ftp’s working directory on the local machine to pathname. (ftp’s first local working directory
is the working directory from which you started the program.) Note that ftp’s lcd command changes only
ftp’s working directory. After you quit ftp, your shell’s working directory will not have changed.

dir Lists the remote directory (like ls -l).

pwd Displays the present working directory.

binary Tells ftp to copy the file(s) that follow it without translation. This preserves pictures, sound, or other
data.

ascii Transfers plain-text files, translating data if needed. For instance, during transfers between a Microsoft
Windows system (which adds Control-M to the end of each line of text) and a Unix system (which
doesn’t), an ASCII-mode transfer removes or adds those characters as needed.

passive Toggles the setting of passive mode. This may help ftp to run correctly if you are behind a firewall. If you
put the command export FTPMODE=passive in your .profile file, all your ftp sessions will use
passive mode.

quit or bye Ends the ftp session and takes you back to a shell prompt.

!cmd Gives the specified command to a shell, displays its output, then returns to the ftp program.

Here’s an example. Kiana moves into the local directory she wants to use as a starting
point (a good idea whether you’re uploading or downloading). She then lists the files
in her current directory to see what’s there, and uses ftp to connect to an FTP server
located at rhino.zoo.edu. After using her username and password to log on, Kiana
changes remote directories to the work subdirectory, then gets the todo file and
downloads that to her local machine. After receiving the “Transfer complete” mes‐
sage, Kiana uses the !ls command to make sure that the file she transferred is on her
local machine. Then, with the knowledge that the file is there, she quits the FTP ses‐
sion:

Transferring Files | 179

$ cd downloads
$ ls
afile ch2 somefile
$ ftp rhino.zoo.edu
Connected to rhino.zoo.edu.
Name (rhino:kiana): ktaylor
Password:
ftp> cd work
ftp> dir
total 3
-rw-r--r-- 1 csmith mgmt 47 Feb 5 2001 for.ed
-rw-r--r-- 1 csmith mgmt 264 Oct 11 12:18 message
-rw-r--r-- 1 csmith mgmt 724 Nov 20 14:53 todo
ftp> get todo
local: todo remote: todo
227 Entering Passive Mode (17,254,16,11,224,18).
150 Opening BINARY mode data connection for todo (724 bytes)
226 Transfer complete.
724 bytes received in 00:00 (94.06 KB/s)
ftp> !ls
afile ch2 somefile todo
ftp> quit
$ ls
afile ch2 somefile todo

We’ve explored the most basic ftp commands here. Entering help at an ftp> prompt
gives a list of all available commands; entering help followed by an ftp command
name gives a one-line summary of that command.

sftp: ftp to secure sites
If you can only use ssh to connect to a remote site, chances are it won’t support regu‐
lar ftp transactions either, due to higher security restrictions. That’s a good thing,
though, and I encourage you to always defer to using sftp if it’s an option, particularly
if you’re on a public WiFi or other public network.

The good news is that OS X also includes sftp, a version of ftp that’s part of the ssh
package and works similarly to regular ftp. To run the program, type sftp at the com‐
mand line. Here’s an example:

$ cd Downloads
$ sftp taylor@intuitive.com
taylor@intuitive.com's password:
Connected to intuitive.com.
sftp> cd mybin
sftp> dir -l
drwxr-xr-x 0 24810 100 1024 Jun 26 20:18 .
drwxr-xr-x 0 24810 100 1536 Sep 16 18:59 ..
-rw-r--r-- 0 24810 100 140 Jan 17 2014 .library.account.info
-rwxr-xr-x 0 24810 100 3312 Jan 27 2014 addvirtual
-rw-r--r-- 0 24810 100 406 Jan 24 2014 trimmailbox.sh

180 | Chapter 8: Taking Unix Online

-rwxr-xr-x 0 24810 100 1841 Jan 24 2014 unpacker
-rwxr-xr-x 0 24810 100 946 Jan 22 2014 webspell
sftp> get webspell
webspell 100% 946 4.7KB/s 00:00
sftp> quit
$ ls -l webspell
-rwxr-xr-x 1 taylor taylor 946 25 Sep 11:28 webspell

The sftp program also has a very useful option that you can specify when you’re copy‐
ing files. The -P option causes the program to preserve the original file’s creation and
modification date and time information:

sftp> get -P webspell

Additional helpful commands include lcd, lls, and lmkdir, to change your location in
the local filesystem, list the files in the current local working directory, and make a
new local directory, respectively. You can also use the ! escape to access any Unix
command from within sftp. Like the ftp program, sftp also has built-in help, which
you can access by typing help at the prompt.

FTP with a web browser
If you need a file from a remote site, and you don’t need all the control that you get
with the ftp program, you can use a web browser to download files using anonymous
FTP. To do that, enter a URL (location) with this syntax:

ftp://hostname/pathname

For instance, ftp://somecorp.za/pub/reports/2001.pdf downloads the file 2001.pdf from
the directory /pub/reports on the host somecorp.za. In most cases, you can start with
just the first part of the URL—such as ftp://somecorp.za—and browse your way
through the FTP directory tree to find what you want. If your web browser doesn’t
prompt you to save a file, use its Save menu command.

If you are using the Safari browser, it will open ftp: directories by
mounting them in the Finder as if you specified the ftp URL in the
Finder itself, as explained later in this chapter.

FTP with curl
A faster way to download a file is with the curl (copy from URL) command. For
example, to save a copy of the 2001.pdf report in the current directory, enter:

$ curl -O ftp://somecorp.za/pub/reports/2001.pdf

Without the -O option (that’s a capital letter O, not a zero), curl dumps the file to the
standard output (your screen). If you want to read a text file from an Internet server,
you can combine curl and less:

Transferring Files | 181

$ curl ftp://ftp.oreilly.com/pub/README.ftp | less

You can also use curl with web pages, but this brings the page up in HTML source
view:

$ curl http://www.oreilly.com | less

One strategy you could use, though it isn’t necessarily optimal, is to save HTML pages
locally, then open them in Safari:

$ curl http://www.oreilly.com > oreilly.html
$ open oreilly.html

or in Google Chrome:

$ curl http://www.oreilly.com > oreilly.html
$ open -a "Google Chrome" oreilly.html

Keep in mind that any graphics referenced by that page won’t have been retrieved by
curl, so it’s likely to be a bit messy. Indeed, there are better ways to work with HTML
pages on the command line, but they’re beyond the scope of this book.

FTP from the Finder
You can also mount remote FTP directories using the Finder, and then continue
accessing them with Finder actions, or access them with standard Unix commands in
the Terminal. In the Finder, choose Go→Connect to Server, then type ftp:// followed
by the name of the server that you want to access (such as ftp.oreilly.com). Figure 8-4
shows how this appears in the Finder.

Figure 8-4. Connecting to an FTP server in the Finder

If a password is required, another window pops up, asking you to authenticate with a
valid username and password. Enter those correctly—or, depending on the remote
settings, select “Guest”—and the new FTP disk appears on your Desktop. It is now
accessible in the /Volumes directory, as shown here:

182 | Chapter 8: Taking Unix Online

$ ls -l /Volumes/
total 16
lrwxr-xr-x 1 root admin 1 Oct 1 10:02 BigHD@ -> /
drwxrwxrwx 0 root wheel 0 Oct 7 14:35 MobileBackups/
dr-xr-xr-x 1 taylor staff 512 Oct 7 14:39 ftp.oreilly.com/
drwxrwxr-x@ 38 taylor staff 1360 Sep 5 20:08 red/

When you’re done with the FTP server, you can use the umount command to discon‐
nect:

$ umount /Volumes/ftp.oreilly.com

It’s considerably easier than using the ftp program!

Other FTP solutions
One of the pleasures of working with Unix within the OS X environment is that there
is a wealth of great graphical Mac applications. In the world of FTP-based file trans‐
fer, the choices are uniformly excellent, starting with Fetch, FlashFTP, Transmit,
Cyberduck, YummyFTP, and Viper FTP, and encompassing many other possibilities.
To see what options you have, just open the App Store and search for “ftp.”

Easy Shortcuts with New Remote Connection
The Terminal application has a very helpful feature that can make connecting to
remote systems via telnet, ssh, ftp, or sftp a breeze, once it’s set up. New Remote Con‐
nection is available via the Shell menu and is shown in Figure 8-5.

To add a service, click on the + icon on the left side of the window. More commonly,
you’ll add servers, which you can do by clicking on the + icon on the right side of the
window. This produces a window that asks for the hostname or host IP address,
which is easily entered, as shown in Figure 8-6.

Once added in one area, the new server is available for all services, so to connect to
my web server using SSH, I can simply choose ssh then the new server name, as
shown in Figure 8-7. Finally, the connection to my server is a breeze: specify the user‐
name, and click Connect. Easy enough!

Transferring Files | 183

Figure 8-5. New Remote Connection offers simple shortcuts

Figure 8-6. Adding a new server to New Remote Connection

184 | Chapter 8: Taking Unix Online

Figure 8-7. intuitive.com

Transferring Files | 185

CHAPTER 9

Of Windows and X11

OS X comes with great applications, and a trip to Apple’s App Store can bag you quite
a few more, but there’s also a flood of applications available to you solely because of
OS X’s Unix core. Many of these are applications that have been around for a long
time, and many are flowing in from other members of the Unix family, including
Linux and FreeBSD.

What’s different about these applications is that they’re not commercial apps like
Microsoft Office or Adobe Photoshop, they’re not shareware like Graphic Converter
and Fetch, and they’re not free, public domain applications. Most of the programs
available to the Mac community from Unix are a part of the active open source move‐
ment. They’re free to download—including source code, if you want it—but there are
constraints on what you can do with the programs. If you’re a programmer and make
any modifications, you are obligated to share those changes with the rest of the open
source community. It’s certainly a very different distribution model for software, but
don’t let the lack of a price tag fool you: open source applications are often as good as,
or even better than their commercial counterparts. Added bonus: having large teams
of programmers building open source apps means that if you do report a bug, the fix
can appear quickly, even sometimes the same day—a level of responsiveness that
Apple and Microsoft certainly can’t match.

Much open source software comes from university research. This chapter talks about
one of these wonderful open source applications: the X Window System, Version 11.
X11, as it’s called, is a graphical interface for Unix that’s been around a long, long
time. Although OS X’s shiny interface is fantastic, there are many powerful Unix pro‐
grams that require X11.

In earlier versions of OS X, Apple included X11, but the latest release marks the com‐
pany redirecting you to an open source X11 project called XQuartz. You can go there
directly, or you can simply double-click on the “X11” icon in /Applications/Utilities.

187

http://xquartz.macosforge.org/

In the latter instance, you’ll be shown a message like the one in Figure 9-1.

Figure 9-1. Time to install X11 from XQuartz

One warning before we start: while typical Mac applications—free‐
ware, shareware, or commercial—are a breeze to install thanks to
OS X’s Installer, Unix applications don’t have the same easy inter‐
face. This means that different programs have different installation
methods (sometimes requiring you to type in a sequence of com‐
mands in the Terminal, for example). The latest X11 installer is
easy, but once you get to individual X11 applications like GIMP, it
can get tricky fast. To address this problem, a team of dedicated
programmers have created a powerful software distribution and
installation system called Homebrew. There are a couple of alterna‐
tives, too: MacPorts and Fink.

X11
The X Window System (commonly called X11) is the standard graphical user inter‐
face for almost all Unix and Linux systems. While OS X is built upon a Unix core, it
turns out to be an exception to this rule because its default graphical interface is
Aqua, and it’s not directly X11-compatible. On OS X, a combination of components
called the Quartz Compositor (sometimes just referred to as Quartz), OpenGL, and
the CoreGraphics library are responsible for drawing what appears on your screen.

In an X11-based system, an application called an X server creates what you see on the
screen. The programs that run under X11, such as office applications, web browsers,
and terminal windows, are known as X clients. X servers and clients talk to each other
using standard Unix networking protocols: if an X11 word processor needs to pop up
a dialog asking whether you want to save a document, it makes a network connection
to the X server and asks it to draw that window. Because X11 is networked in this
way, you can run an X client on a Unix system in another office or across the planet,
and have it displayed by your computer’s X server.

188 | Chapter 9: Of Windows and X11

http://brew.sh/
http://www.macports.org
http://www.finkproject.org

X servers are typically full-screen applications, which means they completely take
over your display. Figure 9-2 shows a full-screen X server running on a Linux com‐
puter. Three applications are running: an xterm (which is similar to OS X’s Terminal),
a clock app, and a web browser showing the OS X El Capitan landing page at
Apple.com. In addition, a taskbar is visible along the side of the screen. This belongs
to the window manager, an X11 program that takes care of putting frames and win‐
dow controls (such as close, resize, and zoom) around application windows. The win‐
dow manager provides the overall look and feel, and also lets you launch applications
and log out of X11. X11 users have many window managers to choose from; the one
shown in Figure 9-2 is lxde.

Figure 9-2. An X server running on Linux

When X11 was included with OS X, Apple shipped what’s called a rootless X server.
Now the path to X11 is through XQuartz, the open source version of X11 that’s com‐
patible with Quartz and, of course, OS X El Capitan and previous versions of the
operating system. It, too, is rootless. What’s that mean? Simple: it’s an X server that
won’t take over your entire screen. XQuartz’s X11 implementation, which includes the
X server, many common X clients, and a software development kit for writing X11
applications, is derived from an implementation of X11 called X.Org. This is the X11
release used on Linux, FreeBSD, NetBSD, OpenBSD, and many other Unix operating
systems.

Apple also created an X11 window manager, quartz-wm, which draws X11 windows
that look and behave much like Quartz windows.

Using X11
You can most easily launch X11 by double-clicking on the X11 icon, located in /Appli‐
cations/Utilities. Most likely, once it launches, nothing will appear to happen. Look

X11 | 189

http://www.x.org

closely at the menu bar on the top of your Mac’s screen, however, and you’ll see X11
appear with its minimal menu options.

You can launch a new xterm window by selecting the Terminal item from its Applica‐
tions menu (or using ⌘-N). Don’t confuse this with OS X’s Terminal application!
Under X11, the program you use to type in Unix commands is also a terminal, except
it’s an X11-based terminal window, thus the name xterm. When you select the Appli‐
cations menu, you’ll see a list of shortcuts to other X11-based applications. By default,
there are options for:

• Terminal, which starts a new xterm
• xman, which lets you browse Unix manpages
• xlogo, which pops up a window displaying the X logo

Figure 9-3 shows X11 running along with these three applications and a manpage
browser information window from xman.

Figure 9-3. X11 running on the Mac

X11 includes many other applications as well. To see a list, examine the X11 applica‐
tion directory with the following command:

$ ls /opt/X11/bin/

190 | Chapter 9: Of Windows and X11

If you’re going to be working with X11 applications, you’ll want to
put /usr/X11/bin or /opt/X11/bin in your PATH by editing your .pro‐
file file (if you’re using bash) or your .login file (if you’re using tcsh).
For bash users, add this line:

PATH=${PATH}:/usr/X11/bin ; export PATH

tcsh users should add this line:
setenv PATH ${PATH}:/usr/X11/bin

The next time you launch a Terminal or xterm window, you’ll be
able to type in all the X11 application names at the command line
without specifying where they’re located.
Before you add this to your PATH, however, open a Terminal and
type echo $PATH. The XQuartz installer may have already done this
for you.

Here are a few of the utilities included with OS X’s X11:

bitmap
An X11 bitmap (.xbm) editor.

glxgears
An OpenGL 3D graphics demonstration. OpenGL applications running under
Apple’s X11 implementation have the benefit of full 3D hardware acceleration.

glxinfo
Displays information about OpenGL capabilities.

oclock
An X11-based clock application.

xcalc
A calculator program that runs under X11.

xeyes
A pair of eyeballs that follow the mouse cursor around the screen.

xhost
Gives another computer permission to open windows on your display.

xkill
Changes your cursor to the “cursor of doom.” Any X11 window you click in will
be shut down. If you change your mind and don’t want to kill an app, press
Control-C. This won’t kill any Aqua applications; it works only on X11 applica‐
tions.

xload
Displays the CPU load.

X11 | 191

xwud
An image display program for X11.

None of these X11 applications included with OS X’s X11 package are very interest‐
ing, and their interfaces are retro 1980s in complexity and use of color, as you’ll
quickly realize, but bear with me; there are a wealth of great X applications available
online.

Differences Between OS X and X11
There are some significant differences between X11 and the OS X interface that you
need to watch out for. Although Apple’s X11 does a great job of minimizing these dif‐
ferences, there are still some quirks that may throw you off:

Figure 9-4. Comparing X11 menu styles

Mouse focus
OS X’s Aqua interface doesn’t care where your mouse is located: the application
in front of the other apps is the one that sees your keystrokes. X11 doesn’t work
that way (depending on your X11 settings), and you might find that it uses some‐
thing called mouse focus to decide where your keyboard input should be sent.
Even having your mouse on the scrollbar or just slightly off the edge of the appli‐
cation window leaves you in limbo. Don’t be surprised if this happens: just move
your cursor into the middle of the target application window and you’ll be fine.

Cutting and pasting
If you press ⌘-C (copy) while you have something selected in an X11 window,
you can paste it into another OS X application. But that’s where the similarity
ends: to paste something into an X11 window, you can’t use ⌘-V. Instead, use
Option-click (you must enable three-button emulation in X11’s preferences first).
If you have a three-button mouse, press the middle button to paste into an X11
window.

X11 application menus
The menu at the top of the screen always belongs to X11 itself. Individual X11
applications may have their own menus near the top of their main windows.

192 | Chapter 9: Of Windows and X11

Figure 9-4 shows two different types of X11 application menus: a classic X11
menu from xmh (an X11 mail reader) and a more modern X11 menu from Ink‐
Scape (a vector drawing application).

Be careful with ⌘-Q
If you press ⌘-Q (quit) while running an X11 application, this shuts down all of
X11 and any X applications you’re running. Because of this, you’ll get a warning
if you try to do this when there are X11 clients running. Look for a quit option
on the X11 application’s own menu, or click the close button on its window.

Scrolling in the xterm
By default, the xterm doesn’t have scrollbars. However, as in the Terminal, you
can use a keystroke to scroll up and down. Unfortunately, it’s not the same key‐
stroke: the Terminal uses ⌘-Page Up and ⌘-Page Down (or, if you’re using a Mac‐
Book or MacBook Pro, Shift-Fn up arrow or Shift-Fn down arrow), while the
xterm expects Shift-Page Up and Shift-Page Down.

Launching applications from the xterm
When you type the name of an X11 program in the xterm, it launches, but the
xterm window appears to hang because it is waiting for the program to exit. To
avoid this problem, you can append the & character after the program name to
put it in the background. Another option is to press Control-Z after the program
starts, and type bg to put the program in the background. (See Chapter 7 for a
refresher on how to place Unix processes in the foreground or background.)

X11, .bashrc, and .profile
If you’ve customized your Unix shell by editing ~/.profile, applications that run
under X11, including the xterm, won’t respect the settings in that file. To correct
this problem, put any essential settings in your ~/.bashrc file, which X11 does
read.

Customizing X11
One of the big differences between X11 and OS X is that X applications expect that
you have a three-button mouse. Meanwhile, Apple still assumes that you have a
single-button mouse and you don’t mind occasionally holding down the Control key
to emulate right-mouse-button actions. X11 is built on a three-button mouse, so as
an X user, you need to know how to get to all of those buttons. That’s one of the key
preferences accessible from the X11→Preferences menu, as shown in Figure 9-5.

X11 | 193

Figure 9-5. Configuring X11 Input preferences

You should leave the other configuration options set to their default values, unless
you’re an absolute wizard at working with X and know how to tweak it to match the
Apple hardware configuration. Set these wrong and you can throw the proverbial
spanner in the works, causing X11 to not work or to display everything unreadably.

The Output tab offers additional preferences: most notably, you can switch out of so-
called rootless mode, which allows X11 to take over your entire screen. If you do this,
make sure that you write down that Option-⌘-A lets you leave full-screen mode, or
you might end up having to reboot to figure out how to get back to the familiar world
of Aqua and OS X!

Customizing X11’s Applications menu
You can customize X11’s Applications menu by selecting Applications→Customize.
Click the Add Item button to add an X11 application to the menu. Specify the menu
title in the Menu Name column, and use the Command column for the command to
execute. You can also add any necessary parameters or switches here. For example, to
change the Terminal/xterm menu item so it uses white text on a dark blue back‐
ground, rather than the boring default of black text on a white background, add the
switches -bg darkblue -fg white (see Figure 9-6).

Although the Application menu item for xterm is named Terminal,
it’s not the same as OS X’s Terminal application. To avoid confu‐
sion, many people rename it “xterm” in the menu.

194 | Chapter 9: Of Windows and X11

Figure 9-6. Configuring the xterm to launch with different colors

You can also specify a shortcut in the Shortcut column. The shortcut key must be
used with the Command (⌘) key, so the n in the Terminal/xterm entry specifies the ⌘-
N keystroke.

X11 and the Internet
Since the X Window System is built on a network model, it should be no surprise that
you can launch X applications on your computer and have them actually display on
an X11 system somewhere else on the network. What’s cool is that you can also do the
opposite and have remote computer systems run applications that actually display
and work on your own computer. It’s a bit tricky to set things up properly, however,
so I’ll recommend you check out some of the many Internet resources on the subject,
starting with Lucy Lim’s guide to forwarding an X11 session through SSH.

GIMP, the X11 Graphics Editor
Before we leave the topic of X11, I’d like to showcase one of the very slick apps that
are available. The freeware application GIMP is a graphics and photo editor that
competes with expensive commercial programs like Photoshop. Yes, it’s an awkward
name, but look beyond that, as it’s surprisingly powerful and user-friendly.

You can learn more about GIMP on OS X at http://www.gimp.org, or you can go
straight to the SourceForge download page.

Once you’ve downloaded GIMP, you can launch it with a simple double-click, as with
any other Mac application. It works within the X11 world, though it doesn’t look too
different from an Aqua application. In Figure 9-7, I’ve loaded in a wonderful shot of
Earth from NASA’s archive (taken from Apollo 8 as it orbited the moon, if you’re
curious).

GIMP, the X11 Graphics Editor | 195

http://www.mit.edu/people/lucylim/MacX11.html
http://www.gimp.org/
http://sourceforge.net/projects/gimponosx/

Figure 9-7. GIMP has a zillion graphics and photo editing options, making it comparable
to Adobe Photoshop

As you can also see in Figure 9-7, there are a lot of different options, filters, tools, and
utilities for photo creation and editing built into the GIMP framework. If you can do
it in Photoshop, odds are pretty good you can figure out a way to do it in GIMP too,
just without the huge price tag.

To learn more about how to work with GIMP, take a look at the documentation.

As of GIMP 2.8.2, you don’t even need X11 installed; it’ll run native
within the Aqua OS X environment.

196 | Chapter 9: Of Windows and X11

http://docs.gimp.org/2.8/en/

CHAPTER 10

Where to Go from Here

Now that you’re almost at the end of this guide, let’s look at some ways to continue
learning about the Unix side of OS X. Documentation is an obvious choice, but it isn’t
always in obvious places, so I’ll give you a few pointers on where to look. You can also
learn how to save time by taking advantage of other shell features—aliases, functions,
and scripts—that let you shorten a repetitive job and “let the computer do the dirty
work.”

Oh, and there’s the fun factor, too. Have I mentioned yet that it’s really fun to master
the command line and learn how to create sophisticated command pipes and, down
the road, shell scripts, even if you don’t consider yourself a programmer? Give your‐
self some time to become comfortable, and you too might find ls and vi fun alterna‐
tives to the sameness of working within the Mac’s Aqua interface day in and day out.

Documentation
You might want to know more about the options to the programs I’ve introduced
here, and get more information about them and the many other Unix programs out
there. You’re now ready to consult your system’s documentation and other resources.

The man Command
Different versions of Unix have adapted Unix documentation in different ways.
Almost all Unix systems have documentation derived from a manual, originally called
the Unix Programmer’s Manual. The manual has numbered sections; each section is a
collection of manual pages, often called manpages, and each program has its own
manpage. Section 1 has manpages for general Unix programs such as who and ls.

OS X ships with a selection of individual manpages, and you can also read them
online. If you want to know the correct syntax for entering a command or the

197

particular features of a program, enter the command man, followed by the name of
the command about which you need information.

For example, if you want to find information about the program vim, the fancy ver‐
sion of vi included with OS X, enter:

$ man vi
VIM(1) VIM(1)

NAME
 vim - Vi IMproved, a programmers text editor

SYNOPSIS
 vim [options] [file ..]
 vim [options] -
 vim [options] -t tag
 vim [options] -q [errorfile]

 ex
 view
 gvim gview evim eview
 rvim rview rgvim rgview

DESCRIPTION
 Vim is a text editor that is upwards compatible to Vi. It can be used
 to edit all kinds of plain text. It is especially useful for editing
 programs.
...

The output of man is filtered through the less pager in OS X, as mentioned in
Chapter 4.

Manpages are displayed using a program that doesn’t write the dis‐
played text to the Terminal’s scroll buffer. This can be quite annoy‐
ing, because if you need to scroll back, you can’t. Fortunately,
there’s an easy fix: just specify TERM="ansi” on the command line,
or add the line export TERM="ansi" to your ~/.profile file, and the
manpages will remain in the Terminal’s scroll buffer.

After you enter the command, the screen fills with text. Press the space bar or Return
to read more, and press q to quit.

OS X also includes a command called apropos (actually an alias for man -k) to help
you locate a command if you have an idea of what it does but aren’t quite sure of its
correct name. Enter apropos followed by a descriptive word, and you’ll get a list of
commands that might help. To get this working, however, you need to first build the
apropos database. This is done when OS X runs its weekly maintenance job, which
you can also run manually with the following command:

198 | Chapter 10: Where to Go from Here

$ sudo periodic weekly
Password:

Don’t be surprised if it takes a few minutes for the periodic command to complete
once you’ve entered your admin password; it’s doing quite a lot of work building the
index.

If you don’t want to wait for periodic to finish up, don’t forget that
you can append an & and have the job run in the background (as
discussed in Chapter 7)—but don’t expect the apropos command to
work properly until you’ve finished building the database.

Once you’ve rebuilt your apropos database, you can use apropos (or its easier-to-
remember cousin, man -k) to find all commands related to zip, for example, with:

$ man -k zip | grep '(1)'
bzcmp(1), bzdiff(1) - compare bzip2 compressed files
bzip2(1), bunzip2(1) - a block-sorting file compressor, v1.0.6
bzcat - decompresses files to stdout
bzip2recover - recovers data from damaged bzip2 files
bzmore(1), bzless(1) - file perusal filter for crt viewing of bzip2
 compressed text
funzip(1) - filter for extracting from a ZIP archive in a pipe
gzip(1) - compression/decompression tool using Lempel-Ziv
 coding (LZ77)
unzip(1) - list, test and extract compressed files in a ZIP
 archive
unzipsfx(1) - self-extracting stub for prepending to ZIP archives
zforce(1) - force gzip files to have a.gz suffix
zip(1) - package and compress (archive) files
zipcloak(1) - encrypt entries in a zipfile
zipdetails(1) - display the internal structure of zip files
zipgrep(1) - search files in a ZIP archive for lines matching a
 pattern
zipinfo(1) - list detailed information about a ZIP archive
zipnote(1) - write the comments in zipfile to stdout, edit
 comments and rename files in zipfile
zipsplit(1) - split a zipfile into smaller zipfiles
znew(1) - convert compressed files to gzipped files

If you use man -k and get tons of output, don’t forget that you can use a standard
Unix pipe to trim the results. Only interested in regular user commands, for example?
Add grep '(1)' as I’ve done above and it’ll eliminate all the uninteresting matches by
constraining the results to just those that are from section 1 of the manpage database
(similarly, '(2)' would limit it to section 2, and so on). Here’s another example:

$ man -k postscript | grep '(1)'
cupstestdsc(1) - test conformance of postscript files (deprecated)

Documentation | 199

grops(1) - PostScript driver for groff
pfbtops(1) - translate a PostScript font in .pfb format to ASCII

Problem Checklist: man Says There’s No Manual Entry
for the Command

Some commands aren’t separate Unix programs; they’re part of the shell. On OS X,
you’ll find the documentation for those commands in the manual page for bash or in
the busy manpage for builtin.

If the program isn’t a standard part of your Unix system—that is, if you or your sys‐
tem staff added the program to your system—there may not be a manual page, or you
may have to configure the man program to find the local manpage files.

The third possibility is that you don’t have all the manpage directories in your MAN
PATH variable. If so, add the following to your .profile file, then open a new Terminal
window for the settings to take effect:

export MANPATH=${MANPATH}:/opt/X11/share/man:/opt/local/share/man

Documentation on the Internet
The Internet changes so quickly that any list of online Unix documentation I gave you
would soon be out of date. Still, the Internet is a great place to find out about Unix
systems. Remember that there are many different versions of Unix, so some docu‐
mentation you find may not be completely right for you. Also, some information
you’ll find may be far too technical for your needs (many computer professionals use
and discuss Unix). But don’t be discouraged! Once you’ve found a site with the gen‐
eral kind of information you want, you can come back later for more.

The premier place to start your exploration of online documentation for OS X Unix is
the Apple website. But don’t start on the home page—start either on the OS X page or
the open source projects page.

Many Unix command names are plain English words, which can make searching
hard. If you’re looking for collections of Unix information, try searching for the Unix
program named grep. My favorite search engine works just fine for this. You’ve prob‐
ably heard of it: Google.

Here are some other places to try:

Magazines
Some print and online magazines have Unix tutorials and links to more informa‐
tion. Macintosh magazines include MacTech and MacWorld. I also write a
monthly shell scripting and Unix command-line column for Linux Journal that
you may find enjoyable.

200 | Chapter 10: Where to Go from Here

http://www.apple.com/osx
http://developer.apple.com/opensource
http://www.google.com
http://www.mactech.com
http://www.macworld.com
http://www.linuxjournal.com

Publishers
Publishers such as O’Reilly have areas of their websites that feature Unix and host
articles written by their books’ authors. They may also have books online (such as
O’Reilly’s Safari service) with subscriptions available for a small monthly fee.
Subscribing to such a service is a good way to learn a lot quickly without needing
to buy a paper copy of a huge book, most of which you might not need.

Universities
Many schools use Unix-like systems and will have online documentation. You’ll
probably have better luck at the computer services division (which services the
whole campus) than at the computer science department (which may be more
technical).

OS X−related websites
Many OS X websites are worthy of note, though they’re run by third parties and
may change by the time you read this. Information on Darwin can be found at
Pure Darwin, and Mac OS X Hints offers valuable information and hints. I also
have a popular Q&A site (Figure 10-1) that addresses many Unix and OS X ques‐
tions, and I invite you to visit with your questions.

One more site well worth a bookmark is O’Reilly’s MacDevCenter. Oh, and two
more, if you like Mac rumors and discussion about the world of Apple products:
MacRumors and MacInTouch.

Documentation | 201

http://www.oreilly.com
http://www.safaribooksonline.com
http://www.puredarwin.org
http://www.macosxhints.com
http://www.AskDaveTaylor.com
http://www.macdevcenter.com
http://www.macrumors.com
http://www.macintouch.com

Figure 10-1. AskDaveTaylor.com has tons of Mac and Unix tutorial content

Books
Bookstores, both traditional and online, are full of computer books. The books are
written for a wide variety of needs and backgrounds. Unfortunately, many books are
rushed to press, written by authors with minimal Unix experience, and are full of
errors. Before you buy a book, read through parts of it. Does the style (brief or lots of
detail; chatty and friendly or organized as a reference) fit your needs? Search the
Internet for reviews; online bookstores may have readers’ comments on file.

Customizing Your Unix Experience
One of the great values of Unix is that it’s flexible, and what’s the point of all this flexi‐
bility if you can’t bend it to meet your own needs? Let’s finish up this book with a
brief tour of the different ways you can reshape your OS X Unix world.

Shell Aliases and Functions
If you find yourself typing command names that are hard for you to remember, or
command lines that seem too long, you’ll want to learn about shell aliases and shell
functions. These shell features let you abbreviate commands, command lines, and
long series of commands. In most cases, you can replace them with a single word or a

202 | Chapter 10: Where to Go from Here

word and a few arguments. For example, a long pipeline (see “Pipes and Filters” on
page 141) could be replaced by an alias or function. I also use aliases to ensure that
certain commands always have the options I prefer, without my needing to type
them. As an example:

alias grep='grep --color=always'

Making an alias or function is almost as simple as typing in the command line or
lines that you want to run. References earlier in this chapter have more information;
for more on aliases in this text, see “Creating Aliases” on page 38.

Programming
Shell aliases and functions are actually a simple case of shell programming. There are
a number of different ways that you can delve into the world of programming, rang‐
ing from the lightweight interpreted shell script to full C++, PHP, or Ruby develop‐
ment. They’re all supported within the OS X environment.

Shell scripts
I mentioned earlier that the shell is the system’s command interpreter. It reads each
command line you enter in your terminal and performs the operation that you call
for. Your shell is chosen when your account is set up.

The shell is just an ordinary program that can be called by a Unix command. How‐
ever, it contains some features (such as variables, control structures, and so on) that
make it similar to a programming language. You can save a series of shell commands
in a file, called a shell script, to accomplish specialized functions.

Programming the shell should be attempted only when you are reasonably confident
in your ability to use Unix commands. Unix is quite a powerful tool, and its capabili‐
ties become more apparent when you try your hand at shell programming.

Take time to learn the basics. Then, when you’re faced with a new task, take time to
browse through sites like Stack Overflow and other references to find programs or
options that will help you get the job done more easily. Once you’ve done that, learn
how to build shell scripts so that you never have to type a complicated command
sequence more than once.

Let’s take a closer look at a shell script to give you some flavor of what can be done.
The following script reads lines out of a file called tweets.txt and prints those that are
too long to be sent to Twitter (more than 130 characters—Twitter works on 140-
character messages, and this leaves room for your name):

#!/bin/sh

while read tweet
do

Customizing Your Unix Experience | 203

http://stackoverflow.com/

 length="$(echo $tweet | wc -c)"
 if [$length -ge 130] ; then
 echo $length -- $(echo $tweet | cut -c1-30)...
 fi
done < tweets.txt

exit 0

You can try this script by entering these few lines into vi, pico, or another Unix text
editor of your choice. (See Chapter 4 for additional information on editing files.)

After typing in this script, save the file and name it something like tweetcheck, since
that’s what the program does. (Giving a script a descriptive name helps you quickly
identify it later, when you need to use it.) The first line indicates what program
should run the script; like most scripts, this is written for the Bourne shell, /bin/sh.
The while loop reads lines from the file (specified at the end of the loop), and the $()
notation sends whatever’s inside to a subshell for separate execution, replacing it all
with the output of the command (in this case, the number of characters in the line).
An if test checks to see if it’s over 130 characters, and echo is used to output those
lines that match.

To make a shell script act as if it’s a new program rather than just a text file, you use
chmod +x to make it executable. Then you can run it by typing in its name if it’s in
your current PATH (see Chapter 2 for more information on setting and customizing
your PATH), or with the ./ prefix to indicate that; otherwise specify its full pathname.

This is really the tip of the iceberg with shell scripts. For more information, see my
book Wicked Cool Shell Scripts (No Starch Press), or take a look at Unix in a Nutshell
(O’Reilly) by Arnold Robbins or Unix Power Tools (O’Reilly) by Jerry Peek, Shelley
Powers, Tim O’Reilly, and Mike Loukides.

Turning shell scripts into AppleScript droplets
A very cool trick with OS X is to turn a shell script into a droplet, an application that
can have files dropped onto it from the Finder. To accomplish this feat, you’ll need to
download and launch a copy of Fred Sanchez’s DropScript utility.

At its simplest, a droplet script accepts one or more files, given as command-line
arguments, which are then processed in some manner. As a simple example, here’s a
droplet script that prints whatever files you give it:

#!/bin/sh
pr "$@" | lpr

This can be turned into a droplet by dragging the shell script icon over the Drop‐
Script application in the Finder. It creates a new version called dropfilename that’s
fully drag-and-drop-enabled. For example, if this script were called print-text, the
droplet would be called dropprint-text.

204 | Chapter 10: Where to Go from Here

http://shop.oreilly.com/product/9780596100292.do
http://shop.oreilly.com/product/9780596003302.do
http://www.mit.edu/people/wsanchez/software/darwin/DropScript-0.5.dmg

Perl, Python, and Ruby
If shell script programming seems too limiting, you might want to try learning Perl,
Ruby, or Python. These languages are also interpreted from source files full of com‐
mands and have a steeper learning curve than the shell. Also, because you’ve already
learned a fair amount about the shell and Unix commands by reading this book,
you’re almost ready to start writing shell scripts now; on the other hand, a program‐
ming language takes longer to learn. But if you have sophisticated needs, learning one
of these languages is another way to use even more of the power of your OS X system.

Don’t underestimate what you can do with shell scripting, though. It’s very powerful,
and we’ve only touched on its features here!

C and C++
In addition to Perl, Python, and Ruby, OS X also ships with compiled programming
languages, for where there’s an intermediate step between writing a program and hav‐
ing it ready to run on your system. This is how Mac applications themselves are writ‐
ten, including both Unix commands and the graphical Aqua utilities that make the
Mac such a great environment. A few variants that you might have heard of are
Objective-C (a variant of the C programming language that’s popular with Mac devel‐
opers) and Cocoa (an OS X−only development environment). These are also quite
complex and can take years to fully master, but if you want to begin learning, you’ll be
glad to know that a full development environment is included with your OS X system
once you’ve installed Xcode from the App Store.

Customizing Your Unix Experience | 205

http://bit.ly/dl-xcode

Index

Symbols
! character, 126, 181
(hash), xvi, 27, 34
$ (dollar sign), xvi, 33, 34, 90, 114
$LOGNAME environment variable, 157
& character, 154, 193, 199
() (parentheses), 126
* (asterisk), 5, 52, 78, 114
+ operator, 114
- (dash), 15, 57
. (dot), 35, 51, 55
.. (dot dot), 46, 51, 99
.. shortcut, 12, 51
/ (forward slash), 7, 42, 62, 75
; (semicolon), 154
< operator, 136
= operator, 69
> operator, 24, 136-140
>> operator, 140
? (question mark), 78, 114
@ (ampersand), 52
[] (brackets), 78
\ (backslash), 24, 45
^ character, 114
^M sequences, 86
{} (braces), 78
| (pipe) operator, 110, 115, 136
~ (tilde), 5, 7, 27, 34, 99-100

A
absolute pathnames, 44-45
access modes (see permissions)
Activity Monitor, 157
admin users, 72

Adobe Photoshop, 127
AirPort Utility, 173
aliases, 36, 48, 103-103

and shell functions, 202
in .profile file, 38

ampersand (@), 52
anonymous FTP (File Transfer Protocol), 178
ANSI escape sequences, 23
Apple Developer's Site, 9
AppleScript

manipulating Terminal with, 24
running from shell, 17, 24
turning shell scripts into droplets, 204

Applications folder, 11
applications, free, 7-8
apropos command, 198
Aqua interface, xi, 1, 192
archiving files, 105-107

with gzip program, 105-106
with tar program, 106-107

arguments, 14
asterisk (*), 5, 52, 78, 114
attributions, xvi
audio files, metadata in, 131

B
background processes, 154-155
backslash (\), 24, 45
Barrett, Daniel, 175
bash shell, xvi, 14, 19, 138, 154, 191, 200
.bashrc file, 35, 39, 193
BBEdit, 86
BEL character, 23
bg command, 155

207

bin directory, 43
blocks, 56
BLOCKSIZE environment variable, 53
bold text, xiv
braces ({}), 78
brackets ([]), 78
bzip2, 105

C
C language, 205
C++ language, 205
Cameron, Debra, 96
carriage returns, removing, 86
case sensitivity, 15
cat command, 31, 79

adding text to file, 137-141
looking inside files with, 80-81

cd command, 10, 11, 30, 48-49, 163, 179
character classes

in regular expressions, 113
with tr command, 143

chgrp command, 70
chmod command, 67-70, 121
chown command, 70
chsh command, 32
CMD header, 4
Cocoa, 205
colons in filenames, 75
colors

in Terminal, 19
matches in, 112

colrm command, 141
Command mode, vi editor, 87
command prompt, 33-35
commands

displaying all, 9
recalling previous, 28-29
syntax for, 14-16
types of, 17-18
why use, 1

compressing files, 105-107
with bzip2, 105
with gzip program, 105-106
with tar program, 106-107

concatenate, 139
configd process, 157
constant-width text, xiv
context matches, 111
control characters, 30

Control symbol, xv
copy shell, 162
.core files, 142
coreaudiod process, 157
CoreGraphics library, 188
coreservices process, 157
correcting commands, 30-31
cp command, 5, 10, 38, 52, 71, 98-100, 138,

176-177
CPU usage, determining, 159
crackers, 175
creator codes, 164
csh shell, 19, 32, 35
curl command, 181
cutting and pasting in X11, 192
Cyberduck, 183

D
daemon, 3
DARPA (Defense Advanced Research Projects

Agency), xi
Darwin, xi, 7
dash (-), 15, 57
databases, for metadata, 126
date command, 14, 16, 27, 29, 36, 91, 138
date command (mistyped), 30
dev directory, 50, 62
devfs partition, 63
df command, 63
directories

access permissions, 65
completing names of, 29
defined, 6
directory tree, 43, 96
files in, 49-50

and wildcards, 78-80
names of, 75-78
removing, 101-103

home directory, 42
listing files in, 11, 51-59

ls command, 51-55
permissions for, 57-59

mkdir command, 97-98
overview, 41
relative pathnames for, 46-47
shared, 65
structure of, 43-44
vs. folders, 6-7
working directory, 42-43, 47-49

208 | Index

cd command, 48-49
pwd command, 47

disk space, 59-64
Disk Utility program, 122
diskarbitrationd process, 4, 157
displaying all commands, 9
.doc extension, 76, 164
documentation, 197-202

books, 202
Internet, 200-201
man command, 197-200

dollar sign ($), xvi, 33-34, 90, 114
dot (.), 35, 51, 55
dot dot (..), 46, 51, 99
dot files, 5
dragging and dropping file onto Terminal win‐

dow, 48
Dropbox, 42
droplets

defined, 204
turning shell scripts into, 204

du command, 30, 56, 59

E
echo command, 204
Elliott, James, 96
Emacs editor, 85, 95-96
end-of-line sequences, 86
erase character, 30
error messages, 30
ESC character (ANSI), 23
escape character (\), 45
Escape key, 88
escaping in bash shell, 23, 76
Excel, Microsoft, 76, 166
EXIF format, 127
exit command, 12
external volumes, 73-74
extracting files selectively, 4-5

F
Fetch, 7, 183
fg command, 155
filename argument, 15
filenames

colons in, 75
spaces in, 76
special characters in, 75
wildcards in remote, 177

files
adding text to, 137-141
and directories, 49-59

ls command, 51-55
mkdir command, 97-98
permissions for, 57-59

and wildcards, 78-80
archiving, 105-107

with gzip program, 105-106
with tar program, 106-107

completing names of, 29
compressing, 105-107

with gzip program, 105-106
with tar program, 106-107

copying, 98-100
editing with text editors, 85-96
extracting selectively, 4-5
finding

by size, 118-121
with locate command, 116
with mdfind command, 131-132

group ownership of, 70
hidden, 5-6
linking to, 103-104
looking inside, 80-85

with cat command, 80-81
with grep command, 83-85, 109-116
with less command, 81-83

moving, 100-101
names of, 75-78
on non-Unix operating systems, 107
opening with iterative calls, 124
overview, 41
overwriting

with mv command, 101
without possibility of recovery, 102

ownership of, 70
paths for, 7
permissions for, 57-59
protecting, 64-71

ownership of, 70
permissions for, 66-70

recently changed, 122-124
removing, 101-103
renaming, 100-101
sharing

ownership for, 70
permissions for, 66-70

size of, 59-64

Index | 209

transferring, 176-183
with FTP, 177-183
with rcp command, 176-177
with Remote Connection, 183-183
with scp command, 176-177

filesystem, 41-50
defined, 7, 42
directories

home directory, 42
listing files in, 51-59
structure of, 43-50
working directory, 42-49

external volumes in, 73-74
files

protecting, 64-71
size of, 59-64

networking, 44
pathnames in

absolute, 44-45
relative, 45-47

root level of, 42
superuser privileges for, 72-73

filters
defined, 142
piping output to pager, 148-149
with grep command, 144
with head command, 145
with sort command, 145-147
with tail command, 145
with tr command, 143-144
with uniq command, 147
with wc command, 142-143

find command, 67, 73, 117-126
and xargs command, 124-126
by file size, 118-121, 146
by permissions, 121-122
options for, 119-120
recently changed files, 122-124

Finder
FTP from, 182
Get Info dialog box, 66
invisible files in, 41

finger command, 16
Fink, 188
firewalls, 171
flags, 3
fmt command, 91
folders

defined, 41

vs. directories, 6-7
Force Quit, 2
forward slash (/), 7, 42, 62, 75
free applications, 7-8
Friedl, Jeffrey E. F., 116
frozen terminals, 39
FTP (File Transfer Protocol), 177-183

anonymous, 178
built-in utility for, 7
from Finder, 182
ftp command, 18, 178-183
options for, 178-179, 183
prompt for, 17
sftp command, 180
with curl command, 181
with web browser, 181

G
Garfinkel, Simson, 64
Get Info dialog box, 66
GetFileInfo command, 165
GIMP (GNU Image Manipulation Program), 2,

7, 195-196
Google Drive, 42
grep command, 4, 10, 84-85, 124, 144, 146

looking inside files with, 83-85
options for, 110-112
regular expressions with, 112-116

group ownership of files, 70
GUIs (graphical user interfaces), xii, 163-167
gunzip command, 106
.gz files, 106, 107, 125
gzip command, 105-106

H
hackers, 175
hard links, 104
hash (#), xvi, 27, 34
head command, 145
hidden files, 5-6
home directory, 42, 64
Homebrew, 188
.html files, 118

I
I/O (input/output), 135

piping of, 141-149
to pager, 148-149

210 | Index

with grep command, 144
with head command, 145
with sort command, 145-147
with tail command, 145
with tr command, 143-144
with uniq command, 147
with wc command, 142-143

printing, 149-152
with lp command, 150
with lpstat command, 149-150
with pr command, 151-152

redirecting, 136
standard input/output, 135-141

iCloud, 42
if statement, 204
InkScape application, 193
inodes, 63
input/output (see I/O (input/output))
Insert mode, vi editor, 87
install.log file, 54
interactive programs, 17
Internet

accessing from command line, 7-8
resources from, 200-201

Internet Explorer (MSIE), 115
invisible files in Finder, 41
italic text, xiv

J
job control, 32, 39, 153, 154
jobs command, 32
Joy, Bill, 87
JPEG files, 127

K
kernel, 67
kextd, 157
kill command, 4, 154, 161
killall command, 162-163
kMDItem-PixelWidth property, 128
kMDItemAcquisitionModel property, 128
kMDItemAlbum property, 131
kMDItemAuthors property, 131
kMDItemDurationSeconds property, 131
kMDItemEncodingApplications property, 129
kMDItemExposureTimeSeconds property, 128
kMDItemFocalLength property, 128
kMDItemFSCreationDate property, 129
kMDItemMusicalGenre property, 131

kMDItemNumberOfPages property, 129
kMDItemPixelHeight property, 128
kMDItemResolutionHeightDPI property, 128
kMDItemResolutionWidthDPI property, 128
kMDItemTitle property, 131
Korn, David, 32
ksh shell, 19, 32, 33

L
Lamb, Linda, 87
large files, finding, 146
lcd command, 179, 181
Learning GNU Emacs (Cameron, et al.), 96
Learning the bash Shell (Newham, Rosenblatt),

19
Learning the Korn Shell (Rosenblatt, Robbins),

33
Learning the Unix Operating System (Peek, et

al.), xvii
Learning the vi Editor (Lamb, Robbins), 87
less command, 10, 37, 137, 148, 198

commands for, 83
looking inside files with, 81-83
options for, 148

LESS environment variable, 37, 82
line-oriented applications, 135
links, 103-104
Linux Journal, 200
lls command, 181
ln command, 104
locate command, 116-117, 126
logging in remotely, 169-176

to other Unix systems, 173-176
web access for, 172

.login file, 112, 191
login shell, 32-33
Loy, Marc, 96
lp command, 149, 150
lpr command, 152, 174
lpstat command, 149-150
ls command, 5, 9, 16, 38, 51-55, 81, 110, 127,

135, 146, 177, 197
lxde window manager, 189

M
Mac-format files, 86
MacPorts, 188
MacTech, 200
Macworld, 200

Index | 211

man command, 10, 83, 197-200
manpages

building locate database, 116
command for, 10
compressing/archiving files, 105
find command, 119
finding local, 200
Pico editor, 95
pr program, 151
searching, 83
shell configuration settings, 35
SSH, 175
top command, 159
Unix commands, 190
viewing, 22, 197-199

MANPATH environment variable, 200
Mastering Regular Expressions (Friedl), 116
matches

by file size, 118-121
color for, 112
counting, 112
in context, 111

mdfind command, 131-132, 144
mdls command, 127-132
metadata

and mdfind command, 131-132
and mdls command, 127-131
database for, 126
defined, 127
listing, 127-131

mget command, 178
Microsoft Excel, 76, 166
Microsoft Office, 87
Microsoft Word, 37, 127
mkdir command, 97-181
modality, 87
more command, 81
mounting volumes, 42
mouse focus in X11, 192
mput command, 178
MSIE (Internet Explorer), 115
multiple commands, running, 29
multitasking

and processes
canceling, 160-163
checking status of, 155-160
running in background, 154-155

defined, ix, xiv, 153
with open command, 163-167

multiuser, ix
mv command, 10, 38, 100-101, 176

in .profile file, 38
overwriting files with, 101

N
nano editor, 95
NeoOffice, 7, 87
networking

filesystem for, 44
remote login, 169-176

to other Unix systems, 173-176
web access, 172

transferring files, 176-183
with FTP, 177-183
with rcp command, 176-177
with Remote Connection, 183
with scp command, 176-177

New Command option, 22
Newham, Cameron, 19
noclobber command, 138
noninteractive programs, 17
nonmodal editors, 96

O
Objective-C, 205
Office, Microsoft, 87
open command, 8, 17, 86, 163-167, 172
open source, 187
OpenGL, 188
OpenSSH application, 170
options

for commands, 3, 15
for find command, 119-120
for ftp command, 178-179, 183
for grep command, 110-112
for less command, 148
for pr command, 151
for sort command, 146

OS X El Capitan: The Missing Manual (Pogue),
xii

OS X Server, 172
osascript command, 17, 24
output

piping to pager, 148-149
redirecting, 137
standard, 135-141

overwriting files
safe delete, 102

212 | Index

with mv command, 101
without possibility of recovery, 102

ownership of files, 70

P
pageout, 159
pagers, piping output to, 148-149
Pages application, 87
pages, memory, 159
parentheses (), 126
passwd command, 71
passwords

changing, 71-72
choosing, 71

Paste Escaped Text feature, 22
Paste Selection feature, 22
PATH environment variable, 36, 191, 204
pathnames

absolute, 44-45
defined, 44
overview, xv
quoting, 45
relative, 45-47
spaces in, 45

PDF files, 126, 129
Peek, Jerry, xvii, 204
periodic command, 199
Perl language, 205-205
permissions

defined, 57
directory access, 65
for files, 57-59, 66-67
setting, 67-70
symbolic values for, 121-122

Photoshop, 127
Pico editor, 85, 95-95
PIDs (process IDs), 3, 154
Pine, 95
pipe (|) operator, 110, 115, 136
piping commands, 110, 117, 141-149

to pager, 148-149
with grep command, 144
with head command, 145
with sort command, 145-147
with tail command, 145
with tr command, 143-144
with uniq command, 147
with wc command, 142-143

plain text formatting, 37, 86

Pogue, David, xii
power of Unix command line, 1
Powers, Shelley, 204
pr command, 151-152
Practical Unix and Internet Security (Garfinkel

et al.), 64
printing, 149-152

with lp command, 150
with lpstat command, 149-150
with pr command, 151-152

privileges, superuser, 72-73
process IDs (PIDs), 3, 154
processes

canceling, 160-163
with kill command, 161
with killall command, 162-163

checking status of, 155-160
with ps command, 155-157
with top command, 158-160

running in background, 154-155
.profile file, 5, 33-39, 112, 159, 166, 179, 191,

198-200
and X11, 193
for xterm, 193
noclobber command in, 138

prompts, 27
command, 33-35
escape sequences for, 33
shell, 27-27

proxy icons, 163
ps command, 2, 3, 155-161, 165
put command, 178
pwd command, 10, 11, 12, 43, 47, 59, 63
Python language, 205

Q
Quartz Compositor, 188
quartz-wm window manager, 189
question mark (?), 78, 114
quit command, 179
quoting pathnames, 45

R
r/o property, 24
rcp command, 176-177
recalling commands, 28-29
regular expressions

character classes in, 113
with grep command, 112-116

Index | 213

relative pathnames, 45-47
remote filenames, 177
Remote Login, 169-176

enabling, 169
to other Unix systems, 173-176
web access, 172

resources, 197-202
books, 202
Internet, 200-201
man command, 197-200

Return key, 39
rlogin command, 173, 174
rm command, 10, 38, 50, 101-102
rmdir command, 102
Robbins, Arnold, 33, 87, 204
root directory, 7, 42, 43
root user, xvi, 67, 157
rootless mode, 194
rootless X server, 189
Rosenblatt, Bill, 19, 33
rsh command, 174-175
Ruby language, 205-205

S
safe delete, 102
Schwartz, Alan, 64
scp command, 176-177
Screen Sharing, 172
screen-oriented applications, 135
scripts, 203-204

defined, xii
turning into AppleScript droplets, 204

scrolling in xterm, 193
searching

in vi editor, 90
metadata, 126-133

with mdfind command, 131-132
with mdls command, 127-131

with find command, 117-126
and xargs command, 124-126
by file size, 118-121
by permissions, 121-122
recently changed files, 122-124

with grep command, 109-116
options for, 110-112
regular expressions with, 112-116

with locate command, 116-117
Secure Keyboard Entry feature, 21
security of network connections, 174

semicolon (;), 154
sessions

customizing, 23-25
title for, 23
with .terminal files, 24
with AppleScript, 24

ending, 31
unresponsive, 39

sftp command, 180
sh shell, 19, 32, 204
sharing files

ownership for, 70
permissions for, 66-70

shells
aliases for, 202
command prompt for, 27
configuring, 35-38
customizing, 32-39

command prompt, 33-35
login shell, 32-33
shell aliases, 38-39

defined, 19
exiting, 31
functions for, 202
scripts for, 203-204

Silverman, Richard, 175
SlashDot, 32
sleep command, 161-162
sniffers, 174
sockets, 50
sort command, 15, 145-147, 155
spaces

in filenames, 76
in pathnames, 45

Spafford, Gene, 64
special characters in filenames, 75
Spotlight, 126-133
SSH (Secure Shell), 169-183

security of, 174
ssh-agent, 175

SSH, The Secure Shell: The Definitive Guide
(Barrett, Silverman), 175

standard input, 135-141
standard output, 135-141
startup settings for Terminal application, 18
Strang, John, xvii
strings command, 80, 110
subdirectories, 43
subshells, 31, 162

214 | Index

sudo command, 35, 72-73, 84, 100, 125, 142
superusers, 27
suspend character, 154
svn command, 36
swapping, 159
switches, 3
symbolic links, 50, 104
syntax for commands, 14-16

T
tail command, 145, 160
tape devices, 106
tar command, 106-107
tarballs, 106
tcsh shell, 19, 32, 191
telnet command, 173-175, 183
Terminal application

command prompt in, 27
commands in, 27-28

correcting, 30-31
recalling previous, 28-29
running multiple, 29
syntax for, 14-18

completing names in, 29
dragging and dropping file onto window of,

48
features of, 21
launching, 13
opening/cycling between windows, 26
overview, xii
preferences for, 18-21
sessions

customizing, 23-25
ending, 31

troubleshooting, 31-32
.terminal file, 24
text editors, 85-96

Emacs, 95-96
Pico, 95-95
vi editor, 87-94

TextEdit, 86
third-party copy, 176
tilde (~), 5, 7, 27, 34, 99-100
time command, 29
TIME header, 3
titles, session, 23
Todino, Grace, xvii
top command, 10, 25, 158-160
touch command, 50

tr command, 87, 143-144
Transmit, 183
troubleshooting

chmod command, 69
copying files, 100
manpages, 200
Terminal application, 31-32

tty command, 155
TTY header, 3
.txt extension, 76
type codes, 164

U
umount command, 183
unalias command, 39
uniq command, 147
Unix in a Nutshell (Robbins), 204
Unix Power Tools (Peek et al.), 204
Unix Programmer’s Manual, 197
Unix, history of, x-xii
unresponsive Terminal application, 39
up arrow, 28
usernames, 13
Utilities folder, 11, 13

V
versions, Unix, xi-xi
vi editor, 26, 87-95

accessing by dragging file into Terminal
window, 163

as screen-oriented program, 135
capabilities of, 91-94
Command mode in, 87
commands for, 91-94
Escape key in, 88
external Unix commands with, 91
Insert mode in, 87
searching in, 90
with less command, 149

vi Editor Pocket Reference (Robbins), 87
vim editor, 85, 87
vimtutor command, 88
VNC (Virtual Network Computing), 172
.vol directory, 62
volumes

external, 73-74
mounting, 42

Index | 215

W
wc command, 112, 115, 118, 142-144
websites for OS X-related information, 201
while loop, 204
who command, 16, 28, 138, 161, 172, 197
Wicked Cool Shell Scripts (Taylor), 19, 116,

167, 204
wildcards, 5, 78-80

* (asterisk) as, 78
? (question mark) as, 78
deleting files with, 102
in remote filenames, 177
[] (brackets) as, 78
{} (braces) as, 78

window manager, 189
windows group, saving, 25
word processors, 85-96

and shell configuration files, 37
defined, 85
Emacs, 95-96
Pico, 95-95
vi editor, 87-94

Word, Microsoft, 37, 127
working directory, 42-43

and cd command, 48-49
and pwd command, 47

WYSIWYG (What You See Is What You Get),
85

X
X11 (X Window System, Version 11), 188-195

and .bashrc file, 193
and .profile file, 193
customizing, 193-195
cutting and pasting in, 192
GIMP graphics editor, 195-196
mouse focus in, 192
utilities for, 191-192
vs. OS X, 192-193

xargs command, 124-126, 146
Xcode Tools, 9, 165
.xls extension, 76
xmh application, 193
XQuartz, 187, 189
xterm application, 190

launching applications from, 193
scrolling in, 193

Z
.zip files, 105
zsh shell, 19, 32

216 | Index

About the Author
Dave Taylor has a master’s degree in education and an MBA, and has written 20 busi‐
ness and technical books, including Learning Unix for Mac OS X (O’Reilly), Wicked
Cool Shell Scripts (NoStarch Press), and Teach Yourself UNIX in 24 Hours (SAMS). He
was a contributor to BSD 4.4 Unix and his software is included in many major Unix
distributions. He is a columnist for Linux Journal, runs a popular tech Q&A site
called AskDaveTaylor.com, and lives in Boulder, Colorado with his three wonderful
children. You can find Dave on all the major social networks by starting at DaveTay‐
lorOnline.com.

Colophon
The animal on the cover of Learning Unix for OS X is the mountain lion (Felis con‐
color), also known as a cougar, puma, mountain cat, catamount, or panther, depend‐
ing on the region. This large, solitary cat has the greatest range of any large wild
terrestrial mammal in the Western Hemisphere, extending from the Yukon in Canada
to the southern Andes of South America. Although large, the mountain lion is more
genetically similar to the domestic cat than to true lions. Like smaller felines, the
mountain lion is nocturnal.

Adult mountain lions generally are a solid red or brown color. This permits them
great camouflage while stalking their prey in the desert, mountainous regions, and
forests. Full-grown male mountain lions can weigh upwards of 150 pounds and be 8
feet long, including the tail. Females are smaller and weigh around 80 pounds. They
live for approximately 8–10 years in the wild and up to 20 years in captivity, although
only 1 in every 6 kittens survives to reach adulthood. They are extremely agile crea‐
tures, as their long hind limbs allow them to cover a distance of 40 feet in a single
leap.

There is a difference in the structure of their voice box from other large cats. Due to
this, mountain lions cannot roar; instead, they produce a high-pitched scream. This
shrill scream has earned them a place in American folklore. To the Apache and Wala‐
pai of Arizona, the wail of the mountain lion was a harbinger of death. The Algon‐
quins and Ojibwas believed that the mountain lion lived in the underworld and was
wicked, whereas it was a sacred animal to the Cherokee.

The mountain lion holds the Guinness record as the animal with the most names,
presumably due to its wide distribution across North and South America. It has over
40 names in English alone. The first recorded English use of “puma” was in 1777—it
had come from the Spanish, who in turn borrowed it from the Peruvian Quechua
language in the 16th century, where it means “powerful.”

http://www.askdavetaylor.com/
http://www.davetayloronline.com/
http://www.davetayloronline.com/

The cover image is from Shaw’s Zoology. The cover font is Adobe ITC Garamond.
The text font is Minion Pro by Robert Slimbach; the heading font is Myriad Pro by
Robert Slimbach and Carol Twombly; and the code font is UbuntuMono by Dalton
Maag.

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Who This Book Isn’t For
	A Brief History of Unix
	Versions of Unix
	Interfaces to Unix

	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	The Evolution of This Book
	Acknowledgments

	Chapter 1. Why Use Unix?
	The Power of Unix
	Batch Renames and Extracting File Lists
	Finding Hidden Files

	Folders or Directories?
	Thousands of Free Applications
	Power Internet Connections

	Commands Included with Unix
	Displaying All Unix Commands
	The 10 Most Common Unix Commands

	A Simple Guided (Unix) Tour

	Chapter 2. Using the Terminal
	Launching the Terminal
	Syntax of a Unix Command
	Exercise: Entering a Few Commands
	Types of Commands
	Changing the Terminal’s Preferences
	Features of the Terminal

	Customizing Your Terminal Session
	Setting the Terminal’s Title
	Using AppleScript to Manipulate the Terminal
	Working with .terminal Files

	Working with the Terminal
	The Shell Prompt
	Entering a Command
	Recalling Previous Commands
	Completing File and Directory Names
	Running Multiple Commands on the Command Line
	Correcting a Command
	Ending Your Session
	Problem Checklist

	Customizing the Shell Environment
	Picking a Login Shell
	Changing the Command Prompt

	Advanced Shell Customization
	Shell Configuration Settings
	Creating Aliases

	The Unresponsive Terminal

	Chapter 3. Exploring the Filesystem
	The OS X Filesystem
	Your Home Directory
	Your Working Directory
	The Directory Tree
	Absolute Pathnames
	Relative Pathnames
	Changing Your Working Directory
	Files in the Directory Tree

	Listing Files and Directories
	The All-Powerful ls Command
	Trying Out the ls Command
	Using the -l Option
	File Permissions

	Calculating File Size and Disk Space
	Calculating Available Disk Space
	Exercise: Exploring the Filesystem

	Protecting and Sharing Files
	File Access Permissions
	Setting Permissions with chmod
	Changing the Group and Owner

	Changing Your Password
	Superuser Privileges with sudo
	Exploring External Volumes

	Chapter 4. File Management
	File and Directory Names
	File and Directory Wildcards
	Looking Inside Files
	cat
	less
	grep

	Creating and Editing Files
	Text Editors and Word Processors
	The vi Text Editor
	vi Basics
	A Simpler vi Alternative: Pico
	The More Complex Option: Emacs

	Managing Files
	Creating Directories with mkdir
	Copying Files
	Renaming and Moving Files with mv
	Removing Files and Directories
	Working with Links
	Compressing and Archiving Files
	Files on Other Operating Systems

	Chapter 5. Finding Files and Information
	Searching Inside Files with the grep Command
	Useful grep Options
	Working with Regular Expressions

	Finding Files with locate
	Fast Filename Search with locate

	Using find to Explore Your Filesystem
	Matching by File Size
	Exploring find Permission Strings
	Using find to Identify Recently Changed Files
	find’s Faithful Sidekick: xargs
	Further Refinements to find

	Shining a Light on Spotlight
	Listing Spotlight Metadata with mdls
	Finding Files with mdfind
	Making Spotlight Useful

	Chapter 6. Redirecting I/O
	Standard Input and Standard Output
	Putting Text in a File

	Pipes and Filters
	wc
	tr
	grep
	head and tail
	sort
	uniq
	Piping Output to a Pager

	Printing
	The Unix Way

	Chapter 7. Multitasking
	Running a Command in the Background
	Checking on a Process
	ps
	top

	Canceling a Process
	kill
	killall

	Launching GUI Applications
	open
	Useful Starting Options for Use with open
	Making open More Useful

	Chapter 8. Taking Unix Online
	Remote Logins
	Web Access
	Remote Access to Other Unix Systems

	Transferring Files
	scp and rcp
	FTP
	Easy Shortcuts with New Remote Connection

	Chapter 9. Of Windows and X11
	X11
	Using X11
	Differences Between OS X and X11
	Customizing X11

	GIMP, the X11 Graphics Editor

	Chapter 10. Where to Go from Here
	Documentation
	The man Command
	Documentation on the Internet
	Books

	Customizing Your Unix Experience
	Shell Aliases and Functions
	Programming
	Perl, Python, and Ruby
	C and C++

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

