O'REILLY"

2

2

Z
2

LA
=Y
7 ZZh

7

sy
773

¥
W :l‘\\\\‘\:g‘\

RN AR
NSNAN: NUNHRRR
NN OO DN N
P NN
O IR
NSRRI, TR
g \\)Ya' (A

i

P
/!j/

(‘
\ \‘§' \
A VRN
)) N\

7,
7=

77

N Wt
SN
AR
AN

RN
DN § \

N\ RN

‘:‘
N

\
§\§$ N
Y

\

Unix for OS X

GOING DEEP WITH THE TERMINAL AND SHELL

Dave Taylor

vww allitebooks.conl

http://www.allitebooks.org

OREILLY"

Learning Unix for OS X

Think your Mac is powerful now? This practical guide shows you how “(Qpen this book and dis-
to get much more from your system by tapping into Unix, the robust
operating system concealed beneath OS X's beautiful user interface. OS X o
puts more than a thousand Unix commands at your fingertips—for finding hiding inside your Mac.
and managing files, remotely accessing your Mac from other computers, Even with years of Unix

and using freely downloadable open source applications. experience, I learned a

cover the world of Unix

If you're an experienced Mac user, this updated edition teaches you all the lot of new tricks while
basic commands you need to get started with Unix. You'll soon learn how technically reviewing

to gain real control over your system. Learning Unix, especially
the Mac-specific exten-

sions to Unix.”

Use Unix's find. | d d | fil —Dave Kitabjian
B Use Unix’s ning, locate, and grep commands to locate fles Director of Software Development

containing specific information at NetCarrier

m Get your Mac to do exactly what you want, when you want
m Make changes to your Mac's filesystem and directories

m Create unique “super commands” to perform tasks that you
specify

Run multiple Unix programs and processes at the same time
Access remote servers and interact with remote filesystems
Install the X Window system and learn the best X11 applications

Take advantage of command-line features that let you shorten
repetitive tasks

Dave Taylor is a popular writer focused on both business and technology.
A 30-year veteran of the Unix world, he's a columnist for Linux Journal and writes
extensively about gadgets and technology at AskDaveTaylor.com. Founder of
four Internet startups, author of 20 books, he's also an award-winning public
speaker and film critic.

MAC 0S / UNIX Twitter: @oreillymedia

facebook.com/oreilly

US $24.99 CAN $28.99
ISBN: 978-1-491-93998-7

JONTAIDONOO i

7814911939987

vww allitebooks.conl

http://www.allitebooks.org

SECOND EDITION

Learning Unix for 0S X

Dave Taylor

Beijing + Boston + Farnham - Sebastopol + Tokyo KOA{={|HAE

vww allitebooks.cond

http://www.allitebooks.org

Learning Unix for 0S X
by Dave Taylor

Copyright © 2016 Dave Taylor. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis Indexer: Judy McConville
Production Editor: Nicole Shelby Interior Designer: David Futato
Copyeditor: Sonia Saruba Cover Designer: Randy Comer
Proofreader: Rachel Head lllustrator: Rebecca Demarest
January 2016: Second Edition

September 2012: First Edition

Revision History for the Second Edition
2016-01-19: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491939987 for release details.

The OReilly logo is a registered trademark of O’Reilly Media, Inc. Learning Unix for OS X, the cover
image, and related trade dress are trademarks of O'Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-93998-7
[LST]

vww allitebooks.cond

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491939987
http://www.allitebooks.org

Table of Contents

Preface. ... ix
T, WhyUse Unix?. ..ot eiie ittt ie e eeenneennesenenennnennans 1
The Power of Unix 1
Batch Renames and Extracting File Lists 4
Finding Hidden Files 5
Folders or Directories? 6
Thousands of Free Applications 7
Power Internet Connections 7
Commands Included with Unix 9
Displaying All Unix Commands 9

The 10 Most Common Unix Commands 9

A Simple Guided (Unix) Tour 10

2. UsingtheTerminal........c.oiviniiiiiiiii it iieriiieeieeeeeennnes 13
Launching the Terminal 13
Syntax of a Unix Command 14
Exercise: Entering a Few Commands 16
Types of Commands 17
Changing the Terminal’s Preferences 18
Features of the Terminal 21
Customizing Your Terminal Session 23
Setting the Terminal’s Title 23
Using AppleScript to Manipulate the Terminal 24
Working with .terminal Files 24
Working with the Terminal 25
The Shell Prompt 27
Entering a Command 27

vww allitebooks.cond

http://www.allitebooks.org

Recalling Previous Commands
Completing File and Directory Names

Running Multiple Commands on the Command Line

Correcting a Command
Ending Your Session
Problem Checklist
Customizing the Shell Environment
Picking a Login Shell
Changing the Command Prompt
Advanced Shell Customization
Shell Configuration Settings
Creating Aliases
The Unresponsive Terminal

Exploring the Filesystem.cooviiiiiiiiiiiiiiiinnnen.

The OS X Filesystem
Your Home Directory
Your Working Directory
The Directory Tree
Absolute Pathnames
Relative Pathnames
Changing Your Working Directory
Files in the Directory Tree
Listing Files and Directories
The All-Powerful Is Command
Trying Out the Is Command
Using the -1 Option
File Permissions
Calculating File Size and Disk Space
Calculating Available Disk Space
Exercise: Exploring the Filesystem
Protecting and Sharing Files
File Access Permissions
Setting Permissions with chmod
Changing the Group and Owner
Changing Your Password
Superuser Privileges with sudo
Exploring External Volumes

File Management.........oovuiiiiiiiiriniennnennerenneennnes

File and Directory Names
File and Directory Wildcards

28
29
29
30
31
31
32
32
33
35
35
38
39

4
41
42
42
43
44
45
47
49
51
51
52
55
57
59
62
63
64
66
67
70
71
72
73

75
75
78

iv

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

Looking Inside Files 80

cat 80
less 81
grep 83
Creating and Editing Files 85
Text Editors and Word Processors 85
The vi Text Editor 87
vi Basics 89
A Simpler vi Alternative: Pico 95
The More Complex Option: Emacs 95
Managing Files 96
Creating Directories with mkdir 97
Copying Files 98
Renaming and Moving Files with mv 100
Removing Files and Directories 101
Working with Links 103
Compressing and Archiving Files 105
Files on Other Operating Systems 107
5. Finding Files and Information...............ccoiiiiiiiiiiiiiiiiiiiiin e, 109
Searching Inside Files with the grep Command 109
Useful grep Options 110
Working with Regular Expressions 112
Finding Files with locate 116
Fast Filename Search with locate 116
Using find to Explore Your Filesystem 117
Matching by File Size 118
Exploring find Permission Strings 121
Using find to Identify Recently Changed Files 122
find’s Faithful Sidekick: xargs 124
Further Refinements to find 126
Shining a Light on Spotlight 126
Listing Spotlight Metadata with mdls 127
Finding Files with mdfind 131
Making Spotlight Useful 132
6. Redirectingl/0.......conniiiiiiiiii i i s 135
Standard Input and Standard Output 135
Putting Text in a File 137
Pipes and Filters 141
wce 142
tr 143
Table of Contents | v

vww allitebooks.cond

http://www.allitebooks.org

10.

grep

head and tail

sort

uniq

Piping Output to a Pager
Printing

The Unix Way

. Multitasking.cooiiiiiiii e

Running a Command in the Background
Checking on a Process

ps
top
Canceling a Process
kill
killall
Launching GUI Applications
open
Useful Starting Options for Use with open
Making open More Useful
. Taking UnixOnline.........coviiiiiiiiiiiiiiiiiiiiniiinnenns

Remote Logins

Web Access

Remote Access to Other Unix Systems
Transferring Files

scp and rcp

FTP

Easy Shortcuts with New Remote Connection

. OfWindowsand X171, .eveen it ieieeneneanens

X11
Using X11
Differences Between OS X and X11
Customizing X11

GIMBP, the X11 Graphics Editor

Whereto GofromHere.oovvnvniniiiiiiiiiiiiienennnnes

Documentation
The man Command
Documentation on the Internet
Books

144
145
145
147
148
149
149

153
154
155
155
158
160
161
162
163
163
165
166

169
169
172
173
176
176
177
183

187
188
189
192
193
195

197
197
197
200
202

vi

| Table of Contents

vww allitebooks.cond

http://www.allitebooks.org

Customizing Your Unix Experience 202

Shell Aliases and Functions 202
Programming 203

Perl, Python, and Ruby 205
Cand C++ 205
INdeX....ooviiiiii 207
Table of Contents | vii

vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.cond

http://www.allitebooks.org

Preface

Fifteen years ago, when Apple jumped from Mac OS 9 to Mac OS X (pronounce that
“oh-ess ten” to sound cool), the entire experience of using a Mac system changed dra-
matically. Heck, many of you reading this have never known a non-OS X Mac inter-
face! There were a lot of interface changes, but the biggest update when Apple
switched operating systems was that every machine gained multitasking and multi-
user capabilities.

Beneath the shiny graphical interface of OS X lies an operating system called Unix
(pronounced “you-nicks”): specifically, UC Berkeley’s BSD Unix and the Mach ker-
nel, a multiuser, multitasking operating system. Being multiuser means OS X allows
multiple users to share the same system, each with their own settings, preferences,
and separate areas in the filesystem, secured from other users’ prying eyes. Being

multitasking means OS X can easily run many different applications at the same time,
and if one of those applications crashes or hangs, the entire system doesn't need to be
rebooted. Instead, you just force quit the application that’s causing the “Spinning
Beach Ball of Death” (you know, when the mouse pointer turns into a spinning color
wheel that just won't stop rotating) and either relaunch it or proceed with your work
in other apps.

Other than the aforementioned advantages, the fact that OS X has Unix under the
hood doesn’t matter to users who simply want to use its slick graphical interface to
run their applications or manage their files. But it opens up a world of possibilities for
users who want to dig a little deeper. The Unix command-line interface, which is
accessible through the Terminal application (you can find this app in /Applications/
Utilities), provides an enormous amount of power for intermediate and advanced
users. What's more, once you've learned to use Unix in OS X, you’ll also be able to use
the command line in other versions of Unix, such as FreeBSD (from which OS X
derives its Unix core) or even the hugely popular Linux.

This book is designed to teach Mac users the basics of Unix. You'll learn how to use
the command line (which Unix users refer to as the shell) and the filesystem, as well

as some of Unix’s most useful commands. I'll also give you a tour of some useful Unix
commands that Apple’s team has written and are included with every Mac system—
utilities that let you really gain control over your system.

Unix is a complex and powerful system, so I can only scratch the surface, but I'll also
tell you how to deepen your Unix knowledge once you're ready for more.

Who This Book Is For

This book is for savvy Mac users who are comfortable in their current world (the
Finder and other GUI applications) but also want to learn more about the “Power of
Unix” Here, you'll learn all the basic commands you need to get started with Unix.
Rather than weighing you down with lots of details, however, I want to help you get
comfortable in the Unix environment as soon as possible. So, I cover each command’s
most useful features instead of describing all its options in detail. And let me tell you,
Unix has thousands of commands with millions of options. It’s very powerful! Fortu-
nately, though, it’s just as powerful and helpful even if you just focus on a subset of
commands and gradually learn more as you need additional power and capabilities.

Who This Book Isn’t For

If you're seeking a book that talks about how to build Mac software applications, this
isn’t it (although it's quite helpful for developers to have a firm grasp of Unix essen-
tials, because you never know when you're going to need them). And if youre a com-
plete beginner and are still stymied by left-clicking versus right-clicking your mouse,
you might be better off putting this book on the shelf until youre more comfortable
with your Macintosh.

Finally, if you live and breathe Unix every day, this book is probably too basic for you.
I don’t cover either Unix system administration or Mac system administration from
the command line. For example, if you already know what a PID is and how to kill a
program, this book is probably beneath your skill level. But if you don’t know what
those terms mean, or if youre somewhere in between, you’ve found the right book!

A Brief History of Unix

The Macintosh started out with a single-tasking operating system that allowed simple
switching between applications through an application called the MultiFinder. More
recent versions of the Mac OS have supported multiple applications running simulta-
neously, but it wasn’t until the landmark release of Mac OS X in 1999 that true multi-
tasking arrived in the Macintosh world. With OS X, Macintosh applications run in
separate memory areas; the Mac is a true multiuser system that also includes proper
file-level security.

x | Preface

To accomplish these improvements, OS X made the jump from a proprietary under-
lying operating environment to Unix. OS X is built on top of Darwin, a version of
Unix based on BSD 4.4 Lite, FreeBSD, NetBSD, and the Mach microkernel.

Unix itself was invented more than 40 years ago for scientific and professional users
who wanted a very powerful and flexible OS. It has evolved since then through a
remarkably circuitous path, with stops at Bell Telephone Labs, UC Berkeley, and
research centers in Australia and Europe, and also received some funding from the
US Department of Defense Advanced Research Projects Agency (DARPA). Because
Unix was designed by experts for experts (or “geeks,” if you prefer), it can be a bit
overwhelming at first. But after you get the basics (from this book!), you'll start to
appreciate some of the reasons to use Unix. For example:

« It comes with a huge number of powerful programs, and you can get many others
for free on the Internet. (The Fink project, available from SourceForge, brings
many open source packages to OS X.) You can thus do much more at a much
lower cost.

o Unix is pretty much the same on the command line, regardless of whether youre
using it on OS X, FreeBSD, or Linux, or even in tiny embedded systems or on a
giant supercomputer. After you read this book, you’ll not only know how to har-
ness the power of Unix, but you’ll also be ready to use many other kinds of Unix-
based computers without having to learn new commands for each one.

Versions of Unix

There are many different versions of Unix. Some past and present commercial ver-
sions include Solaris, AIX, and HP/UX. Freely available versions include Linux,
NetBSD, OpenBSD, and FreeBSD. Darwin, the free Unix version underneath OS X,
was built by grafting an advanced version called Mach onto BSD, with a light sprin-
kling of Apple magic for the Aqua interface.

Although GUIs and advanced features differ among Unix systems, you should be able
to use much of what you learn from this introductory handbook on any system. Don’t
worry too much about what’s from which version of Unix. Just as English borrows
words from French, German, Japanese, Italian, and even Hebrew, OS X’s Unix bor-
rows commands from many different versions of Unix—and you can use them all
without paying attention to their origins.

From time to time, I explain features of Unix on other systems. Knowing the differ-
ences can help you if you ever want to use another type of Unix system. When I write
“Unix” in this book, I mean “Unix and its versions,” unless I specifically mention a
particular version.

Preface | xi

http://fink.sourceforge.net

Interfaces to Unix

Unix can be used as it was originally designed: on typewriter-like terminals, from a
prompt on a command line. Most versions of Unix also work with window systems,
or graphical user interfaces (GUIs). These allow each user to have a single screen with
multiple windows—including “terminal” windows that act like the original Unix
interface.

OS X includes a simple terminal application for accessing the command-line level of
the system. That application is called the Terminal and is closely examined in Chap-
ter 2.

While you can use your Mac quite efficiently without issuing commands in the Ter-
minal, that's where well spend all of our time in this book. Why?

 Every Macintosh has a command-line interface. If you know how to use the com-
mand line, you’ll always be a power user.

 As you become a more advanced Unix user, you'll find that the command line is
actually much more flexible than the graphical Mac interface. Unix programs are
designed to be used together from the command line—as “building blocks”—in
an almost infinite number of combinations, to do an infinite number of tasks. No
window system I've seen has this tremendous power.

« You can launch and close any Mac program from the command line.

+ Once you learn to use the command line, you can use those same techniques to
write scripts. These little (or big!) programs automate jobs youd have to do man-
ually and repetitively with a window system (unless you understand how to pro-
gram a window system, which is usually a much harder job). See Chapter 10 for a
brief introduction to scripting.

o In general, text-based interfaces are much easier than graphical computing envi-
ronments for visually impaired users.

I'm not saying that the command-line interface is right for every situation. For
instance, using the Web—with its graphics and links—is usually easier with a GUI
web browser within OS X. But the command line is the fundamental way to use Unix.
Understanding it will let you work on any Unix system, with or without windows. A
great resource for general OS X information (the GUI you're probably used to) is OS
X El Capitan: The Missing Manual, by David Pogue (Pogue Press/O’Reilly).

How This Book Is Organized

This book will help you learn Unix on your Mac fast. It is organized in a way that gets
you started quickly and then expands your Unix horizons, chapter by chapter, until
youre comfortable with the command line and with X11-based open source applica-

xii | Preface

http://shop.oreilly.com/product/0636920036326.do
http://shop.oreilly.com/product/0636920036326.do

tions and able to push further into the world of Unix. Specific commands, for exam-
ple, may be previewed in earlier chapters and then explained in detail in later
chapters (with cross-references so you don’t get lost). Here’s how it’s all laid out:

Chapter 1, Why Use Unix?
Graphical interfaces are useful, but when it’s time to become a power user—really
forcing your Mac to do exactly what you want, when you want it—nothing beats
the power and capability of the Unix command line. You'll see exactly why that’s
the case in this first chapter.

Chapter 2, Using the Terminal
It's not the sexiest application included with OS X, but the Terminal, found in
the /Applications/Utilities folder, opens up the world of Unix on your Mac and
lets you peek inside the inner workings. This chapter explains how to best use it
and customize it for your own requirements.

Chapter 3, Exploring the Filesystem
Once you start using Unix, you'll be amazed at how many more files and directo-
ries are on your Mac—information thats hidden from the graphical interface
user. This chapter takes you on a journey through your Mac filesystem, showing
you how to list files, change directories, and explore the hidden nooks and cran-
nies of El Capitan.

Chapter 4, File Management
Now that you can move around in your filesystem, it’s time to learn how to look
into individual files; copy or move files around; and even create, delete, and
rename directories. This is your first introduction to some of the most powerful
Unix commands, too, including the text-based vi editor.

Chapter 5, Finding Files and Information
If you've ever looked for a file with the Finder or Spotlight, you know that some
types of searches are almost impossible. Looking for a file that you created exactly
30 days ago? Searching for that file with the Finder will prove to be an exercise in
futility. But thats exactly the kind of search you can do with Unix’s find, locate,
and grep commands, as well as Spotlight’s command-line utilities.

Chapter 6, Redirecting I/O

One of the most powerful elements of the Unix command line is that you can
easily combine multiple commands to create new and unique “super-commands”
that perform exactly the task you seek. You'll learn exactly how you can save a
command’s output to a file, use the content of files as the input to Unix com-
mands, and even hook multiple commands together so that the output of one is
the input of the next. You'll see that Unix is phenomenally powerful, and easy,
too!

Preface | xiii

Chapter 7, Multitasking
As mentioned earlier, Unix is a multitasking operating system that allows you to
have lots of applications running at the same time. In this chapter, you'll see how
you can manage these multiple tasks, stop programs, restart them, and modify
how they work, all from the Unix command line.

Chapter 8, Taking Unix Online
Much of the foundation of the Internet was created on Unix systems, and it's no
surprise that you can access remote servers, surf the Web, and interact with
remote filesystems, all directly from the command line. If you've always wanted
more power when interacting with remote sites, this chapter dramatically
expands your horizons.

Chapter 9, Of Windows and X11
The graphical interface in OS X is the best in the industry. Elegant and intuitive,
it’s a pleasure to use. But it turns out that there’s another Unix-based graphical
interface lurking in your Mac system, called the X Window System, or X11 for
short. This chapter shows you how to install X11 and gives you a quick tour of a
couple of the very best X11 applications available for free on the Internet.

Chapter 10, Where to Go from Here
With all its commands and command-line combinations, and the addition of
thousands of open source utilities free for the downloading, you can spend years
learning how to best take advantage of the Unix environment. In this final chap-
ter, I offer you some directions for your further travels, including recommenda-
tions for books, websites, and similar resources to investigate.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Control).

Italic
Indicates new terms, URLs, email addresses, pathnames, filenames, and file
extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

xiv | Preface

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Menus/navigation
Menus and their options are referred to in the text as File->Open, Edit—>Copy,
etc. Arrows are also used to signify a navigation path when using window
options; for example, System Preferences—Screen Effects— Activation means you
would launch System Preferences, click on the icon for the Screen Effects prefer-
ences panel, and select the Activation pane within that panel.

Pathnames
Pathnames are used to show the location of a file or application in the filesystem.
Directories (or folders for Mac and Windows users) are separated by forward
slashes. For example, if you see something like “launch the Terminal application
(/Applications/Utilities)” in the text, that means the Terminal application can be
found in the Utilities subfolder of the Applications folder.

J
A carriage return (<) at the end of a line of code is used to denote an unnatural
line break; that is, you should not enter these as two lines of code, but as one con-
tinuous line. Multiple lines are used in these cases due to printing constraints.
Menu symbols

When looking at the menus for any application, you will see some symbols asso-
ciated with keyboard shortcuts for a particular command. For example, to open a
document in Microsoft Word, you could go to the File menu and select Open
(File>Open), or you could issue the keyboard shortcut -O.

Figure P-1 shows the symbols used in the various menus to denote a keyboard
shortcut.

Rarely will you see the Control symbol used as a menu command option; its
more often used in association with mouse clicks to emulate a right-click on a
two-button mouse or for working with the bash shell.

N K

Control Shift QOption Command

Figure P-1. Keyboard accelerators for issuing commands

Preface | xv

$’ #
The dollar sign ($) is used in some examples to show the user prompt for the
bash shell; the hash mark (#) is the prompt for the root user.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

\

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning Unix for OS X, by Dave
Taylor. Copyright 2016 Dave Taylor, 978-1-4919-3998-7

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
{ dl demand digital library that delivers expert content in both

book and video form from the world’s leading authors in tech-
nology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

xvi | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable
database from publishers like O’'Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
Course Technology, and dozens more. For more information about Safari Books
Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learn-unix-osx-2.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

The Evolution of This Book

This book is loosely based on the original O’Reilly title Learning the Unix Operating
System, by Jerry Peek, Grace Todino, and John Strang. There are lots of differences in
this book to meet the needs of OS X users, but the fundamental layout and explana-
tions are the same. The El Capitan edition is the sixth OS X custom edition of this
title. As OS X keeps getting better, so does this little book!

Preface | xvii

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://bit.ly/learn-unix-osx-2
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://shop.oreilly.com/product/9780596002619.do
http://shop.oreilly.com/product/9780596002619.do

Acknowledgments

I'd like to acknowledge the work of Meghan Blanchette and Brian Jepson at O'Reilly.
Without their work constantly explaining the nuances of the version tracking system
we've used, I would have given up and made a really long YouTube video about the
command line instead. Thanks to Tim O’Reilly for the opportunity to help revise the
popular Learning the Unix Operating System book for the exciting world of OS X, all

those years ago, and a special “ta, mate!” to Dave Kitabjian for helping with the tech
edit process, too.

xviii | Preface

vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1
Why Use Unix?

Why would any sane person want to type in a bunch of funny-looking Unix com-
mands when you can just use the trackpad? After all, OS X has one of the—if not the
—best-looking user interfaces out there, so what would compel you, a Mac user
through and through, to use the Unix command line? That’s a tough sell, but you can
boil it down to just one word: power.

Lying underneath the OS X interface is a powerful Unix system, ready to leap into
action at a moment’s notice. All you have to do is command Unix to take action. One
of the greatest pleasures of using Unix within OS X is that you get the benefit of a
truly wonderful graphical environment and the underlying power of the Unix com-
mand line. There’s no denying it’s a match made in heaven. Even Apple promotes OS
X with the tagline, “Built for power. From the ground up”

This chapter sets the stage for the rest of the book, answering the question: “Why use
Unix when you have a perfectly good Mac graphical interface?” It's an important
question, but I think that if you give it a try, you’ll agree that joining the Unix world is
really like learning that you have a completely separate (and even more powerful)
operating system lurking inside your machine.

The Power of Unix

It's quite reasonable to question why you should have to remember commands and
type them in. If you're a long-time Mac user who is familiar and happy with the capa-
bilities and logic of the Aqua interface, you might need some convincing that Unix is
your friend. Here’s why: dipping into the primarily text-based Unix tools on your OS
X system gives you more power and control over both your computer and your com-
puting environment. There are other reasons, too, including:

o There are thousands of open source and otherwise freely downloadable Unix-
based applications. Can't afford Adobe Photoshop but still want a powerful
graphics editor? The GNU Image Manipulation Program (GIMP) offers a viable
alternative (see Chapter 9).

« Want to search for files by when they were created, or by whom? Difficult in the
Finder or Spotlight, but it’s a breeze with Unix (see Chapter 5).

o How about managing your files and file archives in an automated fashion? Tricky
to set up with the GUI tools, but in Unix, you can set up a cron job to handle this
at night while you sleep.

Fundamentally, Unix is all about power and control. As an example, consider the dif-
ference between using Force Quit from the Apple menu and the Unix programs ps
and kill. While Force Quit is more attractive, as shown in Figure 1-1, notice that it
lists only graphical applications.

| NON | Force Quit Applications

If an app doesn’t respond for a while, select its
name and click Force Quit.

& Google Chrome
(7)) iTunes

I<J Kiwi for Gmail
@ Mail

¢} Messages

E Snagit
" TavtEdit

You can open this window by pressing w
Command-Option-Escape

Figure 1-1. Force Quit doesn’t show all running applications

By contrast, the ps (process status—say “pea-ess” to sound like a Unix guru) com-
mand used from within the Terminal application (/Applications/Utilities/Terminal)
shows a complete and full list of every application, utility, and system process run-
ning on your Mac, as shown here:

$ ps -acx
PID TTY TIME CMD

2 | Chapter 1: Why Use Unix?

12? 0:10.28 launchd
11 ?? 0:01.41 UserEventAgent
12 ?? 0:01.86 kextd
14 22 0:01.15 notifyd
15 ?2? 0:02.83 securityd
16 ?? 0:00.24 diskarbitrationd
1526 ?? 0:51.39 iTunes
1573 ?? 0:00.07 taskgated
1583 ?? 0:24.08 Google Chrome Helper
1539 ttys000 0:00.04 login
1540 ttys000 0:00.04 -bash
1568 ttys000 0:00.21 vi
1586 ttys001 0:00.03 login

1587 ttys001 0:00.02 -bash

That’s more than the few applications Force Quit shows you. Of course, the next thing
that’s probably running through your head is, “Sure, but what does all that output in
the Terminal mean to me, and what do I do with it?” This is the key reason to learn
and work with the Unix side of OS X: to really know what your Mac’s doing and be
able to make it match what you want and need your Mac to do.

Okay, now let’s go back and look at the output from running the ps -acx command.
First off, you'll see that we added some options (or flags or switches) to the ps com-
mand; the options are the -acx bit. Flags are spoken by letter, so this would be pro-
nounced as “pea-ess minus aye-sea-ex.” These options tell ps to display all of the
programs and processes being run by all of the users (including you and the system
itself) on the system. When the Terminal displays the results of the ps -acx command,
you’ll see that it adds a line of “headers” or column titles to the output:

$ ps -acx
PID TTY TIME CMD
16 ?? 0:00.24 diskarbitrationd

Think of the headers the same way you would when looking at a Numbers spread-
sheet with a bunch of columns. Each column in that spreadsheet should have a col-
umn head to help define what you see underneath. The same applies here. In the very
first line of the information returned, you'll see the following headers:

PID
Lists the command’s process identification number (or PID, for short).

TTY
Tells you the terminal the process is running in. If you see two question marks
(27), that means the process isn't associated with a specific Terminal window or
display: typically it’s a system-level command or utility, as is the disk arbitration
program listed above (diskarbitrationd—the final “d” stands for daemon, an
always-running system-level task).

The Power of Unix | 3

TIME
Tells you the amount of time it took to run that particular process, or how long
that process has been running, in minutes and seconds. For example, the 0:00.24
you see in the preceding output means that it took, roughly, a quarter of a second
for the diskarbitrationd process to start and run.

CMD
Gives you the specific command that’s being run. You can also ask for the entire
pathname to the process that’s running, including any starting flags or options
that might have been invoked. For example, /sbin/diskarbitrationd tells you that
the process that’s running is diskarbitrationd, located in the /sbin directory.

Great! So now you know what all that means, but you still don't know how this relates
to Force Quit, right? Be patient, we're getting there!

Once you know the PID number of a process, you can then issue the Unix kill com-
mand to, well, kill that process. For example, let’s say that Microsoft Word decides to
lock up on you and you're stuck with the Spinning Beach Ball of Death (SBBoD).
After you finish tearing out your hair in frustration, you need to kill Microsoft Word,
but in order to do so, you first need its process number. For this, we'll use the grep
command, which is basically a Unix search tool that you use to search for words or, as
numbers in files, or in this case, the output of a command:

$ ps -ax | grep Word

1634 ?? 0:02.50 /Applications/Microsoft Office 2011/Microsoft
Word.app/Contents/MacOS/Microsoft Word -psn_0_766139

1645 ttys002 0:00.00 grep Word

This tells us that Microsoft Word’s PID is 1634, as noted by the first number in the
command output. Now all you need to do to kill Word is issue the following com-
mand:

$ kill 1634

After typing that and hitting the Return key (an activity known as “entering a com-
mand”), Microsoft Word promptly quits, closing all its windows. It won’t save any-
thing you've done since your last save, but since Word was locked in a deep freeze
you wouldn’t have been able to save your changes anyway, right? And if you had used
the Force Quit window, you wouldn’t have been able to save changes there, either.

Batch Renames and Extracting File Lists

Here’s another example. Suppose you just received a thumb drive from a client with
hundreds of files in a single folder. Now let’s say that you only need those files that
have the sequence -nt- or -dt- as part of their filenames, and that you want to copy
them from the thumb drive to your home directory. Within the Finder, youd be

4 | Chapter 1: Why Use Unix?

doomed to going through the list manually, a tedious and error-prone process. But on
the Unix command line, this becomes a breeze:

$ cd /Volumes/Thumb

$ cp *-dt-* *-pt-* ~
The first command, cd /Volumes/Thumb, takes you to the Volumes directory, which is
where the thumb drive (named Thumb) is actually mounted on your Mac’s filesystem.
The second command, ¢p *-dt-* *-nt-* ~, breaks down as follows:

cp
This is Unix’s copy command.

dt- *ont-*
This tells the cp command to look for any items on the thumb drive that contain
either -dt- or -nt- in their filenames. Unix recognizes the asterisks (*) as wildcards
in the command string. By placing an asterisk before and after each item (*-dt-*
and *-nt-*), youre telling Unix to find any file that has either -dt- or -nt-
anywhere in its filename.

The tilde character (or squiggle, in Unix-speak) simply refers to the current user’s
home folder (or directory).

By placing the tilde (~) at the end of the command line, you're telling cp to copy each
file it finds that has -dt- or -nt- in its filename to your home directory.

Fast, easy, and doable by any and all OS X users.

There are a million reasons why it’s helpful to know Unix as an OS X power user, and
you'll see them demonstrated time and again throughout this book.

Finding Hidden Files

You might not realize it if you only work in the Finder, but your system has thou-
sands of additional files and directories that are hidden from view, but easily found
from the command line. Most of these hidden files are known in the Unix world as
dot files, because each file or directory has a period (.) as the first character of its
name. For example, in your home directory you probably have a file called .profile
that contains specific instructions on how you want your command shell set up when
it’s launched. But when you view your home folder in the Finder, this file is hidden, as
shown in Figure 1-2. Instead, all you see are the default set of folders (Desktop, Docu-
ments, Movies, Music, Pictures, Public) along with any additional files and folders
you've created.

To view the dot files in the Terminal, type the file listing command (Is), along with its
-a option (for list all, which shows the hidden dot files). Suddenly you'll see that there
are lots more files in that directory:

The Power of Unix | 5

$ 1s -aF

./ .dropbox/ .vuescanrc Music/
../ .dvdcss/ Applications/ Pictures/
.CFUserTextEncoding .lesshst Desktop/ Presentations/
.DS_Store .nchsoftware/ Documents/ Public/
.Trash/ .profile Downloads/ VirtualBox VMs/
.android/ .ssh/ Dropbox/ bin/
.bash_history .subversion/ Library/
.cups/ .viminfo Movies/
[NON) @ taylor
B=0ow = % E Q
Favorites
1} taylor
#; Applications
& Desktop Desktop Documents Downloads Movies
[Documents
© Downloads
23 Dropbox so
B Movies ©
J1 Music § X X
- Pictures Public Music Dropbox
Pictures
[Presentations
Devices
B red =
O R VirtualBox VMs Presentations bin

12 items, 77.79 GB available -

Figure 1-2. The Finder doesn’t show hidden files and folders that you can see in the Ter-
minal with standard Unix commands

Personally, though I don't always need the power, I like knowing that I can get to,
view, and even edit every file on my computer if I need to. All I need to do is launch
the Terminal application (which I actually have permanently available in my Dock, so
it’s always just one click away), type in a few simple commands, and I'm on my way.

Folders or Directories?

If youre new to the whole Unix thing, you're going to need to learn Unix-speak. In
the graphical world, such as with OS X or Windows, youre used to working with a
graphical user interface (GUI) that lets you see everything visually. When you create a
new file, it gets stored in a folder of some sort, even if you save the file to your Desk-
top (which is, in its own right, a folder).

But in Unix, folders are referred to as directories. That’s right, folders and directories
are one and the same. It’s an odd sort of translation, but when Unix was first devel-
oped, there was no GUI; all you had was a text-based terminal to type into, and you
were darned happy to have that, especially as you were walking 10 miles uphill in the
snow to and from school each day. But I digress!

6 | Chapter1: Why Use Unix?

Directories were set up as part of the hard drive’s filesystem, or the structure in which
directories and files are stored on the system. And the way you get to a folder (er,
directory) in Unix is to enter its file path, using forward slashes between the directory
names. For example, the file path to your home directory (again, think folder) is
actually:

/Users/your_name

where your_name would be replaced by your short username. Or use the power user
shortcut ~, as shown earlier!

At the very top of your Mac’s filesystem, you have the root directory, denoted with a
single forward slash (/). As noted in the previous example, to specify a particular
directory or file, all you need to do is place the path after this leading slash.

This takes a little getting used to, but once you get the hang of entering Unix file
paths, you'll find that it’s actually a faster way to get around (particularly if you can
type faster than it takes you to move the cursor around in the graphical world).

Just remember: folders are directories, and when working on the Unix side of your
Mac, we'll refer to folders as directories throughout the book.

Thousands of Free Applications

This should appeal to anyone who is a part of the Macintosh community: by warming
up to Unix and its command line, you are joining the much-lauded free software
movement, since OS X is based on a free, open source Unix operating system called
Darwin. What's excellent is that there are thousands of different applications available
for open source operating systems, including design, development, scientific, and
business applications that compare quite favorably to expensive commercial alterna-
tives. And don’t make the mistake of assuming that all open source applications are
command-line tools and utilities! Some of the very best applications, like the GIMP
graphics editor and the NeoOffice suite, are designed to work either within the X
Window System (also known as X11), a standard Unix graphical interface that Apple
includes with your OS X system, or directly in OS X El Capitan’s graphical environ-
ment.

Power Internet Connections

If youre someone who uses the Internet daily, you already know that there are a
bunch of useful Mac OS X applications available to help you be more efficient.
Unfortunately, lots of them seem to have a price tag attached—even a simple FTP
program like Fetch. But why spend $29 on an application when you can use OS X’s
built-in ftp command-line utility for free?

Thousands of Free Applications | 7

http://www.gimp.org
http://www.gimp.org
http://www.neooffice.org
http://www.fetchsoftworks.com

For example, if you wanted to download the cover image for this book from O’Reilly’s
website, you could use the following commands (as noted in bold type):

$ ftp ftp.oreilly.com

Connected to ftp.oreilly.com.

220 ProFTPD 1.3.1rc3 Server (ftp.oreilly.com) [172.17.107.51]

Name (ftp.oreilly.com:taylor): anonymous

331 Anonymous login ok, send your complete email address as your password
Password:

230-Welcome to the 0'Reilly Media, Inc. FTP Archive.

Local date and time: Sat Oct 03 20;00:16 2015

--> Hello 71.237.2.63 <--
--> There are 2 users out of 100 allowed in your usage class. <--

Check us out on the web at http://oreilly.com

230 Anonymous access granted, restrictions apply

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> cd /pub/graphics/book-covers/low-res

250 CWD command successful

ftp> get 9781449332310.gif

local: 0596009151.gif remote: 0596009151.gif

229 Entering Extended Passive Mode (|]||62244])

150 Opening BINARY mode data connection for 0596009151.gif (27259 bytes)

100% I***| 261 K-'LB
430.20 KiB/s 00:00 ETA

226 Transfer complete

267646 bytes received in 00:00 (389.56 KiB/s)

ftp> bye

221 Goodbye.
That downloads the image file for the cover of this book to your Mac, which is nice,
but what if you want to look at it? Sure, you could go to the Finder, find the file, and
then double-click on the file’s icon to open it in Preview, but that’s a lot of work.
Instead, with a little help from Unix, you can just type in the following command:

$ open 9781449332310.gif

The open command, which is special to OS X, examines the file it's supposed to open
(9781449332310.gif), detects which application should open it by default (something
you can see in a file’s Get Info window), and then opens the graphical file in Preview
—all in a fraction of a second! See how much time Unix just saved you (not to men-
tion the $29!)?

From logging in to your Mac from remote locations to transferring files from your
system to a server using an encrypted connection, OS X’s Unix command line is quite
powerful. But don’t take my word for it—Chapter 8 takes you on a detailed tour of
Internet command-line utilities.

8 | (Chapter 1: Why Use Unix?

Commands Included with Unix

While this book covers only about 50 of the most basic Unix commands, there are
over a thousand Unix commands included with OS X—and you can’t see most of
them without accessing the command line. From sophisticated software development
environments to web browsers, file transfer utilities to encryption and compression
utilities, almost everything you can do in the Aqua interface—and more—can be
done with a few carefully chosen Unix commands.

Displaying All Unix Commands

To quickly see all of the binary executables—Unix programs—on your system, open
the Terminal, hold down the Shift key, and press Esc-?, or press Control-X followed
by Shift-1 (using Shift-1 to get an exclamation mark).

Before the commands are displayed in the Terminal, however, you'll first be promp-
ted (asked) to make a choice:

$

Display all 1453 possibilities? (y or n)
If you press the n key on your keyboard, you'll be taken back to a command prompt
and nothing else will happen. However, if you press the y key, you'll see a multicol-
umn list of Unix commands stream past in the Terminal window. At the bottom of
the screen, you'll see:

--More--

This lets you know that there’s more to display. If you hit the space bar, the next
“page” of commands scrolls into view. Keep pressing the space bar to view the entire
list of commands; or, if you're getting tired of that, just hit q to quit the output and go
back to the command prompt.

If youre a software developer or are just curious about programming, for example,
you’ll want to install the optional Xcode Tools, available as a free download from the
Apple Developer’s Site. The Xcode Tools give you a full, professional-grade software
development environment that lets you develop new applications in Swift, Objective-
C, C, or C++. Pretty nice for something free from Apple, eh?

The 10 Most Common Unix Commands

If you want to just jump in and try things out, here are the 10 most common com-
mands, with a very short summary of what each does:

Is
Lists files or directories.

Commands Indluded with Unix | 9

http://developer.apple.com

cp original_file copied_file
Copies the original_file (or files) from one location to another.

mv original_file new_file
Moves a file or files; the original is deleted once the operation is complete.

rm filename
Removes a file, set of files, or folder(s) full of files.

Use the rm command with caution; there’s no “Trash” to which
things are moved. Once you've used rm to delete something, its
“ gone forever.

pwd
Displays your present working directory; this is where you currently are in the
filesystem.

cd directory_name
Changes to the specified directory in the filesystem. Without any arguments, its a
shortcut for changing back to your home directory.

man command_name
Accesses OS X’s built-in documentation for the Unix commands. To read the
manpage for the Is command, for example, type man 1s.

less filename
Displays a long text file, one screen at a time. Pressing the space bar gets the next
page when you're ready, and pressing q at any time quits the program and returns
you to the command prompt.

grep pattern filename(s)
Searches for the specified pattern across as many files as you desire—a fast way to
find that email message you sent to Uncle Linder, for example.

top
Shows you which applications and processes are running on your system, includ-
ing those that the Finder’s Force Quit window ordinarily hides.

A Simple Guided (Unix) Tour

Enough talking about what Unix can do; it’s time to flex your fingers, open up your
Mac, and try a few commands so you can get a sense of how it all works!

10 | Chapter1: Why Use Unix?

vww allitebooks.cond

http://www.allitebooks.org

The first step is to launch the Terminal application through which you’ll interact with
the command shell. Terminal is tucked into the Utilities folder within your Applica-
tions folder.

Since you’ll be using the Terminal application throughout this book (and hopefully in
the future, as you grow more comfortable with Unix), you should drag the Terminal’s
icon to the Dock so it’s always at the ready. Or, if the Terminal’s already running, you
can Control-click on its icon in the Dock (or just click and hold down the button for
a few seconds) and select Options—Keep in Dock, as shown in Figure 1-3.

>

| v [taylor — -bash — 80x45

New Window
New Window with Settings
New Command...

. v Keep in Dock
New Remote Connection...

Open at Login
Options Show in Finder

Show All Windows Assign To
Hide All Desktops

Quit This Desktop
v None

voemzBR o -

Figure 1-3. Control-click the Terminal’s Dock icon, and select “Keep in Dock” from the
Options menu so it will always be there when you need it

Throughout the following examples, type in the commands you see in bold, pressing
the Return key after each one (again, this is known as “entering a command” in Unix-
speak). Preceding each command, I've included some comments to let you know
what you’re about to do.

Without any arguments, the cd command moves you to your home directory:
$cd

The pwd (present working directory) command shows you the path for the directory
youre currently in:

$ pwd

/Users/taylor
Use the Is command to list the files in your home directory; compare this listing with
the picture of the Finder window shown in Figure 1-2. If you omit the -a option, all
the hidden dot files stay hidden in this directory:

$ s

Applications Downloads Movies Presentations bin
Desktop Dropbox Music Public

Documents Library Pictures VirtualBox VMs

A Simple Guided (Unix) Tour | 11

Now let’s change directories to your Library folder:
$ cd Library

Use the Is command again to see what’s inside (there’s very little here you'll need to
mess with):

$ s

Accounts Fonts Preferences

Address Book Plug-Ins Fonts Disabled Printers

Application Scripts GameKit PubSub

Application Support Google Safari

Assistants Group Containers Saved Application State
Audio IdentityServices Screen Savers

Autosave Information Input Methods Services

Caches Internet Plug-Ins Social

Calendars Keyboard Layouts Sounds

ColorPickers Keychains Spelling

Colors LanguageModeling StickiesDatabase
Compositions LaunchAgents Suggestions

Containers Logs SyncedPreferences
Cookies Mail VirtualBox

CoreData Messages Voices

Dictionaries Metadata WebKit

Favorites Mobile Documents com.apple.nsurlsessiond
Filters Network iMovie

FontCollections PreferencePanes iTunes

Now let’s go back a directory. For this, use the .. shortcut for moving up one directory
in the filesystem. In this case, since you were in your Library folder (e.g., /Users/
taylor/Library, or just ~/Library), the following command moves you back to your
home directory (as noted by the pwd command that follows):

Secd ..

$ pwd

/Users/taylor
Finally, when it’s time to quit the Terminal, use the exit command rather than just
quitting the application with &-Q:

$ exit

Don't worry if you aren’t sure exactly what each of those commands does; we'll
explore each one in great detail as the book proceeds.

There’s a whole world of Unix inside your OS X system, and it’s time for you to jump
in and learn how to be more productive and more efficient, and gain remarkable
power as a Mac user. Ready? Let’s go!

12 | Chapter 1: Why Use Unix?

CHAPTER 2
Using the Terminal

With a typical Unix system, a staff person has to set up an account for you before you
can use it. With OS X, however, the operating system installation process automati-
cally creates a default user account. The account is identified by your username,
which is usually a single word or an abbreviation. Think of this account as your office
—it’s your personal place in the Unix environment.

When you log in to your OS X system, youre automatically logged into your Unix
account as well. In fact, your Desktop and other customized features of your OS X
environment have corresponding underpinnings in the Unix environment. Your files
and programs can be accessed either through the Finder or through a variety of Unix
command-line utilities that you can use in OS X’s Terminal application.

In this chapter, you’ll not only learn about the Terminal and how to customize it for
your own needs, but you'll also gain an understanding of the command-line nature of
OS X when accessed through the Terminal. If youre used to moving your cursor
around and clicking on buttons, this might seem wonderfully—or awkwardly—retro,
but as is so often the case, the differences between the Finder and the Terminal are
part of what makes the Terminal, and Unix, so remarkably powerful.

Launching the Terminal

The way you use Unix on OS X is through an application known as the Terminal, or,
to Mac geeks, Terminal.app (pronounced “Terminal dot app”). Open a Finder win-
dow, head to Applications, then look in Utilities, as shown in Figure 2-1. Double-click
on “Terminal” and it will start up, presenting you with a dull, uninspiring white win-
dow with black text that says “Last login:” and a shell prompt.

13

e0e@ * Utilities
< B=0o = #- S Q Ssearch
Favorites J[k\
13} taylor , 5
73 Applications
Deskt
& Deskiop Activity Monitor Adobe Flash Player AirPort Utility Audio MIDI Setup Bluetooth File
[Documents Install Manager Exchange
© Downloads
% Dropbon % ‘G o % e
Vovi » | C.
E oves = o =
17 Music " - A
: Boot Camp ColorSync Utility Console Digital Color Meter Disk Utility
@ Pictures Assistant
B33 Presentations S
Devices v {) y
[red a X v /"r& ;
Re te Di: + -
@ RemoteDisc Grab Grapher Keychain Access Migration Assistant Script Editor
Shared
[JasonB33's... Q
£ S)
kristina-vaio = X
(8 macbookpro... System Information Terminal VoiceOver Utility X1
X 19 items, 77.67 GB available —

Figure 2-1. Finding Terminal in the Utilities folder

By default, the Terminal uses bash as its shell. If youd like to con-
figure it to use a different shell, you can do so by selecting Termi-
nal—>Preferences and specifying the shell to use. I talk about that in
“What Is a Shell?” on page 19, later in this chapter.

Most OS X applications you've run to this point probably have a pretty graphical
interface and allow you to move the cursor around with your mouse or trackpad.
Move it over something you want to do, and you can simply click for the action to
take place. The Terminal is different, though: your mouse gets a rest for a while as
you type in the commands on your keyboard, ending each line with a Return.

Syntax of a Unix Command

Unix command lines can be simple, one-word entries, such as the date command.
They can also be more complex; you may need to type more than the command or
program name. The command can be the name of a Unix program (such as date), or
it can be a command that’s built into the shell (such as exit). You probably don't need
to worry about this!

A Unix command can have arguments. An argument can be an option or a filename.
The general format for a Unix command line is:

command option(s) filename(s)

There isn’t a single set of rules for writing Unix commands and arguments, but these
general rules work in most cases:

14 | Chapter 2: Using the Terminal

o Enter commands in lowercase. Unix is case-sensitive, so echo and ECHO are not
synonymous.

o Options modify the way in which a command works. Options are often single let-
ters, prefixed with a dash (-, also called a “hyphen” or “minus”) and set off by any
number of spaces or tabs. Multiple options in one command line can be set off
individually (such as -a -b). In most cases, you can combine them after a single
dash (such as -ab), but most command documentation won't tell you whether
this will work; you’ll have to try it.

Some commands also have options made from complete words or phrases and
starting with two dashes, such as --delete or --confirm-delete. When you enter a
command line, you can use this option style, the single-letter options (which
each start with a single dash), or both.

« The argument filename is the name of a file you want to use. Most Unix pro-
grams also accept multiple filenames, separated by spaces or specified with wild-
cards (see Chapter 4). If you don’t enter a filename correctly, you may get a
response such as “filename: no such file or directory” or “filename: cannot
open.

Some commands, such as who, have arguments that aren’t filenames.

» You must type spaces between commands, options, and filenames. You'll need to
“quote” filenames that contain spaces. For more information, see Chapter 4.

o Options come before filenames.

« In a few cases, an option has another argument associated with it; type this spe-
cial argument just after its option. Most options don’t work this way, but you
should know about them. The sort command is an example of this feature: you
can tell sort to write the sorted text to a filename given after its -o option. In the
following example, sort reads the file sortme (given as an argument), and writes
to the file sorted (given after the -o option):

$ sort -o sorted -n sortme

I also used the -# option in that example, but -n is a more standard option speci-
fying a numeric rather than alphabetic sort; it has nothing to do with the final
argument (sortme) on that command line. So, I also could have written the com-
mand line this way:

$ sort -n -o sorted sortme

Don’t be too concerned about these special cases, though. If a command needs an
option like this, its documentation will say so.

« Command lines can have other special characters, some of which you’ll see later
in this book. They can also include several separate commands. For instance, you
can write two or more commands on the same command line, each separated by

Launching the Terminal | 15

a semicolon (;). Commands entered this way are executed one after another by
the shell.

OS X has a lot of commands! Don't try to memorize all of them. In fact, you’ll proba-
bly need to know just a few commands and their options. As time goes on, you'll
learn these commands and the best way to use them for the work you need to do.

Let’s look at a sample command. The Is program displays a list of files. You can use it
with or without options and arguments. If you enter:

$1s
you'll see a list of filenames. But if you enter:
$1s -1

there will be an entire line of information for each file. The -/ option (a dash and a
lowercase letter “L’) changes the normal s output to a long format. You can also get
information about a particular file by using its name as the second argument. For
example, to find out about a file called chap1, enter:

$ 1s -1 chapl

Many Unix commands have more than one option. For instance, Is has the -a (all)
option for listing hidden files. You can use multiple options in either of these ways:

$1ls -a -1
$ 1s -al

You must type at least one space between the command name and the dash that
introduces the options. If you enter 1s-al, the shell reports back with:

1s-al: command not found

Exercise: Entering a Few Commands

The best way to get used to the Terminal is to enter some commands. To run a com-
mand, type the command and then press the Return key. Remember that almost all
Unix commands are typed in lowercase. Try issuing the commands shown in
Table 2-1 to see what results are produced in the Terminal.

Table 2-1. Sample Unix commands to test out

Task Command

Get today’s date and time. date
List logged-in users. who

Obtain more information about users. ~ who -u, finger, or w

16 | Chapter2: Using the Terminal

Task Command

Find out who is at your terminal. who am i
Enter two commands in the same line. who am j:date

Mistype a command. woh

In this session, you've tried several simple commands and seen the results on the
screen.

Types of Commands

When you use a program, you’ll want to know how to control it. How can you tell it
what job you want done? Do you give instructions before the program starts, or after
it’s started? There are several general ways to run programs on an OS X system, and
it’s good to be aware of them:

Graphical programs

Some programs work only within the graphical window environment. On OS X,
you can run these programs using the open command. For instance, when you
type open -a Chess at a command prompt, the Chess application (/Applications)
launches and opens one or more windows on your screen. The program has its
own way to receive your input—through menus and buttons on its windows, for
instance. Although you can't interact with these graphical programs using tradi-
tional Unix utilities, OS X includes the osascript utility, which lets you run Apple-
Script commands from the Unix shell.

Noninteractive Unix programs
You can run many Unix programs (though we generally call them “commands”
when theyre being typed in) directly at a shell prompt. These programs work
within a specific command window and you control them from the Unix com-
mand line—that is, by typing options and arguments at a shell prompt before you
start the program. After you start the program, wait for it to finish; you generally
don’t interact with it.

Interactive Unix programs
Some Unix programs that work in the Terminal window have commands of their
own. (For examples, see Chapters 3 and 4.) These programs may accept options
and arguments on their command lines, but once you start a program, it prints
its own prompt and/or menus, and it understands its own commands. It also
takes instructions from your keyboard that weren't given on its command line.

For instance, if you enter ftp at a shell prompt (refer back to the example in “Power
Internet Connections” on page 7), you'll see a new prompt from the ftp program. At

Launching the Terminal | 17

this prompt, you can enter certain FTP commands for transferring files to and from
remote systems. When you enter the special command quit to quit the ffp program
(or you can use bye), ftp stops prompting you for more input. Once you quit FTP,
you're returned to the standard Unix shell prompt, where you can enter other Unix
commands.

Changing the Terminal’s Preferences

To change the Terminal’s preferences, go to Terminal->Preferences. This opens the
complicated Preferences window, as shown in Figure 2-2.

[} General

| E @

General Profiles Window Groups Encodings

On startup, open: o New window with profile:

Ocean T]

None v
Startup windows are only opened when there are no windows restored.

Shells open with: @ Default login shell

Command (complete path):

New windows open with: = Default Profile

Default Working Directory

New tabs open with: = Same Profile

(o] o oo

Same Working Directory

Escape sequence...

Pointer: Use high-contrast | beam

Figure 2-2. The Terminal Preferences window lets you configure the settings for your
Terminal windows

At the top of the window is a row of buttons that let you select which options to con-
figure: General, Profiles, Window Groups, and Encodings. The names suggest what
each does, but let’s have a closer look anyway, particularly since some of these settings
definitely should be changed (in my view).

General

When you first open the Terminal Preferences, the General settings are displayed, as
shown in Figure 2-2. This lets you manage the overall behavior of a window, includ-

18 | Chapter 2: Using the Terminal

ing its color scheme (my default is “Ocean”), what shell youd like to use, and even
what happens when you open a specific tab.

What Is a Shell?

A shell, at least in the Unix world, is the environment in which you work on the Unix
side of things. To put this into context, when you’re using the graphical user interface
for OS X, you're using OS X’s native “environment.” With Unix, however, everything
is text-based, and the shell offers you an interface in which to issue commands, and to
configure how your shell environment works and behaves.

Shells also offer their own scripting languages, which allow you to write mini-
programs for mundane things, such as displaying a message to tell you to clean the
litter box, or much larger tasks, such as backing up your computer. With shell scripts,
you're basically using the shell’s environment to run Unix commands—or other shell
scripts—to automate tasks and processes.

If you want to learn more about the bash shell and how to program shell scripts with
it, look to the venerable Learning the bash Shell by Cameron Newham and Bill Rose-
nblatt (O'Reilly). Don't let the age of this book fool you. And if you want to see what
you can do with shell scripts, I'd recommend picking up a copy of Wicked Cool Shell
Scripts (No Starch Press), authored by yours truly and still a timely and popular
scripting reference.

The choice of shells in OS X includes: /bin/bash, /bin/csh, /bin/ksh, /bin/tcsh, /bin/zsh,
and /bin/sh. Unix fans will no doubt find a shell to their liking, but if you're just learn-
ing, stick with bash (/bin/bash) and you'll be able to follow every example in this book
without a hiccup.

Profiles

The Profiles pane (shown in Figure 2-3) shows lots of different appearance options,
including nice visual thumbnails of the many different predefined color schemes
available in the Terminal. The left side of the Profiles window shows the different
color profiles, but the right side is where the action is. It’s split into six sections: Text,
Window, Tab, Shell, Keyboard, and Advanced.

The Text section is where you can specify what typeface you want to use: what size,
what color, etc. You can see all of the options in Figure 2-4.

Launching the Terminal | 19

http://shop.oreilly.com/product/9780596009656.do

Homebrew

Man Page

==
Default

i Red Sands
u Silver Aerogel

Solid Colors
+ | = %~

Profiles

General Profiles Window Groups Encodings

Text QUUGEENAN Tab Shell

Title
Terminal

Working directory or document
Path

Escape sequence...
Active process name

Arguments
Window Size

Columns: 80 Rows:

Scrollback

° Limit to available memory

Limit number of rows to:

Keyboard Advanced

Shell command name

Profile name

TTY name
Dimensions

Command key

45

Restore text when reopening windows

Limit number of restored rows to:

10,000

Insert bookmark after restored text

Minimized Windows

Display status and current contents in the Dock ?

Figure 2-3. Terminal Preferences Profiles pane

Basic

Grass

Homebrew

Man Page

B o
Default

m Pro

B Red Sands
E Silver Aerogel
@ Solid Colors

+ =%~

Profiles

General Profiles Window Groups Encodings

Text Window Tab Shell Keyboard Advanced

Background
B Color & Effects Image: No Background Image 3
Font
Menlo Regular 13 pt. Change...
Text
o 1] Text
Use bold fonts
Allow blinking text L1} Bold Text
Display ANSI colors [0 | Selection
| Use bright colors for bold text
ANSI Colors
O || N || | (| ||| W (|) | Normal
I ||| ||| B ||| Bright
Cursor
O N Biock [Cursor
) — Underline

| Vertical Bar

Blink cursor

Figure 2-4. Terminal Profiles pane: Text preferences

20 |

Chapter 2: Using the Terminal

If you use a predefined profile, of course, you don’t have to tweak any of the color
settings, but I know that some people can spend hours fiddling and tweaking to get it
just so.

The most interesting section of the Profiles pane of the Preferences window is the
Window section, shown in Figure 2-3. Here, you can add useful information to the
Terminal window, change the background of the Terminal window to a graphic or
photo (though I can’t imagine why you would!), and change the default window size.
The standard size is 25 lines by 80 characters, but that’s just a historical artifact from
the early Neolithic era of computing. Setting the size to 100 characters wide by 40 or
50 lines makes it considerably easier to work in the Terminal.

One really nice thing that the Terminal does is save the textual information that
scrolls off the top of the screen so you can scroll up and review what’s transpired ear-
lier. In the old days, once it was off the top, it was off, gone, kaput. Now you can go
back and review your command-line interaction from days or even weeks ago,
depending on your available memory. You can also configure the size of the scroll-
back buffer in the Window section; by default, it is unlimited.

Other sections of the Profiles pane are worth exploring too. In particular, the Shell
section is useful for fine-tuning how your Terminal works. The most important set-
ting here is under “Ask before closing” There are three options that let you choose
whether or not the Terminal prompts you before closing its windows.

Set “Ask before closing” to “Always” if youd like the Terminal to always ask before
closing the window, or set it to “Never” to prevent it from ever asking. You can also
use the “If there are processes other than the login shell and” setting (the default) to
ignore the programs shown in the list (you can add items to or remove items from
this list). If there’s something still running in the window other than the programs
defined in this list, a dialog box pops up asking if you're sure you want to quit. This
feature is very helpful if you are prone to accidentally clicking the wrong window ele-
ment or pushing the wrong key sequence.

The last two sections are Keyboard and Advanced. There’s nothing there that you'll
need to change or modify to fully explore all the capabilities of Unix on your Mac
system, so we'll skip them.

Features of the Terminal

There are quite a few nifty Terminal features worth mentioning before I move further
into the world of Unix.

Secure Keyboard Entry

While the vast majority of OS X users ignore this feature, the Terminal has a very nice
security feature called Secure Keyboard Entry (enable it with Terminal->Secure Key-

Launching the Terminal | 21

board Entry). When enabled, Secure Keyboard Entry ensures that keyboard “sniffers”
(or other applications that monitor your keystrokes) cannot see what you type within
the Terminal. This means that the OS X utility that calculates whether your computer
is in use or ready to sleep won’t know you're working, for example, but that could be a
small price to pay for the added security of circumventing possible spyware on your
system.

More cool Terminal features

In addition to using the Secure Keyboard Entry option from the Terminal menu,
some other features you'll find quite useful include:

Shell>New Command

If you need to run a Unix command but don't want to launch a new Terminal
window or have its output appear in the current window (manpages are an excel-
lent example), you’ll appreciate knowing about the New Command option avail-
able on the Shell menu, shown in Figure 2-5. Choose that (or use the keyboard
shortcut %-Shift-N) and enter the command youd like to run, and its output will
be displayed in a new window that you can then easily close without affecting
anything else.

Edit->Paste Escaped Text

One of the common challenges of working with Unix within the OS X environ-
ment is that while the Finder has no problems with spaces embedded in file-
names, Unix can be rather testy about even a single space. When you're copying
and pasting filenames, however, you don’t have to worry about remembering to
escape each and every space by preceding it with a backslash: just use Paste Esca-
ped Text (A-%-V), and a filename like taylor/Desktop/My Favorite Martian is
automatically pasted as taylor/Desktop/My\ Favorite\ Martian.

Edit>Paste Selection

If you want to copy and paste just what you've selected from a window, rather
than everything visible in the Terminal window, use Paste Selection without a
Copy, and itll save you a step. The keyboard shortcut for this one is worth
remembering, too: #-Shift-V.

22

Chapter 2: Using the Terminal

)G Edit View Window Help

New Window >
New Tab >
New Command... 8N
New Remote Connection... {+3K
Import... #0
Close Window T 8W

Use Settings as Default

Export Settings...

Export Text As... ¥8S
Show Inspector &l
Edit Title £+ 381
Reset X #R
Hard Reset X #R
Print... 8P

Figure 2-5. Shell menu options

Customizing Your Terminal Session

There are a number of different ways that you can customize your Terminal session
beyond what’s been shown so far in this chapter. These are more advanced techni-
ques, and you can safely flip past them if they seem too complex (though Id still
encourage you to read through the material, just so you can see what capabilities are
included within the Terminal application).

Setting the Terminal’s Title

You can change the current Terminal title using the following cryptic sequence of
characters:

echo '[]2;My-Window-TitlerG'

To type the ~[characters in bash, use the key sequence Control-V Escape (press
Control-V and release, then press the Escape key). To type ~G, use Control-V
Control-G. The vi editor supports the same key sequences.

Such cryptic sequences of characters are called ANSI escape sequences. An ANSI
escape sequence is a special command that manipulates some characteristic of the
Terminal, such as its title. ~[is the ASCII ESC character (which begins the sequence),
and ~G is the ASCII BEL character. (The BEL character is used to “ring” the Terminal
bell, but in this context, it terminates the escape sequence.)

Customizing Your Terminal Session | 23

Using AppleScript to Manipulate the Terminal

AppleScript is a powerful programming language used to automate OS X applica-
tions. The OS X Terminal is one such application. You can run AppleScript com-
mands at the shell prompt using the osascript utility. The \ character at the end of an
input line tells the shell that the command line will continue on the next input line
and therefore not to start executing when it receives the subsequent Return
key (when you use this, the shell will prompt you with a > character). The format is as
follows:

osascript -e \
'tell app "Terminal” to set option of first window to value'

For example, to minimize your current Terminal window:

$ osascript -e \
> 'tell app "Terminal" to set miniaturized of first window to true'’

$
For a complete list of properties you can manipulate with AppleScript, open the
Script Editor (/Applications/Utilities/Script Editor) and select File—Open Dictionary.
Open the Terminal dictionary and examine the properties available under window, as

shown in Figure 2-6. If a property is marked r/o, it is read-only, which means you
can’t modify it on the fly.

@ Open Dictionary

Select items to open their dictionaries:

Name ~ Kind Version Path
@ Aperture Application 36 /Applications/Aperture.app
@ App Store Application 21 [Applications/App Store.app
A app_mode_loader Application 46.0.24... [Applications/Google Chrome.app/Conteni
A app_mode_loader Application 46.0.24... [Applications/Google Chrome.app/Conteni
¥ AppleScript Utility Application 1.1.2 ibrary/CoreServii ppl ipt
¢ Automator Application 26 /Applications/Automator.app
» Automator Runner Application 26 ibrary/CoreServices/ I
& Bluetooth File Exchange Application 440 /Applications/Utilities/Bluetooth File Exche
@ Calendar Application 8.0 /Applications/Calendar.app
@ Contacts Application 9.0 /Applications/Contacts.app
» Database Events Application 1.0.6 ibrary/CoreServi Database E
Digital Hub Scripting.osax Scripting addition 1.7 /System/Library/ScriptingAdditions/Digital
i DiskimageMounter Application 10.11 /System/Library/CoreServices/Diskimageh
= DVD Player Application 5.8 /Applications/DVD Player.app
@ EPSON Artisan 837 Application 10.3 [Users/taylor/Library/Printers/EPSON Artis
[9 Finder Application 10.11 /System/Library/CoreServices/Finder.app
& Folder Actions Setup Application 1.2 /System/Library/CoreServices/Folder Actic
» FolderActionsDispatcher Application 1.0 ibrary/CoreServices/ i
& Font Book Application 6.0 /Applications/Font Book.app
& GarageBand Application 10.1.0 /Applications/GarageBand.app
M Gmail Application 8.1 [Users/taylor/Applications/Chrome Apps.Ic
& oocla Cheomn Annlinatinn ABADA___IAnnlinatianaifanala Aheama ann
Browse... Cancel

Figure 2-6. The Terminal’s AppleScript dictionary

Working with .terminal Files

One useful feature of the Terminal is the ability for you to customize the appearance
and behavior of a specific Terminal window, and then save that configuration as

24 | Chapter2: Using the Terminal

a .terminal file. Later, you can simply double-click on the .terminal file and you’ll have
your Terminal window back and ready to go, exactly as you set it up previously. Even
better, you can set up multiple windows and have them all saved into a single .termi-
nal file, then collectively relaunched when you restart the Terminal program.

As an example, suppose you set up the main Terminal window to display large, white
text on a blue background. To save this configuration as a .terminal file, choose
Shell>Export Settings, and you’ll be prompted for a filename.

More interesting is a slight variation on this command that saves all the windows
you've set up. To achieve this, choose Window—>Save Windows as a Group. You'll be
prompted for a filename, as shown in Figure 2-7.

Save Window Group

Save As: | Dave Taylor’'s window group

Restore all commands

Window groups automatically restore Remote Connections and
commands that are considered safe to run without confirmation.
Enable this to restore all commands when opening this group.

Use window group when Terminal starts

cancel | (EETN

Figure 2-7. Saving a windows group .terminal file

Perhaps the most interesting option is the checkbox “Use window group when Termi-
nal starts” Set things up the way you want, and you could find a half dozen different-
sized and different-colored windows on your Desktop, all ready to go, every time you
start up the Terminal. You can even have some windows start up running specific
commands. A popular command to use is top or tail -f /var/log/system.log, to help you
keep an eye on how your system is performing.

Working with the Terminal

To get into the Unix environment, launch the Terminal application. Hopefully you've
already added it to your Dock, as explained earlier!

Once the Terminal is running, you’ll see a window like the one in Figure 2-8.

Working with the Terminal | 25

[] [)) taylor — -bash — 80x24

Last login: Sat Oct 3 14:50:51 on ttys@e2
(~) &

Figure 2-8. The Terminal window

You can have a number of different Terminal windows open, if that helps your work-
flow. Simply use #-N to open each one, and #-~ to cycle between them without
removing your hands from the keyboard. Or you can have the different sessions
neatly organized in tabs. Use #-T to open new tabs as needed.

Once you have a window open and you're typing commands, it’s helpful to know that
regular OS X copy and paste commands work, so it’s simple to send an email message
to a colleague showing your latest Unix interaction, or to paste some text from a web
page into a file youre editing with a Unix text editor such as vi.

If you have material in your scroll buffer that you want to find, use %-F (or select
Find—>Find from the Edit menu) and enter the specific text. #-G (Edit—>Find—>Find
Next) lets you search down the scroll buffer for the next occurrence, and Shift-%-G
(Edit>Find—>Find Previous) lets you search up the scroll buffer for the previous
occurrence. You can also search for material by highlighting a passage and entering
$-E (Find—Use Selection for Find), or jump to the selected material with -] (Find -
Jump to Selection). You can save an entire Terminal session as a text file with
Shell>Export Text As, and you can print the entire session with Shell»>Print.

Study the menus in the Terminal too: there are symbols you might not have seen
before in your OS X exploration. For example, the upward-facing diagonal arrow for
View—Scroll to Top is the Top or Home key on your keyboard, and the downward-
facing diagonal arrow for View—Scroll to Bottom is the End key. You can move up a
page with View—>Page Up (or #-Page Up), and down a page with View—>Page Down
(or $-Page Down). To move up or down lines, use #-up arrow or #-down arrow, as
needed.

26 | Chapter2: Using the Terminal

The Shell Prompt

When the system is ready to run a command, the shell outputs a prompt to tell you
that you can enter a command.

The default prompt in bash is the computer name (which might be something auto-
matically generated, such as dhcp-254-108, or a name you’ve given your system), the
current directory (which might be represented by ~, Unix’s shorthand for your home
directory), your login name, and a dollar sign. For example, the complete prompt
might look like this:

Dave-Taylors-MacBook-Pro:~ taylor$

The prompt can be customized, though, so your own shell prompt may be different.
I'll show you how to customize your prompt later in this chapter.

A prompt that ends with a hash mark (#) usually means you're logged in as the super-
user. The superuser doesn’t have the protections for standard users that are built into
the Unix system. If you don't know Unix well, you can inadvertently damage your
system software when you are logged in as the superuser. In this case, I highly recom-
mend that you stop work until you've found out how to access your personal Unix
account.

The simplest solution is to open a new Terminal window (Shell->New Window) and
work in that window. If you've still got the superuser prompt, it means that either you
logged in to OS X as the superuser or your shell prompt has been customized to end
with a #, even when you’re not the superuser. To figure out which is the case, try log-
ging out of OS X completely (Apple Menu—>Log Out, or Shift-%-Q) and logging back
in as yourself.

Entering a Command

Entering a command line at the shell prompt tells the computer what to do. Each
command line includes the name of a Unix program. When you press Return, the
shell interprets your command line and executes the program.

The first word that you type at a shell prompt is always a Unix command (or program
name). Like most things in Unix, program names are case-sensitive; if the program
name is lowercase (and most are), you must type it in lowercase. Some simple com-
mand lines have just one word, which is the program name.

date

An example of a single-word command is date. Entering the command date displays
the current date and time:

$ date
Sat Oct 3 14:57:19 MDT 2015

Working with the Terminal | 27

As you type a command line, the system simply collects your keyboard input. Press-
ing the Return key tells the shell that you've finished entering text, and it can run the
command.

who

Another simple command is who. It displays a list of each logged-on user’s username,
terminal number, and login time. Try it now, if youd like.

The who program can also tell you which account is currently using the Terminal
application, in case you have multiple user accounts on your Mac. The command line
for this is who am i. This command line consists of the command (who, the program’s
name) and its arguments (am i). (Arguments are explained in “Syntax of a Unix
Command” on page 14, earlier in this chapter.) For example:

$ who am i
taylor ttys002 Oct 3 14:55

The response shown in this example says that:

o taylor is the username. The username is the same as the Short Name you define
when you create a new user with System Preferences—>Accounts—+.

o Virtual terminal ttys@62 is in use. The cryptic ttys002 syntax is a holdover from
the early days of Unix. All you need to know as a Unix beginner is that each time
you open a new Terminal window, the number at the end of the name gets incre-
mented by one. The first is ttys001, the second ttys062, and so on. The terminal
ID can also be included in the title bar of the Terminal window, if desired.

o A new Terminal window was opened at 14:55 (or 2:55 p.m.) in the afternoon on
Oct 3.

Recalling Previous Commands

Modern Unix shells remember commands you've typed previously. They can even
remember commands from previous login sessions. This handy feature can save you
a lot of retyping of common commands. As with many things in Unix, though, there
are several different ways to do this; I don’t have room to show and explain them all,
but you can get more information from the sources listed in Chapter 10.

After you've typed and executed several commands, try pressing the up arrow key on
your keyboard. You will see the previous command after your shell prompt, just as
you typed it. Pressing the up arrow key again recalls the command before that one,
and so on. Also, as youd expect, the down arrow key will recall more recent com-
mands.

28 | Chapter2: Using the Terminal

To execute one of these remembered commands, just press the Return key. (Your cur-
sor doesn’'t even have to be at the end of the command line.)

Once you've recalled a command, you can edit it as necessary, usually by moving left
and right with the left or right arrow keys, then inserting or deleting characters as
needed. If you don’t want to execute any remembered commands, cancel the com-
mand shown either with the Mac-standard 3-. (Command-period) or with the Unix-
standard Control-C.

Completing File and Directory Names

Most Unix shells can complete a partially typed file or directory name for you. If
youre using the default shell in OS X (i.e., bash), just type the first few letters of the
word, then press Tab. (Different shells have different methods.) If the shell finds just
one way to complete the word, it will do so; your cursor moves to the end of the new
word, where you can continue typing or just press Return to run the command.

You can also edit or erase the completed name by hitting the Delete
key or moving the cursor back and forth with the left and right
arrow keys.

What happens if more than one file or directory name matches what you've typed so
far? In this case, the shell will beep at you to let you know that it couldn’t find a
unique match. To get a list of all possible completions, simply press the Tab key again
and you will see a list of all names starting with the characters you've typed so far

(you won't see anything if there are no matches). Here’s an example from the bash
shell:

$ cd [usr/bin
$ ma<Tab><Tab>

macbinary machine make man
macerror mail makeinfo manpath
macerror5.16 mailq malloc_history
macerror5.18 mailx malloc_history32

$ ma

At this point, you could type another character or two—an 1, for example—and then
press Tab once more to list only the mail-related commands.

Running Multiple Commands on the Command Line

An extremely helpful facet of working with the Unix system is the ability to specify
more than one command on a single command line. Perhaps you want to run a com-
mand and find out how long it took to complete. This can be done by calling date
before and after the command, or using the time command, but let’s stick with date

Working with the Terminal | 29

for this demonstration. If you hunt-and-peck out date each time, the timing is hardly
going to be accurate. Much better is to put all three commands on the same line:

$ cd ~; date ; du -s . ; date
Sat Oct 3 15:04:38 MDT 2015
715163360

Sat Oct 3 15:06:03 MDT 2015

This example shows four different commands all strung together on a single com-
mand line, using the semicolon character (;) to separate each command. First, c¢d ~
moves you into your home directory (as would cd by itself, as it happens), then date
shows the current date and time. Next, the du -s command figures out how much disk
space is used by the current directory, as denoted by the period (.). A second date
command then shows the time after the du command has run.

Now you know it takes exactly 1 minute and 25 seconds to calculate the disk space
used by your home directory—much more useful than knowing it takes 25 seconds
for you to type the date command, for du to run, and for you to type date again.

Correcting a Command

What if you make a mistake in a command line? Suppose you type dare instead of
date and press the Return key before you realize your error. If you haven't entered a
command that happens to be a misspelled version of another command (which is
theoretically possible, I suppose!), the shell displays the following error message:

$ dare
-bash: dare: command not found

Don’t be too concerned about getting error messages. Sometimes you'll get an error
even if it appears that you typed the command correctly. This can be caused by acci-

dentally typing control characters that are invisible on the screen. Once the prompt
returns, simply reenter your command.

As mentioned earlier, you can recall previous commands and edit command lines.
Use the up arrow key to recall a previous command, then, to edit the command line,
use the left and right arrow keys to move your cursor to the point where you want to
make a change. You can use the Delete key to erase characters to the left of the cursor,
and type in changes as needed.

If you have logged in to your Macintosh remotely from another system (see Chap-
ter 8), your keyboard may be different. The erase character differs between systems
and accounts, and can be customized. The most common erase characters are:

o Delete or Del
o Control-H

30 | Chapter2: Using the Terminal

vww allitebooks.cond

http://www.allitebooks.org

Control-C (or #-.) interrupts or cancels a command, and can be used in many (but
not all) cases when you want to quit what you're doing.

Other common control characters are:

Control-U
Erases the whole input line; you can start over.

Control-S
Pauses output from a program that’s writing to the screen. This can be confusing,
so I don’t recommend using Control-S.

Control-Q
Restarts output after a Control-S pause.

Control-D
Signals the end of input for some programs (such as cat, explained in “Putting
Text in a File” on page 137) and returns you to a shell prompt. If you type
Control-D at a shell prompt, it quits your shell. Depending on your preferences,
your Terminal window will either close or sit there, which is generally useless,
until you manually close the window.

Ending Your Session

To end a Unix session, you must exit the shell. You should not end a session just by
quitting the Terminal application or closing the Terminal window. It’s possible that
you might have started a process running in the background (see Chapter 7), and
closing the window could therefore interrupt the process so it won't complete—or,
worse, leave a program running stray, without a parent shell or terminal. Instead, type
exit at the shell prompt and hit Return. The window will either close or simply not
display any sort of prompt; you can then safely quit the Terminal application. If
you've started a background process, you'll instead get one of the messages described
in the next section.

Problem Checklist

The first few times you use OS X, you aren’t likely to have the following problems.
But you may encounter these problems later, as you do more advanced work:

You get another shell prompt, or the shell says “logout: not login shell.”
You've been using a subshell (a shell created by your original Terminal shell).
Type exit (or just type Control-D) to close each subshell until the Terminal win-
dow closes.

Working with the Terminal | 31

The shell says “There are stopped jobs” or “There are running jobs.”
OS X and many other Unix systems have a feature called job control that lets you
suspend a program temporarily while it's running or keep it running separately in
the “background” One or more programs you ran during your session has not
ended but is stopped (paused) or in the background. Enter fg to bring each stop-
ped job into the foreground, then quit the program normally. (See Chapter 7 for
more information.)

The Terminal application refuses to quit, saying “Closing this window will terminate the
following processes inside it,” followed by a list of programs.
The Terminal tries to help by not quitting when you're in the middle of running a
command. Cancel the dialog box and make sure you don't have any commands
running that you've forgotten about. If need be, type jobs to see what’s running.

Customizing the Shell Environment

The Unix shell reads a number of configuration files when it starts up. These configu-
ration files are really shell programs, so they are extraordinarily powerful. Shell
programming is beyond the scope of this book.

But let’s look at what you can customize without having to become a full-fledged Unix
geek, shall we?

Picking a Login Shell

The default login shell for OS X is the ever-popular bash shell, but many Unix fans
prefer to use the Korn shell (ksh) instead. As mentioned earlier, OS X offers a host of
different shells, including /bin/bash, /bin/csh, /bin/ksh, /bin/tcsh, /bin/zsh, and /bin/sh.

To change your login shell, you can either use the Unix chsh command (enter chsh on
the command line and you’ll be asked which shell youd like, starting the next time
you log in) or just change the shell setting in the Terminal Preferences, as shown ear-
lier, in Figure 2-2.

Why Some Folks Love the Korn Shell

From the perspective of typing in commands and even working with command his-
tory or aliases, almost all shells are alike. In a rather old interview on the popular geek
website SlashDot, David Korn (author of the Korn shell) even says: “It is hard to argue
that ksh is any better for interaction... but the scripting features in ksh93 are far more
advanced than any other shell”

If you spend a lot of time writing advanced shell scripts, ksh can be an excellent
choice, because it offers some remarkably sophisticated capabilities—features that
youd only expect in a highly advanced programming environment like Java or C++.

32 | Chapter2: Using the Terminal

http://www.slashdot.org

The bash shell also has many sophisticated programming features, and it's my shell of
choice, but in some Unix circles ksh is the preferred shell.

For more information on the Korn shell, see Learning the Korn Shell, by Bill
Rosenblatt and Arnold Robbins (O’Reilly).

Changing the Command Prompt

The easiest customization you can make to the shell is to change your command
prompt. By default, bash on OS X has a shell prompt made up of your computer’s
hostname, your current working directory, your account name, and a dollar sign. For
example:

Dave-Taylors-MacBook-Pro:~ taylor$

If youd rather have something shorter, like just the dollar sign ($), enter the following
command:

Dave-Taylors-MacBook-Pro:~ taylor$ PS1="$ "
$

This command gives you a simple, sparse $ prompt, and nothing else. It isn't neces-
sary to use the dollar sign as your prompt; you could use a colon (:), a greater-than
sign (>), or any character you like. Just remember to include a space after the charac-
ter you've chosen to use as the prompt, because that helps you differentiate between
the command prompt and the actual command you're typing in.

If you want this change to take effect every time you start a shell,
use the vi editor to create a file called .profile in your home direc-
tory (/Users/your_name), and then add the following to the end of
the file: export PS1="$ ". (You can read more about the vi editor
in Chapter 4.)

Of course, if that were all you could do to your command prompt, it wouldn’t be very
interesting. There are a number of special character sequences that, when used to
define the prompt, cause the shell to print out various bits of useful data. Table 2-2
shows a partial list of these special character sequences for fine-tuning your prompt.

Table 2-2. Favorite escape sequences for bash prompts

Value Meaning

\w The current working directory

\W The trailing element of the current working directory, with ~ substitution

Customizing the Shell Environment | 33

http://shop.oreilly.com/product/9781565920545.do

Value Meaning

\ The current command history number

\H The full hostname

\h The hostname up to the first dot

\@ The time of day in 12-hour (a.m./p.m.) format
v The time of day in 24-hour format

\u The username

\$ A # if the effective user ID is zero (root), or a $ otherwise

Experiment and see what sorts of interesting Unix prompts you can create. For many
years, a popular Unix prompt was:

$ PS1="Yes, Master? "

It might be a bit obsequious, but on the other hand, how many people in your life call
you “Master”?

One prompt sequence that I like is:
$ PS1="\w \! \$ "

This prompt sequence shows the current working directory, followed by a space and
the current history number, and then a $ or # to remind the user that this is bash and
whether they’re currently running as root. (The # is for when you’re running as root,
the administrator account, and the $ is for when you aren’t root.) For example, the
prompt might read:

~ 55§

This tells you immediately that ~ (in my case, /Users/taylor) is the current directory,
and that this will be the 55th command you’ll execute. Because you can use the up or
down arrow keys to scroll back or forward, respectively, through your previous com-
mands, as described in “Recalling Previous Commands” on page 28, this is not as
important in the Terminal as it is in other command-line environments, but there is a
very powerful command history syntax built into bash that allows you to recall a pre-
vious command by number. If you're familiar with this syntax, making the command
history number part of the prompt can be handy.

On multiuser systems, it's not a bad idea to put the username into the prompt as well.
That way, you'll always know who the system thinks you are. And if you routinely use

34 | Chapter2: Using the Terminal

more than one computer system, you should also consider including the hostname in
the prompt so you'll always know which system you’re logged in to.

Advanced Shell Customization

There’s not much more you can do to customize the Terminal application than what’s
shown in this chapter, but there’s an infinite amount of customization possible with
the bash shell (or any other shell you might have picked). Remember, the Terminal is
the program you’re using to access the command line on your Mac system, and the
shell is the actual program being run that lets you submit requests and have them
processed.

Here are a few directions to get you started.

Shell Configuration Settings

Because Unix is a multiuser system, there are two possible locations for the configu-
ration files: one applies to all users of the system and another to each individual user.

The system-wide setup files that are read by bash, the default shell for OS X, are
found in /etc (profile and bashrc). You only have permission to change these system-
wide files if you use sudo (see “Superuser Privileges with sudo” on page 72, in Chap-
ter 3). However, you can create another file called .profile in your home directory that
will add additional commands to be executed whenever you start a new Terminal
window. (If you configure the Terminal to use another shell, such as the Bourne shell,
the C shell, or the Z shell, you'll need to set up different configuration files. See the
manpage for your selected shell to learn the necessary details. To learn more about
csh, for example, use the command man csh.)

The system-wide setup files are read first, then the user-specific ones, so commands
in your .profile file can override those in the system-wide files. The system-wide
bashrc file is succinct:

$ cat /[etc/bashrc
System-wide .bashrc file for interactive bash(1) shells.
if [-z "$PS1"]; then
return
fi

PS1="\h:\W \u\$ '
Make bash check its window size after a process completes
shopt -s checkwinsize

[-r "/etc/bashrc_STERM_PROGRAM"] && . "/etc/bashrc_S$TERM_PROGRAM"

Your own profile file—prefaced with a . to hide it from the Finder—can contain any
shell command that you want to run automatically whenever you open a new Termi-

Advanced Shell Customization | 35

nal window. Some typical examples include changing the shell prompt, setting envi-
ronment variables (values that control the operation of other Unix utilities), setting
aliases, or adding to the search path (where the shell searches for programs to be
run). My .profile file looks like this:

psi="\w (\!): " @
export PATH=$HOME/bin:/opt/local/bin:/opt/local/sbin:$PATH (2]
export SVN_EDITOR=/usr/bin/vi ©

alias scale=~/bin/scale.sh (4]
alias ls="ls -F"
alias vps="ssh dtaylor@intuitive.com"

date ©

O This line tells the shell to use a different prompt than the standard one. I
explained the details of prompt setting in “Changing the Command Prompt” on
page 33, earlier in this chapter. This particular sequence offers me a succinct
prompt that’s also informative: /bin (518):.

® This line sets a shell variable that the shell itself uses as its search path for finding
commands that are typed in. Usually the default PATH is fine, but since I have
some local programs and scripts I've written, this lets me use them without speci-
tying their location in the filesystem each time.

© Similarly, this line specifies what editor the SYN command should use by default
(vi). Not all commands recognize environment variables, but for those that do,
this type of environment variable setting saves you the trouble of typing the
options on every command line.

O These three lines define new custom commands that the shell will recognize just
as if they were built-in Unix commands. Aliases are a great way to save shorthand
names for long, complicated Unix command lines, or even to fix common mis-
takes you might make when typing command lines. These particular aliases cre-
ate a command for launching my image-scaling shell script (scale.sh), add a
favorite flag to the Is command, and let me invoke the secure shell utility (ssh)
with the account information I need as a shortcut. A brief tutorial on creating
aliases can be found in the next section.

© This line simply runs the date command to print the time and date when a new
Terminal window is opened. You might not want to do this, but it’s good for you
to see that you can include any command that you could type at the shell prompt
and have it automatically be executed whenever a new shell starts up.

36 | Chapter2: Using the Terminal

By default, the .profile file doesn’t yet exist in your home directory, and only the
system-wide configuration files are read each time a Terminal window is opened. But
if you create this file in your home directory, it will be read and its contents executed
the next time you start a shell. You can create or change this file with a text editor
such as vi (see Chapter 4).

Don’t use a word processor like Microsoft Word that breaks long
lines or puts special nontext codes into the file. TextEdit can work
if you really insist, but you need to ensure that you chose For-
mat—>Make Plain Text (Shift-8-T) before you save the file to ensure
that no additional formatting information is added by the
application.

Any changes you make to your shell setup files will take effect when you open a new
Terminal window. Unfortunately, it's not always easy to know which shell setup file
you should change, and an editing mistake in your shell setup file can interfere with
the normal startup of the Terminal window itself. It is recommended that beginners
get help from experienced users before tweaking these files. Also, you shouldn’t make
changes to these files at all if youre about to do some critical work with your account,
unless there’s some reason you have to make the changes immediately.

You can execute any customization command discussed here from
the command line as well, rather than making a more permanent
change by editing .profile. In this case, the changes remain in effect
only until you close the window you’re using or quit the Terminal.

For example, to change the default options for the other less command so it clears the
Terminal window before showing each new page of text, you could add the -c option
to the LESS environment variable. The command looks something like this:

$ export LESS='eMqc'

If you don’t want some of the less options shown here, you can
leave those options out.

Unix has many other configuration commands to learn about; the books and websites
listed in Chapter 10 can help you identify which modifications you can make and
how they can help you produce an optimal computing environment for yourself.

Just as you can execute the setup commands from the command line, you can specify
that any command that you can execute from the command line be executed auto-

Advanced Shell Customization | 37

matically when you log in by placing it in your setup file. (Running interactive com-
mands such as vi or ftp from your setup file isn't a good idea, though, in case you ever
log in from a system that can’t display a full-screen editor window. That would leave
you rather stuck.)

Creating Aliases

The flexibility of Unix is simultaneously its greatest strength and greatest downfall;
the operating system can do just about anything you can imagine (the command-line
interface is certainly far more flexible than the Finder!), but its very difficult to
remember every single option to every command. That’s where shell aliases can be a
real boon. A shell alias is a simple mechanism that lets you create your own com-
mand names that act exactly as you desire.

For example, I like the -a and -F options to be included every time I list a directory
with s, so I created the following alias:

$ alias 1s="/bin/1ls -aF"

Now every time I enter Is in the shell, the command is run and the -a and -F options
are specified automatically. To have this available in your next session, make sure you
remember to also add the alias to your .profile file.

You can also have aliases that let you jump quickly to common locations, a particu-
larly helpful trick in OS X. For example:

$ alias desktop="cd ~/Desktop"

With that alias in place, all you need to do is enter desktop at the command prompt,
and you're taken to your Desktop directory. The shell looks at its .profile file, sees that
desktop is an alias, and runs the commands found in the quotes (in this case,
cd ~/Desktop).

Another set of useful aliases is to automatically set the rm, ¢p, and mv commands into
interactive mode, using their -i option. (Chapter 4 describes the cp, mv, and rm com-
mands, which copy, move, and remove files, respectively.) Each of these supports the
-i option, which prompts you before overwriting or deleting a file. You can use aliases
to always enable this option:

$ alias rm="rm -i"
$ alias cp="cp -i"
$ alias mv="mv -i"

You can list all active aliases by typing alias without any arguments:

$ alias

alias cp="cp -1i'

alias desktop='cd ~/Desktop'
alias ls='/bin/1ls -a'

38 | Chapter2: Using the Terminal

Have an alias you want to get rid of? You can use the unalias command for that.
For example, unalias Is removes the -aF options added earlier. To remove them per-
manently, however, you'll likely have to delete that line from your .bashrc or .profile
file.

The Unresponsive Terminal

During your Unix session, your terminal may fail to respond when you type a com-
mand, or the display on your screen may stop at an unusual place. Thats called a
“hung” or “frozen” terminal or session. Note that most of the techniques in this sec-
tion apply to a Terminal window, but not to non-Terminal windows, such as a web
browser.

A session can hang for several reasons. For instance, your computer can get too busy,
and the Terminal application has to wait its turn. In that case, your session will
resume after a few moments. Do not try to “un-hang” the session by entering extra
commands, because those commands will all take effect after the Terminal comes
back to life.

If your display becomes garbled, press Control-L. In the shell, this
will clear the screen and display the prompt. In a full-screen pro-
gram, such as a text editor, this keyboard shortcut redraws the
screen.

If the system doesn't respond for quite a while (how long that is depends on your
individual situation; if youre not sure, ask other users about their experiences), the
following solutions usually work. Try these steps in the order shown until the system
responds:

Press the Return key once
You may have typed text at a prompt (for example, a command line at a shell
prompt) but not yet pressed Return to say that you're done typing and your text
should be interpreted.

Try job control (see Chapter 7); type Control-Z
This suspends the program running in the foreground and gives you a new shell
prompt.

Press Control-C or -
This interrupts a program that may be running. (Unless the program is run in the
background; as described in Chapter 7, the shell waits for a background program
to finish before giving a new prompt. A long-running background program may
thus appear to hang the Terminal.) If this doesn't work the first time, try it once
more; doing it more than twice usually won't help.

The Unresponsive Terminal | 39

Type Control-Q
If output has been stopped with Control-S, this restarts the previously paused
process. Note that some systems automatically issue a Control-S if they need to
pause output; this sequence may not have been typed from the keyboard.

Type Control-D once at the beginning of a new line
Some programs (such as mail) expect text from the user. A program may be wait-
ing for an end-of-input character from you to tell it that you've finished entering
text. Typing Control-D may cause you to log out, so you should try this only as a
last resort.

If all else fails, close your Terminal window (3-W) and open a new one.

40 | Chapter2: Using the Terminal

CHAPTER 3
Exploring the Filesystem

Once you launch the Terminal, you can use the many facilities that OS X provides at
the command line—an environment that’s quite a bit more powerful than the graphi-
cal interface you may be used to viewing. As a user, you have an account that gives
you:

o A place in the filesystem where you can store your files
o A username that identifies you and lets you control access to files

« An environment you can customize

In this chapter, you’ll see how all the thousands of files on your Mac are organized,
how to learn more details about any given file, and how to move around through OS
X’s filesystem. You'll see that the Finder has been hiding quite a lot of information
from you: there are entire directories with thousands of files that are invisible from
the Finder but easily found and explored within the Terminal.

The 0S X Filesystem

A file is the unit of storage in OS X. A file can hold anything: text (a report youre
writing, a to-do list), a program, digitally encoded pictures or sound, and so on. All of
those are just sequences of raw data until theyre interpreted by the right program.

Files are organized into directories (more commonly referred to as folders on the
Aqua side of the Mac). A directory is actually a special kind of file where the system
stores information about other files. You can think of a directory as a place, so that
files are said to be contained in directories, and you work inside a directory. It’s
important that you realize that everything is a file in Unix. Whether youre working
with a directory (perhaps moving files around) or editing a document, Unix funda-
mentally looks at everything as the same sort of container of information.

4

A filesystem includes all the files and directories on a mounted volume, such as your
system’s hard disk, Dropbox, Google Drive, or your iCloud account (all of which you
mount on your system with a little help from WebDAV). This section introduces OS
X’s filesystem, showing you how all the files on your Mac are organized and how to
use Unix commands to explore your Mac’s filesystem. Later sections show how you
can look in files and protect them. Chapter 4 has more information about file man-
agement.

Your Home Directory

When you launch the Terminal, you're placed in a directory called your home direc-
tory. This directory, which can also be viewed in the Finder by clicking the Home
icon, contains personal files, application preferences, and application data such as
Safari’s bookmarks. In your home directory, you can create your own files, create
other subdirectories, and so on. Like folders in a file cabinet, directories offer a way
for you to organize your files.

You can find out where your home directory is at any time by typing the following
command:

$ echo $HOME

/Users/taylor
As you can see, this tells me that my home directory (taylor) is found within the Users
directory (/Users). In Unix, a forward slash (/) is used to separate directory names,
with just a single slash signifying the very top, or root level, of your Macs filesystem.
For example, to change directories to the root level of your hard drive, use the follow-
ing command:

$cd /

For more information on the filesystem’s structure and the root directory, see “The
Directory Tree” on page 43.

Your Working Directory

Your working directory (also called your current directory) is the directory in which
youre currently working. Every time you open a new Terminal window, your home
directory is your working directory. When you change to another directory, the
directory you move to becomes your working directory, and so on.

Unless you specify otherwise, all commands that you enter apply to the files in your
working directory. In the same way, when you create files, they’re created in your
working directory unless you specify another directory. For instance, if you type the
command vi report, the vi editor starts and a file named report is created in your
working directory once you've saved your changes. (Unless, of course, a report file

42 | Chapter3: Exploring the Filesystem

already exists there, in which case that file will be opened in vi.) But if you enter the
following command:

$ vi /Users/john/Documents/report

a report file is created in your Documents directory—all without your having to
change from your current working directory. You'll learn more about this when we
cover pathnames, later in this chapter.

Here’s something that’s important for you to recognize: if you have more than one
Terminal window open, each shell has its own working directory. Changing the
working directory in one shell doesn’t affect other Terminal windows.

You can find out your working directory at any time by entering the pwd command:

$ pwd
/Users/taylor

The Directory Tree

All directories in OS X are organized into a hierarchical structure that you can imag-
ine as a family tree. The parent directory of the tree (the directory that contains all
other directories) is known as the root directory and is written as a forward slash (/).
The root directory is what you see if you open a new Finder window, click the Com-
puter icon, and then open your hard disk.

The root directory contains several other directories. Figure 3-1 shows a visual repre-
sentation of the top of OS X’s filesystem tree: the root directory and some directories
under the root.

Applications, Library, System, and Users are some of the subdirectories (child directo-
ries) of the root directory. There are several other directories that are invisible in the
Finder but visible at the shell prompt (you can see them if you use the Is / command).
These subdirectories are standard Unix directories bin, dev, etc, sbin, tmp, usr, and
var; they contain Unix system files. For instance, bin contains many Unix programs
(also known as binaries, hence the “bin” directory name).

In a Figure 3-1, the parent directory of Users (one level above) is the root directory.
Users has two subdirectories (one level below), john and carol. On an OS X system,
each directory has only one parent directory, but it may have one or more subdirecto-
ries. The root directory at the top of the tree is its own parent and is just known as
“slash” A subdirectory (such as carol) can have its own subdirectories (such as Docu-
ments and Music).

The OS X Filesystem | 43

I / 'G—Root Directory
[Applications] [Library] System Users
| john ' carol
[Documents Documents Music

Figure 3-1. Example of a directory tree

To specify a file or directory location, write its pathname. A pathname is essentially
the address of the directory or file in the filesystem. For more on pathnames, see the
upcoming sections “Absolute Pathnames” and “Relative Pathnames”.

On a basic OS X system, all files in the filesystem are stored on disks connected to
your computer. OS X also has a way to access files on other computers: a networked
filesystem. Networked filesystems make a remote computer’s files appear as if they’re
part of your computer’s directory tree. You can also mount shared directories from
other Macs, Windows machines, or even Unix and Linux servers (from the Finder’s
menu bar, select Go—>Connect to Server). These also appear in the /Volumes direc-
tory, as will other disks, including any external drives plugged directly into your Mac
and any removable media (CDs, DVDs) you have available.

Absolute Pathnames

As you saw earlier, the Unix filesystem organizes its files and directories in an inver-
ted tree structure with the root directory at the top. An absolute pathname tells you
the path of directories through which you must travel to get from the root to the
directory or file you want. In a pathname, slashes (/) are used between the directory
names.

For example, /Users/john is an absolute pathname. It identifies one (only one!) direc-

tory. Here’s how:

o The root directory is the first slash (/).
o The directory Users (a subdirectory of the root directory) is second.

o The directory john (a subdirectory of Users) is last.

44 | Chapter 3: Exploring the Filesystem

Be sure that you do not type spaces anywhere in the pathname. If
there are spaces in one or more of the directory names, you need to
either quote the entire directory pathname, or preface each space
with a backslash (\) to ensure that the shell understands that the
spaces are part of the pathname itself. The backslash is known as an
escape character for just this reason.

In Figure 3-2, you'll see that the directory john has a subdirectory named Documents.
Its absolute pathname is /Users/john/Documents.

/ '4— Root Directory
john '4—/Users/john

[Documents] [Documents] [Music)

Figure 3-2. Absolute path of directory john

The root directory is always indicated by the slash (/) at the start of
the pathname. In other words, an absolute pathname always starts
with a slash.

Relative Pathnames

You can also locate a file or directory with a relative pathname. A relative pathname
gives the location relative to your working directory.

Unless you use an absolute pathname (a path that starts with a slash), Unix assumes
that you're using a relative pathname. Like absolute pathnames, relative pathnames
can go through more than one directory level by naming the directories along the
path.

For example, if youre currently in the /Users directory (see Figure 3-2), the relative
pathname to the carol directory is simply carol:

$ pwd

/Users

$ cd carol

$ pwd
/Users/carol

The OS X Filesystem | 45

If carol wanted to move from her home directory to the Music directory, the relative
pathname to the Music directory would be as follows:

$ cd Music
$ pwd
/Users/carol/Music

Or, she could just use the following command to get from /Users to carol/Music:

$ cd carol/Music

$ pwd

/Users/carol/Music
In these examples, notice that none of the pathnames we are specifying to the cd com-
mand start with a slash. That's what makes them relative pathnames! Relative path-
names start at the working directory, not the root directory. Just remember, a relative
pathname never starts with a slash.

Relative pathnames up

You can go up the tree with the Unix shorthand .. (two periods, commonly referred to
in Unix lingo as “dot dot”) for the parent directory. As you saw earlier, you can also
go down the tree by using subdirectory names. In either case (up or down), separate
each level by a forward slash (/).

Figure 3-3 shows part of Figure 3-1. If your working directory in the figure is Docu-
ments, then there are two pathnames you can use to navigate to the Music subdirec-
tory of carol. You already know how to write the absolute pathname, /Users/carol/
Music. You can also go up one level (with ..) to carol, then go down the tree to Music.
Figure 3-3 illustrates this.

The relative pathname would be ../Music. It would be wrong to give the relative
address as carol/Music. Using carol/Music would say that carol is a subdirectory of
your working directory instead of what it is in this case: the parent directory.

Absolute and relative pathnames are interchangeable. Unix pro-
grams simply follow whichever path you specify to wherever it
leads. If you use an absolute pathname, the path starts from the
root. If you use a relative pathname, the path starts from your cur-
rent working directory. Choose whichever is easier at the moment.

46 | Chapter3: Exploring the Filesystem

Documents

)

Figure 3-3. Relative pathname from Documents to Music

Pathname Puzzle

Here’s a short but important question. The previous examples explain the relative
pathname carol/Music. What do you think Unix would say about the pathname /carol/
Music? (Look again at Figure 3-1.)

Unix would say “No such file or directory” Why? (Please think about that a little bit;
this is very important, and it’s one of the most common mistakes made by Unix new-
bies.) The answer is because the path starts with a slash. The pathname /carol/Music is
an absolute pathname that starts from the root. It says to look in the root directory (/)
for a subdirectory named carol. But since the root directory has no subdirectory
named carol, the pathname is wrong. The only absolute pathname to the Music direc-
tory is /Users/carol/Music.

Changing Your Working Directory

Once you know the absolute or relative pathname of a directory where youd like to
work, you can move up and down the OS X filesystem to reach it. The following sec-
tions explain some helpful commands for navigating through a directory tree.

pwd

To find which directory youre currently in, use pwd (print working directory), which
prints the absolute pathname of your working directory. The pwd command takes no
arguments:

$ pwd
/Users/john

The OS X Filesystem | 47

o

You can change from your present working directory to any directory (including
another user’s directory, if you have permission) with the cd (change directory) com-
mand, which has the form:

cd pathname

The argument is an absolute or a relative pathname (whichever is easier) for the
directory you want to change to:

$ cd /Users/carol

$ pwd

/Users/carol

$ cd Documents

$ pwd
/Users/carol/Documents

The command cd, with no arguments, takes you to your home
directory from wherever you are in the filesystem. It’s identical to
typing in cd $HOME and also identical to typing in cd ~, as shown
earlier.

Note that you can only change to another directory that you have permission to
access. If you try to change to a directory that you're otherwise shut out of, you’ll see
an error:

$ cd /Users/john

-bash: cd: /Users/john: Permission denied
You also cannot c¢d to a filename. If you try, your shell (in this example, bash) gives
you an error message:

$ cd /etc/aliases
-bash: cd: /etc/aliases: Not a directory.

If youre curious, /etc/aliases is a file that contains system-level
email aliases for your Mac system.

One neat trick worth mentioning is that you can quickly give the Terminal a file or
directory path by dragging a file or folder icon from the Finder onto the Terminal
window. This is particularly helpful for those times when youd have to type an extra-
long pathname. For example, if you wanted to change directories to an album in your
iTunes collection, youd have to type something like the following:

$ cd /Users/taylor/Music/iTunes/iTunes\ Media/Music/Maroon\ 5/Hands\ All\ Over

48 | Chapter 3: Exploring the Filesystem

Sure, like you're going to remember that pathname off the top of your head!

To make this easier, you could just type cd followed by a space in a Terminal window,
and then drag the folder in question from a Finder window onto the Terminal win-
dow, as shown in Figure 3-4. When you let go of the file or folder you're dragging into
the Terminal window, the pathname gets added to the command prompt.

Last login: Sat Oct 3 14:55:45 on ttysee2
$cd[]

eo0e Julian Lennon
N < B=0wo = # & »

-
Everything Changes

Everything Changes Photograph Smile

The Secret Value Of Valotte
Daydreamin

77.62 GB available =

Figure 3-4. Dragging a folder from the Finder to a Terminal window saves you from
having to type long and complex paths

Files in the Directory Tree

A directory can hold subdirectories. And, of course, a directory can hold files.
Figure 3-5 is a close-up of the filesystem around john’s home directory. Six directories
are shown, along with the mac-rocks file created by using the touch command, as
explained in the sidebar “Two Ways to Explore Your Filesystem” on page 50.

Pathnames to files are constructed the same way as pathnames to directories. As with
directories, file pathnames can be absolute (starting from the root directory) or rela-
tive (starting from the working directory). For example, if your working directory
is /Users, the relative pathname to the Documents directory would be john/Docu-
ments. The relative pathname to the mac-rocks file would be john/mac-rocks.

The OS X Filesystem | 49

Users (..)

I john (..) '
I I I I I U
[Documents] { Library] [Movies] { Music] [Pictures] [Desktop] :mac-rocks]
\

Figure 3-5. Files in the directory tree

Unix filesystems can also hold things that aren’t directories or files, such as symbolic
links (similar to aliases in OS X), devices (the /dev directory contains entries for devi-
ces attached to the system), and sockets (network communication channels). You
may see some of them as you explore the filesystem. These advanced topics aren’t
covered in this little book, however, because they’re more complex, and overloading
you with advanced stuff right now just wouldn't be fair.

Two Ways to Explore Your Filesystem

Every file and folder that you view from the Finder is also accessible from the Unix
shell. Changes made in one environment are reflected (almost) immediately in the
other. For example, the Desktop folder is also the Unix directory /Users/your_name/
Desktop.

Just for fun, open a Finder window, move to your home folder, and keep it visible
while you type these commands at the shell prompt:

$ cd
$ touch mac-rocks

Switch back to the Finder (you can click on the Desktop) and watch a file called mac-
rocks appear magically. (The touch command creates an empty file with the name you
specify, unless it already exists, in which case it updates the last modified time.)

Now type:
$ rm mac-rocks

Return to the Finder, and watch the file disappear. The rm command removes the file.

50 | Chapter3:Exploring the Filesystem

Listing Files and Directories

To use the cd command, you must know which entries in a directory are subdirecto-
ries and which are files. The Is command lists entries in the directory tree and can
also show you which are which.

The All-Powerful Is Command

When you enter the Is command, you get a list of the files and subdirectories con-
tained in your working directory. The syntax is:

1s options directory-and-filenames

If you've just moved into an empty directory, entering Is without any arguments may
seem to do nothing. This isn’'t surprising; if you have no files, nothing is displayed.
Instead, you'll simply get a new shell prompt:

$ s
$

But if youre in your home directory, Is displays the names of the files and directories
in that directory. The output depends on what’s in your directory. The screen should
look something like what I see in my own home directory:

$ s

Applications Downloads Movies Presentations bin
Desktop Dropbox Music Public

Documents Library Pictures VirtualBox VMs

Sometimes Is might display filenames in a single column. If yours does, you can make
a multicolumn display with the -C option (multicolumn, sorted down) or the -x
option (multicolumn, sorted across). Is has a lot of options that change the informa-
tion and display format.

The -a (all) option is guaranteed to show you some more files, as in the following
example:

$1s -a

.profile Movies
.. .ssh Music
.CFUserTextEncoding .viminfo Pictures
.DS_Store Applications Presentations
.Trash Desktop Public
.bash_history Documents VirtualBox VMs
.bash_sessions Downloads bin
.cups Dropbox
.dropbox Library

When you use Is -a, you'll always see at least two entries named . (dot) and .. (dot,
dot). As mentioned earlier, .. is always the relative pathname to the parent directory.
A single . always represents the current directory; believe it or not, this is useful with

Listing Files and Directories | 51

commands such as c¢p (see Chapter 4). There may also be other files, such
as .bash_history or .Trash. Any entry whose name begins with a dot is a hidden file—
it’s listed only if you add the -a flag to the Is command and is always hidden from the
Finder.

Trying Out the Is Command

Since the Is command is such an important part of the Terminal, let’s practice using
some of the different options.

Open the Terminal application, and then type along to see what your system shows
you:

$ s
Applications Downloads Movies Presentations bin
Desktop Dropbox Music Public
Documents Library Pictures VirtualBox VMs
$1ls -1
Applications
Desktop
Documents
Downloads
Dropbox
Library
Movies
Music
Pictures
Presentations
Public
VirtualBox VMs
bin
The -1 option (that’s the number one, not a lowercase “L”) causes Is to output the list

of files in one-file-per-line format, which can be useful if youre going to paste the list
into a Word document or other material.

One problem with Is is that, unlike the Finder with its helpful icons, the output from
Is doesn’t let you differentiate between files and directories. That's where the helpful
-F option comes in handy:

$ 1s -F

Applications/ Downloads/ Movies/ Presentations/ bin/
Desktop/ Dropbox/ Music/ Public/

Documents/ Library/ Pictures/ VirtualBox VMs/

The -F option shows you which entries are directories by appending a forward slash
(/) to the end of their names. If there were any executable programs or scripts in this
directory, -F would append an asterisk (*) after their filenames; an at symbol (@)
would denote a symbolic link.

52 | Chapter3: Exploring the Filesystem

The -s option indicates the size of each file, in units of 512 bytes. Why 512 bytes?
Well, that’s what the original Unix filesystem used as its block size all those years ago,
and since then that’s just what the Is -s command uses. If you really want to use -s but
aren’t interested in 512-byte blocks, you can set the environment variable BLOCKSIZE
to 1024 to make the resultant listings use the more logical 1-kilobyte size. The results
of this command may be somewhat unexpected.

$1s -s

total 0

0 Applications 0 Library 0 Public

0 Desktop 0 Movies 0 VirtualBox VMs
0 Documents 0 Music 0 bin

0 Downloads 0 Pictures

0 Dropbox 0 Presentations

Directories and empty files are always shown as having zero blocks used. You need to
use the du (disk usage) command, as discussed a bit later in this chapter, to find out
the size of a directory.

Truth be told, most Unix users skip the -s flag to Is in favor of using du. Let’s try this
again on a directory that we know contains files that aren’t empty (Library/Preferen-
ces):

$ ls -sF Library/Preferences/
total 43672
8 2BUA8C4S2C.com.agilebits.onepassword4-helper.plist
0 ByHost/
72 CD Info.cidb
0 Epson/
8 Lingsoft
0 Macromedia/
0 Microsoft/
8 MobileMeAccounts.plist
32 QuickTime Preferences
SafariCloudHistoryPushAgent.plist
VMware Fusion/
callservicesd.plist
com.884e51b2-8cd1-4d52-88a3-dfbac5fccddb.plist
com.Echostar.Sling.plist
com.TechSmith.Snagit.LSSharedFileList.plist
2720 com.TechSmith.Snagit.plist

8 org.bitcoin.Bitcoin-Qt.plist

8 org.cups.PrintingPrefs.plist

8 org.mOk.transmission.LSSharedFileList.plist
8 org.mOk.transmission.plist

0 org.videolan.vlc/

24 org.videolan.vlc.LSSharedFileList.plist

16 org.videolan.vlc.plist

8 org.virtualbox.app.VirtualBox.plist

Listing Files and Directories | 53

This is much more useful. You can see that the directories Microsoft, VMware Fusion,
ByHost, etc., are all zero size, as expected, but notice that some of the preference files,
notably CD Info.cidb and Snaglt.plist, are bigger than the other files. The difference?
Some applications have quite a bit of information that they store as preferences, while
others save only preference settings that are different from the default configuration.

A more interesting place to look is your logfile directory, /var/log:

$ 1s -s /Jvar/log
total 17232

8 CDIS.custom

0 CoreCapture

0 DiagnosticMessages
336 SleepWakeStacks.bin

8 accountpolicy.log
accountpolicy.log.0.gz
accountpolicy.log.1.gz
accountpolicy.log.2.gz

alf.log
apache2
appfirewall.log
asl
48 authd.log
authd.log.0.gz
8 authd.log.1.gz
16 bluetooth.pklg
0 com.apple.clouddocs
0 com.apple.revisiond
0 com.apple.xpc.launc
536 commerce.log
16 corecaptured.log

© 0 © ® W o

[e<)

.asl

hd

Notice that the first line of output with the -s option is always a sum of the size of all
files in the specified directory. This shows that there are 17,232 512-byte blocks,
which you can easily divide by 2 to get kilobytes (8,616 KB). The largest file in this
directory is install.log, which was created after you installed OS X.

Now let’s see if there’s a directory called Library in the current working directory:

$ ls Library
Accounts

Address Book Plug-Ins
Application Scripts
Application Support
Assistants

Audio

Autosave Information
Caches

Calendars
ColorPickers

Colors

Fonts

Fonts Disabled
GameKit

Google

Group Containers
IdentityServices
Input Methods
Internet Plug-Ins
Keyboard Layouts
Keychains
LanguageModeling

Preferences
Printers

PubSub

Safari

Saved Application State
Screen Savers
Services

Social

Sounds

Spelling
StickiesDatabase

54 | Chapter3: Exploring the Filesystem

Compositi