

About	This	E-Book

EPUB	is	an	open,	industry-standard	format	for	e-books.	However,	support	for	EPUB
and	its	many	features	varies	across	reading	devices	and	applications.	Use	your	device	or
app	settings	to	customize	the	presentation	to	your	liking.	Settings	that	you	can	customize
often	include	font,	font	size,	single	or	double	column,	landscape	or	portrait	mode,	and
figures	that	you	can	click	or	tap	to	enlarge.	For	additional	information	about	the	settings
and	features	on	your	reading	device	or	app,	visit	the	device	manufacturer’s	Web	site.

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	e-book	in	single-column,	landscape	mode	and
adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and
configurations	in	the	reflowable	text	format,	we	have	included	images	of	the	code	that
mimic	the	presentation	found	in	the	print	book;	therefore,	where	the	reflowable	format
may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view
code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to	the
previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

Learning	Swift	2	Programming
Second	Edition

Jacob	Schatz

Boston	•	Columbus	•	Indianapolis	•	New	York	•	San	Francisco	•	Amsterdam	•	Cape	Town
•	Dubai

•	London	•	Madrid	•	Milan	•	Munich	•	Paris	•	Montreal	•	Toronto	•	Delhi	•	Mexico	City	•
São	Paulo	•	Sydney	•	Hong	Kong	•	Seoul	•	Singapore	•	Taipei	•	Tokyo

Learning	Swift	2	Programming
Second	Edition

Copyright	©	2016	by	Pearson	Education,	Inc.

All	rights	reserved.	No	part	of	this	book	shall	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	by	any	means,	electronic,	mechanical,	photocopying,	recording,	or
otherwise,	without	written	permission	from	the	publisher.	No	patent	liability	is	assumed
with	respect	to	the	use	of	the	information	contained	herein.	Although	every	precaution	has
been	taken	in	the	preparation	of	this	book,	the	publisher	and	author	assume	no
responsibility	for	errors	or	omissions.	Nor	is	any	liability	assumed	for	damages	resulting
from	the	use	of	the	information	contained	herein.

ISBN-13:	978-0-13-443159-8

ISBN-10:	0-13-443159-6

Library	of	Congress	Control	Number:	2015957570

Printed	in	the	United	States	of	America

First	Printing:	December	2015

Acquisitions	Editor
Mark	Taber

Managing	Editor
Sandra	Schroeder

Project	Editor
Seth	Kerney

Copy	Editor
Cheri	Clark

Indexer
Cheryl	Lenser

Proofreader
Megan	Wade-Taxter

Technical	Editor
Mike	Keen

Editorial	Assistant
Vanessa	Evans

Designer
Chuti	Prasertsith

Compositor
codeMantra

Trademarks

All	terms	mentioned	in	this	book	that	are	known	to	be	trademarks	or	service	marks	have

been	appropriately	capitalized.	The	publisher	cannot	attest	to	the	accuracy	of	this
information.	Use	of	a	term	in	this	book	should	not	be	regarded	as	affecting	the	validity	of
any	trademark	or	service	mark.

Warning	and	Disclaimer

Every	effort	has	been	made	to	make	this	book	as	complete	and	as	accurate	as	possible,	but
no	warranty	or	fitness	is	implied.	The	information	provided	is	on	an	“as	is”	basis.	The
author	and	the	publisher	shall	have	neither	liability	nor	responsibility	to	any	person	or
entity	with	respect	to	any	loss	or	damages	arising	from	the	information	contained	in	this
book.

Special	Sales

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales	opportunities
(which	may	include	electronic	versions;	custom	cover	designs;	and	content	particular	to
your	business,	training	goals,	marketing	focus,	or	branding	interests),	please	contact	our
corporate	sales	department	at	corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	international@pearsoned.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

Contents	at	a	Glance

Introduction

1	Getting	Your	Feet	Wet:	Variables,	Constants,	and	Loops

2	Collecting	Your	Data:	Arrays	and	Dictionaries

3	Making	Things	Happen:	Functions

4	Structuring	Code:	Enums,	Structs,	and	Classes

5	SpriteKit

6	Reusable	Code:	Closures

7	Creating	Your	Own	Syntax:	Subscripts	and	Advanced	Operators

8	Protocols

9	Becoming	Flexible	with	Generics

10	Games	with	SpriteKit

11	Making	Games	with	Physics

12	Making	Apps	with	UIKit

Index

Table	of	Contents

Introduction

1	Getting	Your	Feet	Wet:	Variables,	Constants,	and	Loops

Building	Blocks	of	Swift

Computed	Properties	(Getters	and	Setters)

Using	Comments

Inference

Merging	Variables	into	a	String

Optionals:	A	Gift	to	Unwrap

Printing	Your	Results

Implicitly	Unwrapped	Optionals

Tuples

Number	Types

From	Objective-C	to	Swift

Control	Flow:	Making	Choices

Switching	It	Up:	switch	Statements

Stop…Hammer	Time

Summary

2	Collecting	Your	Data:	Arrays	and	Dictionaries

Using	Arrays

Your	First	Array	the	Long	Way

A	Quicker	Array

Using	AnyObject

Differences	Between	NSArrays	and	Swift	Arrays

Modifying	Arrays

Accessing	Array	Elements

Adding	Elements	to	an	Array

Removing	Elements	from	Arrays

Iterating	Over	Arrays

Extra	Bits	of	Arrays

Emptying	an	Array

Using	Dictionaries

Adding,	Removing,	and	Inserting	with	Dictionaries

Iterating	Over	Dictionaries

Extra	Bits	of	Dictionaries

Emptying	a	Dictionary

Testing	Dictionaries	for	the	Presence	of	Values

Putting	It	All	Together

Summary

3	Making	Things	Happen:	Functions

Defining	Functions

Return	Types

Multiple	Return	Values

More	on	Parameters

External	Parameter	Names

Default	Parameter	Values

Variadic	Parameters

In-Out	Parameters

Functions	as	Types

Putting	It	All	Together

Summary

4	Structuring	Code:	Enums,	Structs,	and	Classes

Enums

Which	Member	Was	Set?

Associated	Values

Raw	Values

Structs

Defining	Methods	in	Structs

Structs	Are	Always	Copied

Mutating	Methods

Classes

Initialization

What	Is	a	Reference	Type?

Do	I	Use	a	Struct	or	a	Class?

Forgot	Your	Pointer	Syntax?

Property	Observers

Methods	in	Classes

Summary

5	SpriteKit

Introducing	SpriteKit

The	SKNode	and	SKSpriteNode

Creating	a	Game

The	New	Project	Screen

The	Game

Summary

6	Reusable	Code:	Closures

What	Are	Closures?

Closures	in	Other	Languages

How	Closures	Work	and	Why	They’re	Awesome

The	Closure	Syntax

Inferring	Using	Context

Arguments	Have	a	Shorthand,	Too

Sorting	a	Custom	Car	Class

Closures	Are	Reference	Types

Automatic	Reference	Counting

Strong	Reference	Cycles

Trailing	Closures

Summary

7	Creating	Your	Own	Syntax:	Subscripts	and	Advanced	Operators

Writing	Your	First	Subscript

Bits	and	Bytes	with	Advanced	Operators

Bitwise	NOT

Bitwise	AND

Bitwise	OR

Bitwise	XOR

Shifting	Bits

UInt8,	UInt16,	UInt32,	Int8,	Int16,	Int32,	and	So	On

Value	Overflow	and	Underflow

Customizing	Operators

Making	Your	Own	Operators

Bits	and	Bytes	in	Real	Life

Summary

8	Protocols

Writing	Your	First	Protocol

Properties

Animizable	and	Humanizable

Methods

Delegation

Protocols	as	Types

Protocols	in	Collections

Protocol	Inheritance

Protocol	Composition

Protocol	Conformity

Optional	Protocol	Prerequisites

Optional	Chaining

Back	to	Optional	Protocol	Requisites

Useful	Built-in	Swift	Protocols

Summary

9	Becoming	Flexible	with	Generics

The	Problem	That	Generics	Solve

Other	Uses	for	Generics

Generics	for	Protocols

The	where	Clause

Summary

10	Games	with	SpriteKit

The	Game

The	Setup

Tour	the	Code

The	Game

Step	1:	Create	the	World

Step	2:	Making	Things	Move

Summary

11	Making	Games	with	Physics

Making	a	Physics-Based	Game

Creating	the	Project

Adding	the	Assets

Adding	the	Levels

Generating	the	Levels

Making	a	Playable	Game

Creating	the	Cage

Summary

12	Making	Apps	with	UIKit

Application	Types

Single-View	Applications

Creating	the	User	Interface

Adding	Constraints

Hooking	Up	the	UI	to	Code

Writing	the	Code

The	TableView

Summary

Index

About	the	Author

Jacob	Schatz	is	a	senior	software	engineer	with	more	than	eight	years	of	experience
writing	code	for	the	masses.	His	code	is	often	used	by	millions	of	people,	and	his	advice	is
often	sought.	Jacob	also	goes	by	the	name	Skip	Wilson	and	has	a	popular	YouTube
channel	currently	covering	Swift	and	Python.	Jacob	is	always	selectively	consuming	the
latest	programming	trends.	He	has	a	passion	for	making	a	difference	and	is	constantly
solving	problems.	Lately	he	has	been	deep	into	Swift,	but	he	also	writes	tons	of
JavaScript,	Python,	Objective-C,	and	other	languages.	He	is	always	learning	more
languages	and	thoroughly	enjoys	making	new	things.	He	is,	at	heart,	a	pedagogue,	and	he
enjoys	teaching	and	finding	new	ways	to	explain	advanced	concepts.

Dedication

For	Tiffany	and	Noa

Acknowledgments

I	could	not	have	written	this	book	without	the	help	of	many	people.	Thank	you	to	the
following:

Logan	Wright,	who	wrote	tons	of	YouTube	tutorials	with	me	and	helped	me	with
this	book.

Cody	Romano,	who	graciously	helped	me	write	and	proofread,	and	whose	endless
knowledge	has	helped	me	debug	more	than	a	few	bugs.

Mike	Keen,	who	tirelessly	proofread	chapters	and	tried	all	my	examples	to	make
sure	they	were	legit.	He	also	provided	an	endless	source	of	inspiration.

Mom	and	Dad,	who,	even	though	they	had	no	idea	what	they	were	reading,	sat	there
and	read	this	book	thoroughly,	providing	sage	advice.

My	wife,	who	put	up	with	me	spending	countless	hours	in	front	of	my	computer,	and
through	the	process	of	this	book	has	become	an	advanced	programmer.

We	Want	to	Hear	from	You!

As	the	reader	of	this	book,	you	are	our	most	important	critic	and	commentator.	We	value
your	opinion	and	want	to	know	what	we’re	doing	right,	what	we	could	do	better,	what
areas	you’d	like	to	see	us	publish	in,	and	any	other	words	of	wisdom	you’re	willing	to
pass	our	way.

We	welcome	your	comments.	You	can	email	or	write	directly	to	let	us	know	what	you	did
or	didn’t	like	about	this	book—as	well	as	what	we	can	do	to	make	our	books	better.

Please	note	that	we	cannot	help	you	with	technical	problems	related	to	the	topic	of	this
book,	and	that	due	to	the	high	volume	of	mail	we	receive,	we	might	not	be	able	to	reply	to
every	message.

When	you	write,	please	be	sure	to	include	this	book’s	title	and	author,	as	well	as	your
name	and	phone	or	email	address.

Email:						errata@informit.com

Mail:								Addison-Wesley/Prentice	Hall	Publishing
																	ATTN:	Reader	Feedback
																	330	Hudson	Street
																	7th	Floor
																	New	York,	New	York,	10013

mailto:errata@informit.com

Reader	Services

Register	your	copy	of	Learning	Swift	2	Programming	(ISBN	978-0-13-443159-8)	at
informit.com/register	for	convenient	access	to	downloads,	updates,	and	corrections	as	they
become	available.

http://informit.com/register

Introduction

Welcome	to	Learning	Swift	2	Programming,	Second	Edition.	This	book	will	launch	you
into	the	world	of	iOS	programming	using	the	exciting	new	Swift	programming	language.
This	book	covers	Swift	from	start	to	finish,	in	a	quick	but	complete	way.

This	Introduction	covers	the	following:

	Who	should	read	this	book

	Why	you	should	read	this	book

	What	you	will	be	able	to	achieve	using	this	book

	What	Swift	is	and	why	it	is	awesome

	How	this	book	is	organized

	Where	to	find	the	code	examples

Ready?

Who	Should	Read	This	Book
This	book	is	for	those	who	already	have	one	or	many	programming	languages	under	their
belt.	You	may	be	able	to	get	through	this	book	with	Swift	as	your	first	language,	but	you’ll
find	it	easier	if	you	can	relate	it	to	other	languages.	If	you	have	experience	with	iOS
programming	with	Objective-C,	you	should	really	be	able	to	take	to	Swift	quickly.	This
book	often	relates	Swift	concepts	to	those	of	other	popular	programming	languages,
including	JavaScript,	Python,	Ruby,	C,	and	Objective-C.

Why	You	Should	Read	This	Book
This	book	will	teach	you	all	aspects	of	Swift	programming	so	you	can	start	writing	high-
quality	apps	as	quickly	as	possible.	However,	it	is	not	an	exhaustive	reference;	it	is	a
complete	yet	easy-to-digest	initiation	into	Swift.	This	book	will	make	you	a	better
developer;	because	Swift	is	a	mixture	of	many	languages,	you	are	bound	to	learn	new
concepts	here.	Swift	is	very	robust	on	its	own,	and	at	the	same	time	it	allows	you	to	mix	in
Objective-C.

If	you	are	reading	this	book,	you’ve	probably	heard	people	talking	about	Swift’s	amazing
features.	You’ve	heard	about	its	advanced	design,	how	fast	it	runs,	and	how	much	easier
your	development	will	be.	This	book	shows	you	all	those	features	of	the	Swift	language,
as	well	as	some	very	exciting	discoveries	I’ve	made	with	it.	Now	is	the	perfect	time	to
jump	right	in.	This	book	will	get	you	fully	immersed	and	provide	everything	you	need	in
order	to	get	up	and	running	as	quickly	as	possible.

What	You	Will	Learn	from	This	Book
Reading	this	book	will	make	you	an	official	Swift	programmer	and	allow	you	to	write
real-world,	production-quality	apps.	You’ll	write	apps	that	take	advantage	of	the	most
advanced	features	of	Swift,	so	you’ll	be	writing	refined,	clean	code.	After	reading	this
book,	you’ll	be	able	to	create	any	app	you	want	in	Swift.	Here	are	just	a	few	things	you
will	learn	while	reading	this	book:

	How	to	combine	existing	Objective-C	code	into	new	Swift	applications

	How	to	use	advanced	features	like	generics	to	write	less	code

	How	to	create	optionals	as	a	quicker	way	to	make	sure	your	code	doesn’t	crash	at
runtime	due	to	nonexistent	values

	How	to	write	closures	to	pass	around	little	blocks	of	functionality,	which	can	be
written	in	as	little	as	four	characters

	How	to	create	a	2D	side-scrolling	game	using	SpriteKit

	How	to	create	a	3D	game	using	SceneKit

	How	to	read	bits	and	bytes	so	you	can	do	things	like	read	a	PDF

What	Is	Swift?
Swift	is	a	new	programming	language	from	Apple	that	replaces	and	also	works	alongside
languages	like	C	and	Objective-C.	The	idea	with	Swift	is	to	make	it	easier	to	write	apps
for	iOS	with	a	language	that	is	fresh	and	new.	The	Swift	language	relates	to	many	other
languages.	It	is	also	so	customizable	that	you	can	write	Swift	in	many	ways.	For	example,
Swift	allows	you	to	define	what	square	brackets	do;	instead	of	always	using	them	for	array
and	dictionary	access,	you	can	technically	make	them	do	whatever	you	want.	Swift	allows
you	to	define	your	own	operators	and	override	existing	ones.	If	you	want	to	make	a	new
triple	incrementor	(such	as	+++)	that	increments	twice	instead	of	once,	then	you	can	do
that.	Plus,	you	can	create	custom	operators	to	work	with	your	custom	classes,	which
means	you’ll	write	less	code	and	therefore	make	your	life	easier.	For	example,	if	you	were
to	write	a	program	about	automobiles,	you	could	define	what	would	happen	if	you	were	to
add	two	cars	instances	to	each	other.	Normally	you	can	only	add	numbers	to	each	other,
but	in	Swift	you	can	override	the	+	operator	to	do	whatever	you	want.

Swift	is	well	structured	and	completely	compatible	with	Objective-C.	All	the	libraries
available	in	Objective-C	are	also	available	in	Swift.	Swift	allows	you	to	create	bridges	that
connect	languages.

How	This	Book	Is	Organized
This	book	is	divided	into	12	chapters,	which	cover	the	language	itself	and	walk	you
through	creating	a	few	apps:

	Chapters	1–4	cover	basic	language	syntax,	including	variables,	constants,	arrays,
dictionaries,	functions,	classes,	enums,	and	structs.	These	are	the	basic	building
blocks	of	the	Swift	language.

	Chapter	5	takes	a	break	from	the	language	syntax	and	helps	you	create	a	basic	game
of	tic-tac-toe.

	Chapters	6–9	cover	more	advanced	language	features,	including	closures,	subscripts,
advanced	operators,	protocols	and	extensions,	generics,	and	programming	on	the	bit
and	byte	levels.

	Chapters	10–12	show	you	how	to	create	real-world	apps	using	the	knowledge
you’ve	gained	from	previous	chapters.

Enjoy	the	Ride
My	goal	was	to	make	this	book	fun	to	read,	and	I	had	a	lot	of	fun	writing	it.	I	want	to
show	you	how	exciting	learning	a	new	language	can	be.

When	a	new	language	comes	out,	often	not	a	whole	lot	of	knowledge	is	out	there	about	it.
This	book	aims	to	give	you	direct	access	to	knowledge	that	is	hard	to	find,	and	it	is	an
easy-to-read	version	of	a	lot	of	knowledge	that	is	hard	to	read.	Searching	online	for
answers	can	be	difficult	because	Swift	evolves	and	we	all	are	still	figuring	out	Swift
together.	There	are,	of	course,	bugs	in	the	language,	and	I’m	sure	there	will	continue	to	be
bugs.	I	wrote	this	book	while	Swift	was	still	in	beta	(and	constantly	changing)	and
finished	it	up	as	Swift	became	version	2.0.	Swift	will	continue	to	change	and	improve	as
more	people	use	it	and	report	bugs	as	time	goes	on.	This	book	has	been	tested	against	the
latest	version	of	Swift	(as	of	this	writing),	but	that	doesn’t	mean	that	Swift	won’t	change.	I
hope	you	enjoy	learning	to	use	Swift.

1.	Getting	Your	Feet	Wet:	Variables,	Constants,	and	Loops

Swift	is	a	new	programming	language	created	by	Apple,	with	the	intention	of	making
development	of	software	for	Apple	products	significantly	easier.	If	you	have	experience	in
C	and	Objective-C,	you	should	find	Swift	to	be	a	walk	in	the	park.	All	the	classes	and
types	that	are	available	to	you	in	C	and	Objective-C	are	ported	over	and	available	in	their
exact	incarnations	in	Swift.

If,	however,	you	come	from	a	Ruby	or	Python	background,	you	will	find	Swift’s	syntax	to
be	right	up	your	alley.	Swift	borrows	and	iterates	on	many	ideas	from	Python	and	Ruby.

If	you	come	from	the	JavaScript	world,	you	will	be	pleased	to	know	that	Swift	also
doesn’t	ask	you	to	declare	types,	as	old	strict	Java	does.	You	will	also	be	pleased	to	know
that	Swift	has	its	own	version	of	indexOf	and	many	other	familiar	JavaScript	functions.
If	they	aren’t	the	exact	replicas	of	said	functions,	they	will	at	least	be	familiar.

If	you	come	from	the	Java	world,	you	will	be	happy	to	know	that	even	though	Swift	does
not	force	you	to	declare	types,	you	still	can	and	Swift	most	certainly	enforces	those	types,
very	strictly.

These	are	all	just	basic	syntax	comparisons;	the	real	magic	evolves	from	Swift’s
chameleon-like	capability	to	be	written	in	any	way	that	makes	you	the	programmer
comfortable.	If	you	want	to	write	the	tersest	one-liner	that	does	everything	you	ever
needed	in	one	fell	swoop,	Swift	has	you	covered.	If	you	want	to	write	Haskell-like
functional	programming,	Swift	can	do	that,	too.	If	you	want	to	write	beautiful	object-
oriented	programming	with	classic	design	patterns,	Swift	will	do	that	as	well.

In	the	future	(or	now,	depending	on	when	you	are	reading	this),	Swift	will	be	open	source
so	that	you	can	officially	(theoretically)	write	Swift	on	Linux	or	Windows.	Someone	may
even	create	a	web	framework	like	Ruby	on	Rails	in	Swift.

This	chapter	covers	the	basic	building	blocks	of	Swift.	It	starts	with	variables	and
constants.	With	this	knowledge,	you	will	be	able	to	store	whatever	you’d	like	in	memory.
Swift	has	a	special	feature	called	optionals,	which	allows	you	to	check	for	nil	values	in	a
smoother	way	than	in	other	programming	languages.	As	I	briefly	mentioned	before,	Swift
has	strong	type	inference;	this	allows	you	to	have	strict	typing	without	needing	to	declare
a	type.	This	chapter	also	goes	over	how	Swift	handles	loops	and	if/else	statements.

Building	Blocks	of	Swift
Swift	allows	you	to	use	variables	and	constants	by	associating	a	name	with	a	value	of
some	type.	For	example,	if	you	want	to	store	the	string	"Hi"	in	a	variable	named
greeting,	you	can	use	a	variable	or	a	constant.	You	create	a	variable	by	using	the	var
keyword.	This	establishes	an	associated	value	that	can	be	changed	during	the	execution	of
the	program.	In	other	words,	it	creates	a	mutable	storage.	If	you	do	not	want	mutable
storage,	you	can	use	a	constant.	For	example,	you	might	record	the	number	of	login	retries
a	user	is	allowed	to	have	before	being	refused	access	to	the	site.	In	such	a	case,	you	would
want	to	use	a	constant,	as	shown	in	this	example:

Click	here	to	view	code	image
var	hiThere	=	“Hi	there”
hiThere	=	“Hi	there	again”

let	permanentGreeting	=	“Hello	fine	sir”
permanentGreeting	=	“Good	morning	sir”

Notice	that	you	don’t	use	a	semicolon	as	you	would	in	many	other	languages.	Semicolons
are	not	mandatory,	unless	you	want	to	combine	many	statements	together	on	the	same
line.	In	Swift	you	would	not	put	a	semicolon	on	the	end	of	the	line,	even	though	Swift	will
not	complain.	Here	is	an	example	that	shows	you	when	you	would	use	the	semicolon	in
Swift	when	multiple	lines	are	combined	into	one:
Click	here	to	view	code	image

let	numberOfRetries	=	5;	var	currentRetries	=	0

Also	unique	to	Swift,	you	can	use	almost	any	Unicode	character	to	name	your	variables
and	constants.	Developers	can	name	resources	using	Hebrew,	Simplified	Chinese,	and
even	special	Unicode	characters,	such	as	full-color	koala	emoji.

When	declaring	multiple	variables,	you	can	omit	the	var	keyword.	Here	is	an	example:
var	yes	=	0,	no	=	0

Computed	Properties	(Getters	and	Setters)
In	Swift	you	can	also	declare	variables	as	computed	properties.	You	would	use	this	when
you	want	to	figure	out	the	value	of	the	variable	at	runtime.	Here	is	an	example	of	a	getter,
where	the	value	of	the	score	is	determined	by	how	much	time	is	left.	In	this	example	we
are	creating	a	read-only	computed	property.

var	timeLeft	=	30
var	score:Int	{
get{
				return	timeLeft	*	25
}
}
print(score)

In	this	example	we	can	reference	(or	read)	score	anywhere	because	it	is	in	the	global
scope.	What	is	really	interesting	is	that	if	we	try	to	set	the	score,	it	will	give	us	an	error
because	we	have	created	a	read-only	property.	If	we	want	to	be	able	to	set	this	property,
we	need	to	create	a	setter.	You	cannot	create	a	setter	without	a	getter.	Aside	from	the	fact
that	it	would	not	make	sense,	it	also	just	will	not	work.	Let’s	create	a	setter	to	go	along
with	our	getter.	It	does	not	make	sense	for	a	setter	to	set	the	computed	property	directly
because	the	value	of	the	property	is	computed	at	runtime.	Therefore,	you	use	a	setter	when
you	want	to	set	other	values	as	a	result	of	the	setter	being	set.	Also,	setters	work	well	in
some	sort	of	organizational	unit,	which	we	haven’t	covered	yet,	but	it’s	worth	diving	into
briefly.	Here	is	a	full	Swift	example,	which	includes	many	elements	we	have	not	covered
yet.
Click	here	to	view	code	image

import	UIKit
struct	Book	{
				var	size	=	CGSize()

				var	numberOfPages	=	100;
				var	price:Float	{
				get{
								return	Float(CGFloat(numberOfPages)	*	(size.width	*	size.height))
				}
				set(newPrice){
								numberOfPages	=	Int(price	/	Float(size.width	*	size.height))
				}
				}
}

var	book	=	Book(size:	CGSize(width:	0.5,	height:	0.5),	numberOfPages:	400)
print(book.price)
book.price	=	400
print(book.numberOfPages)

In	this	example	we	create	a	book	Struct,	which	is	a	way	to	organize	code	so	that	it	is
reusable.	I	would	not	expect	you	to	understand	all	of	this	example,	but	if	you	have	ever
coded	in	any	other	languages,	you	will	notice	that	there	is	a	lot	of	type	casting	going	on
here.	Type	casting	is	a	something	you	do	all	the	time	in	Objective-C	and	most	other
languages.	We	will	cover	all	aspects	of	this	code	in	this	book,	but	you	should	know	that
we	created	a	setter,	which	sets	the	number	of	pages	in	the	book	relative	to	the	new	price.

Using	Comments
You	indicate	comments	in	Swift	by	using	a	double	forward	slash,	exactly	as	in	Objective-
C.	Here’s	an	example:
Click	here	to	view	code	image

//	This	is	a	comment	about	the	number	of	retries
let	numberOfRetries	=	5	//	We	can	also	put	a	comment	on	the	end	of	a	line.

If	you	want	to	create	comments	that	span	multiple	lines,	you	can	use	this	/*	*/	style	of
comments,	which	also	works	well	for	documentation.

/*	Comments	can	span
multiple	lines	*/

Inference
Swift	uses	inference	to	figure	out	what	types	you	are	trying	to	use.	Because	of	this,	you	do
not	need	to	declare	a	type	when	creating	variables	and	constants.	However,	if	you	want	to
declare	a	type	you	may	do	so,	and	in	certain	situations,	it	is	absolutely	necessary.	When
declaring	a	variable,	the	rule	of	thumb	is	that	Swift	needs	to	know	what	type	it	is.	If	Swift
cannot	figure	out	the	type,	you	need	to	be	more	explicit.	The	following	is	a	valid
statement:

var	currentRetries	=	0

Notice	that	Swift	has	to	figure	out	what	type	of	number	this	is.	currentRetries	may
be	one	of	the	many	types	of	numbers	that	Swift	offers	(Swift	will	infer	this	as	an	Int	in
case	you	are	wondering,	but	more	on	that	later).	You	could	also	use	this:

var	currentRetries:Int	=	0

In	this	case,	you	explicitly	set	the	type	to	Int	by	using	the	colon	after	the	variable	name
to	declare	a	type.	Although	this	is	legit,	it	is	unnecessary	because	Swift	already	knows	that

0	is	an	Int.	Swift	can	and	will	infer	a	type	on	a	variable	that	has	an	initial	value.

When	do	you	need	to	declare	the	type	of	a	variable	or	constant?	You	need	to	declare	the
type	of	a	variable	or	constant	if	you	do	not	know	what	the	initial	value	will	be.	For
example:

var	currentRetries:Int

In	this	case,	you	must	declare	Int	because	without	it,	Swift	cannot	tell	what	type	this
variable	will	be.	This	is	called	type	safety.	If	Swift	expects	a	string,	you	must	pass	Swift	a
string.	You	cannot	pass	an	Int	when	a	String	is	expected.	This	style	of	coding	is	a
great	time-saver.	You	will	do	a	lot	less	typing	with	your	fingers	and	a	lot	more	thinking
with	your	brain.	Every	default	value	you	give	a	variable	without	a	type	will	be	given	a
type.	Let’s	talk	about	numbers	first.

For	number	types,	Swift	gives	us	the	following:

	Int	is	available	in	8,	16,	32,	and	64	bits,	but	you	will	most	likely	stay	with	just
Int.	It’s	probably	large	enough	for	your	needs.	Here’s	what	you	need	to	know	about
Int:

Int	on	32-bit	platforms	is	Int32.

Int	on	64-bit	platforms	is	Int64.

That	is,	when	you	declare	a	variable	as	Int,	Swift	will	do	the	work	of	changing	that
to	Int32	or	Int64.	You	don’t	need	to	do	anything	on	your	end.

Int	can	be	both	positive	and	negative	in	value.

Int	will	be	the	default	type	when	you	declare	a	variable	with	a	number	and	no
decimals:

Click	here	to	view	code	image
var	someInt	=	3	//	this	will	be	an	Int

UInt	is	provided	as	an	unsigned	integer.	An	unsigned	number	must	be	positive,
whereas	a	signed	number	(an	Int)	can	be	negative.	For	consistency,	Apple
recommends	that	you	generally	use	Int	even	when	you	know	that	a	value	will
never	be	negative.

	Double	denotes	64-bit	floating-point	numbers.	Double	has	a	higher	precision	than
float,	with	at	least	15	decimal	digits.	Double	will	be	the	chosen	type	when	you
declare	a	variable	that	has	decimals	in	it:

Click	here	to	view	code	image
var	someDouble	=	3.14	//	this	will	be	a	double

Combining	any	integer	with	any	floating-point	number	results	in	a	Double:
Click	here	to	view	code	image

3	+	3.14	//	6.14	works	and	will	be	a	double
var	three	=	3
var	threePointOne	=	3.1
three	+	threePointOne	//Error	because	you	can’t	mix	types

	Float	denotes	32-bit	floating-point	numbers.	Float	can	have	a	precision	as	small
as	6.	Whether	you	choose	Float	or	Double	is	completely	up	to	you	and	your
situation.	Swift	will	choose	Double	when	no	type	is	declared.

Along	with	Decimal	numbers,	you	can	use	Binary,	Octal,	and	Hexadecimal
numbers:

	Decimal	is	the	default	for	all	numbers,	so	no	prefix	is	needed.

	Create	a	Binary	number	by	adding	a	0b	prefix.

	Octal	uses	a	0o	prefix.

	Hexadecimal	uses	a	0x	prefix.

You	can	check	the	type	of	the	object	by	using	the	is	keyword.	The	is	keyword	will
return	a	Boolean.	In	this	example	we	use	the	Any	class	to	denote	that	pi	can	be	anything
at	all	until	we	type	it	as	a	Float:

var	pi:Any?
pi	=	3.141
pi	is	Double	//true
pi	is	Float		//false

Notice	that	you	declare	this	type	as	Any?	in	the	preceding	example.	The	question	mark
denotes	an	optional,	which	allows	us	to	not	set	an	initial	value	without	causing	an	error.
The	Any	type	can	be	any	type	(exactly	what	it	says).	Objective-C	is	not	as	strict	as	Swift,
and	you	need	to	be	able	to	intermingle	the	two	languages.	For	this	purpose,	Any	and
AnyObject	were	created,	which	allows	you	to	put	any	type	in	an	object.	Think	about
arrays	in	Objective-C,	which	can	mix	different	types	together;	for	that	purpose	you	need	to
give	Swift	the	ability	to	have	arrays	of	different	types.	You’ll	learn	more	about	this	later	in
the	chapter.

Swift	is	the	only	programming	language	(that	I	know	of)	that	lets	you	put	underscores	in
numbers	to	make	them	more	legible.	Xcode	ignores	the	underscores	when	it	evaluates
your	code.	You	might	find	using	underscores	especially	useful	with	big	numbers	when	you
want	to	denote	a	thousand-comma	separator,	as	in	this	case:

var	twoMil	=	2_000_000

Before	you	can	add	two	numbers	together,	they	must	be	made	into	the	same	type.	For
example,	the	following	will	not	work:
Click	here	to	view	code	image

var	someNumA:UInt8	=	8
var	someNumB:Int8	=	9
someNumA	+	someNumB
//Int8	is	not	convertible	to	UInt8

The	reason	this	does	not	work	is	that	someNumA	is	a	UInt8	and	someNumB	is	an
Int8.	Swift	is	very	strict	about	the	combination	of	things.

To	make	this	work,	you	must	convert	one	of	the	types	so	that	the	two	types	are	the	same.
To	do	this,	use	the	initializer	of	the	type.	For	example,	you	can	use	the	initializer	UInt8,
which	can	convert	someNumB	to	a	UInt8	for	you:

someNumA	+	UInt8(someNumB)

Swift	is	strict	and	makes	sure	that	you	convert	types	before	you	can	combine	them.

We	had	to	do	a	lot	of	conversions	of	types	in	a	previous	example.

Merging	Variables	into	a	
When	you	want	to	combine	a	variable	in	a	string	there	is	a	special	syntax	for	that.	Take	an
example	in	which	you	have	a	variable	message	and	you	want	to	mix	it	into	a	string.	In
Objective-C	you	would	do	something	like	this:
Click	here	to	view	code	image

[NSString	stringWithFormat:@“Message	was	legit:	%@”,	message];

In	JavaScript	you	would	do	something	like	this:
Click	here	to	view	code	image

“Message	was	legit:”	+	message;

In	Python	you	would	do	something	like	this:
Click	here	to	view	code	image

“Message	was	legit:	%s”	%	message

In	Ruby	you	would	do	something	like	this:
Click	here	to	view	code	image

“Message	was	legit:	#{message}”

In	Swift	you	do	something	like	this:
Click	here	to	view	code	image

“Message	was	legit:	\(message)”

You	use	this	syntax	of	\()	to	add	a	variable	into	a	string.	Of	course,	this	will	interpret
most	things	you	put	in	between	those	parentheses.	This	means	you	can	add	full
expressions	in	there	like	math.	For	example:

“2	+	2	is	\(2	+	2)”

This	makes	it	very	simple	to	add	variables	into	a	string.	Of	course,	you	could	go	the	old-
school	way	and	concatenate	strings	together	with	the	plus	operator.	In	most	situations	you
don’t	need	to	do	this	because	the	\()	makes	things	so	much	easier.	One	thing	to
remember	is	that	Swift	has	strict	type	inference,	so	if	you	try	to	combine	a	String	with
an	Int,	Swift	will	complain.	The	error	it	gives	is	not	the	easiest	to	decipher.	For	example:

“2	+	2	is	”	+	(2	+	2)

This	returns	the	following	error	(depending	on	your	version	of	Swift	and	how	you	are
running	it):
Click	here	to	view	code	image

<stdin>:3:19:	error:	binary	operator	‘+’	cannot	be
applied	to	operands	of	type	‘String’	and	‘Int’
print(“2	+	2	is	”	+	(2	+	2))
~~~~~~~~~~~	^	~~~~~~~
<stdin>:3:19:	note:	overloads	for	‘+’	exist	with	these
partially	matching	parameter	lists:	(Int,	Int),



(String,	String),	(UnsafeMutablePointer<Memory>,
Int),	(UnsafePointer<Memory>,	Int)
print(“2	+	2	is	”	+	(2	+	2))

What	this	means	is	that	you	can’t	mix	Strings	and	Ints.	So	you	have	to	convert	the
Int	to	a	String.

“2	+	2	is	”	+	String(2	+	2)

This	works	because	you	are	now	combining	a	String	and	an	Int.	One	of	the	most
important	things	to	keep	in	mind	when	writing	Swift	is	that	you’ll	often	do	a	lot	of	type
conversion	to	deal	with	the	strict	typing.

Optionals:	A	Gift	to	Unwrap
In	our	tour	through	the	basic	building	blocks	of	Swift,	we	come	to	optionals.	Optionals	are
a	unique	feature	of	Swift,	and	they	are	used	quite	extensively.	Optionals	allow	you	to
safely	run	code	where	a	value	may	missing,	which	would	normally	cause	errors.	Optionals
take	some	getting	used	to.	Optionals	help	you	achieve	clean-looking	code	with	fewer	lines
while	also	being	stricter.

In	many	languages,	you	need	to	check	objects	to	see	whether	they	are	nil	or	null.
Usually,	you	write	some	pseudo-code	that	looks	like	the	following.	In	this	example	we
check	for	not	null	in	JavaScript:

if(something	!=	null)	{…

In	Swift,	an	optional	either	contains	a	value	or	it	doesn’t.	In	other	languages,	we	often
have	to	deal	with	missing	values,	such	as	a	variable	that	once	contained	a	value	but	no
longer	does.	Or	when	a	variable	is	initialized	without	a	value.	To	mark	something	as
optional,	you	just	include	a	?	next	to	the	type	of	the	object.	For	example,	here’s	how	you
create	a	String	optional:
Click	here	to	view	code	image

var	someString:String?	=	“Hey	there!”

You	can	now	say	that	someString	is	of	type	String?	(a	“String	optional”)	and	no
longer	just	of	type	String.	Try	printing	that	variable	as	an	optional	string	and	then	as	a
regular	string.	Notice	the	difference	in	their	returned	values.
Click	here	to	view	code	image

var	greetingOptional:String?	=	“hi	there”
var	greeting:String	=	“Hi”
print(greetingOptional)	//Optional(“hi	there”)
print(greeting)	//“Hi”

If	you	choose	to	use	an	optional	and	it	does	contain	a	value,	you	must	do	something
special	to	get	raw	value	out.	Optionals	must	be	“unwrapped”	in	order	to	get	their	value
back.	There	are	a	couple	ways	to	get	the	value	out	of	an	optional.	When	you	see	a	variable
of	type	String?,	you	can	say	that	this	variable	may	or	may	not	contain	a	value.	You	will
test	this	String	optional	to	find	out	whether	it	does	in	fact	have	a	value.	How	do	you	test
an	optional?	There	are	a	couple	of	ways.	First	try	to	use	value	binding.

Value	binding	allows	you	to	do	two	things.	First,	it	allows	you	to	test	the	optional	to	see



whether	it	is	nil	(whether	it	contains	a	value).	Second,	if	that	variable	is	not	nil,	value
binding	allows	you	to	grab	the	value	out	of	the	optional	and	have	it	passed	into	a	constant
as	a	locally	scoped	variable.	To	see	this	in	action,	take	a	look	at	an	example,	but	before
you	can	try	it	out,	you	first	need	to	open	a	new	playground:

1.	Open	Xcode.

2.	Click	Get	started	with	a	playground.

3.	Save	a	new	playground	file	by	giving	it	a	filename.

Now	you	can	try	out	value	binding	with	optionals:
Click	here	to	view	code	image

var	hasSomething:String?	=	“Hey	there!”
if	let	message	=	hasSomething	{
				“Message	was	legit:	\(message)”
}	else	{
				“There	was	no	message!”
}

A	couple	of	new	things	are	going	on	here.	Let’s	go	through	this	example	one	step	at	a
time:

1.	On	the	first	line,	you	create	a	variable	as	usual,	but	you	add	the	?	to	say	that	this	is	a
String	optional.	This	means	that	this	String	may	contain	a	value	or	nil.	In	this
case,	it	contains	a	value.	That	value	is	the	string	"Hey	there!".

2.	Next,	you	write	an	if	statement.	You	are	testing	whether	the	variable
hasSomething	is	nil.	At	the	same	time,	you	are	assigning	that	value	of	the
optional	to	a	constant	message.	If	the	variable	contains	a	value,	you	get	a	new
constant	(available	only	in	the	local	scope,	so	we	call	it	a	locally	scoped	constant),
which	is	populated	with	the	raw	value	of	the	optional.	You	will	then	enter	into	the
if	statement	body.

3.	If	you	do	enter	into	that	if	statement,	you	now	have	a	message	to	use.	This
constant	will	be	available	only	in	that	if	statement.

However,	sometimes	you	are	absolutely	sure	that	your	optional	contains	a	value	and	is	not
empty.	You	can	think	of	optionals	as	a	gift	that	needs	to	be	unwrapped.	If	an	optional	is
nil	inside,	it	will	not	throw	an	error	when	you	use	it.	In	other	languages,	trying	to	access
something	of	nil	(or	null)	value	throws	an	error.

You	can	unwrap	an	optional	by	using	an	exclamation	point.	That	is,	you	can	get	the	value
inside	the	optional	by	using	an	exclamation	point.	Let’s	look	again	at	our	earlier	example:
Click	here	to	view	code	image

var	hasSomething:String?	=	“Hey	there!”
print(hasSomething)	//	Optional(“Hey	there!”)\n
//	Now	unwrap	the	optional	with	the	“!”
print(hasSomething!)	//	“Hey	there!\n”

If	you	were	sure	that	the	string	contained	a	value,	you	could	unwrap	the	optional	with	the
“!.”	Now	you	can	get	the	value	out	of	the	optional	with	one	extra	character.	Remember
how	we	said	optionals	are	like	wrapped-up	presents?	Well,	it’s	sometimes	good	to	think	of



them	more	like	bombs	in	Minesweeper.	If	you	are	too	young	for	Minesweeper,	think	of
them	as	presents	that	could	contain	bombs.	You	want	to	unwrap	an	optional	with	the	“!”
only	if	you	are	absolutely	sure	it	contains	a	value.	You	want	to	unwrap	an	optional	with
the	“!”	only	if	you	are	absolutely	sure	it	does	not	contain	nil.	If	you	unwrap	an	optional
that’s	nil,	using	“!,”	then	you	will	throw	a	fatal	error,	and	your	program	will	crash:
Click	here	to	view	code	image

var	hasSomething:String?	//declare	the	optional	string	with	no	initial
			value
//	Now	try	and	force	it	open
hasSomething!	//	fatal	error:
Execution	was	interrupted,	reason:	EXC_BAD_INSTRUCTION…

When	you	get	an	EXC_BAD_INSTRUCTION	somewhere,	it	means	that	your	app	is	trying
to	access	something	that	does	not	exist,	which	could	be	an	error	with	an	empty	optional
trying	to	unwrap	with	the	“!.”

Printing	Your	Results
When	you	use	the	playground	to	test	your	code,	you	have	two	options	for	printing	data.
You	can	simply	just	write	it,	like	this:
Click	here	to	view	code	image

var	someString	=	“hi	there”
someString	//prints	“hi	there”	in	the	output	area

You	can	also	use	print(),	which	prints	to	the	console	output	area.	When	you	are
making	a	full-fledged	app,	compiling	code	outside	a	playground,	you’ll	want	to	use
print(),	like	this,	because	just	writing	the	variable	will	not	do	anything:
Click	here	to	view	code	image

var	someString	=	“hi	there”
print(someString)	//prints	“hi	there”	in	the	console	output

Implicitly	Unwrapped	Optionals
Sometimes	you	want	to	create	an	optional	that	gets	unwrapped	automatically.	To	do	this,
you	assign	the	type	with	an	exclamation	point	instead	of	a	question	mark:
Click	here	to	view	code	image

var	hasSomething:String!	=	“Hey	there”//	implicitly	unwrapped	optional	string
hasSomething	//	print	the	implicitly	unwrapped	optional	and	get	the
			unwrapped	value.

You	can	think	of	implicitly	unwrapped	optionals	as	a	present	that	unwraps	itself.	You
should	not	use	an	implicitly	unwrapped	optional	if	a	chance	exists	that	it	may	contain	nil
at	any	point.	You	can	still	use	implicitly	unwrapped	optionals	in	value	binding	to	check
their	values.

So	why	should	you	create	implicitly	unwrapped	optionals	in	the	first	place	if	they	can	be
automatically	unwrapped?	How	does	that	make	them	any	better	than	regular	variables?
Why	even	use	them	in	the	first	place?	These	are	fantastic	questions,	and	we	will	answer
them	later,	after	we	talk	about	classes	and	structures	in	Chapter	4,	“Structuring	Code:
Enums,	Structs,	and	Classes.”	One	quick	answer	is	that	sometimes	we	want	to	say	that



something	has	no	value	initially	but	we	promise	that	it	will	have	a	value	later.	Properties
of	classes	must	be	given	a	value	by	the	time	initialization	is	complete.	We	can	declare	a
property	with	the	exclamation	point	to	say,	in	effect,	“Right	now	it	does	not	have	a	value,
but	we	promise	we	will	give	this	property	a	value	at	some	point.”

Also,	sometimes	you	will	have	a	constant	that	cannot	be	defined	during	initialization,	and
sometimes	you	will	want	to	use	an	Objective-C	API.	For	both	of	these	reasons	and	more,
you	will	find	yourself	using	implicitly	unwrapped	optionals.	The	following	example	has
two	examples	(with	some	concepts	not	covered	yet)	in	which	you	would	commonly	use
implicitly	unwrapped	optionals.
Click	here	to	view	code	image

class	SomeUIView:UIView	{
				@IBOutlet	var	someButton:UIButton!
				var	buttonWidth:CGFloat!

				override	func	awakeFromNib()	{
								self.buttonOriginalWidth	=	self.button.frame.size.width
				}
}

In	this	example	you	have	a	button,	which	you	cannot	initialize	yourself	because	the	button
will	be	initialized	by	Interface	Builder.	Also,	the	width	of	the	button	is	unknown	at	the
time	of	the	creation	of	the	class	property,	so	you	must	make	it	an	implicitly	unwrapped
optional.	You	will	know	the	width	of	the	button	after	awakeFromNib	runs,	so	you
promise	to	update	it	then.

Tuples
Using	tuples	(pronounced	“TWO-pulls”	or	“TUH-pulls”)	is	a	way	to	group	multiple
values	into	one	value.	Think	of	associated	values.	Here	is	an	example	with	URL	settings:
Click	here	to	view	code	image

let	purchaseEndpoint	=	(“buy”,“POST”,”/buy/”)

This	tuple	has	a	String,	a	String,	and	a	String.	This	tuple	is	considered	to	be	of
type	(String,	String,	String).	You	can	put	as	many	values	as	you	want	in	a	tuple,
but	you	should	use	them	for	what	they	are	meant	for	and	not	use	them	like	an	array	or	a
dictionary.	You	can	mix	types	in	tuples	as	well,	like	this:
Click	here	to	view	code	image

let	purchaseEndpoint	=	(“buy”,“POST”,”/buy/”,true)

This	tuple	has	a	String,	a	String,	a	String,	and	a	Bool.	You	are	mixing	types	here,
and	this	tuple	is	considered	to	be	of	type	(String,	String,	String,	Bool).	You	can
access	this	tuple	by	using	its	indexes:

purchaseEndpoint.1	//	“POST”
purchaseEndpoint.2	//	“/buy/”

This	works	well	but	there	are	some	inconveniences	here.	You	can	guess	what	POST	and
/buy/	are,	but	what	does	true	stand	for?	Also,	using	indexes	to	access	the	tuple	is	not
very	pretty	or	descriptive.	You	need	to	be	able	to	be	more	expressive	with	the	tuple.



You	can	take	advantage	of	Swift’s	capability	to	name	individual	elements	to	make	your
intentions	clearer:
Click	here	to	view	code	image

let	purchaseEndpoint	=	(name:	“buy”,	httpMethod:	“POST”,URL:	“/buy/”,useAuth:
true)

This	tuple	has	String,	String,	String,	and	Bool	(true	or	false)	values,	so	it	is	the
same	type	as	the	previous	tuple.	However,	now	you	can	access	the	elements	in	a	much
more	convenient	and	descriptive	way:
Click	here	to	view	code	image

purchaseEndpoint.httpMethod	=	“POST”

This	is	much	better.	It	makes	much	more	sense	and	reads	like	English.

You	can	decompose	this	tuple	into	multiple	variables	at	once.	Meaning	you	can	take	the
tuple	and	make	multiple	constants	or	variables	out	of	it	in	one	fell	swoop.	So	if	you	want
to	get	the	name,	the	httpMethod,	and	the	URL	into	individual	variables	or	constants,
you	can	do	so	like	this:
Click	here	to	view	code	image

let	(purchaseName,	purchaseMethod,	purchaseURL,	_)	=	purchaseEndpoint

Here,	you	are	able	to	take	three	variables	and	grab	the	meat	out	of	the	tuple	and	assign	it
right	to	those	variables.	You	use	an	underscore	to	say	that	you	don’t	need	the	fourth
element	out	of	the	tuple.	Only	three	out	of	the	four	properties	of	the	tuple	will	be	assigned
to	constants.

In	Chapter	3,	“Making	Things	Happen:	Functions,”	you	will	use	tuples	to	give	functions
multiple	return	values.	Imagine	having	a	function	that	returned	a	tuple	instead	of	a	string.
You	could	then	return	all	the	data	at	once	and	do	something	like	this:
Click	here	to	view	code	image

func	getEndpoint(endpoint:String)	->
				(description:	String,	method:	String,	URL:	String)	{
				return	(description:	endpoint,	method:	“POST”,	URL:	“/\(endpoint)/”)
}
let	purchaseEndpoint	=	getEndpoint(“buy”)
print(“You	can	access	the
				\(purchaseEndpoint.description)	endpoint	at	the	URL	\
(purchaseEndpoint.URL)”)

Number	Types
Swift	is	interoperable	with	Objective-C,	so	you	can	use	C,	Objective-C,	and	Swift	types
and	code	all	within	Swift.	As	discussed	earlier	in	the	chapter,	when	you	write	a	variable
using	an	integer,	Swift	automatically	declares	it	with	a	type	Int,	without	your	having	to
tell	Swift	you	want	an	Int.	In	this	example,	you	don’t	tell	Swift	to	make	this	variable	an
Int:
Click	here	to	view	code	image

let	theAnswerToLifeTheUniverseAndEverything	=	42

Rather,	Swift	infers	that	it	is	an	Int.	Remember	that	on	32-bit	systems	this	Int	will	be



an	Int32,	and	on	64-bit	systems	it	will	be	an	Int64.	If	you	don’t	remember	that	it
won’t	matter	because	Swift	will	convert	this	for	you	automatically	anyway.	Even	though
you	have	many	different	Int	types	available	to	you,	unless	you	need	an	Int	of	a	specific
size,	you	should	stick	with	Swift’s	Int.	When	we	say	Int32,	what	we	mean	is	a	32-bit
integer.	(This	is	similar	to	C.)	You	can	also	use	UInt	for	unsigned	(non-negative)
integers,	but	Apple	recommends	that	you	stick	with	Int	even	if	you	know	that	your
variable	is	going	to	be	unsigned.
Again,	when	you	write	any	type	of	floating-point	number	(a	number	with	a	decimal),	and
you	don’t	assign	a	type,	Swift	automatically	declares	it	with	the	type	Double.	Swift	also
gives	you	Double	and	Float	types.	The	difference	between	them	is	that	Double	has	a
higher	precision	of	around	15	decimal	digits,	whereas	Float	has	around	6.	Here	is	an
example	of	a	Double	in	Swift:
Click	here	to	view	code	image

let	gamma	=	0.57721566490153286060651209008240243104215933593992

Swift	is	strict	about	its	types	and	they	get	combined	together.	If	something	is	meant	to	be	a
String,	and	you	give	it	an	Int,	then	you	will	get	an	error.	Swift	needs	you	to	be	explicit
with	types.	For	example,	this	will	not	work:
Click	here	to	view	code	image

var	someInt	=	5	//	Inferred	to	be	an	Int
someInt	+	3.141	//	throws	an	error

This	throws	an	error	because	you	can’t	combine	an	Int	and	a	Double.	If	you	want	to
combine	an	Int	and	a	Double,	you	must	first	convert	the	Int	to	a	Double	or	vice
versa,	depending	on	your	preference.	Here	we	combine	an	Int	and	a	Double	by
converting	the	Int	to	a	Double:
Click	here	to	view	code	image

var	someInt	=	5	//	Inferred	to	be	an	Int
Double(someInt)	+	3.141	//	8.141

var	someInt	=	5	//	Inferred	to	be	an	Int
Float(someInt)	+	3.141	//	In	this	case	3.141	will	be	inferred	to	be	a	Float
so
//	it	can	combine	with	a	Float

var	someInt	=	5	//	Inferred	to	be	an	Int
Float(someInt)	+	Double(3.141)	//This	will	throw	an	error	and	will	not	work

You	can	use	the	initializer	(Float(someInt)	or	Double(someInt),	etc.)	of	the
number	type	to	convert	between	types.	For	example,	you	can	use	Float()	to	convert
any	number	type	into	a	Float.

So	again,	when	you	want	to	perform	any	operations	on	two	or	more	number	types,	all
sides	of	the	operation	must	be	of	the	same	type.	You’ll	see	this	pattern	often	in	Swift,	and
not	just	with	numbers.	For	example,	you	cannot	directly	add	a	UInt8	and	a	UInt16
unless	you	first	convert	the	UInt8	to	a	UInt16	or	vice	versa.



From	Objective-C	to	Swift
If	you	are	coming	from	the	world	of	Objective-C	and	C,	you	know	that	you	have	many
number	types	at	your	disposal.	Number	types	like	CGFloat	and	CFloat	are	necessary
to	construct	certain	objects.	For	example,	SpriteKit	has	the	SKSpriteNode	as	a	position
property,	which	uses	a	CGPoint	with	two	CGFloats.

What	is	the	different	between	CGFloat	and	Float?	In	this	specific	case	we	found	that
CGFloat	is	just	a	typealias	for	Double.	This	is	what	the	code	actually	says:

typealias	CGFloat	=	Double

What	is	a	typealias?	Great	question.	A	typealias	is	just	a	shortcut	to	get	to	an
already	existing	type	by	giving	it	a	substitute	name.	You	could	give	String	an
alternative	name	type	of	Text,	like	this:

typealias	Text	=	String
var	hello:Text	=	“Hi	there”

Now	hello	is	of	type	Text,	which	never	existed	before	this	point.	So	if	CGFloat	is	a
typealias	for	a	Double,	this	just	means	that	when	you	make	CGFloats,	you	are
really	just	making	Doubles.	It’s	worth	it	to	Command+click	around	and	see	what	is
mapping	to	what.	For	example,	a	CFloat	is	a	typealias	for	Float,	and	a	CDouble
is	a	typealias	for	Double.

That	does	not	mean	that	you	can	suddenly	add	them	together.	You	still	need	to	convert
them	to	combine	them.	For	example,	this	will	not	work:

var	d	=	3.141
var	g	=	CGFloat(3.141)
print(d	+	g)

To	fix	this	example	we	would	need	to	do	something	like	this:
var	d	=	3.141
var	g	=	CGFloat(3.141)
print(CGFloat(d)	+	g)

Control	Flow:	Making	Choices
Controlling	the	order	in	which	your	code	executes	is	obviously	a	crucial	aspect	of	any
programming	language.	By	building	on	the	traditions	of	C	and	C-like	languages,	Swift’s
control	flow	constructs	allow	for	powerful	functionality	while	still	maintaining	a	familiar
syntax.



	Loops

At	its	most	basic,	a	for	loop	allows	you	to	execute	code	over	and	over	again.	This	is	also
called	“looping.”	How	many	times	the	code	gets	executed	is	up	to	you	(maybe	infinitely).
In	the	Swift	language,	there	are	two	distinct	types	of	for	loops	to	consider.	There	is	the
traditional	for-condition-increment	loop,	and	there	is	the	for-in	loop.	for-
in	is	often	associated	with	a	process	known	as	fast	enumeration—a	simplified	syntax	that
makes	it	easier	to	run	specific	code	for	every	item.	for-in	loops	give	you	far	less	code
to	write	and	maintain	than	your	typical	C	for	loops.

	Loops

You	use	a	for-condition-increment	loop	to	run	code	repeatedly	until	a	condition
is	met.	On	each	loop,	you	typically	increment	a	counter	until	the	counter	reaches	the
desired	value.	You	can	also	decrement	the	counter	until	it	drops	to	a	certain	value,	but	that
is	less	common.	The	basic	syntax	of	this	type	of	loop	in	Swift	looks	something	like	this:
Click	here	to	view	code	image

for	initialization;	conditional	expression;	increment	{
				statement
}

As	in	Objective-C	and	C,	in	Swift	you	use	semicolons	to	separate	the	different
components	of	the	for	loop.	However,	Swift	doesn’t	group	these	components	into
parentheses.	Aside	from	this	slight	syntactic	difference,	for	loops	in	Swift	function	as
they	would	in	any	C	language.

Here’s	a	simple	example	of	a	for-condition-increment	loop	that	simply	prints
Hello	a	few	times:
Click	here	to	view	code	image

for	var	i	=	0;	i	<	5;	++i	{
				print(“Hello	there	number	\(i)”)
}
//	Hello	there	number	0
//	Hello	there	number	1
//	Hello	there	number	2
//	Hello	there	number	3
//	Hello	there	number	4

This	is	fairly	straightforward,	but	notice	the	following:

	Variables	or	constants	declared	in	the	initialization	expression	only	exist	within	the
scope	of	the	loop.	If	you	need	to	access	these	values	outside	the	scope	of	the	for
loop,	then	the	variable	must	be	declared	prior	to	entering	the	loop,	like	this:
var	i	=	0
for	i;	i	<	5;	++i	{…

	If	you’re	coming	from	another	language,	particularly	Objective-C,	you	will	notice
that	the	last	example	uses	++i	instead	of	i++.	Using	++i	increments	i	before
returning	its	value,	whereas	using	i++	increments	i	after	returning	its	value.
Although	this	won’t	make	much	of	a	difference	in	the	earlier	example,	Apple
specifically	suggests	that	you	use	the	++i	implementation	unless	the	behavior	of



i++	is	explicitly	necessary.

	Loops	and	Ranges

In	addition	to	giving	you	the	traditional	for-condition-increment	loop,	Swift
builds	on	the	enumeration	concepts	of	Objective-C	and	provides	an	extremely	powerful
for-in	statement.	You	will	most	likely	want	to	use	for-in	for	most	of	your	looping
needs	because	the	syntax	is	the	most	concise	and	also	makes	for	less	code	to	maintain.

With	for-in,	you	can	iterate	numbers	in	a	range.	For	example,	you	could	use	a	for-in
loop	to	calculate	values	over	time.	Here	you	can	loop	through	1	to	4	with	less	typing:
Click	here	to	view	code	image

class	Tire{}
var	tires	=	[Tire]()
for	i	in	1…4	{
				tires.append(Tire())
}
print(“We	have	\(tires.count)	tires”)

We	haven’t	covered	the	class	and	array	syntax	yet,	but	maybe	you	can	take	a	guess	at	what
they	do.	This	example	uses	a	...	range	operator	for	a	closed	range.	The	range	begins	at
the	first	number	and	includes	all	the	numbers	up	to	and	including	the	second	number.

Swift	also	provides	you	with	the	half-open	range	operator,	which	is	written	like	this:
1..<4

This	range	operator	includes	all	numbers	from	the	first	number	up	to	but	not	including	the
last	number.	The	previous	example,	rewritten	to	use	the	non-inclusive	range	operator,
would	look	like	this:
Click	here	to	view	code	image

class	Tire{}
var	tires	=	[Tire]()
for	i	in	1..<5	{
				tires.append(Tire())
}
print(“We	have	\(tires.count)	tires”)

As	you	can	see,	the	results	are	almost	identical	and	both	examples	provide	concise	and
readable	code.	When	you	don’t	need	access	to	i,	you	can	disregard	the	variable	altogether
by	replacing	it	with	an	underscore	(_).	The	code	now	might	look	something	like	this:
Click	here	to	view	code	image

class	Tire	{	}
var	tires	=	[Tire]()
//	1,2,3,	and	including	4

class	Tire	{}
var	tires	=	[Tire]()
for	_	in	1…4	{
				tires.append(Tire())
}
print(“We	have	\(tires.count)	tires”)

Let’s	pretend	that	a	bunch	of	tires	have	gone	flat,	and	you	need	to	refill	each	tire	with	air.



We	could	use	the	for	in	loop	to	loop	through	all	of	our	tires	in	the	tire	array.	We	can	add
on	to	our	earlier	example	by	giving	the	tires	air.	You	could	do	something	like	this:
Click	here	to	view	code	image

class	Tire	{	var	air	=	0	}
var	tires	=	[Tire]()
for	_	in	1…4	{
				tires.append(Tire())
}
print(“We	have	\(tires.count)	tires”)

for	tire	in	tires	{
				tire.air	=	100
				print(“This	tire	is	filled	\(tire.air)%”)
}
print(“All	tires	have	been	filled	to	100%”)

With	this	type	of	declaration,	Swift	uses	type	inference	to	assume	that	each	object	in	an
array	of	type	[Tire]	will	be	a	Tire.	This	means	it	is	unnecessary	to	declare	the	type
Tire	explicitly.	In	a	situation	in	which	the	array’s	type	is	unknown,	the	implementation
would	look	like	this:
Click	here	to	view	code	image

class	Tire	{	var	air	=	0	}
var	tires	=	[Tire]()
for	_	in	1…4	{
				tires.append(Tire())
}
print(“We	have	\(tires.count)	tires”)

for	tire:	Tire	in	tires	{
				tire.air	=	100
				print(“This	tire	has	been	filled	to	\(tire.air)%”)
}

In	this	example	we	told	the	loop	that	each	tire	in	the	array	of	tires	is	going	to	be
specifically	of	type	Tire.	In	this	specific	example	there	is	not	a	good	reason	to	do	this,
but	you	may	come	upon	a	situation	in	which	the	type	is	not	set	explicitly.	Since	Swift	must
know	what	types	it	is	dealing	with,	you	should	make	sure	that	you	communicate	that
information	to	Swift.

Looping	Through	Other	Types

In	Swift,	a	String	is	really	a	collection	of	Character	values	in	a	specific	order.	You
can	iterate	values	in	a	String	by	using	a	for-in	statement,	like	so:
Click	here	to	view	code	image

for	char	in	“abcdefghijklmnopqrstuvwxyz”.characters	{
				print(char)
}
//	a
//	b
//	c
//	etc….

As	long	as	something	conforms	to	the	SequenceType,	you	can	loop	through	it.	You
cannot	loop	through	the	string	directly;	you	need	to	access	its	character	property.



When	looping,	there	will	be	situations	in	which	you	will	need	access	to	the	index	as	well
as	the	object.	One	option	is	to	iterate	through	a	range	of	indexes	and	then	get	the	object	at
the	index.	You	would	write	that	like	this:
Click	here	to	view	code	image

let	numbers		=	[“zero”,	“one”,	“two”,	“three”,	“four”]
for	idx	in	0..<numbers.count	{
				let	numberString	=	array[idx]
				print(“Number	at	index	\(idx)	is	\(numberString)”)
}
//	Number	at	index	0	is	zero
//	Number	at	index	1	is	one
//	etc….

This	works	just	fine,	but	Swift	provides	a	much	swifter	way	to	do	this.	Swift	gives	you	an
enumerate	method	as	part	of	the	array,	which	makes	this	type	of	statement	much	more
concise.	Let’s	use	the	for-in	statement	in	with	the	enumerate	method:
Click	here	to	view	code	image

let	numbers	=	[“zero”,	“one”,	“two”,	“three”,	“four”]
for	(i,	numberString)	in	numbers.enumerate()	{
				print(“Number	at	index	\(i)	is	\(numberString)”)
}
//	Number	at	index	0	is	zero
//	Number	at	index	1	is	one
//	etc….

This	is	much	clearer,	and	you	would	use	it	when	you	require	an	array	element	and	its
accompanying	index.	You	can	grab	the	index	of	the	loop	and	the	item	being	iterated	over!

Up	to	this	point,	all	the	loops	we’ve	covered	know	beforehand	how	many	times	they	will
iterate.	For	situations	in	which	the	number	of	required	iterations	is	unknown,	you’ll	want
to	use	a	while	loop	or	a	do	while	loop.	The	syntax	to	use	these	while	loops	is	very
similar	to	that	in	other	languages.	Here’s	an	example:

var	i	=	0
while	i	<	10	{
				i++
}

This	says	that	this	loop	should	increment	the	value	of	i	while	it	is	less	than	10.	In	this
situation,	i	starts	out	at	0,	and	on	each	run	of	the	loop,	i	gets	incremented	by	1.	Watch
out,	though,	because	you	can	create	an	infinite	loop	this	way.	There	will	be	times	when
you	really	need	an	infinite	loop.

One	way	to	create	an	infinite	while	loop	is	to	use	while	true:
while	true	{
}

In	this	example	you	use	a	while	loop	that	always	evaluates	to	true,	and	this	loop	will
run	forever,	or	until	you	end	the	program	or	it	crashes	itself.

This	next	example	uses	some	of	the	looping	capabilities	plus	if/else	statements	to	find
the	prime	numbers.	Here’s	how	you	could	find	the	200th	prime	number:
Click	here	to	view	code	image

var	primeList	=	[2.0]



var	num	=	3.0
var	isPrime	=	1
while	primeList.count	<	200	{
				var	sqrtNum	=	sqrt(num)
				//	test	by	dividing	only	with	prime	numbers
				for	primeNumber	in	primeList	{
								//	skip	testing	with	prime	numbers	greater
								//	than	square	root	of	number
								if	num	%	primeNumber	==	0	{
												isPrime	=	0
												break
								}
								if	primeNumber	>	sqrtNum	{
												break
								}
				}
				if	isPrime	==	1	{
								primeList.append(num)
				}	else	{
								isPrime	=	1
				}
				//skip	even	numbers
				num	+=	2
}
print(primeList)

Grabbing	primeList[199]	will	grab	the	200th	prime	number	because	arrays	start	at	0.
You	can	combine	while	loops	with	for-in	loops	to	calculate	prime	numbers.

To	 	or	to	 	( / )

It’s	important	to	be	able	to	make	decisions	in	code.	It’s	okay	for	you	to	be	indecisive	but
you	wouldn’t	want	that	for	your	code.	Let’s	look	at	a	quick	example	of	how	to	make
decisions	in	Swift:
Click	here	to	view	code	image

let	carInFrontSpeed	=	54
if	carInFrontSpeed	<	55	{
				print(“I	am	passing	on	the	left”)
}	else	{
				print(“I	will	stay	in	this	lane”)
}

You	use	Swift’s	if	and	else	statements	to	make	a	decision	based	on	whether	a	constant
is	less	than	55.	Since	the	integer	54	is	less	than	the	integer	55,	you	print	the	statement	in
the	if	section.

One	caveat	to	if	statements	is	that	in	some	languages	you	can	use	things	that	are	“truthy,”
like	1	or	a	non-empty	array.	That	won’t	work	in	Swift.	You	must	conform	to	the	protocol
BooleanType.	To	make	this	simple,	you	must	use	true	or	false.	For	example,	here
are	some	examples	that	will	not	work:
Click	here	to	view	code	image

if	1	{	//	1	in	an	Int	and	can’t	be	converted	to	a	boolean
				//Do	something
}
var	a	=	[1,2,3]
if	a.count{	//	a.count	is	an	Int	and	can’t	be	converted	to	a	boolean
				print(“YES”)



}

If	you	want	to	make	these	examples	work,	you	would	have	to	convert	those	numbers	to	a
Bool.	For	example,	check	out	what	happens	when	we	convert	some	simple	integers	to
Booleans.

print(Bool(1))	//	true
print(Bool(2))	//	true
print(Bool(3))	//	true
print(Bool(0))	//	false

If	Ints	can	be	converted	into	Bools,	you	can	check	for	if	with	a	truthy	value	if	you	first
convert	it	to	a	Bool.	Let’s	rewrite	our	previous	failing	examples	and	make	them	work.
Click	here	to	view	code	image

if	Bool(1)	{	//	1	in	an	Int	and	can’t	be	converted	to	a	boolean
				print(“Duh	it	works!”)
}
var	a	=	[1,2,3]
if	Bool(a.count){	//	a.count	is	an	Int	and	can’t	be	converted	to	a	boolean
				print(“YES”)
}

We	were	able	to	check	for	1	and	an	array	count	in	the	if	statement	because	we	first
converted	them	to	Bools.

You	may	also	want	to	check	multiple	statements	to	see	whether	they’re	true	or	false.
You	want	to	check	whether	the	car	in	front	of	you	slows	down	below	55	mph,	whether
there	is	a	car	coming,	and	whether	there	is	a	police	car	nearby.	You	can	check	all	three	in
one	statement	with	the	&&	operator.	This	operator	states	that	both	the	statement	to	its	left
and	the	one	to	its	right	must	be	true.	Here’s	what	it	looks	like:
Click	here	to	view	code	image

var	policeNearBy	=	false
var	carInLane3	=	false
var	carInFrontSpeed	=	45
if	!policeNearBy	&&	!carInLane3	&&	carInFrontSpeed	<	55	{
				print(“We	are	going	to	pass	the	car.”)
}	else	{
				print(“We	will	stay	right	where	we	are	for	now.”)
}

Your	code	will	make	sure	that	all	three	situations	are	false	before	you	move	into	the
next	lane	(the	else).

Aside	from	the	and	operator,	you	also	have	the	or	operator.	You	can	check	to	see
whether	any	of	the	statements	is	true	by	using	the	or	operator,	which	is	written	as	two
pipes:	||.	You	could	rewrite	the	preceding	statement	by	using	the	or	operator.	This
example	just	checks	for	the	opposite	of	what	the	preceding	example	checks	for:
Click	here	to	view	code	image

var	policeNearBy	=	false
var	carInLane3	=	false
var	carInFrontSpeed	=	45
if	policeNearBy	||	carInLane3	||	carInFrontSpeed	>	55	{
				print(“We	will	stay	right	where	we	are	for	now.”)
}	else	{



				print(“We	are	going	to	pass	the	car.”)
}

If	any	of	the	preceding	variables	is	true,	you	will	stay	where	you	are;	you	will	not	pass
the	car.

Aside	from	just	if	and	else,	you	may	need	to	check	for	other	conditions.	You	might
want	to	check	multiple	conditions,	one	after	the	other,	instead	of	just	going	straight	to	an
else.	You	can	use	else	if	for	this	purpose,	as	shown	in	this	example:
Click	here	to	view	code	image

var	policeNearBy	=	false
var	carInLane3	=	false
var	carInFrontSpeed	=	45
var	backSeatDriverIsComplaining	=	true
if	policeNearBy	||	carInLane3	||	carInFrontSpeed	>	55	{
				print(“We	will	stay	right	where	we	are	for	now.”)
}	else	if	backSeatDriverIsComplaining	{
				print(“We	will	try	to	pass	in	a	few	minutes”)
}else	{
				print(“We	are	going	to	pass	the	car.”)
}

You	can	group	as	many	of	these	else	ifs	together	as	you	need.	However,	when	you
start	grouping	a	bunch	of	else	if	statements	together,	it	might	be	time	to	use	the
switch	statement.

Switching	It	Up:	 	Statements
You	can	get	much	more	control	and	more	readable	code	if	you	use	a	switch	statement.
Using	tons	of	if	else	statements	might	not	be	as	readable.	Swift’s	switch	statements
are	very	similar	to	those	in	other	languages	with	extra	power	added	in.	The	first	major
difference	with	switch	statements	in	Swift	is	that	you	do	not	use	the	break	keyword	to
stop	a	condition	from	running	through	each	case	statement.	Swift	automatically	breaks
on	its	own	when	the	condition	is	met.

Another	caveat	about	switch	statements	is	that	they	must	be	absolutely	exhaustive.	That
is,	if	you	are	using	a	switch	statement	on	an	int,	you	need	to	provide	a	case	for	every
int	ever.	This	is	not	possible,	so	you	can	use	the	default	statement	to	provide	a	match
when	nothing	else	matches.	Here	is	a	basic	switch	statement:
Click	here	to	view	code	image

var	num	=	5
switch	num	{
case	2:print(“It’s	two”)
case	3:print(“It’s	three”)
default:print(“It’s	something	else”)
}

This	tests	the	variable	num	to	see	whether	it	is	2,	3,	or	something	else.	Notice	that	you
must	add	a	default	statement.	As	mentioned	earlier,	if	you	try	removing	it,	you	will	get
an	error	because	the	switch	statement	must	exhaust	every	possibility.	Also	note	that
case	3	will	not	run	if	case	2	is	matched	because	Swift	automatically	breaks	for	you.



You	can	also	check	multiple	values	at	once.	This	is	similar	to	using	the	or	operator	(||)
in	if	else	statements.	Here’s	how	you	do	it:
Click	here	to	view	code	image

var	num	=	5
switch	num	{
case	2,3,4:print(“It’s	two”)	//	is	it	2	or	3	or	4?
case	5,6:print(“It’s	five”)	//	is	it	5	or	6?
default:print(“It’s	something	else”)
}

In	addition,	you	can	check	within	ranges.	The	following	example	determines	whether	a
number	is	something	between	2	and	6:
Click	here	to	view	code	image

var	num	=	5
switch	num	{
//	including	2,3,4,5,6
case	2…6:print(“num	is	between	2	and	6”)
default:print(“None	of	the	above”)
}

You	can	use	tuples	in	switch	statements.	You	can	use	the	underscore	character	(_)	to	tell
Swift	to	“match	everything.”	You	can	also	check	for	ranges	in	tuples.	Here’s	how	you
could	match	a	geographic	location:
Click	here	to	view	code	image

var	geo	=	(2,4)
switch	geo	{
//(anything,	5)
case	(_,5):print(“It’s	(Something,5)”)
case	(5,_):print(“It’s	(5,Something)”)
case	(1…3,_):print(“It’s	(1	or	2	or	3,	Something)”)
case	(1…3,3…6):print(“This	would	have	matched	but	Swift	already	found	a
match”)
default:print(“It’s	something	else”)
}

In	the	first	case,	you	are	first	trying	to	find	a	tuple	whose	first	number	is	anything	and
whose	second	number	is	5.	The	underscore	means	“anything,”	and	the	second	number
must	be	5.	Our	tuple	is	2,4	so	that	won’t	work	because	the	second	number	in	our	tuple	is
4.

In	the	second	case,	you	are	looking	for	the	opposite	of	the	first	case.	In	this	instance
the	first	number	must	be	5	and	the	second	number	can	be	anything.

In	the	third	case,	you	are	looking	for	any	number	in	the	range	1	to	3,	including	3,	and	the
second	number	can	be	anything.	Matching	this	case	causes	the	switch	to	exit.	We	can
use	ranges	to	check	numbers	in	switch	statements,	which	makes	them	even	more
powerful.

The	next	case	would	also	match,	but	because	Swift	has	already	found	a	match,	it	never
executes.	In	this	case	we	are	checking	two	ranges.

Switch	statements	in	Swift	break	on	their	own.	If	you’ve	ever	programmed	in	any	other
common	language,	you	know	you	have	to	write	break	so	that	the	case	will	stop.	If	you



want	that	typical	Objective-C,	JavaScript	functionality	that	will	not	use	break	by	default
(where	the	third	case	and	fourth	case	will	match),	you	can	add	the	keyword
fallthrough	to	the	case,	and	the	case	will	not	break:
Click	here	to	view	code	image

var	geo	=	(2,4)
switch	geo	{
//(anything,	5)
case	(_,5):print(“It’s	(Something,5)”)
case	(5,_):print(“It’s	(5,Something)”)
case	(1…3,_):
				print(“It’s	(1	or	2	or	3,	Something)”)
				fallthrough
case	(1…3,3…6):
				print(“We	will	match	here	too!”)
default:print(“It’s	something	else”)
}

Now	the	third	case	and	fourth	case	match,	and	you	get	both	print	statements:
It’s	(1	or	2	or	3,	Something)
We	will	match	here	too!

Remember	the	value	binding	example	from	earlier?	You	can	use	this	same	idea	in
switch	statements.	Sometimes	it’s	necessary	to	grab	values	from	the	tuple.	You	can	even
add	in	a	where	statement	to	make	sure	you	get	exactly	what	you	want.	Here	is	the
kitchen-sink	example	of	switch	statements:
Click	here	to	view	code	image

var	geo	=	(2,4)
switch	geo	{
case	(_,5):print(“It’s	(Something,5)”)
case	(5,_):print(“It’s	(5,Something)”)
case	(1…3,let	x):
				print(“It’s	(1	or	2	or	3,	\(x))”)
case	let	(x,y):
				print(“No	match	here	for	\(x)	\(y)”)
case	let	(x,y)	where	y	==	4:
				print(“Not	gonna	make	it	down	here	either	for	\(x)	\(y)”)
default:print(“It’s	something	else”)
}

You	might	get	a	warning	here	telling	you	that	a	case	will	never	be	executed,	and	that	is
okay.	This	is	the	mother	of	all	switch	statements.	Notice	that	the	last	two	cases	will
never	run.	You	can	comment	out	the	third	and	fourth	switch	statements	to	see	each	run.
We	talked	about	the	first	case	and	second	case.	The	third	case	sets	the	variable	x	(to
4)	to	be	passed	into	the	print	if	there	is	a	match.	The	only	problem	is	that	this	works
like	the	underscore	by	accepting	everything.	You	can	solve	this	with	the	where	keyword.
In	the	fourth	case,	you	can	declare	both	x	and	y	at	the	same	time	by	placing	the	let
outside	the	tuple.	Finally,	in	the	last	case,	you	want	to	make	sure	that	you	pass	the
variables	into	the	statement,	and	you	want	y	to	be	equal	to	4.	You	control	this	with	the
where	keyword.



Stop…Hammer	Time
It’s	important	to	have	some	control	over	your	switch	statements	and	loops.	You	can	use
break,	continue,	and	labels	to	provide	more	control.

Using	

Using	break	stops	any	kind	of	loop	(for,	for	in,	or	while)	from	carrying	on.	Say
that	you’ve	found	what	you	were	looking	for,	and	you	no	longer	need	to	waste	time	or
resources	looping	through	whatever	items	remain.	Here’s	what	you	can	do:
Click	here	to	view	code	image

var	mystery	=	5
for	i	in	1…8	{
				if	i	==	mystery	{
								break
				}
				print(i)	//	Will	be	1,	2,	3,	4
}

The	loop	will	never	print	5	and	will	never	loop	through	6,	7,	or	8.

Using	

Much	like	break,	continue	will	skip	to	the	next	loop	and	not	execute	any	code	below
the	continue.	If	you	start	with	the	preceding	example	and	switch	out	break	with
continue,	you	will	get	a	result	of	1,	2,	3,	4,	6,	7,	and	8:
Click	here	to	view	code	image

var	mystery	=	5
for	i	in	1…8	{
				if	i	==	mystery	{
								continue
				}
				print(i)	//	Will	be	1,	2,	3,	4,	6,	7,	8
}

Using	Labeled	Statements

break	and	continue	are	fantastic	for	controlling	flow,	but	what	if	you	had	a	switch
statement	inside	a	for	in	loop?	You	want	to	break	the	for	loop	from	inside	the
switch	statement,	but	you	can’t	because	the	break	you	write	applies	to	the	switch
statement	and	not	the	loop.	In	this	case,	you	can	label	the	for	loop	so	that	you	can	tell	the
for	loop	to	break	and	make	sure	that	the	switch	statement	does	not	break:
Click	here	to	view	code	image

var	mystery	=	5
rangeLoop:	for	i	in	1…8	{
				switch	i	{
				case	mystery:
								print(“The	mystery	number	was	\(i)”)
								break	rangeLoop
				case	3:
								print(“was	three.	You	have	not	hit	the	mystery	number	yet.”)
				default:
								print(“was	some	other	number	\(i)”)



				}
}

Here,	you	can	refer	to	the	right	loop	or	switch	to	break.	You	could	also	break	for
loops	within	for	loops	without	returning	a	whole	function.	The	possibilities	are	endless.

Summary
This	chapter	has	covered	a	lot	of	ground.	You	can	see	that	Swift	isn’t	another	version	of
Objective-C.	Swift	is	a	mixture	of	principles	from	a	lot	of	languages,	and	it	really	is	the
best	of	many	languages.	It	has	ranges,	which	pull	syntax	straight	out	of	Ruby.	It	has	for
in	loops	with	enumerate	and	tuples,	which	both	are	straight	out	of	Python.	It	has
regular	for	loops	with	i++	or	++i,	which	come	from	C	and	many	other	languages.	It
also	has	optionals,	which	are	Swift’s	own	invention.

You’ll	see	shortly	that	Swift	has	a	lot	of	cool	features	that	make	it	easy	to	use	along	with
your	Objective-C	and	C	code.	You	have	already	gotten	a	small	taste	of	arrays.	Chapter	2,
“Collecting	Your	Data:	Arrays	and	Dictionaries,”	covers	arrays	and	dictionaries	in	detail.
You’ll	see	how	Swift’s	strong	typing	and	optionals	come	into	play.



2.	Collecting	Your	Data:	Arrays	and	Dictionaries

This	chapter	talks	about	the	types	of	collections	that	Swift	has	available.	Objective-C	has
NSArray	and	NSDictionary	through	Cocoa.	Swift	is	compatible	and	is	used
alongside	Objective-C,	so	you	have	all	those	NS	tools	available	to	you.	In	addition,	you’ll
have	Swift’s	native	arrays	and	dictionaries	available.

This	chapter	describes	arrays	and	dictionaries	and	the	different	tools	available	in	each.
You	will	learn	how	to	add	and	remove	elements	from	collections.	You	will	also	learn	how
Swift’s	strong	type	inference	allows	for	quickly	written	and	strongly	typed	arrays	and
dictionaries.	You	will	learn	when	to	use	NSArrays	and	when	to	use	Swift’s	own	arrays.

Using	Arrays
Arrays	allow	you	to	store	stuff	in	a	list	for	later	use.	These	lists	of	stuff	can	be	in	order
(arrays)	or	in	no	particular	order	(dictionaries).	In	Swift	all	these	objects	must	be	the	same
type.	In	Swift	you	can’t	have	a	list	of	Ints	and	Doubles	or	a	list	of	Strings	and	Cars
(assuming	you	had	a	Car	object	available	to	you).	In	Swift	your	array	must	be	made	up	of
all	Ints,	or	all	Doubles,	or	all	Strings.	However,	since	Swift	works	well	with
Objective-C	and	Objective-C	can	store	different	types	of	objects	in	one	array	(an	array	of
Ints,	Doubles,	and	Strings	in	one	NSArray,	for	example),	Swift	must	be	able	to	do
it,	too.	Swift	can	store	different	types	in	one	array	by	making	up	an	array	of	Any,	or
AnyObject.	AnyObject	is	used	to	represent	any	object	so	that	you	can	represent	an
Int	and	a	Double	at	the	same	time.	We	will	learn	more	about	that	through	this	chapter.

Your	First	Array	the	Long	Way
You	can	create	an	array	by	declaring	a	variable	to	hold	the	array	and	then	telling	Swift
exactly	what	is	going	to	be	in	that	array.	Here’s	how	you	do	that:
Click	here	to	view	code	image

var	myFirstArray:Array<Int>	=	Array<Int>()
print(myFirstArray)	//	prints	[]

This	code	declares	the	variable	myFirstArray,	which	is	a	horribly	boring	name	for	an
array,	and	you	declare	the	variable	to	be	of	type	Array<Int>.	This	says	that	the	array	is
made	up	of	only	integers.	You	then	set	myFirstArray	equal	to	a	new	array	of	integers
by	adding	an	empty	set	of	parentheses	at	the	end.

Note

Of	course	you	can	write	this	verbose	array	syntax,	but	you	will	most	likely	use	the
shorthand	syntax.



A	Quicker	Array
You	know	from	Chapter	1,	“Getting	Your	Feet	Wet:	Variables,	Constants,	and	Loops,”	that
Swift	has	powerful	type	inference.	You	don’t	need	to	declare	an	array	as	verbosely	as	you
did	earlier.	Here	is	a	quicker	way:

var	quickerArray	=	[Int]()

Use	Int	surrounded	by	square	brackets	to	mean	“an	array	of	Ints.”

You	can	also	instantiate	an	array	with	items	directly	in	it.	When	you	do	this,	Swift	can
infer	the	type	of	the	array	so	you	don’t	even	have	to	declare	a	type.	Here’s	how	it	works:

var	arrayOfInts	=	[1,2,3,4]

This	gives	you	an	array	of	Ints,	and	if	you	try	to	add	a	String	to	it,	Swift	complains
because	Swift	is	strictly	typed.	You	can	add	items	to	an	array	using	append,	but	more	on
that	topic	later	in	this	chapter:
Click	here	to	view	code	image

arrayOfInts.append(“hi”)
//	Type	‘Int’	does	not	conform	to	protocol	‘StringLiteralConvertible’

We	haven’t	talked	about	append	yet,	but	you	can	guess	that	it	adds	an	item	to	the	array.

Working	with	arrays	in	Swift	gets	even	more	awesome	because	you	can	add	any	old	thing
into	an	array	without	Swift	complaining.	Believe	it	or	not,	the	array	will	still	be	strictly
typed:
Click	here	to	view	code	image

var	mixedArray:NSArray	=	[1,“hi”,3.0,Float(4)]

Here	you	have	made	an	array	with	an	Int,	a	String,	a	Double,	and	a	Float.	Notice
that	Swift	does	not	complain.

Using	
With	Swift	you	can	make	an	array	of	AnyObjects.	You	will	see	this	done	frequently
where	something	has	a	return	value	of	[AnyObject].	This	is	a	nonspecific	type	to
represent	any	type	of	class.	Objective-C	does	not	have	strictly	typed	arrays,	so	in	order	to
interface	with	Cocoa	APIs	properly,	you	need	some	flexibility	to	return	arrays	so	that	they
can	contain	a	mixed	bag.	You	will	often	see	Cocoa	APIs	return	[AnyObject].	You	can
use	this	as	in	the	preceding	example.
Click	here	to	view	code	image

var	mixedArray:[AnyObject]	=	[1,1.2,1,“b”]

When	you	use	AnyObject,	you	are	using	a	protocol,	which	can	represent	an	instance	of
literally	any	type	at	all.	Therefore,	AnyObject	can	represent	a	String,	an	Int,	a
Double,	literally	anything.



Differences	Between	 s	and	Swift	Arrays
In	Objective-C	you’ll	have	mutable	arrays	that	are	represented	by	NSMutableArray
and	immutable	arrays	that	are	represented	by	NSArray.	Did	you	notice	that	we	didn’t
mention	anything	about	mutable	and	immutable	versions	of	the	Swift	array?	Mutable
means	that	something	can	be	changed,	and	immutable	means	it	cannot	be	changed.	An
immutable	array	cannot	change	after	it	is	created.	Swift	does	have	mutable	and	immutable
version	of	arrays	as	well	as	all	other	classes,	but	you	don’t	need	two	different	classes	for
each.	To	make	an	immutable	array	in	Swift,	you	just	assign	it	to	a	constant	with	let.	If
you	want	to	make	a	mutable	array	in	Swift,	you	just	assign	it	to	a	variable	using	the
keyword	var:
Click	here	to	view	code	image

var	mutableArray	=	[1,2,3,4,5]
let	immutableArray	=	[1,2,3,4,5]

The	following	is	a	comparison	of	Swift	arrays	and	Objective-C	NSArray	and
NSMutableArray:

Modifying	Arrays
Creating	arrays	is	easy,	but	what	can	you	do	with	them?	You	can	append,	insert,	remove,
and	iterate	over	them.	You	can	change	them	as	long	as	they	are	mutable.

Accessing	Array	Elements
You	can	access	elements	from	an	array	by	using	what	Swift	calls	subscripts.	You	will
learn	much	more	about	subscripting	later,	but	for	now,	you	just	need	to	know	that	you	can
use	the	square-brackets	notation	that	you	see	in	many	other	languages	to	access	elements
of	an	array.	Here’s	an	example:

var	myArray	=	[1,2,3,4]
myArray[0]	//	1

Arrays	start	from	an	index	of	0.	Grabbing	the	0th	element	will	give	you	back	the	first
element.	You	can	also	use	the	startIndex	property	of	the	array	to	find	this	out.	You
can	also	grab	the	total	number	of	items	in	an	array	by	using	the	count	method:

myArray.count		//	4

Adding	Elements	to	an	Array
If	you	have	an	array	of	prime	numbers	and	want	to	add	a	new	prime	number	to	the	list,
you	can	use	Swift’s	append	method,	like	this:



Click	here	to	view	code	image
var	primes	=	[2,3,5,7,11,13,17,19,23,29]
primes.append(31)	//	[2,3,5,7,11,13,17,19,23,29,31]

Note

If	you	have	appended	to	an	array	in	Python	before,	you	know	that	Python	also	uses
append	to	add	to	arrays.	You	will	see	some	things	in	Swift	from	other	languages
from	time	to	time.

You	can	also	use	+=	to	easily	concatenate	two	arrays:
Click	here	to	view	code	image

raining	+=	[“dogs”,“pigs”,“wolves”]	//	[“cats”,“dogs”,“pigs”,“wolves”]

When	you	append	to	an	array,	you	are	adding	an	element	to	the	end	of	an	array.	The
element	you	append	will	always	become	the	last	element.

If	you	want	to	add	an	element	at	the	beginning	of	the	array,	you	can	use	insert.	Maybe
it’s	raining	dogs	and	cats	instead	of	cats	and	dogs:
Click	here	to	view	code	image

var	raining	=	[“cats”]
raining.insert(“dogs”,atIndex:	0)
raining	//	[“dogs”,“cats”]

Removing	Elements	from	Arrays
If	you	want	to	remove	items	from	an	array,	you	can	use	a	number	of	methods	in	Swift.	For
example,	you	can	remove	the	last	item	with	removeLast():

raining.removeLast()

And	you	can	remove	an	element	at	a	specific	index	by	using
removeAtIndex(:atIndex):
Click	here	to	view	code	image

var	raining	=	[“cats”,“octopuses”]	//	cats,	octopuses
raining.insert(“dogs”,	atIndex:	1)
raining	//	cats,	dogs,	octopuses
raining.removeAtIndex(1)	//	this	returns	the	element	it	removed:	“dogs”
raining	//	cats,	octopuses

Here’s	what’s	going	on	here:

1.	You	start	with	an	array	of	two	elements.

2.	You	insert	an	element	at	index	1.

3.	Then	you	just	remove	the	same	item	you	added	at	index	1.

When	you	are	removing	elements	from	an	array,	it	is	important	to	remember	that	it	works
like	a	deck	of	cards.	If	you	remove	the	third	card	from	a	deck,	the	fourth	card	becomes	the
third	card,	and	so	on	with	every	card	below	the	fourth	card.	The	second	card	does	stay	in
the	second	position.

You	can	also	do	the	following:



	Create	arrays	with	any	type

	Create	arrays	of	mixed	types

	Add	and	remove	items	at	the	end	of	the	array

Iterating	Over	Arrays
When	you	iterate	over	an	array,	you	start	at	the	beginning	of	the	array	and	access	each
element	of	the	array	until	you	get	to	the	end.	Often	you	are	looking	for	an	element	that
meets	a	certain	condition.	Sometimes	you	will	successfully	find	that	element	and	will	not
need	to	iterate	any	further,	so	you	will	break	the	loop.	The	for-in	loop	is	well	suited	for
iterating	over	arrays.	Here’s	what	it	looks	like:

for	animal	in	raining	{
				print(animal)
}
//	cats
//	octopuses

Sometimes	you	need	to	access	the	current	index	for	tracking	purposes.	For	this	purpose,
Swift	provides	a	global	enumerate	function,	which	gives	you	access	to	the	current
index	and	current	element.	Here’s	how	it	works:
Click	here	to	view	code	image

for	(i,animal)	in	raining.enumerate	{
				print(“Animal	number	\(i)	is	the	\(animal)”)
}
//	Animal	number	0	is	the	cats
//	Animal	number	1	is	the	octopuses

Extra	Bits	of	Arrays
You	can	create	arrays	that	are	empty	or	with	prepopulated	contents.	You	can	create	and
prepopulate	an	array	by	using	the	extra	parameters	extra:	and	repeatedValue:.
Here’s	an	example:
Click	here	to	view	code	image

var	mapRow1	=	[Int](count:10,repeatedValue:0)	//	[0,0,0,0,0,0,0,0,0,0,0]

Here	we	created	a	map	for	a	game.	If	you	were	using	this	map	for	a	game,	you	could	place
arrays	within	arrays	to	create	a	multidimensional	array.	You	can	use	one	array	for	each
row	and	place	that	in	one	big	array,	like	this:
Click	here	to	view	code	image

var	mapRow1	=	[Int](count:10,repeatedValue:0)
var	cols	=	10
var	rows	=	10
var	map	=	[[Int]]()
for	row	in	0..<rows	{
				var	newRow	=	[Int](count:cols,	repeatedValue:0)
				map.append(newRow)
}
print(map)

In	this	example,	you	create	an	array	within	an	array.	So	the	type	of	map	is	[[Int]],
which	means	an	array	of	arrays	of	Ints.	Because	[Int]	is	an	array	of	Ints,	wrapping



that	in	square	brackets	will	give	you	an	array	of	Ints.	This	type	of	multidimensional
array	can	be	used	in	games	to	create	a	sort	of	tile	map.	Maybe	for	this	map	0	is	ground,	1
is	road,	and	2	is	tree.	The	preceding	example	makes	a	whole	map	of	ground.	Notice	that	it
does	so	without	making	a	nested	for	loop.

Emptying	an	Array
You	can	completely	empty	an	array	by	setting	it	equal	to	[].	This	technique	is	used	in
other	languages	as	well.

map	=	[]
print(map.count)	//	0

Using	Dictionaries
Dictionaries	are	similar	to	arrays	in	that	they	are	both	containers	that	store	multiple	values
of	the	same	type.	Dictionaries	are	different	from	arrays	in	that	each	value	is	stored	with	a
key.	You	use	that	key	to	access	the	value.	In	arrays,	you	access	elements	by	index.	Arrays
are	stored	in	a	specific	order,	and	dictionaries	are	not.	Just	like	arrays,	though,	dictionaries
want	to	know	what	type	you	will	be	storing	for	their	values.	They	also	want	to	know	what
type	you	will	use	for	their	keys.	You	can	write	a	dictionary	in	verbose	form	or	shorthand.
First	the	verbose:
Click	here	to	view	code	image

var	people:Dictionary<Int,String>	=	[186574663:“John	Smith”,
																																					198364775:“Francis	Green”,
																																					176354888:“Trevor	Kalan”]
people[176354888]	//	“Trevor	Kalan”

This	dictionary	is	of	type	[Int	:	String].	Again,	you	can	three-finger-click	or	tap
the	variable	name	to	find	the	type	of	the	dictionary.	The	keys	are	of	type	Int,	and	the
values	are	of	type	String.	There	are	a	couple	of	things	to	note	here.	For	one	thing,	you
can	access	the	dictionary	by	using	the	same	syntax	that	you	use	to	access	arrays.	Note	that
by	accessing	the	dictionary,	Swift	returns	an	optional	(see	Chapter	1).	Why	does	Swift
return	an	optional?	It	is	possible	that	you	are	trying	to	access	something	that	is	not	there.	If
you	were	sure	that	there	is	a	value	at	the	key	you	were	accessing,	you	could	force	the
value	out	with	an	exclamation	point,	like	this:
Click	here	to	view	code	image

people[176354888]!	//	“Trevor	Kalan”

Of	course,	there	is	a	shorthand	way	to	write	dictionaries	since	Swift	can	automatically
infer	the	types	of	dictionaries.	You	can	rewrite	a	dictionary	without	an	explicit	type,	like
this:
Click	here	to	view	code	image

var	people	=	[186574663:“John	Smith”,
														198364775:“Francis	Green”,
														176354888:“Trevor	Kalan”]

It’s	still	the	same	dictionary	as	before.



Adding,	Removing,	and	Inserting	with	Dictionaries
Previously,	you	used	the	subscript	syntax	(the	square-brackets	syntax)	to	access	elements
of	a	dictionary.	You	can	use	that	syntax	to	also	set	values	by	key.	In	the	preceding
example,	you	can	set	a	person	with	a	Social	Security	number	of	384958338:
Click	here	to	view	code	image

people[384958338]	=	“Skip	Wilson”

If	the	key	exists,	you	will	replace	that	Social	Security	value	with	Skip	Wilson.	If	not,
you	will	have	a	new	key/value	pair.	Try	to	assign	a	key	using	a	string,	and	you	get	an
error.

You	can	also	use	the	method	updateValue(forKey:)	to	update	your	dictionary.	This
method	also	updates	a	value	for	a	key	if	it	exists,	or	it	creates	a	new	key	value	if	it	does
not	exist.	updateValue	returns	an	optional,	which	is	the	old	value	it	replaced,	or	nil	if
it	did	not	replace	anything.

To	remove	items	from	a	dictionary,	you	can	just	assign	it	to	nil:
people[384958338]	=	nil

Now	the	person	with	Social	Security	number	384958338	is	removed	from	the	dictionary.
You	can	also	use	removeValueForKey	to	do	the	same	thing.	It	returns	the	old	value	it
removed	if	the	key	exists.	If	not,	it	returns	nil.	It	is	otherwise	known	as	an	optional,	and
it	looks	like	this:
Click	here	to	view	code	image

people.removeValueForKey(176354888)	//	{Some	“3343”}
people.removeValueForKey(24601)	//	nil

Iterating	Over	Dictionaries
You	can	iterate	over	a	dictionary	much	the	same	way	that	you	iterate	over	an	array—by
using	a	for-in	loop.	The	only	difference	between	an	array	for-in	loop	and	a
dictionary	for-in	loop	is	that	with	the	dictionary	loop,	you	are	able	to	get	both	keys	and
values	while	looping,	like	this:
Click	here	to	view	code	image

for	(ssn,name)	in	people	{
				print(“SSN:	\(ssn)	Name:	\(name)”)
}
//	SSN:	198364775	Name:	Francis	Green
//	SSN:	176354888	Name:	Trevor	Kalan
//	SSN:	186574663	Name:	John	Smith

You	can	also	loop	through	just	the	keys	of	a	dictionary,	with	.keys.	In	addition,	you	can
loop	through	just	the	values	with	.values:

for	ssn	in	people.keys	{
				print(“SSN:	\(ssn)”)
}
for	name	in	people.values	{
				print(“Name:	\(name)”)
}



Extra	Bits	of	Dictionaries
You	can	create	a	new	dictionary	like	this:
Click	here	to	view	code	image

var	vehicles	=	Dictionary<String,String>()

It	is	worth	noting	that	once	again,	if	you	Command+click	on	the	dictionary,	you	will	see
that	it	is	made	up	of	a	Struct	and	subscripts.	The	<>	characters	tell	you	that	the
dictionary	is	made	with	generics,	and	it	will	accept	any	type	at	all	for	its	keys	and	values.
(Generics	are	a	powerful	feature	of	Swift	that	you	will	learn	much	more	about	in	Chapter
9,	“Becoming	More	Flexible:	Generics.”)

If	you	want	to	count	the	number	of	key/value	pairs	in	a	dictionary,	you	can	use	.count:
people.count	//	3

Emptying	a	Dictionary
You	can	empty	a	dictionary	just	by	calling	[:],	like	this:
Click	here	to	view	code	image

people		=	[:]	//	0	key/value	pairs

Testing	Dictionaries	for	the	Presence	of	Values
Dictionaries	return	optionals	when	you	try	to	access	items.	Therefore,	you	might	want	to
place	them	into	value	bindings.	If	you	don’t	need	the	value	of	the	key	you	are	testing,	you
can	instead	use	a	regular	if	statement,	like	this:
Click	here	to	view	code	image

if	people[198364775]	!=	nil	{
				print(“Got	him”)
}	else	{
				print(“No	one	with	that	Social	Security	number”)
}

If	you	do,	in	fact,	want	the	unwrapped	value	from	the	optional	(if	it	does	succeed),	you
can	use	full	value	binding,	like	this:
Click	here	to	view	code	image

if	let	person	=	people[198364775]	{
				print(“Got	\(person)”)
}	else	{
				print(“No	one	with	that	Social	Security	number”)
}

Now	you	will	have	the	unwrapped	value	of	the	optional	available	to	you	if	there	is	a	value
to	be	had.

Putting	It	All	Together
Next,	you	will	create	a	little	program	from	the	massive	amounts	of	knowledge	you	have
acquired	thus	far.	Enter	the	code	in	Listing	2.1.

Listing	2.1	A	Complete	Example



Click	here	to	view	code	image

import	Foundation

let	city	=	“Boston”
let	trainName	=	“the	Red	Line”

var	subwayStops	=	[
				//	Stop	name	and	busyness	on	a	scale	of	1-10
				(“Harvard	Square”,	6),
				(“Kendall	/	MIT”,	5),
				(“Central	Square”,	7),
				(“Charles	MGH”,	4),
				(“Park	Street”,	10)
]

var	passengers	=	0

for	i	in	0..<subwayStops.count	{
				var	(stopName,	busyness)	=	subwayStops[i]
				//	New	passengers	boarding	the	train
				var	board:Int

				switch	(busyness)	{
				case	1…4:	board	=	15
				case	5…7:	board	=	30
				case	7..<9:	board	=	45
				case	10:	board	=	50
				default:	board	=	0
				}

				//	Some	passengers	may	leave	the	train	at	each	stop
				let	randomNumber	=	Int(arc4random_uniform(UInt32(passengers)))

				//Ensure	that	passengers	never	becomes	negative
				if	randomNumber	<	passengers	{
								passengers	-=	randomNumber
								print(“\(randomNumber)	leave	the	train”)
				}

				passengers	+=	board
				print(“\(board)	new	passengers	board	at	\(stopName)”)
				print(“\(passengers)	current	on	board”)
}
print(“A	total	of	\(passengers)	passengers	were	left	on	\(trainName)	in	\
(city)”)

You	can	paste	this	code	directly	into	the	playground	so	you	can	step	through	it:

	Line	3:	You	create	a	city	constant	(Boston,	in	this	case).

	Line	4:	You	create	a	train	name	constant.

	Lines	6–13:	You	create	the	subway	stops	array.	This	is	of	type	[(String,
Int)],	which	means	an	array	of	tuples	in	which	the	tuples	are	of	types	String
and	Int.



Note

For	bonus	points,	make	the	array	into	an	array	of	named	tuples	or	reimplement	it	as
a	dictionary.

	Line	15:	You	specify	the	current	number	of	passengers.

	Line	17:	This	is	the	main	game	loop,	which	loops	from	0	to	the	number	of	subway
stops.

	Line	18:	You	grab	values	out	of	the	tuples	smoothly	and	simultaneously.

	Line	22:	You	specify	a	switch	with	ranges,	based	on	the	busyness	of	the	current
stop.

	Lines	23–26:	If	the	busyness	level	is	between	x	and	y,	you	board	z	number	of
people.

	Line	27:	You	need	a	default	because	the	switch	is	not	exhaustive.	Your	passengers
might	be	exhausted,	though.

	Line	31:	You	choose	a	random	number	of	passengers	between	0	and	the	number	of
passengers	currently	on	the	train	to	leave	the	train	at	each	stop.

	Line	34:	You	have	to	make	sure	randomNumber	is	less	than	the	current	number	of
passengers.	You	make	those	people	leave	the	train.

	Line	39:	You	choose	the	number	of	passengers	to	board	from	the	switch
statement.

	Line	40:	You	print	the	number	of	new	passengers.

	Line	41:	You	print	the	number	on	board.

	Line	44:	You	finish	the	game	with	the	total	number	of	passengers	left	on	board.

Summary
With	arrays	and	dictionaries	you	are	able	to	store	data	in	many	different	ways.	They	are
like	the	tools	in	a	carpenter’s	kit.	Arrays	and	dictionaries	are	an	essential	asset	to
successful	Swift	programming.	Swift	has	given	us	multiple	ways	of	accessing,	adding,	and
removing	items	from	these	collections.	The	ways	in	which	you	can	use	collections	is	up	to
you,	and	you	will	find	there	are	many	different	uses	for	them.



3.	Making	Things	Happen:	Functions

This	chapter	discusses	functions.	You	will	find	that	Swift	functions	are	based	on	a	similar
implementations	of	functions	in	other	languages	like.	Swift	functions	provide	you	with
lots	of	flexibility	to	create	parameters	that	are	both	“internal”	and	“external,”	which	jibes
well	with	Objective-C.	Internal	and	external	parameters	allow	you	to	have	functions	that
are	easy	to	read.	You’ll	be	able	to	quickly	read	the	name	of	a	function	and	know	exactly
what	it	does.	This	is	one	excellent	feature	of	Objective-C	that	has	made	its	way	into	Swift.

A	function	itself	can	also	be	passed	as	a	parameter	of	another	function,	also	known	as
anonymous	functions.	This	makes	it	easy	to	pass	parameters	around	to	different	contexts.
Functions	can	contain	other	functions;	these	are	called	closures	and	are	discussed	in
Chapter	6,	“Reusable	Code:	Closures.”	Closures	and	functions	go	hand	in	hand.

A	function	groups	commonly	used	code	together	so	that	it	can	be	reused	as	many	times	as
is	needed.	Say	that	you	have	a	game	in	which	a	character	jumps	in	the	air,	which	is	a
supercommon	functionality	in	a	game.	You	would	need	to	write	the	code	to	make	the
character	jump.	Jumping	in	games	gets	rather	complicated,	and	you	wouldn’t	want	to
rewrite	that	code	every	time	you	wanted	the	character	to	jump;	handling	the	jumping
character	that	way	would	be	messy	and	error	prone.	Instead,	you	could	create	a	function	to
wrap	all	that	jumping	code	into	a	nice	little	package	of	goodness.	Then,	instead	of	writing
all	that	code	again,	you	could	just	use	your	jump()	function.	This	is	like	using	a	real-life
button	press	to	make	something	work.	That	button	connects	to	all	the	functionality
contained	within	the	component	you’re	activating.	You	don’t	necessarily	have	to	know
how	it	works;	you	just	know	that	pressing	the	button	will	make	it	work.

When	you	think	about	writing	Swift	code,	you	have	to	realize	that	there	is	a	lot	of
functionality	that	just	works.	You	may	never	know	how	it	was	written	or	how	many	lines
of	code	it	took	to	write	it.	You	just	know	that	when	you	call	it,	it	will	work.

For	example,	calling	countElements	on	the	string	"Hi"	returns	2,	which	is	the
number	of	characters	in	the	string.	You	didn’t	have	to	write	that	function.	It	came	with
Swift.	With	Swift,	you	can	write	your	own	functions	and	then	forget	how	you	made	them
work.	After	you’ve	written	jump(),	you	can	call	it	to	have	your	character	jump.

Defining	Functions
In	Swift,	a	function	is	made	up	of	three	components:	a	name,	parameters,	and	a	return
type.	The	syntax	for	this	type	of	declaration	is	as	follows:
Click	here	to	view	code	image

func	functionName(parameterName:	parameterType)	->	returnType	{
		//code
}

This	syntax	is	very	different	from	Objective-C	method	declarations.	However,	if	you	have
ever	used	JavaScript,	Python,	C,	or	many	other	languages,	then	this	syntax	will	be	pretty
familiar.	You	will	find	that	although	the	structure	of	functions	is	different,	there	are	parts
that	make	it	compatible	with	Objective-C.



Let’s	look	at	some	examples,	starting	with	a	function	that	takes	no	arguments	and	has	no
return	values:

func	sayHello()	{
				print(“Hello!”)
}

Here	you	write	the	keyword	func	and	then	name	the	function	sayHello.	You	use	()	to
house	parameters	when	you	need	them;	for	now,	you	can	leave	these	parentheses	empty.
You	use	curly	brackets	to	contain	the	code	that	needs	to	run	when	the	function	is	called.
To	call	this	function,	you	simply	use	its	name	followed	by	parentheses.	You	would	call
sayHello	like	this:

sayHello()

This	is	about	as	basic	a	function	as	you	can	create.	You	can	go	a	step	further	and	add	an
argument	that	allows	the	function	to	“say	hello”	to	a	specific	person.	To	do	that,	you	need
to	allow	the	function	to	take	a	single	argument	of	type	String	that	represents	a	name.
That	type	of	declaration	might	look	like	this:
Click	here	to	view	code	image

func	sayHello(name:	String)	{
		print(“Hello,	\(name)!”)
}

Now	you’ve	added	a	parameter	to	the	function.	That	parameter	is	of	type	String	and	is
called	name.

Note

If	you’re	following	along	in	your	own	playground,	it	isn’t	necessary	to	overwrite
your	old	implementation	of	sayHello.	The	type	inference	in	Swift	allows	you	to
differentiate	between	your	different	declarations	of	sayHello	based	on	the
arguments.	This	means	that	if	you	call	this,	Swift	will	infer	that	you	are	looking	for
sayHello	with	no	arguments:

sayHello()
//	Hello!

If,	however,	you	add	an	argument	of	type	String	to	the	function	call,	like	this,
Swift	will	now	infer	that	you’re	looking	for	the	implementation	of	sayHello	that
takes	one	argument	of	type	String:

sayHello(“Skip”)
//	Hello,	Skip!

As	long	as	the	argument	types,	the	return	types,	or	both	are	different,	declaring
functions	with	the	same	name	will	not	cause	issues	with	the	compiler.	You	can
actually	have	multiple	functions	with	the	same	name	sitting	in	the	same	file,	so	you
shouldn’t	erase	your	other	functions.

Next,	you’ll	create	another	implementation	of	your	sayHello	function	that	says	“hello”
to	someone	a	certain	number	of	times.	This	will	give	you	a	chance	to	look	at	how	to
declare	a	function	with	multiple	parameters:



Click	here	to	view	code	image
func	sayHello(name:	String,	numberOfTimes:	Int)	{
		for	_	in	1…numberOfTimes	{
				sayHello(name)
		}
}

This	function	declaration	can	be	read	as	“a	function	named	sayHello	that	takes	two
arguments	of	type	String	and	type	Int	with	no	return	value.”	The	syntax	is	almost
identical	to	that	of	the	single	argument	function,	just	with	an	extra	comma	added	to
separate	the	arguments.	You	are	even	using	the	same	name	for	the	function.	In	fact,	you
are	calling	the	first	implementation	of	sayHello	within	the	new	declaration.	Now,	if	you
wanted	to	use	this	function,	here’s	how	it	would	look:
Click	here	to	view	code	image

sayHello(“Skip”,	numberOfTimes:5)
//Hello	Skip!
//Hello	Skip!
//Hello	Skip!
//Hello	Skip!
//Hello	Skip!

We’ll	elaborate	a	bit	more	on	how	Swift	differentiates	between	these	declarations	when	we
discuss	function	types	later	in	the	chapter	in	“Functions	as	Types,”	but	for	now,	we’re
going	to	move	on	to	adding	a	return	type	to	the	function	implementations.

To	add	a	return	argument	in	the	function	declaration,	you	simply	include	the	pointer	arrow,
->,	followed	by	the	return	type.

Return	Types
Next	you’ll	create	a	function	that	returns	its	sum,	which	will	also	be	of	return	type	Int:
Click	here	to	view	code	image

func	sum(a:	Int,	b:	Int)	->	Int	{
		return	a	+	b
}

This	declaration	can	be	read	as	“a	function,	sum,	that	takes	two	arguments	of	type	Int
and	has	a	return	value	of	type	Int.”	If	you	wanted	to	call	the	new	function,	it	could	look
something	like	this:

let	total	=	sum(14,	b:	52)
//	total	=	66

Returning	a	single	value	is	just	fine,	but	sometimes	you	want	to	return	multiple	values.	In
Objective-C,	this	problem	is	usually	solved	by	creating	an	object	class	or	by	returning
some	sort	of	collection.	These	solutions	would	work	in	Swift	as	well,	but	there	is	a	better
way:	You	can	return	multiple	arguments	in	Swift	by	using	tuples,	as	described	in	the	next
section.



Multiple	Return	Values
Like	Objective-C	functions,	Swift	functions	can	return	only	one	value.	Unlike	Objective-
C,	though,	Swift	lets	you	use	tuples	as	values,	which	can	be	useful	for	packaging	together
multiple	return	values	so	that	you	can	pass	around	multiple	values	as	one	value.	Consider
a	situation	in	which	a	function	is	required	to	return	the	sum	of	two	numbers	as	well	as	the
higher	of	the	two.	This	means	that	you	need	the	function	to	returns	two	values,	both	of
type	Int	encapsulated	in	a	tuple.	Here’s	what	it	looks	like:
Click	here	to	view	code	image

func	sumAndCeiling(a:	Int,	b:	Int)	->	(Int,	Int)	{
				let	ceiling	=	a	>	b	?	a	:	b
				let	sum	=	a	+	b
				return	(sum,	ceiling)
}

You	can	declare	multiple	return	values	by	encapsulating	them	in	parentheses,	separated	by
a	comma.	This	is	the	syntax	for	a	tuple.	The	preceding	function	can	be	read	“a	function
named	sumAndCeiling	that	takes	two	arguments	of	type	Int	and	returns	a	tuple	of
type	(Int,	Int).”	You	can	grab	values	from	the	returned	tuple,	from	its	indexes,	like
so:
Click	here	to	view	code	image

let	result	=	sumAndCeiling(4,	b:	52)
let	sum	=	result.0
let	ceiling	=	result.1

This	is	a	good	way	to	return	multiple	values	within	one	function,	but	using	indexes	to
access	values	can	be	confusing.	It’s	also	not	very	pretty,	and	it’s	hard	to	remember	which
is	which.	Imagine	if	someone	decided	to	change	the	order	of	the	tuples	without	reading
how	they	were	used.	It	wouldn’t	be	very	smart	or	very	nice,	and	it	would	severely	mess
things	up.	It’s	more	helpful	to	name	the	values	within	a	tuple.

Here’s	how	you	can	modify	the	sumAndCeiling	function	with	named	values	within	the
tuple:
Click	here	to	view	code	image

func	sumAndCeiling(a:	Int,	b:	Int)	->	(sum:	Int,	ceiling:	Int)	{
				let	ceiling	=	a	>	b	?	a	:	b
				let	sum	=	a	+	b
				return	(sum,	ceiling)
}

The	syntax	for	a	named	tuple	is	almost	identical	to	the	syntax	of	a	parameter.	Adding
named	tuples	is	an	easy	way	to	create	more	readable	code	while	dealing	with	fewer	errors.
Here’s	a	new	implementation:
Click	here	to	view	code	image

let	result	=	sumAndCeiling(16,	b:	103)
let	sum	=	result.sum
//	sum	=	119
//	result.sum	==	result.0
let	ceiling	=	result.ceiling
//	ceiling	=	103
//	result.ceiling	==	result.1



Note

In	general,	I	prefer	accessing	tuples	by	name	rather	than	by	index	because	it	is
easier	to	read.	This	way	you	always	know	exactly	what	the	function	is	returning.

More	on	Parameters
You	already	know	how	to	use	parameters	in	functions.	As	discussed	in	the	following
sections,	Swift	also	provides	the	following:

	External	parameter	names

	Default	parameter	values

	Variadic	parameters

	In-out	parameters

	Functions	as	parameters

External	Parameter	Names
Usually	you	create	a	function	with	parameters	and	just	pass	them.	However,	external
parameters	must	be	written.	Part	of	what	makes	Objective-C	such	a	powerful	language	is
its	descriptiveness.	Swift	engineers	wanted	to	also	include	that	descriptiveness,	and	this	is
why	the	language	includes	external	parameter	names.	External	parameters	allow	for	extra
clarity.	The	syntax	for	including	external	parameter	names	in	a	function	looks	like	this:
Click	here	to	view	code	image

func	someFunction(externalName	internalName:	parameterType)	->	returnType	{
		//	Code	goes	here
}

The	keyword	func	is	followed	by	the	name	of	the	function.	In	the	parameters	of	the
function,	there’s	an	extra	name	for	the	parameters.	The	whole	parameter	is	an	external
name	followed	by	an	internal	parameter	followed	by	the	parameter	type.	The	return	type
of	the	function	follows	the	function	parameters,	as	usual.

Here’s	a	function	that	takes	the	names	of	two	people	and	introduces	them	to	each	other:
Click	here	to	view	code	image

func	introduce(nameOfPersonOne	nameOne:	String,	nameOfPersonTwo	nameTwo:
String)	{
				print(“Hi	\(nameOne),	I’d	like	you	to	meet	\(nameTwo).”)
}

Writing	this	function	with	external	parameters	makes	it	more	readable.	If	someone	saw	a
function	called	introduce,	it	might	not	provide	enough	detail	for	the	person	to
implement	it.	With	a	function	called
introduce(nameOfPersonOne:,nameOfPersonTwo:),	you	know	for	sure	that
you	have	a	function	that	introduces	two	people	to	each	other.	You	know	that	you	are
introducing	person	one	to	person	two.	When	you	add	two	external	parameters	to	the
function	declaration	and	then	you	call	the	introduce	function,	the



nameOfPersonOne	and	nameOfPersonTwo	parameters	will	appear	in	the	call	itself.
This	is	what	it	looks	like:
Click	here	to	view	code	image

introduce(nameOfPersonOne:	“John”,	nameOfPersonTwo:	“Joe”)
//	Hi	John,	I’d	like	you	to	meet	Joe.

By	including	external	parameters	in	functions,	you	remove	the	ambiguity	from	arguments,
which	helps	a	lot	when	sharing	code.

External	parameters	aren’t	required,	but	they	do	make	for	much	greater	readability.

Default	Parameter	Values
Swift	supports	default	parameters,	unlike	in	Objective-C,	in	which	there	is	no	concept	of
default	parameter	values.	The	following	is	an	example	of	a	function	that	adds	punctuation
to	a	sentence,	in	which	you	declare	a	period	to	be	the	default	punctuation:
Click	here	to	view	code	image

func	addPunctuation(sentence	sentence:	String,	punctuation:	String	=	“.”)	->
String	{
				return	sentence	+	punctuation
}

If	a	parameter	is	declared	with	a	default	value,	it	will	be	made	into	an	external	parameter.
If	you’d	like	to	override	this	functionality	and	not	include	an	external	parameter,	you	can
insert	an	underscore	(_)	as	your	external	variable.	If	you	wanted	a	version	of
addPunctuation	that	had	no	external	parameters,	its	declaration	would	look	like	this:
Click	here	to	view	code	image

func	addPunctuation(sentence	sentence:	String,	_	punctuation:	String	=
“.”)	->	String	{
				return	sentence	+	punctuation
}

Now	you	can	remove	the	underscore	from	the	parameters.	Then	you	can	call	the	function
with	or	without	the	punctuation	parameter,	like	this:
Click	here	to	view	code	image

let	completeSentence	=	addPunctuation(sentence:	“Hello	World”)
//	completeSentence	=	Hello	World.

You	don’t	declare	any	value	for	punctuation.	The	default	parameter	will	be	used,	and
you	can	omit	any	mention	of	it	in	the	function	call.

What	if	you	want	to	use	an	exclamation	point?	Just	add	it	in	the	parameters,	like	so:
Click	here	to	view	code	image

let	excitedSentence	=	addPunctuation(sentence:	“Hello	World”,	punctuation:
“!”)
//	excitedSentence	=	Hello	World!

Next	you’re	going	to	learn	about	another	language	feature	that	allows	an	unlimited
number	of	arguments	to	be	implemented.	Let’s	talk	about	variadic	parameters.



Variadic	Parameters
Variadic	parameters	allow	you	to	pass	as	many	parameters	into	a	function	as	your	heart
desires.	If	you	have	worked	in	Objective-C,	you	know	that	doing	this	in	Objective-C
requires	a	nil	terminator	so	that	things	don’t	break.	Swift	does	not	require	such	strict
rules.	Swift	makes	it	easy	to	implement	unlimited	parameters	by	using	an	ellipsis,	which	is
three	individual	periods	(...).	You	tell	Swift	what	type	you	want	to	use,	add	an	ellipsis,
and	you’re	done.

The	following	function	finds	the	average	of	a	bunch	of	ints:
Click	here	to	view	code	image

func	average(numbers	numbers:	Int…)	->	Int	{
				var	total	=	0
				for	n	in	numbers	{
								total	+=	n
				}
				return	total	/	numbers.count
}

It	would	be	nice	if	you	could	pass	in	any	number	of	ints.	The	parameter	is	passed	into
the	function	as	an	array	of	ints	in	this	case.	That	would	be	[Int].	Now	you	can	use	this
array	as	needed.	You	can	call	the	average	function	with	any	number	of	variables:
Click	here	to	view	code	image

let	averageOne	=	average(numbers:	15,	23)
//	averageOne	=	19
let	averageTwo	=	average(numbers:	13,	14,	235,	52,	6)
//	averageTwo	=	64
let	averageThree	=	average(numbers:	123,	643,	8)
//	averageThree	=	258

One	small	thing	to	note	with	variadic	parameters:	You	may	already	have	your	array	of
ints	ready	to	pass	to	the	function,	but	you	cannot	do	this.	You	must	pass	multiple
comma-separated	parameters.	If	you	want	to	pass	an	array	of	ints	to	a	function,	you	can
write	the	function	a	little	differently.	For	example,	the	following	function	will	accept	one
parameter	of	type	[Int].	You	can	have	multiple	functions	with	the	same	name	in	Swift,
so	you	can	rewrite	the	function	to	have	a	second	implementation	that	takes	the	array	of
ints:
Click	here	to	view	code	image

func	average(numbers:	[Int])	->	Int	{
				var	total	=	0
				for	n	in	numbers	{
								total	+=	n
				}
				return	total	/	numbers.count
}

Now	you	have	a	function	that	takes	an	array	of	ints.	You	might	have	this	function
written	exactly	the	same	way	twice	in	a	row.	That	works,	but	we	are	repeating	ourselves.
You	could	rewrite	the	first	function	to	call	the	second	function:
Click	here	to	view	code	image

func	average(numbers	numbers:	Int…)	->	Int	{



				return	average(numbers:	numbers)
}

Now	you	have	a	beautiful	function	that	can	take	either	an	array	of	ints	or	an	unlimited
comma-separated	list	of	ints.	By	using	this	method,	you	can	provide	multiple	options	to
the	user	of	whatever	API	you	decide	to	make:
Click	here	to	view	code	image

let	arrayOfNumbers:	[Int]	=	[3,	15,	4,	18]
let	averageOfArray	=	average(numbers:	arrayOfNumbers)
//	averageOfArray	=	10
let	averageOfVariadic	=	average(numbers:	3,	15,	4,	18)
//	averageOfVariadic	=	10

In-Out	Parameters
In-out	parameters	allow	you	to	pass	a	variable	from	outside	the	scope	of	a	function	and
modify	it	directly	inside	the	scope	of	the	function.	You	can	take	a	reference	into	the
function’s	scope	and	send	it	back	out	again—hence	the	keyword	inout.	The	only
syntactic	difference	between	a	normal	function	and	a	function	with	inout	parameters	is
the	addition	of	the	inout	keyword	attached	to	any	arguments	you	want	to	be	inout.
Here’s	an	example:
Click	here	to	view	code	image

func	someFunction(inout	inoutParameterName:	InOutParameterType)	->	ReturnType
{
		//	Your	code	goes	here
}

Here’s	a	function	that	increments	a	given	variable	by	a	certain	amount:
Click	here	to	view	code	image

func	incrementNumber(inout	number	number:	Int,	increment:	Int	=	1)	{
				number	+=	increment
}

Now,	when	you	call	this	function,	you	pass	a	reference	instead	of	a	value.	You	prefix	the
thing	you	want	to	pass	in	with	an	ampersand	(&):
Click	here	to	view	code	image

var	totalPoints	=	0
incrementNumber(number:	&totalPoints)
//	totalPoints	=	1

In	the	preceding	code,	a	totalPoints	variable	represents	something	like	a	player’s
score.	By	declaring	the	parameter	increment	with	a	default	value	of	1,	you	make	it
easy	to	quickly	increment	the	score	by	1,	and	you	still	have	the	option	to	increase	by	more
points	when	necessary.	By	declaring	the	number	parameter	as	inout,	you	modify	the
specific	reference	without	having	to	assign	the	result	of	the	expression	to	the
totalPoints	variable.

Say	that	the	user	just	did	something	worth	5	points.	The	function	call	might	now	look	like
this:
Click	here	to	view	code	image

var	totalPoints	=	0



incrementNumber(number:	&totalPoints,	increment:	5)
//	totalPoints	=	5
incrementNumber(number:	&totalPoints)
//	totalPoints	=	6

Functions	as	Types
In	Swift,	a	function	is	a	type.	This	means	that	it	can	be	passed	as	arguments,	stored	in
variables,	and	used	in	various	ways.	Every	function	has	an	inherent	type	that	is	defined	by
its	arguments	and	its	return	type.	The	basic	syntax	for	expressing	a	function	type	looks
like	this:

(parameterTypes)	->	ReturnType

This	is	a	funky	little	syntax,	but	you	can	use	it	as	you	would	use	any	other	type	in	Swift,
which	makes	passing	around	self-contained	blocks	of	functionality	easy.

Let’s	next	look	at	a	basic	function	and	then	break	down	its	type.	This	function	is	named
double	and	takes	an	int	named	num:
Click	here	to	view	code	image

func	double(num:	Int)	->	Int	{
				return	num	*	2
}

It	also	returns	an	int.	To	express	this	function	as	its	own	type,	you	use	the	preceding
syntax,	like	this:

(Int)	->	Int

Here	you	add	the	parameter	types	in	parentheses,	and	you	add	the	return	type	after	the
arrow.

You	can	use	this	type	to	assign	a	type	to	a	variable:
Click	here	to	view	code	image

var	myFunc:(Int)	->	Int	=	double

This	is	similar	to	declaring	a	regular	variable	of	type	string,	for	example:
Click	here	to	view	code	image

var	myString:String	=	“Hey	there	buddy!”

All	we	are	doing	is	assigning	a	variable.	The	only	difference	is	that	the	type	of	the	variable
is	a	function	and	not	a	String.	You	could	easily	make	another	function	of	the	same	type
that	has	different	functionality.	Just	as	double’s	functionality	is	to	double	a	number,	you
can	make	a	function	called	triple	that	will	triple	a	number:
Click	here	to	view	code	image

func	triple(num:Int)	->	Int	{
				return	num	*	3
}

The	double	and	triple	functions	do	different	things,	but	their	type	is	exactly	the
same.	You	can	interchange	these	functions	anywhere	that	accepts	their	type.	Anyplace	that
accepts	(Int)	->	Int	would	accept	both	the	double	and	triple	functions.	Here	is
a	function	that	modifies	an	int	based	on	the	function	you	send	it:



Click	here	to	view	code	image
func	modifyInt(number	number:	Int,	modifier:(Int)	->	Int)	->	Int	{
				return	modifier(number)
}

Although	some	languages	just	accept	any	old	parameter,	Swift	is	very	specific	about	the
functions	it	accepts	as	parameters.

Putting	It	All	Together
Now	it’s	time	to	combine	all	the	things	you’ve	learned	so	far	about	functions.	You’ve
learned	that	the	pound	sign	means	that	the	function	has	an	external	parameter	named	the
same	as	its	internal	parameter.	The	parameter	modifier	takes	a	function	as	a	type.	That
function	must	have	a	parameter	that	is	an	int	and	a	return	value	of	an	int.	You	have	two
functions	that	meet	those	criteria	perfectly:	double	and	triple.	If	you	are	an
Objective-C	person,	you	are	probably	thinking	about	blocks	right	about	now.	In	Objective-
C,	blocks	allow	you	to	pass	around	code	similar	to	what	you	are	doing	here.	(Hold	that
thought	until	you	get	to	Chapter	6.)	For	now,	you	can	pass	in	the	double	or	triple
function:
Click	here	to	view	code	image

let	doubledValue	=	modifyInt(number:	15,	modifier:	double)
//	doubledValue	==	30
let	tripledValue	=	modifyInt(number:	15,	modifier:	triple)
//	tripledValue	==	45

Note

This	example	is	obviously	completely	hard	coded,	and	your	examples	will	be
completely	dynamic.	For	example,	you	would	probably	replace	the	number	30	with
the	current	speed	of	the	character	when	he	hits	the	sonic	speed	button.	For	now,	you
can	just	settle	for	30	and	45.

Listing	3.1	is	an	example	of	creating	functions	in	Swift.

Listing	3.1	A	Tiny	Little	Game
Click	here	to	view	code	image

var	map	=	[	[0,0,0,0,2,0,0,0,0,0],
												[0,1,0,0,0,0,0,0,1,0],
												[0,1,0,0,0,0,0,0,1,0],
												[0,1,0,1,1,1,1,0,1,0],
												[3,0,0,0,0,0,0,0,0,0]]

var	currentPoint	=	(0,4)
func	setCurrentPoint(){
				for	(i,row)	in	map.enumerate(){
								for	(j,tile)	in	row.enumerate(){
												if	tile	==	3	{
																currentPoint	=	(i,j)
																return
												}
								}
				}



}

setCurrentPoint()

func	moveForward()	->	Bool	{
				if	currentPoint.1	-	1	<	0	{
								print(“Off	Stage”)
								return	false
				}
				if	isWall((currentPoint.0,currentPoint.1	-	1))	{
								print(“Hit	Wall”)
								return	false
				}
				currentPoint.1	-=	1
				if	isWin((currentPoint.0,currentPoint.1)){
								print(“You	Won!”)
				}
				return	true
}

func	moveBack()	->	Bool	{
				if	currentPoint.1	+	1	>	map.count	-	1	{
								print(“Off	Stage”)
								return	false
				}
				if	isWall((currentPoint.0,currentPoint.1	+	1))	{
								print(“Hit	Wall”)
								return	false
				}
				currentPoint.1	+=	1
				if	isWin((currentPoint.0,currentPoint.1)){
								print(“You	Won!”)
				}
				return	true
}

func	moveLeft()	->	Bool	{
				if	currentPoint.0	-	1	<	0	{
								return	false
				}
				if	isWall((currentPoint.0	-	1,currentPoint.1))	{
								print(“Hit	Wall”)
								return	false
				}
				currentPoint.0	-=	1
				if	isWin((currentPoint.0,currentPoint.1)){
								print(“You	Won!”)
				}
				return	true
}

func	moveRight()	->	Bool	{
				if	currentPoint.0	+	1	>	map.count	-	1	{
								print(“Off	Stage”)
								return	false
				}
				if	isWall((currentPoint.0	+	1,currentPoint.1))	{
								print(“Hit	Wall”)
								return	false
				}
				currentPoint.0	+=	1
				if	isWin((currentPoint.0,currentPoint.1)){
								print(“You	Won!”)



				}
				return	true
}

func	isWall(spot:(Int,Int))	->	Bool	{
				if	map[spot.0][spot.1]	==	1	{
								return	true
				}
				return	false
}

func	isWin(spot:(Int,Int))	->	Bool	{
				print(spot)
				print(map[spot.0][spot.1])
				if	map[spot.0][spot.1]	==	2	{
								return	true
				}
				return	false
}

moveLeft()
moveLeft()
moveLeft()
moveLeft()
moveBack()
moveBack()
moveBack()
moveBack()

This	is	a	map	game.	This	game	allows	the	user	to	navigate	through	the	map	by	using
function	calls.	The	goal	is	to	find	the	secret	present	(the	number	2).	If	the	player	combines
the	right	moves	in	the	move	function,	he	or	she	can	find	the	secret	present.	Your	current
status	will	read	out	in	the	console	log.

Let’s	step	through	this	code:

	You	have	a	multidimensional	array	map,	which	is	an	array	within	an	array.

	The	function	setCurrentPoint	finds	the	3,	which	is	the	starting	point,	and	sets
it	as	the	current	point.

	You	have	four	directional	functions	that	move	the	current	point’s	x	or	y	position.

	In	each	of	those	functions,	you	check	whether	you	hit	a	wall	using	the	isWall
function.

	In	each	of	those	functions,	you	also	move	the	player’s	actual	position.

	After	the	position	is	moved,	you	check	whether	you	won	the	game	by	seeing
whether	you	landed	on	a	2.

	You	can	call	each	function	one	by	one	and	the	console	will	trace	out	whether	you
won.	It	will	not	move	if	you	are	going	to	hit	a	wall.	It	also	will	not	move	if	you	are
going	to	go	offstage.



Summary
This	chapter	just	scratches	the	surface	of	using	functions	in	Swift.	You	learned	most	of
what	there	is	to	learn	syntactically,	but	there	is	more	to	come	with	the	possibilities	of
implementation.	Now	that	you	know	all	the	different	ways	to	use	functions	in	Swift,	it	is
time	to	start	experimenting	and	implementing.	Functions	are	one	of	the	puzzle	pieces	of
object-oriented	programming,	but	you	need	more	pieces	to	complete	the	picture.	Next	you
will	learn	how	to	turn	functions	into	methods	of	a	class,	struct,	and	enum.	You	will	learn
the	basic	building	blocks	of	structuring	code.	When	combined	with	classes,	structs,	and
enums,	functions	become	a	part	of	that	bigger	object-oriented	programming	picture.



4.	Structuring	Code:	Enums,	Structs,	and	Classes

This	chapter	covers	the	basic	structural	methods	of	Swift:	enums,	structs,	and	classes.
With	these	tools,	you	can	more	easily	organize	your	code	for	reuse.	You	will	find	yourself
typing	less	code	when	using	these	tools	properly.	Structs,	enums,	and	classes	are	similar	to
functions	in	that	they	allow	you	to	group	some	code	together	for	reuse.	They	are	different
from	functions	because	they	can	contain	functions.

If	you	are	familiar	with	Objective-C,	C,	C++,	or	Java	and	other	languages,	you	should
know	about	enums	because	they	are	a	part	of	many	languages.	You	write	typedef
because	in	Objective-C	and	C	(but	not	C++),	you	have	to	always	precede	an	enum	with
the	word	enum.	You	create	a	typedef	to	make	a	shortcut	to	the	enum	to	reduce	the
typing.	In	Swift,	you	use	enum	types	anytime	you	need	to	represent	a	fixed	set	of
constants,	including	things	like	the	planets	in	our	solar	system.	You	use	it	in	situations	in
which	you	know	all	the	possible	values—for	example,	menu	options	or	command-line
options.

Structures	and	classes	have	a	lot	of	similarities	in	their	intended	functionalities.	Structs,
enums,	and	classes	can	have	methods,	which	are	functions	within	the	enum,	struct,	or
class.	These	methods	provide	that	specific	object	with	something	it	can	do.	Methods	are
doers.	Methods	(which	you	can	think	of	as	functions	within	classes,	structs,	or	enums)
give	you	some	information	about	the	object.

Structs	and	classes	are	very	similar	in	that	they	contain	a	design	for	representing	objects.
The	big	difference	is	that	structs	are	always	created	new	or	copied	when	passed	around,
and	classes	are	passed	around	by	reference.	If	your	friend	wanted	to	borrow	something
from	you,	you	would	definitely	lend	it	to	him	because	you	two	are	best	buds.	If	that	to-be-
borrowed	something	was	a	struct,	you	would	have	to	pull	out	the	3D	printer	and	print	your
friend	a	brand-new	one	and	hand	it	over.	If	that	something	was	a	class,	you	would	give
your	friend	a	card	that	told	exactly	where	to	find	that	something	anytime	he	looked	for	it.

Enums
Enums,	structs,	classes,	and	protocols	are	all	written	in	a	very	similar	way.	Here	is	how
you	create	an	enum	for	the	suits	in	a	deck	of	cards:
Click	here	to	view	code	image

enum	Suit	{
				//…	enum	implementation	goes	here
}

You	should	choose	a	singular	name	(not	plural)	for	the	enum—like	Suit	in	this	case.	You
write	the	word	enum	and	then	give	the	enum	a	name	and	write	a	pair	of	curly	brackets.
The	enum	implementation	goes	inside	the	curly	brackets.	Here	is	a	simple	enum	that
declares	all	possible	suits	in	a	deck	of	cards:

enum	Suit	{
				case	Hearts
				case	Clubs
				case	Diamonds
				case	Spades



}

Now	you	can	declare	Suit.Clubs:
Click	here	to	view	code	image

var	thisCardSuit	=	Suit.Clubs

Now	thisCardSuit	is	of	type	Suit.	Each	of	the	choices	is	called	a	“member”	of	the
enum.	Each	member	is	a	constant	and	cannot	be	changed.	You	want	to	name	your	enums
so	they	are	easily	read.	When	you	read	the	preceding	declaration,	you	can	think	of	it	as
saying,	“This	card	suit	is	a	suit	which	is	clubs”	(or,	simplified,	“This	card	suit	is	clubs”),
which	reads	like	a	sentence.

If	the	variable	you	declare	is	already	declared	as	a	type	Suit,	you	do	not	have	to	write	the
full	name	of	the	enum.	You	can	use	this	instead:
Click	here	to	view	code	image

var	thisCardSuit:Suit	//	declaring	the	type	suit.
thisCardSuit	=	.Clubs	//	Because	suit	is	declared,	we	don’t	need	to	write
			Suit.Clubs												//	Just	.Clubs

Notice	how	you	can	write	just	.Clubs.	A	good	example	of	this	is
UIImagePickerControllerSourceType,	which	you	use	when	allowing	the	user
to	choose	an	image	from	the	camera	(to	take	a	picture	right	now),	saved	photo	albums,	or
the	photo	library.	If	you	were	to	create	a	function	that	took	a
UIImagePickerControllerSourceType	as	a	parameter,	you	could	pass	it	just
.Camera,	like	this:
Click	here	to	view	code	image

func	showImagePickerForSourceType(imageView:UIImageView,
sourceType:UIImagePickerControllerSourceType)	{…
…
}
showImagePickerForSourceType(imageView,	.Camera)

In	this	example,	you	can	pass	the	function	.Camera	because	it	knows	that
sourceType	must	be	of	type	UIImagePickerControllerSourceType.

Which	Member	Was	Set?
After	the	sourceType	for	UIImagePickerControllerSourceType	is	set,	how
do	you	figure	out	which	enum	value	was	set?	You	use	a	switch	statement.	Let’s	go	back
to	the	suits	in	the	deck	of	cards	example.	You	will	reuse	the	thisCardSuit	variable
like	so:

switch	thisCardSuit	{
case	.Hearts:
				print(“was	hearts”)
case	.Clubs:
				print(“was	clubs”)
case	.Diamonds:
				print(“was	diamonds”)
case	.Spades:
				print(“was	spades”)
}
//	was	clubs



Of	course,	this	switch	statement	must	be	exhaustive	(see	Chapter	1,	“Getting	Your	Feet
Wet:	Variables,	Constants,	and	Loops”).	This	example	prints	out	was	clubs.

Associated	Values
You	will	often	want	to	associate	a	value	with	a	member	of	an	enum.	Having	the	member
itself	is	helpful,	but	sometimes	you	need	more	information.	Here’s	how	you	could	create	a
Computer	enum	to	get	an	idea	of	what	I	mean:
Click	here	to	view	code	image

enum	Computer	{
				//ram	and	processor
				case	Desktop(Int,String)
				//screen	size,	model
				case	Laptop(Int,	String)
				//screen	size,	model,	weight
				case	Phone(Int,	String,	Double)
				//screen	size,	model,	weight
				case	Tablet(Int,	String,	Double)
}
var	tech:Computer	=	.Desktop(8,	“i5”)

Here	you	have	made	a	computer	that	is	of	type	Computer,	with	a	value	of	Desktop,
and	with	8GB	of	RAM	and	an	i5	processor.	Notice	how	you	can	give	each	member	value
different	required	associated	values.	Desktop	has	Int	and	String,	and	Phone	has
Int,	String,	and	Double.	To	use	this	Computer	enum	in	a	theoretical	app,	you
would	make	the	user	choose	a	technology.	You	could	have	her	choose	a	desktop,	laptop,
phone,	or	tablet.	After	she	chooses,	you	could	specify	the	RAM	and	processor.	If	she
chose	a	desktop,	she	would	provide	the	screen	size	and	model.	If	she	chose	a	laptop,
phone,	or	tablet,	she	would	provide	the	size,	model,	and	weight.

Now	you	can	check	the	selected	tech	value	by	using	a	switch	statement	and
simultaneously	grabbing	the	associated	values:
Click	here	to	view	code	image

switch	tech	{
case	.Desktop(let	ram,	let	processor):
				print(“We	chose	a	desktop	with	\(ram)	and	a	\(processor)	processor”)
case	.Laptop(let	screensize):
				print	(“We	chose	a	laptop	which	has	a	\(screensize)	in	screen”)
default:
				print	(“We	chose	some	other	unimportant	computer.”)
}

You	see	here	that	you	can	grab	the	associated	values	out	of	the	chosen	Computer
member	by	assigning	a	constant	using	let.	Notice	that	you	have	to	write	let	twice	if	the
enum	member	has	multiple	associated	values.	Of	course,	there	is	a	shorthand	way	to	write
this	without	writing	let	twice.	Here’s	a	more	concise	way:
Click	here	to	view	code	image

switch	tech	{
case	let	.Desktop(ram,	processor):
				print(“We	chose	a	desktop	with	\(ram)	and	a	\(processor)	processor”)
case	let	.Laptop(screensize):
				print(“We	chose	a	laptop	which	has	a	\(screensize)	in	screen”)



default:
				print	(“We	chose	some	other	unimportant	computer.”)
}

By	placing	the	keyword	let	after	the	keyword	case	and	before	the	member,	you	can
declare	two	constants	at	once.	This	makes	for	cleaner	code.

Raw	Values
Raw	values	are	different	from	associated	values.	You	cannot	have	two	of	the	same	raw
values	in	an	enum.	Raw	values	also	all	use	the	same	type.	You	can	use	strings,	the
ints,	or	any	floating-point	types.	When	you	use	ints,	the	value	automatically
increments	for	you.	For	example,	say	that	you	use	ints	as	the	raw	value	type.	Since	the
raw	value	will	automatically	increment,	you	can	use	a	shorthand	way	of	declaring	enum
members	on	one	line:
Click	here	to	view	code	image

enum	Suit:Int	{
				case	Clubs	=	1,	Hearts,	Diamonds,	Spades
}
var	chosenSuit	=	Suit.Diamonds

Here	you	declare	the	raw	value	type	by	adding	a	colon	(:)	next	to	the	enum	name	and
writing	the	type.	This	is	similar	to	declaring	a	type	for	a	variable	or	constant.	This
example	uses	Int	so	the	value	will	auto-increment.	When	you	declare	a	raw	value	for	the
enum,	you	can	grab	that	raw	value	out	of	the	variable	by	using	.rawValue:

chosenSuit.rawValue	//	3

The	raw	value	of	Diamonds	is	3	because	of	the	auto-increment.	Clubs	is	1,	Hearts	is
2,	Diamonds	is	3,	and	Spades	is	4.

Play	around	with	this	and	change	Clubs	to	any	integer	you	want.	Try	changing	it	to	100,
or	-10,	or	0.	It	still	auto-increments	perfectly.

You	can	use	the	constructor	Suit(rawValue:	n)	to	do	the	opposite	of	rawValue	by
getting	the	raw	value	from	an	integer	(or	whatever	type	your	enum	is).
Suit(rawValue:	n)	returns	an	optional	of	type	Suit.	Why	is	it	an	optional?	You
might	try	to	grab	the	member	with	a	raw	value	of	4000,	and	that	would	not	exist.
However,	because	Suit(rawValue:	n)	gives	a	suit	(in	an	optional),	it’s	helpful	to
compare	it	to	something	rather	than	just	printing	it	out.	Here’s	what	it	looks	like:
Click	here	to	view	code	image

Suit(rawValue:	3)	==	chosenSuit	//	true

You	can	then	use	value	binding	to	find	the	member	for	the	raw	value:
Click	here	to	view	code	image

enum	Suit:Int	{
				case	Clubs	=	1,	Hearts,	Diamonds,	Spades
}
var	result	=	“Don’t	know	yet.”
if	let	theSuit	=	Suit(rawValue:	3)	{
				switch	theSuit	{
				case	.Clubs:



								result	=	“You	chose	clubs”
				case	.Hearts:
								result	=	“You	chose	hearts”
				case	.Diamonds:
								result	=	“You	chose	diamonds”
				case	.Spades:
								result	=	“You	chose	spades”
				}
}	else	{
				result	=	“Nothing”
}
result	//	You	chose	diamonds

Here	you	have	to	do	value	binding	for	Suit(rawValue:	3)	because	it	is	an	optional
and	could	have	been	nil.	After	you	get	theSuit	out	of	the	value	binding,	assuming	it’s
not	nil,	you	can	use	your	normal	switch	statement	to	find	the	chosen	suit.	Notice	that
the	result	variable	was	successfully	changed	even	though	you	scoped	it	through	the	if
and	switch	statements.

Structs
Structs	(which	is	short	for	structures)	are	copied	when	they’re	passed	around.	Classes	are
passed	around	by	reference.	This	means	that	you	will	never	have	the	same	instance	of	a
struct.	Conversely,	you	can	have	multiple	instances	of	the	same	class.

Here	is	what	classes	and	structs	have	in	common:

	Both	define	properties	to	store	values.

	Both	define	methods	to	provide	functionality.

	Both	provide	subscripts	to	give	access	to	their	values.

	Both	provide	initializers	to	allow	you	to	set	up	their	initial	state.

	Both	can	be	extended	to	provide	additional	functionality	beyond	a	default
implementation.	(This	is	different	from	inheritance.)

	Both	have	the	capability	to	conform	to	protocols	(which	you	will	learn	about	in
Chapter	8,	“Expanding	Your	Reach:	Protocols	and	Extensions”).

Note

Do	not	worry	too	much	if	you	don’t	understand	everything	in	these	lists.	You	will
understand	it	all	by	the	end	of	this	chapter	or	in	later	chapters.

The	following	is	the	difference	between	classes	and	structs:

	Classes	have	inheritance.

	Classes	have	type	checking.

	Structs	have	deinitializers	so	you	can	free	up	unused	instances.

	Structs	have	reference	counting.	You	can	have	more	than	one	reference	to	a	class
instance.



Here’s	an	example	of	a	simple	struct:
struct	GeoPoint	{
				var	lat	=	0.0
				var	long	=	0.0
}

This	defines	a	new	struct	of	type	GeoPoint.	You	give	the	struct	two	properties	and
declare	them	as	doubles.	(Even	though	you	don’t	see	any	explicit	type	declaration,	it	is
happening	because	0.0	is	inferred	as	a	double.)

Now	you	can	use	the	new	struct.	If	you	want	to	interact	with	the	GeoPoint	struct,	you
must	create	a	GeoPoint	instance:
Click	here	to	view	code	image

var	somePlaceOnEarth	=	GeoPoint()

Now	you	can	interact	with	the	new	GeoPoint	struct,	using	the	dot	syntax:
Click	here	to	view	code	image

somePlaceOnEarth.lat	=	21.11111
somePlaceOnEarth.long	=	24.232323

Notice	that	when	you	created	a	new	GeoPoint	struct,	the	code	completion	gives	you	the
option	to	initialize	it	with	properties	(see	Figure	4.1).

Figure	4.1	Code	complete	for	GeoPoint	shows	multiple	initializers

You	can	also	write	the	last	three	lines	as	one	line:
Click	here	to	view	code	image

var	somePlaceOnEarth	=	GeoPoint(lat:	21.1111,	long:	24.23232)

Defining	Methods	in	Structs
When	we	say	methods,	we	are	talking	about	the	functions	within	structs.	Methods	are	just
functions	that	are	going	to	be	associated	with	the	structs.	By	defining	a	method	within	the
curly	brackets	of	a	struct,	you	are	saying	that	this	function	belongs	to	this	struct.

Here’s	an	example	of	a	struct	with	Point,	Size,	and	Rect,	which	will	be	based	on
CGRect:
Click	here	to	view	code	image

struct	Point	{
				var	x:Int,	y:Int
}

struct	Size	{
				var	width:Int,	height:Int
}

struct	Rect	{
				var	origin:Point,	size:Size



				func	center()	->	Point	{
								let		x	=	origin.x	+	size.width/2
								let	y	=	origin.y	+	size.height/2

								return	Point(x:	x,	y:	y)
				}
}

There	are	a	couple	of	things	to	note	here.	The	first	thing	you	might	notice	is	that	you
declare	all	the	variables	on	one	line.	You	can	use	this	simplified	version	of	declaring
variables	where	it	makes	your	code	more	readable.	For	example,
Click	here	to	view	code	image

var	one	=	1,two	=	2,	three	=	3

is	the	same	as	this:
var	one	=	1
var	two		=	2
var	three	=	3

You	might	also	notice	that	you	set	types	for	the	properties	explicitly	(for	example,
origin:Point,	size:Size).	You	did	not	give	your	properties	any	default	values	so
Swift	would	be	unable	to	determine	the	types	of	these	properties.

However,	because	you	did	not	give	Rect	any	default	value,	Swift	will	complain.	If	you
try	to	make	a	new	Rect	without	any	default	values	in	the	initializer,	you	will	get	an	error:
Click	here	to	view	code	image

var	rect:Rect	=	Rect()	//	error:	missing	parameter	for	‘origin’	in	call

Swift	does	not	like	that	you	did	not	initialize	the	properties	in	the	struct	itself	and	did	not
initialize	the	properties	upon	making	a	new	Rect.

The	initializer	included	with	every	struct	is	called	a	memberwise	initializer.	Memberwise
initializers	are	part	of	a	much	larger	concept	that	we	won’t	cover	here.	When	creating	a
Rect,	you	can	use	the	memberwise	initializer	to	get	rid	of	the	error:
Click	here	to	view	code	image

var	point	=	Point(x:	0,	y:	0)
var	size	=	Size(width:	100,	height:	100)
var	rect:Rect	=	Rect(origin:	point,	size:	size)
rect.size.height
rect.center()

That’s	better!	Since	you	used	the	memberwise	initializers	when	constructing	Point,
Size,	and	Rect,	you	no	longer	get	errors.	Here	you	also	used	the	center()	method	of
the	Rect,	and	it	told	you	that	the	center	of	the	Rect	is	{x	50	y	50}.

Structs	Are	Always	Copied
Earlier	we	talked	about	how	structs	are	always	copied	when	they	are	passed	around.	Let’s
take	a	look	at	an	example	that	proves	this,	using	the	Point	struct	because	it’s
supersimple:

var	point1	=	Point(x:10,	y:10)



Now	you	can	create	point2	and	assign	it	to	point1:
var	point2	=	point1

You	modify	point2:
point2.x	=	20

Now	point1	and	point2	are	different:
point1.x	//	10
point2.x	//	20

If	point1	and	point2	were	classes,	you	would	not	get	different	values	because	classes
are	passed	by	reference.

Mutating	Methods
If	a	method	inside	a	struct	will	alter	a	property	of	the	struct	itself,	it	must	be	declared	as
mutating.	This	means	that	if	the	struct	has	some	property	that	belongs	to	the	struct	itself
(not	a	local	variable	inside	a	method)	and	you	try	to	set	that	property,	you	will	get	an	error
unless	you	mark	that	method	as	mutating.	Here’s	a	struct	that	will	throw	an	error:
Click	here	to	view	code	image

struct	someStruct	{
				var	property1	=	“Hi	there”
				func	method1()	{
								property1	=	“Hello	there”
								//	property1	belongs	to	the	class	itself
								//	so	we	can’t	change	this	with	making	some	changes
				}
				//	ERROR:	cannot	assign	to	‘property1’	in	‘self’
}

The	fix	for	this	error	is	simple.	Just	add	the	word	mutating	in	front	of	the	func
keyword:
Click	here	to	view	code	image

struct	someStruct	{
				var	property1	=	“Hi	there”
				mutating	func	method1()	{
								property1	=	“Hello	there”
				}
				//	does	not	throw	an	error!	YAY
}

Now	that	this	is	fixed,	let’s	take	a	look	at	what	this	error	means:
Click	here	to	view	code	image

cannot	assign	‘property1’	in	‘self’

Well,	it	is	property1	that	you	are	trying	to	modify.	This	error	says	that	you	cannot
assign	property1	to	self.	What	is	self?	self	in	this	case	is	the	struct’s	own
instance.	In	this	struct,	property1	belongs	to	an	instance	of	the	struct.	You	could
rewrite	the	line	with	property1	to	be	self.property1.	However,	self	is	always
implied,	so	you	don’t	need	to	write	it.	Also	notice	that	the	following	code	works	without
the	mutating	keyword:



Click	here	to	view	code	image
struct	someStruct	{
				func	method1()	{
								var	property2	=	“Can	be	changed”
								property2	=	“Go	ahead	and	change	me”
				}
}

The	reason	you	can	set	property2	is	because	it	does	not	belong	to	self	directly.	You
are	not	modifying	a	property	of	self.	You	are	modifying	a	local	variable	within
method1.

Classes
In	the	following	example	of	creating	a	class,	notice	that	it	looks	just	like	a	struct	but	with
the	word	class:
Click	here	to	view	code	image

class	FirstClass	{
				//	class	implementation	goes	here
}

You	create	a	class	exactly	the	same	way	you	create	a	struct,	but	instead	of	using	the	word
struct,	you	use	the	word	class.	Adding	properties	to	a	class	is	very	similar.	For
example,	the	following	Car	class	has	properties	for	the	make,	model,	and	year	(and	you
will	define	a	default	value	for	each	property):

class	Car	{
				let	make	=	“Ford”
				let	model	=	“Taurus”
				let	year	=	2014
}

In	this	example,	there	are	three	immutable	properties	of	the	Car	class.	Remember	that
when	you	make	a	struct,	you	are	able	to	leave	these	properties	blank.	If	you	do	the	same
for	a	class,	you	get	an	error:
Click	here	to	view	code	image

class	Car	{
				let	make:String
				let	model:String
				let	year:Int
}
//	error:	class	‘Car’	has	no	initializers

If	you	want	to	fix	this	error,	you	must	create	an	initializer	for	the	Car	class	and	initialize
all	the	uninitialized	properties.	Classes	in	Swift	don’t	have	automatic	initialization	(that	is,
memberwise	initializers).	If	you	leave	the	properties	without	default	values,	you	must
provide	an	initializer	for	the	class.	Each	of	the	uninitialized	properties	must	be	initialized.

Swift	provides	a	global	function	init()	for	this	very	purpose.	Some	languages	call	this
a	constructor.



Initialization
Initialization	is	the	process	of	getting	the	instance	of	a	class	or	structure	ready	for	use.	In
initialization,	you	take	all	things	that	do	not	have	values	and	give	them	values.	You	can
also	do	things	like	call	methods,	and	do	other	initializations.	The	big	difference	between
Objective-C	initializers	and	Swift	initializers	is	that	Swift	initializers	do	not	have	to	return
self.	The	goal	of	Swift	initializers	is	to	give	a	value	to	everything	that	does	not	have	a
value.	Structs	can	define	initializers	even	though	they	have	their	own	memberwise
initializers.	You	can	also	define	multiple	initializers	for	a	class	or	struct.	The	simplest	type
of	initializer	is	one	without	any	parameters.	Initializers	without	parameters	are	used	to
create	new	instances	of	the	class’s	type.	Here’s	an	initializer	for	the	GeoPoint	class	you
created	earlier:

struct	GeoPoint	{
				var	lat:Double
				var	long:Double
				init()	{
								lat	=	32.23232
								long	=	23.3434343
				}
}

Here	you	are	initializing	lat	and	long	with	default	values.	You	could	put	anything	you
want	in	that	init	method.

You	can	also	make	multiple	initializers	so	that	the	user	can	create	a	GeoPoint	however
he	wants:
Click	here	to	view	code	image

struct	GeoPoint	{
				var	x	=	0.0
				var	y	=	0.0
				var	length	=	0.0
				init()	{

				}
				init(x:Double,y:Double)	{
								self.x	=	x
								self.y	=	y
				}
				init(length:Double)	{
								self.length	=	length
				}
}
var	regularPoint	=	GeoPoint()
var	pointWithSize	=	GeoPoint(x:	2.0,	y:	2.0)
var	otherPoint	=	GeoPoint(length:	5.4)

Now	you	can	initialize	Point	in	three	ways.	If	you	want	to	create	a	Point	by	using	x
and	y,	you	can	use	the	initializer	Point(x:Double,y:Double).	If	you	want	to	create
a	Point	by	length,	you	can	initialize	it	with	Point(length:Double).	If	you	just
want	to	make	a	standard	point,	you	can	initialize	it	with	no	parameters	to	the	init
method.	You	would	probably	add	more	calculations	than	shown	here,	but	this	is	the	gist	of
making	multiple	initializers.	As	long	as	the	parameters	are	different,	you	can	make	as
many	different	initializers	as	you	need.	SpriteKit’s	SKScene	has	multiple	initializers	for



multiple	situations	(see	Figure	4.2).

Figure	4.2	SKScene	has	multiple	initializers	available

Here	you	can	see	that	you	can	initialize	SKScene	by	filename,	by	size,	and	by	coder.	All
this	information	about	multiple	initializers	applies	to	both	classes	and	structs.	It	just	so
happens	that	all	the	examples	here	use	structs.

What	Is	a	Reference	Type?
Earlier	we	said	that	structs	are	copied	when	they	are	passed	around.	The	other	way	to	say
this	is	that	structs	are	value	types,	and	classes	are	reference	types.	This	means	that	when
you	assign	a	variable	to	a	new	instance	of	a	class	and	then	reassign	that	variable	to	another
variable,	you	have	the	same	reference	in	each	copy	of	the	class.	Here’s	an	example:

class	Car	{
				var	name	=	“Honda”
}
var	car1	=	Car()
var	car2	=	car1
car1.name	=	“Dodge”	//	Dodge
car2.name	//	Dodge

Cool!	Notice	that	when	you	change	car1.name	to	"Dodge",	car2.name	is	also
changed.	That	is	because	both	car1	and	car2	have	a	reference	to	the	new	instance	of	the
Car.	If	you	had	done	this	with	a	struct,	car1	and	car2	would	have	different	values	for
name.

Do	I	Use	a	Struct	or	a	Class?
Whether	you	need	to	use	a	struct	or	class	depends	on	a	few	factors,	summarized	here:

You	can	see	that	you	will	mostly	be	using	classes	for	your	data	structures.	Here	are	a
couple	examples	of	good	uses	of	structs:

	A	geometric	point	that	contains	an	x	and	y	and	maybe	a	length



	A	geolocation	that	defines	latitude	and	longitude

	A	geometric	shape	(like	CGRect)	that	will	contain	width	and	height

All	these	structs	are	simple	and	contain	only	a	few	simple	data	values	(you	are	not	limited
to	geometric	data).	They	often	represent	single	values	like	a	point	or	a	rectangle.

Forgot	Your	Pointer	Syntax?
When	working	with	C,	C++,	or	Objective-C,	you	know	that	you	use	pointers	to	reference
the	address	(that	is,	the	location	in	memory)	of	some	value.	You	do	this	in	Objective-C	by
using	an	asterisk	(*).	When	you	create	a	variable	or	constant	in	Swift	that	references	some
instance	you	created,	you	are	not	directly	accessing	that	memory	address.	It	is	similar	to	a
pointer	but	not	exactly	the	same.	Either	way,	you	never	have	to	reference	anything	using	a
pointer	syntax	when	writing	Swift.

The	reason	value	types	are	called	value	types	is	that	they	are	passed	around	as	actual
values.	Reference	types	are	called	so	because	they	are	passed	around	as	references	that
point	to	the	actual	objects.	It’s	the	difference	between	using	cash	and	using	checks.	When
you	use	cash,	you	are	handing	the	person	actual	money	(analogous	to	using	value	types).
When	you	give	someone	a	check,	you	are	giving	him	not	the	cash	itself	but	a	piece	of
paper	telling	where	to	get	the	cash	(analogous	to	using	reference	types).	If	you	think	about
it,	most	people	pass	around	money	by	reference	rather	than	by	value.	They	don’t	usually
deal	with	the	cash	itself;	they	deal	with	some	reference	to	money.

Property	Observers
Property	observers	are	a	super-awesome	feature	built	directly	into	Swift.	They	allow	you
to	track	and	reply	to	changes	of	a	property.	You	can	add	property	observers	to	any
property	except	lazy	properties,	which	you	won’t	learn	about	here.	Here’s	how	you	create
a	basic	property	observer:
Click	here	to	view	code	image

class	Car	{
				var	name:String	=	“Honda”	{
				willSet(newName)	{
								print(“About	to	set	the	new	name	to	\(newName)”)
				}
				didSet(oldName)	{
								print(“We	just	set	‘name’	to	the	new	name	\(name)
											from	the	old	name	\(oldName)”)
				}
				}
}
var	car1:Car	=	Car()
car1.name	=	“Ford”
//	About	to	set	the	new	name	to	Ford
//	just	set	name	to	the	new	name	Ford	from	the	old	name	Honda

Notice	that	you	add	a	pair	of	curly	brackets	at	the	end	of	the	variable.	Inside	those	curly
brackets	you	add	willSet	and	didSet.	willSet	will	get	called	before	the	property	is
set.	The	parameter	passed	into	the	function	is	the	new	value	that	the	property	will	be	set
to.	didSet	will	get	called	after	the	property	is	set.	The	parameter	passed	into	the	function



is	the	old	value	that	the	property	had	before	it	got	changed.	Obviously,	you	can	access	the
new	value	now	because	it	has	already	been	changed.

Methods	in	Classes
A	method	and	a	function	are	very	similar	except	for	a	couple	of	differences	(aside	from
scope	issues):

	A	method	has	a	reference	to	the	object	that	it	belongs	to.

	A	method	is	able	to	use	data	contained	within	the	class	it	belongs	to.

A	method	is	identical	to	a	function	in	syntax.	Type	methods	in	Swift	are	similar	to
Objective-C	class	methods.	A	big	difference	between	both	C	and	Objective-C	and	Swift	is
that	in	Swift	you	can	define	methods	on	classes,	structs,	and	enums.	This	gives	you	great
flexibility	and	strength.	In	Swift	you	have	a	couple	of	types	of	methods	available	to	you.
Let’s	start	with	instance	methods.

Instance	Methods

Instance	methods	are	likely	the	type	of	methods	you	will	be	creating	most	of	the	time.	An
instance	method	belongs	to	an	instance	of	a	struct,	a	class,	or	an	enum.	It	has	access	to
information	about	that	specific	instance.	It	provides	functionality	to	that	instance.	The
Car	class	you	made	earlier	has	a	property	name.	You	can	provide	it	with	an	instance
method	to	make	it	go.	Then	each	car	you	create	(or	instantiate)	will	have	its	own	distance
that	it	has	traveled.	Here’s	what	it	will	look	like:
Click	here	to	view	code	image

class	Car	{
				var	name	=	“Ford”
				var	distance	=	0
				func	gas()	{
								_spinWheels()
				}
				func	_spinWheels()	{
								//some	complicated	car	stuff	goes	here.
								distance	+=	10
				}
}
var	car1	=	Car()
print(car1.distance)	//	0
car1.gas()
car1.distance	//	10

Just	as	in	a	real	car,	in	this	example	the	details	of	how	a	car	works	are	hidden	away	in	a
private	function.	For	example,	you	don’t	know	how	the	gas	pedal	on	the	car	works,	but
you	know	that	if	you	press	it	the	car	will	go.	Obviously,	this	is	not	truly	necessary	in	this
case,	but	you	can	imagine	how	the	details	of	making	a	car	move	forward	could	get	much
more	complicated.	gas	and	_spinWheels	are	both	instance	methods	that	belong	to	this
specific	instance	of	Car.	You	know	this	is	true	because	if	you	create	another	car	and
check	the	distance,	it	will	not	be	at	the	same	distance	as	car1.	These	methods	are	acting
on	this	instance.	For	example,	here	is	a	new	car:

var	car2	=	Car()
print(car2.distance)	//	0



Property	Access	Modifiers

In	the	preceding	example	you	marked	a	method	with	an	initial	underscore	to	say,	“Don’t
use	this	method	outside	this	class.”	Swift	has	three	property	access	modifiers—that	is,
three	ways	of	forcing	the	use	of	a	method	into	a	context:

	private	entities	can	be	accessed	only	from	within	the	source	file	in	which	they	are
defined.

	internal	entities	can	be	accessed	anywhere	within	the	target	where	they	are
defined.

	public	entities	can	be	accessed	from	anywhere	within	the	target	and	from	any
other	context	that	imports	the	current	target’s	module.

Without	a	property	access	modifier	applied,	functions	are	internal.	Meaning	that	if	you
don’t	write	public	or	private	or	internal	on	the	function,	it	will	operate	as	if	you
wrote	internal.

In	the	earlier	example	it	would	be	more	appropriate	to	change	the	method	_spinWheels
to	be	private	and	change	the	name	to	just	spinWheels.	You	should	do	this	even
though	you	are	working	in	the	playground	so	that	private	won’t	restrict	access	because
it’s	all	in	the	same	file.

Type	(Static)	Methods

In	Swift	you	have	instance	methods,	and	you	have	type	methods.	Whereas	instance
methods	work	on	the	instance	of	class,	type	methods	work	on	the	class	itself.	If	you	made
an	instance	of	the	Car	class	and	you	created	a	type	method,	you	would	not	be	able	to	use
it	on	the	instance	of	the	Car	class.	These	methods	are	only	for	the	class	itself.	To	add	a
type	method	to	a	class,	you	use	the	keyword	class.	To	add	a	type	method	to	a	struct,	you
use	the	keyword	static,	as	shown	here:
Click	here	to	view	code	image

class	Car	{
				var	name	=	“Ford”
				var	distance	=	0

				class	func	getCarVersion()	->	String	{
								return	“5.0.1”
				}
}
var	car1	=	Car()
print(car1.distance)
Car.getCarVersion()

Notice	that	if	you	want	to	access	the	car	version,	you	call	the	method	on	the	Car	class
itself.	You	may	see	these	types	of	methods	used	on	utilities	and	in	various	other	situations.



Get	to	Know	Your	

You	use	the	keyword	self	quite	often	in	Swift.	self	is	available	on	each	instance	of	an
object.	self	refers	to	the	current	instance.	You	don’t	always	have	to	write	self	because
Swift	implies	it.	For	the	Car	class,	you	could	instead	write	this:

func	spinWheels()	{
				self.distance	+=	10
}

By	using	self.distance	to	refer	to	the	distance,	you	are	saying,	in	effect,	“distance
that	belongs	to	this	instance	of	the	class.”	However,	Swift	already	knows	that	is	what	you
want,	so	you	can	just	leave	it	as	distance.	It	is	often	helpful	to	use	self	to	distinguish
between	a	method	parameter	and	a	property	of	the	class,	as	shown	here:
Click	here	to	view	code	image

class	Car	{
				var	name	=	“Ford”
				var	distance	=	0
				func	go(distance:Int)	{
								self.distance	+=	distance
				}
}

In	this	case,	the	function	has	a	parameter	that	is	the	same	as	the	property	of	the	class.	To
distinguish	between	them,	you	use	self.distance	to	mean	the	property	that	belongs
to	the	class,	and	you	use	just	plain	distance	to	mean	the	parameter	of	the	function.

Inheritance:	Creating	a	Bichon	from	a	Dog	from	an	Animal

In	Swift,	a	class	(the	subclass)	can	inherit	methods	and	properties	of	another	class	(the
superclass).	In	our	Bichon	example,	animal	is	the	superclass,	and	dog	is	a	subclass	of
animal.	Then	dog	is	a	superclass	of	Bichon	Frise,	which	is	a	subclass	of	Dog,	which	is	a
subclass	of	Animal.	In	Objective-C,	everything	eventually	inherits	from	NSObject.	It’s
like	NSObject	is	42	(the	answer	to	life,	the	universe,	and	everything).	It’s	the	base	of	all
superclasses.	Swift	does	not	have	one	grand	base	class.	Defining	a	class	that	doesn’t
inherit	from	anything	makes	that	class	the	base	class	for	all	other	classes	that	inherit	from
it.	In	the	following	example	you	create	a	Bichon	class,	which	inherits	from	the	Dog
class,	which	inherits	from	the	Animal	class.	In	this	example,	the	Animal	class	has	its
own	properties	and	methods	that	all	its	subclasses	inherit:
Click	here	to	view	code	image

class	Animal	{
				var	name:String
				var	numberOfLegs:Int
				func	move()	->	String{
								return	“\(name)	is	moving.”
				}
				init(name:String,numberOfLegs:Int)	{
								self.name	=	name
								self.numberOfLegs	=	numberOfLegs
				}
}

class	Dog:Animal	{



				var	breed:String
				override	func	move()	->	String	{
								return	“\(name)	the	\(breed)	is	moving.”
				}
				init(name:	String,	numberOfLegs:	Int,breed:String)	{
								self.breed	=	breed
								super.init(name:	name,	numberOfLegs:	numberOfLegs)
				}
}
class	Bichon:Dog	{
				var	fluffynessLevel:Double
				init(name:	String,	numberOfLegs:	Int,	breed:	String,
fluffynessLevel:Double)	{
								self.fluffynessLevel	=	fluffynessLevel
								super.init(name:	name,	numberOfLegs:	numberOfLegs,	breed:	breed)
				}
}
var	penny	=	Bichon(name:	“Penny”,	numberOfLegs:	4,	breed:	“Bichon”,
			fluffynessLevel:	100.1)
penny.move()	//	“Penny	the	Bichon	Frise	is	moving.”

This	example	introduces	a	couple	of	new	concepts.	First	is	super.	Calling	super	is	like
calling	self,	except	instead	of	it	referring	to	the	instance	of	the	current	class,	it	refers	to
the	instance	of	the	parent	class.	So	if	Bichon	inherits	from	Dog,	then	self	would	be
Bichon,	and	super	would	be	an	instance	of	Dog.

If	you	are	going	to	have	a	class	inherit	from	another	class,	you	should	call	the	initializer	of
that	class	along	with	your	class’s	initializer.	Bichon	is	the	not	the	one	doing	the
initialization	of	name;	rather,	Animal	is.	So	you	call	super.init,	which	calls	the
initialization	of	the	parent,	which	needs	to	be	called	again	from	Dog	to	initialize	Animal.
It	is	as	if	you	are	instantiating	the	Dog	class	from	the	Bichon	class	and	the	Animal
class	from	the	Dog	class.	You	are	in	fact	doing	just	that,	except	you	won’t	wind	up	with
three	classes	in	the	end.	You’ll	wind	up	with	three	parts	that	make	up	the	Bichon	class.
Kind	of	like	in	real	life.	There	are	parts	of	you	that	are	unique	to	you.	Some	parts	you	got
from	your	father.	Some	parts	you	may	have	even	gotten	from	your	grandfather,	and	you
made	them	unique.	This	is	the	purpose	of	overriding.	You	take	something	that	existed	in
the	parent	class	and	override	it	with	your	own	implementation.	In	this	case,	you	just
overrode	the	move	class	to	give	it	a	more	appropriate	implementation	from	the	Dog	class.
It	makes	sense	to	add	more	details	to	move	since	you	are	no	longer	just	talking	about	any
kind	of	Animal.	You	are	talking	about	a	Dog.	As	it	turns	out,	for	this	small	program,	the
dog	implementation	of	move	is	good	enough	that	you	don’t	have	to	override	it	in	the
Bichon	class.

Summary
In	this	chapter	you’ve	learned	how	to	write	enums,	structs,	and	classes.	You’ve	learned
how	to	instantiate	those	classes	and	how	each	reacts	differently	to	being	passed	around.
You	learned	about	passing	by	reference	as	opposed	to	by	value.	You	also	took	a	look	at	the
difference	between	methods	and	functions.



5.	SpriteKit

At	this	point	we’ve	covered	the	basics	of	Swift.	We’ve	learned	enough	to	start	building	a
game.	This	game	will	contain	ideas	and	concepts	that	may	not	have	been	covered	yet,	but
we	will	cover	them	as	we	go,	and	in	much	more	detail	in	their	dedicated	chapters.
Building	a	game	in	iOS	using	Swift	is	easy	when	you	use	an	awesome	framework	like
SpriteKit.	SpriteKit	allows	you	to	make	games	easily,	with	the	power	of	OpenGL	and	the
ease	of	a	simpler	game	framework.	If	you	haven’t	ever	used	OpenGL	in	the	past,	let	me
tell	you	that	it’s	not	considered	easy	or	quick	to	learn.	Of	course,	OpenGL	is	not
impossible,	but	the	goal	behind	SpriteKit	was	to	take	the	power	of	OpenGL	and	reduce	it
to	a	game-making	framework	that	had	all	the	typical	game	making	tools	already	available.
Things	like	a	timer	that	is	based	on	a	number	of	frames.	Things	like	a	full-fledged	physics
engine	and	collision	detection.	All	the	items	that	would	stop	you	in	the	past	are	now
available	right	from	the	get-go.

Introducing	SpriteKit
SpriteKit	is	a	game-making	framework	that	is	available	in	Objective-C	or	Swift.	You	can
use	all	of	its	built-in	beauty	and	organization	to	build	a	game	in	an	organized	and	thought-
out	way.	SpriteKit	is	not	going	to	organize	your	code	for	you,	and	you	are	allowed	to	write
the	game	in	any	way	that	you	want.	After	about	a	year	of	playing	around	with	SpriteKit,	I
have	come	up	with	a	couple	of	solid	ways	to	organize	code	and	put	together	a	game	that
seems	to	work	well	for	me,	so	let’s	get	started!

The	 	and	
If	you’ve	ever	made	a	game	before,	or	even	if	you	haven’t,	there	is	this	idea	of	a	stage,	a
place	where	things	are	visible	to	the	player	of	the	game.	Items	can	be	offstage	or	onstage,
and	when	they	are	onstage	they	can	be	temporarily	hidden.	Items	can	be	removed	from	the
theater	completely	or	created.	All	of	these	“items”	will	be	based	off	of	one	base	class,
which	is	the	SKNode.	Anything	that	will	be	added	to	your	metaphorical	stage	or	taken	off
of	your	stage,	or	moved	around	on	your	stage,	will	be	at	its	most	basic	an	SKNode.	You
can	think	of	the	SKNode	as	anything	that	can	exist	in	your	game.	Even	the	stage	itself.

From	there	we	move	on	to	many	other	types	of	SKNodes.	You	have	camera	nodes	for
moving	the	camera	around;	you	have	SKShapeNodes	for	when	you	want	to	draw	shapes
on	the	screen/stage.	Let’s	focus	for	right	now	on	one	node	that	you	may	find	to	be	the
most	important	type	of	SKNode,	and	that	is	the	SKSpriteNode.	With	this	type	of
SKNode	you	can	do	many	things,	most	important	of	which	is	adding	an	image	(also
known	as	a	sprite)	to	your	node	so	that	something	is	visible	on	it.	This	is	how	you	would
create	the	visual	representation	of	your	main	character.	When	you	want	to	move	that
character	around	the	stage,	you	use	SKActions	to	perform	the	frame-based	animation.
You	will	not	have	to	calculate	how	to	move	your	character	a	certain	distance	over	n
frames.	SpriteKit	takes	care	of	all	the	complicated	math	processes	involved	in	moving
your	character,	and	in	turn	your	character	will	move	extremely	smoothly.	When	you	want
to	move	your	character	along	a	path,	you	just	pass	the	SKAction	a	path	and	it	moves	it



along	that	path.	It’s	all	super	easy-peasy.	Let’s	create	our	game.

Creating	a	Game
The	first	step	in	creating	a	game	is	to	open	up	your	latest	version	of	Xcode.	In	Xcode	you
can	open	up	File,	New,	Project.	You	can	also	press	Command-Shift-N	to	get	to	the	new
project	screen.

The	New	Project	Screen
At	the	new	project	screen	you	will	notice	that	you	have	a	bunch	of	choices	for	types	of
projects.	If	you	have	ever	downloaded	an	app	from	the	app	store,	you	will	be	familiar	with
all	of	these	types	of	projects.	The	only	type	of	project	we	will	be	concerned	with	is	the
Game	project.

When	you	choose	one	of	these	projects,	that	does	not	stop	you	from	creating	whatever
you’d	like.	In	other	words,	when	you	choose	one	of	these	projects	to	start	with,	Xcode	will
populate	the	project	with	settings	that	give	you	that	type	of	working	project	from	the	start.
For	a	“Game”	type	project,	Xcode	will	populate	your	project	with	some	Swift	files	that	are
the	main	files	of	your	game.	It	will	populate	the	user	interface	with	a	game	scene	so	that
your	game	can	be	put	into	a	container	for	viewing.	Choose	the	game	project	and	click
Next.

At	the	next	screen	you	will	have	the	options	of	choosing	which	language	you	want	as	well
as	naming	the	project.

Project	Name:	My	Kye

Organization	Name:	[Your	real	or	fake	organization	name]

Organization	Identifier:	[com.yourOrganizationName.myKye]

Language:	Swift

Game	Technology:	SpriteKit

Devices:	iPhone

YES	Include	Unit	Tests

YES	Include	UI	Tests

Next	Xcode	will	ask	you	where	you	would	like	to	save	your	project.	If	you	don’t	have	a
typical	place	for	saving	your	projects,	I	suggest	you	make	a	folder	called	projects	in
your	home	directory.	If	you	already	have	a	place	for	creating	your	project,	just	navigate
there	and	click	Create.	You	can	skip	the	next	couple	of	paragraphs	and	go	to	the	section
“Creating	the	Game.”

You	can	find	your	home	directory	from	this	point	by	pressing	Command-Shift-G.	This
brings	up	a	directory	selector.	From	here	you	can	type	in	the	location	you	want	to	visit.

In	the	Go	to	the	Folder	input,	type	~.	This	will	take	you	to	your	home	directory.	If	you
didn’t	already,	create	a	projects	directory	in	your	home	directory	by	selecting	New
Folder	at	the	bottom	of	the	screen	and	typing	projects	into	the	input.	Anytime	you



create	a	new	Xcode	project,	you	can	put	it	in	your	projects	directory.	If	you	work	with
multiple	languages	like	I	do,	you	can	further	subdivide	this	into	different	languages.	Go
into	your	new	projects	directory	and	click	the	Create	button	to	save	your	game	here.

Creating	the	Game

Believe	it	or	not,	you	now	have	a	working	game.	You	went	from	zero	to	game	in	a	few
minutes.	At	this	point	you	can	run	the	game	by	selecting	the	Run	button	or	pressing
Command-R.	When	your	game	runs,	you	will	see	some	words	on	the	screen	“Hello
World”,	and	you’ll	notice	that	when	you	click	on	the	screen	(if	you	are	running	this
through	the	simulator,	or	tap	on	the	screen	if	you	are	running	this	on	your	own	device),
you	will	see	spaceships	on	the	screen	and	also	notice	that	those	spaceships	are	spinning.
Every	time	you	click	on	a	spaceship,	a	new	SKNode	is	added	to	the	screen.	You	can	see
the	details	of	what	has	been	added	to	the	screen/scene	by	looking	at	the	bottom	of	the
simulation.	At	the	bottom	of	the	screen,	you	should	see	“Nodes:	0	FPS:	59.0.”	The	number
of	nodes	should	be	the	number	of	spaceships	on	the	screen	plus	the	label.	If	there	are	three
spaceships	on	the	screen,	you	should	have	four	nodes.	The	reason	the	number	is	four
nodes	is	that	you	now	have	one	SKLabelNode,	the	“Hello,	World!”	label,	and	three
SKSpriteNodes.	Let’s	briefly	talk	about	three	types	(of	many)	nodes	you	will
encounter,	which	should	give	you	enough	supplies	to	make	as	many	games	as	you	want.
Remember	that	all	of	these	nodes	are	based	off	of	the	base	class	SKNode.	Also	notice	that
all	the	classes	for	SpriteKit	will	start	with	the	letters	SK	for	SpriteKit.

SKSpriteNode

The	SKSpriteNode	is	a	special	SKNode	that	allows	you	to	attach	an	image	to	a	node.

SKLabelNode

The	SKLabelNode	is	a	special	SKNode	that	allows	you	to	create	a	node	filled	with	text.
You	can	use	any	of	the	typical	available	iOS	fonts,	or	you	can	use	a	custom	font.

SKShapeNode

The	SKShapeNode	allows	you	to	create	a	special	node	that	is	a	shape.	Visually	it	will
appear	as	a	shape	of	any	path	with	a	stroke	of	any	width	and	color,	and/or	a	fill	of	any
color	and	opacity.	You	can	use	a	basic	shape	like	a	circle	or	rectangle,	or	you	can	create
your	own	custom	shape	based	off	of	a	path.

With	these	basic	node	types	you	can	build	almost	any	game.	There	are,	of	course,	other
node	types	available,	which	you	will	be	able	to	explore,	but	these	node	types	will	get	you
through	your	game.

What	Is	a	Node?

After	all	of	this	talking	about	nodes	and	different	node	types,	you	might	still	be	wondering
what	a	node	is.	After	all,	so	far	it	has	been	described	as	a	kind	of	abstract	concept.	A	node
is	anything	in	your	game	that	can	be	added	to	your	game.	To	understand	this	better,	we
should	take	a	look	at	some	of	the	code.



Remember	that	all	of	these	SK	classes	are	based	off	of	the	main	SKNode.

Finding	the	Base

From	the	new	project	you	created,	open	up	GameScene.swift.	This	class	contains	the
main	entry	point	into	your	game.	It	has	its	own	class	named	GameScene,	which	you	can
see	on	line	11.

class	GameScene:	SKScene	{

This	means	that	the	base	of	GameScene	is	the	SKScene.	At	this	point	we	have	not
talked	about	SKScene	yet.	What	we	did	say	was	that	everything	you	add	in	your	game
will	be	(at	its	most	basic)	an	SKNode.	Is	SKScene	an	SKNode,	and	how	can	we	find	out
whether	it	is?

There	are	two	basic	ways	of	finding	the	base	for	a	particular	class.	The	first	way	is	to
check	the	online	documentation.	When	you	try	to	google,	what	you	are	looking	for	is	the
language	reference.	We	are	not	looking	for	a	tour	of	Swift	2	or	any	tutorials	on	Swift	2;	we
are	looking	for	specific	references	to	each	class	available	in	Swift	2.	I	googled	“SpriteKit
Framework	Reference”	and	got	to	this	documentation	link,	which	may	change	in	the
future:
Click	here	to	view	code	image

https://developer.apple.com/library/ios/
documentation/SpriteKit/Reference/SpriteKitFramework_Ref/
index.html#//apple_ref/doc/uid/TP40013041

On	this	page	you	can	see	at	the	top	a	link	to	some	classes.	Because	of	the	changing	nature
of	this	documentation,	I	won’t	reference	specific	things	on	the	page	other	than	to	say	we
are	looking	for	a	list	of	SpriteKit’s	classes.	I	was	able	to	find	the	list	of	classes	at	this	link,
which	may	have	changed	at	this	point.
Click	here	to	view	code	image

https://developer.apple.com/library/ios/
documentation/SpriteKit/Reference/SpriteKitFramework_Ref/index.html#classes

In	this	list	of	classes	you	can	search	for	the	SKScene	class	and	click	on	its	link.	I	was
able	to	find	the	SKScene	link	here:
Click	here	to	view	code	image

https://developer.apple.com/library/ios/
documentation/SpriteKit/Reference/SKScene_Ref/
index.html#//apple_ref/occ/cl/SKScene

On	this	page	you	should	see	an	inheritance	list.	You	can	see	that	SKScene	inherits	from
SKEffectNode,	which	inherits	from	SKNode,	which	in	turn	inherits	from
UIResponder,	which	inherits	from	NSObject.

The	question	is	“Does	SKScene	inherit	from	SKNode?”	Yes,	it	does.

Try	doing	this	same	class	inheritance	search	for	the	SKSpriteNode,	SKShapeNode,
and	SKLabelNode.

The	other,	faster	way	to	find	out	what	the	base	class	of	a	particular	SpriteKit	class	is	to



click	on	the	class	itself	while	pressing	Command.

Go	into	your	GameScene.swift	and	find	the	SKScene	reference	on	that	page.	While
holding	the	Command	key	on	the	keyboard,	hover	your	mouse	over	the	word	SKScene.
You	should	see	the	SKScene	turn	blue	(like	a	link	on	a	web	page).	When	you	click	on
that	link,	it	takes	you	to	a	page	that	has	a	skeleton	of	the	SKScene	class.	It	isn’t	the	real
code	to	the	SKScene	class,	just	a	skeleton	of	that	class.	This	code	does,	however,	contain
the	list	of	inheritance.	If	you	click	the	SKScene	class,	you	should	now	see	somewhere	on
the	page	that	SKScene	inherits	from	the	SKEffectNode.
Click	here	to	view	code	image

public	class	SKScene	:	SKEffectNode	{

You	can	then	follow	the	chain	by	holding	Command	and	clicking	the	SKEffectNode.
This	should	take	you	to	some	code	which	says	that	SKEffectNode	inherits	from
SKNode.
Click	here	to	view	code	image

public	class	SKEffectNode	:	SKNode	{

At	this	point	we	know	that	SKScene	does	in	fact	inherit	from	the	SKNode.

At	this	point	we	can	conclude	that	your	game	will	work	like	this:

An	SKScene	will	be	added	to	the	screen.

The	rest	of	your	game	assets	will	be	added	to	that	SKScene.

Therefore,	SKScene	is	the	base	of	the	node	tree	that	will	make	up	your	game.	When	we
say	node	tree,	we	mean	that	your	game	will	have	items	that	are	added	to	the	SKScene,
that	have	items	that	are	added	to	it.	It	is	not	a	flat	line	of	lineage	but	more	like	a	family
tree.	In	the	sample	of	the	game,	you	will	see	only	items	added	to	the	base	SKScene.	You
should	know	that	things	don’t	have	to	be	that	way	and	that	we	can	even	improve
performance	by	working	in	node	trees	that	have	branches	instead	of	a	flat	node	tree.



Next	let’s	take	a	step	into	our	GameViewController.swift.	The	whole	purpose	of
the	GameViewController	is	to	set	up	our	SKScene	and	connect	it	to	the	SKView.
The	SKView	is	what	sits	in	your	Storyboard.	Your	SKScene	is	presented	by	your
SKView.	Where	is	this	SKView?	Let’s	check	it	out.	Open	up	your	Main.Storyboard
in	the	project	navigator.	In	the	Storyboard	you	should	see	a	blank	black	view	on	the
screen.	At	the	top	you’ll	notice	it	is	labeled	Game	View	Controller.	If	you	click	on
that	black	area	to	select	it,	you	can	view	details	about	it.	Before	you	can	see	any	details
about	it,	you	must	make	sure	that	you	have	the	correct	columns	open	to	view	data.	At	the
top	right	of	the	screen,	you	can	hide	and	show	different	sections	of	Xcode.	Hover	over
those	buttons,	and	the	one	to	the	far	right	says	“Hide	or	show	the	Utilities.”	Make	sure	that
is	selected	and	a	third	column	will	open	up	on	the	right.	You’ll	find	these	utilities	helpful
only	when	building	or	using	user	interfaces	in	the	Storyboard.	Otherwise,	when	writing
code	you’ll	want	to	hide	it.	With	the	Utilities	open	you	now	have	six	sections	of	the
utilities	to	help	you	gain	information	and	change	settings	for	the	currently	selected	item	in
the	Storyboard.	So	with	your	black	area	selected,	you	can	hover	over	each	of	the	six	tools
in	the	header,	and	each	will	give	a	tooltip	about	what	it	does.

Click	the	one	with	the	tooltip	labeled	“Show	the	Identity	Inspector,”	the	one	that	is
highlighted	in	Figure	5.1.	It	is	the	one	that	looks	like	a	square	newspaper.

Figure	5.1	Identity	Inspector	on	the	Utilities	bar

With	that	selected	and	the	black	area	clicked,	you	can	see	that	you	can	assign	a	“Custom
Class”	to	the	selected	area.	And	that	area	has	a	custom	class	attributed	to	it.	This	black
area	is	assigned	an	SKView	(see	Figure	5.2).

Figure	5.2	Custom	Class	assigned	to	SKView

The	view	controller	for	this	SKView	is	our	GameViewController.	We	can	prove	this
by	clicking	the	controller	icon	at	the	top	of	the	black	area.

Clicking	that	yellow	circle	selects	the	controller	for	the	view	that	it	controls	(see	Figure
5.3).

Figure	5.3	Controller	Icon



Looking	in	the	utility	area	with	the	identity	inspector	once	again	selected,	you	can	see	that
the	custom	class	is	our	GameViewController	(see	Figure	5.4).

Figure	5.4	Custom	Class	is	GameViewController

Next	to	the	class	name	(next	to	GameViewController),	you	can	see	a	little	gray
arrow.	If	you	click	that	little	gray	arrow,	it	will	take	you	to	the	code	for	that
GameViewController.

This	shows	you	that	our	GameViewController.swift	controls	our	SKView.
Heading	back	into	our	GameViewController.swift,	you	can	see	that	the	SKView
we	are	talking	about	comes	from	our	Storyboard.

Here	we	can	also	set	some	debug	information	such	as	showing	the	node	count,	which	you
were	able	to	see	in	the	bottom-right	corner	of	your	simulator	the	last	time	you	ran	the
game.	You	can	also	add	the	debug	info	for	the	FPS	(frames	per	second).	You	also	have	the
option	of	turning	off	ignoresSiblingOrder.
Click	here	to	view	code	image

skView.ignoresSiblingOrder	=	true

Ignoring	sibling	order	will	significantly	improve	the	performance	of	your	app.	This	has	to
do	with	the	z	index	of	the	items	you	add	to	the	screen.	Remember	that	the	root	node	of	our
app	is	our	SKScene.	When	you	add	things	to	that	SKScene	node,	you	are	essentially
creating	children.	The	scene	is	the	parent	node	and	anything	added	to	those	nodes	will	be
the	children.	Therefore,	one	can	conclude	that	each	label	and	spaceship	added	to	the
screen	is	a	sibling	of	the	others.	The	hierarchy	thus	far	will	look	something	like	what’s
shown	in	Figure	5.5	(assuming	you	tapped	the	screen	twice	to	add	two	spaceships	to	the
screen).



Figure	5.5	The	hierarchy	so	far

If	you	tell	SpriteKit	to	ignore	the	sibling	order	and	you	provide	your	own	sibling	order,
you	will	make	your	game	run	at	a	faster	frame	rate	with	fewer	resources.	This	will	be	one
less	computation	that	SpriteKit	has	to	make.

You	also	have	the	choice	of	changing	the	scale	mode	of	your	game.	Your	choices	here	are
going	to	depend	on	the	type	of	game	you	are	making	and	of	course	your	personal
preferences.	This	setting	may	be	one	of	the	most	confusing	settings	available	in	SpriteKit.
You	have	a	couple	of	choices	here.	Notice	that	the	selection	is	an	enum	so	you	can	write
this	shorthand	or	longhand.	To	get	the	code	completion	and	the	full	choices	of	available
topics,	you	can	write	the	full	class	name:	SKSceneScaleMode.

When	you	press	control	+	spacebar	to	code	complete,	you	get	the	following	code
completion	options:

AspectFill
AspectFit
Fill
ResizeFill

Of	course,	other	options	are	available	in	the	list	of	the	code	completion,	but	those	have	to
do	with	the	enum	and	not	the	scale	mode.

The	difference	between	these	scale	modes	has	to	do	with	how	you	want	your	scene	to
appear	to	the	user	if	it	is	not	the	same	exact	size	as	the	view	that	presents	it.	In	other
words,	your	scene	may	need	to	be	resized	so	that	it	fits	in	its	view.	How	do	you	want	it	to
be	resized	or	scaled?	That	is	the	question	that	the	scaleMode	answers.

The	best	way	to	see	what	each	of	these	settings	does	is	to	trace	out	the	result	and	look	at
the	result	yourself.	In	your	GameViewController.swift	you	can	trace	out	the	size
of	two	things:	the	size	of	the	SKView	and	the	scene	you	are	presenting	to	the	view.	Right
below	the	line	where	it	presents	the	scene	(which	should	be	line	29:



skView.presentScene(scene)),	add	the	following	code:
print(skView.frame.size)
print(scene.size)

This	way	we	can	tell	you	the	size	of	the	view	(which	should	not	change)	and	the	size	of
the	scene,	which	may	or	may	not	change,	depending	on	the	scaleMode.

Only	one	of	these	modes	resizes	the	scene	itself.	ResizeFill	will	modify	the	scene’s
size	so	that	it	is	the	same	size	of	the	view	that	presented	it.	All	the	other	scale	modes	will
not	resize	the	view.	Let’s	try	this	out.	Right	now	you	should	have	your	scene	scale	mode
set	to	AspectFill.

AspectFill	will	scale	your	scene	to	fill	the	view	while	preserving	the	scene’s	aspect
ratio.	The	big	thing	to	remember	with	this	choice	is	that	cropping	may	occur.	The	real
calculation	that	happens	behind	the	scenes	is	that	a	scaling	factor	is	calculated	for	each
width	and	height	and	the	larger	of	the	two	is	chosen.	Because	the	larger	of	the	two	is
chosen,	your	scene	may	be	cropped.	Therefore,	only	choose	this	if	you	are	okay	with
things	not	being	fully	visible	onscreen.

Make	sure	your	scene	is	set	to	AspectFill	and	run	your	app.	You	will	notice	(if	you
chose	the	iPhone	6s	Plus	for	the	simulator)	that	the	view	has	a	size	of	(414.0,	736.0)
meaning	414	width	and	736	height.	Of	course,	this	is	points	and	not	pixels.	If	you	change
the	simulator	to	the	iPhone	4s,	the	results	are	similar	but	different.	Because	AspectFill
does	not	change	the	size	of	the	scene,	the	scene	stays	the	same	width	and	height.	The
scene	is	scaled	but	not	resized.	The	view	is	now	(320.0,	480.0)	meaning	320	width	and
480	height.	Where	do	these	view	numbers	come	from?

Each	phone	has	a	default	coordinate	space	defined	in	points.	With	points	instead	of	pixels
we	can	forget	about	the	number	of	pixels	it	is	rendering	(may	be	doubled	because	of
retina)	and	think	about	the	number	of	points	on	the	screen.	Otherwise,	retina	and	other
screens	would	be	an	even	bigger	nightmare	to	write	code	for.	The	list	of	points	for	the
screen	is	as	follows:

iPhone	4s	320×480

iPhone	5	and	5s	320×568

iPhone	6	and	6s	375×667

iPhone	6	Plus	and	6s	Plus	414×736

So	if	these	are	the	sizes	of	your	iPhone	screen,	where	is	the	size	of	the	scene	set?	The
answer	is	that	you	can	set	the	size	of	the	scene	yourself	programmatically;	however,
Xcode	now	has	a	visual	graphical	user	interface	for	building	the	scene	with.

If	you	look	in	your	file	navigator,	you	will	see	a	GameScene.sks	file.	This	sks	file	is
the	equivalent	of	the	Storyboard.	Whereas	the	Storyboard	is	for	user	interfaces,	the	sks
file	is	for	SpriteKit	scene	building.

Click	on	that	sks	file	and	it	will	open	up	the	SpriteKit	scene	user	interface	builder.	Again



make	sure	that	you	have	the	utilities	column	open	and	select	the	third	icon,	which	shows
sizing	handles	(see	Figure	5.6).

Figure	5.6	Sizing	icon

When	you	select	that	icon,	you	will	see	that	one	of	the	parameters	you	can	edit	is	the	size
of	the	scene.	It	is	currently	set	to	1024×768.	If	you	change	the	height	to	767	and	run	the
app	again,	you	will	notice	that	it	did	in	fact	change	the	size	of	the	scene.	We	print	out	the
size	of	the	scene	and	the	size	of	the	view,	and	the	size	of	the	scene	now	reads	(1024.0,
767.0).	You	were	able	to	change	the	size	of	the	scene	through	this	editor.	The	reason	this
works	is	that	we	did	not	choose	ResizeFill	as	our	scale	mode.	All	the	other	scale
modes	will	not	change	the	size	of	the	scene,	but	ResizeFill	does.

The	other	way	to	change	the	size	of	the	scene	is	to	do	it	programmatically.	Go	into	your
GameScene.swift.	In	your	GameScene	you	will	notice	a	method	called
didMoveToView.	In	our	GameViewController.swift	we	present	this	scene	by
calling	skView.presentScene.	Immediately	after	presentScene	is	called	and	the
scene	is	presented,	didMoveToView	gets	called.	In	this	method	we	can	change	the	size
of	the	scene.	We	changed	the	size	of	our	scene	in	our	sks	file.	We	can	also	change	the	size
of	the	scene	in	our	GameViewController.swift	right	before	we	present	the	scene.
The	best	place	to	do	this	would	be	before	we	present	the	scene	so	that	no	extra	calculation
needs	to	take	place.	In	your	GameViewController.swift	right	before	the	line	that
presents	the	scene,	add	the	following	code:
Click	here	to	view	code	image

scene.size	=	CGSize(width:	1024,	height:	766)

The	size	of	the	scene	uses	a	CGSize.	A	CGSize	is	built	specifically	for	this	purpose	of
providing	a	width	and	a	height	in	one	object.	You	will	notice	that	we	use	a	lot	of	CG
classes	when	using	SpriteKit.	For	example,	when	you	set	the	values	of	CGSize,	by
default	it	takes	two	CGFloats.	However,	CGSize	also	has	initializers	for	Int	and
Double.	This	makes	it	easy	to	write
Click	here	to	view	code	image

scene.size	=	CGSize(width:	1024,	height:	766)

instead	of
Click	here	to	view	code	image

scene.size	=	CGSize(width:	CGFloat(1024),	height:	CGFloat(766))

SpriteKit	didn’t	always	have	all	these	niceties	built	in.	When	Swift	first	came	out,	the
width	and	height	of	CGSize	needed	to	be	a	CGFloat,	so	your	game	was	one	enormous
conversion-fest	Ints	to	CGFloats,	Doubles	to	CGFloats,	and	everything	to
CGFloats.



Like	AspectFill,	AspectFit	also	preserves	the	aspect	ratio	of	the	scene,	this	time
by	taking	the	smaller	of	the	two	sizes	deemed	perfect	for	scaling.	Instead	of	cropping
occurring,	letterboxing	may	occur	because	the	smaller	side	may	be	too	small	to	fit
perfectly	in	the	screen	and	you’ll	get	letterboxing	instead.	This	is	good	when	you	want	all
the	stuff	in	your	scene	to	be	visible	and	you	are	okay	with	some	black	areas	appearing	on
the	screen.

Fill	scale	mode	will	just	scale	the	scene	to	fit	the	view.	Fill	will	not	choose	a	smaller
or	larger	side;	it	just	scales	it.	That’s	just	the	way	Fill	works.	This	is	good	when	your
scene	can	be	any	old	aspect	ratio.	Things	may	look	funky,	but	you	are	guaranteed	it	will
fill	the	entire	screen.

Lastly,	let’s	talk	about	ResizeFill.

Lastly,	let’s	talk	about	ResizeFill.	ResizeFill	is	the	odd	one	out.	Whereas	all	the
other	scale	modes	will	scale	the	scene,	ResizeFill	does	not	scale	the	scene;	it	resizes
the	scene	to	be	the	same	size	as	its	containing	view.

The	Game
The	first	step	in	making	your	game	is	to	delete	all	the	sample	code	so	you	can	make	your
own	game.

In	your	GameScene.swift	you	can	remove	all	the	sample	code,	and	your
GameScene.swift	should	look	like	this	following	the	extraction:
Click	here	to	view	code	image

class	GameScene:	SKScene	{
				override	func	didMoveToView(view:	SKView)	{
				}

				override	func	touchesBegan(touches:	Set<UITouch>,	withEvent	event:
UIEvent?)	{
							/*	Called	when	a	touch	begins	*/

								for	touch	in	touches	{
												let	location	=	touch.locationInNode(self)
								}
				}

				override	func	update(currentTime:	CFTimeInterval)	{
								/*	Called	before	each	frame	is	rendered	*/
				}
}

The	end	result	is	that	your	game	scene	is	ready	to	have	someone	tap	the	screen	with	as
many	fingers	as	they	want,	and	the	touchesBegan	will	get	run.

The	update	method	will	run	at	the	x	number	of	frames-per-second	rate.	You	will	get	the



currentTime,	which	works	similarly	to	a	Unix	timestamp.	You	can	know	how	long
something	has	been	running	by	comparing	it	to	another	currentTime	time	that	has
passed.

The	Game	Manager

Here	is	where	we	start	organizing	our	game	into	nice	little	chunks	of	code	to	keep	things
simple	and	understandable.	If	we	were	to	write	everything	in	one	giant	file	(the
GameScene.swift),	it	would	quickly	get	hard	to	manage.	Also,	if	we	created	a
character	in	that	one	file	and	we	wanted	to	replicate	it	multiple	times	and	even	change	it
one	of	the	many	times,	it	would	be	difficult	because	we	would	have	to	duplicate	a	lot	of
code.

To	fix	this	problem	of	all	the	code	in	one	file,	we	will	separate	our	code	into	multiple	files.
Our	method	consists	of	creating	so-called	“Managers”	and	individual	object	classes.	If	you
are	going	to	have	a	game	in	which	you	have	heroes	and	enemies	and	many	balloons
floating	around,	then	you	want	to	create	a	Hero	class,	an	Enemy	class,	a	Balloon	class,	and
a	balloon	manager	class.	This	way	you	can	manage	your	balloons	in	their	own	array	in
their	own	class.	You	can	rapidly	create	many	balloons	by	replicating	the	balloon	class.
You	can	even	go	further	and	create	a	enemy	manager	class.	You’ll	also	want	to	use	the
delegate	design	pattern	to	tell	other	classes	when	something	is	happening	in	your	classes.
For	example,	if	the	enemies	are	moving	around	based	on	the	number	of	balloons,	you’ll
want	to	let	the	enemies	manager	know	when	a	balloon	has	been	popped.

Before	we	build	anything	else	we	need	to	figure	out	how	to	build	our	assets.

The	Point	System

The	point	system	that	Apple	uses	for	drawing	things	and	measuring	things	is	a	really	good
idea.	The	problem	they	are	solving	has	to	do	with	the	screen	resolutions.	There	is	this
notion	of	1x,	2x,	and	3x	resolutions,	which	means	in	the	most	basic	terms	that	some
resolutions	pack	in	more	pixels	than	the	other	ones	did	before.	This	makes	for	a	fantastic-
looking	display	but	for	some	massive	confusion	when	you	are	making	assets	and	moving
things	around	the	screen.

This	is	where	the	point	system	comes	in.	You	can	think	of	a	point	as	1	pixel	in	1x,	2	pixels
in	2x,	and	3	pixels	in	3x.	So	the	idea	is	that	the	iPhone	6s	Plus	is	414×736	points	for	the
screen	size	but	it	renders	3x	the	amount	of	pixels	to	the	screen,	which	makes	the	rendered
pixels	1242×2208.	The	iPhone	6	Plus	screen	can’t	handle	that	many	pixels	so	it	has	to	be
down-sampled	before	it	appears	on	the	screen.	It	will	be	down-sampled	to	1080×1920.	All
the	math	to	do	that	is	none	of	your	concern,	and	that	is	why	we	have	points.	You	simply
provide	Apple	with	an	image	1x,	2x,	and	3x,	and	it	will	take	care	of	the	rest	of	the
calculations.

For	example,	let’s	say	we	have	a	1x	image	that	is	20×20	pixels.	For	the	2x	image	we	will
make	that	image	40×40	(20*2)	pixels.	For	the	3x	image	it	will	be	60×60	(20*3)	pixels.
This	means	we	can	provide	much	more	detail	in	the	60×60	image	than	we	can	in	the
20×20	image.	The	way	I	design	the	assets	is	to	start	with	the	3x	and	work	my	way	down	to
the	1x.



In	Figure	5.7	the	1x	start	is	originally	60×60	pixels.	The	2x	is	120×120	and	the	3x	is
180×180.	Xcode	will	automatically	figure	out	which	resolution	is	which	if	you	name	them
with	@2x	and	@3x,	respectively.	The	names	of	these	icons	would	be	star.png,
star@2x.png,	and	star@3x.png,	respectively.

Figure	5.7	A	1x,	2x,	and	3x	star

The	question	then	becomes	how	does	one	make	a	background	image,	assuming	this	is	for
a	title	screen	on	which	the	background	does	not	move	and	we	just	want	one	image	that	fits
the	background	of	the	screen.	Well,	that	all	depends	on	the	scale	mode.	If	your	scale	mode
changes	the	size	of	your	scene	(which	only	one	scale	mode,	ResizeFill,	does),	you
need	to	know	the	final	size	of	your	scene,	which	would	be	the	size	of	the	view	in	the	case
of	ResizeFill.	If	your	scale	mode	does	not	change	the	size	of	your	screen,	you	can	just
go	with	the	size	of	your	scene	and	assume	that	it	is	1x.

Remove	the	line	that	changes	the	size	of	your	view	programmatically	in
GameViewController.swift:
Click	here	to	view	code	image

scene.size	=	CGSize(width:	1024,	height:	766)	//	remove	this	line

In	your	GameScene.sks	file	change	the	size	of	the	scene	back	to	1024×768	(see	Figure
5.8).



Figure	5.8	Set	the	size	of	the	scene	to	1024×768

Let’s	also	set	up	this	project	to	be	a	landscape	mode	game	instead	of	the	default	portrait
mode	game.	In	your	file	explorer	choose	the	main	blue	project	icon	(see	Figure	5.9).

Figure	5.9	Choose	the	main	project	icon

Make	sure	the	General	tab	is	selected.

Under	Device	Orientation	select	only	Landscape	Left	(unselect	all	the	other	options).

Now	the	scene	size	will	fit	the	screen	size	better	since	our	screen	size	will	be	wider	than	it
is	tall.	The	content	should	fit	better.

If	we	want	a	background	picture	to	fill	the	scene,	we	need	to	make	our	background	image
1024x768	points.	That	means	that	it	will	be	1024x768	at	1x,	2048x1536	at	2x,	and
3072x2304	at	3x.	That’s	a	very	large	image.	Sounds	great—let’s	make	one.

You	can	get	a	link	to	all	three	images	here:	http://imgur.com/a/7IRwU.

Figure	5.10	shows	our	beautiful	sample	background	image.

http://imgur.com/a/7IRwU


Figure	5.10	Our	background	image

With	this	image	we	will	be	able	to	see	what	is	going	on	with	the	scale	mode.	We	have	four
hearts,	one	in	each	corner,	and	we	will	know	based	on	the	placement	of	these	images
whether	the	entire	image	shows.	Which	scale	mode	would	be	the	best	if	we	want	to	keep
the	aspect	ratio	of	our	image	and	we	want	to	make	sure	the	whole	thing	shows?
AspectFit	guarantees	us	that	our	scene	will	fit	and	not	be	cropped,	but	it	might	be
letterboxed.	Fill	also	guarantees	this,	but	it	will	not	keep	the	aspect	ratio.	Let’s	try
AspectFit	first	and	see	what	happens.	In	the	project	file	explorer	open	up
Assets.xcassets	and	remove	the	spaceship	image	set	by	selecting	it	and	pressing
Delete	on	your	keyboard.	Select	all	three	images	and	drag	them	into	the	library.	Your	asset
library	should	now	look	something	like	what’s	shown	in	Figure	5.11.

Figure	5.11	Asset	library	with	three	images

Because	we	named	the	files	bg,	bg@2x,	and	bg@3x,	Xcode	knows	what	each	file	is.	Of
course,	you	can	drag	in	files	manually,	but	this	works	in	one	fell	swoop.



Adding	the	Background

At	this	point	we	can	add	the	background	to	our	GameScene	and	see	what	happens.	Go
into	your	GameScene.swift	and	change	your	didMoveToView	to	be	as	follows:
Click	here	to	view	code	image

override	func	didMoveToView(view:	SKView)	{
				let	xy	=	0.5;
				anchorPoint	=	CGPoint(x:	xy,	y:	xy)
				let	background	=	SKSpriteNode(imageNamed:	“bg”)
				addChild(background)
}

Here	we	are	adding	our	background	to	the	screen.	We	use	the	imageNamed	initializer	to
pull	straight	from	the	asset	library.	In	the	asset	library	our	image	is	named	bg.	We	also
have	to	do	one	quick	thing	by	changing	the	anchor	point	to	0.5	for	x	and	y.	The	reason	we
do	this	is	so	that	when	we	add	the	background	to	the	screen	we	won’t	need	to	apply	any
positioning	for	it.	By	setting	the	coordinate	0,0,	we	will	be	in	the	middle	of	the	screen.	We
can	talk	more	about	that	later.	Most	important,	we	add	the	background	to	the	screen	with
addChild.

With	the	scale	mode	set	to	AspectFit,	we	get	get	something	that	looks	like	the	image
shown	in	Figure	5.12.

Figure	5.12	Scale	mode	set	to	AspectFit

There	is	the	letterboxing	we	were	talking	about.	The	good	thing	is	that	all	the	scene	fits	in
the	view.	The	bad	thing	is	that	we	get	some	blank	black	area	around	the	sides.

With	the	scale	mode	set	to	AspectFill,	we	get	an	image	that	looks	as	shown	in	Figure
5.13.



Figure	5.13	Scale	mode	set	to	AspectFill

Notice	that	the	image	fills	the	whole	screen,	but	unfortunately	we	are	missing	our	place-
marker	hearts,	which	got	cropped	just	as	expected.

With	the	scale	mode	set	to	Fill,	we	get	an	image	as	shown	in	Figure	5.14.

Figure	5.14	Scale	mode	set	to	Fill

The	good	thing	here	is	that	the	whole	image	fits	and	nothing	is	getting	cropped.	The	bad
thing	is	that	the	image	is	stretch	and	skewed.	You	may	not	mind	that	if	your	background	is



something	more	abstract	or	nondescript.

If	we	want	to	change	the	background	to	be	ResizeFill,	we	will	need	to	make	the
background	image	the	same	size	as	the	view.	The	view	will	change	size	depending	on
which	phone	is	being	used.	That	gets	a	little	trickier	because	to	accommodate	the	various
phones,	we	would	need	to	make	a	background	image	for	each	phone	in	multiple	sizes	and
then	detect	each	phone	size.

Anchor	Points

Lastly,	let’s	talk	about	anchor	points	because	I’ve	been	anchoring	to	talk	about	it	all	day.

With	the	anchor	point	we	can	set	where	the	0,0	point	will	be	on	the	screen.	With	our
background	image	we	want	to	make	sure	that	it	is	in	the	center	of	the	screen.	There	are	a
couple	of	ways	to	accomplish	this.	The	easiest	way	is	to	set	0,0	as	the	center	of	the	screen.
When	you	add	the	background	to	the	screen,	it	will	be	in	the	center.	Which	way	do	x	and	y
go?	Which	way	is	positive	and	which	way	is	negative?	In	your	GameScene	in	the
didMoveToView,	you	can	move	the	position	of	the	background	by	10	points	for	x	and	y
and	see	where	the	background	goes,	and	that	will	tell	you	which	way	x	and	y	go.

Change	your	didMoveToView	to	add	10	to	your	x	and	y	positions	and	run	the	game.
Click	here	to	view	code	image

override	func	didMoveToView(view:	SKView)	{
				let	xy	=	0.5;
				anchorPoint	=	CGPoint(x:	xy,	y:	xy)
				let	background	=	SKSpriteNode(imageNamed:	“bg”)
				background.position.x	+=	10
				background.position.y	+=	10
				addChild(background)
}

When	we	run	this,	we	see	see	something	that	looks	like	what’s	shown	in	Figure	5.15.



Figure	5.15	Image	with	x	and	y	positions	added

Notice	the	little	gray	on	the	left	and	bottom	sides.	That	means	that	x	is	positive	to	the	right
and	y	is	positive	going	up.

Summary
In	this	chapter	we	introduced	all	the	most	important	starting	concepts	about	SpriteKit.
SpriteKit	is	easy	to	get	started	with	but	tricky	to	master,	especially	when	it	comes	to
aspects,	points,	pixels,	and	anything	having	to	do	with	positioning.	If	you	don’t	read	all
the	documentation,	you	can	get	yourself	in	a	pickle	quickly	because	SpriteKit	does	things
a	little	differently	than	other	game	frameworks.	When	you	read	though	this	chapter,
hopefully	you	will	have	greater	understanding	of	how	to	set	up	your	game	for	success.



6.	Reusable	Code:	Closures

Closures	in	Swift	have	their	own	special	syntax.	When	relating	closures	to	Objective-C,
you	can	think	of	closures	as	self-contained	blocks	of	functionality.	When	you	use	them,
you	often	directly	replace	an	Objective-C	block.	You	use	them	for	things	like	creating	a
callback	after	a	URL	has	been	fetched	from	a	server	or	calling	a	function	when	an
animation	is	done.	You	use	them	for	things	like	sorting	when	you	need	to	pass	a	special
sort	function.

What	Are	Closures?
Closures	are	a	familiar	concept	in	many	languages.	Closures	can	be	created	when	an
environment	is	enclosed	in	a	referencing	unit	of	scope.	We	often	say	“a	function	within
another	function”	when	we’re	talking	about	closures.	But	the	real	closure	itself	happens
because	you	put	a	function	within	another	function.	When	you	put	that	function	within	the
other	function,	the	inner	function	has	a	reference	to	the	outer	function.

In	languages	other	than	Swift,	closures	are	not	often	defined	as	a	special	syntactic
structure.	This	is	usually	what	makes	them	a	difficult	concept	to	grasp.	For	example,	in
JavaScript,	you	can	create	a	closure	by	just	putting	one	function	inside	another.	The	inner
function	will	have	access	to	all	the	local	variables	of	the	outer	function.	If	the	outer
function	returns	the	inner	function,	you	now	have	a	permanent	reference	to	the	inner
function,	which	still	has	access	to	the	outer	function’s	local	variables.	This	works	in	Swift
as	well.

In	short,	closures	are	functions	that	refer	to	independent	variables.	Functions	defined	in	a
closure	remember	the	environment	in	which	they	were	created—even	after	everything	has
run.	This	is	interesting	because	local	variables	are	usually	trashed	after	a	function	has	run.

Things	get	really	interesting	when	you	realize	that	operators	in	Swift	are	implemented	as
functions	themselves.	Take,	for	example,	the	less-than	sign	(<).	It	takes	two	parameters:	a
left-hand	parameter	and	a	right-hand	parameter.	So	you	see,	closures	can	be	written	in
extremely	simple	and	concise	ways.

Closures	in	Other	Languages
It	may	be	helpful	to	see	closures	in	a	broader	context.	A	closure	itself	is	relatively	the
same	in	all	languages.	However,	Swift	provides	extra-special	syntax	for	closures,	which
makes	their	implementation	a	bit	different.	In	JavaScript	you	can	create	a	closure	by
writing	a	function	within	another	function.	That	inner	function	does	not	exist	outside	the
outer	function	and	therefore	is	“enclosed”	(thus	the	name	closure)	in	the	outer	function.
The	outer	function	can	then	return	the	inner	function	and	make	it	available	to	all.	Now	the
outer	function	has	finished	running,	and	all	of	its	local	variables	should	be	dumped.	But
they	aren’t	because	the	inner	function	is	now	available	globally	and	still	has	references	to
the	outer	function’s	local	variables.	Let’s	look	at	some	code	to	see	how	this	works.	This	is
code	written	in	JavaScript,	not	Swift:
Click	here	to	view	code	image

function	nameClosure()	{



				var	name	=	“Skip	Tastic”
				function	sayYourName()	{
								console.log(name);
				}
				return	sayYourName;
}
var	yourName	=	nameClosure()
yourName()

When	nameClosure	is	called,	it	returns	sayYourName	and	therefore	is	the	inner
function	itself.	Now	you	have	a	reference	to	the	inner	function	sayYourName.	The	inner
function	has	a	reference	to	the	local	variable	name	even	though	init	has	been	called	and
passed.	So	when	you	call	the	variable	you	set	as	yourName,	you	get	the	console	to	log
the	local	variable.	This	is	actually	similar	to	summoning	the	dead.	Try	this	example:

1.	Open	Google	Chrome.

2.	On	any	tab,	right-click	the	screen	and	click	Inspect	Element.

3.	When	the	developer	tools	open,	choose	the	Console	tab,	which	is	like	a	dumbed-
down	JavaScript	playground.

4.	Type	in	the	preceding	JavaScript	code.

You	could	write	this	same	example	in	Swift.	Here’s	how:
Click	here	to	view	code	image

func	nameClosure()	->	()	->	()	{
				var	name	=	“Skip	Tastic”
				func	sayYourName()	{
								print(name)
				}
				return	sayYourName
}
var	yourName	=	nameClosure()
yourName()

You	can	see	that	this	code	is	almost	exactly	the	same	as	the	JavaScript	code.	One	change
is	that	you	replace	function	with	func.	In	Swift,	you	have	to	be	a	little	more	specific
if	you	are	going	to	return	a	function.	You	need	to	tell	Swift	that	this	function	returns	its
own	function.	Because	functions	on	their	own	have	types,	you	need	to	return	a	function
that	returns	Void.	The	way	you	express	a	function	that	returns	nothing	or	Void	is	to	say
that	the	function	returns	an	empty	tuple,	which	is	essentially	void.	So	the	type	of	return
value	of	nameClosure	is	()->().	This	is	because	sayYourName	does	not	return
anything.

In	the	end,	you	will	see	that	the	Swift	code	prints	out	the	result	of	the	local	variable,	as
promised.	This	is	good	because	after	you	understand	closures,	you	can	apply	them	to	any
language.	Swift	happens	to	be	a	great	place	to	learn	closures,	and	the	excitement	doesn’t
stop	with	what	you’ve	seen	so	far.	In	fact,	it	goes	so	much	further	that	I	think	your	mind
will	be	blown	by	the	end	of	the	chapter.



How	Closures	Work	and	Why	They’re	Awesome
Swift	defines	a	closure	syntax	that	is	different	from	the	regular	function	syntax.	This
syntax	allows	you	to	do	a	couple	things:	It	allows	you	to	infer	the	type	of	the	object	from
the	context,	and	it	allows	you	to	return	a	value	without	actually	writing	return.	There
are	several	ways	to	write	closures	in	Swift,	and	some	of	them	take	very	little	code.	If	you
are	used	to	replacing	or	rewriting	Objective-C	syntax,	you	may	have	seen	blocks	as	the
last	parameter	of	a	function.	Swift	allows	you	to	write	closures	outside	functions	when
they	are	the	last	parameters.	This	gives	you	a	nice,	clean-looking	syntax.

Let’s	take	a	look	at	the	sort	function	in	Swift.	For	this	example,	you	are	going	to	pass
two	parameters	to	the	sort	function.	The	first	is	an	inout	parameter	of	the	array	you
would	like	to	sort.	The	second	parameter	is	the	function	you	would	like	to	use	to	sort	the
array.	The	function	must	take	two	Strings	as	parameters	and	return	a	Bool.	You	will
check	whether	each	string	is	less	than	the	other	string	in	order	to	sort	the	string
alphabetically.	(When	you	compare	two	strings	with	a	less-than	or	greater-than	operator,
Swift	sorts	strings	alphabetically	in	either	a	reverse	or	a	forward	direction.)	The	following
code	sorts	the	array	alphabetically:
Click	here	to	view	code	image

var	names	=	[“john”,“sam”,“zed”,“bob”,“harry”,“noa”]
func	alphabetical(s1:String,s2:String)	->	Bool	{
				return	s1	<	s2
}
names.sort(alphabetical)

The	sort	function	takes	each	of	the	strings	in	the	array,	one	at	a	time,	and	compares	them
to	each	other	by	running	them	through	the	function.	Notice	that	there	is	a	global	function
to	do	the	sorting.	You	pass	this	function	into	sort.	We	talked	previously	about	the	type	of
a	function.	In	this	case,	the	function	is	of	type	(s1:	String,	s2:	String)	->
Bool.	You	can	find	this	out	by	three-finger-clicking	the	function	name.	If	you	three-
finger-click	the	sort	function,	you	see	what	it	needs	in	order	to	work:	func	sort<T>
(inout	array:	[T],	predicate:	(T,	T)	->	Bool).	This	syntax	may	look
a	little	foreign	at	this	point	because	we	haven’t	covered	anything	like	it.	This	is	the	syntax
for	generics,	which	you’ll	learn	about	in	Chapter	9,	“Becoming	Flexible:	Generics.”	You
can	think	of	the	T	as	standing	for	anything	you	want.	It	could	be	a	String,	an	Int,	a
car,	a	cat,	or	whatever.	So	the	sort	function	takes	an	inout	array	with	any	type	in	it.	It
also	takes	a	function/closure	that	has	two	parameters	of	the	same	type	and	then	returns	a
Bool.	Note	that	T	is	different	from	AnyObject.	Whereas	AnyObject	can	be	a
String	or	an	Int,	T	must	be	of	one	type.	Using	T	is	like	saying	you	don’t	know	the
type	yet	but	we	will	choose	it	later.	Using	AnyObject	allows	you	to	have	a	mix	of	a
bunch	of	types.

The	Closure	Syntax
You	can	rewrite	that	last	alphabetical	function	to	be	an	inline	closure.	It	would	look	like
this:
Click	here	to	view	code	image



var	alphabetical	=	{(s1:String,	s2:String)	->	Bool	in	s1	<	s2}

You	remove	the	func	keyword	and	the	name	of	the	function.	You	put	the	whole	thing	in
some	curly	brackets,	put	the	actual	content	after	the	word	in,	and	remove	the	keyword
return.	The	closure	knows	that	it	should	return	stuff.	The	closure	by	itself	doesn’t	do
much.	You	need	to	either	save	it	to	a	variable	or	pass	it	directly	into	the	sort	function.
Notice	how	it	still	matches	the	signature	of	the	previous	function	you	used.	It	takes	two
Strings	and	returns	a	Boolean.	Now	you	can	pass	this	into	the	sort	function:
Click	here	to	view	code	image

sort(&names,{(s1:String,	s2:String)	->	Bool	in	s1	<	s2})

What	is	so	cool	about	this	is	that	you	can	define	a	whole	reusable	functionality	within	the
sort	function	itself.	The	sort	function	does	not	have	to	go	anywhere	else	to	get	the
closure	it	will	use	to	sort	the	array.

Inferring	Using	Context
The	sort	function	must	take	an	array	and	a	function	with	a	specific	signature.	In	the
example	we’ve	been	working	with,	the	function	must	take	two	parameters	that	are
Strings.	You	cannot	use	any	other	types	in	this	case.	You	and	I	know	this,	and	Swift
does,	too.	You	can	shorten	the	closure	syntax	because	you	know	that	s1	and	s2	are
Strings.	You	can	also	shorten	the	closure	because	you	know	that	the	return	type	must	be
a	Bool.	Who	the	heck	needs	to	write	a	return	type	when	you	already	know	it	must	be	a
Bool?	Here	is	a	shorter	closure	you	can	pass	to	the	sort	function:
Click	here	to	view	code	image

names	=	names.sort({s1,	s2	in	s1	<	s2})

Now	you	have	a	much	shorter,	easier	closure.	Let’s	review	what	has	happened	so	far:	You
first	took	a	regular	old	function	and	passed	it	to	the	sort.	Then	you	rewrote	the	function
as	a	closure	and	passed	it	to	the	sort.	Then	you	realized	you	didn’t	need	to	do	any	typing
because	Swift	can	infer	types	from	the	context.	So	you	rewrote	the	closure	by	removing
the	types	and	parentheses.	Notice	that	you	never	had	to	write	the	return	keyword
because	it	is	also	inferred.

Arguments	Have	a	Shorthand,	Too
As	it	turns	out,	you	don’t	even	have	to	declare	s1	and	s2	as	the	parameters.	You	can	use	a
special	syntax	to	get	the	nth	parameter.	You	can	write	$0	to	get	the	first	parameter	and	$1
to	get	the	second	parameter	and	so	on.	Now	the	closure	gets	even	shorter	because	you	no
longer	need	to	declare	the	names	of	parameters.	You	can	pass	the	closure	to	sort	like	so:
Click	here	to	view	code	image

names	=	names.sort({$0	<	$1})

You	are	able	to	write	this	because	of	all	the	things	mentioned	before	plus	the	fact	that	you
don’t	have	to	declare	parameters	if	you	use	a	special	argument	shorthand.	Why	declare
something	that	does	not	need	to	be	declared?	You	don’t	need	the	return	keyword,	and
you	don’t	need	to	declare	a	type	for	the	parameters	because	it	is	inferred.	This	closure



does	return	a	Bool	because	it	is	comparing	two	things	together.	This	is	an	extremely
flexible	closure	because	it	does	not	declare	any	types.	If	your	array	contained	Ints,
Doubles,	Floats,	or	your	own	custom	type,	then	this	closure	would	still	work	just	fine.

Sorting	a	Custom	 	Class
To	sort	a	custom	class,	you	need	the	class	to	inherit	two	protocols:	Comparable	and
Equatable.	Here’s	how	you	could	define	a	short	Car	class	that	just	has	a	name
property:
Click	here	to	view	code	image

class	Car:Comparable,Equatable	{
				var	name:String

				init(name:String)	{
								self.name	=	name
				}
}

To	implement	Comparable	and	Equatable,	you	must	teach	Swift	how	to	compare
two	cars.	Because	the	name	of	the	car	is	a	String,	you	can	use	the	name.	You	need	to
write	global	functions	that	define	the	<,	>,	<=,	>=,	and	==	signs.	One	caveat	is	that	you
should	not	write	these	functions	within	the	Car	class;	rather,	you	should	write	them
globally.	Here’s	an	example	of	how	to	do	that:
Click	here	to	view	code	image

func	==(lhs:	Car,	rhs:	Car)	->	Bool{
				return	lhs.name	==	rhs.name
}
func	<=(lhs:	Car,	rhs:	Car)	->	Bool{
				return	lhs.name	<=	rhs.name
}
func	>=(lhs:	Car,	rhs:	Car)	->	Bool{
				return	lhs.name	>=	rhs.name
}
func	>(lhs:	Car,	rhs:	Car)	->	Bool{
				return	lhs.name	>	rhs.name
}
func	<(lhs:	Car,	rhs:	Car)	->	Bool	{
				return	lhs.name	<	rhs.name
}

Here	you	are	naming	the	functions	with	the	signs	they	represent.	Notice	that	you	could
redefine	these	functions	for	comparison	of	other	classes.

Finally,	you	can	create	a	cars	array	and	sort	it,	like	this:
Click	here	to	view	code	image

var	cars	=	[Car(name:“Ford”),Car(name:“Mercedes”)]
cars.sort({$0	<	$1})
print(cars)

Here	you	create	two	cars	in	an	array	of	cars.	Then	you	sort	the	array,	which	uses	the
comparison	functions	to	compare	the	two	cars.	If	you	ever	needed	to	compare	other	types
of	classes,	you	could	rewrite	the	>	and	<	functions	to	accommodate	those	other	types.
Remember	that	you	can	have	two	functions	with	the	same	name	as	long	as	the	method	is



different	in	some	way.	That	is	what	makes	it	legit	to	make	multiple	less-than	functions.
Also	note	that	you	could	create	the	comparison	functions	on	a	protocol	or	base	class.	This
would	give	you	the	option	of	comparing	multiple	classes	with	the	same	comparison.	It’s	a
win–win	for	everybody.	Here	is	our	shortest	closure	yet:

names	=	names.sort(<)

Okay,	now	this	is	impressive.	I	would	say	that	this	is	the	ultimate	in	refactoring.

Closures	Are	Reference	Types
Chapter	4,	“Structuring	Code:	Enums,	Structs,	and	Classes,”	talks	about	reference	types
and	value	types.	It	talks	about	the	difference	between	things	being	copied	and	things	being
referenced	when	they	are	passed	around.	If	you	think	about	it,	it	makes	a	lot	of	sense	for
closures	to	be	reference	types	rather	than	value	types.	Closures	capture	values	in	their
context.	If	a	closure	was	copied	every	time	it	was	passed	around,	it	would	lose	context	that
it	has	access	to.	In	other	words,	it	would	lose	access	to	those	local	variables.	Here’s	an
example:
Click	here	to	view	code	image

func	increment(n:Int)->	()->Int	{
				var	i	=	0
				let	incrementByN	=	{
								()	->	Int	in
								i	+=	n
								return	i
				}
				return	incrementByN
}
var	inner	=	increment(4)
inner()	//4
inner()	//8
inner()	//12

This	example	changes	things	up	a	little	bit.	In	the	end,	you	use	the	inner	closure	that	holds
a	reference	to	i,	incrementByN,	to	increment	that	local	variable	i	by	4.	The	main
point	is	that	the	inner	closure	has	a	reference	to	that	local	variable	after	the	function	has
returned,	and	the	closure	you	use	is	passed	by	reference,	which	makes	the	number
increment	each	time.

Automatic	Reference	Counting
Now	is	a	good	time	to	talk	about	Automatic	Reference	Counting,	otherwise	known	as
ARC.	If	you	are	an	Objective-C	programmer,	you	know	all	about	ARC.	If	you	were	one	of
the	first	iPhone	programmers,	you	know	that	you	used	to	have	to	do	your	own	reference
counting.	You	will	be	happy	to	know	that	for	the	most	part,	you	can	let	Swift	worry	about
the	management	of	memory.

When	you	create	instances	of	classes,	those	classes	exist	by	reference.	When	those
instances	are	no	longer	needed,	Swift	cleans	them	up	for	you.

ARC	works	by	keeping	track	of	the	instances	of	classes	that	you	create	and	where	those
instances	are	referenced.	Every	time	you	create	a	new	instance	of	a	class,	ARC	finds	some
free	memory	available	where	you	can	place	the	new	instance.	You	don’t	need	to	worry



about	how	this	works;	just	know	that	it	works.	(Of	course,	those	details	are	available	if
you	feel	like	diving	in;	go	to
https://developer.apple.com/library/ios/documentation/swift/conceptual/swift_programming_language/AutomaticReferenceCounting.html
When	you	no	longer	need	that	instance	of	the	class,	ARC	takes	back	that	memory	it	gave
you	and	deallocates	your	instance.	If	Swift	was	not	smart	and	accidentally	deallocated	an
instance	you	were	still	using,	then	you	would	no	longer	be	able	to	access	your	class	and	all
its	properties.
To	tell	Swift	“I’m	using	this;	don’t	deallocate	it,”	you	assign	that	class	reference	to	a
variable	or	constant.	When	you	do	this,	you	are	creating	a	strong	reference.	Swift	won’t
deallocate	that	memory	associated	with	your	class	instance	because	you	said	you	needed
it.	Imagine	Rose	in	Titanic,	saying	she	would	“never	let	go.”	Well	that’s	a	bad	example
because	eventually	Rose	did	let	go.	But	it’s	actually	a	good	example	because	Rose	only	let
go	when	she	was	sure	Jack	was	dead	and	gone.	Swift	will	not	allow	it	to	be	deallocated	as
long	as	the	strong	reference	remains.	You	can	deallocate	that	instance	by	assigning	it	to
nil.	Take	a	look	at	this	example,	using	the	Car	class	from	earlier:
Click	here	to	view	code	image

var	c1:Car?	=	Car(name:	“Ford”)

Here	you	create	a	new	instance	of	the	Car	class.	ARC	allocates	some	memory	for	a	new
instance	of	Car.	You	have	one	instance	of	the	Car	class	allocated;	let’s	reference	c1	a
couple	more	times:

var	c2	=	c1
var	c3	=	c2

Now	you	have	three	references	to	the	one	instance	of	the	Car	class.	But	these	are	not	just
any	references;	they	are	three	strong	references.	For	Swift	to	deallocate	the	single	instance
of	Car,	you	need	to	assign	all	three	of	these	references	to	nil.	If	you	were	to	assign	two
out	of	three	to	nil,	the	instance	would	remain	in	memory	because	it	would	be	still	in	use.
You	can	assign	c1	and	c2	to	nil:

c1	=	nil
c2	=	nil

You	now	have	one	reference	of	the	Car	class	still	out	there.	ARC	is	counting	this	instance
of	the	Car	class,	so	it	remains	allocated	in	memory.	You	can	assign	c3	to	nil	to
completely	remove	all	references	to	the	instance	of	the	car:

c3	=	nil

Now	the	single	instance	of	Car	is	deallocated	because	all	three	references	have	been
unreferenced	by	being	set	to	nil.	By	the	way,	if	you	create	an	optional	property,	that
property	is	initialized	with	nil	and	not	any	instance	of	a	class.	You	can	rewrite	the	Car
class	a	tad	and	add	a	new	class	for	a	driver	as	well:

class	Driver	{
				var	car:Car?
}
class	Car	{
				var	name:String
				var	driver:Driver?
				init(name:String)	{

https://developer.apple.com/library/ios/documentation/swift/conceptual/swift_programming_language/AutomaticReferenceCounting.html


								self.name	=	name
				}
}

When	you	create	a	new	Car	instance,	driver	is	created	and	set	to	nil.

Strong	Reference	Cycles
By	letting	ARC	do	its	thing,	you	can	pretty	much	sit	back	and	relax	because	ARC
allocates	and	deallocates	memory	when	it	is	needed.	However,	there	are	situations	in
which	you’ve	created	a	permanent	bond	between	two	classes.	Consider	the	new	Car	and
Driver	classes.	Notice	that	when	you	create	a	new	Driver	and	new	Car,	your	driver’s
car	will	be	nil	and	your	car’s	driver	will	be	nil.	You	can	see	what	I	mean	when	I	create
a	new	car	and	driver:

var	car	=	Car(name:	“Ford”)
var	driver	=	Driver()

Now	you	have	a	new	car	and	new	driver	that	ARC	has	reference	counted.	driver
has	a	car	that	is	nil,	and	car	has	a	driver	that	is	nil.	Now	you	can	assign	car’s
driver	to	car	and	driver’s	car	to	car:

car.driver	=	driver
driver.car	=	car

You	have	now	created	a	permanent	strong	reference	between	those	two	instances	that	can
never	be	resolved.	If	you	set	car	to	nil	and	driver	to	nil,	neither	will	ever	be
deallocated.	The	way	you	can	tell	is	by	using	the	special	deinit	function.	This	function
is	called	when	the	class	is	deinitialized.	You	can	add	it	to	both	the	Car	and	the	Driver
classes.	To	see	deinit	in	action,	you	must	run	your	code	in	a	project	instead	of	in	the
playground.	You	can	start	a	new	game	project	and	create	your	Car	and	Driver	classes
directly	in	ViewController.swift.	Then	in	viewDidLoad,	you	can	initialize	and
deinitialize	your	car	and	driver	classes:
Click	here	to	view	code	image

class	Car	{
				var	driver:Driver?
				init()	{
								print(“INITTING	Car”)
				}
				deinit	{
								print(“DEINITTING	Car”)
				}
}
class	Driver	{
				var	car:Car?
				init()	{
								print(“INITTING	Driver”)
				}
				deinit	{
								print(“DEINITTING	Driver”)
				}
}

Now	in	your	didLoadView	function,	you	can	test	init	and	deinit	by	creating	an
optional	car	and	then	setting	it	to	nil.	When	you	create	the	car,	the	init	method



runs.	Then	setting	the	car	to	nil	calls	the	deinit	method.	You	must	set	the	car	to	be
optional	so	that	you	can	later	send	it	to	nil:

override	func	viewDidLoad()	{
				super.viewDidLoad()
				var	car:Car?	=	Car()
				car	=	nil
}

Now	when	you	run	this,	you	see	that	the	car	was	first	initialized	and	then	deinitialized.
Now	let’s	get	back	to	the	strong	reference	cycle.	If	you	create	a	new	driver	and	the	new
car	and	assign	the	car’s	driver	to	the	new	driver	and	vice	versa,	and	if	you	then
try	to	set	the	car	and	the	driver	to	nil,	you	see	that	neither	gets	deinitialized:
Click	here	to	view	code	image

override	func	viewDidLoad()	{
				super.viewDidLoad()
				var	car:Car?	=	Car()
				var	driver:Driver?	=	Driver()
				car!.driver	=	driver
				driver!.car	=	car
				car	=	nil
				driver	=	nil
}

You	have	created	a	strong	reference	cycle	and	a	memory	leak.	In	this	case,	car	and
driver	will	never	be	deallocated.

	Versus	

Swift	provides	a	solution	for	strong	reference	cycles	by	allowing	you	to	use	the	keyword
weak	or	the	keyword	unowned.	You	use	the	keyword	weak	when	it	is	possible	for	your
reference	to	have	no	value	at	some	point.	If	this	isn’t	the	case,	you	use	unowned.

The	 	Keyword

A	weak	reference	does	not	keep	a	stronghold	to	the	instance	that	it	refers	to.	When	you
assign	a	reference	as	weak,	you	are	saying	that	it	may	at	some	point	have	“no	value.”
Therefore,	you	must	assign	a	weak	reference	as	an	optional.	It	is	possible	that	a	weak
reference	may	be	deallocated	before	you	are	done	with	it.	ARC	automatically	sets	weak
references	to	nil	when	they	are	deallocated.	You	can	then	easily	check	this	with	an	if
statement.

To	see	how	this	works,	you	can	rewrite	the	car	and	driver	example	and	set	one	of	the
variables	to	weak.	You	don’t	need	to	set	both	to	weak,	just	one,	because	when	there	are
no	more	strong	references	to	the	car	or	driver,	it	will	be	deallocated.	The	only	change
you	really	need	to	make	is	in	either	the	car	or	the	driver	class.	You	just	need	to	mark
the	variable	as	weak	in	one	of	the	classes.	For	now,	do	this	in	the	driver	class.	Edit
your	driver	class	to	look	like	this	(and	notice	I	am	adding	only	one	word	here).

Run	the	code,	and	you’ll	see	that	car	and	driver	both	get	initialized	and	deinitialized:
//INITTING	Car
//INITTING	Driver



//DEINITTING	Car
//DEINITTING	Driver

The	 	Keyword

Instead	of	using	weak,	you	can	use	unowned.	The	big	difference	between	unowned	and
weak	is	that	unowned	is	assumed	to	always	have	a	value.	Therefore,	it	does	not	need	to
be	an	optional.	You	have	to	be	super-duper	careful	when	using	unowned	because
whereas	weak	sets	your	variable	to	nil	after	it	has	been	deallocated,	unowned	does	not.
If	you	try	to	reference	an	unowned	variable	after	it	has	been	deallocated,	your	program
will	reliably	crash.	Therefore,	you	want	to	use	unowned	only	when	you	are	absolutely
positive	it	will	always	have	a	value.	Here’s	how	you	can	rewrite	the	driver	class	to	use
unowned	instead	of	weak:
Click	here	to	view	code	image

class	Driver	{
				unowned	var	car:Car
				init(car:Car)	{
								self.car	=	car
								print(“INITTING	Driver”)
				}
				deinit	{
								print(“DEINITTING	Driver”)
				}
}

You	must	now	add	an	initializer	for	driver	because	car	is	no	longer	an	optional.	You
also	have	to	change	viewDidLoad	because	you	are	no	longer	dealing	with	an	optional
car.	Update	your	code	like	so:
Click	here	to	view	code	image

override	func	viewDidLoad()	{
				super.viewDidLoad()
				var	car:Car?	=	Car()
				var	driver	=	Driver(car:	car!)
				car!.driver	=	driver
				driver.car	=	car!
				car	=	nil
}

When	you	run	this	code,	notice	that	you	get	the	same	result.	car	and	driver	are	both
deinitialized	properly.	Why	does	this	work	now,	when	it	didn’t	work	before?	Well,
remember	that	when	you	have	a	strong	reference,	ARC	cannot	deallocate	the	instance.
When	you	have	a	strong	reference	cycle	(when	we	don’t	use	weak	or	unowned),	it	goes
in	both	directions.	car	strongly	references	driver,	and	driver	strongly	references
car	(see	Figure	6.1).	When	you	mark	one	of	the	references	as	weak,	you	get	rid	of	that
strong	reference	that	was	going	bidirectionally.	The	same	goes	for	unowned:	Swift	is	no
longer	able	to	have	a	bidirectional	strong	reference.



Figure	6.1	Strong	references	in	both	directions

When	you	mark	the	driver	of	the	car	class	as	weak	or	you	no	longer	have	a	strong
reference,	ARC	can	deallocate	that	instance	(see	Figure	6.2).

Figure	6.2	No	longer	fused	at	the	hip.	ARC	can	deallocate

The	same	goes	for	unowned:	When	you	mark	the	driver	of	the	car	class	as
unowned,	you	no	longer	have	a	strong	reference,	and	ARC	can	deallocate	that	instance
(see	Figure	6.3).

Figure	6.3	Once	again	not	fused	at	the	hip.	ARC	can	deallocate

Thus	sayeth	the	ARC.

Strong	Reference	Cycles	in	Closures

An	important	point	in	this	chapter	about	closures	is	that	you	can	create	strong	reference
cycles	in	closures.	This	is	the	bottom	line:	If	you	have	a	closure	as	a	property	of	a	class,
and	that	closure	references	self,	then	you	have	a	strong	reference	cycle.	The	closure	can
reference	any	property	of	the	class.	Remember	that	closures	are	referenced	types,	so	a
reference	will	be	created.



You	need	to	run	the	next	example	in	a	project.	So	either	reopen	your	last	project	or	open	a
new	project	in	Xcode.	I	am	using	a	SpriteKit	game	setup	for	this	project.	In	the	view
controller,	you	alter	the	car	class	from	before.	You	also	use	a	new	keyword,	lazy,	so
that	you	can	use	self	within	the	closure.	Lazy	properties	do	not	get	evaluated	until	they
are	used.	Therefore,	by	marking	this	closure	as	lazy,	you	know	that	self	will	exist,	and
we	can	use	it.	You	will	often	use	lazy	when	there	are	values	that	you	want	to	use	that
will	not	be	available	until	after	initialization.	You	can	only	use	values	in	properties	that	are
available	before	initialization	unless	you	use	lazy.	The	lazy	keyword	is	evaluated	at
runtime,	if	it	is	even	used	at	all.	If	it	is	never	used,	it	is	never	evaluated.	Check	out	this
example:
Click	here	to	view	code	image

class	Car	{
				var	make:String
				var	model:String
				var	year:Int

				init(make:String,model:String,year:Int)	{
								self.make	=	make
								self.model	=	model
								self.year	=	year
								print(“INITTING	Car”)
				}

					lazy	var	fullName:()	->	String	=	{
								return	“\(self.year)	\(self.make)	\(self.model)”
				}

				deinit	{
								print(“DEINITTING	Car”)
				}
}

Here	you	have	created	a	closure	with	a	strong	reference	cycle.	You	can	now	initialize	this
class	and	attempt	to	deinitialize	it,	which	will	be	unsuccessful	because	of	the	strong
reference	cycle.	Because	you	are	using	SpriteKit,	you	can	do	this	in	the	viewDidLoad
function:
Click	here	to	view	code	image

override	func	viewDidLoad()	{
				super.viewDidLoad()
				var	car:Car?	=	Car(make:	“Ford”,	model:	“Taurus”,	year:	1997)
				print(car!.fullName())
				car	=	nil
}

Run	this	code	by	pressing	Command-R	or	by	selecting	Product,	Run.	You	should	see	that
everything	works	except	the	car	is	never	deinitialized.

To	prevent	strong	reference	cycles	for	closures,	you	define	a	capture	list	when	writing
your	closure.	You	create	these	in	the	same	way	that	you	create	weak	and	unowned
references	for	other	variables.	Creating	a	capture	list	allows	you	to	capture	different	class
instances	and	make	sure	they	are	no	longer	strongly	referenced.	You	can	mark	self	or
any	other	class	property	as	weak	or	unowned	to	allow	ARC	to	deallocate	instances	when
necessary.



To	fix	the	car	class	so	that	you	no	longer	have	a	strong	reference	cycle,	you	only	need	to
add	one	line	of	code,	shown	in	bold	in	the	following:
Click	here	to	view	code	image

class	Car	{
				var	make:String
				var	model:String
				var	year:Int

				init(make:String,model:String,year:Int)	{
								self.make	=	make
								self.model	=	model
								self.year	=	year
								print(“INITTING	Car”)
				}

					lazy	var	fullName:()	->	String	=	{
								[unowned	self]	in
								return	“\(self.year)	\(self.make)	\(self.model)”
				}

				deinit	{
								print(“DEINITTING	Car”)
				}
}

Now	if	you	run	this	code,	you	will	notice	that	the	car	class	is	properly	deinitialized.	You
can	add	multiple	properties	to	the	capture	list;	just	separate	them	using	commas.

Trailing	Closures
When	you	write	a	closure	as	a	parameter	of	a	function,	the	closure	is	often	the	last
parameter.	You	see	this	often	in	Objective-C	as	well	as	with	blocks.	In	Objective-C,	you
write	something	like	this	when	animating:
Click	here	to	view	code	image

[UIView	animateWithDuration:1.50	delay:0
options:(UIViewAnimationOptionCurveEaseOut|
UIViewAnimationOptionBeginFromCurrentState)
animations:^{
				//do	animations	here.
}];

Notice	that	this	function	takes	two	blocks,	and	you	have	one	block	at	the	end.	You	could
write	the	last	block	as	a	trailing	closure.	This	means	you	could	write	the	closure	outside
the	function’s	closing	parentheses.	You	could	rewrite	the	last	function	in	Swift	like	so:
Click	here	to	view	code	image

UIView.animateWithDuration(1.50)	{
				//	do	animations	here.
}

Here	you	take	advantage	of	the	capability	to	write	closures	outside	functions.	Without
using	the	trailing	closure,	the	preceding	call	would	look	like	this:
Click	here	to	view	code	image

UIView.animateWithDuration(1.50,	animations:	{
				//	do	animations	here.
})



You	don’t	have	to	write	animations:	explicitly	with	the	trailing	version	because	Swift
automatically	knows	that	animations	is	the	last	parameter	and	it	is	a	closure.	This
makes	your	code	cleaner	because	you	don’t	have	to	keep	track	of	the	closing	parentheses,
and	it	also	means	less	writing	for	you.	Furthermore,	in	certain	situations,	you	can	even	do
away	with	the	parentheses.	If	the	closure	is	the	function’s	only	argument,	you	need	not
include	the	parentheses	at	all.	For	example,	say	that	you	have	a	function	like	this	that	takes
only	one	argument:
Click	here	to	view	code	image

func	gimmeAClosure(yumClosures:()->())	{
		//some	good	stuff	goes	here
}

Then	when	you	call	this	function,	you	don’t	need	to	include	the	parentheses	at	all:
gimmeAClosure	{
				//some	closure	stuff
}

Note

This	is	superconvenient	but	it	could	have	been	potentially	confusing	if	you	had
never	read	that	you	can	call	functions	and	pass	in	closures	without	parentheses.	If
you	had	run	into	this	syntax	while	examining	someone’s	code,	you	might	have
found	yourself	a	tad	confused.

Summary
In	this	chapter	you	have	learned	how	closures	work—how	they	“enclose”	values	in	their
context.	You	have	learned	that	Swift	provides	specific	closure	syntax	for	writing	them.
Closures	in	the	wild	can	be	confusing	if	you	aren’t	used	to	all	the	syntactic	possibilities.	In
this	chapter	you	have	learned	pretty	much	everything	you	might	wind	up	running	into.

Often	when	learning	a	new	language,	you	find	yourself	trying	to	relate	bits	and	pieces	to
other	languages	you	already	know.	When	converting	Objective-C	to	Swift	(which	you’re
sure	to	do	often),	you’ll	notice	that	you	can	directly	replace	blocks	with	closures.	When
replacing	them,	you	often	have	multiple	syntax	choices	that	can	make	your	writing	even
shorter.



7.	Creating	Your	Own	Syntax:	Subscripts	and	Advanced
Operators

Swift	is	such	a	powerful	language	that	it	allows	you	to	create	your	own	new	full-fledged
language.	You	will	hear	people	talk	about	writing	functional	Swift	and	writing	jQuery-like
Swift.	It	is	great	to	have	such	flexibility.	With	Swift	you	can	take	an	existing	syntax	and
apply	it	to	other	things.	For	example,	subscripts	allow	you	to	provide	functionality	to	the
square-brackets	notation.	What	you	do	with	that	square-brackets	notation	is	up	to	you.
You	can	provide	subscripts	for	enumerations,	structures,	and	classes.	You	can	use
subscripts	to	query	a	class	to	get	some	sort	of	information	back.

You	probably	know	subscripts	from	arrays	and	dictionaries.	You	use	subscripts	to	access
members	of	an	array	by	using	the	square-brackets	notation	(for	example,	myArray[5]	to
get	the	sixth	element	of	an	array).	You	use	the	square-brackets	notation	in	dictionaries	as
well	to	access	values	by	their	key.	In	both	arrays	and	dictionaries,	this	implementation	is
written	using	subscripts.	You	can	prove	this	by	looking	at	the	Swift	source	code.	I’ll	show
you	how	to	do	that	in	a	second.

With	advanced	operators,	you	have	the	ability	to	program	on	the	bit	and	byte	levels.	Swift
gives	you	basic	operators	as	well	as	advanced	operators—operators	like	the	bitwise	AND
operator,	which	combines	the	bits	of	two	numbers.

I	combined	subscripts	and	advanced	operators	in	one	chapter	because	Swift	allows	you	to
write	your	own	custom	operators.	This	is	obviously	all	a	part	of	the	master	plan	to
describe	your	own	custom	language	syntax.	Often	it’s	important	to	define	your	own
custom	operators	in	your	custom	classes,	structs,	and	enums.	Think	of	the	custom	Car
class	you	have	been	using	in	other	chapters.	How	would	you	add	two	cars	together	with
the	standard	+	operator?	One	thing	is	for	sure:	Swift	doesn’t	know	how	to	add	two	cars
together	for	you.	You	have	to	tell	Swift	how	to	do	this.	And	to	do	that,	you	need	to	define
your	own	custom	syntax	for	writing	Swift.

Writing	Your	First	Subscript
To	create	a	subscript,	you	use	the	keyword	subscript	in	your	class,	struct,	or	enum.	A
basic	subscript	looks	like	this:
Click	here	to	view	code	image

class	Hand	{
				let	fingers	=	[“thumb”,“index”,“middle”,“ring”,“pinky”]
				subscript(i:Int)	->	String{
								return	fingers[i]
				}
}
let	hand	=	Hand()
print(“I	had	to	use	my	\(hand[2])	finger	on	the	way	into	work	today.”)

Here	you	are	creating	a	class	called	Hand,	which	has	five	fingers.	You	can	access	each
finger	by	index.	After	you	create	a	new	instance	of	hand,	you	can	access	the	thumb	by
using	hand[0].	This	directly	accesses	the	fingers	array.	You	can	read	and	write	to



subscripts.	You	can	mark	them	as	read-only	or	read-write.	Currently,	the	hand/fingers
access	is	a	read-only	property.	To	make	it	writable,	you	have	to	tell	Swift,	like	this:
Click	here	to	view	code	image

class	Hand	{
				var	fingers	=	[“thumb”,“index”,“middle”,“ring”,“pinky”]
				subscript(i:Int)	->	String{
								get{
												return	fingers[i]
								}
								set{
												fingers[i]	=	newValue
								}
				}
}
let	hand	=	Hand()
//Not	everyone	calls	it	a	pinky.	Let’s	rename	it	to	pinkie.
hand[4]	=	“pinkie”
print(“I	use	my	\(hand[4])	when	I	drink	tea.”)

You	tell	the	subscript	that	you	want	it	to	be	readable	and	writable	by	adding	the	get	and
set	properties	to	it.	You	access	the	finger	of	the	hand	by	using	the	getter.	You	have	to
explicitly	write	a	getter	for	this	subscript	because	you	are	adding	a	setter	as	well.	If	you
are	making	a	property	read-only,	you	can	leave	out	the	getter	because	it	is	implied.	Now
with	the	setter,	you	are	able	to	rename	one	of	the	fingers	of	the	hand.	You	rename	the
pinky	to	pinkie.	Now	when	you	print	the	sentence,	it	says	“I	use	my	pinkie	when	I	drink
tea”	instead	of	“I	use	my	pinky	when	I	drink	tea.”	But	you	don’t	have	to	just	use	integers,
and	you	don’t	have	to	return	integers,	either.	You	can	use	this	subscript	notation	however
you	would	like.

Let’s	take	a	look	at	the	implementation	of	a	Swift	array	and	how	it	uses	subscripts	to
access	elements	of	the	array.	To	do	this,	you	can	type	the	following	into	the	playground:

let	a:Array<String>	=	[]

This	declares	an	array	using	the	more	verbose	syntax.	You	can	now	hold	down	the
Command	key	on	your	keyboard	and	click	the	word	Array.	The	actual	implementation
of	the	array	is	not	included	in	the	source	code,	but	you	can	see	a	skeleton	of	how	it	was
declared.	You	should	see	something	like	this:
Click	here	to	view	code	image

subscript	(subRange:	Range<Int>)	->	Slice<T>

This	allows	you	to	access	elements	of	an	array	by	using	a	range.	You	can	see	that	the
range	must	be	made	up	of	integers.	This	looks	as	though	it’s	probably	only	a	getter	and
does	not	include	a	setter	as	well.

You	can	use	subscripts	for	many	things.	But	you	should	think	about	their	proper	use.	For
example,	you	could	use	a	subscript	to	mess	around	with	a	String:
Click	here	to	view	code	image

class	Candianizer{
				subscript(sentence:String)	->	String	{
								return	sentence	+	”	ay!”
				}
}



var	candianizer	=	Candianizer()
candianizer[“Today	is	a	good	day”]	//Today	is	a	good	day	ay!

In	my	opinion,	this	is	not	a	good	use	of	a	subscript.	Even	though	you	can	use	subscripts
this	way,	you	generally	use	them	to	find	elements	of	a	collection,	list,	or	sequence.	But
you	can	implement	a	subscript	however	you	find	most	appropriate.	In	the	preceding
example	you	might	be	better	off	using	a	function	for	candianizer.

Dictionaries	use	subscripts	to	set	and	get	values	for	particular	instances.	You	can	use
subscripts	to	set	a	value,	like	so:
Click	here	to	view	code	image

var	beethovenByOpus	=	[67:“Symphony	No.	5”,
				53:“Waldstein”,
				21:“Symphony	No.	1	in	C	major”]
beethovenByOpus[67]

In	this	example,	you	create	a	dictionary	to	get	some	of	Beethoven’s	works,	by	opus.	Now
you	can	access	the	works	by	using	the	subscript	syntax.	In	this	example,
beethovenByOpus[67]	prints	"Symphony	No.	5".

Dictionaries	are	made	up	of	key/value	pairs.	In	this	example,	the	key	is	67	and	the	value
is	"Symphony	No.	5".	Now	the	dictionary	has	the	type	Int:String.	You	could
create	a	dictionary	because	you	know	exactly	what	you	need,	but	you	first	need	to	learn
about	generics.	After	you	get	generics	down,	you	can	give	it	a	whirl.	For	now,	you	should
know	that	for	dictionaries,	a	subscript	is	both	a	getter	and	a	setter.	You	can	make
subscripts	deal	with	any	input	types,	and	they	can	use	any	type	for	return	values	as	well.
However,	you	cannot	use	inout	parameters,	but	you	can	use	multiple	parameters	to	grab
any	values	you	want.

Here	is	an	example	of	creating	a	multidimensional	array	for	a	level	of	a	game.	In	this
example,	you	use	the	subscript	syntax	to	grab	a	specific	block	from	the	game:
Click	here	to	view	code	image

class	Level	{
				//[Array<Int>]
				var	map	=	[[0,0,0,1,1],
																[1,1,1,0,0],
																[1,1,1,0,1]]
				subscript(row:Int,col:Int)	->	Int	{
								return	map[row][col]
				}
}
var	level1	=	Level()
level1[0,4]

It	is	common	to	use	multidimensional	arrays	to	store	game-level	data.	If	you	are	making	a
tile-based	game,	maybe	the	0s	are	walkable	ground,	and	the	1s	are	nonwalkable	walls.	Say
that	you	want	an	easy	way	to	grab	a	specific	tile.	Normally,	if	you	wanted	to	grab	the	first
tile	in	the	first	row,	you	would	use	something	like	this:

level1.map[0][0]

This	works	well.	But	you	can	make	the	syntax	even	nicer	by	creating	a	subscript	to	grab
the	row	and	column	right	from	the	level:

level1[0,0]



Now	you	get	back	the	tile	straight	from	the	level	instead	of	having	to	access	the	map.	The
really	great	thing	about	this	is	that	you	could	add	in	error	checking	to	make	sure	the	block
exists	before	you	try	to	access	it.	Also,	this	map	should	be	read-only.	You	could	add	that	at
the	subscript	level,	like	this:
Click	here	to	view	code	image

struct	Level	{
				//[Array<Int>]
				var	map	=	[[0,0,0,1,1],
																[1,1,1,0,0],
																[1,1,1,0,1]]
				func	rowIsValid(row:Int)	->	Bool	{
								return	row	<	map.count
				}
				func	colIsValid(row:Int,col:Int)	->	Bool	{
								return	col	<	map[row].count
				}
				subscript(row:Int,col:Int)	->	Int	{
								get{
												assert(rowIsValid(row),	“Row	does	not	exist”)
												assert(colIsValid(row,col:	col),	“Column	does	not	exist”)
												return	map[row][col]
								}
				}
}
var	level1	=	Level()

Check	out	what	happens	here:	It’s	supercool.	You	use	Swift’s	assert	method	to	check
the	validity	of	the	game-level	data	you	are	trying	to	get.	You	have	to	send	assert	a
Bool	to	say	true	(meaning	yes,	it	is	legit)	or	false	(meaning	no,	it	is	not	legit).	You
make	rowIsValid	and	colIsValid	functions	to	do	that	checking	for	you.	The	good
thing	about	this	is	that	if	the	user	enters	a	row	that	is	too	high	or	a	column	that	is	too	high,
he	will	get	an	error	message	that	is	geared	toward	game-level	data.	Also,	the	user	cannot
set	the	game-level	data	directly	but	would	have	to	go	through	the	map,	which	you	could
set	to	be	private.

That’s	all	you	need	to	know	about	subscripts	for	right	now.	It’s	all	about	the	way	that	you
want	to	implement	them.

Next	we	will	talk	about	advanced	operators	and	why	it	is	still	important	to	know	how	to
code	on	the	bit	level.

Bits	and	Bytes	with	Advanced	Operators
Everything	you	do	on	computers	boils	down	to	bits	and	bytes,	and	it’s	important	to	be	able
to	understand	things	on	that	level.	Even	though	this	seems	like	an	old-school	idea,	it	has
many	real-world	and	even	future	implications.	For	example,	if	you	want	to	write	code	to
connect	to	a	Bluetooth	low-energy	device,	such	as	a	heart-rate	monitor,	then	you	need	to
look	at	the	Bluetooth	specifications	for	such	devices	(see
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?
u=org.bluetooth.characteristic.heart_rate_measurement.xml).	Notice	that	to	be	able	to	get
the	heart	rate	out	of	the	data	from	the	Bluetooth	device,	you	need	to	grab	specific	bytes
and	bits.	This	is	a	current	technology	and	is	growing	with	the	presence	of	iBeacons.

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml


This	doesn’t	apply	to	just	Bluetooth,	either;	another	good	example	is	file	specifications.	If
you	ever	want	to	create	a	binary	file	specification	or	read	a	binary	file,	you	need	to	know
where	different	information	is	going	to	be	in	bytes	of	the	file.	Take	the	Photoshop	file
specification	(see	www.adobe.com/devnet-apps/photoshop/fileformatashtml/).	Notice	that
it	tells	you	exactly	where	to	look	in	the	file	and	how	much	data	to	grab.	For	example,	the
header	info	tells	you	that	the	length	is	4	and	the	content	should	always	equal	8BPS.	This	is
an	identifier	for	the	file.	If	you	read	those	first	few	bits	of	a	Photoshop	file,	it	should	say
8BPS.	This	is	similar	to	when	you	get	a	box	of	animal	crackers	that	reads	“Do	not	eat	if
seal	is	broken.”	(For	me	it’s	always	the	giraffe	that’s	broken,	maybe	because	of	its	tall
stature	and	long	neck.)	Don’t	assume	that	it’s	a	Photoshop	file	unless	it	has	that	signature
at	the	beginning.

It’s	important	to	note	that	in	Swift	you	can	represent	binary	with	a	0b	prefix,	in	the	same
way	that	you	write	hex	with	a	0x	prefix.	Also,	a	great	little	trick	for	binary	on	a	Mac	is	to
open	up	the	built-in	calculator.	When	in	the	calculator,	you	can	then	choose	View,
Programmer	to	see	binary	representations	of	numbers.	For	example,	in	decimal,
0b00001111	is	15	(because	1	+	2	+	4	+	8	=	15;	see	Figure	7.1).

Figure	7.1	Each	bit	is	represented	by	a	square	and	can	have	a	value	of	either	0	or	1

Notice	that	there	are	8	bits	here,	and	all	8	bits	together	represents	1	byte.	For	our	purposes
we	are	going	to	read	the	bits	from	right	to	left.	Each	bit	(from	right	to	left)	is	worth	double
what	the	last	was	worth.	To	find	out	what	the	whole	thing	is	worth,	you	add	the	value
listed	below	(values	are	listed	in	the	arrow	below	each	bit	in	Figure	7.1)	only	if	the	bit	(the
value	in	the	square)	is	1.	If	the	value	is	0	you	do	not	add	the	value	of	the	bit.	After	you
have	the	value	by	calculating	the	8	bits,	you	can	perform	different	operations	on	them.
Each	of	these	operators	is	going	to	do	something	to	the	8	bits	of	the	byte.	Some	will	shift
the	bytes	and	others	will	eliminate	bytes.	In	the	end	you	are	left	with	8	bits,	which
represent	a	byte,	which	can	be	translated	into	letters,	numbers,	or	other	stuff	(it	could	be
an	individual	pixel	for	a	.png	file).	As	we	said	before	in	the	case	of	the	Photoshop	file,
we	could	be	looking	for	8BPS	to	appear	in	the	beginning	of	the	file.	Other	file	types	have
different	signatures.	The	first	advanced	operator	is	bitwise	NOT.

http://www.adobe.com/devnet-apps/photoshop/fileformatashtml/


Bitwise	
You	use	the	bitwise	NOT	operator	when	you	want	to	invert	all	the	bits.	You	write	the
bitwise	NOT	as	a	tilde	(~).	If	you	invert	0b00001111,	you	get	0b11110000,	which	is
240.	You	can	try	this	out	in	the	playground.	You	represent	the	8	bits	as	1	byte	by	using
UInt8.	The	8	in	UInt8	stands	for	the	number	of	bits.	UInt8	represents	1	byte	because
it	has	8	bits	available	to	store	things.	This	means	you	have	values	from	1	to	255	available
to	you	with	UInt8.	This	is	the	case	because	if	you	make	all	8	bits	set	to	1,	then
0b11111111	is	equal	to	255.	If	you	use	UInt16,	then	you	have	16	bits	available	to
you,	and	your	max	value	is	much	larger,	at	65,535.	You	can	try	this	out	in	the	calculator	as
we	mentioned	in	the	preceding	section.

Let’s	get	back	to	inverting	bits,	which	you	could	do	by	first	assigning	your	binary	value	to
a	variable	and	then	inverting	it.	Using	bitwise	NOT	takes	everything	that	was	a	1	and
makes	it	a	0	and	everything	that	was	a	0	and	makes	it	a	1	(see	Figure	7.2).

Figure	7.2	Inverting	bits	with	bitwise	not

Let’s	write	some	code	that	actually	inverts	some	bits.
Click	here	to	view	code	image

var	b:UInt8	=	0b00001111	//	15
~b	//	240

In	this	example	we	created	the	number	15	represented	in	bits.	We	assigned	it	to	a	variable
that	is	of	type	UInt8	so	we	could	store	those	8	bits	in	the	perfect	container	for	it.	You
inverted	it	with	the	tilde	(~)	and	you	got	back	240	because	0b00001111	inverted	is
0b11110000	(128	+	64	+	32	+	16	=	240).

Bitwise	
Bitwise	AND	is	represented	by	a	single	ampersand:	&.	Whereas	bitwise	NOT	inverts	all	the
bits,	bitwise	AND	changes	the	bits	only	if	both	bits	are	1s.	For	example,	say	that	you	have
something	like	what’s	shown	in	Figure	7.3.



Figure	7.3	Performing	a	bitwise	AND	on	two	bytes

In	this	example,	the	result	of	the	bitwise	AND	combination	is	0	because	there	is	no	place
where	both	bit	1	and	bit	2	contain	1s	in	the	same	slot.	You	could	code	this	example	like	so:
Click	here	to	view	code	image

var	a:UInt8	=	0b10101010	//170
var	b:UInt8	=	0b01010101	//85
a&b	//0

Figure	7.4	shows	another	example	of	a	bitwise	AND	combination	that	has	some	positive
results.

Figure	7.4	Another	bitwise	AND	with	more	positive	results

In	this	example,	bits	of	the	top	byte	(all	the	bits	of	the	first	byte)	contain	1s	where	the	bits
of	the	bottom	byte	(bit	2)	also	do,	so	the	result	has	some	positive	results—in	spots	2,	4,
and	7	from	the	left.	In	the	playground,	you	could	write	this	example	like	so:
Click	here	to	view	code	image

var	a:UInt8	=	0b11111010	//250
var	b:UInt8	=	0b01010111	//87
a&b	//82

Bitwise	
Bitwise	OR	is	written	using	a	single	pipe:	|.	Whereas	bitwise	AND	returns	the	new	number
if	both	bits	are	set	to	1,	bitwise	OR	returns	the	new	number	if	either	bit	is	equal	to	1	(see
Figure	7.5).



Figure	7.5	Performing	a	bitwise	OR	on	two	bytes	with	the	result	in	the	middle

When	you	use	the	bitwise	OR	operator,	the	result	is	all	1s	(255).	You	can	try	this	out	with
code	like	so:
Click	here	to	view	code	image

var	a:UInt8	=	0b11111010	//250
var	b:UInt8	=	0b01010111	//87
a|b	//255

Figure	7.6	shows	another	example	in	which	both	inputs	are	0,	so	the	resulting	bit	is	0	also.

Figure	7.6	Another	bitwise	OR	comparing	two	bytes

You	could	write	this	comparison	as	follows:
Click	here	to	view	code	image

var	a:UInt8	=	0b11010010	//210
var	b:UInt8	=	0b01010110	//86
a|b	//214

Bitwise	
Otherwise	known	as	the	exclusive	OR	operator,	written	as	^,	bitwise	XOR	compares	two
inputs	and	returns	1	when	the	two	inputs	are	different	(see	Figure	7.7).



Figure	7.7	Performing	a	bitwise	XOR	on	two	bytes	(one	on	top	and	one	on	bottom)

Notice	in	this	example	that	only	the	comparisons	in	which	input	1	and	input	2	are	different
result	in	a	1.	Matching	1s	(1	and	1)	returns	0,	and	matching	0s	(0	and	0)	returns	0.

Shifting	Bits
You	can	take	the	8	bits	of	a	byte	and	shift	them	all	to	the	left	or	to	the	right.	You	can	do
this	using	the	bitwise	left	shift	operator	(<<)	or	the	bitwise	right	shift	operator	(>>).
Notice	in	Figure	7.8	how	each	shift	is	in	its	own	box.	You	are	essentially	moving	a	bit	to
the	next	box	over.

Figure	7.8	Shifting	bits	to	the	left

You	could	write	this	in	code	like	so:
var	a:UInt8	=	0b01010101	//85
a	<<	1	//170

Notice	that	this	bitwise	left	shift	had	the	effect	of	doubling	the	integer.	Doing	a	bitwise
right	shift,	on	the	other	hand,	halves	the	number:

var	a:UInt8	=	0b01010101	//85
a	>>	1	//42

Notice	that	because	you	are	working	with	integers	and	not	floating-point	numbers,	you
end	up	with	42	and	not	42.5.	Also	notice	that	if	1	was	the	leftmost	bit,	this	does	not
necessarily	multiply	it	by	2.	This	is	because	the	first	1	winds	up	getting	discarded	when	it
moves	off	the	left	(see	Figure	7.9).	Here	is	an	example	of	the	1	getting	discarded:
Click	here	to	view	code	image

var	a:UInt8	=	0b11010101	//213
a	<<	1	//170



Figure	7.9	Shifting	bits

Any	bits	that	are	moved	outside	the	bits	of	the	integer	are	thrown	away.	Also	note	that
when	a	new	space	is	created,	as	in	Figure	7.9,	a	0	is	inserted.	This	method	is	known	as
logical	shifting.

,	and	So	On
There	is	a	difference	between	signed	and	unsigned	types.	It	has	nothing	to	do	with
autographs.	When	you	have	a	signed	type,	it	can	be	positive	or	negative.	The	types	that
start	with	Int	are	signed	and	can	be	either	negative	or	positive.	How	does	Swift	represent
a	negative	value	in	8	bits	internally?	The	leftmost	bit	says	whether	the	number	is	positive
or	negative.	This	is	how	it	is	represented	internally.	A	1	as	the	first	bit	means	the	Int	is
negative,	and	a	0	means	positive.	Any	of	the	types	that	are	Ints	(Int8,	Int16,	Int32,
and	so	on)	use	the	first	bit	to	say	whether	the	number	is	negative	or	positive.	If	Int8	has
8	bits	available,	it	now	has	7	to	represent	the	number	and	1	to	represent	the	sign	(see
Figure	7.10).	UInts	(unsigned	integers)	don’t	do	this.	For	example,	the	max	value	of
UInt8	is	255,	and	the	max	value	of	Int8	is	127.	The	leftmost	bit	was	worth	128	so	255
–	128	and	you	are	left	with	127.

Figure	7.10	A	signed	byte:	the	Int8

In	code,	however,	you	can	represent	–4	in	binary	like	so:
var	a:Int8	=	-0b100

Value	Overflow	and	Underflow
If	you	try	to	fit	too	much	into	an	Int	that	cannot	handle	it,	you	get	an	error.	For	example,
the	max	for	an	Int32	is	2,147,483,647.	You	don’t	have	to	do	math	to	figure	this	out.	You
can	figure	it	out	like	this:
Click	here	to	view	code	image

Int32.max	//	2,147,483,647
Int32.min	//	-2,147,483,647
Int16.max	//	32,767
//	etc….
var	a:Int32	=	2_147_483_649	//	ERROR:	integer	literal	overflows



//	when	stored	into	‘Int32’

In	this	case,	Int32	is	not	big	enough	to	hold	the	number	you	tried	to	assign	it.	It	is	a	little
too	large	(the	max	is	2,147,483,647	and	you	tried	to	use	2,147,483,649),	and	you	get	an
error.	It	isn’t	always	desirable	or	necessary	to	get	an	error.	You	can	use	value	overflow	and
value	underflow	to	fix	this.	When	you	reach	the	max	value	of	an	Int,	and	you	add	one
more,	value	overflow	causes	the	Int	to	circle	back	around	to	the	minimum	value.	Let’s
watch	that	Int	circle	back	around:

var	a:Int32	=	2_147_483_647
a	&+	1	//	-2,147,483,648

This	would	normally	cause	an	error,	but	instead	it	loops	around	to	the	minimum	value	of
the	Int.	The	opposite	happens	when	you	use	value	underflow.	If	you	are	at	the	minimum
of	an	Int	and	you	subtract	1,	in	order	to	not	get	an	error,	you	must	use	value	underflow,
like	this:

var	a:UInt8	=	0
a	&-	1	//	255

This	would	normally	throw	an	error,	but	instead	it	loops	back	around	to	the	max	value	of	a
UInt8.	We	use	that	ampersand	to	say	we	want	value	underflow	and	value	overflow.

Customizing	Operators
Think	about	the	custom	Car	class	you’ve	been	working	with	in	this	book.	It	has	a	name,
and	you	could	easily	add	a	price	to	it.	What	happens	if	you	want	to	add	two	cars	together?
Swift	does	not	know	how	to	do	this,	so	you	need	to	tell	it	how.	You	might	want	to	combine
cars	by	name	or	by	price,	or	you	might	want	to	do	something	else.

You	can	overload	(that	is,	tell	the	operators	to	do	something	else)	all	the	operators	in	Swift
to	do	what	you	would	expect	for	your	custom	types.

In	the	case	of	the	custom	Car	class,	you	have	to	tell	Swift	how	to	add	these	two	things
together.	Here	is	a	full	example	of	how	you	can	define	your	own	equality	operator	to	see
whether	two	“ingredients”	are	equal:
Click	here	to	view	code	image

enum	DrinkType:UInt8	{
				case	Cognac	=	1,	Bitters,	Gin,	Dry_Vermouth,	Absolut
}
struct	Ingredient:Equatable	{
				var	quantity	=	0.0
				var	type:DrinkType	=	.Cognac
}
func	==	(a:Ingredient,b:Ingredient)	->	Bool	{
				if	a.quantity	==	b.quantity	{
								if	a.type	==	b.type	{
												return	true
								}
				}
				return	false
}

var	someGin	=	Ingredient(quantity:	2.5,	type:	.Gin)
var	someDryVermouth	=	Ingredient(quantity:	0.5,type:	.Dry_Vermouth)



var	someAbsolut	=	Ingredient(quantity:	2.5,	type:	.Absolut)

var	dryMartini	=	[someGin,someDryVermouth]
var	absolutGibson	=	[someAbsolut,someDryVermouth]
var	availableDrinks	=	[“Dry	Martini”:dryMartini,“Absolute
Gibson”:absolutGibson]

class	Drink	{
				var	contents	=	[Ingredient]()

				func	serveIt()	->	String	{
								for	(key,value)	in	availableDrinks	{
												if	contents	==	value	{
																return	“Serving	\(key)”
												}
								}
								return	“Drink	not	available.”
				}
}
var	drink	=	Drink()
drink.contents.append(someGin)
drink.contents.append(someDryVermouth)
drink.serveIt()

This	is	quite	a	significant	example,	but	I	want	to	make	sure	you	get	the	gist	of	why	you
have	to	define	your	own	operators.	In	this	example,	you	define	a	bunch	of	ingredients	for
drinks	in	an	enum.	You	create	an	Ingredient	structure	so	that	you	can	give	a	quantity
and	drink	type.	Now	when	you	have	those	quantities	and	drink	types	together,	you	cannot
compare	them	using	==.	Try	it	out.	It	will	not	work	because	you	need	to	first	say	that	the
struct	itself	is	Equatable.	What	this	really	means	is	that	it	can	be	used	for	comparison
with	a	==	operator.	Without	marking	the	struct	as	equatable	(you	should	try	this),	you	get
an	error	when	you	try	to	compare	two	ingredients.

When	the	Ingredient	is	Equatable,	you	have	to	define	how	you	are	going	to
compare	two	ingredients.	What	you	really	want	here	is	to	make	sure	the	quantity	and	type
are	the	same.	You	make	a	global	==	function	to	define	what	happens	when	you	compare
two	ingredients.	You	make	it	global	because	that’s	the	way	that	Swift	works.	Don’t	worry:
You	can	define	as	many	of	those	==	functions	as	you	need,	as	long	as	you	are	comparing
something	other	than	ingredients.	That	will	make	the	method	signature	different—and	it
will	make	it	legit.

Now	you	can	create	a	new	drink	by	using	the	Drink	class,	and	you	can	try	to	serve	the
drink.	Swift	is	able	to	loop	through	the	dictionary	of	available	drinks	and	compare	its
current	drink	contents	to	see	whether	it	matches	a	recipe	for	another	type	of	drink.	This
example	can	compare	only	two	ingredients	because	that	is	the	functionality	you	wrote.
You	could	also	create	other	operators	for	this	struct	as	well.	Such	operators	are	called
binary	operators	because	they	take	two	parameters,	one	on	each	side	of	the	operator	(for
example,	a	==	b).	You	can	also	create	unary	operators,	which	operate	on	only	one	side
(for	example,	-a	or	a++).	When	the	operator	is	on	the	left,	it	is	called	a	prefix	unary
operator,	and	on	the	right	it	is	a	postfix	unary	operator.	You	could	define	these	for	your
Ingredient	class	to	increase	the	quantity	of	the	ingredient	by	1.	Here’s	how	you	write
that	function,	which	you	can	add	right	below	your	==	function:
Click	here	to	view	code	image



postfix	func	++	(inout	a:Ingredient)	->	Ingredient	{
				a.quantity	+=	1
				return	a
}
var	someGin	=	Ingredient(quantity:	2.5,	type:	.Gin)
someGin++

Now	you	can	create	an	ingredient	and	increment	its	quantity	by	1.	In	this	case	you	are
using	a	postfix	operator	because	you	put	the	operator	after	the	instance	of	the	struct.	You
use	inout	because	you	want	to	modify	the	object	itself.	Usually	with	these	unary
operators,	you	use	an	inout	parameter.	Also	note	that	if	you	define	multiple	binary	and
unary	operators,	you	can	use	them	within	each	other’s	definitions.	For	example,	if	you
defined	a	binary	addition	operator,	you	could	use	it	to	increase	the	quantity	for	the
definition	of	the	++	operator.

The	only	operators	you	can’t	redefine	are	the	assignment	and	ternary	operators	(that	is,	a
=	b	and	c	?	d	:	e).	That	one	with	the	question	mark	is	the	ternary	operator.

Making	Your	Own	Operators
In	addition	to	redefining	operators,	you	can	make	your	own.	Custom	operators	can	start
with	these	characters:

/	=	-	+	*	%	<	>	!	&	|	^	.	~

They	can	also	start	with	Unicode	math,	symbol,	arrow,	dingbat,	and	line/box	drawing
characters.	All	characters	after	the	first	one	can	be	any	of	the	preceding	characters	and/or
Unicode	characters.	In	this	section,	you’ll	define	the	binary	~<*^*>~	operator,	just	to	be
extreme.	(This	arm-flailing-starry-eyed-looking-up	operator	won’t	do	anything	impressive
or	useful.)

To	define	an	operator,	you	must	use	the	keyword	operator	and	define	it	as	prefix,
infix,	or	postfix,	like	this:

infix	operator	~<*^*>~	{}

Here	you	are	bringing	the	operator	into	existence.	You	haven’t	actually	defined	what	it
does	yet.

Next,	you	define	what	the	operator	does.	Note	that	because	you	use	sqrt	here,	you	need
to	import	UIKit:
Click	here	to	view	code	image

func	~<*^*>~	(a:Ingredient,b:Ingredient)	->	Ingredient	{
				let	c	=	sqrt(a.quantity)
				let	d	=	sqrt(b.quantity)
				let	e	=	pow(c,	d)
				return	Ingredient(quantity:	e,	type:	a.type)
}
var	someDryVermouth	=	Ingredient(quantity:	0.5,type:	.Dry_Vermouth)
var	someAbsolut	=	Ingredient(quantity:	2.5,	type:	.Absolut)
var	newIng	=	someDryVermouth	~<*^*>~	someAbsolut
newIng.quantity	//0.578115871271409

What	the	operator	actually	does	is	up	to	you.	At	this	point,	the	new	operator	is	completely
useless,	but	you	can	see	that	you	can	really	name	your	operators	however	you	like.



You	have	three	options	when	creating	operators:	infix,	prefix,	and	postfix	operators.	An
infix	operator	has	arguments	on	both	sides	of	the	operator,	and	the	operator	you	just	made
is	an	example	of	this	type.	A	prefix	operator	is	placed	before	the	argument.	Here’s	an
example	of	this:
Click	here	to	view	code	image

prefix	operator	–	{}
prefix	func	–	(inout	a:Ingredient)	->	Ingredient	{
				a.quantity	-=	2
				return	a
}
–someGin

Here	you	are	creating	a	triple-minus	decrement,	which	will	subtract	not	1	but	2.	It	is	a
prefix	operator	because	you	write	the	triple	minus	before	the	variable.

A	postfix	operator	is	used	after	the	variable.	Here’s	an	example	of	a	custom	postfix
operator:
Click	here	to	view	code	image

postfix	operator	+++	{}
postfix	func	+++	(inout	a:Ingredient)	->	Ingredient	{
				a.quantity	+=	2
				return	a
}
someGin+++

Here	you	are	creating	a	triple-plus	increment,	which	will	add	not	1	but	2.	It	is	a	postfix
operator	because	you	write	the	triple	plus	before	the	variable.

Bits	and	Bytes	in	Real	Life
In	this	section,	you	are	going	to	pull	in	a	file	and	read	its	bits	and	bytes.	You	should	be
able	to	decode	the	file	according	to	the	specifications.	Let’s	see	what	you	can	do	with	it.	If
you	are	using	a	Mac,	you	already	have	Python	installed,	which	means	you	can	simply	start
a	local	web	server	without	installing	anything.	You	are	going	to	host	a	GIF	file	and	read	it
in.	You	can	use	any	GIF	you	want,	but	I	have	prepared	one	for	you	at
http://i.imgur.com/j74SykU.gif.

To	start	a	new	single-view	application,	follow	these	steps:

1.	Select	File,	New,	Project.

2.	Make	sure	IOS,	Application	is	selected	and	click	on	Single	View	Application.

3.	Set	Product	Name	to	GIFReader	and	make	sure	Language	is	set	to	Swift.

4.	Click	Next.

5.	On	the	Save	screen,	click	Create.	You	now	have	AppDelegate.swift,
Main.storyboard,	and	ViewController.swift.

6.	Open	ViewController.swift	and	edit	the	viewDidLoad	function,	like	this:
override	func	viewDidLoad()	{
				super.viewDidLoad()
				loadGIF()
}

http://i.imgur.com/j74SykU.gif


7.	Write	the	skeleton	for	the	loadGIF	function,	like	this:
func	loadGIF()	{

}

8.	Create	a	new	file	that	does	the	URL	requesting.	Call	it	Service.swift	and	add
the	following:

Click	here	to	view	code	image

import	UIKit

class	Service	{

				var	url	=	“http://i.imgur.com/j74SykU.gif”
				func	getGIF(callback:(NSData)->())	{
								request(url,callback:	callback)
				}
				func	request(url:String,callback:(NSData)->())	{
								let	nsURL	=	NSURL(string:	url)
								let	task	=	NSURLSession.sharedSession().dataTaskWithURL(nsURL!)	{
												(data,response,error)	in
												callback(data!)
								}
								task.resume()
				}
}

Here	you	create	a	generic	request	method	that	requests	any	data	from	any	URL	and
returns	that	data.	It	is	a	good	amount	of	code,	so	you	should	abstract	it	away.	You
use	NSURLSession.sharedSession().dataTaskWithURL(url)	to
grab	some	data	from	a	URL.	You	could	easily	modify	this	to	return	JSON	data	as
well.	If	you	were	writing	a	larger	app,	you	could	write	a	function	like	getPosts,
getComments,	or	getWhatever,	and	all	you	would	have	to	do	is	call
request(url,callback).

9.	Save	your	file	and	go	back	to	ViewController.swift.	Right	above	the
viewDidLoad	method,	as	the	first	line	in	the	class,	instantiate	your	service	so	you
can	use	it:
var	service	=	Service()

10.	In	your	new	loadGIF	function,	load	the	GIF:
Click	here	to	view	code	image

func	loadGIF()	{
				service.getGIF()	{
								(data)	in
								println(“Got	GIF:	\(data.length)”)
				}
}

11.	Notice	the	brevity	of	the	function	to	load	the	GIF.	You	have	abstracted	away	all	the
messy	loading	and	created	a	simple	closure	to	load	the	GIF.	You	should	now	have
the	entire	GIF	in	the	data	parameter,	which	is	of	type	NSData.	Now	the	bits	and
bytes	can	begin.	Test	your	app	by	running	it	with	Command-R.	You	should	see	a
trace	statement	saying	that	it	got	the	data	and	will	print	out	the	length.	(You	can
be	sure	it’s	the	right	length	if	you	inspect	the	real	file	with	Command-I.	When	I	did



this,	I	saw	that	it	was	1.97MB.	The	println	command	returned	"Got	PSD:
1978548"	for	me,	which	says	that	the	length	of	the	data	is	in	bytes.)

12.	Remove	println.	Now	you	need	to	take	each	byte	from	the	data	and	place	each
byte	into	an	array.	You	can	use	an	array	of	UInt8s	to	divide	everything	up	1	byte	at
a	time.	After	these	few	lines,	you	will	have	a	new	array	containing	1	byte	per	array
element.	It’s	not	always	useful	to	load	everything	into	memory,	but	the	point	of	this
example	is	to	show	you	how	to	work	with	bits	and	bytes.	You	will	use	the
getBytes	from	NSData,	and	you	will	provide	the	length	of	the	whole	thing.	In
real	life,	you	might	want	to	load	a	little	bit	at	a	time.	Hopefully	you	aren’t	using	a
300MB	GIF.	Change	your	code	like	so:

Click	here	to	view	code	image
func	loadGIF()	{
				service.getGIF()	{
								(data)	in
								var	bytes	=	[UInt8](count:data.length,	repeatedValue:0)
									data.getBytes(&bytes,	length:	data.length)
									print(bytes.count)
				}
}

Here	you	create	an	array	of	0	the	length	of	the	data.	Then	you	take	that	array	and
make	a	buffer	to	fill	with	the	data.	You	basically	pass	in	the	bytes	array	like	an
inout	parameter,	and	it	fills	it	up	with	the	right	bytes.	You	can	now	check	the	bits
and	bytes	to	see	whether	it	conforms	to	the	GIF	file	specifications.	That	isn’t	a
whole	lot	of	code,	and	most	of	it	loads	the	file.

However,	you	don’t	need	to	store	the	bytes	in	an	array.	Sometimes	you	will	need	to
do	this,	but	not	this	time.	There	are	even	easier	ways	to	read	the	data.	You	need	to
get	the	first	6	bytes	and	see	whether	they	are	equal	to	"GIF89a"	or	something	else.
You	can	do	that	with	one	line	of	code	by	rewriting	loadGIF():

Click	here	to	view	code	image
func	loadGIF()	{
				service.getGIF()	{
								(data)	in
										print(NSString(data:
data.subdataWithRange(NSMakeRange(0,	6)),	encoding:

NSUTF8StringEncoding))

				}
}

Here	you	use	NSString,	which	has	an	initializer	to	create	a	string	from	data.	You
don’t	want	all	the	data;	you	just	want	to	check	the	first	6	bytes,	so	you	use
NSMakeRange	to	create	a	range	from	0	to	6.	You	set	the	encoding	to
NSUTF8StringEncoding.	When	you	run	this,	the	console	should	say
"GIF89a"	(or	something	similar).	This	means	the	GIF	file	is	legit	because	version
numbers	as	of	July	10,	1990,	are	"87a"	for	May	1987	and	"89a"	for	July	1989.

13.	Get	the	width	and	height	of	the	file	at	bytes	7	and	8	and	at	bytes	9	and	10:
Click	here	to	view	code	image



func	loadGIF()	{
				service.getGIF()	{
								(data)	in
								var	current	=	0
								var	newCurrent	=	0
								print(NSString(data:	data.subdataWithRange(NSMakeRange(0,
6)),	encoding:	NSUTF8StringEncoding))
								current	=	6
								var	width	=	[UInt16](count:1,	repeatedValue:0)
								newCurrent	=	current	+	2
								data.getBytes(&width,	range:	NSMakeRange(current,	newCurrent))
								current	=	newCurrent
								print(width)
								var	height	=	[UInt16](count:1,	repeatedValue:0)
								newCurrent	=	current	+	2
								data.getBytes(&height,	range:	NSMakeRange(current,	newCurrent))
								current	=	newCurrent
								print(height)
				}
}

You	keep	track	of	where	the	current	byte	pointer	is.	Otherwise,	you	are	going	to
have	to	keep	a	count	in	your	head.	You	know	that	the	width	and	height	come	right
after	the	GIF	signature.	You	get	the	width	and	height	at	the	next	4	bytes,	with	2
bytes	each.	You	use	a	UInt16	to	represent	2	bytes.	Because	UInt8	represents	1
byte,	this	means	a	UInt32	will	represent	4	bytes.

14.	Now	you	need	to	find	out	whether	the	GIF	contains	a	global	color	table.	And	for
that	you	can	inspect	the	first	bit	of	the	next	byte:

Click	here	to	view	code	image
var	packed	=	[UInt8](count:1,	repeatedValue:0)
data.getBytes(&packed,	range:	NSMakeRange(current,	1))
var	hasGlobalColorTable	=	false
if	packed[0]	&	1	==	1	{
				//odd	first	bit	is	1
				hasGlobalColorTable	=	true
}
var	restOfLogicalScreenDescriptor	=	3
current	=	current	+	restOfLogicalScreenDescriptor
print(hasGlobalColorTable)

You	grab	the	next	byte	by	using	UInt8.	You	can	do	a	trick	to	find	whether	the	first
bit	is	a	0	or	a	1.	By	using	&	1,	you	can	see	whether	that	equals	1	and	therefore	the
first	bit	is	1.	You	also	need	to	take	into	account	the	rest	of	this	block.	You	add	3
more	bytes	to	account	for	the	rest	of	the	logical	screen	descriptor	since	you	are	not
using	it	right	now	anyway.

As	you	can	see,	a	lot	of	steps	are	involved	in	getting	all	the	data	out	of	a	GIF	file.	Here
you’ve	seen	the	gist	of	reading	binary	data	based	on	a	specification.	UInt8	represents	1
byte,	UInt16	represents	2	bytes,	and	so	on	and	so	forth.	Depending	on	your	next	size
step	in	the	specification,	you	can	grab	however	large	a	piece	you	need	(in	bytes).



Summary
In	this	chapter	you	have	learned	how	to	create	your	own	custom	syntax.	These	features	are
super-duper	powerful	and	can	be	combined	in	many	ways.	When	you	combine	them	with
trailing	closures	and	@autoclosures	(which	you	will	learn	about	in	Chapter	9,
“Becoming	More	Flexible:	Generics”),	the	possibilities	are	endless.	You	can	define	your
own	way	of	processing	data	with	your	own	custom	operators	using	your	own	custom
classes	made	of	ASCII	pandas	and	Hebrew	letters.	You	can,	technically,	use	the	subscript
syntax	however	you	want,	but	remember	that	with	great	power	comes	great	responsibility.
You	have	to	be	careful	not	to	use	them	as	functions	but	to	use	them	as	element	assessors.

You’ve	also	learned	in	this	chapter	that	generics	give	you	real	power.	You	can	now	apply
everything	from	this	chapter	and	the	previous	ones	to	create	your	own	dictionaries	and
custom	arrays.

In	this	chapter,	you’ve	also	learned	how	to	program	at	the	bit	level.	In	this	chapter	you’ve
learned	how	to	pull	data	from	a	URL	and	then	parse	it.	You	can	now	take	any	specification
and	parse	away,	and	you	can	also	create	your	own	specifications.



8.	Protocols

Protocols	are	at	the	heart	of	the	iOS	architecture;	they	are	first-class	paradigms,	right	up
there	with	classes	and	structs.	They	hold	a	special	place	because	they	are	the	backbone	of
design	patterns	such	as	delegates.	Delegates	are	heavily	used	in	iOS	for	notifying	the
programmer	when	application,	UI,	and	other	events	happen.	You	can	use	a	delegate	to
send	a	message	to	everyone	who	conforms	to	that	protocol.	When	you	use	a	protocol	and
all	of	its	offerings,	it	is	called	conforming	to	the	protocol.

Protocols	themselves	don’t	have	any	implementation	at	all—that	is,	you	don’t	really	write
code	in	protocols	that	does	stuff.	You	can	use	protocols	as	a	checklist	to	say	“I	need	you	to
write	the	following	methods	if	you	want	this	thing	to	work.”	Protocols	describe	what	must
be	implemented	and	what	that	implementation	should	look	like.	You	can	use	protocols
with	classes,	structures,	and	enumerations.	When	a	class,	a	struct,	or	an	enum	provides	the
functionality	described	in	the	protocol,	you	can	then	say	that	it	is	conforming	to	the
protocol.

Writing	Your	First	Protocol
To	create	a	protocol,	you	start	with	the	keyword	protocol	and	then	give	it	a	name,
followed	by	a	pair	of	curly	brackets.	A	basic	protocol	would	look	like	this:

protocol	MyProtocol	{
}

You	might	notice	that	this	newly	created	protocol	is	completely	empty.	Although	it	is
empty,	it	is	valid.	The	protocol	doesn’t	currently	have	any	functions	that	it	wants	you	to
conform	to,	but	you	can	provide	an	implementation	of	it	already.	You’ll	create	a	class	that
conforms	to	MyProtocol.	It	won’t	be	hard	to	conform	to	it	because	it	doesn’t	have	any
functions	to	conform	to	yet.	It’s	like	if	someone	gave	me	a	blank	shopping	list:	I	would
drive	to	the	supermarket	and,	when	I	got	there,	I	would	just	turn	around	because	there
would	be	nothing	to	get.	Here	is	the	implementation,	using	a	class:

class	MyClass:MyProtocol	{
}

The	way	you	tell	this	class	to	conform	to	the	protocol	is	the	same	way	you	tell	the	class	to
inherit	from	another	class:	You	just	use	the	colon	followed	by	the	name	of	the	protocol
you	want	implemented.	The	protocol	definition	goes	inside	the	curly	brackets.

Now	you	can	create	an	implementation	of	this	protocol.	This	protocol	does	not	create	any
requirements,	so	the	class	implementation	will	be	just	as	sparse	as	the	protocol:

protocol	MyProtocol	{

}

class	MyClass:MyProtocol	{

}

If	you	run	this	in	the	playground,	you	will	notice	that	there	are	no	errors.	However,	if	you
add	the	requirement	of	a	property	to	the	protocol,	like	this,	then	the	class	will	need	to



implement	it	as	well:
Click	here	to	view	code	image

protocol	MyProtocol	{
				var	someProp:String	{	get	set	}
}

class	MyClass:MyProtocol	{

}

Now	you’ll	get	an	error:
Click	here	to	view	code	image

type	‘MyClass’	does	not	conform	to	protocol	‘MyProtocol’
class	MyClass:MyProtocol	{
^
:3:9:	note:	protocol	requires	property	‘someProp’	with	type	‘String’
var	someProp:String	{	get	set	}
^

What	happened?	Now	you	are	saying	that	the	protocol	has	a	requirement:	A	property
called	someProp	must	be	a	getter	and	a	setter.	You	can	fix	this	error	by	giving	the	class
the	property	that	the	protocol	requires.	Here’s	how	you	do	it:
Click	here	to	view	code	image

protocol	MyProtocol	{
				var	someProp:String	{	get	set	}
}

class	MyClass:MyProtocol	{
				var	someProp:String	=	””
}

When	this	code	runs,	the	error	goes	away.	You	are	now	strictly	adhering	to	the
requirements	of	the	protocol.	That	is,	you	are	now	conforming	to	the	protocol.

Note

Notice	the	words	get	and	set.	In	this	case,	you	are	saying	that	someProp	can	be
read	(that’s	get)	and	written	to	(that’s	set).

Properties
This	is	a	good	time	to	talk	briefly	about	getters	and	setters	in	Swift.	In	Swift,	you	can	have
a	property	of	a	class	that	is	a	getter	or	a	setter	or	both.	To	see	how	this	works,	you’ll	create
a	class	called	Human,	and	then	you’ll	see	what	it	means	to	get	and	set	properties	of	that
class:

class	Human	{
				var	eyeColor	=	“#00FF00”
				var	heightInInches	=	68
				var	hairLengthInCM	=	2.54
				var	name	=	“Skip”
}

This	class	has	four	properties.	You	may	or	may	not	want	all	of	these	properties	to	be	able



to	be	rewritten.	For	example,	after	the	eye	color	is	set,	you	might	want	that	to	only	be	able
to	be	read	and	not	written	to.	There	are	also	other	details	you	can	get	from	these	properties
being	set.	For	example,	you	could	say	that	this	person’s	height	in	a	string	would	be
"medium".	You	can	use	computed	properties	for	this.

The	types	of	variables	you	have	been	writing	up	to	this	point	are	called	stored	properties.
You	can	either	have	a	variable	stored	property	or	a	constant	stored	property.	You	know
from	Chapter	1,	“Getting	Your	Feet	Wet:	Variables,	Constants,	and	Loops,”	that	you	use
the	keyword	var	to	signify	a	variable	stored	property	and	the	keyword	let	to	signify	a
constant	stored	property.	You	can	define	a	default	value	of	a	stored	property	when	you
declare	it	in	a	class,	a	struct,	or	an	enum.	You	did	this	in	the	Human	class	with	all	the
properties.	You	can	also	change	the	default	value	at	initialization.

In	addition	to	stored	properties,	there	are,	as	mentioned	earlier,	computed	properties.
Computed	properties	are	not	stored	values;	they	provide	instructions	to	Swift	on	how	to
compute	the	value	of	a	property.	They	are	used	to	set	and	get	other	stored	properties
indirectly.	You	can	provide	a	getter	and	optionally	a	setter,	as	shown	here:
Click	here	to	view	code	image

class	Human	{
				var	eyeColor	=	“#00FF00”
				var	heightInInches	=	68
				var	hairLengthInCM	=	2.54
				var	heightDescription:String	{
								get	{
												if	heightInInches	>=	92	{
																return	“tall”
												}	else	if	heightInInches	<=	30	{
																return	“short”
												}	else	{
																return	“medium”
												}
								}
				}
}

var	human	=	Human()
print(human.heightDescription)	//	medium

Here	you	create	a	height	description,	which	describes	the	height	of	a	human,	in	inches.
You	are	basing	this	height	on	the	heightInInches	property	of	the	Human.	You	can
create	a	setter	as	well	if	you	want	to	set	the	height	of	the	person	by	using	a	description.
Ideally,	you	would	create	an	enum	to	describe	the	different	heights	available,	but	for	this
example	you	can	just	use	Strings,	like	this:
Click	here	to	view	code	image

class	Human	{
				var	eyeColor	=	“#00FF00”
				var	heightInInches	=	68
				var	hairLengthInCM	=	2.54
				var	heightDescription:String	{
								get	{
												if	heightInInches	>=	92	{
																return	“tall”
												}	else	if	heightInInches	<=	50	{



																return	“short”
												}	else	{
																return	“medium”
												}
								}
								set	(newHeightDescription)	{
												if	newHeightDescription	==	“short”	{
																heightInInches	=	50
												}	else	if	newHeightDescription	==	“tall”	{
																heightInInches	=	92
												}	else	if	newHeightDescription	==	“medium”	{
																heightInInches	=	60
												}
								}
				}
}

var	human	=	Human()
print(human.heightDescription)
human.heightDescription	=	“short”

print(human.heightInInches)

Now	you	can	set	the	height	of	the	person	in	inches	by	using	a	String.	You	can	now	use
the	equal	sign	on	that	computed	property.	You	can	see	this	with	heightDescription,
where	you	use	the	equal	sign	to	set	the	height	description	as	a	String,	which	in	turn	sets
the	height	of	the	human,	in	inches.	Although	it	isn’t	the	most	accurate	way	of	setting	a
person,	it	might	be	helpful	in	a	game	in	which	you	are	creating	people	on	the	fly	and	you
want	to	create	100	tall	people.	Instead	of	hard-coding	their	heights,	you	can	just	set	them
to	be	"tall".

In	the	next	example,	you	set	the	height	from	the	parameter	that	was	passed	in:
newHeightDescription.	This	is	optional	because	you	could	rewrite	this	example
and	just	use	the	default	parameter	newValue.	Here	you	rewrite	just	the	setter	portion	of
the	preceding	example	to	use	a	parameter	named	newValue	instead	of	providing	a
named	parameter	yourself:
Click	here	to	view	code	image

set	{
				if	newValue	==	“short”	{
								heightInInches	=	50
				}	else	if	newValue	==	“tall”	{
								heightInInches	=	92
				}	else	if	newValue	==	“medium”	{
								heightInInches	=	60
				}
}

Notice	that	you	don’t	have	to	declare	a	variable	here.	Instead,	you	use	a	variable,	called
newValue,	that	is	available	to	you	in	all	setters.	Many	languages	with	getters	and	setters
use	the	same	variable	name	of	newValue	or	value	or	something	similar	for	setters.

Notice	that	you	cannot	create	read-only	stored	properties	directly.	Here’s	a	little	trick	for
creating	read-only	stored	properties:	Create	a	private	stored	property	and	a	read-only
computed	property,	and	you	have	yourself	a	read-only	stored	property.	Here	is	an	example
of	a	read-only	stored	property:



class	Human	{
				private	var	_name	=	“Skip”
				var	name:String	{
								get	{
												return	_name
								}
				}
}
var	human	=	Human()
print(human.name)
human.name	=	“Jack”

Now	you	have	a	property	that	is	being	stored,	and	you	have	made	it	read-only.	You	use	the
underscore	to	denote	a	private	variable,	but	this	is	only	aesthetic	so	that	you	can	use	the
variable	name	name	twice.	This	tells	the	reader	that	these	are	the	same	variable.

The	 	Variable

The	last	topic	in	our	little	properties	discussion	is	the	lazy	variable.	Actually,	lazy	is
pretty	handy.	You	use	it	to	create	a	variable	that	is	not	evaluated	until	it	is	actually	used.
You	can	declare	this	variable	with	the	keyword	lazy.	This	type	of	variable	is	useful	when
you	won’t	have	the	initial	value	of	this	property	until	after	initialization.	Rather	than	throw
an	error,	you	can	just	tell	Swift	that	you	will	have	the	value	when	you	need	it,	but	you	just
don’t	have	it	right	now.	Here	is	an	example	of	using	the	lazy	keyword,	which	you	don’t
have	at	initialization	but	will	have	ready	when	it	is	needed	(it	runs	once	when	it’s	first
accessed):
Click	here	to	view	code	image

class	Namer	{
				var	name:String	{
								get	{
												//url	request	for	name
												return	“Jack”
								}
				}
}

class	Human	{
				lazy	var	namer:Namer	=	Namer()
}
var	human	=	Human()	//	Namer	hasn’t	been	initialized	yet
print(human.namer.name)	//	Now	namer	has	been	initialized

In	this	example,	it	is	possible	that	the	Namer	class’s	name	property	won’t	be	ready	on
initialization.	Swift	is	okay	with	this,	as	long	as	you	use	the	lazy	keyword	to	inform
Swift	that	it	shouldn’t	try	to	grab	the	value	from	the	name	class	yet.

And	now	back	to	your	regularly	scheduled	program	on	protocols.



	and	
In	this	section,	you	will	make	a	protocol	for	the	creation	of	any	animal,	and	call	it
Animizable.	This	protocol	will	make	sure	that	anytime	someone	creates	an	animal,	it
will	have	the	proper	properties	and	methods.	A	lot	of	times,	the	names	of	protocols	have
able	at	the	end.	These	are	some	of	the	Swift	standard	protocols	you	will	commonly	come
across:

	Equatable:	You	must	overload	the	==	operator.	This	allows	you	to	test	your	type
for	equality.

	Comparable:	You	must	overload	the	<,	>,	<=,	and	>=	operators,	which	will	allow
you	to	compare	your	custom	type.

	Printable:	You	must	declare	a	property	of	type	String	called	description,
which	will	provide	a	String-based	representation	of	the	type.

Methods
You	can	use	a	protocol	to	declare	a	method	requirement.	In	this	case,	the	adopting
implementation	must	use	the	methods	listed	in	the	protocol	in	order	to	conform	to	it.	Here
is	an	example	of	this	situation	with	your	new	Animizable	protocol:
Click	here	to	view	code	image

enum	Food:String	{
				case	Meat	=	“meat”
				case	Veggies	=	“veggies”
				case	Other	=	“something	else”
}

protocol	Animizable	{
				var	type:String	{	get	}
				func	eat(quantityInPounds:Double,	what:Food)
}

class	Animal:Animizable	{
				var	type	=	””
				func	eat(quantityInPounds:Double,	what:Food){
								print(“I	am	\(type)	and	I	am	eating
\(quantityInPounds)	pounds	of	\(what.rawValue).”)
				}
}

var	human	=	Animal()
human.type	=	“human”
human.eat(2,what:	.Meat)

Here	you	are	creating	an	Animizable	protocol,	which	requires	that	you	add	a	property
type	and	a	method	called	eat.	The	implementation	of	the	method	must	have	the	same
parameters	as	the	protocol’s	definition	of	the	method.	If	you	want	Animizable	to	have	a
type	method,	you	need	to	write	that	in	the	protocol.	You	could	update	the	Animizable
protocol	to	require	a	type	method	called	lbsToKg	as	a	convenience	method	to	convert
pounds	to	kilograms.	You	can	update	your	code	as	follows:
Click	here	to	view	code	image



protocol	Animizable	{
				var	type:String	{	get	}
				static	func	lbsToKg(lbs:Double)	->	Double
				func	eat(quantityInPounds:Double,	what:Food)
}

class	Animal:Animizable	{
				var	type	=	””
				static	func	lbsToKg(lbs:Double)	->	Double	{
								return	lbs	*	0.453592
				}
				func	eat(quantityInPounds:Double,	what:Food){
								print(“I	am	\(type)	and	I	am	eating
\(quantityInPounds)	pounds	of	\(what.rawValue).”)
				}
}

Now	the	protocol	requires	a	type	method.	You	must	implement	this	method	when	creating
your	Animal	class.

This	also	goes	for	mutating	methods:	If	you	want	a	function	to	be	mutating,	you	must
declare	it	in	the	protocol.	The	implementation	of	that	protocol	must	then	create	a	mutating
method.	Mutating	is	used	only	for	enums	and	structs.	If	you	implement	a	protocol	that
requires	a	mutating	method	using	a	class,	you	do	not	need	to	write	the	mutating
keyword.

Delegation
Delegation	is	one	of	the	most	powerful	features	of	protocols.	Delegation	is	not	special	to
Swift	or	Objective-C.	It	is	a	design	pattern,	a	reusable	solution	to	a	common	problem
within	a	certain	context.	A	friend	of	mine	described	delegation	best	without	even	knowing
it.	He	said,	“Doesn’t	a	protocol	allow	you	to	send	messages	to	anyone	who	implements
that	protocol?”	Sort	of.	If	you	create	a	new	iOS	project,	the	first	thing	you	will	most	likely
see	is	the	AppDelegate,	which	notifies	you	when	certain	things	happen.	For	example,
in	AppDelegate	there	is	a	method	called	applicationWillTerminate.	This
method	gets	called	when	the	application	is	about	to	be	shut	down.	It	can	be	called	because
it	adopts	UIApplicationDelegate.	Let’s	look	at	how	the	delegate	design	pattern
works.

Say	that	you	create	a	protocol	called	Humanizable,	where	things	will	happen	to	Human
(which	adopts	Humanizable),	and	you	want	to	notify	others	of	those	things:
Click	here	to	view	code	image

protocol	Humanizable	{
				var	name:String	{	get	set	}
				func	eat(quantity:Int)
				func	play(game:String)
				func	sleep()
}

You	now	have	a	protocol	that	can	be	adopted	by	any	Human.	You	then	create	a
HumanizableDelegate	protocol	that	can	be	adopted	in	order	to	be	updated	with
changes	to	the	Human.	Each	function	will	get	an	instance	of	the	Human	that	is	doing	the
updating:



Click	here	to	view	code	image
protocol	HumanizableDelegate	{
				func	didStartEating(human:Humanizable)
				func	didFinishEating(human:Humanizable)
				func	didStartPlaying(human:Humanizable)
				func	didFinishPlaying(human:Humanizable)
				func	didStartSleeping(human:Humanizable)
				func	didFinishSleeping(human:Humanizable)
}

You	can	now	keep	track	of	changes	to	the	Human.	You	next	create	a	class	that	conforms	to
the	Humanizable	protocol	and	will	have	a	delegate	to	do	the	informing:
Click	here	to	view	code	image

class	Human:Humanizable	{
				var	name:String
				init(name:String)	{
								self.name	=	name
				}

				var	delegate:HumanizableDelegate?

				func	eat(quantity:Int)	{
								delegate?.didStartEating(self)
								print(“Eating	\(quantity)	pounds	of	food,	yum	yum	yum”)
								delegate?.didFinishEating(self)
				}

				func	play(game:String)	{
								delegate?.didStartPlaying(self)
								print(“I	am	playing	\(game)!	So	much	fun.”)
								delegate?.didFinishPlaying(self)
				}

				func	sleep()	{
								delegate?.didStartSleeping(self)
								print(“I	am	sleeping	now.	Shhhh.”)
								delegate?.didFinishSleeping(self)
				}
}

You	are	now	conforming	to	the	Human	class.	Our	Human	class	implements	the	actual
functionality	of	the	eat,	play,	and	sleep	methods	of	Humanizable.	When	the	instance	of
the	human	sleeps,	we	tell	our	delegate	when	we	have	started	sleeping	and	when	we	have
stopped.	Now	all	we	have	to	do	is	make	a	human	watcher	to	keep	track	of	all	the	stuff
happening	with	our	human.	This	class	will	conform	to	HumanizableDelegate	and
truly	get	informed	of	changes.
Click	here	to	view	code	image

class	HumanWatcher:HumanizableDelegate	{
				func	didStartEating(human:Humanizable){
								print(“We	just	were	informed	that	\(human.name)	started	eating”)
				}
				func	didFinishEating(human:Humanizable){
								print(“We	just	were	informed	that	\(human.name)	finished	eating”)
				}
				func	didStartPlaying(human:Humanizable){
								print(“We	just	were	informed	that	\(human.name)	started	playing”)
				}



				func	didFinishPlaying(human:Humanizable){
								print(“We	just	were	informed	that	\(human.name)	finished	playing”)
				}
				func	didStartSleeping(human:Humanizable){
								print(“We	just	were	informed	that	\(human.name)	started	sleeping”)
				}
				func	didFinishSleeping(human:Humanizable){
								print(“We	just	were	informed	that	\(human.name)	finished	sleeping”)
				}
}

Now	you	can	be	completely	informed	of	the	Human’s	activity	and	do	something	about	it.
Even	if	watching	the	Human	means	printing	out	lines	to	the	console,	that’s	what	you’ll	do.
The	last	thing	you	need	to	do	is	to	create	the	actual	instances	of	the	Humans	and	their
Human	watchers.	The	fact	that	you	are	using	protocols	means	you	can	guarantee	that	the
Human	will	have	certain	methods.	You	do	not	have	to	worry	about	those	methods	not
being	implemented.	Let’s	create	the	protocol	design	pattern	using	our	new	human,	“Jeff”:
Click	here	to	view	code	image

let	humanWatcher	=	HumanWatcher()
let	human	=	Human(name:“Jeff”)
human.delegate	=	humanWatcher
human.play(“marbles”)
human.sleep()
human.eat(5)

We	just	were	informed	that	Jeff	started	playing
I	am	playing	marbles!	So	much	fun.
We	just	were	informed	that	Jeff	finished	playing
We	just	were	informed	that	Jeff	started	sleeping
I	am	sleeping	now.	Shhhh.
We	just	were	informed	that	Jeff	finished	sleeping
We	just	were	informed	that	Jeff	started	eating
Eating	5	pounds	of	food,	yum	yum	yum
We	just	were	informed	that	Jeff	finished	eating

With	the	delegate	pattern,	the	delegate	of	an	instance	can	notify	you	of	things	happening
in	that	instance	of	a	class.

Protocols	as	Types
You	know	that	protocols	don’t	implement	any	functionality	themselves,	but	that	doesn’t
stop	you	from	using	them	as	parameters	or	return	types	in	methods.	This	is	where
protocols	can	become	extremely	powerful.	You	can	use	them	as	a	type	for	a	variable	or
constant	or	for	arrays	and	dictionaries.

Here	is	a	protocol	that	can	work	for	anything	that	you	would	like	to	make	walkable:
Click	here	to	view	code	image

protocol	Walkable	{
				var	name:String	{	get	set	}
				func	walk(numOfSteps	numOfSteps:Int)
}

Humans	can	walk	and	animals	can	walk,	among	other	actions.	Here’s	how	you	can	make	a
human	that	can	walk:
Click	here	to	view	code	image



class	Human:Walkable	{
				var	name	=	“John”
				func	walk(numOfSteps	numOfSteps:Int)	{
								print(“Human	is	walking	\(numOfSteps)	steps”)
				}
}
func	runWalker(walker:Walkable)	{
				walker.walk(numOfSteps:10)
}
var	somethingThatWalks	=	Human()
runWalker(somethingThatWalks)

In	this	example	you	create	a	Human	class	that	takes	anything	that	can	walk.	This	works
because	it	adopts	the	Walkable	protocol.	You	create	a	top-level	function	that	will	walk
any	Walkable.	Notice	that	the	parameter	that	the	runWalker	function	takes	is
Walkable.	This	means	anything	that	adopts	the	protocol	Walkable	can	be	passed	in.
This	gives	you	a	lot	of	flexibility	because	now	you	just	call	walk	on	whatever	is	passed	in.
You	know	that	what	is	passed	in	will	have	that	function	available	because	it	adopts
Walkable.

Protocols	in	Collections
Protocols	can	be	used	as	types,	so	it	shouldn’t	be	a	surprise	that	a	protocol	can	also	be
used	as	the	type	of	a	collection.	Think	about	the	case	of	the	Walkable	class	from	the
preceding	section.	Say	that	you	want	to	create	something	else	that	can	walk,	such	as	a	dog.
Here’s	what	you	do:
Click	here	to	view	code	image

class	Dog:Walkable	{
				var	name	=	“Penny”
				func	walk(numOfSteps	numOfSteps:Int)	{
								print(“The	dog	is	walking	\(numOfSteps)	steps”)
				}
}

let	dog	=	Dog()
let	human	=	Human()
var	walkers	=	[Walkable]()
walkers.append(dog)
walkers.append(human)
for	walker	in	walkers	{
				walker.walk(numOfSteps:10)
}

Here	you	have	a	Dog	and	a	Human,	and	they	are	both	Walkable.	You	also	have	an	array
that	is	strictly	typed	for	anything	that	is	Walkable.	Because	the	array	takes	anything	that
adopts	Walkable,	you	can	append	the	Dog	and	the	Human	to	the	array,	and	it	works	just
fine.	You	can	imagine	that	if	you	took	an	even	more	generic	protocol,	such	as
BooleanType,	you	could	make	a	very	wide-ranging	collection.



Protocol	Inheritance
You	can	very	easily	make	protocols	inherit	other	protocols,	which	will	add	the
requirements	on	top	of	one	another.	To	see	how	this	works,	in	this	section,	you’ll	create
two	other	protocols:	Runnable	and	Doggable.	Runnable	will	add	one	more	function
requirement:	run().	Doggable	will	inherit	Walkable	and	Runnable.	Doggable
will	have	the	requirement	of	a	bark	function.	Because	it	will	implement	Walkable	and
Runnable,	it	will	also	need	to	implement	walk	and	run	functions.	Here’s	how	you
create	these	protocols:
Click	here	to	view	code	image

protocol	Walkable	{
				func	walk(numOfSteps	numOfSteps:Int)
}

protocol	Runnable	{
				func	run(howFarInMiles	howFarInMiles:Float)
}

protocol	Doggable:	Walkable,	Runnable	{
				func	bark()
}

class	Dog:	Doggable	{
				func	walk(numOfSteps	numOfSteps:Int)	{
								print(“Dog	will	walk	\(numOfSteps)	steps”)
				}

				func	run(howFarInMiles	howFarInMiles:Float)	{
								print(“Dog	will	run	\(howFarInMiles)	miles”)
				}

				func	bark()	{
								print(“Woof”)
				}
}

class	FrenchDog:Dog	{
				override	func	bark()	{
							print(“Le	woof”)
				}
}

var	dog	=	Dog()
var	leDog	=	FrenchDog()
dog.bark()	//	Woof
leDog.bark()	//	Le	woof

Here	the	new	Doggable	class	inherits	both	the	Runnable	and	Walkable	protocols.	If
you	were	to	not	include	walk	or	run	or	both	in	the	Dog	class,	Swift	would	throw	an
error.	The	way	to	have	a	protocol	inherit	from	other	protocols	is	the	same	way	you	use	in
classes:	You	create	a	comma-separated	list	following	the	semicolon.	You	can	make	a
protocol	inherit	from	as	many	other	protocols	as	you	want.

We	just	talked	about	how	to	inherit	multiple	protocols	from	other	protocols,	but	how	do
you	adopt	multiple	protocols	at	once	from	a	class,	a	struct,	or	an	enum?	We’ll	look	at	that
next.



Protocol	Composition
Protocol	composition	is	a	fancy	term	for	making	a	type	adopt	multiple	protocols	at	once.
If	you	need	to	make	a	type	adopt	multiple	protocols,	you	use	this	syntax:

protocol<Protocol1,	Protocol2>

Inside	the	angled	brackets,	you	place	the	multiple	protocols	that	you	want	the	type	to
inherit.	When	you	do	this,	you	are	creating	a	temporary	local	protocol	that	has	the
combined	requirements	of	all	the	protocols	you’ve	listed.

Let’s	make	a	sort	of	powered	speaker	that	uses	protocol	composition:
Click	here	to	view	code	image

import	UIKit
protocol	Powered	{
				var	on:Bool	{	get	set	}
				func	turnOn()
				func	turnOff()
}
protocol	Audible	{
				var	volume:Float	{	get	set	}
				func	volumeUp()
				func	volumeDown()
}
class	Speaker:NSObject,	Powered,Audible	{
				var	on:Bool	=	false
				var	volume:Float	=	0.0
				var	maxVolume:Float	=	10.0

				func	desc()	->	String	{
								return	“Speaker:	volume	\(self.volume)”
				}

				func	turnOn()	{
								if	on	{
												print(“already	on”)
								}
								on	=	true
								print(“Powered	on”)
				}
				func	turnOff()	{
								if	!on	{
												print(“already	off”)
								}
								on	=	false
								volume	=	0.0
								print(“Powered	off”)
				}
				func	volumeUp()	{
								if	volume	<	maxVolume	{
												volume	+=	0.5
								}
								print(“Volume	turned	up	to	\(volume)”)
				}
				func	volumeDown()	{
								if	volume	>	0	{
												volume	-=	0.5
								}
								print(“Volume	turned	down	to	\(volume)”)
				}



}
var	speakers:[protocol<Powered,Audible>]	=	[]
for	n	in	1…10	{
				speakers.append(Speaker())
}
func	turnUpAllSpeakers()	{
				for	speaker	in	speakers	{
								turnUpSpeaker(speaker)
				}
}
func	turnDownAllSpeakers()	{
				for	speaker	in	speakers	{
								turnDownSpeaker(speaker)
				}
}
func	turnUpSpeaker(speaker:protocol<Powered,Audible>)	{
				if	!speaker.on	{
								speaker.turnOn()
				}
				speaker.volumeUp()
				print(speaker)
}
func	turnDownSpeaker(speaker:protocol<Powered,Audible>)	{
				if	!speaker.on	{
								speaker.turnOn()
				}
				speaker.volumeDown()
				print(speaker)
}
turnUpAllSpeakers()

Before	I	explain	anything	else,	I	want	to	point	out	some	really	interesting	information.
There	is	a	protocol	called	Printable,	which	allows	you	to	output	the	textual
representation	of	your	type.	To	adopt	Printable,	you	must	add	a	description	getter	to
your	class.	This	does	not	make	your	class	textual	output	go	out	to	print().	There	is	also
a	protocol	called	DebugPrintable,	which	does	the	same	sort	of	stuff	as	Printable
but	is	made	strictly	for	debugging	purposes.	This	protocol	also	does	not	print	to	the
print()	output.	The	only	way	(as	far	as	I	know)	to	override	the	output	of	the	print()
representation	of	the	class	is	to	inherit	from	NSObject	and	create	a	description	method
that	returns	a	String.	You	output	the	description	to	that	function,	and	print()	prints
your	custom	output.	Remember,	though,	that	there	is	no	base	class	in	Swift,	as	there	is	in
JavaScript,	Java,	and	tons	of	other	programming	languages.	You	are	not	inheriting	a
description	from	a	grand	base	class;	it	just	happens	to	be	associated	with	that	class.	Also,
to	use	NSObject	make	sure	you	import	UIKit	or	something	similar.

The	class	Speaker	adopts	two	protocols:	Powered	and	Audible.	The	protocol
composition	happens	in	two	places.	You	declare	an	array	that	takes	only	types	that	adopt
those	two	protocols.	You	also	create	a	turnUpSpeaker	method,	which	takes	the
temporary	protocol,	which	is	made	up	of	the	two	protocols.	Luckily,	the	Speaker	class
fits	the	requirements	just	right,	and	you	can	pass	in	a	Speaker.	You	provide	Speaker
with	a	way	to	turn	on	and	off	and	a	way	to	turn	the	volume	up	and	down.	You	provide	a
max	volume	so	you	don’t	exceed	that	volume,	and	you	check	to	make	sure	the	speaker	is
on	before	you	turn	it	on.	You	create	ten	speakers	in	a	loop,	using	the	range	operator.



Why	would	you	use	protocol	composition?	Sometimes	you	have	types	that	must	match
multiple	protocols,	and	you	can	create	a	temporary	protocol	to	meet	the	requirement.

Protocol	Conformity
Sometimes	it	is	necessary	to	check	whether	a	type	is	of	a	protocols	type.	For	example,	if
you	create	a	Human	class,	which	is	Humanizable,	you	want	to	check	an	array	of
objects	to	see	whether	one	of	those	elements	conforms	to	the	protocol.	You	use	the	is	and
as	keywords	to	downcast	the	type	to	check	its	conformance	to	the	protocol.

Using	the	keyword	is	returns	true	if	the	instance	conforms	to	the	protocol,	and	it	is	a
good	method	to	use	if	you	do	not	need	any	downcast	instance	passed	along	to	the	inner
scope	of	the	if	statement.	If	you	do	need	a	reference	to	the	downcast	instance,	you	can
use	the	optional	as?	keyword.	Here	is	an	example	of	using	both	keywords.	Notice	that
there	is	a	little	an	extra	detail	you	have	to	add	in	order	to	make	this	possible:
Click	here	to	view	code	image

import	Foundation
@objc	protocol	Animizable	{
				var	name:String	{	get	set	}
}

@objc	protocol	Humanizable:Animizable	{
				var	language:String	{	get	set	}
}

@objc	protocol	Bearable:Animizable	{
				func	growl()
}

class	Human:Humanizable	{
				@objc	var	name:String	=	“Frank”
				@objc	var	language:String	=	“English”
}

class	Bear:Bearable	{
				@objc	var	name	=	“Black	Bear”
				@objc	func	growl()	{
								print(“Growllll!!!”)
				}
}

class	Other:Animizable	{
				@objc	var	name	=	“Other”
}

var	lifeCollection:[AnyObject]	=	[Human(),Bear(),Other()]

for	life	in	lifeCollection	{
				print(life)
				if	life	is	Humanizable	{
								print(“is	human”)
				}
				if	let	humanizable	=	life	as?	Humanizable	{
								print(humanizable.language)
				}
}



You	have	to	add	the	@objc	attribute	in	order	to	make	this	work.	You	use	this	attribute
when	you	want	your	Swift	code	to	be	available	to	Objective-C	code.	However,	you	are	not
using	it	for	that	purpose	here.	If	you	want	to	check	protocol	conformance,	you	must	mark
the	protocol	with	that	attribute	even	if	you	aren’t	interacting	with	Objective-C	code.

You	can	see	that	when	you	use	the	as?	optional,	you	are	able	to	call	the	language
attribute	of	the	Human,	which	would	otherwise	be	just	AnyObject.	If	you	tried	to	get
the	language	property	of	the	Human	from	the	is	downcast,	you	would	get	an	error:
error:	'AnyObject'	does	not	have	a	member	named	'language'.
This	is	because	you	never	actually	downcast	the	AnyObject	to	a	Humanizable.	This
is	very	powerful	because	you	have	protocols	that	inherit	other	protocols.	You	would	get	a
wider	range	if	you	checked	for	the	conformance	of	Animizable.

Note

The	@objc	attribute	can	be	adopted	only	by	classes,	and	not	by	structures	or
enums.

When	you	are	looping	through	the	array,	you	check	for	the	conformance	of	the	protocol
with	both	is	and	as?.	In	the	case	of	as?,	if	there	is	a	match	and	the	element	does
conform	to	the	protocol,	the	optional	is	unwrapped	and	assigned	to	the	let,	using
optional	binding.	At	that	point,	the	element	of	the	array	is	no	longer	AnyObject	but	is
known	as	type	Humanizable.	The	object	itself	is	not	changed	but	merely	temporarily
downcast	when	it	is	stored	in	the	constant.

Optional	Protocol	Prerequisites
If	you	peruse	the	Swift	pseudo-code	by	Command+clicking	protocols,	you	will	see	that	a
lot	of	them	have	optional	requirements.	For	example,	when	you	start	a	new	project	of	any
type,	you	can	inspect	UIApplicationDelegate,	and	you	should	see	something	like
what	Figure	8.1	shows.



Figure	8.1	The	UIApplicationDelegate	protocol

You	can	see	that	most	of	the	methods	of	this	protocol	are	optional	and	therefore	do	not
need	to	be	implemented.	You	can	mark	any	method	as	optional	so	that	the	compiler	will
not	throw	an	error	if	a	method	is	not	implemented.	Even	though	you	can’t	see	it	in	Figure
8.1,	you	need	to	mark	a	protocol	with	the	@objc	attribute	if	you	plan	on	creating	an
optional	method.	This	is	true	even	if	you	are	not	planning	on	making	your	code	available
to	Objective-C.

Let’s	look	at	a	quick	example.	Apparently,	bears	cough	when	they	are	scared.	So	in	this
example,	you	create	an	optional	cough	method	of	the	Bearable	protocol:



Click	here	to	view	code	image
import	Foundation
@objc	protocol	Animizable	{
				var	name:String	{	get	set	}
}

@objc	protocol	Humanizable:Animizable	{
				var	language:String	{	get	set	}
}

@objc	protocol	Bearable:Animizable	{
				func	growl()
				optional	func	cough()	//Apparently	bears	cough	when	they	are	scared.
}

class	Human:Humanizable	{
				@objc	var	name:String	=	“Frank”
				@objc	var	language:String	=	“English”
}

class	Bear:Bearable	{
				@objc	var	name	=	“Black	Bear”
				@objc	func	growl()	{
								print(“Growllll!!!”)
				}
				//Bear	does	not	implement	the	cough	method.	He	never	gets	scared.
}

Notice	that	you	do	not	implement	the	cough	method	for	the	Bear	class.	You	do	not	need
to	implement	it	because	the	protocol	is	marked	optional	for	that	method.

There	is	a	possibility	that	you	will	try	to	call	a	method	that	does	not	exist	at	this	point
because	it	may	not	be	implemented.	In	this	case	you	would	use	optional	chaining,
discussed	next.

Optional	Chaining
When	you	have	optional	methods	that	may	or	may	not	exist,	you	need	to	be	able	to	call
them	without	the	possibility	of	crashing	your	program.	Did	you	think	that	the	optional
methods	in	protocols	are	just	optional,	meaning	that	you	can	include	them	or	not	include
them?	If	you	did,	you	were	wrong.	They	are	directly	tied	to	optionals	and	can	be	checked
via	value	binding.

Using	optional	chaining	is	another	possibility	instead	of	forcing	the	unwrapping	of
optionals.	The	big	difference	between	optional	chaining	and	forced	unwrapping	is	that
whereas	forced	unwrapping	gives	you	an	error	and	crashes	your	program	if	the	thing	you
are	looking	for	does	not	exist,	optional	chaining	does	not.

When	you	have	an	optional	method	that	may	or	may	not	exist,	you	can	use	optional
chaining	to	test	for	the	existence	of	the	method.	To	see	how	this	works,	you	can	expand
your	Bear	example,	like	this:
Click	here	to	view	code	image

class	Bear	{
				var	name	=	“Black	Bear”
				var	paws:Paws?
				func	growl()	{



								print(“Growllll!!!”)
				}
				//Bear	does	not	implement	the	cough	method.	He	never	gets	scared.
}
class	Paws	{
				var	count	=	4
}
var	bear:Bear	=	Bear()
bear.paws	=	Paws()
print(bear.paws?.count)	//	Optional(4)

What	is	super-interesting	about	this	example	is	that	the	count	of	the	paws	returns	an
optional	when	it	clearly	was	not	set	as	an	optional.	That’s	what	optional	chaining	does	for
you:	It	allows	you	to	safely	write	code	with	optionals	in	the	middle.	Let	me	explain	a	little
further.	The	bear	has	optional	paws.	(Obviously,	in	a	real-life	bear	paws	are	never
optional,	but	in	this	situation	they	might	be	optional.)	When	you	create	a	new	Bear,	you
do	not	know	whether	the	paws	will	exist.	So	you	mark	the	paws	as	optional,	like	this:

bear.paws?

Now	this	is	going	to	return	either	an	instance	of	the	paws	as	an	optional	or	nil.	The
program	cannot	crash	at	this	point	because	you	will	get	either	optional	paws	or	nil.
Optional	chaining	then	marks	everything	within	the	optional	paws	as	optional	as	well,
even	if	it	isn’t	optional.	So	the	count	within	the	paws	will	become	an	optional	Int.	This
is	because	the	paws	may	not	exist,	so	everything	within	the	paws	may	not	exist	as	well—
and	you	don’t	want	the	program	to	crash	because	of	that.	When	you	grab	the	count,	like
this,	it	is	now	an	optional	or	nil,	depending	on	whether	the	paws	exist:

bear.paws?.count

This	returns	an	optional,	so	now	you	can	perform	optional	binding	to	get	the	unwrapped
optional	out:
Click	here	to	view	code	image

if	let	count	=	bear.paws?.count	{
				print(“The	count	was	\(count)”)
}	else	{
				print(“There	were	no	paws”)
}

Now	you	can	test	for	the	existence	of	the	paws	and	get	the	count	out	of	the	optional	that
it	was	placed	in.

Note

The	biggest	takeaway	here	is	this:	The	paws	may	or	may	not	have	existed,	and
therefore	everything	within	the	paws	had	to	be	made	an	optional	in	order	to	not
crash	the	program.	This	technique	is	called	optional	chaining.	If	one	link	of	the
chain	is	broken,	the	whole	thing	crashes.

Back	to	Optional	Protocol	Requisites
With	optional	chaining	tools	in	hand,	you	can	now	test	to	see	whether	your	methods	exist:
Click	here	to	view	code	image



import	Foundation
@objc	protocol	Bearable	{
				@objc	func	growl()
				optional	func	cough()	->	String	//Apparently	bears	cough	when	they	are
scared.
}

class	Bear:Bearable	{
				@objc	var	name	=	“Black	Bear”
				@objc	func	growl()	{
								print(“Growllll!!!”)
				}
}

class	Forest	{
				@objc	var	bear:Bearable?
				@objc	func	scareBears()	{
								if	let	cough	=	bear?.cough?()	{
												print(cough)
								}	else	{
												print(“bear	was	scared”)
								}
				}
}
var	forest	=	Forest()
forest.scareBears()

You	check	whether	the	Bearable	implementation	exists	with	optional	chaining.	You
assign	the	return	of	the	method	with	optional	binding,	and	if	it	is	not	nil,	you	print	the
output	of	the	method;	otherwise,	you	just	print	"the	bear	was	scared".

Multiple	chaining	is	going	on	in	this	situation.	First,	you	check	the	optional	bear,	which
could	be	nil.	Then	you	check	the	optional	cough	method,	which	could	also	be	nil	and
not	implemented.

Useful	Built-in	Swift	Protocols
Swift	has	a	solid	group	of	protocols	you	can	implement	in	your	classes	to	make	stuff
happen.	The	following	sections	describe	them.

The	 	Protocol

You	use	Equatable	when	you	want	one	class	to	be	comparable	to	another	class,	using
the	==	operator.	For	example,	if	you	have	two	Car	classes	that	you	want	to	compare	for
equality,	you	could	adopt	the	Equatable	protocol.	You	have	to	implement	the	==
function	(which	can	be	written	only	on	a	global	level),	as	shown	here:
Click	here	to	view	code	image

class	Bear:Equatable	{
				var	name	=	“Black	Bear”
				func	growl()	{
								print(“Growllll!!!”)
				}
}
func	==	(lhs:Bear,	rhs:Bear)	->	Bool	{
				return	lhs.name	==	rhs.name
}
var	bear1	=	Bear()



bear1.name	=	“Black	Bear”
var	bear2	=	Bear()
bear2.name	=	“Black	Bear”
print(bear1	==	bear2)	//true

Here	you	are	comparing	two	bears.	You	would	not	normally	be	able	to	do	this	because
Swift	would	not	know	how	to	compare	two	bears.	Thankfully,	you	can	let	Swift	know	how
to	compare	them.	In	this	case,	you	have	Swift	compare	the	bears	by	name.	If	the	names
are	the	same,	the	bears	are	considered	equal.

The	 	Protocol

The	Comparable	protocol	allows	you	to	compare	two	objects	by	using	at	least	the	<
operator.	You	can	also	override	the	other	operators:	>,	>=,	and	<=.	Consider	that	the	less-
than	operator	is	required	by	law	and	Apple,	and	it	must	be	implemented	on	the	global
scope.	Here’s	how	you	can	update	the	Bear	class	to	make	bears	comparable	by	weight:
Click	here	to	view	code	image

class	Bear:Equatable,Comparable	{
				var	name	=	“Black	Bear”
				var	weight	=	0
				func	growl()	{
								print(“Growllll!!!”)
				}
}

func	==	(lhs:Bear,	rhs:Bear)	->	Bool	{
				return	lhs.name	==	rhs.name
}

func	<	(lhs:Bear,	rhs:Bear)	->	Bool	{

				return	lhs.weight	<	rhs.weight
}

var	bear1	=	Bear()
bear1.name	=	“Black	Bear”
bear1.weight	=	275

var	bear2	=	Bear()
bear2.name	=	“Black	Bear”
bear2.weight	=	220

print(bear1	==	bear2)
print(bear1	<	bear2)	//	false

Here	you	are	implementing	the	Comparable	protocol	to	give	Swift	a	way	to	compare
the	bears	by	using	at	least	the	less-than	operator.	You	then	write	the	global	less-than
function	and	give	it	two	parameters	of	type	Bear.	You	can	make	as	many	of	those	global
functions	as	you	need,	as	long	as	the	parameters	that	it	accepts	are	different.



The	 	Protocol

The	Printable	protocol	allows	you	to	provide	a	textual	representation	of	a	class,	a
struct,	or	an	enum.	It	is	supposed	to	be	able	to	be	used	by	print,	but	that	does	not	work
as	you	would	expect.	It	does	make	your	life	a	whole	lot	simpler	when	creating	text,
though.	Instead	of	having	to	write	something	like	"my	bear	is	\(bear1.name)",
you	can	just	write	"my	bear	is	\(bear1)".	Printable	works	in	an	app	but	not
in	the	playground	or	in	the	REPL	(the	command-line	Swift	compiler,	which	can	be	run	in
Terminal	using	xcrun	swift).	You	can	add	this	protocol	to	be	adopted	by	the	Bear
class	like	so:
Click	here	to	view	code	image

class	Bear:Equatable,Comparable,	CustomStringConvertible{
				var	name	=	“Black	Bear”
				var	weight	=	0
				var	description:String	{
								return	self.name
				}
				func	growl()	{
								print(“Growllll!!!”)
				}
}

func	==	(lhs:Bear,	rhs:Bear)	->	Bool	{
				return	lhs.name	==	rhs.name
}

func	<	(lhs:Bear,	rhs:Bear)	->	Bool	{
				return	lhs.weight	<	rhs.weight
}

var	bear1	=	Bear()
bear1.name	=	“Black	Bear”
bear1.weight	=	275
print(“Our	bear	is	\(bear1)”)

var	bear2	=	Bear()
bear2.name	=	“Black	Bear”
bear2.weight	=	220
print(“Our	bear	is	\(bear2)”)

print(bear1	==	bear2)
print(bear1	<	bear2)

The	 	Protocol

DebugPrintable	is	the	same	as	CustomStringConvertible	but	is	used	for
debugging	purposes.	For	its	implementation,	you	use	debugDescription	instead	of
description.	This	protocol	also	does	not	work	in	the	playground	or	the	Swift	REPL.

Summary
In	this	chapter	you	have	learned	how	to	create	protocols	of	many	varieties.	You’ve	learned
how	to	check	for	optional	protocol	methods	and	properties.	There	are	many	more
protocols	available	to	you	in	the	Swift	library.	The	ones	described	in	this	chapter	are	the
most	important	ones	to	remember	and	will	come	in	handy.



This	chapter	describes	how	to	create	a	protocol	and	all	the	different	ins	and	outs	of
protocols,	but	in	the	end,	it	is	up	to	you	to	know	the	right	time	for	a	protocol.	After
practicing	with	them	for	a	while,	I	began	to	find	myself	using	them	more	often	and	in
really	neat	ways.	For	example,	I	created	a	text-based	game	in	which	anything	that	was
able	to	be	picked	up	fell	into	a	protocol	I	created	called	PickableUpable.	I	then
passed	around	PickableUpables	instead	of	looping	through	each	different	thing	that
could	be	picked	up.	Then,	using	optional	downcasting,	I	checked	whether	each	item	was
the	PickableUpable	that	I	wanted.	Sure,	I	could	have	called	it	PickUpable,	but
what	fun	would	that	be?

When	you	combine	protocols	with	generics,	you’ll	have	a	lot	of	power.	You	already	have
some	great	tools	for	abstracting	code	and	making	it	reusable.	With	generics,	you	will	be
able	to	apply	your	protocols	to	generics	to	make	methods	work	with	any	type	of	object
that	meets	certain	criteria.



9.	Becoming	Flexible	with	Generics

Generics	are	an	awesome	feature	of	Swift	that	allow	you	to	accept	more	generic	types
when	creating	methods,	parameters,	properties	of	classes,	and	so	on.	Generics	allow	you
to	abstract	away	functionality	that	would	have	been	repetitious	to	write.	Sometimes	you
want	to	write	a	function	that	takes	not	just	Ints,	but	Ints	as	well	as	Strings	and
anything	Printable.	Without	generics,	you	would	have	had	to	write	a	method	multiple
times	for	each	type.	With	generics,	you	can	now	write	one	method	for	all	acceptable	types.
They’re	called	generics	because	you	are	creating	generic	versions	of	a	method.	The	exact
type	that	you	accept	has	not	been	decided	yet.	When	you	write	generics,	you	are	removing
duplication	while	showing	your	intentions.	When	you	examine	the	Swift	pseudo-source
code,	you’ll	notice	(when	you	read	this	chapter)	that	a	good	deal	of	Swift	is	written	using
generics.	Take,	for	example,	arrays,	which	can	act	as	collections	for	any	type.	You	can	put
Strings,	Ints,	or	any	other	type	inside	an	array.	The	same	goes	for	dictionaries	and
many	other	things	in	Swift.	By	using	generics,	Apple	didn’t	have	to	write	an	array	for
String,	then	an	array	for	Ints,	and	so	on.	Apple	wrote	one	array	implementation	and
told	Swift	to	accept	a	generic	type.	You	might	take	it	for	granted	that	you	can	use	any	type
with	an	array,	but	you	should	know	that	it	is	possible	because	of	generics.

The	Problem	That	Generics	Solve
Let’s	talk	about	the	problem	that	generics	solve.	Consider	this	function,	which	swaps	two
integers:
Click	here	to	view	code	image

func	swapTwoInts(inout	a:	Int,	inout	b:	Int)	{
				let	temporaryA	=	a
				a	=	b
				b	=	temporaryA
}
var	a	=	10
var	b	=	1
swapTwoInts(&a,b:	&b)
print(a)	//	1
print(b)	//	10

This	works	just	as	expected.	You	are	able	to	swap	the	two	Ints	by	passing	them	as
inout	parameters	to	the	function.	The	problem	is	that	this	function	works	only	with
Ints.	If	you	try	setting	the	variable	to	10.5	(a	double)	or	"Hello	there"	(a	string),
it	will	not	work	because	10.5	is	a	Double	and	"Hello	there"	is	a	String.	This
function	takes	only	Ints.	The	function’s	implementation	itself	(the	code	inside	the
function)	is	generic	enough	to	take	any	of	the	other	types,	but	the	problem	is	the
parameter’s	type.	If	you	want	to	use	this	function	for	Doubles	and	Strings,	you	have
to	rewrite	it	for	Doubles	and	then	again	for	Strings.	If	you	do	that,	you	get	a	lot	of
repetition.

This	is	where	generics	come	in.	By	creating	a	generic	form	of	the	function,	you	allow	the
function	to	accept	any	type.	This	will	fix	the	problem	of	repeating	yourself.	Generics	add
even	more	power	because	you	can	limit	the	types	it	accepts	by	using	protocols.	That	way



you	won’t	get	errors	when	you’re	trying	to	run	a	function	with	parameters	it	isn’t	meant
for.	For	example,	you	may	use	a	generic	that	accepts	only	types	that	adopt	Equatable,
and	then	anything	that	is	not	Equatable	will	not	be	allowed.	It’s	better	to	throw	errors
before	the	user	compiles	the	code	rather	than	crashing	the	program.	Here’s	how	you	could
reimplement	your	swap	to	use	generics:
Click	here	to	view	code	image

func	swapValues<T>(inout	a:T,	inout	b:T)	{
				let	temporaryA	=	a
				a	=	b
				b	=	temporaryA
}

var	a	=	“hi”
var	b	=	“bye”

swapValues(&a,	b:	&b)
print(a)	//	“bye”
print(b)	//	“hi”

This	function	looks	almost	exactly	the	same	as	the	previous	one.	The	difference	is	that
special	T	in	angle	brackets.	You	haven’t	seen	this	yet.	After	adding	the	T,	you	can	use	this
function	with	Strings.	You	can	also	now	use	this	function	with	Ints,	or	Doubles,	or
any	other	data	type.	The	T	declares	a	type.	However,	this	code	does	not	describe	what	that
type	is.	T	is	a	placeholder	for	the	type	that	will	be	sent	via	the	parameters.	That
placeholder	is	used	to	act	as	the	same	type	for	your	parameters.	What	type	T	is	will	be
determined	when	the	function	is	run.	It	all	depends	on	what	type	you	send	the	function.

By	putting	that	T	in	angle	brackets,	you	are	saying	to	Swift	“Do	not	look	for	a	specific
type	now;	I	will	tell	you	the	type	when	the	function	is	run.”	Then,	as	long	as	both
parameters	are	the	same	type	(because	you	used	T	for	both;	if	you	had	used	T	and	U	or
something	else,	T	and	U	would	represent	different	types),	the	function	will	work.	This	is
true	even	though	the	T	is	not	any	specific	type.	This	means	that	you	can’t	pass	two
different	types,	like	an	Int	and	a	String;	you	must	pass	the	same	type.	The	angle
brackets	at	the	beginning	of	the	function	tell	Swift	it	is	dealing	with	a	generic	type.

Note

You	don’t	have	to	use	T	here,	though;	you	can	use	anything	you	want.	And,	in	fact,
you	can	use	multiple	names.	It	is	customary	to	use	a	single	capital	letter	for	generic
types,	but	you	can	do	whatever	you	want.	It	is	also	customary	to	use	capital	camel
case	when	naming	generic	types.	Using	the	same	letter	represents	the	same	type,
meaning	that	whatever	type	you	decide	to	send	in	must	match	other	types	with	the
same	name.

Other	Uses	for	Generics
In	addition	to	creating	functions	with	generic	types,	you	can	provide	your	own	custom
types,	using	classes,	structs,	and	enums.	The	array	type	is	a	good	example	of	this.	Notice
that	when	you	create	an	array,	you	are	setting	the	type	at	creation	time:



var	a:[Int]	=	[1,2,3]

Notice	that	the	preceding	example	tells	the	array	to	use	Ints.	Here’s	another	way	to	do
this:

var	a:Array<Int>	=	[1,2,3]

This	syntax	is	the	generic	syntax	for	an	array.	It	tells	you	that	what	appears	after	the	equal
sign	is	an	array	made	of	Ints.	Inside	those	angle	brackets	you	declare	that	the	array	uses
Ints.	An	array	is	just	a	list	or	sequence.	You	can	create	your	own	arraylike	structure	that
has	a	similar	implementation	to	the	array	but	with	your	own	added	functionality.	Let’s	call
this	custom	arraylike	structure	a	List,	and	this	List	will	use	a	method	named	add
instead	of	append.

Here’s	how	you	can	make	a	List	type	that	accepts	and	works	with	any	type:
class	List<T>	{
				var	items	=	[T]();
				func	add(item:T){
								items.append(item)
				}
				var	count:Int	{
								return	items.count
				}
				subscript(i:	Int)	->	T	{
								return	items[i]
				}
}

var	l	=	List<Int>()
l.add(1)
l.add(2)
l.add(3)
print(l.count)

In	this	new	List	class,	when	you	set	the	type	during	initialization,	you	can	also	add	Ints
to	List.	This	List	is	a	generic	type,	which	means	it	is	a	type	that	can	work	with
multiple	types.	It	will	work	with	those	types	in	the	same	way	that	arrays	and	dictionaries
work	with	any	type.	When	you	define	T	as	<T>,	you	are	declaring	that	this	generic	type
will	be	used	throughout	the	rest	of	your	code	and	represent	one	type.	When	you’re	using
the	generic	type,	if	you	instantiate	T	as	an	Int,	then	anywhere	you	use	T	in	the	class,	it
will	be	considered	an	Int.

Within	the	code,	you	create	an	array	of	Ts	(whatever	T	will	be,	after	the	class	is
instantiated).	You	allow	the	user	to	access	the	array	of	Ts	through	the	use	of	a	subscript.
This	means	you	can	get	items	from	the	list	like	so:

print(l[2])

Now	you	have	created	your	own	arraylike	structure.	Notice	that	if	you	try	to	loop	through
the	list,	you	will	get	an	error.	That	is	because	you	didn’t	implement	iterating	for	your
custom	type.	The	point	is	that	you	have	a	custom	type	called	List,	which	has	its	own
append-like	method	but	does	not	have	any	of	the	other	array	methods.	It	is	a	light	array,
or	diet	array.	Whatever	type	you	assign	when	creating	the	List	is	the	type	that	the	List
will	use.	List	uses	T	as	a	generic	type	that	will	be	defined	at	the	time	of	creation.	Also



note	that	T	could	be	a	struct,	an	enum,	a	class,	or	a	protocol—as	long	as	it	falls	under	the
category	of	type.

Let’s	improve	the	list	to	make	it	more	useful:
Click	here	to	view	code	image

class	List<T:Equatable>	{
				var	items	=	[T]();
				func	add(allItems:T…){
								items	+=	allItems
				}

				func	deDup()	{
								var	uniques	=	[T]()
								for	t	in	items	{
												if	uniques.indexOf(t)	==	nil	{
																uniques.append(t)
												}
								}
								items	=	uniques
				}

				func	indexOf(item:T)	->	Int	{
								for	(index,t)	in	items.enumerate()	{
												if	t	==	item	{
																return	index
												}
								}
								return	-1
				}

				var	count:Int	{
								return	items.count
				}
				subscript(i:	Int)	->	T	{
								return	items[i]
				}
}

var	l	=	List<Int>()
l.add(1,2,3,4,5,4,4,4,5,6,7,7)
l.deDup()
print(l.indexOf(10))
print(l.count)

There	are	a	bunch	of	changes	in	this	version	of	List.	First,	you	declare	the	type	of	this
List	as	T:Equatable.	This	means	that	any	type	you	use	must	adopt	the	protocol
Equatable.	You	need	to	use	only	types	that	implement	Equatable	in	order	to
implement	a	JavaScript-style	indexOf	function	because	it	needs	to	match	types.	Even
though	Swift	now	has	an	indexOf	method,	ours	returns	-1	when	the	item	is	not	found
instead	of	nil.	This	example	is	just	for	fun.	To	find	a	match,	you	need	to	use	a	==.	Only
types	adopting	Equatable	can	use	==.

You	implemented	indexOf	by	using	Swift’s	enumerate	function	to	loop	through	an
array	while	also	grabbing	the	index.	The	code	will	compare	the	item	you	are	looking	for
with	the	current	item	in	the	array.	If	it	cannot	find	that	item,	it	returns	-1.	If	a	match	is
found,	it	returns	the	index	at	which	it	was	found.	This	is	possible	only	because	you	can



compare	the	equality	of	two	objects.	For	this	to	work,	those	two	objects	must	be
Equatable.	That	is	why	this	List	must	use	a	generic	type	that	is	Equatable.	This
concludes	the	implementation	of	your	JavaScript-like	indexOf	function.	Nice	job!

You	have	also	created	a	deDup	function,	which	removes	all	duplicates	of	the	array.
deDup	works	by	creating	a	new	array	and	pushing	all	the	unique	items	into	that	array	by
first	checking	whether	they	exist,	using	Swift’s	find	function.

You	also	added	some	new	functionality	to	the	add	method.	The	add	method	now	takes
any	number	of	arguments	and	adds	them	into	the	list—overall	a	major	improvement.

Generics	for	Protocols
Protocols	can	create/define	generic	types	called	associated	types.	You	may	sometimes
want	to	create	a	protocol	that	uses	some	type	that	will	be	decided	when	you	create	the
object.	Earlier	in	the	chapter,	you	created	a	List	that	has	a	couple	of	nifty	methods	and
properties.	Now	you	will	create	a	protocol	to	describe	some	of	the	functionality.	So	here
you’ll	create	a	Bucket	protocol	to	describe	adding	functionality	to	the	List	so	that	you
can	add	as	many	elements	as	you	want—and	remove	them.	You’ll	also	make	a
Uniquable	protocol,	which	describes	the	deDup	functionality.	Here	are	the	two
protocols	and	their	implementation	declaration	in	the	List:
Click	here	to	view	code	image

protocol	Bucket	{
				typealias	SomeItem
				var	count:Int	{	get	}
				var	items:[SomeItem]	{	get	set	}
				func	add(allItems:SomeItem…)
				func	indexOf(item:SomeItem)	->	Int
				subscript(i:Int)	->	SomeItem	{	get	}
}

protocol	Uniquable	{
				func	deDup()
}

class	List<T:Equatable>:Bucket,	Uniquable	{

List	is	now	fitted	with	two	protocols	it	claims	to	adopt:	Bucket	and	Uniquable.	For
the	Bucket	protocol,	notice	that	you	declare	a	typealias	for	SomeItem.	You	don’t
know	the	type	of	SomeItem	right	now,	but	when	the	List	gets	created,	SomeItem	will
be	the	same	type	as	T.	You	declare	the	add	method	to	take	a	type	of	SomeItem.	You
also	declare	indexOf	to	take	a	type	of	SomeItem.	Notice	that	you	do	not	need	to
declare	SomeItem	for	the	Uniquable	protocol	because	the	deDup	functionality	does
not	need	it	in	its	method	signature	in	order	to	operate.	The	List	class	already	implements
both	of	these	protocols.	When	creating	protocols,	you	can	use	that	typealias	of
SomeItem	(and	you	can	name	it	whatever	you	want)	anywhere	you	would	need	to
declare	the	generic	type	that	is	used	in	the	class,	struct,	or	enum	in	which	you	are
declaring	the	generic	type.

To	conform	to	the	Bucket	protocol,	you	need	to	implement	the	following:



	A	property	count

	An	add	method	that	takes	a	variadic	parameter	named	allItems	of	type
SomeItem	so	that	you	can	add	as	many	items	as	you	like

	An	indexOf	method	that	takes	a	parameter	named	item	of	type	SomeItem	and
returns	an	Int	(this	way	you	can	see,	using	indexOf,	whether	a	specific	item
exists	in	the	List)

	A	subscript	so	you	can	directly	access	the	members	of	the	List	and	that	returns	a
type	of	SomeItem

To	conform	to	the	Uniquable	protocol,	you	need	to	implement	only	one	method,
deDup,	which	takes	no	parameters	and	returns	nothing.	Because	this	method	does	not	use
the	generic	type	in	its	signature,	you	do	not	need	to	declare	the	typealias	of
SomeItem	for	it.

The	List	class	already	provides	an	implementation	for	these	requirements,	so	you	are
good	to	go	there	as	well.

The	 	Clause
If	you	want	to	provide	an	extra	utility	knife	for	the	List	collection,	you	can	write	a
couple	of	functions	that	do	some	useful	stuff	to	the	List.	You	will	have	very	strict
criteria	for	the	parameters	of	the	function,	even	stricter	than	a	protocol.	Enter	the	where
clause!	You	can	specify	that	parameters	must	meet	certain	criteria	before	being	passed	in.
This	of	it	like	a	bouncer	at	a	club.	Let’s	say	you	are	comparing	two	Lists.	You	want	to
make	sure	that	both	Lists	being	passed	in	meet	the	criteria	of	a	List.	You	can	make	a
function	that	will	combine	all	Lists	passed	in	and	deDup	them	all	at	once,	leaving	you
with	one	list	with	all	unique	values:
Click	here	to	view	code	image

protocol	Bucket	{
				typealias	SomeItem
				var	count:Int	{	get	}
				var	items:[SomeItem]	{	get	set	}
				func	add(allItems:SomeItem…)
				func	add(allItems:[SomeItem])
				func	indexOf(item:SomeItem)	->	Int
				subscript(i:Int)	->	SomeItem	{	get	}
}

There	is	a	functionality	that	Swift	arrays	currently	do	not	have	but	I	really	wish	they	did.
The	functionality—passing	an	array	to	a	variadic	parameter—is	otherwise	known	as	the
splat	operator	in	other	languages.	You	can	implement	this	functionality	yourself.	The
implementation	looks	like	this:
Click	here	to	view	code	image

class	List<T:Equatable>:Bucket,	Uniquable	{
				var	items	=	[T]();
				func	add(allItems:T…){
								items	+=	allItems
				}



				func	add(allItems:[T])	{
								items	+=	allItems
				}
…

Now	you	are	ready	to	create	the	new	combineUnique	function.	This	function	will
combine	two	arrays	and	then	remove	the	duplicates.	It	is	important	to	carefully	watch
what	types	are	passed	into	this	function.	That	is	why	you	need	to	implement	the	where
clause	here.	Here’s	what	you	need:
Click	here	to	view	code	image

func	combineUnique<L1:Bucket,L2:Bucket
				where	L1.SomeItem	==	L2.SomeItem,	L1:Uniquable>(list1:L1,list2:L2)	->	L1
{
				list1.add(list2.items)
				list1.deDup()
				return	list1
}

Take	a	look	at	this	supermeaty	where	clause.	Here’s	what’s	going	on:

	First	are	the	angle	brackets	with	the	two	generic	types	declared:
<L1:Bucket,	L2:Bucket

This	says	that	you	will	use	two	different	generic	types	in	this	function,	and	both
must	adopt	the	Bucket	protocol.

	The	where	clause	compares	the	typealias	of	L1	and	L2:
Click	here	to	view	code	image

where	L1.SomeItem	==	L2.SomeItem

This	means	that	the	items	in	L1	and	L2	must	be	the	same.	They	can	be	whatever
you	want,	but	they	must	be	of	the	same	type.	They	can	both	be	Ints,	or	both	be
Strings,	or	whatever	you	want,	as	long	as	they	are	the	same	type.

	A	comma	says	that	one	more	condition	must	be	met.	You	want	to	make	sure	that	L1
adopts	the	protocol	Uniquable:
L1:Uniquable

You	need	to	do	this	because	you	will	need	to	deDup	the	first	list	after	you	add	list2’s
items	to	it.

So	the	where	clause	must	meet	the	following	criteria:	The	types	of	list1	and	list2
must	adopt	the	Bucket	protocol,	and	the	items	contained	within	list1	and	list2
must	be	of	the	same	type,	and	list1	must	adopt	the	protocol	Uniquable.

Providing	such	a	strict	where	clause	means	that	the	actual	code	(the	implementation)	that
makes	this	happen	is	very	short.	You	abstracted	away	some	of	the	dirty	work	and	gave	it
to	the	implementation	of	the	Bucket	protocol.	You	don’t	need	to	write	the	code	that
combines	arrays	or	the	code	that	removes	the	duplicates.	All	you	need	to	do	is	write	the
two	lines	of	code	that	do	the	removal	of	duplicate	elements,	and	you	are	done.	You	know
that	this	method	will	work	because	of	the	strict	where	clause.	You	gave	this	method	strict
guidelines	to	abide	by,	and	by	doing	so	the	developer	who	uses	this	code	will	be	greeted



with	errors	before	he	compiles	the	code.	Classes	must	meet	certain	criteria	to	even	be
considered	for	this	function.

You	might	be	wondering,	as	I	did,	why	you	need	all	these	complicated	where	clauses	in	a
function.	Why	can’t	you	just	use	one	type:	L1:Bucket,	Uniquable?	Because	you
need	to	combine	the	lists,	and	in	order	to	do	that,	the	contents	of	the	lists	must	be	the	same
type.	You	can’t	combine	a	list	of	Ints	and	Strings	because	that	would	not	work.	You
need	to	make	sure	the	junk	in	list1	is	the	same	type	as	the	junk	in	list2.	If	you	left	it
as	L1:Bucket,	Uniquable,	then	you	could	make	two	different	lists	with	different
types	and	pass	them	in.

This	way	of	using	where	clauses	also	frees	you	up	to	spend	time	doing	error	checking.
You	know	that	anything	that	got	into	this	function	meets	the	requirements	of	this	function.
You	don’t	need	to	do	any	downcasting	or	type	checking	because	the	where	clause	does
that	for	you.

Now	it	would	be	really	nice	if	you	could	see	the	contents	of	this	array	that	you’ve
deDuped	and	combined.	To	do	that,	you	need	to	implement	a	generator	so	that	it	can	loop
through	the	contents	of	the	array.	You	could	implement	your	own	generator,	but	you	can
also	take	a	shortcut	to	implement	it.	Because	the	items	of	your	List	form	an	array,	and
arrays	have	the	implementation	of	looping	already	built	in,	you	can	use	an	array,	like	this:
Click	here	to	view	code	image

protocol	Bucket	{
				typealias	SomeItem
				var	count:Int	{	get	}
				var	items:[SomeItem]	{	get	set	}
				func	add(allItems:SomeItem…)
				func	add(allItems:[SomeItem])
				func	indexOf(item:SomeItem)	->	Int
				subscript(i:Int)	->	SomeItem	{	get	}
}

protocol	Uniquable	{
				func	deDup()
}

class	List<T:Equatable>:Bucket,	Uniquable,	SequenceType	{
				var	items	=	[T]();
				func	add(allItems:T…){
								items	+=	allItems
				}

				func	add(allItems:[T])	{
								items	+=	allItems
				}

				func	deDup()	{
								var	uniques	=	[T]()
								for	t	in	items	{
												if	uniques.indexOf(t)	==	nil	{
																uniques.append(t)
												}
								}
								items	=	uniques
				}



				func	generate()	->	IndexingGenerator<Array<T>>	{
								return	items.generate()
				}

				func	indexOf(item:T)	->	Int	{
								for	(index,t)	in	items.enumerate()	{
												if	t	==	item	{
																return	index
												}
								}
								return	-1
				}

				var	count:Int	{
								return	items.count
				}
				subscript(i:	Int)	->	T	{
								return	items[i]
				}
}

func	combineUnique<L1:Bucket,L2:Bucket
				where	L1.SomeItem	==	L2.SomeItem,	L1:Uniquable>(list1:L1,list2:L2)	->	L1
{
								list1.add(list2.items)
								list1.deDup()
								return	list1
}

var	l	=	List<Int>()
l.add(1,2,3,4,5,4,4,4,5,6,7,7)
var	l2	=	List<Int>()
l2.add(1,2,3,4,5,4,4,4,5,6,7,7,8,9,10)
print(combineUnique(l,list2:	l2).count)
for	n	in	l	{

				print(n)	//	1,2,3,4,5,6,7,8,9,10
}

The	main	idea	behind	making	your	class	loopable	is	to	make	your	class/struct	adopt	the
SequenceType	protocol.	The	SequenceType	protocol	wants	you	to	create	a	function
called	generate	that	returns	some	sort	of	generator.	You	could	write	one	yourself	by
subclassing	one	of	the	many	generators.	Instead,	here	you	took	a	shortcut	and	used	the
items	generator	that	is	already	built	into	the	array.	Of	course,	you	could	always	start
with	a	blank	slate	and	implement	the	whole	thing,	but	you	didn’t	need	to.

Summary
Generics	provide	a	great	way	to	abstract	your	code	so	that	when	you	create	a	new	fancy
List	type,	it	will	work	the	same	for	a	list	of	Strings,	Ints,	or	even	NSDates.
Generics	give	you	a	great	way	to	write	code	that	is	type-safe	so	that	instead	of	writing
code	to	check	types,	you	can	rest	assured	that	types	are	coming	in	as	you	expect	them	to.



10.	Games	with	SpriteKit

In	Chapter	5,	“SpriteKit,”	you	learned	how	to	program	a	game	with	SpriteKit.	This
chapter	continues	to	build	on	those	concepts,	but	it	focuses	more	on	animation.	This
chapter	focuses	on	making	a	game,	as	well	as	how	to	build	basic	game	concepts	such	as
2D	animation,	basic	physics,	and	sound	playback.

The	Game
The	game	we	will	make	is	very	basic	in	its	appearance	but	will	teach	you	the	most
important	concepts	of	SpriteKit	that	you’ll	definitely	use	every	time	you	make	a	game.	In
this	simple	game,	your	user	will	control	the	hero	as	he	runs	away	from	an	enemy	that’s
chasing	him.	The	enemy	watches	your	every	move	and	stays	within	the	bounds	of	the
game	while	you	try	to	collect	the	diamonds	on	the	screen.	The	main	point	of	this	game	is
to	show	you	how	simple	it	is	to	make	a	basic	game	with	SpriteKit	for	any	device.	Your
game	should	be	running	at	a	solid	60	frames	per	second,	which	is	impressive	for	all	the
collision	detection	that	will	be	going	on.

The	Setup
Our	first	step	in	making	our	game	is	to	create	a	project	using	Xcode.	We	have	done	this	in
other	chapters,	so	you	should	already	know	how	to	do	it.

Open	up	your	version	of	XCode.	You	should	have	three	options	for	creating	a	project.
Click	Create	a	New	XCode	Project.

This	will	bring	you	to	a	screen	where	you	can	choose	from	a	number	of	predefined
projects.	You	are	going	to	use	the	setup	for	a	game.	Select	Game	and	click	Next.

At	this	point	you	can	customize	the	name	of	your	project,	language,	and	supported
devices.	Give	your	game	any	name	you	want.	I	used	Chase	Game.	Give	yourself	an
organization	name,	and	if	you	don’t	have	one,	make	one	up.	I	call	my	organization
Bisonkick,	just	for	fun.	I	own	the	domain	bisonkick.com	so	I	know	that	this	project	is
going	to	use	a	unique	organization	name.	I	don’t	use	the	domain	for	anything;	I	just	keep	it
around	in	case	I	want	to	use	it	later	and	so	that	I	can	claim	the	name	Bisonkick.	Therefore,
my	organization	name	is	com.bisonkick,	which	makes	my	Bundle	Identifier
com.bisonkick.chase-game.	Your	bundle	identifier	will	be	set	automatically.

For	the	language	you	can	choose	Swift,	and	for	the	Game	Technology	choose	SpriteKit.
For	devices	you	can	choose	Universal.	Click	Next.

The	next	screen	will	ask	you	to	save	your	game	somewhere,	so	choose	a	location	to	save
your	game	and	click	Create.

You	now	have	your	project	all	set	up	and	ready	to	be	coded.



Tour	the	Code
You	are	now	ready	to	write	the	code	for	your	game.	Let’s	take	a	quick	tour	of	the
generated	code.	In	your	project	navigator,	where	all	the	files	sit	you	will	see	a	bunch	of
files	that	make	up	the	default	game	that	comes	with	SpriteKit.	If	you	haven’t	already	done
so,	run	your	game	once	to	see	the	default	game	that	SpriteKit	comes	with.

You	should	see	a	spaceship	rotating	on	the	screen.	When	you	tap	the	screen,	you	will	see
more	spaceships	appear.	At	the	bottom	of	the	screen,	you	will	see	a	count	of	how	many
nodes	are	on	the	screen.	Each	time	you	tap	the	screen,	you’ll	notice	that	a	node	is	added	to
the	node	count.	Notice	it	starts	with	three	nodes	and	increments	every	time	you	add	a
spaceship	to	the	screen.

The	first	step	is	to	remove	this	default	code	so	we	can	write	some	of	our	own.	Your	code
starts	in	the	AppDelegate.swift	file,	which	is	responsible	for	everything	related	to
application	setup	and	shutdown	and	everything	that	happens	in	between.	We	won’t	need	to
do	anything	with	this	file	this	time	around.	Next,	our	code	will	go	to	the	Storyboard,
which	is	in	Main.storyboard.	In	this	file	you	can	see	one	controller	on	the	screen.	Its
background	is	completely	black.	Your	game	will	be	played	inside	of	this	view.	This	view
is	an	SKView	being	controlled	by	a	UIViewController	named
GameViewController.	We	covered	all	of	this	in	Chapter	5,	so	we	don’t	need	to	repeat
everything	here.	GameViewController	code	is	in	the	file
GameViewController.swift.	If	you	open	up	GameViewController.swift,
you	will	see	the	setup	of	your	initial	scene	that	will	run	your	game.	The	most	important
thing	to	notice	here	is	the	scaleMode	and	how	it’s	set.	You’ll	recall	that	we	talked	about
the	scale	mode	in	Chapter	5	as	well;	so	if	you	need	a	refresher	on	scaleMode,	refer	to
Chapter	5.	Finally,	at	around	line	29,	the	GameViewController	presents	our	scene
and	we	are	directed	to	GameScene.swift	for	the	first	scene	of	our	game.

The	Game
There	are	two	files	that	pertain	to	our	GameScene	class:	GameScene.sks	and
GameScene.swift.	GameScene.swift	is	the	actual	code	that	represents	our
GameScene	class.	GameScene.sks	is	the	file	that	also	represents	our	GameScene
class	in	a	visual	GUI.	When	a	game	is	being	made,	each	object	that	is	put	on	the	screen
(an	enemy,	a	hero,	a	plant,	a	zombie,	a	background,	fire,	smoke,	or	anything	else)	is	going
to	be	an	SKNode.	It	may	be	an	SKSpriteNode,	for	attaching	an	image/sprite	to
something	happening	onscreen;	or	an	SKLabelNode,	for	text	that	you	can	manipulate
onscreen;	or	an	SKEmitterNode,	for	adding	smoke	or	other	effects	to	your	game.
Adding	a	node	to	the	game	programmatically	takes	a	few	lines	of	code	and	takes	some
organization	on	your	part	to	keep	track	of	that	node	and	everything	that	it	will	represent.
Apple	tries	to	make	this	easier	on	you	by	allowing	you	to	add	all	of	your	nodes	in	the	sks
file.	The	sks	file	is	a	SpriteKit	scene	editor.	It	allows	you	to	set	various	properties	of	your
scene	visually,	as	well	as	add	nodes	to	your	scene	that	you	can	then	control
programmatically.	The	SpriteKit	editor	is	a	new	feature	of	Xcode	and	has	frankly	been	a
bit	of	a	hassle,	so	we	won’t	use	it	right	now	except	to	check	out	the	size	of	our	scene.	The
Spritekit	editor	does	what	you	can	do	in	code,	except	with	a	graphical	user	interface.



Step	1:	Create	the	World
Our	first	step	in	creating	our	game	is	to	create	our	world	with	the	assets	we	have.	We	are
going	to	create	each	level	from	our	info.plist,	and	that	way	we	can	load	as	many
levels	as	we	want.	By	storing	level	data	in	our	info.plist,	we	won’t	have	to	change
any	code	to	create	new	levels	for	the	game.	The	info.plist	is	really	just	a	giant
dictionary	that	you	can	edit	without	having	to	change	any	code.	It	can	be	accessed	from
your	code	by	using	NSBundle.

Create	the	Levels

Open	up	your	info.plist	by	clicking	on	it.	The	plist	editor	appears	and	you	can	add
new	rows	for	your	levels	by	right-clicking	in	the	whitespace	below	the	list	and	clicking
Add	Row	(see	Figure	10.1).

Figure	10.1	Add	a	row

You	can	name	your	new	row	Levels	and	set	the	Type	to	be	Array.	At	this	point	your	array
of	levels	will	have	0	items	in	it.	Each	level	will	be	an	element	of	the	array,	so	add	a	new
level	to	your	Levels.	The	easiest	way	to	do	this	is	to	expand	the	Levels	by	clicking	the
arrow	to	the	left	of	it	and	clicking	the	plus	button,	which	will	add	a	new	element	to	the
array	(see	Figure	10.2).



Figure	10.2	Add	a	new	level	to	your	Levels	row

This	Item	0	should	then	be	set	to	an	array	as	well	since	it	will	contain	main	rows	for	the
level.	You	can	add	about	ten	rows	to	your	level.	Each	will	be	a	string.	We	will	use	a
different	character	to	represent	different	blocks	for	the	game.	We	will	use	“d”	for
diamond,	“1”	for	a	regular	boundary	block,	“0”	for	empty	space,	“b”	for	the	bad	guy,	and
“h”	for	the	hero.	You	should	only	have	1	“h”	in	each	level.	You	can	see	how	I	made	my
level	look	in	Figure	10.3.

Figure	10.3	Level	with	ten	rows

This	way,	the	hero	will	stop	at	the	borders	and	will	be	chased	by	the	bad	guy	while
collecting	the	diamonds.	Figure	10.4	shows	a	screenshot	of	the	final	game	we	will	make.



Figure	10.4	The	final	game

This	game	will	contain	50	nodes	and	will	still	run	at	a	smooth	60	frames	per	second.

Every	time	a	new	level	is	needed,	it	can	be	added	directly	to	the	array	of	levels	in	the
info.plist.	How	easy	is	that?

Creating	the	World	in	Code

For	our	game	we	will	want	to	organize	our	code	a	little	better	than	just	sticking	all	the
code	in	GameScene.swift.	We	want	our	files	to	do	some	of	the	heavy	lifting	for	us,	so
we’ve	put	together	a	few	files	to	help	us	out.	Create	the	following	files:

	Tile.swift

	GameManager.swift

	GameHelpers.swift

	Hero.swift

	Ghost.swift

	Diamond.swift

With	all	of	these	files	ready	to	be	written	to,	we	can	start	writing	some	code.

Our	GameManager	will	keep	track	of	all	of	our	characters	and	blocks,	with	some	help
from	the	GameHelper.	The	GameHelper	class	will	contain	some	methods	that	help	us
do	some	otherwise	tricky	stuff,	like	check	who	collided	with	whom.	For	example,	if	the



bad	guy	collides	with	the	hero,	it’s	game	over.	However,	if	the	hero	collides	with	the
diamond,	we	collect	it	and	get	a	point.	The	bad	guy	should	not	collide	with	the	diamond,
but	shouldn’t	be	able	to	run	off	the	level.	Let’s	start	by	writing	our	GameManager	class.

The	first	thing	we	need	to	do	is	create	a	skeleton	class	for	our	GameManager	class:
Click	here	to	view	code	image

import	Foundation
import	SpriteKit
public	class	GameManager	{

								var	currentLevel	=	0
								var	maxLevel	=	0
								var	levels	=	[[String]]()
								var	tiles	=	[SKSpriteNode]()
								var	main:SKScene!

										init(main:SKScene)	{
																self.main	=	main
																loadLevelData()
									}

										private	func	loadLevelData()	{
																levels	=
NSBundle.mainBundle().objectForInfoDictionaryKey(“Levels”)	as!
[[String]]
																maxLevel	=	levels.count
																load(levelNumber:	0)
									}
}

This	code	provides	our	GameManager	with	some	basic	functionality,	but	it	is	not
complete	yet.	Let’s	go	over	what	it	does.

The	first	thing	our	GameManager	class	does	is	to	define	some	important	variables.
currentLevel	will	keep	track	of	what	level	the	user	is	currently	on.	maxLevel	will
keep	track	of	how	many	total	levels	there	are	in	our	info.plist.	This	is	so	that	we
don’t	advance	the	user	to	a	level	that	does	not	exist.	Also,	when	the	user	beats	the	last
level,	she	has	beaten	the	game	completely.

In	levels	we	store	the	array	of	level	data	in	its	entirety.	If	your	level	data	is	extremely
large,	you	might	want	to	load	only	one	level	at	a	time	into	the	game’s	memory.	In	the
info.plist	the	Levels	is	an	array	of	arrays	of	strings,	so	we	set	the	levels
variable	to	be	the	same	type:	[[String]],	meaning	an	array	of	arrays	of	strings.

We	create	an	initialization	method,	which	takes	one	parameter,	the	scene	that	we	will	add
our	characters	to.	By	keeping	a	reference	to	the	main	game	scene,	we	can	add	things	to	the
scene	from	this	class.	We	then	make	a	call	to	a	method	called	loadLevelData.

In	loadLevelData,	we	grab	the	data	from	the	info.plist	and	load	it	into	our	levels
variable	so	that	we	can	then	parse	our	level	data	into	our	game.	In	this	way	we	can	change
the	info.plist	anytime	and	change	the	whole	game.

We	call	the	load	method	and	tell	it	which	level	to	load.	We	haven’t	written	this	method
yet,	so	let’s	write	it.	In	your	GameManager.swift	in	the	GameManager	class,	add



the	following	code	to	load	the	requested	level.

For	your	global	variables	add	the	following	global	variables	to	the	top	of	your
GameManager	class:
Click	here	to	view	code	image

var	tileSize	=	CGSize(width:	70,	height:	70)
var	tileAtlas	=	SKTextureAtlas(named:	“tiles”)
var	ghosts	=	[Ghost]()
var	diamonds	=	[Diamond]()
var	hero:Hero!

We	don’t	have	all	of	these	classes	defined	yet	so	let’s	define	a	skeleton	class	for	each.

Let’s	first	create	the	code	for	Tile.swift.	Open	up	Tile.swift	and	add	the
following	skeleton	code:

import	Foundation
import	SpriteKit

class	Tile:SKSpriteNode	{
}

We	will	add	more	code	to	this	class	later.	The	Tile	class	will	be	used	for	any	regular
blocks	that	sit	around	the	screen.	I	wish	it	were	this	easy	to	tile	a	room	in	my	home!

Next	let’s	create	our	characters	and	objects,	starting	with	our	hero:	Hero.swift.	Open
up	the	Hero.swift	file	and	add	the	following	code:

import	Foundation
import	SpriteKit

class	Hero:SKSpriteNode	{
}

We’ll	use	this	class	to	hold	our	Hero.	We’ll	need	more	code	for	our	Hero	class	in	a	little
bit,	but	this	will	get	us	started.

Next	let’s	add	some	code	for	our	Ghost	class.	Open	up	Ghost.swift	and	add	the
following	code:

import	Foundation
import	SpriteKit

class	Ghost:SKSpriteNode	{
}

This	will	handle	the	movement	of	our	bad	guys	on	an	individual	level.

Finally,	let’s	add	some	code	for	a	diamond	class.	Open	up	Diamond.swift	and	add	the
following	code:

import	Foundation
import	SpriteKit

class	Diamond:SKSpriteNode	{
}

The	diamond,	ghost,	hero,	and	tile	classes	all	inherit	from	the	SKSpriteNode.	With	this
set	up,	we	can	attach	an	image	to	the	node.	In	other	words,	we	want	to	have	a	ghost	node



that	has	an	actual	picture	of	a	ghost	on	the	node.	We	can	then	animate	our	nodes.

We	will	use	atlases	to	store	our	images	because	this	will	significantly	improve	the
performance	of	our	application.	You	can	use	texture	atlases	for	storing	images	to	use	later
and	animating	them	easily	as	well.	We	don’t	need	to	animate	any	of	our	images	right	now,
so	we’ll	just	store	them	to	be	used	in	our	sprites.

We	have	four	images	in	our	texture	atlas.	We	have	our	regular	block,	ghost,	diamond,	and
hero	(see	Figure	10.5).	You	can	find	files	for	all	the	images	here:

http://imgur.com/a/SfT18

Figure	10.5	A	regular	block,	a	ghost,	a	diamond,	and	a	hero

These	have	these	default	names	if	you	got	the	files	from	Imgur.	To	add	these	sprites	as	a
texture	atlas,	open	up	your	Assets.xcassets.	Right-click	just	below	where	it	says
“AppIcon”	and	“Spaceship.”	Click	New	Sprite	Atlas	(see	Figure	10.6).

Figure	10.6	New	Sprite	Atlas

Rename	the	new	folder	from	Sprites	to	tiles.	And	rename	each	tile	so	we	can	easily

http://imgur.com/a/SfT18


identify	it	later.	I	renamed	the	plain	gray	tile	to	tile_1.	I	renamed	the	ghost	to	tile_b
for	bad	guy,	or	you	could	do	tile_g	for	ghost.	I	renamed	the	diamond	to	tile_d	for
diamond,	and	the	hero	to	tile_h	for	hero.

Finally,	we	can	add	the	code	for	our	load	method,	which	will	load	the	tiles	on	the	screen
based	on	the	level	data:
Click	here	to	view	code	image

private	func	load(levelNumber	level:Int)	{
				//	remove	all	the	tiles	first
				main.removeAllChildren()

				var	reuseTile:SKSpriteNode!
				var	start	=	CGPoint(x:	0,	y:	0)
				start.x	=	((CGFloat(String(levels[level][0]).characters.count)	*
tileSize.width)	/	2.0)	*	-1.0
				start.y	=	((CGFloat(levels[level].count)	*	tileSize.height)	/	2.0)	*	-1.0
				for	(rowIndex,	row)	in	levels[level].enumerate()	{
								for	(columnIndex,	tile)	in	Array(row.characters).enumerate()	{
												let	thisTile	=	String(tile)
												let	texture	=	tileAtlas.textureNamed(“tile_\(thisTile)”)
												switch	thisTile	{
																case	“0”:
																continue
																case	“h”:
																reuseTile	=	Hero(texture:	texture,	color:
SKColor.clearColor(),	size:	texture.size())
																hero	=	reuseTile	as!	Hero
																case	“b”:
																reuseTile	=	Ghost(texture:	texture,	color:
SKColor.clearColor(),	size:	texture.size())
																ghosts.append(reuseTile	as!	Ghost)
																case	“d”:
																reuseTile	=	Diamond(texture:	texture,	color:
SKColor.clearColor(),	size:	texture.size())
																diamonds.append(reuseTile	as!	Diamond)
																default:
																reuseTile	=	Tile(texture:	texture,	color:
SKColor.clearColor(),	size:	texture.size())
																tiles.append(reuseTile)
												}
												if	thisTile	==	“0”	{
																continue
												}

												reuseTile.position	=	CGPoint(
																x:	start.x	+	CGFloat(columnIndex)	*	tileSize.width,
																y:	start.y	+	CGFloat(rowIndex)	*	tileSize.height
												)
												reuseTile.name	=	thisTile
												tiles.append(reuseTile)
												main.addChild(reuseTile)
								}
				}
}

I	know	there	is	a	lot	of	code	here,	but	what	this	method	does	is	fairly	straightforward.
Most	of	the	code	is	taken	up	in	a	giant	switch	statement,	which	decides	which	tile	to	put
down.	Let’s	break	this	code	apart	and	figure	out	what	it	does.



The	first	thing	this	method	needs	to	do	(since	it	will	be	called	multiple	times	per	game,
every	time	the	user	advances	to	a	new	level)	is	to	remove	any	existing	tiles	from	the
screen.	We	have	a	reference	to	the	main	scene	from	our	initialization	method,	so	we	can
just	call	main.removeAllChildren(),	and	it	will	remove	all	the	tiles	from	the
screen.

The	next	step	is	to	create	a	tile	that	will	be	reused	so	we	can	save	some	memory.	We	create
the	reuseTile	to	be	used	over	and	over	when	populating	the	screen	with	multiple	tiles.
Next,	we	set	some	starting	points	by	doing	some	math	on	the	number	of	tiles	there	are.
CGPoint	is	used	to	store	an	x	and	y	position	together	in	one	variable.	You’ll	notice	that
SpriteKit	uses	a	lot	of	CG	classes	to	store	data.	CGPoint	takes	two	CGFloats.	These	CG
classes	are	all	compatible	with	Swift’s	number	classes.	We	store	start.x	and	start.y
as	the	starting	points	of	our	tiles.	You’ll	notice	that	we	have	to	do	a	lot	of	converting	when
working	with	Swift,	which	makes	this	code	look	a	little	more	complicated.	The	main	idea
behind	the	start	values	is	that	we	need	to	know	how	many	characters	are	used	for	each
row.	We	assume	that	each	row	has	the	same	number	of	characters.	Let’s	assume	that	the
first	row	is	made	up	of	the	following:

1111111111111

In	our	case	each	row	will	be	made	up	of	13	characters.	Taking	the	number	of	tiles	in	each
row	and	multiplying	it	by	the	tile	size	will	tell	us	how	much	width	our	game	will	take	up.
For	start.x	and	start.y	we	are	setting	an	initial	position	for	our	game.

In	our	first	for	loop,	we	loop	through	the	array	of	rows	in	level	data.	We	use	the
enumerate	method	of	the	array	to	get	the	index	of	the	loop	at	the	same	time.

On	the	inner	for	loop,	we	loop	through	each	character	of	the	string	of	characters	in	the
current	row.	For	example,	if	the	row	contained	the	string	"100d00000d001",	we	would
loop	through	each	of	the	13	characters	of	that	string,	one	at	a	time.	We	would	first	get
"1",	then	"0",	then	"0",	then	"d",	and	so	on.	The	way	in	which	you	loop	through	each
character	in	a	string	has	changed	in	Swift	2.	Now	you	run	enumerate	on	the
characters	property	of	a	string.	This	makes	the	string	iterative	by	character.

We	then	get	the	current	character	and	retype	it	as	a	string.	We	need	it	to	be	a	string	so	we
can	mix/concatenate	it	with	another	string	later	to	generate	the	name	of	the	texture	atlas.
We	will	write	that	on	the	next	line.

Next,	we	grab	the	texture	atlas	from	the	xcassets	library	by	grabbing	the	texture	by
name:
Click	here	to	view	code	image

let	texture	=	tileAtlas.textureNamed(“tile_\(thisTile)”)

This	takes	the	name	of	the	tile,	which	will	be	something	like	“1”	or	“b”	or	“h”	and
combines	it	with	the	word	“tile”	to	create	“tile_h”	or	“tile_1”	and	so	on.	This	method	of
using	texture	atlases	to	load	images	is	the	fastest	way	to	process	images	in	SpriteKit,	and	it
should	be	used	when	many	images	will	be	used	instead	of	using	the	plain	old	xcassets
library.

Next	we	run	a	switch	statement	to	load	the	right	tile	and	add	it	to	the	screen.



If	the	tile	is	“0”,	we	skip	it	and	move	along.

If	the	tile	is	“h”,	we	want	to	add	the	hero	to	the	screen.	We	use	our	Hero	class	to	generate
a	new	Hero.	We	are	really	just	initializing	an	SKSpriteNode,	from	which	the	Hero
inherits.	We	then	set	the	global	hero	variable	for	the	GameManager.

If	the	tile	is	a	“b”,	we	add	the	bad	guy,	aka	the	ghost,	to	the	screen.	We	want	to	convert	our
reuseTile	from	an	SKSpriteNode	to	a	Ghost,	so	we	use	as!	to	convert	from
SKSpriteNode	to	Ghost	explicitly.	We	know	that	the	conversion	will	work	since	we
inherited	from	SKSpriteNode.

If	the	tile	is	a	“d”,	we	add	the	Diamond	to	the	screen.	We	want	to	do	the	same	thing	we
did	for	the	Hero	and	Ghost	by	converting	the	reuse	tile	from	an	SKSpriteNode	to	a
Diamond	type.

The	default	(which	would	be	a	“1”	tile)	is	to	add	a	regular	tile	texture	to	the	screen.

Setting	Up	the	GameScene

Now	that	we	have	the	basic	level	loader	ready,	we	can	set	up	our	GameScene	class	to	use
the	GameManager.	Open	up	your	GameScene.swift	and	remove	all	the	default	code
that	comes	with	the	project.	Your	GameScene	class	should	now	look	like	this:
Click	here	to	view	code	image

import	SpriteKit

class	GameScene:	SKScene	{
				override	func	didMoveToView(view:	SKView)	{
				}

				override	func	touchesBegan(touches:	Set<UITouch>,	withEvent	event:
UIEvent?)	{
				}

				override	func	update(currentTime:	CFTimeInterval)	{
				}
}

Now	we	add	in	the	use	of	our	GameManager	class	to	get	the	ball	rolling.	If	we	initialize
our	GameManager	and	reset	the	anchorPoint	to	be	the	middle	of	the	screen,	we
should	be	good	to	go.	Your	GameScene	class	can	be	rewritten	to	look	like	this:
Click	here	to	view	code	image

import	SpriteKit

class	GameScene:	SKScene	{
				var	gameManager:GameManager!

				override	func	didMoveToView(view:	SKView)	{
								anchorPoint	=	CGPoint(x:	0.5,	y:	0.5)
								gameManager	=	GameManager(main:	self)
				}

				override	func	touchesBegan(touches:	Set<UITouch>,	withEvent	event:
UIEvent?)	{
				}



				override	func	update(currentTime:	CFTimeInterval)	{
				}
}

The	second-to-last	thing	we	want	to	do	before	we	run	this	code	is	change	the	project	to	be
in	landscape	orientation	and	not	in	portrait.	Click	on	your	main	project,	which	brings	up
all	the	project	settings.	In	the	project	settings	in	the	General	tab,	you	should	see	a	section
called	Deployment	Info.	Uncheck	the	Portrait	option,	and	make	sure	that	Landscape	Left
and	Landscape	Right	are	checked	(as	in	Figure	10.7).

Figure	10.7	Changing	the	project	to	landscape

One	last	thing	we	want	to	change	is	to	set	this	game’s	scaleMode	to	.AspectFit.
Open	up	GameViewController.swift,	and	where	the	scaleMode	is	set	to
.AspectFill,	change	it	to	be	.AspectFit.

When	you	run	the	game,	you	get	all	the	tiles	on	the	screen,	and	everything	should	look
great	except	that	no	one	is	moving.	You’ll	also	notice	that	the	game	is	running	at	60
frames	per	second	on	every	device	except	iPhone	6	Plus	and	iPhone	6s	Plus	(see	Figure
10.8).



Figure	10.8	Game	running	at	60	fps

The	next	step	is	to	get	our	hero	moving	and	collecting	diamonds	and	to	have	the	bad	guy
chase	him.

Step	2:	Making	Things	Move
In	our	second	step	of	making	our	game,	we	have	the	world	set	up	and	we’ve	added	our
characters,	and	now	it’s	time	to	make	things	move.

We	need	to	detect	collisions	between	different	items	in	the	game,	and	the	way	we	will	do
this	is	by	using	SpriteKit’s	built-in	collision	detection	system.	It	is	super-easy	to	add
collision	detection	to	any	game.

Collision	Detection	Setup

The	first	step	in	adding	collision	detection	to	a	game	is	to	set	up	your	scene	to	be	notified
of	collisions.	The	way	to	get	notified	of	changes	in	iOS	is	usually	through	the	delegate
pattern.	The	most	common	delegate	that	you	use	all	the	time,	perhaps	without	even
realizing	it,	is	ApplicationDelegate.	ApplicationDelegate	is	used	in
AppDelegate.swift	to	notify	the	app	when	the	phone	wakes	up	and	goes	into	the
background.

We	will	use	the	special	SKPhysicsContactDelegate	to	be	notified	of	collisions	that
happen	in	our	app.	The	setup	for	SKPhysicsContactDelegate	is	simple	and	is
similar	to	other	types	of	delegate	setup.	In	your	GameScene.swift	modify	the	class
declaration:
Click	here	to	view	code	image

class	GameScene:	SKScene,	SKPhysicsContactDelegate	{



The	SKPhysicsContactDelegate	will	call	didBeginContact	when	a	collision
happens	that	you	asked	SpriteKit	to	test	for.	Not	all	collisions	will	show	up,	only	the	ones
you	ask	for.	We	will	see	how	we	can	ask	to	test	for	certain	collisions.

The	next	step	is	to	tell	the	GameScene	class	that	it	will	be	the	receiver	of	messages
regarding	physics	contacts:
Click	here	to	view	code	image

physicsWorld.contactDelegate	=	self

Now	that	our	class	will	get	notified	of	collisions	that	happen,	we	need	to	write	the	method
that	gets	called	when	the	collisions	happen.	SKPhysicsContactDelegate	has	a
method	called	didBeginContact.	If	we	add	that	method	to	our	class,	it	will	get	called
when	collisions	happen.	Add	this	method	to	your	GameScene	class:
Click	here	to	view	code	image

func	didBeginContact(contact:	SKPhysicsContact)	{
}

The	parameter	contact	will	tell	us	many	things	about	the	collision	that	just	happened.
Most	important,	it	has	two	properties,	bodyA	and	bodyB.	Those	will	contain	the	two
bodies	that	made	contact	with	each	other.	If,	for	example,	you	had	a	ghost	and	a	hero
contact,	bodyA	or	bodyB	would	contain	the	ghost	physics	body	and	bodyA	or	bodyB
would	contain	the	hero.	The	only	issue	is	that	you	won’t	know	which	contains	which.
bodyA	or	bodyB	may	contain	what	you	want,	so	you	have	to	check	both.	Within	bodyA
and	bodyB	you	have	more	information,	including	the	categoryBitMask	and	sprite
node	itself	as	node.	The	categoryBitMask	will	tell	us	which	category	of	objects	this
body	belongs	to,	which	we	will	talk	about	in	just	a	second.	This	is	where	our
GameHelpers	class	comes	in	handy.	We	will	write	some	methods	that	will	help	us
detect	collisions	much	more	easily.	Let’s	put	that	class	together.	Open	up	your
GameHelpers.swift	class	and	let’s	add	the	categories	for	the	objects	that	will	collide:

class	GameHelpers	{
				enum	Character:UInt32{
								case	Hero	=					0b001
								case	Ghost	=				0b010
								case	Diamond	=		0b011
								case	Wall	=					0b100
				}
}

Here	we	are	using	binary	to	set	a	flag	for	each	type	of	character.	Just	remember	that	the
flag	cannot	be	0.	Hero	is	1,	Ghost	is	2,	Diamond	is	3,	and	Wall	is	4.	Here	we	are	just
counting	in	binary,	and	the	way	that	you	write	binary	in	Swift	is	to	prefix	the	number	with
0b.

Let’s	write	another	helper	method	for	our	class	to	check	whether	one	object	collided	with
another.	This	takes	care	of	the	issue	with	checking	bodyA	and	bodyB	for	the	right	object.
With	this	method	you	can	just	say	“Did	ghost	collide	with	hero?”	Add	this	method	to	your
GameHelpers	class.
Click	here	to	view	code	image



class	func	didCollideWith(contact
contact:SKPhysicsContact,collideA:UInt32,	collideB:UInt32)	->Bool	{
				let	bitMaskA	=	contact.bodyA.categoryBitMask
				let	bitMaskB	=	contact.bodyB.categoryBitMask
				let	b	=	bitMaskA	&	collideA	!=	0
				let	c	=	bitMaskB	&	collideB	!=	0
				let	a	=	bitMaskB	&	collideA	!=	0
				let	d	=	bitMaskA	&	collideB	!=	0
				return	(b	&&	c)	||	(a	&&	d)
}

Now	we	can	pass	in	the	contact	object	and	the	binary	category	of	the	object,	and	this
function	will	tell	you	whether	one	collided	with	the	other,	by	doing	some	binary
operations	on	the	categoryBitMasks.	We	would	add	this	method	in	our
didBeginContact	method	because	that	method	has	access	to	the	contact	that	just
happened.	We	can	say	something	like	this:
Click	here	to	view	code	image

func	didBeginContact(contact:	SKPhysicsContact)	{
				if	GameHelpers.didCollideWith(contact:	contact,
								collideA:	GameHelpers.Character.Ghost.rawValue,
								collideB:	GameHelpers.Character.Hero.rawValue)	{
												print(“ghost	and	hero	collided”)
				}
}

Notice	we	use	the	rawValue	of	the	enum	in	the	GameHelper	to	get	the	integer	back
from	the	enum.	Although	the	method	is	a	large	amount	of	code	to	write,	it	is	terse	in	its
implementation.

Now	we	have	a	tool	to	see	whether	two	nodes	collided.	We	could	use	one	more	helper
method	to	quickly	return	the	node	from	a	contact	that	has	a	specific	name	value.	For
example,	if	we	know	that	two	nodes	collided	and	we	want	to	grab	the	one	node	named
hero	back	from	the	collision	quickly,	we	can	do	so	with	this	method.	Add	this	method	to
your	GameHelper	class:
Click	here	to	view	code	image

class	func	getNodewith
(contact	contact:SKPhysicsContact,	nodeName:String)	->	SKNode?	{
				if	contact.bodyA.node	!=	nil	&&
								contact.bodyA.node!.name	!=	nil	&&
								contact.bodyA.node!.name!	==	nodeName	{
												return	contact.bodyA.node!
				}	else	if	contact.bodyB.node	!=	nil	&&
								contact.bodyB.node!.name	!=	nil	&&
								contact.bodyB.node!.name!	==	nodeName	{
												return	contact.bodyB.node!
				}	else	{
								return	nil
				}
}

This	method	is	simple	in	that	it	just	has	to	check	whether	the	node	is	in	bodyA	or	bodyB
and,	if	it	is,	return	it.	It	has	to	return	an	optional	because	we	don’t	know	that	any	node
exists	with	that	name	in	the	contact.	For	example,	if	the	collision	was	between	a	hero	and
ghost	and	we	are	looking	for	a	node	named	diamond,	we	probably	won’t	find	it.



With	these	small	helpers	in	hand,	we	can	make	our	Hero,	Ghost,	Diamond,	and	Tile
classes	more	detailed	so	they	know	with	whom	they	will	collide.

Let’s	first	update	our	Hero	class	and	talk	about	how	we	can	tell	SpriteKit	who	we	want
the	node	to	collide	with.

Add	the	following	initializer	to	your	Hero	class	in	Hero.swift:
Click	here	to	view	code	image

override	init(texture:	SKTexture?,	color:	UIColor,	size:	CGSize)	{
				super.init(texture:	texture,	color:	color,	size:	size)
				physicsBody	=	SKPhysicsBody(circleOfRadius:	size.width/2.0)
				physicsBody?.affectedByGravity	=	false
				physicsBody?.categoryBitMask	=	GameHelpers.Character.Hero.rawValue
				physicsBody?.collisionBitMask	=
								GameHelpers.Character.Wall.rawValue	|
								GameHelpers.Character.Diamond.rawValue	|
								GameHelpers.Character.Ghost.rawValue
				physicsBody?.contactTestBitMask	=
								GameHelpers.Character.Diamond.rawValue	|
								GameHelpers.Character.Ghost.rawValue
}

Here	we	are	adding	an	initializer	so	that	when	the	Hero	gets	initialized	we	also	add	a
bunch	of	defaults	to	set	the	physics	properties.	Most	important,	we	initialize	the	physics
collision	detection	by	initializing	the	SKPhysicsBody.	As	soon	as	you	initialize	a	new
SKPhysicsBody	on	your	sprite’s	physicBody,	the	physics	gets	turned	on	for	that
sprite.	We	initialize	it	with	a	collision	area	as	big	as	the	size	of	the	sprite.	We	use	a	circle
for	the	collision	area	of	the	Sprite.	Circles	are	very	efficient	to	use	in	SpriteKit.	In	fact,
circles	and	rectangles	are	the	most	efficient	shapes	you	can	use	in	collision	detection.

We	also	turn	off	the	gravity	for	the	hero.	You	can	use	the	built-in	physics	to	simulate
physics	or	you	can	just	use	its	collision	detection.	If	we	turn	off	gravity,	the	objects	will
collide	but	they	will	not	fall.	Since	we	are	creating	a	top-down	view,	it	makes	more	sense
not	to	have	the	objects	fall.

We	set	the	categoryBitMask	to	be	the	binary	value	of	the	hero	from	the	character
enum.	We	are	telling	Swift	what	kind	of	physics	object	this	is	by	assigning	it	a	binary
value.	When	we	set	this	value	on	the	walls,	the	ghosts,	and	the	diamonds,	we	will	be	able
to	say	what	collides	with	what,	and	Swift	will	compare	by	their	CategoryBitMask.	In
this	case	we	are	saying	that	this	is	a	Hero.	We	will	set	this	categoryBitMask	for	the
diamond,	as	GameHelpers.Character.Diamond.rawValue.	When	this	is
combined	with	the	collisionBitMask	and	the	contactTestBitMask,	we	can
detect	who	is	colliding	with	whom.

We	set	the	collisionBitMask	to	say	what	things	will	collide	with	the	hero.	These
things	will	surely	collide,	but	they	might	not	register	with	didBeginContact	unless
we	set	the	contactTestBitMask.	We	use	the	binary	OR	operator	to	combine	the
binary	values	together.	What	we	are	saying	here	is	that	the	hero	can	collide	with	a	wall,	a
diamond,	or	(hopefully	not)	a	ghost.

We	set	the	contactTestBitMask	to	tell	Swift	when	the	didBeginContact
method	should	be	called.	We	are	saying	what	type	of	collision	we	want	to	test	for.



We	have	a	hero	that	will	collide	with	walls,	diamonds,	and	ghosts,	and	we	will	test	that
collision	for	diamonds	and	ghosts.

Also,	remember	that	when	you	write	the	Ghost	class,	if	you	are	already	testing	for	hero
colliding	with	ghost,	you	shouldn’t	need	to	write	to	test	for	ghost	colliding	with	hero.	One
case	can	handle	both	directions.

Let’s	update	the	Ghost	class	to	update	how	the	ghost	should	collide.	Add	the	following
code	to	the	Ghost	class:
Click	here	to	view	code	image

override	init(texture:	SKTexture?,	color:	UIColor,	size:	CGSize)	{
				super.init(texture:	texture,	color:	color,	size:	size)
				physicsBody	=	SKPhysicsBody(circleOfRadius:	size.width/2.0)
				physicsBody?.affectedByGravity	=	false
				physicsBody?.categoryBitMask	=	GameHelpers.Character.Ghost.rawValue
				physicsBody?.collisionBitMask	=
								GameHelpers.Character.Wall.rawValue
}

We	are	doing	roughly	the	same	thing	we	did	for	the	hero.	We	don’t	need	as	much	code
because	the	hero	covers	a	lot	of	the	details	we	need.	We	don’t	need	to	say	that	the	ghost
will	collide	with	the	hero	if	we	already	said	the	hero	will	collide	with	the	ghost.

Let’s	update	our	Diamond	class	initializer.	Update	the	code	in	Diamond.swift	as
follows:
Click	here	to	view	code	image

override	init(texture:	SKTexture?,	color:	UIColor,	size:	CGSize)	{
				super.init(texture:	texture,	color:	color,	size:	size)
				physicsBody	=	SKPhysicsBody(circleOfRadius:	size.width/2.0)
				physicsBody?.affectedByGravity	=	false
				physicsBody?.categoryBitMask	=	GameHelpers.Character.Diamond.rawValue
				physicsBody?.contactTestBitMask	=	GameHelpers.Character.Hero.rawValue
}

Here	we	are	doing	the	same	thing	we	did	with	the	hero	and	the	ghost.	We	made	the
collision	area	of	the	diamond	a	circle	since	it	will	give	the	user	more	area	to	hit	to	collect
the	diamond.	Creating	an	actual	custom	shape	to	collide	with	in	this	case	is	unnecessary,
but	it	is	possible.	Just	remember	that	it	is	extremely	expensive	computationally	so	we	want
to	do	it	only	on	a	limited	basis.	This	situation	is	certainly	not	the	situation	to	do	custom
shape	collision	detection.

Let’s	update	the	Tile.swift	Tile	class.	Add	the	following	code	to	your
Tile.swift	class:
Click	here	to	view	code	image

override	init(texture:	SKTexture?,	color:	UIColor,	size:	CGSize)	{
				super.init(texture:	texture,	color:	color,	size:	size)
				physicsBody	=	SKPhysicsBody(circleOfRadius:	size.width/2.0)
				physicsBody?.dynamic	=	false
				physicsBody?.categoryBitMask	=	GameHelpers.Character.Wall.rawValue
}

There	is	one	tiny	detail	to	pay	attention	to	here.	That	is	that	we	are	setting	the	dynamic
property	of	the	physics	body	to	false.	Dynamic	bodies	can	move	and	be	moved,



whereas	static	bodies	(setting	the	dynamic	property	to	false)	cannot	be	moved.	That	is
why	we	set	the	tile	to	be	dynamic	false.	Therefore,	the	tiles	will	be	unmovable
objects.

Making	Things	Move	with	 s

At	this	point	not	much	has	changed	visually	in	the	game	except	that	we	now	have	collision
detection	working.	It	would	be	nice	if	we	could	see	the	collision	detection	in	action.	Let’s
make	our	hero	move.

The	way	to	make	things	move	in	SpriteKit	is	to	use	SKActions.	You	don’t	have	to
manually	change	the	position	properties	of	the	node	itself.	Instead,	SpriteKit	politely	takes
care	of	all	the	movement.

Let’s	add	two	methods	to	our	Hero	class	to	make	the	hero	move	when	we	tap	the	screen.
We	will	need	a	moveTo	method	to	make	the	hero	move	to	a	location.	We	also	need	a
cancelMove	method	so	that	the	hero	can	be	stopped	from	performing	a	move.	Add	the
following	code	to	the	hero	class:
Click	here	to	view	code	image

public	func	moveTo(location	location:CGPoint)	{
				removeAllActions()
				let	path	=	CGPathCreateMutable()
				CGPathMoveToPoint(path,	nil,	position.x,	position.y)
				CGPathAddLineToPoint(path,	nil,	location.x,	location.y)
				runAction(SKAction.followPath(path,	asOffset:	false,	orientToPath:
false,	speed:	500))
}

public	func	cancelMove()	{
				removeAllActions()
}

Our	moveTo	method	takes	a	location	to	move	the	hero	to.	We	move	the	hero	along	a	path.
There	are	many	ways	to	move	a	sprite,	and	in	this	case	we	use	followPath.	Let’s	take	a
look	at	some	other	ways	to	move	a	sprite:

	moveTo:For	moving	the	sprite	directly	to	a	location	instead	of	moving	by	a	certain
amount.	Works	for	X	and	Y.

	moveBy:For	moving	the	sprite	by	a	certain	amount	(using	a	delta).	Works	for	X
and	Y.

	moveByX:The	same	as	moveTo,	but	for	moving	the	sprite	along	the	X	coordinate.

	fadeInWithDuration:For	fading	in	a	sprite,	in	seconds.

	fadeOutWithDuration:For	fading	out	a	sprite	in	seconds.

	resizeToWidth:For	resizing	the	sprite	to	a	certain	width	by	changing	the	size
property.

There	are	many	more	SKActions	available	in	the	documentation,	and	most	are	very
straightforward	to	implement.	Make	sure	you	check	out	the	documentation.	When	we	run
runAction,	we	don’t	need	to	orient	to	the	path	because	our	hero	is	a	circle.	We	set	the



speed	to	be	500	so	that	our	hero	will	move	at	a	consistent	speed	instead	of	using	a	duration
to	move	the	hero.	If	we	had	used	a	duration,	the	hero	would	move	at	different	speeds.	A
farther	distance	but	the	same	time	would	mean	the	hero	would	have	to	move	faster	to	get
to	his	point.	This	way	the	hero	always	moves	at	a	constant	speed.
We	also	have	the	special	method	removeAllActions(),which	will	(as	you	can
probably	guess)	remove	all	actions	from	the	list	of	actions	currently	running	on	the	hero.
This	is	good	when	we	want	to	stop	the	hero	from	moving.

We	can’t	move	the	hero	yet	because	we	haven’t	implemented	the	tap	for	our	program	yet.

Tap	the	Screen	to	Move	the	Hero

Now	we	can	implement	the	tapping	of	the	screen	to	move	the	hero.	In	your
GameManager	class	we	can	implement	a	method	touchDownAt	to	move	the	hero
when	the	screen	is	touched.	Add	the	following	code	to	your	GameManager	class:
Click	here	to	view	code	image

public	func	touchDownAt(location	location:CGPoint)	{
				hero.moveTo(location:	location)
}

All	that	this	method	does	is	call	the	hero’s	move	method.	You	can	imagine	that	if	you
needed	more	things	to	respond	to	a	tap,	you	could	implement	them	here.

What	is	going	to	call	the	GameManager’s	method?	The	GameScene	is	listening	for	the
user	to	tap	the	screen.	Add	the	following	code	to	your	GameScene	to	listen	for	the	user
to	tap	the	screen	and	send	that	tap	off	to	the	GameManager:
Click	here	to	view	code	image

override	func	touchesBegan(touches:	Set<UITouch>,	withEvent	event:	UIEvent?)
{
				if	let	touch	=	touches.first	{
								gameManager.touchDownAt(location:	touch.locationInNode(self))
				}
}

With	this	method	we	listen	for	only	the	first	touch.	You	can	grab	all	the	fingers	that	are
touching	the	screen,	but	since	we	need	only	the	first	touch	on	the	screen,	we	grab	that	first
touch	and	send	its	location	to	the	game	manager.	We	use	locationInNode(self)	to
say,	in	effect,	“We	want	the	location	of	touch	that	happened	in	this	scene,”	with	self
referring	to	the	GameScene	itself.	We	need	a	location	coordinate	that	refers	to	the	scene
as	a	whole.

At	this	point	you	can	run	the	game.	You	will	notice	that	when	you	click	the	screen	the	hero
runs	to	your	finger.	If	he	hits	any	diamonds	or	ghosts	along	the	way,	he	will	collide	with
them	and	probably	move	the	diamonds	out	of	the	way.

We	should	make	it	so	that	when	the	hero	collides	with	the	diamonds	they	disappear	off	the
screen.



Eat	the	Diamonds!

Now	that	our	hero	is	moving,	we	can	make	him	collect	the	diamonds.	This	is	a	fairly
straightforward	task,	since	we	are	already	looking	for	collisions.

How	do	we	get	started?	We	need	to	add	a	method	to	our	GameManager	that	gets	called
when	a	collision	between	the	hero	and	a	diamond	happens.	When	that	happens,	we	want	to
stop	the	hero	from	moving	(we	already	wrote	that	method).	We	then	want	to	remove	the
diamond	from	the	screen.	We	could	write	a	method	in	the	diamond	class	to	remove	it	from
the	screen.	We	would	normally	do	that	if	this	game	got	any	more	complicated.	However,
we	are	currently	just	removing	the	diamond	from	the	screen,	so	we’ll	do	that	directly	from
the	GameManager.	Add	the	following	code	to	your	GameManager	class:
Click	here	to	view	code	image

public	func	heroHitDiamond(diamond:Diamond)	{
				hero.cancelMove()
				diamond.removeFromParent()
				diamonds.removeAtIndex(diamonds.indexOf(diamond)!)
				if	diamonds.count	==	0	{
								print(“win	level”)
				}
}

We	will	call	this	method	from	our	GameScene,	which	is	detecting	any	collisions	that
happen	between	the	hero	and	the	diamond.	We	stop	the	hero	from	moving.	This	is	optional
and	depends	on	how	you	want	your	game	to	play.	You	may	decide	that	the	hero	should
continue	moving	when	he	collects	diamonds.	The	choice	is	yours.	We	then	remove	the
diamond	from	the	screen	by	calling	removeFromParent().	This	method	will	remove
the	item	itself	from	the	screen	by	removing	it	from	its	parent.	This	is	very	straightforward
and	different	and	easier	than	in	other	game	frameworks	where	you	have	to	know	the
parent	to	remove	the	child.	For	example,	if	your	view	hierarchy	is	much	more
complicated,	you	may	not	know	who	owns	this	sprite,	so	it’s	great	that	Apple	has
removeFromParent().	This	makes	it	supersimple	to	remove	a	sprite	node	from	the
screen.

We	have	a	list	of	the	diamonds	on	the	screen.	When	we	remove	the	diamond	from	the
screen,	we	also	need	to	remove	the	diamond	from	the	array	of	diamonds	so	that	we	can
keep	track	of	how	many	diamonds	are	left	on	the	screen.	We	use	removeAtIndex	to
remove	the	diamond	at	a	specific	index,	while	simultaneously	getting	the	index	using	the
new	indexOf	method	of	the	array	class.	This	will	remove	the	diamond	from	the	array	of
diamonds	at	the	specified	index.

So	far	we	can	run	this	game	and	start	collecting	the	diamonds.	Play	around	with	the	code
and	make	it	fit	your	style	of	game.	If	you	think	the	hero	should	not	stop	when	collecting
diamonds,	take	that	line	out.	If	you	think	the	hero	moves	too	slowly,	speed	him	up.

We	now	have	a	game	that	works,	but	it	isn’t	very	hard	since	there	aren’t	any	enemies	to
stop	us	from	collecting	the	diamonds.	It	would	be	great	if	that	ghost	would	chase	us
instead	of	sitting	around	like	a	lazy	bum.



Making	the	Ghost	Chase	the	Hero

To	make	the	ghost	chase	the	hero,	we	can	just	put	him	on	a	timer.	Every	so	often	he	will
attempt	to	move	to	where	the	hero	is.	How	often	he	attempts	to	chase	the	hero	can	be
changed	based	on	how	far	the	user	has	progressed	in	the	game.

Let’s	first	write	a	method	to	make	the	ghost	move	toward	the	hero,	and	then	we’ll	move
the	ghost	on	a	timer.	We	can	move	the	ghost	to	the	hero	in	two	lines	of	code.	The	first	line
of	code	is	to	remove	all	existing	actions	the	ghost	is	currently	performing.	The	second	line
of	code	will	move	the	ghost	to	the	position	of	the	hero.	Add	this	code	to	your	Ghost
class:
Click	here	to	view	code	image

private	func	moveGhostToHero(heroPosition:CGPoint)	{
				removeAllActions()
				runAction(SKAction.moveTo(heroPosition,	duration:	1.5))
}

We	make	the	ghost	run	at	a	duration	because	I	think	it’s	neat	to	have	the	ghost	run	at
various	speeds.	When	the	ghost	movement	is	set	to	a	duration,	the	ghost	will	move	at
different	speeds	depending	on	how	far	away	he	is	from	the	hero.

The	next	step	is	to	move	the	ghost	at	a	specific	time	interval.	He	should	run	for	you	every
n	seconds.	Let’s	add	two	global	variables	to	our	Ghost	class:
Click	here	to	view	code	image

var	lastUpdate	=	CFTimeInterval()
var	moveInterval	=	0.5

The	lastUpdate	will	be	the	last	time	that	the	ghost	ran	for	the	hero.	The
moveInterval	will	be	how	often	the	ghost	runs	for	the	hero.	The	higher	the	number,
the	less	often	the	ghost	will	run	at	the	hero.	Next,	we	want	to	write	a	method	that	gets	run
every	frame	of	the	game	and	decides	when	it’s	the	right	time	to	go	into	attack	mode.	Add
the	following	code	to	your	Ghost	class:
Click	here	to	view	code	image

public	func	update(currentTime:CFTimeInterval,	heroPosition:CGPoint)	{
				let	now	=	NSDate.timeIntervalSinceReferenceDate()
				let	sinceLastUpdate	=	now	-	lastUpdate
				if	sinceLastUpdate	>	moveInterval	{
								lastUpdate	=	now
								moveGhostToHero(heroPosition)
				}
}

We	take	the	current	time	stamp	by	using	timeIntervalSinceReferenceDate().
That	method	gets	the	number	of	seconds	that	have	passed	since	12:00	a.m.	on	January	1,
2001.	That	specific	date	does	not	really	matter;	all	that	matters	is	that	x	number	of	seconds
have	passed	since	that	date	and	you	need	that	date	to	be	constant.	By	subtracting	now
from	the	lastUpdate,	we	return	how	much	time	has	passed	since	the	lastUpdate.	If
that	time	is	greater	than	our	threshold	for	our	moveInterval,	we	will	set	the
lastUpdate	to	be	now	and	we	will	move	the	ghost	using	the	move	ghost	method	we
just	wrote.



We	are	almost	ready	to	have	a	moving	ghost.	We	just	need	to	make	sure	that	this	update
method	gets	called	on	every	frame.	How	do	we	do	that?	Let’s	create	an	update	method	in
our	GameManager	to	update	the	ghosts.	Add	this	code	to	your	GameManager:
Click	here	to	view	code	image

public	func	update(currentTime:	CFTimeInterval)	{
				updateGhosts(currentTime)
}

The	update	method	of	our	GameManager	can	obviously	take	much	more	code	if	you
decide	to	add	functionality	to	this	game,	but	for	now	all	it	will	do	is	call	a	method	to
update	all	of	our	ghosts	(although	there	is	only	one	for	now).	Let’s	write	that	method
updateGhosts().	Add	the	following	code	to	your	GameManager:
Click	here	to	view	code	image

private	func	updateGhosts(currentTime:CFTimeInterval)	{
				for	ghost	in	ghosts	{
								ghost.update(currentTime,	heroPosition:	hero.position)
				}
}

This	code	simply	calls	the	ghost	update	method	on	every	ghost	that	exists.	Not	much
going	on	here	except	a	loop	through	every	single	ghost.

How	is	our	GameManager	going	to	get	updated?	We	need	to	call	update	on	the
GameManager	from	the	GameScene.	In	your	GameScene,	there	is	a	built-in	update
method	that	gets	called	on	its	own	without	any	work	from	you.	Let’s	update	that	update
method	in	GameScene.	Add	the	following	code	to	your	GameScene:
Click	here	to	view	code	image

override	func	update(currentTime:	CFTimeInterval)	{
				gameManager.update(currentTime)
}

All	that	this	method	does	is	update	our	GameManager	class	every	frame.	If	you	run	this
code,	you	will	see	your	ghost	running	after	the	hero.	Game	on!

At	this	point	our	game	works.	The	hero	can	collect	the	diamonds,	and	the	ghost	chases	the
hero.	We	can	detect	collisions	between	any	two	objects	in	the	game.	The	rest	of	the	work
to	make	this	a	full-fledged	game	for	the	App	Store	is	up	to	you.	Make	a	scoreboard	so	that
when	the	user	collects	the	diamonds,	the	score	increases.	Make	it	so	that	when	the	user
collects	all	the	diamonds	and	doesn’t	get	hit,	the	user	moves	to	the	next	user-defined	level.
Make	multiple	ghosts	chasing	the	hero.	All	the	code	I	am	suggesting	as	an	exercise	will	be
fairly	simple	to	implement,	thanks	to	everything	you’ve	learned	from	this	chapter.

Summary
In	this	chapter	you	learned	how	to	make	a	basic	SpriteKit	game.	You	learned	the	best	way
to	move	the	sprites	on	the	screen.	You	learned	how	to	use	texture	atlases	to	make	a	smooth
running	game	with	nice	assets.	You	learned	the	best	ways	to	detect	collisions	in	your	game
even	if	you	aren’t	simulating	physics	in	any	other	way.	And	you	wrote	some	useful	helper
functions,	which	you	will	no	doubt	use	in	your	own	games	to	make	your	life	simpler.



11.	Making	Games	with	Physics

SpriteKit	makes	it	easier	than	ever	to	make	physics-based	games.	In	this	chapter	we	will
create	our	own	physics-based	game,	without	any	extra	math	needed.	SpriteKit	will	do	all
the	physics-based	animations	and	take	care	of	everything	needed	to	make	a	fully
functional	game	in	Swift.	We	are	going	to	make	a	game	similar	to	Peggle.	You	drop	a	ball
and	it	hits	other	balls,	and	each	ball	it	hits	gets	removed	at	the	end	of	the	ball’s	journey	to
the	bottom.	This	game	will	be	the	basis	for	any	other	ball-dropping	game	you	want	to
make.	In	the	process	of	making	this	simple	game,	you	will	understand	how	you	can	take
this	game	further	and	make	your	own	game.	We	will	cover	collision	detection	again,	but
this	time	we	will	go	deeper.	We	will	cover	the	physics	engine	and	how	you	apply	basic
physics	properties	to	sprites	to	make	them	do	whatever	you	want.	Let’s	get	started.

In	this	chapter	we	will	cover	a	lot	of	material,	and	we	will	move	at	a	little	faster	pace	so
we	don’t	repeat	stuff	we	learned	in	other	chapters.	If	you	haven’t	read	the	first	two
chapters	on	SpriteKit	(Chapters	5	and	10),	you	might	want	to	do	that	first.

Making	a	Physics-Based	Game
Making	a	physics-based	game	in	SpriteKit	is	the	same	process	as	making	a	non–physics-
based	game.	In	fact,	the	games	we	have	been	making	in	SpriteKit	have	been	physics-based
games	already	because	we	have	used	the	built-in	collision	detection.	The	only	thing	we
haven’t	taken	advantage	of	is	gravity	(and,	in	turn,	many	other	physics	properties).	To	get
started,	let’s	take	a	look	at	the	game	we	will	make	(see	Figure	11.1).

Figure	11.1	Our	physics-based	game

In	this	game	the	ball	falls	from	the	top	and	hits	other	balls.	When	the	ball	gets	to	the
bottom,	the	game	removes	all	the	balls	you	hit.	If	for	some	reason	the	ball	gets	stuck,	the



game	removes	the	balls	you’ve	hit	and	moves	on.	Let’s	get	started.

Creating	the	Project
To	create	this	project,	open	up	Xcode	and	select	File,	New,	Project.	Select	the	Game
template	and	click	Next.	Give	the	project	a	name;	I	chose	Bouncy	Balls.	Make	sure	the
language	is	set	to	Swift,	the	Game	Technology	is	set	to	SpriteKit,	and	the	Devices	option
is	set	to	Universal,	and	click	Next.

Xcode	will	ask	you	to	save	your	game	somewhere.	Choose	a	location	and	click	Create.
You	are	presented	with	the	same	SpriteKit	files	as	before.	The	first	thing	you’ll	want	to	do
is	make	this	game	a	landscape	game.	By	default,	you	should	be	on	the	project	page,	on	the
General	tab,	and	you	should	see	Deployment	Info.	If	not,	select	the	project	name	in	the	file
explorer	and	choose	the	General	tab	and	look	under	Deployment	Info.

Under	Deployment	Info,	unselect	Portrait	and	make	sure	that	Landscape	Left	and
Landscape	Right	are	selected.

The	next	step	is	to	erase	all	the	default	game	code.	Open	up	GameScene.swift	and
then	erase	all	the	code	and	make	it	look	like	this:
Click	here	to	view	code	image

class	GameScene:	SKScene	{
				override	func	didMoveToView(view:	SKView)	{
				}
				override	func	touchesBegan(touches:	Set<UITouch>,	withEvent	event:
UIEvent?)	{
				}
				override	func	update(currentTime:	CFTimeInterval)	{
				}
}

Congrats—you	now	have	a	beautiful	blank	game.	Change	that	background	to	white	and
put	this	app	directly	on	the	app	store	and	label	it	“Flashlight.”	I’m	kidding—don’t	do	that,
that’s	shameful,	and	we	can	do	so	much	better.

Adding	the	Assets
This	game	will	have	exactly	four	beautifully	painted	and	hand-signed	.pngs.	Let’s	just
grab	those	assets	and	plop	them	in	the	asset	library.	You	can	grab	the	assets	at
http://imgur.com/a/l4XCS.

Add	those	assets	to	the	asset	library	as	you’ve	done	in	previous	chapters.	You	can	remove
the	spaceship	from	the	xcassets	library.

Your	asset	library	should	look	like	mine	(see	Figure	11.2).

http://imgur.com/a/l4XCS


Figure	11.2	The	asset	library

Name	each	ball.	Red	ball	is	ball_1,	yellow	ball	is	ball_2,	blue	ball	is	ball_3,	and
silver	ball	is	ball_main.

We	will	use	the	ball_main	as	our	game	ball,	the	ball	that	interacts	with	all	the	other
balls.

Let’s	set	up	our	levels.	We	will	use	the	info.plist	for	this.

Adding	the	Levels
The	next	step	is	to	add	our	levels	to	the	game.	When	the	player	hits	all	the	balls	on	the
screen	and	there	are	no	balls	left,	we	will	load	the	next	level.	Our	first	step	is	to	open	up
the	info.plist	and	add	a	new	row	called	Levels.	You’ll	want	to	make	the	data	type	for
levels	an	array.	I	made	our	levels	look	like	what	you	see	in	Figure	11.3.

Figure	11.3	Adding	the	levels

Again,	if	you	haven’t	checked	out	the	first	two	chapters	on	SpriteKit,	you	may	be
wondering	how	to	edit	an	info.plist,	and	in	that	case	I	encourage	you	to	review	those
chapters.

After	you	have	your	levels	added,	feel	free	to	add	as	much	data	for	your	levels	as	you
want.	Right	now	we	have	two	levels	total.	You	can	easily	add	a	third	level.	The	game	will
automatically	advance	to	the	next	level	on	its	own.

For	our	level	layout,	the	numbers	refer	directly	to	the	assets	in	the	asset	library.	In	the
asset	library	we	have	ball_1,	ball_2,	and	ball_3,	in	which	a	1	in	the	level	data
refers	to	ball_1,	2	refers	to	ball_2,	and	so	on.	The	0	in	the	level	data	refers	to	an
empty	space.	It’s	sometimes	nice	to	add	empty	spaces	on	either	end	in	case	you	want	to
add	a	ball	on	its	own.	You	should	have	the	same	number	of	items	in	each	row.	Our	game	is
expecting	the	same	number	of	items	in	each	row.



Generating	the	Levels
You	will	find	that	this	game	involves	very	little	code.	You	would	think	that	making	a	game
like	this	would	be	more	complicated,	but	it’s	not,	thanks	to	SpriteKit’s	built-in	physics
library.	We	will	use	three	extra	classes	(aside	from	GameScene),	which	will	hold	logic
for	a	single	ball,	the	different	types	of	colliders,	and	a	BallManager	class.

Add	to	your	project	three	files:

	BallManager.swift

	Ball.swift

	Collider.swift

Colliders	for	 s

Open	up	Collider.swift	and	let’s	create	categoryBitMasks	for	the	different
types	of	items	that	will	collide:
Click	here	to	view	code	image

struct	Collider	{
				static	let	HERO:UInt32	=	0x1	<<	1
				static	let	BALL:UInt32	=	0x1	<<	2
				static	let	CAGE:UInt32	=	0x1	<<	3
}

If	you	remember	from	the	last	SpriteKit	chapter	(Chapter	10,	“Games	with	SpriteKit”),	we
made	multiple	categories	using	binary	numbers.	This	time	we	are	using	bit	shifting	to
create	the	numbers,	but	the	result	is	exactly	the	same.	We	want	to	make	sure	that	our	hero
ball	collides	only	with	the	things	we	want	it	to	collide	with,	and	the	same	for	the	other
categories.

This	class	is	pretty	straightforward	and	shouldn’t	be	complicated	if	you	remember
category	bit	masks	from	the	other	chapter.	We	covered	how	we	use	category	bit	masks	to
define	the	different	objects	on	the	screen	to	make	sure	that	certain	objects	interact	only
with	other	objects	that	we	expect	them	to	interact	with.

The	Balls

The	next	step	is	to	create	our	Ball	class.	This	will	define	a	basic	SKSpriteNode	with
a	built-in	physics	body	so	that	we	can	have	a	basic	ball	that	can	switch	between	different
textures.

The	initializer	for	this	class	will	choose	between	different	ball	types	and	add	the	right
texture	to	them	accordingly.	Here	is	the	code	for	our	Ball	class:
Click	here	to	view	code	image

import	SpriteKit

public	class	Ball:	SKSpriteNode	{
				public	var	type:Int	=	0
				public	var	hit	=	false
				init(type:Int)	{
								self.type	=	type



								let	texture	=	SKTexture(imageNamed:	“ball_\(type)”)
								super.init(texture:	texture,
								color:	SKColor.clearColor(),	size:	texture.size())
								physicsBody	=	SKPhysicsBody(circleOfRadius:	texture.size().width/2)
								physicsBody?.dynamic	=	false
								physicsBody?.categoryBitMask	=	Collider.BALL
								physicsBody?.collisionBitMask	=	Collider.HERO
								physicsBody?.contactTestBitMask	=	Collider.HERO
				}

				public	required	init?(coder	aDecoder:	NSCoder)	{
								fatalError(“init(coder:)	has	not	been	implemented”)
				}
}

Here	we	are	defining	a	Ball	class,	which	inherits	from	an	SKSpriteNode,	so	you
know	we	are	going	to	add	a	texture	to	our	sprite.

We	allow	the	users	to	initialize	the	ball	by	type.	All	they	have	to	add	to	the	initializer	is	a
1,	2,	or	3.	In	other	words,	they	could	initialize	the	ball	like	so:

let	ball	=	Ball(type:	2)

This	will	initialize	an	SKSpriteNode	with	a	texture	of	ball_2.

We	set	a	variable	hit,	so	we	know	whether	the	ball	has	been	hit.	We	don’t	want	to	count
for	a	ball	being	hit	twice.	We	will	also	have	a	variable	to	save	the	type	of	the	ball	if	we
need	later.

Finally,	we	initialize	this	sprite	using	the	super	class.	We	pass	in	the	texture	we	generated
from	the	xcassets,	we	set	the	color	to	be	clear	(a	.png	is	clear),	and	the	size	of	the
sprite	is	the	same	size	as	the	texture	so	we	can	just	use	texture.size().	Interestingly
enough,	SKSpriteNode	uses	.size	and	textures	use	.size().

The	next	four	lines	define	the	physics	body	of	the	sprite.	We	have	to	initialize	a	physics
body	for	our	sprite,	and	we’ll	do	it	with	the	initializer	circleOfRadius.	Since	radius	is
half	the	width	(or	diameter)	of	a	circle,	we	can	just	grab	the	size().width	of	the
textures	and	divide	by	2.	This	will	obviously	give	us	the	radius.	Since	the	balls	will	be
stationary	while	the	main	ball	bounces	around,	we	will	set	dynamic	to	false.	A
nondynamic	physics	body	is	called	a	static	body.	It	cannot	be	moved	and	things	will
bounce	off	of	it.

We	set	the	category	bit	mask	to	be	BALL	in	order	to	say	“This	is	a	ball.”

We	set	the	collision	bit	mask	to	be	HERO	to	say	“This	ball	should	collide	with	objects
assigned	to	the	category	bit	mask	of	HERO.”

We	set	the	contact	bit	mask	to	be	HERO	to	say	“This	ball	should	be	tested	for	collision
with	objects	assigned	to	the	category	bit	mask	of	HERO.”

When	creating	something	that	subclasses	an	SKSpriteNode,	we	must	use	a	required
init	in	the	class;	otherwise,	we’ll	get	an	error.	Xcode	will	automatically	generate	that
required	init	for	you.

That’s	all	for	this	small	bit	of	code.	The	next	step	is	to	write	the	level	generation	for	the



BallManager.

The	 	Level	Generator

Open	up	your	BallManager.swift	with	your	BallManager	class	in	there.	Make
sure	that	you	import	SpriteKit	in	each	of	these	files.	It	usually	is	not	necessary	to	import
Foundation,	but	it	isn’t	going	to	hurt	anything	to	have	that	import	statement	in	there.
At	this	point	this	is	what	your	BallManager	class	should	look	like:

import	SpriteKit

class	BallManager	{
}

The	first	step	for	your	BallManager	class	is	to	load	the	level	data.	Let’s	create	some
global	variables	that	we’ll	need	in	order	to	store	things	like	the	level	data	and	the	current
level.
Click	here	to	view	code	image

public	var	balls	=	[Ball]()
private	var	levels	=	[[String]]()
private	var	mainBall:SKSpriteNode!
public	var	currentLevel	=	0

Here	we	define	an	array	to	hold	all	the	balls.	The	array	holds	things	of	type	Ball.	We
define	an	array	to	hold	the	level	data.	This	is	an	array	that	holds	an	array	that	holds	strings.
We	hold	a	reference	to	the	main	ball	that	gets	dropped	from	the	top.	We	hold	a	reference	to
the	current	level.	Since	we	are	going	to	be	moving	to	the	next	level	after	all	the	balls
disappear,	we	need	to	keep	track	of	the	current	level.	Before	we	create	the	method	for
creating	the	level,	let’s	write	an	initializer	to	load	our	level	data	from	our	info.plist
file.	Add	this	to	your	BallManager	class:
Click	here	to	view	code	image

init()	{
				levels	=	NSBundle
								.mainBundle()
								.objectForInfoDictionaryKey(“Levels”)	as!	[[String]]
}

This	method	simply	initializes	our	BallManager	class	and	grabs	the	level	data	from	the
info.plist	and	assigns	it	to	the	levels	variable.

Let’s	write	the	whole	method	for	creating	the	level,	which	is	a	good	31	lines	of	code.
We’ll	go	through	it	one	line	at	a	time.
Click	here	to	view	code	image

public	func	loadLevel(scene:SKScene)	{
				if	levels.count	==	currentLevel	{
								print(“You	win	the	game”)
				}
				let	spaceBetween:CGFloat	=	1.5

				//next	lines	are	to	get	the	ball	in	the	center	X
				let	ballsPerRow	=	levels[0][0].characters.split{$0	==
“,”}.map(String.init).count
				let	tempBall	=	Ball(type:	1)



				let	ballsWidth	=	CGFloat(ballsPerRow)	*	(tempBall.size.width	*
spaceBetween)
				let	toCenterPaddingX	=
								((scene.size.width	-	ballsWidth)	/	2)	+	tempBall.size.width

				let	ballsHeight	=	CGFloat
								(levels[currentLevel].count)
								*	(tempBall.size.height	*	spaceBetween)
				let	toCenterPaddingY	=
								((scene.size.height	-	ballsHeight)	/	2)
								+	tempBall.size.height

				for	(i,	row)	in	levels[currentLevel].enumerate()	{
								let	ballList	=	row.characters.split{$0	==	“,”}.map(String.init)
								for	(j,	ball)	in	ballList.enumerate(){
												let	ballSprite	=	Ball(type:	1)
												if	ball	==	“0”	{
																continue
												}
												if	ball	!=	“1”	{
ballSprite.runAction(SKAction.setTexture(SKTexture(imageNamed:
“ball_\(ball)”)))
												}
												ballSprite.position	=
								CGPoint(x:	toCenterPaddingX
								+	(CGFloat(j)	*	ballSprite.size.width	*	spaceBetween),
									y:	toCenterPaddingY
								+	(CGFloat(i)	*	ballSprite.size.height	*	spaceBetween))
												balls.append(ballSprite)
								}
				}
}

The	first	thing	this	level	loader	does	is	grab	one	parameter.	That	one	parameter	is	the
scene	that	we	should	add	all	the	balls	to.

We	write	an	if	statement	which	says	that	if	the	number	of	levels	we	have	stored	in	the
info.plist	is	the	same	as	the	current	level	we	are	on,	you	win	the	game.

In	the	next	line	we	define	a	variable,	spaceBetween,	which	will	be	a	CGFloat	since
most	numbers	defined	in	SpriteKit	are	CGFloat.	This	variable	defines	the	space	between
each	ball.	Feel	free	to	play	around	with	this	number.

The	next	line	is	more	of	a	magical	incantation:
Click	here	to	view	code	image

let	ballsPerRow	=	levels[0][0].characters.split{$0	==
“,”}.map(String.init).count

We	want	to	get	how	many	balls	we	will	use	per	row.	levels[0][0]	is	the	first	item	in
the	levels	array.	We	are	getting	the	first	row	of	the	first	level.	What	we	want	to	do	next	is
split	that	row	of	strings	by	the	comma	(",").	To	do	that,	we	need	an	array	of	the
characters.	We	can	get	that	array	by	using	characters.	That	property	is	not	an	array,
but	it	is	an	array-like	structure.	We	then	use	the	split	method	to	split	this	list	of	characters
in	some	way.	We	pass	a	closure	to	this	method.	This	closure	matches	commas.	It	will
return	true	when	the	character	is	a	comma.	When	we	use	map	with	that	and	pass
String.init,	we	will	get	an	array	of	characters	that	were	separated	by	commas.	So	if



the	row	was
0,0,0,1,1,2,2,2,2,2,1,1,0,0,0

then	this	method	will	return	an	array	of	those	characters:
Click	here	to	view	code	image

[0,0,0,1,1,2,2,2,2,2,1,1,0,0,0]
	//	a	real	array,	not	just	a	textual	representation	of	one.

Finally,	at	the	end	we	have	the	count	of	that	array.

So	what	does	that	magical	line	of	code	do?	It	counts	the	number	of	characters	in	the	first
row	of	the	first	level	so	that	we	know	how	many	balls	to	loop	through.

The	next	line	stores	a	temp	ball	so	that	we	can	reuse	that	variable	when	we	loop	through
our	level.	It’s	good	to	store	a	ball	we	can	reuse	later.

The	next	line	gets	ballWidth	by	taking	the	number	of	balls	per	row	and	multiplying	it
by	the	width	of	one	ball	and	multiplying	that	by	the	space	between	each	ball.

When	we	loop	through	each	ball,	we	need	to	add	an	initial	padding	to	the	balls	to	make	the
whole	level	centered.	To	get	the	center	X	padding,	we	can	get	the	width	of	the	whole
scene	and	subtract	the	total	width	of	all	the	balls.	We	then	divide	that	by	2	(see	Figure
11.4).

Figure	11.4	Getting	the	center	X	padding

For	the	ball	area	height	and	the	padding	Y,	we	do	a	very	similar	calculation,	except	for



height	and	the	Y	axis.

Now	it’s	time	to	loop.	To	get	our	rows	and	columns,	we	need	to	do	a	loop	within	a	loop.
Our	first	loop	will	loop	through	each	row	in	the	list	of	rows	for	this	level.	We	use	the
enumerate	method	of	the	array	because	it	enables	us	to	get	back	the	index	of	the	current
item	as	well	as	the	current	item	at	the	same	time.

On	the	next	line	we	grab	a	list	of	the	balls	in	the	same	way	we	described	previously,
except	this	time	we	don’t	need	the	count	of	the	array,	we	need	the	array	itself.	This	will
return	the	array	of	balls,	something	like	this:
Click	here	to	view	code	image

[0,0,0,1,1,2,2,2,2,2,1,1,0,0,0]

We	can	then	loop	through	each	ball	for	the	current	row:
Click	here	to	view	code	image

for	(j,	ball)	in	ballList.enumerate(){

For	each	ball	in	the	list	of	balls,	we	want	the	ball	itself	(ball)	and	the	index	of	the	ball
(j).

The	next	step	is	to	create	a	ball	to	which	we	will	add	the	texture	of	the	ball_1	by
default.	If	we	need	to,	we	can	change	the	texture.

If	that	current	ball	is	0,	we	want	to	just	move	along	because	0	is	a	blank	space.

Now	we	have	a	ball	that	has	the	1	texture.	We	test	it	and	if	this	ball	is	not	equal	to	1,	we
need	to	change	the	texture	of	the	ball.

To	change	the	texture	of	a	sprite,	we	need	to	use	an	SKAction.	Specifically,	we	can	use
SKAction.setTexture	and	pass	in	a	texture.	Now	we	have	a	ball	with	the	proper
texture;	the	only	thing	left	to	do	is	to	properly	position	the	ball	on	the	screen.	We	know
exactly	where	this	ball	should	go	because	we	have	padding	for	X	and	padding	for	Y	so
that	the	group	of	balls	will	be	perfectly	centered	on	the	screen.

To	position	the	ball	in	the	right	place,	remember	that	the	i	index	is	for	the	Y	position	and
the	j	is	for	the	X	position.	We	first	add	the	toCenterPaddingX	to	place	the	ball	in	the
center	of	the	screen	in	relation	to	the	group	of	balls.	To	get	the	total	space	occupied	by
each	ball,	we	have	to	take	the	ballSprite.size.width	and	the	spaceBetween
into	consideration.	We	do	this	calculation	for	both	X	and	Y	and	we	should	have	a	ball
perfectly	positioned	on	the	screen.

The	last	thing	to	do	is	to	add	the	ball	to	this	list	of	balls	(the	balls	array).

Now,	the	interesting	thing	about	this	method	is	that	all	it	really	does	is	add	a	bunch	of	balls
into	an	array.	It	spends	most	of	its	time	positioning	elements	and	figuring	out	widths	of
things.	It	does	not	actually	add	anything	to	the	scene.	Let’s	make	sure	each	method	does
one	thing.

To	add	the	balls	to	the	scene,	we	should	create	a	separate	method,	so	let’s	create	that	now.
Add	this	method	to	your	BallManager	class:
Click	here	to	view	code	image



public	func	addLevelTo(scene	scene:SKNode)	{
				for	ball	in	balls	{
								scene.addChild(ball)
				}
}

As	you	can	see,	this	method	is	straight	and	to	the	point.	It	goes	through	the	arrays	of	balls
that	we	just	created	and	adds	them	to	the	scene	that	you	pass	to	this	method.

Now	we	are	ready	to	see	the	results.	We	need	to	call	these	two	methods	from	our
GameScene	class,	so	open	up	GameScene.swift.	Update	your	GameScene	class	in
GameScene.swift	to	add	the	BallManager	class	and	initialize	it	with	the	current
level.	While	we’re	at	it,	we’ll	add	a	nice	gray	background	as	well:
Click	here	to	view	code	image

let	ballManager	=	BallManager()

override	func	didMoveToView(view:	SKView)	{
				backgroundColor	=	SKColor.grayColor()
				ballManager.loadLevel(self)
				ballManager.addLevelTo(scene:	self)
}

Now	our	ball	manager	is	initialized	and	the	balls	should	be	added	to	this	scene.	We	created
a	global	variable	ballManager	just	in	case	we	need	to	call	any	other	functions	for	our
ball	manager.	When	you	run	the	game,	you	should	see	your	level	laid	out	perfectly	and
ready	to	be	played	(see	Figure	11.5).	The	only	problem	is	that	we	don’t	have	the	main	ball
programmed	yet,	so	we	can’t	play	the	game.	Let’s	do	that	next.

Figure	11.5	The	game	laid	out



Making	a	Playable	Game
To	make	this	game	fun	to	play,	we	need	a	ball	to	play	with.	For	this	we	can	use	our
ball_main	from	our	xcassets	library.	In	our	BallManager	we	already	have	a
reference	to	a	mainBall	but	we	haven’t	assigned	it	to	a	sprite	yet.	Let’s	create	a	method
that	will	drop	a	main	ball	on	the	scene	at	a	specific	coordinate.	Add	this	to	your
BallManager	class:
Click	here	to	view	code	image

public	func	dropMainBall(onScene	scene:SKScene,	atLocation:CGPoint)	{
				if	mainBall	!=	nil	{
								return
				}
				mainBall	=	SKSpriteNode(imageNamed:	“ball_main”)
				mainBall.physicsBody	=	SKPhysicsBody(circleOfRadius:
mainBall.size.width/2)
				mainBall.position	=	atLocation
				mainBall.physicsBody?.restitution	=	1
				mainBall.physicsBody?.angularVelocity	=	0.1
				mainBall.physicsBody?.categoryBitMask	=	Collider.HERO
				mainBall.physicsBody?.collisionBitMask	=	Collider.BALL	|
Collider.CAGE
				mainBall.physicsBody?.contactTestBitMask	=	Collider.BALL	|
Collider.CAGE
				scene.addChild(mainBall)
}

What	is	happening	here	is	very	straightforward,	and	you’ve	seen	it	before.	If	the	main	ball
is	not	nil,	we	return	(abort	the	method)	because	we	want	to	drop	only	one	main	ball	at
a	time.

If	the	main	ball	is	nil,	we	don’t	have	a	main	ball	currently	dropping.	We	create	a	main
ball	and	give	it	the	texture	of	main_ball.	We	give	it	a	physics	body	using	a	circle	of
radius,	which	will	be	half	the	size	of	the	width	of	the	texture	(since	radius	is	half	the
width).	We	position	the	main	ball	at	the	location	passed	in	to	the	method.	We	add	a
restitution	of	1.	Restitution	is	essentially	the	bounciness	of	the	ball.	The	number	will	be
from	0	to	1,	and	1	makes	for	a	very	bouncy	ball.	I	have	noticed	that	for	games	like	this,	the
bouncier	the	ball,	the	better.	We	also	add	a	small	angular	velocity,	which	gives	the	ball	a
little	spin.Now	things	are	getting	interesting!

We	do	the	normal	business	of	adding	a	category	bit	mask	to	be	the	HERO	since	this	ball	is
considered	different	from	the	other	balls.	This	is	the	playing	ball.	We	set	the	collision	bit
mask	to	say	that	this	hero	ball	should	collide	with	regular	balls	and	the	container	(also
known	as	the	cage),	which	we	haven’t	created	yet.	We	also	want	to	test	whether	the	hero
ball	hits	the	regular	balls	or	the	cage.	Finally,	we	add	the	ball	to	the	scene.

We	can	test	this	out,	but	first	let’s	add	some	code	to	our	GameScene	class	so	that	when
the	user	taps	the	screen	we	will	drop	the	ball.	Open	up	your	GameScene	class	and	update
your	touchesBegan	method:
Click	here	to	view	code	image

override	func	touchesBegan(touches:	Set<UITouch>,	withEvent	event:	UIEvent?)
{
				if	let	touch	=	touches.first	{



								ballManager.dropMainBall
								(onScene:	self,	atLocation:
								CGPoint(x:	touch.locationInNode(self).x,
								y:	CGRectGetMaxY(frame)	-	100))
				}
}

For	touchesBegan,	we	test	when	the	user	taps	the	screen.	When	the	user	does	tap	the
screen,	we	make	sure	there	is	a	touch	to	test	for,	and	if	there	is,	we	call
ballManager.dropMainBall.	For	that	method	we	pass	in	the	location	of	the	x
position	of	the	user’s	finger	and	a	y	position	above	the	top	of	the	screen.	That	way	the	y
position	is	always	the	same	and	the	x	position	is	where	the	user	tapped.	At	this	point	you
can	run	the	game,	but	you	will	notice	that	although	you	can	drop	the	ball,	you	can	drop	it
only	once	time	and	it’s	gone	forever.	Although	that	does	make	for	a	very	interesting	game,
it	isn’t	very	fun.	What	we	need	to	do	is	catch	the	ball	when	it	falls	and	remove	it	from	the
screen	and	set	it	to	nil	so	that	we	can	drop	another	ball.

Creating	the	Cage
What	we	need	to	do	to	make	sure	the	ball	does	not	exit	the	screen	and	fly	out	of	our
control.	To	do	this,	we	will	build	a	cage	around	the	size	of	the	scene.	Doing	so	is	simple.
All	we	need	to	do	is	know	the	size	of	the	scene	and	we	are	in	business.	Let’s	write	a
method	called	addCage()	that	will	add	a	boundary	around	the	screen	to	trap	the	ball
when	it	falls.	Add	the	following	code	to	your	GameScene	class:
Click	here	to	view	code	image

func	addCage()	{
				let	physicsBody	=	SKPhysicsBody	(edgeLoopFromRect:	self.frame)
				self.physicsBody	=	physicsBody
				self.physicsBody?.categoryBitMask	=	Collider.CAGE
}

To	implement	this	method,	we	can	call	it	from	the	didMoveToView	method	of	our
GameScene	class.	Update	your	didMoveToView	method	in	your	GameScene	class	to
add	a	call	to	this	method:
Click	here	to	view	code	image

override	func	didMoveToView(view:	SKView)	{
				physicsWorld.contactDelegate	=	self
				backgroundColor	=	SKColor.grayColor()
				addCage()
				ballManager.loadLevel(self)
				ballManager.addLevelTo(scene:	self)
}

Now	our	ball	won’t	fly	into	the	cosmos;	it	will	be	kept	within	the	boundaries	of	this	world.
If	you	run	this	code,	you	will	see	that	the	ball	hits	the	bottom	of	the	screen	and	bounces.
The	ball	is	trapped	by	the	boundaries	of	the	game,	which	is	great	but	doesn’t	provide	us
with	a	full	solution.	Wouldn’t	it	be	great	if	the	ball	hit	the	cage	and	just	disappeared,	and
that	way	when	we	tap	the	screen	again	it	will	be	ready	to	fall	from	the	sky	again?	Let’s
give	that	a	try.	To	make	the	ball	disappear	when	it	hits	the	cage,	we	have	to	detect	the
collision	of	the	main	ball	to	the	cage.	We	have	to	set	up	collision	detection.	We’ve	done
this	before,	so	now	you	are	a	pro.	The	first	step	to	setting	up	collision	detection	is	to	make



your	GameScene	adopt	the	SKPhysicsContactDelegate	protocol.	Update	your
class	declaration	in	your	GameScene.swift	to	include	the	delegate:
Click	here	to	view	code	image

class	GameScene:	SKScene,	SKPhysicsContactDelegate	{

Now	our	game	is	almost	ready	to	be	collision	detected.	The	only	other	step	is	to	tell	our
physics	world	that	we	want	to	be	the	ones	to	get	notified	when	a	collision	happens.	To	get
notified,	we	need	to	assign	our	GameScene	class	to	be	the	delegate	of	the
SKPhysicsContactDelegate.	Let’s	give	that	a	try.	Update	the	didMoveToView
method	of	your	GameScene:
Click	here	to	view	code	image

override	func	didMoveToView(view:	SKView)	{
				physicsWorld.contactDelegate	=	self
				backgroundColor	=	SKColor.grayColor()
				…

Now	our	class	is	ready	to	receive	notifications	when	things	collide.	When	objects	(physics
bodies)	do	collide,	the	delegate	will	call	a	couple	of	methods.	First	it	will	call
didBeginContact,	so	we	need	to	add	that	to	our	GameScene	class:
Click	here	to	view	code	image

func	didBeginContact(contact:	SKPhysicsContact)	{
				//	hit	the	bottom
				if	contact.bodyA.categoryBitMask	==	Collider.CAGE	||
								contact.bodyB.categoryBitMask	==	Collider.CAGE	{
								ballManager.removeHitBalls()
								if	ballManager.isGameOver()	{
												ballManager.currentLevel++
												ballManager.loadLevel(self)
												ballManager.addLevelTo(scene:	self)
								}
				}
}

In	this	method	we	are	detecting	whether	the	main	ball	hit	the	cage.	Since	the	only	dynamic
body	in	the	game	is	the	main	ball,	we	don’t	have	to	check	for	it.	This	will	work	great,	but
we	are	missing	a	couple	of	methods.	We	need	to	write	a	method	in	the	ball	manager	for
removing	the	hit	balls	and	a	method	in	the	ball	manager	to	check	whether	we	can	advance
to	the	next	level	(isGameOver()).

Notice	that	if	all	the	balls	are	gone	and	isGameOver	returns	true,	we	automatically
load	the	next	level.	The	next	level	will	automatically	appear	on	the	screen.

The	only	issue	is	that	we	are	not	detecting	whether	the	main	ball	hits	one	of	the	game
balls.	Before	we	do	anything	else	we	need	to	check	whether	the	main	ball	hits	one	of	the
regular	balls.	Let’s	update	our	didBeginContact	method	to	include	a	check	for	the
regular	balls	getting	hit	by	the	main	ball:
Click	here	to	view	code	image

func	didBeginContact(contact:	SKPhysicsContact)	{
				if	contact.bodyA.categoryBitMask	==	Collider.BALL	{
								ballManager.ballHit(contact.bodyA.node	as!	Ball)
				}	else	if	contact.bodyB.categoryBitMask	==	Collider.BALL	{



								ballManager.ballHit(contact.bodyB.node	as!	Ball)
				}

				//	hit	the	bottom
				if	contact.bodyA.categoryBitMask	==	Collider.CAGE	||
…

Now	if	the	player’s	main	ball	hits	the	regular	static	balls	or	the	cage,	we	will	get	notified.
We	have	to	write	a	method	to	do	something	when	the	main	ball	hits	the	regular	static	balls.
You	can	see	in	the	code	that	we	call	a	method	we	haven’t	written	yet:
ballManager.ballHit.	Let’s	write	that	method.	You	can	see	that	this	method	takes	a
Ball	as	the	parameter,	and	to	type/convert	the	parameter	as	a	Ball	we	use	as!.	The
node	from	the	contact	is	an	SKNode,	and	we	really	need	it	to	be	a	Ball.	The	Ball	is
a	descendant	of	the	SKNode	by	way	of	the	SKSpriteNode,	so	this	should	work	well.
Ball	inherits	from	SKSpriteNode,	which	inherits	from	SKNode.

Let’s	open	up	the	BallManager.swift	and	write	the	method	ballHit:
Click	here	to	view	code	image

public	func	ballHit(ball:Ball)	{
				if	ball.hit	{
								return
				}
				ball.hit	=	true
				ball.runAction(SKAction.fadeAlphaTo(0.1,	duration:	0.3))
}

Remember	that	the	Ball	class	has	a	hit	property.	When	the	ball	gets	hit,	we	want	to
make	sure	that	it	isn’t	already	hit.	We	don’t	want	weird	stuff	to	happen,	so	if	the	ball	is
already	hit	we	aren’t	interested	in	anything	this	method	has	to	offer	and	we	return.	To
mark	the	ball	as	hit,	we	dim	it	down	by	lowering	the	alpha	(the	opacity).	We	use	an
SKAction	to	lower	the	alpha	value	over	a	period	of	0.3	seconds.	We	also	mark	the	ball
as	hit	so	that	we	can	remove	it	after	the	ball	goes	to	the	bottom	of	the	screen,	and	we
won’t	mess	with	this	ball	again	until	it	needs	to	be	removed.

This	method	will	work	well	for	marking	the	balls	as	ready	to	be	removed.	We	can	now
write	the	method	to	remove	the	balls	after	the	main	ball	hits	the	bottom	of	the	cage.

Let’s	open	up	the	ball	manager	and	write	the	method	for	removing	the	hit	balls.	A	little
magic	has	to	take	place	here	in	order	to	remove	the	balls	properly	without	causing	a	big	fat
error	to	appear.	When	you	remove	items	from	an	array	while	looping	through	the	array,
you	have	to	be	careful	not	to	mess	up	the	index	of	the	array.	Usually	this	is	achieved	by
looping	through	the	array	backward.
Click	here	to	view	code	image

public	func	removeHitBalls(removeMainBall:Bool	=	true)	{
				for	(i,ball)	in	balls.enumerate().reverse()	{
								if	ball.hit	{
												ball.hit	=	false
												ball.removeFromParent()
												balls.removeAtIndex(i)
								}
				}
				if	mainBall	!=	nil	&&	removeMainBall{
								mainBall.removeFromParent()



								mainBall	=	nil
				}
}

This	method	is	simple	in	that	all	it	does	is	remove	balls	that	have	been	hit	from	the	scene
and	remove	them	from	the	balls	array.	Since	enumerate()	allows	us	to	get	the	index
and	the	element	while	looping,	we	can	remove	the	item	at	the	specific	index	perfectly	fine.
However,	if	we	were	to	remove	the	item	at	an	index	while	looping,	that	would	mess	up	the
entire	index,	so	we	need	to	loop	backward.	We	can	use	reverse()	for	this.
reverse()	reverses	an	array,	and	since	enumerate	returns	a	sequence	type	we	can
reverse	it,	too.	From	here	we	can	remove	the	ball	from	the	scene	and	remove	it	from	the
array	using	its	index.	This	is	safe	because	we	are	looping	backward.

The	second	half	of	the	method	where	it	removes	the	mainBall	will	remove	the	main
ball	from	the	screen	because	it	hit	the	bottom	of	the	cage.	It	also	marks	the	mainBall	as
nil	so	that	we	can	launch	a	new	ball	when	the	user	taps	the	screen	again.

After	these	two	methods	are	in	place,	if	we	head	back	over	to	the	GameScene	class,	we
notice	we	still	have	one	error	because	we	are	missing	the	method	isGameOver().	Let’s
head	back	over	to	our	BallManager	class	and	write	that	method.	It’s	super-easy	to	tell
whether	we	can	advance	to	the	next	level	in	this	game	because	there	just	have	to	be	0	balls
left	in	the	balls	array	and	we	are	golden.	Add	the	following	code	to	your
BallManager	class:
Click	here	to	view	code	image

public	func	isGameOver()	->	Bool	{
				if	balls.count	==	0	{
								return	true
				}
				return	false
}

This	code	is	fairly	simple	once	again.	If	0	balls	are	left	in	the	balls	array,	we	return
true,	and	otherwise	we	return	false.

What	did	we	do	in	this	section?

We	added	collision	detection	testing.	We	looked	for	hit	balls	and	made	them	appear	faint
to	mark	them	as	hit.	We	made	a	cage	around	the	scene	to	protect	from	losing	balls.	When
the	main	ball	hit	the	bottom	of	the	screen,	we	had	it	removed	for	the	next	turn.

At	this	point	you	should	be	able	to	run	your	code	and	the	game	is	almost	complete.	When
you	drop	the	ball,	it	hits	other	balls	and	they	are	marked	for	removal;	when	the	main	ball
hits	the	bottom	or	the	sides	of	the	cage,	the	main	ball	is	removed	and	you	can	take	another
turn.	There	is	one	little	snafu	you	may	have	run	into.	Let	me	illustrate	it	with	a	picture	(see
Figure	11.6).



Figure	11.6	One	little	snafu

If	you	haven’t	noticed	yet,	the	ball	can	get	stuck	in	between	the	balls.	The	easy	solution	is
to	make	the	gap	bigger.	To	be	honest,	this	can	happen	when	users	play	your	game	harder
than	you	expected	and	find	some	little	bug	where	the	ball	can	get	stuck.	It’s	best	to	plan
ahead	for	this	rare	but	possible	bug.	To	fix	this	bug	the	easiest	way	I	know	how,	we	want
to	test	whether	the	main	ball	has	stopped	moving.	The	physics	body	has	a	property	called
resting	that	will	tell	you	whether	the	ball	is	currently	in	motion.	The	property	is	more
complicated	than	that,	but	you	can	think	of	it	as	a	ball	that	is	done	moving	and	interacting
for	now.	Resting	in	physics	simulation	saves	computation	from	unnecessarily	being
calculated	when	it	isn’t	needed.	Anyhow,	if	the	main	ball	is	resting,	we	can	remove	all	the
balls	it	has	hit	so	far	and	move	on.	To	do	this,	we	have	to	constantly	check	whether	the
main	ball	is	resting.	We	can	use	the	update	method	for	this.	Let’s	write	an	update
method	in	our	BallManager:
Click	here	to	view	code	image

public	func	update()	{
				if	mainBall	!=	nil	{
								if	mainBall.physicsBody!.resting	{
												removeHitBalls(false)
								}
				}
}

This	method	is	again	easy	as	pie.	Our	main	ball	may	be	nil	because	it	may	have	been
taken	off	the	scene	or	it	may	have	never	existed	yet,	so	we	want	to	check	whether	the	main
ball	is	nil.	If	it	is	not	nil,	we	can	check	whether	that	main	ball	is	resting.	If	it	is	resting
and	hasn’t	been	removed	by	the	bottom	cage,	we	can	safely	assume	that	the	ball	is	stuck;
we	can	remove	the	balls	that	have	been	hit	so	far	and	this	will	unstick	the	main	ball.	To
call	this	method,	we	will	need	to	update	our	GameScene	class.	Update	the	update
method	of	your	GameScene	class	to	be	as	follows:
Click	here	to	view	code	image

override	func	update(currentTime:	CFTimeInterval)	{
				ballManager.update()
}

Now	if	our	main	ball	gets	stuck,	we	can	unstick	it	by	checking	whether	it	is	resting.	If	it	is



resting,	we	will	clear	the	balls	we’ve	hit	so	far.	This	effect	is	really	neat	to	watch	happen;
it	has	a	little	delay	so	it	looks	as	though	we	are	really	thinking	about	whether	we	want	to
help	you	with	your	problem.

At	this	point	we	have	a	fully	functioning	game.	The	best	part	is	that	we	already	wrote	in
the	next-level	generation.	Test	the	game	out	and	try	and	beat	the	level.	With	some
additional	properties	thrown	in	and	some	time,	you	can	probably	design	a	much	better
level	than	I	did.	After	you	remove	all	the	balls	from	the	scene	by	hitting	them,	the	next
level	will	appear.	It	will	continue	to	generate	new	levels	as	long	as	you	have	them
available	in	your	info.plist.

Summary
In	this	chapter	you	learned	how	to	write	a	SpriteKit	physics	game	using	the	available
physics	library	built	directly	into	SpriteKit.	Thankfully,	this	library	is	a	piece	of	cake	to
use	and	will	allow	you	to	make	some	truly	remarkable	games.

You	learned	about	game	management	and	making	games	that	have	multiple	levels	to	play.
You	learned	about	solving	bugs	that	you	may	encounter	when	your	users	play	your	game
harder	than	you	had	imagined.

Take	this	game	and	modify	it	as	much	as	you	can.	Here	are	some	things	you	can	try	to
spice	it	up:

	Make	the	balls	disappear	when	they	are	hit.

	Make	the	balls	fall	when	hit,	instead	of	disappearing.

	Make	hitting	different	color	balls	do	different	things.	Maybe	the	yellow	one	reverses
gravity.

	Go	have	fun	and	make	a	high-score	board	and	release	this	app	to	the	app	store.

	Make	a	limited	number	of	balls	available	and	show	those	numbers	on	the	screen
with	an	SKLabelNode.



12.	Making	Apps	with	UIKit

Apple	has	two	major	kits	available	in	its	library:	UIKit	and	AppKit.	AppKit	is	for	desktop
applications,	and	UIKit	is	for	iOS	applications.	In	this	chapter	you	are	going	to	explore
UIKit	and	take	a	look	at	how	to	build	a	common	application.

Thanks	to	the	Storyboard,	size	classes,	and	constraints,	automatically	laying	out	your
application	is	super-easy.

Application	Types
Each	app	gets	a	Storyboard,	which	is	named	main.storyboard.	This	file	is	a
graphical	(not	code)	way	of	writing	the	user	interface	for	your	application.	In	this	chapter
you’ll	learn	how	to	implement	common	user	interface	designs	using	Swift.	Let’s	get
started	by	creating	a	new	project.	Select	File,	New,	Project.	At	this	point	you	should	be
presented	with	a	screen	that	looks	like	the	one	shown	in	Figure	12.1.	The	following
sections	describe	the	application	types	shown	in	this	figure.

Figure	12.1	Choosing	your	application	starting	point

Single-View	Applications
Choose	a	single-view	application	to	get	started	with	our	timer	app.	We	will	build	a	timer
app	that	tracks	your	study	sessions.	You	should	probably	study	for	at	least	5	minutes	at	a
time.	When	that	time	is	up,	we	log	that	study	session	and	you	can	start	another	one.	We’ll
also	keep	track	of	things	on	your	Apple	Watch	using	WatchKit.

Give	this	project	a	name	and	make	sure	that	the	language	is	set	to	Swift	and	the	device	is
set	to	universal.	We’ll	call	this	app	StudySessions.	Click	Next.	Xcode	will	ask	you	to	save
your	project	somewhere,	so	choose	wisely	and	click	Create.



The	first	thing	you	want	to	do	is	make	sure	that	this	app	runs	only	in	portrait	mode.

We	now	are	presented	with	the	default	project	setup	for	a	Single	View	Application.	You
have	your	Storyboard	for	graphically	laying	out	your	project.	You	have	your	view
controller	for	controlling	the	code	in	your	Storyboard,	and	you	have	a	bunch	of	other	files
that	aren’t	important	at	the	moment.	For	now	we’ll	focus	on	the	Storyboard	and	the
ViewController.swift.	How	are	they	connected?	Let’s	find	out.

Open	up	the	Storyboard	by	clicking	it	one	time.	You’ll	see	a	view	controller	with	an	arrow
pointing	toward	it.	That	right-pointing	arrow	means	that	this	view	is	the	view	the	user	will
see	when	starting	your	app.	If	you	click	in	the	middle	of	the	view,	you	should	see	three
symbols	appear	at	the	top	of	that	view.	You	will	see	a	yellow	circle	with	a	white	square	in
the	middle	and	two	orange	symbols.	Let’s	concern	ourselves	only	with	the	yellow	circle
with	the	white	square.	This	white	square	represents	a	view	in	your	app.	You	have	one
view,	hence	the	name	Single	View	Application.	There	has	to	be	some	sort	of	code	that	will
control	this	view,	some	code	that	makes	sure	that	when	you	click	on	stuff,	things	happen.
That	code	is	called	the	view	controller,	and	just	like	it	sounds,	it	controls	the	view.	To	see
the	view	controller	that	is	controlling	this	view,	click	on	that	yellow	circle	with	the	white
square	in	the	middle.	When	you	hover	over	it,	you	see	the	words	“View	Controller”	in	the
third	column	(the	utilities	column).	If	you	can’t	see	the	third	column,	press	Command-
Option-0,	which	toggles	its	visibility.	In	that	utilities	column,	you	should	see	the	identity
inspector;	if	you	can’t	see	it,	press	Command-Option-3.	In	the	identity	inspector	you
should	see	that	a	custom	class	is	assigned	to	your	view	controller.	In	this	case	it	is	the
ViewController	class.	Next	to	the	word	“ViewController”	you	should	see	a	right-
pointing	arrow	(see	Figure	12.2).	Click	that	arrow	and	it	takes	you	to	the	corresponding
ViewController	class.

Figure	12.2	The	ViewController	custom	class

That	is	the	relationship	from	the	view	to	the	view	controller.	The	view	is	controlled	by
code,	and	you	can	connect	the	two	with	the	view	controller.	Control	the	view	with	the
view	controller.	Control	any	view	with	a	view	controller.	Biff,	bam,	boom.

For	our	app	we	want	to	make	a	study	app	so	that	people	can	break	their	study	sessions	into
blocks	of	time.

In	the	end	when	your	study	session	is	over,	it	will	be	logged	in	the	bottom	portion,	which
is	a	table	of	study	sessions.	Notice	we	also	have	that	nice	perfectly	round	border	for	the
button.	When	the	study	session	is	going,	the	button	turns	red	and	changes	the	text	to



“Paused”	(see	Figure	12.3).	When	the	study	session	is	paused	or	hasn’t	started	yet,	the
button	turns	green	and	reads	“Start”	(see	Figure	12.4).	This	app	combines	a	nice	little
collection	of	different	app	components	to	make	a	simple	app,	with	knowledge	you	can
carry	to	other	app-building	ventures.	Let’s	make	it	happen.

Figure	12.3	Study	session	going



Figure	12.4	Study	session	not	going

Creating	the	User	Interface
The	first	step	is	to	head	into	our	Storyboard	and	build	out	our	user	interface.	You	first	need
to	add	the	timer	label	to	the	screen.	You	can	find	the	label	in	the	Object	library,	which	has
a	text	box	at	the	bottom	where	you	can	type	“Label.”	After	you	find	the	label	in	the	object
library	(see	Figure	12.5),	you	can	drag	it	onto	the	Storyboard.	Try	to	drag	it	toward	the	top
of	the	view.



Figure	12.5	The	label	in	the	object	library

At	this	point,	with	the	label	selected,	you	want	to	open	up	the	attributes	inspector	(see
Figure	12.6).	It	is	part	of	the	third	column	on	the	right,	the	utilities	column.	If	you	don’t
have	it	open,	you	can	either	click	the	fourth	icon	in	the	utilities	or	press	Command-
Option-4.

Figure	12.6	The	attributes	inspector

Here	you	can	change	the	font	to	Custom,	and	then	you	can	change	the	font	to	Helvetica
Neue,	the	style	to	UltraLight,	and	the	size	to	109.	Drag	the	label	to	be	the	full	width	of	the
view,	and	it	should	snap	into	place.	Double-click	the	label	and	write	in	the	text	0:00.

Now	find	a	button	in	the	Object	Library	(the	same	place	you	found	the	label),	and	drag
that	onto	the	middle	of	the	screen.	You	should	get	some	crosshairs	confirming	that	you	are
in	fact	dropping	it	in	the	middle.	Don’t	worry,	we’ll	add	styles	and	constraints	in	just	a
minute	to	make	sure	it	stays	there.	Double-click	the	button	and	label	it	Start.	Also	resize
the	button	to	be	the	same	width	and	height.	I	resized	it	to	100	height	and	100	width.

Now	find	Table	View	in	the	Object	library,	but	be	careful	not	to	accidentally	grab	Table
View	Controller	because	we	are	specifically	looking	for	a	table	view.	Drag	that	table	view
onto	the	bottom	of	the	screen.	It	should	lock	into	the	bottom	of	the	screen	and	make	it
about	the	bottom	15%	in	height;	just	eye	it	when	you	drag	its	size	around,	but	do	make	it
exactly	the	full	width	of	the	screen.



Find	a	table	view	cell	in	the	Object	library,	and	drag	it	into	the	table	you	just	created.	Now
be	careful	when	selecting	things	on	the	view	because	you	might	be	selecting	the	table
itself	or	the	cell	within	the	table.	Be	sure	to	make	that	distinction	by	checking	what	you
selected	in	the	attributes	inspector;	it	should	indicate	the	thing	you	selected	at	the	top.
Make	sure	you	have	the	table	view	itself	selected	and	the	attributes	inspector	selected;
then	set	the	Table	View	Content	to	be	Dynamic	Prototypes	and	set	the	Style	to	be
Grouped.

Now	select	the	single	row	itself	within	the	table	view.	Your	attributes	inspector	should
read,	at	the	top,	“Table	View	Cell.”	Change	the	Style	to	be	Custom.	Set	the	Identifier	to	be
studySessionCell.	Selection	is	nice	when	it’s	set	to	Blue.	If	you	scroll	down	a	little	in	the
attributes	inspector,	I	also	like	to	set	the	Background	to	be	White	Color.

You	should	be	good	to	go	as	far	as	setting	up	your	initial	view.	We	need	to	add	some
constraints	so	that	your	view	stays	in	place	nicely	when	we	have	different	devices.

Adding	Constraints
By	adding	constraints,	we	will	make	sure	that	our	devices	can	all	view	a	neatly	formatted
version	of	our	app	even	if	the	screens	are	different	sizes.	We	have	to	specify	at	least	the	X
and	Y	of	a	constraint	for	it	to	be	legit,	but	I	like	to	add	a	width	and	a	height	too	to	be
complete.	When	you	add	constraints,	they	will	start	out	red	in	color,	which	means	that	you
haven’t	added	enough	constraints	or	information	for	Xcode	to	figure	out	how	you	want
your	objects	laid	out.

To	add	a	constraint,	you	simply	click	and	drag	from	the	item	you	want	to	add	a	constraint
to	while	holding	down	Control	on	the	keyboard.	The	direction	in	which	you	drag	and	how
far	you	drag	will	determine	what	type	of	constraint	gets	added.	We	want	to	first	add	a
width	and	a	height	constraint.	We	are	constraining	this	component	to	itself,	so	this	will	be
a	constraint	added	directly	to	the	label	from	the	label.	Click	and	drag	from	the	label	to	the
left	while	pressing	Control	on	the	keyboard,	and	don’t	drag	outside	the	label	but	stay
within	its	bounds.	When	you	let	go	of	the	mouse,	you	should	see	a	drop-down	appear	for
adding	a	constraint	for	width.	Click	that	constraint	and	now	we	can	add	a	height
constraint.	Click	and	drag	while	holding	Control,	and	this	time	drag	upward.	You	should
see	a	constraint	option	pop	up	for	a	height.	Click	that	constraint	and	you	are	good	to	go	for
the	width	and	height	of	the	label.	We	should	now	add	constraints	for	the	X	and	Y	position
of	the	label.	We	want	it	to	be	horizontally	centered	in	the	view	and	positioned	based	on	the
top	layout	guide.

By	the	way,	your	label	should	still	have	red	constraint	marks	around	it	because	we	have
not	fulfilled	the	constraint	yet	for	at	least	the	X	and	Y.	To	add	the	top	layout	guide
constraint,	drag	(while	holding	down	Control)	up	and	out	of	the	label.	When	you	get	to	the
top,	the	view	should	highlight	(turn	blue,	instead	of	just	the	label).	Let	go	and	you	should
have	two	options,	one	to	center	vertically	and	the	other	labeled	Vertical	Spacing	to	Top
Layout	Guide—that’s	the	one	you	want.

You	now	have	three	constraints	for	this	timer	label.	To	add	the	center-horizontally
constraint,	just	click	and	drag	outside	and	to	the	left	and	down	(normally	to	the	left	only,
but	because	there	isn’t	any	room	over	there,	we	drag	to	the	left	and	down),	while	holding



Control,	and	you	should	get	a	choice	of	constraint	for	Center	Horizontally	in	Container.
After	you	have	those	four	constraints,	our	label	is	constrained	and	good	to	go.	The
constraint	lines	should	now	all	be	blue	with	no	red	lines	visible,	so	we	know	that	Xcode
agrees	that	we	are	good	to	go,	too.

The	next	step	is	to	add	constraints	to	the	button.	We	just	want	to	center	it	horizontally	and
vertically	in	the	container.	So	just	click	and	drag	while	holding	down	Control	to	the	left
outside	of	the	button,	and	choose	Center	Vertically	in	Container.	Click	and	drag	while
pressing	Control	downward	outside	of	the	button,	and	select	Center	Horizontally	in
Container.

We	also	want	to	add	constraints	to	our	table.	Since	we	can’t	easily	add	a	bottom	constraint
for	our	table,	the	easiest	way	to	achieve	this	is	to	use	the	document	outline.	If	the
document	outline	isn’t	showing,	you	can	go	to	Editor,	Show	Document	Outline,	which
will	make	the	document	outline	appear.	When	you	have	the	document	outline	visible,	you
can	click	and	drag	while	holding	down	Option,	in	the	same	way	you	did	from	the
Storyboard,	so	click	and	drag	from	the	table	view	to	the	view	and	select	Vertical	Spacing
to	Bottom	Layout	Guide	(see	Figure	12.7).	Now	that	you	are	a	pro	at	adding	constraints,
also	add	width	and	height,	and	center	horizontally	for	the	table.

Figure	12.7	Adding	constraints	in	the	document	outline

After	you	have	all	those	constraints	for	the	table,	we	are	all	set	with	constraints.	The	next
step	is	to	hook	up	the	UI	elements	to	our	code.



Hooking	Up	the	UI	to	Code
Now	we	need	to	be	able	to	control	these	UI	elements	in	our	code	so	that	we	can	do	things
like	change	the	label	from	0:00	to	2:34.	To	do	this,	we	want	to	have	the	Storyboard	and
the	code	open	at	the	same	time.	It	helps	to	first	hide	the	document	outline	(Editor,	Hide
Document	Outline).	It	also	helps	to	hide	the	utilities	(Command-Option-0).	We	want	to
show	the	assistant	editor	by	clicking	the	Assistant	Editor	button	(see	Figure	12.8)	or
pressing	Command-Shift-Return.

Figure	12.8	The	Assistant	Editor	button

You	should	now	have	the	code	and	the	Storyboard	open	at	the	same	time.	We	need	a	few
things	to	happen	here.	We	need	a	reference	to	the	timer	label,	we	need	something	to
happen	when	we	click	the	Start/Pause	button,	and	we	need	a	reference	to	the	table	view	so
we	can	populate	it.	First,	the	label.

Click	and	drag	from	the	label	into	the	class	right	above	override	func
viewDidLoad().	Choose	the	Connection	as	Outlet	and	the	Name	as	TimerLabel.	This
will	make	a	variable	we	can	reference	when	setting	things	on	the	timer	label.
Click	here	to	view	code	image

@IBOutlet	var	timerLabel:	UILabel!

Now	we	need	a	reference	to	the	Start/Stop	button	and	a	method	to	run	when	the	button	is
clicked.

Click	and	drag	over	to	the	code	(while	holding	down	Control)	from	the	Start/Stop	button,
and	do	the	same	thing.	Choose	the	Connection	as	Outlet	and	the	Name	as
timerStartPauseButton,	and	click	Connect.	This	will	add	the	following	code	to	your
ViewController	class:
Click	here	to	view	code	image

@IBOutlet	var	timerStartPauseButton:	UIButton!

Now	we	also	need	to	be	notified	when	someone	clicks	that	button,	and	run	a	method.
Click	and	drag	from	the	button	again	(while	holding	down	Control)	over	to	the	bottom
area	of	the	code	(below	the	didRecieveMemoryWarning	method).	Choose	the
Connection	as	Action	and	the	Name	as	timerStartStopTapped,	and	click	Connect.	This	will
add	a	method	that	gets	called	every	time	that	button	is	tapped.	This	nets	you	the	following
method:
Click	here	to	view	code	image

@IBAction	func	timerStartStopTapped(sender:	AnyObject)	{
}

At	this	point	we	need	only	one	more	reference	and	that	is	to	our	table.	Click	and	drag	the
table	(while	holding	down	Control)	over	to	the	top	area	of	the	code,	and	choose	the
Connection	as	Outlet	and	the	Name	as	studySessionTable.	Click	Connect	and	we	are	good
as	gold.	Now	it’s	time	to	write	the	code	to	make	this	app	work.



Writing	the	Code
At	this	point	we	have	hooked	up	a	serious	number	of	UI	elements	to	our	code,	and	we	are
ready	to	write	code	that	will	change	the	UI	components.	You	can	switch	out	of	the	split-
screen	view	(the	assistant	editor)	and	move	over	to	the	standard	editor,	where	we	can	see
one	view	at	a	time,	and	then	click	on	the	ViewController.swift	so	that	we	can	start
editing	our	code.

First	things	first:	Let’s	make	some	global	variables	so	that	we	can	control	our	timer	and
time	left	and	other	little	things.	Add	the	following	code	to	your	ViewController:

var	timer:NSTimer!
var	paused	=	false
var	timeLeft	=	0
var	defaultTimeLeft	=	180

Here	we	are	just	setting	some	global	variables	by	creating	a	timer	that	we	can	use	to	do	the
actual	countdown	with.	We	also	want	to	know	whether	the	timer	is	paused.	We	obviously
have	to	know	how	much	time	is	left,	since	the	NSTimer	does	not	count	down	but	only
counts.	We	want	to	make	sure	that	we	are	counting	down	using	the	amount	of	time	we
agreed	would	be	left.	This	time	is	in	seconds,	and	we	start	this	off	with	180	seconds,
which	is	3	minutes.	For	debugging	code,	however,	I	would	change	this	number	to	5	or	3	so
that	you	don’t	have	to	wait	3	minutes	for	the	timer	to	be	done	every	time	you	test	this;
then,	when	you	are	ready	for	production,	you	can	set	this	to	180	for	3	minutes,	or	even
make	it	customizable.

The	next	step	is	to	update	our	viewDidLoad	method,	which	gets	called	when	this	view
is	loaded.	Let’s	add	some	code	to	our	viewDidLoad	to	initialize	the	variables:
Click	here	to	view	code	image

override	func	viewDidLoad()	{
				super.viewDidLoad()
				studySessionTable.delegate	=	self
				studySessionTable.dataSource	=	self
				changeStartButton()
				timeLeft	=	defaultTimeLeft
}

We	are	jumping	ahead	of	ourselves	a	little	bit	here.	To	control	that	table	and	make	changes
on	it	and	get	informed	of	changes	that	happen,	we	need	to	make	our	class	a	special	table
class.	Specifically,	we	need	to	make	our	class	adopt	two	protocols,
UITableViewDelegate	and	UITableViewDataSource.	These	two	protocols
have	different	meanings	and	functionality.	The	UITableViewDelegate	is	for
controlling	a	table	and	controlling	such	things	as	number	of	rows	and	sections.	The
UITableViewDataSource	is	for	controlling	the	data	inside	of	that	table.	We	need	to
be	able	to	properly	populate	that	table,	and	that’s	why	we	need	both	protocols.	To	adopt
these	protocols,	we	need	to	update	the	class	signature:
Click	here	to	view	code	image

class	ViewController:	UIViewController,	UITableViewDelegate,
UITableViewDataSource	{

Now	the	two	lines	of	code	in	our	viewDidLoad	will	make	more	sense.	We	want	to



know	what	class	should	be	notified	when	changes	take	place	on	our	table,	and	the	answer
is	this	class	right	here:
Click	here	to	view	code	image

studySessionTable.delegate	=	self
studySessionTable.dataSource	=	self

In	our	initializer	we	also	set	the	default	time	left	to	be	whatever	we	decided	it	should	be.

The	next	step	is	to	fill	in	the	missing	method	that	we	are	calling
changeStartButton().	Add	this	method	to	your	ViewController	class:
Click	here	to	view	code	image

func	changeStartButton()	{
				if	paused	{
								timerStartPauseButton.setTitle(“Paused”,	forState:	.Normal)
								timerStartPauseButton.setTitleColor(UIColor.redColor(),	forState:
.Normal)
								timerStartPauseButton.clipsToBounds	=	true
								timerStartPauseButton.layer.cornerRadius	=
								timerStartPauseButton.frame.size.width/2
								timerStartPauseButton.layer.borderWidth	=	1
								timerStartPauseButton.layer.borderColor	=	UIColor.redColor().CGColor
				}	else	{
								timerStartPauseButton.setTitle(“Start”,	forState:	.Normal)
								timerStartPauseButton.setTitleColor(UIColor.greenColor(),	forState:
.Normal)
								timerStartPauseButton.clipsToBounds	=	true
								timerStartPauseButton.layer.cornerRadius	=
								timerStartPauseButton.frame.size.width/2
								timerStartPauseButton.layer.borderWidth	=	1
								timerStartPauseButton.layer.borderColor	=
UIColor.greenColor().CGColor
				}
				paused	=	!paused
}

This	method	has	a	lot	of	code,	but	what	it	does	is	simple.	If	the	timer	is	paused,	we	set	the
button	text	to	be	“Paused,”	we	set	the	button	to	be	red,	we	set	the	button	to	be	circular,	and
we	set	a	border	to	be	red	as	well.	We	do	the	same	thing	if	it	is	not	paused,	except	the
button	text	is	“Start”	and	the	button	and	its	border	are	green.	We	are	duplicating	the	look
of	the	iPhone	timer	button	and	its	perfectly	circular	appearance.	It	also	changes	from	red
to	green	when	paused	and	not	paused.	Adding	clipsToBounds	helps	make	a	nice-
looking	button	and	keeps	the	contents	of	this	view	in	its	own	bounds.	Play	around	with
these	numbers	and	settings	to	get	your	own	desired	effect.

The	next	step	is	to	update	our	Start/Pause	button	when	it	gets	tapped.	We	already	have	a
method	that	gets	called	when	it	gets	tapped,	so	let’s	take	a	look	at	that	method	and	write
the	code	needed	to	start	the	timer.	We	may	still	have	an	error	in	our	code	about	not
adopting	a	protocol	for	the	data	source,	which	we	will	fix	in	a	few	lines	from	now.	Update
your	timerStartStopTapped	method	as	follows:
Click	here	to	view	code	image

@IBAction	func	startStopTapped(sender:	AnyObject)	{
				if	paused	{
								timer	=	NSTimer
								.scheduledTimerWithTimeInterval



								(1,
								target:	self,
								selector:	Selector(“timerTick:”),
								userInfo:	nil,
								repeats:	true)
				}	else	{
								timer.invalidate()
				}
				changeStartButton()
}

Here	we	are	checking,	when	the	user	taps	the	Start/Stop	button,	whether	the	study	session
is	paused.	If	it	is	currently	paused,	we	will	unpause	it	by	creating	a	new	timer	that	ticks
every	1	second.	When	that	timer	ticks,	it	will	call	the	method	timerTick.	We	obviously
have	not	written	the	method	timerTick	yet,	but	it’s	coming.	If	the	timer	is	not	paused,
we	want	to	pause	the	timer,	which	can	be	done	by	calling	timer.invalidate().	In	a
way	we	are	not	pausing	the	timer	but	killing	the	timer	completely	and	remaking	it	from
scratch	each	time.	To	quote	the	documentation	for	invalidate:

	“Stops	the	receiver	from	ever	firing	again	and	requests	its	removal	from	its	run
loop.”

It	is	clear	that	we	must	make	a	new	timer	to	unpause	the	timer.	After	this	method	is
complete,	we	call	the	changeStartButton	method	to	update	the	appearance	of	the
Start	button	based	on	whether	the	session	is	paused.	That	method	also	takes	care	of	setting
the	paused	variable	to	be	toggled.

We	have	not	yet	written	the	method	that	gets	fired	when	the	timer	ticks,	so	we	should
write	that	method	next.	Let’s	add	the	following	code	to	our	ViewController	class.
The	timerTick	method	will	do	two	things:	format	the	time	properly	for	display	on	the
timerLabel,	and,	if	the	timer	has	no	time	left	on	it,	invalidate	the	timer	once	again	and
add	a	new	record	to	the	list	of	study	sessions.	We	will	use	a	special	custom	study	session
class,	which	hasn’t	been	created	yet,	which	we	will	create	after	this	method.
Click	here	to	view	code	image

func	timerTick(timer:NSTimer)	{
				if	—timeLeft	>	0	{
								let	seconds	=	Int(timeLeft	%	60)
								let	minutes	=	Int((timeLeft	/	60)	%	60)
								let	strMinutes	=	minutes	>	9	?	String(minutes)	:	“0”	+
String(minutes)
								let	strSeconds	=	seconds	>	9	?	String(seconds)	:	“0”	+
String(seconds)
								timerLabel.text	=	“\(strMinutes):\(strSeconds)”
				}	else	{
								timeLeft	=	defaultTimeLeft
								timerLabel.text	=	“00:00”
								timer.invalidate()
								changeStartButton()
								StudySessionManager.sharedInstance.sessions.insert(
												StudySession(
																createdAt:NSDate().timeIntervalSince1970,
																finishedAt:NSDate().timeIntervalSince1970
												)
												,	atIndex:	0)
								studySessionTable.reloadData()



				}
}

Holy	wall	of	text,	Batman!	It’s	a	lot	of	code,	but	let’s	break	it	down.	We	spend	most	of	the
code	formatting	the	time	and	saving	sessions.	Let’s	review	it.	First	we	have	to	check	how
much	time	is	left.	We	might	as	well	decrement	the	time	left	while	we	are	checking
whether	it	is	less	than	0.	It’s	important	to	decrement	before	we	check.	We	don’t	want	–1	to
show	up	on	our	timer.

We	take	the	next	four	lines	to	format	the	time	for	the	timer.	We	use	these	variables	to
format	the	seconds	left	into	minutes	and	seconds	with	appropriate	leading	0s	if	necessary.
We	use	some	ternary	operators	for	this	task.	We	need	to	update	the	timer	with	our	new
nicely	formatted	timer	text,	so	we	do	that	next.

If	the	timer	has	gone	below	0	and	time	is	up,	we	need	to	reset	the	timeLeft	variable	to
be	back	to	the	default	time	left	(3	minutes	or	5	seconds	or	whatever	you	set	the	default
time	to	be).	Just	setting	the	variable	won’t	change	anything	visually	yet.	We	set	the	timer
label	to	be	“00:00”	so	that	it	appears	that	there	is	no	time	left.	We	kill	the	timer	with
timer.invalidate().	We	change	the	appearance	of	the	start	button	once	again.	We
use	our	special	Study	Session	Manager	to	insert	a	new	study	session.	Finally,	we	reload
the	table	data	because	we	just	made	a	new	record	for	the	table	and	we	want	it	to	show	up.

Because	we	don’t	have	our	study	session	class,	we	should	make	that	next.	We’ll	use	the
singleton	pattern	here	to	keep	a	single	instance	of	the	Study	Session	Manager	around.
Create	a	new	file,	StudySessionManager.swift,	and	add	the	following	code	to	it:
Click	here	to	view	code	image

import	Foundation
class	StudySessionManager	{
				static	let	sharedInstance	=	StudySessionManager()
				var	sessions	=	[StudySession]()
}
struct	StudySession	{
				var	createdAt:NSTimeInterval
				var	finishedAt:NSTimeInterval	=	0
}

Here	we	make	a	basic	model	for	our	study	session.	We	create	a	sort	of	study	session	object
that	has	createdAt	and	finishedAt	variables	just	in	case	we	need	both.	We	make
the	Study	Session	Manager	a	singleton	by	using	the	static	let	sharedInstance
be	equal	to	a	new	instance	of	StudySessionManager.	Static	variables	function	in	the
same	way	as	class	functions	in	that	they	belong	to	the	class	and	not	the	instance	of	the
class.	There	aren’t	class	member	variables	yet	but	you	can	use	static,	which	functions	in	a
similar	way.	The	main	difference	between	static	and	class	is	that	class	can	be
overridden	in	a	subclass	and	static	cannot.

Adding	this	class	and	struct	to	our	code	gets	rid	of	the	error	in	the	ViewController
from	the	missing	StudySessionManager,	which	is	good,	but	still	doesn’t	get	rid	of
our	error	with	the	protocol	for	the	UITableViewDataSource.	Let’s	work	on	that
issue	now.



The	
We	have	this	table	at	the	bottom	of	the	screen,	which	holds	data	relating	to	our	previous
study	sessions.	To	update	that	table,	we	must	use	some	basic	table	delegate	methods	that
come	with	the	table.	The	easiest	thing	to	do	is	to	set	the	header.	When	we	get	more	data,
we	want	to	show	that	in	the	header—something	like	“2	study	sessions”	to	indicate	the	total
study	sessions.

Add	the	following	method,	which	comes	from	the	table	view,	because	we	are	adopting	its
protocols:
Click	here	to	view	code	image

func	tableView(tableView:	UITableView,
								titleForHeaderInSection	section:	Int)	->	String?	{
				let	sessionCount	=	StudySessionManager.sharedInstance.sessions.count
				var	sessionsPlural	=	“s”
				if	sessionCount	==	1	{
								sessionsPlural	=	””
				}
				return	“\(sessionCount)	study	session\(sessionsPlural)”
}

The	method	tableView:	titleForHeaderInSection:	section	will	act	as	a
main	header	for	the	table	since	we	will	have	only	one	section.	We	set	the	text	of	that
header,	with	one	caveat.	We’d	like	to	get	the	plural	of	the	word	“session.”	This	method
returns	a	string	optional	because	you	can	return	the	text	you	want	to	appear	in	the	header.
Of	course,	because	it’s	an	optional,	you	could	return	nil	if	you	wanted	a	blank	header,	or
just	return	a	blank	string.

While	we’re	on	the	subject	of	sections,	we	should	set	the	number	of	sections	in	this	table
to	be	one	section	total:
Click	here	to	view	code	image

func	numberOfSectionsInTableView(tableView:	UITableView)	->	Int	{
				return	1
}

We	just	use	the	table’s	method	that	is	available	to	set	the	number	of	sections	in	the	table.	If
this	were	a	more	complicated	app,	we	could	have	sections	in	the	table	and	set	the	number
of	sections	here.	Since	that	is	not	what	we	are	trying	to	achieve,	we	won’t	do	that.

We	need	to	also	know	how	many	rows	will	be	in	each	section,	so	we’ll	query	our
StudySessionManager	for	those	answers.	We	of	course	must	use	the	built-in	method
that	answers	this	question	for	the	table	we	are	trying	to	render.	The	table	will	look	to	this
method	when	it	wants	to	know	how	many	rows	there	will	be:
Click	here	to	view	code	image

func	tableView(tableView:	UITableView,
numberOfRowsInSection	section:	Int)	->	Int	{
				return	StudySessionManager.sharedInstance.sessions.count
}

When	telling	the	table	how	many	rows	there	will	be	in	each	section,	what	we	want	to
know	in	our	case	is	how	many	rows	there	will	be	in	total	since	we	have	only	one	section.

The	final	and	most	important	method	is	the	method	that	tells	the	table	what	cell	to	render



at	the	current	cell	index:
Click	here	to	view	code	image

func	tableView
								(tableView:	UITableView,
								cellForRowAtIndexPath	indexPath:	NSIndexPath)
								->	UITableViewCell	{
				let	cell	=	studySessionTable
								.dequeueReusableCellWithIdentifier(“studySessionCell”)!
				let	dateDiff	=	NSDate()
								.timeIntervalSince1970	–	StudySessionManager
								.sharedInstance.sessions[indexPath.row].createdAt
				var	formattedTime	=
NSDateComponentsFormatter().stringFromTimeInterval(dateDiff)!
				if	formattedTime.rangeOfString(“:”)	==	nil	{
								formattedTime	=	“\(formattedTime)	seconds	ago”
				}	else	{
								formattedTime	=	“\(formattedTime)	ago”
				}
				cell.textLabel?.text	=	formattedTime
				return	cell
}

This	method	gets	called	when	the	table	needs	to	know	how	to	render	the	current	cell,	what
text	belongs	in	that	cell,	and	other	details.	In	our	case	we	decided	to	format	the	time	since
this	study	session	was	created	and	show	that	time	in	a	nice	little	format.	If	the	number	is	in
seconds	only,	we	show	only	those	seconds.	If	the	time	is	in	minutes	too,	we	show	the
seconds	and	minutes	and	change	the	phrasing	so	it	makes	more	sense.	We	do	some	date
kung	fu	here	by	using	the	new	NSDateComponentsFormatter,	which	makes	it
significantly	easier	to	format	a	date.	To	get	how	much	time	has	elapsed,	we	take	the	time
stamp	from	1970	(the	number	of	seconds	since	1970;	see	Unix	Time),	which	we	use	as	the
current	time,	and	subtract	the	time	when	that	session	was	created.	By	subtracting	those
two	numbers,	we	should	get	how	much	time	has	elapsed	since	that	session	was	created.

The	last	thing	to	do	is	to	properly	format	that	time,	which	we	do	using
stringFromTimeInterval.	This	method	almost	magically	handles	everything	for
us.	As	long	as	you	pass	this	method	the	right	data	in	the	right	format,	it	can	almost
magically	return	a	nicely	formatted	string.	At	the	end	of	this	method,	you	must	return	the
cell	you	created	so	that	the	library	can	put	it	into	the	table	in	which	it	belongs.	The	one
thing	to	remember	is	that	if	you	have	hundreds	or	thousands	of	rows,	Apple	is	not
rendering	all	of	those	rows	at	once;	instead	it	is	rendering	only	the	visible	rows	in	order	to
keep	things	tidy	and	moving	quickly.	Notice	also	that	after	we	add	in	this	method,	we	have
gotten	rid	of	all	of	our	errors.

At	this	point	you	can	run	your	app,	and	you’ll	notice	you	have	a	fully	functioning	study
timer.	Feel	free	to	use	it	for	your	own	studying.	Also	make	sure	you	play	around	with	the
different	aspects	and	customize	the	app	to	your	heart’s	content.	It	would	be	nice	if	you
could	add	a	custom	time	that	the	user	can	set	on	his	own.	Also	if	the	user	can	set	goals—
for	example,	if	he	wanted	to	finish	ten	study	sessions—congratulate	him	when	he	does.



Summary
In	this	chapter	you	learned	how	to	make	a	basic	app	and	in	the	process	learned	about	table
views	and	the	different	protocols.	You	learned	how	to	style	buttons	to	make	them	pretty	by
using	code.	You	learned	about	constraints	and	how	you	can	make	sure	that	your	app	looks
great	no	matter	what	device	it	is	on.	You	also	learned	how	to	format	time	using	some
newer	libraries.



Index

Symbols
&	(ampersand)

bitwise	AND,	115-116

calling	functions	by	reference,	50

value	underflow/overflow,	119-120

<<	(bitwise	left	shift	operator),	118

>>	(bitwise	right	shift	operator),	118

^	(caret),	bitwise	XOR,	117

/*	*/	(comments),	8

&&	(double	ampersand),	AND	operator,	24

==	(double	equal	sign),	equality	operator,	121,	149

//	(double	forward	slash),	comments,	8

||	(double	pipe),	OR	operator,	24

…	(ellipsis)

closed	ranges,	19

variadic	parameters,	49-50

=	(equal	sign),	assignment	operator,	122

!	(exclamation	point),	optionals,	13-15

@objc	attribute,	145-146

|	(pipe),	bitwise	OR,	116-117

+	(plus	sign),	concatenating	strings,	11

?	(question	mark),	optionals,	9,	12

..<	(range	operator),	half-open	ranges,	20

;	(semicolon),	6

[	]	(square-brackets	notation)

array	elements,	accessing,	33-34

dictionaries,	accessing,	37

dictionary	values,	setting,	37

\()	syntax,	variables	in	strings,	10-11

~	(tilde),	bitwise	NOT,	114-115



_	(underscore)

external	function	parameters,	48

in	numbers,	10

0b	prefix,	113

A
access	modifiers,	property	access	modifiers,	71

accessing

classes	via	subscripts,	110

elements	in	arrays,	33-34,	110-111

indexes	via	for	loops,	21-22

raw	values	in	enums,	60-61

strings	via	for	loops,	21

tuples,	15

values	in	dictionaries,	37-39,	111

adding

background	images	to	games,	89-91

constraints,	209-211

elements	to	arrays,	34

values	to	dictionaries,	37

ampersand	(&)

bitwise	AND,	115-116

calling	functions	by	reference,	50

value	underflow/overflow,	119-120

anchor	points,	setting,	91-92

AND	operator

bitwise	operations,	115-116

double	ampersand	(&&),	24

animation

collision	detection,	176-180

in	physics-based	game,	197-198

with	SKAction	class,	180-185

anonymous	functions,	43



Any	type,	9-10

AnyObject	type,	32-33

AppDelegate	class,	136

append()	method,	32,	34

AppKit,	205

ApplicationDelegate,	176

apps

constraints,	adding,	209-211

single-view	applications,	206-207

Storyboard,	205

user	interface

connecting	to	code,	211-212

creating,	208-209

writing	code	for,	212-218

ARC	(Automatic	Reference	Counting),	99-100

strong	reference	cycles,	100-102

in	closures,	104-106

unowned	keyword,	102-104

weak	keyword,	102

arguments.	See	also	parameters

calling	functions,	44-46

in	closures,	97

arrays

AnyObject	type	in,	32-33

concatenating,	34

declaring,	31-32

with	generics,	155-157

elements

accessing,	33-34,	110-111

inserting,	34

iterating	over,	35

prepopulating,	35



removing,	34-35

emptying,	36

example	code,	39-41

as	function	parameters,	49-50

multidimensional,	35-36

subscripts	in,	111-113

mutable	versus	immutable,	33

types	allowed,	31

as?	keyword,	144-145

AspectFill	scale	mode,	82-84

AspectFit	scale	mode,	84

assert()	method,	112

asset	library	for	physics-based	game,	189

assignment	operator,	122

associated	types,	157-158

associated	values	in	enums,	59-60

atlases,	storing	images,	170-171

Automatic	Reference	Counting.	See	ARC	(Automatic	Reference	Counting)

B
background	images,	adding	to	games,	89-91

Ball	class,	191-192

BallManager	class,	192-197

base	of	classes,	finding,	78-79

binary	numbers,	calculating,	113-114

binary	operators,	121

Binary	type,	9

bits

binary	number	calculations,	113-114

shifting,	118

bitwise	operations

examples	of	usage,	113-114

NOT	operator,	114-115



AND	operator,	115-116

OR	operator,	116-117

reading	GIF	files	example,	123-127

shifting	bits,	118

signed	versus	unsigned	types,	119

value	underflow/overflow,	119-120

XOR	operator,	117

Bluetooth,	bitwise	operations	and,	113

Boolean	type,	23-25

break	statements,	28

bytes,	binary	number	calculations,	113-114

C
C	programming	language,	comparison	with	Swift,	5

calling	functions

by	reference,	50

by	value,	44

capture	lists,	defining,	105

caret	(^),	bitwise	XOR,	117

case	statements	in	switch	statements,	25-28

CDouble	type,	18

CFloat	type,	18

CGFloat	type,	17

CGPoint	class,	173

CGSize	class,	84

changeStartButton()	method,	213

class	keyword,	66

classes

accessing	via	subscripts,	110

AppDelegate,	136

ARC	(Automatic	Reference	Counting),	99-100

closures,	104-106

strong	reference	cycles,	100-102



unowned	keyword,	102-104

weak	keyword,	102

Ball,	191-192

BallManager,	192-197

CGPoint,	173

CGSize,	84

custom,	sorting,	97-98

declaring,	66

Diamond,	170

finding	base,	78-79

game	managers,	85-86

GameHelper,	167

GameManager,	167-169

GameScene

collision	detection,	199-203

files	in,	164-165

setting	up,	174-175

GameViewController,	79-84

changing	scale	mode,	82-84

ignoring	sibling	order,	81-82

SKView	class	and,	79-81

Ghost,	169-170

Hero,	169

methods

inheritance,	72-74

instance	methods,	70-71

property	access	modifiers,	71

self	keyword,	72

type	methods,	71-72

multiple	initializers,	66-68

NSDateComponentsFormatter,	218

properties.	See	properties



property	observers,	69-70

as	reference	types,	68

SKAction,	76,	180-185

SKLabelNode,	77

SKNode,	75-76

SKPhysicsBody,	178-179

SKScene,	78-79

SKSceneScaleMode,	82-84

SKShapeNode,	77-78

SKSpriteNode,	76-77

SKView,	79-81

structs	versus,	57,	61-62

StudySessionManager,	216

Tile,	169

ViewController,	206

when	to	use,	68-69

closures,	43,	93

custom	classes,	sorting,	97-98

declaring,	95-97

in	JavaScript,	94-95

as	reference	types,	98-99

strong	reference	cycles	in,	104-106

trailing	closures,	106-107

code	listings.	See	listings

collections,	protocols	in,	139-140

collision	detection,	176-180,	190-191,	199-203.	See	also	physics-based	games

comments,	8

Comparable	protocol,	97,	134,	149-150

comparison	operators

Comparable	protocol	and,	149-150

equality	operator,	121,	149

composition	(protocols),	141-143



computed	properties,	6-7,	131

concatenating

arrays,	34

strings,	11

conforming	to	protocols,	129-131,	143-145

connecting	user	interface	to	code,	211-212

constants

declaring,	6,	60

naming,	Unicode	characters,	6

constraints,	adding,	209-211

constructors.	See	initializers

continue	statements,	28

control	flow

break	statements,	28

continue	statements,	28

for	loops,	18-22

accessing	indexes,	21-22

accessing	strings,	21

for-condition-increment	loops,	18-19

for-in	loops,	19-21

if-else	statements,	23-25

labeled	statements,	28-29

switch	statements,	25-28

while	loops,	22-23

converting	types,	10,	17

Boolean	type,	23-24

Int	type	to	String	type,	11

count	method

arrays,	34

dictionaries,	38

creating.	See	declaring

custom	classes,	sorting,	97-98



custom	operators,	109

defining	new,	122-123

overloading,	120-122

custom	types,	creating	with	generics,	155-157

CustomStringConvertible	protocol,	150-151

D
data	types.	See	types

DebugPrintable	protocol,	151

Decimal	type,	9

declaring

arrays,	31-32

with	generics,	155-157

classes,	66

closures,	95-97

constants,	6,	60

dictionaries,	36-38

enums,	58

functions,	44-45

protocols,	129-131

method	requirements,	135-136

structs,	62-63

subscripts,	110-113

types,	8

variables,	6

as	computed	properties,	6-7

in	structs,	63

default	parameters,	48-49

default	statements,	25

defining

capture	lists,	105

methods	in	structs,	63-64

operators,	122-123



deinit	function,	101

delegates

collision	detection,	176

described,	129

delegation,	136-138

deleting.	See	removing

Diamond	class,	170

dictionaries

declaring,	36-38

emptying,	38

example	code,	39-41

values

accessing,	37-39,	111

inserting,	37

iterating	over,	37-38

removing,	37

testing	for	presence,	38-39

didBeginContact()	method,	200

didSet()	function,	70

directories,	creating	projects	directory,	77

double	ampersand	(&&),	AND	operator,	24

double	equal	sign	(==),	equality	operator,	121,	149

double	forward	slash	(//),	comments,	8

Double	type,	9,	16-17

dynamic	bodies,	static	bodies	versus,	180

E
elements.	See	also	values

accessing,	33-34,	110-111

inserting,	34

iterating	over,	35

naming	in	tuples,	15

prepopulating,	35



removing,	34-36

ellipsis	(.)

closed	ranges,	19

variadic	parameters,	49-50

else	statements,	23-25

else-if	statements,	25

emptying.	See	also	removing

arrays,	36

dictionaries,	38

enum	keyword,	58

enumerate	function,	22,	35

enums

declaring,	58

members,	58

associated	values,	59-60

determining	which	was	set,	59

raw	values,	60-61

purpose	of,	57

equal	sign	(=),	assignment	operator,	122

equality	(==)	operator,	121,	149

Equatable	protocol,	134,	149

custom	classes,	sorting,	97

custom	operators,	121

with	generics,	157

errors

conforming	to	protocols,	130-131

EXC_BAD_INSTRUCTION,	13

example	code.	See	listings

EXC_BAD_INSTRUCTION	error,	13

exclamation	point	(!),	optionals,	13-15

exclusive	OR	operator,	117

external	parameters,	47-48



F
fadeInWithDuration()	method,	181

fadeOutWithDuration()	method,	181

fallthrough	keyword,	27

file	specifications,	bitwise	operations	and,	113

files	in	GameScene	class,	164-165

Fill	scale	mode,	84

finding	base	of	classes,	78-79

Float	type,	9,	16-17

for-condition-increment	loops,	18-19

for-in	loops,	19-21

enumerate	method,	22

for	loops,	18-22

accessing	indexes,	21-22

accessing	strings,	21

for-condition-increment	loops,	18-19

for-in	loops,	19-21

formatting	time,	218

func	keyword,	44,	47

functions,	43.	See	also	methods

anonymous	functions,	43

calling

by	reference,	50

by	value,	44

closures.	See	closures

declaring,	44-45

deinit,	101

didSet(),	70

enumerate,	22,	35

example	code,	52-55

generics	in,	153-155

init(),	66



keys,	38

methods	versus,	70

operators	as,	93

parameters

arrays	as,	49-50

in	declarations,	44

default	parameters,	48-49

external	parameters,	47-48

in-out	parameters,	50-51

variadic	parameters,	49-50

return	types,	45-46

multiple	return	values,	46-47

sort(),	as	closure,	95-97

as	types,	51-52

values,	38

where	keyword,	158-162

willSet(),	70

G
game	managers,	85-86

GameHelper	class,	167

GameManager	class,	167-169

games

creating

adding	background	image,	89-91

deleting	sample	code,	85

game	manager,	85-86

new	project,	creating	in	Xcode,	76-77,	163-164,	188-189

scene	sizing,	86-89

setting	anchor	points,	91-92

physics-based	games,	187-188

adding	levels,	189-190

animation	of	ball,	197-198



asset	library,	189

collision	detection,	190-191,	199-203

creating	game	world,	190-197

running,	77

SpriteKit,	75

animation	with	SKAction	class,	180-185

collision	detection,	176-180

creating	game	world,	165-175

description	of	example	game,	163

files	in	GameScene	class,	164-165

finding	base	of	classes,	78-79

GameViewController	class,	79-84

initial	code,	164

SKLabelNode	class,	77

SKNode	class,	75-76

SKShapeNode	class,	77-78

SKSpriteNode	class,	77

stage,	75

GameScene	class

collision	detection,	199-203

files	in,	164-165

setting	up,	174-175

GameViewController	class,	79-84

changing	scale	mode,	82-84

ignoring	sibling	order,	81-82

SKView	class	and,	79-81

generics,	153

for	protocols,	157-158

T	type,	95-96,	154-155

usage

in	custom	types,	155-157

in	functions,	153-155



where	keyword,	158-162

getters,	6-7

in	dictionaries,	111

as	properties,	131-133

for	subscripts,	110

Ghost	class,	169-170

GIF	files,	reading	(bitwise	operations	example),	123-127

global	variables	for	timers,	212-213

H
Hero	class,	169

Hexadecimal	type,	9

home	directory,	creating	projects	directory,	77

I
if-else	statements,	23-25

ignoring	sibling	order,	81-82

images,	storing	in	atlases,	170-171

immutable	arrays,	33

implicitly	unwrapped	optionals,	14-15

indexes

accessing	via	for	loops,	21-22

tuples,	accessing,	15

inference,	8-10,	16-17

in	closures,	96

infinite	while	loops,	22

infix	operators,	123

info.plist,	165-167,	189-190

inheritance,	72-74

of	protocols,	140-141

init()	function,	66

initial	game	code	in	SpriteKit,	164

initializers,	10,	17



for	classes,	66

memberwise	initializers,	64

multiple	initializers,	66-68

initializing	physics,	178-179

inline	closures,	96

inout	keyword,	50,	122

in-out	parameters,	50-51

insert()	method,	34

inserting

elements	in	arrays,	34

values	in	dictionaries,	37

instance	methods,	70-71

instances,	ARC	(Automatic	Reference	Counting),	99-100

closures,	104-106

strong	reference	cycles,	100-102

unowned	keyword,	102-104

weak	keyword,	102

Int	type,	8-9,	16-17

bitwise	operations,	119

converting	to	String	type,	11

Int32	type,	8,	16

Int64	type,	8,	16

internal	keyword,	71

invalidate()	method,	215

is	keyword,	9,	144-145

isGameOver()	method,	202

iterating

over	arrays,	35

over	dictionaries,	37-38

J
Java,	comparison	with	Swift,	5

JavaScript



closures	in,	94-95

comparison	with	Swift,	5

K
keys

dictionaries,	declaring,	36-37

removing	from	dictionaries,	38

keys	function,	38

keywords

as?,	144-145

class,	66

enum,	58

fallthrough,	27

func,	44,	47

inout,	50,	122

internal,	71

is,	9,	144-145

lazy,	104,	134

let,	33,	60,	131

mutating,	65

operator,	122

private,	71

protocol,	129

public,	71

self,	72

static,	71

subscript,	110

super,	73

typedef,	57

unowned,	102-104

var,	6,	33,	131

weak,	102

where,	28,	158-162



L
labeled	statements,	28-29

landscape	orientation,	174

lazy	keyword,	104,	134

let	keyword,	33,	60,	131

levels	(in	games),	creating,	165-167,	189-190

listening	for	screen	taps,	181-182

listings

array	example	code,	39

function	example	code,	52

loading	tiles	on	screen,	171-173

logical	shifting,	118

loops

break	statements,	28

continue	statements,	28

for	loops,	18-22

accessing	indexes,	21-22

accessing	strings,	21

for-condition-increment	loops,	18-19

for-in	loops,	19-21

while	loops,	22-23

M
main.storyboard,	205

members,	58

associated	values,	59-60

determining	which	was	set,	59

raw	values,	60-61

memberwise	initializers,	64

memory	management,	ARC	(Automatic	Reference	Counting),	99-100

closures,	104-106

strong	reference	cycles,	100-102

unowned	keyword,	102-104



weak	keyword,	102

methods.	See	also	functions

append(),	32,	34

assert(),	112

changeStartButton(),	213

count

arrays,	34

dictionaries,	38

defining	in	structs,	63-64

didBeginContact(),	200

fadeInWithDuration(),	181

fadeOutWithDuration(),	181

functions	versus,	70

inheritance,	72-74

insert(),	34

instance	methods,	70-71

invalidate(),	215

isGameOver(),	202

moveBy(),	181

moveByX(),	181

moveTo(),	180-181

mutating	in	structs,	65

print(),	14

property	access	modifiers,	71

in	protocol	declarations,	135-136

optional	methods,	145-146

rawvalue,	60

removeAllActions(),	181

removeAtIndex(),	34

removeFromParent(),	183

removeLast(),	34

removeValueForKey(),	37



resizeToWidth(),	181

reverse(),	202

self	keyword,	72

startStopTapped(),	214

tableView(),	216-218

timeIntervalSinceReferenceDate(),	184

timerTick(),	215

type	methods,	71-72

updateValue(),	37

viewDidLoad(),	213

moveBy()	method,	181

moveByX()	method,	181

moveTo()	method,	180-181

moving.	See	animation

multidimensional	arrays,	35-36

subscripts	in,	111-113

multi-line	comments,	8

multiple	initializers,	66-68

multiple	protocols,	141-143

multiple	return	values	for	functions,	46-47

multiple	variables,	declaring,	6

mutable	arrays,	33

mutable	storage,	6

mutating	keyword,	65

mutating	methods

in	protocol	declarations,	136

in	structs,	65

N
naming

constants,	Unicode	characters,	6

elements	in	tuples,	15

values	in	tuples,	46-47



variables,	Unicode	characters,	6

nested	functions.	See	closures

nil,	testing	optionals	for,	12-13

node	trees,	79

nodes.	See	also	SKNode	class

described,	78

types	of,	77-78

NOT	operator,	bitwise	operations,	114-115

NSArray,	arrays	versus,	33

NSDateComponentsFormatter	class,	218

NSMutableArray,	arrays	versus,	33

number	types,	8-9,	16-17

typealiases,	17-18

underscore	(_)	in,	10

O
Objective-C,	comparison	with	Swift,	5

Octal	type,	9

open	source,	Swift	as,	5

OpenGL,	75

OR	operator

bitwise	operations,	116-117

double	pipe	(||),	24

operator	keyword,	122

operators

assignment	operator,	122

binary	operators,	121

bitwise	operations

NOT	operator,	114-115

AND	operator,	115-116

OR	operator,	116-117

reading	GIF	files	example,	123-127

shifting	bits,	118



value	underflow/overflow,	119-120

XOR	operator,	117

comparison	operators

Comparable	protocol	and,	149-150

equality	operator,	121,	149

custom	operators,	109

defining	new,	122-123

overloading,	120-122

as	functions,	93

splat	operator,	159

ternary	operator,	122

unary	operators,	121-122

optional	methods	for	protocols,	145-146

optionals,	6,	11-15

!	(exclamation	point),	13-15

?	(question	mark),	9,	12

accessing	dictionaries,	37-39

accessing	enum	raw	values,	61

chaining,	146-148

unwrapping,	12-13

implicitly	unwrapping,	14-15

organizing	games,	85-86

overloading	operators,	120-122

overriding,	74

P
parameters.	See	also	arguments

arrays	as,	49-50

in	closures,	97

default	parameters,	48-49

external	parameters,	47-48

in	function	declarations,	44-45

in-out	parameters,	50-51



variadic	parameters,	49-50

Photoshop,	bitwise	operations	and,	113

physics,	initialization,	178-179

physics-based	games,	187-188.	See	also	collision	detection

adding	levels,	189-190

animation	of	ball,	197-198

asset	library,	189

creating	game	world,	190-197

pipe	(|),	bitwise	OR,	116-117

pixels	in	point	system,	86-89

plus	sign	(+),	concatenating	strings,	11

point	system,	sizing	scenes,	86-89

pointer	syntax,	69

portrait	orientation,	changing	to	landscape,	174

postfix	operators,	123

unary	operators,	121-122

prefix	operators,	123

unary	operators,	121-122

prepopulating	elements	in	arrays,	35

print()	method,	14

Printable	protocol,	134,	143,	150-151

printing	variables,	14

private	keyword,	71

projects,	creating	in	Xcode,	76-77,	163-164,	188-189

projects	directory,	creating,	77

properties

computed	properties,	6-7,	131

getters	and	setters,	131-133

lazy	keyword,	104,	134

property	access	modifiers,	71

property	observers,	69-70

read-only	stored	properties,	creating,	133



stored	properties,	131

property	access	modifiers,	71

property	observers,	69-70

protocol	keyword,	129

protocols

in	collections,	139-140

Comparable,	97,	134,	149-150

composition,	141-143

conforming	to,	129-131,	143-145

CustomStringConvertible,	150-151

DebugPrintable,	151

declaring,	129-131

method	requirements,	135-136

delegation,	136-138

described,	129

Equatable,	134,	149

custom	classes,	sorting,	97

custom	operators,	121

with	generics,	157

generics	for,	157-158

inheritance,	140-141

optional	chaining,	146-148

optional	methods,	145-146

Printable,	134,	143,	150-151

SequenceType,	162

as	types,	138-139

UITableViewDataSource,	213

UITableViewDelegate,	213

public	keyword,	71

Python,	comparison	with	Swift,	5

Q
question	mark	(?),	optionals,	9,	12



R
ranges

for-in	loops,	19-21

in	switch	statements,	26

raw	values	in	enums,	60-61

rawvalue	method,	60

reading	GIF	files	example	(bitwise	operators),	123-127

read-only	computed	properties,	7

read-only	stored	properties,	creating,	133

reference	types

classes	as,	68

closures	as,	98-99

value	types	versus,	69

removeAllActions()	method,	181

removeAtIndex()	method,	34

removeFromParent()	method,	183

removeLast()	method,	34

removeValueForKey()	method,	37

removing.	See	also	emptying

elements	from	arrays,	34-36

keys	from	dictionaries,	38

sample	code	in	games,	85

values	from	dictionaries,	37-38

ResizeFill	scale	mode,	82,	84

resizeToWidth()	method,	181

resting	property,	203

restitution,	198

return	types	for	functions,	45-46

multiple	return	values,	46-47

reverse()	method,	202

Ruby,	comparison	with	Swift,	5

running	games,	77



S
sample	code.	See	listings

scale	modes,	changing,	82-84

scaling	scenes,	82-84

scenes

point	system	for	sizing,	86-89

scaling,	82-84

screen

listening	for	taps,	181-182

loading	tiles,	171-173

self	keyword,	65,	72

semicolon	(;),	6

SequenceType	protocol,	162

setters,	6-7

in	dictionaries,	111

as	properties,	131-133

for	subscripts,	110

setting	anchor	points,	91-92

shifting	bits,	118

sibling	order,	ignoring,	81-82

signed	types,	unsigned	versus,	119

single-view	applications,	206-207

sizing	scenes,	86-89

SKAction	class,	76,	180-185

SKLabelNode	class,	77

SKNode	class,	75-76

SKPhysicsBody	class,	178-179

SKPhysicsContactDelegate,	176

.sks	files,	164-165

SKScene	class,	78-79

SKSceneScaleMode	class,	82-84

SKShapeNode	class,	77-78



SKSpriteNode	class,	76-77

SKView	class,	79-81

sort()	function,	as	closure,	95-97

sorting	custom	classes,	97-98

splat	operator,	159

SpriteKit,	75

base	of	classes,	finding,	78-79

example	game	creation

animation	with	SKAction	class,	180-185

collision	detection,	176-180

creating	game	world,	165-175

description	of	example	game,	163

files	in	GameScene	class,	164-165

initial	game	code,	164

GameViewController	class,	79-84

changing	scale	mode,	82-84

ignoring	sibling	order,	81-82

SKView	class	and,	79-81

physics-based	games,	187-188

adding	levels,	189-190

animation	of	ball,	197-198

asset	library,	189

collision	detection,	190-191,	199-203

creating	game	world,	190-197

SKLabelNode	class,	77

SKNode	class,	75-76

SKShapeNode	class,	77-78

SKSpriteNode	class,	77

SpriteKit	scene	editor	(GUI),	164-165

sprites.	See	SpriteKit

square-brackets	notation	([])

array	elements,	accessing,	33-34



dictionaries,	accessing,	37

dictionary	values,	setting,	37

stage	(in	games),	75

startStopTapped()	method,	214

static	bodies

described,	192

dynamic	bodies	versus,	180

static	keyword,	71

stored	properties,	131

storing	images	in	atlases,	170-171

Storyboard,	205

strings

accessing	via	for	loops,	21

concatenating,	11

converting	Int	type	to,	11

variables	in,	10-11

strong	reference	cycles,	100-102

in	closures,	104-106

unowned	keyword,	102-104

weak	keyword,	102

strong	references,	100

structs

classes	versus,	57,	61-62

declaring,	62-63

methods

defining,	63-64

mutating,	65

multiple	initializers,	66-68

self	keyword,	65

as	value	types,	64

when	to	use,	68-69

StudySessionManager	class,	216



subclasses,	72-74

subscript	keyword,	110

subscripts,	109

array	elements,	accessing,	33-34,	110-111

classes,	accessing,	110

declaring,	110-113

dictionaries,	accessing,	37,	111

dictionary	values,	setting,	37,	111

in	multidimensional	arrays,	111-113

super	keyword,	73

superclasses,	72-74

Swift

comparison	with	other	languages,	5-6

described,	2

switch	statements,	25-28

syntax.	See	declaring

T
T	type,	95-96,	154-155

tables,	updating,	216-218

tableView()	method,	216-218

tapping	screen,	listening	for,	181-182

ternary	operator,	122

testing

optionals,	12-13

values	for	presence	in	dictionaries,	38-39

texture	atlases,	storing	images,	170-171

tilde	(~),	bitwise	NOT,	114-115

Tile	class,	169

tiles,	loading	on	screen,	171-173

time,	formatting,	218

timeIntervalSinceReferenceDate()	method,	184

timers,	global	variables	for,	212-213



timerTick()	method,	215

trailing	closures,	106-107

troubleshooting	EXC_BAD_INSTRUCTION	error,	13

tuples,	15-16

accessing,	15

as	function	return	types,	46-47

named	values,	46-47

in	switch	statements,	26-27

type	casting,	7

type	methods,	71-72

in	protocol	declarations,	135

type	safety,	8

typealiases,	17-18

typedef	keyword,	57

types

in	arrays,	31

mixing,	32-33

associated	types,	157-158

checking,	9

converting,	10,	17

Boolean	type,	23-24

Int	type	to	String	type,	11

custom	types,	creating	with	generics,	155-157

declaring,	8

functions	as,	51-52

generics.	See	generics

inference,	8-10,	16-17

initializers,	10,	17

number	types,	8-9,	16-17

optionals.	See	optionals

protocols	as,	138-139

typealiases,	17-18



U
UIKit,	205

constraints,	adding,	209-211

single-view	applications,	206-207

Storyboard,	205

user	interface

connecting	to	code,	211-212

creating,	208-209

writing	code	for,	212-218

UInt	type,	9,	16

bitwise	operations,	119

UITableViewDataSource	protocol,	213

UITableViewDelegate	protocol,	213

unary	operators,	121-122

underscore	(_)

external	function	parameters,	48

in	numbers,	10

Unicode	characters	in	variable	names,	6

unowned	keyword,	102-104

unsigned	types,	signed	versus,	119

unwrapping	optionals,	12-13

implicitly	unwrapping,	14-15

updateValue()	method,	37

updating	tables,	216-218

user	interface

connecting	to	code,	211-212

constraints,	adding,	209-211

creating	for	apps,	208-209

writing	code	for,	212-218

V
value	binding,	12-13

value	types



reference	types	versus,	69

structs	as,	64

value	underflow/overflow,	119-120

values.	See	also	elements

accessing	in	dictionaries,	37-39,	111

associated	values	in	enums,	59-60

inserting	in	dictionaries,	37

iterating	over	in	dictionaries,	37-38

naming	in	tuples,	46-47

raw	values	in	enums,	60-61

removing	from	dictionaries,	37-38

testing	for	presence	in	dictionaries,	38-39

values	function,	38

var	keyword,	6,	33,	131

variables

declaring,	6

as	computed	properties,	6-7

in	structs,	63

global	variables	for	timers,	212-213

lazy	keyword,	134

naming,	Unicode	characters,	6

optionals.	See	optionals

printing,	14

in	strings,	10-11

tuples.	See	tuples

types

checking,	9

converting,	10,	17

inference,	8-10,	16-17

initializers,	10,	17

number	types,	8-9,	16-17

typealiases,	17-18



variadic	parameters,	49-50

view	controllers,	206-207

ViewController	class,	206

viewDidLoad()	method,	213

views.	See	user	interface

W
weak	keyword,	102

where	keyword,	28,	158-162

while	loops,	22-23

willSet()	function,	70

writing.	See	declaring

X
Xcode,	creating	projects,	76-77,	163-164,	188-189

XOR	operator,	bitwise	operations,	117







Code	Snippets








































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































	About This E-Book
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	Dedication
	Acknowledgments
	We Want to Hear from You!
	Reader Services
	Introduction
	Who Should Read This Book
	Why You Should Read This Book
	What You Will Learn from This Book
	What Is Swift?
	How This Book Is Organized
	Enjoy the Ride

	1. Getting Your Feet Wet: Variables, Constants, and Loops
	Building Blocks of Swift
	Computed Properties (Getters and Setters)
	Using Comments
	Inference

	Merging Variables into a String
	Optionals: A Gift to Unwrap
	Printing Your Results
	Implicitly Unwrapped Optionals

	Tuples
	Number Types
	From Objective-C to Swift
	Control Flow: Making Choices
	Switching It Up: switch Statements
	Stop...Hammer Time

	Summary

	2. Collecting Your Data: Arrays and Dictionaries
	Using Arrays
	Your First Array the Long Way
	A Quicker Array
	Using AnyObject
	Differences Between NSArrays and Swift Arrays

	Modifying Arrays
	Accessing Array Elements
	Adding Elements to an Array
	Removing Elements from Arrays
	Iterating Over Arrays
	Extra Bits of Arrays
	Emptying an Array

	Using Dictionaries
	Adding, Removing, and Inserting with Dictionaries
	Iterating Over Dictionaries
	Extra Bits of Dictionaries
	Emptying a Dictionary
	Testing Dictionaries for the Presence of Values
	Putting It All Together

	Summary

	3. Making Things Happen: Functions
	Defining Functions
	Return Types
	Multiple Return Values

	More on Parameters
	External Parameter Names
	Default Parameter Values
	Variadic Parameters
	In-Out Parameters
	Functions as Types
	Putting It All Together

	Summary

	4. Structuring Code: Enums, Structs, and Classes
	Enums
	Which Member Was Set?
	Associated Values
	Raw Values

	Structs
	Defining Methods in Structs
	Structs Are Always Copied
	Mutating Methods
	Classes
	Initialization
	What Is a Reference Type?
	Do I Use a Struct or a Class?
	Forgot Your Pointer Syntax?
	Property Observers
	Methods in Classes

	Summary

	5. SpriteKit
	Introducing SpriteKit
	The SKNode and SKSpriteNode

	Creating a Game
	The New Project Screen
	The Game

	Summary

	6. Reusable Code: Closures
	What Are Closures?
	Closures in Other Languages
	How Closures Work and Why They’re Awesome
	The Closure Syntax
	Inferring Using Context
	Arguments Have a Shorthand, Too
	Sorting a Custom Car Class
	Closures Are Reference Types
	Automatic Reference Counting
	Strong Reference Cycles
	Trailing Closures

	Summary

	7. Creating Your Own Syntax: Subscripts and Advanced Operators
	Writing Your First Subscript
	Bits and Bytes with Advanced Operators
	Bitwise NOT
	Bitwise AND
	Bitwise OR
	Bitwise XOR
	Shifting Bits
	UInt8, UInt16, UInt32, Int8, Int16, Int32, and So On
	Value Overflow and Underflow

	Customizing Operators
	Making Your Own Operators
	Bits and Bytes in Real Life
	Summary

	8. Protocols
	Writing Your First Protocol
	Properties

	Animizable and Humanizable
	Methods

	Delegation
	Protocols as Types
	Protocols in Collections
	Protocol Inheritance
	Protocol Composition
	Protocol Conformity
	Optional Protocol Prerequisites

	Optional Chaining
	Back to Optional Protocol Requisites
	Useful Built-in Swift Protocols

	Summary

	9. Becoming Flexible with Generics
	The Problem That Generics Solve
	Other Uses for Generics
	Generics for Protocols
	The where Clause

	Summary

	10. Games with SpriteKit
	The Game
	The Setup
	Tour the Code
	The Game
	Step 1: Create the World
	Step 2: Making Things Move

	Summary

	11. Making Games with Physics
	Making a Physics-Based Game
	Creating the Project
	Adding the Assets
	Adding the Levels
	Generating the Levels
	Making a Playable Game
	Creating the Cage

	Summary

	12. Making Apps with UIKit
	Application Types
	Single-View Applications
	Creating the User Interface
	Adding Constraints
	Hooking Up the UI to Code
	Writing the Code
	The TableView

	Summary

	Index
	Code Snippets

