
SYSTEM ADMINISTR ATION

Learning Chef

ISBN: 978-1-491-94493-6

US $39.99 CAN $41.99

“	This	book	is	a	great	way	
to	begin	your	journey	
toward	becoming	a	Chef	
expert,	whether	you're	
new	to	Chef	or	looking	
for	a	solid	introduction	to	
the	latest	recommended	
tooling.”

—Nathen Harvey
Community Director at Chef and cohost

of the Food Fight Show podcast

Twitter: @oreillymedia
facebook.com/oreilly

Get a hands-on introduction to Chef, the configuration management
tool for solving operations issues in enterprises large and small. Ideal for
developers and sysadmins new to configuration management, this guide
shows you how to automate the packaging and delivery of applications in
your infrastructure. You’ll be able to build (or rebuild) your infrastructure’s
application stack in minutes or hours, rather than days or weeks.

After teaching you how to write Ruby-based Chef code, this book walks
you through different Chef tools and configuration management concepts
in each chapter, using detailed examples throughout. All you need to get
started is command-line experience and familiarity with basic system
administration.

 ■ Configure your Chef development environment and start
writing recipes

 ■ Create Chef cookbooks with recipes for each part of your
infrastructure

 ■ Use Test Kitchen to manage sandbox testing environments

 ■ Manage single nodes with Chef client, and multiple nodes with
Chef Server

 ■ Use data bags for storing shared global data between nodes

 ■ Simulate production Chef Server environments with Chef Zero

 ■ Classify different types of services in your infrastructure with roles

 ■ Model life stages of your application, including development,
testing, staging, and production

Mischa Taylor is a consulting engineer at Chef. He’s an author, speaker, and mentor
on software development topics, machine intelligence, and neuromorphic comput-
ing. He’s created several open source projects, most notably box-cutter.

Seth Vargo is a software engineer and open source advocate at at HashiCorp. He's
worked at Chef (Opscode), CustomInk, and a few Pittsburgh-based startups, and he is
passionate about inequality in technology and organizational culture.

Learning	C
hef

Taylor &
 Vargo

Mischa Taylor & Seth Vargo

Learning

 Chef
A GUIDE TO CONFIGUR ATION MANAGEMENT AND AUTOMATION

www.allitebooks.com

http://www.allitebooks.org

SYSTEM ADMINISTR ATION

Learning Chef

ISBN: 978-1-491-94493-6

US $39.99 CAN $41.99

“	This	book	is	a	great	way	
to	begin	your	journey	
toward	becoming	a	Chef	
expert,	whether	you're	
new	to	Chef	or	looking	
for	a	solid	introduction	to	
the	latest	recommended	
tooling.”

—Nathen Harvey
Community Director at Chef and cohost

of the Food Fight Show podcast

Twitter: @oreillymedia
facebook.com/oreilly

Get a hands-on introduction to Chef, the configuration management
tool for solving operations issues in enterprises large and small. Ideal for
developers and sysadmins new to configuration management, this guide
shows you how to automate the packaging and delivery of applications in
your infrastructure. You’ll be able to build (or rebuild) your infrastructure’s
application stack in minutes or hours, rather than days or weeks.

After teaching you how to write Ruby-based Chef code, this book walks
you through different Chef tools and configuration management concepts
in each chapter, using detailed examples throughout. All you need to get
started is command-line experience and familiarity with basic system
administration.

 ■ Configure your Chef development environment and start
writing recipes

 ■ Create Chef cookbooks with recipes for each part of your
infrastructure

 ■ Use Test Kitchen to manage sandbox testing environments

 ■ Manage single nodes with Chef client, and multiple nodes with
Chef Server

 ■ Use data bags for storing shared global data between nodes

 ■ Simulate production Chef Server environments with Chef Zero

 ■ Classify different types of services in your infrastructure with roles

 ■ Model life stages of your application, including development,
testing, staging, and production

Mischa Taylor is a consulting engineer at Chef. He’s an author, speaker, and mentor
on software development topics, machine intelligence, and neuromorphic comput-
ing. He’s created several open source projects, most notably box-cutter.

Seth Vargo is a software engineer and open source advocate at at HashiCorp. He's
worked at Chef (Opscode), CustomInk, and a few Pittsburgh-based startups, and he is
passionate about inequality in technology and organizational culture.

Learning	C
hef

Taylor &
 Vargo

Mischa Taylor & Seth Vargo

Learning

 Chef
A GUIDE TO CONFIGUR ATION MANAGEMENT AND AUTOMATION

www.allitebooks.com

http://www.allitebooks.org

Mischa Taylor and Seth Vargo

Learning Chef

www.allitebooks.com

http://www.allitebooks.org

Learning Chef
by Mischa Taylor and Seth Vargo

Copyright © 2015 Mischa Taylor and Seth Vargo. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Courtney Nash and Brian Anderson
Production Editor: Matthew Hacker
Copyeditor: Carla Thornton
Proofreader: Teresa Wilson

Indexer: WordCo Indexing Services, Inc.
Cover Designer: Ellie Volckhausen
Interior Designer: David Futato
Illustrator: Rebecca Demarest

November 2014: First Edition

Revision History for the First Edition:

2014-11-05: First release

2015-03-27: Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781491944936 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Chef, the cover image of a
Wahlberg’s honeyguide, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While the publisher and the authors have used good faith efforts to ensure that the information and in‐
structions contained in this work are accurate, the publisher and the authors disclaim all responsibility for
errors or omissions, including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

ISBN: 978-1-491-94493-6

[LSI]

www.allitebooks.com

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491944936
http://www.allitebooks.org

Table of Contents

Preface. ix

1. Configuration Management and Chef. 1
What Is Configuration Management? 1
Why You Need a Configuration Management Tool to Automate IT 2
What Is Chef? 3
Why Chef Might Be a Good Tool for Your Enterprise 4
Where Do We Go From Here? 6

2. Configure Your Chef Development Environment. 9
Install a Programmer’s Text Editor 10
Chef Development Tools 11
Install the Chef Development Tools on Linux 12

Verify the Chef Development Kit/Chef Client Install on Linux 16
Install Test Kitchen on Linux (Chef Client Only) 18
Verify the Test Kitchen Installation on Linux (Chef Client only) 19

Install the Chef Development Tools on Mac OS X 20
Verify the Chef Development Kit/Chef Client Installation on Mac OS X 24
Install Test Kitchen on Mac OS X (Chef Client Only) 25
Verify the Test Kitchen Installation on Mac OS X (Chef Client Only) 26

Install the Chef Development Tools on Windows 27
Verify the Chef Development Kit/Chef Client Installer in Windows 28
Install Test Kitchen in Windows (Chef Client Only) 30
Verify the Test Kitchen Installer in Windows (Chef Client Only) 32
Install Unix Tools for Windows 32
Install ConEmu (Optional) 33

Summary 35

iii

www.allitebooks.com

http://www.allitebooks.org

3. Ruby and Chef Syntax. 37
Overview of Ruby 37
Ruby Syntax and Examples 38

Comments 38
Variables 39
Mathematical Operations 40
Strings 41
Heredoc Notation 41
True and False 42
Arrays 42
Hashes 43
Regular Expressions 45
Conditionals and Flow 45
Methods, Classes, and Modules 47

Chef Syntax and Examples 48

4. Write Your First Chef Recipe. 55
Create a Directory Structure for Your Code 55
Write Your First Chef Recipe 56
Verify Your First Chef Recipe 57
Examine hello.rb 58
Recipes Specify Desired Configuration 59
To Uninstall, Specify What Not to Do 63
Summary 65

5. Manage Sandbox Environments with Test Kitchen. 67
Installing Vagrant and VirtualBox 68
Host versus Guest 70
Introducing Test Kitchen 71
Spinning Up Your First Virtual Machine 73
YAML Overview 79
Test Kitchen Configuration with .kitchen.yml 81
Summary 83

6. Manage Nodes with Chef Client. 85
What Is a Node? 85
Create a New Sandbox Environment for a Node 86
Installing Chef Client with Test Kitchen 87
Your First Chef-Client Run 89
Chef Client Modes 92
Ohai 93
Accessing Node Information 95

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Summary 97

7. Cookbook Authoring and Use. 99
Your First Cookbook: Message of the Day 99
Your First Cookbook: Message of the Day (Chef Development Kit) 100
Introducing the Cookbook_file Resource 102
Your First Cookbook: Message of the Day (Chef Client) 103
Introducing the Cookbook_file Resource 105
Performing Your First Converge 107
Validate Your Results 109
Anatomy of a Chef Run 111
Cookbook Structure 114
The Four Resources You Need to Know 116
Apache Cookbook: A Step-By-Step Primer for Creating a Cookbook 117

Define Prerequisites 117
Generate the Cookbook Skeleton 119
Edit the README.md File 120
Update Metadata.rb 120
Introducing the Package Resource 121
Introducing the Service Resource 123
Introducing the Template Resource 124
Verify Success Criteria Are Met 126

Summary 128

8. Attributes. 131
Motd-Attributes Cookbook 132
Setting Attributes 135
Basic Attribute Priority 136
Include_Recipe 137
Attribute Precedence 140
Debugging Attributes 141
Summary 145

9. Manage Multiple Nodes at Once with Chef Server. 147
How to Install Enterprise Chef Server Manually 150
Install Enterprise Chef Server 152
Introducing Idempotence 155
Configure Enterprise Chef Server 161
Testing the Connection 168
Bootstrapping a Node 169

Create a Node in a Sandbox Environment 169
Bootstrap the Node with Knife 171

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Bootstrap Chef Server with Chef Solo 176
Summary 177

10. Community and the Chef-Client Cookbook. 179
Using Community Cookbooks 179
Chef-Client Cookbook 181
Knife Cookbook Site Plugin 185
Search for Community Cookbooks Using Knife Cookbook Site 186
Manage Chef Supermarket Cookbooks on Your Chef Server Using Knife

Cookbook Site 187
Chef-Client Recipes 190
Configure Knife to Use a Production SSL Setup 192
Configure Chef-Client to Use a Production SSL Setup 194
Summary 202

11. Chef Zero. 203
Test Kitchen and Chef Zero 204
Running Chef-Zero on Your Host Using Chef-Playground 206
Summary 211

12. Search. 213
Search from the Command Line 213
Search from the Command Line with Knife 214
Search in a Recipe Using Test Kitchen 217
Summary 221

13. Data Bags. 223
Basic Command Line Data Bag Usage with Knife 225
Creating Local Users Based on Data Bag Items in a Recipe 229
Verify Users 232
Encrypted Data Bags 233
chef-vault 236
Summary 239

14. Roles. 241
Create a Web Server Role 242
Attributes and Roles 244
Roles and Search 245
Role Cookbook 247
Summary 249

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

15. Environments. 251
Create a Dev Environment 252
Attributes and Environments 253
Putting All the Pieces Together 255

Simulate a Production Environment 255
Simulate a Development Environment 263

Summary 266

16. Testing. 267
Testing Rationale 267
Revisiting the Apache Cookbook 271
Test Automation with Serverspec 274

Write Your First Serverspec Test 274
RSpec DSL Syntax 279
More Serverspec Resources 283

Test Automation with Foodcritic 293
Test Automation with ChefSpec 298

Write Your First ChefSpec Test 300
Lazy Evaluation with Let 302
Generate a Coverage Report 303
Share Test Code with spec_helper.rb 304

Summary 306

17. Conclusion. 307

A. Open Source Chef Server. 309

B. Hosted Enterprise Chef. 333

Glossary. 337

Index. 339

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

What Is This Book?
Learning Chef is an introductory book on the Chef infrastructure automation platform.
This is a book for beginners who are new to Chef, configuration management, and
automation coding.

Using Chef, you can model the setup, packaging, and delivery of applications in your
infrastructure as code. We’ll show you how using code makes actions easily repeatable,
while running commands by hand is not. Once you have this code blueprint, you can
then build or rebuild your whole infrastructure’s application stack in minutes or hours,
instead of the days or weeks it would typically take doing by hand. In this book, we’ll
cover the basics of Chef, assuming you have no prior experience with infrastructure
automation or coding.

First, we’ll get started by showing you how to set up a Chef development environment
on your own local machine. This is where you will write Chef code and verify that it
works. Learning how to code takes a lot of hands-on practice, so we try to get you to
dive in and start writing code very early in the book. Then we progress slowly, intro‐
ducing one new concept along with its accompanying Chef tool in each chapter. Hands-
on examples are provided to help cement the concepts in your mind and to give you
practice coding.

After you’ve read Learning Chef, you will understand all the basic concepts and be ready
to pick up and benefit from two more advanced books on Chef, such as the O’Reilly
books Test-Driven Infrastructure with Chef, 2nd Edition, by Stephen Nelson-Smith, and
Customizing Chef, by Jon Cowie.

ix

http://bit.ly/test-driven-infra-chef
http://bit.ly/customizing-chef

Who Should Read This Book?
We wrote this book for both system administrators and software developers new to Chef
and the concept of infrastructure automation. It is assumed that you have some famil‐
iarity with using the command line and performing basic system administration tasks.

You may run Linux, Mac OS X, or Windows on your local machine and follow the hands-
on exercises in this book. When necessary, we’ll provide separate instructions for each
platform. Because there is currently no easy-to-use graphical integrated development
environment (IDE) for Chef, your primary interface to Chef will be through the com‐
mand line. Thankfully, the command line interface has very few platform-specific dif‐
ferences, except with the initial installation, so the choice to cover three operating system
platforms in this book shouldn’t be too distracting while broadening your choice of
environments in which to work with Chef.

We do not assume that you have any experience with automation coding, but we do
assume that you’ve written scripts before, such as shell scripts, batch files, or PowerShell
scripts. You should be familiar with scripting in some form before trying to learn Chef
coding.

Why All the Culinary Terminology?
As you read this book, you might notice that the makers of Chef are fond of using
culinary terms to describe infrastructure automation tools and concepts. The people at
Chef Software discovered that words and phrases such as cookbook or following a
recipe are good metaphors for abstract concepts such as a collection of automation
scripts or running code that consistently reproduces an infrastructure component. The
consistent use of cooking metaphors makes the topic of infrastructure automation more
accessible to beginners and does not have the baggage of industry terms used in other
contexts. Plus, it’s a good way to market and brand Chef, as the cooking angle is unique
and makes Chef memorable.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

x | Preface

Constant width bold

Shows commands or other text that should be typed by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://learningchef.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning Chef by Mischa Taylor and Seth
Vargo (O’Reilly). Copyright 2015 Mischa Taylor and Seth Vargo, 978-1-491-94493-6.”

If you believe your use of code examples falls outside fair use or the permission given,
feel free to contact us at permissions@oreilly.com.

Preface | xi

http://learningchef.com
mailto:permissions@oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu‐
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning_chef.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xii | Preface

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/learning_chef
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
From Mischa: I would like to thank all the people who provided input and feedback on
our book during the writing process. Thanks to my sister, Dr. Jane Maris Sinagub, who
provided moral support and daily encouragement.

I want to give heartfelt thanks to all the people who helped contribute to this book,
including but not limited to: Alex Vinyar, Alyssa Nabors, Anthony Stonebarger, Daniel
DeLeo, Deluan Quintao, Eric Helgeson, Gene Harris, Glenna Gorlick, Jason Steele, Jen‐
nifer Davis, Jo Rhett, John Keiser, Jennifer Davis, John Fitzpatrick, Jon Cowie, Julian
Dunn, Katherine Daniels, Kelly Setzer, Kimberly Lanning, Landon Medlock, Lejo
Varughese, Mandi Walls, Michael Goetz, Michael Vitale, Nathen Harvey, Patricia Fer‐
nandes, Rhiannon Portwood, Sascha Bates, Sean Carolan, Serdar Sutay, Shane Robin‐
son, Steve Taylor, and Thomas Petchel. Thanks to Chef Software for making Chef Fun‐
damentals Training materials Creative Commons Attribution Share Alike licensed.
Some of the diagrams and examples were reused in this book. Thanks as well to Courtney
Nash, Brian Anderson, and all the marvelous people at O’Reilly. Your amazing Atlas
authoring system made the writing process more delightful.

Special thanks go out to the following people: Mark Burgess for developing the theory
to make Chef possible, John Keiser for providing the “written in stone” example, Jennifer
Davis for providing valuable input on how to structure the initial chapters in the book,
John Fitzpatrick for testing the installation examples and providing feedback, Nathen
Harvey for helping with the introductory material, Sascha Bates for providing clear
guidance on what beginners should first learn about Chef to be effective, Adam Jacob
and Sean O’Meara for educating me on the theory behind the configuration manage‐
ment philosophy from which Chef was born, and Steve Taylor and Mark Andersen for
providing training cohorts on which to try this book’s material.

And finally I would like to thank my coauthor Seth Vargo, for being so gracious in
allowing me to come on board to help finish the book.

From Seth: I would like to thank everyone who helped make this book possible. I would
be remiss if I did not thank Nathen Harvey, Ramez Mourad, and Jake Vanderdray for
introducing me to Chef and the Chef community. Without their knowledge and en‐
couragement, I would not be here today.

In addition to everyone Mischa mentioned, I would like to extend my gratitude to my
team, Seth Chisamore and Yvonne Lam, for their continued support throughout this
endeavor; my roommate and best friend Joe Frick for supporting me as I quietly mum‐
bled things at my laptop screen at all hours of the night; Prof. Larry Heimann and Prof.
Jeria Quesenberry from Carnegie Mellon for giving me the experience and opportunity
to be an educator; Stafford Brunk for forcing me to think outside of the box; and my
parents Richard Stormer, Robbin Stormer, Robert Vargo, and Dara Vargo for being
incredibly supportive while continually reminding me to finish this book.

Preface | xiii

Thanks as well to Courtney, Brian, Sonia, and the entire O’Reilly crew for making this
an absolutely amazing experience. I would like to extend a special thank you to my
coauthor Mischa Taylor for his amazing contributions and diligence in finishing this
book. I could not have done it without you!

xiv | Preface

CHAPTER 1

Configuration Management and Chef

Chef is a configuration management tool for information technology (IT) professionals,
like you. Because there are a wide variety of definitions for the term configuration man‐
agement, let’s take a moment to explain what configuration management means in the
context of this book and why you need a configuration management tool. We’ll also
cover what Chef is, and why you need it as well.

What Is Configuration Management?
With respect to IT, configuration management covers the set of engineering practices
for managing the following entities involved in delivering software applications to con‐
sumers:

• Hardware
• Software
• Infrastructure
• People
• Process

Configuration management came about to address the fundamental challenges involved
in doing group work. Managing change when you are a lone system administrator with
a handful of servers to manage is relatively straightforward. Trying to coordinate the
work of multiple system administrators and developers involving hundreds, or even
thousands, of servers and applications to support a large customer base is complex and
typically requires the support of a tool.

A modern IT configuration management tool usually involves an implementation in‐
spired by the automation and policy-based theory originally developed by Mark

1

Burgess. He developed the following core ideas of this theory for automating IT when
he was a professor at Oslo University College in the late 1990s and early 2000s:

• Changes must be handled in a systematic fashion to ensure that a system is con‐
figured in a correct and reliable manner.

• There must be some form of autonomy in the system so that it can automatically
detect faults and repair them without being explicitly told to do so.

Examples of modern IT configuration management tools are CFEngine, Puppet, the
Desired State Configuration engine in Microsoft Windows, Ansible, SaltStack, and of
course, Chef.

Why You Need a Configuration Management Tool to
Automate IT
There are a number of reasons why automated configuration management tools play a
vital role in managing complex enterprise infrastructures. Here are four of the most
popular reasons:

• Consistency. If your infrastructure is being configured manually, how do you know
your servers are being set up in a consistent manner? Further, how do you know
these changes are being performed in a way that meets your compliance and security
requirements? (For instance, are administrators logging changes in the appropriate
systems?)
Make life easier for your system administrators by automating repeated tasks with
a configuration management tool. When repeated tasks are tedious, humans are
alarmingly bad at performing them consistently. Automate tedious administration
tasks with a configuration management tool so your staff can focus on other im‐
portant things that humans do best.

• Efficient change management. Whenever infrastructure is built manually without
the aid of a configuration management tool, people tend to fear change. Over time,
servers that are maintained by hand tend to become fragile environments that are
hard to understand and modify.
In these situations, organizations tend to develop a lot of processes for managing
changes, usually with the sole intent on minimizing change or even delaying it as
long as possible. This tends to delay introducing new features your customers need.
When servers can be reproduced easily in a repeatable fashion, fewer processes are
needed to manage change. Small change batches can be performed on a regular
basis, such as daily, or even several times a day.

2 | Chapter 1: Configuration Management and Chef

• Simplicity in rebuild. When servers are built manually, it’s typically not easy to
rebuild them from scratch. What would happen if you suddenly lost your servers
in a catastrophic event? How quickly could you restore service if disaster struck?
Automated deployments using a configuration management tool help quickly re‐
store service. Rather than bothering to upgrade or patch applications, which can
be inherently fragile operations, system administrators can build a new, upgraded
system in an automated fashion and throw the old one away, returning it to the
server pool. When rebuilds are easy, system administrators gain confidence to make
changes to infrastructure more rapidly.

• Visibility. Configuration management tools include auditing and reporting capa‐
bilities. Monitoring the work performed by one system administrator doesn’t re‐
quire a sophisticated tool. But trying to understand what is going on with a team
of, say, 10 system administrators and 10 software developers deploying software
changes many times per day? You need a configuration tool.
When infrastructure changes are handled by automated systems, changes can be
automatically logged in all relevant tracking systems to raise visibility on the mean‐
ingful work your teams are doing.

What Is Chef?
Chef is an automation platform that configures and manages your infrastructure wheth‐
er it is on-premises or in the cloud. You can deploy to the infrastructure type that makes
the most sense for your business. You can use Chef to speed up application deployment,
even creating a continual deployment pipeline. The key to Chef ’s power is that it turns
infrastructure into code.

Infrastructure as code means that your computing environment has some of the same
attributes as your application:

• Your infrastructure is versionable.
• Your infrastructure is repeatable.
• Your infrastructure is testable.

Figure 1-1 presents an overview of the major components of Chef.

What Is Chef? | 3

Figure 1-1. Chef architecture

The components of the Chef Development Kit help support you as you write Chef code
on your development workstation. Chef Server provides additional components to help
scale your configuration management capabilities to hundreds or thousands of servers,
and beyond.

Why Chef Might Be a Good Tool for Your Enterprise
When Adam Jacob first created Chef in 2009, he had three key insights to address the
shortcomings he saw in other configuration management tools:

1. A configuration management tool should easily enable web IT, providing first-class
support for managing cloud infrastructure.

4 | Chapter 1: Configuration Management and Chef

www.allitebooks.com

http://www.allitebooks.org

2. Everyone’s infrastructure is unique. Complex, enterprise infrastructures benefit
greatly from being able to model their IT infrastructure and application delivery
process as code.

3. Great tools and ideas also come out of a vibrant and involved user community. You
can’t do it alone.

Over time with community support, Chef has evolved to have a powerful set of features
that make it unique among configuration management tools:
Extreme scalability

Customers such as Facebook use Chef to manage tens of thousands of servers using
only a handful of employees.

Power
Chef is built on top of the Ruby programming language. When you need it, you
have full access to the power of Ruby to customize Chef.

Choice
You are not locked into one way of using Chef. Chef can operate in a distributed
standalone mode or in a centralized mode requiring a server. There are also options
to use pull or push models (or both) for deployment.

Open
Chef is open source and supported by a vibrant community of system administra‐
tors and developers. Chef open source has been used to power products from
Dell, from Facebook, and from Amazon Web Services.

Visible
As a premium feature, the Chef Analytics Platform provides powerful enhance‐
ments to Chef integrated with the tool, so that you can be notified when important
changes are made as a way to enforce compliance.

Chef ’s unique approach gives you tremendous flexibility. You don’t need to struggle to
conform to Chef. Chef adapts to you and your environment. You can deploy to the cloud
or local infrastructure. You can describe any resource you have in code no matter how
much it differs from a standard configuration.

With Chef there is no reason to start from scratch; many standard infrastructure con‐
figurations and tasks are already described in Chef cookbooks are available for free on
the Chef Supermarket site.

Once you master Chef, you can use it to

• Fully automate deployments, including internal development and end-user systems
• Automate scaling of infrastructure

Why Chef Might Be a Good Tool for Your Enterprise | 5

http://bit.ly/facebook_and_chef
http://bit.ly/dell_and_chef
http://bit.ly/dell_and_chef
http://bit.ly/fb_opscode_and_private_chef
http://bit.ly/aws_opscode_chef
https://supermarket.getchef.com

• Make your infrastructure self-healing

As an example, Tom Hallet used Chef to create a tool called SoloWizard, which he uses
to automate deployments of his Mac OS X development machines. SoloWizard is based
on the work Pivotal Labs has done to promote the use of automation for developer and
end-user systems. As you can see from Figure 1-2, SoloWizard lets you create a new
development environment with a single command. You can even personalize the output
script to meet your needs by making choices on a simple website. This tool is publicly
available at the SoloWizard site.

Where Do We Go From Here?
In the first half of this book, we’ll cover all the essential components of client-side Chef,
showing you how to make your infrastructure versionable and repeatable with code.
We’ll cover:

• Test Kitchen
• Chef Solo/Chef Local
• Cookbooks

We’ll also give you a firm foundation in the basics of infrastructure coding with Chef
by providing lots of hands-on examples.

In the second half of this book, we’ll introduce you to the essential topics related to Chef
Server, showing you how to make your configuration management abilities scale as your
infrastructure increases in complexity and scope:

• On-Premises Chef Server
• Chef Zero
• Roles, Data Bags, and Environments
• Knife

Tools covered in this book are freely available as open source downloads. Some paid
tools will be mentioned, but are not required to learn or use Chef.

In the next chapter, we’ll start your adventure with Chef by walking you through the
Chef Development Kit installation process, so that you can get started right away writing
Chef code.

6 | Chapter 1: Configuration Management and Chef

http://www.solowizard.com

Figure 1-2. SoloWizard bootstraps Mac OS X development workstations

Where Do We Go From Here? | 7

CHAPTER 2

Configure Your Chef
Development Environment

In this chapter, we’ll walk you through the process of installing and configuring all the
tools necessary to write Chef automation code. The setup covered is all you need for
the hands-on exercises in this book. Linux, Mac OS X, and Windows are all first-class,
supported development environments by Chef Software. We’ll cover all these environ‐
ments in this book, noting the platform-specific differences as necessary.

We Give You Options in This Book
There will be a little bit of a “Choose Your Own Adventure” aspect to this book, this
chapter in particular. Chef supports a variety of environments: Linux, Mac OS X, and
Windows. Also, in order to make Chef more accessible to new Chef developers, Chef
Software now recommends the use of the Chef Development Kit. Unfortunately, as of
this writing, the Chef Development Kit is not available on all the platforms supported
by Chef.

You will find that you have to make two important choices as you start your adventures
with Chef:

1. Choose a development platform: Linux, Mac OS X, or Windows.
2. Choose a Chef tool to install: Chef Development Kit or Chef Client.

The development platform is up to you. Chef supports development on Linux, Mac OS
X, and Windows equally well.

We recommend that beginners use the Chef Development Kit, if you can, as that is now
the recommended development platform for getting started with Chef. However, if the
Chef Development Kit is not an option for you, we offer instructions on how to do Chef

9

development simulating the Chef Development Kit with existing tools. We take care not
to leave you out in the cold if you can’t use the Chef Development Kit right now.

Once you have made a commitment to Chef in your production environment, you have
also made a committment to learning Ruby. Many experienced Chef users prefer to
manage their own Ruby development environment manually using Ruby virtual man‐
agers such as rvm, rbenv, or chruby, as any Ruby developer would. However, many
beginners find this too daunting at first, so covering Ruby development environments
in more detail is beyond the scope of this book. Since this book is aimed primarily at
Chef beginners, we cover the installation options that provide prepackaged Ruby envi‐
ronments: the Chef Development Kit and Chef Client.

The section for each platform covers the choices you must make and the installation
steps you must perform in more detail. Be prepared to skip around a bit in this chapter.

Install a Programmer’s Text Editor
To write Chef code, you must use an editor designed to save files in raw text format. Do
not use Microsoft Word, or a similar editor that saves text in a different file format, as
Chef will have difficulty reading your files. Make sure that you have either a command
line text editor or GUI text editor handy.

If you are comfortable using command line editors, vim, GNU Emacs, or nano are pop‐
ular choices. Since it is difficult to perform system administration duties without a
command line editor, we assume you have already configured one on your system.

If a text editor with a graphical user interface is more to your liking, we recommend
Sublime Text. All the platforms covered in this book are supported by the Sublime Text
editor—Linux, Mac OS X, and Windows. In addition to providing syntax highlighting
and line numbers, Sublime Text also supports a project view for navigating through
directory hierarchies as shown in Figure 2-1. You will find all these features handy as
you write Chef code:

• Line number display
• Highlighted syntax
• Command autocomplete
• Ability to have multiple files open at once

10 | Chapter 2: Configure Your Chef Development Environment

http://www.sublimetext.com

Figure 2-1. Sublime text project view

Sublime Text offers some excellent plugins for writing Chef code as well. Sublime Text
costs $70. We recommend giving Sublime Text a trial spin as you follow the coding
examples in this book.

If Sublime Text isn’t the right GUI editor for you, some other free alternatives to consider
would be gedit for Linux, TextMate 2 for Mac OS X, and Notepad++ for Windows.

Although there are currently no integrated development environ‐
ments (IDEs) for Chef, Ruby IDEs work well with Chef—Ruby‐
Mine, IntelliJ IDEA, Eclipse to name a few. A Ruby IDE will include
a programmer’s text editor as well.
Also, JetBrains supports Chef in its RubyMine and IntelliJ IDEs.

Chef Development Tools
The Chef Development Kit includes all the basic tools you need to get started writing
Chef code. In the following sections we’ll cover how to install the Chef Development
Kit on Linux, Mac OS X, and Windows. Follow the applicable section that matches the
operating system on your computer.

All Chef development tools are written in Ruby, a popular scripting language. The use
of a scripting language eliminates the need to write and maintain native code
individually for Linux, Mac OS X, and Windows. Instead, a single set of Ruby scripts
implements the Chef development tools on these three supported platforms. For the

Chef Development Tools | 11

http://bit.ly/gnome_gedit
http://macromates.com/
http://notepad-plus-plus.org/
http://www.jetbrains.com/ruby/
http://www.jetbrains.com/ruby/
http://www.jetbrains.com/idea/
http://www.eclipse.org/

scripts to function, you must install a native Ruby scripting engine to run the Chef
development tools.

The Chef Development Kit installer for each platform comes bundled with the correct
native Ruby scripting engine. The Chef development tools and the Ruby scripting engine
are installed outside any commonly used system locations. This ensures that the Ruby
bundled with Chef will not interfere with another copy of Ruby used elsewhere on your
system.

As of this writing, the Chef Development Kit is relatively new and supports only recent
versions of Linux, Mac OS X, and Windows. If you happen to be using an operating
system version that isn’t currently supported by the Chef Development Kit, you’ll find
additional instructions showing you how to manually install the extra development
tools you’ll need after installing Chef Client.

Chef Client versus Chef Development Kit
Chef Client (also known as the Chef Omnibus Installer) contains the core components
of Chef needed to manage a server or workstation. The installer comprises the entire
collection of things necessary to run Chef; thus, it is an omnibus installer. Chef Client
bundles core application scripts along with the necessary Ruby scripting engine. In
production environments, Chef Client is installed on every system intended to be man‐
aged by Chef.

The Chef Development Kit is a superset of Chef Client. If you install the Chef Devel‐
opment Kit, there is no need to install the Chef Client. Chef Development Kit includes
all the components of Chef Client, plus the Chef Development Kit additional best-of-
breed tools developed by the Chef community, in one package. Several community-
developed tools have become part of the standard Chef development workflow for many,
so now they are bundled together into an officially supported Chef product.

Skip ahead to the installation section for your operating system of choice:

• Linux: “Install the Chef Development Tools on Linux” on page 12
• Mac OS X: “Install the Chef Development Tools on Mac OS X” on page 20
• Windows: “Install the Chef Development Tools on Windows” on page 27

Install the Chef Development Tools on Linux
You will need an Internet connection and root access on your computer in order to
install the Chef development tools on Linux.

12 | Chapter 2: Configure Your Chef Development Environment

Visit the Chef downloads page to download the installation package for your distribu‐
tion of Linux.

Follow the Chef Development Kit link as shown in Figure 2-2 to see if there is an in‐
stallation package available for your platform.

Figure 2-2. Choose to install the Chef Development Kit

Figure 2-3 shows the options available for Linux as of this writing. Choose your desired
distribution and version of Linux. Once you’ve made your selection, a download link
for an installation package will be displayed.

If there is no Chef Development Kit installer for your preferred version of Linux, you’ll
need to install the Chef Client for your platform instead and perform some additional
steps manually. Using the Chef Development Kit installer is preferred because it makes
installation more convenient, but it is not necessary. Go back to the main page and
install the Chef Client instead.

On the Downloads page, under Chef Client, select the distribution and version of Linux
installed on your computer as shown in Figure 2-4. Once you’ve made these selections,
a download link for an installation package will be displayed.

The details for the installation process will vary by Linux distribution. Refer to the web
page for more specific instructions. You will get a link to an installation package or a
script.

Install the Chef Development Tools on Linux | 13

http://downloads.getchef.com/
http://downloads.getchef.com/

Figure 2-3. Linux Chef Development Kit

The download page might not match the images in this book exact‐
ly. The download and installation procedure, however, should be the
same.

For RedHat/CentOS and other Enterprise Linux variants, open your terminal and use
rpm to install with a command prompt. As an example, if the installation package link
was chefdk-0.2.0-2.el6.x86_64.rpm, you would enter in the following, replacing the
last parameter with the package name from either the Chef Development Kit or Chef
Client download link you just visited:

$ sudo rpm -Uvh chefdk-0.2.0-2.el6.x86_64.rpm

14 | Chapter 2: Configure Your Chef Development Environment

www.allitebooks.com

http://www.allitebooks.org

Figure 2-4. Downloading Linux Chef Client installer

For Ubuntu/Debian distributions, open your terminal and use dpkg to install with a
command prompt. As an example, if the installation package link was
chefdk_0.2.0-2_amd64.deb, you would enter the following, replacing the last
parameter with the package name from the Chef Development Kit or Chef Client
download link you visited:

$ sudo dpkg -i chefdk_0.2.0-2_amd64.deb

The Chef Development Kit installer will automatically install Chef and Ruby in the /opt/
chefdk/embedded directory on your local machine. Neither of these directories are
commonly present in the default environment’s PATH.

The Chef Development Kit includes a chef shell-init command to modify the cur‐
rent shell environment to use these paths. Assuming you are using the Linux default
bash shell, run the following command to permanently enable this PATH setting:

Chef Development Kit installation:

$ echo 'eval "$(chef shell-init bash)"' >> ~/.bash_profile

If it was necessary to choose the Chef Client installation instead, the Chef and Ruby
installation will be located under /opt/chef/embedded.

Install the Chef Development Tools on Linux | 15

We recommend you add this bin location to the following PATH. You should add this
line to your $HOME/.bash_profile (or similar *.profile if you are using a different
command line shell).

Chef Client installation:

export PATH="/opt/chef/embedded/bin:$PATH"

Once you change $HOME/.bash_profile, you will need to source the file to set up the
correct $PATH. Alternatively, you can just close and open your terminal application to
reload $HOME/.bash_profile.

$ source $HOME/.bash_profile

Verify the Chef Development Kit/Chef Client Install on Linux
Make sure the Ruby scripting engine in either /opt/chefdk/embedded/bin or /opt/chef/
embedded/bin is being used with this $PATH change, depending on whether you installed
the Chef Development Kit or the Chef Client, respectively. Enter which ruby in a ter‐
minal or command prompt. You should see the following:

Chef Development Kit installation:

$ which ruby
/opt/chefdk/embedded/bin/ruby

Chef Client installation:

$ which ruby
/opt/chef/embedded/bin/ruby

If you see no output at all, or if the output is not /opt/chefdk/embedded/bin/ruby
or /opt/chef/embedded/bin/ruby, double-check that you have completed the preced‐
ing steps correctly.

If you do not want to change your $PATH, you could specify the full
path to each embedded binary on the command line, such as

/opt/chefdk/embedded/bin/ruby

Going forward, so the command line entries fit better on our print‐
ed pages, this book will assume that you modified your PATH.

Verify that the basic Chef tools are present by checking /opt/chefdk/bin or /opt/
chef/bin depending on whether you installed the Chef Development Kit or the Chef
Client, respectively. You should see the following with the Chef Development Kit in‐
stallation:

$ ls /opt/chefdk/bin
berks chef-service-manager fauxhai nokogiri ruby-rewrite

16 | Chapter 2: Configure Your Chef Development Environment

chef chef-shell foodcritic ohai shef
chef-apply chef-solo kitchen rubocop tt
chef-client chef-vault knife ruby-parse

and with the Chef Client installation:

$ ls /opt/chef/bin
chef-apply chef-service-manager chef-solo erubis ohai restclient
chef-client chef-shell cher-zero knife rackup shef

Run chef-client --version to ensure the chef-client command works properly. If
your version differs, make sure that you have chef-client version 11.10.0 or higher to
follow the hands-on exercises in this book:

$ chef-client --version
Chef: 11.14.6

If you installed the Chef Development Kit, you have now successfully installed the Chef
development tools on Linux. Skip ahead to “Summary” on page 35. If you installed the
Chef Client, you’ll need to perform a few more installation steps, so keep reading.

Uninstalling the Chef Development Kit/Chef Client on Linux
You can use rpm to uninstall Chef Development Kit/Chef Client on RedHat Enterprise
Linux-based systems.

Chef Development Kit uninstallation:

$ rpm -qa chefdk
$ sudo yum remove -y <package>
If you installed custom gems, remove +/opt/chefdk+ manually
$ sudo rm -rf /opt/chefdk
Remove PATH entry for Chef from $HOME/.bash_profile

Chef Client uninstallation:

$ rpm -qa chef
$ sudo yum remove -y <package>
If you installed custom gems, remove +/opt/chef+ manually
$ sudo rm -rf /opt/chef
Remove PATH entry for Chef from $HOME/.bash_profile

You can use dpkg to uninstall Chef Development Kit or Chef Client on Ubuntu-based
systems.

Chef Development Kit uninstallation:

$ dpkg --list | grep chefdk # or dpkg --status chefdk

Purge chefdk from the system.
see man dkpg for details
$ sudo dpkg -P chefdk
If you installed custom gems, remove +/opt/chefdk+ manually

Install the Chef Development Tools on Linux | 17

$ sudo rm -rf /opt/chefdk
Remove PATH entry for Chef from $HOME/.bash_profile

Chef Client uninstallation:

$ dpkg --list | grep chef # or dpkg --status chef

Purge chef from the system.
see man dkpg for details
$ sudo dpkg -P chef
If you installed custom gems, remove +/opt/chef+ manually
$ sudo rm -rf /opt/chef
Remove PATH entry for Chef from $HOME/.bash_profile

Install Test Kitchen on Linux (Chef Client Only)
We’ll be using Test Kitchen to create virtualized sandbox environments in some of the
hands-on exercise. The Chef Client installer does not install Test Kitchen, so you’ll need
to install it manually.

You need to install the test-kitchen gem. A gem is a supporting library or application
written in Ruby. You can think of a gem as the equivalent of an installer for Ruby.
Rubygems.org maintains a central registry of Ruby gems on the Internet.

Run the gem install command as root to install the test-kitchen gem. The additional
--no-ri and --no-rdoc parameters save time by omitting the step that generates
documentation:

$ sudo gem install test-kitchen --no-ri --no-rdoc
Fetching: net-scp-1.2.1.gem (100%)
Fetching: safe_yaml-1.0.3.gem (100%)
Fetching: thor-0.19.1.gem (100%)
Fetching: test-kitchen-1.2.1.gem (100%)
Successfully installed net-scp-1.2.1
Successfully installed safe_yaml-1.0.3
Successfully installed thor-0.19.1
Successfully installed test-kitchen-1.2.1
4 gems installed

If you see the error sudo: gem: command not found, your sudo is
probably set up to use env_reset. As a workaround, use the following
alternative command line to set the PATH for gem install:

$ sudo env "PATH=$PATH" gem install test-kitchen --no-ri --no-rdoc

18 | Chapter 2: Configure Your Chef Development Environment

http://rubygems.org

Where Do Ruby Gems Get Installed?
The gem install command installs gem files to the RubyGems installation directory.
The Omnibus Install gem command stores gems in the directory containing Chef ’s pri‐
vate copy of Ruby: /opt/chef/embedded.

You can verify this by using the gem env command to view the gem environment. It will
list the INSTALLATION_DIRECTORY as /opt/chef/embedded/lib/ruby/gems/1.9.1:

$ gem env
RubyGems Environment:
 - RUBYGEMS VERSION: 1.8.29
 - RUBY VERSION: 1.9.3 (2013-11-22 patchlevel 484) [x86_64-linux]
 - INSTALLATION DIRECTORY: /opt/chef/embedded/lib/ruby/gems/1.9.1
 - RUBY EXECUTABLE: /opt/chef/embedded/bin/ruby
 - EXECUTABLE DIRECTORY: /opt/chef/embedded/bin
 - RUBYGEMS PLATFORMS:
 - ruby
 - x86_64-linux
 - GEM PATHS:
 - /opt/chef/embedded/lib/ruby/gems/1.9.1
 - /home/misheska/.gem/ruby/1.9.1
...

Why does the directory have 1.9.1 in it when the Ruby version is
1.9.3? The version of the installation directory refers to the stan‐
dard library version, not the core language version. Every
“batteries included” language like Ruby contains a large set of
standard libraries to complement core language functionality.
Historically, Ruby hasn’t always changed the standard library at
the same rate as the core language. Ruby 1.9.1, 1.9.2, and 1.9.3 all
use the same standard library version: 1.9.1.

Verify the Test Kitchen Installation on Linux (Chef Client only)
You can verify that the test-kitchen gem is installed by using the gem list command.
If Test Kitchen is already installed, the gem list command will display the output true:

$ gem list test-kitchen -i
true

You have now successfully installed the additional tools on Linux needed to follow the
hands-on exercises in this book. Skip ahead to “Summary” on page 35.

Install the Chef Development Tools on Linux | 19

Install the Chef Development Tools on Mac OS X
You will need an Internet connection and administrator privileges in order to install the
Chef development tools on Mac OS X.

Visit the Chef downloads page to download the installer for your version of Mac OS X.

Follow the Chef Development Kit link as shown in Figure 2-5 to see if there is an in‐
stallation package available for your version of Mac OS X.

Figure 2-5. Choose to install the Chef Development Kit

Figure 2-6 shows the options available for Mac OS X at the time of this writing. Currently,
only the most recent version of Mac OS X, Mavericks (10.9), is supported, and not older
versions like Mountain Lion (10.8) or Lion (10.8). When you click on the download
link, an installation package will be displayed.

If there is no Chef Development Kit installation for your preferred version of Mac OS
X, you’ll need to install the Chef Client instead and perform some additional installation
steps manually. Using the Chef Development Kit installation is preferred because it
makes the installation more convenient, but it is not necessary. Go back to the main
page and install the Chef Client instead.

20 | Chapter 2: Configure Your Chef Development Environment

http://downloads.getchef.com/
http://downloads.getchef.com/
http://downloads.getchef.com/

Figure 2-6. Mac OS X Chef Development Kit

On the installation page, under Chef Client, choose the version of Mac OS X installed
on your computer as shown in Figure 2-7. Once you’ve made your selection, a download
link to a Mac OS X disk image .dmg file will be displayed.

The download page might not match the images in this book exact‐
ly. The download and installation procedure, however, should be the
same.

Install the Chef Development Tools on Mac OS X | 21

Figure 2-7. Downloading Mac OS X Chef Client installer

When you open the install .dmg file, you will see an icon with the Chef installation
package as shown in Figure 2-8. Double-click on chef.pkg to run the installer.

Choose the default options and accept the license as you progress through the Chef
Client installation. You might be prompted to enter your password. You’ll need admin‐
istrator privileges in order to make the necessary changes to run Chef on your machine.

Don’t forget to eject the Chef Client disk image once you have com‐
pleted the installation.

22 | Chapter 2: Configure Your Chef Development Environment

Figure 2-8. Downloading Mac OS X Chef Client installer

The Chef Development Kit installer will automatically install Chef and Ruby in the /opt/
chefdk/embedded directory on your local machine. Neither of these directories are
commonly present in the default environment’s PATH.

The Chef Development Kit includes a chef shell-init command to modify the cur‐
rent shell environment to use these paths. Assuming you are using the Mac OS X default
bash shell, run the following command to permanently enable this PATH setting.

Chef Development Kit installation:

$ echo 'eval "$(chef shell-init bash)"' >> ~/.bash_profile

If it was necessary to choose the Chef Client installation instead, the Chef and Ruby
install will be located under /opt/chef/embedded.

We recommend that you add this bin location to the following PATH. You should add
this line to your $HOME/.bash_profile (or similar profile file with your startup con‐
figuration and settings, if you are using a different command line shell).

Chef Client installation:

export PATH="/opt/chef/embedded/bin:$PATH"

Once you change $HOME/.bash_profile, you will need to source the file to set up the
correct $PATH. Alternatively, you can just close and open your terminal application to
reload $HOME/.bash_profile:

source $HOME/.bash_profile

Install the Chef Development Tools on Mac OS X | 23

Verify the Chef Development Kit/Chef Client Installation on Mac OS X
Make sure the Ruby scripting engine in either /opt/chefdk/embedded/bin or /opt/chef/
embedded/bin is being used with this PATH change. Enter which ruby on a command
line. You should see the following with the Chef Development Kit installation:

$ which ruby
/opt/chefdk/embedded/bin/ruby

or, with the Chef Client installation:

$ which ruby
/opt/chef/embedded/bin/ruby

If you see no output at all, or if the output is not /opt/chefdk/embedded/bin/ruby
or /opt/chef/embedded/bin/ruby, double-check that you have completed the preced‐
ing steps correctly.

If you do not want to change your $PATH, you could specify the full
path to each embedded binary on the command line, such as

/opt/chefdk/embedded/bin/ruby

Going forward, so the command line entries fit better on our print‐
ed pages, this book will assume that you modified your $PATH.

Verify that the basic Chef Client tools are present by checking /opt/chefdk/bin or /opt/
chef/bin depending on whether you installed the Chef Development Kit or the Chef
Client. You should see the following with the Chef Development Kit installation:

$ ls /opt/chefdk/bin
berks chef-service-manager fauxhai nokogiri ruby-rewrite
chef chef-shell foodcritic ohai shef
chef-apply chef-solo kitchen rubocop tt
chef-client chef-vault knife ruby-parse

and with the Chef Client installation:

$ ls /opt/chef/bin
chef-apply chef-service-manager chef-solo erubis ohai restclient
chef-client chef-shell cher-zero knife rackup shef

Run chef-client --version to ensure the chef-client command works properly. If
your version differs, make sure that you have chef-client version 11.10.0, or higher
to follow the hands-on exercises in this book:

$ chef-client --version
Chef: 11.14.6

If you installed the Chef Development Kit, you have now successfully installed the Chef
development tools on Mac OS X. Skip ahead to “Summary” on page 35. If you installed
the Chef Client, you’ll need to perform a few more installation steps, so keep reading.

24 | Chapter 2: Configure Your Chef Development Environment

Uninstalling the Chef Development Kit/Chef Client on Mac OS X
You can uninstall the Chef Development Kit and Chef Client on Mac OS X using the
appropriate commands.

Chef Development Kit uninstallation:

Remove the installed files
sudo rm -rf /opt/chefdk

Remove the system installation entry
sudo pkgutil --forget com.getchef.pkg.chefdk

Remove the symlinks under /usr/bin for Chef Development Kit
ls -la /usr/bin | egrep '/opt/chefdk' | awk '{ print $9 }' | xargs rm -f

Remove PATH entry for Chef from $HOME/.bash_profile

Chef Client uninstallation:

Remove the installed files
sudo rm -rf /opt/chef

Remove the system installation entry
sudo pkgutil --forget com.getchef.pkg.chef

Remove the symlinks under /usr/bin for Chef Client
ls -la /usr/bin | egrep '/opt/chef' | awk '{ print $9 }' | xargs rm -f

Remove PATH entry for Chef from $HOME/.bash_profile

Install Test Kitchen on Mac OS X (Chef Client Only)
for some of the hands-on exercises. The Chef Client installer does not install Test Kitch‐
en, so you’ll need to install it manually.

You need to install the test-kitchen gem. A gem is a supporting library or application
written in Ruby. You can think of a gem as the equivalent of an installer for Ruby.
Rubygems.org maintains a central registry of Ruby gems on the Internet.

Run the gem install command as root to install the test-kitchen gem. The additional
--no-ri and --no-rdoc parameters save time by omitting the step that generates
documentation:

$ sudo gem install test-kitchen --no-ri --no-rdoc
Fetching: net-scp-1.2.1.gem (100%)
Fetching: safe_yaml-1.0.3.gem (100%)
Fetching: thor-0.19.1.gem (100%)
Fetching: test-kitchen-1.2.1.gem (100%)
Successfully installed net-scp-1.2.1

Install the Chef Development Tools on Mac OS X | 25

http://rubygems.org

Successfully installed safe_yaml-1.0.3
Successfully installed thor-0.19.1
Successfully installed test-kitchen-1.2.1
4 gems installed

Where Do Ruby Gems Get Installed?
The gem install command installs gem files to its installation directory. The Omnibus
Install gem command stores gems in the directory containing Chef ’s private copy of
Ruby: /opt/chef/embedded.

You can verify this by using the gem env command to view the gem environment. It will
list the INSTALLATION_DIRECTORY as /opt/chef/embedded/lib/ruby/gems/1.9.1:

$ gem env
RubyGems Environment:
 - RUBYGEMS VERSION: 1.8.29
 - RUBY VERSION: 1.9.3 (2013-11-22 patchlevel 484) [x86_64-darwin11.2.0]
 - INSTALLATION DIRECTORY: /opt/chef/embedded/lib/ruby/gems/1.9.1
 - RUBY EXECUTABLE: /opt/chef/embedded/bin/ruby
 - EXECUTABLE DIRECTORY: /opt/chef/embedded/bin
 - RUBYGEMS PLATFORMS:
 - ruby
 - x86_64-darwin-11
 - GEM PATHS:
 - /opt/chef/embedded/lib/ruby/gems/1.9.1
 - /Users/vagrant/.gem/ruby/1.9.1
...

Why does the directory have 1.9.1 in it when the Ruby version is
1.9.3? The version of the installation directory refers to the
standard library version, not the core language version. Every
“batteries included” language like Ruby contains a large set of
standard libraries to complement core language functionality.
Historically, Ruby hasn’t always changed the standard library at
the same rate as the core language. Ruby 1.9.1, 1.9.2, and 1.9.3 all
use the same standard library version: 1.9.1.

Verify the Test Kitchen Installation on Mac OS X (Chef Client Only)
You can verify that the test-kitchen gem is installed by using the gem list command.
If Test Kitchen is already installed, the gem list command will display the output true:

$ gem list test-kitchen -i
true

26 | Chapter 2: Configure Your Chef Development Environment

You have now successfully installed the additional tools on Mac OS X needed to follow
the hands-on exercises in this book. Skip ahead to “Summary” on page 35.

Install the Chef Development Tools on Windows
You will need an Internet connection and administrator privileges on your computer
in order to install the Chef development tools in Windows.

Visit the Chef downloads page to download the installer for your version of Windows.
Follow the Chef Development Kit link as shown in Figure 2-9 to see if there is an installer
available for your version of Windows.

Figure 2-9. Choose to install the Chef Development Kit

Choose your desired version of Windows. Once you’ve made your selection, a download
link for an installation package will be displayed.

If there is no Chef Development Kit installation for your version of Windows, you’ll
need to install the Chef Client for your platform instead and perform some additional
installation steps manually. Using the Chef Development Kit installation is preferred
because it makes the installation more convenient, but it is not necessary. Go back to
the main page and install the Chef Client instead.

On the installation page, under Chef Client choose the version of Windows installed on
your computer as shown in Figure 2-10. Once you’ve made your selection, a download
link to the corresponding Windows installer .msi file will be displayed.

Install the Chef Development Tools on Windows | 27

http://downloads.getchef.com/
http://downloads.getchef.com/

Figure 2-10. Downloading Chef Client Windows installer

The download page might not match the images in this book exact‐
ly. The download and installation procedure, however, should be the
same.

Run the installer for either the Chef Development Kit or the Chef Client, choosing the
default options. The Chef Development Kit installer will install Chef and Ruby in the
C:\opscode\chefdk directory on your local machine. If it was necessary to choose the
Chef Client installer instead, the Chef and Ruby installer will be located under C:\ops‐
code\chef. Either installer will automatically add all the correct directories for Chef and
Ruby to the System PATH.

Verify the Chef Development Kit/Chef Client Installer in Windows
Make sure that the Ruby scripting engine in either C:\opscode\chefdk\embedded\bin or
C:\opscode\chef\embedded\bin is being used with this PATH change, depending on
whether you installed the Chef Development Kit or the Chef Client, respectively. Make
sure you restart your command prompt after the installation and run the appropriate
commands to verify.

28 | Chapter 2: Configure Your Chef Development Environment

Chef Development Kit installation—Windows Command Prompt:

> where ruby
C:\opscode\chefdk\embedded\bin\ruby.exe

Chef Development Kit installation—Windows PowerShell:

PS> (get-command ruby).path
C:\opscode\chefdk\embedded\bin\ruby.exe

Chef Client installation—Windows Command Prompt:

> where ruby
C:\opscode\chef\embedded\bin\ruby.exe

Chef Client installation—Windows PowerShell:

PS> (get-command ruby).path
C:\opscode\chef\embedded\bin\ruby.exe

If the output is not C:\opscode\chefdk\embedded\bin\ruby.exe or C:\opscode\chef
\embedded\bin\ruby.exe, double-check that you completed the preceding steps
correctly.

Verify that the basic Chef client tools are present by checking either C:\opscode\chefdk
\bin as shown in Figure 2-11 or C:\opscode\chef\bin as shown in Figure 2-12.

Figure 2-11. C:\opscode\chefdk\bin

Install the Chef Development Tools on Windows | 29

Figure 2-12. C:\opscode\chef\bin

Run chef-client --version to ensure the chef-client command works properly. If
your version differs, make sure that you have chef-client version 11.10.0 or higher to
follow the hands-on exercises in this book:

> chef-client --version
Chef: 11.14.6

If you installed the Chef Development Kit, you have now successfully installed the Chef
development tools in Windows. Skip ahead to “Install Unix Tools for Windows” on page
32. If you installed the Chef Client, you’ll need to perform a few more installation steps,
so keep reading.

Uninstalling the Chef Development Kit/Chef Client in Windows
You can use Add/Remove Programs in Windows to remove the Chef Development Kit/
Chef Client from your system.

Install Test Kitchen in Windows (Chef Client Only)
We’ll be using Test Kitchen to create virtualized sandbox environments in some of the
hands-on exercises. The Chef Client installer does not install Test Kitchen, so you’ll
need to install it manually.

You need to install the test-kitchen gem. A gem is a supporting library or application
written in Ruby. You can think of a gem as the equivalent of an installer for Ruby.
Rubygems.org maintains a central registry of Ruby gems on the Internet.

In Windows, you’ll need to install the Test Kitchen gem as an administrator. Run gem
install test-kitchen as Run As Administrator or Command Prompt (Admin), de‐

30 | Chapter 2: Configure Your Chef Development Environment

http://rubygems.org

pending on your version of Windows. The additional --no-ri and --no-rdoc param‐
eters save time by omitting the step that generates documentation:

> gem install test-kitchen --no-ri --no-rdoc
Fetching: net-scp-1.2.1.gem (100%)
Fetching: safe_yaml-1.0.3.gem (100%)
Fetching: thor-0.19.1.gem (100%)
Fetching: test-kitchen-1.2.1.gem (100%)
Successfully installed net-scp-1.2.1
Successfully installed safe_yaml-1.0.3
Successfully installed thor-0.19.1
Successfully installed test-kitchen-1.2.1
4 gems installed

Where Do Ruby Gems Get Installed?
The gem install command installs gem files to the Rubygems installation directory.
The Omnibus Install gem command stores gems in the directory containing Chef ’s pri‐
vate copy of Ruby: /opt/chef/embedded.

You can verify this by using the gem env command to view the gem environment. It will
list the INSTALLATION_DIRECTORY as /opt/chef/embedded/lib/ruby/gems/1.9.1:

> gem env
RubyGems Environment:
 - RUBYGEMS VERSION: 1.8.28
 - RUBY VERSION: 1.9.3 (2013-11-22 patchlevel 484) [i386-mingw32]
 - INSTALLATION DIRECTORY: C:/opscode/chef/embedded/lib/ruby/gems/1.9.1
 - RUBY EXECUTABLE: C:/opscode/chef/embedded/bin/ruby.exe
 - EXECUTABLE DIRECTORY: C:/opscode/chef/chef/embedded/bin
 - RUBYGEMS PLATFORMS:
 - ruby
 - x86-mingw32
 - GEM PATHS:
 - C:/opscode/chef/embedded/lib/ruby/gems/1.9.1
 - C:/Users/misheska/.gem/ruby/1.9.1
...

Why does the directory have 1.9.1 in it when the Ruby version is
1.9.3? The version of the installation directory refers to the
standard library version, not the core language version. Every
“batteries included” language like Ruby contains a large set of
standard libraries to complement core language functionality.
Historically, Ruby hasn’t always changed the standard library at
the same rate as the core language. Ruby 1.9.1, 1.9.2, and 1.9.3 all
use the same standard library version: 1.9.1.

Install the Chef Development Tools on Windows | 31

Verify the Test Kitchen Installer in Windows (Chef Client Only)
You can verify that the test-kitchen gem is installed by using the gem list command.
If Test Kitchen is already installed, the gem list command will display the output true:

$ gem list test-kitchen -i
true

You have now successfully installed the additional tools in Windows needed to follow
the hands-on exercises in this book.

Install Unix Tools for Windows
You’ll need to install Unix-related tools in Windows for Test Kitchen. Test Kitchen
requires the Secure Shell ssh to log in to your Enterprise Linux VM. The most painless
way to install ssh is to install the Minimalist GNU for Windows (MinGW) tools that
come bundled with Git for Windows. If you use Chef, you’ll likely wind up using Git
source control in some fashion as well.

Visit git-scm.com and refer to the git-scm.com site for more information on installing
Git for Windows.

Make sure you choose Run Git and included Unix tools from the Windows Command
Prompt when you see the Adjusting your PATH environment screen as shown in
Figure 2-13. Except for this screen, feel free to choose the installation defaults if you
like.

Figure 2-13. Add the accompanying Unix tools to your PATH

32 | Chapter 2: Configure Your Chef Development Environment

http://git-scm.com/downloads
http://git-scm.com

Verify that ssh is installed correctly by running ssh on the command line. You should
see a usage screen resembling the following:

> ssh
usage: ssh [-1246AaCfgKkMNnqsTtVvXxYy] [-b bind_address] [-c cipher_spec]
 [-D [bind_address:lport] [-E log_file] [-e escape_char]
 [-F configfile] [-I pkcs11] [-i identity_file]
 [-L [bind_address:lport:host:hostport] [-Q protocol_feature]
 [-l login_name] [-m mac_spec] [-O ctl_cmd] [-o option] [-p port]
 [-R [bind_address:lport:host:hostport] [-S ctl_path]
 [-W host:port] [-w local_tun[:remote_tun]]
 [user@lhostname [command]

Install ConEmu (Optional)
Some of the tools included with Chef Client, such as Test Kitchen, use color in their
output, as shown in Figure 2-14.

Figure 2-14. ConEmu

Neither the Command Prompt nor Windows PowerShell support the mechanism used
by the Chef development tools to display text in color. We recommend you install a
third-party terminal program for Windows that supports ANSI text color output.

We recommend ConEmu, as not only does it support colored text, but it also greatly
improves the command prompt experience in Windows. ConEmu adds tabs, support

Install the Chef Development Tools on Windows | 33

for full screen, and a plethora of customization options. ConEmu also supports all the
Windows command shells, so you can still use cmd.exe, PowerShell, bash, or another
favorite. ConEmu does not replace existing Windows shells; it merely enhances their
capabilities by providing user interface enhancements, such as adding support for color.

To install ConEmu, go to the primary download site for ConEmu and download a
ConEmu Installer, as shown in Figure 2-15.

Figure 2-15. Installing ConEmu, a third-party program that supports colored text

By default, ConEmu will use the cmd.exe shell, but you are not limited to this choice.
Click on the New console dialog dropdown to choose from other shells, such as Pow‐
erShell, as shown in Figure 2-16.

To change the default shell, change the ConEmu settings (see Figure 2-17):

1. Click on the icon in the upper-left corner to display the application menu.
2. Choose Settings to display the Settings dialog.
3. In the settings dialog, choose Startup from the tree.
4. Choose your desired default shell from the pulldown under Specified named task.
5. Click on the Save settings button to make the setting your default.

34 | Chapter 2: Configure Your Chef Development Environment

www.allitebooks.com

http://www.fosshub.com/ConEmu.html
http://www.allitebooks.org

Figure 2-16. ConEmu lets you choose from among multiple shells

Figure 2-17. Setting your preferred default shell in ConEmu

Summary
Now that you have installed the Chef development tools on your computer using either
the Chef Development Kit installer or the Chef Client installer, you have all the basic

Summary | 35

tools you need to interact with Chef. For some environments, there is no Chef Devel‐
opment Kit available, so we walked you through the manual steps necessary to make a
Chef Client installation equivalent to a Chef Development Kit installation, for the pur‐
poses of this book. The Chef Development Kit is a superset of the Chef Client, with
some additional community tools bundled with the installer. You can install these extra
tools by hand if there is not yet a Chef Development Kit available for your platform.

Before we delve more deeply into Chef, in the next chapter we’ll take a brief, related
detour covering just enough Ruby to get started with Chef. Chef is based on Ruby, so
you have to know a little bit of Ruby to get started with Chef.

36 | Chapter 2: Configure Your Chef Development Environment

CHAPTER 3

Ruby and Chef Syntax

As briefly discussed in Chapter 2, both the Chef Development Kit and Chef Client are
written and implemented in Ruby. However, prior experience with Ruby is not a re‐
quirement for writing Chef code. Most people who use Chef have no prior experience
with the Ruby programming language. So let’s spend some time going over the basics
of Ruby and how it relates to Chef syntax.

Overview of Ruby
Ruby is an object-oriented programming language that was originally designed in 1993
as a replacement for Perl. Yukihiro Matsumoto (or “Matz” for short) designed and cre‐
ated Ruby in Japan. Ruby became very popular in the United States after two things
occurred: 1) Dave Thomas wrote the book “Programming Ruby” in English in 2000, as
until then most of the documentation on Ruby was in Japanese, and 2) David Heinemeier
Hansson created the Ruby on Rails framework in 2003, which came to be viewed as an
incredibly productive way to build web applications. The rapid adoption of Ruby on
Rails, along with great documentation written in English, led people outside Japan to
appreciate the Ruby language for other purposes besides web development. As illus‐
trated in the next section, Ruby boasts a very English-like syntax.

Although Ruby is object oriented, it also supports functional and imperative program‐
ming paradigms. Unlike C or Java, which implement static typing, Ruby is a dynamically
typed language. In this way, Ruby is similar to Python and Lisp. Ruby is designed for
programmer productivity and fun. Usability and interface design are often given pref‐
erence over speed or concurrency:

Often people, especially computer engineers, focus on the machines. They think, “By
doing this, the machine will run faster. By doing this, the machine will run more effec‐
tively. By doing this, the machine will something something something.” They are fo‐
cusing on machines. But in fact we need to focus on humans, on how humans care about

37

doing programming or operating the application of the machines. We are the masters.
They are the slaves.

— Yukihiro Matsumoto

Similarly, Ruby follows the Principle of Least Surprise (also called the Principle of Least
Astonishment), which aims to minimize confusion for both new and experienced users.
The principle encourages consistency, common design patterns, and reusable code. The
Ruby principles of simplicity and ease of use are echoed throughout Chef as well.

There is much more to the Ruby programming language, but that knowledge is not
required to use Chef. For a more detailed explanation of Ruby and the Ruby program‐
ming language, check out Programming Ruby 1.9 & 2.0 (4th edition): The Pragmatic
Programmers’ Guide by Dave Thomas with Chard Fowler and Andy Hunt, or Learning
Ruby by Michael Fitzgerald (O’Reilly).

Ruby Syntax and Examples
Let’s cover the basics of Ruby syntax through the use of real-world examples.

Checking Syntax
Ruby provides a built-in mechanism to verify that a file contains valid
Ruby syntax. You can check a file’s syntax by passing the -c flag and
the path to the file to the Ruby interpreter.

$ ruby -c /path/to/ruby/file

This will return Syntax OK if the syntax is correct. Otherwise, it will
print a stack trace pointing to the line where the error occurred.

Comments
In Ruby, the hash character (#) is used to represent a comment. Comments contain
documentation for your code. Everything after the \# on the same line is treated as a
comment intended to be read by humans and ignored by the Ruby interpreter:

variable = 2 # This is a comment

This is a multiple line comment because each
line starts with a hash symbol

It is important to document why you are writing code. Use comments to explain why
you chose to implement your code in the way you did and describe the alternative
approaches you considered. Jeff Atwood, of Stack Exchange and Discourse fame, bril‐
liantly explains the purpose of comments this way: “Code tells you how, comments tell
you why.”

38 | Chapter 3: Ruby and Chef Syntax

http://shop.oreilly.com/product/9780596529864.do
http://shop.oreilly.com/product/9780596529864.do

For example, consider the following Ruby code snippet, which buys bacon if there are
currently fewer than five strips. By reading the code you can understand what the code
does, but it is not clear why the code was written in the first place:

if bacon.strips < 5
 buy_bacon
end

The following code adds a simple comment explaining why we should buy more bacon
when there are fewer than five strips. It is helpful to understand the context around this
bacon purchase: Jake likes to eat five pieces of bacon in the morning, so we want to have
enough bacon on hand at all times:

Jake eats 5 pieces of bacon each morning
if bacon.strips < 5
 buy_bacon
end

Variables
As we just saw in the preceding example, variables in Ruby are assigned from left to
right:

variable = 2 # This assigns the value 2 to variable.

Because Ruby is not a statically typed language, you do not need to declare the type of
variable when assigning it. The following examples assign very different kinds of values
to variables: a number, the string hello, and even an object. There is no need to tell Ruby
the kind of content that will be stored in a variable before assigning values:

a = 1
b = 'hello'
c = Object.new

In Ruby, a variable is accessible within the outermost scope of its declaration. Consider
the following example that better demonstrates variable scope. First, a top-level variable
named bacon_type is declared and assigned the value crispy. Next, the bacon is cooked
twice and an additional variable named temperature is assigned the value 300. Finally,
the script attempts to access the temperature variable, which is now out of scope:

bacon_type = 'crispy'

2.times do
 puts bacon_type
 temperature = 300
end

puts temperature

Ruby Syntax and Examples | 39

The bacon_type variable is declared at the top-level scope, so it will be accessible
everywhere within this context.
We can access the bacon_type variable inside a more specific scope, such as a
loop.
A variable declared inside a scope is accessible only from inside that scope.
Outside of the scope of declaration, attempting to access a variable will result in
an exception (undefined local variable or method ‘temperature’).

Wait… what are you saying?
It’s worth noting that if you’re feeling a bit lost at this point, this book
presumes a basic level of experience with object-oriented program‐
ming concepts. If you’re not clear about variables, scope, and loops,
you’ll probably want to brush up on some of the basics of object-
oriented programming and then head back here to get up to speed on
Ruby and Chef. A great book on object-oriented programming with
Ruby is Practical Object-Oriented Design in Ruby, by Sandi Metz.

Mathematical Operations
Ruby exposes basic arithmetic operations such as addition, multiplication, and division
as a core feature of the language:

1 + 2 #=> 3
3 * 4 #=> 12
5 / 6.0 #=> 0.8333...

Let’s say that to ensure a productive and collaborative work environment, your company
policy requires that your team take a bacon break every three hours, on the hour. Even
though the policy is strict, the team often becomes engrossed in its work and forgets to
check the clock. You could write a short Ruby script that alerts the team when it should
stop and enjoy some freshly-cooked bacon:

Bacon time is every third hour
if hour % 3 == 0
 puts "It's BACON time!"
end

More complex operations, such as rounding or polynomial distributions, are exposed
in Ruby’s Math module. You can use the Math.hypot method in a Ruby script to calculate
the length of a diagonal for a right triangle by returning the square root of the sum of
the squares of its two sides:

Math.hypot(43, 57) #=> 71.40028011149536

Additional functions and constants such as log, sin, sqrt, e, and π are also contained
in the Math module.

40 | Chapter 3: Ruby and Chef Syntax

Strings
There are two common ways to create strings in Ruby: with single quotes and with
double quotes. Single-quoted strings have the advantage of one fewer keystroke and do
not apply interpolation.

Double-quoted strings are useful when variables need to be evaluated as part of the
string content—this evaluation process is known as string interpolation. A hash symbol
is used as a placeholder within a double-quoted string to indicate to Ruby that the
placeholder should be replaced with the evaluated content of a variable. In the following
example, #{x} is used to insert the value of x within a string.

Both double and single-quoted strings use the backslash (\) character to escape special
characters.

"double quoted string" #=> "double quoted string"
'single quoted string' #=> "single quoted string"

x = "hello"
"#{x} world" #=> "hello world"
'#{x} world' #=> '#{x} world'

"quotes in \"quotes\"" #=> "quotes in \"quotes\""
'quotes in \'quotes\'' #=> "quotes in \"quotes\""

Double-quoted strings interpolate
Single-quoted strings use the literal

You might need to escape special characters. For example, when storing the player name
Jim O’Rourke as a string, you need to escape the single quote in his last name:

player = 'Jim O\'Rourke'

Alternatively, you can use double quotes and avoided escaping the character altogether:

player = "Jim O'Rourke"

Heredoc Notation
In Chef, you might see the “heredoc” notation for strings. Heredoc is especially useful
when having a multiline string. Heredoc notation starts with two “less than” symbols
(<<) and then some identifier. The identifier can be any string, but should not be a string
that is likely to appear in the body of text. In the following example, we chose METH
OD_DESCRIPTION as the heredoc identifier:

<<METHOD_DESCRIPTION
This is a multiline string.

All the whitespace is preserved, and I can even apply #{interpolation} inside

Ruby Syntax and Examples | 41

this block.
METHOD_DESCRIPTION

True and False
In addition to the literal true and false, Ruby supports “truthy” and “falsey” values.
Expressions evaluate as true or false in a situation where a boolean result is expected
(such as when they are used in conditionals like the if statement). Table 3-1 demon‐
strates the common truthy and falsey values and their actual evaluations.

Table 3-1. Truthy and falsey values
value evaluates as

true true

false false

Bacon true

Object true

0 true

1 true

-1 true

nil false

"" true

[] true

{} true

The results of those expressions can also be negated using the not keyword or the bang
(!) operand:

!true #=> false
not true #=> false
not false #=> true
!!true #=> true
not nil #=> true

Arrays
Ruby’s native array support allows you to create lists of items. Ruby’s arrays use the
bracket notation as shown in the following example. Arrays are zero-indexed and the
Ruby interpreter automatically allocates memory as new items are added; there is no
need to worry about dynamically resizing arrays:

types = ['crispy', 'raw', 'crunchy', 'grilled']
types.length #=> 4
types.size #=> 4
types.push 'smoked' #=> ["crispy", "raw", "crunchy", "grilled", "smoked"]

42 | Chapter 3: Ruby and Chef Syntax

types << 'deep fried' #=> ["crispy", "raw", "crunchy", "grilled",
 "smoked", "deep fried"]
types[0] #=> "crispy"
types.first #=> "crispy"
types.last #=> "deep fried"
types[0..1] #=> ["crispy", "raw"]

The length method tells us how many items are in the array.
You’ll sometimes see size used as a synonym for length; Ruby offers the choice
to use either.
Add one or more items to the end of the array with push.
<< is a helpful alias for push when you want to add just one item to the end.
Arrays are zero-indexed, so we can access the first element using 0 as the index.
The first element is also accessible via the convenient first method.
To complement the first method, Ruby also exposes a last method.
Specifying a range inside the brackets will slice the array from the first index up
to and including the second index.

For example, you could use Ruby arrays to store an ordered list of all employees in the
order in which they were hired. Each time a new employee joins the team, he is added
to the list. The first employee is at index 0, the second employee is at index 1, and so on:

employees[0] #=> Chase
employees[1] #=> Jake

When a new employee joins the team, his name is pushed onto the end of the array:

employees << 'Bob'
employees.last #=> Bob

Hashes
Ruby also supports hashes (sometimes called dictionaries or maps in other languages).
Hashes are key-value pairs that behave similarly to arrays. Hashes are created using
literal curly braces ({}):

prices = { oscar: 4.55, boars: 5.23, wright: 4.65, beelers: 6.99 }
prices[:oscar] #=> 4.55
prices[:boars] #=> 5.23

prices[:oscar] = 1.00
prices.values #=> [1.00, 5.23, 4.65, 6.99]

Individual elements are accessed using the bracket notation, much like arrays.
The same bracket notation can be used to set elements at a particular key.

Ruby Syntax and Examples | 43

Hashes respond to helpful methods like keys and values.

Strings, Symbols, and Mashes
So far, we have been using the symbol syntax for hashes. The syntax is:

key: value

This is Ruby syntactic sugar for the following:

:key => value

The => is called a hash rocket.

Symbols are immutable strings in Ruby. Other languages would call them constants. We
are using symbols in the preceding example, but the next code snippet demonstrates
using strings as hash keys:

hash = { 'key' => value }
hash['key'] #=> value

Notice that the way in which the key is accessed also changes.

In Chef, you’ll most commonly see string keys for consistency. However, Chef actually
uses a custom data structure known as a mash. Mashes do not care about the data type
you use to access a given element in a hash. In a mash, the following are all equivalent:

mash = Hashie::Mash.new({key: value})

mash[:key] #=> value
mash['key'] #=> value
mash.key #=> value

Hashie::Mash is not part of the core Ruby library.

Mashes are great because they do not enforce a specific key construct. You can use the
form that makes the most sense to you.

For example, you can use Ruby hashes to store information about popular baseball
players and their current statistics. The key in this hash was the name of the baseball
player. The value was another hash whose key is the name of the statistic and whose
value is the number of that statistic. This is better illustrated by the following sample
data:

players = {
 'McCutchen, Andrew' => {
 'AVG' => 0.311,
 'OBP' => 0.385,

44 | Chapter 3: Ruby and Chef Syntax

 'SLG' => 0.507
 },
 'Alvarez, Pedro' => {
 'AVG' => 0.236,
 'OBP' => 0.297,
 'SLG' => 0.477
 }
}

An individual player is accessed using his name as the key in the players hash. Because
players is a hash of hashes, the returned value is also a hash:

players['McCutchen, Andrew'] #=> { 'AVG' => 0.311, 'OBP' => 0.385, 'SLG' => 0.507 }

A particular statistic is accessible by nested bracket notation where the first key is the
name of the player and the second key is the name of the statistic:

players['McCutchen, Andrew']['AVG'] #=> 0.311

Regular Expressions
Ruby supports Perl-style regular expressions using the =~ operator:

"Bacon is good" =~ /lie/ #=> nil
"Bacon is good" =~ /bacon/ #=> 0
"Bacon is good" !~ /lie/ #=> true

Remembering the order
It’s easy to forget the order of the equal-tilde matcher. Is it =~ or ~=?
The easiest way to always get the order correct is to think in alpha‐
betical order. “Equals” comes before “tilde” in the dictionary, so the
equal sign comes before the tilde in the expression.

For example, you could try using regular expressions to find names in a list of players
on a baseball team beginning with a certain letter of the alphabet. Regular expressions
can be anchored using the caret (^), which starts a match at the beginning of the string.
The following snippet searches for all players that have a last name beginning with the
letter F:

players.select do |name, statistics|
 name =~ /^F/
end

Conditionals and Flow
Like most programming languages, Ruby supports conditionals to manage the flow and
control of application logic. The most common control gate is the if keyword. The if
keyword is complemented by the unless keyword, which is the equivalent of if not:

Ruby Syntax and Examples | 45

Using if
if some_condition
 puts "happened"
else
 puts "didn't happen"
end

Using unless
unless some_condition
 puts "didn't happen"
else
 puts "happened"
end

It is also possible to have multiple levels of conditionals using the elsif keyword:

if false
 puts "this can't possibly happen"
elsif nil
 puts "this won't happen either"
elsif true
 puts "this will definitely happen"
else
 puts "this won't happen, because the method is short-circuited
end

If the result of an expression is falsey, the body of that block will not be executed.
nil is considered a falsey value, so this block will not be evaluated.
Because the former elsif block will always execute, this else block is
unnecessary.

Less common in Ruby (but common in Chef) is the case statement. Very similar to the
if statement, the case statement applies more syntactic sugar and logic for the
developer:

case some_condition
when "literal string"
 # ...
when /regular expression/
 # ...
when list, of, items
 # ...
else
 # ...
end

If a literal object is supplied, the case statement will perform a pure equality
match.

46 | Chapter 3: Ruby and Chef Syntax

If a regular expression is supplied, Ruby will attempt to call match on the
receiving object.
If multiple items are given, they are interpreted as “or” (if the item matches “list”,
“of ”, or “items”).
case statements also support a default case, in the event that nothing else
matches.

For example, you could use Ruby’s case statement to classify players on a baseball team
based on their age. Players younger than 12 are considered to be in the minor league.
Players between 13 and 18 are developing. Players between 19 and 30 are in their prime.
Players still in the league between 31 and 40 are on their decline, and anyone over 40 is
in retirement. This logic is captured by the following Ruby case statement:

case player.age
when 0..12
 'Minor League'
when 13..18
 'Developing'
when 19..30
 'Prime'
when 31..40
 'Decline'
else
 'Retirement'
end

Methods, Classes, and Modules
Although not necessary until more advanced interactions with Chef, Ruby also supports
methods, classes, modules, and an object-oriented hierarchy. Ruby methods are defined
using the def keyword. Ruby classes are defined using the class keyword. Ruby modules
are defined using the module keyword:

class Bacon
 def cook(temperature)
 # ...
 end
end

module Edible
 # ...
end

Classes are created using the class keyword.
Methods are created using the def keyword and can accept arguments (or
parameters).

Ruby Syntax and Examples | 47

Modules are created using the module keyword.

Methods may be invoked by name. Although optional, parentheses are highly recom‐
mended for readability and code portability:

my_method(5)
my_method 5

This will execute the method named my_method with the parameter 5.
my_method call without parentheses does the same thing.

Methods are also chainable in Ruby, so you can continue to call a method on a chain,
provided the return value responds to the method:

"String".upcase.downcase.reverse #=> "gnirts"

Chef Syntax and Examples
The Domain Specific Language (DSL) used by Chef is actually just a subset of Ruby. The
full power of the Ruby programming language is accessible in Chef code. This allows
developers to conditionally perform actions, perform mathematical operations, and
communicate with other services easily from within Chef code. Before diving into the
more advanced features of Chef ’s DSL, we will explore the basic syntax first.

Here is an example of the Chef DSL in action, demonstrating how a user account can
be created with a Chef resource. In Chef, resources are the building blocks used to define
specific parts of your infrastructure. For example, the following statement manages a
user account named alice with a user identifier (UID) of 503:

user 'alice' do
 uid '503'
end

The following code sample demonstrates the more abstract syntax for invoking a DSL
method in Chef code, on which the previous example is based:

resource 'NAME' do
 parameter1 value1
 parameter2 value2
end

The first part is the name of the resource (such as template, package, or service). The
next part is the name_attribute for that resource. The interpretation of this value
changes from resource to resource. For example, in the package resource, the name_at
tribute is the name of the package you wish to install. In the template resource, the
name_attribute is the path on the target node where the compiled file should reside.
Next comes the Ruby keyword do. In Ruby, the do must always be accompanied by a

48 | Chapter 3: Ruby and Chef Syntax

closing end. Everything that resides between the do and end is called the block. Inside
the block, resource parameters and their values are declared. This varies from resource
to resource. A valid parameter for the package provider is version, whereas a valid
parameter for the template provider is source.

It might help to think about the code in a more object-oriented approach as follows.
The Chef DSL creates a new resource object for you, sets the correct attributes and
parameters, and then executes that resource when Chef evaluates the code:

resource = Resource.new('NAME')
resource.parameter1 = value1
resource.parameter2 = value2
resource.run!

Please note that the preceding code is not valid syntax and is only
used for instructional purposes.

template, package, and service are just three of the many types of resources built into
the Chef DSL. The following code demonstrates using the template, package, and
service resources in Chef code:

template '/etc/resolv.conf' do
 source 'my_resolv.conf.erb'
 owner 'root'
 group 'root'
 mode '0644'
end

package 'ntp' do
 action :upgrade
end

service 'apache2' do
 restart_command '/etc/init.d/apache2 restart'
end

This declares a template resource in Chef ’s DSL. The template will be compiled
from the local file my_resolv.conf.erb, be owned by root:root, have 0644
permissions, and be placed at /etc/resolv.conf on the target machine (where Chef
evaluates the code).
This declares a package resource in Chef ’s DSL. The “ntp” package will be
upgraded.
This declares a service resource in Chef ’s DSL. The “apache2” service will be
accessible and manageable by Chef.

Chef Syntax and Examples | 49

If you specify an invalid parameter (either one that does not exist or is misspelled), Chef
will raise an exception:

NoMethodError

undefined method `not_a_real_parameter' for Chef::Resource

Chef uses a multiphase execution model, which lets you include logic switches or loops
inside Chef code. For example, if you wanted to execute a resource on an array of objects,
you could do so using the following code. The file resource is used to manage a file.
content is a Chef DSL expression used to specify a string that is written to the file:

['bacon', 'eggs', 'sausage'].each do |type|
 file "/tmp/#{type}" do
 content "#{type} is delicious!"
 end
end

In the first phase of evaluation, Chef will dynamically expand that Ruby loop. After the
first phase, internally the code becomes equivalent to:

file '/tmp/bacon' do
 content 'bacon is delicious!'
end

file '/tmp/eggs' do
 content 'eggs is delicious!'
end

file '/tmp/sausage' do
 content 'sausage is delicious!'
end

Even though the resources were dynamically created using Ruby interpolation and
looping, they are still available as individual items in the resource list, because of Chef ’s
multiphase execution.

Similarly, top-level Ruby code is computed during the first phase of execution. When
dynamically calculating a value (such as the total free memory on a target node), those
values are cached and stored during the first phase of execution:

free_memory = node['memory']['total']

file '/tmp/free' do
 contents "#{free_memory} bytes free on #{Time.now}"
end

In the second phase of evaluation, the resource contained in the resource list will be:

file '/tmp/free' do
 contents "12904899202 bytes free on 2013-07-24 17:47:01 -0400"
end

50 | Chapter 3: Ruby and Chef Syntax

So far, you have seen the file resource, template resource, service resource, and
package resource. These are all resources packaged into the core of Chef. You can find
a complete listing of all resources on the resources page. Here are some of the most
commonly used Chef resources, followed by examples of their basic usage:
bash

Execute multi-line scripts written in the Bourne-again shell (bash) scripting lan‐
guage using the bash shell interpreter:

Output 'hello' to the console
bash 'echo "hello"'

chef_gem

Install a gem inside of Chef, for use inside Chef; useful when a Chef code requires
a gem to perform a function:

Install the HTTParty gem to make RESTful requests
chef_gem 'httparty'

cron

Create or manage a cron entry that schedules commands to run periodically at
specified intervals:

Restart the computer every week
cron 'weekly_restart' do
 weekday '1'
 minute '0'
 hour '0'
 command 'sudo reboot'
end

deploy_revision

Control and manage a deployment of code from source control (such as a Rails
application):

Clone and sync an application from revision control
deploy_revision '/opt/my_app' do
 repo 'git://github.com/username/app.git'
end

directory

Manage a directory or directory tree, handling permissions and ownership:

Recursively ensure a directory exists
directory '/opt/my/deep/directory' do
 owner 'root'
 group 'root'
 mode '0644'
 recursive true
end

Chef Syntax and Examples | 51

http://docs.getchef.com/chef/resources.html

execute

Execute an arbitrary one-line command (as if it were entered on the command
line):

Write contents to a file
execute 'write status' do
 command 'echo "delicious" > /tmp/bacon'
end

file

Manage a file already present (but not already managed by Chef):

Delete the /tmp/bacon file
file '/tmp/bacon' do
 action :delete
end

gem_package

Install a gem for use outside of Chef, such as an application or utility:

Install bundler to manage dependencies
gem_package 'bundler'

group

Create or manage a local group definition with local user accounts as members:

Create the bacon group
group 'bacon'

link

Create and manage symlinks and hard links:

Link /tmp/bacon to /tmp/delicious
link '/tmp/bacon' do
 to '/tmp/delicious'
end

mount

Mount or unmount a file system:

Mount /dev/sda8
mount '/dev/sda8'

package

Install a package using the operating system’s underlying package manager:

Install the apache2 package (on Debian-based systems)
package 'apache2'

remote_file

Transfer a file from a remote location (such as a website):

Download a remote file to /tmp/bacon
remote_file '/tmp/bacon' do

52 | Chapter 3: Ruby and Chef Syntax

 source 'http://bacon.org/bits.tar.gz'
end

service

Start, stop, or restart a service:

Restart the apache2 service
service 'apache2' do
 action :restart
end

template

Manage plain-text file contents parsed as an Embedded Ruby template:

Write the /tmp/bacon template using the bits.erb source
template '/tmp/bacon' do
 source 'bits.erb'
end

user

Create or manage a local user account:

Create the bacon user
user 'bacon'

These examples illustrate Chef ’s DSL, as well as showcase some of the common resour‐
ces used when working with Chef. Although our list is not comprehensive, it does in‐
clude some of the most common Chef resources you will encounter. The full list of
Chef ’s built-in resources can be found in the online resource documentation.

The material presented in this chapter is all you need to know about Ruby to write Chef
code. Only when you need to extend Chef beyond what is provided out of the box will
you have to worry about delving more deeply into Ruby coding. When you need to level
up your Ruby knowledge for this task, we highly recommend Customizing Chef by Jon
Cowie (O’Reilly).

Now that we have covered all the necessary fundamentals of Ruby, let’s get back to more
Chef coding! In the next chapter, we will put your new Ruby knowledge to use by writing
some Chef code.

Chef Syntax and Examples | 53

http://docs.opscode.com/resource.html
http://shop.oreilly.com/product/0636920032984.do

CHAPTER 4

Write Your First Chef Recipe

Create a Directory Structure for Your Code
Since we will be writing a lot of code over the remainder of this book, let’s create a simple
directory structure—organizing the code by chapter—like the one below (There is no
need to use this exact directory structure to organize your files. It is only a suggestion.
Use a system that makes sense to you):

learningchef
|_ chap04
|_ chap05
...
|_ chap16

In your home directory, create a subdirectory named learningchef, making it the current
directory:

$ cd
$ mkdir learningchef
$ cd learningchef

Then create a chap04 subdirectory for the code examples you will be writing in this
chapter. Make chap04 the current directory:

$ mkdir chap04
$ cd chap04

Follow a similar pattern for each new chapter, creating a new subdirectory underneath
learningchef to contain each chapter’s examples. The code examples for this book follow
this convention. When a specific directory structure is required for an example, we’ll
let you know; otherwise, assume you can put the files anywhere you find convenient.

55

http://learningchef.com

Write Your First Chef Recipe
To show you the basics, let’s write the simplest form of Chef code to make a “Hello
World” recipe. A recipe is a file that contains Chef code.

Using your favorite text editor, create the recipe file hello.rb to match Example 4-1. This
file can be anywhere—no specific directory structure is required. By convention, files
that contain Chef code have the extension .rb to show they are written in Ruby.

The Chef coding language is a Ruby Domain Specific Language (DSL). It contains ad‐
ditional Ruby-like statements specialized for expressing Chef system administration
concepts.

Example 4-1. hello.rb
file 'hello.txt' do
 content 'Welcome to Chef'
end

It’s not necessary to place hello.rb or any of the other *.rb example
files in this chapter in a special directory. To find the hello.rb file
containing the code from the preceding example, look among the
source code examples for the book in the chap04/ directory. Other
examples in this and subsequent chapters can be found in similarly
titled chapter directories.

We’ll go over what all the statements in this file mean in more detail in “Examine hel‐
lo.rb” on page 58. Enter the code using a text editor, making sure you match the capital‐
ization, spacing, and syntax exactly.

The file statement code you entered in hello.rb. is a resource. Resources are the building
blocks for assembling Chef code. A resource is a statement within a recipe that helps
define actions for Chef to perform. This particular file resource in hello.rb tells Chef
to:

• Create the file hello.txt.
• Write the content Welcome to Chef to hello.txt.

Use the chef-apply command to get Chef to perform the actions indicated in your
newly created hello.rb file.

chef-apply
The chef-apply tool is a wrapper built on top of Chef Solo (which will be discussed in
more detail in Chapter 9). Chef Solo allows you to run Chef code locally without needing

56 | Chapter 4: Write Your First Chef Recipe

http://learningchef.com

a Chef Server. As you’ll see in Chapter 9, it is not convenient to execute Chef code in
a .rb file using Chef Solo. The chef-apply tool was designed to provide an easy-to-use
wrapper on top of Chef Solo.

Chef requires administrator privileges to run. If you are running User
Account Control (UAC) on Windows, make sure you Run As Ad‐
ministrator. On Linux/Mac OS X, run chef-apply with sudo privi‐
leges if you are not running as root.

When you run chef-apply hello.rb, the output should resemble, for Linux/Mac OS
X:

$ sudo chef-apply hello.rb
Recipe: (chef-apply cookbook)::(chef-apply recipe)
 * file[hello.txt] action create
 - create new file hello.txt
 - update content in file hello.txt from none to 40a30c
 --- hello.txt 2014-08-10 22:27:44.000000000 -0700
 +++ /tmp/.hello.txt20140810-14225-6e7qc7 2014-08-10 22:27:44.000000000
 -0700 @@ -1 +1,2 @@
 +Welcome to Chef

For Windows (Run As Administrator):

> chef-apply hello.rb
Recipe: (chef-apply cookbook)::(chef-apply recipe)
 * file[hello.txt] action create
 - create new file hello.txt
 - update content in file hello.txt from none to 40a30c
 --- hello.txt 2014-07-11 12:38:30.000000000 -0700
 +++ C:/Users/misheska/AppData/Local/Temp/hello.txt20140711-2344-mf17rh
 @@ -1 +1,2 @@
 +Welcome to Chef

Verify Your First Chef Recipe
Congratulations, you just automated the creation of the hello.txt file using Chef!

Verify that your hello.rb recipe performed the correct action. Look to see if a hello.txt
file exists in the current directory alongside your hello.rb file and that it has the correct
content:

$ more hello.txt
Welcome to Chef

Verify Your First Chef Recipe | 57

Examine hello.rb
Let’s go over each line in hello.rb from Example 4-1 in more detail, exploring the purpose
of each component. As mentioned earlier, Chef code uses a domain-specific language
(DSL) built on top of the Ruby programming language. Having expressions tailored for
system administration makes Chef code more accessible to beginners. The DSL is also
designed to make you focus more on describing what the desired configuration of a
machine should be, rather than how it should be accomplished. Desired configuration
is a concept we’ll cover in more detail in “Recipes Specify Desired Configuration” on
page 59.

Because Chef recipes are code, we recommend that you use some form
of source control to manage your Chef source. It is beyond the scope
of this book to show you how to use version control to manage source.
However, use version control for everything you do with Chef. Any
version control system will do: Git, Subversion, Mercurial, Team
Foundation Server, and so on.

The first line of hello.rb contains a file resource referring to the file hello.txt:
file 'hello.txt' do

Remember that resources are building blocks that Chef uses to configure things on a
system. The file resource is used to manage a file on a computer. The file resource
takes a string parameter specifying the path to the file. In a Chef recipe, this is denoted
by enclosing the string in double quotes (“”) or single quotes (''). For example, use the
following file resource syntax, to specify the filename /usr/local/hello.txt:

file "/usr/local/hello.txt"

It doesn’t matter whether you use double or single quotes for string literals; either choice
is valid:

file '/usr/local/hello.txt'

Now, what is that do clause at the end of the first line? The do statement at the end of
the first line denotes the start of a block. To specify extra parameters in a resource
statement, it must span multiple lines. When resource statements span multiple lines,
everything but the first line must be enclosed by a do..end pair. The do…end pair
containing the extra lines is referred to as a block.

Line two contains a reference to a content attribute, specifying a string that should be
written to the file:

 content 'Welcome to Chef'

58 | Chapter 4: Write Your First Chef Recipe

For now, just think of an attribute as yet another variable maintained by Chef that can
be used as a parameter to a resource. We’ll delve more deeply into attributes in Chap‐
ter 8. By convention, statements in Chef recipes are indented with spaces when they are
inside a block. Thus, the content attribute is indented two spaces, following Ruby
convention.

The string Welcome to Chef is passed as a content attribute to the file resource. The
file resource writes out the specified content string attribute to the hello.txt file.

Finally, line three completes the block for the file resource with an end statement,
finishing off the do..end pair:

end

This example should give you an idea of what Chef code looks like, building on the
introduction to Ruby, the core of Chef, which we covered in Chapter 3.

Recipes Specify Desired Configuration
Let’s explore the concept that you only need to tell Chef what the desired configuration
should be, not how to achieve it, that we touched on earlier. Figure 4-1 illustrates this
concept. Before Chef performs actions, it refers to the resources and attributes in a recipe
to answer the question "What do I care about?” Then Chef decides how to put the system
in the desired configuration by reasoning about the current state of the system. As a
result, Chef code tends to be more succinct than equivalent bash or PowerShell scripting
code as you only need to specify the desired configuration in your code, not how this
configuration must be achieved. Chef determines how automatically and autonomously.

Figure 4-1. Recipes specify desired configuration

Let’s make this concept more concrete by writing some Chef code. Create a new recipe
alongside hello.rb called stone.rb following Example 4-2. Similar to hello.rb, stone.rb
does not need to be in any specially named directory structure.

Example 4-2. stone.rb
file "#{ENV['HOME']}/stone.txt" do
 content 'Written in stone'
end

Recipes Specify Desired Configuration | 59

stone.rb is just a slight modification of the earlier hello.rb recipe in Example 4-1. The
string Written in stone will be written to stone.txt. However, in this example, the stone.txt
file will be written to your home directory instead of the directory where you run
chef-apply.

Why did we make this change? It is not safe to use implied relative paths like stone.txt
with Chef resources. On some platforms, behind the scenes, Chef could be running in
a different place than you expect. We constrained the things you did in the first hello.rb
example, so it was safe, but in general you must use absolute paths when specifying a
filename to a resource. Plus, keep in mind that Chef recipes are intended to be run on
different machines and even different operating systems producing the same configu‐
ration. Chef steers you toward using absolute paths in recipes because it would be dif‐
ficult to specify consistent file locations using relative paths.

On Windows, Chef will convert absolute paths with forward slashes
(/) to use the Windows-style backslash character (\). You can use the
backslash character, but Chef code uses the backslash (\) as an es‐
cape character in strings. So, you have to specify a double backslash
(\\) to insert a literal single backslash in a string. In this book, we’ll
stick with using forward slashes (/) on Windows.

Let’s explain the #{ENV['HOME']} construct and why we changed the file string to use
double quotes (“”) instead of single quotes ('\'). In Chef code, it doesn’t matter if you
use double quotes or single quotes for string literals. However, it does matter when you
want to evaluate the value of a variable in a string (also known as string interpolation).

#{ENV['HOME']} is a variable referring to the current user’s home directory. Variable
references within strings are denoted by #{<variable>} (a hash character followed by
the variable enclosed by a set of curly braces). A string must be enclosed in double quotes
(“”) when it contains a variable reference. Otherwise, Chef will not replace the variable
reference with its value when the string is evaluated.

The ENV['HOME'] variable is a reference to a collection of name-value pairs. Chef calls
a collection of name-value pairs a Hash. Other languages refer to this construct as dic‐
tionary, associative array, or a map—it’s all the same thing. In a Chef recipe, you can
retrieve the value for a system environment variable by referring to the variable
ENV['<name>']. name refers to a string with an environment value name. This is the
code equivalent of:

• echo $HOME on Linux/Mac OS X/Windows PowerShell
• echo %USERPROFILE% on Windows Command Prompt

60 | Chapter 4: Write Your First Chef Recipe

For example, my home directory is /Users/misheska. Chef evaluates the string
"#{ENV['HOME']}/stone.txt" as "/Users/misheska/stone.txt".

Sharp-eyed readers might wonder how we could get away with us‐
ing the $HOME reference if you are using the Windows Command
Prompt. If you try to echo %HOME% using the Windows Command
Prompt, you’ll discover the environment variable doesn’t exist. By
default on Windows, internally Chef uses PowerShell to evaluate
command-line references, even when you run Chef on the Win‐
dows Command Prompt. PowerShell is more Unix-like than the
Windows Command Prompt, so Chef uses PowerShell by default.

Now that we’ve explained the changes to the source, run your Chef code using chef-
apply on a command line. The output should resemble, for Linux/Mac OS X:

$ sudo chef-apply stone.rb
Recipe: (chef-apply cookbook)::(chef-apply recipe)
 * file[/Users/misheska/stone.txt] action create
 - create new file /Users/misheska/stone.txt
 - update content in file /Users/misheska/stone.txt from none to ba4fda
 --- /Users/misheska/stone.txt 2014-08-10 22:33:40.000000000 -0700
 +++ /tmp/.stone.txt20140810-14302-1nfmi0r 2014-08-10 22:33:40.000000000
 -0700 @@ -1 +1,2 @@
 +Written in stone

For Windows (Run As Administrator):

> chef-apply stone.rb
Recipe: (chef-apply cookbook)::(chef-apply recipe)
 * file[C:/Users/misheska/stone.txt] action create
 - create new file C:/Users/misheska/stone.txt
 - update content in file C:/Users/misheska/stone.txt from none to ba4fda
 --- C:/Users/misheska/stone.txt 2014-07-11 15:48:46.000000000 -0700
 +++ C:/Users/misheska/AppData/Local/Temp/stone.txt20140711-2232-1wpswfb
 @@ -1 +1,2 @@
 +Written in stone

Now the file stone.txt should be created in your home directory with the content Written
in stone. Verify with the following command for Linux/Mac OS X/Windows PowerShell:

$ more $HOME/stone.txt
Written in stone

or, for Windows Command Prompt:

> more %USERPROFILE%\stone.txt
Written in stone

Try running chef-apply using the same stone.rb recipe one more time. You should
notice that the output is a little different executing the same recipe for the second time.

Recipes Specify Desired Configuration | 61

Linux/Mac OS X:

$ sudo chef-apply stone.rb
Recipe: (chef-apply cookbook)::(chef-apply recipe)
 * file[/Users/misheska/stone.txt] action create (up to date)

Windows (Run As Administrator):

> chef-apply stone.rb
Recipe: (chef-apply cookbook)::(chef-apply recipe)
 * file[C:/Users/misheska/stone.txt] action create (up to date)

chef-apply reports that file[...stone.txt] action create is up to date and that
no action was performed. This is a good example of how chef-apply behaves differently
depending on the machine’s state. Chef performs actions autonomously without being
explicitly told to do so:

• If stone.txt does not exist, chef-apply creates the file with the appropriate content.
• If stone.txt already exists, chef-apply will do nothing.

Do you think that chef-apply is smart enough to detect someone tampering with file
content outside of Chef? Let’s try an experiment. Change the contents of stone.txt with
the following command for Linux/Mac OS X:

$ sudo sh -c 'echo "Modifying this file written in stone" > $HOME/stone.txt'

For Windows Command Prompt:

> echo Modifying this file written in stone > %USERPRFOILE%\stone.txt

For Windows PowerShell:

$ echo "Modifying this file written in stone" > $HOME\stone.txt

Verify that the file contents were changed by running one of the following for the Linux/
Mac OS X/Windows PowerShell platform:

$ more $HOME/stone.txt
Modifying this file written in stone

For Windows Command Prompt:

$ more %USERPROFILE%\stone.txt
Modifying this file written in stone

Run chef-apply again for Linux/Mac OS X:

$ sudo chef-apply stone.rb
Recipe: (chef-apply cookbook)::(chef-apply recipe)
 * file[/Users/misheska/stone.txt] action create
 - update content in file /Users/misheska/stone.txt from 283cb7 to ba4fda
 --- /Users/misheska/stone.txt 2014-08-10 22:35:22.000000000 -0700
 +++ /tmp/.stone.txt20140810-14428-1uxzrvv 2014-08-10 22:35:46.000000000
 -0700 @@ -1,2 +1,2 @@

62 | Chapter 4: Write Your First Chef Recipe

 -Modifying this file written in stone
 +Written in stone

or, for Windows (Run As Administrator):

> chef-apply stone.rb
Recipe: (chef-apply cookbook)::(chef-apply recipe)
 * file[C:/Users/misheska/stone.txt] action create
 - update content in file C:/Users/misheska/stone.txt from 7400c9 to ba4fda
 (current file is binary, diff output suppressed)

Notice that chef-apply reports that it performed an action. What action was per‐
formed? Check the content of stone.txt again on Linux/Mac OS X/Windows PowerShell:

$ more $HOME/stone.txt
Written in stone

or, for Windows Command Prompt:

> more %USERPROFILE%\stone.txt
Written in stone

Notice that chef-apply reverted the content back to Written in stone.

This is how Chef prevents configuration drift. Chef not only decides whether or not files
are created, but it also checks file content. When a file is inadvertently modified, Chef
makes sure the file reverts back to the content specified in the recipe.

The only way you can change the contents of stone.txt is by specifying different content
in the stone.rb recipe. Otherwise, chef-apply reverts the content of stone.txt back to
what the recipe specifies.

Chef decides the actions to perform to make the system configuration match what the
recipe specifies. As a Chef developer, you only need to tell Chef the desired configura‐
tion. Chef takes care of all the rest automatically.

To Uninstall, Specify What Not to Do
You might wonder if it is possible to get Chef to automatically uninstall everything it
installs. Not quite, but you can perform the equivalent of an uninstallation by telling
Chef explicitly what not to do.

This might seem like Chef falls short in the uninstallation department, but that’s not the
case. Remember, Chef tries to be smart. You don’t need to tell Chef how to do something.
Instead you define the desired configuration you want in a recipe, and Chef determines
what to do. Your recipe tells Chef when to stop reasoning about the configuration of
the machine by defining what the desired configuration looks like.

There is no reasonable way for Chef to automatically reverse changes or uninstall and
ensure that a system will consistently be in a known good configuration. You probably

To Uninstall, Specify What Not to Do | 63

already know this is an impossible problem to solve in general. Every system adminis‐
trator has come to the point in troubleshooting an issue caused by unknown changes
to a computer where he gives up, wipes the box, and starts over again from scratch.

You might have thought that if you merely had enough time or were more persistent in
your troubleshooting, you could solve an issue. Mark Burgess, the computer scientist
introduced in Chapter 1 who made significant contributions to the automation theory
upon which Chef is based, did the math and proved otherwise, because order matters.
Based on the theory supported by this math, Chef restricts itself in trying to reason
about the state of the system only to the extent of what is explicitly defined in a recipe.
This ensures that your system will always be consistently what the recipe defines as a
“good” configuration. Then Chef can be smart and repair the system, as in the example
from the previous section when you skirted around Chef and modified the content of
stone.txt manually. Chef was able to assess that there was a change in the configuration
and reverted stone.txt back to the configuration defined in the recipe.

Thus, if you want Chef to perform an uninstall, you must explicitly define what not to
do. All resources support this kind of definition in some fashion. In the case of a file
resource, you can tell Chef that a file is no longer supposed to be present on the system.
Then Chef will perform the inverse of the reasoning it performed to create the file:

• If the file exists, chef-apply deletes the file.
• If the file is verifiably not present, chef-apply will do nothing.

To close out this chapter, let’s write a recipe to clean up the stone.txt file we just created.
Create cleanup.rb following Example 4-3.

Example 4-3. cleanup.rb
file "#{ENV['HOME']}/stone.txt" do
 action :delete
end

Let’s review this code before running chef-apply.

The file resource performs the :create action by default, but you can override this
default with the :delete action instead. action is an attribute that can be specified in
a file resource, to override the default setting. In cleanup.rb we’ve specified that our
recipe perform the :delete action.

In Chef code, a string prefaced by a single colon (:) is called a sym‐
bol. In other languages this is equivalent to a string constant.

64 | Chapter 4: Write Your First Chef Recipe

http://markburgess.org/papers/totalfield.pdf

Now let’s perform a Chef run using the cleanup.rb recipe on Linux/Mac OS X:

$ sudo chef-apply cleanup.rb
Recipe: (chef-apply cookbook)::(chef-apply recipe)
 * file[/Users/misheska/stone.txt] action delete
 - delete file /Users/misheska/stone.txt

or, in Windows (Run As Administrator):

> chef-apply cleanup.rb
Recipe: (chef-apply cookbook)::(chef-apply recipe)
 * file[C:/Users/misheska/stone.txt] action delete
 - delete file C:/Users/misheska/stone.txt

In Chef, using relative paths with :delete is problematic on some
platforms, so just delete the hello.txt file by hand that you created in
the first exercise.

We’ve cleaned up the stone.txt we created in this final hands-on exercise in the chapter.
chef-apply deleted stone.txt.

Summary
In this chapter we introduced the chef-apply command, showing you how to run .rb
files containing Chef code.

We introduced the following Chef concepts and terminology:
recipe

A set of instructions written in a Ruby DSL that indicate the desired configuration
to Chef.

resource
A cross-platform abstraction for something managed by Chef (such as a file). Re‐
sources are the building blocks from which you compose Chef code.

attribute
Parameters passed to a resource.

You created recipe files with Chef code, and ran chef-apply to perform the actions
specified in the recipe. You learned that in Chef code, you need only tell Chef the desired
configuration using resources as building blocks. We showed you how to use the file
resource to create a file, and how to use the action :delete attribute to delete a file.

In the next chapter, we will show you how to create a sandbox environment using Test
Kitchen, so that you have a safe place to experiment and learn more about Chef.

Summary | 65

CHAPTER 5

Manage Sandbox Environments
with Test Kitchen

For the rest of this book, we’re going to want to deploy to sandbox environments that
closely simulate a production environment. Running Chef on your local development
workstation, like we did in Chapter 4, is not the best approach. Your development
workstation probably doesn’t match your production operating environment. Even if
your development workstation does match your production environment, you probably
don’t want to take the risk of running untested Chef code locally. Untested Chef code
might make unintended configuration changes to your local development environment.
Neither is it a good idea to run your experimental Chef code in your production envi‐
ronment before it is validated, for similar reasons.

We’ll use Test Kitchen to create a sandbox environment that simulates a production
environment. Test Kitchen works in concert with two other tools, Vagrant and Virtual‐
Box, to produce a sandbox locally in a virtual machine. This sandbox environment is a
safe, isolated place in which to experiment with Chef.

The CentOS 6 operating system will be used in our sandbox environment. CentOS is a
free operating system compatible with RedHat Enterprise Linux. RedHat Enterprise
Linux is a popular choice for a production environment. CentOS is a compatible variant
of RedHat intended for open source projects. CentOS does not require the purchase of
a commercial license for use. The skills you will learn in this book aren’t specific to
RedHat Enterprise Linux, however. You should be able to translate what you learn to
your operating system of choice.

If you would like to easily follow along with the examples in this book, use the Vagrant
and VirtualBox setup as outlined in this chapter. If you would prefer to use an alternative
method, you can still follow the exercises in the book—all you really need is a separate
machine, cloud instance, or virtual machine that is not your main development

67

workstation. Refer to the website for this book for more information on alternative
setups in which you can create sandbox environments with Test Kitchen.

More choices
You are not required to use the Vagrant/VirtualBox-based setup highlighted in these
exercises in order to use Chef. We had to pick one way, as the whole book can’t all be
choices. It also helps to provide a prescriptive approach for beginners who might not
have a lot of sysadmin experience. Running the sandbox environment in a virtual ma‐
chine is a great way to learn Chef for many, as it does not require a production setup of
Chef.

There is an article on http://learningchef.com that gives you more setup options, should
the local desktop virtualization approach not be a good fit for you. Experienced sysad‐
mins should be able to translate the examples in this book to different production setups.

Before we can get started using Test Kitchen with the setup we use as default for the
exercises in this book, first you need to install the necessary virtualization software:
Vagrant and VirtualBox.

As shown in Figure 5-1, Test Kitchen uses Vagrant to create sandbox environments as
virtual machines. Vagrant provides a single abstraction layer for Test Kitchen so it can
work with many different kinds of virtualization software on a host OS. Vagrant cur‐
rently supports VirtualBox, VMware Workstation, VMware Fusion, and Hyper-V vir‐
tualization software. We chose to use VirtualBox for the examples in this book because
it is a free, open source virtualization solution that works on all the supported Chef
platforms—Linux, Mac OS X, and Windows.

Installing Vagrant and VirtualBox
In order to use the most straightforward Test Kitchen setup based on open source soft‐
ware, you’ll need to install Vagrant and VirtualBox. The machine requirements for this
setup are:

• At least 6 GB of memory total
• At least 2 GB of free memory before running the sandbox environments
• Roughly 10 GB of free disk space to hold the extracted sandbox environments

If your machine does not meet these requirements, take a look at http://learning
chef.com for alternatives where you can configure your sandbox environments on an‐
other machine besides your development workstation.

68 | Chapter 5: Manage Sandbox Environments with Test Kitchen

http://learningchef.com
http://learningchef.com
http://learningchef.com
http://learningchef.com

Figure 5-1. Vagrant provides an API for virtualization software

Both Vagrant and VirtualBox are available as free downloads on the Internet. Visit the
following web pages to download the Vagrant and VirtualBox installers, running each
in turn:

• Vagrant—http://www.vagrantup.com/downloads.html
• VirtualBox—https://www.virtualbox.org/wiki/Downloads

You might need to restart your computer after installing Virtual‐
Box. Make sure you run VirtualBox at least once to make sure it is
working properly.

To verify that Vagrant is installed properly, run vagrant --version on a command line.
As we will be using images distributed via VagrantCloud, you must be using Vagrant
1.5.0 or higher. VagrantCloud is a directory of Vagrant images on the Internet. Further,
we recommend that you use Vagrant 1.6.3 or higher, especially if you are using Windows.
The Vagrant 1.6.x series is the first to officially add support for Windows guests:

$ vagrant --version
Vagrant 1.6.3

To verify that VirtualBox is installed properly, check the version with VBoxManage. Va‐
grant is compatible with VirtualBox versions 4.0.x, 4.1.x, 4.2.x, and 4.3.x, as you can
read about in the documentation. We recommend that you use VirtualBox 4.3.12 or

Installing Vagrant and VirtualBox | 69

http://docs.vagrantup.com/v2/virtualbox/index.html

higher because the sandbox environments created for this book were prepared using
VirtualBox 4.3.12.

Linux/Mac OS X:

$ VBoxManage --version
4.3.12r93733

Windows Command Prompt:

> "C:\Program Files\Oracle\VirtualBox\VBoxManage" --version
4.3.12r93733

Windows PowerShell:

PS> & "C:\Program Files\Oracle\VirtualBox\VBoxManage" --version
4.3.8r92456

Host versus Guest
When talking about virtual machines and sandbox environments, it helps to explain
two terms: host and guest. Figure 5-2 presents an overview of the logical architecture
for a virtualization system like VirtualBox.

Figure 5-2. Guest OS overview

Virtualization software such as VirtualBox allows you to run practically any kind of
operating system (OS) on your physical hardware. Virtualization software accomplishes
this feat by running a target operating system in an isolated environment. Within this
isolated environment, the virtualization system simulates the operating system running
on separate, dedicated hardware, even though it is sharing resources with the main host.
This isolated environment only consumes resources when needed and is easily replaced
if something goes wrong. It’s the perfect place for experimenting with Chef.

70 | Chapter 5: Manage Sandbox Environments with Test Kitchen

VirtualBox allows your single workstation to behave as if it were multiple machines.
You have your physical machine, running Linux, Mac OS X, or Windows (and the
VirtualBox virtualization software). This is commonly referred to as the host environ‐
ment. Each isolated environment that runs a separate copy of an operating system,
behaving as if it were a separate machine, is referred to as a guest. On a single machine,
there is only one host environment, but there can be many guest environments. There
can be as many guest environments as the physical resources on the host allow.

For this book, you have installed the Chef Development Kit on your host environment.
In Chapter 4, you wrote Chef code on the host, and deployed Chef code on the host.
Going forward, you will continue to write Chef code on the host environment. But from
now on, you will deploy your code to a guest running CentOS 6. The guest environment
will simulate a production environment running CentOS 6.

It is a good idea to develop your Chef code in a separate environment from your pro‐
duction machines. To make it more convenient to do work on just one machine, you
can use virtualization software to simulate having multiple machines. To follow the
exercises in this book, you will need to enter commands on one machine or the other.
The terms host and guest are a convenient way to be more specific about precisely which
environment we expect you to be using.

Introducing Test Kitchen
You installed Test Kitchen in Chapter 2, either as part of the Chef Development Kit, or
manually, if you chose the Chef Client option. Test Kitchen will create a number of
supporting files in the current working directory while it is being used. You should create
a project directory for each sandbox environment to organize these files. For your first
sandbox environment, create a directory called kitchen and make it the current
directory:

$ mkdir kitchen
$ cd kitchen

Run the kitchen init --create-gemfile command in your newly created kitchen
directory. The kitchen init command generates all the config files needed to add Test
Kitchen support to a project. We need to use the --create-gemfile option, because if
we don’t, Test Kitchen will immediately try to run gem install as a user instead of as
an admin. This fails on some platforms because the Chef Development Kit installation
doesn’t always make its gem directory user-writeable:

$ kitchen init --create-gemfile
 create .kitchen.yml
 create test/integration/default
 create Gemfile
 append Gemfile

Introducing Test Kitchen | 71

 append Gemfile
You must run `bundle install' to fetch any new gems.

The bundle install command referenced in the preceding command line output
refers to the Bundler tool. Bundler is a tool that downloads and manages Ruby gems.
Test Kitchen needs you to run bundle install to download and install the kitchen-
vagrant driver and some supporting gems.

You might be prompted for your administrator/root password when
running bundle install.

kitchen-vagrant is a driver for Test Kitchen that adds support for managing VirtualBox
and VMware virtual machines using Vagrant. Nearly all Test Kitchen functionality is
implemented via these drivers, as Test Kitchen is itself is nothing more than a generic
framework for managing environments and running tests. Add-on drivers actually im‐
plement functionality. Run bundle install, like kitchen init, suggests installing
those extra dependencies:

$ bundle install
Fetching gem metadata from https://rubygems.org/..........
Resolving dependencies...
Using mixlib-shellout (1.4.0)
Using net-ssh (2.9.1)
Using net-scp (1.2.1)
Using safe_yaml (1.0.3)
Using thor (0.19.1)
Using test-kitchen (1.2.1)
Using kitchen-vagrant (0.15.0)
Using bundler (1.5.2)
Your bundle is complete!
Use `bundle show [gemname]` to see where a bundled gem is installed.

Let’s go over the directory structure and files kitchen init just created:

.
├── .kitchen
│ └── logs
│ └── kitchen.log
├── .kitchen.yml
├── Gemfile
├── Gemfile.lock
└── test
 └── integration
 └── default

.kitchen.yml
Used to configure virtual environments for Test Kitchen.

72 | Chapter 5: Manage Sandbox Environments with Test Kitchen

Gemfile
Bundler uses this file to configure the gem repository and the list of gems to down‐
load. Bundler will automatically determine a gem’s dependencies by its references
to other gems, so you need only list the top level gems you require.

Gemfile.lock
Records all the versions of the gems Bundler downloaded for the current project,
plus the versions of all dependencies. This file can be used by another Chef devel‐
oper to reproduce your current gem environment using bundle install.

.kitchen/
Hidden directory that Test Kitchen uses to store persistent data it needs to function
properly.

.kitchen/logs/kitchen.log
Text file that contains the output from the last run of Test Kitchen.

test/
Directory structure that contains tests (initially just a skeleton structure with the
subdirectory tree test/integration/default/).

Spinning Up Your First Virtual Machine
Before spinning up the virtual machine, you’ll need to modify the kitchen.yml config‐
uration file created by kitchen init. You’ll need to change the .kitchen.yml configu‐
ration file so it loads the environment prepared exclusively for this book. Open .kitch‐
en.yml with your programmer’s editor and edit the platforms: section to make
sure .kitchen.yml resembles what you see in Example 5-1.

Example 5-1. kitchen/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_solo

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65

suites:
 - name: default
 run_list:
 attributes:

Spinning Up Your First Virtual Machine | 73

Spacing matters in the .kitchen.yml file. Make sure you use the space
character and not the tab character for white space. The .kitch‐
en.yml should be tab free! Vertical alignment of the statements in this
file also matters, so make sure the spacing lines up exactly as shown
in Example 5-1.

This change will tell Test Kitchen to download the CentOS 6.5 image from VagrantCloud
prepared for this book. The box: field must match the VagrantCloud box name listed
on https://vagrantcloud.com/learningchef/centos65. The box name is learningchef/
centos65. Because we will be typing in the name: field in Test Kitchen command
prompts as an alias string for this box, we shorten it to centos65.

In Test Kitchen lingo, an instance is an environment that includes a way to create a
virtual machine with an operating system and a way to deploy automation code. Run
the kitchen list command to print out the available instance names:

$ kitchen list
Instance Driver Provisioner Last Action
default-centos65 Vagrant ChefSolo <Not Created>

Notice that the default-centos65 instance is set up to use the Vagrant driver (kitchen-
vagrant) and to use the ChefSolo provisioner. We’ll cover the ChefSolo provisioner more
in Chapter 9.

If you are using a Windows PC, make sure you have hardware virtu‐
alization support enabled in your BIOS. For more information, see
the VirtualBox User Manual.

To create a virtual environment on your Chef Development Workstation running Cen‐
tOS, use the kitchen create command, passing it a Test Kitchen instance name. De‐
pending on the speed of your Internet connection, this download might take anywhere
from 5 to 15 minutes the first time:

$ kitchen create default-centos65
-----> Starting Kitchen (v1.2.2.dev)
-----> Creating <default-centos65>...
 Bringing machine 'default' up with 'virtualbox' provider...
 ==> default: Box 'learningchef/centos65' could not be found.
 default: Box Provider: virtualbox
 default: Box Version: >= 0
 ==> default: Loading metadata for box 'learningchef/centos65'
 default: URL: https://vagrantcloud.com/learningchef/centos65
 ==> default: Adding box 'learningchef/centos65' (v0.2.0) for provider:
 virtualbox
 default: Downloading: https://vagrantcloud.com/learningchef/centos65

74 | Chapter 5: Manage Sandbox Environments with Test Kitchen

www.allitebooks.com

https://vagrantcloud.com/learningchef/centos65
https://www.virtualbox.org/manual/ch10.html
http://www.allitebooks.org

 ==> default: Successfully added box 'learningchef/centos65' (v0.2.0) for
 'virtualbox'!
 ==> default: Importing base box 'learningchef/centos65'...
 ==> default: Matching MAC address for NAT networking...
 ==> default: Checking if box 'learningchef/centos65' is up to date...
 ==> default: Setting the name of the VM: default-centos65_default_
 1407741726274_31370
 ==> default: Clearing any previously set network interfaces...
 ==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
 ==> default: Forwarding ports...
 default: 22 => 2222 (adapter 1)
 ==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
 default: SSH address: 127.0.0.1:2222
 default: SSH username: vagrant
 default: SSH auth method: private key
 default: Warning: Connection timeout. Retrying...
 ==> default: Machine booted and ready!
 ==> default: Checking for guest additions in VM...
 ==> default: Setting hostname...
 ==> default: Machine not provisioning because `--no-provision`
 is specified.
 Vagrant instance <default-centos65> created.
 Finished creating <default-centos65> (1m43.54s).
-----> Kitchen is finished. (1m43.79s)

When there is only one instance name in a .kitchen.yml file, there is
no need to specify an instance name. The command line kitchen
create would have been sufficient in the previous example. We’ll
continue to specify the instance name on all kitchen command lines
in this book for clarity. But feel free to omit them if you want to save
typing a few extra characters.

The flowchart in Figure 5-3 presents an overview of the logic kitchen create uses to
create a virtual environment.

Spinning Up Your First Virtual Machine | 75

Figure 5-3. kitchen create logic

The kitchen-vagrant driver uses prepackaged basebox templates to accelerate the virtual
machine creation process. A basebox contains a bare-bones OS installation, just enough
to enable Chef to run. Test Kitchen comes preconfigured to use baseboxes that Chef
Software makes available on the Internet via VagrantCloud. The baseboxes vary in size,
depending on the operating system, and are roughly the size of a CD—a 400-MB to
600-MB download. Test Kitchen downloads a basebox only once, if it is not already
present on your system. Vagrant maintains the catalog of baseboxes, which you can view
with the command vagrant box list.

76 | Chapter 5: Manage Sandbox Environments with Test Kitchen

Do you want to create your own custom baseboxes? Packer can be
used to create baseboxes from small configuration scripts. The Pack‐
er tool is available for download. Chef Software makes the configu‐
ration scripts for the Test Kitchen baseboxes freely available on the
Internet; you can use these as a starting point.
Chef sponsors two projects: Bento and Box-Cutter. The Bento project
contains Packer definitions that Chef uses internally to build soft‐
ware. Box-Cutter offers configuration management tool-agnostic
Packer templates that go beyond the platforms Chef uses for its in‐
ternal builds, offering more cutting-edge, experimental features.

Once a basebox has been downloaded, the box is imported to your virtualization soft‐
ware. Test Kitchen then works with the virtualization provider to configure a virtual
machine instance according to the parameters set in the .kitchen.yml file. Finally, it boots
up the virtual machine so that it is ready to use, creating an instance.

You can verify that Test Kitchen performed all these steps by running the kitchen
list command, noting that its Last Action changed to Created:

$ kitchen list
Instance Driver Provisioner Last Action
default-centos65 Vagrant ChefSolo Created

You can also verify that a virtual machine got created in the VirtualBox Manager as
shown in Figure 5-4 and that VBoxManage list runningvms shows that a VM is
running.

On Linux/Mac OS X:

$ VBoxManage list runningvms
"default-centos65_default_1407741726274_31370"
{70b5e95a-d5f5-4956-b8b6-86dbf00e7218}

On Windows Command Prompt:

> "C:\Program Files\Oracle\VirtualBox\VBoxManage" list runningvms
"default-centos65_default_1404514741641_54313"
{2db0fb6c-ab8e-4c65-99aa-2d4d4a4d27ff}

On Windows PowerShell:

PS> & "C:\Program Files\Oracle\VirtualBox\VBoxManage" list runningvms
"default-centos65_default_1404514741641_54313"
{2db0fb6c-ab8e-4c65-99aa-2d4d4a4d27ff}

Spinning Up Your First Virtual Machine | 77

http://packer.io
http://packer.io
https://github.com/opscode/bento
https://github.com/box-cutter

Figure 5-4. CentOS 6.5 virtual machine running in VirtualBox

You might be tempted to manage these virtual machines directly in
the VirtualBox Manager GUI. Be careful, because you might con‐
fuse Test Kitchen. It is intended that you use the Test Kitchen com‐
mand line interface to manage the lifecycle of these virtual
environments.

Now that the virtual machine has been created and started, you can log in to the instance
via the kitchen login command, using the same instance name we used for kitchen
create:

$ kitchen login default-centos65
Last login: Fri Jul 4 14:48:27 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.

You should notice that you are now logged into the CentOS 6.5 guest virtual machine
running on your Chef Development Workstation host via Oracle VM VirtualBox. To
verify that the operating system is indeed CentOS Enterprise Linux, run cat /etc/
redhat-release to print out the operating system release information:

[vagrant@default-centos65 ~]$ cat /etc/redhat-release
CentOS release 6.5 (Final)

78 | Chapter 5: Manage Sandbox Environments with Test Kitchen

If you get an error message that includes “No such file or directory -
ssh,” make sure that you have the ssh program in your $PATH. On
Windows, make sure you install the Unix tools for Windows, which
includes the required ssh command (see “Install Unix Tools for Win‐
dows” on page 32).

In this book, you will see that all the virtual machine command lines will have the Test
Kitchen instance name in them before the $ prompt. For example, note that the com‐
mand lines you just ran in the virtual machine were all prefaced by [vagrant@default-
centos65 ~]. This should make it less confusing as to whether commands should be run
in the Chef Workstation host environment or the virtual machine guest environment.

To exit back out to your host command prompt, run the exit command. You should
notice that the command prompt changes from [vagrant@default-centos65 ~] to the
default prompt for your host platform:

[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.
Atwood:kitchen misheska$

We’re done with this sandbox environment. Run the kitchen destroy command to
shut down the virtual machine and release all the associated system resources:

$ kitchen destroy default-centos65
-----> Starting Kitchen (v1.2.2.dev)
-----> Destroying <default-centos65>...
 ==> default: Forcing shutdown of VM...
 ==> default: Destroying VM and associated drives...
 Vagrant instance <default-centos65> destroyed.
 Finished destroying <default-centos65> (0m2.83s).
-----> Kitchen is finished. (0m3.07s)

YAML Overview
The .kitchen.yml configuration file used to configure Test Kitchen is in the YAML file
format. YAML is a recursive acronym that stands for YAML Ain’t Markup Language. A
sequence of three hyphens (---) denote the beginning of a YAML document, so you’ll
see this at the beginning of every .kitchen.yml file. Comments are indicated by the hash
symbol (#), just like in Ruby. Space and indentation matter in a YAML file. Tab characters
should never be used in a YAML file, only spaces.

YAML files work with two fundamental kinds of a data:

• Key-value pair
• List

YAML Overview | 79

mailto:vagrant@default-centos65
mailto:vagrant@default-centos65
mailto:vagrant@default-centos65

A key-value pair has the form <key>: <value> like:

name: vagrant

The space after the colon is required. The value for name is vagrant. The value va
grant can be looked up by the name key.

Key-value pairs can be nested, so that the value for a key is another key-value pair. When
a key-value pair is nested, the value portion for the parent is written on separate lines,
indented by at least one space. For example:

driver:
 name: vagrant
 aws_access_key_id: 12345

Having more spaces is perfectly fine, as long as the values belonging to the same nested
key-value pair are all aligned vertically, with the same number of spaces:

driver:
 name: vagrant
 aws_access_key_id: 12345

You can also include as many spaces as you like before the colon, like so:

driver:
 name : vagrant
 aws_access_key_id : 12345

If there were no spaces before each line, the nested values would not be interpreted
correctly, however:

driver:
name: vagrant
aws_access_key_id: 12345

There is an alternate format for nested key-value pairs. They can also be in the form of
{<key>: <value>, <key>: <value>, …}, also known as JavaScript Object Notation
format, or JSON. For example:

mysql: {server_root_password: "rootpass", server_debian_password: "debpass"}

It is interpreted the same as:

mysql:
 server_root_password: "rootpass"
 server_debian_password: "debpass"

Lists are the other kind of data that can be stored in a YAML file. Lists contain ordered
data. Each value is not associated with a key, like in a key-value pair. Lists are used when
having a key for each value does not make sense. The items in a list are on separate lines,
similar to nested key-value pairs. The items start with a dash followed by a space. Here’s
an example from a .kitchen.yml for a list of supported platforms, as key-value pairs with
the name key, name:

80 | Chapter 5: Manage Sandbox Environments with Test Kitchen

platforms:
- name: ubuntu-10.04
- name: ubuntu-12.04
- name: ubuntu-12.10
- name: ubuntu-13.04
- name: centos-5.9
- name: centos-6.4
- name: debian-7.1.0

The previous example also shows how you can put key-value pairs inside of a list. (You
can also put lists inside of a key-value pair as well.) Similar to key-value pairs, the items
in a list can have any number of spaces before, as long as all the items have the same
number of spaces. The following would be equivalent to the last example:

platforms:
 - name: ubuntu-10.04
 - name: ubuntu-12.04
 - name: ubuntu-12.10
 - name: ubuntu-13.04
 - name: centos-5.9
 - name: centos-6.4
 - name: debian-7.1.0

Values can also have a type. kitchen.yml files mostly deal with integers, strings, or arrays.
Values that start with a digit are interpreted as integers. Values that start with an alpha‐
betical character, enclosed by single quotes ('') or double quotes (“”), are interpreted as
strings. Arrays are enclosed by square brackets ([]), with values separated by commas.
Here’s an example that puts all these concepts together:

network:
- ["forwarded_port", {guest: 80, host: 8080}]
- ["private_network", {ip: "192.168.33.33"}]

Test Kitchen Configuration with .kitchen.yml
Now that you understand the basics of YAML, let’s go over the .kitchen.yml file that Test
Kitchen generated:

driver:
 name: vagrant

provisioner:
 name: chef_solo

platforms:
 - name: ubuntu-12.04
 - name: centos-6.4

suites:
 - name: default

Test Kitchen Configuration with .kitchen.yml | 81

 run_list:
 attributes:

The three hyphens at the beginning denote that kitchen.yml is a YAML file.

The .kitchen.yml contains four main sections:
driver:

Specifies the driver plugin to use, plus configuration parameters to manage Test
Kitchen environments. You can get a list of drivers running the command kitchen
driver discover. We’re using the default driver kitchen-vagrant. By convention,
the kitchen- part of the driver name is dropped when specified in kitchen.yml.

provisioner:

Determines which configuration management tool will be used to provision the
driver’s environment(s). We’re using the chef_solo provisioner. When you run
kitchen setup it will install Chef Client on the node, if it is not already installed.

platforms:

A list of operating systems for which Test Kitchen will create instances.

suites:

In the case of the Chef configuration management tool, specifies a configuration to
be run on each instance. Among other things, a suite contains a list of recipes to
run on each instance.

The platform names in your .kitchen.yml file are aliases that point to baseboxes managed
by Chef Software. When you see values such as:

platforms:
 - name: ubuntu-12.04
 - name: centos-6.4

Test Kitchen expands the values to the following internally:

platforms:
- name: ubuntu-12.04
 driver:
 box: opscode-ubuntu-12.04
 box_url: https://opscode-vm-bento.s3.amazonaws.com/vagrant/\
 opscode_ubuntu-12.04_provisionerless.box
- name: centos-6.4
 driver:
 box: opscode-centos-6.4
 box_url: https://opscode-vm-bento.s3.amazonaws.com/vagrant/\
 opscode_centos-6.4_provisionerless.box

Each platform item can have a driver key-value pair that specifies a box and a
box_url, denoting the name of the box in the vagrant box list catalog and the URL
from which the basebox file can be downloaded, respectively. When they are not speci‐

82 | Chapter 5: Manage Sandbox Environments with Test Kitchen

fied, the kitchen-vagrant driver assumes you want to download baseboxes from the
standard Chef Software site on the Internet.

Summary
In this chapter, we introduced the following commands that Test Kitchen uses to manage
sandbox environments:
kitchen init

Add Test Kitchen support to a project

kitchen list

Display information about Test Kitchen instances

kitchen create

Start a Test Kitchen instance, if it is not already running

kitchen login

Log into a Test Kitchen instance

kitchen destroy

Shut down an instance and destroy the virtual machine

We introduced the following configuration files that control the behavior of Test
Kitchen:
.kitchen.yml

Configures Test Kitchen environment settings

Gemfile
List of gems needed and the repository from which Bundler should download gems
via bundle install

Gemfile.lock
List of gem dependencies determined by Bundler when bundle install runs. Used
to reproduce an identical setup on another developer’s machine

We explained the YAML file format used by .kitchen.yml files in great detail.

Also, we pointed you at http://learningchef.com should you wish to use an alternative
to the Vagrant + VirtualBox setup around which we’ve tailored the hands-on exercises
in this book. You can find some great .kitchen.yml file examples there as well.

In the next chapter, we’ll learn more about nodes. Node is the generic term Chef uses to
refer to any system managed by Chef.

Summary | 83

http://learningchef.com

CHAPTER 6

Manage Nodes with Chef Client

Now that you have a sandbox environment in which to experiment with Chef, let’s set
up your guest system to be managed by Chef. In this chapter, you will use Test Kitchen
to install Chef Client on your guest virtual machine so it can run Chef recipes. As a
reminder, in Chapter 4 you learned that a Chef recipe is a file that contains Chef code.

What Is a Node?
Before we show you how to install Chef Client on the guest with Test Kitchen, let’s first
introduce some Chef-specific terminology to describe the different types of machines
that we are now using.

The machine on which you author Chef code is referred to as the Chef Developer’s
Workstation or Chef Administrator’s Workstation. Your host machine is your Chef De‐
veloper Workstation. In Chapter 2 you installed the Chef Development Kit on your host
so that you have all the tools necessary to write Chef recipes using a programmer’s editor
and to manage changes to your Chef code with a source control system.

A machine that is managed by Chef is called a node. A machine is managed by Chef
when it runs Chef recipes to ensure the machine is in a desired configuration, as shown
in Chapter 4. A node can be a physical machine, a virtual machine, a cloud instance, or
a container instance—it makes no difference to Chef. As long as the node has Chef
Client installed, it can be managed by Chef and it can run Chef recipes.

Because the Chef Development Kit is a superset of Chef Client, you could install the
Chef Development Kit on a node. This is what we did in Chapter 4, making your host
act as both a Chef Developer Workstation and as a node managed by Chef. However,
the Chef Development Kit is about double the footprint of Chef Client. All of the extra
tools included with the Chef Development Kit are for writing Chef code, not running
Chef code. In Chapter 5 we made the case that in real-world production environments,
these roles are split between two different machines because you do not write Chef code

85

on every machine in your infrastructure. We are using Test Kitchen to manage a sandbox
environment running CentOS 6 as a guest virtual machine. Now we need to make the
guest virtual machine a Chef node.

Chef uses the generic term node because Chef is not limited to man‐
aging servers or compute nodes. Chef can manage other compo‐
nents in your infrastructure as well, such as switches, routers, and
storage.

Going forward, we will refer to your guest virtual machine sandbox environment simply
as a node. In fact, you might not even be using a guest virtual machine if you decided
to opt for the alternative setups covered on http://learningchef.com. So it makes sense
to just refer to the “other machine” being managed by Chef generically as a node.

Create a New Sandbox Environment for a Node
Within the directory structure you have created for this book’s code, as outlined in
“Create a Directory Structure for Your Code” on page 55, create a project directory to
contain the sandbox environment for your node. Create a new directory called node
and make it the current directory, just like you did in Chapter 5. For example:

$ mkdir node
$ cd node

Then perform the same steps you performed in Chapter 5, running kitchen init to
generate all the required Test Kitchen configuration, and bundle install to install the
supporting gems:

$ kitchen init --create-gemfile
$ bundle install

In this case, running bundle install is really not necessary, because you are setting up
a sandbox environment identical to the one you created in Chapter 5. However, it is a
good idea to acquire the habit of running bundle install after kitchen init.

Edit the .kitchen.yml file as shown in Example 6-1, and make it resemble the state of the
final .kitchen.yml when you finished Chapter 5.

Example 6-1. node/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_solo

86 | Chapter 6: Manage Nodes with Chef Client

http://learningchef.com

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65

suites:
 - name: default
 run_list:
 attributes:

Then run kitchen create to spin up a new sandbox environment to serve as your node.
As before, it will use the cached version of the learningchef/centos65 box, and Test
Kitchen will not try to download the box again if it sees the box in the cache. So the
sandbox environment should start fairly quickly, in less than a minute:

$ kitchen create default-centos65

Installing Chef Client with Test Kitchen
Use the kitchen login command to connect to your node (a.k.a. the sandbox envi‐
ronment), and access the command prompt of the node running CentOS 6. Then, check
to see if the Chef Client is installed on the node by running chef-client --version:

$ kitchen login default-centos65
Last login: Fri Jul 4 14:48:27 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@default-centos65 ~]$ chef-client --version
-bash: chef-client: command not found

Nope, doesn’t seem to be installed. How do we install chef-client on the node? Al‐
though we could follow the instructions again for Installing Chef Client on Linux from
Chapter 2 by running the following, don’t do this:

curl -Lk https://www.getchef.com/chef/install.sh | sudo bash

There is an easier way. Type in the exit command on your node to get back to your
host prompt:

[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

Double-check to make sure that the prompt being displayed is actually your host prompt
(no vagrant@default-centos65). Run the command kitchen setup default-

centos65 to install chef-client:

$ kitchen setup default-centos65
-----> Starting Kitchen (v1.2.2.dev)
-----> Converging <default-centos65>...
 Preparing files for transfer

Installing Chef Client with Test Kitchen | 87

 Berksfile, Cheffile, cookbooks/, or metadata.rb not found so Chef will
 run with effectively no cookbooks. Is this intended?
 Removing non-cookbook files before transfer
-----> Installing Chef Omnibus (true)
 downloading https://www.getchef.com/chef/install.sh
 to file /tmp/install.sh
 trying wget...
 trying curl...
...
-----> Setting up <default-centos65>...
 Finished setting up <default-centos65%gt; (0m0.00s).
-----> Kitchen is finished. (0m19.93s)

If you inspect the output, the kitchen setup command installed the chef-client for
you. The kitchen setup command is used to run a provisioner. Provisioner is a generic
term for any kind of configuration management software, as Test Kitchen can be used
with other configuration management tools besides Chef. By default, Test Kitchen is
configured to use the ChefSolo provisioner, which installs Chef Client without config‐
uring the tools to use a Chef Server. kitchen setup will automatically install chef-
client for you using the commands you entered in Chapter 2 if chef-client is not
present.

SSL Warning
During the Chef run, you might have noticed the following SSL warning:

* *
SSL validation of HTTPS requests is disabled. HTTPS connections are still
encrypted, but chef is not able to detect forged replies or man in the middle
attacks.

To fix this issue add an entry like this to your configuration file:

   ```
     # Verify all HTTPS connections (recommended)
     ssl_verify_mode :verify_peer

     # OR, Verify only connections to chef-server
     verify_api_cert true
   ```

 To check your SSL configuration, or troubleshoot errors, you can use the
 `knife ssl check` command like so:

   ```
     knife ssl check -c /tmp/kitchen/solo.rb
   ```

* *

88 | Chapter 6: Manage Nodes with Chef Client

When you are developing Chef code, it is perfectly fine to run without validating HTTPS
requests with Chef Server. At the moment, you don’t even have a Chef Server anyway,
so if verification was turned on, you’d just get an error.

In order to support ease of development, Chef by default does not verify certificates
when it makes HTTPS connections, and chef-client is informing you of this fact.
When you are developing Chef code, oftentimes you will run your code without using
a Chef Server, or even if you are using a Chef Server, it will be an in-memory version of
Chef Server such as Chef Zero, where you don’t want the bother of setting up a valid
SSL configuration.

In production, you’ll want to override this setting in the /etc/chef/client.rb configuration
file on nodes. We’ll show you how to enable SSL verification in an automated fashion
with Chef in Chapter 10. For the moment, just ignore the warning.

If you run kitchen list now, you’ll notice that the Last Action column changed from
Created to Set Up:

$ kitchen list
Instance Driver Provisioner Last Action
default-centos65 Vagrant ChefSolo Set Up

Now, if you log into the guest node, you should see that chef-client is present:

$ kitchen login default-centos65
Last login: Sat Jul 5 09:15:07 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@default-centos65 ~]$ chef-client --version
Chef: 11.14.6

Your First Chef-Client Run
Although you could use chef-apply to execute code in a Chef recipe file like you did
in Chapter 4, the chef-client tool is more commonly used in production environ‐
ments. chef-client provides the ability to execute Chef code across multiple recipe
files, which we’ll see more of in Chapter 7. In order to manage real-world production
environments, you’ll be running a lot of Chef code. In order to make maintenance easier,
one normally spreads production code across multiple recipe files. Although chef-
apply will do in a pinch for simple management tasks, you’ll end up using chef-
client most of the time to manage a node with Chef.

To show you the basics of using chef-client, let’s create a new Chef recipe file that
prints out some of the information Chef maintains about each node.

The log resource can be used to print out strings from a recipe. For example, the state‐
ment log "Hello" in a recipe would write out the string Hello. Let’s give this a try. We

Your First Chef-Client Run | 89

assume you’re still logged in to the node environment. Create the file hello.rb on the
node with the following command:

[vagrant@default-centos65 ~]$ echo 'log "Hello, this is an important message."' \
 > hello.rb

In Chapter 7 we will show you how to edit files in your host envi‐
ronment and automatically transfer them to the node. Until then,
we’re showing you commands that you can use to create hello.rb in
lieu of using editors such as vi or nano directly on the node. Some
readers might not feel comfortable with editing files in a Linux-
based operating environment. Feel free to use a text editor instead.

This command will produce the following source file.

Example 6-2. node/hello.rb
log "Hello, this is an important message."

When you use chef-client to perform actions in a recipe, this is referred to as a Chef
run. Execute your first Chef run by entering chef-client --local-mode hello.rb
--log_level info on a command line. The --local-mode option will prevent chef-
client from trying to time out looking for a nonexistent Chef Server. We will introduce
Chef Server later in this book. The --log_level info option is also necessary because
by default, chef-client will only print errors, not informative messages. This option
will tell chef-client to print out the strings from any Chef::Log.info commands.

Chef requires administrator permissions to run. If you are running
User Account Control (UAC) on Windows, make sure you Run As
Administrator.

When you run chef-client --local-mode hello.rb on the node, the output should
resemble the following:

[vagrant@default-centos65 node]$ chef-client --local-mode hello.rb
[2014-08-14T12:28:43-07:00] WARN: No config file found or specified on command
line, using command line options.
[2014-08-14T12:28:43-07:00] WARN: No cookbooks directory found at or above
current directory. Assuming /learningchef.
Starting Chef Client, version 11.14.6
resolving cookbooks for run list: []
Synchronizing Cookbooks:
Compiling Cookbooks...
[2014-08-14T12:28:46-07:00] WARN: Node default-centos65.vagrantup.com has an
empty run list.

90 | Chapter 6: Manage Nodes with Chef Client

Converging 1 resources
Recipe: @recipe_files::/learningchef/hello.rb
 * log[Hello, this is an important message.] action write

Running handlers:
Running handlers complete
Chef Client finished, 1/1 resources updated in 2.308460088 seconds

During your chef-client run, the following output indicates that “Hello, this is an
important message.” was written to the log for the Chef run:

log[Hello, this is an important message.] action write

To actually see the log message, you need to change the chef-client log level. Every
message written to the log has severity level. The levels, in order of priority from lowest
to highest, are debug, info, warn, error, and fatal. The log resource uses the info level
as a default, which is appropriate for your “Hello” message. However, chef-client only
prints out messages of severity warn or greater unless you change the chef-client log
level.

To change the log level, use the --log_level option. The --log_level option takes a
parameter (--log_level <level>), changing the lowest level severity messages chef-
client will write to its log. If you add the option --log_level info to your chef-
client command line, it will display the log message you just added. Try that now:

[vagrant@default-centos65 learningchef]$ chef-client --local-mode hello.rb \
 --log_level info
[2014-08-14T12:30:43-07:00] WARN: No config file found or specified on command
line, using command line options.
[2014-08-14T12:30:43-07:00] WARN: No cookbooks directory found at or above
current directory. Assuming /learningchef.
[2014-08-14T12:30:43-07:00] INFO: Starting chef-zero on host localhost, port
8889 with repository at repository at /learningchef
 One version per cookbook
...
Converging 1 resources
Recipe: @recipe_files::/learningchef/hello.rb
 * log[Hello, this is an important message!] action write[2014-08-14T12:30:45
 -07:00] INFO: Processing log[Hello, this is an important message.] action
 write (@recipe_files::/learningchef/hello.rb line 1)
[2014-08-14T12:30:45-07:00] INFO: Hello, this is an important message.

[2014-08-14T12:30:45-07:00] INFO: Chef Run complete in 0.040486944 seconds

Running handlers:
[2014-08-14T12:30:45-07:00] INFO: Running report handlers
Running handlers complete
[2014-08-14T12:30:45-07:00] INFO: Report handlers complete
Chef Client finished, 1/1 resources updated in 2.275689636 seconds

Your First Chef-Client Run | 91

By default, chef-client prints out log messages to the screen. Now that you have reset
the log level, you see your important message in the log output (along with some other
messages that are also at the info level of severity).

If you would prefer to write the chef-client log to a file, use the --
logfile <LOGLOCATION> option (or the short form -l).

Chef Client Modes
Chef Client can operate in one of three modes:

• Local mode
• Client mode
• Solo mode

When chef-client is running in local mode, it simulates a full Chef Server instance in
memory. Any data that would have been saved to a server is written to the local directory.
The process of writing server data locally is called writeback. This is why chef-
client created the nodes/ directory. Local mode was designed to support rapid Chef
recipe development by using Chef Zero, the in-memory, fast-start Chef server.

On the other hand, when chef-client is running in client mode, it assumes you have
a Chef Server running on some other system on your network. In production, this is
how most people use Chef. In client mode, chef-client is an agent (or service/daemon)
that runs locally on a machine managed by Chef. Chef Server is a centralized store for
the information needed to manage infrastructure with Chef. It is recommended that
you set up Chef Server when you need to manage more than one machine at a time.

Before chef-client local mode was implemented in version 11.8, the only way to run
Chef recipes without a Chef Server was to use chef-solo. chef-solo offers an additional
client mode called solo mode. Solo mode provides a limited subset of Chef functionality
intended to be able to run Chef locally. chef-solo does not support writeback. In most
cases, local mode is far more convenient to use than solo mode. Eventually, Chef software
plans to retire solo mode once local mode has feature parity with solo and when the
majority of customers have migrated to chef-client 11.8 or higher. Solo mode is most
popular in places still using older versions of Chef.

92 | Chapter 6: Manage Nodes with Chef Client

Ohai
When Chef Client performs a Chef run, a separate command-line tool called ohai is
used to collect system information. Ohai exposes this collection of node information to
Chef as a set of automatic attributes.

Try running ohai yourself, so you can see what information is being collected about
your node. On our system, ohai generates 1058 lines of output, so make sure you pipe
the command’s output through the more command to present the information a screen
at a time. You don’t have to look through the whole output. When you’re done, hit the
q key to exit back to the command line:

$ ohai | more
{
 "network": {
 "interfaces": {
 "lo": {
 "mtu": "16436",
 "flags": [
 "LOOPBACK",
 "UP",
 "LOWER_UP"
],
 "encapsulation": "Loopback",
 "addresses": {
 "127.0.0.1": {
 "family": "inet",
 "prefixlen": "8",
 "netmask": "255.0.0.0",
 "scope": "Node"
 },
...
--More--

As you can see, ohai collects a lot of information about the current state of the computer:
networking configuration, CPU state, operating system type and version, memory con‐
sumption, and much, much more.

As an example, let’s take a look at this subset of the information generated by ohai. As
you can see in the following, ohai collects the node’s IP address, MAC address, OS
information, hostname, and even that we are running in a virtualized guest:

{
...
 "ipaddress": "10.0.2.15",
 "macaddress": "08:00:27:1C:AD:B6",
...
 "os": "linux",
 "os_version": "2.6.32-431.el6.x86_64",
 "platform": "centos",

Ohai | 93

 "platform_version": "6.5",
 "platform_family": "rhel",
...
 "virtualization": {
 "system": "vbox",
 "role": "guest"
 }
...
 "hostname": "default-centos65"
...
}

In the next section, we’ll access the information collected by ohai in our Chef code. Let’s
learn more about how the information gets into Chef and how we can refer to this
information in our code.

ohai output is in JavaScript Simple Object Notation (JSON) form. JSON is a commonly
used format for machine-readable output, as it can be easily parsed into the object-
representation used for programming languages like Ruby. Although you can run ohai
as a standalone application, this is not very common. Instead, the output of ohai is
intended to be read by machines, specifically by chef-client and associated tools, so
JSON is the perfect format. chef-client reads the JSON output from ohai and converts
it into a node object, which is accessible by your Chef code.

You can refer to the node’s IP address in your code with the following attribute. An
attribute is a variable maintained by Chef. In your code, you specify a quoted string in
a pair of brackets with the name used as an index in the collection, then Chef will return
the value. In this case, we want to know the IP address. By referring to the prior ohai
output, Chef knows the index name is ipaddress:

node['ipaddress']

We used an attribute variable in our Chef code back in “Recipes Specify Desired Con‐
figuration” on page 59. node is another attribute Chef makes available to your code. It
contains all the information generated by running ohai on the node. Similar to the ENV
attribute we used in “Recipes Specify Desired Configuration” on page 59, the node
attribute is a collection of name/value pairs.

Name/value pair collections can be nested. This is what is indicated in the multiple levels
of indentation in the ohai output. So to access the kind of virtualization software we
are using (the “virtualization system”), use the following nested set of name/value pair
references, because system is a name/value pair within the virtualization collection:

node['virtualization']['system']

94 | Chapter 6: Manage Nodes with Chef Client

The string variant node['virtualization']['system'] tends to be
the most commonly used node attribute form. However, because at‐
tribute expressions are evaluated as a Mash, you’ll encounter Chef code
that uses the other possible Mash variants:

• node[:virtualization][:system]

• node['virtualization']['system']

• node.virtualization.system

Use a form that makes the most sense to you.

Let’s make these examples more concrete by using them in a Chef recipe.

Accessing Node Information
As we discussed in the last section, chef-client collects a lot of information about the
state of a node using ohai. Collecting this information is necessary so that Chef can
intelligently reason how to put the node into the desired configuration specified in a
recipe. Chef does not keep this information to itself. It makes this information available
to your Chef code as a node attribute. An attribute is a variable maintained by Chef.

Let’s use the log resource that you just used in “Your First Chef-Client Run” on page 89
to print out some node information. Create a new file called info.rb on the node with
the following sequence of commands:

[vagrant@default-centos65 ~]$ cat << EOF > info.rb
> log "IP Address: #{node['ipaddress']}"
> log "MAC Address: #{node['macaddress']}"
> log "OS Platform: #{node['platform']} #{node['platform_version']}"
> log "Running on a #{node['virtualization']['system']} \
> #{node['virtualization']['role']}"
> log "Hostname: #{node['hostname']}"
> EOF

This command will produce the source file seen in Example 6-3.

Example 6-3. node/info.rb
log "IP Address: #{node['ipaddress']}"
log "MAC Address: #{node['macaddress']}"
log "OS Platform: #{node['platform']} #{node['platform_version']}"
log "Running on a #{node['virtualization']['system']} \
#{node['virtualization']['role']}"
log "Hostname: #{node['hostname']}"

Accessing Node Information | 95

The syntax using #{<variable>} to print out information contained in variables should
be familiar to you. This is similar to what we did in Chapter 4 to access
#{ENV['HOME']}. In this case, the variable is node instead of ENV.

The log statements in Example 6-3 will produce the following output during your Chef
run. The use of log statements to show the content of attributes is a recommended Chef
recipe debugging technique:

INFO: IP Address: 10.0.2.15
INFO: MAC Address: 08:00:27:1C:AD:B6
INFO: OS Platform: centos 6.5
INFO: Running on a vbox guest
INFO: Hostname: default-centos65

You should still be logged into the node. Perform a Chef run using chef-client in local
mode. This time we will use the short options for --local-mode and --log_level. The
output should resemble the following:

[vagrant@default-centos65 learningchef]$ chef-client --local-mode info.rb \
--log_level info
...
Starting Chef Client, version 11.14.6
...
Converging 5 resources
Recipe: @recipe_files::/learningchef/info.rb
 * log[IP Address: 10.0.2.15] action write[2014-08-14T12:36:05-07:00] INFO:
 Processing log[IP Address: 10.0.2.15] action write (@recipe_files::/learning
 chef/info.rb line 1)
[2014-08-14T12:36:05-07:00] INFO: IP Address: 10.0.2.15

 * log[MAC Address: 08:00:27:1C:AD:B6] action write[2014-08-14T12:36:05-07:00]
 INFO: Processing log[MAC Address: 08:00:27:1C:AD:B6] action write
 (@recipe_files::/learningchef/info.rb line 2)
[2014-08-14T12:36:05-07:00] INFO: MAC Address: 08:00:27:1C:AD:B6

 * log[OS Platform: centos 6.5] action write[2014-08-14T12:36:05-07:00] INFO:
 Processing log[OS Platform: centos 6.5] action write (@recipe_files::/learning
 chef/info.rb line 3)
[2014-08-14T12:36:05-07:00] INFO: OS Platform: centos 6.5

 * log[Running on a vbox guest] action write[2014-08-14T12:36:05-07:00] INFO:
 Processing log[Running on a vbox guest] action write (@recipe_files::/learning
 chef/info.rb line 5)
[2014-08-14T12:36:05-07:00] INFO: Running on a vbox guest

 * log[Hostname: default-centos65] action write[2014-08-14T12:36:05-07:00]
 INFO: Processing log[Hostname: default-centos65] action write (@recipe_files

96 | Chapter 6: Manage Nodes with Chef Client

 ::/learningchef/info.rb line 6)
[2014-08-14T12:36:05-07:00] INFO: Hostname: default-centos65

[2014-08-14T12:36:05-07:00] INFO: Chef Run complete in 0.039998861 seconds

Running handlers:
[2014-08-14T12:36:05-07:00] INFO: Running report handlers
Running handlers complete
[2014-08-14T12:36:05-07:00] INFO: Report handlers complete
Chef Client finished, 5/5 resources updated in 2.354730576 seconds

Notice that chef-client printed out the relevant information about your node. Your
data should be similar, but some of the details, such as the IP Address, will most likely
be slightly different. Chef collects a great deal of information about the state of a target
machine in the node object. This node information is used to make intelligent decisions
about how to automatically place the node into a desired configuration.

Run the exit command to get back to the host prompt, then run kitchen destroy
default-centos65. This will shut down the VM and destroy the instance in your vir‐
tualization software, as you are done with this instance for now:

[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.
$ kitchen destroy default-centos65
-----> Starting Kitchen (v1.2.2.dev)
-----> Destroying <default-centos65>...
 ==> default: Forcing shutdown of VM...
 ==> default: Destroying VM and associated drives...
 Vagrant instance <default-centos65> destroyed.
 Finished destroying <default-centos65> (0m2.98s).
-----> Kitchen is finished. (0m3.24s)

Summary
In this chapter, we introduced the concept of a node. Because Chef can manage things
other than personal computers, such as network switches and embedded storage sys‐
tems, Chef uses the more generic term node to refer to the entities managed by Chef
instead of server or host.

Any entity managed by Chef must have Chef Client installed. We showed you how to
use Test Kitchen to install Chef Client on a node while writing Chef code. In “Bootstrap
the Node with Knife” on page 171, we’ll show you how the knife bootstrap command
is used to install Chef Client on production nodes, as Test Kitchen isn’t intended for
production use.

You learned how to use the chef-client tool to perform a Chef run. This is how Chef
manages a node. chef-client reads recipes during a Chef run. Recipes indicate a desired

Summary | 97

configuration through resources, and Chef determines the optimal sequence of steps in
order to put the node into the desired state. Chef is able to reason intelligently about
the node configuration, because it collects detailed information about the state of a node
in an associated node attribute based on the information collected by ohai. We also
showed you how you can access the information in your Chef recipes.

In the next chapter, we’ll show you how to organize multiple recipe files into a cookbook.
We’ll also show you how you can run chef-client on a node using Test Kitchen on
your host instead of hopping back and forth between the host and the guest.

98 | Chapter 6: Manage Nodes with Chef Client

CHAPTER 7

Cookbook Authoring and Use

Cookbooks are the fundamental component of infrastructure management with Chef.
Think of a cookbook as a package for your recipes. Each cookbook represents the set
of instructions required to configure or deploy a single unit of infrastructure such as a
web server, database, or application. The recipes with code are only a small part of the
entire equation. A cookbook also contains any supporting components, such as archives,
images, or libraries. In addition, a cookbook holds configuration information, platform-
specific implementations, and resource declarations required to manage a piece of in‐
frastructure with Chef.

Your First Cookbook: Message of the Day
For your first cookbook, let’s automate the configuration of a message of the day on our
guest node running CentOS 6. Let’s make it unambiguous that you have logged in to
the guest node, by using Chef to configure a message on login stating that this is the
guest node.

The command to generate an initial cookbook directory structure will differ, depending
on whether you installed the Chef Development Kit or Chef Client on your host.

Even More Choices: Chef Versus Knife
Prior to the Chef Development Kit, developers were required to use many different
command-line tools to perform routine actions. We hope that once the Chef Develop‐
ment Kit reaches its 1.0 release (which had not yet occurred at the time of this writing),
all commands related to cookbook development will be unified under one umbrella
chef command-line tool.

99

Before the Chef Development Kit, knife, the primary command-line tool for working
with a Chef Server, could also be used to create a cookbook directory structure for
development.

Now, with the advent of the Chef Development Kit, the chef generate command is the
recommended way to manage a cookbook’s directory structure. The knife tool won’t
be going away. It continues to be the primary command-line tool for interacting with
Chef Server in production, which we’ll see later in Chapter 9.

However, there is some new functionality in the chef generate subcommand that
doesn’t exist in knife. chef generate allows you to customize the recipe and cookbook
templates that are generated. Also, chef generate lets you create the directory structure
incrementally in a progressive fashion, adding just the features you need for your cook‐
book. knife generates only one type of structure, with everything at once, creating many
more files than you might need. It doesn’t hurt anything, but many people prefer the
incremental approach of chef generate.

We’ll cover both the chef and knife approaches to cookbook creation in this chapter.

If you have the Chef Development Kit installed, continue on to the next section, “Your
First Cookbook: Message of the Day (Chef Development Kit)” on page 100, to learn how
to create a cookbook using the chef utility. If you have the Chef Client installed, skip
ahead to “Your First Cookbook: Message of the Day (Chef Client)” on page 103 to learn
how to create a cookbook using the knife utility.

Your First Cookbook: Message of the Day (Chef
Development Kit)
You’ll be using a tool called chef to generate an initial directory structure for a message
of the day cookbook (motd). chef is a new common utility command that debuted with
the Chef Development Kit. On a command line, run the chef generate cookbook
motd command to create the cookbook directory scaffolding. chef generate will create
a main directory for your cookbook called motd as part of the process:

$ chef generate cookbook motd
Compiling Cookbooks...
Recipe: code_generator::cookbook
 * directory[/Users/misheska/learningchef/motd] action create
 - create new directory /Users/misheska/learningchef/motd
...
 * template[/Users/misheska/learningchef/motd/recipes/default.rb] action create
 - create new file /Users/misheska/learningchef/motd/recipes/default.rb
 - update content in file /Users/misheska/learningchef/motd/recipes/default
 .rb from none to 9cc885
 (diff output suppressed by config)

100 | Chapter 7: Cookbook Authoring and Use

Make the motd directory you just created the current directory:

$ cd motd

As demonstrated in Example 7-1, modify the .kitchen.yml file to use the CentOS 6 image
we’ve tailored for the book.

Example 7-1. chefdk/motd/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_zero

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65

suites:
 - name: default
 run_list:
 - recipe[motd::default]
 attributes:

As of this writing, there is a bug in the Chef Development Kit 0.1.0
where the chef command generates an incorrect reference to
recipe[bar::default]. It should be recipe[motd::default] in‐
stead, matching the name of the cookbook. This bug is fixed in the
Chef Development Kit 0.2.0-2 release, and should be available by the
time you read this. If not, fix the recipe line in the .kitchen.yml
accordingly.

Check to make sure there are no syntax errors in your kitchen.yml file by running
kitchen list. If you see a stack trace error instead of the following output, you likely
made a typo, inadvertently used tabs instead of spaces, or didn’t line up entries correctly:

$ kitchen list
Instance Driver Provisioner Last Action
default-centos65 Vagrant ChefZero <Not Created>

On CentOS, in order to update the message of the day, we need to create a static text
file called /etc/motd on the node. The /etc/motd file will contain the text with our message
of the day. We’ll create a copy of the motd file we want created in our cookbook. This is
how Chef manages files. Then we’ll add code to our recipe to ensure that the file will be
copied from the cookbook to the node in the appropriate location in the /etc directory.

Your First Cookbook: Message of the Day (Chef Development Kit) | 101

Use the chef generate file motd command to generate the directory structure re‐
quired for the motd file we will be creating on the node. We need only use the name of
the file we want to create, not the path:

$ chef generate file motd
Compiling Cookbooks...
Recipe: code_generator::cookbook_file
 * directory[/Users/misheska/learningchef/motd/files/default] action create
 - create new directory /Users/misheska/learningchef/motd/files/default
 * template[/Users/misheska/learningchef/motd/files/default/motd] action create
 - create new file /Users/misheska/learningchef/motd/files/default/motd
 - update content in file /Users/misheska/learningchef/motd/files/default
 /motd from none to e3b0c4
 (diff output suppressed by config)

With your handy programmer’s text editor, edit the file files/default/motd you just cre‐
ated in your motd cookbook. We think all messages are more effective when spoken by
a friendly warning cow, so we added a bit of ASCII art to our file, as shown in
Example 7-2.

Example 7-2. chefdk/motd/files/default/motd

 < YOU ARE ON A SIMULATED CHEF NODE ENVIRONMENT! >

 \ ^__^
 \ (oo)_______
 (__))\/\ \
 ||----w |
 || ||

Introducing the Cookbook_file Resource
We’ll use Chef to help us more easily determine that we are running on a guest virtual
machine node by writing some automation to change the Linux message of the day. On
Linux, the message of the day is displayed when a user logs in. The message of the day
is used by Linux administrators to communicate with users. You can change the message
of the day by editing the file /etc/motd. When a user successfully logs in, the contents
of the /etc/motd file will be displayed as the message of the day.

chef cookbook generate created a recipes/default.rb file for you. By convention, this
is the default location for your Chef code. All recipe .rb files containing Chef code are
expected to be in the recipes/ subdirectory of a cookbook.

At the moment, recipes/default.rb doesn’t have very much in it, just some comments:

#
Cookbook Name:: motd
Recipe:: default
#

102 | Chapter 7: Cookbook Authoring and Use

Copyright (C) 2014
#
#
#

Add some Chef code to change the /etc/motd on your node by editing recipes/
default.rb to resemble Example 7-3 (we’ll leave it as an exercise to the reader to modify
the copyright text).

Example 7-3. chefdk/motd/recipes/default.rb
#
Cookbook Name:: motd
Recipe:: default
#
Copyright (C) 2014
#
#
#

cookbook_file "/etc/motd" do
 source "motd"
 mode "0644"
end

Here’s an explanation of what each line of code in Example 7-3 does:

• cookbook_file is a Chef resource. The cookbook_file resource is used to transfer
files from the files/ subdirectory in a cookbook to the node.

• do/end clauses note that the Chef resource definition spans multiple lines.
• The "/etc/motd" string passed to cookbook_file is the name. name that defines the

path the file should be copied to on the node.
• source defines the name of the file in the files/ subdirectory.
• mode defines the octal permissions to set on the file after it is copied. In this case it

is octal 644, “world readable, user/owner writable.” If you don’t set the file mode
appropriately, other users might not be able to read the contents of this file.

Now that you have created a cookbook directory structure using chef generate cook
book, skip ahead to “Performing Your First Converge” on page 107 to use Chef to configure
your node.

Your First Cookbook: Message of the Day (Chef Client)
You’ll be using a tool called knife to generate an initial cookbook directory structure for
the message of the day cookbook (motd). knife is a basic utility command for working
with Chef that you installed with Chef Client. On a command line, run the knife cook

Your First Cookbook: Message of the Day (Chef Client) | 103

book create subcommand to create the cookbook directory scaffolding. knife will cre‐
ate a main directory for your cookbook called motd as part of the process:

$ knife cookbook create motd --cookbook-path .
WARNING: No knife configuration file found
** Creating cookbook motd
** Creating README for cookbook: motd
** Creating CHANGELOG for cookbook: motd
** Creating metadata for cookbook: motd

Next, overlay all the files needed for your cookbook to enable Test Kitchen support, just
like you did in Chapter 5:

$ cd motd
$ kitchen init --create-gemfile
 create .kitchen.yml
 create test/integration/default
 create Gemfile
 append Gemfile
 append Gemfile
You must run `bundle install' to fetch any new gems.

Run bundle install to handle the extra Ruby dependencies:

$ bundle install
Fetching gem metadata from https://rubygems.org/..........
Resolving dependencies...
Using mixlib-shellout (1.4.0)
Using net-ssh (2.9.1)
Using net-scp (1.2.1)
Using safe_yaml (1.0.3)
Using thor (0.19.1)
Using test-kitchen (1.2.1)
Installing kitchen-vagrant (0.15.0)
Using bundler (1.5.3)
Your bundle is complete!
Use `bundle show [gemname]` to see where a bundled gem is installed.

Modify the .kitchen.yml file to use the CentOS 6 image we’ve tailored for the book as
seen in Example 7-4.

Example 7-4. knife/motd/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_solo

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65

104 | Chapter 7: Cookbook Authoring and Use

 box_url: learningchef/centos65

suites:
 - name: default
 run_list:
 - recipe[motd::default]
 attributes:

Check to make sure there are no syntax errors in your kitchen.yml file by running
kitchen list. If you see a stack trace error instead of the following output, you likely
made a typo, inadvertently used tabs instead of spaces, or didn’t line up entries correctly:

$ kitchen list
Instance Driver Provisioner Last Action
default-centos65 Vagrant ChefSolo <Not Created>

Because you will be copying a file from the cookbook files/ subdirectory to the Chef
node, you will need to create the file as well. Again, with your handy programmer’s text
editor, create the file files/default/motd in your motd-knife cookbook. When a cow
udders your message of the day (pun intended), any day becomes a celebration. Liven
up your message with some ASCII art.

Example 7-5. knife/motd/files/default/motd

 < YOU ARE ON A SIMULATED CHEF NODE ENVIRONMENT! >

 \ ^__^
 \ (oo)_______
 (__))\/\ \
 ||----w |
 || ||

Introducing the Cookbook_file Resource
We’ll use Chef to help us more easily determine that we are running on a guest virtual
machine node by writing some automation to change the Linux message of the day. On
Linux, the message of the day is displayed when a user logs in. The message of the day is
used by Linux administrators to communicate with users. You can change the message
of the day by editing the file /etc/motd. When a user successfully logs in, the contents of
the /etc/motd file will be displayed as the message of the day.

knife cookbook create generates a recipes/default.rb file for you. By convention, this
is the default location for your Chef code. All recipe .rb files containing Chef code are
expected to be in the recipes/ subdirectory of a cookbook.

#
Cookbook Name:: motd
Recipe:: default
#

Introducing the Cookbook_file Resource | 105

Copyright 2014, YOUR_COMPANY_NAME
#
All rights reserved - Do Not Redistribute
#

Add some Chef code to change the /etc/motd on your node by editing recipes/
default.rb to resemble Example 7-6 (we’ll leave it as an exercise to the reader to modify
the copyright and licensing text in the comments later).

Example 7-6. knife/motd/recipes/default.rb
#
Cookbook Name:: motd
Recipe:: default
#
Copyright 2014, YOUR_COMPANY_NAME
#
All rights reserved - Do Not Redistribute
#

cookbook_file "/etc/motd" do
 source "motd"
 mode "0644"
end

Here’s an explanation of what each line in Example 7-6 does:

• cookbook_file is a Chef resource. The cookbook_file resource is used to transfer
files from the files/ subdirectory in a cookbook to the node.

• do/end clauses note that the Chef resource definition spans multiple lines.
• The "/etc/motd" string passed to cookbook_file is the name. name defines the path

the file should be copied to on the node.
• source defines the name of the file in the files/ subdirectory.
• mode defines the octal permissions to set on the file after it is copied. In this case it

is octal 644, “world readable.” If you don’t set the file mode appropriately, other
users might not be able to read the contents of this file.

Now that you have created a cookbook directory structure using knife cookbook cre
ate, continue on to “Performing Your First Converge” on page 107 to use Chef to configure
your node. This is where the chef generate cookbook and knife cookbook create
instructions in this chapter come together. The instructions that follow are the same for
both tools.

106 | Chapter 7: Cookbook Authoring and Use

Performing Your First Converge
Chef uses the term converge to refer to the process of deploying a cookbook to a node,
running chef_client on the node, and applying a run list to put the node into a desired
state. This is also referred to as converging a node. Let’s use Test Kitchen to perform a
converge on the node using the kitchen converge command.

Convergence Introduced
Chef can dynamically adjust how it brings a node into a desired state depending on the
current state of the node. For example, if the Chef run is aborted for any reason, Chef
will merely pick up where it left off the next time it runs. Key to this fault-tolerant
approach is that the plan for the steps Chef uses to configure a node are entirely data-
driven, based on the results produced by ohai, which we covered in Chapter 6.

Another example of a convergence-based tool is the make command. It behaves in a
similar fashion. The make tool assesses the current state of the components used to
produce an application, and it only builds what hasn’t been built before. You can run
make as many times as you like, and it will only perform the necessary build steps that
haven’t been successfully performed already.

Make sure you run the kitchen converge command inside the motd
cookbook directory.

If you entered in the code correctly so far, the output of kitchen converge should
resemble the following:

$ kitchen converge default-centos65
-----> Starting Kitchen (v1.2.2.dev)
-----> Creating <default-centos65>...
 Bringing machine 'default' up with 'virtualbox' provider...
...
-----> Converging <default-centos65>...
 Preparing files for transfer
 Resolving cookbook dependencies with Berkshelf 3.1.3...
 Removing non-cookbook files before transfer
-----> Installing Chef Omnibus (true)
...
 Starting Chef Client, version 11.14.2
 [2014-08-14T13:22:37-07:00] INFO: *** Chef 11.14.2 ***
 [2014-08-14T13:22:37-07:00] INFO: Chef-client pid: 2004
 Creating a new client identity for default-centos65 using the validator

Performing Your First Converge | 107

 key.
 [2014-08-14T13:22:40-07:00] INFO: Client key /tmp/kitchen/client.pem is
 not present - registering
 [2014-08-14T13:22:40-07:00] INFO: HTTP Request Returned 404 Not Found
 : Object not found: http://localhost:8889/nodes/default-centos65
 [2014-08-14T13:22:40-07:00] INFO: Setting the run_list to ["recipe
 [motd::default]"] from CLI options
 [2014-08-14T13:22:40-07:00] INFO: Run List is [recipe[motd::default]]
 [2014-08-14T13:22:40-07:00] INFO: Run List expands to [motd::default]
 [2014-08-14T13:22:40-07:00] INFO: Starting Chef Run for default-centos65
 [2014-08-14T13:22:40-07:00] INFO: Running start handlers
 [2014-08-14T13:22:40-07:00] INFO: Start handlers complete.
 [2014-08-14T13:22:40-07:00] INFO: HTTP Request Returned 404 Not Found :
 Object not found: /reports/nodes/default-centos65/runs
 resolving cookbooks for run list: ["motd::default"]
 [2014-08-14T13:22:40-07:00] INFO: Loading cookbooks [motd@0.1.0]
 Synchronizing Cookbooks:
 [2014-08-14T13:22:40-07:00] INFO: Storing updated cookbooks/motd
 /recipes/default.rb in the cache.
 [2014-08-14T13:22:40-07:00] INFO: Storing updated cookbooks/motd/
 README.md in the cache.
 [2014-08-14T13:22:40-07:00] INFO: Storing updated cookbooks/motd/
 metadata.json in the cache.
 - motd
 Compiling Cookbooks...
 Converging 1 resources
 Recipe: motd::default
 * cookbook_file[/etc/motd] action create[2014-08-14T13:22:40-07:00]
 INFO: Processing cookbook_file[/etc/motd] action create (motd::default
 line 10)
 [2014-08-14T13:22:40-07:00] INFO: cookbook_file[/etc/motd] backed up to
 /tmp/kitchen/backup/etc/motd.chef-20140814132240.562727
 [2014-08-14T13:22:40-07:00] INFO: cookbook_file[/etc/motd] updated file
 contents /etc/motd

 - update content in file /etc/motd from a7620c to 07a3b1
 --- /etc/motd 2014-07-04 07:47:33.211269359 -0700
 +++ /tmp/.motd20140814-2004-ky1c1j 2014-08-14 13:22:40.561072174
 -0700
 @@ -1,2 +1,9 @@
 -Welcome to your Packer-built virtual machine.
 + ___
 + < YOU ARE ON A SIMULATED CHEF NODE ENVIRONMENT! >
 + ---
 + \ ^__^
 + \ (oo)_______
 + (__))\/\ \
 + ||----w |
 + || ||

 [2014-08-14T13:22:40-07:00] INFO: Chef Run complete in 0.117514782 seconds

108 | Chapter 7: Cookbook Authoring and Use

 Running handlers:
 [2014-08-14T13:22:40-07:00] INFO: Running report handlers
 Running handlers complete
 [2014-08-14T13:22:40-07:00] INFO: Report handlers complete
 Chef Client finished, 1/1 resources updated in 2.729471192 seconds
 Finished converging <default-centos65> (0m28.88s).
-----> Kitchen is finished. (1m4.31s)

As of this writing, there is a bug in the current Chef Development Kit
0.2.0 on Windows when you run kitchen converge. You’ll get an “SSL
certificate verify failed” because the Chef Development Kit installation
is not pointing at the correct certificate file. This issue is being tracked
here: https://github.com/opscode/chef-dk/issues/106.
As a workaround, set the %SSL_CERT_FILE% environment variable
before running kitchen converge:
Windows command prompt:

> set SSL_CERT_FILE=C:\opscode\chefdk\embedded\ssl\certs\cacert.pem
> kitchen converge

Windows PowerShell:
PS> Set-Item -Path env:SSL_CERT_FILE -Value \
C:\opscode\chefdk\embedded\ssl\certs\cacert.pem
PS> kitchen converge

Our output shows that Test Kitchen ran chef-client on the node. It reported Chef Run
complete, how many resources were updated, and that Kitchen is finished with no
errors.

kitchen converge will automatically run kitchen create and kitch
en setup for you if they are needed. In the preceding output, notice
that the virtual machine was created, and chef-client was installed
on the node, indicating that Test Kitchen automatically ran these two
steps.

Validate Your Results
Use kitchen login to verify that your new message of the day is installed on the node:

Validate Your Results | 109

https://github.com/opscode/chef-dk/issues/106

$ kitchen login default-centos65
Last login: Thu Aug 14 13:22:36 2014 from 10.0.2.2

 < YOU ARE ON A SIMULATED CHEF NODE ENVIRONMENT! >

 \ ^__^
 \ (oo)_______
 (__))\/\ \
 ||----w |
 || ||

Now we hope things are more clear when you are logged in to your simulated Chef node
environment.

The kitchen login command requires the ssh program to be in‐
stalled on your host. On Windows, ssh is not installed by default. If
you get an error with the text “No such file or directory -ssh” when
running kitchen login, make sure you have ssh installed, accord‐
ing to “Install Unix Tools for Windows” on page 32.

We’re done with the sandbox environment we created to verify the motd cookbook. Run
the exit command on the guest to restore your command prompt back to the host:

[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

Now run the kitchen destroy command to shut down the virtual machine and release
all the associated system resources:

$ kitchen destroy default-centos65
-----> Starting Kitchen (v1.2.2.dev)
-----> Destroying <default-centos65>...
 ==> default: Forcing shutdown of VM...
 ==> default: Destroying VM and associated drives...
 Vagrant instance <default-centos65> destroyed.
 Finished destroying <default-centos65> (0m2.91s).
-----> Kitchen is finished. (0m3.37s)

We will be creating a lot of different sandbox environments in this
book. Don’t forget to kitchen destroy your environments when they
are done so they won’t take up memory and disk space when you
aren’t using them. (But just in case you forget to run kitchen de
stroy, we’ll keep reminding you.)
If you’d like to get a global overview of all the sandbox environ‐
ments running on your machine from the command line, run va
grant global-status.

110 | Chapter 7: Cookbook Authoring and Use

Anatomy of a Chef Run
kitchen converge performs a Chef run on your test node from your host. Pretty con‐
venient! You can still use kitchen login to ssh into the node and poke around if you
like, but the kitchen converge command is designed to give you fast feedback as you
develop your cookbook. We’ll rely on kitchen converge for the rest of the hands-on
exercises in this book.

In production, chef-client is typically run in daemonized mode as a service on the
node, performing Chef runs at regular intervals; for example, once every 15 minutes. It
checks in with Chef Server for any changes to cookbooks or the list of recipes to run on
the node, which are stored on Chef Server. We’ll discuss this more in Chapter 9.

It is helpful to understand the steps involved in executing a Chef run. We’ve touched
on some of them in Chapter 6, when we mentioned the node object and ohai, but we’ve
yet to go over the steps explicitly, as shown in Figure 7-1.

1. Start the Chef Client
The chef-client process starts on the remote node. The process may be started
by a service, cron job, or manually triggered by a user. The chef-client is the
process responsible for evaluating Chef cookbooks containing recipes with Chef
code on the target node.

2. Build the node
The chef-client process constructs the node object in memory. It runs ohai and
gathers all the node’s automatic attributes (such as the hostname, fqdn, platform,
users, etc.)

3. Synchronize
A run list is sent to the node. The run list contains a list of recipes to execute on the
target node. A run list is the ordered, decomposed list of recipes to execute on the
target node. The node may also be sent a list of URLs of cookbooks to download
that are required by the run list. The target node will download and cache the
required cookbooks in a local file cache.

4. Load
The cookbooks and Ruby components are loaded in this step. Cookbook-level at‐
tributes are merged with the automatic attributes generated by ohai in #2. The
various components of a cookbook are loaded in this order:
a. Libraries. All files in the libraries/ folder from every cookbook are loaded so

that any language extensions or alterations are available for the remainder of the
Chef run.

Anatomy of a Chef Run | 111

b. Attributes. All files in the attributes/ folder from every cookbook are loaded and
merged with the automatic ohai attributes.

c. Definitions. All files in the definitions/ folder from every cookbook are loaded
because definitions create resources and must be loaded before recipes.

d. Resources. All files in the resources/ folder from every cookbook are loaded
because resources must be loaded before the recipes.

e. Providers. All files in the providers/ folder from every cookbook are loaded so
the resources reference the proper provider.

f. Recipes. All files in the recipes/ folder from every cookbook are loaded and
evaluated. At this point, the recipes are not executed to place the node in the
desired configuration, but the Ruby code is executed and each resource is added
to the resource collection.

5. Converge
The converge phase is the most critical phase of a Chef run. This is when the Chef
recipes are executed on the target node—packages are installed, templates are writ‐
ten, files are copied, and so on.

6. Report
If the Chef Client run is performed successfully, any new values in the node object
are saved; otherwise, an exception is raised without updating the node object. Then
notification and exception handlers are executed. Notification and exception han‐
dlers can perform a variety of functions, such as sending emails, posting to IRC, or
sending messages to PagerDuty.

The run list is a key component used in a Chef run. As mentioned earlier, the run list
contains a list of recipes to execute on the target node. It is not very common to pass a
list of recipe .rb files, as we’ve done so far when running chef-client. Real-world chef
runs typically involve dozens of cookbooks with possibly hundreds of recipes and as‐
sociated files. There needs to be a succinct way of referring to all the files in a cookbook.
That’s the purpose of a run list.

A run list is used to specify the cookbook recipes to be evaluated on a node. A run list
specifies recipes in the form recipe['<cookbook_name>::<recipe_name>']; for
example, recipe['motd::default']. When the Chef code is contained in the recipes/
default.rb file of a cookbook, the recipe name is optional as the default is implied.
recipe['motd'] is equivalent to recipe['motd::default']. Note that the .rb file ex‐
tension is omitted when referring to a recipe, as this is assumed.

112 | Chapter 7: Cookbook Authoring and Use

Figure 7-1. Anatomy of a Chef run

In the case of Test Kitchen, the run list is specified in the .kitchen.yml file and passed to
chef-client on the command line via the -o parameter. In production, the run list is
maintained on Chef Server as a node attribute.

We’ve just described how a Chef run works in more detail when you run kitchen con
verge. Now, let’s also cover the structure of a cookbook in more detail.

Anatomy of a Chef Run | 113

Cookbook Structure
A Chef cookbook is expected to have a specific file and directory structure. You could
create these files and directories by hand with your editor and filesystem, but most
people find it convenient to use the scaffolding generators Chef provides to lay down
the directory structure: chef generate cookbook or knife cookbook create.

A basic cookbook directory structure contains the following files:

cookbook
├── .kitchen.yml
├── README.md
├── attributes
│ └── default/
├── chefignore
├── files/
│ └── default/
├── metadata.rb
├── recipes/
│ └── default.rb
└── templates/
 └── default/

\.kitchen.yml
The .kitchen.yml file is a YAML-format configuration file for Test Kitchen. You can
use Test Kitchen to create sandbox environments to verify and validate your cook‐
book while you develop it.

README.md
Every cookbook should come with documentation. The README.md is a text file
that contains documentation in markdown format. Markdown is a simple way of
adding formatting to plain text so that you have the option of converting it to
HTML. Markdown is a popular format for README files because the text files are
readable as is, without the clutter of HTML tags and formatting instructions. Many
popular source control tools will render README.md in HTML when viewing
source, including GitHub, GitLab, Stash, and Bitbucket.

attributes
You can provide your own custom attributes in a cookbook to complement (or
override) the attributes generated automatically by ohai. Attributes are commonly
used to define application distribution paths, platform-specific values, or software
versions to install on a given node. The attributes/ directory can contain multi‐
ple .rb files with attribute definitions in them. When there is more than one attribute
file, they are evaluated in alphabetical order. By convention, if it makes sense to
store your attributes in one file, the file should be named default.rb.

114 | Chapter 7: Cookbook Authoring and Use

https://www.github.com
https://about.gitlab.com
https://www.atlassian.com/software/stash
https://bitbucket.org

chefignore
This file contains a list of files that should be ignored when uploading the cookbook
to a Chef Server, when a Chef server is being used. By default, all files in a cookbook
directory are uploaded to the Chef Server. There is no need, however, to upload
things such as editor swapfiles or source control tracking files to a Chef Server.
References to these files are commonly placed in a chefignore file so they won’t be
uploaded.

files
The files folder is a centralized store in the cookbook for files to be distributed to
nodes. Files can be plain text, images, zip files, and so on. These files can be deployed
to a target node using the cookbook_file resource. A directory structure under‐
neath files/ controls whether files are copied to particular nodes. For more infor‐
mation on this structure, refer to http://docs.opscode.com/essentials_cook
book_files.html. When files should be distributed to all nodes, they are expected to
be in the files/default/ subdirectory.

metadata.rb
The metadata.rb file contains all the information (metadata) about a cookbook.
Every cookbook must have a metadata.rb file containing the name of the cookbook,
version, dependencies, and other helpful information.

recipes
The recipes folder contains Chef recipes. A recipe file contains Chef code. There
can be multiple .rb recipe files in the recipes/ folder. By convention, the main recipe
file is called default.rb. For each node, Chef evaluates only recipe files that are
specified on the node’s run list. The run list is specified in the .kitchen.yml file or
on the chef-client command line, or stored on a Chef Server.

templates
The templates directory holds Chef templates. The templates directory is similar to
files in that it contains a set of files to be distributed to nodes. However, the files
used are Embedded Ruby templates. A template is plain text that can contain Ruby
code, which is evaluated by the Embedded Ruby template engine before being ren‐
dered on a node. Templates are useful when you want to generate files with variable
or selective content. templates follows the same directory-naming structure scheme
as files to control whether the generated template files are copied to particular nodes.

We will cover all these structures in the next cookbook we write in this chapter. There
are several more components to a Chef cookbook structure that are used by more ad‐
vanced Chef cookbook coders. The additional components are Berksfile, defini
tions, libraries, providers, and resource. We won’t be covering these components
as this book is intended for beginners, and all but the Berksfile are components used
to customize Chef. Beginners usually need to spend time using Chef and discovering

Cookbook Structure | 115

http://docs.opscode.com/essentials_cookbook_files.html
http://docs.opscode.com/essentials_cookbook_files.html

the limits of the built-in components before trying to tackle customization. Jon Cowie’s
Customizing Chef book is the perfect resource when you are ready to tackle Chef
customization.

We really wanted to cover the Berksfile and its accompanying Berk
shelf tool in this book, but the current 2.0 and 3.0 releases of Berk‐
shelf are far too difficult for Ruby beginners to install using the Chef
Client. Beginners basically must use the Chef Development Kit to
install the Berksfile tool, but as we’ve already discussed, the Chef
Development Kit isn’t available on all platforms at the time of this
writing.
For more information on Berkshelf, refer to http://berkshelf.com and
Jamie Winsor’s blog post on The Environment Cookbook Pattern.
Jamie Winsor is the creator of the Berkshelf tool.

The Four Resources You Need to Know
If the full list of resources seems daunting, don’t worry: there are really only four types
of resources you’ll find yourself using over and over:
package

Installs a package using the appropriate platform-native installer/package manager
(yum, apt, pacman, etc.).

service

Manages the lifecycle of any daemons/services installed by the package resource.

cookbook_file

Transfers a file from the cookbook repository to a path on the node. We introduced
the cookbook_file resource earlier in this chapter to manage the /etc/motd file on
our node.

template

A variant of the cookbook_file resource that lets you create file content from vari‐
ables using an Embedded Ruby (ERB) template.

That’s it, just four resources. You’ll find yourself using these resources over and over
again to install and configure apps and services. Let’s make this idea more concrete by
writing one more cookbook to close out this chapter, a cookbook that will configure a
web server to host our home page.

116 | Chapter 7: Cookbook Authoring and Use

http://bit.ly/customizing-chef
http://berkshelf.com
http://blog.vialstudios.com/the-environment-cookbook-pattern/
http://docs.getchef.com/resource.html#resources

Apache Cookbook: A Step-By-Step Primer for Creating a
Cookbook
We’ve formally introduced the steps in a Chef run and all the components of a cookbook
directory structure. Now we will walk you through the step-by-step process we recom‐
mend to create cookbooks.

Before creating a cookbook, it’s important to define the purpose and scope of the cook‐
book. This step ensures each cookbook is truly a unit of your infrastructure. It also
defines the vision and organization for the cookbook. A cookbook without a clear vision
will likely become a source of difficulty in the future.

Completing “Define Prerequisites” on page 117 might help focus your thoughts when you
are creating a new cookbook. As you gain more experience writing Chef recipes, the
thought process involved in developing a plan for your cookbook will become second
nature without the need to formalize the plan in a checklist.

Define Prerequisites
Table 7-1. Cookbook authoring checklist

Name

Purpose

Success criteria

App/Service

Required steps

Name
Although it might seem trivial, choosing a proper and descriptive name for a cook‐
book is absolutely critical. Because a cookbook’s name must be unique across your
organization, you only have one chance to name it properly. For example, you can
only have one “mysql” cookbook in your organization. A cookbook’s name is also
an abbreviated statement of work and should follow the principle of least surprise.
For example, the “mysql” cookbook should deal exclusively with MySQL.

Purpose
The purpose or goal of a cookbook is the second-most important prerequisite when
creating a cookbook. A cookbook without a proper vision is certain to fail, if not
immediately, then in the long term due to scope creep resulting in untestable code.
The following is a vision statement for our mysql cookbook:

To install and configure the MySQL server and MySQL client on a target machine.

The vision is sometimes closely tied to the metadata’s description attribute, but
this is not a requirement.

Apache Cookbook: A Step-By-Step Primer for Creating a Cookbook | 117

Success criteria
Once you have a goal, you need to have some way to determine that you have
achieved the goal. Success criteria describe the things we need to evaluate about the
cookbook to determine that it meets its intended purpose. The following is an ex‐
ample of success criteria for the mysql cookbook:

Do just enough to get MySQL running and expose a way to create MySQL users,
databases, and tables.

App/service
Each cookbook should manage a single application or service (a unit of your in‐
frastructure). You should identify that application or service before creating the
cookbook. If you are unable to identify a single application or service, you should
consider narrowing the vision from the previous step. For example, our narrowed
“App/Service” would be “MySQL.”

Required steps
If you don’t know the required steps to accomplish your goal, it’s going to be difficult
to automate the process with a cookbook. Automation first requires a grasp of what
steps are needed to install and configure the application manually (along with any
prerequisites), then you can start tackling the process of making the installation
repeatable without human intervention via automation.

In this section, we will create and author a cookbook named “apache” to configure our
web server. Table 7-2 is the completed table for our “apache” cookbook.

Table 7-2. Apache cookbook checklist
Name apache

Purpose To configure a web server to serve up our home page.

Success Criteria We can see the home page in a web browser.

App/Service Apache HTTP server

Required Steps 1) Install apache, 2) Start the service, 3) Configure service to start when machine boots, 4) Write out the
home page

With this cookbook, our goal is to teach you the three remaining Chef resource prim‐
itives not yet covered and to outline the steps involved in creating a cookbook, not web
server management. These are not the exact steps required to configure the Apache
HTTP server configuration in production, but they’re perfectly fine for this example.
Configuring a real-world Apache HTTP server would involve more configuration steps,
but it would still involve these four basic resources.

Now that we have a clear vision for the apache cookbook, we can generate the cookbook
skeleton.

118 | Chapter 7: Cookbook Authoring and Use

Generate the Cookbook Skeleton
We’ve already been through the steps to generate the scaffolding for a cookbook using
chef generate cookbook or knife cookbook create, depending on whether you have
the Chef Development Kit or Chef Client installed on your development workstation.
In this case, you’ll want to create a cookbook named apache.

First, you need to create the cookbook skeleton with Test Kitchen support. We’re going
to go quickly through the cookbook creation commands this time without showing you
the tool output. Refer back to “Your First Cookbook: Message of the Day (Chef Devel‐
opment Kit)” on page 100 if you’re using the Chef Development Kit, or “Your First
Cookbook: Message of the Day (Chef Client)” on page 103 if you are using Chef Client
for a refresher on the steps involved.

Chef Development Kit:

$ chef generate cookbook apache
$ cd apache

Chef Client:

$ knife cookbook create apache --cookbook-path .
$ cd apache
$ kitchen init --create-gemfile
$ bundle install

Edit the .kitchen.yml to use CentOS image tailored for use in this book.

From this point forward, we’ll provide listings only for the Chef De‐
velopment Kit versions of the source files, and not Chef Client. There
are no functional differences between the two versions. You’ll just
notice that knife creates a few more file types by default that aren’t
covered in this book, and some of the comments are different. Hav‐
ing the extra generated files doesn’t hurt anything as they all are just
blank stubs we won’t be using.

Example 7-7. chefdk/apache/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_zero

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65

Apache Cookbook: A Step-By-Step Primer for Creating a Cookbook | 119

suites:
 - name: default
 run_list:
 - recipe[apache::default]
 attributes:

Example 7-7 shows how the run list is defined in the suites: stanza of the .kitch‐
en.yml. Chef Development Kit users, remember to make sure this is correct, due to the
current bug that incorrectly sets the run list to recipe[bar::default].

Now you know that the run list recipe[apache::default] is just shorthand indicating
that Chef code needs to be executed in the recipes/default.rb file of the apache cookbook.
Chef-client executes the code when we run kitchen converge.

To make sure your .kitchen.yml has no syntax errors, run kitchen list. If there are
issues, correct them:

$ kitchen list
Instance Driver Provisioner Last Action
default-centos65 Vagrant ChefZero <Not Created>

Edit the README.md File
Your README.md file should drive the cookbook development, based on the prereq‐
uisites you defined in “Define Prerequisites” on page 117. Example 7-8 shows a sug‐
gested README.md for your apache cookbook.

Example 7-8. chefdk/apache/README.md
apache cookbook

This cookbook installs and configures a simple web site using the Apache HTTPD server.

Requirements
============
Supports only CentOS or other RHEL variants that use the +httpd+ package.

Usage
=====
Add `apache` to your node's `run_list`.

Testing
=======
A `.kitchen.yml` file is provided. Run +kitchen converge+ to verify this cookbook.

Update Metadata.rb
Here’s the metadata.rb file that was generated in your cookbook skeleton:

120 | Chapter 7: Cookbook Authoring and Use

name 'apache'
maintainer ''
maintainer_email ''
license ''
description 'Installs/Configures apache'
long_description 'Installs/Configures apache'
version '0.1.0'

Note the apache string in the name field. This is how Chef determines the name of your
cookbook in the run list. It does not look at the name of the directory in which the
cookbook files reside. For your own sanity, the name field in the metadata.rb and your
cookbook directory should match, but they aren’t required to.

Edit the metadata.rb file, adding your name and e-mail address in the maintainer and
maintainer_email fields. Because you will want to share your cookbooks, it is also a
good idea to indicate how you intend to make your code sharable by listing one of the
standard open source license types. Refer to the site http://choosealicense.com for more
information on open source software licensing.

Example 7-9 shows how I filled out my metadata.rb file. When you edit the metada‐
ta.rb file, use values that are appropriate for you.

Example 7-9. chefdk/apache/metadata.rb
name 'apache'
maintainer 'Mischa Taylor'
maintainer_email 'mischa@misheska.com'
license 'MIT'
description 'Installs/Configures apache'
long_description 'Installs/Configures apache'
version '0.1.0'

Introducing the Package Resource
We haven’t written any Chef code in our recipe yet, but go ahead and run an initial
kitchen converge on your cookbook skeleton to make sure there aren’t any syntax
errors in the files you have edited so far. We encourage you to run kitchen converge
frequently to verify your cookbook code as you write it. The first kitchen converge
will take a few minutes, as Test Kitchen needs to set up the sandbox environment and
it will also download and install chef-client on the node. But subsequent kitchen
converge runs will go pretty quickly. Run kitchen converge now:

$ kitchen converge default-centos65

Now, let’s get to some coding. First, let’s use the package resource to install the httpd
package using yum install by editing recipes/default.rb, as shown in Example 7-10.

Apache Cookbook: A Step-By-Step Primer for Creating a Cookbook | 121

http://choosealicense.com

Example 7-10. chefdk/apache/recipes/default.rb
#
Cookbook Name:: apache
Recipe:: default
#
Copyright (C) 2014
#
#
#

package "httpd" do
 action :install
end

Run kitchen converge again to check your work. We also encourage you to use kitchen
login to inspect the node to verify that your recipe is doing what you expect. Log in to
the node, and verify that the httpd service is installed with the following command. Be
sure to exit back out to your host prompt when you are done:

$ kitchen converge default-centos65
$ kitchen login default-centos65
Last login: Thu Aug 14 13:48:32 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@default-centos65 ~]$ rpm -q httpd
httpd-2.2.15-31.el6.centos.x86_64
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

The httpd service is indeed installed! The rpm -q command queries the rpm package
manager database to see if a package containing the name is present on the system.

If you look at the Chef documentation on the package resource, package calls one of
many providers based on the platform and platform_family returned by ohai. Be‐
cause our platform is rhel, the yum_package provider is used.

If you refer to the documentation on the yum_package provider, you’ll notice that there
are four possible actions: :install, :upgrade, :remove, and :purge. Because :in
stall is the default, we don’t need to specify the action. Let’s change our recipe accord‐
ingly, as shown in Example 7-11.

Example 7-11. chefdk/apache/recipes/default.rb
#
Cookbook Name:: apache
Recipe:: default
#
Copyright (C) 2014
#
#

122 | Chapter 7: Cookbook Authoring and Use

http://docs.getchef.com/resource_package.html
http://docs.getchef.com/resource_yum.html

#

package "httpd"

Now the package reference is a lot more concise, and it performs the same action. Look
for opportunities to make use of default actions where possible.

Introducing the Service Resource
Next, let’s use the service resource to start the httpd service and automatically enable
it on restart. The service resource can start a service with the :start action, and it can
enable a service at boot with the :enable action.

You can pass more than one action to the service resource by passing them as an array.
In Chapter 3 we discussed how an array is a delimited list of comma-delimited items
contained within square brackets ([]).

Add the service resource to recipes/default.rb as shown in Example 7-12.

Example 7-12. chefdk/apache/recipes/default.rb
#
Cookbook Name:: apache
Recipe:: default
#
Copyright (C) 2014
#
#
#

package "httpd"

service "httpd" do
 action [:enable, :start]
end

This is the first time we’ve encountered multiple resources in one recipe. Chef evaluates
the recipes as you would expect—in the order they are listed in the file.

Let’s run kitchen converge again and log in to verify that our cookbook produced the
intended result:

$ kitchen converge default-centos65
$ kitchen login default-centos65
Last login: Thu Aug 14 13:50:39 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@default-centos65 ~]$ chkconfig --list httpd | grep 3:on
httpd 0:off 1:off 2:on 3:on 4:on 5:on 6:off
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

Apache Cookbook: A Step-By-Step Primer for Creating a Cookbook | 123

Our service is enabled! For CentOS and other Redhat variants, services are enabled in
different run levels. Our service should be enabled for runlevel 3, which is multi-user
text mode with networking enabled—the default for a working CentOS server running
in text mode. In our grep statement, we verified that the service is set to be on for
runlevel 3.

Introducing the Template Resource
We’ll introduce the template resource by showing you how to generate the file con‐
taining the content for our website. The template resource is similar to cookbook_file in
that it creates a file on the node. However, a template has the additional ability to expand
variable references to the file and other statements in the form of Embedded RuBy
(ERB).

Let’s add the resource statement to recipes/default.rb as shown in Example 7-13.

Example 7-13. chefdk/apache/recipes/default.rb
#
Cookbook Name:: apache
Recipe:: default
#
Copyright (C) 2014
#
#
#

package "httpd"

service "httpd" do
 action [:enable, :start]
end

template "/var/www/html/index.html" do
 source 'index.html.erb'
 mode '0644'
end

By default, the httpd server looks for web pages in the directory /var/www/html. The
file for the default website is expected to be in the file /var/www/html/index.html. We
also still have to set the file mode to be world-readable. What’s probably new to you,
compared to the file resource, is this source attribute.

The source attribute specifies the file containing a template with ERB statements. This
template is expected to be located underneath the templates folder in the cookbook,
following the same subdirectory convention as files. So to copy the template to all nodes
(which is the default), make sure that template files are located in the templates/
default directory.

124 | Chapter 7: Cookbook Authoring and Use

What’s with “Default” Subdirectory?
What’s with the “default” subdirectory in files/default and template/default? Chef allows
you to select the most appropriate file (or template) within a cookbook according to the
node’s platform. Chef requires you to create a directory underneath “files” or “templates”
with your filter name. Options include filtering files and templates by

• host node name (e.g., foo.bar.com)
• platform-version (e.g., redhat-6.5.1)
• platform-version_components (e.g., redhat-6.5, redhat-6)
• platform (e.g., redhat)
• default

Ninety-nine percent of the time, you’ll just use default as the directory name, indicating
that the file or template should be copied to all nodes.

Let’s create an ERB template for our index.html file. By convention, an ERB template is
expected to have the suffix .erb appended to the generated filename. The Chef Devel‐
opment kit does this expansion for you automatically when you run chef generate tem‐
plate index.html, creating the file templates/default/index.html.erb. With the Chef
Client, you must create this file manually.

Chef Development Kit:

$ chef generate template index.html

Chef Client - Linux/Mac OS X:

$ touch templates/default/index.html.erb

Chef Client - Windows:

$ touch templates\default\index.html.erb

Variables get expanded in an ERB file when Chef sees statements bounded by <%= and
%>, such as <%= node['hostname'] %> in the following index.html.erb file. Chef eval‐
uates the node['hostname'] variable and replaces the contents of the <%= node['host
name'] %> block with the resultant value when the file is written out to the node. Edit
templates/default/index.html.erb as shown in Example 7-14.

Example 7-14. chefdk/apache/templates/default/index.hmtl.erb
This site was set up by <%= node['hostname'] %>

Run kitchen converge, then run kitchen login to verify that our template resource
created the file. Check to make sure the file exists at /var/www/html/index.html, and use

Apache Cookbook: A Step-By-Step Primer for Creating a Cookbook | 125

the curl to see the web page rendered on the command line. Note that when
the /var/www/html/index.html file was created, the <%= node['hostname'] %> string
in our template was replaced by the value of the node['hostname']:

$ kitchen converge default-centos65
$ kitchen login default-centos65
Last login: Thu Aug 14 13:52:00 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@default-centos65 ~]$ more /var/www/html/index.html
This site was set up by default-centos65
[vagrant@default-centos65 ~]$ curl localhost
This site was set up by default-centos65
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

While it is great to see this output, we haven’t quite yet met our defined success criteria
for this cookbook. We need to be able to see the home page in a web browser on your
host. Let’s do that in the next section.

Verify Success Criteria Are Met
In order to give your host access to the website on your guest, you’ll need to assign a
known, static IP to your node in your .kitchenl.yml. This is done by adding a driver:
network: block to your .kitchen.yml in the following form:

driver:
 network:
 - ["private_network", {ip: "192.168.33.7"}]

The static IP address should be chosen from the TCP/IP reserved private address
space that does not conflict with other machines on the same network. The IP address
192.168.33.7 should work for nearly everyone, as most routers don’t use this subnet
by default, so modify your .kitchen.yml file accordingly, as shown in Example 7-15.

Example 7-15. chefdk/apache/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_zero

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65
 network:
 - ["private_network", {ip: "192.168.33.7"}]

126 | Chapter 7: Cookbook Authoring and Use

https://en.wikipedia.org/wiki/Private_network#Private_IPv4_address_spaces
https://en.wikipedia.org/wiki/Private_network#Private_IPv4_address_spaces

suites:
 - name: default
 run_list:
 - recipe[apache::default]
 attributes:

Unfortunately, Test Kitchen will apply network configuration settings in the .kitch‐
en.yml only when running kitchen create the first time, when the sandbox environ‐
ment is created. Because we have already created the sandbox environment, we’ll need
to run kitchen destroy first, before running kitchen converge, so it will create a new
sandbox environment. Otherwise, Test Kitchen will ignore the networking change we
just added to the kitchen.yml:

$ kitchen destroy default-centos65
$ kitchen converge default-centos65

Now that the sandbox environment has been created with an IP address accessible from
our host, try it out in your web browser using the address http://192.168.33.7. You should
see the template file we just created, as in Figure 7-2. Success criteria met!

Figure 7-2. Your apache site on 192.168.33.7

If you get an error, check the following:

1. Make sure you created the file apache/templates/default/index.html.erb and it has
the correct content.

2. Run kitchen login, then run curl localhost to make sure that Chef run com‐
pleted properly and the web server is working within the virtual machine.

3. Scrutinize the kitchen converge output to make sure there was no error when
vagrant configured the private_network address when it set up the virtual net‐
work adapters on the virtual machine.

Apache Cookbook: A Step-By-Step Primer for Creating a Cookbook | 127

http://192.168.33.7

4. There is no possibility that another machine on the local network has the same IP
address. If so, modify the .kitchen.yml and recreate the virtual machine.

We are now done with this cookbook and virtual machine. Run the kitchen destroy
command to shut down the virtual machine and release all the associated system
resources:

$ kitchen destroy default-centos65
-----> Starting Kitchen (v1.2.2.dev)
-----> Destroying <default-centos65>...
 ==> default: Forcing shutdown of VM...
 ==> default: Destroying VM and associated drives...
 Vagrant instance <default-centos65> destroyed.
 Finished destroying <default-centos65> (0m2.95s).
-----> Kitchen is finished. (0m3.43s)

Summary
In this chapter, we introduced the concept of a cookbook. Chef needs more than recipe
files with code to automate the configuration of nodes. A cookbook contains all the
other associated information, packing everything together into a single unit of deploy‐
ment. We covered three of these additional components of a cookbook in this chapter:
the metadata.rb file, the files folder, and the templates folder. We also showed you that
Chef code resides in the recipes folder.

We introduced you to the four essential resources you’ll find yourself using over and
over again in your recipe code:
package

Installs a package using the system package manager

service

Manages the lifecycle of any daemons/services installed by the package resource

cookbook_file

Transfers a file from the files folder of a cookbook to a path on the node

template

A variant of the cookbook_file resource that lets you create file content from vari‐
ables using an Embedded Ruby (ERB) template. Templates are located in the tem‐
plates folder of a cookbook

Finally, we walked you through a process we recommend you use when creating a
cookbook:

1. Define prerequisites and goals.
2. Generate the cookbook skeleton.

128 | Chapter 7: Cookbook Authoring and Use

3. Let the documentation you write in the README.md file guide development.
4. Define metadata in the metadata.rb file.
5. Verify cookbook code as you write it using kitchen converge and kitchen login.
6. Verify conditions of success are met.

In the next chapter, we’ll delve a bit more deeply into attributes. You can create your
own custom attributes. We’ll cover where and how attributes are set in more detail.

Summary | 129

CHAPTER 8

Attributes

Attributes represent information about your node. In addition to the information that
can be automatically generated by ohai, you can set attributes in Chef recipes or in
separate attribute files.

Attribute files are located in the attributes folder of a cookbook. Similar to recipes, the
default attribute file is called:

<cookbook>
└── attributes
 └── default.rb

Figure 8-1 shows the format of an attribute when it is specified in a cookbook attribute
file.

Figure 8-1. Setting attributes in attribute files

Attributes can also be set directly in recipes. Figure 8-2 shows the format of an attribute
when it is set in a recipe. You must precede the attribute name with node. when you set
an attribute directly in a recipe.

131

Figure 8-2. Setting attributes in recipes

Because attributes can be defined in multiple places, all attribute values are composed
together during a Chef run according to the priority levels as shown in Figure 8-3.
Attributes defined by ohai have the highest priority, followed by attributes defined in a
recipe, then attributes defined in an attribute file. In other words, recipe attributes have
a higher priority than those defined in attribute file, and will override them by default.
Attributes defined by ohai trump everything else.

Figure 8-3. Attribute priority

We’ll talk more about precedence levels later in this chapter. However, when setting an
attribute in a cookbook, it should (almost) always be a default attribute with default
precedence.

Motd-Attributes Cookbook
Let’s experiment with attributes in a cookbook called motd-cookbook. This is an
attribute-driven version of the motd cookbook we created in Chapter 7. We’re going to
go through the cookbook creation steps quickly in this chapter. If you need a refresher
on what each of these commands mean and the expected output, refer back to Chapter 7.

132 | Chapter 8: Attributes

First, generate the motd-attributes cookbook using either the chef generate cook
book command in the Chef Development Kit or the knife cookbook create command
in Chef Client, depending on which is installed on your Chef Development workstation.

Chef Development Kit:

$ chef generate cookbook motd-attributes
$ cd motd-attributes

Chef Client:

$ knife cookbook create motd-attributes --cookbook-path .
$ cd motd-attributes
$ kitchen init --create-gemfile
$ bundle install

Next, modify the .kitchen.yml file to use our favorite box image, as shown in
Example 8-1.

Example 8-1. chefdk/motd-attributes/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_zero

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65

suites:
 - name: default
 run_list:
 - recipe[motd-attributes::default]
 attributes:

Create a recipe that uses the template resource to generate a /etc/motd file, but this time,
we’ll use some attributes in the template file. The initial recipes/default.rb file you create
should resemble Example 8-2.

Example 8-2. chefdk/motd-attributes/recipes/default.rb
#
Cookbook Name:: motd-attributes
Recipe:: default
#
Copyright (C) 2014
#
#

Motd-Attributes Cookbook | 133

#

template '/etc/motd' do
 source 'motd.erb'
 mode '0644'
end

Generate a template file to generate /etc/motd.

Chef Development Kit:

$ chef generate template motd

Chef Client - Linux/Mac OS X:

$ touch templates/default/motd.erb

Chef Client - Windows:

$ touch templates\default\motd.erb

Create a template /etc/motd that uses some node attributes generated by ohai, as shown
in Example 8-3.

Example 8-3. chefdk/motd-attributes/templates/default/motd.erb
The hostname of this node is <%= node['hostname'] %>
The IP address of this node is <%= node['ipaddress'] %>

Perform a kitchen converge to apply the cookbook to your node, and then when you
run kitchen login it should display the following, with the expected values for
node["ipaddress"] and node["hostname"]. (Reminder: Once you have issued these
commands and verified the output is correct, make sure you run the exit command to
get back to the host prompt directory with your cookbook source.)

$ kitchen converge
$ kitchen login
Last login: Sun Jul 20 19:40:55 2014 from 10.0.2.2
The hostname of this node is default-centos65
The IP address of this node is 10.0.2.15
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

If the last line with the IP address is missing, even though it is clear‐
ly in the motd.erb, add an extra newline in your text editor at the end
of the file. The message of the day won’t display the last line if it does
not have a carriage return in the text.

134 | Chapter 8: Attributes

www.allitebooks.com

http://www.allitebooks.org

Setting Attributes
Now, let’s try setting some attributes in our cookbook. First, generate a default attributes
file.

Chef Development Kit:

$ chef generate attribute default

Chef Client - Linux/Mac OS X:

$ touch attributes/default.rb

Chef Client - Windows:

$ touch attributes\default.rb

By default, the Chef Development Kit does not create an attributes directory until you
tell it to generate an attribute file. Chef Client, on the other hand, always creates the
directory, but leaves it up to you to create the default.rb attribute file by hand.

Now, let’s set an attribute in our attributes file following the form outlined in
Figure 8-1. Before you edit attributes/default.rb the file will have no content, as shown
in Example 8-4.

Example 8-4. chefdk/motd-attributes/attributes/default.rb
default['motd-attributes']['company'] = 'Chef'

By convention, when attributes are set in a cookbook’s attribute file, the values are ex‐
pected to be namespaced under a top-level key matching the cookbook name. Then all
the key/value pairs are contained within the top-level key; for example, the
default['motd-attributes']['company'] value is the string 'Chef' in this example,
as the cookbook name in the metadata.rb file is motd-attributes. Also, following the
form outlined in Figure 8-1, the attribute uses the default precedence level.

Let’s also set an attribute value in our recipe, as seen in Example 8-5, following the form
in Figure 8-2.

Example 8-5. chefdk/motd-attributes/recipes/default.rb
node.default['motd-attributes']['message'] = "It's a wonderful day today!"

template '/etc/motd' do
 source 'motd.erb'
 mode '0644'
end

Update the motd.erb template as shown in Example 8-6. You can access attributes from
any source under the node object: attribute file values, values set in recipes, or values set
automatically by ohai. They’re all just the corresponding node values.

Setting Attributes | 135

Example 8-6. chefdk/motd-attributes/templates/default/motd.erb
Welcome to <%= node['motd-attributes']['company'] %>
<%= node['motd-attributes']['message'] %>
The hostname of this node is <%= node['hostname'] %>
The IP address of this node is <%= node['ipaddress'] %>

Performing another Chef run and checking the message of the day should produce the
following output (again, make sure to exit back out to the host prompt):

$ kitchen converge
$ kitchen login
Last login: Sun Jul 20 19:52:53 2014 from 10.0.2.2
Welcome to Chef
It's a wonderful day today!
The hostname of this node is default-centos65
The IP address of this node is 10.0.2.15
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

Basic Attribute Priority
Now let’s experiment with the basics of attribute priorities by trying to reset values set
elsewhere. As shown in Example 8-7, modify the recipe/default.rb so that it tries to reset
the value of a higher priority automatic attribute set by ohai, and a lower priority at‐
tribute defined in the attribute file.

Example 8-7. chefdk/motd-attributes/recipes/default.rb
node.default['ipaddress'] = '1.1.1.1'
node.default['motd-attributes']['company'] = 'My Company'
node.default['motd-attributes']['message'] = "It's a wonderful day today!"

template '/etc/motd' do
 source 'motd.erb'
 mode "0644"
end

Perform a Chef run and check to see the resulting values:

$ kitchen converge
$ kitchen login
Last login: Sun Jul 20 20:05:38 2014 from 10.0.2.2
Welcome to My Company
It's a wonderful day today!
The hostname of this node is default-centos65
The IP address of this node is 10.0.2.15
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

136 | Chapter 8: Attributes

You should notice:

• The node['motd-attributes']['company'] value set in the recipe ‘My Company’
has a higher priority than the value ‘Chef ’ set in the attribute file, so this is the value
displayed in the template.

• The node['ipaddress'] value set in the recipe '1.1.1.1' has a lower priority than
the automatic value 10.0.2.15 set by ohai, so the value set in the recipe is ignored,
and the template displays the higher priority value.

These priorities represent how the variables are intended to be used. Values set in an
attribute file are intended to be defaults that can be overridden by a recipe. On the other
hand, the automatic values set by ohai should never be overridden as they represent
important information about a system, such as the fact that it shouldn’t be easy to reset
the node’s IP address, for example.

Include_Recipe
You might wonder why there is a need for this priority mechanism with Chef attributes.
It’s because like in most other programming languages, a Chef recipe can reference other
Chef recipe files using an “include” statement: include_recipe. So when your Chef
code is processed during a Chef run, it could possibly include a chain of references to
multiple recipe files that might even be in other cookbooks, as shown in Figure 8-4.
Because you can use include_recipe, Chef code might contain conflicting attribute
assignments, and there needs to be some guidelines for how these conflicts are resolved.

Figure 8-4. include_recipe could include a chain of references

Include_Recipe | 137

A rule of thumb many Chef coders find useful is that a recipe file
shouldn’t be longer than a “screenful” of code—between one dozen
and two lines. Anything longer gets difficult to understand at a glance
because you have to scroll up or down to see all the code. When your
recipe code starts getting this long, consider breaking it up into mul‐
tiple recipe files, stitching them together with include_recipe
statements.

In order to use include_recipe, you reference a recipe in the exact same form that you
reference a recipe in a run list, in the form "<cookbook>::<recipe>". For example,
"motd-attributes::message".

Let’s add an include_recipe statement to our motd-attributes cookbook. Generate
a new recipe called message.

Chef Development Kit:

$ chef generate recipe message

Chef Client - Linux/Mac OS X:

$ touch recipes/message.rb

Chef Client - Windows:

$ touch recipes\message.rb

Now edit the recipes/message.rb file containing the recipe as shown in Example 8-8. The
message recipe will be used to set additional values related to the message of the day.

Example 8-8. chefdk/motd-attributes/recipes/message.rb
node.default['motd-attributes']['company'] = 'the best company in the universe'

138 | Chapter 8: Attributes

Note that our .kitchen.yml file includes only a reference to the de
fault recipe in its run list. We never intend for external consumers
of our cookbook to refer to this message recipe directly. We’re just
using the message recipe to organize our code, and it is assumed that
include_recipe will be used inside the default recipe to include any
other necessary code:

...
 run_list:
 - recipe[motd-attributes::default]
...

Some Chef coders use the convention of putting an underscore pre‐
fix (“_”) in the name of recipes that are “private”—recipes used mere‐
ly to organize Chef code into smaller, more understandable chunks.
They name the recipe file "_message.rb" to make this intent more
clear in the cookbook file structure.

Also, you need to add an include_recipe statement to your default.rb. The in
clude_recipe statement ensures that the message.rb file gets processed during the Chef
run. Otherwise, only the recipe file default.rb will be evaluated when the run list is motd-
attributes::default. We won’t remove any of the attribute values we set earlier, in
order to illustrate a few more attribute priority concepts.

Example 8-9. chefdk/motd-attributes/recipes/default.rb
#
Cookbook Name:: motd-attributes
Recipe:: default
#
Copyright (C) 2014
#
#
#

node.default['ipaddress'] = '1.1.1.1'
node.default['motd-attributes']['company'] = 'My Company'
node.default['motd-attributes']['message'] = "It's a wonderful day today!"

include_recipe 'motd-attributes::message'

template '/etc/motd' do
 source 'motd.erb'
 mode '0644'
end

include_recipe statements can be present anywhere in a recipe file. When the Chef
code is evaluated, the include_recipe statement is replaced with an expansion of the
recipe code that is referenced, as shown in Figure 8-5.

Include_Recipe | 139

Figure 8-5. Chef expands any include_recipe references

Perform a kitchen converge and inspect the resulting message. When there is a du‐
plicate attribute value set at the same priority level, the last attribute value setting wins.
In this case, with the include_recipe expansion, node.default["motd-attributes"]
["company"] is set twice; the last value set before the template resource is what is used—
“the greatest company in the universe”:

$ kitchen converge
$ kitchen login
Last login: Mon Jul 21 11:34:05 2014 from 10.0.2.2
Welcome to the best company in the universe
It's a wonderful day today!
The hostname of this node is 10.0.2.15
The IP address of this node is default-centos65
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

Attribute Precedence
Figure 8-6 shows the three most commonly used levels of precedence that can be used
in attribute definitions:
Automatic

attributes are those discovered by ohai.

140 | Chapter 8: Attributes

Default
attributes are typically set in cookbooks and attribute files.

Override
attributes are the strongest way to set an attribute—use sparingly.

Figure 8-6. Precedence levels

When setting an attribute in a cookbook, it should (almost) always be a default attribute.
There is one exception to this rule, where it makes sense to use override precedence
with environments. We’ll explore the reasoning behind this in Chapter 15.

Other than the special case of Chef environments, attribute precedence is most fre‐
quently used when you want to customize Chef, which is beyond the scope of this book.
When you want to implement a new feature in Chef, such as a custom resource, being
able to tinker with Chef ’s powerful attribute precedence engine lets you add new features
to the language that follow the general expectations for basic attribute priority outlined
in this chapter. For more information on this topic, refer to Customizing Chef, by Jon
Cowie.

Debugging Attributes
If you need to debug where attributes are being set, the node object exposes a helpful
node.debug_value() method. Let’s say, for example, you did not know that ohai set
node['ipaddress'] using automatic precedence. You could determine this by using
node.debug_value().

Modify recipes/default.rb as shown in Example 8-10. Because we have access to the full
power of the Ruby language in a Chef recipe, we also make use of the “pretty printer for
Ruby objects” function included with the core Ruby library. This function will print out
the contents of a Ruby object in a more readable format. The node.debug_value()
returns the raw contents of an object; pp just makes the output look nicer.

Debugging Attributes | 141

http://bit.ly/customizing-chef

Example 8-10. chefdk/motd-attributes/recipes/default.rb
#
Cookbook Name:: motd-attributes
Recipe:: default
#
Copyright (C) 2014
#
#
#

require 'pp'

node.default['ipaddress'] = '1.1.1.1'
pp node.debug_value('ipaddress')

node.default['motd-attributes']['company'] = 'My Company'
node.default['motd-attributes']['message'] = "It's a wonderful day today!"

include_recipe 'motd-attributes::message'

template '/etc/motd' do
 source 'motd.erb'
 mode '0644'
end

When you run kitchen converge, you should see the following output:

$ kitchen converge
-----> Starting Kitchen (v1.2.2.dev)
...
 [["set_unless_enabled?", false],
 ["default", "1.1.1.1"],
 ["env_default", :not_present],
 ["role_default",
 :not_present],
 ["force_default", :not_present],
 ["normal", :not_present],
 ["override", :not_present],
 ["role_override", :not_present],
 ["env_override", :not_present],
 ["force_override", :not_present],
 ["automatic", "10.0.2.15"]]
...

From here, you could sort out that the node['ipaddress'] attribute was set to the value
of "10.0.2.15" at the automatic precedence level and set to the value "1.1.1.1" at the
default precedence level. So Chef did register that you set the value to "1.1.1.1", but
the override took precedence.

142 | Chapter 8: Attributes

You might notice that there are more precedence levels in the node.de
bug_level() output than we have discussed so far in this book. We
are intentionally simplifying attribute precedence in this book. If you
follow the guideline of using default precedence, unless there is a
specific need, you rarely have to deal with the full complexity of at‐
tribute precedence with basic Chef cookbook code.
A lot of the complexity of attributes arose as the precedence feature
was introduced in Chef and cookbooks needed to be written to be
backward-compatible with older versions. With Chef 11, most cook‐
books follow the default precedence guideline.
If you’d like to learn more about the details of attribute precedence,
refer to the aforementioned Customizing Chef.

Debugging when an attribute is set in two or more places at the same precedence level
is a little more difficult to trace, but still not too complicated. You just need to sprinkle
node.debug_value() statements before and after include_recipe calls.

For example, say we didn’t know that the motd-attributes::message recipe set
node.default['motd-attributes']['company']. We could figure this out by sprin‐
kling more node.debug_value() calls in our code. Change recipes/default.rb as shown
in Example 8-11, adding a call to node.debug_value('motd-attributes', 'mes
sage') before and after include_recipe.

Example 8-11. chefdk/motd-attributes/recipes/default.rb
#
Cookbook Name:: motd-attributes
Recipe:: default
#
Copyright (C) 2014
#
#
#

require 'pp'

node.default['ipaddress'] = '1.1.1.1'
pp node.debug_value('ipaddress')

node.default['motd-attributes']['company'] = 'My Company'
node.default['motd-attributes']['message'] = "It's a wonderful day today!"

pp node.debug_value('motd-attributes', 'company')
include_recipe 'motd-attributes::message'
pp node.debug_value('motd-attributes', 'company')

template '/etc/motd' do

Debugging Attributes | 143

 source 'motd.erb'
 mode '0644'
end

Run kitchen converge again, and the output of node.debug_value() should resemble
the output shown in Figure 8-7, with the second-to-last dump of node.debug_val
ue() being before include_recipe and the last being after include_recipe.

Figure 8-7. node.debug_value() output before and after include_recipe

From this output, you could sort out that something in motd-attributes::message
recipe set the attribute node['motd-attributes']['company'] to "the best company
in the universe" using the default precedence, overriding what was set earlier.

Now we’re done with this cookbook and virtual machine in this chapter. Run the kitch
en destroy command to shut down the virtual machine and release all the associated
system resources:

$ kitchen destroy
-----> Starting Kitchen (v1.2.2.dev)
-----> Destroying <default-centos65>...
 ==> default: Forcing shutdown of VM...
 ==> default: Destroying VM and associated drives...
 Vagrant instance <default-centos65> destroyed.

144 | Chapter 8: Attributes

 Finished destroying <default-centos65> (0m2.95s).
-----> Kitchen is finished. (0m3.43s)

Summary
In this chapter, we presented an overview of attributes and how Chef uses attributes to
capture the state of a node. Attributes can be defined in multiple places:

• Automatically via ohai
• Attribute files
• Recipes
• Other cookbooks

Because attributes can be defined in multiple places, Chef defines a priority scheme for
how attribute values are composed from multiple sources. You can tweak this priority
scheme by manually providing different levels of precedence, including automatic, de‐
fault, and override. In general, you should use the default precedence, unless there is a
specific need to extend or customize Chef, letting Chef choose the default priority in
which attribute values are merged together.

In the next chapter, we’ll be introducing Chef Server. Chef Server is a useful central
repository for all shared information necessary to manage multiple nodes effectively.

Summary | 145

CHAPTER 9

Manage Multiple Nodes at Once with Chef
Server

We’ve shown you how much you can do with Chef without ever needing to install its
server component. However, to get the full benefits of Chef, you need to set up a Chef
Server in your production environment. Using a Chef Server is recommended when
you need to manage more than one machine at a time with Chef, which is typically how
Chef is used. Chef Server adds more capabilities that can be used in your cookbooks,
including roles, environments, data bags, and powerful search.

As of this writing, there are three flavors of Chef Server, as detailed in Table 9-1. Al‐
though there are subtle differences, they all contain common features, including an API
endpoint, data bags, environments, node objects, roles, and search. Some of these terms
are new; we will cover them in the remaining chapters of the book.

Table 9-1. Types of Chef Server
Flavor Details

Hosted
Enterprise Chef

Formerly called Hosted Chef, Hosted Enterprise Chef is “Chef as a Service”—software as a service. It is cloud-
based and highly scalable, and comes with an industry-standard service-level agreement. It requires no setup
or configuration of the server itself.

Enterprise Chef
On-Premises

Enterprise Chef On-Premises, formerly called Private Chef, is a Chef Server inside an organization’s firewall.
It is designed to be deployed inside an organization’s infrastructure, and includes additional features on top
of Hosted Enterprise Chef. Enterprise Chef On-Premises is most useful to organizations that must comply with
HIPAA or PCI compliance issues, large organizations that wish to manage their own servers, and companies
that require tight control and auditing of data.

Open Source Chef
Server

As the name suggests, Open Source Chef Server is a free, open source version of Chef Server that includes a
subset of premium Chef Server features available in Enterprise Chef, most useful to small organizations.

Chef Server is the centralized store for configuration data in your infrastructure. It stores
and indexes cookbooks, environments, templates, metadata, files, and distribution

147

policies. Chef Server is aware of all machines it manages, and in this way, Chef Server
also acts as an inventory management system.

As of Chef 11, Chef Server is written in Erlang, a programming language designed with
concurrency in mind. Chef Server is also composed of a web server, cookbook store, web
interface, messaging queue, and backend database. Figure 9-1 shows how each of these
pieces interact.

Figure 9-1. Chef Server architecture

Web server
The nginx web server is a simple reverse proxy server that acts as the front-end
interface for Chef Server (Erchef). It also performs load balancing for Chef Server.
All requests to the Chef Server API are routed through the nginx web server.

WebUI
The WebUI is the consumer-facing web application. It is a Ruby on Rails application
that provides a web-guided user interface for interacting with Chef Server.

148 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

Chef Server
Erchef is the component of Chef Server that processes API requests. As its name
suggests, Chef Server is written in Erlang for high concurrency and reliability. Even
though Chef Server is written in Erlang, it is still capable of running Ruby code. In
fact, writing Erlang Chef recipes is not supported at this writing. Erchef is the core
API for Chef Server.

Bookshelf
The Bookshelf is the central store for all Chef cookbooks and cookbook contents
(such as files, templates, definitions, metadata, and recipes). Each cookbook is au‐
tomatically checksummed and versioned. Bookshelf is a flat-file database and is
intentionally stored outside of Chef Server’s index.

Search Index
The Search Index is an Apache Solr server that handles the indexing and searching
mechanism for various API calls, both internally and externally. The server is
wrapped by chef-solr, which exposes a RESTful API.

Message queues
The queues handle all messages that are sent to the Search Index for parsing. The
queues are managed by RabbitMQ, an open source queuing system. chef-
expander pulls messages from the message queues, formats the messages, and then
sends the messages to the Search Index.

Database
The database is a PostgreSQL persistent data store. Prior to Chef 11, the data store
was CouchDB, but was moved to PostgreSQL due to CouchDB’s inability to scale.

In the first part of this chapter, we’ll install Enterprise Chef On-Premises Server in a
sandbox environment using Test Kitchen. In order to set up the server in a virtual
machine, you’ll need at least 2 GB of free memory on your machine—1.5 GB for Chef
Server itself plus 512 MB for the accompanying node.

With Enterprise Chef On-Premises, you can manage up to five nodes for free, more
than enough for learning all the enterprise capabilities of Chef Server. Appendix A
covers the installation of Open Source Chef Server, should you not wish to provide
contact information and don’t currently need the advanced capabilities of Enterprise
Chef in your organization. With Open Source Chef Server, you can manage an unlimited
number of nodes for free. Appendix B presents a similar overview of Hosted Enterprise
Chef, should you wish to explore the Chef—it also offers the ability manage up to five
nodes with its free tier.

Manage Multiple Nodes at Once with Chef Server | 149

How to Install Enterprise Chef Server Manually
As shown in Figure 9-2, go to http://www.getchef.com/contact/on-premises and provide
your contact information to receive download details and installation instructions for
Enterprise Chef Server.

Figure 9-2. Register to receive On-Premise Enterprise Chef download details

Once you accept the agreement, you’ll be presented a download link page as shown in
Figure 9-3. Bookmark this download link page in your web browser for future reference.
Copy the link for the Red Hat Enterprise Linux 6 download, as shown.

150 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

http://www.getchef.com/contact/on-premises

Figure 9-3. Enterprise Chef Download links

To manually replicate a basic Enterprise Chef install in a cookbook, we first need to
download the Enterprise Chef Server install package for Red Hat Enterprise Linux 6, as
we’ll be installing on CentOS 6.5. To match the exercises in the book, use version
11.1.8. Use the Copy Link Address option on the download link to copy the full download
URL to your clipboard.

The download page may not match the images presented in this book
exactly. The download and install procedure should be similar even
if the web presentation is different. In addition, note that prior ver‐
sions of the Chef 12 server used private-chef-ctl.

The rest of the steps necessary to install Chef Server are displayed below the download
link:

1. Install the chef-server package.
2. Run sudo chef-server-ctl reconfigure.

How to Install Enterprise Chef Server Manually | 151

https://s3.amazonaws.com/opscode-private-chef/el/6/x86_64/private-chef-11.1.8-1.el6.x86_64.rpm
https://s3.amazonaws.com/opscode-private-chef/el/6/x86_64/private-chef-11.1.8-1.el6.x86_64.rpm
https://docs.chef.io/ctl_chef_server.html
https://docs.chef.io/ctl_chef_server.html

Install Enterprise Chef Server
Assuming you have sufficient resources to install Enterprise Chef Server locally along
with a test node, let’s create an enterprise-chef cookbook that will install Enterprise
Chef Server. To maintain consistency with Hosted Enterprise Chef, create the directory
chef-repo/cookbooks and create the enterprise cookbook in that directory. Having a
top-level chef-repo directory will help you handle the additional files necessary to
manage Enterprise Chef beyond the cookbooks themselves. You’ll definitely be using
more than one cookbook in your organization, so we suggest putting them in a chef-
repo/cookbooks subdirectory.

Create the chef-repo/cookbooks directory and make it the current working directory.

Linux/Mac OS X:

$ mkdir -p chef-repo/cookbooks
$ cd chef-repo/cookbooks

Windows:

> mkdir chef-repo\cookbooks
> cd chef-repo\cookbooks

Then generate the enterprise-chef cookbook with chef generate cookbook or knife
cookbook create, depending on whether you are using the Chef Development Kit or
the Chef Client. We’re going to go through the cookbook creation steps quickly in this
chapter. If you need a refresher on what each of these commands mean and the expected
output, refer back to Chapter 7.

Chef Development Kit:

$ chef generate cookbook enterprise-chef
$ cd enterprise-chef

Chef Client:

$ knife cookbook create enterprise-chef --cookbook-path .
$ cd enterprise-chef
$ kitchen init --create-gemfile
$ bundle install

As shown in Example 9-1, edit the .kitchen.yml file to use the CentOS 6.5 basebox we
prepared specifically for this book. Also, assign a private network address like we did
in Chapter 7. This time, we’re going to use the IP address 192.168.33.34. If this conflicts
with an address already being used on your local network, change it to a nonconflicting
one. We also need more memory than the default 512 MB allocated, so add a custom
ize: block with a memory: statement to increase the memory to 1.5 GB (memory is
specified in megabytes only).

152 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

Make sure that you use the chef_solo provisioner for this cook‐
book, as the in-memory Chef Server the chef_zero provisioner
spawns will cause a conflict with the hands-on exercises coming up
in Chapter 10. As of this writing, if you want to automate the instal‐
lation of a Chef Server with Chef cookbooks, using Chef Solo is rec‐
ommended so that the deployment code doesn’t get confused by the
presence of the in-memory Chef Server used in Chef Zero.

Example 9-1. chefdk/chef-repo/cookbooks/enterprise-chef/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_solo

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65
 network:
 - ["private_network", {ip: "192.168.33.34"}]
 customize:
 memory: 1536

suites:
 - name: default
 run_list:
 - recipe[enterprise-chef::default]
 attributes:

Generate a default attributes file in attributes/default.rb.

Chef Development Kit:

$ chef generate attribute default

Chef Client:

$ touch attributes/default.rb

Add an attribute specifying the download URL for the Chef Server package that you
obtained from the Enterprise Chef download link page. We recommend using the 11.1.8
version URL as shown in Example 9-2, as we wrote the examples for this chapter for
this version of Chef.

Install Enterprise Chef Server | 153

Example 9-2. chefdk/chef-repo/cookbooks/enterprise-chef/attributes/default.rb
default['enterprise-chef']['url'] = \
'https://s3.amazonaws.com/opscode-private-chef/el/6/x86_64/'\
'private-chef-11.1.8-1.el6.x86_64.rpm'

Let’s take an initial stab at coding a recipe to replicate the manual steps to install Chef
Server outlined in “How to Install Enterprise Chef Server Manually” on page 150. Enter
in the first version of the code as shown in Example 9-3. Let’s go over some of the
highlights of the code in the following paragraphs.

Rather than typing in long variable names like node['enterprise-chef']['url'], feel
free to use temporary local variables in a recipe with shorter names, such as:

package_url = node['enterprise-chef']['url']

Remember that you have the full power of Ruby classes and methods available to you
in your Chef recipes, so don’t be afraid to use it. For example, you can use
the ::File.basename() method to extract the package name from the URL. The pack‐
age name is the last component of the URL after the forward slash (“/”): private-
chef-11.1.8-1.el6.x86_64.rpm. Refer to the Ruby core API documentation for more
information on the ::File class:

package_name = ::File.basename(package_url)

Unfortunately, the package resource does not work with URLs, so we’re introducing a
new resource, the remote_file resource. The remote_file resource will download files
from a remote location. Rather than hardcoding a path like “/tmp” for the package
download, Chef provides a variable you should use instead: Chef::Con

fig[:file_cache_path]. Let Chef choose the best place to store temporary files for
you. Pass the local path where you want to store the file as a string parameter to re
mote_file or as a name attribute; in this case, we use the package_local_path variable.
The download URL should be passed to remote_file as the source attribute.

The package resource should be familiar to you by now, as we used it in Chapter 7.

In order to execute the chef-server-ctl reconfigure, we need to introduce another
new resource, the execute resource. When you fail to find a resource that meets your
needs, you can use the execute resource to run arbitrary shell commands. Pass the shell
command you want to execute as a string parameter to the execute resource.

Here’s the full code listing shown in Example 9-3.

Example 9-3. chefdk/chef-repo/cookbooks/enterprise-chef/recipes/default.rb
#
Cookbook Name:: enterprise-chef
Recipe:: default
#

154 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

http://bit.ly/common_functionality

Copyright (C) 2014
#
#
#

package_url = node['enterprise-chef']['url']
package_name = ::File.basename(package_url)
package_local_path = "#{Chef::Config[:file_cache_path]}/#{package_name}"

omnibus_package is remote (i.e., a URL) let's download it
remote_file package_local_path do
 source package_url
end

package package_local_path

reconfigure the installation
execute 'chef-server-ctl reconfigure'

Run kitchen converge to install Enterprise Chef Server, and use kitchen login to
verify that the private-chef package was installed. The kitchen converge will take
some time, perhaps as long as 10 to 15 minutes, as it needs to download an 800-MB
installation package for Enterprise Chef:

$ kitchen converge default-centos65
$ kitchen login default-centos65
[vagrant@default-centos65 ~]$ rpm -q private-chef
private-chef-11.1.8-1.el6.x86_64
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

Introducing Idempotence
Although the recipe we created in Example 9-3 is a good first attempt, it is not idem‐
potent. When Chef code is idempotent, it can run multiple times on the same system
and the results will always be identical, without producing unintended side effects. All
Chef default resources are guaranteed to be idempotent with the exception of the exe
cute resource.

execute resources are generally not idempotent, because most command-line utilities
can be run only once. They assume that a human being is interacting with the system
and understands the state of the system. For example, assuming the file /learningchef/
file1.txt exists, the following mv command will work the first time it is run, but it will
fail the second time:

$ mv /learningchef/file1.txt /file1.txt

Introducing Idempotence | 155

A great way to test to see if your recipe is idempotent is to run kitchen converge
twice. When a recipe has no unintended side effects, there should be 0 resources updated
on the second run.

Does our recipe pass the idempotency test? Sadly, no. Here’s a sampling of the output
from an initial kitchen converge:

$ kitchen converge
-----> Starting Kitchen (v1.2.2.dev)
-----> Creating <default-centos65>...
...
 Starting Chef Client, version 11.14.2
 [2014-08-14T19:25:13-07:00] INFO: *** Chef 11.14.2 ***
 [2014-08-14T19:25:13-07:00] INFO: Chef-client pid: 2387
 [2014-08-14T19:25:15-07:00] INFO: Setting the run_list to
 ["recipe[enterprise-chef::default]"] from CLI options
 [2014-08-14T19:25:15-07:00] INFO: Run List is
 [recipe[enterprise-chef::default]]
 [2014-08-14T19:25:15-07:00] INFO: Run List expands to
 [enterprise-chef::default]
 [2014-08-14T19:25:15-07:00] INFO: Starting Chef Run for default-centos65
 [2014-08-14T19:25:15-07:00] INFO: Running start handlers
 [2014-08-14T19:25:15-07:00] INFO: Start handlers complete.
 Compiling Cookbooks...
 Converging 3 resources
...
 [2014-08-14T19:36:22-07:00] INFO: Chef Run complete in 666.814045747
 seconds

 Running handlers:
 [2014-08-14T19:36:22-07:00] INFO: Running report handlers
 Running handlers complete
 [2014-08-14T19:36:22-07:00] INFO: Report handlers complete
 Chef Client finished, 3/3 resources updated in 668.536290312 seconds
 Finished converging <default-centos65> (11m59.64s).
-----> Kitchen is finished. (12m33.89s)

Here’s the output from the second run. Chef mistakenly thinks there’s still stuff it needs
to do—2/3 resources updated in this second run. If the recipe were truly idempotent,
we’d see 0/3 resources updated. Chef would inspect the state of the system, recognize
that nothing had changed since the last run—no one touched the node between the two
runs—and perform no resource updates:

$ kitchen converge
-----> Starting Kitchen (v1.2.2.dev)
-----> Converging <default-centos65>...
...
 Converging 3 resources
 Recipe: enterprise-chef::default
 * remote_file[/tmp/kitchen/cache/private-chef-11.1.8-1.el6.x86_64.rpm]
 action create[2014-08-14T19:41:13-07:00] INFO: Processing
 remote_file[/tmp/kitchen/cache/private-chef-11.1.8-1.el6.x86_64.rpm]

156 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

 action create (enterprise-chef::default line 15)
 (up to date)
 * package[/tmp/kitchen/cache/private-chef-11.1.8-1.el6.x86_64.rpm]
 action install[2014-08-14T19:41:20-07:00] INFO: Processing
 package[/tmp/kitchen/cache/private-chef-11.1.8-1.el6.x86_64.rpm]
 action install (enterprise-chef::default line 19)

 - install version 11.1.8-1.el6 of package /tmp/kitchen/cache/
 private-chef-11.1.8-1.el6.x86_64.rpm

 * execute[chef-server-ctl reconfigure] action
 run[2014-08-14T19:41:28-07:00] INFO: Processing
 execute[chef-server-ctl reconfigure] action run
 (enterprise-chef::default line 22)
 [2014-08-14T19:41:39-07:00] INFO: execute[chef-server-ctl reconfigure]
 ran successfully

 - execute chef-server-ctl reconfigure

 [2014-08-14T19:41:39-07:00] INFO: Chef Run complete in 26.305913778
 seconds

 Running handlers:
 [2014-08-14T19:41:39-07:00] INFO: Running report handlers
 Running handlers complete
 [2014-08-14T19:41:39-07:00] INFO: Report handlers complete
 Chef Client finished, 2/3 resources updated in 27.930367706 seconds
 Finished converging <default-centos65> (0m30.94s).
-----> Kitchen is finished. (0m31.41s)

As mentioned earlier, most default Chef resources are idempotent. Notice that the re‐
mote_file resource is idempotent. It is reporting (up to date). The package resource
is normally idempotent. We specifically crafted this example to show you a platform-
specific quirk related to idempotency when it is used on RedHat-variant platforms, such
as CentOS, which we’ll show you how to address.

There are some issues with the package and execute resources, however, as on the
second kitchen converge run Chef:

1. Reinstalled the rpm package, unnecessarily
2. Executed chef-server-ctl reconfigure a second time

Let’s fix these idempotency issues in our code now. Example 9-4 has the final idempotent
version of the code.

The first issue is a common one that Chef developers encounter with the package
resource when they try to install from a downloaded rpm instead of using a package
repository. Instead of using a package one-liner for a downloaded rpm, you need to tell
the package resource to explicitly use the Chef::Provider::Package::Rpm provider

Introducing Idempotence | 157

using the provider attribute. You also need to specify the string representing the pack‐
age name using the source attribute, like so:

package package_name do
 source package_local_path
 provider Chef::Provider::Package::Rpm
end

You can use the rpm_package short name to specify Chef::Provid
er::Package::Rpm to the package resource, if you prefer. The fol‐
lowing code is equivalent to the preceding code:

rpm_package package_name do
 source package_local_path
end

Fixing the second issue with the execute resource is a little more involved. That’s why
you should prefer built-in Chef resources over using the execute resource, because it’s
up to you to make the execute resources idempotent.

One way to fix this issue is with a not_if guard to the execute resource. Guards are
used to make a resource idempotent by allowing the resource to test for a desired state,
and if the desired state is present, the resource should do nothing. In this case, we’ll test
to see if the chef-server package is already installed, by adding a not_if clause to the
execute resource as follows. not_if will test to see if the exit code of the command is
0; if so, the resource does nothing.

If you need to test the opposite logic of not_if, there is also an on
ly_if guard. It’s more typical to use only_if on Windows, given that
a successful exit code for Windows commands is frequently the val‐
ue 1 instead of 0. Take a look at http://bit.ly/common_functionality for
more information.

execute "chef-server-ctl reconfigure" do
 not_if "rpm -q chef-server"
end

Although this is a reasonable way to address the issue, it’s a little clunky. You have to
figure out a way to detect whether Chef Server is installed, and the method used in the
previous example is not very reliable. A better approach is to trigger the execute when
the package resource installs the package. You can trigger events in other resources with
a notifies statement.

In order to use notifies, we’ll need to change the execute resource statement a bit.
First, you’ll want to change the resource so it does nothing by default when execute is
evaluated during the Chef run; we do this by adding an action :nothing attribute.

158 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

http://bit.ly/common_functionality

Also, you’ll want to move the actual command line explicitly to the command attribute,
so you can use a short name to trigger the execute block. By default, the name passed to
the execute resource as a string parameter is used as the command attribute, which is
great for a self-documenting one-liner. but not so great when you want to trigger the
command by name. So let’s transform the execute resource like so:

reconfigure the installation
execute 'chef-server-ctl reconfigure' do
 command 'chef-server-ctl reconfigure'
 action :nothing
end

Then add the notifies attribute as follows. The notifies attribute takes three param‐
eters: an action, the name of the resource to notify, and a timer indicating when the
action should be perform. As shown in the following code block, we want to perform
the :run action on the execute[chef-server-ctl reconfigure] resource, and we
want the action performed :immediately. For more information on notifies param‐
eters, refer to the Chef documentation:

package package_name do
 source package_local_path
 provider Chef::Provider::Package::Rpm
 notifies :run, 'execute[chef-server-ctl reconfigure]', :immediately
end

Example 9-4 shows what the final version of our idempotent code looks like.

Example 9-4. chefdk/chef-repo/cookbooks/enterprise-chef/recipes/default.rb
Cookbook Name:: enterprise-chef
Recipe:: default
#
Copyright (C) 2014
#
#
#

package_url = node['enterprise-chef']['url']
package_name = ::File.basename(package_url)
package_local_path = "#{Chef::Config[:file_cache_path]}/#{package_name}"

omnibus_package is remote (i.e., a URL) let's download it
remote_file package_local_path do
 source package_url
end

package package_name do
 source package_local_path
 provider Chef::Provider::Package::Rpm
 notifies :run, 'execute[chef-server-ctl reconfigure]', :immediately
end

Introducing Idempotence | 159

http://docs.opscode.com/resource_common.html

reconfigure the installation
execute 'chef-server-ctl reconfigure' do
 command 'chef-server-ctl reconfigure'
 action :nothing
end

Try running kitchen converge against this revised recipe, and note that it reports 0/2
resources updated, which is the result we are looking for; no resources are updated after
running kitchen converge for the second time:

$ kitchen converge
-----> Starting Kitchen (v1.2.2.dev)
-----> Converging <default-centos65>...
...
 Converging 3 resources
 Recipe: enterprise-chef::default
 * remote_file[/tmp/kitchen/cache/private-chef-11.1.8-1.el6.x86_64.rpm]
 action create[2014-08-14T19:46:12-07:00] INFO: Processing
 remote_file[/tmp/kitchen/cache/private-chef-11.1.8-1.el6.x86_64.rpm]
 action create (enterprise-chef::default line 15)
 (up to date)
 * package[private-chef-11.1.8-1.el6.x86_64.rpm] action
 install[2014-08-14T19:46:20-07:00] INFO: Processing
 package[private-chef-11.1.8-1.el6.x86_64.rpm] action install
 (enterprise-chef::default line 19)
 (up to date)
 * execute[chef-server-ctl reconfigure] action
 nothing[2014-08-14T19:46:20-07:00] INFO: Processing
 execute[chef-server-ctl reconfigure] action nothing
 (enterprise-chef::default line 26)
 (skipped due to action :nothing)
 [2014-08-14T19:46:20-07:00] INFO: Chef Run complete in 8.771936095
 seconds

 Running handlers:
 [2014-08-14T19:46:20-07:00] INFO: Running report handlers
 Running handlers complete
 [2014-08-14T19:46:20-07:00] INFO: Report handlers complete
 Chef Client finished, 0/2 resources updated in 10.423184134 seconds
 Finished converging <default-centos65> (0m12.31s).
-----> Kitchen is finished. (0m12.86s)

Always check your recipes to see if they are idempotent before deploying them to pro‐
duction. If we had deployed the first version of this recipe in production, given that the
chef-client usually runs on a periodic timer performing Chef runs, all our nodes
would have been reinstalling the Chef Server package and reconfiguring the server every
15 minutes!

160 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

Configure Enterprise Chef Server
If your Enterprise Chef Server installed properly, you should be able to access the web
admin console using the private_network IP address you configured in your .kitch‐
en.yml. In our case, we used the address 192.168.33.34. After you dismiss a warning
about the use of a self-signed SSL certificate, click on the Sign up link, as shown in
Figure 9-4.

Figure 9-4. Sign up

You will be prompted to create a user account. Enter in the required values, then click
on the Submit button. Figure 9-5 shows the values we used for our user account; yours
will be different, of course.

Once you click on the Submit button, the Enterprise Chef web UI indicates that the next
step you should perform is to create an organization. Click on the Create link to create
an organization, as shown in Figure 9-6.

Configure Enterprise Chef Server | 161

Figure 9-5. Create a user

An <organization> is the name of your company or organization. It is used as a unique
identifier to authenticate your organization against Chef Server. Figure 9-7 shows how
we filled out the organization fields in our setup.

162 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

Figure 9-6. Create an organization

Once you click on the Create Organization button, you will be prompted to save two
files: the validation key and the knife configuration file, as shown in Figure 9-8:

• <organization>-validator.pem
• knife.rb

After you’ve download the <organization>-validator.pem and knife.rb files, click on
your username link on the upper right-hand side of the web page as shown in
Figure 9-9. Our username is misheska; yours will be different.

As shown in Figure 9-10, click on the Regenerate Private Key link to download the third
and final configuration file you need <username>.pem.

Once you have these three files downloaded, go back to the root directory where you
created chef-repo. Make it the current working directory. Then create a chef-repo/.chef
directory.

Configure Enterprise Chef Server | 163

Figure 9-7. Create new organization

Copy the <username>.pem, <organization>-validator.pem, and knife.rb files to the chef-
repo/.chef directory. Once you’ve copied these files, the chef-repo directory should re‐
semble the following:

chef-repo/
├── .chef
│ ├── knife.rb
│ ├── <organization>-validator.pem
│ └── <username>.pem
└── cookbooks
 └── enterprise-chef
 ├── .kitchen
 ├── .kitchen.yml
 ├── Berksfile
 ├── Berksfile.lock
 ├── README.md
 ├── attributes
 │ └── default.rb
 ├── chefignore
 ├── metadata.rb
 └── recipes
 └── default.rb

164 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

Figure 9-8. Save the validation key and Knife configuration file

Because we registered with the username “misheska” and the organization “learning‐
chef,” our .chef directory contains the following:

• misheska.pem
• learningchef-validator.pem
• knife.rb

The <username>.pem file is a unique identifier used to authenticate you against Chef
Server. This should be treated like a password—do not share it with anyone and do not
alter the contents of the file.

The <organization>.pem file is a unique identifier used to authenticate your organiza‐
tion against Chef Server. This should be treated like a password, but it must also be
shared among all your Chef developers. Anyone needing access to your Chef organi‐
zation will also need a copy of this file. Do not alter the contents of this file.

Configure Enterprise Chef Server | 165

Figure 9-9. Click on your username link

RSA Key-Pairs
Chef .pem files contain the RSA private key generated during the signup process. Chef
generates an RSA key-pair for your organization for you to download. The associated
public key is stored on the Enterprise Chef Server and used to authenticate your orga‐
nization when programs make requests to the server.

Unlike a .pem file, the knife.rb file is meant to be edited, altered, and customized. The
knife.rb file is recognized as Ruby and read by Chef when it issues commands:

current_dir = File.dirname(__FILE__)
log_level :info
log_location STDOUT
node_name "<username>"
client_key "#{current_dir}/<username>.pem"
validation_client_name "<organization>-validator"
validation_key "#{current_dir}/<organization>-validator.pem"
chef_server_url "https://default-centos65.vagrantup.com/\
organizations/learningchef"
cache_type 'BasicFile'

166 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

cache_options(:path => "#{ENV['HOME']}/.chef/checksums")
cookbook_path ["#{current_dir}/../cookbooks"]

Figure 9-10. Regenerate private key

Note that the chef_server_url field in our example uses a fake DNS hostname of
default-centos65.vagrantup.com because that’s the hostname vagrant set up. If you
try to visit the URL https://default-centos65.vagrantup.com/organizations/learningchef,
you will discover that it is not valid.

Chef Server requires that hosts have valid fully qualified domain names set up in your
local domain name service (DNS). In production, you would have your Chef Server
hostname configured in your Domain Name System (DNS) server before installing Chef
Server. Let’s add a temporary host entry for default-centos65.vagrantup.com in your
local host database in lieu of making a DNS change, as we are just doing a book exercise.

Run one of the following commands to add a host entry. Following are the commands
we ran on our machine. If you used an IP address other than 192.168.33.34, make sure
it matches when you run the command.

Configure Enterprise Chef Server | 167

Linux/Mac OS X:

$ sudo sh -c "echo '192.168.33.34 default-centos65.vagrantup.com' >> /etc/hosts"

Windows Command Prompt:

> echo 192.168.33.34 default-centos65.vagrantup.com >> \
%WINDIR%\System32\Drivers\Etc\Hosts

Windows PowerShell:

PS> ac -Encoding UTF8 $env:windir\system32\drivers\etc\hosts \
"192.168.33.34 default-centos65.vagrantup.com"

Now if you try to visit https://default-centos65.vagrantup.com in your web browser, your
local host should think that this is a valid hostname.

You may add additional values to the knife.rb, such as EC2 credentials, proxy informa‐
tion, and encrypted data bag settings. Although certain pieces of the knife.rb will be
common among your team members, the contents of the generally file should be unique
to you and your machine. However, unless you have access keys and passwords in your
knife.rb, you do not need to treat it like a password.

Testing the Connection
You should run the following commands from inside the Chef repository. Open your
terminal or command prompt, and make chef-repo the current working directory. If
you placed your Chef repo in a different location, use that instead:

$ cd ~/chef-repo

Now you can use knife, the command-line tool for Chef Server, to test your connection
and authentication against Chef Server. At the time of this writing, Chef does not provide
a “connection test” command. However, asking Chef Server to list the clients will verify

• Your network can connect to Chef Server.
• The authentication files are in the correct location.
• The authentication files can be read by Chef.
• The response from Chef Server is received by your workstation.

Issue the knife client list command on your terminal. You should see the following:

$ knife client list
learningchef-validator

If you get an error, check the following:

1. You can access https://default-centos65.vagrantup.com:443 from a web browser.
2. You are running commands from inside the chef-repo directory.

168 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

3. The .chef directory contains two .pem files and a knife.rb.
4. Your authentication files have the correct file permissions (they should be only user-

readable).

If you have confirmed the preceding steps and are still unable to connect to Chef Server,
please consult the Chef online documentation.

Now that you have verified that your host can connect to Chef Server, let’s create another
cookbook for a node instance and register it to be managed by Chef Server.

Bootstrapping a Node
In Chef, the term “bootstrapping” refers to the process by which a remote system is
prepared to be managed by Chef. This process includes installing Chef Client and reg‐
istering the target node with Chef Server.

Create a Node in a Sandbox Environment
Let’s use Test Kitchen to define a project that spins up a node in a sandbox environment,
similar to what we did back in Chapter 5 before we learned how to create cookbooks.

Create a node directory alongside the chef-server cookbook you created in this chap‐
ter. This technically isn’t a cookbook—it’s just a Test Kitchen project—but putting it
beside the chef-server cookbook directory makes it convenient to go back and forth
between the two.

Create the directory ~/chef-repo/cookbooks/node, and make it the current working
directory:

$ cd ~/chef-repo/cookbooks
$ mkdir node
$ cd node

The knife client list command should work even in this subdirectory. Verify this
now:

$ knife client list
learningchef-validator

This node directory will just be a test kitchen project, not a cookbook, so run the fol‐
lowing commands to create a .kitchen.yml file for Test Kitchen:

$ kitchen init --create-gemfile
$ bundle install

Edit the .kitchen.yml file, as in Example 9-5, to use the CentOS 6.5 basebox we prepared
specifically for this book. Also assign a private network address like we did in Chap‐

Bootstrapping a Node | 169

http://docs.opscode.com

ter 7. This time, we’re going to use the IP address 192.168.33.35. Make sure this address
does not conflict with the IP address of your Chef Server, which should be 192.168.33.34.

Note that we also changed the suite name to be node, as this sandbox environment will
be running our node, but we also have another sandbox environment running our Chef
Server. Having different names will disambiguate the two environments.

Also, we’ve configured a synced folder pointing at the root chef-repo directory. As shown
in Figure 9-11, Vagrant can keep directories on your host Chef development workstation
synchronized with directories in the sandbox environment running on the guest.

Figure 9-11. Overview of the Virtualized Chef Training Environment

The following synced_folders: stanza in a .kitchen.yml file ensures that the chef-
repo directory on the host is kept in sync with the /chef-repo directory on the guest:

...
 synced_folders:
 - ["../../../chef-repo", "/chef-repo"]
...

The /chef-repo synced folder will be used later in Chapter 10 when we configure SSL
verification with the server.

Example 9-5. chefdk/chef-repo/cookbooks/node/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: shell

platforms:

170 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65
 network:
 - ["private_network", {ip: "192.168.33.35"}]
 synced_folders:
 - ["../../../chef-repo", "/chef-repo"]

suites:
 - name: node
 attributes:

Spin up the node environment with kitchen create:

$ kitchen create

Bootstrap the Node with Knife
Figure 9-12 is an overview of the setup we’ve configured so far in this chapter. We’ve
configured a Chef server (or used Hosted Enterprise Chef), and we configured a knife.rb
with the appropriate keys so we can communicate with the Chef server from our host,
the administrator’s workstation. We’ve established that this communication channel
works by verifying that knife client list produces the expected output.

Now let’s set up our node like we would in production by “bootstrapping” the node with
knife bootstrap. ((((“Test Kitchen”,"in production environments”)))We won’t be able
to use Test Kitchen in production!) When we run knife bootstrap on the our host, it
will install Chef Client on the node and register it to be managed by Chef Server.

Nodes must have valid fully qualified domain names set up in your local domain name
service (DNS) as well. Let’s add an entry to our local host database for the node just like
we did for Chef Server.

Run one of the following commands to add a node entry. Following are the commands
we ran on our machine. If you used an IP address other than 192.168.33.35, make sure
it matches when you run the command.

Linux/Mac OS X:

$ sudo sh -c "echo '192.168.33.35 node-centos65.vagrantup.com' >> /etc/hosts"

Bootstrapping a Node | 171

Figure 9-12. Overview of our setup so far, before nodes

Windows Command Prompt:

> echo 192.168.33.35 node-centos65.vagrantup.com >> \
%WINDIR%\System32\Drivers\Etc\Hosts

Windows PowerShell:

PS> ac -Encoding UTF8 $env:windir\system32\drivers\etc\hosts \
"192.168.33.35 node-centos65.vagrantup.com"

You also need to kitchen login to the node and configure the local host database on
the node to provide it the name of the server when you run chef-client. Once com‐
plete, exit back out to your host prompt. As mentioned before, in production, you’d
just make sure the DNS was configured with these hostnames before installing Chef
Server and any nodes:

$ kitchen login node-centos65
Last login: Sat Aug 16 01:50:02 2014 from 192.168.33.1
Welcome to your Packer-built virtual machine.
[vagrant@node-centos65 ~]$ sudo sh -c "echo \
'192.168.33.34 default-centos65.vagrantup.com' >> /etc/hosts"
[vagrant@node-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

172 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

If you get the error “No instances for regex node-centos65,” you
forgot to change the suite name to node. Run kitchen destroy to
clear the node instance with the incorrect name. Then refer to Ex‐
ample 9-5 and make sure the suites stanza resembles the following:

suites:
 - name: node

Run kitchen create again after making the correction.

Run the following command to bootstrap your node:

$ knife bootstrap --sudo --ssh-user vagrant --ssh-password \
vagrant --no-host-key-verify node-centos65.vagrantup.com
Connecting to node-centos65.vagrantup.com
node-centos65.vagrantup.com Installing Chef Client...
...
node-centos65.vagrantup.com Thank you for installing Chef!
node-centos65.vagrantup.com Starting first Chef Client run...
...
node-centos65.vagrantup.com Starting Chef Client, version 11.14.2
node-centos65.vagrantup.com Creating a new client identity for
node-centos65.vagrantup.com using the validator key.
node-centos65.vagrantup.com resolving cookbooks for run list: []
node-centos65.vagrantup.com Synchronizing Cookbooks:
node-centos65.vagrantup.com Compiling Cookbooks...
node-centos65.vagrantup.com [2014-08-16T01:56:43-07:00] WARN: Node
node-centos65.vagrantup.com has an empty run list.
node-centos65.vagrantup.com Converging 0 resources
node-centos65.vagrantup.com
node-centos65.vagrantup.com Running handlers:
node-centos65.vagrantup.com Running handlers complete
node-centos65.vagrantup.com Chef Client finished, 0/0 resources updated in
2.646571561 seconds

You can tell from the output that it successfully installed Chef Client, and even per‐
formed a courtesy Chef Client run.

To verify that the node is now registered on Chef Server, log into the web interface and
click on the Nodes tab. Now you should see that you have a node registered with your
Chef Server, as shown in Figure 9-13.

Bootstrapping a Node | 173

Figure 9-13. Node is registered with Chef Server

If you click on the link to the node, you should see that Chef Server displays information
about the node as shown in Figure 9-14. The values you see under attributes should
look familiar; these are the attributes generated automatically by ohai. They are stored
on Chef Server for each node, and the data is searchable by all clients.

We’ll be using both Chef Server and node sandbox instances in the next chapter, so don’t
kitchen destroy them just yet, as you don’t want to have to go through all the setup
steps you performed in this chapter. If you need to stop the virtual machines temporarily
because you plan on powering off your machine before tackling the next chapter, you
can use the vagrant halt command. Unfortunately, as of this writing, Test Kitchen
doesn’t have a way to halt or suspend virtual machines with the kitchen command, so
you have to use the vagrant tool that Test Kitchen uses behind the scenes instead.

174 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

Figure 9-14. Node detail

In order to run vagrant halt to perform a graceful shutdown of your virtual machines,
you’ll need to make sure the Vagrantfile directory that is used by vagrant to configure
the virtual machine is the current working directory. As of this writing, the associated
Vagrantfiles are located in the .kitchen directory that Test Kitchen uses for temporary
files in a directory matching the suite name in the .kitchen.yml. To halt both virtual
machines, run the following commands:

$ cd ~/chef-repo/cookbooks/enterprise-chef/.kitchen/kitchen-vagrant/
 default-centos65
$ vagrant halt
==> default: Attempting graceful shutdown of VM...
$ cd ~/chef-repo/cookbooks/node/.kitchen/kitchen-vagrant/node-centos65

Bootstrapping a Node | 175

$ vagrant halt
==> default: Attempting graceful shutdown of VM...

When you want to restart them, run vagrant reload against both Vagrantfiles:

$ cd ~/chef-repo/cookbooks/enterprise-chef/.kitchen/kitchen-vagrant/
 default-centos65
$ vagrant reload
==> default: Checking if box 'learningchef/centos65' is up to date...
...
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
...
$ cd ~/chef-repo/cookbooks/node/.kitchen/kitchen-vagrant/node-centos65
$ vagrant reload
==> default: Checking if box 'learningchef/centos65' is up to date...
...
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few minutes...
...
$ cd ~/chef-repo

Bootstrap Chef Server with Chef Solo
Before we conclude this chapter, it is worth mentioning that you can use Chef Solo
outside of Test Kitchen to automate the deployment of Chef Server in production. We
expect to see most Chef Solo-based software migrate to Chef Local/Chef Zero, as we
covered in “Chef Client Modes” on page 92. However, Chef Solo is still singularly useful
for bootstrapping Chef Server itself, as some scripts get confused about which server to
communicate with when you try to set up Chef Server using Chef Local/Chef Zero,
because Chef Zero launches a second in-memory Chef Server.

Although we expect Chef coders to transition to Chef Local/Chef
Zero, there are some truly amazing systems still built on Chef Solo.
One tool worth checking out if you use Mac OS X is SoloWizard, by
Pivotal Labs. By filling out a simple web form you can have it auto‐
matically generate a Chef Solo-based script to auto-generate a Mac
OS X development workstation. As of this writing, there is no Chef
Local equivalent of this tool, but there might be one by the time you
read this.

Here’s an overview of the steps required to use Chef Solo to bootstrap Chef Server:

176 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

http://www.solowizard.com

1. Install Chef Client (which includes chef-solo).
2. Create /var/chef/cache and /var/chef/cookbooks directories. These are the default

locations where chef-solo stores state information and looks for cookbooks, re‐
spectively. (You can override these settings by supplying a .json file with configu‐
ration settings on the command line. See http://docs.getchef.com/chef_solo.html for
more information.)

3. Copy any necessary cookbooks down to the host.
4. Run chef-solo.

Although we won’t go through another hands-on exercise bootstrapping Chef Server
with Chef Solo, as you’ve done this already with Test Kitchen, here are the commands
you would use to perform the preceding steps:

install chef-solo
$ curl -L https://wwww.getchef.com/chef/install.sh | sudo bash
create required directories
$ sudo mkdir -p /var/chef/cache /var/chef/cookbooks
copy your cookbook code to create a Chef Server - Chef Software
provides a cookbook for open source Chef Server
$ sudo mkdir /var/chef/cookbooks/chef-server
$ wget -qO- https://github.com/opscode-cookbooks/chef-server/archive/\
master.tar.gz | sudo tar xvzC /var/chef/cookbooks/chef-server \
--strip-components=1
Run chef-solo to bootstrap Chef Server
$ sudo chef-solo -o 'recipe[chef-server::default]'

As of this writing, there is no Windows version of Chef Server. It is
available on the Linux platform exclusively. That is why you see on‐
ly Linux commands in the preceding code block.

Summary
In this chapter, we’ve covered the basics of installing Chef Server. We showed you how
to install a test Chef Server setup driven by Chef recipes in both sandbox environments
using Test Kitchen, and on production servers using chef-solo.

We also introduced the concept of idempotence when we covered how to write Chef
code to install Chef Server. Chef code is idempotent when it can run multiple times on
the same system and the results will always be identical, without producing unintended
side effects.

Although nearly all the default Chef resources are guaranteed to be idempotent, the
execute resource is not. We showed you how to test that Chef code is idempotent by

Summary | 177

http://docs.getchef.com/chef_solo.html

performing a Chef run twice in succession, such as with kitchen converge. On the
second run, idempotent Chef code should display no resource updates.

In the next chapter, we’ll talk about the Chef Community Cookbook. We’ll highlight
the chef-client cookbook, an oft-used community cookbook people find useful in
bootstrapping nodes in production.

178 | Chapter 9: Manage Multiple Nodes at Once with Chef Server

CHAPTER 10

Community and the Chef-Client Cookbook

In this chapter we’ll be talking about the Chef community and community cookbooks.
The Chef community site provides access to great Chef resources, including cookbooks,
knife plug-ins, and the ability to connect to amazing people who create wonderful things
built on Chef.

Before we get started, make sure you are running Chef Server and the node you created
in Chapter 9. We’ll be making heavy use of the knife command line tool in this chapter,
and it requires a Chef Server setup to function.

Using Community Cookbooks
Although we’ve been writing all the cookbooks and recipes we’ve used so far in this
book, so you can learn Chef coding, there is an easier way. There are hundreds of freely
available prewritten Chef cookbooks to install and configure a variety of commonly
used services and applications in production environments. For instance, there are
cookbooks to help you set up Apache, Nginx, and IIS web servers and MySQL, Post‐
greSQL, Microsoft SQL Server, and Oracle databases. There are cookbooks to support
the deployment of apps written in Java, Ruby, Python, PHP, node.js, and much, much
more!

You can browse and download these community cookbooks from Chef Software’s Chef
Supermarket community hub, and from a variety of other locations including GitHub.
Some of these cookbooks were created and are maintained by Chef Software, but the
majority are developed by Chef users. In general, as with any third-party software, you
should always independently verify the behavior and flexibility of a community cook‐
book in an isolated environment before using it in production.

179

https://community.opscode.com/
https://community.opscode.com/

Always verify that the cookbook’s license is suitable for your
organization!

What is a Community Cookbook?
A community cookbook is a tarball (.tar.gz) package of the cook‐
book structure discussed Chapter 7. It is packaged in this manner
for easy cross-platform distribution. At its core, a community cook‐
book is exactly the same as an internally authored cookbook.

The best place to find free community cookbooks is the Chef Supermarket. This site is
a Ruby on Rails application hosted and maintained by Chef Software where you can
share, contribute, download, use, rate, and review community cookbooks. Chef Super‐
market is akin to rubygems.org, cpan.org, and other focused distribution sites. You can
log in to Chef Supermarket using the same credentials as your Hosted Enterprise Chef
account. Once you have logged in, you will be able to comment on and follow cookbooks
of interest and contribute your own cookbooks to the community.

You do not need to log in to the Chef Marketplace to download or use
its community cookbooks.

The Chef Supermarket lets you search for cookbooks by name or description as shown
in Figure 10-1.

Chef Supermarket will query cookbook names, descriptions, platforms, categories, and
other metadata. You can even sort results by most downloaded or most followed. Take
time exploring to find the best cookbooks for you.

If you do not find the cookbook you are looking for at Chef Supermarket, your next
obvious bet is a good old-fashioned Internet search. Chef Supermarket is not the sole
authority on cookbooks; GitHub also has good cookbooks, such as Fletcher Nichol’s
rvm cookbook.

180 | Chapter 10: Community and the Chef-Client Cookbook

https://supermarket.getchef.com/
https://rubygems.org
https://cpan.org

Figure 10-1. Search for free cookbooks on the Chef Supermarket site

Chef-Client Cookbook
One community cookbook you should be aware of is the chef-client cookbook. Go
ahead and search for it now at Chef Supermarket. Figure 10-2 shows the search results
you should get for chef-client.

Chef-Client Cookbook | 181

Figure 10-2. Chef-client cookbook entry at Chef Supermarket

The arrows in Figure 10-2 point out the most important components on the page when
a cookbook is displayed in the Chef Supermarket. Front and center (well, actually, a
little to the left) is a rendered version of the README.md file. Well-written README
files, like the one in the chef-client cookbook, tell you what problem the cookbook is
trying to solve, plus how to use the cookbook.

On the right are two big buttons, View Source and Download Cookbook. The View
Source button will take you to the cookbook source code. (Usually it’s some link on the
GitHub source hosting service.) From there you can inspect the cookbook more closely.
Finally there is the Download Cookbook button, which lets you download a tarball
containing the cookbook source.

182 | Chapter 10: Community and the Chef-Client Cookbook

The chef-client cookbook is a popular cookbook because it makes two things easy:

1. Configuring chef-client to run as a service or a cron job
2. Deleting the validation.pem file

Because one of the design goals for Chef Server is scalability, the server tries to offload
as much processing as it can onto the nodes. So by default, the node is responsible for
scheduling and initiating a chef-client run and performing all the related processing,
not Chef Server. Chef Server itself is really just a dumb artifact repository for cookbooks
and other associated metadata about your infrastructure.

When you bootstrap a node with knife in order to install chef-client, as we did in
“Bootstrap the Node with Knife” on page 171, the bootstrap process does not configure
chef-client to download any cookbook updates or perform Chef runs at regular in‐
tervals. You’ll definitely want to configure all your nodes to do this on a regular basis,
say, every 15 to 30 minutes. The chef-client cookbook makes it easy to configure
chef-client to run as a service or a cron job.

Also, it’s important to delete the validation.pem file after the first Chef run. With En‐
terprise Chef, this file is called <organization-validator>.pem by default. With Open
Source Chef Server, the file is called validation.pem by default. To explain why deleting
the validation.pem file is important, we need to provide a quick explanation of how
requests by nodes are verified by Chef Server.

Chef Server requires that every request chef-client makes to the server be authenti‐
cated using a client public/private key pair. Every node has its own special public/private
key pair. You have already seen this because users have their own special public/private
key pair as well—you needed to download the <username.pem> file to configure knife
to make requests against Chef Server. The <username>.pem file you downloaded con‐
tains the private portion of the key pair. The public portion of this key is stored on Chef
Server, and the key is used to authenticate you as a valid Chef Server user.

Similarly, there is a .pem for each node that runs chef-client containing a private key.
We’ll call this client.pem for the sake of discussion. Figure 10-3 presents an overview of
how this key is used to verify that requests come from a node. In this example, Node A
has a private key, which is a unique client.pem file that lives on the node. When the
client.pem file was created, an associated public key was generated and stored on the
Chef server. Node A signs all HTTP requests it makes to Chef Server with its private
key. When Chef Server receives a request, it verifies that the signature is from Node A
by using Node A’s public key to ensure it is a legitimate request from Node A.

Chef-Client Cookbook | 183

Figure 10-3. How Chef Server verifies a request from a node

When you run chef-client for the first time, there is a problem—you don’t have a
client.pem file for your node yet, and a corresponding public key for the node does not
exist on the Chef server. To solve this bootstrapping issue, a node uses a company-wide,
well-known key when it generates the request to register the node as a client. That’s what
the validation.pem key is for. The validation.pem is an organization-wide private key
used specifically to sign the request to register a new node with Chef Server on the first
chef-client run.

Chef Server performs a validation of a signature using the validator.pem similar to the
one it performs with the client.pem. During the bootstrap process, the validator.pem is
created with the name /etc/chef/validation.pem on the node.

Although the /etc/chef/validation.pem is secured with root privileges, it’s a good idea to
delete it once the node has a proper client key to run chef-client. Anyone who obtains
the /etc/chef/validation.pem file can create new nodes. Once the node has a client key,
it no longer needs the /etc/chef/validation.pem. It’s a good idea to leave the /etc/chef/

184 | Chapter 10: Community and the Chef-Client Cookbook

validation.pem key on the node only during the time it actually needs to create a client
public/private key pair for itself and send its client public key to Chef Server.

You can verify that the validation.pem file is still present on the node you bootstrapped
in Chapter 9. Make sure the chef-repo/cookbooks/node directory is the current working
directory by running one of the following commands. If the parent of your chef-
repo tree is not $HOME, change the command to reflect the correct parent.

Linux/Mac OS X:

$ cd $HOME/chef-repo/cookbooks/node

Windows Command Prompt:

> cd %USERPROFILE%\chef-repo\cookbooks\node

Windows PowerShell:

> cd $HOME\chef-repo\cookbooks\node

Use kitchen login to ssh into the node, as follows. Check the contents of the directory
with /etc/chef/validation.pem. Note that it is still there. Then make sure you exit back
out to your host prompt:

$ kitchen login
Last login: Thu Aug 14 20:14:59 2014 from 192.168.33.1
Welcome to your Packer-built virtual machine.
[vagrant@default-centos65 ~]$ ls /etc/chef
client.pem client.rb first-boot.json validation.pem
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

We’ll talk more about the use of the chef-client recipe later, in “Chef-Client Rec‐
ipes” on page 190. First, we need to talk about the knife cookbook site plugin.

Knife Cookbook Site Plugin
While the Chef Supermarket’s Download Cookbook link is very helpful, you still need
to upload the cookbook source to your Chef Server in order to use it in production.
Also, although a website is great for discovery, you’ll find yourself wanting to use a
command-line tool for day-to-day community cookbook management because it is
faster. All recent versions of both the Chef Client and the Chef Development Kit ship
with a cookbook site plugin for knife designed to enable command-line interaction with
the Chef Supermarket.

Let’s walk you through the most commonly use subcommands now. Feel free to type
them in if you like. Make sure your current working directory is the chef-repo from
Chapter 9. Assuming that the chef-repo is located in your home directory, run one of

Knife Cookbook Site Plugin | 185

the following commands, depending on your platform. Change the root path to suit
where you created chef-repo.

Linux/Mac OS X:

$ cd $HOME/chef-repo

Windows Command Prompt:

> cd %USERPROFILE%\chef-repo

Windows PowerShell:

> cd $HOME\chef-repo

Search for Community Cookbooks Using Knife Cookbook
Site
You can use the knife cookbook site search command to search the Chef Super‐
market for cookbooks. You will need to specify a search string as a parameter. knife
cookbook site will search the following fields in the cookbook metadata at Chef
Supermarket:

• name
• URL
• description
• maintainer

The knife cookbook site plugin will perform simple substring matching using your
search string. Try it now with a chef-client query:

$ knife cookbook site search chef-client
chef:
 cookbook: http://cookbooks.opscode.com/api/v1/cookbooks/chef
 cookbook_description: Installs and configures Chef for chef-client and
 chef-server
 cookbook_maintainer: chef
 cookbook_name: chef
chef-client:
 cookbook: http://cookbooks.opscode.com/api/v1/cookbooks/
 chef-client
 cookbook_description: Manages client.rb configuration and chef-client service
 cookbook_maintainer: chef
 cookbook_name: chef-client
...

186 | Chapter 10: Community and the Chef-Client Cookbook

There’s also a related knife cookbook site show command to display more detailed
information about a cookbook, when you can provide a cookbook name. Try it now for
the chef-client cookbook:

$ knife cookbook site show chef-client
average_rating:
category: Other
created_at: 2010-12-16T23:00:45.000Z
deprecated: false
description: Manages client.rb configuration and chef-client service
external_url: http://github.com/opscode-cookbooks/chef-client
latest_version: http://cookbooks.opscode.com/api/v1/cookbooks/chef-client
 /versions/3.7.0
maintainer: chef
...
name: chef-client
updated_at: 2014-08-13T17:18:54.109Z
...

Manage Chef Supermarket Cookbooks on Your Chef Server
Using Knife Cookbook Site
Although the search/show capabilities of knife cookbook site are helpful, you’ll use
this plugin most often to download cookbooks from Chef Supermarket and upload
community cookbooks to your local Chef Server. In order to download a cookbook
from Chef Supermarket and upload it to your Chef Server, you must perform three
steps:

1. Download the cookbook using knife cookbook site download.
2. Extract the cookbook package with tar.
3. Upload the cookbook using knife cookbook upload.
4. Repeat steps 1-3 for any cookbook dependencies.

Let’s go through this process now for the chef-client cookbook. Download the chef-
client with knife cookbook site download as follows:

$ knife cookbook site download chef-client 3.7.0
Downloading chef-client from the cookbooks site at version 3.7.0 to
/Users/misheska/learningchef/chef-repo/chef-client-3.7.0.tar.gz
Cookbook saved: /Users/misheska/learningchef/chef-repo/chef-client-3.7.0.tar.gz

I’ve specified the version in all these commands because cookbooks
change frequently, even though you don’t have to specify a version to
get the very latest cookbook.

Manage Chef Supermarket Cookbooks on Your Chef Server Using Knife Cookbook Site | 187

The downloaded cookbook package is a .tar.gz file (a gzip-compressed .tar file).
You’ll need to extract it with the tar command. Use the -C option to make sure the
cookbook is extracted as chef-repo/cookbooks/chef-client. You’ll want to store all down‐
loaded cookbooks in chef-repo/cookbooks. Use the tar command to extract the archive.

Linux/Mac OS X:

$ tar xvf chef-client*.tar.gz -C cookbooks/
x chef-client/README.md
x chef-client/CHANGELOG.md
x chef-client/metadata.json
x chef-client/metadata.rb
x chef-client/attributes/default.rb
x chef-client/files/default
x chef-client/files/default/tests
...

Windows:

$ bash tar xvf .\chef-client-3.7.0.tar.gz -C cookbooks
x chef-client/README.md
x chef-client/CHANGELOG.md
x chef-client/metadata.json
x chef-client/metadata.rb
x chef-client/attributes/default.rb
x chef-client/files/default
x chef-client/files/default/tests
...

The tar program provided with Chef on Windows does not correctly
expand filenames that include wildcards, such as chef-

client*.tar.gz. On Windows, the easiest workaround is to pro‐
vide the full file name. Thankfully, all the Windows shell programs
support tab-completion. So you need only type in the first few let‐
ters of chef-client-3.7.0.tar.gz, then hit the Tab key and the shell
should expand to use the full filename.

Unfortunately, if you try to upload the chef-client cookbook to your Chef Server right
now, you’ll get an error that resembles the following:

$ knife cookbook upload chef-client —cookbook-path cookbooks
Uploading chef-client [3.7.0]
ERROR: Cookbook chef-client depends on cookbooks which are not currently
ERROR: being uploaded and cannot be found on the server.
ERROR: The missing cookbook(s) are: 'cron' version '>= 1.2.0', 'logrotate'
version '>= 1.2.0'

If you recall when we introduced include_recipe in “Include_Recipe” on page 137
cookbooks can contain a chain of references to other cookbooks. These references are
called dependencies, and are noted in the metadata.rb of a cookbook using the de‐

188 | Chapter 10: Community and the Chef-Client Cookbook

pends statement. If you take a look at the metadata.rb file for the chef-client cookbook,
you’ll see that it resembles the following:

name 'chef-client'
maintainer 'Opscode, Inc.'
maintainer_email 'cookbooks@opscode.com'
license 'Apache 2.0'
description 'Manages client.rb configuration and chef-client service'
long_description IO.read(File.join(File.dirname(__FILE__), 'README.md'))
version '3.7.0'
...
depends 'cron', '>= 1.2.0'
depends 'logrotate', '>= 1.2.0'

There are depends statements at the bottom of the metadata.rb file that state chef-
client is dependent on the cron and logrotate cookbooks. Exactly the two cookbooks
mentioned in the error message! This is where you will need to repeat the knife cook
book site > un-tar > knife cookbook upload cycle for any cookbook dependencies.

So, download these two additional cookbooks with the knife cookbook site com‐
mand, like so:

$ knife cookbook site download cron 1.4.0
$ knife cookbook site download logrotate 1.6.0

Extract them to chef-repo/cookbooks/ using the tar command, like you did for the chef-
client cookbook.

Linux/Mac OS X:

$ tar xvf cron*.tar.gz -C cookbooks/
$ tar xvf logrotate*.tar.gz -C cookbooks/

Windows:

$ tar xvf cron-1.4.0.tar.gz -C cookbooks
$ tar xvf logrotate-1.6.0.tar.gz -C cookbooks

Finally, upload all the cookbooks, cron, logrotate, and chef-client, using knife
cookbook upload, taking care to upload chef-client after its dependencies:

$ knife cookbook upload cron --cookbook-path cookbooks
Uploading cron [1.4.0]
Uploaded 1 cookbook.
$ knife cookbook upload logrotate --cookbook-path cookbooks
Uploading logrotate [1.6.0]
Uploaded 1 cookbook.
$ knife cookbook upload chef-client --cookbook-path cookbooks
Uploading chef-client [3.7.0]
Uploaded 1 cookbook.

Manage Chef Supermarket Cookbooks on Your Chef Server Using Knife Cookbook Site | 189

http://bit.ly/metadata_rb

Chef-Client Recipes
Now let’s perform a Chef run adding two recipes to the run-list we touched on in “Chef-
Client Cookbook” on page 181:

1. chef-client::default recipe—Configures chef-client to run as a service
2. chef-client::delete_validation recipe—Deletes the /etc/chef/validation.pem

file

Use knife node run_list add to add the chef-client::delete_validation recipe
to the node’s run list. For all knife command lines, recipes are referenced in a run list
in the form "recipe[<cookbook>::<recipe>]"; for example, "recipe[chef-

client::delete_validation]".

Run the following knife node run_list add command to add "recipe[chef-
client::delete_validation]" to the node-centos65.vagrantup.com node’s run list
that we bootstrapped in Chapter 9:

$ knife node run_list add node-centos65.vagrantup.com \
"recipe[chef-client::delete_validation]"
node-centos65.vagrantup.com:
 run_list: recipe[chef-client::delete_validation]

If you need a reminder of what the node name is, run the following
command:

$ knife node list
node-centos65.vagrantup.com

Also add the chef-client::default recipe to the run list. Note that you can use a
shorthand notation using just the cookbook name, when you want to use the default
recipe. Run the following command now:

$ knife node run_list add node-centos65.vagrantup.com "recipe[chef-client]"
node-centos65.vagrantup.com:
 run_list:
 recipe[chef-client::delete_validation]
 recipe[chef-client]

Both the chef-client::delete_validation and chef-client::default recipes have
been added to the node’s run list, and will be processed in the order provided.

You can add more than one recipe at a time to a run list—just sepa‐
rate the recipe names with commas:

$ knife node run_list add <node> \
"recipe[<cookbook>::<recipe>],recipe[<cookbook>::<recipe>]"

190 | Chapter 10: Community and the Chef-Client Cookbook

Make sure the chef-repo/cookbooks/node directory is the current working directory, by
running one of the following commands. If the parent of your chef-repo tree is not
$HOME, change the command to reflect the correct parent.

Linux/Mac OS X:

$ cd $HOME/chef-repo/cookbooks/node

Windows Command Prompt:

> cd %USERPROFILE%\chef-repo\cookbooks\node

Windows PowerShell:

> cd $HOME\chef-repo\cookbooks\node

Perform an initial chef-client run by using kitchen login to ssh into the node, and
then run sudo chef-client as follows:

$ kitchen login
Last login: Sat Jul 26 01:17:10 2014 from 192.168.33.1
Welcome to your Packer-built virtual machine.
[vagrant@node-centos65 ~]$ sudo chef-client
...
 * service[chef-client] action enable
 - enable service service[chef-client]

 * service[chef-client] action start
 - start service service[chef-client]

 * service[chef-client] action restart
 - restart service service[chef-client]

Running handlers:
Running handlers complete

Chef Client finished, 10/11 resources updated in 8.137774709 seconds

While you are still on the node, verify that the validation.pem was deleted and that the
chef-client is now running as a daemon:

[vagrant@node-centos65 ~]$ ls /etc/chef
client.pem client.rb first-boot.json
[vagrant@node-centos65 ~]$ ps awux | grep chef-client
root 2184 0.0 7.9 217180 40152 ? Sl 21:52
0:00 /opt/chef/embedded/bin/ruby /usr/bin/chef-client -d -c
/etc/chef/client.rb -L /var/log/chef/client.log -P /var/run/chef/client.pid
-i 1800 -s 300

Return back to the host prompt now:

[vagrant@node-centos65 ~]$ exit

Chef-Client Recipes | 191

Configure Knife to Use a Production SSL Setup
In Chapter 6, we mentioned the SSL warning you get running chef-client on the node
when HTTPS connections are not validated. Before we end this chapter, let’s go over
how you would configure SSL in a production environment.

On the node, SSL verification is controlled through settings in the file /etc/chef/
client.rb, the file that configures chef-client. You can enable this setting by setting
attributes in the chef-client cookbook. Nearly everything in the chef-client cook‐
book is controllable through attributes.

Cookbooks Should Change Behavior Based on Attributes
Well-written cookbooks change behavior based on attributes. Ideally, you shouldn’t have
to modify the contents of a cookbook to accommodate your needs.

Look at the attributes directory for things you can override to change the behavior of a
cookbook. Well-written cookbook also have sane defaults, and a README.md file to
describe how the attributes influence cookbook behavior.

SSL setups can be quite complex to set up. So it is recommended that you first validate
the setup with knife on your development workstation, before trying to configure your
nodes to use verified SSL connections. Let’s do that now. We’ll use a simple setup that
makes use of the self-signed certificate that was generated when you installed Chef
Server in Chapter 9.

You will need to make sure that Chef Server is configured to use a certificate you intend
to be used to verify communication over HTTPS. By default, Chef Server automatically
generates a self-signed certificate during the installation. If you want to use the
self-signed certificate, everything is already set up for you. In this exercise, we’ll use the
self-signed certificate.

Refer to the Chef documentation for more information on how to
configure ChefServer with a certificate authority-verified certificate.
Also, a Chef community member, Mislav Marohnić, wrote an excel‐
lent blog post on troubleshooting Chef Server SSL issues and pub‐
lished a set of scripts to help troubleshoot connection issues.

Once the certificate is configured on Chef Server, run knife ssl check on your de‐
velopment workstation to find out what you need to do next. You should see output
similar to the following:

192 | Chapter 10: Community and the Chef-Client Cookbook

http://bit.ly/chef_security
http://bit.ly/ruby_openssl
http://bit.ly/ruby_openssl
http://bit.ly/ssl-tools

$ knife ssl check
Connecting to host 192.168.33.34:443
ERROR: The SSL certificate of 192.168.33.34 could not be verified
Certificate issuer data: /C=US/ST=WA/L=Seattle/O=YouCorp/OU=Operations/CN
=default-centos65.vagrantup.com/emailAddress=you@example.com

Configuration Info:

OpenSSL Configuration:
* Version: OpenSSL 1.0.1h 5 Jun 2014
* Certificate file: /opt/chefdk/embedded/ssl/cert.pem
* Certificate directory: /opt/chefdk/embedded/ssl/certs
Chef SSL Configuration:
* ssl_ca_path: nil
* ssl_ca_file: nil
* trusted_certs_dir:
"/Users/misheska/learningchef/chef-repo/.chef/trusted_certs"

TO FIX THIS ERROR:

If the server you are connecting to uses a self-signed certificate, you must
configure chef to trust that server's certificate.

By default, the certificate is stored in the following location on the host
where your chef-server runs:

 /var/opt/chef-server/nginx/ca/SERVER_HOSTNAME.crt

Copy that file to your trusted_certs_dir (currently:
/Users/misheska/learningchef/chef-repo/.chef/trusted_certs)
using SSH/SCP or some other secure method, then re-run this command to confirm
that the server's certificate is now trusted.

The knife ssl check command says that you need to copy the certificate to your
trusted_certs_dir. Run the command knife ssl fetch to automatically download
the certificate and place it in your trusted_certs_dir:

$ knife ssl fetch
WARNING: Certificates from 192.168.33.34 will be fetched and placed in your
trusted_cert directory
(/Users/misheska/learningchef/chef-repo/.chef/trusted_certs).

Knife has no means to verify these are the correct certificates. You should
verify the authenticity of these certificates after downloading.

Adding certificate for default-centos65.vagrantup.com in /Users/misheska
/learningchef/chef-repo/.chef/trusted_certs/default-centos65_vagrantup_com.crt

Run knife ssl check one final time, and it should verify successfully. If not, double-
check to make sure the local hosts entry is correct, and that the hostname matched the
expected name/IP when you ran knife ssl check in the previous step:

Configure Knife to Use a Production SSL Setup | 193

$ knife ssl check
Connecting to host default-centos65.vagrantup.com:443
Successfully verified certificates from `default-centos65.vagrantup.com'

Configure Chef-Client to Use a Production SSL Setup
The chef-client cookbook includes a recipe chef-client::config, which can be used
to automatically generate the /etc/chef/client.rb config file with the SSL settings we need.
In this way you can automate the configuration of SSL on your nodes.

Log in to the node and check the /etc/chef/client.rb file. The client.rb file was created to
configure chef-client settings when you ran knife bootstrap on the node. Notice
that it resembles the following. Make sure you log back out to the exist prompt when
you are done.

$ kitchen login
Last login: Sat Aug 16 09:06:12 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@node-centos65 ~]$ cat /etc/chef/client.rb
log_location STDOUT
chef_server_url
"https://default-centos65.vagrantup.com/organizations/learningchef"
validation_client_name "learningchef-validator"
Using default node name (fqdn)

[vagrant@node-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

In order to enable verification of the SSL certificate on the server, we need to add the
following setting to /etc/chef/client.rb (the default setting is :verify_none):

ssl_verify_mode :verify_peer

To enable this setting and have the chef-client::config recipe generate the appro‐
priate configuration setting, we need to set the following attribute:

node.default['chef_client']['config']['ssl_verify_mode'] = ':verify_peer'

We’ll do this by using Chef Server’s management site. Once you log in, click on the
Nodes tab, then click on the Edit link for node-centos65.vagrantup.com as shown in
Figure 10-4.

194 | Chapter 10: Community and the Chef-Client Cookbook

https://default-centos65.vagrantup.com/

Figure 10-4. Node actions

The node editing page will be displayed. We’ll be using the node attributes portion of
the page at the bottom, as shown in Figure 10-5.

Click on the source tab for attributes. Enter in the text as shown in Figure 10-6. This is
the attribute setting node.default['chef_client']['config']['ssl_veri

fy_mode'] = ':verify_peer' in JSON format. If you are reading this book in elec‐
tronic format, feel free to copy and paste the following text into the json edit box:

{
 "chef_client": {
 "config": {
 "ssl_verify_mode": ":verify_peer"
 }
 }
}

Once you are done typing in the attribute value, click on the Load JSON from Source
icon in the editing pane as shown in Figure 10-7. This will update the attribute setting
in the json tree on the left. Then click on the Save Node button. If there is no syntax
error, you should see this message: The node was updated successfully.

Configure Chef-Client to Use a Production SSL Setup | 195

Figure 10-5. Edit node attributes web tool

You can also edit node attributes on the command line with the knife
node edit command.

196 | Chapter 10: Community and the Chef-Client Cookbook

Figure 10-6. Set node.default['chef_client']['config'][’ssl_verify_mode'] = ':verify_peer’

On the command line, verify that the attribute was set back in your chef-repo directory.
Use the knife node show --attribute command to display the chef_client.ssl_ver
ify_mode attribute for the node, as follows:

$ knife node list
node-centos65.vagrantup.com
$ knife node show --attribute "chef_client.config.ssl_verify_mode" \
node-centos65.vagrantup.com
node-centos65.vagrantup.com:
 chef_client.config.ssl_verify_mode: :verify_peer

If the output does not match exactly, make sure that you remembered to click on the
Save Node button. It is easy to forget because it’s at the bottom of the page outside the
editing window. Also make sure that you remembered to click on the Load JSON from
Source button, and make sure the json tree rendered on the left matches the figure
exactly.

Because we are using a self-signed certificate, we need to set one more attribute setting.
We need to tell the SSL library on the node that we trust the self-signed server certificate.
In production, you’d do this by writing a recipe that adds the custom certificate to the
certificate store. If you are using OpenSSL on your node, you will need to copy the
certificate to the SSL_CERT_DIR, the directory where trusted certificates are stored,
and run c_rehash to register the self-signed certificate.

Configure Chef-Client to Use a Production SSL Setup | 197

Figure 10-7. Click on the icon to update the attribute setting in the json tree, then click
on Save Node

In our test setup, we simulate this with the synchronized folder we set up for the node
that we configured in Chapter 9. The synchronized folder makes the certificate we have
in chef-repo/.chef/trusted_certs locally on our host available on the node. This directory
was set up when you ran knife ssl fetch.

Go back to the Chef Server web interface, and add the ssl_ca_file attribute to the
node. Copy and paste the following JSON source:

{
 "chef_client": {
 "config": {
 "ssl_verify_mode": ":verify_peer",
 "ssl_ca_file":
 "/chef-repo/.chef/trusted_certs/default-centos65_vagrantup_com.crt"
 }
 }
}

Double-check to make sure the settings for chef_client.config.ssl_verify_mode
and chef_client.config.ssl_ca_file are correct by checking them with knife node
show --attribute as follows. Make sure these settings match exactly, and the /chef-
repo/.chef/trusted_certs/default-centos65_vagrantup_com.crt is synced to
your node before going further:

$ knife node show --attribute "chef_client.config.ssl_verify_mode" \
node-centos65.vagrantup.com
node-centos65.vagrantup.com:
 chef_client.config.ssl_verify_mode: :verify_peer

198 | Chapter 10: Community and the Chef-Client Cookbook

$ knife node show --attribute "chef_client.config.ssl_ca_file" \
node-centos65.vagrantup.com
node-centos65.vagrantup.com:
 chef_client.config.ssl_ca_file: /chef-repo/.chef/trusted_certs/
 default-centos65_vagrantup_com.crt
$ kitchen login
Last login: Sat Aug 16 10:29:58 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@node-centos65 ~]$ ls /chef-repo/.chef/trusted_certs
default-centos65_vagrantup_com.crt
[vagrant@node-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

Once you have verified all the settings are correct, add the chef-client::config recipe
to your node’s run list:

$ knife node run_list add node-centos65.vagrantup.com \
"recipe[chef-client::config]"
node-centos65.vagrantup.com:
 run_list:
 recipe[chef-client::delete_validation]
 recipe[chef-client]
 recipe[chef-client::config]

Then log in to the node and perform a Chef run. Because you added the chef-
client::config recipe to your run list, Chef will make sure that the /etc/chef/
client.rb matches the settings corresponding to the attributes you set on the node. You’ll
get the SSL warning one more time as chef-client hasn’t yet applied your SSL verifi‐
cation settings:

$ kitchen login node-centos65
$ sudo chef-client
[2014-08-16T10:45:52-07:00] WARN:
* *
SSL validation of HTTPS requests is disabled. HTTPS connections are still
encrypted, but chef is not able to detect forged replies or man in the middle
attacks.
...
* *

Starting Chef Client, version 11.14.2
resolving cookbooks for run list: ["chef-client::delete_validation",
"chef-client", "chef-client::config"]
Synchronizing Cookbooks:
 - cron
 - chef-client
 - logrotate
Compiling Cookbooks...
...
Converging 17 resources
Recipe: chef-client::delete_validation

Configure Chef-Client to Use a Production SSL Setup | 199

 * file[/etc/chef/validation.pem] action delete (up to date)
Recipe: chef-client::init_service
 * directory[/var/run/chef] action create (up to date)
 * directory[/var/cache/chef] action create (up to date)
 * directory[/var/lib/chef] action create (up to date)
 * directory[/var/log/chef] action create (up to date)
 * directory[/etc/chef] action create (up to date)
 * template[/etc/init.d/chef-client] action create (up to date)
 * template[/etc/sysconfig/chef-client] action create (up to date)
 * service[chef-client] action enable (up to date)
 * service[chef-client] action start (up to date)
Recipe: chef-client::config
 * directory[/var/run/chef] action create (up to date)
 * directory[/var/cache/chef] action create (up to date)
 * directory[/var/lib/chef] action create (up to date)
 * directory[/var/log/chef] action create (up to date)
 * directory[/etc/chef] action create (up to date)
 * template[/etc/chef/client.rb] action create
 - update content in file /etc/chef/client.rb from 6d6918 to 934e27
 --- /etc/chef/client.rb 2014-08-16 10:45:47.725998848 -0700
 +++ /tmp/chef-rendered-template20140816-5689-wqon53 2014-08-16 10:45:54
 .766997307 -0700
 @@ -1,5 +1,7 @@
 chef_server_url "https://default-centos65.vagrantup.com/organizations
 /learningchef"
 validation_client_name "learningchef-validator"
 +ssl_verify_mode :verify_peer
 +ssl_ca_file "/chef-repo/.chef/trusted_certs/
 default-centos65_vagrantup_com.crt"
 # Using default node name (fqdn)

 * ruby_block[reload_client_config] action create
 - execute the ruby block reload_client_config
 * directory[/etc/chef/client.d] action create (up to date)
 * ruby_block[reload_client_config] action nothing (skipped due to action :nothing)

Running handlers:
Running handlers complete
Chef Client finished, 2/18 resources updated in 2.654285226 seconds

Now, if you run chef-client one more time, finally there is no more SSL warning:

$ sudo chef-client
Starting Chef Client, version 11.14.2
resolving cookbooks for run list: ["chef-client::delete_validation",
"chef-client", "chef-client::config"]
Synchronizing Cookbooks:
 - cron
 - logrotate
 - chef-client
Compiling Cookbooks...
...

200 | Chapter 10: Community and the Chef-Client Cookbook

Converging 17 resources
Recipe: chef-client::delete_validation
 * file[/etc/chef/validation.pem] action delete (up to date)
Recipe: chef-client::init_service
 * directory[/var/run/chef] action create (up to date)
 * directory[/var/cache/chef] action create (up to date)
 * directory[/var/lib/chef] action create (up to date)
 * directory[/var/log/chef] action create (up to date)
 * directory[/etc/chef] action create (up to date)
 * template[/etc/init.d/chef-client] action create (up to date)
 * template[/etc/sysconfig/chef-client] action create (up to date)
 * service[chef-client] action enable (up to date)
 * service[chef-client] action start (up to date)
Recipe: chef-client::config
 * directory[/var/run/chef] action create (up to date)
 * directory[/var/cache/chef] action create (up to date)
 * directory[/var/lib/chef] action create (up to date)
 * directory[/var/log/chef] action create (up to date)
 * directory[/etc/chef] action create (up to date)
 * template[/etc/chef/client.rb] action create (up to date)
 * directory[/etc/chef/client.d] action create (up to date)
 * ruby_block[reload_client_config] action nothing (skipped due to
 action :nothing)

Running handlers:
Running handlers complete
Chef Client finished, 0/17 resources updated in 2.72449843 seconds

Go ahead and exit back out to the host prompt now:

[vagrant@node-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

Your tour of the chef-client cookbook is now complete. We are now done with both
our Chef Server and node. Go ahead and kitchen destroy both of them.

Linux/Mac OS X:

$ cd $HOME/chef-repo/cookbooks/enterprise-chef
$ kitchen destroy
$ cd $HOME/chef-repo/cookbooks/node
$ kitchen destroy

Windows Command Prompt:

> cd %USERPROFILE%\chef-repo\cookbooks\enterprise-chef
> kitchen destroy
> cd %USERPROFILE%\chef-repo\cookbooks\node
> kitchen destroy

Configure Chef-Client to Use a Production SSL Setup | 201

Windows PowerShell:

> cd $HOME\chef-repo\cookbooks\enterprise-chef
> kitchen destroy
> cd $HOME\chef-repo\cookbooks\node
> kitchen destroy

Don’t forget to remove the entries for default-
centos65.vagrantup.com and node-centos65.vagrantup.com from /etc/
hosts on Linux/Mac OS X or %WINDIR%\system32\drivers\etc
\hosts on Windows.

Summary
In this chapter we showed you the Chef Supermarket, which is the hub of the Chef
community. We showed you how you can download cookbooks from the Chef Super‐
market using both the web interface and the command line.

We recommend using the knife command line tool, because it makes it easy to not only
download a community cookbook, but to upload and manage a cookbook on your Chef
server so you can use it in your organization.

We presented an overview of the chef-client cookbook and how it is useful for con‐
figuring a node after it has been bootstrapped with chef-client.

In the next chapter, we’ll introduce you to Chef Zero, a small, fast-start, in-memory
version of Chef Server, great for local testing.

202 | Chapter 10: Community and the Chef-Client Cookbook

CHAPTER 11

Chef Zero

Wouldn’t it be nice to be able to spin up a Chef Server locally using a smaller memory
footprint than shown in Chapter 9? On many systems, requiring 2 GB of free memory
just to simulate a production Chef Server environment is a lot to ask. The Chef Devel‐
opment Kit and Chef Client just so happen to include a stripped-down version of Chef
Server for this very purpose, called chef-zero.

chef-zero runs comfortably in as little as 20 MB of memory. Because it is small, it also
starts up quickly, which is great for testing. In order to fit into such a small memory
footprint, chef-zero sacrifices a few things. There is no web UI, nor is there any per‐
sistence; once Chef Zero is stopped, all data is lost. Neither of these two things is needed
for testing.

Test Kitchen provides built-in support for chef-zero. Let’s go through a simple example
of how you can use chef-zero with Test Kitchen. It’s great for testing your cookbook
in a sandbox environment with chef-client using chef-zero as a simulated Chef
Server, so you can test cookbooks that exploit Chef Server-specific features. We’ll be
covering more of these server-specific features in the remainder of this book, so having
a nimbler test environment available will be handy.

For those using Chef Client, you will need to install an additional gem to use Chef Zero.
Run the following command to install chef-zero:

$ sudo gem install chef-zero --no-ri --no-rdoc

If you’re using the Chef Development Kit, you’re fine, this Ruby gem has already been
installed for you.

203

Test Kitchen and Chef Zero
Generate a cookbook named zero with chef generate cookbook or knife cookbook
create, depending on whether you are using the Chef Development Kit or the Chef
Client respectively. Also, enable the cookbook to use Test Kitchen. We’re going to go
through the cookbook creation steps quickly in this chapter. If you need a refresher on
what each of these commands mean and the expected output, refer back to Chapter 7.

Chef Development Kit:

$ chef generate cookbook zero
$ cd zero

Chef Client:

$ knife cookbook create zero --cookbook-path .
$ cd zero
$ kitchen init --create-gemfile
$ bundle install

Edit the provisioner: stanza in the generated .kitchen.yml to use chef_zero. As of this
writing, chef_zero is not the default provisioner, but it might be by the time you read
this. Also, edit the .kitchen.yml file to use the CentOS 6.5 basebox we prepared specifi‐
cally for this book. Next, assign a private network address like we did in Chapter 7. This
time, we’re going to use the IP address 192.168.33.34. If this conflicts with an address
already being used on your local network, change it to be a nonconflicting one.

Example 11-1. chefdk/zero/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_zero

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65

suites:
 - name: default
 run_list:
 - recipe[zero::default]
 attributes:

Because we just want to present an overview of what chef-zero does, we’re going to use
the default-generated cookbook, which does nothing. Perform a kitchen converge to

204 | Chapter 11: Chef Zero

perform a Chef run using chef-zero. You should notice that the output looks a little
different than when you used chef-solo:

$ kitchen converge
-----> Starting Kitchen (v1.2.2.dev)
-----> Creating <default-centos65>...
-----> Converging <default-centos65>...
-----> Installing Chef Omnibus (true)
 Transferring files to <default-centos65>
 [2014-07-22T10:31:35-07:00] INFO: Starting chef-zero on port 8889 with
 repository at repository at /tmp/kitchen
 One version per cookbook

 [2014-07-22T10:31:35-07:00] INFO: Forking chef instance to converge...
 Starting Chef Client, version 11.12.8
 [2014-07-22T10:31:35-07:00] INFO: *** Chef 11.12.8 ***
 [2014-07-22T10:31:35-07:00] INFO: Chef-client pid: 2004
 Creating a new client identity for default-centos65 using the validator
 key.
 [2014-07-22T10:31:37-07:00] INFO: Client key /tmp/kitchen/client.pem
 is not present - registering
 [2014-07-22T10:31:37-07:00] INFO: HTTP Request Returned 404 Not Found :
 Object not found: http://127.0.0.1:8889/nodes/default-centos65
 [2014-07-22T10:31:37-07:00] INFO: Setting the run_list to
 ["recipe[zero::default]"] from CLI options
 [2014-07-22T10:31:37-07:00] INFO: Run List is [recipe[zero::default]]
 [2014-07-22T10:31:37-07:00] INFO: Run List expands to [zero::default]
 [2014-07-22T10:31:37-07:00] INFO: Starting Chef Run for default-centos65
 [2014-07-22T10:31:37-07:00] INFO: Running start handlers
 [2014-07-22T10:31:37-07:00] INFO: Start handlers complete.
 [2014-07-22T10:31:38-07:00] INFO: HTTP Request Returned 404 Not Found :
 Object not found: /reports/nodes/default-centos65/runs
 resolving cookbooks for run list: ["zero::default"]
 [2014-07-22T10:31:38-07:00] INFO: Loading cookbooks [zero@0.1.0]
 Synchronizing Cookbooks:
 [2014-07-22T10:31:38-07:00] INFO: Storing updated
 cookbooks/zero/recipes/default.rb in the cache.
 [2014-07-22T10:31:38-07:00] INFO: Storing updated
 cookbooks/zero/README.md in the cache.
 [2014-07-22T10:31:38-07:00] INFO: Storing updated
 cookbooks/zero/metadata.json in the cache.
 - zero
 Compiling Cookbooks...
 Converging 0 resources
 [2014-07-22T10:31:38-07:00] INFO: Chef Run complete in 0.043313495 seconds

 Running handlers:
 [2014-07-22T10:31:38-07:00] INFO: Running report handlers
 Running handlers complete

 [2014-07-22T10:31:38-07:00] INFO: Report handlers complete
 Chef Client finished, 0/0 resources updated in 2.396534174 seconds

Test Kitchen and Chef Zero | 205

 Finished converging <default-centos65> (0m29.51s).
-----> Kitchen is finished. (1m4.76s)

Here’s an overview of the steps Test Kitchen performed to set up chef-zero in the
sandbox environment. It:

1. Installed Chef Client
2. Created fake validation.pem and client.pem keys in /tmp/kitchen
3. Generated client.rb (the configuration file for chef-client) in /tmp/kitchen
4. Generated dna.json file with run list in /tmp/kitchen
5. Synchronized cookbooks on host in /tmp/kitchen/cookbooks
6. Ran chef-client in local mode. The full command line used is chef-client --

local-mode --config /tmp/kitchen/client.rb --log_level --chef-zero-

port 8889 --json-attributes dna.json

Destroy the sandbox environment; we’re done with it for now:

$ kitchen destroy

One important thing to remember is that Test Kitchen runs chef-zero in the back‐
ground during the Chef run, then stops chef-zero once the Chef run is complete. It
does not leave chef-zero running, nor does it configure knife to run in your sandbox
environment. As discussed in Chapter 9, knife is the primary tool for interacting with
a Chef Server. It is handy to be able to simulate knife as well in a test environment. But
we need to do a few more things in order to also simulate a Chef Server using knife.

Running Chef-Zero on Your Host Using Chef-Playground
You can also run chef-zero on your host. The most likely reason you’ll want to do this
is to simulate a Chef Server so you can run the knife tool, like we did in Chapter 9.
When you want to interact with a Chef Server, you’ll find yourself using knife on your
host Development Workstation even when you are using Test Kitchen. Also, some Chef
Server features such as data bags or search really benefit from being able to use knife,
even during testing.

We’ll be creating a project directory called chef-playground which models the chef-
repo setup we used in Chapter 9, but uses chef-zero instead. We’ll follow similar steps
that we used in “Test Kitchen and Chef Zero” on page 204:

1. Assume Chef Client or the Chef Development Kit is installed.
2. Create fake validation.pem and client.pem keys.
3. Create knife.rb (the configuration file for knife).

206 | Chapter 11: Chef Zero

4. Run chef-zero.
5. Synchronize cookbooks with chef-zero simulated Chef Server.
6. Run knife.

Create a directory called chef-playground, and make it the current working directory:

$ mkdir chef-playground
$ cd chef-playground

Then create another subdirectory called .chef (similar to the chef-repo/.chef directory
we created in Chapter 9), which will contain our fake keys and configuration files:

$ mkdir .chef
$ cd .chef

Use the ssh-keygen tool to generate some client keys. They don’t need to be real keys
tied to a user or to Chef, but they do need to contain a readable key. We discussed the
purpose of the client.pem file in Chapter 10. In this case, we’ll name the file dev‐
host.pem, which matches the devhost name we’ll be using for our Development Work‐
station. Enter in the following command lines. (The -P option supplies a passphrase for
the key. In this case, we don’t want a passphrase, so we pass in double quotes [""] to
supply a blank password.)

Linux/Mac OS X/Windows Command Prompt:

$ ssh-keygen -f devhost.pem -P ""
$ ssh-keygen -f validation.pem -P ""

Windows PowerShell:

$ ssh-keygen --% -f devhost.pem -P ""
$ ssh-keygen --% -f validation.pem -P ""

Create a knife.rb file in the chef-playground/.chef directory as shown in Example 11-2.
This is the final configuration file you need to create.

Example 11-2. chef-playground/.chef/knife.rb
chef_repo = File.join(File.dirname(__FILE__), "..")

chef_server_url "http://127.0.0.1:9501"
node_name "devhost"
client_key File.join(File.dirname(__FILE__), "devhost.pem")
cookbook_path "#{chef_repo}/cookbooks"
cache_type "BasicFile"
cache_options :path => "#{chef_repo}/checksums"

Finally, open up a separate terminal window and run chef-zero alongside the command
prompt in which you are doing these hands-on-exercises, as shown in Figure 11-1. Run
chef-zero as shown in the following code, passing in a port number besides the default

Running Chef-Zero on Your Host Using Chef-Playground | 207

port 8889, so you won’t conflict with other Chef tools running on your host in local
mode. If you discover a conflict with the suggested port 9501, use another.

$ chef-zero --port 9501

You can run chef-zero in “daemonized” mode by passing in the --
daemon parameter. Chef-zero will detach itself from the current com‐
mand line process and run in the background.

As shown in Figure 11-1, when run on a command line, chef-zero will display that it
is listening, not returning to the command prompt. This is why we recommend running
it in a separate window. Leave chef-zero running for now.

Figure 11-1. Run chef-zero in a window alongside your cookbook

Make sure that the chef-playground directory is the current working directory. Assum‐
ing everything is configured properly, when you run knife client list, it should
return chef-validator and chef-webui as shown in the following code block:

$ pwd
/Users/misheska/chef-playground

$ knife client list
chef-validator
chef-webui

The knife tool will look for configuration files and credentials in the $HOME/.chef
directory by default. If knife doesn’t find anything in this default location, it will then
walk up a directory tree looking for the first .chef directory, if it exists. This is a recom‐
mended way to arrange your configuration files, if you have to work against multiple
Chef servers using the Chef tools in client mode—sprinkle .chef directories in root
locations that make sense for the project, such as chef-playground/.chef.

208 | Chapter 11: Chef Zero

We won’t be using knife --local-mode in this book, but it’s helpful
to mention. Similar to chef-client, the knife tool supports a local
mode using the --local-mode option. A benefit to using local mode
with knife is that it will automatically start chef-zero for you.
You could have run the following to run knife in local mode to check
clients. A benefit to this approach is that it will automatically start
chef-zero for you. This doesn’t conflict with the chef-zero in‐
stance you already started because it is running on a different port
than the default port 8889.

$ knife client list --local-mode

However, you’ll notice that the output differs compared to when
knife is running in “client” mode. So we won’t be making use of the
local mode feature in this book. Jon Cowie’s Customizing Chef book
covers the use of both chef-client and knife using local mode.

Before we finish with our chef-playground project, let’s pre-populate chef-zero with
some node information so we can get more useful test results back from search queries
against Chef Server.

Create a directory called nodes underneath chef-playground, and make it the current
working directory:

$ mkdir nodes
$ cd nodes

Within the chef-playground/nodes directory, create three files, as shown in
Example 11-3, Example 11-4, and Example 11-5. When you are done, the chef-
playground directory structure should resemble the following:

chef-playground/
├── .chef
│ ├── devhost.pem
│ ├── devhost.pem.pub
│ ├── knife.rb
│ ├── validator.pem
│ └── validator.pem.pub
└── nodes
 ├── atwood.json
 ├── snowman.json
 └── susu.json

Example 11-3. chef-playground/nodes/atwood.json
{
 "name": "atwood",
 "chef_type": "node",
 "json_class": "Chef::Node",
 "chef_environment": "_default",

Running Chef-Zero on Your Host Using Chef-Playground | 209

http://bit.ly/customizing-chef

 "run_list": ["recipe[apache]", "recipe[motd]"],
 "automatic": {
 "ipaddress": "192.168.33.31",
 "hostname": "atwood",
 "fqdn": "atwood.playground.local",
 "os": "linux",
 "os_version": "2.6.32-431.el6.x86_64",
 "platform": "centos",
 "platform_version": "6.5",
 "platform_family": "rhel",
 "recipes": ["apache", "motd"]
 }
}

Example 11-4. chef-playground/nodes/snowman.json
{
 "name": "snowman",
 "chef_type": "node",
 "json_class": "Chef::Node",
 "chef_environment": "_default",
 "run_list": ["recipe[apache]", "recipe[motd]", "recipe[motd-attributes]"],
 "automatic": {
 "ipaddress": "192.168.33.32",
 "hostname": "snowman",
 "fqdn": "snowman.playground.local",
 "os": "linux",
 "os_version": "3.13.0-24-generic",
 "platform": "ubuntu",
 "platform_version": "14.04",
 "platform_family": "debian",
 "recipes": ["apache", "motd", "motd-attributes"]
 }
}

Example 11-5. chef-playground/nodes/susu.json
{
 "name": "susu",
 "chef_type": "node",
 "json_class": "Chef::Node",
 "chef_environment": "_default",
 "run_list": ["recipe[apache]", "recipe[motd]"],
 "automatic": {
 "ipaddress": "192.168.33.33",
 "hostname": "susu",
 "fqdn": "susu.playground.local",
 "os": "linux",
 "os_version": "2.6.32-431.el6.x86_64",
 "platform": "centos",
 "platform_version": "6.5",
 "platform_family": "rhel",
 "recipes": ["apache", "motd"]

210 | Chapter 11: Chef Zero

 }
}

Once you have the files in the nodes/ subdirectory created, make sure that chef-
playground is the current working directory. Then, run the knife upload command to
create the node information on the server. We’ll use this knife upload technique in
subsequent chapters of this book to pre-populate the chef-zero server with test data
before running other knife commands:

$ pwd
/Users/misheska/chef-playground

$ knife upload nodes
Created nodes/atwood.json
Created nodes/snowman.json
Created nodes/susu.json

Now if you run the knife node list command, you’ll see that chef-zero thinks that
there are three nodes being managed:

$ knife node list
atwood
snowman
susu

That’s a quick overview of Chef Zero. We’ll be using Chef Zero to show you more Chef
Server functionality in upcoming chapters. Hit Ctrl-C in the window in which you
launched chef-zero to stop the Chef Zero server.

Summary
In this chapter, we showed you how Chef Zero provides a complete, in-memory version
of Chef Server that is easy to install and great for checking out features of Chef Server
locally without needing to have a full Chef Server setup. We’ll be using this nimbler
implementation of Chef Server for the rest of the exercises in this book.

Summary | 211

CHAPTER 12

Search

Chef search provides the ability to query data indexed on Chef Server. The search query
runs on Chef Server and search results are returned to clients. Queries can be invoked
by using knife on the command line or from within a recipe. Typical queries are usually
inventory related, such as a count and system names of all the computers that have
particular operating system configurations or software installed. For example, searches
for versions of the openssl library vulnerable to the Heartbleed Virus were quite popular
as we were writing this book.

Search from the Command Line
Let’s start by performing a search query with knife on the command line. Use the chef-
playground directory you created in Chapter 11. Use the same dual command prompt
setup you used there. Start the chef-zero server on an open port in one window. We
will be using port 9501 in the examples in this chapter:

$ chef-zero --port 9501

Then, in the other window, make the chef-playground directory the current working
directory and run the knife upload nodes command to populate Chef Server with
some test data about nodes:

$ cd chef-playground
$ knife upload nodes
Created nodes/susu.json
Created nodes/atwood.json
Created nodes/snowman.json

213

Search from the Command Line with Knife
You can also perform searches in production on the command line with the knife
search command. The search query syntax with knife is in the following form:

$ knife search <index> <search_query>

The index can be one of the following:

• node

• client

• environment

• role

• <name of data bag>

In this chapter, we’ll use node for the index field. Figure 12-1 shows an example of a
search for nodes that have an IP address beginning with 10.1.1.

Figure 12-1. Knife search query syntax

Chef uses Apache Solr for searching and search indexing. The following command
performs a search query for all nodes and returns the results using the Solr search query
string "*:*.” The results contain the test data we just populated with knife upload,
showing three nodes registered to be managed by Chef.

$ knife search node "*:*"
3 items found

Node Name: atwood
Environment: _default
FQDN: atwood.playground.local
IP: 192.168.33.31
Run List: recipe[apache], recipe[motd]
Roles:
Recipes: apache, motd
Platform: centos 6.5
Tags:

214 | Chapter 12: Search

Node Name: snowman
Environment: _default
FQDN: snowman.playground.local
IP: 192.168.33.32
Run List: recipe[apache], recipe[motd], recipe[motd-attributes]
Roles:
Recipes: apache, motd, motd-attributes
Platform: ubuntu 14.04
Tags:

Node Name: susu
Environment: _default
FQDN: susu.playground.local
IP: 192.168.33.33
Run List: recipe[apache], recipe[motd]
Roles:
Recipes: apache, motd
Platform: centos 6.5
Tags:

Chef search queries use the Solr “<attribute>:<search_pattern>” form:

knife search node "ipaddress:192.168.33.32"

Use an asterisk (“*”) within a search query to perform a wildcard search matching 0 or
more characters:

knife search node "ipaddress:192.*"
knife search node "platfo*:centos"

Use a question mark (“?”) to match any single character:

knife search node "platform_version:14.0?"

You can add specific key-value pairs in the query part of the knife search command
line. The following query will return the item where node == snowman:

$ knife search node "hostname:snowman"
1 items found

Node Name: snowman
Environment: _default
FQDN: snowman.playground.local
IP: 192.168.33.32
Run List: recipe[apache], recipe[motd], recipe[motd-attributes]
Roles:
Recipes: apache, motd, motd-attributes
Platform: ubuntu 14.04
Tags:

Search from the Command Line with Knife | 215

To obtain a list of attribute names to use in a search, run the knife
<index> show command using the --long option. It will show you
all the available attributes. For example, we ran the following com‐
mand to determine that the attribute for Node Name: was hostname:

knife node snowman --long

Note that our test data doesn’t include all the possible attributes. You’ll
need to run knife node show against a real Chef Server setup. An‐
other way to collect this information for a node without needing a
real setup is to run ohai and look through the results. Most of the
attributes about a node come from ohai.

Multiple key-value pairs can be specified using boolean values, such as OR. For example,
the following query would return the items where the id is alice OR bob:

$ knife search node "name:susu OR name:atwood"
2 items found

Node Name: atwood
Environment: _default
FQDN: atwood.playground.local
IP: 192.168.33.31
Run List: recipe[apache], recipe[motd]
Roles:
Recipes: apache, motd
Platform: centos 6.5
Tags:

Node Name: susu
Environment: _default
FQDN: susu.playground.local
IP: 192.168.33.33
Run List: recipe[apache], recipe[motd]
Roles:
Recipes: apache, motd
Platform: centos 6.5
Tags:

Logical AND can be used as well, if you want to return results matching all value criteria:

$ knife search node "ipaddress:192* AND platform:ubuntu"
1 items found

Node Name: snowman
Environment: _default
FQDN: snowman.playground.local
IP: 192.168.33.32
Run List: recipe[apache], recipe[motd], recipe[motd-attributes]
Roles:
Recipes: apache, motd, motd-attributes

216 | Chapter 12: Search

Platform: ubuntu 14.04
Tags:

Search results can be filtered with the -a parameter. For example, -a ipaddress only
returns the value for the ipaddress attribute:

$ knife search node "*:*" -a ipaddress
3 items found

atwood:
 ipaddress: 192.168.33.31

snowman:
 ipaddress: 192.168.33.32

susu:
 ipaddress: 192.168.33.33

Search in a Recipe Using Test Kitchen
You can also perform search queries in your Chef code. In this section we’ll write a
cookbook using Test Kitchen and chef_zero that performs search queries. Create the
directory chef-playground/cookbooks, and make sure it is the current working directory:

Linux/Mac OS X:

$ cd chef-playground/cookbooks

Windows:

> cd chef-playground\cookbooks

Now, generate a nodes cookbook in the chef-playground/cookbooks directory.

Chef Development Kit:

$ chef generate cookbook nodes
$ cd nodes

Chef Client:

$ knife cookbook create nodes --cookbook-path .
$ cd nodes
$ kitchen init --create-gemfile
$ bundle install

Edit the .kitchen.yml to make sure you are using the chef_zero provisioner and our
favorite basebox image as shown in Example 12-1. Notice there is a new addition to the
provisioner: stanza, the nodes_path:

provisioner:
 name: chef_zero
 nodes_path: ../../nodes

Search in a Recipe Using Test Kitchen | 217

nodes_path is a relative path pointing to the chef-playground/nodes directory we created
with our test data in Chapter 11. Test data is normally located somewhere outside the
main cookbook source code so it doesn’t get inadvertently uploaded to the Chef server.

Example 12-1. chefdk/chef-playground/cookbooks/nodes/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_zero
 nodes_path: ../../nodes

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65

suites:
 - name: default
 run_list:
 - recipe[nodes::default]
 attributes:

Let’s write a recipe that performs a search query on Chef Server for all nodes, like we
did in the previous section. Chef provides a search() method that you can use in your
Chef code. It takes two parameters, similar to the two command line parameters used
in knife search:

search(index, search_query):
index

Possible values for index are node, client, environment, role, and <name of data
bag>. In this example, we’ll be using node.

search_query
Apache Solr search query.

Make sure recipes/default.rb matches the code contained in Example 12-2. It contains
Chef code that queries Chef Server for all items in the users data bag.

Example 12-2. chefdk/chef-playground/cookbooks/nodes/recipes/default.rb
#
Cookbook Name:: users
Recipe:: default
#
Copyright (C) 2014
#

218 | Chapter 12: Search

#
#

Print every node name matching the search pattern
search("node", "*:*").each do |matching_node|
 log matching_node.to_s
end

The .each statement in recipes/default.rb is a looping construct specific to Ruby. If you
are familiar with other programming languages, look at the following code for some‐
thing that might be a little more familiar. The following code creates a counter variable,
incrementing it by 1 until it equals 5:

counter = 0
while counter < 5
 puts counter
 counter = counter + 1
end

Although the preceding is completely valid Ruby, a more idiomatic way is to use
the .each iterator to return all the elements in an array one-by-one. Ruby shines in
having really compact ways to specify common coding constructs.

The do..end block construct is more sophisticated than we’ve covered so far. It can be
used to define a method with no name. Also, you can pass this nameless method one
or more parameters enclosed by two vertical bars (||), such as |counter| in the following
example.

In the following example, we pass a code block to (0..5).each. When you pass a code
block to an iterator method, it will execute the specified method for each item. In this
case, each item of the range (0..5) will be passed to our code block as the |counter|
variable. The block uses this variable to print out each value in the range:

(0..5).each do |counter|
 puts counter
end

We’re doing something similar in Example 12-2, iterating through each node item re‐
turned by search() and returning the item content in the matching_node variable.
matching_node is a hash containing the key-value pairs in the node item.

The code just reads these values from the matching_node hash and uses the to_s method
to print a string representation of the object using log, which is the node name.

Run kitchen converge. If all goes well, you should notice that Test Kitchen uploads
the cookbook code to the sandbox environment and creates node entries in a chef-
zero instance. Then it runs the cookbook code, which performs a query for all nodes,
printing out the following results:

Search in a Recipe Using Test Kitchen | 219

$ kitchen converge
-----> Starting Kitchen (v1.2.2.dev)
-----> Converging <default-centos65>...
 Preparing files for transfer
 Resolving cookbook dependencies with Berkshelf 3.1.3...
 Removing non-cookbook files before transfer
 Preparing nodes
...
 Converging 4 resources
 Recipe: nodes::default
 * log[node[atwood]] action write
 [2014-07-27T13:05:24-07:00] INFO: Processing log[node[atwood]] action
 write (nodes::default line 12)
 [2014-07-27T13:05:24-07:00] INFO: node[atwood]

 * log[node[default-centos65]] action write[2014-07-27T13:05:24-07:00]
 INFO: Processing log[node[default-centos65]] action write
 (nodes::default line 12)
 [2014-07-27T13:05:24-07:00] INFO: node[default-centos65]

 * log[node[snowman]] action write[2014-07-27T13:05:24-07:00] INFO:
 Processing log[node[snowman]] action write (nodes::default line 12)
 [2014-07-27T13:05:24-07:00] INFO: node[snowman]

 * log[node[susu]] action write[2014-07-27T13:05:24-07:00] INFO:
 Processing log[node[susu]] action write (nodes::default line 12)
 [2014-07-27T13:05:24-07:00] INFO: node[susu]

 [2014-07-27T13:05:24-07:00] INFO: Chef Run complete in 0.068921558
 seconds

 Running handlers:
 [2014-07-27T13:05:24-07:00] INFO: Running report handlers
 Running handlers complete

 [2014-07-27T13:05:24-07:00] INFO: Report handlers complete
 Chef Client finished, 4/4 resources updated in 2.158656241 seconds
 Finished converging <default-centos65> (0m5.12s).
-----> Kitchen is finished. (0m5.57s)

220 | Chapter 12: Search

Sharp-eyed readers might notice that the search returns four results
instead of the three we received running knife using the command
line. The search result returns the nodes atwood, snowman, susu, and
default-centos65. The additional node entry is the sandbox node
Test Kitchen creates for us. When Test Kitchen performs a kitchen
converge, it automatically registers the sandbox instance as a node
with its own chef-zero instance.

You have been introduced to Chef search. We’re done with the chef-zero instance on
your host and the Test Kitchen sandbox environment. Hit Ctrl-C in the window in
which you launched chef-zero to stop the Chef Zero server. Make sure the chef-
playground/cookbooks/nodes directory with your cookbook is the current working di‐
rectory, then run:

$ kitchen destroy

Summary
In this chapter we introduced you to Chef search. Chef Server uses Apache Solr behind
the scenes to add support for searching and indexing. The Apache Solr "<at
tribute>:<query>" syntax is also used for search queries. You can search from anything
that can talk with Chef Server, given that Chef Server’s search capability is implemented
as an API. We showed you how to search from the command line using knife node
search and how to search within a recipe using the search() method.

In the next chapter, we’ll cover data bags. Data bags contain data that can be accessed
by more than one node. Data bags were added as a feature in Chef Server to get around
the limitation that node attributes can be read only by the node that created the data,
not by any other node.

Summary | 221

CHAPTER 13

Data Bags

As Figure 13-1 shows, Chef Server provides a way to store shared, global data between
nodes using data bags.

A data bag is a container for items that represent information about your infrastructure
that is not tied to a single node. Data bags contain information that needs to be shared
among more than one node. For example:

• Shared passwords
• License keys for software installs
• Shared lists of users and groups

Chef provides no mechanism to share data between nodes, as shown in Figure 13-2.

And even though chef-client does send a copy of the node attribute data to Chef
Server after a successful Chef run, Figure 13-3 shows there is no way for other nodes to
access this information directly.

Data bags are the only built-in mechanism Chef provides to store and access shared
data between nodes.

Figure 13-4 shows what a data bag looks like. Each data bag contains a list of items. Each
item is a JSON-formatted name-value pair collection expected to have exactly the same
schema for every item in the data bag. However, the schema between two different data
bags can differ. String values are quoted; integer values are not. Values can also contain
lists of strings or integers as well.

223

Figure 13-1. Data bags contain shared, global data

Figure 13-2. Nodes cannot share data directly

224 | Chapter 13: Data Bags

Figure 13-3. Chef Server does not a provide a way for nodes to share data directly

Figure 13-4. Data bag contents

Basic Command Line Data Bag Usage with Knife
Let’s start by performing a search query with knife on the command line. Let’s say we
want to make sure that our employees alice and bob have local user accounts created
on all nodes. We want to store this user list in a data bag, as we want to be able to add
new employees to this list and have accounts created for them automatically. Data bags
are the perfect solution for this problem because the list of users is global data that we
want to share between nodes.

Basic Command Line Data Bag Usage with Knife | 225

Use the chef-playground directory you created in Chapter 11. Use the same dual com‐
mand prompt setup you used there. Start the chef-zero server on an open port in one
window. We will be using port 9501 in the examples in this chapter:

$ chef-zero --port 9501

Then, in the other window, make the chef-playground directory the current working
directory. You don’t need to knife upload nodes for this chapter, but it doesn’t hurt if
you’ve done it already.

Make sure the chef-playground directory is the current working directory:

$ cd chef-playground

Create a data_bags directory in chef-playground. Also, create a new data bag called
users. It’s simply a matter of creating a new directory underneath data_bags.

Linux/Mac OS X:

$ mkdir -p data_bags/users

Windows:

> mkdir data_bags\users

Similar to what we did in Chapter 11 to create node data, create some items in your data
bag by creating a .json file for each item. In this case, we want to create data bags for a
user named alice and a user named bob. Create the files alice.json and bob.json as shown
in Example 13-1 and Example 13-2. The data bag item contains key-value pairs with
data relevant to a Unix user. String values are quoted; integer values are not. We’ll feed
this data into some Chef recipe code next, so we can show you how to make a data-
driven cookbook.

Example 13-1. chefdk/chef-playground/data_bags/users/alice.json
{
 "id": "alice",
 "comment": "Alice Jones",
 "uid": 2000,
 "gid": 0,
 "home": "/home/alice",
 "shell": "/bin/bash"
}

Example 13-2. chefdk/chef-playground/data_bags/users/bob.json
{
 "id": "bob",
 "comment": "Bob Smith",
 "uid": 2001,
 "gid": 0,
 "home": "/home/bob",

226 | Chapter 13: Data Bags

 "shell": "/bin/bash"
}

To create a data bag named users on the Chef server, run the command knife data_bag
create as follows:

$ knife data_bag create users
Created data_bag[users]

To create data bag items, use the knife data_bag from file command. knife da
ta_bag from file assumes that the .json files are in a subdirectory with the specified
data bag name under the directory data_bags:

$ knife data_bag from file users alice.json
Updated data_bag_item[users::alice]
$ knife data_bag from file users bob.json
Updated data_bag_item[users::bob]

To search data bags, use the name of the data bag in the index parameter to knife
search. In this case, our data bag name is users “:”. The following command will search
for the list of users we created in a data bag:

$ knife search users "*:*"
2 items found

chef_type: data_bag_item
comment: Alice Jones
data_bag: users
gid: 0
home: /home/alice
id: alice
shell: /bin/bash
uid: 2000

chef_type: data_bag_item
comment: Bob Smith
data_bag: users
gid: 0
home: /home/bob
id: bob
shell: /bin/bash
uid: 2001

You can add specific key-value pairs in the query part of the knife search command
line. The following query will return the item where id == alice:

$ knife search users "id:alice"
1 items found

chef_type: data_bag_item
comment: Alice Jones
data_bag: users

Basic Command Line Data Bag Usage with Knife | 227

gid: 0
home: /home/alice
id: alice
shell: /bin/bash
uid: 2000

The same search query variants we used in Chapter 12 for nodes also apply to data bags.
The query fields are just slightly different as they are no longer node attributes. For
example, the following query would return the items where the id is alice OR bob:

$ knife search users "id:alice OR id:bob"
2 items found

chef_type: data_bag_item
comment: Alice Jones
data_bag: users
gid: 0
home: /home/alice
id: alice
shell: /bin/bash
uid: 2000

chef_type: data_bag_item
comment: Bob Smith
data_bag: users
gid: 0
home: /home/bob
id: bob
shell: /bin/bash
uid: 2001

Just as we covered in Chapter 12, search results can be filtered with the -a parameter.
For example, -a shell returns the value only for the users shell:

$ knife search users "*:*" -a shell
2 items found

data_bag_item_users_alice:
 shell: /bin/bash

data_bag_item_users_bob:
 shell: /bin/bash

If the search text is a string, you’ll need to put it in double quotes (“”):
knife search users "comment:\"Alice Jones\"" -a shell

We have to escape the " here within the search string. On a Mac/
Linux machine you could do this:

knife search users 'comment:"Alice Jones"' -a shell

But the single quote (') doesn’t work in a Windows PowerShell
terminal.

228 | Chapter 13: Data Bags

Creating Local Users Based on Data Bag Items in a Recipe
So far, we’ve created a list of users as data bag items, but we also want local accounts
created for them. Let’s write a Chef cookbook that creates the user accounts. We’ll be
using Test Kitchen and chef_zero to write our code, just like we did in Chapter 12.

Make sure chef-playground/cookbooks is the current working directory.

Linux/Mac OS X:

$ cd chef-playground/cookbooks

Windows:

> cd chef-playground\cookbooks

Then generate a users cookbook in the chef-playground/cookbooks directory.

Chef Development Kit:

$ chef generate cookbook users
$ cd users

Chef Client:

$ knife cookbook create users --cookbook-path .
$ cd users
$ kitchen init --create-gemfile
$ bundle install

Edit the .kitchen.yml and make sure you are using the chef_zero provisioner and our
favorite basebox image as shown in Example 13-3. Notice there is a new addition to the
provisioner: stanza, the data_bags_path:

provisioner:
 name: chef_zero
 data_bags_path: ../../data_bags

data_bags_path is a relative path pointing to the chef-playground/data_bags directory
we created with our test data in the last section, similar to what we did with the node
test data in Chapter 12.

All files in the data_bags_path: directory tree get uploaded to the chef-zero server as
data bags. In production, data bags are populated with data that is not packaged with
the cookbook itself. In other words, any data used for cookbook testing is normally
located outside the main cookbook directory structure. In Example 13-3, we store our
test data in chef-playground/data_bags, not under the subtree for the users cookbook
within cookbooks/users.

Example 13-3. chefdk/users/.kitchen.yml

driver:

Creating Local Users Based on Data Bag Items in a Recipe | 229

 name: vagrant

provisioner:
 name: chef_zero
 data_bags_path: ../../data_bags

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65

suites:
 - name: default
 run_list:
 - recipe[users::default]
 attributes:

Let’s write a recipe that queries the list of users in our users data bag and creates a local
user for each item. You can use the search() method to perform the data bag query,
just like you did for nodes in Chapter 12. Plus, you can make use of the Chef user
resource to create a user based on the information contained in the data bag.

Enter in the code for recipes/default.rb that matches Example 13-4.

Example 13-4. chefdk/chef-playground/cookbooks/users/recipes/default.rb
#
Cookbook Name:: users
Recipe:: default
#
Copyright (C) 2014
#
#
#
search("users", "*:*").each do |user_data|
 user user_data["id"] do
 comment user_data["comment"]
 uid user_data["uid"]
 gid user_data["gid"]
 home user_data["home"]
 shell user_data["shell"]
 end
end

We’re using the each do construct similar to the code we wrote in Chapter 12, this time
iterating through each item of the data bag and returning the data bag contents in
user_data. user_data is a hash containing the key-value pairs in the data bag item.

The user statement within the search() block is a Chef resource. The user resource
creates a local user on the node. It takes the following attributes:

230 | Chapter 13: Data Bags

comment

One (or more) comments about the user

uid

The numeric user identifier

gid

The identifier for the group

home

The location of the home directory

shell

The login shell

The code reads these values from the user_data map and passes them to the Chef user
resource.

Run kitchen converge. If all goes well, Test Kitchen should upload the cookbook code
to the sandbox environment and create the data bag entries in a chef-zero instance. It
should then run the cookbook code that performs a query for our user data bag items
and creates corresponding users with the user resource:

$ kitchen converge
-----> Starting Kitchen (v1.2.2.dev)
-----> Converging <default-centos65>...
 Preparing files for transfer
...
 Preparing data bags
...
 [2014-07-23T22:18:29-07:00] INFO: Starting chef-zero on port 8889 with
 repository at repository at /tmp/kitchen
 One version per cookbook
...
 Starting Chef Client, version 11.12.8
...
 resolving cookbooks for run list: ["users::default"]
 [2014-07-23T22:18:31-07:00] INFO: Loading cookbooks [users@0.1.0]
 Synchronizing Cookbooks:
 - users
 Compiling Cookbooks...
 Converging 2 resources
 Recipe: users::default
 * user[alice] action create[2014-07-23T22:18:31-07:00] INFO:
 Processing user[alice] action create (users::default line 11)
 [2014-07-23T22:18:31-07:00] INFO: user[alice] created

 - create user user[alice]

 * user[bob] action create[2014-07-23T22:18:31-07:00] INFO:
 Processing user[bob] action create (users::default line 11)

Creating Local Users Based on Data Bag Items in a Recipe | 231

 [2014-07-23T22:18:31-07:00] INFO: user[bob] created

 - create user user[bob]

 [2014-07-23T22:18:31-07:00] INFO: Chef Run complete in 0.122617779
 seconds

 Running handlers:
 [2014-07-23T22:18:31-07:00] INFO: Running report handlers
 Running handlers complete

 [2014-07-23T22:18:31-07:00] INFO: Report handlers complete
 Chef Client finished, 2/2 resources updated in 2.425061171 seconds
 Finished converging <default-centos65> (0m5.37s).
-----> Kitchen is finished. (0m5.82s)

Verify Users
Let’s verify that the users actually got created in our sandbox environment. Log in to
the sandbox environment, and run getent password to verify that our users exist. Then
make sure you exit back out to the host command prompt:

$ kitchen login
Last login: Sun Jul 27 14:24:53 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@default-centos65 ~]$ getent passwd alice
alice:x:2000:0:Alice Jones:/home/alice:/bin/bash
[vagrant@default-centos65 ~]$ getent passwd bob
bob:x:2001:0:Bob Smith:/home/bob:/bin/bash
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

Local users alice and bob should now be created with the appropriate user data.

You can also add a new item to the users data bag collection. Let’s add a new user called
eve. Go back to the root chef-playground directory and create a new file called chef-
playground/data_bags/users/eve.json as shown in Example 13-5.

Example 13-5. chefdk/chef-playground/data_bags/users/eve.json
{
 "id": "eve",
 "comment": "Eavesdrop",
 "uid": 2002,
 "gid": 0,
 "home": "/home/eve",
 "shell": "/bin/bash"
}

232 | Chapter 13: Data Bags

Make sure the root chef-playground directory is your current working directory, and
run knife data_bag from file to add eve to the global list of users:

$ knife data_bag from file users eve.json
Updated data_bag_item[users::eve]

Make your users recipe the current working directory.

Linux/Mac OS X:

$ cd chef-playground/cookbooks/users

Windows:

> cd chef-playground\cookbooks\users

Run kitchen converge and then kitchen login to check to see if the new user account
got created. Make sure you exit back out to the host prompt when you are done.

$ kitchen converge
$ kitchen login
Last login: Sun Jul 27 14:38:04 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@default-centos65 ~]$ getent passwd eve
eve:x:2002:0:Eavesdrop:/home/eve:/bin/bash
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

You should notice that an account for eve got created. Your recipe is data driven, based
on the list of users maintained in the users databag. Whenever that list changes, a node
will pick up the change on its next scheduled Chef run. You didn’t have to change the
recipe to get a new user account created.

Encrypted Data Bags
Data bag items can be encrypted with a shared key in order to store private information
on Chef Server in a secure fashion. Examples of secrets that you might want to store in
an encrypted databag include:

• SSL certificates
• SSH keys
• Passwords
• License keys

Because node attributes are in plain text and can be searched—even though other nodes
can’t change another node’s attributes—node attributes are not secure. Encrypted data
bags are a great option, even when you want to secure an attribute for just one node,
though secrets aren’t usually node specific.

Encrypted Data Bags | 233

Figure 13-5 shows more detail about how encrypted data bags work. When a data bag
item is created with knife data bag create, a file containing a shared key is passed
on the command line. The shared key is used as the password to encrypt the data bag
item contents. When a node wants to decrypt the data bag item and access the secret in
plain text, it must also pass the same shared key on its knife data bag operations.

Figure 13-5. Encrypted data bags use a shared key

Let’s try working with an encrypted data bag item. Make sure the root chef-
playground directory is your current working directory.

234 | Chapter 13: Data Bags

First, generate a password to be used as a shared key. Enter in the following command
line, which generates a 512-byte random key and saves it to the file encrypted_da
ta_bag_secret:

$ openssl rand -base64 512 | tr -d '\r\n' > encrypted_data_bag_secret

When symmetric key encryption is used, the password is typically a random key gen‐
erated by a machine instead of a human. So we used openssl tool to generate a 512-
byte random key. In order to represent the binary data contained in the key, we tell
openssl to use base64 encoding to represent the binary data as an ASCII string. Further,
since by default the output of openssl contains linefeeds, which are different depending
on the platform, we use the translate (tr) command to remove any linefeed characters
from the secret key. Removing linefeed characters ensures that the bytes in the random
key will be the same even if the platform is different.

For some test data, let’s create a .json file that contains the api key to access our credit
card payment system. This is definitely something we want to keep from prying eyes.
In addition to the required id: field, we’ll add an api_key field to store api_key.

First, create a new directory to hold the data bag under chef-playground/data_bags to
hold our api_keys.

Linux/Mac OS X:

$ mkdir -p data_bags/api_keys

Windows:

> mkdir data_bags\api_keys

Now create the file chef-playground/data_bags/api_keys/payment_system.json by using
the code provided in Example 13-6.

Example 13-6. chefdk/chef-playground/data_bags/api_keys/payment.json
{
 "id": "payment",
 "api_key": "592c879e-f37d-43e6-8b54-8c2d97cf04d4"
}

Create the data bag using the following command line:

$ knife data bag create api_keys

When data bag items are encrypted, use the --secret-file command line option to
pass in the shared key. Create the encrypted data bag item api_keys by using the
payment.json file that we just created, with the following:

$ knife data bag from file api_keys payment.json \
--secret-file encrypted_data_bag_secret data_bag[api_keys::payment]

Encrypted Data Bags | 235

So is the data item encrypted on Chef Server? Let’s see. Try using the knife data bag
show command, but don’t pass the shared key:

$ knife data bag show api_keys payment
api_key:
 cipher: aes-256-cbc
 encrypted_data: 25wUo0zKMqRAlMm3bGVch+0VAyL/IQj6/oi/K2CyYWWemP5akQo4pldal9SP
 TjkFNmLH5mO8uWi9jn61UrvQdA==
 iv: jU1uFntBuH8b1pwms09nkA==
 version: 1
 id: payment

Looks encrypted, doesn’t it? You don’t see our plain-text api_key anywhere in the out‐
put. The only thing that is plain text is the id:. The id: field cannot be encrypted,
because the server uses this field to index and search for the associated encrypted data.

It’s worth pointing out that you lose the ability to search for data
within encrypted data bags. A data bag can be searchable or secure,
but not both at the same time.

If you want to decrypt the item data, just use the --secret-file parameter as follows.
Now the data bag item is shown in plain text:

$ knife data bag show api_keys payment \
--secret-file encrypted_data_bag_secret
api_key: 592c879e-f37d-43e6-8b54-8c2d97cf04d4
id: payment

There is one problem with using encrypted data bags for which Chef Software does not
provide a built-in solution. How does a node get the secret key? In order for the node
to decrypt the secret, it must have a copy of the shared key. Unfortunately, there is no
central place to access encrypted keys, as storing encryption keys on the same system
where the data resides violates all the core principles of computer security. So when you
use encrypted data bags, you must find a solution to the key distribution problem.

Luckily there is a solution to this key distribution issue, which we’ll cover in the next
section. It’s called chef-vault, and it is included with the Chef Development Kit.

chef-vault
Kevin Moser came up with idea for chef-vault in 2013 while working at Nordstrom.
Kevin devised a clever solution to the key distribution issue for encrypted data bags by
reusing the public/private key pairs Chef already uses for nodes to implement a key
encapsulation scheme. When the data bag item is created, a shared key is generated on
the node. Then, for each node that needs access to it, the shared key is encrypted with

236 | Chapter 13: Data Bags

the node’s public key, creating an encrypted version of the shared key in an encapsulated
payload. This encrypted version of the key is stored on Chef Server.

For those using Chef Client, you will need to install an additional gem to use chef-
vault. Run the following to install the chef-vault gem:

$ sudo gem install chef-vault --no-ri --no-rdoc

If you’re using the Chef Development Kit, you’re fine, this Ruby gem has already been
installed for you.

Before we can play with chef-vault in our chef-playground setup, we need to register
a legitimate client key for our devhost node with the chef-zero server.

Right now, if you run knife client list, note that devhost isn’t in our list of clients.
Chef Server doesn’t know it has a client key that allows it to store data on the server
from its chef-client runs nor does it know that devhost is a node. Both of these
conditions are required for a node to access encrypted data with chef-vault:

$ knife client list
chef-validator
chef-webui
$ knife node list

The node list must be blank for this exercise to work, as the fake nodes
we created in Chapter 11 do not have accompanying client keys. If
you see nodes listed, start and stop the chef-zero server to clear
them out.

Generate a new private/public client key pair for your Development Workstation, which
we call devhost in chef-playground/.chef/knife.rb. Since chef-zero doesn’t check the
contents of the chef-playground/.chef/devhost.pem file, it doesn’t matter if we regenerate
it. However, when we regenerate the client key, it ensures that a matching public key is
stored on Chef Server, which does matter. Run the following command to regenerate
the client key.

$ knife client create devhost --admin --disable-editing --file .chef/devhost.pem
Created client[devhost]

The --admin option lets the client run the APIs behind the knife client show and
knife node commands on other nodes besides its own node. By default, knife client
create displays the client info in an editor to allow tweaking before a client.pem is
generated. In our case, however, the defaults are fine, so we just pass in --disable-
editing. The --file option writes the client.pem out to the specified filename:

chef-vault | 237

Now if you run knife client list, the devhost machine shows up:

$ knife client list
chef-validator
chef-webui
devhost

We also need to associate a node with our client key, so run the following:

$ knife node create devhost --disable-editing

Now devhost shows up as a node as well. This is what happens when a node is boot‐
strapped—a client key is generated and the node is registered with Chef Server. We are
just simulating this process in chef-zero by hand:

$ knife node list
devhost

We’re going to create a new encrypted data bag for storing root passwords, which will
be managed by chef-vault. Create the directory chef-playground/data_bags/pass‐
words to store the .json file we will be creating next.

Linux/Mac OS X:

$ mkdir -p data_bags/passwords

Windows:

> mkdir data_bags\passwords

Create the file shown in Example 13-7 in chef-playground/data_bags/api_keys/
mysql.json. It stores the MySQL database root user password.

Example 13-7. chefdk/chef-playground/data_bags/passwords/mysql_root.json
{
 "id": "mysql_root",
 "password": "This is a very secure password"
}

chef-vault installs a knife plugin to manage encrypted data bags. It exposes chef-
vault commands via knife vault. Enter in the following command to create an en‐
crypted data bag item with a secret managed by chef-vault:

$ knife vault create passwords mysql_root \
--json data_bags/passwords/mysql_root.json --search "*:*" \
--admins "admin" --mode client

You must specify users or nodes that have valid client keys using the --search and
--admins parameters. We have to use both in this example because we didn’t set up the
admin user to have a valid client key. If you run knife client list, the admin user isn’t
present.

238 | Chapter 13: Data Bags

When you are using Chef Server, you must use the option --mode client.

The command line options for knife vault are a little different than the options for
chef data_bags. See the comprehensive documentation on knife vault command
line options.

The most important takeaway you should get from this example is that chef-vault can
encrypt data only if Chef Server has valid client keys. This can be hard to configure in
a chef-zero setup. What we’ve done so far in this section is just enough to get chef-
vault working with chef-zero in order to demo.

So is our data bag encrypted? Let’s perform a check using knife data bag show, similar
to what we did in the previous section on encrypted data bags:

$ knife data bag show passwords mysql_root
id: mysql_root
password:
 cipher: aes-256-cbc
 encrypted_data: K+PZ4zemMt2Hp7FTgTTHxGa1bWez1RqJbYGUNSJIgLDLu8cBlr9Uuu+gL9hT
 AH9jtIRms9BEjHXVn63SEzHMZQ==

 iv: //KVXQRwdu81zOUXaSAC0Q==

 version: 1

Looks encrypted to us!

Run knife vault show as follows to display the decrypted data bag content:

$ knife vault show passwords mysql_root --mode client
id: mysql_root
password: This is a very secure password

Summary
We covered data bags in this chapter. Data bags are a powerful feature of Chef Server
that let you store global information that can be shared among nodes. We also presented
an overview of how data bag contents can be secured with encrypted data bags. Un‐
fortunately, because encrypted data bags use symmetric key encryption, there is no way
to distribute the shared keys to nodes that need to encrypt the data. We showed how
chef-vault helps address this key distribution issue.

In the next chapter we’ll cover roles. Roles are a great way to capture patterns that exist
across nodes belonging to a single job function.

Summary | 239

https://github.com/Nordstrom/chef-vault/blob/master/KNIFE_EXAMPLES.md

CHAPTER 14

Roles

Roles are a way of classifying the different types of services in your infrastructure, as
shown in Figure 14-1.

Figure 14-1. Roles overview

Roles can be used to represent the types of servers in your infrastructure:

• Load balancer
• Application server
• Database cache
• Database
• Monitoring

241

Although you can add recipes directly to a node’s run list, that’s not how your infra‐
structure works. Think about how you normally refer to servers:

• “It’s a web server.”
• “It’s a database server.”
• “It’s a monitoring server.”

Roles allow you to conveniently encapsulate the run lists and attributes required for a
server to be what you already think it is. Roles make it easy to configure many nodes
identically without repeating yourself each time.

In addition to obvious roles, such as a “web server,” it is common practice to group any
functionality that goes together into a role. The most common example is a base role,
where you include all the recipes that should be run on every node.

Create a Web Server Role
Roles can be created and managed in the same fashion as data bags—there is a directory
under chef-playground in which they are organized. The directory name is roles by
default.

Use the chef-playground directory you created in Chapter 11. Use the same dual com‐
mand prompt setup you used there. Start the chef-zero server on an open port in one
window. We will be using port 9501 in the examples in this chapter:

$ chef-zero --port 9501

Make sure the chef-playground directory is the current working directory:

$ cd chef-playground

Now run knife upload nodes to load up chef-zero with fake node data:

$ knife upload nodes
Created nodes/snowman.json
Created nodes/atwood.json
Created nodes/susu.json

Create a roles directory in chef-playground:

$ mkdir roles

We’re going to create a .json file representing the role data. A basic role has a name:,
description:, and run_list. The role can be used to encapsulate a long list of recipes
into just one alias. Create file chef-playground/roles/webserver.json with the code in
Example 14-1.

242 | Chapter 14: Roles

Example 14-1. chef-playground/roles/webserver.json
{
 "name": "webserver",
 "description": "Web Server",
 "json_class": "Chef::Role",
 "chef_type": "role",
 "run_list": [
 "recipe[motd]",
 "recipe[users]",
 "recipe[apache]"
]
}

Then run knife role from file passing in the webserver.json file. Similar to data bags,
knife role from file assumes webserver.json is located in a subdirectory named
roles, and not in the current directory.

$ knife role from file webserver.json
Updated Role webserver!

Run knife show role as follows to display the details about the webserver role:

$ knife role show webserver
chef_type: role
default_attributes:
description: Web Server
env_run_lists:
json_class: Chef::Role
name: webserver
override_attributes:
run_list:
 recipe[motd]
 recipe[users]
 recipe[apache]

You can reset a node’s run list with the knife node set command. Change the run list
of the snowman node to use the webserver role you just created, using the following
command on Linux/Mac OS X:

$ knife node run_list set snowman "role[webserver]"
snowman:
 run_list: role[webserver]

or, on Windows:

$ knife node run_list set snowman "'role[webserver]'"
snowman:
 run_list: role[webserver]

During the Chef run, the reference to the web server role will be expanded to the entries
in the role’s run list:

Create a Web Server Role | 243

• recipe[motd]
• recipe[users]
• recipe[apache]

Roles are a powerful abstraction that let you think of your infrastructure as arrays of
functionality. It is quite common for a role to contain dozens of recipes. Imagine needing
to assign dozens of recipes to the run list of, say, hundreds of nodes. Roles make this
process much easier.

Attributes and Roles
Roles can contain attributes as well.

Create a .json file to represent a base role. This role will include references to the chef-
client::delete_validation and chef-client::default recipes, both of which we
recommended running on every node in Chapter 10. In this case, we’ll also set an at‐
tribute to tell the chef-client::default recipe to set the init_style to use runit
instead of the default. Create the file chef-playground/roles/base.json with the code pro‐
vided in Example 14-2.

Example 14-2. chef-playground/roles/base.json
{
 "name": "base",
 "description": "Common recipes for all nodes",
 "json_class": "Chef::Role",
 "chef_type": "role",
 "run_list": [
 "recipe[chef-client::delete_validation]",
 "recipe[chef-client]"
],
 "default_attributes": {
 "chef_client": {
 "init_style": "runit"
 }
 }
}

Then run knife role from file passing in the webserver.json file. Similar to data bags,
knife role from file assumes webserver.json is located in a subdirectory named
roles, and not in the current directory:

$ knife role from file base.json
Updated Role base!

When you run knife role show base as follows, notice that the role has attributes set
as well as items in a run list:

244 | Chapter 14: Roles

$ knife role show base
chef_type: role
default_attributes:
 chef_client:
 init_style: runit
description: Common recipes for all nodes
env_run_lists:
json_class: Chef::Role
name: base
override_attributes:
run_list:
 recipe[chef-client::delete_validation]
 recipe[chef-client]

As we discussed in Chapter 8, it is recommended that you restrict your use of attributes
in roles to those of default priority, to make it easier to follow the composition of at‐
tributes when they come from multiple sources.

Because roles can have attributes, they have a place in the attribute hierarchy of prece‐
dence. Figure 14-2 is a modified version of the attribute precedence diagram we showed
you in Figure 8-3 that includes roles. Roles can override attributes defined in recipes or
attribute files, but they have a lower priority than the automatic attributes defined by
ohai. Attribute settings in roles are intended to be global settings that override attributes
set within cookbooks.

Figure 14-2. Roles overview

Roles and Search
Roles can be search items as well. The following example shows how you can search for
a recipe in the run list of a role. Note that you must use the \ character to escape the [
and] characters in the query string:

Roles and Search | 245

$ knife search role "run_list:recipe\[apache\]"
1 items found

chef_type: role
default_attributes:
description: Web Server
env_run_lists:
json_class: Chef::Role
name: webserver
override_attributes:
run_list:
 recipe[motd]
 recipe[users]
 recipe[apache]

Because roles introduce the idea that a list of recipes in a run list can be expanded, there
are two ways to search for recipes in a node’s run list:
knife search node "recipe:<recipe_name>"

When you do not want the search to include the expanded set of recipes within roles

knife search node "recipes:<recipe name>"

When you do want the search to expand role references

Recall that earlier in the chapter we assigned the snowman node to have the webserver
role in its run list. Implicitly, when the role reference is expanded during a Chef run,
the node will run the following recipes in the webserver role’s run_list:

• recipe[motd]
• recipe[users]
• recipe[apache]

However, if you perform a recipe: search for, say, the recipe[apache::config], you
might not get the results you intended:

$ knife search node "recipe:apache"
2 items found

Node Name: atwood
...
Node Name: susu
...

Notice when the reference to "role[webserver]" is expanded, snowman does have
"recipe[apache]" in its run list. But it doesn’t have "recipe[apache]" directly in its
run list if it is not expanded. So, snowman does not show up in the search results because
the recipe search does not expand the node’s run list.

246 | Chapter 14: Roles

Similar to the square bracket characters ([]), the colon (::) charac‐
ters in a cookbook recipe reference must be individually escaped on
a command line with the backslash (\) character: chef-client\:
\:config. This is treated as if it were chef-client::config.

If you want to fully expand all the recipe references in a run list, perform a recipes:
search instead. Then snowman shows up in the search results:

$ knife search node "recipes:apache"
3 items found

Node Name: atwood
...
Node Name: snowman
...
Node Name: susu
...

There are similar search commands with expansion for roles as there are for recipes:
knife search node role:<role_name>

When you do not want the search to include the expanded set of role references

knife search node "roles:<role_name>"

When you do want the search to expand role references

Role Cookbook
Another issue related to the expansion of roles is that when a change gets made to a
role, it gets reflected immediately across your entire infrastructure. Roles are not ver‐
sioned in any way.

This usually has the most impact with run lists. Say, for example, one of your Chef
infrastructure developers decided to remove the recipe[apache] role from the web
server role we have been using in this chapter. We’ll say this developer made the change
because she didn’t want web servers to default to using the Apache web server, but
instead wanted to offer cookbook developers the choice of using the Apache or Nginx
web servers for their apps:

{
 "name": "webserver",
 "description": "Web Server",
 "json_class": "Chef::Role",
 "chef_type": "role",
 "run_list": [
 "recipe[motd]",
 "recipe[users]"

Role Cookbook | 247

]
}

If the webserver role were used widely across your infrastructure, this could have un‐
intended consequences for cookbooks that assumed the old behavior where the
recipe[apache] was included in the role. Or conversely, if developers are careful not
to make changes to the run lists of existing roles, it can result in a proliferation of
differently named roles with similar functions. For example, that Chef developer might
have instead chosen to create two new roles—webserver-apache and webserver-nginx
—to make her intention to complement the existing webserver role more clear.

Because cookbooks are versioned, a pattern of using a role cookbook in lieu of using the
run list feature of roles is one technique many Chef developers use. They still use roles
for common attributes, but the role run list is moved to a cookbook. A recipe can emulate
a role run list easily through the use of the include_recipe command we introduced
in “Include_Recipe” on page 137.

For example, in this case, we could create a webserver cookbook where the default recipe
includes the apache cookbook:

#
Cookbook Name:: webserver
Recipe:: default
#
Copyright (C) 2014
#
#
#

include_recipe "motd"
include_recipe "user"
include_recipe "apache"

Nodes could still include the webserver role as a classification mechanism and for any
shared attributes. It can still be handy to run this command to find all the web servers
on your network:

knife search node role:webserver

chef-zero currently does not seem to index roles for searching, so
the preceding command will not work with the test setup in this
chapter. Instead, you’ll need to use a full Chef Server setup.

In this scenario, the run list of the webserver role would be blank, and instead nodes
would add the cookbook recipe[webserver] to their run list. Cookbooks are versioned,
and with environments, which we’ll introduce in the next chapter, you can ensure that

248 | Chapter 14: Roles

a subset of nodes in your infrastructure is fixed to use specific versions of a cookbook.
This is referred to as version pinning a node (or pinning a node).

Summary
We covered roles in this chapter. Roles provide a way to classify patterns of use in your
infrastructure. Roles can contain attributes and a list of recipes and other roles as a run
list. This allows you to package all the settings for a node configuration into a single role
reference.

In the next and final chapter of this book, we’ll cover environments, which provide a
different code of abstraction—a way to map your organization’s app deployment work‐
flow to a set of server configurations and cookbook versions.

Summary | 249

CHAPTER 15

Environments

Environments are a feature of Chef Server used to model the server configurations
required during each phase of your software development lifecycle, as shown in
Figure 15-1.

Figure 15-1. Environments overview

Environments reflect your patterns and workflow, and can be used to model the life
stages of your application, such as:

• Development
• Testing
• Staging
• Production

Every Chef Server starts out with a single environment, the _default environment.

251

Environments might include attributes necessary for configuring your infrastructure,
such as:

• The URL of a payment service API
• The location of a package repository
• The version of Chef configuration files that should be used

Environments allow for isolating resources on a Chef Server because environments can
contain version constraints, unlike with roles. Environments still have a use even when
you have Test Kitchen at your disposal, because you’ll probably want to do some testing
against servers in your production environment.

Create a Dev Environment
Environments can be created and managed in the same fashion as data bags and roles,
organized in a directory under chef-playground. The directory name is environments
by default.

Use the chef-playground directory you created in Chapter 11. Use the same dual com‐
mand prompt setup you used there. Start the chef-zero server on an open port in one
window. We will be using port 9501 in the examples in this chapter:

$ chef-zero --port 9501

Make sure that the chef-playground directory is the current working directory:

$ cd chef-playground

Create an environments directory in chef-playground:

$ mkdir environments

We’re going to create a .json file representing the new environment. A basic environment
has a name: and description:. Environments can have one or more cookbook con‐
straints as well. The ability to “pin” cookbooks to particular versions is the most useful
feature of environments. Create the file chef-playground/roles/dev.json containing the
code provided in Example 15-1.

Example 15-1. chef-playground/environments/dev.json
{
 "name": "dev",
 "description": "For developers!",
 "cookbook_versions": {
 "apache": "= 0.2.0"
 },
 "json_class": "Chef::Environment",
 "chef_type": "environment"
}

252 | Chapter 15: Environments

There are other options for a version constraint besides “equal to”
(=). Equality is the recommended practice. To learn more about the
other options, refer to http://bit.ly/abt_cookbook_versions.

Run knife environment from file passing in the dev.json file. knife environment
from file assumes dev.json is located in a subdirectory called environments, and not
in the current directory:

$ knife environment from file dev.json
Updated Environment dev

Run knife environment show dev as follows to display the details about the dev
environment:

$ knife environment show dev
chef_type: environment
cookbook_versions:
 apache: = 0.2.0
default_attributes:
description: For developers!
json_class: Chef::Environment
name: dev
override_attributes:

Attributes and Environments
Environments can contain attributes. Let’s experiment with this by creating a .json file
to represent a production environment. This environment will pin production to the
older version of the apache cookbook, the 0.1.0 that is not currently under develop‐
ment. We’ll also make sure that in the production environment, the message of the day
is set to a suitable message of the day for production. Create the file chef-playground/
environments/production.json with the code provided in Example 15-2.

Example 15-2. chef-playground/environments/production.json
{
 "name": "production",
 "description": "For prods!",
 "cookbook_versions": {
 "apache": "= 0.1.0"
 },
 "json_class": "Chef::Environment",
 "chef_type": "environment",
 "override_attributes": {
 "motd": {
 "message": "A production-worthy message of the day"
 }

Attributes and Environments | 253

http://bit.ly/abt_cookbook_versions

 }
}

Then run knife environment from file passing in the production.json file, as follows:

$ knife environment from file production.json
Updated Environment production

knife show environment displays more detailed information about an environment:

$ knife environment show production
chef_type: environment
cookbook_versions:
 apache: = 0.1.0
default_attributes:
description: For prods!
json_class: Chef::Environment
name: production
override_attributes:
 motd:
 message: A production-worthy message of the day

Things get a little more complicated with attribute precedence when environments
come into the picture. Figure 15-2 shows that an environment has a priority less than
a role, but greater than a cookbook recipe or attribute file.

Figure 15-2. Environment precedence

Because an environment can override and pin specific cookbook versions, it seems more
reasonable that environments should have a higher priority than the default. So in this
particular instance with environments, it does make sense to use override_at
tributes instead of default_attributes for any environment attributes.

254 | Chapter 15: Environments

Putting All the Pieces Together
Let’s go through a complete example using the apache cookbook from Chapter 7, mak‐
ing use of environments and roles as you would in a production Chef setup.

Simulate a Production Environment
Create a directory called chef-zero. This will be structured similar to chef-repo in Chap‐
ter 9 and chef-playground, with cookbooks, environments, and roles as subdirectories.
Once you create the directory, make it the current working directory as follows:

$ mkdir chef-zero
$ cd chef-zero

Create a chef-zero/environments subdirectory to contain our environment definitions
in the JSON file format, and make it the current working directory:

$ mkdir environments
$ cd environments

Let’s say our apache cookbook is ready to go and we are making use of attributes, en‐
vironments, and roles in our production environment. First, let’s simulate the produc‐
tion environment with Test Kitchen.

Create an environment definition in chef-zero/environments as shown in
Example 15-3. This will represent a production environment, like we covered earlier
in this chapter. There is also an attribute set for node['motd']['message'] as an at‐
tribute with override precedence.

Example 15-3. chefdk/chef-zero/environments/production.json
{
 "name": "production",
 "description": "For prods!",
 "cookbook_versions": {
 "apache": "= 0.1.0"
 },
 "json_class": "Chef::Environment",
 "chef_type": "environment",
 "override_attributes": {
 "motd": {
 "message": "A production-worthy message of the day"
 }
 }
}

Our production environment uses roles. Create a directory parallel to environments
called roles, and make it the current working directory, as follows:

Putting All the Pieces Together | 255

$ cd ..
$ mkdir roles
$ cd roles

In our production environment, we use a webserver role just like we covered in Chap‐
ter 14 to denote nodes that are web servers. Create the file chef-zero/roles/webserv‐
er.json as shown in Example 15-4. It contains the apache directory in its run list and the
attribute node['apache']['port'] set at the default attribute precedence. We’ll be us‐
ing this attribute to show how we can change the behavior of the cookbook depending
on whether the node is in production.

Example 15-4. chefdk/chef-zero/roles/webserver.json
{
 "name": "webserver",
 "description": "Web Server",
 "json_class": "Chef::Role",
 "chef_type": "role",
 "default_attributes": {
 "apache": {
 "port": 80
 }
 },
 "run_list": [
 "recipe[apache]"
]
}

Create a directory called cookbooks, parallel to the others you have created so far in this
chapter, and make it the current working directory:

$ cd ..
$ mkdir cookbooks
$ cd cookbooks

So far, your chef-zero directory should resemble the following structure:

chef-zero
 ├── cookbooks
 ├── environments
 │ └── production.json
 └── roles
 └── webserver.json

We’ll be recreating a version of the apache cookbook for this chapter, with a few addi‐
tions. Create an apache cookbook in the cookbooks subdirectory by using chef gener
ate cookbook or knife cookbook create, as per your Chef development tool setup.

Chef Development Kit:

$ chef generate cookbook apache
$ cd apache

256 | Chapter 15: Environments

Chef Client:

$ knife cookbook create apache --cookbook-path .
$ cd apache
$ kitchen init --create-gemfile
$ bundle install

Create a .kitchen.yml file as shown in Example 15-5. There’s a lot more going on in this
version than we have seen in previous chapters.

For this example, we must use the chef_zero provisioner because we are making use
of Chef Server features, so make sure that is being set in the provisioner: stanza of
the .kitchen.yml. We need Test Kitchen to spin up a Chef Zero instance for us.

Also in the provisioner: stanza, we tell Test Kitchen where the roles and environ‐
ments directories are relative to the location of the .kitchen.yml:

provisioner:
 name: chef_zero
 environments_path: ../../environments
 roles_path: ../../.roles

Don’t miss that we are setting the Test Kitchen suite name to be prod in the suites:
stanza. We’re using a special suite name in this chapter because eventually there are
going to be two suites, one for each environment, and we need a way of telling them
apart. The suite for production will have the suite name prod.

We’re also introducing some new syntax in the suites: stanza. We set the environment
for our sandbox node in its /etc/chef/client.rb, like so:

suites:
 - name: prod
 provisioner:
 client_rb:
 environment: production
 ...

Nodes can be a member of only one environment at a time. The environment is a setting
in the /etc/chef/client.rb file. If this is not set, a node uses the default environment named
_default.

Outside of this simulated setup, you would use the chef-client::config recipe to
change the value of the environment setting in /etc/chef/client.rb, using the following
node attribute, similar to how we set ssl_verify_mode in Chapter 10:

node.default['chef_client']['config']['environment'] = 'production'

We also show how a private_network IP address can be set in the suites: stanza
instead of the provisioner: stanza:

suites:
 - name: prod

Putting All the Pieces Together | 257

 ...
 driver:
 network:
 - ["private_network", {ip: "192.168.33.15"}]

When a value is set in the provisioner: stanza in Test Kitchen, the values are inherited
by all the items in the suites: stanza. In this case, we’re going to want our production
and dev sandbox environments to have different IP addresses, so we move the pri
vate_network setting to be under suites.

Example 15-5. chefdk/chef-zero/cookbooks/apache/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_zero
 environments_path: ../../environments
 roles_path: ../../.roles

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65

suites:
 - name: prod
 provisioner:
 client_rb:
 environment: production
 driver:
 network:
 - ["private_network", {ip: "192.168.33.15"}]
 run_list:
 - role[webmaster]
 attributes:

Check the syntax of your .kitchen.yml with kitchen list. The output should resemble
the following:

$ kitchen list
Instance Driver Provisioner Last Action
prod-centos65 Vagrant ChefZero <Not Created>

Edit apache/metadata.rb, filling in the maintainer, maintainer_email, and license.
We filled in ours like in Example 15-6.

Example 15-6. chefdk/chef-zero/cookbooks/apache/metadata.rb
name 'apache'
maintainer 'Mischa Taylor'

258 | Chapter 15: Environments

maintainer_email 'mischa@misheska.com'
license 'MIT'
description 'Installs/Configures apache'
long_description 'Installs/Configures apache'
version '0.1.0'

Because we will be using attributes in this version of the apache cookbook, create a
default.rb attributes file.

Chef Development Kit:

$ chef generate attribute default

Chef Client:

$ touch attributes/default.rb

Provide default settings for all the attributes we’re going to be using in our cookbook
by creating attributes/default.rb as shown in Example 15-7. In order to test attribute
precedence, we’re going to set the default values for node['apache']['port'] and
node['motd']['message'] to something different than what is being set in the role and
in the environment we are using. We also moved the root location for our index.html
file to an attribute.

Example 15-7. chefdk/chef-zero/apache/attributes/default.rb
default['apache']['document_root'] = '/var/www/html'
default['apache']['port'] = 3333
default['motd']['message'] = 'Default message'

Create the recipe file recipes/default.rb as shown in Example 15-8. Most of this recipe
code should look familiar.

We are adding a new template resource to create a custom.conf file on the sandbox
node, along with an accompanying directory resource to create the required directory
on the node. custom.conf is an optional file used to configure apache web server settings.
In this file we’re going to set the default listening port and the document root.

We are introducing an alternative template resource syntax:

template '/etc/httpd/conf.d/custom.conf' do
 ...
 variables(
 :document_root => node['apache']['document_root'],
 :port => node['apache']['port']
)
 ...
end

We covered the use of notifies in Chapter 9.

Putting All the Pieces Together | 259

You can pass a hash of variables to be used when the template file is evaluated using the
variables() attribute. This is a way to pass local instance variables in a recipe to a
template, or to use shorter, more memorable variable names in the template file.

Example 15-8. chefdk/chef-zero/apache/recipes/default.rb
#
Cookbook Name:: apache
Recipe:: default
#
Copyright (C) 2014
#
#
#

package 'httpd'

service 'httpd' do
 action [:enable, :start]
end

Add a template for Apache virtual host configuration
template '/etc/httpd/conf.d/custom.conf' do
 source 'custom.erb'
 mode '0644'
 variables(
 :document_root => node['apache']['document_root'],
 :port => node['apache']['port']
)
 notifies :restart, 'service[httpd]'
end

document_root = node['apache']['document_root']

Add a directory resource to create the document_root
directory document_root do
 mode '0755'
 recursive true
end

template "#{document_root}/index.html" do
 source 'index.html.erb'
 mode '0644'
 variables(
 :message => node['motd']['message'],
 :port => node['apache']['port']
)
end

Generate the template file templates/default/index.html.erb, using the appropriate com‐
mand line for your Chef development setup.

260 | Chapter 15: Environments

Chef Development Kit:

$ chef generate template index.html

Chef Client - Linux/Mac OS X:

$ touch templates/default/index.html.erb

Chef Client - Windows:

$ touch templates\default\index.html.erb

Create the file templates/default/index.html.erb as shown in Example 15-9. We are using
the short variable instance forms we defined in the variables() attribute of the template
resource. Also, for some variety, we left one of them as the standard form: node["ipad
dress"]. You can mix and match these forms as you like.

Example 15-9. chefdk/chef-zero/apache/templates/default/index.hmtl.erb
<html>
 <body>
 <h1><%= @message %></h1>
 <%= node["ipaddress"] %>:<%= @port %>
 </body>
</html>

Generate one more template file, templates/default/custom.erb, which will be used as an
apache configuration file.

Chef Development Kit:

$ chef generate template custom

Chef Client - Linux/Mac OS X:

$ touch templates/default/custom.erb

Chef Client - Windows:

$ touch templates\default\custom.erb

Create templates/default/custom.erb as shown in Example 15-10. We’re using this op‐
tional apache configuration file to set the port the server is listening on via the Lis
ten setting and the DocumentRoot.

We will explain the if syntax in the template in more detail in Chapter 16. In short for
now, you can place conditional logic in templates when it is enclosed by <% %> (vs. <%=
%> when you want to evaluate a string). Also, if the closing tag has a minus sign in it,
such as -%>, the line is removed from the resultant template output when it is evaluated.
Therefore, in Example 15-10, these three lines are processed when the template file is
evaluated: <% if @port != 80 -%>, Listen <%= @port %>, and <% end -%>. When
the evaluated output is written to the resultant template file, it becomes just one line,
because there are -%> symbols on the first and the third lines: Listen <%= @port %>.

Putting All the Pieces Together | 261

Further, the single line with Listen <%= @port %> is only written to the resultant tem‐
plate file if the conditional logic evaluates to a port number besides 80.

We need this conditional logic in the template because the Listen line is required in
the .conf file when any port besides 80 is used. If we left out the conditional, we’d get an
error configuring the website if it evaluates to port 80.

Example 15-10. chefdk/chef-zero/apache/templates/default/custom.erb
<% if @port != 80 -%>
 Listen <%= @port %>
<% end -%>

<VirtualHost *:<%= @port %>>
 ServerAdmin webmaster@localhost

 DocumentRoot <%= @document_root %>
 <Directory />
 Options FollowSymLinks
 AllowOverride None
 </Directory>
 <Directory <%= @document_root %>>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>
</VirtualHost>

This line is omitted from the resultant template file.
Only this line is written to the resultant template file.
This line is omitted from the resultant template file.

Run kitchen converge to deploy your cookbook to the sandbox node using the pro
duction environment:

$ kitchen converge prod-centos65

If all goes well, you should be able to view the production website on the sandbox node
at http://192.168.33.15 on the default web port 80—it should resemble Figure 15-3. The
port 80 setting in the role overrides the default attribute set in the apache cookbook.
Also, the message attribute set in the environment takes precedence.

262 | Chapter 15: Environments

Figure 15-3. Production web server

Simulate a Development Environment
Let’s say we want to start a new development cycle for our apache cookbook, adding
some new requested functionality. For the purposes of this chapter, we don’t care what
the enhancements are, we just want our new cookbook development not to interfere
with the stable 0.1.0 version we already have in production. We will perform our de‐
velopment on a node allocated to an environment called dev.

First, before doing anything else, increment the current cookbook version 0.1.0 to the
next minor version number 0.2.0. We recommend that you follow semantic version‐
ing guidelines when you version your cookbooks, incrementing the second digit when
there are new changes that won’t break existing functionality. This is the intent with
these hypothetical changes we might make to the apache cookbook.

Example 15-11. chefdk/chef-zero/cookbooks/apache/metadata.rb
name 'apache'
maintainer 'Mischa Taylor'
maintainer_email 'mischa@misheska.com'
license 'MIT'
description 'Installs/Configures apache'
long_description 'Installs/Configures apache'
version '0.2.0'

If you try to deploy this new cookbook to the production node, you should get an error
saying could not satisfy version constraints. Now we know that our production envi‐
ronment is enforcing the policy we set to pin the apache cookbook to version 0.1.0.
When we tried to deploy version 0.2.0, we got an error:

$ kitchen converge prod-centos65
...
 Missing Cookbooks:

Putting All the Pieces Together | 263

http://semver.org
http://semver.org

 Could not satisfy version constraints for: apache
...
Chef Client failed. 0 resources updated in 1.626076356 seconds
 [2014-08-22T17:59:26-07:00] ERROR: 412 "Precondition Failed "
 [2014-08-22T17:59:26-07:00] FATAL: Chef::Exceptions::ChildConvergeError:
 Chef run process exited unsuccessfully (exit code 1)
>>>>>> Converge failed on instance <prod-centos65>.
>>>>>> Please see .kitchen/logs/prod-centos65.log for more
details
>>>>>> ------Exception-------
>>>>>> Class: Kitchen::ActionFailed
>>>>>> Message: SSH exited (1) for command: [sudo -E
chef-client -z --config /tmp/kitchen/client.rb --log_level info
--chef-zero-port 8889 --json-attributes /tmp/kitchen/dna.json]
>>>>>> ----------------------

Add a new environment definition to chef-zero/environments as shown in
Example 15-12. We’ll pin the environment to use the latest cookbook version 0.2.0.
Also, set the node['apache']['port'] and node['motd']['message'] to use
developer-specific overrides.

Example 15-12. chefdk/chef-zero/environments/dev.json
{
 "name": "dev",
 "description": "For developers!",
 "cookbook_versions": {
 "apache": "= 0.2.0"
 },
 "json_class": "Chef::Environment",
 "chef_type": "environment",
 "override_attributes": {
 "apache": {
 "port": 8080
 },
 "motd": {
 "message": "Developers, developers, developers!"
 }
 }
}

Add a new dev suite to chef-zero/cookbooks/apache/.kitchen.yml as shown in
Example 15-13. It’s in the same format as our prod instance—it just uses the dev envi‐
ronment and the IP address 192.168.33.16.

Example 15-13. chefdk/chef-zero/cookbooks/apache/.kitchen.yml

driver:
 name: vagrant

provisioner:

264 | Chapter 15: Environments

 name: chef_zero
 environments_path: ../../environments
 roles_path: ../../.roles

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65

suites:
 - name: prod
 provisioner:
 client_rb:
 environment: production
 driver:
 network:
 - ["private_network", {ip: "192.168.33.15"}]
 run_list:
 - role[webmaster]
 attributes:

 - name: dev
 provisioner:
 client_rb:
 environment: dev
 driver:
 network:
 - ["private_network", {ip: "192.168.33.16"}]
 run_list:
 - role[webmaster]
 attributes:

Run kitchen list to check your .kitchen.yml syntax. Now you should see two instances,
like so:

$ kitchen list
Instance Driver Provisioner Last Action
prod-centos65 Vagrant ChefZero Converged
dev-centos65 Vagrant ChefZero <Not Created>

Run kitchen converge against the dev-centos65 instance, as follows:

$ kitchen converge dev-centos65

If all goes well, you should be able to view the development website on the sandbox
node at http://192.168.33.16:8080—it should resemble Figure 15-4. The port 8080 set‐
ting in the environment overrides the default attribute set in the apache cookbook and
in the role. Also, the message attribute set in the environment takes precedence.

Putting All the Pieces Together | 265

Figure 15-4. Development web server

Run kitchen destroy with no parameters to destroy the virtual machines associated
with both of the sandbox instances and to release all resources used:

$ kitchen destroy dev-centos65
-----> Starting Kitchen (v1.2.2.dev)
-----> Destroying <prod-centos65>...
 ==> default: Forcing shutdown of VM...
 ==> default: Destroying VM and associated drives...
 Vagrant instance <prod-centos65> destroyed.
 Finished destroying <prod-centos65> (0m3.00s).
-----> Destroying <dev-centos65>...
 ==> default: Forcing shutdown of VM...
 ==> default: Destroying VM and associated drives...
 Vagrant instance <dev-centos65> destroyed.
 Finished destroying <dev-centos65> (0m3.00s).
-----> Kitchen is finished. (0m6.49s)

Summary
In this chapter we have covered environments and how they provide the ability to fix
settings to match the different stages of your deployment workflow. We also walked you
through a realistic example that made use of both environments and roles to change
cookbook behavior. You can use environments to match the promotion model you use
as your Chef code travels from development to production.

In the next, and final, chapter of this book, we’re going to show you how to test your
automation code.

266 | Chapter 15: Environments

CHAPTER 16

Testing

In this final chapter of the book, we will cover how to test your Chef automation code.
It is important to perform testing and verification steps before deploying your Chef code
to production to ensure it works as intended.

In nearly all the exercises in this book, we’ve taken care to add sections highlighting how
to manually verify that your Chef code is working properly. In this chapter, we’ll show
you how to automate this process.

Testing Rationale
Using a configuration management tool like Chef gets you 50% of the way there in
automating testing and verification. Because Chef automates infrastructure in a repeat‐
able manner, it inherently makes apps running in these environments more testable.
This is why we introduced Test Kitchen so early in the book, in Chapter 5, so that you
could see this in action. Throughout the book, you’ve deployed your Chef code to a local
development sandbox environment. Using Test Kitchen should give you confidence
that if you deployed the same code to a production Chef environment, it will behave in
the same manner.

The other 50% of the testing rationale, besides using Chef in the first place, is to be
strategic when testing and deploying automation code. Just as it is best to introduce
change to application code in small batches, it is also best to introduce change to your
infrastructure in small batches. As Figure 16-1 shows, you should work in short bursts,
performing a short build-test-deploy cycle. This approach can help ensure that enough
testing gets done to result in an infrastructure and application of high quality.

267

Figure 16-1. Using short build→test→deploy cycles

It’s harder to estimate when long, drawn-out development cycles will complete than
shorter “baby step” development increments as advocated in Figure 16-1. As Figure 16-2
shows, what almost inevitably happens with long, drawn-out development cycles is that
testing is done at the last minute and it ultimately takes longer to deliver a large feature
than intended. At the same time, the shorter testing period sacrifices quality, and this
can lead to the “throw it over the wall to operations” scenario where applications work
fine in development but don’t work in production. Configuration management tools
like Chef try to address this problem.

Figure 16-2. Testing crunches in lengthy development projects

Further, there is a monetary cost associated with finding and fixing bugs in your software
and infrastructure code, and that cost goes up the further out in the development cycle
you discover issues. Figure 16-3 shows the relative cost of fixing a software bug as de‐
velopment progresses. Your infrastructure code is no different than application code in
this respect:

• Requirements
• Design
• Coding

268 | Chapter 16: Testing

• Development testing
• Acceptance testing
• Operations/production

Figure 16-3. Bugfix costs as a function of the development stage

Finding and fixing issues during the requirements and design phase is not very expen‐
sive. However, the cost goes up the further out in the development lifecycle you go.
When you wait to find bugs after they have been coded, the costs are 20 times to 50
times greater than if you had caught them earlier. During the production phase, the cost
is 150 times greater.

This graphic serves as a good reminder of how you should always approach a Chef
coding project:

1. Code right the first time, because it costs a lot more to fix things later.
2. Find bugs and issues as early as possible, ideally before they ever get in, or at least

as close to the time of coding as possible.
3. Make changes in small batches—the smaller the change, the less likely you are to

introduce a lot of new defects. It’s also easier to test in small batches.

Testing Rationale | 269

Chef includes testing tools that support this approach. As Figure 16-4 shows, Chef
provides multiple testing tools specialized to give you feedback on issues with your code
at the earliest possible time during the cookbook authoring process.

Figure 16-4. Chef’s testing tools for every phase of development

There are multiple tools because each is tailored to run in a particular cookbook au‐
thoring phase. Following is a brief overview of each tool and when you use it:

• In your text editor when you type:
— Foodcritic analyzes your Chef coding style.

• Before you deploy to a test node:
— ChefSpec helps you document and organize your code.

• After you deploy to a test node:
— Serverspec verifies that a cookbook behaves as intended.

In this chapter, we use the terms test and example interchangeably.

For those using Chef Client, you will need to install some additional gems to support
testing. Run the following to install the required tools for this chapter:

$ sudo gem install foodcritic --no-ri --no-rdoc
$ sudo gem install chefspec --no-ri --no-rdoc

If you’re using the Chef Development Kit, you’re fine, these Ruby gems have already
been installed for you.

270 | Chapter 16: Testing

Revisiting the Apache Cookbook
For people new to automated testing, Serverspec is the most easily understood tool, so
we’ll start with it first. We will test it by revisiting a cookbook we created in Chapter 7.
We’ll be adding tests to this cookbook in this chapter.

We are covering Serverspec v2 syntax.

Generate a cookbook called apache-test.

Chef Development Kit:

$ chef generate cookbook apache-test
$ cd apache-test

Chef Client:

$ knife cookbook create apache-test --cookbook-path .
$ cd apache-test
$ kitchen init --create-gemfile
$ bundle install

Edit the .kitchen.yml as shown in Example 16-1. Use the chef_zero provisioner and our
favorite basebox image. Additionally, configure a private_network with an IP address
of 192.168.33.38 so you can access the website from your host development worksta‐
tion like you did in Chapter 7.

Example 16-1. chefdk/apache-test/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_zero

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65
 network:
 - ["private_network", {ip: "192.168.33.38"}]

suites:
 - name: default
 run_list:

Revisiting the Apache Cookbook | 271

 - recipe[apache-test::default]
 attributes:

Make sure there are no syntax errors in your .kitchen.yml by running kitchen
converge:

$ kitchen converge

Create a default recipe with the same code we used in Chapter 7.

Example 16-2. chefdk/apache-test/recipes/default.rb
#
Cookbook Name:: apache-test
Recipe:: default
#
Copyright (C) 2014
#
#
#

package "httpd"

service "httpd" do
 action [:enable, :start]
end

template "/var/www/html/index.html" do
 source 'index.html.erb'
 mode '0644'
end

Create an ERB template for the index.html file.

Chef Development Kit:

$ chef generate template index.html

Chef Client:

$ touch templates/default/index.html.erb

Let’s do a little something new with the index.html.erb template. In “Introducing the
Template Resource” on page 124 we learned that the ERB template processor looks for
tags such as <%= %> in .erb files, evaluates the expression within the tag, and returns a
string as output:

This site was set up by <%= node['hostname'] %>

If the tag does not have an equal sign, it is evaluated as a scriptlet instead of a string.
Within Chef templates, this mechanism is used to add conditional logic. For example,
take a close look at this ERB template:

272 | Chapter 16: Testing

<% for @interface in node['network']['interfaces'].keys %>
 * <%= @interface %>
<% end %>

Pay close attention to where <% %> is used and where <%= %> is used.

On my test node, which has three network interfaces—lo, eth0, and eth1 —the scriptlet
will render the following output:

* lo
* eth0
* eth1

The lines in the ERB template without an equal sign <% %> are evaluated as scriptlets;
the expression is evaluated but not rendered in the output file as a string. Then we use
the ERB tag with an equals sign <%= %> to print out a line in the resulting output each
time we run through the conditional logic.

In order to determine that node['network']['interfaces'] was the
correct variable syntax, we inspected the output of ohai, looking for
the values that we wanted to display.

In your cookbook, edit index.html.erb as shown in Example 16-3. We’ll use a variant of
the preceding logic that prints out each interface name on the node and its IP address,
using more idiomatic Ruby and some bare-bones HTML.

Example 16-3. chefdk/apache-test/templates/default/index.hmtl.erb
<html>
<body>
<pre><code>
This site was set up by <%= node['hostname'] %>
My network addresses are:
<% node['network']['interfaces'].keys.each do |iface_name| %>
 * <%= iface_name %>:
 <%= node['network']['interfaces'][iface_name]['addresses'].keys[1] %>
<% end %>
</code></pre>
</body>
</html>

Revisiting the Apache Cookbook | 273

This is admittedly horrible HTML! But it will render readable out‐
put, which is our only goal. Thankfully, this is a book on Chef, not
HTML.

Perform a final kitchen converge to ensure there are no syntax errors in your code:

$ kitchen converge

Verify that the website functions as intended by visiting it at 192.168.33.38. It should
render as shown in Figure 16-5.

Figure 16-5. Your apache site on 192.168.33.38

Test Automation with Serverspec
In the last section, we verified that our cookbook worked by running kitchen con
verge and verifying that the website worked by checking it manually. Let’s automate
our website verification process by writing some tests in Serverspec and running the
tests with Test Kitchen.

Write Your First Serverspec Test
By default, Test kitchen will look in the test/integration subdirectory for test-related files.
Serverspec looks for its own files a few more directory levels below test/integration. First
there needs to be a directory name underneath test/integration that matches the suite
name:

<cookbook_root>
└── test
 └── integration
 └── <suite_name>

274 | Chapter 16: Testing

As Figure 16-6 shows, the name of the suite can be found in the suites: stanza of
the .kitchen.yml. default is the suite name that is initially generated. Although not
covered in this book, you can use the suite capability of Test Kitchen to run sets of tests
with different run lists and attributes, perhaps exercising conditional functionality in
your cookbook.

Figure 16-6. Finding the suite name in the .kitchen.yml

In our case, the suite name is default, so create a directory for that now under the
apache-test cookbook root.

Linux/Mac OS X:

$ mkdir -p test/integration/default

Windows:

> mkdir test\integration\default

Further, we need to create a directory underneath test/integration/default to tell test
kitchen that we want to use the serverspec test plugin. Rather than specifying this in
the .kitchen.yml file, Test Kitchen infers this from the directory structure underneath
test/integration. Create the test/integration/default/serverspec directory now.

Linux/Mac OS X:

$ mkdir -p test/integration/default/serverspec

Windows:

$ mkdir test\integration\default\serverspec

Test Automation with Serverspec | 275

By convention, Serverspec expects files containing test code to end in the suffix
spec.rb. Create the file default_spec.rb in the test/integration/default/serverspec subdir‐
ectory of your cookbook, as shown in Example 16-4.

Example 16-4. chefdk/apache-test/test/integration/default/serverspec/default_spec.rb
require 'serverspec'

set :backend, :exec

describe 'web site' do
 it 'responds on port 80' do
 expect(port 80).to be_listening 'tcp'
 end
end

There are three major components to the spec.rb file, which we’ve labeled 1, 2, and 3:

require 'serverspec'

set :backend, :exec

describe 'web site' do
 it 'responds on port 80' do
 expect(port 80).to be_listening 'tcp'
 end
end

The require statement is used to load the gem library for serverspec, so we
can reference Serverspec classes and methods, such as the set method.
The set statement lets us configure how serverspec runs. In this case, we set
the :backend property to :exec to tell serverspec that the test code will be
running on the same machine as where it is being evaluated.
Tests are written using the RSpec DSL using describe and it statements. In this
case, we’re using the RSpec DSL to write a test that checks to see if our website
is listening on port 80 using the TCP protocol (the standard port/protocol for
an HTTP website).

We’ll go over the RSpec DSL and test syntax in more detail in “RSpec DSL Syntax” on
page 279. For now, just accept that this is the syntax to specify a test that checks to see if
something is listening on port 80.

In order to run this test code, you first need to make sure all the necessary gem files are
loaded on the test node. We do that with the kitchen setup command. Go ahead and
run kitchen setup now:

$ kitchen setup
-----> Starting Kitchen (v1.2.1)
-----> Setting up <default-centos65>...

276 | Chapter 16: Testing

Fetching: thor-0.19.0.gem (100%)
Fetching: busser-0.6.2.gem (100%)
 Successfully installed thor-0.19.0
 Successfully installed busser-0.6.2
 2 gems installed
-----> Setting up Busser
 Creating BUSSER_ROOT in /tmp/busser
 Creating busser binstub
 Plugin serverspec installed (version 0.4.0)
-----> Running postinstall for serverspec plugin
 Finished setting up <default-centos65> (0m14.02s).
-----> Kitchen is finished. (0m14.64s)

When the kitchen setup command runs, it inspects the directory structure in the test/
integration/<suite>/<plugin> subfolder on your development host. Test Kitchen will
then load any plugins required for testing in your sandbox instance as indicated by the
<plugin> directory name. Because we created the directory subfolder test/integration/
default/serverspec, Test Kitchen makes sure that the test node has all the necessary li‐
braries and gems for running serverspec tests.

Once the test node has all the appropriate test libraries, you can run your tests using the
kitchen verify command. Do that now. Barring any errors in your code syntax, the
output should successfully indicate that the website is running and responding on
port 80:

$ kitchen verify
-----> Starting Kitchen (v1.2.1)
-----> Verifying <default-centos65>...
 Suite path directory /tmp/busser/suites does not exist, skipping.
 Uploading /tmp/busser/suites/serverspec/default_spec.rb (mode=0644)
-----> Running serverspec test suite
 /opt/chef/embedded/bin/ruby -I/tmp/busser/suites/serverspec
 -I/tmp/busser/gems/gems/rspec-support-3.1.2/lib:/tmp/busser/gems/gems/
 rspec-core-3.1.7/lib /opt/chef/embedded/bin/rspec --pattern /tmp/busser
 /suites/serverspec/**/*_spec.rb --color --format documentation
 --default-path /tmp/busser/suites/serverspec

 web site
 responds on port 80

 Finished in 0.04131 seconds (files took 0.20083 seconds to load)
 1 example, 0 failures
 Finished verifying <default-centos65> (0m0.90s).
-----> Kitchen is finished. (0m1.36s)

You can use these RSpec DSL test statements to express checks in code that you would
do manually to verify that your cookbook is working.

However, did this test really do anything? Let’s verify this by temporarily disabling the
website on the test node and running the test code again.

Test Automation with Serverspec | 277

Log in to the test node with kitchen login, stop the web server with service httpd
stop, and exit back out to your host development workstation command prompt, as
shown in the following code block:

$ kitchen login
Last login: Mon Aug 11 21:01:36 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@default-centos65 ~]$ sudo service httpd stop
Stopping httpd: [OK]
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

Run your test again using kitchen verify (you only need to run kitchen setup once
to initialize the configuration on the test node). This time, it should report that the test
failed, which is exactly what should happen:

$ kitchen verify
-----> Starting Kitchen (v1.2.1)
-----> Verifying <default-centos65>...
 Removing /tmp/busser/suites/serverspec
 Uploading /tmp/busser/suites/serverspec/default_spec.rb (mode=0644)
-----> Running serverspec test suite
 /opt/chef/embedded/bin/ruby -I/tmp/busser/suites/serverspec
 -I/tmp/busser/gems/gems/rspec-support-3.1.2/lib:/tmp/busser/gems/gems
 /rspec-core-3.1.7/lib /opt/chef/embedded/bin/rspec --pattern /tmp/busser
 /suites/serverspec/**/*_spec.rb --color --format documentation
 --default-path /tmp/busser/suites/serverspec

 web site
 responds on port 80 (FAILED - 1)

 Failures:

 1) web site responds on port 80
 Failure/Error: expect(port 80).to be_listening 'tcp'
 expected Port "80" to be listening "tcp"
 /bin/sh -c netstat\ -tunl\ \|\ grep\ --\ :80

 # /tmp/busser/suites/serverspec/default_spec.rb:7:in `block (2
 levels) in <top (required)>'

 Finished in 0.03284 seconds (files took 0.2051 seconds to load)
 1 example, 1 failure
...

So yes, our test is actually performing checks against the live configuration on the test
node.

278 | Chapter 16: Testing

Before we finish this section, go ahead and run kitchen converge again to restore the
configuration back to what it should be. During the Chef run, the Chef engine will detect
that the httpd service is not running and start it up again:

$ kitchen converge

Once the web server is restored, run kitchen verify one final time. The test should
pass once again:

$ kitchen verify
-----> Starting Kitchen (v1.2.1)
-----> Setting up <default-centos65>...
-----> Setting up Busser
 Creating BUSSER_ROOT in /tmp/busser
 Creating busser binstub
 Plugin serverspec already installed
 Finished setting up <default-centos65> (0m1.06s).
-----> Verifying <default-centos65>...
 Removing /tmp/busser/suites/serverspec
 Uploading /tmp/busser/suites/serverspec/default_spec.rb (mode=0644)
-----> Running serverspec test suite
 /opt/chef/embedded/bin/ruby -I/tmp/busser/suites/serverspec
 -I/tmp/busser/gems/gems/rspec-support-3.1.2/lib:/tmp/busser/gems/gems
 /rspec-core-3.1.7/lib /opt/chef/embedded/bin/rspec --pattern /tmp/busser
 /suites/serverspec/**/*_spec.rb --color --format documentation
 --default-path /tmp/busser/suites/serverspec

 web site
 responds on port 80

 Finished in 0.03131 seconds (files took 0.19949 seconds to load)
 1 example, 0 failures
 Finished verifying <default-centos65> (0m0.90s).
-----> Kitchen is finished. (0m2.66s)

RSpec DSL Syntax
Before we continue learning more about how to use Serverspec, let’s go over some of
the fundamentals of the RSpec DSL syntax, so you know the basics of the Serverspec
test syntax.

The RSpec DSL uses a describe block to contain a group of tests. A describe block has
the following form:

describe '<entity>' do
 <tests here>
end

The purpose of the describe block is to group tests in a meaningful manner and describe
the entity or thing being tested. The description is just a string passed as a parameter to
describe. This string serves as documentation for human beings to read in the test

Test Automation with Serverspec | 279

output. In Example 16-4, we used the following describe form to note that we are
testing our website:

describe 'web site' do
 <tests here>
end

Under the hood, the RSpec DSL creates a Ruby class in which to group
tests.

The actual tests are contained within an it block inside a describe, which needs to be
in the following form:

describe '<entity>' do
 it '<description>'
 <examples here>
 end
end

The it block also accepts a string for documentation on the specific check that will be
performed. For example, in Example 16-4 we supplied the string responds on port
80 to indicate that our test will be checking to see if the website responds on port 80,
the standard HTTP port:

describe 'web site' do
 it 'responds on port 80' do
 ...
 end
end

As of RSpec 3.0, the version of RSpec that ships with current versions of the Chef De‐
velopment Kit and Chef Client, the tests themselves should be written in expect form.
Here’s what expect form looks like:

describe '<entity>' do
 it '<description>'
 expect(resource).to matcher matcher_parameter
 end
end

A resource (also known as a subject or command) is the first argument for an expect
block, and it expresses the “thing” to be tested. Testing frameworks such as Serverspec
and ChefSpec supply custom resource class implementations that perform a wide variety
of checks.

280 | Chapter 16: Testing

A matcher is used to define positive or negative expectations on a resource, via the
expect(…).to and expect(…).not_to forms, respectively. These are also supplied as
custom class implementations in testing frameworks.

In Example 16-4, we used the port resource and the be_listening matcher with the
parameter tcp to check to see if the website is listening on port 80 over TCP:

describe 'web site' do
 it 'responsponds on port 80' do
 expect(port 80).to be_listening 'tcp'
 end
end

How did we know about this port resource and the be_listening matcher? We referred
to the Serverspec test framework documentation listing the resource and matcher
classes it provides. See the Serverspec documentation. As of this writing, click on the
Resource Types link at the top of the page, and you will see links to all the Serverspec
custom resources, as shown in Figure 16-7.

Figure 16-7. Serverspec resource documentation

Test Automation with Serverspec | 281

http://serverspec.org

When you click on a resource, you’ll see more detail on all the matchers available, as
shown in Figure 16-8.

Figure 16-8. Serverspec port resource be_listening matcher documentation

As you can see from this documentation, you’ll also encounter a legacy RSpec form that
was used prior to RSpec 3.0: the should form. The should form was deprecated with
RSpec 3.0, because it can produce unexpected results for some testing code edge cases.
However, some sites, such as the Serverspec documentation site, haven’t been updated.

Figure 16-9 shows how you can map old documentation in should form to expect
form. With should form, the resource is in a describe block around the it clause. With
expect form, this is a parameter passed to expect. You can also see how the matcher form
differs. With should, expectations are expressed as should or should not, for positive and
negative expectations, respectively. With expect, expectations are expressed as the
chained methods .to or .not_to. Finally, in should form, matcher parameters are ex‐

282 | Chapter 16: Testing

https://github.com/rspec/rspec-expectations/blob/master/Should.md

pessed using a chained .with() syntax, whereas in expect form, it is just a parameter to
the matcher.

Figure 16-9. Expect versus should form

More Serverspec Resources
Common code can be moved to a file called spec_helper.rb. We only have one file with
tests in our example, but imagine there are multiple files. Create a spec_helper.rb as
shown in Example 16-5. Notice that the file contains the first two lines from de‐
fault_spec.rb. Those lines would need to be repeated in every file that contains tests.

Example 16-5. chefdk/apache-test/test/integration/default/serverspec/spec_helper.rb
require 'serverspec'

set :backend, :exec

Now that you have a spec_helper.rb file, modify default_spec.rb to use the spec_help
er. Change the require statement and remove the set line, as shown in Example 16-6.

Example 16-6. chefdk/apache-test/test/integration/default/serverspec/default_spec.rb
require 'spec_helper'

describe 'web site' do

Test Automation with Serverspec | 283

 it 'responds on port 80' do
 expect(port 80).to be_listening 'tcp'
 end
end

Rerun kitchen verify. You should notice no net change in the tests. It should still
report that one example succeeded.

$ kitchen verify

Although it is a little silly to use a spec_helper.rb file in this contrived example, we hope
you see how this file could be used to contain any duplicate code between multiple files
with tests.

You can add more than one example with tests in a describe block. Normally, there
will a handful to perhaps a dozen. Let’s add one more example to default_spec.rb.

Although we’ve written one example that checks to see that our website is responding
on port 80, we don’t really know if it is serving up the correct content. Let’s write an
example that inspects the website output to see if it seems OK.

If you look at the Serverspec documentation, you’ll find that there isn’t an obvious
resource that seems to do what we want. In cases like this, Serverspec lets you run
arbitrary command lines via the command resource as shown in Figure 16-10. We’ll use
the command resource to run a curl command to inspect the website output, just as we
did in Chapter 7.

Figure 16-10. Command resource

284 | Chapter 16: Testing

The its method is a way to access attributes of a resource in should
form. To access resource attributes in expect form, use a chained
method with the attribute name, using statements like:

expect(command(...).attribute)

Add a new example to default_spec.rb as shown in Example 16-7. By running the curl
localhost command, you can inspect the HTML output of the website to ensure that
it is working correctly.

Using the stdout attribute of the command resource, we can take a look at the output of
the curl command returned on standard output. It is a convention that programs gen‐
erate their output to two different standard file handles: stdout and stderr, for regular
program output and errors, respectively. This way, other computer programs can open
these file handles and inspect the contents in an automated fashion. Our example does
not care about any errors happening on stderr because getting notified that an error
happened through Ruby exceptions is enough for test code. This error exception gen‐
eration process happens automatically in Serverspec. We only care about the program
output being generated on stdout.

The results of running curl localhost:80 are returned to our example code as a string.
We use a feature of Ruby called a regular expression and the match RSpec matcher to
search for content in the output generated by curl. In Ruby, strings containing regular
expressions are enclosed by forward slash characters (//) instead of the usual single
quotes ('') or double quotes (“”).

A regular expression is a special string format that is used to specify a search string. In
this case, we use a regular expression to search for the string eth1 in the program output.
This seems like a reasonable and simple way to check that our website is working. It isn’t
likely that the string eth1 would appear in the output otherwise. Using the string eth1
also implicitly checks to make sure that the vagrant box had its eth1 adapter enabled,
which is another assumption we’d like to check as well. When there are opportunities
to implicitly check more than one condition in your tests, take the opportunity to
do so.

Example 16-7. chefdk/apache-test/test/integration/default/serverspec/default_spec.rb
require 'spec_helper'

describe 'web site' do
 it 'responds on port 80' do
 expect(port 80).to be_listening 'tcp'
 end

 it 'returns eth1 in the HTML body' do
 expect(command('curl localhost:80').stdout).to match /eth1/

Test Automation with Serverspec | 285

 end
end

There’s a great website for learning more about regular expressions in Ruby. You can
use this website to check regular expressions against test strings. Let’s use it to check
our regular expression.

First, log in to the node with kitchen login and run the same curl localhost:80
command that we will run in our test. The output is shown in the following example.
Copy and paste the program output to your clipboard from your terminal window. Then
exit back out to your host prompt:

$ kitchen login
Last login: Sun Aug 17 10:39:34 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@default-centos65 ~]$ curl localhost:80
<html>
<body>
<pre><code>
This site was set up by default-centos65
My network addresses are:
 * lo: ::1
 * eth0: 10.0.2.15
 * eth1: 192.168.33.38
</code></pre>
</body>
</html>
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

Once you have the program output in your host clipboard, paste it into the test string
field as shown in Figure 16-11.

Once you have a test string, you can enter in any regular expression between the forward
slash characters in the Your regular expression field. Once you enter a regular expression,
the Rubular site will show you if it would match any results in the test string.

Regular expressions containing strings without any special symbols will match the string
itself. For more information about the special characters that can be used, refer to the
Regex quick reference section of the Rubular website, below the editing pane. As
Figure 16-12 shows, if we use the eth1 regular expression and the program output
contains eth1, we’ll get a match. And conversely, if the program output does not contain
eth1, we won’t get a match. Thus, we make a match if the regular expression eth1 against
the program output of curl localhost:80 on stdout is a success condition for our
example.

286 | Chapter 16: Testing

http://rubular.com

Figure 16-11. Copy and paste a test string on Rubular

Run kitchen verify. Notice from the Serverspec report that the second example suc‐
ceeds. Serverspec ran curl localhost:80 on the node and got the expected regular
expression match in the program output:

$ kitchen verify
-----> Starting Kitchen (v1.2.1)
...
-----> Running serverspec test suite
 /opt/chef/embedded/bin/ruby -I/tmp/busser/suites/serverspec
 -I/tmp/busser/gems/gems/rspec-support-3.1.2/lib:/tmp/busser/gems/gems
 /rspec-core-3.1.7/lib /opt/chef/embedded/bin/rspec --pattern /tmp/busser
 /suites/serverspec/**/*_spec.rb --color --format documentation
 --default-path /tmp/busser/suites/serverspec

 web site
 responds on port 80
 returns eth1 in the HTML body

Test Automation with Serverspec | 287

 Finished in 0.03838 seconds (files took 0.20863 seconds to load)
 2 examples, 0 failures
 Finished verifying <default-centos65> (0m1.25s).
-----> Kitchen is finished. (0m1.71s)

Figure 16-12. Inspect match results

Just from these two simple examples, we can be fairly certain about whether the website
our Chef code produces actually works. Further, when an error occurs, we can more
easily determine whether it was a fault in the Apache webserver setup or in our HTML
code because we check these two conditions separately.

There’s one more thing we need to cover before you can go about using all of the Serv‐
erspec resources in your own test code. Many Serverspec resources require Serverspec
to detect information about the test node operating system so it can run the correct
commands for the platform. We’ve taken care so far not to use any commands that need
this extra support.

The package resource is a command that requires Serverspec to detect OS information.
Figure 16-13 shows the documentation from the Serverspec site on the service re‐
source. It can be used to detect whether a package is installed. Behind the scenes, it needs
to know what OS is being used so it can use the rpm -q command on RedHat and variants
or dpkg-query on Ubuntu/Debian to perform this query, for example.

288 | Chapter 16: Testing

Figure 16-13. Serverspec package resource

By default, Serverspec tries to automatically detect the OS, which works for most Linux/
Unix variants. However, on some platforms you’ll need to override the default OS set‐
ting, using the set method.

In particular, you’ll need to add the following line to all your _spec.rb files for test code
that you plan to run on Windows guests, as Serverspec is unable to automatically detect
the Windows OS, as of this writing. The exact set commands needed vary by platform.
Refer to the Serverspec documentation for more information.

Here’s what a _spec.rb file might look like for Windows, which uses the set command
to give Serverspec a cue on what OS is running:

require 'spec_helper'
set :backend, :cmd
set :os, :family => 'windows'

In this book, we’re using a Linux variant as our guest OS, so the Serverspec autodetect
logic should work just fine. Make sure you check this out on your test platform by using
a resource that requires OS platform detection, like the package command.

Let’s add an example to default_spec.rb using the package command. As shown in
Example 16-8, let’s check to see if the httpd package is installed.

Example 16-8. chefdk/apache-test/test/integration/default/serverspec/default_spec.rb
require 'spec_helper'

describe 'web site' do

Test Automation with Serverspec | 289

 it 'responds on port 80' do
 expect(port 80).to be_listening 'tcp'
 end

 it 'returns eth1 in the HTML body' do
 expect(command('curl localhost:80').stdout).to match /eth1/
 end

 it 'has the apache web server installed' do
 expect(package 'httpd').to be_installed
 end
end

Run kitchen verify for Serverspec. The command works fine because Serverspec
automatically detected the OS:

$ kitchen verify
-----> Starting Kitchen (v1.2.1)
...
-----> Running serverspec test suite
 /opt/chef/embedded/bin/ruby -I/tmp/busser/suites/serverspec
 -I/tmp/busser/gems/gems/rspec-support-3.1.2/lib:/tmp/busser/gems/gems
 /rspec-core-3.1.7/lib /opt/chef/embedded/bin/rspec --pattern /tmp/busser
 /suites/serverspec/**/*_spec.rb --color --format documentation
 --default-path /tmp/busser/suites/serverspec

 web site
 responds on port 80
 returns eth1 in the HTML body
 has apache installed

 Finished in 0.03944 seconds
 3 examples, 0 failures
 Finished verifying <default-centos65> (0m1.25s).
-----> Kitchen is finished. (0m1.74s)

If for some reason we need to tell Serverspec that we are specifically running CentOS 6
because of issues with a command, we can add the following set line as shown in
Example 16-9:

set :os, :family => 'redhat', :release => 6

CentOS is in the RedHat family of operating systems. Specifying a :release attribute
is optional.

Example 16-9. chefdk/apache-test/test/integration/default/serverspec/default_spec.rb
require 'spec_helper'

set :os, :family => 'redhat', :release => 6

describe 'web site' do
 it 'responds on port 80' do

290 | Chapter 16: Testing

 expect(port 80).to be_listening 'tcp'
 end

 it 'returns eth1 in the HTML body' do
 expect(command('curl localhost:80').stdout).to match /eth1/
 end

 it 'has the apache web server installed' do
 expect(package 'httpd').to be_installed
 end
end

When you are not interactively coding tests, you probably want to run kitchen
converge, kitchen setup, and so on all in one fell swoop instead of needing to re‐
member all the individual Test Kitchen actions to run tests.

The kitchen test command will run the following commands in sequence:

1. kitchen destroy (if necessary)
2. kitchen create

3. kitchen converge

4. kitchen setup

5. kitchen verify

6. kitchen destroy

You wouldn’t want to use this command locally when you are writing tests, as for some
cookbooks the process of creating a virtual machine and performing an initial converge
can be quite time consuming, and you wouldn’t want the environment automatically
destroyed in the end. But Test Kitchen is a perfect command for a continual integration
environment such as Jenkins. It’s also a good idea to do a final kitchen test run against
a clean setup before committing your Chef code to source control.

Go ahead and run kitchen test now, so you can see it in action. Plus, it will destroy
our test environment. Note that kitchen test runs all five phases automatically
for you:

$ kitchen test
-----> Starting Kitchen (v1.2.1)
-----> Cleaning up any prior instances of <default-centos65>
-----> Destroying <default-centos65>...
...
-----> Testing <default-centos65>
-----> Creating <default-centos65>...
 Bringing machine 'default' up with 'virtualbox' provider...
...
 Vagrant instance <default-centos65> created.

Test Automation with Serverspec | 291

 Finished creating <default-centos65> (0m35.57s).
-----> Converging <default-centos65>...
 Preparing files for transfer
 Resolving cookbook dependencies with Berkshelf 3.1.5...
 Removing non-cookbook files before transfer
-----> Installing Chef Omnibus (true)
...
 Thank you for installing Chef!
 Transferring files to <default-centos65>
 [2014-08-11T18:33:39-07:00] INFO: Starting chef-zero on host localhost,
 port 8889 with repository at repository at /tmp/kitchen
 One version per cookbook

 [2014-08-11T18:33:39-07:00] INFO: Forking chef instance to converge...
 Starting Chef Client, version 11.14.2
 [2014-08-11T18:33:39-07:00] INFO: *** Chef 11.14.2 ***
...
 [2014-08-11T18:33:42-07:00] INFO: Starting Chef Run for default-centos65
...
 Converging 3 resources
...
 [2014-08-11T18:33:56-07:00] INFO: Report handlers complete
 Chef Client finished, 4/4 resources updated in 17.027821539 seconds
 Finished converging <default-centos65> (1m11.46s).
-----> Setting up <default-centos65>...
Fetching: thor-0.19.0.gem (100%)
Fetching: busser-0.6.2.gem (100%)
 Successfully installed thor-0.19.0
 Successfully installed busser-0.6.2
 2 gems installed
-----> Setting up Busser
 Creating BUSSER_ROOT in /tmp/busser
 Creating busser binstub
 Plugin serverspec installed (version 0.2.6)
-----> Running postinstall for serverspec plugin
 Finished setting up <default-centos65> (0m24.61s).
-----> Verifying <default-centos65>...
 Suite path directory /tmp/busser/suites does not exist, skipping.
 Uploading /tmp/busser/suites/serverspec/default_spec.rb (mode=0644)
 Uploading /tmp/busser/suites/serverspec/spec_helper.rb (mode=0644)
-----> Running serverspec test suite
 /opt/chef/embedded/bin/ruby -I/tmp/busser/suites/serverspec
 -I/tmp/busser/gems/gems/rspec-support-3.1.2/lib:/tmp/busser/gems/gems
 /rspec-core-3.1.7/lib /opt/chef/embedded/bin/rspec --pattern /tmp/
 busser/suites/serverspec/**/*_spec.rb --color
 --format documentation --default-path /tmp/busser/suites/serverspec

 web site
 responds on port 80
 returns eth1 in the HTML body
 has the apache web server installed

292 | Chapter 16: Testing

 Finished in 0.03922 seconds
 3 examples, 0 failures
 Finished verifying <default-centos65> (0m1.14s).
-----> Destroying <default-centos65>...
 ==> default: Forcing shutdown of VM...
 ==> default: Destroying VM and associated drives...
 Vagrant instance <default-centos65> destroyed.
 Finished destroying <default-centos65> (0m2.89s).
 Finished testing <default-centos65> (2m19.03s).
-----> Kitchen is finished. (2m19.48s)

For more on Serverspec, the Jenkins community cookbook is chock-full of advanced
Serverspec techniques. It is a great starting point to learn more about how to perform
end-to-end testing of cookbooks.

Test Automation with Foodcritic
Severspec is an invaluable tool for performing end-to-end testing of cookbook func‐
tionality. However, spinning up a sandbox instance and performing a full Chef converge
can take a long time.

Use the power of Test Kitchen and Serverspec judiciously. Other tools can provide more
limited forms of feedback faster. One example of a tool that can provide limited feedback
quickly is Foodcritic.

Foodcritic is designed to be used as you are writing Chef code, and it can even be
integrated into your editor. Foodcritic provides feedback on your Chef coding style. It
does this by performing checks against your code called rules.

You can find all the default rules used by Foodcritic in its documentation, as shown in
Figure 16-14. You’ll need to scroll down a bit on the web page to see them.

You run foodcritic on your development host instead of in a sandbox environment,
so it is fast. Give it a try now. Make sure the root apache-test root cookbook is your
current working directory, and run the following. The results you see might differ de‐
pending on whether you are using the Chef Development Kit or Chef Client.

Chef Development Kit:

$ foodcritic .

Chef Client:

$ foodcritic .
FC008: Generated cookbook metadata needs updating: ./metadata.rb:2
FC008: Generated cookbook metadata needs updating: ./metadata.rb:3

Test Automation with Foodcritic | 293

https://github.com/opscode-coobkooks/jenkins
http://acrmp.github.io/foodcritic/#

Figure 16-14. Foodcritic rules

As of this writing, there is a bug in the version of Foodcritic shipping with Chef Devel‐
opment Kit 0.2.0-2. It should check to see whether the metadata.rb file needs updating,
as shown in Figure 16-15, but it doesn’t currently work with the cookbook output gen‐
erated by chef cookbook generate.

We’re not sure if this rule will be fixed in future versions, if a new rule will be added to
check for the Chef Development Kit version, or something else. So for now, if you are
using the Chef Development Kit, change your metadata.rb file to match the Chef Client-
generated version, as shown in Example 16-10.

Example 16-10. chefdk/apache-test/metadata.rb
name 'apache-test'
maintainer 'YOUR_COMPANY_NAME'
maintainer_email 'YOUR_EMAIL'
license ''
description 'Installs/Configures apache-test'
long_description 'Installs/Configures apache-test'
version '0.1.0'

294 | Chapter 16: Testing

Figure 16-15. Foodcritic in action, telling us that some cookbook metadata needs up‐
dating

After this change, the Chef Development Kit result should match the Chef Client
version.

Chef Development Kit:

$ foodcritic .
FC008: Generated cookbook metadata needs updating: ./metadata.rb:2
FC008: Generated cookbook metadata needs updating: ./metadata.rb:3

As shown in Figure 16-15, when Foodcritic detects an issue in your Chef code, you can
look up more detail on the issue and how it can be fixed. In this case, FC008 indicates
that you should modify the metadata.rb file maintainer and maintainer_email fields
to be something besides the default boilerplate text.

Let’s modify the metadata.rb file appropriately. Example 16-11 shows how we changed
our file.

Example 16-11. chefdk/apache-test/metadata.rb
name 'apache-test'
maintainer 'Mischa Taylor'
maintainer_email 'mischa@misheska.com'
license 'MIT'
description 'Installs/Configures apache-test'
long_description 'Installs/Configures apache-test'
version '0.1.0'

Test Automation with Foodcritic | 295

Run Foodcritic again. It should now report that FC008 is no longer an issue:

$ foodcritic .

Let’s create one more issue with our code. We’ll say that a Chef developer forgot to
commit a README.md file into source control. Simulate this state by renaming the
README.md file. Run the following move command:

$ mv README.md README.md.old

Run Foodcritic as follows and you should see a new issue:

$ foodcritic .
FC011: Missing README in markdown format: ./README.md:1

As you can see from the documentation on FC11, as shown in Figure 16-16, it is im‐
portant to provide a README file in markdown format because Chef Supermarket
expects your cookbooks to have documentation in a README.md file.

Figure 16-16. FC011: Missing README in markdown

Ideally, you would fix this issue by writing some great documentation, but for now, just
move the README.md boilerplate back to its original name:

$ mv README.md.old README.md

Run Foodcritic again, and it should report that FC011 is no longer an issue:

$ foodcritic .

Performing these Foodcritic checks should be a regular part of your Chef cookbook
development cycle. The Foodcritic documentation has more information on how to
integrate Foodcritic with various build tools.

You can even use Foodcritic with many popular text editors, so it can perform Foodcritic
runs while you type or when you save your Chef code.

296 | Chapter 16: Testing

http://acrmp.github.io/foodcritic

You can create your own custom rules to extend the checks performed by Foodcritic.
Etsy has published its set of custom Foodcritic rules online. You can use its custom rules
as an example of how you can write rules more relevant to your environment.

Not all Foodcritic rules are trivial checks to see if you filled in the metadata.rb file or
provided documentation. The Etsy custom Foodcritic rules, for example, check for is‐
sues that have caused outages in their production environment, such as ETSY001, as
shown in Figure 16-17.

Figure 16-17. ETSY001 - Package or yum_package resource used with :upgrade action

Foodcritic can be used to perform vital checks similar to ETSY001, to catch bugs in your
code even before it gets deployed to a testing sandbox environment. A way to start might
be to look through recent help desk incidents where you have identified the root cause
being related to server configuration issues, and encode them as Foodcritic rules. This
is the process Etsy used to develop its custom Foodcritic rule set.

We hope this section on Foodcritic shows you how you can catch bugs earlier in your
Chef development process, closer to the time of coding. Catching issues early saves time
and money.

Although limited in the feedback it can provide, Foodcritic is a great tool for catching
many bugs early. You still need to do some form of end-to-end testing using a tool like
Serverspec, but you shouldn’t have to rely on end-to-end testing exclusively to find
issues.

Test Automation with Foodcritic | 297

https://github.com/etsy/foodcritic-rules

Test Automation with ChefSpec
Another great tool that can help you run tests early in your development cycle is Chef
Spec. You can even use it to catch errors before you code. ChefSpec can be used to
produce runnable documentation. Its primary purpose is to help document and organize
your code.

As a side benefit, ChefSpec tests and checks can uncover bugs when you make changes.
Plus, your Chef code will be improved when it is guided by tests.

Similar to Serverspec, ChefSpec builds on RSpec. ChefSpec uses the RSpec description
form to create runnable documentation. The form for ChefSpec documentation is
slightly different from Serverspec’s, resembling the following:

describe '<recipe_name>' do
 <perform in-memory Chef run>
 <examples here>
end

For example, you would use the following describe block to contain examples per‐
forming tests against the apache-test::default cookbook:

describe 'apache-test::default' do
 ...
end

To perform an in-memory Chef run, you would add the following statements to the
basic describe form, using classes and methods from the chefspec gem. In this ex‐
ample, to test the apache-test::default cookbook, you would use the following code:

require 'chefspec'

describe 'apache::default' do
 chef_run = ChefSpec::Runner.new.converge('apache-test::default')
 <descriptions here>
end

ChefSpec uses an expect form similar to Serverspec’s. There are just different com‐
mands and matchers for ChefSpec. Following is a ChefSpec example that checks to make
sure there is a reference in your Chef code to install the httpd package:

require 'chefspec'

describe 'apache::default' do
 chef_run = ChefSpec::Runner.new.converge('apache-test::default')

 it 'installs apache2' do
 expect(chef_run).to install_package('httpd')
 end
end

298 | Chapter 16: Testing

Keep in mind that the preceding code is just runnable documentation. The expect
statement does not perform an httpd package installation during the in-memory Chef
run. Instead, ChefSpec merely performs the in-memory Chef run to verify the cookbook
syntax; in this case, to ensure that your code instructed Chef to install the package. This
form of documentation-based testing is good enough for well-tested Chef primitives,
such as the package resource.

Commands in ChefSpec are usually the results of an in-memory Chef run. ChefSpec
matchers are documented[ChefSpec matchers] are documented as shown in
Figure 16-18.

Figure 16-18. ChefSpec documentation

If you expand the ChefSpec tree in the index on the left, you’ll see all the ChefSpec
matchers listed, plus detailed examples, as shown in Figure 16-19.

Test Automation with ChefSpec | 299

Figure 16-19. Each ChefSpec matcher has detailed examples

Write Your First ChefSpec Test
Let’s write some ChefSpec code. We’ll use the install_package matcher, as shown in
Figure 16-20.

The default location for ChefSpec tests are in a spec folder underneath your cookbook
root. Make sure that the apache-test root cookbook directory is the current working
directory, and create a spec directory as follows:

$ mkdir spec

300 | Chapter 16: Testing

Figure 16-20. install_package matcher

Create a file called default_spec.rb with the content shown in Example 16-12. Files con‐
taining ChefSpec code by convention are expected to end in the suffix *_spec.rb.

Example 16-12. chefdk/apache-test/spec/default_spec.rb
require 'chefspec'

describe 'apache-test::default' do
 chef_run = ChefSpec::Runner.new.converge('apache-test::default')

 it 'installs apache2' do
 expect(chef_run).to install_package('httpd')
 end
end

Test Automation with ChefSpec | 301

ChefSpec does not require any special chefspec command to run as it just extends
RSpec. In the apache-test cookbook root, run rspec --color as shown in the following
example to perform a ChefSpec run:

$ rspec --color
.

Finished in 0.00042 seconds (files took 1.12 seconds to load)
1 example, 0 failures

When rspec runs, ChefSpec will inspect your Chef code and make sure it uses the
package resource to install the httpd package. If ChefSpec verifies that your code does
this, the test passes, as in the rspec command you just ran.

Lazy Evaluation with Let
We need to introduce one more bit of RSpec syntax: lazy evaluation using the let helper
method, which is part of the RSpec core. Figure 16-21 shows how ChefSpec commonly
uses let helper method to cache the results of the ChefSpec::Runner object.

Figure 16-21. Using ChefSpec with the let helper method

A call to the ChefSpec::Runner is fairly heavyweight. A call to let() delays the evalu‐
ation of the ChefSpec::Runner until when it is first used instead of when it is referenced
in the source—thus the evaluation is “lazy.” Using let() allows RSpec to cache the results
of ChefSpec::Runner when it is used multiple times in the same example.

Further, the let() call permits you to specify the recipe under test only once in your
describe block as documentation. Compare the following Without let and With let
code examples, and notice that the call to ChefSpec::Runner uses a de

scribed_recipe macro to evaluate the recipe name instead of repeating the recipe
string. A small optimization, but a useful one.

302 | Chapter 16: Testing

Without let:

require 'chefspec'

describe 'apache::default' do
 chef_run = ChefSpec::Runner.new.converge('apache-test::default')

 it 'installs apache2' do
 expect(chef_run).to install_package('httpd')
 end
end

With let:

require 'chefspec'

describe 'apache::default' do
 let (:chef_run) { ChefSpec::Runner.new.converge(described_recipe) }

 it 'installs apache2' do
 expect(chef_run).to install_package('httpd')
 end
end

Change the source in default_spec.rb to use the let() helper method as shown in
Example 16-13.

Example 16-13. chefdk/apache-test/spec/default_spec.rb
require 'chefspec'

describe 'apache-test::default' do
 let (:chef_run) { ChefSpec::Runner.new.converge(described_recipe) }

 it 'installs apache2' do
 expect(chef_run).to install_package('httpd')
 end
end

When you rerun rspec, you should notice no net change in the test results:

$ rspec --color
.

Finished in 0.00042 seconds (files took 1.12 seconds to load)
1 example, 0 failures

Generate a Coverage Report
Another ChefSpec helper method is ChefSpec::Coverage.report!. It will generate a
list of resources that have corresponding examples as documentation. You can let this
report guide your testing.

Test Automation with ChefSpec | 303

Edit default_spec.rb as shown in Example 16-14. The at_exit method is a part of core
Ruby that permits you to register a block to execute when the program exits. In this
case, we want to run the ChefSpec::Coverage.report! method. The exclamation point
(!) in the report! method name is a Ruby convention that indicates a method is dan‐
gerous. In this case, the cautions are that ChefSpec::Coverage.report! must be run
after all tests are complete and not run more than once in a program. We use at_exit
to ensure that report! is run once after the tests have finished.

Example 16-14. chefdk/apache-test/spec/default_spec.rb
require 'chefspec'

at_exit { ChefSpec::Coverage.report! }

describe 'apache-test::default' do
 let (:chef_run) { ChefSpec::Runner.new.converge(described_recipe) }

 it 'installs apache2' do
 expect(chef_run).to install_package('httpd')
 end
end

Run rspec --color with the new at_exit code, and notice that now a helpful report
is generated, telling you the total number of resources in your code and how many have
been tested in your specs:

$ rspec --color
.

Finished in 0.00337 seconds (files took 1.11 seconds to load)
1 example, 0 failures

ChefSpec Coverage report generated...

 Total Resources: 3
 Touched Resources: 1
 Touch Coverage: 33.33%

Untouched Resources:

 service[httpd] /recipes/default.rb:12
 template[/var/www/html/index.html] /recipes/default.rb:16

Let this report guide you in choosing other tests to write for your code.

Share Test Code with spec_helper.rb
ChefSpec supports moving common code used in your tests to a spec_helper.rb file,
similar to Serverspec.

304 | Chapter 16: Testing

As with Serverspec, you’ll have to imagine there are many test files in this example, and
we’ll move the shared code to spec_helper.rb.

Create the file spec/spec_helper.rb with the content shown in Example 16-15. We are
moving the require and at_exit calls to this shared file.

Example 16-15. chefdk/apache-test/spec/spec_helper.rb
require 'chefspec'

at_exit { ChefSpec::Coverage.report! }

Now edit spec/default_spec.rb as shown in Example 16-16 so it references
spec_helper.

Example 16-16. chefdk/apache-test/spec/default_spec.rb
require 'spec_helper'

describe 'apache-test::default' do
 let (:chef_run) { ChefSpec::Runner.new.converge(described_recipe) }

 it 'installs apache2' do
 expect(chef_run).to install_package('httpd')
 end
end

When you run rspec, you should notice no net change in the program output from
when you ran rspec in the last section, as all we did was move around some code:

$ rspec --color
.

Finished in 0.00337 seconds (files took 1.11 seconds to load)
1 example, 0 failures

ChefSpec Coverage report generated...

 Total Resources: 3
 Touched Resources: 1
 Touch Coverage: 33.33%

Untouched Resources:

 service[httpd] /recipes/default.rb:12
 template[/var/www/html/index.html] /recipes/default.rb:16

Test Automation with ChefSpec | 305

Summary
In this chapter we discussed how to test your Chef automation using Serverspec, Food‐
critic, and ChefSpec. You need multiple tools because each is tailored to give you fast
feedback at every stage of the Chef development lifecycle.

To learn more about test automation with Chef, check out the slides for the one-day
course written by one of the authors of this book. This chapter was based on these slides.

306 | Chapter 16: Testing

http://bit.ly/testing_automation_code
http://bit.ly/testing_automation_code

CHAPTER 17

Conclusion

We have reached the end of this book. We hope you have enjoyed learning the basics of
Chef and that our book encourages you to pursue more knowledge of the language.

Here are some Chef resources you might want to check out after reading this book:

• Learn Chef
• GetChef YouTube Channel
• The Chef Mailing List
• Food Fight Podcast
• The Ship Show
• Code School—Ruby Bits Part 2—Teaches you how DSLs are implemented, like the

Chef DSL
• Code School—Git Real 1 and Git Real 2—Teaches you how to use the Git source

control system
• Customizing Chef, by Jon Cowie (O’Reilly)
• Test-Driven Infrastructure with Chef, 2nd Edition, by Stephen Nelson-Smith

(O’Reilly)

307

http://learnchef.com
https://www.youtube.com/user/GetChef
http://lists.opscode.com
http://foodfightshow.org/
http://theshipshow.com/
http://bit.ly/adv_ruby_tutorial
http://bit.ly/cs_git_tutorial
http://bit.ly/customizing-chef
http://bit.ly/test-driven-infra-chef

APPENDIX A

Open Source Chef Server

This appendix is a variant of the instructions provided in Chapter 9 for Open Source
Chef Server.

How to Install Open Source Chef Server Manually
First, download the Chef Server install package from http://www.getchef.com/chef/
install. We’ll be installing Open Source Chef server on CentOS 6.5, so choose “Enterprise
Linux > 6 > x86_64”, as shown in Figure A-1. Choose to Download version 11.1.4 to get
a download link to the package.

The download page might not match the images in this book exact‐
ly. However, the download and installation procedure should be the
same.

The remaining steps necessary to install Chef Server are displayed below the download
link:

1. Install the chef-server package.
2. Run sudo chef-server-ctl reconfigure.

309

http://www.getchef.com/chef/install
http://www.getchef.com/chef/install

Figure A-1. Download Open Source Chef Server installation package

Install Open Source Chef Server
Assuming you have sufficient resources to install Chef Server locally along with a test
node, let’s create a chef-server cookbook, which we’ll use to install Open Source Chef
Server. To maintain consistency with Hosted Enterprise Chef, create the directory chef-
repo/cookbooks and create the chef-server cookbook in that directory.

Create the chef-repo/cookbooks directory, and make it the current working directory.

Linux/Mac OS X:

$ mkdir -p chef-repo/cookbooks
$ cd chef-repo/cookbooks

Windows:

$ mkdir chef-repo\cookbooks
$ cd chef-repo\cookbooks

310 | Appendix A: Open Source Chef Server

Now generate the chef-server cookbook with chef generate cookbook or knife
cookbook create, depending on whether you are using the Chef Development Kit or
the Chef Client, respectively. Also, enable the cookbook to use Test Kitchen. We’re going
to go through the cookbook creation steps quickly in this chapter. If you need a refresher
on what each of these commands mean and the expected output, refer back to Chapter 7.

Chef Development Kit:

$ chef generate cookbook chef-server
$ cd chef-server

Chef Client:

$ knife cookbook create chef-server --cookbook-path .
$ cd chef-server
$ kitchen init --create-gemfile
$ bundle install

Edit the .kitchen.yml file to use the CentOS 6.5 basebox we prepared specifically for this
book. Also, assign a private network address like we did in Chapter 7. This time, we’re
going to use the IP address 192.168.33.36. If this conflicts with an address already being
used on your local network, change it to be a nonconflicting one. We also need more
memory than the default 512 MB Test Kitchen allocates, so add a customize: block
with a memory: statement to increase the memory to 1.5 GB (memory is specified in
megabytes only).

Make sure you use the chef_solo provisioner for this cookbook, as
the in-memory Chef Server that the chef_zero provisioner spawns
will cause a conflict with the hands-on exercises coming up in Chap‐
ter 10. As of this writing, if you want to automate the installation of
a Chef Server with Chef cookbooks, the use of Chef Solo is recom‐
mended so that the deployment code doesn’t get confused by the
presence of the in-memory Chef Server used in Chef Zero.

Example A-1. /chefdk/chef-repo/cookbooks/chef-server/.kitchen.yml

driver:
 name: vagrant

provisioner:
 name: chef_solo

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65
 network:

Install Open Source Chef Server | 311

 - ["private_network", {ip: "192.168.33.36"}]

suites:
 - name: default
 run_list:
 - recipe[chef-server::default]
 attributes:

Generate a default attributes file in attributes/default.rb.

Chef Development Kit:

$ chef generate attribute default

Chef Client:

$ touch attributes/default.rb

Add an attribute specifying the download URL for the Chef Server package that you
obtained from http://www.getchef.com/chef/install. We recommend using the 11.1.4
version URL shown in Example A-2, as we wrote the examples for this chapter using
this version.

Example A-2. /chefdk/chef-repo/cookbooks/chef-server/attributes/default.rb
default[‘chef-server’][‘url’] = \
‘https://opscode-omnibus-packages.s3.amazonaws.com/el/6/x86_64’\
‘/chef-server-11.1.4-1.el6.x86_64.rpm’

Let’s take an initial stab at coding a recipe to replicate the manual steps required to install
Chef Server outlined in “How to Install Open Source Chef Server Manually” on page
309. Enter in the first version of the code as shown in Example A-3. Let’s go over some
of the highlights of the code in the following paragraphs.

Rather than typing in long variable names such as node['chef-server']['url'], feel
free to use temporary local variables in a recipe with shorter names, such as:

package_url = node['chef-server']['url']

Remember that you have the full power of Ruby classes and methods available to you
in your Chef recipes, so don’t be afraid to use it. For example, you can use
the ::File.basename() method to extract the package name from the URL. The pack‐
age name is the last component of the URL after the forward slash (“/”): chef-
server-11.1.4-1.el6.x86_64.rpm. Refer to the Ruby core API documentation for
more information on the ::File class:

package_name = ::File.basename(package_url)

Unfortunately, the package resource does not work with URLs, so we’re introducing a
new resource, the remote_file resource. The remote_file resource will download files
from a remote location. Rather than hardcoding a path like “/tmp” for the package

312 | Appendix A: Open Source Chef Server

http://www.getchef.com/chef/install
http://ruby-doc.org/core-1.9.3/File.html

download, Chef provides a variable you should use instead: Chef::Con

fig[:file_cache_path]. Let Chef choose the best place to store temporary files for
you. Pass the local path where you want to store the file as a string parameter to re
mote_file or as a name attribute; in this case, we use the package_local_path variable.
The download URL should be passed to remote_file as the source attribute.

The package resource should be familiar to you by now—we used it in Chapter 7.

In order to execute the chef-server-ctl reconfigure, we need to introduce another
resource, the execute resource. When you fail to find a resource that meets your needs,
you can use the execute resource to run arbitrary shell commands. Pass the shell com‐
mand you want to execute as a string parameter to the execute resource.

The full code is in Example A-3.

Example A-3. /chefdk/chef-repo/cookbooks/chef-server/recipes/default.rb
#
Cookbook Name:: chef-server
Recipe:: default
#
Copyright (C) 2014
#
#
#

package_url = node['chef-server']['url']
package_name = ::File.basename(package_url)
package_local_path = "#{Chef::Config[:file_cache_path]}/#{package_name}"

omnibus_package is remote (i.e., a URL) let's download it
remote_file package_local_path do
 source package_url
end

package package_local_path

reconfigure the installation
execute 'chef-server-ctl reconfigure'

Run kitchen converge to install Chef Server, and use kitchen login to verify that the
chef-server package was installed:

$ kitchen converge default-centos65
$ kitchen login default-centos65
[vagrant@default-centos65 ~]$ rpm -q chef-server
chef-server-11.1.4-1.el6.x86_64
[vagrant@default-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

Install Open Source Chef Server | 313

Introducing Idempotence
Although the recipe we created in Example A-3 is a good first attempt, it is not idem‐
potent. When Chef code is idempotent, it can be run multiple times on the same system
and the results will always be identical, without producing unintended side effects. All
Chef default resources are guaranteed to be idempotent with the exception of the exe
cute resource.

execute resources generally are not idempotent, because most command-line utilities
can be run only once. They assume that a human being is interacting with the system
and understands the state of the system. For example, assuming the file /learningchef/
file1.txt exists, the following mv command will work the first time it is run, but it will
fail the second time:

$ mv /learningchef/file1.txt /file1.txt

A great way to test to see if your recipe is idempotent is to run kitchen converge
twice. When a recipe has no unintended side effects, there should be 0 resources updated
on the second run.

Does our recipe pass the idempotency test? Sadly, no. Here’s a sampling of the output
from an initial kitchen converge:

$ kitchen converge default-centos65
-----> Starting Kitchen (v1.2.2.dev)
-----> Creating <default-centos65>...
...
 Starting Chef Client, version 11.14.2
 [2014-08-17T23:06:15-07:00] INFO: *** Chef 11.14.2 ***
 [2014-08-17T23:06:15-07:00] INFO: Chef-client pid: 2386
 [2014-08-17T23:06:16-07:00] INFO: Setting the run_list to ["recipe[chef
 -server::default]"] from CLI options
 [2014-08-17T23:06:16-07:00] INFO: Run List is [recipe[chef-server
 ::default]]
 [2014-08-17T23:06:16-07:00] INFO: Run List expands to [chef-server
 ::default]
 [2014-08-17T23:06:16-07:00] INFO: Starting Chef Run for default-centos65
 [2014-08-17T23:06:16-07:00] INFO: Running start handlers
 [2014-08-17T23:06:16-07:00] INFO: Start handlers complete.
 Compiling Cookbooks...
 Converging 3 resources
...
 [2014-08-17T23:10:39-07:00] INFO: Chef Run complete in 262.973873452
 seconds

 Running handlers:
 [2014-08-17T23:10:39-07:00] INFO: Running report handlers
 Running handlers complete
 [2014-08-17T23:10:39-07:00] INFO: Report handlers complete
 Chef Client finished, 3/3 resources updated in 264.583736069 seconds

314 | Appendix A: Open Source Chef Server

 Finished converging <default-centos65> (4m48.72s).
-----> Kitchen is finished. (5m27.52s)

Here’s the output from the second run. Chef thinks there’s still stuff it needs to do—2/3
resources updated in this second run, when we expected it to be 0/3:

$ kitchen converge
-----> Starting Kitchen (v1.2.2.dev)
-----> Converging <default-centos65>...
...
 Converging 3 resources
 Recipe: chef-server::default
 * remote_file[/tmp/kitchen/cache/chef-server-11.1.4-1.el6.x86_64.rpm] action
 create [2014-08-17T23:13:55-07:00] INFO: Processing remote_file[/tmp
 /kitchen/cache/chef-server-11.1.4-1.el6.x86_64.rpm] action create (chef-server
 ::default line 15)
 (up to date)
 * package[/tmp/kitchen/cache/chef-server-11.1.4-1.el6.x86_64.rpm]
 action install
 [2014-08-17T23:13:58-07:00] INFO: Processing package[/tmp/kitchen/cache
 /chef-server-11.1.4-1.el6.x86_64.rpm] action install (chef-server
 ::default line 19)

 - install version 11.1.4-1.el6 of package /tmp/kitchen/cache/chef
 -server-11.1.4-1.el6.x86_64.rpm
 * execute[chef-server-ctl reconfigure] action run[2014-08-17T23:14:08
 -07:00] INFO: Processing execute[chef-server-ctl reconfigure] action
 run (chef-server::default line 22)
 [2014-08-17T23:14:20-07:00] INFO: execute[chef-server-ctl reconfigure]
 ran successfully

 - execute chef-server-ctl reconfigure
 [2014-08-17T23:14:20-07:00] INFO: Chef Run complete in 24.635708065
 seconds

 Running handlers:
 [2014-08-17T23:14:20-07:00] INFO: Running report handlers
 Running handlers complete
 [2014-08-17T23:14:20-07:00] INFO: Report handlers complete
 Chef Client finished, 2/3 resources updated in 26.532340506 seconds
 Finished converging <default-centos65> (0m28.53s).
-----> Kitchen is finished. (0m29.20s)

We’ve shown that the package resource is idempotent. As we mentioned earlier, most
default Chef resources are. Notice that the remote_file resource is idempotent. It is re‐
porting (up to date).

There are some issues with the package and execute resources, however, as on the
second kitchen converge run Chef:

1. Reinstalled the rpm package, unnecessarily

Introducing Idempotence | 315

2. Executed chef-server-ctl reconfigure a second time

Let’s fix these idempotency issues in our code now. Example A-4 has the final idempotent
version of the code.

The first issue is a common one that Chef developers encounter with the package re‐
source when they try to install from a downloaded rpm instead of using a package
repository. Instead of using a package one-liner for a downloaded rpm, you need to tell
the package resource to explicitly use the RPM provider via the provider attribute, and
you need to tell it where the source RPM is located using the source attribute, like so:

package package_name do
 source package_local_path
 provider Chef::Provider::Package::Rpm
end

You can use the rpm_package short name to specify the RPM pro‐
vider to the package resource, if you prefer. The following code is
equivalent to the preceding code:

rpm_package package_name do
 source package_local_path
end

Fixing the second issue with the execute resource is a little more involved. That’s why
you should prefer built-in Chef resources over using the execute resource, because it’s
up to you to make the execute resources idempotent.

One way to fix this issue is with a not_if guard to the execute resource. Guards are
used to make a resource idempotent by allowing the resource to test for a desired state,
and if the desired state is present, the resource should do nothing. In this case, we’ll test
to see if the chef-server package is already installed, by adding a not_if clause to the
execute resource as follows. not_if will test to see if the exit code of the command is
0, and if so the resource does nothing. (If you need to test the reverse of this logic, which
is more typical on Windows, there is also an only_if guard—take a look at http://bit.ly/
common_functionality for more information:

execute "chef-server-ctl reconfigure" do
 not_if "rpm -q chef-server"
end

While this is a reasonable way to address the issue, it’s a little clunky. You have to figure
out a way to detect whether Chef Server is installed, and the method used in the previous
example is not very reliable. A better approach is to trigger the execute when the pack
age resource installs the package. You can trigger events in other resources with a notifies
statement.

316 | Appendix A: Open Source Chef Server

http://bit.ly/common_functionality
http://bit.ly/common_functionality

In order to use notifies, we’ll need to change the execute resource statement a bit.
First, you’ll want to change the resource so it does nothing by default when execute is
evaluated during the Chef run by adding an action :nothing attribute. Also, you’ll
want to move the actual command line explicitly to the command attribute, so that you
can use a short name to trigger the execute block. By default, the name passed to the
execute resource as a string parameter is used as the command attribute, which is great
for a self-documenting one-liner, but not so great when you want to trigger the com‐
mand by name. So let’s transform the execute resource like so:

reconfigure the installation
execute 'chef-server-ctl reconfigure' do
 command 'chef-server-ctl reconfigure'
 action :nothing
end

Now add the notifies attribute as follows. The notifies attribute takes three param‐
eters: an action, the name of the resource to notify, and a timer indicating when the
action should be performed. As shown in the following example, we want to perform
the :run action on the execute[chef-server-ctl reconfigure] resource, and we
want the action performed :immediately. For more information on notifies param‐
eters, refer to the Chef documentation:

package package_name do
 source package_local_path
 provider Chef::Provider::Package::Rpm
 notifies :run, 'execute[chef-server-ctl reconfigure]', :immediately
end

Example A-4 shows what the final version of our idempotent code looks like.

Example A-4. chef-server/chefdk/chef-repo/cookbooks/chef-server/recipes/default.rb
Cookbook Name:: chef-server
Recipe:: default
#
Copyright (C) 2014
#
#
#

package_url = node['chef-server']['url']
package_name = ::File.basename(package_url)
package_local_path = "#{Chef::Config[:file_cache_path]}/#{package_name}"

omnibus_package is remote (i.e., a URL) let's download it
remote_file package_local_path do
 source package_url
end

package package_name do

Introducing Idempotence | 317

http://docs.opscode.com/resource_common.html

 source package_local_path
 provider Chef::Provider::Package::Rpm
 notifies :run, 'execute[chef-server-ctl reconfigure]'
end

reconfigure the installation
execute 'chef-server-ctl reconfigure' do
 command 'chef-server-ctl reconfigure'
 action :nothing
end

Try running kitchen converge against this revised recipe, and note that it reports 0/2
resources updated, which is the result we are looking for: 0 resources updated after
running kitchen converge for the second time without any other changes to the cook‐
book:

$ kitchen converge
-----> Starting Kitchen (v1.2.2.dev)
-----> Converging <default-centos65>...
...
 Converging 3 resources
 Recipe: chef-server::default
 * remote_file[/tmp/kitchen/cache/chef-server-11.1.4-1.el6.x86_64.rpm]
 action create[2014-08-17T23:18:31-07:00] INFO: Processing remote_file[
 /tmp/kitchen/cache/chef-server-11.1.4-1.el6.x86_64.rpm] action create
 (chef-server::default line 15)
 (up to date)
 * package[chef-server-11.1.4-1.el6.x86_64.rpm] action install[2014-08
 -17T23:18:34-07:00] INFO: Processing package[chef-server-11.1.4-1.el6
 .x86_64.rpm] action install (chef-server::default line 19)
 (up to date)
 * execute[chef-server-ctl reconfigure] action nothing[2014-08-17T23:18:34
 -07:00] INFO: Processing execute[chef-server-ctl reconfigure] action
 nothing (chef-server::default line 26)
 (skipped due to action :nothing)
 [2014-08-17T23:18:34-07:00] INFO: Chef Run complete in 2.725841396
 seconds

 Running handlers:
 [2014-08-17T23:18:34-07:00] INFO: Running report handlers
 Running handlers complete
 [2014-08-17T23:18:34-07:00] INFO: Report handlers complete
 Chef Client finished, 0/2 resources updated in 4.347711133 seconds
 Finished converging <default-centos65> (0m5.81s).
-----> Kitchen is finished. (0m6.28s)

Always check your recipes to see if they are idempotent before deploying them to pro‐
duction. If we had deployed the first version of this recipe in production, given that the
chef-client usually runs on a periodic timer performing Chef runs, all our nodes
would have been reinstalling the Chef Server package and reconfiguring the server every
15 minutes!

318 | Appendix A: Open Source Chef Server

Configure Open Source Chef Server
If your Open Source Chef Server installed properly, you should be able to access the
web admin console using the private_network IP address you configured in
your .kitchen.yml. In our case, we used the address 192.168.33.36. After you dismiss a
warning about the use of a self-signed SSL certificate, log in with the default admin
username and password, as shown in Figure A-2.

Figure A-2. Log in as admin

You will be immediately prompted to reset the admin user’s password as shown in
Figure A-3. Enter in a new password for the admin user and then:

1. Click on the Save User button.
2. Click on the Create tab when the admin user’s public key is shown to create a user

account for yourself.

Configure Open Source Chef Server | 319

Figure A-3. Reset admin password

When you click on the Create tab, you will be prompted to enter in a username and
password for your user account. Enter in your username and password of choice. Make
sure the Admin checkbox is selected, then click on the Create User button (see
Figure A-4.

Finally, as shown in Figure A-5, you must download a copy of your user key, as this is
used as your password for Chef Server and will be displayed only once. Copy the contents
of the Private Key to the clipboard, and save it as <your_username>.pem. For example,
our username is misheska, so we saved the file as misheska.pem.

320 | Appendix A: Open Source Chef Server

Figure A-4. Create a user

In the chef-repo directory you created in “Install Open Source Chef Server” on page
310, create a subdirectory called .chef. Our chef-repo is in our home directory; change
the following command if your chef-repo is located elsewhere:

$ cd $HOME/chef-repo
$ mkdir .chef

After creating the chef-repo/.chef directory, copy the <username>.pem file you just
created.

You also need to get a copy of the /etc/chef-server/chef-validator.pem key from Chef
Server. Run the following scp command to download the key as root. The password is
vagrant:

$ scp root@192.168.33.36:/etc/chef-server/chef-validator.pem .
root@192.168.33.36's password: vagrant
chef-validator.pem 100% 1675 1.6KB/s 00:00

Configure Open Source Chef Server | 321

Figure A-5. Copy user key

Finally, create a file in chef-repo/.chef called knife.rb. Example A-5 shows what our
knife.rb file looks like; change the node_name and client_key fields in your version of
the file to match your username for <username>.pem. Also, if you used a different IP
address for your Chef Server, change the chef_server_url field accordingly.

322 | Appendix A: Open Source Chef Server

Example A-5. chefdk/chef-repo/.chef/knife.rb
current_dir = File.dirname(__FILE__)
log_level :info
log_location STDOUT
node_name "misheska"
client_key "#{current_dir}/misheska.pem"
validation_client_name "chef-validator"
validation_key "#{current_dir}/chef-validator.pem"
chef_server_url "https://default-centos65.vagrantup.com:443"
cache_type "BasicFile"
cache_options(:path => "#{ENV['HOME']}/.chef/checksums")
cookbook_path ["#{current_dir}/../cookbooks"]

Once you have finished creating the <user>.pem, chef-validator.pem, and knife.rb files,
your chef-repo/.chef directory should resemble the following:

chef-repo/.chef
├── chef-validator.pem
├── knife.rb
└── misheska.pem

The .chef directory now contains three important files:

• <username>.pem
• chef-validator.pem
• knife.rb

<username> is the username you created in the Chef Server web admin tool. The
<username>.pem file is a unique identifier used to authenticate you against Chef Server.
This should be treated like a password; do not share it with anyone, and do not alter the
contents of the file.

The chef-validator.pem file is a unique identifier used to authenticate your organiza‐
tion against Chef Server. This should be treated like a password, but it must also be
shared among all your Chef developers. Anyone needing access to your Chef organi‐
zation will also need a copy of this file. Do not alter the contents of this file, either.

RSA Key-Pairs
The .pem files are actually RSA private keys generated during the signup process. Chef
generates an RSA key-pair for your username and your organization. Those private keys
are packaged into your ZIP download. The associated public keys are stored on the
Hosted Enterprise Chef Server and used to authenticate you and your organization when
making requests to Chef Server.

Configure Open Source Chef Server | 323

Unlike the .pem files, the knife.rb file is meant to be edited, altered, and customized. The
knife.rb file is recognized as Ruby and read by Chef when it issues commands:

current_dir = File.dirname(__FILE__)
log_level :info
log_location STDOUT
node_name "<username>"
client_key "#{current_dir}/<username>.pem"
validation_client_name "chef-validator"
validation_key "#{current_dir}/chef-validator.pem"
chef_server_url "https://default-centos65.vagrantup.com:443"
cache_type "BasicFile"
cache_options(:path => "#{ENV['HOME']}/.chef/checksums")
cookbook_path ["#{current_dir}/../cookbooks"]

As you can see, the knife.rb file sets some default configuration values, such as the log
level, caching options, and cookbook paths. Additionally, the knife.rb configures the file
client_key, validation_client_name, and validation_key. The URL points to your
Chef Server installation.

Note that the chef_server_url_ field uses a fake DNS hostname of default-
centos65.vagrantup.com because that’s the hostname vagrant set up. If you try to visit
the URL https://default-centos65.vagrantup.com:443, you will discover that it is not
valid.

Chef Server requires that hosts have valid fully qualified domain names set up in your
local domain name service (DNS). In production, you would have your Chef Server
hostname configured in your Domain Name System (DNS) server before installing.
Let’s add a temporary host entry for default-centos65.vagrantup.com in your local
host database in lieu of making a DNS change, as we are just doing a book exercise.

Run one of the following commands to add a host entry. Following are the commands
we ran on our machine. If you used an IP address other than 192.168.33.36, make sure
it matches when you run the command.

Linux/Mac OS X:

$ sudo sh -c "echo '192.168.33.36 default-centos65.vagrantup.com' >> /etc/hosts"

Windows Command Prompt:

> echo 192.168.33.36 default-centos65.vagrantup.com >> \
%WINDIR%\System32\Drivers\Etc\Hosts

Windows PowerShell:

PS> ac -Encoding UTF8 $env:windir\system32\drivers\etc\hosts \
"192.168.33.36 default-centos65.vagrantup.com"

Now if you try to visit https://default-centos65.vagrantup.com in your web browser, your
local host should think this is a valid hostname.

324 | Appendix A: Open Source Chef Server

You can add additional values to the knife.rb, such as EC2 credentials, proxy informa‐
tion, and encrypted data bag settings. Although certain pieces of the knife.rb will be
common among your team members, the contents of the file generally should be unique
to you and your machine. However, unless you have access keys and passwords in your
knife.rb, you do not need to treat it like a password.

Testing the Connection
You should run the following commands from inside the Chef repo. Open your terminal
or command prompt and make chef-repo the current working directory. If you placed
your Chef repo in a different location, use that instead:

$ cd ~/chef-repo

Now you can use knife, the command-line tool for Chef Server, to test your connection
and authentication against Chef Server. At the time of this writing, Chef does not provide
a “connection test” command. However, asking Chef Server to list the clients will verify:

• Your network can connect to Chef Server.
• The authentication files are in the correct location.
• The authentication files can be read by Chef.
• The response from Chef Server is received by your workstation.

Issue the knife client list command on your terminal. You should see the following:

$ knife client list
chef-validator
chef-webui

If you get an error, check the following:

1. You can access https://192.168.33.36:443 from a web browser.
2. You are running commands from inside the chef-repo.
3. The .chef directory contains two .pem files and a knife.rb.
4. Your authentication files have the correct file permissions (they should be only user

readable).

If you have confirmed the preceding steps and are still unable to connect to Chef Server,
please consult the Chef online documentation.

Now that you have verified that your host can connect to Chef Server, let’s create another
cookbook for a node instance and register it to be managed by Chef Server. If you created
Chef Server locally in a sandbox environment in this chapter, leave it running—we’ll be
using it in the next chapter.

Testing the Connection | 325

http://docs.opscode.com

Bootstrapping a Node
In Chef, the term “bootstrapping” refers to the process by which a remote system is
prepared to be managed by Chef. This process includes installing Chef Client and reg‐
istering the target node with Chef Server.

Create a Node
Let’s use Test Kitchen to define a project that spins up a node in a sandbox environment,
similar to what we did back in Chapter 5 before we learned how to create cookbooks.

Create a node directory alongside the chef-server cookbook you created in Chap‐
ter 9. This technically isn’t a cookbook—it’s just a Test Kitchen project—but putting it
beside the chef-server cookbook directory makes it convenient to go back and forth
between the two.

Create the directory ~/chef-repo/cookbooks/node, and make it the current working
directory:

$ cd ~/chef-repo/cookbooks
$ mkdir node
$ cd node

Assuming that you set up knife to communicate with your Chef Server following either
the instructions in Chapter 9 or Appendix B, the knife client list command should
work even in this subdirectory. Verify this now:

$ knife client list
chef-validator
chef-webui

This node directory will just be a test kitchen project, not a cookbook, so run the fol‐
lowing commands to create a .kitchen.yml file for Test Kitchen:

$ kitchen init --create-gemfile
$ bundle install

Edit the .kitchen.yml file to use the CentOS 6.5 basebox we prepared specifically for this
book. Also assign a private network address like we did in Chapter 7. This time, we’re
going to use the IP address 192.168.33.37. Make sure this address does not conflict with
the IP address of your Chef Server. It should be 192.168.33.36.

Note that we also changed the suite name to be node, as this sandbox environment will
be running our node, and have the other sandbox environment running our Chef Server.
Having different names will disambiguate the two environments.

Example A-6. chefdk/chef-repo/cookbooks/node/.kitchen.yml

driver:

326 | Appendix A: Open Source Chef Server

 name: vagrant

provisioner:
 name: shell

platforms:
 - name: centos65
 driver:
 box: learningchef/centos65
 box_url: learningchef/centos65
 network:
 - ["private_network", {ip: "192.168.33.37"}]

suites:
 - name: node
 run_list:
 attributes:

Spin up the node environment with kitchen create:

$ kitchen create node-centos65

Bootstrap the Node with Knife
Figure A-6 presents an overview of the current setup we’ve configured so far. We’ve
configured a Chef Server (or used Hosted Enterprise Chef), and we configured a knife.rb
with the appropriate keys, so that we can communicate with the Chef server from our
host, the administrator’s workstation. We’ve established that this communication chan‐
nel works by verifying that knife client list produces the expected output.

Now let’s set up our node like we would in production by “bootstrapping” the node with
knife bootstrap. (We won’t be able to use Test Kitchen in production!) When we run
knife bootstrap on the our host, it will install Chef Client on the node and register it
to be managed by Chef Server.

Nodes must have valid, fully qualified domain names set up in your local domain name
service (DNS) as well. Let’s add an entry to our local host database for the node just like
we did for Chef Server.

Bootstrap the Node with Knife | 327

Figure A-6. Overview of our setup so far, before nodes

Run one of the following commands to add a node entry. Following are the commands
we ran on our machine. If you used an IP address other than 192.168.33.35, make sure
it matches when you run the command.

Linux/Mac OS X:

$ sudo sh -c "echo '192.168.33.37 node-centos65.vagrantup.com' >> /etc/hosts"

Windows Command Prompt:

> echo 192.168.33.37 node-centos65.vagrantup.com >> \
%WINDIR%\System32\Drivers\Etc\Hosts

Windows PowerShell:

PS> ac -Encoding UTF8 $env:windir\system32\drivers\etc\hosts \
"192.168.33.37 node-centos65.vagrantup.com"

You also need to kitchen login to the node and configure the local host database on
the node to provide it the name of the server where you will run chef-client. Once
this is complete, exit back out to your host prompt. As mentioned before, in produc‐
tion, you’d just make sure the DNS was configured with these hostnames before instal‐
ling Chef Server and any nodes:

328 | Appendix A: Open Source Chef Server

$ kitchen login node-centos65
Last login: Fri Jul 4 14:48:27 2014 from 10.0.2.2
Welcome to your Packer-built virtual machine.
[vagrant@node-centos65 ~]$ sudo sh -c "echo \
'192.168.33.36 default-centos65.vagrantup.com' >> /etc/hosts"
[vagrant@node-centos65 ~]$ exit
logout
Connection to 127.0.0.1 closed.

Run the following command to bootstrap your node:

$ knife bootstrap --sudo --ssh-user vagrant --ssh-password \
vagrant --no-host-key-verify node-centos65.vagrantup.com
Connecting to node-centos65.vagrantup.com
node-centos65.vagrantup.com Installing Chef Client...
...
node-centos65.vagrantup.com Thank you for installing Chef!
node-centos65.vagrantup.com Starting first Chef Client run...
...
node-centos65.vagrantup.com Starting Chef Client, version 11.14.2
node-centos65.vagrantup.com Creating a new client identity for
node-centos65.vagrantup.com using the validator key.
node-centos65.vagrantup.com resolving cookbooks for run list: []
node-centos65.vagrantup.com Synchronizing Cookbooks:
node-centos65.vagrantup.com Compiling Cookbooks...
node-centos65.vagrantup.com [2014-08-18T00:05:44-07:00]
WARN: Node node-centos65.vagrantup.com has an empty run list.
node-centos65.vagrantup.com Converging 0 resources
node-centos65.vagrantup.com
node-centos65.vagrantup.com Running handlers:
node-centos65.vagrantup.com Running handlers complete
node-centos65.vagrantup.com Chef Client finished, 0/0 resources updated in
2.595912205 seconds

You can tell from the output that it successfully installed Chef Client, and even per‐
formed a courtesy Chef Client run, but there were no cookbooks in the run list.

To verify that the node is now registered on the Chef server, log into the web interface
and click on the Nodes tab. Now you should see that you have a node registered with
your Chef Server, as shown in Figure A-7.

Bootstrap the Node with Knife | 329

Figure A-7. Node is registered with Chef Server

If you click on the link to the node, you should see that Chef Server displays information
about the node as shown in Figure A-8. The values you see under attributes should look
familiar—these are the attributes generated automatically by ohai. They are stored on
Chef Server for each node, and the data is searchable by all clients.

We are now done with both our Chef Server and node. Go ahead and kitchen de
stroy both of them:

$ cd ~/chef-repo/cookbooks/chef-server
$ kitchen destroy
$ cd ~/chef-repo/cookbooks/node
$ kitchen destroy

Don’t forget to remove the entries for default-
centos65.vagrantup.com and node-centos65.vagrantup.com from /etc/
hosts on Linux/Mac OS X or %WINDIR%\system32\drivers\etc
\hosts on Windows.

330 | Appendix A: Open Source Chef Server

Figure A-8. Node is registered with Chef Server

Bootstrap the Node with Knife | 331

APPENDIX B

Hosted Enterprise Chef

Hosted Enterprise Chef is the cloud-based version of Chef Server. You can sign up for
Hosted Enterprise Chef at no cost to you to manage up to five nodes, more than enough
for getting started with Chef Server.

Go to https://manage.opscode.com/signup to sign up for a Hosted Enterprise Chef ac‐
count. Complete the required fields.

Upon submitting the form, you will be redirected to a page with helpful links and doc‐
umentation. Click on the Download Starter Kit button as shown in Figure B-1. This will
download a ZIP file containing all your authentication keys, as well as a pre-populated
Chef repo.

Extract the archive and move the chef-repo folder into your home directory. The chef-
repo directory should resemble the following:

chef-repo/
├── .chef
│ ├── <username>.pem
│ ├── <organization>-validator.pem
│ └── knife.rb
├── .gitignore
├── README.md
├── Vagrantfile
├── cookbooks
└── roles

333

https://manage.opscode.com/signup

Figure B-1. Hosted Enterprise Chef post-signup page

If you do not see a .chef directory, you might need to enable the display
of system files in your file manager. Because the .chef directory starts
with a dot, some operating systems will hide its presence.

The .chef directory contains three important files:

• <username>.pem
• <organization>-validator.pem
• knife.rb

<username> is the username you used when you signed up for your Hosted Chef Server
account. <organization> is the name of the company or organization you used when
signing up for Hosted Chef Server. If you registered with the username “seth” and the
organization “houseofbacon”, your .chef directory would contain:

• seth.pem
• houseofbacon.pem
• knife.rb

334 | Appendix B: Hosted Enterprise Chef

The <username>.pem file is a unique identifier used to authenticate you against Chef
Server. This should be treated like a password; do not share it with anyone, and do not
alter the contents of the file.

The <organization>.pem file is a unique identifier used to authenticate your organiza‐
tion against Chef Server. This should be treated like a password, but it must also be
shared among all your Chef developers. Anyone needing access to your Chef organi‐
zation will also need a copy of this file. Do not alter the contents of this file, either.

RSA Key-Pairs
The .pem files are RSA private keys generated during the signup process. Chef generates
an RSA key-pair for your username and your organization. Those private keys are
packaged into your ZIP download. The associated public keys are stored on the Hosted
Enterprise Chef Server and used to authenticate you and your organization when mak‐
ing requests to Chef Server.

Unlike the .pem files, the knife.rb file is meant to be edited, altered, and customized. The
knife.rb file is recognized as Ruby and read by Chef when it issues commands:

current_dir = File.dirname(__FILE__)
log_level :info
log_location STDOUT
node_name "<username>"
client_key "#{current_dir}/<username>.pem"
validation_client_name "<organization>-validator"
validation_key "#{current_dir}/<organization>-validator.pem"
chef_server_url "https://api.opscode.com/organizations/<organization>"
cache_type 'BasicFile'
cache_options(:path => "#{ENV['HOME']}/.chef/checksums")
cookbook_path ["#{current_dir}/../cookbooks"]

As you can see, the knife.rb file sets some default configuration values, such as the log
level, caching options, and cookbook paths. Additionally, the knife.rb configures the
files client_key, validation_client_name, and validation_key. These values were auto‐
matically configured when you downloaded your starter kit. The chef_server_url
configures the endpoint for Chef Server. Because we are using Hosted Enterprise Chef,
this points to Opscode’s Chef API. If you were using Enterprise Chef or Open Source
Chef Server, the URL would point to your Chef Server installation.

You can add other values to the knife.rb, such as EC2 credentials, proxy information,
and encrypted data bag settings. Although certain pieces of the knife.rb will be common
across your team, the contents of the file generally should be unique to you and your
machine. However, unless you have access keys and passwords in your knife.rb, you do
not need to treat it like a password.

Hosted Enterprise Chef | 335

Testing the Connection
You should run the following commands from inside the Chef repo. Open your terminal
or command prompt, and make chef-repo the current working directory. If you placed
your Chef repo in a different location, use that instead:

$ cd ~/chef-repo

Now you can use knife, the command-line tool for Chef Server, to test your connection
and authentication against Chef Server. At the time of this writing, Chef does not provide
a “connection test” command. However, asking Chef Server to list the clients will verify:

• Your network can connect to Chef Server.
• The authentication files are in the correct location.
• The authentication files can be read by Chef.
• The response from Chef Server is received by your workstation.

Issue the knife client list command on your terminal:

$ knife client list

Depending on the speed of your Internet connection, it might take a few seconds to get
a response, but you should see the following:

$ knife client list
<organization>-validator

For example, if I named my Chef organization houseofbacon, the output would be:

$ knife client list
houseofbacon-validator

If you get an error, check the following:

1. You can access https://api.opscode.com from a web browser.
2. You are running commands from inside the chef-repo.
3. The .chef directory contains two .pem files and a knife.rb.
4. Your authentication files have the correct file permissions.

If you have confirmed the preceding steps and are still unable to connect to Chef Server,
please consult the Chef online documentation.

336 | Appendix B: Hosted Enterprise Chef

http://docs.opscode.com

Glossary

Argument
See Parameter

Chef
a broad term for Opscode products includ‐
ing Chef Server (Erchef), Chef Client, Chef
Solo, Hosted Chef, and Private (Enterprise)
Chef; however, most commonly refers to
Chef Client

Chef Client
the agent or service that runs locally on a
machine managed by Chef

Chef Shell
formerly shef, the Chef Shell (chef-shell)
is an interactive REPL for using Chef via the
command line (similar to irb in Ruby or
python in Python)

Chef Server
the centralized store for configuration data
in your infrastructure

Chef Solo
an open source version of Chef that does
not require Chef Server, but lacks some fea‐
tures that might be important to power
users, such as search and centralized data

Client
See Chef Client

Convergent
See Convergence

Convergence
a stronger version of idempotency that
guarantees the command will not be exe‐
cuted if action is not required

See also Idempotency

Cookbook
a single unit of configuration and policy in‐
formation; an encapsulation of recipes, at‐
tributes, metadata, templates, files, and
more

Domain Specific Language
a language or syntax written to handle a
specific problem domain or set of concerns

DSL
See Domain Specific Language

Data Bag
a JSON key-value file that is used to file
global organizational data such as users or
API keys

Embedded Ruby
a Ruby templating language that lets you
run Ruby and output the results; useful for
configuration templates

Encrypted Data Bag
an AES-256-CBC encrypted version of a
Data Bag that requires a secret key to read
and write the contents

337

Enterprise Chef
Chef Server inside an organization’s fire‐
wall; formerly called Private Chef

Environment
logical grouping of nodes either horizon‐
tally (i.e., staging and production) or verti‐
cally (i.e., east coast and west coast)

ERB
See Embedded Ruby

File
a static file or binary for distribution onto a
node

Hosted Chef
See Hosted Enterprise Chef

Hosted Enterprise Chef
the cloud-based Software-as-a-Service ver‐
sion of Chef; formerly called Hosted Chef

Idempotent
See Idempotency

Idempotency
a mathematical property of certain opera‐
tions such that the operation can be applied
multiple times, but the end result is always
the same

Interactive Ruby
the read-eval-print-loop (REPL) for Ruby
on the command line

Interactive Ruby Shell
See Interactive Ruby

IRB
See Interactive Ruby

Knife
the command-line tool for working with
Chef and your infrastructure; knife sup‐
ports a plugin model for easy customization

Metadata
additional information, such as the name,
version, description, dependencies, and
recommendations for a given cookbook

Multi-tenancy
See Organization

Node
any machine or device managed by Chef

Open Source Chef Server
a free and open source version of Chef Serv‐
er that contains much of the same func‐
tionality of Hosted Chef, but requires ad‐
ditional setup, maintenance, configuration,
and management

Organization
a top-level grouping of nodes, policies, and
users; a feature found only in Hosted Chef
and Enterprise Chef, often called “multi-
tenancy”

Parameter
An object (such as a String or Array) passed
as an argument to a method in Ruby or Chef

Private Chef
See Enterprise Chef

Provider
platform-specific implementation of a re‐
source (such as apt or useradd); commonly
referred to as the “how”

Recipe
a set of instructions written in Chef ’s Ruby
DSL that instructs the Chef Client what
commands to execute on a target node

Resource
cross-platform abstraction of an item man‐
aged by Chef (such as a package or user);
commonly referred to as the “what”

Role
a logical group of recipes or other roles

Ruby
an object-oriented programming language
that is the base language in which Chef Cli‐
ent is executed

Run List
an ordered list of recipes or roles that are
applied to a Chef node in the order specified

Template
embedded Ruby templates that are ren‐
dered or compiled on a target node

Enterprise Chef

338 | Glossary

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
! (bang) operand, 42
! (exclamation point), 304
" (double quotes), 41

string literals and, 60
(hash) character, 38
#{} (string interpolation), 96
$HOME reference in Windows, 61
$PATH, verifying, 16
' (single quotes), 41

string literals and, 60
.erb files, 272
.kitchen.yml file

configuring Test Kitchen with, 79–81
for environments, 257
format of, 79–81
sections of, 81
syntax of, checking, 101
tabs in, 74, 79
whitespace in, 74, 79

.pem files, 165
/ (forward slash), 60
// (regular expression literals), 285
: (single colon), 64
:: (double colons), 247
<% %> (ERB scriptlet tag), 261, 272
<%= %> (ERB string tag), 125, 261
<< (heredoc notation), 41
=~ operator, 45

[] (square brackets), 245
\ (backslash), 41

in Windows, 60
_ (underscore) character, 139
⇒ (hash rocket), 44

A
absolute paths, 60
administrator privileges, 57
Amazon Web Services, 5
AND keyword, 216
Ansible, 2
Apache, 179
Apache Cookbook example, 117–128

testing, 271–274
Apache Solr server, 149

for search/indexing, 214
attributes, 131–145

changing cookbook behavior with, 192
conflicting, 137–140
debugging, 141–144
environment setup and, 259
environments and, 253
include_recipe statement, 137–140
listing names of, for search, 216
Message of the Day example, 132–134
node, referencing, 94
of roles, 244
precedence, 140

339

prioritizing, 136
setting, 135

Atwood, Jeff, 38
at_exit method (Ruby), 304
auditing with change management tools, 3
authoring cookbooks, 99–113

Chef runs, 111–113
converges, performing, 107–109
Cookbook_file resource, 102
in Chef Development Kit, 100–102
validating, 109
with Chef Client, 103

automatic attribute precedence, 140
automating

configuration management, 2
tests, 274–293

automation
instances and, 74
testing, 267–306

B
baseboxes, 76

custom, 77
basename() method (File), 154
bash, 15
bash resource, 51
Bento, 77
Berksfile components, 115
Berkshelf tool, 116
be_listening matcher, 281
blocks (of code), 49

do/end keywords, 58
Bookshelf, 149
boolean values in searches, 216
bootstrapping nodes, 169–176

with Chef Solo, 176
with Knife, 171–176

Box-Cutter, 77
bugs

.kitchen.yml and Chef Development Kit, 101
attributes and, 141–144
costs of, 268
Foodcritic and metadata.rb file, 294
kitchen converge and Chef Development

Kit, 109
kitchen converge and SSL, 109
kitchen converge and Windows, 109

Bundler tool, 72
Burgess, Mark, 1, 64

C
C programming language, 37
case statements, 46
CentOS Linux, 14, 67

downloading to virtual machines, 74
CFEngine, 2
change management, 2
Chef, 3–6

as Enterprise tool, 4–6
syntax for, 48–53
unique features of, 4–6

Chef Administrators Workstation, 85
Chef Analytics Platform, 5
Chef Client, 85–98

authoring cookbooks with, 103
Chef Development Kit versus, 12
installing on Macs, 20–23
installing on nodes, 87–89
modes of, 92
node information, accessing, 85–98
Ohai tool, 93–95
running, 89–92
uninstalling on Linux, 17

Chef Development Kit, 11–36
.kitchen.yml bug, 101
authoring cookbooks in, 100–102
availability of, 9
Chef Client versus, 12
installing in Linux, 12–19
installing on Mac OS X, 20–27
installing on Windows, 27–34
kitchen converge bug, 109
Mac OS X support for, 20
uninstalling in Windows, 30
uninstalling on Linux, 17
uninstalling on Mac OS X, 25
verifying install in Windows, 28–30
verifying install on Linux, 16
verifying install on Mac OS X, 24

Chef DSL, 48–53
syntax of, 48

chef generate command, 99
Chef Local, 176
Chef run, 89–92

defined, 90
run list for, 112

Chef Server, 147–178
bootstrapping, 169–176
Enterprise, configuring, 161–168

340 | Index

Enterprise, installing, 152–155
Idempotence, 155–160
installing manually, 150
managing supermarket cookbooks on, 187–

189
Open Source Chef Server, 309–330
testing connection to, 168
types of, 147–149

Chef Solo
bootstrapping with, 176
provisioning with, 153

Chef Supermarket, 179
displaying information with Knife, 187
Knife and, 185

chef-apply tool, 56
chef-client cookbook, 89–92, 181–185

client mode, 92
configuring to use SSL, 194–202
local mode, 92
recipes, running, 190
solo mode, 92

chef-solo, 92
chef-solr, 149
chef-vault, 236–239

creating, 238
setup for, 237

chef-zero, 203–211
Chef Solo versus, 176
knife and, 206
running as daemon, 208
running on Chef-Playground, 206–209
searching roles in, 248
Test Kitchen and, 204–211

chefignore file, 115
ChefSolo provisioner, 74
ChefSpec, 270, 298–305

let helper method, 302
spec_helper.rb helper method, 304
writing tests in, 300–302

ChefSpec::Coverage.report! helper method, 303
chef_gem resource, 51
chef_solo provisioner, 153
chef_zero provisioner, 153
class keyword, 47
classes in Ruby, 47
command (RSpec), 280
command line

running from Serverspec, 284
searching from, 213

text editors, 10
command resource (Serverspec), 284

stdout attribute, 285
comments, 38

in YAML files, 79
community cookbooks, 179–180

Chef-Client, 181–185
configuring to use SSL, 192–202
defined, 180
evaluating, 180
Knife plugin for, 185
searching, 180
searching with Knife, 186

concurrency, 148
ConEmu, installing, 33
configuration drift, preventing, 62
configuration management, 1–6

automating, 2
change management and, 2

conflicting attributes, 137–140
consistent server setup, 2
content resource, 50
converges, 107–109
cookbooks, 99–129

and roles, 247–249
authoring, 99–113
Bookshelf and, 149
components, load order of, 111
creating, 117–128
defining prerequisites for, 117
evaluating, 180
generating skeleton of, 119
licenses, 180
metadata.rb file for, 120
package resource, 121–123
README.md files for, 120
resources for, 116
searching for, 180
service resource, 123
structure of, 114–116
template resource, 124–126
verifying behavior of, 270
verifying success criteria, 126–128

cookbook_file resource, 102, 105–106, 116
CouchDB, 149
Cowie, Jeff, 53, 116, 141
cron cookbook, 189
cron resource, 51
Customizing Chef (Cowie), 53, 116, 141

Index | 341

D
data bags, 223–239

chef-vault and, 236–239
creating local users based on, 229–231
encrypted, 233–236
file format for, 226
Knife and, 225–228
verifying users created from, 232

database, 149
data_bags_path, 229
Debian Linux, 15
debug_value() method (node), 141–144
def keyword, 47
default attribute precedence, 141
default subdirectories, 125
default.rb file, 102
default_spec.rb file, 283, 289, 301, 303, 304
dependencies, 188
depends statements, 189
deployment pipeline, 3
deploy_revision resource, 51
describe blocks

ChefSpec, 298
RSpec, 279

Desired State Configuration (Microsoft Win‐
dows), 2

development environment, 9–36
ConEmu, installing, 33
creating, 252
directory structures for, 55
on Linux, 12–19
on Mac OS X, 20–27
on Windows, 27–28
programming text editors, 10
simulating, 263–266
Unix tools for Windows, installing, 32

Development Workstations, 85
chef-vault and, 237

dictionaries, 43
directory resource, 51
Discourse, 38
distribution policies, 147
do/end keywords, 48, 58

as nameless method, 219
documentation

in ChefSpec, 298
with ChefSpec, 270

documentation (cookbook), 114

Domain Name System (DNS) server, 167
nodes and, 171

E
each statements, 219
Eclipse IDE, 11
elseif keyword, 46
Embedded RuBy (ERB), 124
enterprise (see Hosted Enterprise Chef)
Enterprise Chef On-Premises, 147

authentication for, 165
DNS settings for, 167
downloading, 150
installing, 152–155
node limit on, 149

environments, 251–266
attributes and, 253
creating, 252
development, simulating, 263–266
file format for, 252
production, simulating, 255–262
template resources for, 259–262

ERB templates, 272
Erchef, 149
Erlang, 148
Etsy, 297
execute resource, 52, 154

idempotency and, 155
not_if guard for, 158
only_if guard for, 158

expect form
ChefSpec, 298
mapping should form to, 282
RSpec, 280

F
Facebook, 5
File class (Ruby), 154
file resource, 50, 52
file statement, 56
files, distributing to nodes, 115
Fitzgerald, Michael, 38
Foodcritic, 270, 293–297

documentation, 296
metadata.rb bug, 294

Fowler, Chard, 38

342 | Index

G
gedit text editor, 11
gems

defined, 18
installation location for, 19
location on Linux, 19
location on Mac OS X, 26
location on Windows, 31

gem_package resource, 52
Git, installing on Windows, 32
GitHub, 179
GNU Emacs text editor, 10
group resource, 52

H
Hallet, Tom, 6
Hansson, David Heinemeier, 37
hashes, 43–45
Heartbleed Virus, 213
HIPPA compliance, 147
Hosted Chef, 147
Hosted Enterprise Chef, 147, 333–336

node limit on, 149
setting up, 333–335
testing connection to, 336

HTTPS, 89, 183
Hunt, Andy, 38

I
Idempotence, 155–160
IDEs, 11
if keyword, 45
IIS web services, 179
include_recipe statement, 137–140
infrastructure

automation, ix
self-healing, 6

instance, 74
integrated development environments (IDEs),

11
IntelliJ IDEA IDE, 11
interpolation of strings, 41
inventory queries, 213
IP address, specifying, 126
IT, 1

automating, 2
it block (RSpec), 280

its method (Serverspec), 285

J
Jacob, Adam, 4
Java, 37
Jenkins community cookbook, 293
JetBrains, 11
JSON format

in YAML files, 80
ohai tool and, 94

K
kitchen converge command, 107–109
kitchen create command, 74
kitchen setup command, 88
kitchen test command, 291–293
Knife

bootstrapping nodes with, 171–176
chef generate command versus, 99
chef-zero and, 206
configuring for SSL, 192
cookbook site plugin, 185
creating data bags with, 227
deploying environments with, 253
deploying roles with, 243
downloading cookbooks with, 187–189
generating cookbooks with, 103
local mode, 209
searching with, 186, 214–217
Server configuration file, 163
testing Chef Server connection with, 168
uploading node information with, 211

knife cookbook site commands, 186
download, 187
managing supermarket cookbooks with,

187–189
search, 186
show, 187

knife.rb file, 163, 166

L
lazy evaluation (RSpec), 302
Learning Ruby (Fitzgerald), 38
let helper method (RSpec), 302
linefeeds, removing from SSL keys, 235
link resource, 52

Index | 343

Linux
administrator privileges in, 57
data bag searches on, 228
installing Chef Development Kit, 12–19
installing Test Kitchen, 18–19
Ruby gem location on, 19
text editors in, 11
uninstalling Chef Development Kit, 17
verifying install of Chef Development Kit, 16
verifying install of Test Kitchen, 19

Lion (Mac OS 10.7), 20
Lisp, 37
lists in YAML files, 80
log resource, 89
logrotate cookbook, 189
log_level, 90

M
Mac OS X

administrator privileges in, 57
data bag searches on, 228
installing Chef Client, 20–23
installing Chef Development Kit, 20–27
installing Test Kitchen, 25
Ruby gem location on, 26
SoloWizard, 176
text editors in, 11
uninstalling Chef Development Kit, 25
verifying install of Chef Development Kit, 24
verifying install of Test Kitchen, 26

make command, 107
maps, 43
Marohnić, Mislav, 192
Mash data structure, 44
match matcher (RSpec), 285
matcher

be_listening, 281
ChefSpec, 299
RSpec, 281

Math module (Ruby), 40
Matsumoto, Yukihiro (Matz), 37
Mavericks (Mac OS 10.9), 20
Mercurial, 58
Message of the Day example, 100–102

attributes example, 132–134
message queue, 149
metadata.rb file, 115, 120

Foodcritic bug, 294
methods in Ruby, 47

Metz, Sandi, 40
Microsoft SQL Server, 179
Microsoft Word, 10
Minimalist GNU for Windows (MinGW), 32
module keyword, 47
modules in Ruby, 47
Moser, Kevin, 236
mount resource, 52
Mountain Lion (Mac OS 10.8), 20
multiphase execution model, 50
MySQL, 179

N
namespace of attributes, 135
naming cookbooks, 117, 121
nano text editor, 10
Nginx, 179
nginx web server, 148
nodes, 85

accessing information about, 85–98
automatic attributes of, displaying, 93–95
bootstrapping, 169–176, 326–330
creating, 326
defined, 85
distributing files to, 115
DNS settings for, 171
installing Chef Client on, 87–89
sandbox environments for, 86
Test Kitchen and, 169–171
version pinning, 249

nodes_path, 217
not keyword, 42
Notepad++ editor, 11
notifies statement, 158
not_if guard for execute resource, 158

O
ohai tool, 93–95

attribute priority and, 132
output format of, 94

only_if guard for execute resource, 158
Open Source Chef, 5
Open Source Chef Server, 147, 309–330

bootstrapping nodes in, 326–330
bootstrapping nodes with Knife, 327–330
configuring, 319–325
idempotence and, 314–318
installing manually, 309

344 | Index

installing with chef-repo, 310–313
node limit on, 149
testing connection to, 325

openssl tool, 235
operating system queries, 213

with Serverspec, 288
OR keyword, 216
order, 64
organizations, creating, 162
output, formatting with pp, 141
override attribute precedence, 141

P
package resource, 49, 52, 116, 121–123

idempotency and, 157
Serverspec and, 288
URLs and, 154

Packer tool, 77
paths, absolute versus relative, 60
PCI compliance, 147
Perl, 37
Pivotal Labs, 6, 176
policy, 1, 263
PostgreSQL, 179
PostgreSQL data store, 149
PowerShell, 61
Practical Object-Oriented Design in Ruby

(Metz), 40
precedence of attributes, 132

environments and, 254
roles in, 245

Principle of Least Surprise, 38
Private Chef, 147
process, defining for cookbooks, 118
production environments, simulating, 255–262
Programming Ruby (Thomas), 37
Programming Ruby 1.9 & 2.0 4e (Thomas,

Fowler, and Hunt), 38
provisioner

ChefSolo, 74
kitchen setup command as, 88

public/private key pairs, 183
Puppet, 2
purpose of cookbooks, defining, 117
Python, 37

R
RabbitMQ, 149

README.md file, 114, 120
in Chef Supermarket, 182

recipes, 55–65
default location of, 102
directory structures for, 55
specifying configurations with, 59–63
syntax for, 58
uninstalling with, 63
verifying, 57
writing, 56

RedHat Linux, 14, 17
emulating, 67

regular expressions, 45, 285–287
relative paths

avoiding use of, 60
deleting files and, 65

remote_file resource, 52, 154
reporting with change management tools, 3
resources

common, listed, 51
declaring, 49
defined, 56
in Chef DSL, 48

resources (RSpec), 280
roles, 241–249

attributes and, 244
cookbooks and, 247–249
expanding, 247
file format of, 242
in environments, 255
search and, 245
web server, 242–244

RSA key-pairs, 166
RSpec DSL syntax, 279–283
Rubular.com, 286
Ruby, 10, 11, 37–48

arrays, 42
basename() method (File), 154
boolean values for, 42
classes, 47
comments, 38
conditionals, 45–47
flow, 45–47
gems, defined, 18
hashes, 43–45
heredoc notation, 41
IDEs that work with Chef, 11
Math module, 40
mathematical operations, 40

Index | 345

methods, 47
modules, 47
regular expression notation, 285
regular expressions, 45
strings, 41
syntax, checking, 38
truthy/falsey values in, 42
variables, 39

Ruby on Rails framework, 37
Rubygems.org, 18, 25, 30, 180

gem install command, 31
RubyMine IDE, 11
run list, 112

adding to with Knife, 190
runnable documentation, 298

S
SaltStack, 2
sandbox environments, 67–83

creating for nodes, 86
creating nodes in, 169–171
guests, 70
hosts, 70
shutting down, 79
testing in, 277
Vagrant, installing, 68
VirtualBox, installing, 68

scaling, 5, 5, 183
scriptlets, 272
search, 213–221

Chef Supermarket with Knife, 186
data bags, 227
encrypted data bags and, 236
escaping characters in, 228, 247
expanding roles for, 247
from command line, 213
in recipes with Test Kitchen, 217–221
roles, 245
with Knife, 214–217

Search Index, 149
search() method (Chef), 218
security

chef-vault, 236–239
encrypted data bags, 233–236

self-healing infrastructure, 6
servers

automating roll out of, 242
rebuilding with change management tools, 3

Serverspec, 274–293
documentation for, 281
kitchen test command, 291–293
package resource, 288
regular expressions and, 285–287
RSpec DSL syntax for, 279–283
writing tests in, 274–279

service resource, 49, 53, 116, 123
shared keys, generating, 235
shell commands, running from within recipes,

154
should form (RSpec), 282, 285
software queries, 213
SoloWizard, 6, 176
source control, 58
spec.rb file, 276, 289, 301
spec_helper.rb file, 283, 304
SSH, installing on Windows, 32
SSL

authority-verified certificate, 192
checking configuration with knife, 192
configuring Chef-Client for, 194–202
configuring Knife for, 192
kitchen converge bug, 109
kitchen setup command and, 88

Stack Exchange, 38
stdout attribute (command resource), 285
stone example, 59–63
string interpolation, 60
string literals, 60
strings, 41

heredoc notation, 41
in data bags, 223
interpolation of, 41
search text as, 228

subject (RSpec), 280
Sublime Text editor, 10
Subversion, 58
success criteria for cookbooks, 118
sudo

command, 18
privileges, 57

suite name, 274
symbols in Chef, 64

T
tabs

in .kitchen.yml file, 74
in YAML files, 79

346 | Index

tarballs, 180
Team Foundation Server, 58
template resource, 49, 53, 116, 124–126

environment setup and, 259–262
setting attributes in, 133

templates directory, 115
test automation, 274–293
Test Kitchen, 67–83

Chef Zero and, 204–209
configuring with .kitchen.yml, 79–81
in sandbox environments, 169–171
installing on Linux, 18–19
installing on Mac OS X, 25
installing on Windows, 30
searching with, 217–221
setting up, 71
Vagrant and, 68
verifying install on Linux, 19
verifying install on OS X, 26
verifying install on Windows, 32
YAML, 79–81

testing, 267–306
Apache Cookbook example, 271–274
ChefSpec, 298–305
environments and, 252
lazy evaluation and, 302
necessity of, 267–270
with Foodcritic, 293–297
with Serverspec, 274–293
writing, with ChefSpec, 300–302

TextMate 2 editor, 11
The Environment Cookbook Pattern blog post

(Winsor), 116
Thomas, Dave, 37

U
Ubuntu Linux, 15, 17
Unix tools for Windows, installing, 32
unless keyword, 45
user resource, 53, 230
username.pem file, 163

authentication with, 165
users

creating from data bags, 229–231
Server account creation, 161
verifying, 232

V
Vagrant

images available for, 69
installing, 68

VagrantCloud, 69
downloading image files, 74

validation.pem file, 163, 165
deleting, 183–185

values in YAML files, 81
version pinning nodes, 249
vim text editor, 10
virtual machines

killing, 79
setting up, 73–79
shutting down, 174
verifying install of, 77

VirtualBox
host/guest environments and, 70
installing, 68

VirtualBox Manager GUI, 78

W
web server roles, creating, 242–244
website output, inspecting, 284
WebUI, 148
whitespace

in .kitchen.yml file, 74
in YAML files, 79

Windows
administrator privileges in, 57, 90
backslash in, 60
Chef Server and, 177
ComEmu, installing, 33
data bag searches on, 228
forward slash in, 60
Git, installing, 32
installing Chef Development Kit, 27–28
kitchen converge bug, 109
only_if guard and, 158
Serverspec and, 289
SSH, installing, 32
tar compression on, 188
text editors in, 11
uninstalling Chef Development Kit, 30
Vagrant and, 69
verifying install of Chef Development Kit,

28–30
verifying install of Test Kitchen, 32

Index | 347

Winsor, Jamie, 116

Y
YAML, 79–81

YAML files, JSON format in, 80
yum_package resource, 122

348 | Index

About the Authors
Mischa Taylor is a consultant at Chef, a fast-growing Seattle-based startup responsible
for creating the Chef platform, which makes it easy to quickly automate development
processes and move business processes into the cloud. He has spent his career focusing
on building high quality products and increasing engineering productivity within or‐
ganizations. Mischa is an author, speaker, and mentor on software development topics
and neuromorphic computing.

Seth Vargo is currently a software engineer and open source advocate at at HashiCorp.
Previously, Seth worked at Chef (Opscode), CustomInk, and a few Pittsburgh-based
startups. He is passionate about inequality in technology and organizational culture.
When he is not writing software or working on open source, Seth enjoys speaking at
local user groups and conferences. He is a coorganizer for DevOps Days Pittsburgh and
loves all things bacon. You can find him on the Internet as @sethvargo or at
https://sethvargo.com.

Colophon
The animal on the cover of Learning Chef is a Wahlberg’s honeyguide, also known as a
brown-backed honeybird (Protodiscus regulus).

The Wahlberg’s honeyguide is a small bird native to the thornveld and other mesic
habitats of southern Africa. Inconspicuous and mostly residential, the honeyguide feeds
primarily on scale insects and practices brood parasitism, in which offspring are smug‐
gled into the broods of other birds—in this case, into the spherical nests of cisticolas
and warblers—in order to spare the brood-parasite the investment of raising young.

This bird was given its name by Johan August Wahlberg, a Swedish naturalist who,
during his travels in southern Africa between 1838 and 1856, also gave his name to a
species of eagle, cormorant, fruit bat, frog, and tree. Wahlberg met his end near the
Thamalakane river in modern-day Botswana in 1856, trampled by a wounded elephant.
Wahlberg’s subsequent election to the Royal Swedish Academy of Science before news
of his death could reach Sweden makes him the only member to have been elected
posthumously.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Cassell’s Natural History. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://twitter.com/sethvargo
https://sethvargo.com
http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	What Is This Book?
	Who Should Read This Book?
	Why All the Culinary Terminology?
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Configuration Management and Chef
	What Is Configuration Management?
	Why You Need a Configuration Management Tool to Automate IT
	What Is Chef?
	Why Chef Might Be a Good Tool for Your Enterprise
	Where Do We Go From Here?

	Chapter 2. Configure Your Chef Development Environment
	Install a Programmer’s Text Editor
	Chef Development Tools
	Install the Chef Development Tools on Linux
	Verify the Chef Development Kit/Chef Client Install on Linux
	Install Test Kitchen on Linux (Chef Client Only)
	Verify the Test Kitchen Installation on Linux (Chef Client only)

	Install the Chef Development Tools on Mac OS X
	Verify the Chef Development Kit/Chef Client Installation on Mac OS X
	Install Test Kitchen on Mac OS X (Chef Client Only)
	Verify the Test Kitchen Installation on Mac OS X (Chef Client Only)

	Install the Chef Development Tools on Windows
	Verify the Chef Development Kit/Chef Client Installer in Windows
	Install Test Kitchen in Windows (Chef Client Only)
	Verify the Test Kitchen Installer in Windows (Chef Client Only)
	Install Unix Tools for Windows
	Install ConEmu (Optional)

	Summary

	Chapter 3. Ruby and Chef Syntax
	Overview of Ruby
	Ruby Syntax and Examples
	Comments
	Variables
	Mathematical Operations
	Strings
	Heredoc Notation
	True and False
	Arrays
	Hashes
	Regular Expressions
	Conditionals and Flow
	Methods, Classes, and Modules

	Chef Syntax and Examples

	Chapter 4. Write Your First Chef Recipe
	Create a Directory Structure for Your Code
	Write Your First Chef Recipe
	Verify Your First Chef Recipe
	Examine hello.rb
	Recipes Specify Desired Configuration
	To Uninstall, Specify What Not to Do
	Summary

	Chapter 5. Manage Sandbox Environments with Test Kitchen
	Installing Vagrant and VirtualBox
	Host versus Guest
	Introducing Test Kitchen
	Spinning Up Your First Virtual Machine
	YAML Overview
	Test Kitchen Configuration with .kitchen.yml
	Summary

	Chapter 6. Manage Nodes with Chef Client
	What Is a Node?
	Create a New Sandbox Environment for a Node
	Installing Chef Client with Test Kitchen
	Your First Chef-Client Run
	Chef Client Modes
	Ohai
	Accessing Node Information
	Summary

	Chapter 7. Cookbook Authoring and Use
	Your First Cookbook: Message of the Day
	Your First Cookbook: Message of the Day (Chef Development Kit)
	Introducing the Cookbook_file Resource
	Your First Cookbook: Message of the Day (Chef Client)
	Introducing the Cookbook_file Resource
	Performing Your First Converge
	Validate Your Results
	Anatomy of a Chef Run
	Cookbook Structure
	The Four Resources You Need to Know
	Apache Cookbook: A Step-By-Step Primer for Creating a Cookbook
	Define Prerequisites
	Generate the Cookbook Skeleton
	Edit the README.md File
	Update Metadata.rb
	Introducing the Package Resource
	Introducing the Service Resource
	Introducing the Template Resource
	Verify Success Criteria Are Met

	Summary

	Chapter 8. Attributes
	Motd-Attributes Cookbook
	Setting Attributes
	Basic Attribute Priority
	Include_Recipe
	Attribute Precedence
	Debugging Attributes
	Summary

	Chapter 9. Manage Multiple Nodes at Once with Chef Server
	How to Install Enterprise Chef Server Manually
	Install Enterprise Chef Server
	Introducing Idempotence
	Configure Enterprise Chef Server
	Testing the Connection
	Bootstrapping a Node
	Create a Node in a Sandbox Environment
	Bootstrap the Node with Knife

	Bootstrap Chef Server with Chef Solo
	Summary

	Chapter 10. Community and the Chef-Client Cookbook
	Using Community Cookbooks
	Chef-Client Cookbook
	Knife Cookbook Site Plugin
	Search for Community Cookbooks Using Knife Cookbook Site
	Manage Chef Supermarket Cookbooks on Your Chef Server Using Knife Cookbook Site
	Chef-Client Recipes
	Configure Knife to Use a Production SSL Setup
	Configure Chef-Client to Use a Production SSL Setup
	Summary

	Chapter 11. Chef Zero
	Test Kitchen and Chef Zero
	Running Chef-Zero on Your Host Using Chef-Playground
	Summary

	Chapter 12. Search
	Search from the Command Line
	Search from the Command Line with Knife
	Search in a Recipe Using Test Kitchen
	Summary

	Chapter 13. Data Bags
	Basic Command Line Data Bag Usage with Knife
	Creating Local Users Based on Data Bag Items in a Recipe
	Verify Users
	Encrypted Data Bags
	chef-vault
	Summary

	Chapter 14. Roles
	Create a Web Server Role
	Attributes and Roles
	Roles and Search
	Role Cookbook
	Summary

	Chapter 15. Environments
	Create a Dev Environment
	Attributes and Environments
	Putting All the Pieces Together
	Simulate a Production Environment
	Simulate a Development Environment

	Summary

	Chapter 16. Testing
	Testing Rationale
	Revisiting the Apache Cookbook
	Test Automation with Serverspec
	Write Your First Serverspec Test
	RSpec DSL Syntax
	More Serverspec Resources

	Test Automation with Foodcritic
	Test Automation with ChefSpec
	Write Your First ChefSpec Test
	Lazy Evaluation with Let
	Generate a Coverage Report
	Share Test Code with spec_helper.rb

	Summary

	Chapter 17. Conclusion
	Appendix A. Open Source Chef Server
	How to Install Open Source Chef Server Manually
	Install Open Source Chef Server
	Introducing Idempotence
	Configure Open Source Chef Server
	Testing the Connection
	Bootstrapping a Node
	Create a Node
	Bootstrap the Node with Knife

	Appendix B. Hosted Enterprise Chef
	Testing the Connection

	Glossary
	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

