
www.allitebooks.com

http://www.allitebooks.org

Learning Apache Thrift

Make applications communicate using Apache Thrift

Krzysztof Rakowski

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Apache Thrift

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1181215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-274-6

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Krzysztof Rakowski

Reviewer
Faisal Rahman

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Rahul Nair

Content Development Editor
Mehvash Fatima

Technical Editor
Ankita Thakur

Copy Editor
Sonia Cheema

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Jason Monteiro

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Krzysztof Rakowski has 13 years of professional experience in IT as a team
leader, software developer and architect, and agile project manager. During the
course of his career, he has helped major global brands establish their online
presence using scalable, fault-tolerant, and high-performance systems. His broad
experience comes from various industries, including interactive advertising, banking,
retail, and e-commerce. He is a recognized expert, Zend Certified Engineer, and a
Professional Scrum Master.

Currently, Krzysztof works for the largest online shop in central and eastern Europe—
where he is responsible for supervising teams of software engineers and project
managers who pair the smartest IT solutions with the best customer experience.

He enjoys sharing his knowledge through articles and presentations. He occasionally
writes about his side projects on his website at www.rakowski.pro.

In his free time, Krzysztof likes to travel around the world with his wife, go
snowboarding, or read a good book.

I would like to thank my wife, Anna, for her constant support,
encouragement, and patience. I also want to thank my parents,
parents-in-law, and brother for inspiring me to reach my goals.

This book wouldn't be possible without the generous support of the
friendly people at Packt Publishing.

www.allitebooks.com

www.rakowski.pro
http://www.allitebooks.org

About the Reviewer

Faisal Rahman is a developer, writer, mentor, and tech enthusiast. His passion
extends from architecting secure, scalable, and maintainable software to finding
optimal algorithms and data structures for the smallest problems in a system.
His research on optimization algorithms for known mathematical problems has
been published in reputed journals. He is currently working as a software engineer
at Microsoft.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

I dedicate my work on this book to my son, Ignacy, who will be born as this book
goes into print.

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Introducing Apache Thrift 1

Distributed systems and their services 2
Service-oriented architecture 2
Distributed systems 3
Maintainability 3
Scalability 4
Testability 5

An introduction to Apache Thrift 5
Supported programming languages 6
Data types 7
Transports 8
Protocols 9
Versioning 9
Security 10
Interface description language 10

Apache Thrift and others 11
Custom protocols 12
XML-RPC and JSON-RPC 13
SOAP and WSDL 14
RESTful APIs 15
CORBA 15
Apache Avro 15
Protocol Buffers 16

When to choose Apache Thrift 16
Summary 17

Table of Contents

[ii]

Chapter 2: Installing and Running Apache Thrift 19
Installing Apache Thrift on Linux 19

Installation requirements 20
Installing dependencies 21

Installing dependencies on CentOS 22
Installing dependencies on Debian and Ubuntu 23

Installing Apache Thrift 25
Installing Apache Thrift on Mac OS X 29

Installing Apache Thrift 30
Installing Apache Thrift on Windows 31
Testing the installation 32
Summary 33

Chapter 3: Running Your First Apache Thrift Service and Client 35
Creating necessary project files 35

Creating a local copy of the Apache Thrift libraries 35
Defining our first service and generating files 36
The service code in PHP 38
The client code in Python 41

Running the code 43
What really happened? 44

Analyzing the code 45
The service description – IDL 45
The server script – PHP 46
The client script – Python 46

Summary 47
Chapter 4: Understanding How Apache Thrift Works 49

Prepare your tools 49
Apache Thrift's architecture 50

Going about using the tool 50
Designing the services 52
Preparing the interface description 52
Generating service and client libraries 53
Implementing services and clients 53
Running server and clients 54

The network stack 54
Transport 55
Protocol 56
Processor 57
Server and client 57
Example 58

Table of Contents

[iii]

Apache Thrift's type system 59
Basic types 60
Special types 60
Structs 60
Unions 61
Containers 62

list 62
set 63
map 63
Usage of containers 63

Enums 64
Exceptions 65
Services 65

IDL syntax 67
Comments 67
Document 68
Headers 68

Thrift include 68
C++ include 68
Namespace 69

Definitions 69
const 70
typedef 71

Summary 71
Chapter 5: Generating and Running Code in Different Languages 73

PHP 76
Generating the code 76
Examining the code 77
Transports 78
Protocols 79
Servers 79
Implementing and running the service 79
Implementing and running the client 81

Java 82
Generating the code 83
Examining the code 84
Transports 84
Protocols 85
Servers 85
Implementing and running the service 86
Implementing and running the client 87

Table of Contents

[iv]

Python 88
Generating the code 89
Examining the code 90
Transports 91
Protocols 92
Servers 92
Building the libraries 93
Implementing and running the service 93
Implementing and running the client 94

JavaScript 96
Generating the code 96
Examining the code 97
Transport, protocol, and servers 97
Implementing and running the client 97

Ruby 100
Generating the code 100
Examining the code 100
Transports 101
Protocols 101
Servers 102
Implementing and running the service 102
Implementing and running the client 103

C++ 104
Generating the code 104
Examining the code 105
Transports 106
Protocols 107
Servers 107
Implementing and running the service 107
Implementing and running the client 109

Summary 110
Chapter 6: Handling Errors in Apache Thrift 111

What are the type of errors that can occur? 112
Syntax errors 112
Runtime errors 112
Logic errors 113

What are exceptions and how to handle them? 114
Handling exceptions in Apache Thrift 115

An example code 116
Implementing the divide method 117

Table of Contents

[v]

Running the application without error handling 118
Adding error handling to the server 120
Adding error handling to the client 122
Advanced error handling 123

Summary 124
Chapter 7: An Example Client-Server Application 125

Our example application 125
Planning out your work 126
Getting a general idea of the example application 127
A technical overview of the application 128

get_distance 129
find_occurences 131
save_to_log 132
The server 132
Clients 133

Preparing the Apache Thrift document 133
The basic toolbox – base.thrift 133
The MyToolbox service – mytoolbox.thrift 135
Compiling the IDL files 136

Implementing the server 137
Imports 137
Displaying errors on the console (logger) 138
Implementing service methods 139
Creating the server 141
Running the server 142

Implementing and running clients 142
Creating a client in PHP 142
Creating a client in Ruby 146

Further testing and other exercises 147
Summary 148

Chapter 8: Advanced Usage of Apache Thrift 149
Apache Thrift in production 149

Code version control systems 150
Code deployment 150
Apache Thrift versioning 152
Apache Thrift performance 154

Comparing Java servers 155
Comparing C++ servers 155

Service multiplexing 156
Security issues 160

General security tips 161

Table of Contents

[vi]

Transport Layer Security/Secure Sockets Layer 162
Real-world examples of the usage of Apache Thrift 166

FBThrift in Facebook 167
Apache Thrift in Evernote 168
Apache Thrift in Twitter 169
Apache Thrift in other companies 170

Summary 172
Index 173

[vii]

Preface
In 2007, Facebook's engineers needed to integrate the various applications powering
their website. As their engineering culture encouraged selecting the best tools
for a task without imposing strict rules regarding the choice of technology, their
applications were written in a wide spectrum of different programming languages,
which were considered the best for the given task.

Looking for the best solution to fulfill their needs, the engineers reviewed lots of
different frameworks that were already available on the market. None of them was
deemed sufficient in terms of performance or flexibility. They made a decision
to develop their own solution, which became a standard to integrate all the services
on Facebook.

As they considered their solution to be exceeding the current standards of the
market, they released their code to the open source community, passing the task
of maintaining their work on the project to the Apache Software Foundation. Since
then, Apache Thrift has been developed by a large group of volunteers.

Now you can use Apache Thrift as a tool to expose your own services that are
written in different languages and make your applications communicate with each
other. Regardless of whether you intend to work on a small-scale application or huge
enterprise, Apache Thrift may be one of the best tools for you.

In Learning Apache Thrift, you will find an introduction to various concepts of the
services around you and some service-oriented architecture (SOA). Then you will
learn how to use Apache Thrift in various projects. We will discuss advanced
concepts too to see how the giants of the industry use this framework, and you will
get some solid advice and much needed inspiration.

Preface

[viii]

What this book covers
Chapter 1, Introducing Apache Thrift, gives you basic information about the
environment where services are needed. You will learn about the history of Apache
Thrift and its position in the market. This chapter provides some solid understanding
of the context in which Apache Thrift exists.

Chapter 2, Installing and Running Apache Thrift, provides you with a quick tutorial
that will allow you to have Apache Thrift up and running on your machine in no
time. Instructions for Linux (Debian and CentOS), Windows, and Mac OS X
are included.

Chapter 3, Running Your First Apache Thrift Service and Client, gives you the ability to
see Apache Thrift in action. Simple instructions will get you through the process
of setting up a server and client that run in two different programming languages
(PHP and Python) and communicate with each other.

Chapter 4, Understanding How Apache Thrift Works, provides you with real knowledge
of the framework's internals. You will learn about its components, network stacks,
data types, interface description language (IDL), and the programming languages
that are supported. You will also find out about its limitations and how to deal with
them. This chapter is essential to understand the concept of "under the hood", and
how to design your own Apache Thrift-supported services.

Chapter 5, Generating and Running Code in Different Languages, provides you with a
toolbox of essential information about different popular programming languages
and how you can use them with Apache Thrift. You may read it from the beginning
to the end or just focus on those languages that interest you. The same example
is used for every language, so you can easily compare the server's and client's
implementation for each of them.

Chapter 6, Handling Errors in Apache Thrift, gives you information on how to deal with
undesirable situations that may occur when you run your service or client. Handling
errors is an important part of any programming project, and is especially essential
when dealing with cross-platform applications where errors occur frequently due to
the nature of the distributed architecture.

Chapter 7, An Example Client-Server Application, gathers knowledge from the whole
book into one example client-server application. You will build the code step by step.
The example touches every aspect of Apache Thrift and is a bit more complicated
than what you have done until now. Three different languages will be used (PHP,
Python, and Ruby).

Preface

[ix]

Chapter 8, Advanced Usage of Apache Thrift, inspires you to further expand your
Apache Thrift skills. You will learn how big companies use this framework, how
to run your applications in production, and how to address security, performance,
and scalability issues. You will be also be given access to other interesting Apache
Thrift-related projects.

What you need for this book
To run the examples in this book, you will need any modern computer running
Linux—CentOS or Debian (preferred)—Mac OS X, or Windows. You will also need
some text editor to edit your code.

You will also need an Internet connection to download Apache Thrift and other
required software on your computer.

Who this book is for
If you have some experience of developing applications in one or more languages
that are supported by Apache Thrift (C++, Java, PHP, Python, Ruby, and others)
and want to broaden your knowledge and skills in building cross-platform, scalable
applications, then this book is for you.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "It
initializes the variable x, which is an integer."

A block of code is set as follows:

int main()
{
 int x = 42;
 // this line will produce compilation error
 x = "forty two";
 return 0;
}

www.allitebooks.com

http://www.allitebooks.org

Preface

[x]

Any command-line input or output is written as follows:

sudo apt-get update

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "It varies
from version to version, but in most cases may be found if you right-click on
My Computer and choose Properties, then look for the Advanced panel and the
Environment Variables… tab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Introducing Apache Thrift
There is a milestone in the life of every sufficiently large application that marks
the point when it is too big to be maintained as a monolith. For some systems, it is
in their blueprints from the very beginning, while for others, it comes as a growth
induced necessity and brings along the need for massive rebuild.

Apache Thrift is one of the tools that assist in building scalable, distributed systems,
spanning across different platforms and languages. Originally developed for internal
use by Facebook, now it is an open source software project backed by the Apache
Foundation. It is characterized by a wide range of supported languages, flexibility,
and performance.

In this chapter, you will learn about the scenarios where using Apache Thrift may be
necessary. You will also get familiar with its basic properties and how it is compared
to other similar frameworks. It is essential to know the big picture to be able to select
the best tool for your job.

Let's see how you can put Apache Thrift to good use!

Introducing Apache Thrift

[2]

Distributed systems and their services
Imagine typical web applications that you use every day, such as search engines,
messaging platforms, or social networks. Under one web address, they deliver
different services. For example, a social network delivers people search, messaging,
and users' profile pages. While you access them by one user interface—a web page
written in HTML and JavaScript—what you see in your browser is only a gateway.
Your request to message a friend is being relayed by the underlying application to
the messaging service—an application which is specifically designed to deal with
exchange of messages between the social network's users.

External web service

Search engine

Website

User directory

Database 2

Database 1

+

The Internet

Service-oriented architecture
Messaging service, which we use as an example here, may be written in a completely
different programming language than web application. It is a design decision. The
system architect may decide that interface of your social network; the web pages
that you see every time you log in will be easier to manage and maintain when they
are written in, let's say, PHP or Ruby on Rails. However, messaging systems may be
written in Python as the architect may decide that this language offers better libraries
for this task. On the other hand, search engines or other tools that need superb
performance are often written in C++. There may be also some internal corporate
applications in Java or C#.

Chapter 1

[3]

Those applications, of course, need to communicate with each other. But how to
do that? There is a concept in software design called service-oriented architecture
(SOA). We just discussed the first part of this principle. It focuses on creating
applications around distinct tasks. If every task is performed by a different
application, there is a need for some means of communication between them.
To achieve this goal, applications expose services that are used by other applications.
Typically, they are accessible over some medium, that is, an internal network
or the Internet. They are self-contained and autonomous, which means they are
independent of other services and are able to deliver complete response when
queried. They should also be well documented so that any developer can use them.

Distributed systems
When—as in our example of social network—we have a system that consists of many
autonomous services, we call such systems distributed systems. Depending on the
scale, business needs, or technical constraints, the systems may be spread over lots
of computers in a local network, the Internet, or just on a single machine. Benefitting
from the SOA principles, you may run and test on your desktop computer
distributed system of the same logical architecture, which will be then used on
hundreds of servers in the production environment.

There are many advantages of SOA in distributed systems over monolithic
applications. Let's discuss some of them.

Maintainability
The greatest advantage of distributed systems in SOA is their maintainability, which
means ease of performing all the tasks related to the caretaking of the software. If
the system consists of many applications, each dedicated to one task or type of tasks
instead of one big monolith, some of the actions can be performed a lot easier:

• You can select tools (that is, programming languages, libraries, and services)
that are best for a given task. You can use different toolsets for search engine,
message queues, or data-intensive calculations.

• Instead of having all the developers working on one application (that
means one code base), you can split the team to work on many applications
separately. You can even outsource some of the work to external teams or
companies. This way, they won't get in each other's way. Smaller teams are
more agile and yield better results.

• Communication between the different components of the system is narrowed
to only one specified interface, which is easier to comprehend, monitor, and
debug than lots of convoluted classes and methods.

Introducing Apache Thrift

[4]

• It is easier to respond to failures and fix bugs. Let's say there's some bug
introduced that causes whole application to crash. In distributed systems,
only one service may be down, while the whole system is operational.
System operators or developers are able to replace the service with the
stable version and do some tests to identify the bug or perform other
actions without affecting the rest of the system.

• Introducing changes is a lot easier too. In the common workflow, if a new
version of a service is to be deployed, it can be run as a separate instance
with the old version simultaneously. System operators can switch the
client application from the old to the new service and see whether everything
performs correctly. If it does, the old service is turned off; otherwise, it is easy
to switch back to the old service and fix the new one. It is even easier in the
cloud environments.

Scalability
Many systems are required to perform well under a high load. It is not only the
domain of web applications, but it is best pictured here: popular websites receive
hundreds of millions of page views per day, which constitutes a high traffic load.
To withstand such increasing stress, systems need to scale. The most obvious
way, known by every computer user, is to add RAM or switch to a better CPU if
applications don't run smoothly. But there is a limit to such scaling (called vertical
scaling). You don't expect Google to run on a single powerful computer, do you?

The other type of scalability is horizontal scaling, which means adding more
computers (called nodes) to the system. For example, our imaginary social network
system may consist of several web application nodes, a few database nodes, and
also some user search nodes. In properly designed systems, operators can add or
remove nodes depending on the expected load and other circumstances. More
sophisticated systems can even scale themselves, starting or stopping nodes in the
cloud automatically, based on the traffic analysis.

SOA allows multiple nodes of the same function to be accessible to the clients.
As services are self-contained, independent of the state of other services, and
documented, developers can prepare their software without much care if they will
be dealing with one or hundred nodes. In most scenarios, traffic to the services is
managed by software or hardware load balancers, making it completely invisible for
the client.

Chapter 1

[5]

Testability
Another advantage of distributed systems is the easiness of testing them and finding
and fixing bugs. Independence of services means that they can be tested in isolation
from the whole system. Only a particular service's operation is being tested without
any influence from other components. Because services should be well documented,
it is easy to predict the desired output for a given input. If bugs are found, they can be
evaluated and fixed without the need to consider them in the scope of whole system.

An introduction to Apache Thrift
You probably know Facebook, the popular social network. A small website started
in 2004 as a funny side project by a Harvard student, Mark Zuckerberg, gained
huge popularity, having more and more users. In its early years it faced rapid
growth in terms of traffic, system, and network structure. Their engineering culture
allowed choosing any solution that was deemed optimal for a given task without
any constraints or standards. This led to a situation when they had lots of different
services, but no reliable way to connect them together. Describing Apache Thrift,
Facebook's engineers stated in the white paper (you can download it from https://
thrift.apache.org/static/files/thrift-20070401.pdf):

"(...) we were presented with the challenge of building a transparent, high-
performance bridge across many programming languages."

They tested solutions available in the market and came to the conclusion that none of
them fulfilled the requirements of high performance, flexibility, and simplicity. The
result of their work was Thrift—a piece of software that was later open sourced and
handed over to the Apache Foundation.

Apache Thrift's simplicity comes from the fact that the code for different programming
languages is generated automatically from a single file written in the interface
definition language (IDL). In other similar solutions, data has to be prepared before
it is transferred to meet the limitations of the method of transport—not all structures
are easily transferred. In most cases, simple data types such as strings are integers and
transferrable. Due to this, a developer has to translate every structure more complex
than that to the text form in a process called serialization. This has to be done on both
ends (deserialization being the reverse process), which needs extra work, testing, and
debugging. In the case of Apache Thrift, the developer can use data types native to
their programming language of choice using the methods dedicated to this language.
All serialization and deserialization is made by the Apache Thrift itself and is not
visible to the developer. This architecture of the solution allows programmers to focus
on working on the actual services, and not having to care about how the data is going
to be transferred from one application to another.

https://thrift.apache.org/static/files/thrift-20070401.pdf
https://thrift.apache.org/static/files/thrift-20070401.pdf

Introducing Apache Thrift

[6]

Let's have a quick glance at the pillars of Apache Thrift. Some of the topics will be
covered in much more detail in Chapter 4, Understanding How Apache Thrift Works, so
here are just the basics that you will need to understand our first code examples.

Supported programming languages
Before starting any work with Apache Thrift, you should probably check whether it
supports the programming language that you use. Of course, there is a great chance
that it does—most of the popular languages are supported. The complete list for
version 0.9.3 is as follows:

• ActionScript 3
• C++
• C#
• D
• Delphi
• Erlang
• Haskell
• Java
• JavaScript
• Node.js
• Objective-C/Cocoa
• OCaml
• Perl
• PHP
• Python
• Ruby
• Smalltalk

Note that Apache Thrift is still in the pre-1.0 version, so
some of the languages may be not fully supported. It is best
to check on the Apache Thrift website (https://thrift.
apache.org/docs/features), in the source code, or
try to learn the current status of support for your favorite
programming language yourself.

https://thrift.apache.org/docs/features
https://thrift.apache.org/docs/features

Chapter 1

[7]

If your language of choice is on the list (especially if it is a popular one), you
can be sure that you will be able to generate all the code necessary to work with
Apache Thrift.

Data types
One of the basic features of every programming language is their data types. Although
the basic ones may be very similar, that is, integer or string, it may not be that easy for
the rest of them. Some of the languages (for example, C++) are statically typed. This
means that the type of the variable has to be known at the compile time. Thus, it has to
be defined in the source code when the program is written. After that, the variable can
be of only this type. For example, consider the following line from C++:

int x = 42;

It initializes the variable x, which is an integer. This variable has to stay an integer
through the execution of the program. If later on you would like to assign a value of
some other type, it will produce an error as soon as you compile your program.
Let's take a look at the following example:

int main()
{
 int x = 42;
 // this line will produce compilation error
 x = "forty two";
 return 0;
}

If you try to compile this simple code, you will end up with the following
compile error:

$ g++ -o example example.cpp
example.cpp: In function 'int main()':
example.cpp:4:6: error: invalid conversion from 'const char*' to 'int'
[-fpermissive]
 x = "forty two";
 ^

Other languages are dynamically typed, that is, the type of the variable is checked
in the runtime, but in the source code it might be anything, any time. Consider this
example from PHP:

if (rand(0,1) == 1) {
 $x = 42;
} else {

www.allitebooks.com

http://www.allitebooks.org

Introducing Apache Thrift

[8]

 $x = "forty two";
}
var_dump($x); // var_dump() function prints type of specified
 // variable and its value

Depending on the random outcome of the condition, the value of the variable may be
either integer or string. Let's take a look at the following example:

$ php -f example.php

The result of running this program would be either string(9) "forty-two" or
int(42).

As you can see, both values are permitted as PHP interpreter changes the type of the
variable during the runtime.

Programming language allows that and, moreover, later on, you can assign values of
different types to the same variable.

Without Apache Thrift, developer would have to serialize the variables. It means that
before the variables are transferred, they should be mapped to the most basic data
types that are understood by every programming language (most probably, integers
and strings of characters). After the transmission, those serialized variables have to
be translated back to the structures available in the programming language at the
receiving end.

Apache Thrift does all that dirty work for the developer. It provides its own data
types that are then mapped to the ones native to the given programming language,
thereby allowing the developer to focus on creating the application, not the
communication interface.

Transports
Transports are a part of Apache Thrift's network stack. They allow you to transmit
data over different channels, that is, HTTP protocol, sockets, or files. Decoupling
the transport layer lets you to easily choose the transport that best fits your solution
without many changes in the code.

The choice of transport should be dictated by the architecture of your solution.

Chapter 1

[9]

Protocols
Protocols prepare data to be transmitted over transports. The name of the process is
called serialization (when sending data) and deserialization (when receiving data).
There are different protocols that can be used: JSON, binary, plain text, and so on.
It means that depending on what data you want to transfer, you can use different
methods of serialization. For example, if you expect to transmit images or other
binary data, choosing the binary protocol is the best option as there would be almost
zero overhead. If you chose JSON for this purpose, binary data would be converted
to text, thereby increasing the payload by a third or more.

The choice of protocol should be dictated by the data you wish to transfer using
Apache Thrift.

Versioning
Versioning is an approach for managing changes in the service's API (and in
the software in general). As software is being developed, it changes. Sometimes
the changes are miniscule, and sometimes great. They are often manifested by
modification of the methods or parameters exposed by the API.

When developing client and server software, you shouldn't assume that clients will
be updated to the newest version instantly. It is not possible, even if you have total
control of the environment. It is also wise to allow the older versions of the client to
work with the newer versions of the server.

Changes in the APIs, libraries, and other externally available components pose a big
challenge for the developers, leading to problems often referred to as dependency
hell—when different applications are compatible with different versions of the same
library or API, leading to difficulties with managing those dependencies.

To alleviate this inconvenience, most of the software developers adopt a convention
of marking the version of the application with decimal numbers, according to the
template, MAJOR.MINOR.PATCH, where PATCH means miniscule changes (that is, fixing
some bugs), MINOR is a larger change but backward-compatible with the previous
versions, and MAJOR means a major release that might break the compatibility with
the previous versions of the software.

Introducing Apache Thrift

[10]

Apache Thrift's feature is soft versioning. It means that there are no formal
requirements as to how the changes between the subsequent versions should be
handled or announced. However, it delivers a set of tools that allows users to easily
keep backward compatibility with the new versions of the service. It is achieved by
the following properties:

• The method's arguments are numbered. You can add or remove them. As
long as the same number is not reused, the new versions of methods may
function without removed arguments. Those numbers shouldn't be changed
for any existing argument.

• You can set default values for the arguments, so if the older version of the
client has a method without a new variable, the service doesn't receive any
value for such an argument and the default value is set. This is useful when
you want to add some fields.

• While manipulation with fields is relatively easy, you shouldn't rename
methods or services. This makes them unavailable for the older clients.

Security
Security is essential to every service. Although you definitely need to take extra care
when exposing services to the Internet, it is also important when they are available in
private networks.

Apache Thrift allows you to use TSSLTransportFactory to utilize RSA key pairs,
providing security for the connection.

Another way of securing your Apache Thrift connection (although a little bit more
complicated) is tunneling it over SSH.

We will discuss this in the detail in Chapter 8, Advanced Usage of Apache Thrift.

Interface description language
Apache Thrift's core feature is its own IDL, one that shapes its simplicity and
usability. It will be familiar at first sight to anyone who has programmed in
contemporary programming languages. Using IDL, you are able to define the service
and all the variables that it uses in one file. It is an unambiguous description of what
the service will look similar to without going into the implementation details.

Let's consider a very simple service, which allows you to add two integers:

namespace py thrift.example1
namespace php thrift.example1

Chapter 1

[11]

service AddService {
 i32 add(1: i32 a, 2: i32 b),
}

This example code defines AddService service, which contains the add method. This
method takes two 32-bit signed integers (i32) as parameters and also returns such
an integer as a result. We will want to have the code generated for Python and PHP
languages, but of course Apache Thrift is able to do it for a far greater spectrum of
languages.

Now the Thrift's magic begins; if you save this code to the file (let's say, example1.
thrift) and run the following commands, you will get the code of client and server
for this service in desired languages (Python and PHP in this example) in the newly-
created folders, gen-py and gen-php:

$ thrift --gen py example1.thrift

$ thrift --gen php example1.thrift

In the simplest solution, it is enough to fill the code of the add method, and voilà,
you have a fully-functional client and server.

This example is, of course, oversimplified, but shows the major advantage of Apache
Thrift—the ability to define in one place and then instantly generate services and the
corresponding client code without the need of writing code in every language from
scratch. It is a great tool not only for final solutions, but also for rapid prototyping
for different programming languages.

To see how much work Apache Thrift just spared you, examine the generated files
that are saved in the gen-py and gen-php folders.

IDL is a very powerful tool. It has a lot of options and gives you a great deal of
flexibility. We will discuss it in greater detail in Chapter 4, Understanding How
Apache Thrift Works.

Apache Thrift and others
Until now, you may have come to the conclusion that Apache Thrift is the best
solution for all your needs when dealing with distributed systems. Surprisingly, it
is not always true. In this section, we will review similar tools so that you are able to
understand how Apache Thrift compares to them and when to use which tool.

Introducing Apache Thrift

[12]

Custom protocols
Frequently, inventing your own custom protocol is the first idea that comes to a
developer's mind when he/she needs to transfer data between two applications.
Very often, it works surprisingly well in small solutions, which are not expected to
scale or be modified frequently.

Examples of such solutions are popular in web applications. Creating your own
custom protocol is as simple as generating output with some text: just plain or
formatted according to JSON or XML specification, and serving it through HTTP.
On the client side, we need to connect to this service, get the content, and parse it.

To imagine such a solution better, consider a very simple example of a service
adding two numbers. The request may be the following GET call:

GET /add?number1=30&number2=12

The response in the JSON format may be the following:

{"result":42}

Unfortunately, the only advantage of such solutions is that they are quick and easy
to implement, both on the server- and client-side, on a small scale. Besides that, there
are some disadvantages:

• Text-based protocols have significant overhead. This is especially true for
XML, which encapsulates everything with lots of tags.

• They transfer binary data (that is, images), adding additional overhead to the
payload. As those protocols are text-based, binary data has to be converted
to text. One of the popular techniques is Base64, which encodes the message
byte by byte into a printable text character. The outcome of such an operation
is that the string that is ready to be transferred is around 37% larger than the
original binary data. There is also extra processing required on both client's
and server's end.

• There are really no standards for such protocols; everything has to be
invented by the developer. It poses not only difficulty when designing such
a service, but also is a complication when the client's applications have to be
maintained; for every service, there need to be custom tools prepared. And
no standards means that debugging is a lot more difficult.

• Maintenance is another problem with such protocols. When there is a change
needed, both server and client code needs to be modified separately and
deployed at the same time. There is no way to modify the code once and
have it working on both client and server.

Chapter 1

[13]

Of course, the spectrum of possibilities when designing custom protocols is much
wider than those examples that are typical for web applications. One can design their
own binary protocols working on sockets, files, queues, or another medium. This
gets rid of some of the disadvantages of text-based protocols, but still leaves lots of
other problems to deal with.

XML-RPC and JSON-RPC
XML-RPC is one of the early remote procedure call (RPC) protocols, which uses
XML-encoded messages transferred over HTTP. JSON-RPC is its much younger
cousin, which is based on the same principle, but uses JSON instead of XML.

Both protocols allow you to call remote services with handful of data types in
the relevant format. The exchanged messages are plain XML or JSON without
any overhead.

Here is an example of a typical XML-RPC request:
<?xml version="1.0"?>
<methodCall>
 <methodName>add</methodName>
 <params>
 <param>
 <value>
 <int>30</int>
 </value>
 </param>
 <param>
 <value>
 <int>12</int>
 </value>
 </param>
 </params>
</methodCall>

And, the corresponding response is:

<?xml version="1.0">
<methodResponse>
 <params>
 <param>
 <value>
 <int>42</int>
 </value>
 </param>
 </params>
</methodResponse>

Introducing Apache Thrift

[14]

JSON-RPC request is much more verbose:

{"method": "add", "params": [30, 12], "id": 1}

The service will return the following response:

{"result": 42, "error": null, "id": 1}

The simplicity of both of these protocols comes at a price. While they may be
easily implemented, they share disadvantages of custom protocols, such as lack of
standards and need for maintenance of both server and client codes, and they may
not be best suited for transferring binary data.

SOAP and WSDL
Simple Object Access Protocol (SOAP) is a solution for some problems with
customarily designed protocols, which evolved from XML-RPC. It is used mainly
for web services (over HTTP) to exchange structured information between them
and clients.

SOAP is a protocol based on XML. It is rather complicated with several layers of
specification. The messages are structured according to this specification.

Every SOAP message consists of the following elements:

• Envelope: This is the root element of the message that identifies the message
as SOAP and defines its structure.

• Header: This is an optional field that may contain extra application-specific
control information for identifying the message.

• Body: This contains the actual payload of the message (call or response).
• Fault: This is an optional element that is used to pass information about errors.

It contains error code, description, and other application-specific information.

Web services over the Internet are commonly provided with SOAP as a method of
calling operations described in the Web Services Description Language (WSDL)
file. In this file, the available messages are described in the XML schema form.

Due to SOAP's standardization it is easy to debug, and there are many tools that help
to do that. It is enough to parse the WSDL file to be able to communicate with the
given web service.

Unfortunately, SOAP still has disadvantages discussed previously: a large overhead
connected to XML processing and the need to encode binary data into text form.

Chapter 1

[15]

RESTful APIs
WSDL-based web services using SOAP were considered cumbersome and complex,
so Representational State Transfer (REST) was introduced as a simpler alternative.
Web services that are developed in accordance with REST's architecture constraints
are called RESTful APIs.

Features of REST can be perceived as a mix of two previously discussed topics:
custom protocols and SOAP.

RESTful APIs are simpler and a lot lighter than SOAP. They make use of HTTP
methods to manipulate the data (collections of elements):

• GET: This is used to retrieve information about some collection or its elements
• PUT: This is used to create or replace the collection or element
• POST: This is used to create a new element in the collection
• DELETE: This is used to delete entire collection or a specific element

Every collection or its element has its own, unique Universal Resource
Identifier (URI).

The advantages of RESTful APIs are their simplicity and efficiency. They are also
scalable and cacheable.

On the side of disadvantages, there is a lack of standardization (each service's
message and response format may be different), no built-in error handling, and no
standardized authentication mechanisms.

CORBA
Common Object Request Broker Architecture (CORBA), http://www.corba.
org/, dates back to 1991, and is the oldest of the standards presented in this chapter.
However, its concepts are quite similar to Apache Thrift (for example, it uses its
own IDL).

It is considered a bit cumbersome; instead of using a language's native code, a
developer needs to use a CORBA-specific one. It's hard to install and heavy to run.
There are different implementations and they are inconsistent.

Apache Avro
Apache Avro (https://avro.apache.org/) is another remote procedure call and
data serialization framework developed with the support of the Apache Foundation.
It was developed as a tool for the Apache Hadoop framework.

http://www.corba.org/
http://www.corba.org/
https://avro.apache.org/

Introducing Apache Thrift

[16]

Lots of similarities to Apache Thrift include describing the interface with IDL,
support for many programming languages (Java, C, C++, C#, Scala, Python, and
Ruby), and a compact, fast binary format.

The main difference is that Avro's code doesn't have to be generated when the service
is defined and later on, when it changes. It could be, for statically typed languages,
but for dynamically typed languages, it is not necessary. It is possible because Avro
uses the dynamic schema, which accompanies data when it is being transferred.

As a disadvantage in comparison with Apache Thrift, Apache Avro doesn't offer
such a wide selection of serialization formats (protocols, in Thrift's terminology)
and transports.

Protocol Buffers
Protocol Buffers are an older brother of Apache Thrift, and they share lots of
similarities. They were developed as an internal proprietary software in Google
and are used in most of the inter-machine communication. Since their release to
open source in 2008, they have gained support not only for officially implemented
languages (C++, Java, and Python), but also a lot more (JavaScript, Go, PHP, Ruby,
Perl, and Scala).

Apart from IDL syntax and implementation details, Protocol Buffers differ from
Apache Thrift in that they have less language support, different base types, a lack
of constants and containers, and no built-in exception handling. In the open source
version, there is also no RPC implementation for services (you need to implement it
yourself).

On the other hand, Protocol Buffers are a little bit faster than Apache Thrift and their
objects are smaller. Also the documentation and availability of tutorial is considered
better and more complete.

When to choose Apache Thrift
When designing and developing applications that have to communicate with each
other, one may go through the whole evolution process involving the solutions
presented in the previous section. Many services start as a very limited tool, which
works quite well with some simple custom protocol. But the data that needs to be
transferred may become more and more complicated than the need for some format,
such as JSON or XML appears JSON-RPC or XML-RPC may be then used.

Chapter 1

[17]

As the service is growing and is exposed to more external applications, the need
to standardize the architecture and proper documentation arises. In such cases,
using web services based on SOAP and WSDL seems to be a proper idea. If your
application's goal is to operate on collections of elements, RESTful API may be
a good solution.

But there are situations where one needs to transfer binary data and provide
flexibility for changing the definition of the services along with support for different
platforms and languages; all this in an environment where high performance is
crucial. In these cases, serialization and remote procedure call for frameworks such
as Apache Avro, Protocol Buffers, and Apache Thrift. From these three, the last one
offers the widest selection of serialization formats, and transports along with remote
procedure call implementation.

Summary
Distributed systems, SOA, SOAP, WSDL, XML, and JSON, are some of the popular
buzzwords that are frequently encountered by developers interested in creating
applications that talk to each other. It is often hard to comprehend how these
theoretical concepts can be used to accomplish the goal.

In this chapter, we learned what these distributed systems are and Apache Thrift's role
in achieving communication between different services. We also discussed its position
among similar solutions and their advantages and disadvantages.

In the upcoming chapters, we will install Apache Thrift, generate and run our simple
services, and discuss the features in great detail. Having this knowledge, we will
advance to prepare our own client-server application using Apache Thrift.

[19]

Installing and Running
Apache Thrift

In this chapter, we will go through the installation process for Apache Thrift on the
three most popular platforms: Linux, Mac OS X, and Microsoft Windows. All the
required software and libraries are free and downloadable from the Internet, so just
to follow the instructions for your platform is enough.

After completing this chapter, you will have a working environment and compile
your first file written in the Apache Thrift's IDL.

Apache Thrift's official documentation is specific about the versions of the software
it requires. Although you should be successful with different versions (especially
newer), in case of any trouble, your best bet is to try out the versions specified here.

The development and release process for any software is
often more rapid than the process of writing and publishing
the book. This version of the installation guide is based on
and tested with Apache Thrift's 0.9.2 version. If you run into
any trouble, you should refer to the current requirements
specification on the Apache Thrift's official website at
https://thrift.apache.org/docs/install/.

Installing Apache Thrift on Linux
Apache Thrift is officially supported on Debian and its flavors (including Ubuntu)
and CentOS. Of course, it is also possible to install it on different distributions as
the instructions are pretty straightforward and can be easily ported—the main
requirement is a POSIX-compliant system.

https://thrift.apache.org/docs/install/

Installing and Running Apache Thrift

[20]

Note that you need to have root privileges on your machine as some libraries and
software probably need to be updated. The commands requiring such privileges are
prefixed with sudo.

For the sake of the brevity of this manual, the output of the given commands is
omitted in most cases where it is not relevant. You should be OK as long as the
command results in success.

Installation requirements
On the Linux platform, you will need to build your Apache Thrift compiler from
the source. It requires the following tools (version numbers are minimal versions
recommended by Apache Thrift's developers):

• g++ 4.2
• boost 1.53.0
• autoconf 2.65
• automake 1.13
• libtool 1.5.24
• pkg-configautoconf macros (pkg.4)
• lex and yacc runtime libraries
• libssl-dev

There are also a few extra minimal requirements for programming languages:

• C++
 ° libevent (to build a non-blocking server)
 ° zlib

• Java 1.7
 ° Apache Ant

• C#: Mono 1.2.4
• Python 2.6 or newer (including header files for extension modules)
• PHP 5.0 or newer (optionally including header files for extension modules)
• Ruby 1.8 or newer

 ° bundler gem

• Erlang R12 (it also works on R11, but it's not recommended by Apache
Thrift's creators)

• Perl 5

Chapter 2

[21]

 ° Bit::Vector
 ° Class::Accessor

• Haxe 3.1.3 or newer
• Go 1.4 or newer
• Delphi 2010

It is possible to disable some of the programming languages during the compilation
process. You will learn how to do it in the upcoming sections.

Installing dependencies
Before actually compiling Apache Thrift, you need to install all the required
dependencies. Since Linux distributions use different package managers and
different versions of software, instructions vary.

Most of the required packages are provided through package management systems
of the distributions; only in some cases, you need to compile them manually.

The following instructions are as extensive as possible, including all the requirements
that are needed to install Apache Thrift and some of the problematic scenarios you
may face. It was tested on fresh installations of CentOS 7 and Ubuntu 14.04 LTS.
However, due to Linux's nature—a multitude of distributions, versions, and the
uniqueness of each machine—some problematic situations (for example, compile
errors) may occur. In such cases, you will need to resolve them yourself. Fortunately,
more often than not, someone has already had the same problem, so your help may
be one Google search away.

If you want just to play with Apache Thrift and see how it works, I recommend
working not on your regular machine, but on a virtual one created just for this
purpose. A virtual machine is—as the name states—a virtual computer (called guest)
with many capabilities such as network connection or the ability to read CD discs,
and it runs on your own physical computer (called host). The advantage is that
you don't change any software on your current machine. You can always create a
snapshot (a kind of "save game") and in case of misfortune start from there or just
scrap the whole virtual machine and start from scratch.

A great tool to run virtual machines is the open source Oracle VirtualBox (http://
www.virtualbox.org/) and proprietary (but free for personal use) VMware Player
Pro (http://www.vmware.com/products/player/). To run a new Linux instance,
you need to install one of them, create a new virtual machine, and provide Linux
ISO image, which you can download from http://www.ubuntu.com/download/
desktop. This process is really straightforward and can easily be completed by
following the in-application instructions.

http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.vmware.com/products/player/
http://www.ubuntu.com/download/desktop
http://www.ubuntu.com/download/desktop

Installing and Running Apache Thrift

[22]

Installing dependencies on CentOS
This instruction is valid for CentOS 7, but should be also applicable to any newer
version and a few older. Follow these steps:

1. First of all, make sure that your system is up to date. If needed, the newest
versions of software can be installed. To do this, use the following command:
$ sudo yum -y update

2. Then, install the Development Tools. It's a group of essential development
tools that are needed if you want to compile your own applications:
$ sudo yum -y groupinstall "Development Tools"

Some of the languages need extra libraries if you want to write and run
clients and servers in them. These requirements were listed previously, so
here, we'll just list the commands needed to install them. If you already
have some of this software in your computer, it will be skipped. Some of the
actions require wget (a tool needed to download files from the Internet).

3. If you don't have wget installed, do it now with the following command:
$ sudo yum -y install wget

4. Now, let's install the required dependencies for C++:
$ sudo yum -y install libevent-devel zlib-devel openssl-devel
boost-devel bzip2-devel

5. You also need to upgrade boost to the version newer than the one supplied
by yum. To do this, run the following commands:
$ wget http://sourceforge.net/projects/boost/files/boost/1.58.0/
boost_1_58_0.tar.gz

$ tar -xvzf boost_1_58_0.tar.gz

$ cd boost_1_58_0

$ sudo ./bootstrap.sh

$ sudo ./b2 install

6. For Java, you will need Java Development Kit (in this instance, OpenJDK)
and Apache Ant. Install it using the following command:
$ sudo yum -y install java-1.7.0-openjdk ant

7. For PHP, the interpreter is needed:
$ sudo yum -y install php

8. Similarly, for Python use this:
$ sudo yum -y install python

Chapter 2

[23]

9. For Ruby, you will need interpreter, development libraries, and some
development tools, such as gem, rake, bundler, rspec, and rdoc:
$ sudo yum install ruby rubygems ruby-devel rake

$ sudo gem install bundler rspec rdoc

10. If you need to work with Node.js, you will need the newest version, which
is not provided by the package manager. You need to download the source
code, and compile and install it yourself:
$ wget https://nodejs.org/dist/v0.12.7/node-v0.12.7.tar.gz

$ tar -xvzf node-v0.12.7.tar.gz

$ cd node-v0.12.7

$./configure

$ make

$ sudo make install

After completing these steps, you will have everything that is needed to compile and
install Apache Thrift.

Installing dependencies on Debian and Ubuntu
This instruction is valid for Ubuntu 14.04 LTS and Debian 8.1 Jessie. Ubuntu
and Debian share a package manager (Ubuntu being based on Debian), so the
instructions are similar. Moreover, they should work for Ubuntu's variants (such as
Kubuntu, Xubuntu, Lubuntu, and so on.)

First of all, make sure that your system is up-to-date. To do this, update the package
list and upgrade your system:

$ sudo apt-get update

$ sudo apt-get upgrade

Then, install or update the necessary libraries:

$ sudo apt-get install libboost1.54-all-dev libevent-dev g++ bison
libssl-dev

As with CentOS, some of the languages need extra libraries if you want to write and
run clients and servers in them. These requirements were listed previously, so here,
we'll just list the commands needed to install them. If you already have some of this
software in your computer, it will be skipped. Some of the actions require wget. If
you don't have wget installed, do it now:

$ sudo apt-get install wget

Installing and Running Apache Thrift

[24]

Python should be enabled by default. If not, install it with the following command:

$ sudo apt-get install python

For PHP, you will need only the command-line interpreter:

$ sudo apt-get install php5-cli

If you want to be able to run PHP scripts as a web application, you may want to install
the php5 package (which also installs the apache2 package—Apache HTTP Server):

$ sudo apt-get install php5

To install Node.js, you can use:

$ sudo apt-get install nodejs npm

For Java, you have a few options. If you haven't installed Java previously, you
should run the javac command to see the list of the possible Java packages.
The result will look similar to this:

The program 'javac' can be found in the following packages:

 * default-jdk

 * ecj

 * gcj-4.8-jdk

 * openjdk-7-jdk

 * gcj-4.6-jdk

 * openjdk-6-jdk

Try: sudo apt-get install <selected package>

You may choose any JDK you want; we will use OpenJDK for our tutorials. We will
install it together with Apache Ant, which is also on the list of the requirements:

$ sudo apt-get install openjdk-7-jdk ant

For Ruby, you will need interpreter, development libraries, and some development
tools, such as gem, rake, bundler, rspec and rdoc:

$ sudo apt-get install ruby rake ruby-dev gems

$ sudo gem install bundler

After completing these steps, you will have everything that is needed to compile and
install Apache Thrift.

Chapter 2

[25]

Installing Apache Thrift
At this stage, you should have anything that is needed to compile and install Apache
Thrift on your CentOS, Ubuntu, or Debian Linux machine.

1. First, let's download the newest version of the software. Go to the download
page at https://thrift.apache.org/download and click on the link at the
top of the page (at the time of writing, it was thrift-0.9.2.tar.gz) for the latest
stable release of Apache Thrift. This link will take you to the page that serves
you the source page that is geographically closest to you. Copy the link and
supply it to wget:
$ wget http://www.eu.apache.org/dist/thrift/0.9.2/thrift-
0.9.2.tar.gz

2. After the download completes, decompress the archive and switch the
directory:
$ tar -xvzf thrift-0.9.2.tar.gz

$ cd thrift-0.9.2

Now you will work in this directory to configure, compile, and install
Apache Thrift. If any problems occur after troubleshooting, most likely you
will have to repeat the process from this point.

3. Let's run the configure script:
 ° ./configure: This script checks your environment and looks for the

required dependencies. There will be a lot of information printed on
the screen. If something is missing, you will get the error message.

4. To help you debug the configuration process, you may want to familiarize
yourself with the modifiers available for the configuration script:

 ° ./configure --help: There are lots of them, but in the beginning,
you will need only a few. For example, if some of your dependencies
are installed in non-standard locations or configure can't find them
(you will know by the error messages), you may need to specify their
exact location in either --with-zlib=/usr/include or --with-
boost=/usr/local way.

Sometimes, you may want to skip some languages. To do that, you can use
--without-<language> option, for example:

$./configure --without-php

https://thrift.apache.org/download

Installing and Running Apache Thrift

[26]

One of the popular instances is a problem with the Lua programming language,
which occurs during compilation:

libtool: link: gcc -shared -fPIC -DPIC src/.libs/libluasocket_la-
luasocket.o src/.libs/libluasocket_la-usocket.o -llua5.2 -lm -lssl
-lcrypto -lrt -lpthread -O2 -Wl,-soname -Wl,libluasocket.so.0 -o
.libs/libluasocket.so.0.0.0

/usr/bin/ld: cannot find -llua5.2

collect2: error: ld returned 1 exit status

As it is highly unlikely that your first Apache Thrift application will be in Lua, you
may want to skip it by using the following option:

$./configure --without-lua

If you want to stick with Lua, you need to update it from source as current repositories
for Ubuntu, Debian, and CentOS don't provide the required 5.2+ version.

You may also encounter a problem with the configure script properly recognizing
your boost library. In such situations, check where it is on your machine:

$ whereis boost

boost: /usr/include/boost

Then supply this information to the configure script:

$./configure -with-boost=/usr/include/boost

Of course, you may use more than one argument at a time.

The most important output of the configure script is at the end. It lists all the
programming languages that it was able to configure. The information looks
similar to this:

thrift 0.9.2

Building C++ Library : yes

Building C (GLib) Library : no

Building Java Library : yes

Building C# Library : no

Building Python Library : yes

Building Ruby Library : yes

Building Haskell Library : no

Building Perl Library : no

Building PHP Library : yes

Chapter 2

[27]

Building Erlang Library : no

Building Go Library : no

Building D Library : no

Building NodeJS Library : yes

Building Lua Library : yes

C++ Library:

 Build TZlibTransport : yes

 Build TNonblockingServer .. : yes

 Build TQTcpServer (Qt) : no

Java Library:

 Using javac : javac

 Using java : java

 Using ant : /usr/bin/ant

Python Library:

 Using Python : /usr/bin/python

PHP Library:

 Using php-config :

Ruby Library:

 Using Ruby : /usr/bin/ruby

NodeJS Library:

 Using NodeJS : /usr/local/bin/node

 Using NodeJS version....... : v0.12.7

Lua Library:

 Using Lua : /usr/bin/lua

If something is missing that you think should be present, skim the output of
configure to find the missing component; the details are present in config.log.

www.allitebooks.com

http://www.allitebooks.org

Installing and Running Apache Thrift

[28]

As you may see in the preceding output, all the supported languages, some
additional information about used executables, and so on are listed. This is the
point where you should check whether the programming language of your choice
is enabled on the list. If not, check whether you followed all the instructions in the
Installing dependencies section. You may also want to check the config.log file,
which stores the detailed information about the progress of the configure script.
Look for the keywords connected with your language, for example, ruby or cpp.

When you are satisfied with the output of the configure script, now is the time for the
compilation. It may take few minutes (depending on your machine), so grab a coffee
and run this command:

$ make

It may ask for your password to compile and install system-wide dependencies
(that is, for Ruby).

Sometimes, the compiler may complain about missing files with an error message
similar to this:

Makefile:1048: gen-cpp/.deps/ChildService.Plo: No such file or directory

Makefile:1049: gen-cpp/.deps/DebugProtoTest_types.Plo: No such file or
directory

Makefile:1050: gen-cpp/.deps/EnumTest_types.Plo: No such file or
directory

Makefile:1051: gen-cpp/.deps/OptionalRequiredTest_types.Plo: No such file
or directory

Makefile:1052: gen-cpp/.deps/ParentService.Plo: No such file or directory

Makefile:1053: gen-cpp/.deps/Recursive_types.Plo: No such file or
directory

Makefile:1054: gen-cpp/.deps/ThriftTest_constants.Plo: No such file or
directory

Makefile:1055: gen-cpp/.deps/ThriftTest_types.Plo: No such file or
directory

Makefile:1056: gen-cpp/.deps/TypedefTest_types.Plo: No such file or
directory

Makefile:1057: gen-cpp/.deps/proc_types.Plo: No such file or directory

make[1]: *** No rule to make target 'gen-cpp/.deps/proc_types.Plo'.
Stop.

make: *** [check-recursive] Error 1

To resolve this issue, it may be helpful to disable the parallel make and set the -j
parameter to 1, which means that the compiler will run in a single job only:

$ make -j 1

Chapter 2

[29]

When the compilation is complete, it's time for the last step—the installation of the
compiled files in your system. To do this, issue the following command:

$ sudo make install

We noticed that to avoid certain privilege errors on CentOS, you may need to use:

$ su -

$ make install

Also, when you select Ruby as one of the languages, this method will yield errors
similar to this (even if you have rdoc installed):

Successfully installed thrift-0.9.2.0

ERROR: While executing gem ... (Gem::DocumentError)

 RDoc is not installed: cannot load such file -- rdoc/rdoc

rake aborted!

Command failed with status (1): [gem install thrift-0.9.2.0.gem...]

To suppress the error and go on with the installation process, you need to use
the -i argument:

$ make -i install

When this process succeeds, you have Apache Thrift installed on your system.
To check, just run the following command:

$ thrift

Usage: thrift [options] file

Use thrift -help for a list of options

If your output is similar to the preceding, congratulations; you have installed Apache
Thrift on your Linux box!

Installing Apache Thrift on Mac OS X
Mac OS X, being a Unix-based system, offers a very similar experience to Linux
systems. However, it doesn't contain an out-of-the-box, Apple-supported package
management system such as yum or apt-get. Fortunately, there is a great third-party,
open source replacement called Homebrew (http://brew.sh/). It is a great tool,
especially for users familiar with Linux package managers. I recommend it not only to
manage Apache Thrift, but also other packages that you may need.

http://brew.sh/

Installing and Running Apache Thrift

[30]

To install Homebrew, just use the clever script provided on their website:

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install)"

Alternatively, if you don't like running arbitrary code downloaded from the Internet,
you can follow the step-by-step instructions at the following link, which will give
you some alternatives for how to perform the installation:

https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/
Installation.md

When you have Homebrew installed, you can use it to install dependencies:

$ brew install boost openssl

Installing Apache Thrift
Now you can install Apache Thrift. First, check the package to see the available
bindings you would like to install as well:

$ brew info thrift

This will yield a result similar to:

thrift: stable 0.9.2 (bottled), HEAD

http://thrift.apache.org

/usr/local/Cellar/thrift/0.9.2 (90 files, 5.4M) *

 Poured from bottle

From: https://github.com/Homebrew/homebrew/blob/master/Library/Formula/
thrift.rb

==> Dependencies

Build: bison ✘

Required: boost ✔, openssl ✔

==> Options

--with-erlang

 Install Erlang binding

--with-haskell

 Install Haskell binding

--with-java

 Install Java binding

--with-perl

 Install Perl binding

--with-php

 Install PHP binding

https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/Installation.md
https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/Installation.md

Chapter 2

[31]

--with-python

 Build with python support

--HEAD

 install HEAD version

==> Caveats

To install Ruby binding:

 gem install thrift

To install PHP extension for e.g. PHP 5.5:

 brew install homebrew/php/php55-thrift

As you can see, you may choose some bindings. Use them when installing
Apache Thrift:

$ brew install thrift --with-python --with-php

If you want to have Ruby binding, do it by installing the relevant gem (you may need
to use sudo):

$ gem install thrift

Check your Apache Thrift installation by running the following command:

$ thrift

Usage: thrift [options] file

Use thrift -help for a list of options

If your output looks similar, you're good to go!

Installing Apache Thrift on Windows
Although primarily designed for Unix-compatible systems, Apache Thrift can also
be used in the Windows environment. The installation is very easy; it is enough
to download the Thrift compiler from the download page, https://thrift.
apache.org/download. No installation is needed; you may work directly with the
downloaded file. For consistency, I suggest renaming the file that you downloaded
(that is, thrift-0.9.2.exe) to just thrift.exe. In order to be able to run this
command from any directory on your computer, add this file's location to the PATH
environment variable. (It varies from version to version, but in most cases, it may be
found if you right-click on My Computer and choose Properties. Then, look for the
Advanced panel and the Environment Variables… tab. If in doubt, the solution can
be found easily on Google).

https://thrift.apache.org/download
https://thrift.apache.org/download

Installing and Running Apache Thrift

[32]

If you want to develop applications that use Apache Thrift, you, most likely, will be
using Visual Studio and C++ or C# bindings. They are provided in the subdirectories
of lib in your Apache Thrift archive with the relevant Visual Studio project files.

Testing the installation
To test whether Apache Thrift is installed and works properly, we will generate
some code for a service, which does nothing. Don't worry; we will get straight to
your first fully-working application in Chapter 3, Running Your First Apache Thrift
Service and Client. Now is the time to just check whether everything is in place.

Use the following code in Apache Thrift's IDL and put it in some file, that is,
test.thrift:

this is just a Test service, which contains two methods

service Test {

 # this method probably does nothing
 void donothing(),

 # this method probably multiplies two numbers
 i32 multiply(1:i32 number1, 2:i32 number2),

}

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

As you may see, we defined a simple service called Test. It contains two
methods: one called donothing, which doesn't return anything (void), and
the other, multiply, which takes two arguments of type i32 (which is 32-bit signed
integer)—number1 and number2—and also returns a 32-bit signed integer.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 2

[33]

At this stage, it doesn't matter what the methods do; they even don't have to be
implemented (you will learn more detail in Chapter 4, Understanding How Apache
Thrift Works). To see if you did everything properly, run the following command in
the directory where you saved your test.thrift file:

$ thrift --gen php --gen py test.thrift

The command that you just ran takes the test.thrift file, parses it through the
Apache Thrift compiler, and generates service files in PHP and Python languages
that you may use to develop your services.

The default output directory is gen-<language_name>; so in this case, the directories
are gen-php and gen-py. Check whether these directories were created, and in fact,
whether there are some PHP or Python files. If yes, congratulations; your Apache
Thrift was installed successfully!

As an extra task, I encourage you to browse through the files and see the vast
amount of work that Apache Thrift does for you while you don't need to write a
single line of code yet.

Summary
In this chapter, we learned how to compile and install Apache Thrift on various
environments such as Linux, Mac OS, and Windows. We also learned about other
software and dependencies that the installations require, and how to check a
successful installation by running commands. Now you have everything you need to
start creating your first application.

In the next chapter, you will run your first Apache Thrift client and service with
examples and instructions.

[35]

Running Your First Apache
Thrift Service and Client

As you have everything ready, we shouldn't wait any longer to let you run your first
Apache Thrift-enabled application.

The plan for this chapter is that firstly, you will create the necessary project files.
After a brief configuration, you will be able to run the service and connect it with the
client by yourself. We will be using a server written in PHP and a client in Python.
The code is very simple, so you can adapt it to any other programming language if
you wish.

At the end of this chapter, we will discuss the code and exactly what it means. Don't
worry if you don't understand everything at the beginning. The goal of this chapter
is to allow you to have a running client and service that you can easily manipulate
and change. We will discuss the technical details in Chapter 4, Understanding How
Apache Thrift Works.

Creating necessary project files
Let's make a fresh start by creating a new directory on your disk. In this directory,
we will keep all the files related to the current chapter's mini project.

Creating a local copy of the Apache
Thrift libraries
To make things simpler, we will make a local copy of the Apache Thrift libraries.

Running Your First Apache Thrift Service and Client

[36]

Copy the archive that you downloaded in the previous chapter to your newly-
created directory and decompress it:

$ tar -xvzf thrift-0.9.2.tar.gz

Note for Windows users
In the examples, we will use Unix-style commands as this is
the most popular platform for Apache Thrift. Use Windows
equivalents when needed.
To decompress the .tar.gz archives under Windows,
I recommend suitable open source (free) software, for
example, 7-Zip, which you can download from
http://www.7-zip.org/.

Now we will have full Apache Thrift in the thrift-0.9.2 directory (the name may
differ depending on the version; substitute it in all the commands). We will be using
PHP and Python libraries that are in the thrift-0.9.2/lib directory.

The Python library needs to be built. Enter its directory and run the setup command.
This library will not be installed system-wise; just build in place:

$ cd thrift-0.9.2/lib/py

$ python setup.py build

$ cd ../../..

Defining our first service and generating files
Now we're back in our main directory and ready for the real work. Here is the
description of the service, MyFirstService, that we will be working on. Note
that Apache Thrift's IDL only describes the interface without really providing any
information about what the methods will be doing. It is the service developer's
responsibility to make sure that the names of the services and methods are consistent
with what they are actually doing.

You don't have to type all the code by yourself. You can
download it from Packt's website and use it in your project.

Let's look at the interface description:

// namespaces are used in resulting packages
namespace php myfirst
namespace py myfirst

http://www.7-zip.org/

Chapter 3

[37]

// you can define names for your types.
// Usable primarily for integers.
typedef i32 int

// simple exception
exception MyError {
 1: int error_code,
 2: string error_description
}

// here starts the service definition
service MyFirstService {

 // log method - it saves timestamp to given file
 oneway void log(1:string filename),

 // multiply method - returns result of multiplication of two
integers; it returns integer as well
 int multiply(1:int number1, 2:int number2),

 // get_log_size method - returns size of log file; throws
exception when problems occur
 int get_log_size(1:string filename) throws (1:MyError error),

}

As you can see, in MyFirstService, we described three methods:

• oneway void log(1:string filename): This will save some value
(timestamp in our example) to the given file

• int multiply(1:int number1, 2:int number2): This will multiply two
integers and return the result

• int get_log_size(1:string filename) throws (1:MyError error):
This will return the size of given log file and in case of any trouble, it will
throw an exception

We will get to the details later. Now save this code in the myfirst.thrift file. As
a next step, use Apache Thrift compiler that you installed in the previous chapter to
generate PHP and Python files:

thrift --gen py --gen php:server myfirst.thrift

Running Your First Apache Thrift Service and Client

[38]

This command will generate lots of PHP files in the gen-php directory and
Python files in the gen-py directory. You can browse them and admire how
much work Apache Thrift does for you. Of main interest for us are the gen-php/
MyFirstService.php and gen-py/MyFirstService.py files, which contain (among
others) definition of the interface that we have to implement by ourselves in PHP
and client classes.

The service code in PHP
At this point, we have everything that Apache Thrift can offer automatically.
The next step is to prepare the code for our service. In a real-world scenario, this
probably will be a part of larger application. Now, as a demonstration, we will have
an extremely basic setup and its main purpose is to be portable and easy to run.

Note that in order to be simple and comprehensive, code in
this chapter may lack features that need to be taken care of
in professional applications, which are meant to be used in
real-world solutions. For example, there is not much validation
or input sanitization, errors are not always properly handled,
and the application may not perform well under heavy load.
If you plan to use this or similar code in your applications,
please apply general knowledge related to application security
and performance characteristics to your programming language.
In Chapter 8, Advanced Usage of Apache Thrift, you will learn some
essential information about running Apache Thrift applications
in production.

Let's have a look at our server's code:

#!/usr/bin/env php
<?php

error_reporting(E_ERROR);
date_default_timezone_set('UTC');

define('THRIFT_PHP_LIB', __DIR__.'/thrift-0.9.2/lib/php/lib');
define('GEN_PHP_DIR', __DIR__.'/gen-php');

require_once THRIFT_PHP_LIB.'/Thrift/ClassLoader/ThriftClassLoader.
php';

use Thrift\ClassLoader\ThriftClassLoader;

Chapter 3

[39]

$loader = new ThriftClassLoader();
$loader->registerNamespace('Thrift', THRIFT_PHP_LIB);
$loader->registerDefinition('myfirst', GEN_PHP_DIR);
$loader->register();

use Thrift\Protocol\TBinaryProtocol;
use Thrift\Transport\TPhpStream;
use Thrift\Transport\TBufferedTransport;

class MyFirstHandler implements \myfirst\MyFirstServiceIf {

 public function log($filename) {
 $time = date('Y-m-d H:m:s');
 file_put_contents(__DIR__."/".$filename, $time."\n", FILE_
APPEND);
 error_log("Written " . $time . " to " . $filename);
 }

 public function multiply($number1, $number2) {
 error_log("multiply " . $number1 . " by " . $number2);
 return $number1 * $number2;
 }

 public function get_log_size($filename) {
 $filesize = filesize(__DIR__."/".$filename);
 if ($filesize === false)
 {
 $e = new \myfirst\MyError();
 $e->error_code = 1;
 $e->error_description = "Can't get size information
for file " . $filename;
 error_log($e->error_description);
 throw $e;
 }
 error_log("size of log file " . $filename . " is " . $filesize
. "B");
 return $filesize;
 }

};

Running Your First Apache Thrift Service and Client

[40]

header('Content-Type', 'application/x-thrift');
echo "\r\n";

$handler = new MyFirstHandler();
$processor = new \myfirst\MyFirstServiceProcessor($handler);

$transport = new TBufferedTransport(new TPhpStream(TPhpStream::MODE_R
| TPhpStream::MODE_W));
$protocol = new TBinaryProtocol($transport, true, true);

$transport->open();
$processor->process($protocol, $protocol);
$transport->close();

Don't get scared by the broadness of this file. We will discuss it in detail later. Basic
knowledge of any programming language will let you easily see that here we are
implementing three methods (log, multiply, and get_log_size) that were just
briefly described in the IDL file. There is some PHP code that performs the basic
operations promised by the methods' names.

Save this code to the MyFirstServer.php file. Make sure that the path to the Apache
Thrift library in the line 7 is correct:

define('THRIFT_PHP_LIB', __DIR__.'/thrift-0.9.2/lib/php/lib');

If you want the timestamps in the log file to reflect your time zone (helpful for
debugging), set a proper identifier in line 5:

date_default_timezone_set('UTC');

You may check the list of available time zone identifiers at
http://php.net/manual/en/timezones.php.

You may run this code via a regular web server (that is, an Apache HTTP server or
nginx) if you have it set up. If not, there is a simpler solution in a few lines of Python
that is suggested in Apache Thrift's code library:

#!/usr/bin/env python

import os
import BaseHTTPServer
import CGIHTTPServer

class Handler(CGIHTTPServer.CGIHTTPRequestHandler):

http://php.net/manual/en/timezones.php

Chapter 3

[41]

 cgi_directories = ['/']

print "Starting server on port 8080..."

BaseHTTPServer.HTTPServer(('', 8080), Handler).serve_forever()

This code uses Python's native capabilities to serve files from the local directory via
HTTP on port 8080. They will be parsed as a CGI script, that is, the PHP code will be
interpreted by the PHP interpreter, and that's exactly what we need. Save this code
to the runserver.py file.

Note that you shouldn't use this method for running the PHP
scripts in a production environment. It's not reliable and doesn't
provide adequate performance. Also, it may be vulnerable in terms
of security. It's intended only as a helper to developers.
Instead, you should run your PHP scripts in one of the
ways recommended and extensively explained in the PHP
documentation at http://php.net/manual/en/install.php.

The client code in Python
As we have the service code, now it's time to have some code for the client. This
small Python script will connect to the service exposed by PHP and run some
methods from MyFirstService. Let's see how simple that is:

#!/usr/bin/env python

import sys, glob
sys.path.append('gen-py')
sys.path.insert(0, glob.glob('thrift-0.9.2/lib/py/build/lib.*')[0])

from myfirst import MyFirstService

from thrift import Thrift
from thrift.transport import THttpClient
from thrift.transport import TTransport
from thrift.protocol import TBinaryProtocol

from random import randint

try:

 socket = THttpClient.THttpClient('localhost', 8080, '/
MyFirstServer.php')

http://php.net/manual/en/install.php

Running Your First Apache Thrift Service and Client

[42]

 transport = TTransport.TBufferedTransport(socket)
 protocol = TBinaryProtocol.TBinaryProtocol(transport)
 client = MyFirstService.Client(protocol)
 transport.open()

 # calling log method
 client.log("logfile.log")
 print 'logged current time to logfile (not waiting for response)'

 # calling multiply method with random parameters
 number1 = randint(1,100)
 number2 = randint(1,100)
 product = client.multiply(number1,number2)
 print '%dx%d=%d' % (number1, number2, product)

 # calling get_log_size method
 print "current size of logfile is: %d Bytes" % client.get_log_
size("logfile.log")

 # calling get_log_size method second time, but this time with
wrong parameter
 print "current size of logfile is: %d Bytes" % client.get_log_
size("no_such_file.log")

 transport.close()

except Thrift.TException, e:
 print 'Received following error:\n error code: %d\n error desc:
%s' % (e.error_code, e.error_description)

After a brief analysis of the code, you may see that we are using an instance of the
MyFirstService.Client class that implements the same methods that we had
defined in our PHP service. Running remote code is as easy as calling methods of
this instance.

Note that we send random values to the multiply method to illustrate that every
request is different. Also, in the second calling of the get_log_size method, we
provide the name of the file that doesn't exist, so we have an opportunity to see how
errors are handled.

Save this code to the client.py file.

Chapter 3

[43]

Running the code
Now is the time to run the scripts and see the outcome. It is best to use two separate
terminal windows so that you can observe the result of the operation on both client
and server side.

To start your PHP service, you need to run it through the Python wrapper that you
wrote. To do this, run the following command:

$ python runserver.py

Starting server on port 8080...

If you see a message like this and no other error, it means that your PHP service
is listening on the port 8080 on your computer. In this window, you will see
information about all the incoming connections and their results.

Now, let's try to call our service with Python client script. To do this, run the
following command:

$ python client.py

If everything happened as expected, you will see some output. It will look similar
to this:

logged current time to logfile (not waiting for response)

70x7=490

current size of logfile is: 760 Bytes

Received following error:

 error code: 1

 error desc: Can't get size information for file no_such_file.log

In the first terminal (the one, where you ran your server), you will see messages
similar to this:

127.0.0.1 - - [04/Aug/2015 23:05:59] "POST /MyFirstServer.php HTTP/1.0"
200 -

Written 2015-08-04 23:05:59 to logfile.log

127.0.0.1 - - [04/Aug/2015 23:05:59] "POST /MyFirstServer.php HTTP/1.0"
200 -

multiply 22 by 52

127.0.0.1 - - [04/Aug/2015 23:05:59] "POST /MyFirstServer.php HTTP/1.0"
200 -

size of log file logfile.log is 20B

Running Your First Apache Thrift Service and Client

[44]

127.0.0.1 - - [04/Aug/2015 23:05:59] "POST /MyFirstServer.php HTTP/1.0"
200 -

Can't get size information for file no_such_file.log

It is a regular access log with extra information delivered by the PHP script.

You can run the client script multiple times, just to see the different results. You will
also notice that logfile.log was created on the disk in the same directory where
the script is located, and is appended with the current time every time you run the
client script.

What really happened?
Let's talk a little about what really happened here.

At the beginning, you ran the runserver.py script. It doesn't play a huge role
here; it is just a little helper Python script. Its purpose is to run continuously and
listen on the 8080 port of your computer and serve files from the current directory
over HTTP without all the hassle of setting up a regular web server. It runs them as
the CGI scripts, so our PHP file is going to be parsed by the PHP interpreter installed
on your system.

When we have the server running, we can connect to it. To do this, you ran the
client.py script. This piece of code benefits from the capabilities of Apache Thrift.
Using autogenerated libraries, it allows you to call remote commands from your
Python script. In this case, you asked to run the following methods:

• log("logfile.log")

• multiply(number1, number2), where both numbers were randomly chosen
from the range of 1 to 100

• get_log_size("logfile.log")

• get_log_size("no_such_file.log")

Those requests were sent to the http://localhost:8080/MyFirstServer.php
address and they were passed by our helper script to the MyFirstServer.php
script. There, they were executed. The running log method resulted in appending
the current time to logfile.log (you can see it by yourself); multiply yielded the
result of the multiplication of the two numbers that you provided; and get_log_
size returned the size of the log file at the first call and at the second (where the
non-existent filename was given), it threw an exception, which was transferred from
the PHP server to the Python client and handled there.

Chapter 3

[45]

In general, what you have seen here is that the procedures were called remotely.
They were implemented in the PHP script, but were invoked from, and the result
was processed in an independent Python script. In this simple example, everything
occurred on one machine, but it could work equally well between computers spread
all over the world.

The purpose of Apache Thrift in this example is to provide a communication
framework and automatically generate libraries so that the developer doesn't have to
worry about serializing and transfer methods (and lots of other stuff) and he/she can
focus on implementing the service and client.

Analyzing the code
Before we go further, let's have a quick look and explain the most important parts of
the code that we used in this chapter. We will dig deeper into the technical details
and deal with many useful Apache Thrift options in Chapter 4, Understanding How
Apache Thrift Works.

The service description – IDL
The most important part of the service description begins with the following line:

service MyFirstService {

In this block, there are descriptions of methods exposed by this service. Let's have a
look at the first two:

oneway void log(1:string filename),
int multiply(1:int number1, 2:int number2),

The syntax bears a strong resemblance to C++'s (and other popular languages')
method definitions. The oneway keyword means that the client only makes a request
and won't wait for the result of the log method. This method doesn't provide any
return value, which is marked by the void keyword (note that all oneway methods
should return void). You may also notice numbered argument notation that is
typical for Apache Thrift.

The multiply method, on the other hand, returns int, which is the name defined by
us for the not intuitively named type of i32, which is a 32-bit signed integer.

The get_log_size method also returns int, but has one distinct feature:
int get_log_size(1:string filename) throws (1:MyError error),

It throws MyError, which means that in case of a failure, it will throw an exception
that we defined earlier in the file.

Running Your First Apache Thrift Service and Client

[46]

The server script – PHP
Our service is implemented in PHP. Lots of Apache Thrift-specific code surrounds
the most important part, which is the implementation of our service's interface:

class MyFirstHandler implements \myfirst\MyFirstServiceIf {

The MyFirstHandler class has the same methods as the ones described in our IDL
file. It is essential that the names of the methods and parameters (and their order) are
the same; otherwise, you won't be able to call them.

Implementations of the methods are very simplistic and lack lots of essential features
(such as error handling or input validation), but serve their purpose of providing
some output to the client. An extra output is also sent through the error_log
function to the terminal window in which you run runserver.py.

The code preceding and following the MyFirstHandler class prepares the
environment for running the script and defines how the data will be transferred.
We will discuss it in great detail in Chapter 5, Generating and Running Code in Different
Languages.

The client script – Python
You may have noticed that in the client script, the transfer details are the same as
in the server script. It's the same transport (TBufferedTransport) and protocol
(TBinaryProtocol). The script will connect to the port, 8080, on local host.

The most important part of this script is the client object. It has the same methods
as those provided by the server, so you can just run them without giving a second
thought to how the data is transferred between the client and the server. The return
values are native to Python, and exceptions are handled just the same way as in any
other application in this language.

Activity for you
As an extra task, I encourage you to play with the service and the
client. Try to change the code of methods in the PHP file. Issue
different calls from the client Python file. Add extra methods to
your service and handle them in the client (remember to do it in
the service definition in the myfirst.thrift file as well and
generate the needed libraries using the thrift command). You
may even want to add some extra error handling or throw an
exception or two.

Chapter 3

[47]

Summary
In this chapter, you implemented your first service in the PHP language and a client
script in Python. You ran the client, called the service's methods remotely, and
examined the output. I hope that you experimented a little bit with your scripts.

After reading this chapter, you are now able to prepare the development environment,
implement services, and make use of them through the client application.

In the next chapters, we will get into the technical details, which will allow you to
fully understand Apache Thrift's potential and make use of it!

[49]

Understanding How Apache
Thrift Works

Now that you ran your first service and client with Apache Thrift, it's time to learn
about how it really works and what options you can choose when designing your
application. In this chapter, we will go through the Apache Thrift's building blocks.

First, we will cover Apache Thrift's architecture, how does it look from the
developer's perspective, as well as its internal structure.

Next, you will learn about Apache Thrift's variable types, the building blocks of every
interface description. From basic types, such as integers and strings, through more
complex types, such as struct, to the service, which are combinations of all of them.

In conclusion, we will go through the last piece of the puzzle—the definition of IDL
syntax. Knowing all this will allow you to construct your own IDL files.

Prepare your tools
To benefit from this chapter, you should be able to run the Thrift compiler
frequently, be able to review the generated files and test your changes. We will be
working on the myfirst.thrift file, which was prepared in the previous chapter.
I encourage you to test different data types, service definitions, compile them, and
examine the generated code.

Note that on Windows computers, your Apache Thrift compiler
will be named thrift.exe.

Understanding How Apache Thrift Works

[50]

Apache Thrift's architecture
Apache Thrift's architecture can be viewed from two angles. The first approach
shows the tool that is used by the developer—the Thrift compiler—along with the set
of instructions that determine what to do in order to run the services.

The second way is to get to know the internal architecture and the purpose of
protocols, transports, services, and processors that the developer will use, in order to
know how the tools are built and what are the ways of their operation.

As in every craft, you can build things knowing the basic operation of the tool
that you will work with; not every developer needs to have a deep knowledge of
Apache Thrift's internals to do his job. However, to fully understand how it works
and design the scalable and performant services and system architectures, this
knowledge is essential.

If you wish to get the information about Apache Thrift IDL syntax and start
preparing your services right away without getting too much into the technical
details, you may want to skim over this section or skip it altogether and go straight
to the section about the type system.

However, I highly recommend every developer to get back to this section some time
later to learn essential information that definitely will be needed in the future.

Going about using the tool
One of Apache Thrift's advantages is that it is rather simple to use and implement
in the programs written in many different programming languages. Developers are
able to apply a simple instruction set in order to have the services and clients up and
running in no time.

Chapter 4

[51]

Let's have a look at the schema illustrating the typical workflow:

Service design

Apache Thrift
compiler

Apache Thrift
document

Run the
service

PHP/Ruby/Java/...
service code

PHP/Ruby/Java/...
client + service stub

PHP client

C++ client

Python client

In this section, we will discuss the following steps:

• Designing the services
• Preparing interface description
• Generating the service and client libraries
• Implementing services and clients
• Running the server and clients

Understanding How Apache Thrift Works

[52]

Note that this section describes the developer's workflow with
Apache Thrift and its purpose is to draw a general picture of
the process. Detailed information about specific commands,
parameters, and so on, can be found in other chapters in the book.

Designing the services
First, the most important step is independent of the software; it is to design your
system and services. In a typical scenario, you would need to assess the applications
that are already in place or be developed. It has to be taken into consideration that
what kind of interaction between them is needed. Most commonly the applications
would need to do one of the two things, that is, either receive or deliver some data or
perform some operations remotely.

It is possible that there will be one or many such services exposed in your system.

Frequently in the typical production setup, some applications
may be accessible to other applications, others not. Sometimes,
the communication may be permitted only in one direction.
This is often due to security restrictions, company policy, or
network topology. Take this into consideration when designing
services and making the decision about which application
should expose them and which should act as a client.

Preparing the interface description
After you reviewed your needs and designed your services, you need to prepare the
Apache Thrift document, which is written in IDL and has the .thrift extension.
You will describe each of the services. To do this, first you need to define variables
and constants that you will use. Service description offers the information about the
functions, their parameters, the kind of value they return, and if they can throw an
exception. In one file, there can be multiple services described.

You learned about how the exemplary Apache Thrift document looks like in the
previous chapter. More on the syntax of this document is in the upcoming sections.

Chapter 4

[53]

Generating service and client libraries
When your interface description document is ready, you can run the thrift
command with the required parameters on your IDL document. This command takes
the file, processes it and generates—in accordance with different specifications for
each of the programming languages—the files containing description of the services
and related variables' types that will be used by your service and clients. These files
extend the classes delivered by the Apache Thrift library.

If you will go through the generated files, you will see that every element from
your IDL document was translated to the programming language of your choice.
We will examine these files in detail in Chapter 5, Generating and Running Code in
Different Languages.

Implementing services and clients
This step is sometimes perceived as the hardest part, as the developer is required
to prepare the server's and client's code from scratch, and the documentation is
sometimes sparse on this subject.

The first step is to implement the services and wrap them around in the server's
code. This code will be based heavily on the Apache Thrift library and the generated
classes. You need to choose the desired processor, transport, and protocol (more
on this in later sections) and add the actual functions' code. In real life, this code
will rely hugely on the different parts of your application. However, for the sake
of brevity, the client and server code is self-contained (with the exception of any
language's standard libraries) throughout this book.

The second step is to implement the clients. As with the server, you are required to
do it by yourself from scratch. This time, however, it is easier: you need to pick the
same type of processor, transport, and protocol as you choose for the server and
instantiate the service class generated by the compiler.

In most cases, you will implement the services only in one programming language
as a part of the application delivering those services. The client's code, on the
other hand, may be implemented in many languages depending on the different
applications that need to access your service.

You have seen the example code of the server and client in the previous chapter.

Understanding How Apache Thrift Works

[54]

Running server and clients
You run your server's and clients' code in a way typical for the programming
language of your choice. Remember to start the server first and then run the clients.

As you may see, Apache Thrift removes the burden of preparing the communication
from scratch; you just need to fill in the gaps that are prepared for you to have a fully
functional, cross-language communication.

The network stack
You now know how the Apache Thrift works from the outside. Let's look at the
internals that let your applications to communicate. The purpose of the network
stack is to allow getting your message through various communication layers and
encapsulating the message along the way. The variables are serialized to the form
that can be eventually sent through the network or other medium. The form of
serialization is decoupled from the transport layer. After the message is transmitted,
it is received by the client and then deserialized.

An easy way to understand the network stack is to imagine a traditional postal
system. When you want to send a letter to your friend on the other side of the world,
you don't expect that someone will pick up the single sheet of paper from you, carry
it around and then after some time, hand it to your friend. You need to prepare your
letter to its journey through various layers of the postal system or, as we may say in
this context, encapsulate it.

First, you put it in the envelope, which specifies the delivery address, and insert
it into the mailbox. When the mailman comes, he opens the mailbox and puts the
letters in the bag in the back of his truck. Then, at the various levels/layers of the
postal system, your letter is sorted, put in the different bags or containers, and
shipped by trucks or trains to the central sorting centers. When it's the time to
hop over the ocean, the bag with your letter will be probably put in some bigger
container and safely placed in the airplane's cargo bay.

When the plane arrives to the country of the destination, the process is reversed: the
bags are unloaded from the cargo container, delivered through the different sorting
centers to the destination post office, where the postman takes his bag and puts your
letter in your friend's delivery box. The last step is performed by the recipient, who
tears the envelope and reads the letter—the same piece of paper that you wrote.

Chapter 4

[55]

Apache Thrift's network stack consists of transport, protocol, processor, and server.

Server

Processor Processor

Protocol Protocol

Transport Transport

Client

Let's look at those components.

Transport
The transport layer provides a way to read and write data from and to the network
or any other medium that you want to use. It is independent from the protocol, so
you are able to separately choose how you will serialize the data to be transferred.

Apache Thrift offers a wide spectrum of transports that could be used depending on
the architecture of your solution. Their availability is not consistent; some are widely
available while others only in selected languages. The documentation is also sparse,
sometimes even none; one has to look through the implementation source code to
work out the details.

To make your life easier at this point, here is a collection of basic transports that are
most common and allow you to successfully communicate between your applications.

All of the transports implement Apache Thrift's TTransport interface in respective
programming languages. Some of the transports are end point transports (it means
they write and read directly to or from the device) others are layered transports (it
means they are chained with other transports).

Understanding How Apache Thrift Works

[56]

The following transports are widely supported:

• TSocket: This uses a blocking socket, which means that only one connection
can be active at a time. Thus, it is not a very good solution for production.

• TPhpStream (only in PHP): This is useful in situations when we have HTTP
server running (that is, Apache or nginx) and want to output the result of the
PHP script through this server without actually running our own server.

• TBufferedTransport: Other transports are often wrapped around in this
one, as it provides buffering of input and output data.

• TFramedTransport: This is also a wrap-around layer to provide framing of
the payload.

• TFileTransport (or TFileObjectTransport in Python): This is used to read
and write to the file.

You will learn more about the availability of specific transports in various
programming languages in Chapter 5, Generating and Running Code in Different
Languages, and in Chapter 8, Advanced Usage of Apache Thrift, we will discuss how to
make your connection secure by wrapping it around in the TLS/SSL encryption.

When choosing the transport for your application, it is important
to make sure that it is implemented in the programming
languages that you would like to use. If you plan to establish the
communication between the applications in the same language
and you are sure that it will stay this way, you may go with the
specialized transports available for you. But if you plan to make
it cross-language, your best bet is those more popular.

Protocol
Protocol is responsible for mapping the in-memory structures (simple and complex
data types) to a format that can be transmitted over the selected transport. This
process is called serialization (or encoding) when transmitting the message and
deserialization (or decoding) when receiving it. Protocol is independent of the
transport used.

Protocols in Apache Thrift face the same issues as the transports; there is a wide
offer that can be matched to your architecture. However, protocols' availability is
inconsistent and very often there is lack of documentation; the developer needs to
look through the source code to figure out the details.

Chapter 4

[57]

This is a list of the most popular protocols:

• TBinaryProtocol: This is a simple protocol that converts all data to binary
values. You should use it if you don't have any specific needs, as this one is
the most universal.

• TCompactProtocol: This Apache Thrift's own protocol uses a lot of
optimizations to make the payload as small as possible.

• TJSONProtocol: The payload is encoded as a JSON string.

All of the transports implement Apache Thrift's TProtocol interface in respective
programming languages.

You will read learn more about the availability of specific protocols in various
programming languages in Chapter 5, Generating and Running Code in Different
Languages.

As with transports, also when choosing protocol, you should
go with the most popular (one of these three), unless you want
some special functionality and know that it is implemented in
your programming languages.

Processor
Processor is generated by the Apache Thrift compiler from your interface description
document, so you don't have much choice here. It reads data from the input protocol,
passes it to the handler, and sends the result to the output protocol. (Normally, both
input and output protocols are the same.)

Server and client
The server combines all of the previously mentioned layers; it creates the transport,
input, and output protocols (most of the time it is the same) processor based on the
generated code, and protocols. Then it runs and waits for the incoming connections
on the specified port.

In the simplest example, as the one in the previous chapter, you can use PHP and
TPhpStream transport. In such case, you don't have to use Apache Thrift's server as
you use the server that runs your PHP scripts.

Understanding How Apache Thrift Works

[58]

Besides that, you can use any of the servers implemented with Apache Thrift. As
with transports and protocols, there is a wide variety, and every programming
language has a different choice. You can select any server you like the best for your
solution. The most popular are:

• TNonblockingServer: This is a multithreaded, non-blocking I/O server that
is optimized for handling concurrent connections.

• TThreadPoolServer: This is a multithreaded, blocking I/O server that uses
much more resources than the previous one, but offers a better throughput.

• TSimpleServer: This is mainly used for testing purposes. It is single
threaded with blocking I/O, which means it can process only one connection
at a time.

You will learn how to use different (more advanced) servers in Chapter 5, Generating
and Running Code in Different Languages.

Example
You may see the example of how the network stacks works in the excerpt from the
PHP code from the previous chapter:

$handler = new MyFirstHandler();

$processor = new \myfirst\MyFirstServiceProcessor($handler);

$transport = new TBufferedTransport(new TPhpStream(TPhpStream::MODE_R |
TPhpStream::MODE_W));

$protocol = new TBinaryProtocol($transport, true, true);

$transport->open();

$processor->process($protocol, $protocol);

$transport->close();

handler is implemented by the developer and as the name states, it is used to handle
the service. Transport is chosen and passed to the protocol object. processor reads
the data from the protocol, passes it to handler, and writes the result to the same
protocol (thus the parameter $protocol is doubled).

In this case, the server is the whole file containing the preceding excerpt, as the
TPhpStream transport is used. It allows reading and writing directly to the stream,
so no intermediary is needed.

Chapter 4

[59]

Apache Thrift's type system
Apache Thrift offers its own type system, which is designed to allow the developers
to use the variable types native to their language of choice. Then, Thrift's libraries
take care of translating the types between different languages.

Apache Thrift
types

Python
types

C++
types

Java
types

PHP
types

Ruby
types

Apache Thrift creators divided its types into a few categories:

• Basic: These are the simplest types present in virtually every programming
language.

• Special: These are those which don't fit into the basic category (currently, it is
only one type).

• Structs: These are the equivalent of structs or classes from popular
programming languages (with some limitations).

• Container: These are equivalent to commonly used container types in most
of the programming languages.

• Exceptions: These are used to handle the errors.
• Services: These are core concept in Apache Thrift. They gather all the

other types mentioned earlier to describe the procedures that can be called
remotely. Exposing services is the main purpose of Apache Thrift.

IDL is a way of defining Apache Thrift types to create the services.

In this section, we will go through the Apache Thrift's types, getting to know how to
construct the building blocks of the interface definition file structure.

Understanding How Apache Thrift Works

[60]

Basic types
Basic variable types reflect those present in every programming language. Those are
basic numeric, string and binary types:

• bool: Boolean value—true or false
• byte: Byte or 8-bit signed integer
• i16: 16-bit signed integer
• i32: 32-bit signed integer
• i64: 64-bit signed integer
• double: 64-bit double precision signed floating point number
• string: UTF-8 encoded text

Variable declarations don't appear by themselves in the interface description file; they
are present in the service declaration, as a function attribute or in typedef statements.

In a function declaration, the type of the variable precedes its name, for example:

i32 add(1: i32number1, 2: i32number2)

The integer type names seem a little bit less readable in comparison to other
languages, so the developers often tend to re-declare their name to create some more
familiar name using the typedef statement:

typedefi32int

There are no unsigned integers as they are not implemented in many programming
languages.

Special types
Currently, there is only one type of variable in the Apache Thrift's special types, and
its developers plan to move it to the basic types at some point. It is a binary type, and
it is a special case of string type. It offers the best interoperability and correctness
when transmitting the binary data.

Structs
A struct is an object with a set of strongly typed fields, which is used to encapsulate
similar variables. Some readers may immediately notice the similarity to C's structs.

Chapter 4

[61]

Let's have a look at a simple struct in a very popular example:

struct Person {
1: required string first_name,
2: optional string middle_name,
3: required string last_name,
 4: i32 age = 0
}

As with many other syntax elements in Apache Thrift's IDL, the attributes are
numbered. It is needed to preserve the compatibility between different versions of
the services, you should keep the number with the corresponding attribute once and
for all. More on the subject of versioning will be covered in Chapter 8, Advanced Usage
of Apache Thrift. This identifier is positive, should be unique, but the numbers don't
have to be consecutive.

You may mark the field as being required or optional. As the names state, the
former will enforce you to a set given value, while the latter (which is default) will
allow you to skip this field. Setting the required field may run you into trouble if
you decide later on to remove this requirement (or the field altogether), but still have
some instances of your application running the old version of the service.

You may also set the default value of the field, which will be used if you don't
explicitly set this field's value.

One of the features of struct is that it can contain other struct:

struct Employee {
 1: i32id,
 2: Person person,
 3: string position
}

This way, you can construct more complex structures and since struct doesn't
support inheritance, this syntax provides some kind of substitute.

Unions
Unions in Apache Thrift are similar to those in C and C++. They provide a set of
possible fields of different types, and only one of them can be used. The syntax is the
same as that for struct with the difference of using the union keyword instead of
struct. Union's fields can't be set as required as any of the types is equally valid.

Understanding How Apache Thrift Works

[62]

Let's look at the example definition of union:

unionMyNumber {
 1: i32number_int,
 2: string number_word
}

We defined MyNumber union, which can have either a 32-bit unsigned integer or
string as a value, not both. So this function may take either of the variable types
as a parameter:

void save_number(1: MyNumber number)

You can use any valid Apache Thrift data type in union.

Note that not all of the programming language support union. In such situations,
there is a fallback to struct.

Containers
Apache Thrift's containers are mapped to the commonly available container types
in the popular programming languages. They are strongly typed, which means that
the types of keys and values are predefined. This may come as an inconvenience
for programmers used to weakly typed languages, but is necessary to offer
interoperability with strongly typed ones.

There are three types of containers with the syntax borrowed from the Java
generics style.

list
list contains elements of a specified type. It is ordered and may contain duplicates.
The syntax for list is:

list<type>

In the place of the type keyword, there should be an identifier of the type of the
elements of list. For example, list<i32> is a list of 32-bit signed integers.

list is mapped to native lists or arrays in most of the programming languages, STL
vector in C++, and ArrayList in Java.

Chapter 4

[63]

set
set also contains elements of a specified type, but they are in contrast to list,
unordered and unique (that means there are no duplicates allowed). The syntax
for set is:

set<type>

As with list, in the place of the type keyword, there should be an identifier of the
type of the elements of set. For example, set<string> is a set of strings.

set is mapped to the relevant set types. Set in Python, STL set in C++, HashSet in
Java. In PHP, there are no sets, so Apache Thrift's sets are treated in the same way
as lists.

map
map contains mapping of keys to values. The keys are strictly unique (that is, there
couldn't be two values with the same key). The syntax for map is:

map<type1,type2>

As with other container types in the place of type1 and type2 keywords, there
should be identifiers of the types of keys (former) and values (latter) of the map, for
example, map<i32,string> is a map of unique 32-bit signed integers to strings.

Map is translated to an associative array in PHP, dictionary in Ruby and Python, STL
map in C++, and HashMap in Java.

While any valid Apache Thrift type may be a key for the map, due to the restrictions
of some programming languages that don't support more complex types as map
keys, it is recommended that only basic types be used as keys. Moreover, when using
JSON protocol, it is required that the keys are of basic type.

Usage of containers
Elements of sets can be of any valid Apache Thrift type.

Containers are used as any other type of variable. For example, struct that among
other fields contains a list of strings—list<string>—is defined as:

structCompany {
 1: i32 id,
 2: string name,
 3: list<string> offices
}

Understanding How Apache Thrift Works

[64]

A function that takes a list of integers list<i32> as an argument and returns a set of
integers set<i32>, is declared in a service as:

set<i32> flatten(1: list<i32>mylist);

To make the code more concise, you may of course use containers with the typedef
statement:

typedef map<i32,string>MyMap

Enums
Enum (enumerated type) is a data type that consists of a set of named values. The set
cannot be modified. Its elements have values; they are assigned sequentially starting
with 0, but you can set your own values. Let's have a look at the example:

enum Position {
CEO,
 MANAGER,
 SPECIALIST,
 TRAINEE = 9
}

In this example, the enumerated type Position consists of four values. They are
written in uppercase, but it is a popular convention, not a syntax requirement.
Everywhere you need, the values have to be referred by their full name, that is,
Position.MANAGER.

Enums can be used as any other valid Apache Thrift data type, that is, as a parameter
or a return value of functions:

Position getEmployeePosition(1: i32employee_id)

They also can be used in containers, for example, in list:

list<Position>getFreePositions()

It is also possible to add them to structs:

struct Employee {
 1: i32 id,
 2: Person person,
 3: Position position
}

Chapter 4

[65]

Exceptions
Exceptions are similar to structs, with one difference that they are declared using
the exception keyword. In Apache Thrift's implementation, in every programming
language, they inherit from the native exception class thus integrating with the
native exception handling.

In the interface definition file, exceptions are declared as follows:

exceptionMyError {
 1: i32 code,
 2: string message
}

exception WrongIdsError {
 1: string message,
 2: set<i32> ids // list of unaccepted IDs
}

In this case, the MyError exception has a field for numeric error code and a message.
WrongIdsError is more complex as it has a field that is a set of signed 32-bit integers.
Any valid Apache Thrift type can be used in an exception.

As in Java, Apache Thrift needs you to declare the exceptions that we expect to be
thrown by the function:

set<i32>findRecords(1: set<i32> ids) throws (1: MyErrorerror1, 2:
WrongIdsErrorerror2)

In this case, the findRecords function may throw MyError or WrongIdsError
exceptions depending on the function's logic.

Services
This is where all Apache Thrift's type system components are combined to serve its
main purpose: define the services that will be accessible from other applications. The
thrift command (Apache Thrift's compiler) will parse the service definition and
generate client and server stubs, which need to be implemented by the developer,
like you did in Chapter 3, Running Your First Apache Thrift Service and Client.

The service's syntax is familiar to those who program in modern object-oriented
programming languages; it looks almost exactly like the interface. The service
consists of a set of function declarations, each with its parameters, return types,
and optional information about thrown exceptions. It is also possible to declare the
function as oneway, which means that the code will not wait for the response (thus,
the function has to have void return type).

Understanding How Apache Thrift Works

[66]

Services can extend other services. This simple inheritance model means that the
child service will include its parent's function definitions.

Let's have a look at the example:

service PeopleDirectory {

 oneway void log(1: string message),
 void reloadDatabase()
}

service EmployeeDirectory extends PeopleDirectory {

 Employee findEmployee(1: i32employee_id) throws (1: MyError
error),
 bool createEmployee(1: Employee new_employee)
}

At the beginning, we have a service named PeopleDirectory, which may be some
base service for the people directory. It has a function log:

oneway void log(1: string message)

It takes one argument (message) that when the function is implemented, we may
presume will be saved to some logging backend, such as a file or a database. Note
that this function is one way, which means that the program won't wait for the result;
it is a quite common scenario in a case where a lot of information is being logged to
the file. If we will not wait for the result, we can't expect the function to provide any;
thus its return value type is void.

Such a service may be working standalone, but it also may be used in some
other services, which we want to have something similar. In our example, the
EmployeeDirectory service extends PeopleDirectory service, which means it
exposes the log and reloadDatabase functions of PeopleDirectory along with its
own set of functions. It's a typical inheritance model in object-oriented programming
languages, which is implemented using the extends keyword:

serviceEmployeeDirectory extends PeopleDirectory {

Then, we have a declaration of different functions exposed by this service:

Employee findEmployee(1: i32employee_id) throws (1: MyError error),
 bool createEmployee(1: Employee new_employee)

The functions, similar to those in C++ or Java can take as an argument and return
a value of any valid Apache Thrift type (including void). They can also throw an
exception (or more than one).

Chapter 4

[67]

Note that in Apache Thrift, you can extend only one service at a time; there is no
multiple inheritance.

IDL syntax
Now that you have the knowledge of the Apache Thrift's variable types, it is time to
put those together in a single file describing our interface.

In this section, only the most important elements of official IDL
syntax were described. If you would like to go deeper into the
details, read the formal syntax definition or learn about deprecated
elements at https://thrift.apache.org/docs/idl.

Apache Thrift's IDL syntax will be familiar to the developers programming in C++,
Java, or even PHP. Let's have a look at the most important components.

Comments
Apache Thrift supports three types of comments. The first is a bash-style
comment—a line beginning with #:

This is a comment

The second syntax is C++/Java/PHP-style—a line with // at the beginning:

// This is a comment

The last type of supported comment syntax is C-style multiline with /* at the
beginning and */ at the end (using space and * at the beginning of every line is a
common convention in many programming languages, although it is not required):

/*
 * This is C-style
 * multiline
 * comment.
 */

It can also be used as a one line comment:

/* this is one line C-style comment */

Of course, it is up to you which style you will use; they are perfectly equivalent.

Comments can be used anywhere in your IDL file and they are ignored when the
document is parsed.

www.allitebooks.com

https://thrift.apache.org/docs/idl
http://www.allitebooks.org

Understanding How Apache Thrift Works

[68]

Document
The formal name for your Apache Thrift IDL file (that is, myfirst.thrift) is
document. Anything that is inside this file is either a header or a definition. Any
document can contain 0 or more headers and definitions. It may sound weird, but after
reading this section, you will be able to easily identify every part of your document.

Headers
Headers are statements that don't define any objects that can be used in the
document, or in the services. They contain special instructions regarding the
processing of the file or generating the service stubs.

There are three types of headers that we will review:

• Thrift include
• C++ include
• Namespace

Let's start with the first one.

Thrift include
This is Apache Thrift's include; it looks like this:

include "shared.thrift"

This syntax is very common in other programming languages. Apache Thrift compiler
will read those files and include any definitions present in this file (structs, services,
and so on). Provided files are searched in the current path or by searching in any paths
provided in the -I flag to the compiler, for example, if you have some special Thrift
files that you want to use through different projects in the ~/includes directory, you
should use following command to be sure that they are found and included:

$ thrift --gen php -I ~/includes myfirst.thrift

Objects included in such a way are accessed using the name of the file as a prefix to
their name, so for example, if you have included the file shared.thrift and in this
file there was structmystruct, you can access it with shared.mystruct.

C++ include
This is a special keyword used when you specifically want to have some extra
include in your C++ code generated from this document.

Chapter 4

[69]

So, for example, if you want to have the following include statement in your C++
code generated by the Thrift compiler:

#include <vector>

You have to use the following header in your Apache Thrift document:

cpp_include "<vector>"

Namespace
Various programming languages have different methods of categorizing and
separating the files related to different logic; such separated units are often called
packages, modules, or namespaces. They are called uniformly namespaces in
Apache Thrift documents. By setting a proper namespace, you order thrift compiler
to place the code generated for a given language, in a desired place.

Namespaces are defined per programming language and can be different for
each of them:

namespace java myfirst
namespace phpmyfirstthrift
namespace rb mf

Of course, for the sake of simplicity and to avoid mistakes, it is better to have the
same namespace for every language using * in place of the language identifier:

namespace * myfirst

Every Apache Thrift document is compiled to the desired namespace; it applies to
the included documents too.

There are some extra namespace rules for Smalltalk. If you
plan to use this programming language, refer to the Apache
Thrift documentation at https://thrift.apache.org/
docs/idl.

Definitions
Definition is the other type of element present in the Apache Thrift document. In
short, everything that is neither include (Thrift or C++) or namespace command is a
definition. In the document, various building blocks are defined to reach the ultimate
purpose, which is defining the service.

https://thrift.apache.org/docs/idl
https://thrift.apache.org/docs/idl

Understanding How Apache Thrift Works

[70]

In the Apache Thrift document, you can define:

• const

• typedef

• enum

• struct

• union

• exception

• service

Those of the definitions that are Apache Thrift's data types were described in the
previous section, so here we are going to concentrate only on const and typedef,
which were not mentioned earlier.

const
The const keyword is used to define the constant value. This value can then be used
in other definitions in the document. The purpose of this element is to have one place
when some constant value is defined, instead of having it set in different places of
the file. The value may change during the development (that is, for testing purposes)
but will not change after the code is generated. Common usage for such language
construct is to define some physical or mathematical value, for example:

const double PI = 3.1415926

In this example, const is followed by the type name (double), const name (PI), and
the value (3.1415926).

The values of the complex types and structs are defined using JSON notation, for
example, constant, which is a map, is declared in the following way:

const map<i32,string> CITIES = {0: "New York", 1: "London", 2:
"Madrid"}

List constant:

const list<string> LANGUAGES = ["PHP", "Java", "C++"]

It is also possible to set const of previously defined struct, for example:

struct city {
 1: string name,
 2: i32 population
}

const city NEW_YORK = {"name": "New York", "population": 8500000}

Chapter 4

[71]

As you see any valid Apache Thrift type can be used to declare const and there are a
lot of possible combinations.

typedef
The typedef keyword is used to give other names to the Apache Thrift type.
The commonly used case is renaming the integer type names i16, i32, and i64,
for example:

typedef i32 integer
typedef i32 myinteger
typedef i64 userid

In this case, integer or myinteger can be used instead of i32 and userid instead of
i64. The same Apache Thrift type can be mapped to many different names.

It is also common to give pretty names to the complex types so that they are easier to
handle, for example:

typedef map<i32,string> EmployeeList

In this case, map mapping unique 32-bit unsigned integers to strings becomes the
EmployeeList type.

Summary
In this chapter, you learned a lot of new information. First, you saw how the Apache
Thrift looks from the developer's perspective; you got the tool necessary to work.
If you were curious enough, you got deep into the technical details to know the
network stack, including some of the transports, protocols, and servers.

Then, you got to know Apache Thrift's data types and other elements of IDL—
building blocks of your services.

Having this foundation, you are ready to go deeper into the implementation of
Apache Thrift in various programming languages. In fact, you are able now to
design and develop your own advanced services. In the next chapter, we will work
on strengthening these skills.

[73]

Generating and Running
Code in Different Languages

In the previous chapter, we ran through the internals of Apache Thrift, to give you
the skills needed to design your own services. By now you should be able to define
your interface description file, compile it with Thrift tool, run the server and launch
the client. You also saw how the code looks like in two popular programming
languages (PHP and Python).

Now, we will dive even deeper, looking into the code that Apache Thrift generates,
but also covering a broader spectrum of programming languages. At the time of
writing, there are libraries for 23 languages in the Apache Thrift code repository.
Here, I will cover six of the most popular ones:

• PHP
• Java
• Python
• JavaScript
• Ruby
• C++

Each language will be covered separately, so to understand the subsection about
your language of choice, you don't have to read about those you are not interested in.
However, I suggest at least skimming over all of them, to grasp the power of Apache
Thrift and see how the same concept is tackled differently.

Generating and Running Code in Different Languages

[74]

In this chapter, the following topics will be covered for each of the programming
languages:

• Compiler options for this language
• Examination of generated code
• Available transports, protocols, and servers
• Creating and running the server and client

We will be working on a slightly modified code that you know from Chapter 3,
Running Your First Apache Thrift Service and Client. For your convenience, you
can download it from Packt's website with the code for every language already
generated. So you can examine it, even if you don't have the Apache Thrift compiler
installed and configured. There are some small changes. First, we substituted
namespace for PHP and Python with more general syntax for every language:

namespace php myfirst
namespace py myfirst

So instead of the preceding code, we have the following:

namespace * myfirst

Second, there are some extra declarations covering all of the available variable
types (as of Apache Thrift 0.9.2). You won't use them, but after compilation you can
examine the files to see how such variables are handled. Here's the extra code:

struct MyStruct {
 1: bool mybool,
 2: byte mybyte,
 3: i16 myi16,
 4: i32 myi32,
 5: i64 myi64,
 6: double mydouble,
 7: string mystring,
 8: list<i32> mylist,
 9: set<i32> myset,
 10: map<i32,i32> mymap
}

union MyUnion {
 1: bool mybool,
 2: string mystring
}

enum MyEnum {

Chapter 5

[75]

 ENUM1,
 ENUM2,
 ENUM3
}

exception MyError {
 1: int error_code,
 2: string error_description
}

This way we have all of them covered. Just to be sure, the full code looks like this:

// namespaces are used in resulting packages
namespace * myfirst

const double PI = 3.1415926

struct MyStruct {
 1: bool mybool,
 2: byte mybyte,
 3: i16 myi16,
 4: i32 myi32,
 5: i64 myi64,
 6: double mydouble,
 7: string mystring,
 8: list<i32> mylist,
 9: set<i32> myset,
 10: map<i32,i32> mymap
}

union MyUnion {
 1: bool mybool,
 2: string mystring
}

enum MyEnum {
 ENUM1,
 ENUM2,
 ENUM3
}

exception MyError {
 1: int error_code,
 2: string error_description
}

Generating and Running Code in Different Languages

[76]

typedef i32 int

// here starts the service definition
service MyFirstService {

 // log method - it saves timestamp to given file
 oneway void log(1:string filename),

 // multiply method - returns result of multiplication of two
integers; it returns integer as well
 int multiply(1:int number1, 2:int number2),

 // get_log_size method returns the size of the log file; throws an
exception when problems occur
 int get_log_size(1:string filename) throws (1:MyError error),

}

So, let's get started with PHP.

PHP
PHP is one of the most popular programming languages used mainly for server-side
scripting of web applications (however, it may be used also as a general purpose
language). It is relatively easy to learn and simple to use with thousands of popular
applications written in it.

Generating the code
Apache Thrift's compiler offers a bunch of options for PHP. Run the following
command to see them:

$ thrift --help

Look for the information about PHP generators given below:

 php (PHP):

 inlined: Generate PHP inlined files

 server: Generate PHP server stubs

 oop: Generate PHP with object oriented subclasses

 rest: Generate PHP REST processors

 nsglobal=NAME: Set global namespace

 validate: Generate PHP validator methods

 json: Generate JsonSerializable classes (requires PHP >=
5.4)

Chapter 5

[77]

Some of the options may cater to your project's specific needs. Their descriptions
may be cryptic, so here's some extra explanation:

• inlined: The data encoding is done inline in the generated PHP file.
• oop: The generated code is somewhat more object-oriented. With classes

extending TBase, it is mutually exclusive with inlined.
• server: This adds a service processor, which is required to run the service

(you don't need it if you want to implement PHP only in the client).
• rest: Some extra parameter processing is added, so the received values are

casted at the proper types.
• validate: Extra validation is added; so if the received value is null, an

exception is thrown.
• nsglobal=NAME: An extra namespace is added at the top of the already

defined namespaces.
• json: The generated classes implement PHP's JsonSerializable interface

present in PHP >= 5.4 (read more on http://php.net/manual/en/class.
jsonserializable.php).

You need to pick the options from the list to match your project's needs. It is possible
to use more than one, for example, if you would like your code to not only be
JsonSerializable, but also contain a service class, run the following command:

$ thrift --gen php:json,server myfirst.thrift

Be aware that you won't get any error message if you
misspell the parameter, it will just be ignored. It's hard to
debug such a situation, so just check your parameters twice.

Examining the code
The code that you generated will be in the gen-php directory (or, if you chose the
inlined option, then in the gen-phpi directory). Inside the directory, there will be
a namespace structure (if you chose any) containing the PHP files for each of the
services that you declared. Separately, there is the Types.php file, which contains the
variables generated from your definition.

Let's have a look at this file. As PHP is dynamically typed, the types of variables are
really a matter of convention and adding extra checking when reading or writing.
As a result, the simple structure becomes an elaborate class with various methods
handling the variables.

http://php.net/manual/en/class.jsonserializable.php
http://php.net/manual/en/class.jsonserializable.php

Generating and Running Code in Different Languages

[78]

Now, let's have a look at the MyFirstService.php file. It contains the
MyFirstServiceIf interface:

interface MyFirstServiceIf {
 /**
 * @param string $filename
 */
 public function log($filename);
 /**
 * @param int $number1
 * @param int $number2
 * @return int
 */
 public function multiply($number1, $number2);
 /**
 * @param string $filename
 * @return int
 * @throws \myfirst\MyError
 */
 public function get_log_size($filename);
}

In object-oriented programming, an interface is a description of the elements that
the class that implements it has to have. Therefore, you need to implement all of the
methods of your interface for the service to exist; in this case the log, multiply, and
get_log_size methods you declared in your Apache Thrift document. There are
annotations that will suggest you the behavior of the service.

Another important element in the MyFirstService.php file is the
MyFirstServiceClient class. This class implements the service's interface as well,
with the purpose of exposing public methods that you can use in your client script.

If you chose the server compiler option, you will also have the
MyFirstServiceProcessor class generated. This is the processor that is needed to
run the server for your service.

Transports
PHP implementation of Apache Thrift offers a variety of transports. You can always
look them up in the lib/php/lib/Thrift/Transport. There are all of the most
popular transports described in Chapter 4, Understanding How Apache Thrift Works,
excluding file transport, which is not available in PHP.

Chapter 5

[79]

One transport specific for PHP is TPhpStream, which reads from and writes to PHP's
standard streams php://input and php://output. In this way, you don't need to
run your own server to provide the service; you can use an existing HTTP server
such as nginx or Apache HTTP Server.

If you intend to use one of the transports, I suggest you examine the implementation
to be sure how it works and if it fits your specific needs.

Protocols
PHP implementation of Apache Thrift offers all of the standard protocols mentioned
in Chapter 4, Understanding How Apache Thrift Works. Additionally, it provides
TMultiplexedProtocol, which is not a standalone protocol, but a decorator that
helps you deal with complex scenarios when you want to use multiple services on
one server (called multiplexing).

Implementations of the protocols are in the lib/php/lib/Thrift/Protocol
directory where you can examine them before using.

Servers
In PHP, there are the implementations of TSimpleServer and TForkingServer.
Additionally, you can use any HTTP server already running by using the
TPhpStream transport.

Implementations of the servers are relatively simple and you can examine them in
the lib/php/lib/Thrift/Server directory.

Implementing and running the service
Implementing the service is done by creating a handler implementing the interface
that was generated by Apache Thrift; in our case, it is MyFirstServiceIf. The
methods should accept and return the variables of the declared types.

The source code below indicates how to do it. For the sake of brevity, the
implementation details of the methods were omitted:

#!/usr/bin/env php
<?php

path to your Apache Thrift library
define('THRIFT_PHP_LIB', __DIR__.'/thrift-0.9.2/lib/php/lib');
path to the files generated by the Apache Thrift compiler

Generating and Running Code in Different Languages

[80]

define('GEN_PHP_DIR', __DIR__.'/gen-php');

require_once THRIFT_PHP_LIB.'/Thrift/ClassLoader/ThriftClassLoader.
php';

use Thrift\ClassLoader\ThriftClassLoader;

$loader = new ThriftClassLoader();
$loader->registerNamespace('Thrift', THRIFT_PHP_LIB);
// register your namespace
$loader->registerDefinition('myfirst', GEN_PHP_DIR);
$loader->register();

// include here the protocols and transports that you need
use Thrift\Protocol\TBinaryProtocol;
use Thrift\Transport\TPhpStream;
use Thrift\Transport\TBufferedTransport;

// implementing the service interface
class MyFirstHandler implements \myfirst\MyFirstServiceIf {

 public function log($filename) {
 // implementation of log function
 }

 public function multiply($number1, $number2) {
 // implementation of multiply function
 }

 public function get_log_size($filename) {
 // implementation of get_log_size function
 }

};

header('Content-Type', 'application/x-thrift');
echo "\r\n";

// instantiation of our handler
$handler = new MyFirstHandler();

$processor = new \myfirst\MyFirstServiceProcessor($handler);

Chapter 5

[81]

$transport = new TBufferedTransport(new TPhpStream(TPhpStream::MODE_R
| TPhpStream::MODE_W));
$protocol = new TBinaryProtocol($transport, true, true);

$transport->open();
$processor->process($protocol, $protocol);
$transport->close();

In this case, the service is run through the other already installed HTTP server. Save
this code to the file (for example, MyFirstServer.php), upload it to the server, and
point any clients to the address representing this file.

Implementing and running the client
To run the client using the PHP Apache Thrift implementation, you need to prepare
the environment in the same manner as with a server. Then, you can call your remote
procedures using the instance of your service's client, which was generated by the
compiler; in our case, it is MyFirstServiceClient. Let's have a look at the example:

#!/usr/bin/env php
<?php

path to your Apache Thrift library
define('THRIFT_PHP_LIB', __DIR__.'/thrift-0.9.2/lib/php/lib');
path to the files generated by the Apache Thrift compiler
define('GEN_PHP_DIR', __DIR__.'/gen-php');

require_once THRIFT_PHP_LIB.'/Thrift/ClassLoader/ThriftClassLoader.
php';

use Thrift\ClassLoader\ThriftClassLoader;

$loader = new ThriftClassLoader();
$loader->registerNamespace('Thrift', THRIFT_PHP_LIB);
// register your namespace
$loader->registerDefinition('myfirst', GEN_PHP_DIR);
$loader->register();

// include here the protocols and transports that you need
use Thrift\Protocol\TBinaryProtocol;
use Thrift\Transport\TSocket;
use Thrift\Transport\THttpClient;
use Thrift\Transport\TBufferedTransport;
use Thrift\Exception\TException;

Generating and Running Code in Different Languages

[82]

// provide hostname, port number and URL of your service
$server = new THttpClient('localhost', 8080, '/MyFirstServiceServer.
php');

// create connection
$transport = new TBufferedTransport($server, 1024, 1024);
$protocol = new TBinaryProtocol($transport);
$client = new \myfirst\MyFirstServiceClient($protocol);

$transport->open();

// run remote methods with $client->methodname($param)
$client->log('lofgile.log');
print $client->multiply(2,21);

$transport->close();

If you want to use the custom variable types defined by you, that is, our MyStruct
struct, you can instantiate it with:

$ms = new \myfirst\MyStruct();

Then work with it as with any other class to read or write values, for example:

$ms->myi32 = 42;
print $ms->myi32;

Save your client code to the file, MyFirstClient.php, and simply run the PHP file
from the command line:

php -f MyFirstClient.php

Of course, you can also embed the client code in your application, depending on
your needs.

Java
Java is another programming language, which is extremely popular these days. Used
not only for desktop applications, but also in the web applications in the embedded
devices or on the mobile phones and tablets (Android being a notable case), Apache
Thrift is used in all of those scenarios.

Chapter 5

[83]

Generating the code
Apache Thrift's compiler offers lots of options for Java. Run the following command
to see them:

$ thrift --help

Look for the information about Java generators:

 java (Java):

 beans: Members will be private, and setter methods will
return void.

 private-members: Members will be private, but setter methods will
return 'this' like usual.

 nocamel: Do not use CamelCase field accessors with beans.

 fullcamel: Convert underscored_accessor_or_service_names to
camelCase.

 android: Generated structures are Parcelable.

 android_legacy: Do not use java.io.IOException(throwable) (available
for Android 2.3 and above).

 java5: Generate Java 1.5 compliant code (includes android_
legacy flag).

 reuse-objects: Data objects will not be allocated, but existing
instances will be used (read and write).

 sorted_containers:

 Use TreeSet/TreeMap instead of HashSet/HashMap as an
implementation of set/map.

Some of the options may cater to your project's specific needs and they are self-
explanatory.

You need to pick the options from the list to match your project's needs. It is possible
to use more than one, for example, if you would like your code to have private
members and have the structures parsable, use:

$ thrift --gen java:private-members,android myfirst.thrift

Be aware that you won't get any error message if you misspell the parameter; it will
just be ignored. It's hard to debug such a situation, so just check your parameters
twice.

Generating and Running Code in Different Languages

[84]

Examining the code
The code that you have generated will be in the gen-java directory, or if you chose
the beans option, then in the gen-javabean directory. Inside the directory, there will
be a namespace structure (if you chose any) containing the Java files for each of the
complex variable types (such as structs, exceptions, enums, and so on), constants,
and services that you declared.

You can examine the files containing the variables and constants to see an elaborate
implementation of the behavior intended by Apache Thrift.

Now, let's have a look at the service file which, in the case of our example, is
MyFirstService.java. It contains the MyFirstService class. This class contains
other important interfaces and classes, notably the Iface interface:

public interface Iface {

 public void log(String filename) throws org.apache.thrift.
TException;

 public int multiply(int number1, int number2) throws org.apache.
thrift.TException;

 public int get_log_size(String filename) throws MyError, org.apache.
thrift.TException;

}

An interface is a description of the elements that the class which extends it has to
have. Therefore, you need to implement all of the methods of your interface for the
service to exist; in this case the log, multiply, and get_log_size methods you
declared in your Apache Thrift document.

The MyFirstService class also contains the Client subclass, which implements the
Iface interface which you will use in your client application.

Transports
There are a lot of transports available in the Java implementation of Apache Thrift.
You can look them up in the lib/java/src/org/apache/thrift/transport
directory. There are all of the most popular transports described in Chapter 4,
Understanding How Apache Thrift Works.

Chapter 5

[85]

There are also a few nonstandard transports that you may find particularly useful.
They are:

• TFastFramedTransport: This transport is compatible with
TFramedTransport, but offers some optimizations which are beneficial in
terms of memory usage, when your messages are of more-or-less similar size.

• TSaslClientTransport and TSaslServerTransport: Those are layered
transports for client and server that are used if you need to provide security
through the Simple Authentication and Security Layer (SASL) framework.

If you intend to use one of the transports, I suggest you examine the implementation
to be sure how it works and if it fits your specific needs.

Protocols
In addition to the standard protocols, which were discussed in Chapter 4,
Understanding How Apache Thrift Works, Java implementation of Apache Thrift
offers TMultiplexedProtocol, which is a decorator that helps you deal with
multiplexing—multiple services on one server.

Implementations of the protocols are in the lib/java/src/org/apache/thrift/
protocol directory, where you can examine them before using them.

Servers
The Java implementation of Apache Thrift offers all of the basic servers mentioned in
Chapter 4, Understanding How Apache Thrift Works. Additionally, there are some other
servers that you might find useful.

The first of them is TThreadPoolServer, which uses Java's Thread Pools to manage
the workers.

Two others are implementing the Half-Sync/Half-Async architectural pattern to
provide concurrent I/O, which combines asynchronous handling of connections
with synchronous processing of the following requests:

• THsHaServer: This is an extension of TNonblockingServer.
• TThreadedSelectorServer: This performs better than THsHaServer in

multicore environments.

You can examine the implementations of the servers in the lib/java/src/org/
apache/thrift/server directory.

Generating and Running Code in Different Languages

[86]

Implementing and running the service
Implementing the service is done by creating a handler class, which implements the
interface that was generated by Apache Thrift; in our case, it is MyFirstService.
Iface. Then the server needs to be created.

The following source code indicates how to perform the first step. For brevity, the
implementation details of the methods were omitted:

import org.apache.thrift.TException;

// import code generated by Apache Thrift compiler
import myfirst.*;

public class MyFirstHandler implements MyFirstService.Iface {

 public MyFirstHandler() {
 }

 public void log(String filename) {
 // implementation omitted
 }

 public int multiply(int number1, int number2) {
 // implementation omitted
 }

 public int get_log_size(String filename) {
 // implementation omitted
 }

}

Let's save this handler to a file, that is, MyFirstHandler.java.

The second part is to create the server:

import org.apache.thrift.server.TServer;
import org.apache.thrift.server.TServer.Args;
import org.apache.thrift.server.TThreadPoolServer;
import org.apache.thrift.transport.TServerSocket;
import org.apache.thrift.transport.TServerTransport;

// import code generated by Apache Thrift compiler

Chapter 5

[87]

import myfirst.*;

public class MyFirstServer {

 public static MyFirstHandler handler;

 public static MyFirstService.Processor processor;

 public static void myserver(MyFirstService.Processor processor) {
 TServerTransport serverTransport = new TServerSocket(8080);
 TServer server = new TThreadPoolServer(new TThreadPoolServer.
Args(serverTransport).processor(processor));
 server.serve();
 }

 // main function
 public static void main(String [] args) {
 handler = new MyFirstHandler();
 processor = new MyFirstService.Processor(handler);

 Runnable server = new Runnable() {
 public void run() {
 myserver(processor);
 }
 };

 new Thread(server).start();
 }

}

Save it to the file, for example, MyFirstServer.java. Now, you can compile the
code and run the server:

$ javac MyFirstServer.java

$ java MyFirstServer

Implementing and running the client
Running the client using the Java implementation of Apache Thrift is easy: you need
to create a proper environment (transport, protocol) and use the client (in our case
MyFirstService.Client), which exposes the service's methods.

Generating and Running Code in Different Languages

[88]

Here's the code example:

// Import code generated by Apache Thrift compiler
import myfirst.*;

import org.apache.thrift.transport.TTransport;
import org.apache.thrift.transport.TSocket;
import org.apache.thrift.protocol.TBinaryProtocol;
import org.apache.thrift.protocol.TProtocol;

public class MyFirstClient {
 public static void main(String [] args) {

 TTransport transport = new TSocket("localhost", 8080);
 transport.open();

 TProtocol protocol = new TBinaryProtocol(transport);
 MyFirstService.Client client = new MyFirstService.
Client(protocol);

 // call remote functions
 client.log("logfile.log");
 System.out.println(client.multiply(14,3));

 transport.close();
 }
}

You can embed your client's code in your application or just save it to the
MyFirstClient.java file, compile, and run:

$ javac MyFirstClient.java

$ java MyFirstClient

Python
Python is used universally in server scripting, web and desktop applications,
networking, natural language processing, statistical analysis, machine learning, and
lots of other applications. This makes it a great tool for distributed applications with
strong support in Apache Thrift.

Chapter 5

[89]

Generating the code
Apache Thrift's compiler offers lots of options for Python. Run the following
command to see them:

$ thrift --help

Look for the information about Python generators:

 py (Python):

 new_style: Generate new-style classes.

 twisted: Generate Twisted-friendly RPC services.

 tornado: Generate code for use with Tornado.

 utf8strings: Encode/decode strings using utf8 in the generated
code.

 slots: Generate code using slots for instance members.

 dynamic: Generate dynamic code, less code generated but
slower.

 dynbase=CLS Derive generated classes from class CLS instead of
TBase.

 dynexc=CLS Derive generated exceptions from CLS instead of
TExceptionBase.

 dynimport='from foo.bar import CLS'

 Add an import line to generated code to find the
dynbase class.

Some of the options may cater to your project's specific needs. Here's a brief
explanation of the most important of them, which we will use:

• new_style: The classes will be generated in Python's "new style", which boils
down to inheriting from the object (for more information about new style
classes in Python, refer to the Python wiki: https://wiki.python.org/
moin/NewClassVsClassicClass)

• twisted: The generated code will be compatible with the Twisted
asynchronous networking framework (https://twistedmatrix.com/)

• tornado: The generated code will be compatible with the Tornado
framework (http://www.tornadoweb.org/)

• utf8strings: It's an important option when developing applications in
languages other than English that all the strings are properly encoded and
decoded using the UTF-8 codec

• slots: Python's slots are used for instance members (see https://docs.
python.org/2/reference/datamodel.html#slots) to save space when
creating multiple objects

https://wiki.python.org/moin/NewClassVsClassicClass
https://wiki.python.org/moin/NewClassVsClassicClass
https://twistedmatrix.com/
http://www.tornadoweb.org/
https://docs.python.org/2/reference/datamodel.html#slots
https://docs.python.org/2/reference/datamodel.html#slots

Generating and Running Code in Different Languages

[90]

You need to pick the options from the list to match your project's needs. It is possible
to use more than one, for example, if you need your code to have new style classes
and have the strings encoded and decoded in UTF-8, run the following command:

$ thrift --gen py:new_style,utf8strings myfirst.thrift

Watch out, because you won't get any error message if you misspell the parameter;
it will just will ignored. It's hard to debug such a situation, so just check your
parameters twice.

Examining the code
The code that you generated will be in the following directory:

• gen-py.twisted: If you wanted to have the Twisted-compatible code
(twisted option)

• gen-py.tornado: If you generated the Tornado-compatible code
(tornado option)

• gen-py: In any other case

Inside the directory, there will be a namespace structure (if you chose any) containing
two Python files for each of the services that you declared. Separately, there is a
ttypes.py file, which contains the variables generated from your definition and a
constants.py file, which contains all of the constants. You can note that while consts
are defined very simply as a variable (there are no constants in Python), the variables
are elaborate with a huge amount of code to handle them. Note that there are the __
init__.py files present, which make a module out of the code that was generated.

Let us have a look at the service files. In our example, the MyFirstService.py
file contains the Iface class (because in Python there is no equivalent to interfaces
known from other object-oriented programming languages):

class Iface:
 def log(self, filename):
 """
 Parameters:
 - filename
 """
 pass

 def multiply(self, number1, number2):
 """
 Parameters:
 - number1
 - number2
 """

Chapter 5

[91]

 pass

 def get_log_size(self, filename):
 """
 Parameters:
 - filename
 """
 pass

In your implementation of the service, you are going to define all the methods, which
currently do nothing (just pass); in this case the log, multiply, and get_log_size
methods you declared in your Apache Thrift document. There are annotations that
will suggest you what parameters the methods will take, however, contrary to the
implementation for other languages, the suggestions for the types of parameters and
return value are missing.

Another important element in the MyFirstService.py file is the Client class. You
will use this class in your client script to call the service and run remote methods. In
fact, the creators of the Python implementation went an extra step forward and have
the compiler to generate a file with the service name suffixed with -remote (in our
case, MyFirstService-remote). This script contains an implementation of the client;
more on that later.

Transports
In addition to the most popular transports described in Chapter 4, Understanding How
Apache Thrift Works, the Python implementation of Apache Thrift offers some other
transports as well. You can look up the list in the code repository in the lib/py/src/
transport directory. Some of the basic transports are the classes in the TTransport.
py file, while the others are in separate files.

Some of the nonstandard transports you may find particularly useful are:

• TMemoryBuffer: The wrapper for the StringIO object, so you are able to
write to or read from the memory; if you pass the value in the constructor it
will be a transport for reading; otherwise, for writing

• TSSLSocket: Used for creating sockets wrapped in the SSL security layer
• TSaslClient: Similarly to in Java, this is a layered transport for the client

which is used if you need to provide security through the SASL framework
• TZlibTransport: A layered transport that compresses the transport that it

gets using Python's zlib library
• THttpClient: Implements TTransportBase to provide communication over

HTTP or HTTPS

Generating and Running Code in Different Languages

[92]

For THttpClient, use URI in the constructor:

THttpClient('http://host:port/path')

So, for example, if the server is running on the localhost, on port 8080 and its path is
/MyFirstServer, the instantiation of the client class would be:

client = THttpClient('http://localhost:8080/MyFirstServer')

If you intend to use one of those transports, I suggest you examine the implementation
to be sure how it works and if it fits your specific needs.

Protocols
Python implementation of Apache Thrift offers all of the standard protocols
mentioned in Chapter 4, Understanding How Apache Thrift Works. Additionally,
it provides TMultiplexedProtocol, which is not a standalone protocol, but a
decorator that helps you deal with complex scenarios when you want to use multiple
services on one server (called multiplexing).

Implementations of the protocols are in the lib/py/src/protocol directory, where
you can examine them before using.

Servers
The Python implementation of Apache Thrift contains all of the popular servers that
we mentioned in Chapter 4, Understanding How Apache Thrift Works. Moreover, it
contains a few more, which you may find useful in certain scenarios:

• TThreadedServer: A threaded server that spawns a new thread for each
connection

• TForkingServer: Forks a new process for each request, and is more scalable
than TThreadedServer

• TProcessPoolServer: A server with a fixed pool of worker subprocesses to
serve the requests

• THttpServer: A simple HTTP server, not very perfromant

You can examine the implementations of the servers in the lib/py/src/server
directory of the Apache Thrift package. Some of the basic servers are the classes in
the TServer.py file, while the others are in separate files.

Chapter 5

[93]

Building the libraries
To run the Python code, we need to have the Apache Thrift libraries built. Instead of
installing it system-wise, we can have them in the local copy.

Copy the archive that you downloaded from the Apache Thrift website to your
project created directory and decompress it:

$ tar -xvzf thrift-0.9.2.tar.gz

Now, we will have full Apache Thrift in the thrift-0.9.2 directory (the name
may differ, depending on the version, substitute it in all commands). The Python
libraries are in the thrift-0.9.2/lib directory and they need to be built. Enter the
thrift-0.9.2/lib/py directory and run the setup command. This library will not
be installed system-wise, but just built in place:

$ cd thrift-0.9.2/lib/py

$ python setup.py build

$ cd ../../..

Implementing and running the service
As in other languages, implementing the service is done by creating a handler that
implements the interface that was generated by Apache Thrift; in our case, it is
MyFirstService.Iface. The methods should accept and return the variables of
declared types.

The following source code indicates how to do it. For brevity, the implementation
details of the methods were omitted:

import sys, glob

path for file generated by Apache Thrift Compiler
sys.path.append('gen-py')
add path where built Apache Thrift libraries are
sys.path.insert(0, glob.glob('thrift-0.9.2/lib/py/build/lib.*')[0])

from myfirst import MyFirstService
from myfirst.ttypes import *
from myfirst.constants import *

from thrift.transport import TSocket
from thrift.transport import TTransport
from thrift.protocol import TBinaryProtocol

Generating and Running Code in Different Languages

[94]

from thrift.server import TServer

class MyFirstHandler(MyFirstService.Iface):
 def __init__(self):
 pass

 def log(self, filename):
 # implement log here
 pass

 def multiply(self, number1, number2):
 # implement multiply here
 pass

 def get_log_size(self, filename):
 # implement get_log_size here
 pass

handler = MyFirstHandler()
processor = MyFirstService.Processor(handler)
transport = TSocket.TServerSocket(port=8080)
tfactory = TTransport.TBufferedTransportFactory()
pfactory = TBinaryProtocol.TBinaryProtocolFactory()

server = TServer.TSimpleServer(processor, transport, tfactory,
pfactory)

server.serve()

To start the server, save this code to the MyFirstServer.py file and run the
following command:

$ python MyFirstServer.py

Your server will be running on the localhost, port 8080.

Implementing and running the client
As I mentioned earlier, the Apache Thrift compiler generates an example client
script, which is in the file prefixed with -remote, in our case, MyFirstService-
remote. This client runs out of the box and allows you to test your service. For
example, to test the multiply method, you can run:

$./MyFirstService-remote multiply 7 6

Chapter 5

[95]

To see the list of possible methods, run:

$./MyFirstService-remote --help

This script is a great resource to learn how the client code should be written.

To run the client using the PHP Apache Thrift implementation, you need to prepare
the network stack. Then, after connecting, you can call your remote procedures using
the instance of your service's client that was generated by the compiler; in our case, it is
MyFirstService.Client. Let's have a look at the example code, which is very simple:

import sys, glob

add path with Apache Thrift compiler generated files
sys.path.append('gen-py')
add path where built Apache Thrift libraries are
sys.path.insert(0, glob.glob('thrift-0.9.2/lib/py/build/lib.*')[0])

from myfirst import MyFirstService
from myfirst.ttypes import *
from myfirst.constants import *

from thrift import Thrift
from thrift.transport import TSocket
from thrift.transport import TTransport
from thrift.protocol import TBinaryProtocol

transport = TSocket.TSocket('localhost', 8080)
transport = TTransport.TBufferedTransport(transport)
protocol = TBinaryProtocol.TBinaryProtocol(transport)
client = MyFirstService.Client(protocol)

transport.open()

client.log('logile.log')
print client.multiply(2,21)

transport.close()

If you want to use the variable types defined by you, that is, our MyStruct struct, it is
very easy to instantiate them:

ms = MyStruct()

Then, work with it as with any other class to read or write values, for example:

ms.myi32 = 42
print ms.myi32

Generating and Running Code in Different Languages

[96]

You can run your client by simply saving the code to the file, that is,
MyFirstClient.py and running the Python file from the command line:

$ python MyFirstClient.py

Of course, you can also embed the client code in your application depending on
your needs.

JavaScript
JavaScript is a scripting language used mainly for frontend development in
web applications, but it has also gained popularity recently in server-side solutions
with Node.js.

JavaScript code generated by the Apache Thrift compiler (Node.js aside) is strictly
client-side, intended to be used in the web browser against the services written in
other languages.

Generating the code
Apache Thrift's compiler offers few options for JavaScript. Run the following
command to see them:

$ thrift --help

Look for the information about JavaScript generators:

 js (Javascript):

 jquery: Generate jQuery compatible code.

 node: Generate node.js compatible code.

 ts: Generate TypeScript definition files.

Running the generator without any options will provide you with just plain
JavaScript code. Let's explain the extra options:

• Jquery: The generated code will be jQuery compatible
• Node: Code for Node.js will be generated; technically, this is still JavaScript

code, however this is a completely different runtime environment, so we will
won't discuss it here. If you use this option, your file will be created in the
gen-nodejs directory.

• ts: Definition files for TypeScript will be generated. Useful if you use
TypeScript in your project.

Chapter 5

[97]

You need to pick the options from the list to match your project's needs. There is not
much to choose from, but if you need to have your files both jQuery compatible and
have TypeScript definition files, just use:

$ thrift --gen js:jquery,ts myfirst.thrift

Watch out, because you won't get any error message if you misspell the
parameter; it will just be ignored. It's hard to debug such a situation, so just
check your parameters twice.

Examining the code
The code that you generated will be in the gen-js directory. Inside the directory,
there will be at least two files prefixed with your namespace.

One of them is suffixed with _types.js and contains the variables and constant that
you created (in our example, this file's name is myfirst_types.js). Note that there
are complex structures to handle the variables. Constants, on the other hand, are
handled simply as JavaScript variables, for example:

myfirst.PI = 3.14159;

The other file bears the service's name (in our example, MyFirstService.js) and
contains the client's objects.

If you declared more than one service or namespaces, more files will be generated
accordingly.

If you used the ts option during compilation, there are also the TypeScript
definition files with names ending in .d.ts.

Transport, protocol, and servers
Due to the simplicity of the implementation of JavaScript code to be used in the
web browsers, the developer will only use one of the transport and protocol objects:
Thrift.Transport and Thrift.Protocol, respectively. You can examine the
implementation in the lib/js/src/thrift.js file, where the whole code is stored.

For obvious reasons, there is no server implementation in the client-side JavaScript.

Implementing and running the client
JavaScript client for Apache Thrift-enabled services is run by the web browser. The
common scenario is to have a web application that collects some information from or
posts to the service, which is going to be implemented in any other language.

Generating and Running Code in Different Languages

[98]

When developing services to be consumed by JavaScript from web
applications that will be publicly available, please consider the
security and performance of the setup.
From the security point of view, you should bear in mind that your
whole service will be accessible for everyone, not only for those users
who will use your web applications, but for anyone who would want
to write their own client. Having this in mind, think about possible
vulnerabilities: methods that modify the data or expose them in bulk.
Consider exposing only those methods that won't do any harm if
misused by somebody, and move other methods to the server side
(that is, add an extra layer in PHP or Python). You shouldn't embed
any authorization code (that is, usernames, passwords, API keys, and
so on) in the JavaScript code, as it is easily readable by anyone.
Taking into consideration that the performance is prepared to serve
a lot of requests, use a server that is prepared to handle such a load.
There are Apache Thrift servers in Python, PHP, or Java, that we
mentioned, which can be used to do so.

To construct the client for the Apache Thrift service in JavaScript, we will need the
following components:

• The thrift.js library that can be obtained from the lib/js/src/ directory
in your Apache Thrift library

• The gen-js directory with files generated by the compiler
• An HTML page that contains the client code

As you already have the first two components, let's prepare the HTML document.
For brevity, the layout is reduced to be as simple as possible; you are encouraged to
work your way towards the expected result.

Let's have a look at the HTML code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
 <title>MyFirstService example</title>

 <!-- include the Apache Thrift library -->
 <script src="thrift.js" type="text/javascript"></script>

 <!-- include files generated by the Apache Thrift compiler -->

Chapter 5

[99]

 <script src="gen-js/myfirst_types.js" type="text/
javascript"></script>
 <script src="gen-js/MyFirstService.js" type="text/
javascript"></script>

 <script type="text/javascript" src="http://code.jquery.com/
jquery-1.11.3.min.js"></script>

 <script type="text/javascript" charset="utf-8">
 // provide the service location - let's assume it's on
http://localhost:8080/MyFirstService
 var transport = new Thrift.Transport("http://
localhost:8080/MyFirstService");
 var protocol = new Thrift.Protocol(transport);
 var client = new MyFirstServiceClient(protocol);

 client.log("logfile.log");
 var mresult = client.multiply(6,7);
 $('#result').val(result);
 </script>

 </head>

 <body>
 <p>result of 6x7: <input type="text" id="result" value=""/></
p>
 </body>
</html>

As you see, this code is relatively simple in comparison to implementation in other
languages.

If you want to use the variable types defined by you, that is, our MyStruct struct, it is
very easy to instantiate them:

var ms = new MyStruct();

Then, work with it as with any other class to read or write values, for example:

ms.myi32 = 42;
$('#result').val(ms.myi32);
alert(ms.myi32);

To run the code, save it to the file, for example, MyFirstClient.html. Ensure that all
the files that we listed before are accessible. Now, open your file in the web browser
through a web server or directly. The client code will be run in the browser and the
service will be called. The result will appear in the text field.

Generating and Running Code in Different Languages

[100]

Ruby
Ruby is another very popular programming language used not only for web
applications (that is, in the Ruby on Rails framework), but also for general scripting.

Generating the code
Apache Thrift's compiler has a limited number of special options for Ruby; there are
only two. Run the following command to see them:

$ thrift --help

Look for the information about Ruby generators:

 rb (Ruby):

 rubygems: Add a "require 'rubygems'" line to the top of each
generated file.

 namespaced: Generate files in idiomatic namespaced directories.

Let's explain both of them:

• rubygems: As the description states, it just adds the require 'rubygems'
line on top of each file that is generated by the compiler.

• namespaced: The files that are generated are put in the directories with the
names of the namespaces which you selected.

If you need both options, you can combine them:

$ thrift --gen rb:rubygems,namespaced myfirst.thrift

Watch out, because you won't get any error message if you misspell the parameter; it
will just be ignored.

Examining the code
The code that you generated will be in the gen-rb directory. If you selected the
namespaced option during the compilation, the files will be in the subdirectories of
the names that are the same as your namespaces.

Inside the directory, there will be files with the names referring to your services with
camel case changed to underscores, for example, our MyFirstService will be in the
my_first_service.rb file.

Chapter 5

[101]

Additionally, there will be a file suffixed with _types.rb with the data types
we defined and the other one suffixed with _constants.rb with the constants.
In our examples, these will be myfirst_types.rb and myfirst_constants.rb,
respectively. The implementation of the data types is a little bit less complex than, for
example, in Java or Python, and the constants are equally simple.

Let's have a look at the service files. In our example, the my_first_service.
rb file contains the Myfirst module (being our selected namespace), and the
MyFirstService submodule, containing Client and Processor classes followed
with some helper structures. As you can see, the implementation is quite simple.

Transports
In addition to the most popular transports described in Chapter 4, Understanding How
Apache Thrift Works, the Ruby implementation of Apache Thrift offers some other
transports as well. You can look up the list in the code repository in the lib/rb/lib/
thrift/transport directory.

Some of the nonstandard transports you may find particularly useful are:

• IOStreamTransport: This is a very simple transport wrapping two objects,
one of which has the read method and the other, the write method (it
provides them as arguments for the constructor).

• MemoryBufferTransport: This is another simple transport where the data is
exchanged using the internal memory buffer

If you intend to use one of those transports, I suggest you examine the
implementation to be sure how it works and if it fits your specific needs.

Protocols
The Ruby implementation of Apache Thrift offers all of the standard protocols
mentioned in Chapter 4, Understanding How Apache Thrift Works. Additionally, it
provides MultiplexedProtocol, which is not a standalone protocol but a decorator
that you can use to deal with complex scenarios when you need to connect to
multiple services running on one server (multiplexing).

Implementations of the protocols are in the lib/rb/lib/thrift/protocol
directory, where you can examine them before using.

Generating and Running Code in Different Languages

[102]

Servers
The Ruby implementation of Apache Thrift contains all of the popular servers that
we mentioned in Chapter 4, Understanding How Apache Thrift Works. Moreover, it
contains two more that you may find useful in certain scenarios. They are:

• ThreadedServer: This is a threaded server that spawns a new thread per
each connection.

• ThinHTTPServer: This is an HTTP server, which makes use of Thin, which is
a popular Ruby web server noted for its security, stability, and performance
(see http://code.macournoyer.com/thin/ for the details).

There is also MongrelHTTPServer, which you shouldn't use because it is deprecated;
use ThinHTTPServer instead.

You can examine the implementations of the servers in the lib/rb/lib/thrift/
server directory of the Apache Thrift package.

Implementing and running the service
In Ruby, everything is simpler; no interface to implement. It is enough to create a
handler that contains all of the methods of the service that we want to expose. The
methods should accept and return the variables of the declared types.

The following source code indicates how to do it. For brevity, the implementation
details of the methods were omitted:

directory with code generated by Apache Thrift
$:.push('gen-rb')
directory with the Apache Thrift library
$:.unshift 'thrift/lib/rb/lib'

require 'thrift'
require 'my_first_service'

class MyFirstHandler
 # empty constructor
 def initialize; end

 def log(filename)
 # implement log here
 end

 def multiply(number1, number2)
 # implement multiply here

http://code.macournoyer.com/thin/

Chapter 5

[103]

 end

 def get_log_size(filename)
 # implement get_log_size here
 end

end

handler = MyFirstHandler.new()
processor = MyFirstService::Processor.new(handler)
transport = Thrift::ServerSocket.new(8080)
transportFactory = Thrift::BufferedTransportFactory.new()
server = Thrift::SimpleServer.new(processor, transport,
transportFactory)

server.serve()

To start the server, save this code to the MyFirstServer.rb file and run the
following command:

$ ruby MyFirstServer.rb

Your server will be running on the localhost, port 8080.

Implementing and running the client
To run the client using the Ruby Apache Thrift implementation, you need to prepare
the network stack. Then, after connecting, you can call your remote procedures using
the instance of your service's client that was generated by the compiler; in our case,
it is MyFirstService::Client. Let's have a look at the example code, which is very
simple and very similar to that of Python:

directory with code generated by Apache Thrift
$:.push('gen-rb')
directory with the Apache Thrift library
$:.unshift 'thrift/lib/rb/lib'

require 'thrift'

require 'my_first_service'

transport = Thrift::BufferedTransport.new(Thrift::Socket.
new('localhost', 8080))
protocol = Thrift::BinaryProtocol.new(transport)

Generating and Running Code in Different Languages

[104]

client = MyFirstService::Client.new(protocol)

transport.open()

client.log("logfile.log")
print client.multiply(14,3)

transport.close()

If you want to use variable types defined by you, that is, our MyStruct struct, it is
very easy to instantiate them:

ms = MyStruct.new()

Then, work with it as with any other class to read or write values, for example:

ms.myi32 = 42
print ms.myi32

You can run your client by simply saving the code to the file, that is,
MyFirstClient.rb and running the Ruby file from command line:

$ ruby MyFirstClient.rb

Of course, you can also embed the client code in your application, depending on
your needs.

C++
C++ is one of the most popular programming languages these days. It is a universal,
general purpose language, which is useful in a wide range of applications, including
desktop, servers, networking, embedded systems, databases, and lots more.
Apache Thrift is a natural companion for C++ to provide highly scalable systems
characterized by high performance.

Generating the code
Apache Thrift's compiler offers a rich choice of options for C++. Run the following
command to see them:

$ thrift --help

Look for the information about C++ generators:

 cpp (C++)

 cob_style: Generate "Continuation OBject"-style classes.

Chapter 5

[105]

 no_client_completion:

 Omit calls to completion__() in CobClient class.

 no_default_operators:

 Omits generation of default operators ==, != and <

 templates: Generate templatized reader/writer methods.

 pure_enums: Generate pure enums instead of wrapper classes.

 dense: Generate type specifications for the dense protocol.

 include_prefix: Use full include paths in generated files.

The options are very specific and cater to the specialized needs of some projects.

You need to pick the options from the list to match your project's needs. It is possible
to use more than one, for example, if you would like your code to have templatized
reader/writer methods and use full include paths in generated files, use:

$ thrift --gen cpp:templates,include_prefix myfirst.thrift

Beware, you won't get any error message if you misspell the parameter; it will just be
ignored. It's hard to debug such a situation, so just check your parameters twice.

Examining the code
The code that you have generated will be in the gen-cpp directory. In a convention
similar to the Apache Thrift implementation in other languages, some of the files
are prefixed with the namespace name (which is myfirst in our example), so the
following files are generated in our example:

• myfirst_constants.cpp: This contains the definitions of the constants,
which, similarly to other languages, is quite simple.

• myfirst_types.cpp: This contains the definitions of our custom data types
along with the code to handle them.

• MyFirstService.cpp: This contains definitions of all the objects needed
to handle our service along with MyFirstServiceClient, which is used to
create the client.

• MyFirstService_server.skeleton.cpp: This is an extra file, which is
very useful. It contains the skeleton of our service; we will use this file to
implement our server.

All of the files (except the last one) are accompanied by header files (with the
.h suffix).

Generating and Running Code in Different Languages

[106]

Let's look at the MyFirstService.h file. It contains the MyFirstServiceIf interface
that we will need to implement in order to have our service in C++:

class MyFirstServiceIf {
 public:
 virtual ~MyFirstServiceIf() {}
 virtual void log(const std::string& filename) = 0;
 virtual int multiply(const int number1, const int number2) = 0;
 virtual int get_log_size(const std::string& filename) = 0;
};

An interface is a description of the elements that the class which extends it has
to have. Thus, you need to implement all of the methods of your interface for the
service to exist; in this case, the log, multiply, and get_log_size methods you
declared in your Apache Thrift document. The methods that you can override are
marked with the virtual keyword.

The MyFirstService.h file also contains the MyFirstServiceClient class, which
implements the MyFirstServiceIf interface and which you will use in your client
application.

Transports
There is a wide array of transports available in the C++ implementation of Apache
Thrift. You can look them up in the lib/cpp/src/thrift/transport directory.
There are all of the most popular transports described in Chapter 4, Understanding
How Apache Thrift Works.

There are also multiple nonstandard transports that you might find particularly
useful:

• TMemoryBuffer: Transport reads from and writes to the memory buffer
• THttpTransport: Basic HTTP layered transport without any external

dependencies
• TPipe: Transport that enables you to use Windows Pipes (a way of

interprocess communication in Microsoft Windows)
• TSSLSocket: Sockets with added SSL security
• TZlibTransport: Transport with zlib compression

If you intend to use one of the transports, I suggest you examine the implementation
to be sure how it works and if it fits your specific needs.

Chapter 5

[107]

Protocols
In addition to the standard protocols that were discussed in Chapter 4, Understanding
How Apache Thrift Works, the C++ implementation of Apache Thrift offers
TMultiplexedProtocol, which is a decorator that helps you deal with multiplexing,
that is, multiple services on one server.

Implementations of the protocols are in the lib/cpp/src/thrift/protocol
directory where you can examine them before use.

Servers
The C++ implementation of Apache Thrift offers all of the basic servers mentioned in
Chapter 4, Understanding How Apache Thrift Works.

You can examine the implementations of the servers in the lib/cpp/src/thrift/
server directory.

Implementing and running the service
Implementing the service is done by creating a handler class, which implements the
interface that was generated by Apache Thrift; in our case, it is MyFirstServiceIf.
Then, the server needs to be created.

As I mentioned earlier, the Apache Thrift compiler is kind enough to prepare the
skeleton of the service for us—in our example, in the MyFirstService_server.
skeleton.cpp file. It's a great convenience as the only job left for us is to implement
the functions and tweak the server settings. Let's look at this file. For the sake of
brevity, the implementation details of the methods are omitted:

#include "MyFirstService.h"
#include <thrift/protocol/TBinaryProtocol.h>
#include <thrift/server/TSimpleServer.h>
#include <thrift/transport/TServerSocket.h>
#include <thrift/transport/TBufferTransports.h>

using namespace ::apache::thrift;
using namespace ::apache::thrift::protocol;
using namespace ::apache::thrift::transport;
using namespace ::apache::thrift::server;

using boost::shared_ptr;

using namespace ::myfirst;

Generating and Running Code in Different Languages

[108]

class MyFirstServiceHandler : virtual public MyFirstServiceIf {
 public:
 MyFirstServiceHandler() {
 // Your initialization goes here (if needed)
 }

 void log(const std::string& filename) {
 // implementation of log function goes here
 }

 int multiply(const int number1, const int number2) {
 // implementation of multiply function goes here
 }

 int get_log_size(const std::string& filename) {
 // implementation of get_log_size function goes here
 }

};

int main(int argc, char **argv) {
 int port = 8080;
 shared_ptr<MyFirstServiceHandler> handler(new
MyFirstServiceHandler());
 shared_ptr<TProcessor> processor(new MyFirstServiceProcessor(handl
er));
 shared_ptr<TServerTransport> serverTransport(new
TServerSocket(port));
 shared_ptr<TTransportFactory> transportFactory(new
TBufferedTransportFactory());
 shared_ptr<TProtocolFactory> protocolFactory(new
TBinaryProtocolFactory());
 TSimpleServer server(processor, serverTransport, transportFactory,
protocolFactory);
 server.serve();
 return 0;
}

Let's save this code to a new file, that is, MyFirstServer.cpp.

To compile and link your server code, run the following command:

$ g++ -DHAVE_INTTYPES_H -DHAVE_NETINET_IN_H -Wall -I/usr/local/include/
$ thrift --Igen-cpp *.cpp -L/usr/local/lib -lthrift -o MyFirstServer

Chapter 5

[109]

Your server code will be in the MyFirstServer file. You can run it by using
following command:

$./MyFirstServer

Implementing and running the client
Creating and running the C++ client code is straightforward, however the client
code is not automatically generated by the Apache Thrift compiler. As with the
implementation in other languages, you need to create the environment and then use
the MyFirstServiceClient class.

Here's the code example:

#include <iostream>

// MyFirstService header file
#include "gen-cpp/MyFirstService.h"

#include <transport/TSocket.h>
#include <transport/TBufferTransports.h>
#include <protocol/TBinaryProtocol.h>

using namespace apache::thrift;
using namespace apache::thrift::protocol;
using namespace apache::thrift::transport;

using namespace std;

using namespace myfirst;

int main(int argc, char **argv) {
 boost::shared_ptr<TSocket> socket(new TSocket("localhost", 8080));
 boost::shared_ptr<TTransport> transport(new
TBufferedTransport(socket));
 boost::shared_ptr<TProtocol> protocol(new
TBinaryProtocol(transport));

 MyFirstServiceClient client(protocol);

 transport->open();

 client.log("logfile.log");
 cout << client.multiply(6,7) << endl;

Generating and Running Code in Different Languages

[110]

 transport->close();

 return 0;
}

You can embed your client's code in your application, or just save it to the
MyFirstClient.cpp file, compile, and link:

g++ -DHAVE_INTTYPES_H -DHAVE_NETINET_IN_H -Wall -I/usr/local/include/
thrift -Igen-cpp *.cpp -L/usr/local/lib -lthrift -o MyFirstClient

Your server code will be in the MyFirstClient file. You can run it by using the
following command:

$./MyFirstClient

Summary
In this chapter, you learned about the implementation details of Apache Thrift for
the most popular languages: PHP, Java, Python, JavaScript, Ruby, and C++. You
are able to build servers and clients in those languages, and make use of different
options that are offered for each of them.

In the next chapter, you will use these skills to dive deeper into the more advanced
applications of Apache Thrift.

[111]

Handling Errors in Apache
Thrift

You learned the basics of developing applications with Apache Thrift. Now it's time
to tackle a more advanced, though important topic: handling application errors in
general, and, more specifically, in the Apache Thrift environment.

It is highly unlikely that your application, service, or any other piece of software
will be error-free. No matter how much time you spend debugging, testing, and
fixing your software, some bugs will slip into the final product. If you look at most
software products these days, they all have bugs, even those from major companies
hiring thousands of developers and testers.

Errors may be caused not only by the malfunction of an application, but also due to
wrong data, connection problems, or invalid operations. You develop services that
consume data that's provided from the outside—external libraries or applications.
This data may be invalid and your service may be unable to process it. Consider a
simple example where the service is designed to work on integer values and gets
random strings, or it is a service that performs mathematical divisions and you order
it to divide by zero.

In this chapter, you will learn about the types of errors that you may encounter, and
how to avoid or deal with them when they can't be dodged.

Handling Errors in Apache Thrift

[112]

What are the type of errors that can occur?
To avoid errors or handle them, you need to understand what they are and what
causes them. Errors in programming can be classified into three main categories:

• Syntax errors
• Runtime errors
• Logic errors

Most of the errors that you will need to handle are in the middle category (runtime
errors); however, the other two categories are equally important.

Syntax errors
Syntax errors, also known as compiler errors, occur commonly when you mistype
some part of a language or use it incorrectly. The most common causes of such errors
are missing semicolons, brackets or parentheses, mistyped language statements,
and so on.

They are easy to spot; code containing such errors won't compile (if the language is
compiled, such as C++ or Java) or won't run (in the case of interpreted languages,
such as PHP, Python, or Ruby). The compiler or interpreter will issue the error and
terminate an execution as soon as it parses the file.

Runtime errors
Runtime errors occur when a program runs, which means that they weren't
discovered by the compiler or interpreter. The code doesn't contain any mistakes or
syntax errors; however, your application is required to do something. This may not be
completed most of the time due to some restrictions or limitations of the environment,
the nature of the supplied variables or because of errors in other parts of the system.

Some of the most common examples of runtime errors are as follows:

• Division by zero: This occurs when the variable supplied as a divisor (the
value by which some other value is divided) is equal to 0; this may happen,
for example, when a variable of some other type is casted to an integer or
floating point number

• Missing or inaccessible file: This occurs when your application tries to open
some file for the purpose of writing or reading, but it doesn't have proper
permissions or the file is simply missing

Chapter 6

[113]

• Connection errors: This occurs when your application tries to connect to
some remote service, but it is inaccessible due to a network error (that is,
the host is unreachable), missing or wrong login credentials, timeout, or any
other cause that may prevent the connection from taking place.

Frequently, a programmer is not able to predict such errors. Sometimes, a network
connection works, and at other times, it doesn't; users may supply the wrong kind of
data, and misconfigurations can lead to files being inaccessible.

In most programming languages, the occurrence of such errors is communicated
by throwing an exception. The key is to handle them so that the application can
continue with its operations despite the error. In the upcoming sections, you will
learn about the exceptions and how to handle them.

Logic errors
Logic errors are the hardest to find and fix because your code is successfully
compiled or interpreted and it runs perfectly; no runtime errors are reported.
However, logic errors cause your application to deliver results other than those
that are expected. This may be due to the fact that you've used the wrong variable
somewhere, read from the wrong file, or written to the wrong database. Sometimes,
it is as trivial as using a plus sign instead of minus or wrong units.

In 1999, NASA's orbiter, worth $125 million, disintegrated
in the Mars atmosphere, instead of staying in its orbit and
performing scientific research and data collection. It was
concluded that the cause of the error was that one piece of
software supplied values in English units, while the rest of the
system used the metric system.

Most frequently, such errors won't reveal themselves during compilation, the parsing
process, or runtime. The errors will, however, impact the results of the program,
which sometimes, as shown in the NASA example, may lead to a spectacular failure.

The best way to pursue and eliminate such errors is to cover your code with unit
tests. Such tests examine the smallest testable piece of application—the units— to
check whether they provide proper results. They should be run automatically after
any major change.

Handling Errors in Apache Thrift

[114]

The subject of unit tests is very broad and outside the scope of this book. Every
programming language provides one or more libraries that are designed to make
unit testing possible. There are also countless frameworks and software suites
to make the testing process continuous and automatic. The method of preparing
the tests first and then writing the code so that the tests pass is called test-driven
development (TDD).

What are exceptions and how to
handle them?
In our work, we will concentrate on runtime errors as these are the errors that
may occur in your Apache Thrift-enabled application and you can (and should)
handle them.

In most programming languages, exceptions work in a similar manner: when an
error occurs at runtime, a special object is created. This object inherits from the basic
exception or error class, depending on the language, and contains information on the
nature of the problem. The execution of the program is interrupted and the exception
object is passed to the runtime system (this is called throwing an exception), which,
in turn, tries to handle it. Developers have the ability to define various exception
handlers, which can catch the exception. These handlers specify the kind of errors
they can handle—the type of exception objects that are accepted are listed in the
handler's header. The inheritance path is taken into consideration here, so that
handlers can be more or less general; they will accept all the exceptions of a given
class and those deriving from it.

Let's have a look at this modified example from Python's manual, which illustrates
the process of handling the exceptions, which we discussed earlier:

import sys

class MyError(Exception):
 pass

try:
 f = open('myfile.txt') // open myfile.txt file
 s = f.readline() // read line from the file
 i = int(s.strip()) // cast read value to the integer
 if i == 42:
 raise MyError // throw custom error if i = 42

// handle I/O errors
except IOError as e:

Chapter 6

[115]

 print "I/O error({0}): {1}".format(e.errno, e.strerror)

// handle variable type conversion errors
except ValueError:
 print "Could not convert data to an integer."

// handle my custom exception
except MyError:
 print "The value was 42."

// handle all other errors
except:
 print "Unexpected error:", sys.exc_info()[0]
 raise

In this example, the code that we want to run is wrapped in the block beginning with
the try statement. Our goal is to handle errors that might occur in this block; there
are statements that read data from the file and cast a string variable to the integer, so
we anticipate some of the errors that may occur; for example, when the file is missing
or not readable (the IOError exception), or the string value can't be converted to
the integer (the ValueError exception). As an illustration, I also added the custom
MyError exception, which is thrown (using Python's raise statement; however,
most languages use throw instead) when the value of the i variable is 42 (this doesn't
make much sense, but illustrates that you can throw your own exceptions the same
way as any built-in function).

In order to handle errors, there are several blocks of code beginning with the except
statement (which is unique for Python, as in most programming languages, catch
is the thrown exception being caught here instead) and the name of the exception
class that's handled in this block. This is because every exception may be handled
differently, and it is important to understand the nature of the possible error and the
solution that we may offer. It is common to leave the last catch-all block, which
will handle any unexpected exceptions left.

Handling exceptions in Apache Thrift
The errors that you have to care about most in your cross-language applications
using Apache Thrift are runtime errors, over which you probably don't have much
control. You may not be able to ensure that networks always work flawlessly and
hosts are reachable, required files are accessible, and that all data is provided in the
required format. Thus, you need to prepare for the worst-case scenario when none of
them is working.

Handling Errors in Apache Thrift

[116]

Every error has its own specific solution or measure that can be taken to handle it.
You have to evaluate your situation and apply the relevant solution; for example, in
some applications, when the host is unreachable, it is enough to try to connect to it
repeatedly (this is common in mobile applications or when you try to connect to a well-
known and relatively reliable third-party service, such as Google or Facebook), while
in others, it is better to send a notification to the person responsible (for example, when
your host is in the local network and you have administrative power over it).

Therefore, here we will discuss how to pass information about errors from a service
to a client without getting into the details of how to handle specific errors.

An example code
In order to illustrate this, we will use slightly modified code from the previous
chapters. For your convenience, you can download the code from Packt's website.
We add one more method, named divide, that can easily give us some trouble; for
example, when an attempt is made to divide by zero or the specified value is not an
integer or float.

Here is the method declaration in MyFirstService in our Apache Thrift document:

double divide(1:double number1, 2:double number2) throws
(1:DivisionByZeroError zero_error, 2:WrongTypeError type_error)

We have two new exceptions, DivisionByZeroError and WrongTypeError, that we,
of course, need to declare even though they are very simple:

exception DivisionByZeroError {
 1: string description
}

exception WrongTypeError {
 1: string description
}

In this chapter, we will be working with the Python service and PHP client; however,
you can implement it in any other language supported by Apache Thrift.

I recommend that you copy the new myfirst.thrift file to a new directory along
with the thrift-0.9.2 directory containing the Apache Thrift libraries (the exact
name may vary due to differences in version numbers).

After doing this, generate new Apache Thrift files:

$ thrift --gen py,php myfirst.thrift

Chapter 6

[117]

Now, for convenience, copy the generated MyFirstService-remote file, which is
useful for testing your service (we mentioned this in the previous chapter), to the
current directory:

$ cp gen-py/myfirst/MyFirstService-remote .

To easily run it in our test environment, substitute the import sys directive at the
top of the file with an indication of the proper paths (remember to substitute 0.9.2
with your version number):

import sys,glob
sys.path.insert(0, glob.glob('thrift-0.9.2/lib/py/build/lib.*')[0])
sys.path.append('gen-py')

To see the syntax of the MyFirstService-remote script, run it without any
parameters. In the case of our tutorial example, the output will be like this:
$./MyFirstService-remote

Usage: ./MyFirstService-remote [-h host[:port]] [-u url] [-f[ramed]]
[-s[sl]] function [arg1 [arg2...]]

Functions:

 void log(string filename)

 int multiply(int number1, int number2)

 int get_log_size(string filename)

 double divide(double number1, double number2)

In our example, only the new divide method will be implemented—we will
implement it in a moment so that we can play a little with our service.

Implementing the divide method
This time, we will actually implement the new method, something that I left to you
earlier. We will do it step by step to see the outcome and think about the fixes that
we need to apply.

Take the MyFirstServer.py file that you probably created while reading the
previous chapter.

If you didn't created the MyFirstServer.py file, you can
download it from Packt's website. Note that the files in the archive
that are supplied by the publisher have version names marked, that
is, MyFirstServer.v1.py, MyFirstServer.v2.py, and so on, so
you can easily examine the sequence that we follow here in the text.

Handling Errors in Apache Thrift

[118]

Let's implement the basic version of the divide method of the MyFirstHandler class
and save it:

class MyFirstHandler:
 def __init__(self):
 pass

// some methods here…

 def divide(self, number1, number2):
 return number1/number2

As you can see, the divide method does exactly what we want it to: it takes two
arguments and divides the first by the other. Everything should work well. But,
will it?

As an extra task, I encourage you to implement other
methods as well as think about error scenarios for them and
implement exception handling.

Running the application without error handling
Let's run the server so that we can start testing it:

$ python MyFirstServer.py

When you run this command, you will see nothing, but your server should start
listening to the specified port (which is 8080 by default) of your localhost.

Now we can run MyFirstService-remote to test various scenarios. The first
scenario should be straightforward:

$./MyFirstService-remote -h localhost:8080 divide 84 2

42.0

We ordered our client script to contact the remote service and run the divide
method with two parameters: 84 and 2. As you may have easily predicted, the result
of dividing these two numbers is 42.0.

The .0 indicates that this is a floating point number. This is
common notation in many languages; 42 is an integer and
42.0 is a floating point number.

Chapter 6

[119]

So, nothing special here: our service works as expected. However, let's see what
happens when we try to divide our number by 0—something that shouldn't be done:

$./MyFirstService-remote -h localhost:8080 divide 84 0

Traceback (most recent call last):

 File "./MyFirstService-remote", line 112, in <module>

 pp.pprint(client.divide(eval(args[0]),eval(args[1]),))

 File "gen-py/myfirst/MyFirstService.py", line 146, in divide

 return self.recv_divide()

 File "gen-py/myfirst/MyFirstService.py", line 159, in recv_divide

 (fname, mtype, rseqid) = iprot.readMessageBegin()

 File "thrift-0.9.2/lib/py/build/lib.macosx-10.10-x86_64-2.7/thrift/
protocol/TBinaryProtocol.py", line 126, in readMessageBegin

 sz = self.readI32()

 File "thrift-0.9.2/lib/py/build/lib.macosx-10.10-x86_64-2.7/thrift/
protocol/TBinaryProtocol.py", line 206, in readI32

 buff = self.trans.readAll(4)

 File "thrift-0.9.2/lib/py/build/lib.macosx-10.10-x86_64-2.7/thrift/
transport/TTransport.py", line 58, in readAll

 chunk = self.read(sz - have)

 File "thrift-0.9.2/lib/py/build/lib.macosx-10.10-x86_64-2.7/thrift/
transport/TTransport.py", line 159, in read

 self.__rbuf = StringIO(self.__trans.read(max(sz, self.__rbuf_size)))

 File "thrift-0.9.2/lib/py/build/lib.macosx-10.10-x86_64-2.7/thrift/
transport/TSocket.py", line 120, in read

 message='TSocket read 0 bytes')

thrift.transport.TTransport.TTransportException: TSocket read 0 bytes

Well, we know that something went wrong, but the message is rather cryptic. The
description of the error, TSocket read 0 bytes, provides no idea about the nature
of our mistake.

Let's think about what to do to handle such situations.

One of the advantages of Apache Thrift is that it handles all
the exceptions on the server side and passes them to the client
so that you don't have to worry that an invalid operation will
terminate your server process.

Handling Errors in Apache Thrift

[120]

Adding error handling to the server
The work that we want to do here is simple: we need to recognize when an invalid
operation is performed and throw (or as we call it in Python—raise) an exception,
which will be then passed by the Apache Thrift interface to the client. This way, we
are able to recognize that something wrong has occurred and can act accordingly.

The best way to see how some errors are handled is to write a small script or
program in which we make such errors deliberately and see what exceptions are
thrown. The resulting exceptions are ones that we would like to catch, process, and
throw our own exceptions which are recognized by our client.

In Python, you may enter the interactive mode using the Python command, and then
you can try some invalid operations (>>> indicates the prompt):

$ python

Python 2.7.8 (default, Oct 23 2014, 16:41:58)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.54)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> 84/2

42

>>> 84/0

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

>>> 84/"two"

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for /: 'int' and 'str'

First, we divided 84 by 2 and it was successful. Next, we tried to divide 84 by 0 and we
got the ZeroDivisionError exception. Then, we tried to divide 84 by a string (which,
of course, couldn't be done, even if the string contained the word two)—the interpreter
couldn't perform this operation, so it threw the TypeError exception (this means that
we wanted to use a variable of an invalid type for this kind of operation).

With this exercise, we learned that we need to handle two exceptions:
ZeroDivisionError and TypeError. In our situation, handling will mean passing
our own exceptions to the client.

Chapter 6

[121]

Let's do this in the divide method implementation in the MyFirstService.py file in
the way that I described earlier:

 def divide(self, number1, number2):
 try:
 return number1/number2
 except ZeroDivisionError:
 raise DivisionByZeroError(description="You tried to divide
%f by zero" % number1)
 except TypeError:
 raise WrongTypeError(description="You provided the
variable of wrong type.")
 except:
 raise MyError(error_code=1, error_description="Unknown
error.")

This way, we cover the most likely error, which is an attempt to divide some number
by 0. Also, we cover a kind of situation where the wrong type will be provided
(although implementation in many languages type casts anyway, and, as in PHP,
will fallback the value to 0), and just in case we can handle virtually any error using
the catch-all except statement without specifying the exception type.

Handling of the exceptions in this case means throwing our own exception with
some customized description. This is, of course, a very simple example where we
just pass one exception as another, but you can imagine a more complicated scenario
where the error may be created in the algorithm created by you.

Remember to restart your server after making any changes
to its code; it won't reload automatically. To do so, if you
run your server from the command line, press Ctrl + C in the
window with the server and run it again.

Let's use our MyFirstService-remote script to perform an invalid operation:

$./MyFirstService-remote -h localhost:8080 divide 84.0 0

Traceback (most recent call last):

 File "./MyFirstService-remote", line 112, in <module>

 pp.pprint(client.divide(eval(args[0]),eval(args[1]),))

 File "gen-py/myfirst/MyFirstService.py", line 146, in divide

 return self.recv_divide()

 File "gen-py/myfirst/MyFirstService.py", line 171, in recv_divide

Handling Errors in Apache Thrift

[122]

 raise result.zero_error

myfirst.ttypes.DivisionByZeroError: DivisionByZeroError(description='You
tried to divide 84.000000 by zero')

Still, the result is far from readable, but you can recognize something familiar: our
own DivisionByZeroError exception. It was thrown by the server and received by
our client. It wasn't caught properly— this is what we will do next.

Adding error handling to the client
Let's switch to our PHP client. You may find it in the MyFirstClient.php file that
we prepared in the next chapter or just download it from Packt's website. Some
minor changes are needed. As we are working with the socket server, substitute the
$server variable accordingly:

$server = new TSocket('localhost', 8080);

You can also substitute all client calls (calls of methods of the $client object) with
one call that will invoke the error that we need:

print $client->divide(84,0);

Let's run our script and see what happens:

$ php -f MyFirstClient.php

Fatal error: Uncaught exception 'myfirst\DivisionByZeroError' in /Users/
krzysztofr/work/chapter6/gen-php/myfirst/MyFirstService.php:844

Stack trace:

#0 /Users/krzysztofr/work/chapter6/gen-php/myfirst/MyFirstService.
php(228): myfirst\MyFirstService_divide_result->read(Object(Thrift\
Protocol\TBinaryProtocol))

#1 /Users/krzysztofr/work/chapter6/gen-php/myfirst/MyFirstService.
php(188): myfirst\MyFirstServiceClient->recv_divide()

#2 /Users/krzysztofr/work/chapter6/MyFirstClient.php(33): myfirst\
MyFirstServiceClient->divide(84, 0)

#3 {main}

 thrown in /Users/krzysztofr/work/chapter6/gen-php/myfirst/
MyFirstService.php on line 844

As you can see, our application received the exception, but it just wasn't able to
handle it. Let's change our method call so that it is able to do this:

try {
 print $client->divide(84,0);

Chapter 6

[123]

} catch (\myfirst\DivisionByZeroError $error) {
 print $error->description;
} catch (\myfirst\WrongTypeError $error) {
 print $error->description
} catch (\myfirst\MyError $error) {
 print $error->error_description;
}

Note that the $client->divide(84,0); call was encapsulated in the try statement
followed by the series of catch blocks.

Let's try running our script again and see what happens:

$ php -f MyFirstClient.php

You tried to divide 84.000000 by 0

As you can see, the stack trace could be substituted with any code you wanted when
handling the exceptions; in this case, it was nice print with the original information
gathered from the exception description.

This way our server and client gained the ability to handle the errors.

Advanced error handling
The example that we just looked at is quite simple with regard to catching an
exception and passing it to the client. In more complex, real-life situations, errors will
occur in the code that you write, so it will be the sole origin of the exception.

Error handling is not just printing the error description on the screen. Depending on
the situation and the nature of the error, you may want to perform different actions
to resolve the problem.

In some cases, it may be burdensome to create separate exception classes for every
error that may occur. Some applications may provide very detailed information
about the errors, causing dozens of separate exceptions to be distinguishable. In such
cases, as in our MyError exception example, it is advisable to create one exception
class with more detailed information about the error in a string variable and numeric
error code in the integer variable (the latter is important for automatic error parsing):

exception MyError {
 1: int error_code,
 2: string error_description
}

Handling Errors in Apache Thrift

[124]

You will be able to access MyError's variables in your code and act accordingly.
Here's a PHP example of the catch statement:

catch (\myfirst\MyError $error) {
 print "error code: " . $error->error_code . "; error description:
" . $error->error_description;
}

Summary
In this chapter, you learned about a very important part of application
development—handling errors. This is especially important in services that work
over networks and can be called from different clients. In such situations, errors are
not uncommon.

Remember that handling errors is not optional, especially in real-life applications.
This has to be done so that your applications work reliably and predictably.

In the next chapter, you will use all the knowledge that you've already gathered and
work on example server and client applications from scratch. We will run several
clients in different languages simultaneously to imitate real-life scenarios.

[125]

An Example Client-Server
Application

Through this book, you have gathered a wide scope of knowledge about Apache
Thrift, and how to use it with different programming languages. You learned
about its internals, how to define your services, implement the client and server
in different languages, and how to handle errors. You even ran your first simple
services and clients.

Now we will put this information together to work on a bit more complicated
application. The goal of this chapter is to provide a step-by-step tutorial to create
clients and services with Apache Thrift, applying all the knowledge gained from the
previous chapters.

This chapter has a deliberately planned structure, which resembles a typical
workflow for such a project. I encourage you to use it as a template for your
future work.

You can write your code as you progress through this
chapter or download it completely from Packt's website
and just follow the changes.

Our example application
We will be working on a relatively simple application, but it will allow us to use all
the skills we need. You can use this example idea, or you might want a little bit of a
challenge and invent your own. This time, we will implement our methods in full so
that the application is entirely functional.

An Example Client-Server Application

[126]

We will use the following things that we learned throughout the book:

• Structs passed as arguments and the return values of functions
• Exceptions and how to handle them in the service and client
• Custom consts
• Enums
• Different types of functions: those that return some values and others that

don't return any
• Including external IDL documents to our original Apache Thrift document
• Substituting type names using the typedef statement
• The service inheritance model

Our example will cover most of these elements and some others as well.

Planning out your work
As you now have a general idea of what we will be working on, let's plan our
endeavor. This is not only necessary for this chapter to have a structure, but you may
as well use it as a template for your work.

Planning is the most important part of every project—it is better to spend some extra
time in the process of planning, rather than proceeding without a strategy and failing
along the way. Due to this, we will spend some time planning before we actually
implement our ideas.

The outline of our plan is as follows: first, we will formulate the general idea of
our application. This means that we will describe what we want to achieve in
normal human language and the tools we are going to use to do this. This may
not only include a description of business needs, but also technical requirements
or limitations. In real projects, this phase will be conducted with your client's
representative, someone who's representing your users or business people. It is
important to collect most of the vital requirements at this stage because all the work
that follows depends on it. It is extremely difficult to get back to this phase when the
project is halfway through.

Then, we will start to be a little bit more technical. We will think about representing
the objects that we described previously with data structures available in Apache
Thrift. In the next step, we will get a brief idea of what the methods in our service
will look like, the arguments they'll take, the values that are returned, or whether
there is a need for some exception handling (there will always be exceptions, isn't
it?). All this will be documented in an informal way.

Chapter 7

[127]

When we have our goals and a general idea of how to achieve them, it's time to start
the actual development. The first of our development tasks is to prepare the Apache
Thrift documents. We will plan their layout (remember that we want to have more
than one in order to make use of the service inheritance) and then proceed with
creating the files. We will compile these files using the thrift command for service
stubs and other resources.

Next, we will implement the servers and clients for our service. This time, we will
perform the full implementation of the server so that you are ready to test the
solution and get some real results. After running the server and clients, we will test
various scenarios—some correct and others erroneous. This will allow us to check
whether the implementation is correct and the errors are handled properly.

In the last step, we will research what can be done next, and the possible
improvements that can be made. In real-world projects, it is also a good habit to
evaluate the success of the cumulative effort that's been put in.

This is the plan that we will be following in this chapter. After you complete it, you
may call yourself experienced in the development of Apache Thrift services.

Let's begin!

Getting a general idea of the example
application
Before we get into coding, we need to know what to expect and what we can do to
fulfil our expectations.

It this case, our requirement is to have an application that will let us test various
Apache Thrift capabilities and be easy to implement and test. We want to have the
server in one language and clients in two other languages.

Let's name our service MyToolbox and expose three methods that will perform the
following actions:

• The first method, get_distance, will return the distance, in kilometers
(rounded up to the nearest integer), between two points on Earth, given
their coordinates (we will use decimal degrees, whose format is popular
in modern mapping applications, GPS devices, and so on, which express
coordinates as decimal values instead of degrees, minutes, and seconds, and
is used in cartography and navigation).

www.allitebooks.com

http://www.allitebooks.org

An Example Client-Server Application

[128]

• The second method, find_occurences, will take a string and a regular
expression and return a list of all the lines in the input string that match the
regular expression.

• The third method, save_to_log, will take some strings and filenames
and save the log entry to this file. We assume that if there is no such file,
we will create it.

We want our service to handle most of the errors that we can foresee. We need to
think about what errors may occur at this moment so that we can define the relevant
error handling.

Let's prepare a list of possible errors:

Method Possible errors
get_distance • The coordinates are out of range, that is, the latitude is less

than -90 degrees or more than 90 degrees, or the longitude is
less than -180 degrees or more than 180 degrees

• This presents the wrong format of input data (the arguments
are not floating point numbers or cannot be converted to them)

find_occurences • The regular expression that is given as a parameter is invalid
(it's either syntactically invalid or the argument is of the
wrong type)

• The input text is to be matched is invalid
save_to_log • The filename submitted is invalid, for example, in the

filesystem, you are not allowed to create a file with this kind
of a name; for security reasons, we won't allow any filenames
containing characters other than letters, numbers, and dots

• The system prevents us from creating the file, for example,
our application has no right to write or create such a file

• We arbitrarily require the message to be at least five
characters long and will refuse to write shorter messages

Remember that in the planning phase, you may not predict all the error scenarios
that may occur. Later on, during development, you may want to get back to this list
and update it.

A technical overview of the application
As we now know what we want to achieve, this is the best time to plan the technical
elements of Apache Thrift that we would want to use. This is still not the moment
when we start coding; the effect of our work will be in pseudocode.

Chapter 7

[129]

Pseudocode is an informal description of how a computer
program or other algorithm works or will work. This code
doesn't have to be parsable in any programming language
and the syntax relies heavily on convention. The goal of
pseudocode is to give the developer an idea of what should be
coded in the intended programming language without going
deep into the implementation details.

As the core of every service is its functions, we will start from them, and then draw
the big picture.

get_distance
Let's start with the first function of our service, get_distance. This function will
return an integer value, which will be the distance in kilometers between two given
points. As the maximal circumference of Earth is just a little bit over 40,000 km, there
is no possibility of having two points that are more than 20,000 km apart. Therefore,
a 16-bit signed integer, i16, which can store values from -32,768 to 32,767, is more
than enough to get a return value. It will be mapped to the best fitting integer in each
language, for example, PHP has just one type of integer whose size is dependent
on the platform. This is also the reason why we need to use signed integers, even
though the return values will be equal to or greater than zero. For the sake of
convenience, we can substitute the not-so-readable name of i16 with our own:
distance. We will use typedef to do this:

typedef i16 distance

Now, let's think about how we will pass the coordinates to the get_distance
function. We want to measure the distance between two points on Earth. Each point
is represented by its coordinates, which comprise the latitude and longitude. These
are called floating point numbers. Therefore, we can conclude that we need some
structure that will hold this pair. As extra information, we may store the name of a
particular point on Earth and its type (that is, a city, lake, or mountain). Let's write it
down in the pseudocode:

struct Point {
 float latitude,
 float longitude,
 string name,
 point_type type enum [city, village, lake, mountain, landmark]
}

An Example Client-Server Application

[130]

This is, of course, not valid Apache Thrift code, but it gives you some idea about
what you will need. From the definition of the struct syntax, you know that you will
need to define the point_type enum separately.

We previously defined two types of errors that we anticipate here are the coordinates
that are out of range and also include the types of input arguments that are wrong.
Without going into much detail, we may define two exceptions thrown by this
function: CoordsOutOfRange and WrongDataType. I think that the latter exception
may be used in the other functions too.

The last, but most important, thing that we need to define is how actually the
function will work on the data it receives. This involves some serious math, but don't
worry, we won't get into the details here. We will take some assumptions to simplify
our work (that is, let's assume that the Earth is an ideal sphere and we don't care
about rounding errors that much):

() ()(
() () ())

1
1 2

1 2 1 2

cos sin sin

cos cos cos

d r latitude latitude

latitude latitude longitude longitude

−=

+ −

In this formula, the following have been explained:

• d: This measures distance
• r: This is the radius of the Earth, which is approximately 6,371 km
• (latitude1, longitude1) and (latitude2, longitude2): These are the coordinates

of the first and second points on the Earth, respectively (they need to be
converted to radians)

Whoa, looks overwhelming, right? Don't worry, it is easier than it looks, especially
once I give you the exact code to use in your implementation.

If you would like to read a little bit more about how to calculate
distances on Earth, read these two informative Wikipedia
articles at https://en.wikipedia.org/wiki/Great-
circle_distance and https://en.wikipedia.org/
wiki/Geographical_distance.

The algorithm for this method may look like this:

1. Take the coordinates of the points on Earth.
2. Check whether they are within the range of (-90,90) for the latitude and

(-180,180) for the longitude. If not, throw an exception.

https://en.wikipedia.org/wiki/Great-circle_distance
https://en.wikipedia.org/wiki/Great-circle_distance
https://en.wikipedia.org/wiki/Geographical_distance
https://en.wikipedia.org/wiki/Geographical_distance

Chapter 7

[131]

3. Convert the latitude and longitude to the radians (you need to multiply the
value by

180
π or 0.017).

4. Substitute the values in the formula.
5. Round up the result to the nearest integer.
6. Return the result.

Now, we have all the pieces to put together in our method. Let's write its declaration
in the pseudocode:

integer get_distance(Point point1, Point point2) throws
(CoordsOutOfRange, WrongDataType)

This is all we need for now.

find_occurences
The find_occurences method will take as the arguments some strings that may
have one or more lines of text (separated by the new \n line separator) and the string
containing the regular expression. Then, a list of the matches is returned.

Errors that we anticipate in this situation are not valid regular expressions in the
argument, or the string to be matched against the regular expressions is not valid.
The former may be NoValidRegex and the latter is InvalidInputString.

The algorithm that will be the core of our method is quite simple and needs no
elaborate explanation. It is devised as follows:

1. Check whether the parameters are valid. If not, return an error.
2. Construct the regular expression object (depending on the programming

language that will be used for server implementation) and parse the string.
3. Get the list of matches and return it.

Our function will return the list of strings as list<string>.

Let's have a look at the pseudocode of this method:

list<string> find_occurences(string string_to_match, string regex)
throws (NoValidRegex, InvalidInputString)

For now, this is everything we need to know about this method.

An Example Client-Server Application

[132]

save_to_log
The save_to_log method is the last method and the simplest one. It gets the
filename and a string with the message as the parameters. Then, it tries to save the
received message to the given file. The constraints are that we want the message to
be at least five characters long, and we want to take extra care not to do any harm to
important system files, thus limiting the filename to letters, numbers, and dots. This
way it is impossible to write to files outside the current directory (as, for example, it
is impossible to use the / character).

This function won't have any return value (it will be void). We can't make it oneway
(so the client won't wait for the result) because we need to handle the exceptions if
they occur.

The exceptions that we want to throw from this function are as follows:

• MessageTooShort: This includes a message that has fewer than five characters
• InvalidFileName: This includes the filename that contains characters other

than letters, numbers, or dots
• CantWriteToFile: This can be referred to if, for some reason, it is impossible

to write to the file

The algorithm for this method can be devised as follows:

1. Check whether the message is of the required length. It should be five or
more characters long; if it isn't, throw an exception.

2. Check whether the filename doesn't contain characters other than letters,
numbers, and dots; if it does, throw an exception.

3. Open the file (create it if it doesn't exist), append the message to the end of
the file, and close the file. If some error occurs, throw an exception.

Once we have this information, we can write the declaration of the function in the
pseudocode:

void save_to_log(string message, string filename) throws
(MessageTooShort, InvalidFileName, CantWriteToFile)

This is everything we need to have for this method for now.

The server
We also need to think about the requirements toward the server. Let's say it is
written in Python. It will use TServerSocket over TBufferedTransport and
TBinaryProtocol. We will also use TSimpleServer as our project doesn't need
high performance. By default, the server will run on port 8080.

Chapter 7

[133]

Clients
We will write two clients: one in PHP and the other in Ruby. Both of them will be run
from the command line; however, you may modify them to your needs to be a part of
a web application, more configurable command-line applications, and so on.

Now, we have defined the technical details of our methods, server, and clients. At
this time, we have all the information we need to start developing our solution.

So, let's get to work!

Preparing the Apache Thrift document
Apache Thrift allows us to have a more complicated structure of the documents than
a single file. It is especially useful if you want to have a set of basic tools to include in
different services.

In our simple example, let's say we want to have a basic service, which allows
logging messages to file. Any other service that we build has to have this capability.
We also want some basic exceptions defined that are universal and can be used in
any service, regardless of its specifics.

Therefore, we will split our definition into two Apache Thrift documents:

• mybase.thrift will contain basic universal components
• mytoolbox.thrift will contain our specific service

You can type the files as we go or download them from
Packt's website.

The basic toolbox – base.thrift
Let's identify the components that are universal, and we can use them not only in our
MyToolbox service, but also in any other service in the future.

For sure, the save_to_log function is universal and we can use it in many different
services. Thus, we will create MyBaseService that will include this function. As
save_to_log uses three exceptions (MessageTooShort, InvalidFileName, and
CantWriteToFile), they also have to be included in this file.

We may also consider the WrongDataType exception used by the get_distance
function as quite universal as such an error may occur in many different functions.

An Example Client-Server Application

[134]

Now it is a time to define these components one by one and put them in the
mybase.thrift file. Let's start with the namespace. For convenience, it should be
the same as the file and service names, and it should be kept constant through the
programming languages:

namespace * mybase

All the components of this file will be available in this namespace (or module,
depending on the language).

Now let's define the exceptions. Let's agree on a convention whereby they will
have an attribute description, which will provide the description of the error.
The definitions are rather simple:

exception MessageTooShort {
 1: string description
}

exception InvalidFileName {
 1: string description
}

exception CantWriteToFile {
 1: string description
}

exception WrongDataType {
 1: string description
}

We may now define MyBaseService with just one function. This is based on the
pseudocode that we prepared in the previous section, but of course it needs to
comply with the Apache Thrift's IDL syntax:

service MyBaseService {

 void save_to_log(1:string message, 2:string filename) throws
(1:MessageTooShort err1, 2:InvalidFileName err2, 3:CantWriteToFile
err3)
}

Save everything to the mybase.thrift file. Just to be sure that the syntax is OK, try
to compile it:

$ thrift --gen py mybase.thrift

If you got no output and the gen-py directory was created and populated with files,
you're good to go!

Chapter 7

[135]

The MyToolbox service – mytoolbox.thrift
This is the actual service that will make use of MyBaseService. What you need to
start doing is including base.thrift in your new mytoolbox.thrift file:

include "mybase.thrift"

Now let's define the namespace for this service; the rules for the namespace are the
same as the ones you saw previously:

namespace * mytoolbox

The next step is to define all the components that weren't already defined in our
universal base document and are going to be used by the service.

Let's start with the return value for the get_distance function:

typedef i16 distance

We can make the Earth radius constant as this value is unlikely to change, but we
want to have it defined in one place and use it through all the applications:

const i16 EARTH_RADIUS = 6371

We need to have the enum defining different types of geographical points:

enum PointType {
 CITY,
 VILLAGE,
 LAKE,
 MOUNTAIN,
 LANDMARK
}

Now, the Point struct will be passed as an argument to the get_distance function.
Once again, we adapt the pseudocode prepared in the previous section for the
IDL syntax:

struct Point {
 1:double latitude,
 2:double longitude,
 3:string name,
 4:PointType type
}

An Example Client-Server Application

[136]

We need to have the declarations of all the exceptions. There are three of them
left, and they are all are very simple; we also follow this convention set for the
base exceptions:

exception CoordsOutOfRange {
 1: string description
}

exception NoValidRegex {
 1: string description
}

exception InvalidInputString {
 1: string description
}

Now we have everything that we need to declare the MyToolbox service and both of
its functions. Have a look at the code and then we will examine it:

service MyToolbox extends mybase.MyBaseService {

 distance get_distance(1:Point point1, 2:Point point2) throws
(1:CoordsOutOfRange err1, 2:mybase.WrongDataType err2),

 list<string> find_occurences(1:string string_to_match, 2:string
regex) throws (1:NoValidRegex err1, 2:InvalidInputString err2)
}

As we want to incorporate the methods of MyBaseService into the MyToolbox service,
we need the latter to extend the former. This is consistent with the object inheritance
model, which is seen in most object-oriented programming languages. Similarly, you
have to prefix any exceptions, constants, and so on, from the included file.

The declarations of the functions are based on the pseudocode, but are compliant
with the IDL syntax.

Compiling the IDL files
That's it. Let's see if the syntax of the file is valid and compile the PHP, Ruby, and
Python libraries:

$ thrift --gen py --gen rb --gen php -r mytoolbox.thrift

Chapter 7

[137]

The -r option is needed when we want to include some files in our Apache Thrift
document and want them to be parsed too. If you have got no output message and the
gen-py, gen-php and gen-rb directories were created, you may be confident that
the syntax of the file is correct. If you have got some error message, review the code
and try to fix it (you can check out the downloadable source files for comparison).

Implementing the server
Our server will be implemented in the Python language. In this section, we will go
through the script line by line, explaining each as we go along; you can type it in the
file or download it from the repository.

So, let's open the MyToolboxServer.py file and go through its contents.

Imports
At the beginning, we need to import files that are necessary for the script to run:

import sys, glob
path for file generated by Apache Thrift Compiler
sys.path.append('gen-py')
add path where built Apache Thrift libraries are
sys.path.insert(0, glob.glob('thrift-0.9.2/lib/py/build/lib.*')[0])

These are the modules in the gen-py directory and the thrift-0.9.2 directory (the
name depends on the exact Apache Thrift version you use).

Remember to build the library by running the following
commands:
cd thrift-0.9.2/lib/py

python setup.py build

cd ../../..

Next, we need to import some of the modules and functions that will be used in
the implemented service. The first line contains the re (regular expressions) module
and its constants module; the second contains some mathematical functions used
during calculations:

import re, sre_constants
from math import sin, cos, acos, ceil, radians

An Example Client-Server Application

[138]

Then, we import the modules that are generated by Apache Thrift and are placed
in the gen-py directory. We will use them through our implementation. We need to
import both the mytoolbox and mybase modules, even though the latter is included
in the mytoolbox.thrift file:

from mytoolbox import MyToolbox
from mytoolbox.ttypes import *
from mytoolbox.constants import *
from mybase.ttypes import *
from mybase.constants import *

What follows are the imports of the Apache Thrift libraries that we want to
use—transports, protocols, and server. If you choose different ones, you need to,
of course, import them instead:

from thrift.transport import TSocket
from thrift.transport import TTransport
from thrift.protocol import TBinaryProtocol
from thrift.server import TServer

Displaying errors on the console (logger)
Here is a tip that I didn't mention before. Normally, when some problems occur with
your server script (that is, a syntax error or other exception that is not handled by
your code), you won't get any useful hints about what went wrong. If you want to
easily debug your script, you need to know what the problem was; to do this, you
need to have a logger that will print errors on the console. To register the logger for
TServer, use the following code:

import logging
logger = logging.getLogger('thrift.server.TServer')
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
logger.addHandler(ch)

This way, all the errors will be printed on the console where you can examine them
and find solutions for them.

Chapter 7

[139]

Implementing service methods
Now, we need to implement the service and its methods. The easiest way to do
this would be to create a single handler class with all of the methods. However, it
is better to use a convention that's similar to the one that we used in our Apache
Thrift documents. We have a universal service, which is extended by the other more
specific one. This way, we stay consistent through all the layers of the system, both in
the service declaration in IDL and the server implementation.

To achieve this, we will create a similar architecture: we will extend MyBaseHandler
(containing the save_to_log method) with MyToolboxHandler containing the
get_distance and find_occurences methods.

Let's have a look at the implementation of the first handler class:

class MyBaseHandler(object):

 def __init__(self):
 pass

 def save_to_log(self, message, filename):
 if len(message) < 5:
 raise MessageTooShort(description="The message is too
short.")

 if re.search('/[^a-z1-9\.]/', filename, re.IGNORECASE) is not
None:
 raise InvalidFileName(description="The filename contains
forbidden characters.")

 try:
 with open(filename, 'a') as file:
 file.write(message + '\n')
 except IOError as error:
 raise CantWriteToFile(description="I/O error({0}): {1}".
format(error.errno, error.strerror))
 except:
 raise CantWriteToFile(description="Unknown error while
writing to file %s." % filename)

As you can see, this class has the __init__ empty constructor; however, you may
add some code there if you need to. Then, we implement the save_to_log method,
taking into consideration all the constraints that were defined previously, such as
what arguments the method takes, what exceptions are raised, and when and what
operations are being performed. If the documentation is good, the development boils
down to putting all the pieces of the puzzle together using the right syntax.

An Example Client-Server Application

[140]

Now we will do the same with MyToolboxHandler, which extends MyBaseHandler.
Let's start by examining the first lines of the class implementation:

class MyToolboxHandler(MyBaseHandler):

 def __init__(self):
 pass

As seen earlier, this class has an empty constructor, but you can add some code here
if you need to.

The implementation of the get_distance function in this class begins with
four blocks validating the input parameters. First, we check whether both of
the arguments are of the proper type. Then, we check whether the values of the
coordinates are not outside of the required range. In case of any problem, the
exception with proper information is thrown (or raised using Python's terminology).

As the code is a little convoluted here, the blocks are split into smaller chunks of code
for better readability:

 def get_distance(self, point1, point2):

 if not isinstance(point1, Point):
 raise WrongDataType(description="point1 is of wrong
type.")

 if not isinstance(point2, Point):
 raise WrongDataType(description="point2 is of wrong
type.")

 if \
 point1.latitude < -180 \
 or point1.latitude > 180 \
 or point1.longitude < -90 \
 or point1.longitude > 90:
 raise CoordsOutOfRange(description="Coordinates of
point1 are out of range.")

 if \
 point2.latitude < -180 \
 or point2.latitude > 180 \
 or point2.longitude < -90 \
 or point2.longitude > 90:
 raise CoordsOutOfRange(description="Coordinates of
point2 are out of range.")

Chapter 7

[141]

 return \
 ceil(EARTH_RADIUS * \
 acos(
 sin(radians(point1.latitude)) * sin(radians(point2.
latitude))
 + cos(radians(point1.latitude)) * cos(radians(point2.
latitude))
 * cos(radians(abs(point1.longitude - point2.
longitude)))
))

The last statement in this function is the elaborate formula that I promised you
earlier. Believe or not, the result will be the distance in kilometers between two
points on the surface of the Earth. It is not perfect; the result may diverge from the
real value by a significant fraction, but it is good enough for our needs. Note that we
use the EARTH_RADIUS constant that was defined in the Apache Thrift file.

The next method is find_occurences, which returns a list of all matches against
the regular expression in a given text. If there are none, an empty list is returned. Of
course, the required validation is made and exceptions are thrown:

 def find_occurences(self, string_to_match, regex):

 try:
 return re.findall(regex, string_to_match)
 except sre_constants.error:
 raise NoValidRegex(description="Provided regular
expression '%s' is invalid." % regex)
 except TypeError:
 raise InvalidInputString(description="Cannot parse the
string to match.")

This concludes the implementation of our handler class.

Creating the server
The last part is known to you; it's the creation of the handler object and server,
which can be started like this:

port = 8080

handler = MyToolboxHandler()
processor = MyToolbox.Processor(handler)
transport = TSocket.TServerSocket(port=port)
tfactory = TTransport.TBufferedTransportFactory()
pfactory = TBinaryProtocol.TBinaryProtocolFactory()

An Example Client-Server Application

[142]

server = TServer.TSimpleServer(processor, transport, tfactory,
pfactory)

print "Starting server on port %d" % port
server.serve()

Running the server
That's it! The last thing that you need to do after saving the whole code to the
MyToolboxServer.py file is to run your server:

$ python MyToolboxServer.py

Now, your server will run and accept connections on port 8080.

Implementing and running clients
As the server is running, we now need to implement the clients. You should be
familiar with this part, so I will just remind you of the most important parts, leaving
something for you as homework.

Creating a client in PHP
When creating the client in PHP, we go through the standard procedure of including
the required files, registering namespaces, and creating the connection:

#!/usr/bin/env php
<?php
define('THRIFT_PHP_LIB', __DIR__.'/thrift-0.9.2/lib/php/lib');
define('GEN_PHP_DIR', __DIR__.'/gen-php');

require_once THRIFT_PHP_LIB.'/Thrift/ClassLoader/ThriftClassLoader.
php';

use Thrift\ClassLoader\ThriftClassLoader;

$loader = new ThriftClassLoader();
$loader->registerNamespace('Thrift', THRIFT_PHP_LIB);
// register your namespace
$loader->registerDefinition('mytoolbox', GEN_PHP_DIR);
$loader->registerDefinition('mybase', GEN_PHP_DIR);
$loader->register();

// include here the protocols and transports that you need

Chapter 7

[143]

use Thrift\Protocol\TBinaryProtocol;
use Thrift\Transport\TSocket;
use Thrift\Transport\THttpClient;
use Thrift\Transport\TBufferedTransport;
use Thrift\Exception\TException;

$server = new TSocket('localhost', 8080);

// create connection
$transport = new TBufferedTransport($server, 1024, 1024);
$protocol = new TBinaryProtocol($transport);
$client = new \mytoolbox\MyToolboxClient($protocol);

$transport->open();

Note that, as seen in the Python server, you need to register both the mytoolbox and
mybase modules, even though the latter is included in the mytoolbox.thrift file.

Now is the time to play with the methods exposed by the service. Let's create two
objects of the Point type:

$p1 = new \mytoolbox\Point;
$p2 = new \mytoolbox\Point;

$p1->name = "London";
$p1->type = \mytoolbox\PointType::CITY;
$p1->longitude = 51.507222;
$p1->latitude = -0.1275

$p2->name = "Kilimanjaro";
$p2->type = \mytoolbox\PointType::MOUNTAIN;
$p2->longitude = -3.075833;
$p2->latitude = 37.353333;

Note that you have to prefix the class or exception names with proper namespaces
in this case; the Point class is in the mytoolbox namespace, so you should refer to it
using the \mytoolbox\Point syntax, and do the same thing for the PointType enum.

Now, we will use the $client object to call the service. Wrap this call in the try-
catch block as, on the second try, we will provide invalid data, which should cause
our service to throw an error:

try {

 print "Distance p1-p2: " . $client->get_distance($p1, $p2) . "
km\n";

An Example Client-Server Application

[144]

 // if one of the values is out of scope
 $p1->longitude = 200;

 print "Distance p1-p2: " . $client->get_distance($p1, $p2) . "
km\n";

} catch (\mytoolbox\CoordsOutOfRange $e) {
 print "CoordsOutOfRange: " . $e->description . "\n";
} catch (\mybase\WrongDataType $e) {
 print "WrongDataType: " . $e->description . "\n";
}

As you will see during the test, on the second try, the exception would be raised and,
of course, handled. The second message won't be printed.

Next, let's try the find_occurences method. We will submit the [a-z] regular
expression, which will match every lowercase letter and use it against the randomly
generated MD5 hash.

The output of the MD5 message-digest algorithm is a 128-bit
hash value, represented as a 32-digit hexadecimal number,
which, in turn, is represented by a string of 32 characters
consisting of digits from 0 to 9 and letters from a to f.

On the second attempt, we will submit an [a-z] invalid string, which is an
incomplete regular expression. We expect that in such a situation, the NoValidRegex
expression will be thrown:

try {
 print "Looking for letters in random md5 string:\n";
 var_dump($client->find_occurences(md5(rand()), '[a-z]'));

 // this will fail
 print "Testing wrong regex\n";
 var_dump($client->find_occurences(md5(rand()), '[a-z'));

} catch (\mytoolbox\InvalidInputString $e) {
 print "InvalidInputString: " . $e->description . "\n";
} catch (\mytoolbox\NoValidRegex $e) {
 print "NoValidRegex: " . $e->description . "\n";
}

We will see the result of this when we run the script.

Chapter 7

[145]

The last step is to test the save_to_log function and try to break the rules by
supplying a message that is too short:

try {
 date_default_timezone_set("UTC");
 $client->save_to_log("my test message " . date("Y-m-d H:i:s"),
"logfile.log");
 $client->save_to_log("shrt", "logfile.log");
} catch (\mybase\MessageTooShort $e) {
 print "MessageTooShort: " . $e->description . "\n";
} catch (\mybase\InvalidFileName $e) {
 print "InvalidFileName: " . $e->description . "\n";
} catch (\mybase\CantWriteToFile $e) {
 print "CantWriteToFile: " . $e->description . "\n";
}

As seen in the previous examples, the first attempt should be successful, while the
second should fail.

Finally, remember to close the transport:

$transport->close();

That's it. Save the code in a file (for example, MyToolboxClient.php) and run it:

$ php -f MyToolboxClient.php

The result should be similar to this:

$ php -f MyToolboxClient.php

Distance p1-p2: 6968 km

CoordsOutOfRange: Coordinates of point1 are out of range.

Looking for letters in random md5 string:

array(13) {

 [0]=>

 string(1) "c"

 [1]=>

 string(1) "f"

 [2]=>

 string(1) "a"

 [3]=>

 string(1) "e"

 [4]=>

 string(1) "a"

 [5]=>

An Example Client-Server Application

[146]

 string(1) "f"

 [6]=>

 string(1) "a"

 [7]=>

 string(1) "c"

 [8]=>

 string(1) "d"

 [9]=>

 string(1) "d"

 [10]=>

 string(1) "e"

 [11]=>

 string(1) "b"

 [12]=>

 string(1) "d"

}

Testing wrong regex

NoValidRegex: Provided regular expression '[a-z' is invalid.

MessageTooShort: The message is too short.

As expected, some of the remote function calls turned out to be successful, while
others resulted in errors, but all of them were handled by wrapping the calls in the
try-catch block. You can review the consecutive commands and printed results to
examine the successful and unsuccessful calls.

Creating a client in Ruby
The second client will be written in Ruby. You may notice that, in general, this
implementation is a lot briefer, but follows similar principles to the one in PHP:

directory with code generated by Apache Thrift
$:.push('gen-rb')
directory with the Apache Thrift library
$:.unshift 'thrift-0.9.2/lib/rb/lib'

require 'thrift'

require 'my_toolbox'

require 'digest/md5'

transport = Thrift::BufferedTransport.new(Thrift::Socket.

Chapter 7

[147]

new('localhost', 8080))
protocol = Thrift::BinaryProtocol.new(transport)
client = Mytoolbox::MyToolbox::Client.new(protocol)

transport.open()

print client.find_occurences(Digest::MD5.hexdigest("hello world"),
'[a-z]')

transport.close()

As you are already familiar with how to call the service and test the functions, I will
leave the details of the function calls to you. In this case, we call only one function,
find_occurences, to parse the MD5 hash. You may add extra calls to test different
scenarios, and use the try-catch blocks to handle the errors.

Before you run the script, note that in the 0.9.2 version of Apache Thrift, there is
a bug when you try to include other IDL documents, which prevents the scripts
from running. You need to edit the file by hand; in our case, this means that
you need to remove the extra reference to the module name in line 8 of the
mytoolbox_types.rb file.

Instead of require 'mybase/mybase_types', it should be require 'mybase_
types'.

Note that this bug may or may not occur in different versions of Apache Thrift.

To run your script, just type the following command:

$ ruby MyToolboxClient.rb

The result should be similar to this:

$ ruby MyToolboxClient.rb

 ["b", "a", "f", "f", "d", "b", "a", "b", "d", "c", "d", "c", "f"]

Further testing and other exercises
In our examples, we tried to submit some valid and invalid data to see how the
service performs and if we are able to handle the errors properly. We didn't,
however, test every possible scenario.

An Example Client-Server Application

[148]

As an extra exercise, I suggest that you attempt the following tasks:

• Testing each of the functions in the Ruby client with both valid and
invalid arguments

• Testing border cases and different combinations of valid and invalid
parameters

• Writing automatic unit tests for the methods implemented in the server
• Experimenting with different transports, protocols, and servers
• Adding client and server code as a module to bigger applications, for

example, written in some framework
• Running performance tests and comparing response times under

different conditions

I hope that this (incomplete) list of possible solutions will inspire you to expand your
Apache Thrift experience further beyond the basics covered in this book.

Summary
In this chapter, we covered everything that you learned up to this point in one
service and three different applications. You were able to use all the language's
capabilities to create your Apache Thrift service.

You not only recalled the technical details, but also got to know the optimal process
that leads to creating the service and clients. Remember this method in future so
that you can plan and implement your applications in an organized and structured
manner. This way of working will let you meet requirements in an easier manner
and with less effort, with the whole process being transparent and comprehensible.

In the final chapter, we will wrap things up with some examples of advanced usage
of Apache Thrift. You will get some tips on using it in production environments and
learn about how it is leveraged by the top companies.

[149]

Advanced Usage of
Apache Thrift

If you have made your way all the way to this chapter, you have enough knowledge
to design and develop your own services using Apache Thrift on a variety of
platforms. In this chapter, I will provide you with extra information that you may
use to expand your skills to work on complex projects solving real problems. You
will also see that Apache Thrift is a powerful tool used by well-known companies,
such as Facebook, Twitter, or Evernote, to power their core products.

I will mention several different topics that, I hope, you will treat as a starting point
and inspiration in your journey to advance your Apache Thrift skills. The goal of this
chapter is to provide as many pointers to useful directions as possible.

Apache Thrift in production
Through this book, you learned a lot about how to use Apache Thrift to suit your
needs. However, as I mentioned a few times on various occasions, when working in
a production environment, you must take into consideration lots of issues that are
not that important in the development environment, such as performance, security,
version control, and many more.

Let's go through some of the most important topics. I will cover them in enough
detail to allow you to do further research and then introduce them in your project.
Some of them are tightly related to Apache Thrift, while others are generic, but they
will undoubtedly be useful and necessary.

Advanced Usage of Apache Thrift

[150]

Code version control systems
This topic will be mentioned briefly as it is not strictly Apache Thrift-related;
however, it's of very high importance in every programming project, no matter
what language is used.

Various code version control systems (VCSs) are popular right now, with Git
(https://git-scm.com/) and Mercurial (https://www.mercurial-scm.org/)
being the leaders in the open source community.

I hope that you are currently using one of them, but if not, let me convince you to do
so by briefly mentioning the most important advantages of VCSs:

• Security (backup): Your code not only stays on your computer, but you
may also push it to a remote repository, sparing yourself trouble in case
something bad happens to your hard drive.

• Collaboration: You may work independently on the same code base with
other developers. It is even possible to work on the exactly the same file;
the version control system will take care of merging the changes for you (of
course, when the differences are more complicated, it may need to ask you
for help).

• Version control: The most important feature of VCSs is that if you wish,
you may restore your whole code base or just one file to any time in the past
in order to recover some content, track bugs, or run the previous version of
your software. You are able to work simultaneously on many versions of the
software by utilizing the branching model and precisely tracking the changes.

• Code delivery: A centralized code repository may be also used as a tool to
deliver the code to many machines instead of copying files to every server
from the central one; just order each of the servers to pull the code from the
repository. Most automated build systems integrate with Git or Mercurial by
default.

You may include Apache Thrift files in your project's code repository or create a
separate repository, depending on your needs and the size of the project.

Code deployment
When your system runs on more than one server, proper deployment starts to be
a challenge. Very often, you need to run the same command on many machines
simultaneously or according to some specific plan—it is impossible to log in and do
this manually. In such situations, you should consider using automation software
that will run all the deployment scripts and commands for you. Such software allows
you to define what commands should be run on which machine.

https://git-scm.com/
https://www.mercurial-scm.org/

Chapter 8

[151]

Let's consider the simplest example from Fabric's (http://www.fabfile.org/)
documentation, slightly modified by me, to illustrate the advantages of
such software:

from fabric.api import run

def host_type():
 run('uname -s')

Running this Python script with hostnames as the parameters will yield this:

$ fab -P -H localhost,host1,host2 host_type

[localhost] run: uname -s

[localhost] out: Darwin

[host1] run: uname -s

[host1] out: Linux

[host2] run: uname -s

[host2] out: Linux

Done.

Disconnecting from localhost... done.

Disconnecting from host1... done.

Disconnecting from host2... done.

As you can see, the command was run on different machines simultaneously. This is
an extremely simple example, but you can easily imagine how it may be expanded
to run some deployment commands for a complex system. In a simple scenario, you
may want each machine to pull the code from the repository, run some deployment
scripts, and restart the services. Using this or a similar tool, you may do it at once
without logging in to all of the servers.

Besides Fabric, there are other similar tools, some of them more complicated, offering
a wide variety of options:

• Ansible (https://github.com/ansible/ansible)
• Capistrano (http://capistranorb.com/)
• Chef (https://github.com/chef/chef)
• Puppet (https://github.com/puppetlabs/puppet)

I suggest that you try using them in your project if you have two or more machines
on which you need to deploy your code.

http://www.fabfile.org/
https://github.com/ansible/ansible
http://capistranorb.com/
https://github.com/chef/chef
https://github.com/puppetlabs/puppet

Advanced Usage of Apache Thrift

[152]

Apache Thrift versioning
Versioning in the context of services is a little bit different from code version control.
Here, the issue that needs to be taken care of is the backward compatibility of your
service with regard to different client versions (especially older ones).

In a perfect situation, both the server and clients run the same version of the
software. However, this is rarely possible in the real world. An extreme example of
this is a situation where the client software using our service is installed on millions
of users' computers—it is hard to get them all to update at the same time, and we
can't render the service unusable for old versions of the software.

However, even in systems that are completely under our control, when the services
and clients are communicating internally, it is often impossible or not desirable to
update all of the software at once. Many companies (for example, Facebook) deploy
some of their updates to a part of their servers to check whether they're working
properly and follow with the rest when they see that everything is OK.

Apache Thrift has built-in features that support versioning with regard to service
arguments. You may recall the get_distance function from the previous chapters.
Let's call it version 1:

distance get_distance(1:Point point1, 2:Point point2)

Both arguments have their numbers. If, let's say, we want to add an argument in the
future, it is easy to do so:

distance get_distance(1:Point point1, 2:Point point2, 3:Point point3)

Let's call this version 2.

When Apache Thrift service's function gets an argument that it doesn't recognize,
it is ignored. On the other hand, when there is an extra argument but its value isn't
passed to the function, it gets the default value. This way, version 1 clients are still
able to communicate with version 2 services even if you add and remove parameters.
This special case occurs when you add the required keyword to the argument.
Then, it is required for every call and if the client doesn't supply it, Apache Thrift
will issue an error.

Remember that when you manipulate with arguments of functions, not to use the
same identifier for different arguments. If you need to remove some argument and
add another, just use a different ID; take a look at this example:

distance get_distance(1:Point point1, 3:Point point3, 4:string
description)

Chapter 8

[153]

Note how we removed the second argument, 2:Point point2, but added the fourth
4:string description. There is an argument of ID 2 missing, but this is perfectly correct.

Another trick that makes passing different arguments easier is to pass just one
struct as the argument for the method. This struct is a container for different sets of
arguments. The function declaration always will look like this:

distance get_distance(1:Parameters params)

However, the Parameters struct may be different depending on the version. For
example, in version 1, it would be:

struct Parameters {
 1:Point point1,
 2:Point point2
}

In version 2, it would be:

struct Parameters {
 1:Point point1,
 2:Point point2,
 3:Point point3
}

And finally in version 3, it would be:

struct Parameters {
 1:Point point1,
 3:Point point3,
 4:string description
}

As with methods, the same rule applies here: if you declare some variable as
required, it has to stay this way till the end or you will risk that your service won't be
backward compatible (which means that older clients will not work with it).

The versioning principle of structs applies, of course, to not only those structs that
are containers for method parameters, but also to every struct used in the Apache
Thrift document in general.

Advanced Usage of Apache Thrift

[154]

Apache Thrift performance
On Apache Thrift's website, there is a list of values that developers aim to embody
when designing and developing this framework. One of the values is:

"Performance. Strive for performance first, elegance second."

This is really a good description of the framework: as you probably went through
its documentation and maybe looked at some code, you know that in many places
it is far from being elegant. On the other hand, it keeps its promise of performance
by providing a wide array of possible choices for developers who want to scale their
application to achieve better results.

As requests are handled by the server, this is the main point where performance is
impacted. We discussed what servers are available in each language in Chapter 4,
Understanding How Apache Thrift Works, and Chapter 5, Generating and Running Code in
Different Languages.

TSimpleServer, which is present in Apache Thrift libraries for most programming
languages, is, as the name suggests, the simplest library and the easiest to configure,
but its capabilities are limited to development environments or some small and not
very demanding solutions, as it is capable of serving only one client at a time.

When researching what server to choose in your case, I recommend that you follow
this approach:

1. Check what servers are available in the Apache Thrift library for your
programming language.

2. Then, review the description of the selected servers in this book and also in
the source files of the servers in the Apache Thrift code repository.
Unfortunately, there is no official written documentation for most of them

3. As the final step, you should run your own performance benchmark, taking
into the consideration the specifics of your project.

The authors of MapKeeper—the Apache Thrift-based key-value store with various
storage backend (available as an open source application on GitHub at https://
github.com/m1ch1/mapkeeper)—conducted research on the performance of Java
and C++ servers available in Apache Thrift libraries using MapKeeper's benchmark
tool, which you can also use by yourself. I will briefly discuss their findings.

https://github.com/m1ch1/mapkeeper
https://github.com/m1ch1/mapkeeper

Chapter 8

[155]

Comparing Java servers
The authors of the Thrift Java Servers Compared document (https://github.com/
m1ch1/mapkeeper/wiki/Thrift-Java-Servers-Compared) compared various
Java servers available in the Apache Thrift library. They conducted tests on the
following pairs:

• TNonblockingServer versus THsHaServer
• THsHaServer versus TThreadedSelectorServer
• TThreadedSelectorServer versus TThreadPoolServer

These authors compared the throughput (number of requests per second) and
latency (response time) in relation to the number of consecutive clients. The
results range from 10 reqs/s and a 1000 ms latency for TNonblockingServer
to around 275,000 reqs/s for TThreadPoolServer and 5-45 ms latency for
TThreadedSelectorServer.

The general conclusion of the research is that TThreadedSelectorServer would be
the best solution in most cases. TThreadPoolServer offers better throughput but at
the expense of running many concurrent threads.

Comparing C++ servers
Another good research document resulting from the MapKeeper authors' work
is the comparison of servers available in the Apache Thrift library for the C++
language (https://github.com/m1ch1/mapkeeper/wiki/TThreadedServer-
vs.-TNonblockingServer). They compared TThreadedServer and
TNonblockingServer, once again comparing the throughput and latency.
TThreadedServer obviously won in both categories with 300,000 reqs/s and a
latency of less than 1 ms. TNonblockingServer was less performant with fewer
than 50,000 reqs/s and a latency of over 7 ms.

In conclusion, the former is recommended, unless you plan to serve more than
10,000 clients concurrently (the so-called C10K problem), when the latter might
be a better choice.

If you are not satisfied with the default options provided by Apache Thrift, consider
scaling your system by adding an extra layer on top, such as the load balancer,
which will distribute the load evenly among many similar services. You should
also check out extra solutions developed by companies using Apache Thrift in
high-performance environments. With the need for more performant services, these
companies worked on better solutions, some of them now available as open source.
You will read more on this in the second half of this chapter.

https://github.com/m1ch1/mapkeeper/wiki/Thrift-Java-Servers-Compared
https://github.com/m1ch1/mapkeeper/wiki/Thrift-Java-Servers-Compared
https://github.com/m1ch1/mapkeeper/wiki/TThreadedServer-vs.-TNonblockingServer
https://github.com/m1ch1/mapkeeper/wiki/TThreadedServer-vs.-TNonblockingServer

Advanced Usage of Apache Thrift

[156]

Service multiplexing
As you learned in the previous chapters, Apache Thrift servers are run on a specified
port on which they listen and wait for incoming connections. This is convenient
when you want to expose one service. However, what about a situation where
you would like to provide access to 2, 3, 10, or 50 services? Imagine the trouble
of running theses services as 50 separate servers on 50 separate ports. How much
administration work would be needed, and how hard it would be to ensure the
security of all the services.

This problem is not an imaginary one—it is not uncommon for an enterprise to have
the need to expose more than a one or two services. Fortunately, there is a solution
for this, which I briefly mentioned earlier: multiplexing.

Multiplexing is the ability to expose multiple services through one server and on
one port. Not much work is really required here; you just need to use a proper
multiplexed protocol. This concept is illustrated in the following figure:

Client

Server 1 Service 1

Server 2 Service 2

Server 3 Service 3

Port 8081

Port 8082

Port 8080

This is the basic way to expose the services. Every server runs separately and listens
on a different port (8080, 8081, and 8082 are used in this example). A client needs to
be configured and connected to multiple different endpoints. When these endpoints
change (for example, when the hostname or port number is changed), all of the
configurations need to be updated. This leads to maintainability issues.

Chapter 8

[157]

Now, how does the structure look when we use multiplexing?

Client

Service 1

Multiplexing
Server Service 2

Service 3

Port 8080

When we multiplex the services, only one server is exposed on a single port. It is the
server's job to route the requests to proper services. Clients need to have only one
endpoint in their configuration (the hostname and port number) so that maintenance
is easier. The same goes for the server's administrators who have only one instance to
deal with.

Let's look at the examples. In Java, you need to use TMultiplexedProcessor in the
server and register the services' processors:

You can download the following code from Packt's website.

import org.apache.thrift.server.TServer;
import org.apache.thrift.server.TServer.Args;
import org.apache.thrift.server.TThreadPoolServer;
import org.apache.thrift.transport.TServerSocket;
import org.apache.thrift.transport.TServerTransport;
import org.apache.thrift.TMultiplexedProcessor;

// import code generated by Apache Thrift compiler
import myservices.*;

Advanced Usage of Apache Thrift

[158]

public class MyMultiplexedServer {

 // define separate handlers and processors for both services
 public static Service1Handler handler1;
 public static Service1.Processor processor1;

 public static Service2Handler handler2;
 public static Service2.Processor processor2;

 public static void main(String [] args) {
 handler1 = new Service1Handler();
 processor1 = new Service1.Processor(handler1);

 handler2 = new Service2Handler();
 processor2 = new Service2.Processor(handler2);

 TMultiplexedProcessor mprocessor = new
TMultiplexedProcessor();

 // register processors for both services with multiplexed
processor
 // note the labels for both services
 mprocessor.registerProcessor("Service1", processor1);
 mprocessor.registerProcessor("Service2", processor2);

 // the rest is similar as for the single service
 Runnable server = new Runnable() {
 public void run() {
 myserver(mprocessor);
 }
 };

 new Thread(server).start();
 }

 public static void myserver(TMultiplexedProcessor processor) {
 TServerTransport serverTransport = new TServerSocket(8080);
 TServer server = new TThreadPoolServer(new TThreadPoolServer.
Args(serverTransport).processor(processor));
 System.out.println("Starting multiplexed server on port
8080...");
 server.serve();
 }

}

Chapter 8

[159]

As you must have noticed, here, we used the code from Chapter 5, Generating and
Running Code in Different Languages, so you can compare it with the multiplexed version.
We use Service1 and Service2 for instructional purposes. We need to create separate
handlers and processors for them. Let's look at excerpts from the preceding code:

 public static Service1Handler handler1;
 public static Service1.Processor processor1;

 public static Service2Handler handler2;
 public static Service2.Processor processor2;

and:

 handler1 = new Service1Handler();
 processor1 = new Service1.Processor(handler1);

 handler2 = new Service2Handler();
 processor2 = new Service2.Processor(handler2);

Then, these processors need to be registered with TMultiplexedProcessor:

 TMultiplexedProcessor mprocessor = new
TMultiplexedProcessor();

 // register processors for both services with multiplexed
processor
 // note the labels for both services
 mprocessor.registerProcessor("Service1", processor1);
 mprocessor.registerProcessor("Service2", processor2);

Note that we using the services' names as labels that will distinguish them when the
clients send their requests.

The rest is similar to the regular server code for the single instance: the server is
started and it occupies only one designated port. The processor will be able to route
the requests to the called services.

Now let's take a look at how multiplexing is reflected on the client's side:

// Import code generated by Apache Thrift compiler
import myservices.*;

import org.apache.thrift.transport.TTransport;
import org.apache.thrift.transport.TSocket;
import org.apache.thrift.protocol.TBinaryProtocol;
import org.apache.thrift.protocol.TProtocol;
import org.apache.thrift.protocol.TMultiplexedProtocol;

Advanced Usage of Apache Thrift

[160]

public class MyMultiplexedClient {
 public static void main(String [] args) {

 TTransport transport = new TSocket("localhost", 8080);
 transport.open();

 TProtocol protocol = new TBinaryProtocol(transport);

 // create protocol and clients for both services
 // remember about the labels - the same as in the server
 MultiplexedProtocol protocol1 = new
TMultiplexedProtocol(protocol, "Service1");
 Service1.Client client1 = new Service1.Client(protocol1);

 MultiplexedProtocol protocol2 = new
TMultiplexedProtocol(protocol, "Service2");
 Service2.Client client2 = new Service2.Client(protocol2);

 // call remote functions using the client objects
 client1.somefunction(42);
 client2.otherfunction("abc");

 transport.close();
 }
}

We need to make the client aware of multiplexing. We do this by wrapping the regular
protocol with TMultiplexedProtocol. That's it; we can call functions from both the
services. Note that we need to use the same labels as the ones used in the server.

As you can see, multiplexing in Apache Thrift is relatively simple, but it is a
powerful tool when you need to serve many services at once. There are more
complex solutions when you need them, for example, to include not only Thrift, but
also other services in your multiplexing. You will find more on this in the latter part
of this chapter.

Security issues
Security is an important issue when dealing with services that are exposed to clients.
It doesn't matter if a local service is available only to clients in the local network, or
if it is a public API used by millions; security is always something that shouldn't
be ignored. Even when designing internal services, you shouldn't assume that
the environment is secure by definition. Other machines in the network may be
compromised or behave erratically.

Chapter 8

[161]

General security tips
There are some general security tips that apply to every service, regardless of
whether it is based on Apache Thrift or some other technology or framework. You
should remember them even if you develop a simple website.

The two most important elements are authentication and authorization. Though they
are often confused with each other, they don't mean the same thing. Authentication
is the process whereby the identity of a connecting client (be it a person, a service, an
application, and so on) is confirmed. In the simplest and most common scenario, it is
a pair of usernames and passwords. These parameters are checked against records in
the database and, if they match, the client is considered authenticated. Quite often,
services use the API key instead of the username/password pair. Such a key is a long,
alphanumeric string (for example, the Amazon Web Service API key may look like
wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY). This solution is considered to be
more secure as these keys are generally longer than a regular password; therefore, they
are harder to break, may be freely assigned and revoked (it is possible to have multiple
keys per account), or can even have different permissions in the scope of a single
user account. Due to this, you may consider using API keys instead of the username/
password pair when authenticating clients.

Authorization is a process of defining an access policy. So, when we have an already
authenticated client (this means that we know its identity), we need to assess what
the client is permitted to do. As with any other system, not everyone is allowed to
perform any action. Based on internal records, you should grant the client access to
only those actions that are allowed to be performed.

Especially when exposing services externally, you should carefully plan which
actions should be available for anonymous users. This is strongly dependent on
business needs, but as a rule, this practice should be avoided, for example, exposing
large sets of data in bulk for download. Let's imagine that you have a classified ad
service; you don't want someone to download your whole ad set and publish it on
their website, right?

Data privacy is another important security rule for any application in general, but
especially the service. This means that users should have access only to data that
they are supposed to see. For example, a customer should have access only to his
transactions; he shouldn't be able to view other peoples' transactions, for example, by
substituting the transaction identifier variable.

Advanced Usage of Apache Thrift

[162]

Transport Layer Security/Secure Sockets Layer
We earlier discussed securing the service when the client has access to it, but what
about the connection itself? In many environments, communication between the
client and the server may be eavesdropped on by an attacker. To provide privacy
to the transmission, we need to use the Transport Layer Security (TLS) protocol
(frequently referred to as SSL or TLS/SSL). This protocol is commonly used to
secure web applications, e-mail communication, messaging, and so on. You may
know it from your experience, for example, when visiting websites whose address
begins with https://.

Without going into much detail, security when using TLS is derived from the fact
that the transmission is encrypted.

We will be working on the Java example code that we have already used in the
previous section on multiplexing.

You can download the code from Packt's website. The files
are named MySecureMultiplexedServer.java and
MySecureMultiplexedClient.java.

Generating keystores
To have communication encrypted, we need to have a keystore on the server
(containing the public and private keys and the certificate) and a truststore with the
certificate and the public key on the client.

We will use the keytool (shipped with Java) to create both of these files. Our
certificates will be self-signed.

First, let's create a keystore. To do this, use the following command. You will be asked
to enter a new password for the keystore and to provide some information about the
unit issuing the key. This information is included in the certificate, so it should be
valid. At the end, you need to type yes to confirm the validity of the information:

$ keytool -genkeypair -alias mykey -keyalg RSA -validity 365

Enter keystore password:

Re-enter new password:

What is your first and last name?

 [Unknown]: John Smith

What is the name of your organizational unit?

 [Unknown]: IT Department

What is the name of your organization?

Chapter 8

[163]

 [Unknown]: ACME Corporation

What is the name of your City or Locality?

 [Unknown]: Warsaw

What is the name of your State or Province?

 [Unknown]: mazowieckie

What is the two-letter country code for this unit?

 [Unknown]: PL

Is CN=John Smith, OU=IT Department, O=ACME Corporation, L=Warsaw,
ST=mazowieckie, C=PL correct?

 [no]: yes

Enter key password for <mykey>

 (RETURN if same as keystore password):

The parameters of the keytool -genkeypair command are:

• -alias mykey: This is the name of the keystore; it can be anything you wish
• -keyalg RSA: This is the key that will be generated using the RSA algorithm
• -validity 365: This key will be valid for 365 days (after this, you need to

generate a new key)

The key is saved by default in the .keystore file in the directory in which you ran
this command.

Now, we need to export the certificate from the keystore. We will need the certificate
to create the truststore. To export the certificate, run the following command:

$ keytool -export -alias mykey -keystore .keystore -rfc -file
certificate.cer

Enter keystore password:

Certificate stored in file <certificate.cer>

You were asked about the password to the keystore (the one that you noted down in
the previous step), and the certificate was stored in the certificate.cer file.

Now, here's the last step: let's create the truststore. Run the following command. You
will be asked for the keystore's password and to confirm (by writing yes) that you
want to trust the given certificate:

$ keytool -import -alias mykey -file certificate.cer -keystore
.truststore

Enter keystore password:

Advanced Usage of Apache Thrift

[164]

Re-enter new password:

Owner: CN=John Smith, OU=IT Department, O=ACME Corporation, L=Warsaw,
ST=mazowieckie, C=PL

Issuer: CN=John Smith, OU=IT Department, O=ACME Corporation, L=Warsaw,
ST=mazowieckie, C=PL

Serial number: 59a9be54

Valid from: Tue Nov 17 21:40:49 CET 2015 until: Wed Nov 16 21:40:49 CET
2016
Certificate fingerprints:

 MD5: 6F:58:7B:89:13:BB:52:75:33:C6:09:78:91:CD:33:89

 SHA1: F9:DE:D5:BB:29:50:9E:8F:05:20:C6:7F:9D:F5:13:5F:2D:EA:61:00

 SHA256: 55:2E:2A:31:07:08:06:23:F8:42:43:3F:C0:E7:FB:6C:07:38:CD:AB:02
:5C:28:BC:49:87:E3:6E:2B:38:05:AD

 Signature algorithm name: SHA256withRSA

 Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false

SubjectKeyIdentifier [

KeyIdentifier [

0000: 18 78 04 47 98 6B 68 4F 22 33 E4 F0 C0 AF CF B5 .x.G.khO"3......

0010: 76 0A 01 82 v...

]

]

Trust this certificate? [no]: yes

Certificate was added to keystore

If you did everything properly, the information would be saved to the
.truststore file.

At any time, you can check your keystores using the following command; after you
provide the store's password, its contents will be listed:

$ keytool -list -keystore .truststore

Enter keystore password:

Keystore type: JKS

Chapter 8

[165]

Keystore provider: SUN

Your keystore contains 1 entry

mykey, 17-Nov-2015, trustedCertEntry,

Certificate fingerprint (SHA1): F9:DE:D5:BB:29:50:9E:8F:05:20:C6:7F:9D:F5
:13:5F:2D:EA:61:00

Now, let's use these keystores in our code.

Using keystores in the Java code
Let's begin with the server's code. Get the code from the MyMultiplexedServer.
java file and copy it to MySecureMultiplexedServer.java; remember to also
update the class name to MySecureMultiplexedServer, and add following imports:

import org.apache.thrift.transport.TSSLTransportFactory;
import org.apache.thrift.transport.TSSLTransportFactory.
TSSLTransportParameters;

We will be substituting the myserver method. Instead of its original content, let's use
the following code:

 public static void myserver(TMultiplexedProcessor processor) {

 // create parameters store for TSSLTransport
 TSSLTransportParameters params = new
TSSLTransportParameters();

 // point to the keystore, provide keystore's password
 // remember about giving the proper path
 params.setKeyStore(".keystore", "somepassword", null, null);

 // construct the transport, server and start serving
 TServerTransport serverTransport = TSSLTransportFactory.
getServerSocket(8081, 0, null, params);
 TServer server = new TThreadPoolServer(new TThreadPoolServer.
Args(serverTransport).processor(processor));
 System.out.println("Starting secure multiplexed server on port
8081...");
 server.serve();
 }

To serve our service over a secure connection, we need to provide the path to our
keystore file and the password. It will be run on port 8081 of the localhost.

Advanced Usage of Apache Thrift

[166]

Now, let's get to the client; you need to perform very similar work to the one you did
for the server. First, get the code from the MyMultiplexedClient.java file and copy
it to MySecureMultiplexedClient.java; remember to also update the class name
to MySecureMultiplexedClient. Then, add the imports:

import org.apache.thrift.transport.TSSLTransportFactory;
import org.apache.thrift.transport.TSSLTransportFactory.
TSSLTransportParameters;

We will be substituting the following—not secure—part of the code:

 TTransport transport = new TSocket("localhost", 8080);
 transport.open();

Instead, we will use the code that will let us connect to the secure server running
on port 8081:

 TSSLTransportParameters params = new
TSSLTransportParameters();

 // point to the keystore, provide keystore's password
 // remember about giving the proper path
 params.setTrustStore(".truststore", "somepassword");

 // construct the transport
 transport = TSSLTransportFactory.getClientSocket("localhost",
8081, 0, params);

Note that in this case, there's no need to use transport.open() as this function is
called by the transport method.

Now you have everything that you need to run the secure server and client.

Real-world examples of the usage of
Apache Thrift
Up to this point, you learned lots of theoretical details about Apache Thrift and did
the development on your own. You know its capabilities and limitations, and I hope
you know that it is a great tool to use with many applications. However, is this tool
really something that is used in real life?

In this section, I will show you how some well-known, worldwide companies that
use Apache Thrift in their operations. You will learn about how it is applied in
Facebook, Evernote, Twitter, and some other popular services.

Chapter 8

[167]

FBThrift in Facebook
Facebook (http://www.facebook.com/) is a company that needs no introduction.
With 1.49 billion active users every month, it is used by roughly 20% of the Earth's
population. As you know from Chapter 1, Introducing Apache Thrift, Facebook
engineers are the original authors of the framework. They developed it in 2006 and
used it as an internal tool to provide application intercommunication. A year later,
they decided to open source it and pass it to the Apache Foundation.

So, do they still develop and use it or has it become obsolete? The truth is that there
has never been a better time for Thrift in Facebook. A recent article on the company's
developer blog (https://code.facebook.com/posts/1468950976659943/) sheds
some light on what's going on.

The framework is used in more than 100 production services implemented mostly
in C++, Java, PHP, and Python. It is being actively developed and tweaked by
their engineers. One of the most remarkable examples is the Messenger mobile
application, which uses Thrift to transmit messages between the server and client.

Technically, in Facebook, it is not Apache Thrift. They started their own fork
(separate version) of the software and called it FBThrift. It is open source too and is
available as a repository on GitHub at https://github.com/facebook/fbthrift.
This code is independently maintained, but both its authors and Apache Thrift
contributors hope to merge it with the original branch. You may want to consider
using this version if your needs are similar to those of Facebook.

FBThrift's idea is to upgrade Apache Thrift to provide higher performance and
support for complex features. Over time, Facebook's services evolved from the
simplest ones to being increasingly complex, with some services calling other
services and its latency or memory footprint started to be an issue.

They worked to improve performance, mainly by implementing parallel processing.
They also updated the code to use Folly (https://github.com/facebook/folly),
Facebook's open source C++ library of components designed keeping performance
in mind.

The other need was to provide more complex features needed by their services. The
C++ compiler is completely rewritten and available as the cpp2 generator in the
FBThrift codebase. Tests indicate that the services moved to the code generated by it
showed significantly better performance: latency decreased by up to 50% and there's
a much smaller memory footprint.

As FBThrift is the foundation of Facebook's systems architecture, we may expect lots
of further improvements in the future.

http://www.facebook.com/
https://code.facebook.com/posts/1468950976659943/
https://github.com/facebook/fbthrift
https://github.com/facebook/folly

Advanced Usage of Apache Thrift

[168]

If you are interested in trying out FBThrift, check out its GitHub page. You will find
detailed installation instructions for several popular platforms (CentOS, Ubuntu
12.04, and 14.04).

Apache Thrift in Evernote
Evernote (http://www.evernote.com/) is a popular cross-platform service,
designed to take notes and organize information. Its applications are present on
all major operating systems and mobile devices. Since its start in 2008, it's gained
significant popularity with over 11 million users.

The leading feature of the service is its ability to work on one's notes stored in the
cloud using different devices or web applications. In the company CTO's article on
Evernote Tech Blog (https://blog.evernote.com/tech/2011/05/26/evernote-
and-thrift/), we can read some information about the internal process behind
choosing Apache Thrift as the best solution for their needs. It is a great insight into
what to take into consideration when looking for the most suitable framework for
your service.

Evernote's engineers wanted to design a universal API that will serve both thin
clients (web browsers, which only serve fragments of the dataset as needed) and
thick ones (applications that synchronize the whole user's database at once). They
had some requirements that weren't easy to match. First of all, they wanted their API
to be cross-platform (they had code in a few different languages, such as Java, C++,
and Objective-C), and they wanted to have native bindings for each of them. Another
important thing was binary efficiency. As the notes might contain binary attachment,
there shouldn't be much overhead (that is, when binary data is encoded using the
Base64 encoding, the overhead is 33%, so a 20 MB file is transmitted as a 27 MB
payload). Moreover, another important issue was to offer backward compatibility.
So, even users using the old version of the software will be able to connect and work
with the API. The last two requirements were that the framework should be open
source and not too big in terms of code complexity.

They spent a significant amount of time reviewing and testing different options,
including some of those that we discussed in Chapter 1, Introducing Apache Thrift. When
they tested Apache Thrift, they noticed that it fulfills all of their requirements, especially
those that are important when building an external API for applications installed on
end users' machines: backward compatibility and efficiency in transferring binary data.

As a result, the Evernote Service API (https://dev.evernote.com/doc/) was
developed using Apache Thrift. It is an open API that allows developers to build
their own applications and there are lots of them. You can check them at https://
appcenter.evernote.com/. The documentation provides good tutorials and code
examples, so you can try working with their APIs on your own.

http://www.evernote.com/
https://blog.evernote.com/tech/2011/05/26/evernote-and-thrift/
https://blog.evernote.com/tech/2011/05/26/evernote-and-thrift/
https://dev.evernote.com/doc/
https://appcenter.evernote.com/
https://appcenter.evernote.com/

Chapter 8

[169]

What makes Evernote's usage of Apache Thrift different from Facebook's (and other
popular use cases), is that they use it to expose not internal, but public services. This
poses more challenges in terms of security, performance, and compatibility. You
learned in the previous section of this chapter how to deal with such issues.

Apache Thrift in Twitter
Twitter (http://www.twitter.com/) is another extremely popular company that uses
Apache Thrift to power many of its internal services. What is interesting and useful
for developers is that this company releases lots of the tools that they create as open
source, for everyone to use. Here, I will highlight some of the most interesting ones.

Finagle (http://twitter.github.io/finagle/) is one of the most interesting of
Twitter's projects. It is a protocol-agnostic, asynchronous RPC system for the JVM
(so it can be used for Java, Scala, Clojure, Groovy, and others). It may be considered
as an extra level of abstraction above Apache Thrift services because it integrates
services using different protocols (not only Thrift, but also MySQL, Mux, HTTP,
and so on). You may consider researching this solution if you have some services
already in place and would like to integrate them with your new Apache Thrift
services. Finagle is actively developed and used in production not only by Twitter
itself, but also by well-known companies, such as Foursquare, ING Bank, The
New York Times, Pinterest, and Tumblr. You may read about some case studies
on the Adopters page at https://github.com/twitter/finagle/blob/master/
ADOPTERS.md.

Scrooge (https://github.com/twitter/scrooge) is a replacement for the original
Apache Thrift code generator for Scala and Java, which is recommended for use
with Finagle.

Diffy (https://github.com/twitter/diffy) is another great tool from Twitter,
useful for everyone writing Apache Thrift and HTTP-based services. The purpose
of this tool is to test different versions of the same service, find the differences in
them, evaluate the problems that may occur, or help fix bugs. The idea is simple: the
old stable (primary) and new (candidate) services are run side by side, and every
request sent to Diffy, which acts as a proxy, is passed on to them. Then, the results
are compared and potential differences are detected and reported in the form of a
nice report. Diffy uses a nice trick to filter out some nondeterministic noises (such
as some random results, timestamps, and so on) by sending the payload to the
third instance (secondary) for comparison. This tool allows performing tests and
development a lot quicker compared to writing traditional integration tests. You
will need the Scala Build Tool (SBT), which you can download from http://www.
scala-sbt.org/, to run Diffy.

http://www.twitter.com/
http://twitter.github.io/finagle/
https://github.com/twitter/finagle/blob/master/ADOPTERS.md
https://github.com/twitter/finagle/blob/master/ADOPTERS.md
https://github.com/twitter/scrooge
https://github.com/twitter/diffy
http://www.scala-sbt.org/
http://www.scala-sbt.org/

Advanced Usage of Apache Thrift

[170]

There are some more Apache Thrift-related tools that you can check out on Twitter.
If you wish to start using their toolbox, I suggest browsing their GitHub profile
(https://github.com/twitter) for yourself and taking your pick.

Apache Thrift in other companies
Apache Thrift is a popular solution among top companies. However, as it is used
mainly internally, information on this is rarely public. However, many companies,
Twitter and Facebook being notable examples, share their knowledge and the tools
that they develop internally so that we can learn a little bit more about their internals
and Apache Thrift usage.

Pinterest (https://www.pinterest.com/) is one such enterprise. It runs a website
and mobile applications that let users upload, organize, and share photos. It uses
Apache Thrift internally, though not much information on this is available. However,
it does share useful tools; one of them is the thrift-tools application and
library, available at https://github.com/pinterest/thrift-tools. It is a great
debugging appliance as it allows you to observe the requests coming to your service
and the resulting responses. Let's look at this example from the documentation:

$ sudo thrift-tool --iface eth0 --port 9091 dump --show-all -pretty

[00:39:42:850848] 10.1.8.7:49858 -> 10.1.2.20:3636: method=dosomething,
type=call, seqid=1120

header: ()

fields: [('struct',

 1,

 [('string', 1, 'something to do'),

 ('i32', 3, 0),

 ('struct',

 9,

 [('i32', 3, 2),

 ('i32', 14, 0),

 ('i32', 16, 0),

 ('i32', 18, 25)])])]

------>[00:39:42:856204] 10.1.2.20:3636 -> 10.1.8.7:49858:
method=dosomething, type=reply, seqid=1120

 header: ()

 fields: [('struct',

 0,

https://github.com/twitter
https://www.pinterest.com/
https://github.com/pinterest/thrift-tools

Chapter 8

[171]

 [('string', 1, 'did something'),

 ('string', 2, 'did something else'),

 ('string', 3, 'did some other thing'),

 ('string', 4, 'did the last thing'),

 ('i32', 6, 3),

 ('i32', 7, 11),

 ('i32', 8, 0),

 ('i32', 9, 0),

 ('list', 10, [0]),

Note that it requires elevated privileges and uses low-level network tools, so it may
or may not work in your environment.

Another interesting tool from Pinterest is the quasar-thrift library (https://
github.com/pinterest/quasar-thrift), which integrates Apache Thrift with
Quasar (http://docs.paralleluniverse.co/quasar/), the library that provides
high-performance, lightweight threads for JVM languages. This library provides a
high-performance server that's fully compatible with Apache Thrift. You may want
to consider it if you need highly-performing services in the JVM environment.

Flipkart (http://www.flipkart.com/) is one of the biggest e-commerce businesses
in India with 8 million orders monthly and 10 million page views per day. According
to a presentation by Siddhartha Reddy, Tech Lead is in charge of search and browse
experience at Flipkart (http://www.slideshare.net/sids/how-flipkart-
scales-php). It uses the Apache Thrift binary services to support scalability of its
PHP applications.

Phantom (https://github.com/Flipkart/phantom) is a tool similar to Twitter's
Finagle; it is a high-performance proxy for the accessing of distributed services. It
supports not only Apache Thrift but also HTTP, MySQL, and Avro and lets you
write your own protocol proxies. You may want to consider it when integrating your
Apache Thrift services in an environment where other services are already present.

There are many more well-known companies using Apache Thrift, including Uber,
Siemens, Last.fm, and reCAPTCHA. You may check the official lists at https://
thrift.apache.org/about and https://wiki.apache.org/thrift/PoweredBy.
I hope that after reading this book, you will be able to use Apache Thrift in your
application on a significant scale; don't forget to add in your company's name too!

https://github.com/pinterest/quasar-thrift
https://github.com/pinterest/quasar-thrift
http://docs.paralleluniverse.co/quasar/
http://www.flipkart.com/
http://www.slideshare.net/sids/how-flipkart-scales-php
http://www.slideshare.net/sids/how-flipkart-scales-php
https://github.com/Flipkart/phantom
https://thrift.apache.org/about
https://thrift.apache.org/about
https://wiki.apache.org/thrift/PoweredBy

Advanced Usage of Apache Thrift

[172]

Summary
In this chapter, you learned a lot about what to think of while designing Apache
Thrift services that will be deployed to the production environment. We discussed
not only Apache Thrift's capabilities, but also some extra tools that are essential in
every project, no matter the technology.

We mentioned the performance techniques such as multiplexing, and discussed the
choice of the best server. You should also know how to secure your service using
SSL/TLS.

To show you a better view of the Apache Thrift community, we also covered how
this great piece of software is developed and maintained in the biggest companies in
the world.

Now that you've managed to go through all of the examples in each chapter, I
must congratulate you and pat you on the back for being a great learner. I'm sure
I managed to interest you in the topic of Apache Thrift, and you will reach for this
book again when developing your own services.

Through this book, you learned about the technical details of Apache Thrift, its
internals, and how to use it in your project. Finally, you got some extra information
that I hope will inspire you to look at further possibilities for expanding your
knowledge about Apache Thrift and its related subjects.

Let's move to a new beginning of development using Apache Thrift, which is a great
piece of software. It stays in the shadows, but powers lots of the services that we
consider staples of the modern Internet. The documentation on it is sparse, and you
need to persevere and perform some tests to achieve the result you need, but in the
end, you get this powerful tool that works like a charm.

When you work on your tools or provide improvements to Apache Thrift,
consider contributing them to the open source community for the benefit of all
your fellow developers.

If you would like to express your opinion about the book or share your Apache
Thrift story, don't hesitate to contact me at krzysztof@rakowski.pro.

[173]

Index
Symbol
7-Zip

URL 36

A
Adopters page

URL 169
Ansible

URL 151
Apache Avro

about 16
URL 15

Apache Thrift
about 1, 5
architecture 50
considerations 16
data types 7, 8
distributed systems 2, 3
IDL syntax 67
installation, testing 32, 33
installing, on Linux 19
installing, on Mac OS X 29-31
installing, on Windows 31, 32
interface description language 10, 11
protocols 9
real-world examples 166
reference 6
security 10
service-oriented architecture 2, 3
supported programming languages 6
tools, preparing 49
transports 8
type system 59
versioning 9

Apache Thrift document
base.thrift 133, 134
IDL files compiling 136
mytoolbox.thrift 135, 136
preparing 133

Apache Thrift-enabled application
code, analyzing 45
code, running 43, 44
necessary project files, creating 35
running 35

Apache Thrift, in production
about 149
Apache Thrift performance 154
Apache Thrift versioning 152, 153
code deployment 150, 151
code version control systems 150
security issues 160
service multiplexing 156-160

Apache Thrift installation, on Linux
dependencies, installing 21
dependencies, installing on CentOS 22, 23
dependencies, installing on Debian and

Ubuntu 23, 24
performing 19, 20, 25-29
requisites 20, 21

Apache Thrift performance
about 154
C++ servers, comparing 155
Java servers, comparing 155

architecture, Apache Thrift
about 50
network stack 54, 55
schema, for typical workflow 50, 51

authentication 161
authorization 161

[174]

B
base.thrift 133, 134
basic variable types 60

C
C++

about 104
client, implementing 109, 110
client, running 109, 110
code, examining 105, 106
code, generating 104, 105
protocols 107
servers 107
service, implementing 107, 108
service, running 107, 108
transports 106

Capistrano
URL 151

Chef
URL 151

clients
creating, in PHP 142-146
creating, in Ruby 146, 147
implementing 142
running 142

code, Apache Thrift-enabled application
analyzing 45
client script 46
server script 46
service description 45

Common Object Request Broker
Architecture (CORBA)

about 15
URL 15

compiler errors 112
containers

about 62
list 62
map 63
set 63
usage 63

custom protocols
about 12
disadvantages 12

D
data types 7, 8
decoding 56
definitions

about 69, 70
const keyword 70
typedef keyword 71

dependency hell 9
Diffy

about 169
URL 169

distributed systems, Apache Thrift
about 3
maintainability 3, 4
scalability 4
testability 5

E
encoding 56
enums 64
errors

about 112
logic errors 113
runtime errors 112, 113
syntax errors 112

Evernote
about 168
URL 168
usage, in Apache Thrift 168

example application
about 125
errors 128
overview 127, 128
planning 126, 127
technical overview 128

exception handling, Apache Thrift
about 115
advanced error handling 123, 124
divide method, implementing 117
error handling, adding to client 122, 123
error handling, adding to server 120, 122
example code 116, 117
without error handling 118, 119

exceptions
about 65, 114
handling 114, 115

[175]

F
Facebook

URL 167
FBThrift, in Facebook

about 167
URL 167

files
examining 74, 75

Finagle
about 169
URL 169

Flipkart
about 171
URL 171

Folly
URL 167

G
guest 21

H
headers, IDL syntax

about 68
C++ include 68
namespace 69
Thrift include 68

Homebrew
URL 29

horizontal scaling 4
host 21
HTTP methods

DELETE 15
GET 15
POST 15
PUT 15

I
IDL syntax

about 67
comments 67
definitions 69
document 68
headers 68

installation
Apache Thrift, on Linux 19
Apache Thrift, on Mac OS X 29
Apache Thrift, on Windows 31

interface definition language (IDL) 5

J
Java

about 82
client, implementing 87, 88
client, running 87, 88
code, examining 84
code, generating 83
protocols 85
servers 85
service, implementing 86, 87
service, running 86, 87
transports 84

JavaScript
about 96
client, implementing 97-99
client, running 97-99
code, examining 97
code, generating 96, 97
protocols 97
servers 97
transports 97

JSON-RPC 13, 14

L
Linux

Apache Thrift, installing 19
Linux ISO image

URL 21
logic errors 113

M
Mac OS X

Apache Thrift, installing 29, 31
MapKeeper

reference 154
multiplexing 92 79
mytoolbox.thrift 135, 136

[176]

N
network stack

example 58
processor 57
protocol 56, 57
server and client 57, 58
transport layer 55, 56

new_style classes 89
nodes 4

O
Oracle VirtualBox

URL 21

P
Phantom

about 171
URL 171

PHP
about 76
client, implementing 81, 82
client, running 81, 82
code, examining 77, 78
code, generating 76, 77
protocols 79
servers 79
service, implementing 79
service, running 81
transports 78

PHP and Python
namespaces, substituting 74

PHP documentation
URL 41

Pinterest
about 170
URL 170

project files, Apache Thrift-enabled
application

client code, in Python 41, 42
creating 35
files, generating 36, 37
first service, defining 36
local copy of Apache Thrift libraries,

creating 35, 36
service code, in PHP 38-40

Protocol Buffers 16
protocols

about 9, 56
TBinaryProtocol 57
TCompactProtocol 57
TJSONProtocol 57

Puppet
URL 151

Python
about 88
client, implementing 94, 95
client, running 94-96
code, examining 90, 91
code, generating 89, 90
libraries, building 93
protocols 92
servers 92
service, implementing 93, 94
service, running 93, 94
transports 91

Q
Quasar

about 171
URL 171

R
real-world examples, Apache Thrift

Apache Thrift in Evernote 168
Apache Thrift in other companies 170, 171
Apache Thrift in Twitter 169
FBThrift in Facebook 167

remote procedure call (RPC) 13
Representational State Transfer (REST) 15
RESTful APIs

about 15
advantages 15
disadvantages 15
HTTP methods, using 15

Ruby
about 100
client, implementing 103, 104
client, running 103, 104
code, examining 100, 101
code, generating 100
protocols 101

[177]

servers 102
service, implementing 102, 103
service, running 102, 103
transports 101

runtime errors
about 112
examples 112

S
Scala Build Tool (SBT) 169
Scrooge

about 169
URL 169

security 10
security issues

about 160
general security tips 161
keystores, generating 162-164
keystores, using in Java code 165, 166
Secure Sockets Layer (SSL) 162
Transport Layer Security (TLS) 162

serialization 5
server

about 57
TNonblockingServer 58
TSimpleServer 58
TThreadPoolServer 58

server implementation
about 137
errors, displaying on console 138
files, importing 137
server, creating 141
server, running 142
service methods, implementing 139, 141

servers, Java
THsHaServer 85
TThreadedSelectorServer 85

servers, Python
TForkingServer 92
THttpServer 92
TProcessPoolServer 92
TThreadedServer 92

servers, Ruby
ThinHTTPServer 102
ThreadedServer 102

service-oriented architecture (SOA) 3

services 65, 66
Simple Authentication and Security

Layer (SASL) 85
Simple Object Access Protocol (SOAP) 14
slots

about 89
reference 89

SOAP message
body 14
envelope 14
fault 14
header 14

special types 60
structs 60

T
technical overview, example application

about 128
clients 133
find_occurences 131
get_distance 129, 130
save_to_log 132
server 132

test-driven development (TDD) 114
throwing an exception 114
time zone identifiers

reference 40
Tornado

about 89
URL 89

transports
about 8, 55
TBufferedTransport 56
TFileTransport 56
TFramedTransport 56
TPhpStream (only in PHP) 56
TSocket 56

transports, C++
about 106
THttpTransport 106
TMemoryBuffer 106
TPipe 106
TSSLSocket 106
TZlibTransport 106

[178]

transports, Java
TFastFramedTransport 85
TSaslClientTransport 85
TSaslServerTransport 85

transports, Python
about 91
THttpClient 91
TMemoryBuffer 91
TSaslClient 91
TSSLSocket 91
TZlibTransport 91

transports, Ruby
about 101
IOStreamTransport 101
MemoryBufferTransport 101

Twisted
about 89
URL 89

Twitter
about 169
URL 169
usage, in Apache Thrift 169

type system
about 59
basic types 59, 60
containers 59, 62
enums 64
exceptions 59, 65
services 59-66
special types 59, 60
structs 59, 60
unions 61, 62

U
uniformly namespaces 69
unions 61, 62
Universal Resource Identifier (URI) 15
utf8strings 89

V
version control systems (VCSs)

about 150
code delivery 150
collaboration 150
security (backup) 150
version control 150

versioning 9
vertical scaling 4
VMware Player Pro

URL 21

W
Web Services Description Language

(WSDL) 14
Windows

Apache Thrift, installing 31
workflow, Apache Thrift

client libraries 53
clients, implementing 53
clients, running 54
interface description, preparing 52
server, running 54
service, generating 53
services, designing 52
services, implementing 53

X
XML-RPC 13, 14

Thank you for buying
Learning Apache Thrift

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Firefox OS Application
Development
ISBN: 978-1-78398-940-9 Paperback: 166 pages

Learn to design, build, and deploy your Firefox OS
applications, built with web technologies, to the
Firefox Marketplace

1. Create beautiful and interactive Firefox OS
applications by applying your knowledge of
web development.

2. Cater your applications to a huge number of
users by porting them to the Firefox OS.

3. A step-by-step learning workflow with real-life
applications to demonstrate the concepts.

Apache Maven Cookbook
ISBN: 978-1-78528-612-4 Paperback: 272 pages

Over 90 hands-on recipes to successfully build and
automate development life cycle tasks following
Maven conventions and best practices

1. Understand the features of Apache Maven that
makes it a powerful tool for build automation.

2. Full of real-world scenarios covering multi-
module builds and best practices to make the
most out of Maven projects.

3. A step-by-step tutorial guide full of pragmatic
examples.

Please check www.PacktPub.com for information on our titles

Apache Flume: Distributed Log
Collection for Hadoop
Second Edition
ISBN: 978-1-78439-217-8 Paperback: 178 pages

Design and implement a series of Flume agents to
send streamed data into Hadoop

1. Construct a series of Flume agents using
the Apache Flume service to efficiently
collect, aggregate, and move large amounts
of event data.

2. Configure failover paths and load balancing to
remove single points of failure.

3. Use this step-by-step guide to stream logs from
application servers to Hadoop's HDFS.

Getting Started with Apache
Maven [Video]
ISBN: 978-1-78216-572-9 Duration: 02:15 hrs

Design and manage simple to complex Java projects
effectively using Apache Maven's project object model

1. Covers everything from basic dependencies to
complex multi-module projects.

2. Demonstrates the key concept of project
building logically.

3. Loaded with examples, motivated by typical
build challenges.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Apache Thrift
	Distributed systems and their services
	Service-oriented architecture
	Distributed systems
	Maintainability
	Scalability
	Testability

	An introduction to Apache Thrift
	Supported programming languages
	Data types
	Transports
	Protocols
	Versioning
	Security
	Interface description language

	Apache Thrift and others
	Custom protocols
	XML-RPC and JSON-RPC
	SOAP and WSDL
	RESTful APIs
	CORBA
	Apache Avro
	Protocol Buffers

	When to choose Apache Thrift
	Summary

	Chapter 2: Installing and Running Apache Thrift
	Installing Apache Thrift on Linux
	Installation requirements
	Installing dependencies
	Installing dependencies on CentOS
	Installing dependencies on Debian and Ubuntu

	Installing Apache Thrift

	Installing Apache Thrift on Mac OS X
	Installing Apache Thrift

	Installing Apache Thrift on Windows
	Testing the installation
	Summary

	Chapter 3: Running Your First Apache Thrift Service and Client
	Creating necessary project files
	Creating a local copy of the Apache
Thrift libraries
	Defining our first service and generating files
	The service code in PHP
	The client code in Python

	Running the code
	What really happened?

	Analyzing the code
	The service description – IDL
	The server script – PHP
	The client script – Python

	Summary

	Chapter 4: Understanding How Apache Thrift Works
	Prepare your tools
	Apache Thrift's architecture
	Going about using the tool
	Designing the services
	Preparing the interface description
	Generating service and client libraries
	Implementing services and clients
	Running server and clients

	The network stack
	Transport
	Protocol
	Processor
	Server and client
	Example

	Apache Thrift's type system
	Basic types
	Special types
	Structs
	Unions
	Containers
	list
	set
	map
	Usage of containers

	Enums
	Exceptions
	Services

	IDL syntax
	Comments
	Document
	Headers
	Thrift include
	C++ include
	Namespace

	Definitions
	const
	typedef

	Summary

	Chapter 5: Generating and Running Code in Different Languages
	PHP
	Generating the code
	Examining the code
	Transports
	Protocols
	Servers
	Implementing and running the service
	Implementing and running the client

	Java
	Generating the code
	Examining the code
	Transports
	Protocols
	Servers
	Implementing and running the service
	Implementing and running the client

	Python
	Generating the code
	Examining the code
	Transports
	Protocols
	Servers
	Building the libraries
	Implementing and running the service
	Implementing and running the client

	JavaScript
	Generating the code
	Examining the code
	Transport, protocol, and servers
	Implementing and running the client

	Ruby
	Generating the code
	Examining the code
	Transports
	Protocols
	Servers
	Implementing and running the service
	Implementing and running the client

	C++
	Generating the code
	Examining the code
	Transports
	Protocols
	Servers
	Implementing and running the service
	Implementing and running the client

	Summary

	Chapter 6: Handling Errors in Apache Thrift
	What are the type of errors that can occur?
	Syntax errors
	Runtime errors
	Logic errors

	What are exceptions and how to
handle them?
	Handling exceptions in Apache Thrift
	An example code
	Implementing the divide method
	Running the application without error handling
	Adding error handling to the server
	Adding error handling to the client
	Advanced error handling

	Summary

	Chapter 7: An Example Client-Server Application
	Our example application
	Planning out your work
	Getting a general idea of the example application
	A technical overview of the application
	get_distance
	find_occurences
	save_to_log
	The server
	Clients

	Preparing the Apache Thrift document
	The basic toolbox – base.thrift
	The MyToolbox service – mytoolbox.thrift
	Compiling the IDL files

	Implementing the server
	Imports
	Displaying errors on the console (logger)
	Implementing service methods
	Creating the server
	Running the server

	Implementing and running clients
	Creating a client in PHP
	Creating a client in Ruby

	Further testing and other exercises
	Summary

	Chapter 8: Advanced Usage of
Apache Thrift
	Apache Thrift in production
	Code version control systems
	Code deployment
	Apache Thrift versioning
	Apache Thrift performance
	Comparing Java servers
	Comparing C++ servers

	Service multiplexing
	Security issues
	General security tips
	Transport Layer Security/Secure Sockets Layer

	Real-world examples of the usage of Apache Thrift
	FBThrift in Facebook
	Apache Thrift in Evernote
	Apache Thrift in Twitter
	Apache Thrift in other companies

	Summary

	Index

