
www.allitebooks.com

http://www.allitebooks.org

JavaScript Testing
Beginner's Guide

Test and debug JavaScript the easy way

Liang Yuxian Eugene

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

JavaScript Testing
Beginner's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2010

Production Reference: 1130810

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.
ISBN: 978-1-849510-00-4

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Liang Yuxian Eugene

Reviewers

Chetan Akarte

Kenneth Geisshirt

Stefano Provenzano

Aaron Saray

Mihai Vilcu

Acquisition Editor

Steven Wilding

Development Editor

Tarun Singh

Technical Editors

Paramanand N. Bhat

Pooja Pande

Copy Editors

Lakshmi Menon

Janki Mathuria

Editorial Team Leader

Akshara Aware

Project Team Leader

Priya Mukherji

Project Coordinator

Vincila Colaco

Indexer

Hemangini Bari

Proofreader

Dirk Manuel

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Liang Yuxian Eugene enjoys solving difficult problems creatively in the form of building
web applications by using Python/Django and JavaScript/JQuery. He also enjoys doing
research related to the areas of recommendation algorithms, link analysis, data visualization,
data mining, information retrieval, business intelligence, and intelligent user interfaces. He is
currently pursuing two degrees, Business Administration and Computer Science at National
Cheng Chi University (NCCU) at Taipei, Taiwan. Eugene has recently started a personal blog at
http://www.liangeugene.com.

I want to thank all of the great folks at Packt Publishing for giving me the
opportunity to write this book. This book would not be possible without
the help, advice and timely correspondence of Steven Wilding, Tarun Singh,
Vincila Colaco and Priya Mukherji of Packt Publishing.

I want to thank Professor Johannes K. Chiang (Department of Management
of Information Systems, NCCU) and Professor Li Tsai Yen (Department of
Computer Science, NCCU) for their unwavering generosity in providing
both personal and professional advice to me whenever I needed it.

I want to thank my family and friends for their continued support.

Last but not the least, I want to thank Charlene Hsiao for her kind
understanding and tireless support for me.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Chetankumar D. Akarte has been working in PHP, JavaScript and .Net for the last
five years. He has worked extensively on both small scale and large scale PHP and .Net
ecommerce, social networking, Wordpress and Joomla based web projects. Over the years,
Chetan has been actively involved in the "Xfunda Developers Community". He has regularly
blogged on Microsoft .NET technology at http://www.tipsntracks.com.

Chetan completed a Bachelor of Engineering degree in Electronics from the Nagpur University,
India in 2006. He likes contributing to newsgroups, and forums. He has also written some
articles for Electronics For You, DeveloperIQ, and Flash & Flex Developer's magazines.

Chetan lives in Navi Mumbai, India. You can visit his websites at http://www.xfunda.
com and http://www.tipsntracks.com, or get in touch with him at chetan.akarte@
gmail.com.

I would like to thank my sister Poonam and brother-in-law Vinay for their
consistent support and encouragement. I would also like to thank Packt
Publishing for providing me with the opportunity to do something
useful, and especially my Project Coordinator Vincila Colaco for all
of the valuable support.

Kenneth Geisshirt is a chemist by education and a geek by nature. He has been
programing for more than 25 years–the last six years as a subcontractor. In 1990 Kenneth
first used free software, and in 1992 turned to Linux as a primary operating system (officially
Linux user no. 573 at the Linux Counter). He has written books about Linux, PAM, and
Javascript–and many articles on open source software for computer magazines. Moreover,
Kenneth has been a technical reviewer of books on Linux network administration and the
Vim editor.

www.allitebooks.com

http://www.allitebooks.org

Stefano Provenzano is an Italian senior consultant and professional software engineer.
Stefano has worked on several projects in different fields of computer science—3D realtime
engines for PC and Playstation games, visual simulation and virtual prototyping, web
applications, and system integration. In 2006, Stefano started his own software development
and consulting company, Shin Software. Currently, Stefano is developing CRM and INTRANET
applications by using PHP and Javascript.

I want to thank my wife Irene and my little son Davide.

Aaron Saray found love when he was eight. It was in the shapely form of a Commodore
64. From then on, he continued to devote his time to various programing languages from
BASIC to Pascal, PHP to Javascript, HTML to CSS. Aaron is both an author of a PHP Design
Patterns book and a technical editor of other PHP and Javascript books. He has also worked
as a professional in the Web Development field for almost a decade, and comes with a solid
history to provide his vast experience to the review of this book. You can find more about his
work at his technical blog by visiting http://aaronsaray.com/blog.

As each book project becomes complete, I learn more about my industry
and myself. I want to specifically thank my best friend for consistently
reminding me that life is always better with balance.

Mihai Vilcu has had exposure to top technologies in testing for both automated and
manual testing. "Software testing excellence" is the motto that drives Mihai's career". This
includes functional and non-functional testing. Mihai was also involved over several years in
large scale testing projects.

Some of the applications covered by Mihai in his career include CRMs, ERPs, billing
platforms, rating, collection and business process management applications.

As software platforms are used intensely in many industries, Mihai has performed testing in
fields like telecom, banking, healthcare, software development, and others.

Feel free to contact Mihai for questions regarding testing on his email: mvilcu@mvfirst.ro,
or directly on his website at www.mvfirst.ro.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: What is JavaScript Testing? 7
Where does JavaScript fit into the web page? 8

HTML Content 8
Time for action – building a HTML document 9

Styling HTML elements using its attributes 11
Specifying id and class name for an HTML element 12

Cascading Style Sheets 12
Time for action – styling your HTML document using CSS 14

Referring to an HTML element by its id or class name and styling it 18
Differences between a class selector and an id selector 19
Other uses for class selectors and id selectors 20
Complete list of CSS attributes 20

JavaScript providing behavior to a web page 20
Time for action – giving behavior to your HTML document 20

JavaScript Syntax 24
JavaScript events 26
Finding elements in a document 26
Putting it all together 28

The difference between JavaScript and server-side languages 29
Why pages need to work without JavaScript 30
What is testing? 31
Why do you need to test? 31
Types of errors 32

Loading errors 33
Time for action – loading errors in action 33

Partially correct JavaScript 34

Time for action – loading errors in action 35
Runtime errors 36

Time for action – runtime errors in action 36
Logic errors 37

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Time for action – logic errors in action 38
Some advice for writing error-free JavaScript 40

Always check for proper names of objects, variables, and functions 40
Check for proper syntax 40
Plan before you code 40
Check for correctness as you code 40
Preventing errors by choosing a suitable text editor 41

Summary 41

Chapter 2: Ad Hoc Testing and Debugging in JavaScript 43
The purpose of ad hoc testing–getting the script to run 44
What happens when the browser encounters an error in JavaScript 44
Browser differences and the need to test in multiple browsers 45
Time for action – checking for features and sniffing browsers 46

Testing browser differences via capability testing 47
Time for action – capability testing for different browsers 48
Are you getting the correct output and putting values in the correct places? 50

Accessing the values on a form 50
Time for action – accessing values from a form 51

Another technique for accessing form values 54

Accessing other parts of the web page 55
Time for action – getting the correct values in the correct places 55
Does the script give the expected result 65
What to do if the script doesn't run? 65

Visually inspecting the code 66
Using alert() to see what code is running 66
Using alert() to see what values are being used 67

Time for action – using alert to inspect your code 67
A less obtrusive way to check what code is running and the values used 71

Time for action – unobtrusively checking what values are used 72
Commenting out parts of the script to simplify testing 75
Time for action – simplifying the checking process 76
Timing differences–making sure that the HTML is there before interacting with it 77
Why ad hoc testing is never enough 78
Summary 79

Chapter 3: Syntax Validation 81
The difference between validating and testing 82

Code that is valid but wrong–validation doesn't find all the errors 83
Code that is invalid but right 83
Code that is invalid and wrong–validation finds some errors that might
be difficult to spot any other way 83

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Code quality 83
HTML and CSS needs to be valid before you start on JavaScript 84

What happens if you don't validate your code 85

Color-coding editors–how your editor can help you to spot validation errors 87
Common errors in JavaScript that will be picked up by validation 89
JSLint–an online validator 90
Time for action – using JSLint to spot validation errors 91
Valid code constructs that produce validation warnings 92

Should you fix valid code constructs that produce validation warnings? 92
What happens if you don't fix them 93

How to fix validation errors 93
Error—missing "use strict" statement 94

Time for action – fixing "use strict" errors 94
Error—unexpected use of ++ 94

Time for action – fixing the error of "Unexpected use of ++" 95
Error—functions not defined 96

Time for action – fixing the error of "Functions not defined" 96
Too many var statements 97

Time for action – fixing the error of using too many var statements 98
Expecting <\/ instead of <\ 100

Time for action – fixing the expectation of '<\/' instead of '</' 101
Expected '===' but found '==' 102

Time for action – changing == to === 102
Alert is not defined 102

Time for action – fixing "Alert is not defined" 103
Avoiding HTML event handlers 103

Time for action – avoiding HTML event handlers 104
Summary of the corrections we have done 106

JavaScript Lint–a tool you can download 112
Challenge yourself–fix the remaining errors spotted by JSLint 113

Summary 113

Chapter 4: Planning to Test 115
A very brief introduction to the software lifecycle 116

The agile method 116
The agile method and the software cycle in action 117
Analysis and design 117
Implementation and testing 117
Deployment 117
Maintenance 117

Do you need a test plan to be able to test? 117

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

When to develop the test plan 118
How much testing is required? 118

What is the code intended to do? 119
Testing whether the code satisfies our needs 119
Testing for invalid actions by users 119
A short summary of the above issues 120

Major testing concepts and strategies 120
Functional requirement testing 120
Non-functional requirement testing 121
Acceptance testing 121
Black box testing 122

Usability tests 123
Boundary testing 123
Equivalence partitioning 123
Beta testing 124

White box testing 124
Branch testing 124
Pareto testing 125

Unit tests 125
Web page tests 126
Performance tests 127
Integration testing 127
Regression testing–repeating prior testing after making changes 128

Testing order 128
Documenting your test plan 129

The test plan 129
Versioning 130
Test strategy 130
Bug form 137

Summary of our test plan 137
Summary 137

Chapter 5: Putting the Test Plan Into Action 139
Applying the test plan: running your tests in order 140

Test Case 1: Testing expected and acceptable values 140
Time for action – Test Case 1a: testing expected and acceptable values by
using white box testing 141

Test Case 1b: Testing expected but unacceptable values using black box testing 142
Time for action – Test case 1bi: testing expected but unacceptable values
using boundary value testing 142
Time for action – Test case 1bii: testing expected but unacceptable values
using illegal values 144

Table of Contents

[v]

Test Case 2: Testing the program logic 146
Time for action – testing the program logic 146

Test Case 3: Integration testing and testing unexpected values 147
Time for action –Test Case 3a: testing the entire program with expected values 147
Time for action – Test Case 3b: testing robustness of the second form 150

What to do when a test returns an unexpected result 151
Regression testing in action 151
Time for action – fixing the bugs and performing regression testing 151

Performance issues—compressing your code to make it load faster 160
Does using Ajax make a difference? 161
Difference from server-side testing 162
What happens if you visitor turns off JavaScript 162

Summary 164

Chapter 6: Testing More Complex Code 165
Issues with combining scripts 166

Combining event handlers 166
Naming clashes 168

Using JavaScript libraries 169
Do you need to test a library that someone else has written? 170
What sort of tests to run against library code 170

Performance testing 170
Profiling testing 171

GUI and widget add-ons to libraries and considerations on how to test them 171
Deliberately throwing your own JavaScript errors 172

The throw statement 172
The try, catch, and finally statements 172

Trapping errors by using built-in objects 176
The Error object 176
The RangeError object 178
The ReferenceError object 178
The TypeError object 180
The SyntaxError object 181
The URIError object 181
The EvalError object 181

Using the error console log 181
Error messages 181
Writing your own messages 182

Modifying scripts and testing 184
Time for action – coding, modifying, throwing, and catching errors 184
Summary 200

Table of Contents

[vi]

Chapter 7: Debugging Tools 201
IE 8 Developer Tools (and the developer toolbar plugin for IE6 and 7) 202
Using IE developer tools 202

Open 202
A brief introduction to the user interface 203
Debugging basics of the IE debugging tool 203

Time for action – debugging HTML by using the IE8 developer tool 204
Time for action – debugging CSS by using the IE8 developer tool 205

Debugging JavaScript 206
Time for action – more Debugging JavaScript by using the IE8 developer tool 206
Safari or Google Chrome Web Inspector and JavaScript Debugger 211

Differences between Safari and Google Chrome 211
Debugging using Chrome 212
A brief introduction to the user interface 213

Time for action – debugging with Chrome 213
Opera JavaScript Debugger (Dragonfly) 218

Using Dragonfly 218
Starting Dragonfly 218

Time for action – debugging with Opera Dragonfly 219
Inspection and Call Stack 220
Thread Log 220
Continue, Step Into, Step Over, Step Out, and Stop at Error 220
Settings 222

Firefox and the Venkman extension 222
Using Firefox's Venkman extension 222

Obtaining the Venkman JavaScript Debugger extension 222
Opening Venkman 222
A brief introduction to the user interface 223

Time for action – debugging using Firefox's Venkman extension 224
Breakpoints or Call Stack 225
Local Variables and Watches 226

Time for action – more debugging with the Venkman extension 227
Firefox and the Firebug extension 229
Summary 230

Table of Contents

[vii]

Chapter 8: Testing Tools 231
Sahi 232
Time for action – user Interface testing using Sahi 232

More complex testing with Sahi 235
QUnit 236
Time for action – testing JavaScript with QUnit 236

Applying QUnit in real-life situations 240
More assertion tests for various situations 240

JSLitmus 241
Time for action – creating ad hoc JavaScript benchmark tests 241

More complex testing with JSLitmus 244
More testing tools that you should check out 244
Summary 246

Index 247

Preface
JavaScript is an important part of web development in today's Web 2.0 world. Although
there are many JavaScript frameworks in the market, learning to write, test, and debug
JavaScript without the help of any framework will make you a better JavaScript developer.
However, testing and debugging can be time-consuming, tedious and painful. This book will
ease your woes by providing various testing strategies, advice, and tool guides that will make
testing smooth and easy.

This book is organized in an easy-to-follow, step-by-step tutorial style, in order to maximize
your learning. You will first learn about the different types of errors that you will most
often encounter as a JavaScript developer. You will also learn the most essential features
of JavaScript through our easy-to-follow examples.

As you go along, you will learn how to write better JavaScript code through validation;
learning how to write validated code alone will help you improve tremendously as a
JavaScript developer and, most importantly, help you to write JavaScript code that runs
better, faster, and with less bugs.

As our JavaScript program gets larger, we need better ways of testing our JavaScript code.
You will learn about various testing concepts and how to use them in your test plan. After
which, you will learn how to implement the test plan for your code. To accommodate more
complex JavaScript code, you will learn more about the built-in features of JavaScript, in
order to identify and catch different types of JavaScript error; such information helps to
spot the root of the problem so that you can act on it.

Finally, you will learn how to make use of the built-in browser tools and other external tools
to automate your testing process.

Preface

[�]

What this book covers
Chapter 1, What is JavaScript Testing?, covers JavaScript's role and the basic building blocks
in web development, such as HTML and CSS. It also covers the types of errors that you will
most commonly face.

Chapter 2, Ad Hoc Testing and Debugging in JavaScript, covers why we perform ad hoc testing
for our JavaScript programs, and JavaScript's most commonly-used features, by writing a
simple program, This program will be used as an example to perform ad hoc testing.

Chapter 3, Syntax Validation, covers how to write validated JavaScript. After completing this
chapter, you will have improved your skills as a JavaScript developer and, at the same time,
understood more about the role of validation in testing JavaScript code.

Chapter 4, Planning to Test, covers the importance of having a plan to test, and the strategies
and concepts we can use when we are performing testing. This chapter also covers the
various strategies and concepts for testing, and we will perform a simple test plan to see
what it means to plan to test.

Chapter 5, Putting the Test Plan Into Action, follows Chapter 4, as we apply the simple test
plan that we have developed. Most importantly, we will get our hands dirty by uncovering
bugs, taking note of them and fixing the bugs by applying the theories that we learnt
in Chapter 4.

Chapter 6, Testing More Complex Code, covers sophisticated ways to test our code. One way
of testing the code is to use the built-in error objects provided by JavaScript. This chapter
also covers how to use the console log, how to write your own messages, and how to trap
your errors.

Chapter 7, Debugging Tools, addresses the point where our code gets too large and complex
to be tested by using manual methods. We now engage the help of debugging tools provided
by popular browsers in the market, including Internet Explorer 8, FireFox 3.6, Chrome 5.0,
Safari 4.0 and Opera 10.

Chapter 8, Testing Tools, moves into how you can automate your testing by using testing tools
that are free, cross-browser and cross-platform. It also covers how to test your interface,
automate tests, and perform assertion and benchmarking tests.

Preface

[�]

What you need for this book
A basic text editor such as Notepad++.

Browsers like Internet Explorer 8, Google Chrome 4.0, Safari 4.0 and newer, FireFox 3.6.

JavaScript version 1.7 or later.

Other software covered includes Sahi, JSLitmus, QUnit.

Who this book is for
This book is for beginner JavaScript programmers or beginner programmers who may have
little experience in using JavaScript, with HTML and CSS.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Preface

[�]

Have a go hero – heading
These sections set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

<input type="submit" value="Submit"
 onclick="amountOfMoneySaved(moneyForm.money.value)" />
</form>
</body>
</html>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

function changeElementUsingName(a){
 var n = document.getElementsByName(a);
 for(var i = 0; i< n.length; i++){
 n[i].setAttribute("style","color:#ffffff");
 }
}

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[�]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note via the SUGGEST A TITLE form on www.packtpub.com, or send an e-mail to
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book

You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this
book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the let us know link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title
from http://www.packtpub.com/support.

www.allitebooks.com

http://www.allitebooks.org

Preface

[�]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
What is JavaScript Testing?

First of all, let me welcome you to this book. If you've picked up this book, I
would assume that you are interested in JavaScript testing. You most probably
have experienced JavaScript, and want to enhance your skills by learning how
to test your JavaScript programs.

JavaScript is most often associated with the web browser and is one of the
key tools for creating interactive elements on web pages. However, unlike
server-side languages like PHP, Python and so on, JavaScript fails silently in
general (although browsers like IE provides warning messages at times); there
are no error messages to inform you that an error has occurred. This makes
debugging difficult.

In general, we will be learning about the basic building blocks for JavaScript
testing. This will include the basics of HTML (Hyper-text Markup Language), CSS
(Cascading Style Sheets) and JavaScript. After this, you will learn about various
techniques to make HTML, CSS, and JavaScript work together; these techniques
are the building blocks of what you are going to learn in other chapters.

To be more specific, this is what we will learn about in this chapter:

The basics of HTML, CSS, and JavaScript

The syntax of HTML, CSS, and JavaScript

How to select HTML elements by using CSS and JavaScript

Why do web pages need to work without JavaScript?

What is testing and why do you need to test?

What is an error?

Types of JavaScript errors

What is JavaScript Testing?

[�]

Examples shown in this chapter are simplistic—they are designed to allow you to see the
major syntax and built-in methods or functions that are being used. In this chapter, there will
be minimal coding; you will be asked to enter the code. After that, we'll briefly run through
the code examples and see what is happening.

With that in mind, we'll get started right now.

Where does JavaScript fit into the web page?
Every web page consists of the following properties—content, appearance, and behavior.
Each of these properties is controlled by Hyper Text Markup Language (HTML), Cascading
Style Sheets (CSS), and JavaScript, respectively.

HTML Content
HTML stands for Hyper Text Markup Language. It is the dominant markup language for web
pages. In general, it controls the content of a web page. HTML defines web pages (or HTML
documents) through semantic markups such as <head>, <body>, <form>, and <p> toto
control headings, the body of a document, forms, paragraphs, and so on. You can see
HTML as a way to describe how a webpage should look like.

HTML makes use of markup tags, and these tags usually come in pairs. The syntax of HTML is
as follows:

<name-of-html-tag>some of your content enclosed here</name-of-html-tag>

Notice that the HTML tags are enclosed by angular brackets; the HTML tag pair starts off with
<name-of-html-tag> and ends withand ends with </name-of-html-tag>. This second HTML tags are
known as the closing tags and they have a forward slash before the HTML tag.

Some of the common HTML elements include the following:

<head> </head>

<body> </body>

<title> </title>

<p> </p>

<h1> </h1>

<a>

For a complete list of html elements, please visit http://www.w3schools.com/tags/
default.asp.

Chapter 1

[�]

Time for action – building a HTML document
We are going to create an HTML document by making use of some of the HTML tags and
syntax that we have seen above. (The example you see here can be found in the source code
folder of Chapter 1, with the document titled chapter1-common-html.html)

1.	 Let's start by opening your favorite text editor or tool such as Microsoft Notepad,
and creating a new document.

2. Enter the following code into your new document and save it.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>This is a sample title</title>
</head>
<body>
<h1>This is header 1</h1>
<h2>This is header 2</h2>
<h3>This is header 3</h3>
<p>This is a paragraph. It can be styled by CSS</p>
<hr>
<div style="position:absolute; background-color:black;
color:#ffffff;top:10px;right:10px;border:solid 3px yellow;
height:200px; width:200px;">Your content here</div>
<div>
 <div>I am enclosed within a <i>div</i> tag. And it can be
styled on a document level.

 This is an ordered list and it is centered
 apple
 orange
 banana

 This is an unordered list. And it can be styled by
CSS.
 apple
 orange
 banana

 </div>
 <div>I am enclosed within a <i>div</i> tag. And it can be
styled by CSS.

 This is an ordered list and it is centered
 apple

What is JavaScript Testing?

[10]

 orange
 banana

 This is an unordered list. And it can be styled by
CSS
 apple
 orange
 banana

 This is a link. And it can be styled by CSS

 </div>
</div>
</body>
</html>

3. Finally, open the document in your browser and you will see an example similar to
the following screenshot:

Chapter 1

[11]

Take note of the black box on the upper-right corner. It is a simple example
of CSS at work. This will be explained shortly.

What just happened?
You have just created an HTML document by using the more common HTML elements and
HTML syntax.

Each HTML tag has a specific purpose, as you can see from the result in the browser. For
example, you must have noticed that <h1>This is header 1</h1> produced the largest
text in terms of font-size, <h2>This is header 2</h2> produced the second largest text
in terms of font size, and so forth.

 represents an ordered list, while stands for an unordered list
(list with bullet points).

You should have noticed the use of <div> </div>. This is used to define a section within
an HTML document. However, the effects and power of the <div> </div> can only be
seen in the next part of this chapter.

But wait, it seems that I have not done a complete introduction of HTML. That's right. I have
not introduced the various attributes of HTML elements. So let's have a quick overview.

Styling HTML elements using its attributes
In general, the core attributes of HTML elements are the class, id, style, and and title
attribute. You can use these attributes in the following manner:

<div id="menu" class="shaded" style="…" title="Nice menu"> Your
content here </div>

Notice that all four attributes could be used at the same time. Also, the sequence of the
attributes does not matter.

But we have not done any styling yet. The styling only takes place in the style attribute.
To see an example, enter the following code between the <body> and </body> tag in the
previous code.

<div style= "position:absolute; background-color:black;color:#ffffff;
 top:10px;right:10px;border:solid 3px yellow; height:200px;
width:200px;">Your content here
</div>

What is JavaScript Testing?

[12]

You should be able to see a 200px by 200px black box with yellow border in the upper-right
corner of your browser window (as shown in the previous screenshot). Here's a screenshot
that shows only the black box:

In general, the inline style that you have specified manipulates the stylistic properties of thethe
style attribute, to make it look the way you want it to.

Only the the style attribute allows you to style the HTML element. But this method is only
used for specifying inline style for an element.

In case you are wondering what the <title> tag does, it is essentially an attribute that
specifies extra information about an element. This is most often used within the <head> tag.
If you open up any HTML document that contains a <title> tag, you will find the contents
of this tag in the tab of your browser or title of your browser window.

What about id attribute and class attribute? We'll cover these briefly in the next section.

Specifying id and class name for an HTML element
In general, the id attribute and class attribute allows the HTML element to be styled by
giving the CSS (Cascading Style Sheets, which we will be covering later in this chapter) a way
to refer to these elements. You can think of the id attribute and class attribute as a 'name',
or a way to identify the corresponding HTML element such that if this 'name' is referred by
the CSS, the element will be styled according to the CSS defined for this particular element.
Also, the id attribute and class attribute are often referred to by JavaScript in order to
manipulate some of the DOM (Document Object Model) attributes, and so on.

There is one important idea that you must understand at this point of the chapter: the id
attribute of each HTML element has to be unique within an HTML file, whereas the class
attribute doesn't.

Cascading Style Sheets
CSS stands for Cascading Style Sheet. A CSS is used to control the layout, appearance, and
formatting of the web page. CSS is a way for you to specify the stylistic appearance of the
HTML elements. Via CSS, you can define the fonts, colors, size, and even layout of the
HTML elements.

Chapter 1

[13]

If you noticed, we have not added any form of CSS styles to our HTML document yet; in the
previous screenshots, what you see is the default CSS of our browser (apart from the black
box on the upper-right), and most browsers have the same default CSS if no specific CSS
is defined.

CSS can be internal or external; an internal CSS is embedded in a HTML document using the
<style> tag, whereas an external CSS is linked to by using the <link> tag, for example:tag, for example:

<link rel="stylesheet" type="text/css" href="style.css">.

In general, using internal CSS is considered to be a bad practice and should be avoided.
External CSS is widely favored over internal CSS because it allows us to save more time and
effort as we can change the design of the website by just making changes to a .css file
instead of making individual changes to each HTML document. It also helps in improving
performance, as the browser will only need to download one CSS and cache it in memory.

The most important point for this section is the use of CSS selectors and the syntax of
the CSS.

The CSS selectors work as follows: for selecting IDs, the name of the ID is preceded by a
hash character. For a class selector, it is preceded by a dot. In the code that you will be seeing
later, you will see that both ID and class selectors are used (they are also commented in the
source code). Here's a quick preview of the selectors:

/* this is a id selector */
#nameOfID {
 /* properties here*/
}

/* this is a class selector */
.nameOfClass {
 /* properties here*/
}

The syntax of the CSS is as follows: selector { declaration } . The declaration consists of a
semicolon-separated list of name or value attribute pairs, in which colons separate the
name from the value.

Remember that we've mentioned the id attribute and class attribute in the preceding
section? Now you will see how id attributes and class attribute are being used by CSS.

What is JavaScript Testing?

[14]

Time for action – styling your HTML document using CSS
Now we are going to style the HTML document that we created in the preceding section, by
using CSS. For simplicity, we'll use an internal CSS. What will happen in this section is thatFor simplicity, we'll use an internal CSS. What will happen in this section is that
you will see the CSS syntax in action, and how it styles each HTML element by making use
of the id attribute and class attribute of the respective HTML element. Note that both
id and class selectors are used in this example.

The completed version of this example can be found in the source code folder
of Chapter 1, with the file name: chapter1-css-appearance.html

1.	 Continuing from the previous example, open up your text editor and insert the
following code after the </title> tag:

<style type="text/css">
body{
 background-color:#cccccc;
}
/* Here we create a CSS selector for IDs by a name preceded by a
hash character */
#container{
 width:750px; /* this makes the width of the div element with
the id 'container' to have a width of 750px */
 height:430px;
 border:1px solid black;solid 1px black;

}
/* #[nameOfElement] */
#boxed1{
 background-color:#ff6600;
 border:2px solid black;
 height:360px;
 width:300px;
 padding:20px;
 float:left;
 margin:10px;
}

#boxed2{
 background-color:#ff6600;
 border:2px solid black;
 height:360px;
 width:300px;

Chapter 1

[15]

 padding:20px;
 float:left;
 margin:10px;
}
#ordered1{
 font-size:20px;
 color:#ce0000;
 text-align:center;
}
#unordered1{
 font-size:12px;
 color:#000f00;
}
#ordered2{
 font-size:20px;
 color:#ce0000;
 text-align:center;
}
#unordered2{
 font-size:12px;
 color:#000f00;
}
#unordered2.nice{
 font-size:16px;
}
.intro{
 color:black;
 font-weight:bold;
}
a:link {color:#FF0000;} /* unvisited link */
a:visited {color:#00FF00;} /* visited link */
a:hover {color:#FF00FF;} /* mouse over link */
a:active {color:#0000FF;} /* selected link */
</style>

2.	 After adding the CSS code above, you will need to add class and id attributes to
your HTML elements. Here's the stuff you'll need to add:

<!—- Some code omitted above -- >
<body>

 <!—- Some code omitted -- >
<p class="intro">This is a paragraph. I am styled by a class
called "intro"</p>

<hr>

www.allitebooks.com

http://www.allitebooks.org

What is JavaScript Testing?

[16]

<div id="container">

 <div id="boxed1">I am enclosed within a <i>div</i> tag. And I
can be styled on a document level.

 <ol id="ordered1">

 This is an ordered list and it is centered
 apple
 orange
 banana

 <ul id="unordered1">

 This is an unordered list.
 apple
 orange
 banana

 I am a link that is styled by a
class

 </div>

 <div id="boxed2">I am enclosed within a <i>div</i> tag. And I
am styled on a local level.

 <ol id="ordered2">

 This is an ordered list and it is centered
 apple
 orange
 banana

 <ul class="nice" id="unordered2">

 This is an unordered list and I have a class
defined
 apple
 orange
 banana

 I am a link that is styled by a
class

 </div>
</div>
</body>
</html>

Chapter 1

[17]

The class and id attributes that need to be added are highlighted in the
code snippet above. If you are not sure if you have done it correctly, open
up chapter1-css-appearance.html and have a look.

3.	 Now save the file and open it in your browser. You should see that your HTML save the file and open it in your browser. You should see that your HTML
document now looks different to how it was before it was styled by CSS. Your
output should be similar to the example shown in following screenshot:

What just happened?
You have just applied CSS to the HTML document that you created in the previous section.
Notice that you have used both the id selector and class selector syntax. Within each
selector, you should also see some stylistic attributes.

The HTML elements in this example are similar to the previous example, except that the
HTML elements now have id and class names.

In the following sub-sections, I'll continue to explain the techniques used for referring to the
various HTML elements, and how we styled the elements by using their stylistic attributes.

What is JavaScript Testing?

[1�]

Referring to an HTML element by its id or class name and styling it
We referenced various HTML elements by its id or class name. Consider the following
code snippet in the above example:

<!—some code omitted above-->

<p class="intro">This is a paragraph. I am styled by a class called
"intro"</p>
<!—some code omitted -->
<div id="boxed">This is enclosed within a <i>div</i> tag. And it is
styled on a local level.
 <ol id="ordered1">
 This is an ordered list and it is centered
 apple
 orange
 banana

 <ul class="nice" id="unordered1">
 This is an unordered list and has a class defined</
li>
 apple
 orange
 banana

 This is a link that is styled by a
class
 </div>

The highlighted code refers to the HTML elements where ids and class name attributes
are being used. Notice that some of the HTML elements have both ids and class name
attributes while some do not.

Now consider the CSS snippet which is found in the example:

#boxed1{
 background-color:#ff6600;
 border:2px solid black;
 height:360px;
 width:300px;
 padding:20px;
 float:left;
 margin:10px;
}

Chapter 1

[1�]

The #boxed1 selector refers to the <div> with the id #boxed1 in the HTML document.
Notice that the <div> with the id #boxed1 is styled according to the name and value
attribute pairs within the declaration. If you make some changes to the value attribute
and refresh your browser, you will notice changes to the #boxed1 element as well.

Now, consider the following CSS snippets:

.intro{
 color:black;
 font-weight:bold;
}

And:

a:link {color:#FF0000;} /* unvisited link */
a:visited {color:#00FF00;} /* visited link */
a:hover {color:#FF00FF;} /* mouse over link */
a:active {color:#0000FF;} /* selected link */

The previous two code snippets are what we call class selectors, which have a slightly
different syntax than the id selectors. For instance the .intro class selector selects the
<p> with class name "intro" while the a:link , a:visited, a:hover, and a:active
selectors refer to the four states of an anchor pseudo class.

Until now, we have covered how CSS selectors work to select HTML elements in an HTML
document. But we have not covered the situation where an HTML element has both id and
class attributes; we'll explain it now.

Differences between a class selector and an id selector
Although id selectors and class selectors appear to be the same, there are subtle
differences. For instance, the id selector is used to specify a single HTML element,
whereas the class selector is used to specify several HTML elements.

For example, you may try changing the anchor element
to and you would notice that the link is now bold.and you would notice that the link is now bold.

If an HTML element has a style attribute that is controlled by both the stylistic
attributes of an id and class selector, then the style attributes in the class
selector will take precedence over those in the id selector.

What is JavaScript Testing?

[20]

Other uses for class selectors and id selectors
In the following section, you will learn that the id and class name of an HTML element
play an important role in providing interactivity on a web page. This is done by using
JavaScript, where JavaScript makes a reference to an HTML element either by its id or
class name, after which various actions such as DOM manipulation are performed on
the HTML element that is referenced.

Complete list of CSS attributes
The examples given here are not complete. For a complete reference to CSS, you may visit
http://www.w3schools.com/css/css_reference.asp.

JavaScript providing behavior to a web page
In this section we'll cover some of the key aspects of JavaScript. In general, if HTML provides
content for an HTML document and CSS styles the HTML document, then JavaScript breathes
life into an HTML document by providing behavior to the webpage.

The behavior can include changing the background colour of an HTML document
dynamically, or changing the font size of the text, and so on. JavaScript can even be
used to create effects such as animating slideshows, and fade-in and fade-out effects.

In general, the behaviors are event-based, and are achieved by manipulating the DOM in
real-time (at least from the users' point of view).

In case you are fairly new to JavaScript, JavaScript is an interpreted programing language
with object-oriented capabilities. It is loosely-typed, which means that you do not need to
define a data type when declaring variables or functions.

In my opinion, the best way to understand the language features of JavaScript is through an
example. Now, it's time for action.

Time for action – giving behavior to your HTML document
We are going to apply JavaScript to an HTML document (styled with CSS). In general, the
HTML elements and CSS are not changing as compared to the previous example, except that
you will see HTML buttons added to the HTML document.

The JavaScript applied to the HTML document in this example is known as inline JavaScript
because it exists within the HTML document.

Chapter 1

[21]

What we are trying to accomplish here is to show you the language features such as how to
declare variables, functions, manipulating DOM of the HTML elements, and various methods
of referencing HTML elements by their id or class. You will also learn about some of the
commonly-used built-in methods of arrays, and elements that are referenced, and how to
use them to make your tasks easier.

This example is nothing fancy, but you will learn some of the most important and
commonly-used techniques for referencing HTML elements and then manipulating the DOM.

(The completed code for this example can be found in the source code
folder, Chapter 1, with the file name of: chapter1-javascript-
behavior.html):

1.	 Continuing on from the previous example, enter the following JavaScript code after
the </style> tag:

<script type="text/javascript">
function changeProperties(d){
 var e = document.getElementById(d);
 e.style.position = "absolute";
 e.style.fontFamily = "sans-serif";
 e.style.backgroundColor = "#000000";
 e.style.border = "solid 2px black";
 e.style.left = "200px";
 e.style.color = "#ffffff";
}
function arrangeList(f) {
 // This is the element whose children we are going to sort
 if (typeof f == "string"){ // check to see if the element is
"string"
 f = document.getElementById(f);
 }
 // Transfer the element (but not text node) children of e to
a real array
 var listElements = [];
 for(var x = f.firstChild; x != null; x = x.nextSibling)
 if (x.nodeType == 1){
 listElements.push(x);
 }
 listElements.sort(function(n, m) { // .sort is a built in
method of arrays
 var s = n.firstChild.data;
 var t = m.firstChild.data;
 if (s < t){

What is JavaScript Testing?

[22]

 return -1;
 }
 else if (s > t){
 return 1;
 }
 else{
 return 0;
 }
 });
 for(var i = 0; i < listElements.length; i++){
 f.appendChild(listElements[i]);
 }
}
function insertContent(a){
 var elementToBeInserted = document.getElementById(a);
 elementToBeInserted.innerHTML = "<h1>This is a dynamic
content</h1>
<p>great to be here</p>";
}
function changeElementUsingName(a){
 var n = document.getElementsByName(a);
 for(var i = 0; i< n.length; i++){
 n[i].setAttribute("style","color:#ffffff");
 }
}
function hideElement(a){
 var header = document.getElementById(a);
 header.style.visibility = "hidden";
}
function hideElementUsingTagName(a){
 var n = document.getElementsByTagName(a);
 for(var i = 0; i< n.length; i++){
 n[i].setAttribute("style","visibility:hidden");
 }
}
</script>

Chapter 1

[23]

Now save your document and load it in your browser, and you will see an
example similar to the one shown in the next screenshot:

What just happened?
You have just created an HTML document styled with CSS, and applied JavaScript to it.
There are generally no changes to the HTML elements and CSS as compared to the
previous example, but you will see the <button> elements.

Now you can see the power of JavaScript in action by clicking on the HTML buttons. You
should see that if you click on the change properties button, you will see the HTML box on
the right shifts to the left by 200pixels, and its background change color. You can also click on
other buttons to test their effect on the HTML document.

What is JavaScript Testing?

[24]

What happens when you click on each HTML button is that you are invoking a JavaScript
function that manipulates the relevant HTML element in the document, via the DOM. You
should see effects like hiding content, creating dynamic content, rearranging the list of items,
and so on.

In the following sections, I'll first start by briefly introducing the JavaScript syntax, followedI'll first start by briefly introducing the JavaScript syntax, followed
by attaching events to HTML elements, and finally using JavaScript's built-in methods to find
HTML elements and manipulating them.

JavaScript Syntax
We'll start with learning the basic syntax of JavaScript. Consider the opening <script> tag:

<script type="text/javascript">
// code omitted
</script>

What the above <script> tag does is identify where JavaScript starts and ends. Within the
type attribute, we write text/javascript to denote that this is a JavaScript code.

Now, let us consider the following code snippet:

function arrangeList(f) {
 if (typeof f == "string"){ // check to see if the element is
"string"
 f = document.getElementById(f);
 }
 var listElements = [];//declaring a variable
 for(var x = f.first�hild; x �= null; x = x.next�ibling)for(var x = f.first�hild; x �= null; x = x.next�ibling)
 if (x.nodeType == 1){
 listElements.push(x);
 }
 listElements.sort(function(n, m) { // .sort is a built in method
of arrays
 var s = n.firstChild.data;
 var t = m.firstChild.data;
 if (s < t){
 return -1;
 }

 else if (s > t){
 return 1;
 }
 else{
 return 0;
 }
 });

Chapter 1

[25]

 for(var i = 0; i < listElements.length; i++){
 f.appendChild(listElements[i]);
 }
}

The above code snippet shows the function called arrangeList. We define a function by
using the reserved keyword function, followed by the name of the function. Parameters
are passed into the function within the () and in this code snippet, f is the parameter
passed into the function. The function starts with a {and ends with a}.

In short, the function syntax can be defined as follows:

function functionname(parameter1, parameter2, … parameterX){
 Body of the function
}

The second highlighted line shows decision making in JavaScript through the use of the if
statement. The syntax is similar to the C programing if statement. The syntax of JavaScript's
if statement is as follows:

if (condition){
 code to be executed if condition is true.
}

A variation of the if statement is the if-else

if (condition){
 code to be executed if condition is true.
}
else{
 code to be executed if condition is not true.
}

We use the keyword var followed by a variable name. In the above example,
var listElements = []; means that a variable listElements is defined, and it
is given the value of an empty list denoted by []. In general, variables can be assigned
arbitrary values since JavaScript is loosely-typed.

Continuing from above, you should see the for loop in action. Its syntax is also similar to the
C language's for loop.

What is JavaScript Testing?

[26]

If you are new to JavaScript, you may be confused by document.getElementById() and
statements like listElements.push(x). What happens in these two lines is that we are
using some of the built-in methods of JavaScript to reference the HTML element with the
corresponding IDs. For now, document.getElementById() will be more important
to you; this will be covered in the section where you learn how to find elements in your
HTML document.

JavaScript events
Let's start off by looking at the following code snippet that is found in your JavaScript:

<button onclick="changeProperties('boxed1')">change properties</
button>
<button onclick="insertContent('empty')">Create dynamic content</
button>
<button onclick="arrangeList('ordered1')">Rearrange list</button>
<button onclick="arrangeList('unordered1')">Rearrange unordered list</
button>
<button onclick="hideElement('header1')">hide header 1</button>

<button onclick="changeElementUsingName('lost')">Change
hyperlink colors</button>
<button onclick="hideElementUsingTagName('h2')">Hide header 2 (using
tag name)
</button>

The above code snippets show HTML buttons with an event attached to them via onclick.
When the button is clicked, the corresponding JavaScript function is invoked.

For example, <button onclick="changeProperties('boxed1')">ch
ange properties</button> means that when this button is clicked, the
changeProperties() function is invoked with the parameter boxed1, which
happens to be a div element with the ID boxed1.

Finding elements in a document
Remember that we've seen a few built-in methods of JavaScript. JavaScript can be used
to find elements in an HTML document by using some of JavaScript's built-in methods or
properties. After finding the HTML element, you can manipulate its properties. JavaScript
features three properties of the Document object (which is the root of every DOM tree) that
allows you to find the HTML elements that you need. The techniques mentioned here form
the backbone of JavaScript testing. Understanding this section is vital to understanding the
rest of the book. So make sure that you understand this section of the chapter.

Chapter 1

[27]

Firstly, the document.getElementById(). This property allows you to select an HTML
element with a specific ID. document.getElementById()returns only a single element
because the value of every id attribute is (supposed to be) unique. Here's a code snippet
from the example:

function changeProperties(d){
 var e = document.getElementById(d);

 e.style.position = "absolute";e.style.position = "absolute";
 e.style.fontFamily = "sans-serif";
 e.style.backgroundColor = "#000000";
 e.style.border = "2px solid black";
 e.style.left = "200px";

 e.style.color = "#ffffff";
}

Consider the highlighted line in the above code snippet,
var e = document.getElementById(d). What happens here is that the HTML element
'd', which happens to be a parameter of the function changeProperties(), is being
referred. If you look at the source code for this example, you will see an HTML button
with the following: <button onclick="changeProperties('boxed1')">
change properties</button>. Notice that 'boxed1' is being referenced,
and this means that the parameter 'f' takes the value of the HTML element id of
'boxed1'. Therefore, var e = document.getElementById(d) means that
the HTML div with the ID of 'boxed1' is being assigned to variable e via the
document.getElementById() method.

Secondly, note the document.getElementsByName() statement. This is similar to
document.getElementById(), but it looks at the name attribute instead of the id
attribute. It returns an array of elements rather than a single element. Consider the
following code snippet:

function changeElementUsingName(a){

 var n = document.getElementsByName(a);

 for(var i = 0; i< n.length; i++){
 n[i].setAttribute("style","color:#ffffff");
 }
}

What happens here is that the HTML element with the name 'a' (which happens to be a
parameter of the function) is referenced, and because it returns an array of elements, we use
a for loop to loop through the elements, and use the method .setAttribute to change
the color of the text to white. The name attribute applies to <form> and <a> tags only.

What is JavaScript Testing?

[2�]

Finally, look at document.getElementsByTagName(). This method looks for HTML
elements by the HTML tag name. For instance, the following code:

function hideElementUsingTagName(a){
 var n = document.getElementsByTagName(a);

 for(var i = 0; i< n.length; i++){
 n[i].setAttribute("style","visibility:hidden");
 }
}

finds the HTML element by the tag name, and makes it hidden. In our example, a h2 is used
as a parameter and hence when you click on the relevant button, all text that is enclosed
within the <h2> tags will disappear.

Now, if you change the parameter to div, then you will notice that all of the boxes
will disappear.

Putting it all together
Now I'll briefly describe how JavaScript works to interact with HTML elements. Here's what
you will learn in this subsection: after an HTML button is clicked (an event), it invokes a
JavaScript function. Then, the JavaScript function receives a parameter and executes the
function. Consider the following code snippets.

The following code is for an HTML button with an event attached to it:

<button onclick="insertContent('empty')">Create dynamic content</
button>code

Next, the following code is for an HTML div element:

<div id="empty"></div>

Lastly, the following is code which shows the JavaScript function that is to be invoked:

function insertContent(a){
 var elementToBeInserted = document.getElementById(a);
 elementToBeInserted.innerHTML = "<h1>This is a dynamic content</
h1>
<p>great to be here</p>";
}

Now, let me explain what we are trying to do here; after clicking the HTML button, the
JavaScript function insertContent() is invoked. The parameter ''empty' is passed into is passed into
insertContent(). ''empty'refers to therefers to the div element with ID ''empty'.

Chapter 1

[2�]

After insertContent() is invoked, the parameter ''empty' is passed to a variable is passed to a variable var
elementToBeInserted, by using document.getElementById(). Then, using the
built-in method innerHTML() for HTML element nodes (because an HTML element node is
passed to the elementToBeInserted variable), we dynamically insert the text "<h1>This
is a dynamic content</h1>
<p>great to be here</p>".

Go ahead and open the file in your web browser, and click on the HTML button. You will
notice a new piece of text being inserted into the HTML document, dynamically.

The built-in method innerHTML() for HTML element nodes allows us
to manipulate (or in this case, dynamically insert) HTML contents into) the
HTML node that is using the innerHTML() method. For example, in our
example, we will insert "<h1>This is a dynamic content</
h1>
<p>great to be here</p>" into <div id="empty"></
div>. Technically speaking, after the insertion, the end result will be:
: <div id="empty"><h1>This is a dynamic content</
h1>
<p>great to be here</p></div>.

The difference between JavaScript and server-side
languages
Generally speaking, the main difference between JavaScript and server-side languages lies in
their usage and where they are executed. In modern usage, JavaScript runs on the client side
(the users' web browser), and server-side languages runs on servers, and is therefore often
used to read, create, delete, and update databases such as MySQL.

This means that the JavaScript is processed on the web-browser, whereas server-side
languages are executed on web servers.

Server-side languages include ASP.NET, PHP, Python, Perl, and so on.

In the context of modern web development techniques, you have probably heard of Web 2.0
applications. An important technique is that JavaScript is often used extensively to provide
interactivity and to perform asynchronous data retrieval (and in some cases manipulation),
which is also known as AJAX (which is a short-hand for Asynchronous JavaScript and XML).

JavaScript cannot be used to interact with databases, whereas server-side languages such as
PHP, Python, and JSP can.

JavaScript is also known as front-end, whereas server-side is back-end technology.

What is JavaScript Testing?

[30]

JavaScript can be used on the server side as well, although it is most
frequently associated with client-side technologies. Although JavaScript is
typically not associated with interacting with databases, this might change
in the future. Consider new browsers such as Google Chrome, which
provides a database API for JavaScript to interact with built-in databases
in the browser itself.

Why pages need to work without JavaScript
Although there are many arguments as to whether we should make web pages work with or
without JavaScript, I personally believe that it depends on how the website or application is
used. But anyway, I'll start off with some of the common reasons for why pages need to work
without JavaScript.

Firstly, not all users have JavaScript enabled in web browsers. This means that users
whose JavaScript is not enabled will not be able to use your application (or features)
if it requires JavaScript.

Secondly, if you intend to support your user on their mobile device, then you need to
make sure that your website or application works without JavaScript. The main reason is
because support for JavaScript on mobile devices is often less than satisfactory; if you use
JavaScript, your website or application may not work as well as expected (or worse, fail to
work altogether).

Another way to look at this is based on your understanding of your user base. For instance,
probably the only time when you can afford to ignore users who have JavaScript disabled is
when you can guarantee or know before-hand that your user base has JavaScript enabled.
Such situations can occur when you are developing an application for internal use, and you
know before-hand that all of your users have JavaScript enabled.

In case you are wondering what you can do to create pages that work without JavaScript,
you can check out the idea of graceful degradation. Imagine that you have an application
and the core features of this application are AJAX-based. This means that in order to use
your application, your user will need to have JavaScript enabled. In this case, you would most
probably have to consider making your pages to work without JavaScript in order to ensure
that all of your users can use your application.

Chapter 1

[31]

What is testing?
Generally speaking, programmers write a program with a few objectives in mind. Besides
creating a program to solve a certain problem or to fulfil a certain demand, other common
objectives would include ensuring that the program is at least correct, efficient, and can be
easily extended.

Of the above-mentioned objectives, correctness is the most important objective—at least in
this book. By correct, we mean that for any given input, we need to make sure that the input
is what we want or need, and that the corresponding output is correct. The implicit meaning
of this is that the program logic is correct: it works the way we intended it to work, there are
no syntax errors, and the variables, objects, and parameters referenced are correct and what
we need.

Take, for instance, a retirement plan calculator written in JavaScript. We could expect the
user to enter values such as their current age, retirement age, and savings per month.
Imagine if a user were to enter incorrect data, such as a string or character. The JavaScript
retirement plan calculator would not work, because the input data is incorrect. Or worse, if
the user entered the correct data and our algorithm for calculating the amount of money to
be set aside for retirement is incorrect, this results in the output being incorrect.

The above errors could be avoided by testing, which is the main topic of this book. In the
remaining portions of this chapter, we will talk about some of the types of errors that you
may face as a JavaScript programmer. But before we move into that, I'll briefly discuss why
we need to test.

Why do you need to test?
First and the foremost, human beings are prone to mistakes. As a programmer, you have
probably made coding mistakes during your programing career. Even the best programmers
on Earth have made mistakes. What makes it worse is that we may not have realized the
mistake until we tested the program.

Secondly, and perhaps more importantly, JavaScript generally fails silently; there are no error
messages to tell you what errors have occurred or where that error has occurred, assuming
you are not using any testing unit or tools to test your JavaScript. Therefore, there is little or
no way to know what has happened to your JavaScript program, if there is an error.

What is JavaScript Testing?

[32]

In Microsoft's Internet Explorer, you can actually see if you have any JavaScript
errors. You will need to turn on Script Debugging which is found in Tools |
Internet Options | Advanced| Script Debugging. With Script Debugging turned
on, you will see a yellow 'yield' icon on the bottom left hand corner for IE7 or
IE8 if you have any JavaScript errors. Clicking on that icon will give you a window
where you can click on Show Details to get more information about the error.

Thirdly, even if there are ways to inform you of JavaScript errors, such as enabling Script
Debugging, as mentioned above, there are certain errors that cannot be detected by such
means. For instance, your program syntax may be 100 percent correct, but your algorithm or
program logic might be incorrect. This means that even if your JavaScript can be executed,
your output could be incorrect.

Lastly, testing JavaScript will help you to identify cross-browser compatibility issues. Because
there are approximately five major types of browsers (not accounting for different versions)
to support—namely Microsoft's Internet Explorer, Mozilla's Firefox, Google's Chrome,
Apple's Safari and the Opera Web Browser—you will certainly need to test to ensure that
your website or application works across all browsers, because different browsers have
different DOM compatibilities.

Ensuring that the program is correct means confirming and checking that the input is correct,
and then that the output is what we intended it to be.

Types of errors
Before I start introducing the types of JavaScript errors, we need to understand the inner
workings of JavaScript and the web browser. In general, a user requests a web document
from the server, and this document is loaded into the user's web browser. Assuming that
the web document has JavaScript embedded (either via an external JavaScript file or via
inline JavaScript), the JavaScript will be loaded together with the web document (from top
to bottom). As the web document is loaded by the web browser, the JavaScript engine of
the web browser will begin to interpret the JavaScript embedded in the web document. This
process will continue until the JavaScript (and the web document) is completely loaded into
the user's web browser, ready for interaction. Then the user may start to interact with the
web document by clicking on links or buttons that may have JavaScript events attached
to them.

Now, with the above process in mind, we'll start introducing the different types of JavaScript
errors, by using simple examples.

Chapter 1

[33]

Loading errors
The first types of error that we'll discuss are loading errors. Loading errors are errors
that are caught by the JavaScript engine of the web browser as the document is loading.

In other words, loading errors occur before the JavaScript has the opportunity to function.
These errors are typically spotted by JavaScript engines before the code has the chance
to execute.

With the previously-mentioned things in mind, let us now experience how such loading
errors occur.

Time for action – loading errors in action
Now we'll see loading errors in action. We do not actually see it, but you will learn about
some of the most common causes for loading errors.

The complete code for this example can be found in the source code folder
Chapter 1, with a file name of chapter1-loading-errors.html

1. Open up your text editor and create a new document.

2.	 Enter the following code into your document:

<html>
<head><title>JavaScript Errors - Loading Errors</title></head>
<body>
<script type="text/javascript">/*
1. Loading Errors
*/

/*
// Example 1 - syntax errors
var tests = "This is a test"; // note two s
document.write(test); // note one s
*/

/*
// Example 2 - syntax errors as the keyword "var" is not used
Var Messsage = "This is a test"; // note three s's
document.write(Message); // note two s's
*/

/*

What is JavaScript Testing?

[34]

// Example 3 - error caused by using a key word
var for = "this is a test";
document.write(in);
*/
</script>
</body>
</html>

3.	 Now, uncomment the /* and */ wrapped around example 1, save the document
and load it into your browser. You should see a blank page on your web browser.

4. Repeat the above step for example 2 and example 3. You should see a blank page for
both examples 2 and 3.

What just happened?
You have just created an HTML document with erroneous JavaScript code. From the
comments in the code, you should realize that the errors are caused largely due to syntax
errors. And when such errors occur, there is simply no response from the JavaScript in the
web browser.

Some examples of common syntax errors would include missing brackets, missing
semi-colons, and incorrect variable names.

In general, as long as your code is correct in terms of syntax, then you should be able to
avoid loading errors.

Now, you might ask, what happens if only certain parts of the JavaScript code are incorrect?
This would depend on where the error has occurred.

Partially correct JavaScript
In general-JavaScript is executed or loaded from top to bottom. This means that the first line
of code is loaded first, followed by the next, and so on until finally the last line of the code is
loaded. This has important implications for partially-correct JavaScript.

Chapter 1

[35]

Time for action – loading errors in action
Now we'll see partially-correct JavaScript code in action and its implications.

The completed source code for this example can be found in the source
code folder, with the file name Chapter1-loading-errors-
modified.html.

1.	 Open your text editor, create a new document, and enter the following code into
your document:

<html>
<head><title>JavaScript Errors - Loading Errors</title></head>
<body>
<script type="text/javascript">/*
1. Loading Errors - modified
*/

// this is correct code
var tests = "This is a CORRECT test";
document.write(tests);

// this is incorrect code. The variable name referred is incorrect
var Messsage = "This is a FIRSTtest";
document.write(Message);

// this is correct code
var testing = "this is a SECOND test";
document.write(testing);

</script>
</body>
</html>

2. Now save your document and load your document in your web browser. You should
see the text This is a test in your browser.

What just happened?
If you trace the code, you should see that the JavaScript executes from top to bottom. It
stops executing when it encounters an error where an incorrect variable name is referenced
by document.write(). Because it stops executing when it encounters an error, the
remaining JavaScript code will not be executed.

www.allitebooks.com

http://www.allitebooks.org

What is JavaScript Testing?

[36]

Things are slightly different if your JavaScript code is organized in terms of functions.
In this situation, functions that have incorrect syntax will fail to execute, whereas
syntactically-correct functions will continue to work, regardless of its order in the code.

By now, you should have a brief understanding of loading errors and how to prevent them by
making sure that your code is syntactically correct.

Now let us move on to the next form of error—runtime errors.

Runtime errors
Do you remember how JavaScript is loaded together with the web document into the
browser? After the web document is loaded completely into the web browser, it is ready for
various events, which leads to execution of JavaScript code.

Runtime errors occur during execution; for instance, consider an HTML button that has a
JavaScript event attached to it. Assuming that a JavaScript function is assigned to an event,
then if the JavaScript function has an error, that function will not be executed when the user
clicks on the HTML button.

Other forms of runtime error occur when you misapply an object, variable, or method, or
when you reference objects or variables that do not exist yet.

Time for action – runtime errors in action
Now we shall see all three common causes of runtime errors in action.

The code sample is saved in the source code folder of Chapter 1, entitled:
chapter1-runtime-errors.html.

1. Open up your text editor, enter the following code into a new document:

<html>
<head><title>JavaScript Errors</title></head>
<script type="text/javascript">/*

2. Runtime Errors

*/

alert (window.innerHTML);

var Test = "a variable that is defined";
alert(Test); // if variables is wrongly typed, than nothing wil
happen

Chapter 1

[37]

// nothing happens when the user clicks on the HTML button, which
invokes the following function
function incorrectFunction(){
 alert(noSuchVariable);
}
</script>
<body>
<input type="button" value="click me" onclick="incorrectFunction()
" />

</body>
</html>

2.	 Save the document and load it into your web browser.

3.	 After loading the document into your browser, you will see two alert boxes: the first
box says undefined and the second alert box says a variable that is defined. Then
you will see an HTML button that says click me.

4.	 Click on the button, and you will see that nothing happens.

What just happened?
The first alert that you have seen shows you an error that is caused by misapplying a
method. window.innerHTML does not exist, as .innerHTML is applied to HTML elements
and not to window. The second alert window says that a variable that is defined as the
variable is defined before the alert() references it. Lastly, nothing happens when you click
on the HTML button because the function that is to be invoked has the error of referencing
to a variable that is not defined. Hence it is not executed during the event onclick().

In this example, you should realize that the logic of your code is of great importance—you
will need to define your variables or objects before using them in your code. Also, make
sure that the method or properties applied are correct. Otherwise, you will end up with a
runtime error.

Now, we'll move on to the last form of JavaScript error—logic errors.

Logic errors
Logic errors are difficult to explain. But in general, you can see logic errors as errors that
occur when the code does not work the way that you intend it to. It is much easier to
understand what logic errors are by experiencing them. So, let us take some action.

What is JavaScript Testing?

[3�]

Time for action – logic errors in action
In this final example, you will see logic errors.

1.	 Open your text editor, enter the following code into a new document:

<html>
<head><title>JavaScript Errors</title>
<script type="text/javascript">
/* Logic Errors */

//saving some input in wrong variables
function amountOfMoneySaved(amount){
 var amountSpent, amountSaved;
 amountSpent = amount; // where you really meant amountSaved
 var currentAmount = 100;
 var totalAmountSaved = currentAmount - amountSpent;
 alert("The total amount of money you have now is " +
 totalAmountSaved);
}

function checkInput(amount){

 if(amount>0 && amount<99)
 alert("is number");
 else
 alert("NOT number");
}

</script>
</head>

<body>
<!-- this shows an infinite loop, an obvious logic error-->
<script>
// an infinite loop
for(var i = 0; i<10; i--){
 document.write(i + "
");
}
</script>

<form id="moneyForm">
 You currently have 100 dollars.
 The amount of money you have saved is: <input type="text"
id="money" name="money" />

Chapter 1

[3�]

 <input type="submit" value="Submit"
 onclick="amountOfMoneySaved(moneyForm.money.value)" />
</form>
</body>
</html>

2.	 Now, save the code and open the document in your browser.

3.	 You will see two simple forms. The first form which has the text: You currently
have 100 dollars. The amount of money you have saved is" " followed by an input
box. And the second form contains the text: Checking if you have entered a digit
followed by an input box.

4.	 Now try to enter a number that is larger than 99 (say, 999).

You may have noticed that after entering your input, the total amount of
money appears to have decreased. This is an example of a logic error, where
you are supposed to add the input, but instead the function subtracts the
input. Why did the program not work the way it was intended to?

What just happened?
You have just witnessed a simple example of logic error in action. Logic errors can take many
forms. You may have noticed a code snippet in the above example that is commented out.

<script type="text/javascript">// example 1: infinite loop// example 1: infinite loop
for(var i = 0; i<10; i--){
 document.write(i + "
");
}
</script>

This is an example of an infinite for loop. In this loop, you may have noticed that the
statement document.write(i+
"); should be executed 10 times (from var i = 0
to when i = 9). However, the third expression in the initializer within the for statement is
decreasing (i--).

As a result, the variable i will never be able to reach the condition where i>10. If you
uncomment the code, you will notice that the statement document.write(i"
");
will continue to execute until the web browser hangs; if you are using Firefox on a Windows
machine, the web browser will hang and you will have to quit the browser by using the
Task Manager.

What is JavaScript Testing?

[40]

Some advice for writing error-free JavaScript
By now, you should have a brief understanding of the types of JavaScript errors. While we
typically cannot avoid errors, we should try to minimize errors as we write code. In this
section, I'll briefly discuss some of the strategies that you can take, as a beginner JavaScript
programmer, to minimize the amount of errors that can occur.

Always check for proper names of objects, variables, and
functions
As seen in the above forms of errors, you should always make sure that you are using the
correct names for your objects, variables, and functions. Because such errors will not be
shown in your web browser, as you write your code, it is always a good idea to check forr code, it is always a good idea to check for code, it is always a good idea to check for
the correct use of names.

This also includes using unique names for different variables, objects, and functions.
Remember that JavaScript is case-sensitive; therefore do remember to check that you
are using the correct case for your variables, objects, and functions as well.

Check for proper syntax
Because you are using JavaScript, at least for this book you should check that you are
using the correct syntax before you run your program. Previously, we went through some
of the key features of the language syntax, for instance, ending each statement with a
semi-colon, using proper and matching brackets, using correct or unique function names,
and so on.

Plan before you code
Planning before the actual coding process helps to reduce the possibility of logic errors. This
helps you to think through your program and spot obvious logic errors in your code. Planning
can also help you to check for blind spots, such as missing features or functions.

Check for correctness as you code
As you write your program, it is always a good idea to check for errors as you complete
certain portions of the code. For example, if your program consists of six functions, it is
always wise (and less error prone) to check the correctness of each function. Making sure
that each function that you have written is correct before moving to the next function is a
good practice, and can save you a lot of trouble as you write large programs.

Chapter 1

[41]

Preventing errors by choosing a suitable text editor
I personally believe that a suitable text editor (or IDE) is a crucial step in minimizing coding
errors. Notice that I did not say that you need a "good" text editor, but rather a "suitable"
text editor. This is because different programing languages have different features and
different capabilities.

For instance, if you have programmed in Python, you will notice that you do not need to
have the ability to check for matching brackets, because Python is based on code blocks
(tabbing or spacing to denote blocks of code). However, in the case of JavaScript, you
would certainly need your text editor to help you check for matching (or missing) brackets.
Some code editors that can accomplish the above includes Dreamweaver (commercial) and
Eclipse (free).

In addition to matching brackets checking, here are some other features that will be useful
for you when you are coding in JavaScript:

1. Auto-tabbing or spacing after keywords or matching brackets: This will help you in
visually inspecting the code structure, and will minimize code errors.

2. Auto-complete or auto-suggest feature: This means that as you type your code, the
editor is smart enough to suggest to some of the words (or code) that you have used
in your program so that you can quickly refer to them as you code. This is especially
useful for checking user-defined variables, objects, and functions.

3. Syntax coloring: This will help you identify if you are misusing any keywords.
Remember runtime errors? Runtime errors can be caused by the misuse of
keywords. If you are using any of the keywords for user-defined variables,
objects, or functions, syntax coloring will help you to identify this.

Summary
Whew, we've covered a lot in this chapter. The bulk of the content covered in this chapter
forms the building blocks of what we need to use in the later chapters. Specifically, we
covered the following topics:

We learnt about HTML, CSS, and JavaScript in web pages. In general, HTML provides
the content, CSS styles the web document, and JavaScript provides the behaviour
and interactivity for the webpage.

We've also learnt about the syntax of HTML, CSS, and JavaScript.

We've also learnt about the key techniques of using ID and Class selectors in order
for CSS to refer to various HTML elements and perform stylistic operations on the
referenced HTML element.

What is JavaScript Testing?

[42]

For JavaScript, we learnt about three important techniques for JavaScript to
reference to HTML elements. These three techniques (or rather built-in methods)
are: document.getElementById(), document.getElementsByName(), and
document.ElementsByTagName().

Next we learnt about testing and why we need to test. In general, testing is to
ensure that the program works correctly—that is, for the given input, we have the
correct output. Also, testing helps to uncover syntax errors and confirm that the
program works in the way that we intend it to work.

We covered the types of JavaScript errors—namely loading errors, runtime errors,
and logic errors. We've also covered some simple examples of each type of errors
and the common causes of them.

We covered some important tips and advice on how to write error-free code.

Now that we have covered the basic building blocks of JavaScript testing, you will see how
we can make use of them to perform ad hoc testing, which we will cover in the next chapter.
You will notice some of the functions and built-in methods used in this chapter will be used
in the next chapter.

2
Ad Hoc Testing and Debugging

in JavaScript

In this chapter, we'll formally move into testing the JavaScript programs that we
actually create. But before I start, I'd like to brief you on what you can expect
in this chapter. In this chapter, you will learn about two major ideas—the first
idea being how different browsers can affect JavaScript testing, and the second
major idea being how you can test your JavaScript program by using the alert().
You will also learn how to access the values on a form, manipulate the values
and finally output the values in a meaningful manner.

You will also see many of the techniques introduced in the previous chapter being
used extensively.

To be more specific, we shall learn about the following topics:

The purpose of ad hoc testing

What happens when your browser encounters an error in JavaScript

Browser differences and the need to test in multiple browsers

Common browser messages and what they mean

How to find out if you are getting the right output and putting the right values in the
correct places in your code

How to access values on a form and how to access other parts of the web page

Tips on what to do when your JavaScript program does not give you the
expected result

Ad Hoc Testing and Debugging in JavaScript

[44]

What to do if the script does not run

How to perform a visual inspection

How to use the alert() to test your JavaScript program

Commenting out parts of your code in order to simplify testing

Why ad hoc testing isn't always enough

So before I move on to the main topics of this chapter, I'll briefly mention the two basic ideas
that you should understand before moving on to the rest of the chapter.

The purpose of ad hoc testing–getting the script to run
The first basic idea concerns the purpose of ad hoc testing. The main purpose of ad hoc
testing is to quickly get your code up and running and then see if there are any errors with
your code. As mentioned previously, the three different types of JavaScript errors entail
loading, runtime, and logic errors.

The main advantage of ad hoc testing is that it allows you to test your JavaScript program
without bogging you down. It is meant for those who want to save time, especially when
testing small pieces of code.

What happens when the browser encounters an error in
JavaScript
Now it's time for the second basic idea. In the previous chapter, I have briefly described hows time for the second basic idea. In the previous chapter, I have briefly described howime for the second basic idea. In the previous chapter, I have briefly described how
a web page is loaded in to the browser and then rendered in the web browser, waiting for
interaction with the user. I have also mentioned that, in general, JavaScript fails silently; it
does not explicitly tell or show you what errors (if any) have occurred. This happens when
your browser does not have any form of debugging turned on.

However, modern web browsers feature built-in ways for the browser to tell the user that
some form of errors have occurred on the web page. This happens when you explicitly turn
on or install the debugging tools for the web browser. For some of the browsers, you will also
need to explicitly turn on the error console in order to find out what error has occurred.

Chapter 2

[45]

In case you are wondering what you need to do in order to make use of these built-in
features, here are some simple instructions to help you to get started:

1. For Firefox—turn on your web browser and go to Tools. Click on Error Console.

2. For Internet Explorer—you need to go toyou need to go to Tools | Internet Options | Advanced.
Scroll down to Browsing and check Display a notification about every script error.

You now understand the basic ideas about why we perform ad hoc testing. We will
now move on to a more complex topic—how browser differences can affect your
JavaScript program.

Browser differences and the need to test in multiple
browsers
In general, browsers have different features. The one difference that matters the most to us,
at least in this book, is the JavaScript engine used by different browsers. Different JavaScript
engines process JavaScript in different manners. This has important implications for us.
Certain JavaScript functions or methods that are supported by one web browser may
not be supported by another.

The main essence of JavaScript is that it provides behavior to the web page through DOM
manipulation; different browsers have different levels of support for DOM.

We will not attempt to go into a deep discussion about what is supported and what is not
by various browsers. Instead, we'll point you to this website: http://www.quirksmode.
org/compatibility.html.

This link provides a summary of the various incompatibilities of various web browsers
according to different selectors. For our purpose here we should be more focused on the
DOM selectors since we are concerned about JavaScript. Feel free to browse through
the website for the details. But for now, the main idea that you need to understand is
that browser differences result in incompatibilities and hence we need to test for
browser compatibility.

Most beginner JavaScript programers would often want to know how they can find out the
browser that their visitors are using. After all, if you can find out what browser your visitors
are using, you'll be able to create compatible JavaScript code. That's true to a large extent;
so now we'll start by learning how we can check the visitor's browser.

Ad Hoc Testing and Debugging in JavaScript

[46]

Time for action – checking for features and sniffing browsers
In this section, we would like to introduce you to the navigatornavigator object. The navigator object is
a built-in object that provides you with information regarding the visitor's browser. What we
are trying to do here is to show you how the navigator object works, and how you can make
programing decisions based on the browser information.

The source code for this example can be found in the source code folder,
Chapter 2, with a file name of browser-testing-sample-1.html
and browser-testing-sample-2.html.

1. Start your text editor if you have not already done so, and then enter the following
code in your text editor:

<html>
<head><title>Testing for Browser - Example 1</title></head>
<body>
<script type="text/javascript">// Sample 1
var browserType ="Your Browser Information Is As Follows:\n";
for(var propertyName in navigator){
 browserType += propertyName + ": " + navigator[propertyName] +
"\n";
}
alert(browserType);
</script>
</body>
</html>

Here's what's happening in the previous code: we defined a variable
browserType. After which we used a for loop and defined another
variable, propertyName.

2.	 The line that says:for(var propertyName in navigator) means that we
are trying to get all of the properties in the navigator object.

3.	 After doing this, we append the propertyName and the information into the
browserType variable. And finally, we output the information in an alert box.

4. Now, load the file in to your web browser and you should see a pop-up window
containing information about your web browser.

Notice that the alert box contains various types of information about your
web browser. You can also access specific property of the browser for your
own use. This is what we are going to do next.

Chapter 2

[47]

Now that you have learned how to use the navigator object, it's time
to see how we can make use of this information in order to perform
programing decisions:

5. Create another new document, and enter the following code into it:

<html>
<head><title>Testing for Browser - Example 2</title></head>
<body>
<script type="text/javascript">// Sample 2
var typeOfBrowser = navigator.appName;
document.write(typeOfBrowser);
if(typeOfBrowser == "Netscape"){
 alert("do code for Netscape browsers");
}
else{
 alert("do something else");
}
</script>
</body>
</html>

In the previous sample code, we have defined the variable typeOfBrowser, which is used
to decide which to execute. An easy way would be to use the if else statement to choose
the of code to execute, based on the browser name.

What just happened?
In the preceding examples, you have seen how to use the navigator object to perform
"browser sniffing", and based on the given information, perform appropriate actions.

Apart from using the navigator object, you can also test browser differences based on the
browser's capabilities. This means that you can test whether the user's browser has a certain
feature or not. This technique is also known as feature testing. Now, we'll briefly see how
you can perform capability testing.

Testing browser differences via capability testing
Capability testing is an important and powerful way to cope with browser incompatibilities.
For instance, you might want to use a certain function that might not be supported on
different browsers. You can include a test to see if this function is supported or not.
Then, based on this information, you can execute the appropriate code for your visitor.

Ad Hoc Testing and Debugging in JavaScript

[4�]

Time for action – capability testing for different browsers
In this section, we'll briefly introduce a simple-to-use method that can help you to quickly
test for a certain feature. The method that we are going to use is the .hasFeature()
method. Now, we'll dive right in and see it in action..

The source code for this example can be found in the source code folder,
Chapter 2, with a file name of browser-testing-by-feature-
2.html and browser-testing-by-feature.html.

1. Start your text editor and then enter the following code in your text editor:

<html>
<head><title>Testing browser capabilities using .hasFeature()</
title></head>
<body>
<script type="javascript/text">
var hasCore = document.implementation.hasFeature("Core","2.0");
document.write("Availability of Core is "+ hasCore + "
");

var hasHTML = document.implementation.hasFeature("HTML","2.0");
document.write("Availability of HTML is "+ hasHTML + "
");

var hasXML = document.implementation.hasFeature("XML","2.0");
document.write("Availability of XML is "+ hasXML + "
");

var hasStyleSheets = document.implementation.hasFeature("StyleShee
ts","2.0");
document.write("Availability of StyleSheets is "+ hasStyleSheets
+ "
");

var hasCSS = document.implementation.hasFeature("CSS","2.0");
document.write("Availability of CSS is "+ hasCSS + "
");

var hasCSS2 = document.implementation.hasFeature("CSS2","2.0");
document.write("Availability of CSS2 is "+ hasCSS2 + "
");

</script>
</body>
</html>

Chapter 2

[4�]

To make things clearer, I've defined variables for each of the features and
the version number. In general, the usage of hasFeature is as follows:is as follows:

.hasFeature(feature, version);
// feature refers to the name of the feature to test in string
// version refers to the DOM version to test

2. Now load the file in to your web browser and you should see various types of text
being created dynamically on the screen.

Similarly, you can use the information that you have derived from the user's
browser to perform various decisions in a similar manner as to what you
have seen in the previous example.

So, for simplicity and explanation sake, here's how you can perform
programing decisions using the .hasFeature().

3. Create another new document, and enter the following code into it:

<html>
<head><title>Testing browser capabilities using .hasFeature() -
Example 2</title></head>
<body>
<script type="text/javascript">
var hasCore = document.implementation.hasFeature("Core","2.0");
if(hasCore){
 document.write("Core is supported, perform code based on the
feature
");
}
else{
 document.write("Feature is not supported, do alternative code
to enable your program
");
}
</script>
</body>
</html>

The sample code above is self-explanatory as it is similar to the example seen in
browser-testing-sample-2.html.

What just happened?
The previous example is a simple extension of what you can do to test for browser
differences. It is similar to the first example, which "sniffs" for the browser information
explicitly, while the method using .hasFeature() is based on capabilities.

Ad Hoc Testing and Debugging in JavaScript

[50]

There is no right or wrong way to test for browser differences. However, a general practice
is to use .hasFeature() to test for program functionality. That is to say that we ofteno test for program functionality. That is to say that we often
use .hasFeature() in order to ensure that our JavaScript functionality will be availablein order to ensure that our JavaScript functionality will be available
in different browsers.

The previous example shows some of the features that you can test for by using
.hasFeature(). Following is a list of the remaining features that you can test
for by using .hasFeature():

Events

UI Events

Mouse Events

HTML Events

Mutation Events

Range

Traversal

Views

Now that you have some understanding of how you can test for browser differences, it isow that you have some understanding of how you can test for browser differences, it isw that you have some understanding of how you can test for browser differences, it is is
time for the next topic—getting the output and putting values in the right places.—getting the output and putting values in the right places.getting the output and putting values in the right places. the output and putting values in the right places. and putting values in the right places.the right places. right places.

Are you getting the correct output and putting values in
the correct places?
In this section, we'll learn how to make sure that we are getting the output and putting the
correct values in the correct places. This means that we need to understand how to use
JavaScript with a HTML form.

Accessing the values on a form
In general, "getting" values would generally mean that a user would input some values into a
form (in a HTML document of course), and then our program "gets" the input from the web
form. Also, these values may or may not be manipulated by other functions; the initial user
input may be passed as arguments to other functions and then manipulated.

This can be achieved by using JavaScript's built-in utilities; JavaScript provides a few waysis can be achieved by using JavaScript's built-in utilities; JavaScript provides a few ways can be achieved by using JavaScript's built-in utilities; JavaScript provides a few ways's built-in utilities; JavaScript provides a few wayss built-in utilities; JavaScript provides a few ways
for you to access the form values so that you can use these values later on. In general,
JavaScript will "get" the value from a form"get" the value from a formget" the value from a form" the value from a form the value from a form onsubmit event.event.

Chapter 2

[51]

Time for action – accessing values from a form
In the following example, we'll start off with a simple HTML form. You will learn about
various techniques for accessing different form elements. What happens here is that you'll
see how we first submit a form by using the onsubmit event. The onsubmit event allows
us to send the form to a JavaScript function, which then helps us to extract the values from
various form element types. So for this example, I need you to relax and understand the
techniques mentioned earlier.

The source code for this example is found in Chapter 2 of the source
code folder, with a name of accessing-values-from-form.html.

1. Once again, enter the following code into your newly-created document in your
favorite editor:

<html>
<head><title>Getting Values from a HTML form</title>
<script type="text/javascript">/*
In this example, we'll access form values using
the following syntax:

document.NameOfForm.NameOfElement

where:
NameOfForm is the name of corresponding form
NameOfElement is the name of the element (within the
corresponding form)
*/
function checkValues(){
 var userInput = document.testingForm.enterText.value;
 alert(userInput);
 var userInputTextArea = document.testingForm.enterTextArea.
value;
 alert(userInputTextArea);
 var userCheckBox = document.testingForm.clickCheckBox.value;
 // this is for checkbox
 if(document.testingForm.clickCheckBox.checked){

 userCheckBox = true;
 }
 else{

Ad Hoc Testing and Debugging in JavaScript

[52]

 userCheckBox = false;

 }
 alert(userCheckBox);

 var userSelectBox = document.testingForm.userSelectBox.value;
 alert(userSelectBox);
 // here's another way you can "loop" through your form
elements
 alert(document.testingForm.radioType.length);
 for(var counter = 0; counter<document.testingForm.radioType.
length;counter++){
 if(document.testingForm.radioType[counter].checked){
 var userRadioButton = document.testingForm.
radioType[counter].value;
 alert(userRadioButton);
 }
 }
}
</script>
</head>
<body>
<h1>A simple form showing how values are accessed by JavaScript</
h1>
<form name="testingForm" onsubmit="return checkValues()">
<p>Enter something in text field:<input type="text"
name="enterText" /></p>
<p>Enter something in textarea:<textarea rows="2" cols="20"
name="enterTextArea"></textarea></p>
<p>Check on the checkbox:<input type="checkbox"
name="clickCheckBox" /></p>
<p>Select an option:
<select name="userSelectBox">
 <option value="EMPTY">--NIL--</option>
 <option value="option1">option1</option>
 <option value="option2">option2</option>
 <option value="option3">option3</option>
 <option value="option4">option4</option>
</select>
</p>
<p>Select a radio buttons:

 <input type="radio" name="radioType" value="python" /> Python

 <input type="radio" name="radioType" value="javascript" />
JavaScript

Chapter 2

[53]

 <input type="radio" name="radioType" value="java" /> Java

 <input type="radio" name="radioType" value="php" /> PHP

 <input type="radio" name="radioType" value="actionscript" />
ActionScript 3.0
</p>
<input type="submit" value="Submit form" />
</form>
</body>
</html>

You should notice that there are various input types, such as text,
textarea, checkbox, select, andand radio.

2. Save the form and then load it in to your web browser. You should see a simple
HTML form on your screen.

3. Go on and enter values for the fields, and then click on Submit form. You should see
a series of alert windows, which repeat the values that you have entered., which repeat the values that you have entered. which repeat the values that you have entered.that you have entered. you have entered.you have entered.u have entered.

What just happened?
In the simple form example described earlier, you submitted a form via a JavaScript eventdescribed earlier, you submitted a form via a JavaScript event, you submitted a form via a JavaScript event
onsubmit. The onsubmit event calls a JavaScript function checkValues() which then
helps us to access the values from different form elements.

In general, the syntax for accessing form elements is as follows:

document.formName.elementName.value

where formName is the name of the form, and elementName refers to the name of
the element. element.

As in the previous example, the form name is in the previous example, the form name isprevious example, the form name is example, the form name is testingForm, as can be seen in <form
name="testingForm" onsubmit="return checkValues()">, and the input text element
has the name enterText, as can be seen in <input type="text" name="enterText" />.
Therefore, based on this code snippet, we'll access the form values by doing the following:

document.testingForm.enterText.value

We can then assign this to a variable that can be saved for later use, as shown in the
code example.

Ad Hoc Testing and Debugging in JavaScript

[54]

The previous example should be simple to grasp. But in this short example, I've alsoprevious example should be simple to grasp. But in this short example, I've also should be simple to grasp. But in this short example, I've alsout in this short example, I've alsot in this short example, I've also've alsove also
introduced a few more useful methods. Consider the following code snippet which isthe following code snippet which is following code snippet which iswhich is is
found in the example:the example: example:

for(var counter = 0; counter<document.testingForm.radioType.
length;counter++){
 if(document.testingForm.radioType[counter].checked){
 var userRadioButton = document.testingForm.
radioType[counter].value;
 alert(userRadioButton);
 }
}

Notice that in the highlighted line I've made use of thehighlighted line I've made use of the line I've made use of theI've made use of theve made use of thethe length property; document.
testingForm.radioType.length means that I am calculating how many elements bymeans that I am calculating how many elements by
the name of radioType do I have in the form nameddo I have in the form named testingForm. This property returnsThis property returns
an integer that can then be used in loops such as the for loop, as seen in the previous codeloop, as seen in the previous code
snippet. You can then loop through form elements and check for their values by using the
method mentioned earlier.

Another important technique that you can use can be found in the following code snippet:important technique that you can use can be found in the following code snippet: technique that you can use can be found in the following code snippet:

if(document.testingForm.click�heckBox.checked){
 userCheckBox = true;
}

What happens in the highlighted line is thatthe highlighted line is that highlighted line is thathighlighted line is that line is that document.testingForm.clickCheckBox.clickCheckBox..
checked returns a true oror false. You can use this technique to check if the formYou can use this technique to check if the form
element you are referring to has input or not. You can than make use of this information
to perform decisions.

Another technique for accessing form values
As you may have noticed, we are accessing the form elements by making use of the name
attribute. We would most probably (and most likely) make use of the name attribute to
access the form elements, as it is easier to refer to those elements. But nonetheless, here's
an alternate method that you can quickly look though:

Instead of writing

document.formName.elementName.valueformName.elementName.value.valuevalue

You can write this:

document.forms[integer].elementName.value

where you are making use of the forms object, and elementName refers to the name of
the input.

Chapter 2

[55]

An example for the preceding code sample would be:preceding code sample would be: code sample would be:

document.forms[0].enterText.valueocument.forms[0].enterText.value

Notice that the forms object is appended with [0]. This means that theThis means that the forms object are
treated similarly to an array; forms[0] refers to the first form in the web page, and so on.

Now that you have understood the basics of accessing the values for a form, you will learn how
to make sure that you are getting the correct values in the correct places in the next section.

Accessing other parts of the web page other parts of the web page
In this section, you will learn how to access other parts of the web page. In general, you have
already learned the building block for accessing different parts of the webpage by making
use of getElementById, getElementsByTag, and getElementsByTagName. Now you
will make further use of these, along with the newly-learned techniques of accessing values
from a form.

Time for action – getting the correct values in the correct places
In this example, you will see a general integration of the techniques that you have learned so
far. You will learn how to access form values, manipulate them, perform operations on them,
and finally, put the new output on other parts of the webpage. To help you better visualize
what I am about to describe, following is a screenshot of the completed example:

Ad Hoc Testing and Debugging in JavaScript

[56]

The example that you are about to use is a simple JavaScript program that checks to see ifthat you are about to use is a simple JavaScript program that checks to see if you are about to use is a simple JavaScript program that checks to see ifuse is a simple JavaScript program that checks to see if is a simple JavaScript program that checks to see if
you can retire at the age that you want to. It will request some basic information from you.at the age that you want to. It will request some basic information from you. the age that you want to. It will request some basic information from you.basic information from you. information from you.from you. you.
Based on the information provided, it will determine if you can retire at that time, based onat that time, based on time, based on, based on based on
the amount of money you would want to have at the time of retirement. the time of retirement. time of retirement.time of retirement.

You will be building a form (2 forms in fact, loosely speaking), where the user will bespeaking), where the user will be, where the user will be
required to enter basic information into the first form (on the left), and after entering theinformation into the first form (on the left), and after entering the into the first form (on the left), and after entering the(on the left), and after entering the the left), and after entering theleft), and after entering the, and after entering the
required information in each field, there will be another input field appearing dynamically
on the right of the field (in the middle of the web page), if the input is correct.the middle of the web page), if the input is correct. middle of the web page), if the input is correct.middle of the web page), if the input is correct. of the web page), if the input is correct., if the input is correct. if the input is correct.

As you enter the information, a JavaScript event will fire off a JavaScript function that
checks for the correctness of the input. If it is correct, there will be a new field created on
the right-hand side of the field that has just accepted the input, and the field on the left will
be disabled.

After the fields on the left are filled correctly, you will notice a complete form is being the fields on the left are filled correctly, you will notice a complete form is being fields on the left are filled correctly, you will notice a complete form is beingfields on the left are filled correctly, you will notice a complete form is being filled correctly, you will notice a complete form is being
filled out in the middle of the page. After you click on on Submit, the code will perform thethe
calculations and determine whether you can retire at the age you have specified, based, based based
on the amount of money that you require.

The basic requirements for this example are as follows:basic requirements for this example are as follows: requirements for this example are as follows:for this example are as follows: this example are as follows:

Correct values must be entered. For instance, if the field requires you to enter your
age, the field must only accept integers and no characters should be allowed.

If the fields require a text input, such as your name, no integers will be allowed.

The completed source code for this example can be found in the source
code folder for Chapter 2, with a file name ofa file name of file name of getting-values-in-
right-places.html.

So now, let us get started with this example::

1. Let us start by building the basic interface for this example. So, enter the following
code (the HTML and style) in to your text editor.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>Getting the right values</title>
<style>
input{
 padding:5px;
 margin:5px;
 font-size:10px;
}

Chapter 2

[57]

.shown{
 display:none;
}
.response{
 padding:5px;
 margin:5px;
 width:inherit;
 color:red;
 font-size:16px;
 float:left;
}
#container{
 position:absolute;
 width:800px;
 padding:5px;
 border: 2px solid black;
 height:430px;
}
#left{
 height:inherit;
 width:370px;
 border-right:2px solid black;
 float:left;
 padding:5px;
}

#right{
 height:inherit;
 width:300px;
 float:left;
 padding:5px;
}
#bottom{
 float:left;
 bottom:5px;
 padding:5px;
}

#finalResponse{
 float:left;
 width:780px;
 height:250px;
 border:3px solid blue;
 padding:5px;

Ad Hoc Testing and Debugging in JavaScript

[5�]

}

/* this is for debugging messages */
#debugging{
 float:left;
 margin-left:820px;
 height:95%;
 width:350px;
 border:solid 3px red;
 padding:5px;
 color:red;
 font-size:10px;
}
</style>
<script type=”javascript/text”>
// some Javascript stuff in here
var globalCounter = 0;
</script>
<body>

<div id="container">
 <div id="left">
 <h3>Enter your information here</h3>
 <form name="testForm" >
 <input type="text" name="enterText" id="nameOfPerson"
onblur="submitValues(this)" size="50" value="Enter your name"/
>

 <input type="text" name="enterText" id="birth" onblur=
"submitValues(this)" size="50" value="Enter your place of birth"/
>

 <input type="text" name="enterNumber" id="age" onblu
r="submitValues(this)" size="50" maxlength="2" value="Enter your
age"/>

 <input type="text" name="enterNumber" id="spending"
onblur="submitValues(this)" size="50" value="Enter your spending
per month"/>

 <input type="text" name="enterNumber" id="salary" on
blur="submitValues(this)" size="50" value="Enter your salary per
month"/>

 <input type="text" name="enterNumber" id="retire" onbl
ur="submitValues(this)" size="50" maxlength="3" value="Enter your
age you wish to retire at" />

 <input type="text" name="enterNumber"
id="retirementMoney" onblur="submitValues(this)" size="50"

Chapter 2

[5�]

value="Enter the amount of money you wish to have for retirement"/
>

 </form>
 </div>
 <div id="right">
 <h3>Response</h3>
 <form name="testFormResponse" id="formSubmit" onsubmit="ch
eckForm(this);return false">

 </form>
 </div>
 <div id="finalResponse"><h3>Final response: </h3></div>

</div>
</body>
</html>

2. You might want to save this file and load it in your browser to see if you are getting
the same output as the previous screenshot that you have seen.

Notice that in the HTML form above, there is JavaScript event onblur.
onblur is a JavaScript event that occurs whenever an element loses focus.
So you should see that all input elements have an onblur, which fires off
the submitValues() function.

You should also see that there is a this as an argument for
submitValues().this is one of the most powerful JavaScript keywords,
and refers to the corresponding element it is being referred to. An
example would be <input type="text" name="enterText"
id="nameOfPerson" onblur="submitValues(this)"
size="50" value="Enter your name"/>. In this code snippet,
submitValues(this) will submit the HTML form element object by the
name of enterText.

Now, it's time for the JavaScript programing. What happened, as explained
previously, is that on the JavaScript event onblur, it will submit the HTML
form element object to the function submitValues(). So, we'll start with
this function first.

Ad Hoc Testing and Debugging in JavaScript

[60]

3. Now, enter the following code between the <script type="javascript/text">
tags::

function submitValues(elementObj){
 // using regular expressions here to check for digits
 var digits = /^\d+$/.test(elementObj.value);

 // using regular expressions
 // here to check for characters which
 // includes spaces as well
 var letters = /^[a-zA-Z\s]*$/.test(elementObj.value);

 // check to see if the input is empty
 if(elementObj.value==""){
 alert("input is empty");
 return false;
 }
 // input is not relevant; we need a digit for input elements
with name "enterNumber"
 else if(elementObj.name == "enterNumber" && digits == false){
 alert("the input must be a digit!");
 return false;
 }
 // input is not relevant; we need a digit for input elements
with name "enterNumber"
 else if(elementObj.name == "enterText" && letters == false){
 alert("the input must be characters only!");
 return false;
 }
 // theinput seems to have no problem, so we'll process the
input
 else{
 elementObj.disabled = true;
 addResponseElement(elementObj.value,elementObj.id);
 return true;

 }

}

I've commented on what the code is doing, but I'll focus on some of theve commented on what the code is doing, but I'll focus on some of theon what the code is doing, but I'll focus on some of the what the code is doing, but I'll focus on some of thethe code is doing, but I'll focus on some of the code is doing, but I'll focus on some of theI'll focus on some of thell focus on some of the
techniques used in the previous function.previous function. function.

What we are trying to do here is to check the correctness of the input.the correctness of the input. correctness of the input.the input. input.
For this example, we only accept either pure numbers or pure characters
(including spaces). This is what the following code snippet is doing:

var digits = /^\d+$/.test(elementObj.value);
var characters = /^[a-zA-Z\s]*$/.test(elementObj.value);

Chapter 2

[61]

Here we are making use of regular expressions to check for the correctness
of the input. /^\d+$/ and /^[a-zA-Z\s]*$/ are regular expressions,
where both are appended with the test method. The test method tests
for the value of the HTML form object's value. For instance, var digits
= /^\d+$/.test(elementObj.value) will return true if the value
is indeed digits, and false if it is not. Similarly, var characters =
/^[a-zA-Z\s]*$/.test(elementObj.value) will return true if
it is characters (which includes spaces) and false if it is otherwise.

In case you wish to learn more about using regular expressions, you can
refer to http://www.w3schools.com/jsref/jsref_obj_regexp.
asp and see how it works.

The previous information will be used during the decision-making process
in if-else statements. The if-else statements check for the name
of the HTML object; enterNumber expects an integer input. If it is not
enterNumber, it is expecting a character input.

You should notice that if there are no problems with the input, we
will disable the input element and pass the value and id of the HTML
form object to a function addResponseElement(), after which we will
return true, which signifies the successful execution of the code and
the submission of the form values.

So now, we'll move on to the addResponseElement()function:

4. Continuing with the current document, append the following code belowcurrent document, append the following code below document, append the following code belowthe following code below following code below
submitValues() function:function::

function addResponseElement(messageValue, idName){
 globalCounter++;
 var totalInputElements = document.testForm.length;
 var container = document.getElementById('formSubmit');
 container.innerHTML += "<input type=\"text\" value=\""
+messageValue+ "\"name=\""+idName+"\" />
";
 if(globalCounter == totalInputElements){
 container.innerHTML += "<input type=\"submit\" value=\
"Submit\" />";
 }}
}

Ad Hoc Testing and Debugging in JavaScript

[62]

What addResponseElement() does is that it attempts to dynamically add
the input element on the form to the right of original input form. Here, you
should find var container = document.getElementById('formSu
bmit') familiar. It looks for an HTML element with ID of formSubmit. After
this, we will append HTML into this form, through the innerHTML method.
container.innerHTML += "<input type=\"text\" value=\""
+messageValue+ "\"name=\""+idName+"\" />
"; attempts to
append the input that is wrapped between the outermost inverted commas
into <form> tags.

You should also notice var totalInputElements = document.
testForm.length;. What this line of code does is determine the total
number of input elements that testForm has, by using the length
property. We are making use of this information to determine if we are on
the last input field of the form, so that we can append a Submit button on
the other form.

Next, we will create the function, which is called after the second form,
which has a name of testFormResponse, is submitted.

5. Continuing with the current document, append the following code belowcurrent document, append the following code below document, append the following code belowthe following code below following code below
addResponseElement()() function:function::

function checkForm(formObj){
 var totalInputElements = document.testFormResponse.length;
 var nameOfPerson = document.testFormResponse.nameOfPerson.
value;
 var birth = document.testFormResponse.birth.value;
 var age = document.testFormResponse.age.value;
 var spending = document.testFormResponse.spending.value;
 var salary = document.testFormResponse.salary.value;
 var retire = document.testFormResponse.retire.value;
 var retirementMoney = document.testFormResponse.
retirementMoney.value;
 var confirmedSavingsByRetirement;
 var ageDifference = retire - age; // how much more time can
the user have to prepare for retirement
 var salaryPerYear = salary * 12; // salary per year
 var spendingPerYear = spending * 12; // salary per year

 // income per year, can be negative
 // if negative means cannot retire
 // need to either increase spending
 // or decrease spending
 var incomeDifference = salaryPerYear - spendingPerYear;

Chapter 2

[63]

 if(incomeDifference <= 0){
 buildFinalResponse(nameOfPerson,-1,-1,-
1,incomeDifference);
 return true;
 }
 else{
 // income is positive, and there is chance of retirement
 confirmedSavingsByRetirement = incomeDifference *
ageDifference;
 if(confirmedSavingsByRetirement <= retirementMoney){
 var shortChange = retirementMoney -
confirmedSavingsByRetirement;
 var yearsNeeded = shortChange/12;

buildFinalResponse(nameOfPerson,false,yearsNeeded,retire,
shortChange);
 return true;
 }
 else{
 var excessMoney = confirmedSavingsByRetirement -
retirementMoney;
 buildFinalResponse(name,true,-1,retire,excessMoney);
 return true;
 }
 }
}

What happens in this function is pretty straightforward. The various form
values are assigned to the various variables. Then we begin some simple
calculations to see if the user will have enough money for retirement.
You may refer to the comments in the function to understand the logic
of the calculations.

In general, we'll call the function buildFinalResponse(), irrespective
of whether the user can retire on time, and with the required amount of
money. So here's the buildFinalResponse().

Continuing with the current document, append the following code below
checkForm () function:

function buildFinalResponse(name,retiring,yearsNeeded,retire,
shortChange){
 var element = document.getElementById("finalResponse");
 if(retiring == false){
 element.innerHTML += "<p>Hi " + name + ",<p>";
 element.innerHTML += "<p>We've processed your information
and we have noticed a problem.<p>";

Ad Hoc Testing and Debugging in JavaScript

[64]

 element.innerHTML += "<p>Base on your current spending
habits, you will not be able to retire by " + retire + "
years old.</p>";
 element.innerHTML += "<p>You need to make another " +
shortChange + " dollars before you retire inorder to acheive
our goal</p>";
 element.innerHTML += "<p>You either have to increase your
income or decrease your spending.<p>";
 }
 /*
 else if(retiring == -1){
 element.innerHTML += "<p>Hi " + name + ",<p>";
 element.innerHTML += "<p>We've processed your information
and we have noticed HUGE problem.<p>";
 element.innerHTML += "<p>Base on your current spending
habits, you will not be able to retire by " + retire + "
years old.</p>";
 element.innerHTML += "<p>This is because you spend more
money than you make. You spend " + shortChange + " in
excess of what you make</p>";
 element.innerHTML += "<p>You either have to increase your
income or decrease your spending.<p>";
 }
 */
 else{
 // able to retire but....
 element.innerHTML += "<p>Hi " + name + ",<p>";
 element.innerHTML += "<p>We've processed your information
and are pleased to announce that you will be able to retire on
time.<p>";
 element.innerHTML += "<p>Base on your current spending
habits, you will be able to retire by " + retire + " years
old.</p>";
 element.innerHTML += "<p>Also, you'll have ' " +
shortChange + " amount of excess cash when you retire.</p>";
 element.innerHTML += "<p>Congrats!<p>";
 }
}

The function buildFinalResponse()() is similar to the addResponseElement()
function. It simply looks for the required HTML element, and appends the requiredIt simply looks for the required HTML element, and appends the required the required HTML element, and appends the required required HTML element, and appends the requireds the required the required
HTML to the element.

Here, you can clearly see the JavaScript functions, methods, and techniques that you have, you can clearly see the JavaScript functions, methods, and techniques that you have you can clearly see the JavaScript functions, methods, and techniques that you have, and techniques that you have and techniques that you have
learnt so far in this book.nt so far in this book. so far in this book.

Save the file. You can try playing with the example and see how it works for you.the file. You can try playing with the example and see how it works for you. file. You can try playing with the example and see how it works for you.the example and see how it works for you. example and see how it works for you.example and see how it works for you. see how it works for you.

Chapter 2

[65]

What just happened?
In the previous example, you saw how to access the values of the form, perform operations
on the input, and then place the output on various parts of the web page. You may have
noticed that we made extensive use of getElementById. We have also made use of the
form object and the value method in order to access the value of various elements in the
form. Then, by making use of getElementById, we looked for the required HTML element
and appended the output into the HTML element.

But, at this point of time, you may be wondering what you should do if you happen to make
mistakes in the program. This is what we'll be focusing on in the next section.

Does the script give the expected result?
My opinion is that before we can begin any meaningful discussion, we must understandmeaningful discussion, we must understand discussion, we must understand
what is meant by "expected result".is meant by "expected result". by "expected result"."expected result".expected result"."..

"Expected result(s)" can have several meanings, at least for the purpose of this book. For" can have several meanings, at least for the purpose of this book. For have several meanings, at least for the purpose of this book. For, at least for the purpose of this book. For at least for the purpose of this book. For
instance, as mentioned in the previous chapter, the output should be correct for each input;the previous chapter, the output should be correct for each input; previous chapter, the output should be correct for each input;previous chapter, the output should be correct for each input;chapter, the output should be correct for each input;
as this refers to the eventual output. There is another output, which takes the form ofthis refers to the eventual output. There is another output, which takes the form of
"visual output". For instance, for every user interaction or event, our web applications wouldvisual output". For instance, for every user interaction or event, our web applications would". For instance, for every user interaction or event, our web applications would. For instance, for every user interaction or event, our web applications would
often provide a form of visual cue to allow the user to know that something is happening.to know that something is happening.know that something is happening.
In this case, our visual clues helping in the way that we intended would be deemed as anlues helping in the way that we intended would be deemed as anues helping in the way that we intended would be deemed as anhelping in the way that we intended would be deemed as anthe way that we intended would be deemed as an
"expected result".expected result".result"..

A simple tip, to check if the script gives you the expected results, is to use simple input and, to check if the script gives you the expected results, is to use simple input and to check if the script gives you the expected results, is to use simple input andthe expected results, is to use simple input and expected results, is to use simple input andresults, is to use simple input and to use simple input and
perform the calculations yourself. Make sure that your calculations are correct and test
your program.

In the later part of this chapter, we'll discuss two relevant techniques in detail. But first, let
us see what actions we can take if our script does not run.

What to do if the script doesn't run
If the script doesn't run, it is very likely that loading or runtime errors have occurred,doesn't run, it is very likely that loading or runtime errors have occurred, run, it is very likely that loading or runtime errors have occurred,loading or runtime errors have occurred, or runtime errors have occurred,runtime errors have occurred, errors have occurred,occurred,,
depending on the way that your program is coded. For example, in the previous program, in the previous program in the previous programthe previous program previous programprevious program program
that you have just created, you know that the program is not running if there is no response
after you have entered the first input field and the focus is no longer on the first input field.

Ad Hoc Testing and Debugging in JavaScript

[66]

In this case, there are a few possibilities (all of which fall under the three basic forms ofn this case, there are a few possibilities (all of which fall under the three basic forms ofare a few possibilities (all of which fall under the three basic forms of a few possibilities (all of which fall under the three basic forms of
JavaScript errors as mentioned in the previous chapter). Firstly, there might be an error inthe previous chapter). Firstly, there might be an error in). Firstly, there might be an error in. Firstly, there might be an error in Firstly, there might be an error in
the syntax of your input field for the JavaScript event, or, there could be a serious error in syntax of your input field for the JavaScript event, or, there could be a serious error in, or, there could be a serious error in or, there could be a serious error inor, there could be a serious error inr, there could be a serious error in
the function that is called by the JavaScript event. If not, it could be a logic error.the JavaScript event. If not, it could be a logic error. JavaScript event. If not, it could be a logic error.event. If not, it could be a logic error.

Whatever the errors may be, it is often difficult to guess what and where the errors are.
Therefore, I'll introduce three important techniques for testing out your code, if your code
does not run.

Visually inspecting the code
Visually inspecting the code means that you will be a human compiler, and visually check
for errors in your code. My opinion is that there are certain pre-conditions and tips forconditions and tips for tips for
visual inspection:

There must be a good code block structure. This means that code should be properly
spaced and indented for visual clarity. At one glance, you should be able to see which
code is nested under which if-else statements, or which functions it belongs to.

The code editor that you use makes a huge difference. A common error is the
mismatching of brackets or inverted commas. Therefore, a code editor that
allows for the highlighting of matching brackets will help you to spot such errors.

Check for semicolons after each statement(s).

Check to see if variables are initialized. If variables are used in later parts of the
program but are not initialized, it will create serious errors.

The previous actions are some of the things I will do if my script doesn't run or if it doesn'tprevious actions are some of the things I will do if my script doesn't run or if it doesn't actions are some of the things I will do if my script doesn't run or if it doesn'tscript doesn't run or if it doesn't doesn't run or if it doesn'tdoesn't run or if it doesn't run or if it doesn'tdoesn't
run in the way that I intend it to. However, despite our best intentions, visual inspection ofthe way that I intend it to. However, despite our best intentions, visual inspection of way that I intend it to. However, despite our best intentions, visual inspection ofI intend it to. However, despite our best intentions, visual inspection of intend it to. However, despite our best intentions, visual inspection ofit to. However, despite our best intentions, visual inspection ofto. However, despite our best intentions, visual inspection of
code can only be useful for small programs, such as programs that have less than 30 to 50
lines of code. If the programs get any larger, or if they contain various functions that are
invoked during events, it might be better (and more efficient) to check our code by usingt might be better (and more efficient) to check our code by using might be better (and more efficient) to check our code by using(and more efficient) to check our code by using more efficient) to check our code by usingefficient) to check our code by using to check our code by using
the alert function.function.

Using alert() to see what code is running
The alert method can be used to check that what code is running is being used
appropriately. We have not formally introduced the alert method yet. But just in case, you
can use the alert function to create pop-up windows just about anywhere in a JavaScripta JavaScript
program. The syntax is as follows: The syntax is as follows:

alert(message)

where message can take almost any number of values (or variables if it has been definednumber of values (or variables if it has been definedvalues (or variables if it has been defined
or initialized). Due to this flexible nature of theinitialized). Due to this flexible nature of the). Due to this flexible nature of theflexible nature of the nature of the alert method, it can also be used to show
values, strings, and object types as well. and object types as well. object types as well.

Chapter 2

[67]

The issue in using alert stems from the location where the alert should be placed in the
code. This will be demonstrated in the next hands-on example.

Using alert() to see what values are being used
As mentioned earlier, the alert method can be used to show almost any type of value.
Therefore, a common usage would be to pass a variable into the alert method and see if
the value is what we need or intended.

Similarly, we need to know where we should be applying the alert method to in order to
ensure that our code inspection is correct.

At this point of time, an example would be the most appropriate way to see how we can
make use of the alert method to inspect the code for errors. So, let us see how this works.

Time for action – using alert to inspect your code
This example is similar to what you have done in the previous example. In this example, you
will be required to insert alert in the appropriate places in order to check which part of the
code is running. In some cases, you will need to pass values to the alert method and see if
the value is the one that you want.

To be honest, it would be tedious to tell you step-by-step where you should place the alert
method, especially as the bulk of the code in this example is similar to the previous one.
However, to make things easier for you to follow, we'll start immediately with the entire
program, after which we'll explain to you the rationale behind the location of the alert
methods and the values that are passed into the alert method.

The source code of the following example can be found in Chapter 2 of
the source code folder, named getting-values-in-right-places-
using-alert.html.

1. This example is similar to the previous one, except that the JavaScript has been
changed slightly. Replace the JavaScript code from the previous example with the
following code:

var globalCounter = 0;
function submitValues(elementObj){
 alert("submitValues");
 alert(elementObj.name);
 var totalInputElements = document.testForm.length;
 alert("total elements: " + totalInputElements);
 var digits = /^\d+$/.test(elementObj.value);
 var characters = /^[a-zA-Z\s]*$/.test(elementObj.value);

Ad Hoc Testing and Debugging in JavaScript

[6�]

 alert(characters);
 if(elementObj.value==""){
 alert("input is empty");
 return false;
 }
 else if(elementObj.name == "enterNumber" && digits == false){
 alert("the input must be a digit!");
 return false;
 }
 else if(elementObj.name == "enterText" && characters ==
false){
 alert("the input must be characters only!");
 return false;
 }
 else{
 alert("you've entered : " + elementObj.value);
 elementObj.disabled = true;
 alert(elementObj.value);
 addResponseElement(elementObj.value,elementObj.id);
 return true;

 }

}

function addResponseElement(messageValue, idName){
 alert("addResponseElement");
 globalCounter++;
 var totalInputElements = document.testForm.length;
 alert("totalInputElements");
 var container = document.getElementById('formSubmit');
 container.innerHTML += "<input type=\"text\" value=\""
+messageValue+ "\"name=\""+idName+"\" />
";
 if(globalCounter == totalInputElements){
 container.innerHTML += "<input type=\"submit\" value=\
"Submit\" />";
 }
}

function checkForm(formObj){
 alert("checkForm");

 var totalInputElements = document.testFormResponse.length;
 alert(totalInputElements);

Chapter 2

[6�]

 var nameOfPerson = document.testFormResponse.nameOfPerson.
value;
 alert(nameOfPerson);

 var birth = document.testFormResponse.birth.value;
 alert(birth);

 var age = document.testFormResponse.age.value;
 alert(age);

 var spending = document.testFormResponse.spending.value;
 alert(spending);

 var salary = document.testFormResponse.salary.value;
 alert(salary);

 var retire = document.testFormResponse.retire.value;
 alert(retire);

 var retirementMoney = document.testFormResponse.
retirementMoney.value;
 alert(retirementMoney);

 var confirmedSavingsByRetirement;

 var ageDifference = retire - age; // how much more time can
the user have to prepare for retirement
 alert(ageDifference);
 var salaryPerYear = salary * 12; // salary per year
 alert(salaryPerYear);
 var spendingPerYear = spending * 12; // salary per year
 alert(spendingPerYear);

 var incomeDifference = salaryPerYear - spendingPerYear;
 alert(incomeDifference);

 if(incomeDifference <= 0){
 buildFinalResponse(nameOfPerson,-1,-1,-
1,incomeDifference);
 return true;
 }
 else{
 confirmedSavingsByRetirement = incomeDifference *
ageDifference;
 if(confirmedSavingsByRetirement <= retirementMoney){

Ad Hoc Testing and Debugging in JavaScript

[70]

 var shortChange = retirementMoney -
confirmedSavingsByRetirement;
 alert(shortChange);
 var yearsNeeded = shortChange/12;

buildFinalResponse(nameOfPerson,false,yearsNeeded,retire,
shortChange);
 return true;
 }
 else{
 var excessMoney = confirmedSavingsByRetirement -
retirementMoney;
 alert(excessMoney);
 buildFinalResponse(name,true,-1,retire,excessMoney);
 return true;
 }
 }
}

function buildFinalResponse(name,retiring,yearsNeeded,retire,
shortChange){
 alert("buildFinalResponse");

 var element = document.getElementById("finalResponse");
 if(retiring == false){
 alert("if retiring == false");
 element.innerHTML += "<p>Hi " + name + ",<p>";
 element.innerHTML += "<p>We've processed your information
and we have noticed a problem.<p>";
 element.innerHTML += "<p>Base on your current spending
habits, you will not be able to retire by " + retire + "
years old.</p>";
 element.innerHTML += "<p>You need to make another " +
shortChange + " dollars before you retire inorder to acheive
our goal</p>";
 element.innerHTML += "<p>You either have to increase your
income or decrease your spending.<p>";
 }
 else{
 // able to retire but....
 alert("retiring == true");

 element.innerHTML += "<p>Hi " + name + ",<p>";

Chapter 2

[71]

 element.innerHTML += "<p>We've processed your information
and are pleased to announce that you will be able to retire on
time.<p>";
 element.innerHTML += "<p>Base on your current spending
habits, you will be able to retire by " + retire + " years
old.</p>";
 element.innerHTML += "<p>Also, you'll have " +
shortChange + " amount of excess cash when you retire.</p>";
 element.innerHTML += "<p>Congrats!<p>";
 }}
}

2. Save the document and load it in to your web browser. Play around with the
example and see how the alert boxes notify you of which part of the code is
being executed, and also the values being entered.

What just happened?
If you go through the previous example, you will notice that the alert() is most often
placed at the beginning of functions, and when variables are being initialized. To check the
functions, we often manually type in the name of the function and pass it as arguments
to the alert method, to inform us of what is happening as we interact with the program.
Similarly, we pass the variables that are defined (the values from the form elements) as
arguments to the alert method to inform us of what values are being entered by the user.

Therefore, by using a single alert() method, we are able to find out what code is running
and what values are being used. However, this method may be slightly too tedious or
frustrating, because the alert boxes keep on popping up on your window. Here's a simple
alternative for checking what code is running, and also to inspect the input elements.

A less obtrusive way to check what code is running and the
values used
To test our code in a less obtrusive manner we would write a simple debugging function. This
debugging function should print out the names of the functions, and some other variables.
For simplicity's sake, we'll demonstrate a simple debugging function that prints the name of
the function, and the HTML element being used. So, let us get started.

Ad Hoc Testing and Debugging in JavaScript

[72]

Time for action – unobtrusively checking what values are used
As mentioned above, we'll be demonstrating a very simple debugging function that helps
you to identify which code is running and also which HTML element is in use. Here, you'll
get a basic idea of some of the actions that you can perform in order to have a less obtrusive
way of testing your code.

Again, this example is similar to the previous one, but there are some important elements
that which we will be adding to the previous example. In essence, we will be adding a
function, some HTML, and CSS to it.

However, you might find it tedious to refer back to the previous example and add the new
elements to the previous example. Therefore, it is recommended that you stay with me on
this example.

Alternatively, you can view the source code in the source code folder,
Chapter 2, with a file name of getting-value-in-right-
places-complete.html.

So, without further ado, let us start right now:

1. Insert the following CSS code in between the <style> tags:

/* this is for debugging messages */
#debugging{
 float:left;
 margin-left:820px;
 height:95%;
 width:350px;
 border:solid 3px red;
 padding:5px;
 color:red;
 font-size:10px;
}

2. Now, for the HTML container which will contain the debugging messages, enter the enter theenter the the
following code snippet before </body> tag:

 <div id="debugging"><h3>Debugging messages: </h3></div>

What happens here is that the preceding HTML element will be used tothe preceding HTML element will be used to
provide a visual separation between the debugging messages and thebetween the debugging messages and thethe
simple application itself. Save the file now , load it to your web browser andapplication itself. Save the file now , load it to your web browser and itself. Save the file now , load it to your web browser andave the file now , load it to your web browser andve the file now , load it to your web browser and
you will see an example similar to the one shown in the next screenshot:will see an example similar to the one shown in the next screenshot: see an example similar to the one shown in the next screenshot:next screenshot::

Chapter 2

[73]

3. Next, you will need to append the following code to your JavaScript code:

function debuggingMessages(functionName, objectCalled, message){
 var elementName;
 if(objectCalled.name){
 elementName = objectCalled.name;
 }
 else if(objectCalled.id){
 elementName = objectCalled.id;
 }
 else{
 elementName = message;
 }

 var element = document.getElementById("debugging");

 element.innerHTML += "Function name :" +functionName+
"
element :" +elementName+"
";
}

The previously-mentioned function is used to capture the name of thepreviously-mentioned function is used to capture the name of the function is used to capture the name of thethe name of the name of the
function used right now; this is equivalent to what code is in use right now,,
because our program is event driven and the functions are, in general,, in general, in general,,
triggered by the user.

Ad Hoc Testing and Debugging in JavaScript

[74]

The three arguments are as follows:

functionName refers to the functionName of the function used rightrefers to the functionName of the function used rightthe function used right function used right
now. In the next step, you shall see the method used to derive this
value dynamically.

objectCalled refers to the HTML object being used.

Message refers to a string. This can be any message that you want; it is
meant to provide some form of flexibility to the kind of debugging messages
that you can write to the screen.

Also, we are making use of the .innerHTML methodethod to append the
messages into the HTML div element for thefor the the id "debugging"."debugging".debugging".

4. Now finally, it's time to see how we can use this function. In general, we use the
function as follows:

 debuggingMessages("name of function", elementObj,"empty");name of function", elementObj,"empty");", elementObj,"empty");

If you refer to the source code, you will see that the previously-mentionedwill see that the previously-mentioned see that the previously-mentioned that the previously-mentioned the previously-mentionedpreviously-mentioned
function is being used sparingly in the program. Consider the following
code snippet:

function submitValues(elementObj){
 //alert("submitValues");

 debuggingMessages("submit�alues"�� element�b���"empty");submit�alues"�� element�b���"empty");"�� element�b���"empty");

 //alert(elementObj.name);
 var totalInputElements = document.testForm.length;
 //alert("total elements: " + totalInputElements);

In the previous case, the value ofprevious case, the value of case, the value of "submitValues" willsubmitValues" will" will will be passede passed
because submitValues is the name of the function. Notice that we also
passed the function argument, elementObj intonto debuggingMessages()
in order to notify us what is being used in the current function.n order to notify us what is being used in the current function.the current function. current function.

5. Finally, you might want to add the debuggingMessages("name of function",name of function",",
elementObj,"empty") to each function in your JavaScript program. If you are noto each function in your JavaScript program. If you are not
sure where you should use this function, refer to the source code given.

If you are typing in the function yourself, then do take note that you mighten do take note that you mightn do take note that you might
have to change the argument names in order to accommodate each ofaccommodate each of each ofof
the functions. In general,functions. In general, debuggingMessages() can be used in place
of the alert()lert() method. So, if you are unsure of where you should usere of where you should use
debuggingMessages(), you can use debuggingMessages() for every
alert() used for inspecting the code in the previous example.sed for inspecting the code in the previous example.the previous example. previous example.

Chapter 2

[75]

6. If you have executed the entire program, you will see something similar to theexecuted the entire program, you will see something similar to the the entire program, you will see something similar to thewill see something similar to the see something similar to the
next screenshot: screenshot:shot:hot:

What just happened?
You have just created a function that allows you to inspect your code in a less obtrusive
manner, by making use of some built-in methods of JavaScript, which includes the
.innerHTML method. What happens here is another example of how you can access values,
manipulate them, and then output these values to the required HTML element, in order to
make inspection less obtrusive.

If you look through the source code, you may have noticed that I used different messages
during different situations; this will bring more flexibility to your debugging functions, if you
use one.

Commenting out parts of the script to simplify testing
Commenting out parts of the script is another important and simple-to-use ad hoc technique-to-use ad hoc techniqueto-use ad hoc technique-use ad hoc techniqueuse ad hoc technique
for testing your JavaScript code. Essentially, you comment out the code that will not be your JavaScript code. Essentially, you comment out the code that will not be
used immediately.

www.allitebooks.com

http://www.allitebooks.org

Ad Hoc Testing and Debugging in JavaScript

[76]

Because we have not introduced how to do multiple line commenting, I'll take this chance toI'll take this chance toll take this chance to
show you how to use it. The syntax is as follows:it. The syntax is as follows: The syntax is as follows:

/*
This is a multiple line comment
*/

Here's how commenting out parts of the script can be used to simplify testing: we
would often comment out all other code that we would not use at first. For instance,
the first function used in getting-values-right-places-complete.html is the
submitValues() function.

We would make sure that the submitValues() function is correct before uncommentingfunction is correct before uncommenting
the second function that is used, which is thesecond function that is used, which is the function that is used, which is the addResponseElement() function.function.

The process goes on until all functions are uncommented, which means that the code
is correct.

With all of these points in mind, we'll now move on to a simple workout based on the all of these points in mind, we'll now move on to a simple workout based on the of these points in mind, we'll now move on to a simple workout based on these points in mind, we'll now move on to a simple workout based on the points in mind, we'll now move on to a simple workout based on thepoints in mind, we'll now move on to a simple workout based on thein mind, we'll now move on to a simple workout based on the'll now move on to a simple workout based on thell now move on to a simple workout based on then the the
previous example. example.

Time for action – simplifying the checking process
In this example, there will not be any source code for you to copy. Instead, you can use the
previous example found in getting-values-right-places-complete.html and try
out the following steps:

1. Scroll to the JavaScript section of the source code. Comment out all functions except
for submitValues() and addResponseElement().

2. Save the file and load it to your web browser. Now test out the program.

You should notice that your program can still work, except that after all
the input fields are filled correctly, you will not be able to submit the
form successfully.

This is because you have commented out the function checkForm(),
which is needed for the second form submission.

What does this mean? This means to say that the functions
submitValues()and addResponseElement() work correctly,
and now it is safe to move on.

3. Now, uncomment the checkForm(), buildFinalResponse()(), and
debuggingMessages() function, save the file and reload in your browser.
Continue to test out your program until you submit the form.ontinue to test out your program until you submit the form.ntinue to test out your program until you submit the form.

Chapter 2

[77]

You should have noticed that all things go well before the submission of
the second form. This is, because expected as you have tested it in thethe
previous step.

Now, after you have completed all of the input fields, submit the
form. Because you have uncommented thethe checkForm() andnd
buildFinalResponse()() functions, you should now expect a
response after submitting the form.

4. Finally, uncomment the debuggingMessages()() function. Save the file and load it
in to your browser

Now, similarly, use the program as usual, and you should see that all of the required
functionalities are working as before.

What just happened?
You have just executed a useful way of testing your code by uncommenting different parts
of the code. You may have noticed that we started from the first function that will be used,
and then proceeded to the next one. This process will help us to spot the block of code that
contains the error.

This technique can also be applied to code statements. We commented out the code in
functions, because it is easier to follow based on the example.

Timing differences–making sure that the HTML is there
before interacting with it
Remember that the essence of JavaScript is to provide behavior to web pages by
manipulating DOM elements? Here's the catch—if the HTML is not available when, for
instance, a JavaScript function that changes the color of a form is executed, then the
JavaScript function will not work.

In this case, it is not due to JavaScript errors such as logic, runtime, and loading errors, but
rather, due to timing problems.

As mentioned in the previous chapter, the web browser (client) downloads a web page
from a server, and in general, reads the web page (document) from top to bottom. So, for
instance, if you have a large HTML document (for instance an HTML document with large
images within the body), your JavaScript might not be able to interact with the HTML DOM
because there is no HTML to interact with.

Ad Hoc Testing and Debugging in JavaScript

[7�]

There are two solutions that allow us to deal with this problem:are two solutions that allow us to deal with this problem: two solutions that allow us to deal with this problem:

1. Using the JavaScript event onload with the <body> tag. This can be done
as follows:

<html>
<head>
<script>
function aSimpleFunction()
{
 alert(window.status);
}
</script>
</head>
<body onload="aSimpleFunction()">
</body>
</html>

The highlighted line means that aSimpleFunction() is executed onlyexecuted only only
when the contents in thecontents in thethe <body> tag have finished loading. You can makeve finished loading. You can make finished loading. You can makefinished loading. You can make loading. You can make
use of this technique to ensure that your HTML contents have finishedve finished finished
loading before you execute your JavaScript functions.

Here's another (and possibly preferred method):'s another (and possibly preferred method):s another (and possibly preferred method):

2. Placing your JavaScript function before the </body> tag.

This method is commonly used; you can see companies providing analytics service often
requesting its users to place the tracking code (often in JavaScript, such as Google Analytics)
just before the </body> tag. This means that the JavaScript snippet will be loaded after all
contents in the <body> tag are loaded, ensuring that the HTML DOM will interact with the
JavaScript.

Why ad hoc testing is never enough
Up to this point, you may have noticed that the methods introduced for ad hoc testing can
get repetitive when applied to your code. For instance, the alert method requires you
to manually type in the alert function in different parts of the code, containing different
values in order for you to inspect the code. This can get tedious and inefficient, especiallyinefficient, especially, especially
when the program begins to get larger. Simply put, it will not be able to scale when thethe program begins to get larger. Simply put, it will not be able to scale when the program begins to get larger. Simply put, it will not be able to scale when the
program gets too large. At the same time, the alert method can be quite obtrusive. For
this reason, we created a simple debugging function.

Chapter 2

[7�]

The simple debugging function that we have created is less obtrusive; you can interact with
the program and receive an almost instant feedback on your screen. Although it has the
advantage of being less obtrusive, it suffers from two major disadvantages. The first is the
fact that it can be tedious and inefficient, which is similar to the alert method. The second
disadvantage is that how well the debugging function can work relies largely on the skills of
the JavaScript program. However, being beginners in JavaScript, we may or may not have the
skills to create a robust debugging function.

Therefore, there are other, more powerful, tools to help us get the job done when the need
arises, and we will be discussing these in the later chapters.

Summary
In this chapter, we built upon the basics learnt in the previous chapter, and expanded
our knowledge of how we can perform ad hoc testing by using various techniques covered
in the chapter.

In general, we have combined the various methods and techniques from the previous
chapter and this chapter in order to help us perform ad hoc testing. We often look for
the required element through getElementById, and then by accessing form values
through the form object. We also used the alert() method to perform some form
of ad hoc testing.

Specifically, we have covered the following topics:

We have learnt how to access values on forms by using thet how to access values on forms by using the how to access values on forms by using the form object and its
methods, manipulating the values, and outputting the values in to other partsthe values in to other parts values in to other parts
of the web page by using the techniques learnt in the previous chapter, such ast in the previous chapter, such as in the previous chapter, such as the previous chapter, such as such as
getElementById. We appended HTML content to specific HTML elements by
using .innerHTML.

Actions that we can take if the script does not provide the expected output, namely
by testing the script by using thescript by using the by using the alert() method and commenting out the code.
This leads us to ad hoc testing. leads us to ad hoc testing.

Various techniques to perform ad hoc testing, most notably, by using the, by using the by using thethe alert()
method. Due to its apparent obtrusiveness, we created a simple debugging functionobtrusiveness, we created a simple debugging function, we created a simple debugging function
that provides a less obtrusive way of performing testing.

Timing differences: We must always make sure that the HTML DOM is availabledifferences: We must always make sure that the HTML DOM is availablee must always make sure that the HTML DOM is available
before JavaScript can interact with it.

Ad hoc testing is never enough due to scalability and efficiency problemsd hoc testing is never enough due to scalability and efficiency problemsefficiency problems problems

Ad Hoc Testing and Debugging in JavaScript

[�0]

Now that we have understood and have tried ad hoc testing, it is time to learn some slightly
more advanced stuff about JavaScript testing. As mentioned earlier, although ad hoc testingmentioned earlier, although ad hoc testing earlier, although ad hoc testingearlier, although ad hoc testing, although ad hoc testing
is quick and simple, it does not necessarily lead to better JavaScript code (on top of its othernecessarily lead to better JavaScript code (on top of its other lead to better JavaScript code (on top of its other
weaknesses). In the next chapter, we'll learn about validating JavaScript. Although it soundsnext chapter, we'll learn about validating JavaScript. Although it sounds, we'll learn about validating JavaScript. Although it sounds'll learn about validating JavaScript. Although it soundsll learn about validating JavaScript. Although it sounds
like a simple concept, you'll learn more JavaScript concepts in terms of the actual coding and'll learn more JavaScript concepts in terms of the actual coding andll learn more JavaScript concepts in terms of the actual coding andthe actual coding and actual coding and
design process, and other factors that can help you to validate your JavaScript program., and other factors that can help you to validate your JavaScript program. and other factors that can help you to validate your JavaScript program.

3
Syntax Validation

To build on what we have learned in the previous chapters, we will now movethe previous chapters, we will now move previous chapters, we will now move
on to a slightly tougher topic—validating JavaScript. In this chapter you canto a slightly tougher topic—validating JavaScript. In this chapter you can—validating JavaScript. In this chapter you canvalidating JavaScript. In this chapter you can
expect two broad topics—the issues surrounding validation and testing of—the issues surrounding validation and testing ofthe issues surrounding validation and testing of
JavaScript code, and how to use JSLint and JavaScript Lint (which is a free, and how to use JSLint and JavaScript Lint (which is a free how to use JSLint and JavaScript Lint (which is a free(which is a free is a freeis a free
JavaScript validator) to check your JavaScript code, and how to debug them. I'llvalidator) to check your JavaScript code, and how to debug them. I'll) to check your JavaScript code, and how to debug them. I'll, and how to debug them. I'll and how to debug them. I'll I'll
explicitly show you how to spot validation errors using JSLint and then, how to
fix them.

We will brie��y mention the difference between validating and testing JavaScript brie��y mention the difference between validating and testing JavaScriptbrie��y mention the difference between validating and testing JavaScript mention the difference between validating and testing JavaScriptmention the difference between validating and testing JavaScript the difference between validating and testing JavaScript
and some of the issues that you might have to consider when you are validating
or testing your code. You will also understand the relationship between validr code. You will also understand the relationship between valid code. You will also understand the relationship between validship between valid between valid
HTML and CSS with JavaScript, and how a��empting to write quality code canand how a��empting to write quality code canhow a��empting to write quality code can
help you reduce errors in your JavaScript code. More importantly, we will learn
about two free tools that are often used to validate JavaScript code, how tovalidate JavaScript code, how to JavaScript code, how to
make use of it to check your code, and most importantly, how to fix validation, and most importantly, how to fix validation and most importantly, how to fix validation
errors that are detected.detected.

In this chapter we shall learn about the following topics: learn about the following topics: the following topics:

The difference between validating and testinghe difference between validating and testing

How a good code editor can help you spot validation errorsow a good code editor can help you spot validation errors

What makes a code quality codehat makes a code quality codea code quality codecode quality code

Why do we need HTML and CSS to be valid before we start working on JavaScripthy do we need HTML and CSS to be valid before we start working on JavaScript

Why JavaScript embedded in HTML may be reported as invalidbe reported as invalidreported as invalided as invalid as invalid

Common JavaScript errors that are detected by validatingdetected by validatingby validating

JSLint and JavaScript Lint—how to use it to check your code—how to use it to check your codeow to use it to check your code

Valid code constructs that produce validation warningsconstructs that produce validation warnings that produce validation warnings

How to fix validation errors that are spotted by JSLintow to fix validation errors that are spotted by JSLint

Syntax Validation

[�2]

So without further ado, let us get started with a lighter topic—the difference betweenlighter topic—the difference between topic—the difference between—the difference betweenthe difference between
validating and testing. and testing.

The difference between validating and testing
There's a thin line separating validating and testing. If you have some idea about sets (as inseparating validating and testing. If you have some idea about sets (as in validating and testing. If you have some idea about sets (as in
sets from mathematics), I would say that validation can lead to better testing results, while
testing does not necessarily lead to a valid code.necessarily lead to a valid code. lead to a valid code.a valid code.valid code.

Let us consider the scenario—you wrote a JavaScript program and tested it on majorthe scenario—you wrote a JavaScript program and tested it on major scenario—you wrote a JavaScript program and tested it on major—you wrote a JavaScript program and tested it on majoryou wrote a JavaScript program and tested it on major
browsers such as the Internet Explorer and Firefox; and it worked. In this case, you have; and it worked. In this case, you have and it worked. In this case, you haveand it worked. In this case, you havend it worked. In this case, you have
tested the code to make sure that it is functional.

However, the same code that you have created may or may not be valid; valid code is akin to
writing a code that has the following characteristics:a code that has the following characteristics:code that has the following characteristics:the following characteristics: following characteristics::

Well formedell formed

Has good coding style (such as proper indentation, well-commented code,indentation, well-commented code,, well-commented code,-commented code,commented code,
properly spaced)

Meets the specification of the language (in our case, JavaScript)

There may come a point in time where you will notice that good coding style is
highly subjective—there are various validators that may have different opinions
or standards as to what is known as "good coding style". Therefore, if you
do use different validators to validate your code, do not freak out if you see
different advice for your coding style.

This does not mean that valid code leads to code that is functional (as you will see later) does not mean that valid code leads to code that is functional (as you will see later)
and that code that is functional leads to validated code as both have different standardsthat is functional leads to validated code as both have different standards is functional leads to validated code as both have different standardshave different standardsdifferent standards
for comparison.comparison..

However, valid code often leads to less errors, and code that is both functional and valid isthat is both functional and valid isis both functional and valid isis
often quality code. This is due to the fact that writing a piece of JavaScript code, that is both, that is both that is both
valid and correct, is much more difficult than just writing a code that is correct., is much more difficult than just writing a code that is correct. is much more difficult than just writing a code that is correct.difficult than just writing a code that is correct. than just writing a code that is correct.

Testing often means that we are trying to get the code working correctly; while validationthe code working correctly; while validation code working correctly; while validation; while validation while validation
is making sure that the code is syntactically correct, with good style and that it meets thesyntactically correct, with good style and that it meets the correct, with good style and that it meets thethe
specification of the language. While good coding styles may be subjective, there is often. While good coding styles may be subjective, there is oftenWhile good coding styles may be subjective, there is oftenthere is often is often
a coding style that is accepted by most programmers, such as, making sure that the codeis accepted by most programmers, such as, making sure that the code accepted by most programmers, such as, making sure that the codeprogrammers, such as, making sure that the code, such as, making sure that the code, making sure that the code making sure that the code
is properly commented, indented, and there is no pollution of the global namespacethere is no pollution of the global namespaceno pollution of the global namespace
(especially in the case of JavaScript).especially in the case of JavaScript). in the case of JavaScript).the case of JavaScript). case of JavaScript).)..

Chapter 3

[�3]

To make the case clearer, following are three situations that you can consider:the case clearer, following are three situations that you can consider: case clearer, following are three situations that you can consider:following are three situations that you can consider: three situations that you can consider:

Code that is valid but wrong–validation doesn't find all the errors
This form of errors would most probably be caused by logic errors in JavaScript. Consider
what we have learned in the previous chapters; logic errors can be syntactically correct butthe previous chapters; logic errors can be syntactically correct butlogic errors can be syntactically correct but
they may be logically flawed.may be logically flawed.

A classic example would be an infinite for loop or infinite while loop.

Code that is invalid but right
This would most probably be the case for most functional code; a piece of JavaScript may bethe case for most functional code; a piece of JavaScript may be case for most functional code; a piece of JavaScript may be
functionally correct and working, but it may be invalid. This may be due to poor coding styleworking, but it may be invalid. This may be due to poor coding styleThis may be due to poor coding style
or any other characteristics in a valid code that are missing.characteristics in a valid code that are missing. in a valid code that are missing.in a valid code that are missing.valid code that are missing.

Later on in this chapter, you will see a full working example of a piece of JavaScript code that
is right but invalid.

Code that is invalid and wrong–validation finds some errors that
might be difficult to spot any other way
In this case, the code error can be caused by all three forms of JavaScript errors that are error can be caused by all three forms of JavaScript errors that are can be caused by all three forms of JavaScript errors that are
mentioned in Chapter 1, What is JavaScript Testing, loading errors, runtime errors, and logic, and logic and logic
errors. While it is more likely that errors caused by syntax errors might be spotted by good
validators, it is also possible that some errors are buried deep inside the code, such that it is, such that it is such that it isit is isis
difficult to spot them using manual methods. them using manual methods. using manual methods.using manual methods. manual methods.

Now that we have some common understanding as to what validation and testing is about,
let us move on to the next section which discusses the issues surrounding quality code.

Code quality
While there are many views as to what is quality code, I personally believe that there areI personally believe that there are personally believe that there arebelieve that there are that there are
a few agreed standards. Some of the most commonly mentioned standards may includementioned standards may include may include
code readability, ease of extension, efficiency, good coding style, and meeting languageefficiency, good coding style, and meeting language, good coding style, and meeting languageand meeting language language
specifications, and so on., and so on. and so on.

For our purpose here, we will focus on the factors that make a piece of code valid—codingfactors that make a piece of code valid—coding a piece of code valid—coding—codingcoding
style and meeting specifications. In general, good coding style almost guarantees that the
code is highly readable (even to third parties) and this will help us to spot errors manually.(even to third parties) and this will help us to spot errors manually. to third parties) and this will help us to spot errors manually.parties) and this will help us to spot errors manually. and this will help us to spot errors manually.

Syntax Validation

[�4]

Most importantly, having a good coding style allows us to quickly understand the code,ing a good coding style allows us to quickly understand the code, good coding style allows us to quickly understand the code,,
specially if we need to work in teams or are required to debug the code on our own. if we need to work in teams or are required to debug the code on our own.

You will notice that we will focus on the importance of code validity for testing purposes
in later parts of the chapter. But now, let us start with the first building block of qualitythe first building block of quality first building block of qualityof qualityquality
code—valid HTML and CSS.—valid HTML and CSS.valid HTML and CSS.

HTML and CSS needs to be valid before you start on JavaScript
In chapter one, we have a common understanding that JavaScript breathes life into a weba web
page by manipulating the Document Object Model by manipulating the Document Object Modelthe Document Object Model Document Object ModelDocument Object Model (DOM) of the HTML documents. Thishisis
means that the DOM must be present in the code before JavaScript can operate on it.present in the code before JavaScript can operate on it. before JavaScript can operate on it.JavaScript can operate on it. can operate on it.it.

Heres an important fact that is directly related to HTML, CSS, and browsers—HTML, CSS, and browsers— CSS, and browsers—, and browsers— and browsers——
browsers are generally forgiving towards invalid HTML and CSS code as
compared to compilers for languages like C or Python. This is because, all, all all
browsers have to do is parse the HTML and CSS so as to render the web page
for its browsers. On the other hand, compilers are generally unforgiving towards
invalid code. Any missing tag, declarations, and so on will lead to a compilation, and so on will lead to a compilation and so on will lead to a compilationand so on will lead to a compilation will lead to a compilation
error. Therefore, it is ok to write invalid or even buggy HTML and CSS, yet get a
"usual" looking web page.looking web page.

Based on the previous explanation, we should see that we would need to have valid HTMLthe previous explanation, we should see that we would need to have valid HTML previous explanation, we should see that we would need to have valid HTMLprevious explanation, we should see that we would need to have valid HTML, we should see that we would need to have valid HTML
and CSS in order to create quality JavaScript code.

A short list of reasons, based on my personal experience, as to why valid HTML and CSS is an short list of reasons, based on my personal experience, as to why valid HTML and CSS is an, based on my personal experience, as to why valid HTML and CSS is an based on my personal experience, as to why valid HTML and CSS is anbased on my personal experience, as to why valid HTML and CSS is anwhy valid HTML and CSS is an
important prerequisite before you start working on JavaScript are as follows:before you start working on JavaScript are as follows: start working on JavaScript are as follows: are as follows::

Valid HTML and CSS helps ensure that JavaScript works as intended. For example,
consider a situation where you might have two div elements that have the same id
(In the previous chapters, we have mentioned that the, we have mentioned that thementioned that the that the div id attribute is meant toattribute is meant to
give unique IDs for each HTML elements), and your JavaScript contains the piece of
code that is supposed to work on the above mentioned HTML element with the id.
This will result in unintended consequences.

Valid HTML and CSS helps improve the predictability on how your web page willthe predictability on how your web page will predictability on how your web page will
work; there is no point trying to fix buggy HTML or CSS using JavaScript. You arethere is no point trying to fix buggy HTML or CSS using JavaScript. You are is no point trying to fix buggy HTML or CSS using JavaScript. You are
most probably better off if you start with valid HTML and CSS, and then apply, and then apply and then applyen applyn apply
JavaScript.

Invalid HTML and CSS may result in different behaviour in different browsers.behaviour in different browsers. in different browsers.
For example, an HTML tag that is not enclosed may be rendered differently inn HTML tag that is not enclosed may be rendered differently in HTML tag that is not enclosed may be rendered differently in
different browsers.

In short, one of the most important building blocks of creating quality JavaScript code is toblocks of creating quality JavaScript code is to of creating quality JavaScript code is to
have valid HTML and CSS.

Chapter 3

[�5]

What happens if you don't validate your code
You may disagree with me on the previous section as to why HTML and CSS should beou may disagree with me on the previous section as to why HTML and CSS should beu may disagree with me on the previous section as to why HTML and CSS should be
valid. In general, validation helps you to prevent errors that are related to coding style and. In general, validation helps you to prevent errors that are related to coding style andIn general, validation helps you to prevent errors that are related to coding style andvalidation helps you to prevent errors that are related to coding style and
specifications. However, do take note that using different validators may give you differentHowever, do take note that using different validators may give you differentvalidators may give you different may give you different
results since validators might have different standards in terms of code style.

In case you are wondering if invalid code can affect your JavaScript code, I would adviseI would advise would adviseadvise
you to make your code as valid as possible; invalid code may lead to sticky issues such as valid as possible; invalid code may lead to sticky issues such asvalid as possible; invalid code may lead to sticky issues such as
cross-browser incompatibility, difficulty in reading code, and so on., and so on.

Invalidated code means that your code may not be foolproof; in the early days of thecode means that your code may not be foolproof; in the early days of theoolproof; in the early days of theproof; in the early days of the
Internet, there were websites that were dependent on the quirks of the early Netscapewere websites that were dependent on the quirks of the early Netscapere websites that were dependent on the quirks of the early Netscapedependent on the quirks of the early Netscape on the quirks of the early Netscape
browser. Back track to the time where the Internet Explorer 6 was widely used, therethe time where the Internet Explorer 6 was widely used, there time where the Internet Explorer 6 was widely used, therewidely used, there used, there
were also many websites that worked in quirks mode to support Internet Explorer 6.support Internet Explorer 6. Internet Explorer 6.

Now, most browsers are supporting or are moving towards supporting web standards
(though slightly different, they are supporting in subtle manners), writing valid code is one
of the best ways to ensure that your website works and appears the way it is intended to.

How validation can simplify testing
While invalid code may not cause your code to be dysfunctional, valid code often simplifies
testing. This is due to the focus on coding style and specifications; codes that are valid andThis is due to the focus on coding style and specifications; codes that are valid and is due to the focus on coding style and specifications; codes that are valid andthe focus on coding style and specifications; codes that are valid and focus on coding style and specifications; codes that are valid andcodes that are valid and that are valid andthat are valid and
have met specifications are typically more likely to be correct and much easier to debug.
Consider the following code that is stylistically invalid:

function checkForm(formObj){
alert(formObj.id)
//alert(formObj.text.value);
var totalFormNumber = document.forms.length;
// check if form elements are empty and are digits
var maxCounter = formObj.length; // this is for checking for empty
values
alert(totalFormNumber);
// check if the form is properly filled in order to proceed
if(checkInput(formObj)== false){
alert("Fields cannot be empty and it must be digits!");
// stop executing the code since the input is invalid
return false;
}
else{
;
}
var i = 0;
var formID;

Syntax Validation

[�6]

while(i < totalFormNumber){
if(formObj == document.forms[i]){
formID = i;alert(i);
}
i++;
}
if(formID<4){
formID++;
var formToBeChanged = document.forms[formID].id;
// alert(formToBeChanged);
showForm(formToBeChanged);
}
else{
// this else statement deals with the last form
// and we need to manipulate other HTML elements
document.getElementById("formResponse").style.visibility = "visible";
}
return false;
}

Find the preceding code familiar? Or did you fail to recognize that the previous code snippet
was taken from Chapter 2, Ad Hoc Testing and Debugging in JavaScript.

The previous code is an extreme example of poor code style, especially in terms of
indentation. Imagine if you have to manually debug the second code snippet that you saw Imagine if you have to manually debug the second code snippet that you sawImagine if you have to manually debug the second code snippet that you sawmagine if you have to manually debug the second code snippet that you saw
earlier! I am pretty sure that you will find it frustrating to check the code, because you willI am pretty sure that you will find it frustrating to check the code, because you will
have little visual sense of what is going on.

More importantly, if you are working in a team, you will be required to write legible code;working in a team, you will be required to write legible code; in a team, you will be required to write legible code;required to write legible code; to write legible code;
in short, writing valid code typically leads to code that is more legible, easier to follow, and code that is more legible, easier to follow, andcode that is more legible, easier to follow, and, and and
hence, less erroneous., less erroneous.less erroneous.erroneous..

Validation can help you debug your code
As mentioned in the previous section, browsers are in general forgiving towards invalid
HTML and CSS. While this is true, there may be errors that are not caught, or are notis true, there may be errors that are not caught, or are nottrue, there may be errors that are not caught, or are not, or are not or are not
rendered correctly or gracefully. This means that while the invalid HTML and CSS codehis means that while the invalid HTML and CSS codeis means that while the invalid HTML and CSS code
may appear fine on a certain platform or browser, it may not be supported on others.on a certain platform or browser, it may not be supported on others.n a certain platform or browser, it may not be supported on others. be supported on others. on others.

This means that using valid code (valid code typically means standard code set by
international organizations such as W3C) will give you a much greater probability ofW3C) will give you a much greater probability of will give you a much greater probability ofprobability of of
having your web page rendered correctly on different browsers and platforms.on different browsers and platforms.

With valid HTML and CSS, you can safely write your JavaScript code and expect it to work as
intended, assuming that your JavaScript code is equally valid and error free.

Chapter 3

[�7]

Validation helps you to code using good practicesceses
Valid code typically requires coding using good practices. As mentioned frequently in thisalid code typically requires coding using good practices. As mentioned frequently in thislid code typically requires coding using good practices. As mentioned frequently in this
chapter, good practices include the proper enclosing of tags, suitable indentation to enhanceenhance
code readability, and so on., and so on. and so on.

If you need more information about good practices when using JavaScript, feel free to check
out the creator of JSLint, Douglas Crockford, at http://crockford.com. Or you can read
up John Resigs blog (the creator of JQuery) atthe creator of JQuery) at creator of JQuery) at http://ejohn.org/. Both are great guys Both are great guysgreat guys
who know what great JavaScript is about. what great JavaScript is about.

Validation
To summarize the above sections, the DOM is provided by HTML, and both CSS and, and both CSS and and both CSS and
JavaScript are applied to the DOM. This means that if there is an invalid DOM, there is aif there is an invalid DOM, there is aDOM, there is a
chance that the JavaScript that is operating on the DOM (and sometimes the CSS) mightthe JavaScript that is operating on the DOM (and sometimes the CSS) mightJavaScript that is operating on the DOM (and sometimes the CSS) might(and sometimes the CSS) might sometimes the CSS) mightCSS) might might
result in errors.

With this summary in mind, well focus on how you can spot validation errors by using colorcolor
coding editors.

Color-coding editors–how your editor can help you to spot
validation errors
If you are an experienced coder, you may skip this section; if not, you might want tomay skip this section; if not, you might want to skip this section; if not, you might want to; if not, you might want to if not, you might want tonot, you might want to you might want to
understand the value of a good coding editor.

In general, a good editor can help you to prevent validation errors. Based on our
understanding of what validation is, you should understand that your editor shouldr editor should editor should
do the following activities: activities::

Highlight matching bracketsighlight matching brackets

Multiple syntax highlighting

Auto indentation after keywords, brackets, and othersuto indentation after keywords, brackets, and othersindentation after keywords, brackets, and others after keywords, brackets, and others, and others

Auto completion of syntax of syntax

Auto completion of words that you have already typed of words that you have already typed

You may have noticed that I have left out a few points, or added a few points, as to whatI have left out a few points, or added a few points, as to what have left out a few points, or added a few points, as to what points, or added a few points, as to what or added a few points, as to what
a good editor should do. But in general, the points listed previously are meant to help you. But in general, the points listed previously are meant to help you But in general, the points listed previously are meant to help youBut in general, the points listed previously are meant to help youut in general, the points listed previously are meant to help youthe points listed previously are meant to help youare meant to help you
prevent validation errors.

Syntax Validation

[��]

As a start, you can consider using Microsofts SharePoint Designer 2007, a free,start, you can consider using Microsofts SharePoint Designer 2007, a free,SharePoint Designer 2007, a free, Designer 2007, a free,,
feature-rich, HTML, CSS ,and JavaScript editor, which is available at-rich, HTML, CSS ,and JavaScript editor, which is available atrich, HTML, CSS ,and JavaScript editor, which is available at, HTML, CSS ,and JavaScript editor, which is available at HTML, CSS ,and JavaScript editor, which is available at,and JavaScript editor, which is available atJavaScript editor, which is available atavaScript editor, which is available atvaScript editor, which is available at http://
www.microsoft.com/downloads/details.aspx?displaylang=e
n&FamilyID=baa3ad86-bfc1-4bd4-9812-d9e710d44f42

For example, highlighting matching brackets is to ensure that your code is properly enclosedhighlighting matching brackets is to ensure that your code is properly enclosed matching brackets is to ensure that your code is properly enclosedr code is properly enclosed code is properly enclosed
with brackets, and auto indentation is to ensure that you are using consistent spacing forbrackets, and auto indentation is to ensure that you are using consistent spacing for
your code blocks.

Although JavaScripts code blocks are often denoted by the use of curly brackets, it isblocks are often denoted by the use of curly brackets, it is often denoted by the use of curly brackets, it is
important that we use indentation to visually display the structure of the code. Considerdisplay the structure of the code. Considerthe structure of the code. Consider
the following code snippets:following code snippets: code snippets:

function submitValues(elementObj){
 var digits = /^\d+$/.test(elementObj.value);
 var characters = /^[a-zA-Z\s]*$/.test(elementObj.value);
 if(elementObj.value==""){
 alert("input is empty");
 return false;
 }
 else if(elementObj.name == "enterNumber" && digits == false){
 alert("the input must be a digit!");
 debuggingMessages(arguments.callee.name, elementObj, "INPUT
must be digit");

 return false;
 }
 else if(elementObj.name == "enterText" && characters == false){
 alert("the input must be characters only!");
 return false;
 }
 else{
 elementObj.disabled = true;
 return true;

 }
}

The next code snippet is as follows::

function submitValues(elementObj)
{
var digits = /^\d+$/.test(elementObj.value);
var characters = /^[a-zA-Z\s]*$/.test(elementObj.value);
if(elementObj.value=="")
{alert("input is empty");
return false;

Chapter 3

[��]

}
else if(elementObj.name == "enterNumber" && digits == false)
{alert("the input must be a digit!");
return false;
}else if(elementObj.name == "enterText" && characters == false)
{alert("the input must be characters only!");
return false;
}
else
{
elementObj.disabled = true;
return true;
}
}

I am quite sure that you would find the second code snippet to be messy, as it has
inconsistent indentation, and you may have problems figuring out which statement, and you may have problems figuring out which statement and you may have problems figuring out which statement
belongs to which conditional block.s to which conditional block. to which conditional block.

Stylistically speaking, the second code sample is what we call "poor code style". You will be
surprised that this might lead to validation errors.

In case you are wondering what /^[a-zA-Z\s]*$/ and /^\d+$/are, they
are actually regular expression objects. Regular expressions originated fromregular expression objects. Regular expressions originated from objects. Regular expressions originated from
Perl (a programing language) and, due to their usefulness, many programing
languages now have ther own form of regular expressions. Most of them
work in the same way. If you wish to find out more about regular expressions
for JavaScript, feel free to visit http://www.w3schools.com/jsref/
jsref_obj_regexp.asp for a brief introduction to how regular
expressions work.

Common errors in JavaScript that will be picked up byJavaScript that will be picked up by that will be picked up by
validation
Ill briefly mention some of the most common validation errors that are picked up by
validators. Following is a short list of them:

Inconsistent spacing or indentationnconsistent spacing or indentation

Missing semi colonsissing semi colons

Missing closing bracketsissing closing brackets

Using a function or variable that is not declared at the point of being calledsing a function or variable that is not declared at the point of being calledis not declared at the point of being called not declared at the point of being called
or referenced

Syntax Validation

[�0]

You may have noticed that some of the validation errors are not exactly
"errors"—as in syntax errors—but rather stylistic ones. As mentioned in
the previous sections, differences in coding style do not necessarily lead to
functional errors but rather stylistic errors. But the good thing about good
coding style is that it often leads to less errors.

At this point, it might be difficult for you to visualize what these common errors actually look
like. But don't worry, you will get to see such validation errors in action when we introduce
the JavaScript validation tools.

JSLint–an online validator
JSLint is the first JavaScript validation code that we will focus on. You can access JSLint by by
visiting this URL: this URL: http://www.jslint.com. The JSLint online validator is a tool created byThe JSLint online validator is a tool created byhe JSLint online validator is a tool created by
Douglas Crockford.

Douglas Crockford works at Yahoo! as a JavaScript architect. He is also a member Yahoo! as a JavaScript architect. He is also a member! as a JavaScript architect. He is also a member as a JavaScript architect. He is also a memberas a JavaScript architect. He is also a memberJavaScript architect. He is also a memberHe is also a member
of the committee that designs future versions of JavaScript. His views on
JavaScript style and coding practices are generally agreed upon . You can read
more about him and his ideas at his website: http://www.crockford.com.

In general, JSLint is an online JavaScript validator. It helps to validate your code. At the samethe same same
time, JSLint is smart enough to detect some forms of code errors, such as infinite loops. The. The The
JSLint website is not a particularly large website, but nonetheless, two important links thatparticularly large website, but nonetheless, two important links that large website, but nonetheless, two important links thatnonetheless, two important links that, two important links that thathat
you must read are as follows:must read are as follows: read are as follows: are as follows:

For basic instructions, visit http://www.jslint.com/lint.html

For a list of messages, visit http://www.jslint.com/msgs.html

I will not attempt to describe to you what JSLint is about and how to use it; I personally to describe to you what JSLint is about and how to use it; I personally describe to you what JSLint is about and how to use it; I personallybe to you what JSLint is about and how to use it; I personally to you what JSLint is about and how to use it; I personallyI personally personally
believe in getting our hands dirty and giving it a test drive. Hence, for a start, we'll test theing it a test drive. Hence, for a start, we'll test the it a test drive. Hence, for a start, we'll test the
code that we wrote in Chapter 2 2, Ad Hoc Testing and Debugging in JavaScript, and see what and see what
kind of validation errors (if any) occur.(if any) occur. any) occur.any) occur..

Chapter 3

[�1]

Time for action – using JSLint to spot validation errors
As mentioned earlier, well test the code that we wrote inearlier, well test the code that we wrote in, well test the code that we wrote in Chapter 22, Ad Hoc Testing
and Debugging in JavaScript, and see what validation errors we get. Take note that the and see what validation errors we get. Take note that the
completed and validated code for this example can be found in Chapter 3 of the source
code folder, in the file namedthe file namedhe file namede file named file named perfect-code-for-JSLint.html.

1. Open up your web browser and navigate tonavigate to to http://www.jslint.com. You should
see the home page with a huge text area. This is the area where you are going tothe home page with a huge text area. This is the area where you are going to page with a huge text area. This is the area where you are going topage with a huge text area. This is the area where you are going to
copy and paste your code.

2. Go to the source code folder of of Chapter 2 and open up the file named:
getting-values-in-right-places-complete.html. Then, copy anden, copy andn, copy and, copy and copy and
paste the source code into the text area mentioned in step 1.the text area mentioned in step 1. text area mentioned in step 1.

3. Now click on the button with the namethe name name JSLint.

Your page should refresh almost immediately, and you will receive some
form of feedback. You may have noticed that you received many (yes, ad that you received many (yes, a that you received many (yes, a(yes, a, a
lot of) validation errors. And, most probably, some of them do not make validation errors. And, most probably, some of them do not make, some of them do not make some of them do not makedo not make not make
sense to you. However, you should be able to identify that some of theidentify that some of the that some of the
validation errors were introduced in the section on common JavaScriptsection on common JavaScript on common JavaScripton common JavaScript common JavaScript
validation errors.

Now, scroll further down and you should see the following phrase in the, scroll further down and you should see the following phrase in the scroll further down and you should see the following phrase in thethe
feedback area:

xx % scanned
too many errors

This tells you that JSLint has only scanned a part of the code and stoppedis tells you that JSLint has only scanned a part of the code and stopped tells you that JSLint has only scanned a part of the code and stoppedthe code and stopped code and stopped
scanning the code because there were too many errors.

What can we do about this? What if there are too many validation errorshat can we do about this? What if there are too many validation errorsare too many validation errors too many validation errors
and you cannot spot all of them in one go?you cannot spot all of them in one go? cannot spot all of them in one go?spot all of them in one go? all of them in one go?

Do not worry, as JSLint is robust and has option settings, which are found
at http://www.jslint.com/#JSLINT_OPTIONS (this is actually found
at the bottom of the home page of JSLint). One of the options that requires
your input is the maximum number of errors. For our purposes, you may
want to enter an insanely large number, such as 1,000,000.

4. After entering an insanely large number for the input box for maximum number
of errors, click on the button The good parts. You will see a few checkboxes have
been selected.

After step 4, you have now officially selected the options known asthe options known as options known as The
Good Parts by the author of this tool. This is a setting that automatically
sets what the author feels are the most important validation checks.

Syntax Validation

[�2]

These options include: include:: Strict white space, allow one var statement per
function, and so on. and so on.and so on.

5. Now click on the on the the JSLint button. Your browser will show the new validated result.. Your browser will show the new validated result.will show the new validated result. show the new validated result.
Now you may take a look at the types of validation errors that have been detectedvalidation errors that have been detected errors that have been detected
by JSLint..

What just happened?
You have just used JSLint to spot for validation errors. This is a simple process for JSLint: copy
and paste your code into the text area and click on JSLint. Do not be surprised that there
are so many validation errors; we are just starting out and we will learn how to fix and avoid
such validation errors.

You may have noticed that the JavaScript that is embedded in the HTML form
results in an error that says missing use strict statement. This error stems from
the fact that JSLint believes in the use of the use strict statement, which allows
the code to run under strict conditions. You will learn how to fix and avoid such
problems in later parts of this chapter.

You will continue to see many errors. In my opinion, this is evidence that valid code is not
easy to achieve; but this is what we will achieve in the next section.

As you have seen, there are various validation options, and at this stage, it is good enough
if we pass the set requirements for we pass the set requirements for The Good Parts. Therefore, well focus on how to fix
these validation errors in the next section. But before that, I'll quickly discuss the valid codethe next section. But before that, I'll quickly discuss the valid code next section. But before that, I'll quickly discuss the valid code But before that, I'll quickly discuss the valid code
constructs that produce validation warnings.

Valid code constructs that produce validation warnings
You may have noticed that although our code construct is valid, it has produced validation
warnings. You may be wondering if you should fix these or not. Here's some basic discussion
to help you to decide.

Should you fix valid code constructs that produce validation
warnings??
This depends on your objective. As I mentioned in Chapter 1, What is Javascript Testing?,
a code should at least be correct and work the way that we intend it to. Therefore, if your
objective is to just create functionally-correct code, then you might not want to spend the
time and effort to correct those validation warnings.

Chapter 3

[�3]

However, because you are reading this book, it is very likely that you want to learn how to
test JavaScript, and validation is an important part of testing JavaScript as you will see later in
this chapter.

What happens if you don't fix them
The main issue with invalidated code is that it will be much more difficult to maintain the
code, in terms of readability and scalability. This problem becomes enhanced when you are
working in teams and others have to read or maintain your code.

Valid code promotes good coding practices, which will help you to avoid problems down
the road..

How to fix validation errors
This section will continue with the errors mentioned in the previous section, and togetherhis section will continue with the errors mentioned in the previous section, and togetherthe errors mentioned in the previous section, and together errors mentioned in the previous section, and together mentioned in the previous section, and together in the previous section, and togetherthe previous section, and together previous section, and togetherprevious section, and together section, and together
we'll attempt to fix them. Wherever possible, I'll provide some form of explanation as toI'll provide some form of explanation as toll provide some form of explanation as toexplanation as to as to
why a particular piece of code is rendered as invalid. At the same time, the whole processparticular piece of code is rendered as invalid. At the same time, the whole process piece of code is rendered as invalid. At the same time, the whole processAt the same time, the whole process
of writing valid and functionally-code can be cumbersome. Therefore, I'll start off with
validation errors that are much easier to fix, before I move on to tougher ones.

As we go along fixing the validation errors that we saw in the previous
section, you may realize that fixing validation errors may require some form of
compromise as to how you write your code. For example, you will understand
that using alert() sparingly in your code is not considered a good coding style,
at least according to JSLint. In this case, you will have to consolidate all of your
alert() statements and group them into a function, while still maintaining the
functionality of your code. More importantly, you will also realize that (perhaps)
the best way to write valid code is to start writing valid code right from the first
line of the code; you will see that correcting invalid code is an extremely tedious
process, and there are times when you can only minimize your validation errors.

Along the way, you will get the chance to practice important JavaScript functions and, at the
same time, learn how to code in a better style. Thus, this is probably the most important
section of this chapter and I urge you to get your hands dirty with me. Before I get started
on fixing the code, I'll first summarize the types of errors that are spotted by JSLint.

Missing "use strict" statement

Unexpected use of ++

Missing space after), value, ==, if, else, +

Syntax Validation

[�4]

Function names (such as debuggingMessages) are not defined or a function was
used before it was defined

Too many var statements

=== used instead of ==

alert is not defined

<\/ used instead of </

HTML event handlers used

Without further ado, well get started with the first validation error:well get started with the first validation error:the first validation error: first validation error: use strict.

Error—missing "use strict" statement
The "use strict" statement is a relatively new feature in JavaScript that allows ourstatement is a relatively new feature in JavaScript that allows our
JavaScript to run in a strict environment. In general, it catches little-known errors, and
"forces" you to write stricter and valid code. John Resig, an expert in JavaScript, has
written a nice summary about this topic, and you can read about it by following this link:
http://ejohn.org/blog/ecmascript-5-strict-mode-json-and-more/.

Time for action – fixing "use strict" errors
This error is extremely easy to fix. But be careful; enabling use strict may prevent your
code from working, if your code is not valid. Here's how we can fix this validation error:

1. Open up your text editor, copy and paste the same code that we have been using,Open up your text editor, copy and paste the same code that we have been using,
and append the following code snippet on the first line of your JavaScript code:

 "use strict";

2. Save your code and test it out on JSLint. You will see that the error is now gone.Save your code and test it out on JSLint. You will see that the error is now gone.

You may notice that there is another missing use strict error that is related to your HTML
form; do not worry, we will fix that in a later sub-section of this chapter. Now let us move on
to the next error.

Error—unexpected use of ++
There is nothing programmatically wrong with this line of code. What we intend
to achieve by using ++ is to increment globalCounter whenever the function
addResponseElement() is called.

Chapter 3

[�5]

However, JSLInt believes that there is a problem with using ++. Take the following code
snippets as an example:

var testing = globalCounter++ + ++someValues;
var testing2 = ++globalCounter + someValues++;

The previous statements would look confusing to most programmers and hence it is
considered bad style. More importantly, both of these statements are programmatically
different and produce different results. For these reasons, we need to avoid statements like
++, --, and so on.

Time for action – fixing the error of "Unexpected use of ++"
This error is relatively easy to fix. All we need to do is avoid ++. So navigate to the So navigate to the
addResponseElement() function, and look for globalCounter++. Then change
globalCounter++ to globalCounter = globalCounter + 1. So, now your function
has changed from this:

function addResponseElement(messageValue, idName){
 global�ounter++;

 var totalInputElements = document.testForm.length;
 debuggingMessages(addResponseElement","empty", "object is a addResponseElement","empty", "object is a","empty", "object is a
value");
 var container = document.getElementById('formSubmit');
 container.innerHTML += "<input type=\"text\" value=\""
+messageValue+ "\"name=\""+idName+"\" />
";
 if(globalCounter == totalInputElements){
 container.innerHTML += "<input type=\"submit\" value=\
"Submit\" />";
 }
}

To this:

function addResponseElement(messageValue, idName) {
 global�ounter = global�ounter + 1;

 debuggingMessages("addResponseElement", "empty", "object is aaddResponseElement", "empty", "object is a", "empty", "object is a
value");
 document.getElementById('formSubmit').innerHTML += "<input
type=\"text\" value=\"" + messageValue + "\"name = \"" + idName + "\"
/>
";
 if (globalCounter === 7) {
 document.getElementById('formSubmit').innerHTML += "<input
type=\"submit\" value=\"Submit\" />";
 }
}

Syntax Validation

[�6]

Compare the highlighted lines, and you will see the change in the code. Now let us move on
to the next error.

Error—functions not defined
This error is caused by the way that JavaScript engines and web pages are being rendered by
web browsers. In Chapter 1, What is Javascript Testing, we mentioned briefly that web page
(and JavaScript) are being parsed from top to bottom on the client side. This means that
anything that appears at the top will be read first, followed by that at the bottom.

Time for action – fixing the error of "Functions not defined"
1. Because this error is caused by the incorrect flow of the JavaScript functions,

 we will need to change the sequence of the functions. What we have done in
Chapter 2, Ad Hoc Testing and Degugging in Javascript, is that we wrote the
functions that we will be using first. This may be incorrect, as the functions may
require data or functions that are only defined in later parts of the JavaScript code.
Here's a very simplified example:

<script>

function addTWoNumbers() {

 return numberOne() + numberTwo();

}

function numberOne(x, y) {

 return x + y;

}

function numberTwo(a, b){

 return a + b;

}

</script>

Based on the previous code snippet, you will realize that
addTwoNumbers() requires data returned from numberOne() and
numberTwo(). The issue here is that the JavaScript interpreter will read
addTwoNumbers() first before reading numberOne() and numberTwo().
However, both numberOne() and numberTwo() are being called by
addTwoNumbers(), resulting in an incorrect flow of code.

Chapter 3

[�7]

This means that in order for our code to work correctly, we will need to
rearrange the order of the functions. Continuing with the previous example,
this is what we should do:

<script>
function numberOne(x, y) {
 return x + y;
}
function numberTwo(a, b){
 return a + b;
}function addTWoNumbers() {
 return numberOne() + numberTwo();
}
</script>

In the previous code snippet, we have rearranged the sequence of the
functions.

2. Now, we are going to rearrange the function's sequence. For our purposes, all thatNow, we are going to rearrange the function's sequence. For our purposes, all that
we need to do is to arrange our functions such that the first function that originally
appeared in our code will now be the last, and the last function will be the first.
Similarly, the second function that originally appeared in the JavaScript code will
now be the second-to-last function. In other words, we will reverse the order of
the code.

3. Once you have reversed the order of the functions, save the file and test the codeOnce you have reversed the order of the functions, save the file and test the code
on JSLint. You should notice that the validation errors relating to functions not being
defined are now gone.

Now, let us move on to the next validation error.

Too many var statements
According to JSLint, we have used too many var statements. What does this mean? This
means that we have used more than one var statement in each function; in our case we
have obviously used more than one var statement in each and every function.

How did this happen? If you scroll down and check the settings of JSLint, you will see a
checkbox selected that says Allow one var statement per function. This means that the
maximum number of var we can use is one.

Why is this considered to be good style? Although many coders may think that this is
cumbersome, the author of JSLint would most probably believe that a good function
should do only one thing. This would typically mean operating on only one variable.

There's certainly room for discussion, but as we are all here to learn, let us get our hands
dirty by fixing this validation error.

Syntax Validation

[��]

Time for action – fixing the error of using too many varixing the error of using too many varerror of using too many varrror of using too many varof using too many var
statements

In order to fix this error, we will need to do some form of code refactoring. Although code
refactoring typically means consolidating your code for it to become more concise (that is,
shorter code), you may realize that refactoring your code to fit validation standards is a lot
of work.

1. What we will do in this section is that we will change (almost) all single var
statements that save a value into a function.

The code that is mainly responsible for this particular validation error is
found checkForm function. The statements that we will need to refactor
are as follows:

 var totalInputElements = document.testFormResponse.length;
 var nameOfPerson = document.testFormResponse.nameOfPerson.value;
 var birth = document.testFormResponse.birth.value;
 var age = document.testFormResponse.age.value;
 var spending = document.testFormResponse.spending.value;
 var salary = document.testFormResponse.salary.value;
 var retire = document.testFormResponse.retire.value;
 var retirementMoney = document.testFormResponse.retirementMoney.
value;
 var confirmedSavingsByRetirement;
 var ageDifference = retire - age;

 var salaryPerYear = salary * 12;

 var spendingPerYear = spending * 12;

 var incomeDifference = salaryPerYear - spendingPerYear;

2. Now we'll start to refactor our code. For each of the variables defined, we need toNow we'll start to refactor our code. For each of the variables defined, we need to
define a function with the following format:

function nameOfVariable(){
 return x + y; // x + y represents some form of calculation
}

I'll start off with an example. For instance, for totalInputElements thisthis
is what I will do:

function totalInputElements() {
 return document.testFormResponse.length;
}

Chapter 3

[��]

3. Based on the previous code, do something similar to what you are going to see here:Based on the previous code, do something similar to what you are going to see here:

/* here are the function for all the values */
function totalInputElements() {
 return document.testFormResponse.length;
}

function nameOfPerson() {
 return document.testFormResponse.nameOfPerson.value;
}

function birth() {
 return document.testFormResponse.birth.value;
}

function age() {
 return document.testFormResponse.age.value;
}

function spending() {
 return document.testFormResponse.spending.value;
}

function salary() {
 return document.testFormResponse.salary.value;
}

function retire() {
 return document.testFormResponse.retire.value;
}

function retirementMoney() {
 return document.testFormResponse.retirementMoney.value;
}

function salaryPerYear() {
 return salary() * 12;
}

function spendingPerYear() {
 return spending() * 12;
}

function ageDifference() {

Syntax Validation

[100]

 return retire() - age();
}

function incomeDifference() {
 return salaryPerYear() - spendingPerYear();
}

function confirmedSavingsByRetirement() {
 return incomeDifference() * ageDifference();
}

function shortChange() {
 return retirementMoney() - confirmedSavingsByRetirement();
}

function yearsNeeded() {
 return shortChange() / 12;
}

function excessMoney() {
 return confirmedSavingsByRetirement() - retirementMoney();
}

Now, let us move on to the next error..

Expecting <\/ instead of <\
For most of us, this error is probably one of the most intriguing. We have this validation error
because the HTML parser is slightly different to the JavaScript interpreter. In general, the
extra backslash is being ignored by the JavaScript compiler, but not by the HTML parser.

Such validation errors may appear unnecessary, but Doug Crockford knows that this has
some form of impact on our web page. Therefore, let us move on to how to fix this error.

Chapter 3

[101]

Time for action – fixing the expectation of '<\/' instead of '</'ixing the expectation of '<\/' instead of '</'ing the expectation of '<\/' instead of '</' the expectation of '<\/' instead of '</' of '<\/' instead of '</'
Although this error is one of the most intriguing, it is one of the easiest to fix. All that we
need to do is to find all of the JavaScript statements that contain </ and change them tond change them to
<\/. The function that is mainly responsible for this error is buildFinalResponse().

1. Scroll down to the function buildFinalResponse(), and change all statements
that have </ toto <\/. After you are done, you should have the following code:

function buildFinalResponse(name, retiring, yearsNeeded, retire,
shortChange) {
 debuggingMessages(buildFinalResponse", -1, "no messages"); buildFinalResponse", -1, "no messages");", -1, "no messages");

 var element = document.getElementById("finalResponse");

 if (retiring === false) {
 element.innerHTML += "<p>Hi " + name + "<\/b>,<\/p>";

 element.innerHTML += "<p>We've processed your information
and we have noticed a problem.<\/p>";

 element.innerHTML += "<p>Base on your current spending
habits, you will not be able to retire by " + retire + " <\/b>
years old.<\/p>";

 element.innerHTML += "<p>You need to make another " +
shortChange + "<\/b> dollars before you retire inorder to acheive
our goal<\/p>";

 element.innerHTML += "<p>You either have to increase your
income or decrease your spending.<\/p>";
 }
 else {
 // able to retire but....
 //alertMessage("retiring === true");

 element.innerHTML += "<p>Hi " + name + "<\/b>,<\/p>";
 element.innerHTML += "<p>We've processed your information
and are pleased to announce that you will be able to retire on
time.<\/p>";
 element.innerHTML += "<p>Base on your current spending
habits, you will be able to retire by " + retire + "<\/b>years
old.<\/p>";
 element.innerHTML += "<p>Also, you'll have' " +
shortChange + "<\/b> amount of excess cash when you retire.<\/p>";
 element.innerHTML += "<p>Congrats!<\/p>";
 }
}

Syntax Validation

[102]

Notice that all </ have been changed to been changed to <\/. You may also want to search through the code
and see if any such errors are remaining.

Now, with this error fixed, we can move on to the next validation error.

Expected '===' but found '=='
In JavaScript and in most programing languages, == and === are significantly different. In
general, === is stricter than ==.

The key difference between === and == in JavaScript is that === is a strict
equal operator and it will return a Boolean true if, and only if, both the operands
are equal and of the same type. On the other hand, theand of the same type. On the other hand, theof the same type. On the other hand, the == operator returns a
Boolean true if both the operands are equal, even if they are of different types.

According to JSList, === should be used when comparing a variable to a truth value, because
it is stricter than ==. In terms of code strictness, JSLint is certainly correct in ensuring code
quality. Therefore, let us now correct this error.

Time for action – changing == to ===hanging == to ===
Due to the reasons mentioned earlier, we will now change all == to ===, for statements thator statements that
require comparison. Although this error is relatively easy to fix, we need to understand the
importance of this error. === is much stricter than ==, and therefore it is more secure and
valid to use === instead ofinstead of ==.

Going back to your source code, search for all comparison statements that contain == andand
change them to ===. == is found largely at if, andand else-if statements, because it is used
for comparisons.

Once you are done, you may want to test out your updated code at JSLint and see if you have
cleared all such errors.

Now, let us move on to yet another cumbersome error: "Alert is not defined".

Alert is not defined
In general, using alert by itself leads to 'pollution' of the global namespace. Although it isby itself leads to 'pollution' of the global namespace. Although it is
convenient, this is bad code practice according to JSLInt. Therefore, the strategy that we are
going to use to fix this validation error is to use some form of code refactoring (again).

In our code, you should notice that we are largely using alert() to provide feedback in
terms of the function names, error messages, and so on. We will need to use our alert()
such that it can take in various forms of messages.

Chapter 3

[103]

Time for action – fixing "Alert is not defined"
What we will do is that we will consolidate all alert() statements into one function. We
can pass a parameter to that function so that we can change the messages in the alert box
depending on the situation.

1. Go back to your code, and define the following function at the top of your
<script> tag:

function alertMessage(messageObject) {
 alert(messageObject);
 return true;
}

messageObject is the parameter that we will use to hold our message..

2. Now, change allNow, change all alert() statements to alertMessage() such that the message
for alert() is the same as alertMessage(). Once you are done, save the file and
run the code in JSLint again.

If you tried running your code in JSLint, you should see that the "damage" done by, you should see that the "damage" done by alert()
has been minimized to only one time, instead of over ten to twenty times.

In this situation, what we can do is minimize the impact of the alert() because, for our
purposes, we do not have a ready alternative to show messages in an alert box.

Now it is time for the next error—avoiding HTML event handlers.

Avoiding HTML event handlers
Good coding practices often state the need to separate programing logic and design.
In our case, we have embedded event handlers (JavaScript events) within the HTML
code. According to JSLint, such coding could be improved by avoiding HTML event
handlers altogether.

Although the ideal case is to separate programing logic from design, there is
nothing functionally wrong in using HTML intrinsic event handlers. You may
want to consider whether it is worth it (in terms of time, maintainability, and
scalability) to adhere to (almost) perfect coding practices. In the later part of this
sub-section, you may find that it can be cumbersome (or even irritating) to try to
validate (and functionally correct) code.

Syntax Validation

[104]

In order to solve this validation error, we will need to use event listeners. However, due
to the problems posed by the compatibility of event listeners, we will be using JavaScript
libraries to help us to deal with inconsistencies among the support for event listeners. We
will be using JQuery in this example.

JQuery is a JavaScript library created by John Resig. You can download JQuery by visiting
this link: http://jquery.com. As described on this website, "JQuery is a fast and conciseAs described on this website, "JQuery is a fast and concise
JavaScript Library that simplifies HTML document traversing, event handling, and animating,
and Ajax interactions for rapid web development." In my personal experience, JQuery
certainly makes life easier by fixing many sticky issues such as DOM incompatibilities,
providing built-in methods to create animation, and many other things. I certainly urge
you to follow a starter tutorial by going to: http://docs.jquery.com/Tutorials:
Getting_Started_with_jQuery

Time for action – avoiding HTML event handlers
In this section, you will learn how to avoid HTML event handlers by coding in a different
style. In this case, we will not only remove the JavaScript events embedded in each of the
HTML input elements, we will also need to write new functions for our JavaScript application
in order for it to work in the same manner. In addition to that, we will be using a JavaScript
library that will help us to remove all of the difficult stuff relating to event handling and using
event listeners.

1. Open up the same document and scroll to theOpen up the same document and scroll to the <body> tags. Remove all of the HTML
event handlers that are found in the form. This is what your form's source code
should look like after you have removed all of the HTML event handlers:

<form name="testForm" >

 <input type="text" name="enterText" id="nameOfPerson"
size="50" value="Enter your name"/>

 <input type="text" name="enterText" id="birth" size="50"
value="Enter your place of birth"/>

 <input type="text" name="enterNumber" id="age" size="50"
maxlength="2" value="Enter your age"/>

 <input type="text" name="enterNumber" id="spending" size="50"
value="Enter your spending per month"/>

 <input type="text" name="enterNumber" id="salary" size="50"
value="Enter your salary per month"/>

Chapter 3

[105]

 <input type="text" name="enterNumber" id="retire" size="50"
maxlength="3" value="Enter your the age you wish to retire at"
/>

 <input type="text" name="enterNumber" id="retirementMoney"
size="50" value="Enter the amount of money you wish to have for
retirement"/>

</form>

2. Now scroll to theNow scroll to the </style> tag. After the </style> tag, enter the following
code snippet:

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/
jquery.js">
</script>

What you are doing in the preceding line is enabling JQuery in your code.
This will allow you to make use of the JQuery library when fixing your code.
Now it's time to write some JQuery code.

3. In order to maintain the functionality of our code, we will need to use theIn order to maintain the functionality of our code, we will need to use the .blur()
method provided by JQuery. Scrolling to the end of your JavaScript code, append the
following code snippet:

jQuery(document).ready(function () {
 jQuery('#nameOfPerson').blur(function () {
 submitValues(this);
 });
 jQuery('#birth').blur(function () {
 submitValues(this);
 });
 jQuery('#age').blur(function () {
 submitValues(this);
 });
 jQuery('#spending').blur(function () {
 submitValues(this);
 });
 jQuery('#salary').blur(function () {
 submitValues(this);
 });
 jQuery('#retire').blur(function () {
 submitValues(this);
 });
 jQuery('#retirementMoney').blur(function () {
 submitValues(this);
 });

Syntax Validation

[106]

 jQuery('#formSubmit').submit(function () {

 checkForm(this);

 return false;
});
});

Here's a short explanation of how JQuery works: jQuery(document).
ready(function ()is used to start our code; it allows us to use
the methods provided in JQuery. In order to select an element, we
use jQuery('#nameOfPerson'). As mentioned earlier, we need to
maintain the functionality of the code, so we will use the .blur()
method provided by JQuery. In order to do that, we append .blur() to
jQuery('#nameOfPerson'). We are required to call submitValues(),
and we will need to enclose submitValues() within .blur(). Because
submitValues() is a function, we will enclose it as such:

 jQuery('#nameOfPerson').blur(function () {
 submitValues(this);
 });

At this point of time, we should have completed the necessary corrections
in order to achieve valid and functional code. I'll briefly summarize the
corrections in the next section.

Summary of the corrections we have done
Now we will refresh our memory by quickly going through what we have done to fix the
validation errors.

First, we pasted the original code into JSLint and noticed that we had a large number of
validation errors. Fortunately, the validation errors could be grouped such that similar
errors could be fixed by correcting a single code error.

Next, we started off with the correction process. In general, we tried to fix the validation
errors, starting from those which seemed to be the easiest. The first validation error that we
fixed was the missing use strict statement error. What we did was enter use strict on
the very first line of our JavaScript code, and that error was fixed.

The second validation error that we fixed was the "functions not defined error". This was
caused by an incorrect flow of the JavaScript functions. Therefore, we switched the flow of
functions from this:

function submitValues(elementObj){
/* some code omitted */

}

Chapter 3

[107]

function addResponseElement(messageValue, idName){
/* some code omitted */

function checkForm(formObj){
/* some code omitted */

}

function buildFinalResponse(name,retiring,yearsNeeded,retire,
shortChange){

/* some code omitted */
}
function debuggingMessages(functionName, objectCalled, message){

/* some code omitted */
}

To this:

function debuggingMessages(functionName, objectCalled, message) {
/* some code omitted */

}
function checkForm(formObj) {

/* some code omitted */

function addResponseElement(messageValue, idName) {
 /* some code omitted */

}

function submitValues(elementObj) {
/* some code omitted */

}

Notice that we simply reversed the sequence of the functions to fix the error.

We then moved on to an error that is quite time-consuming—using too many var
statements within a function. In general, our strategy was to refactor almost all of the var
statements into standalone functions. These standalone functions' main purpose was to
return a value, and that's all.

Next, we moved into yet another time-consuming validation error, and this was "expected
<\/ instead of </. In general, this error is referring to the closing HTML tags. So what we
did was to change /> to \/> for all closing HTML tags. For example, we changed the
following code:

function buildFinalResponse(name,retiring,yearsNeeded,retire,
shortChange){
 debuggingMessages(buildFinalResponse", -1,"no messages"); buildFinalResponse", -1,"no messages");", -1,"no messages");

Syntax Validation

[10�]

 var element = document.getElementById("finalResponse");
 if(retiring == false){
 //alert("if retiring == false");
 element.innerHTML += "<p>Hi " + name + ",<p>";
 element.innerHTML += "<p>We've processed your information and
we have noticed a problem.</p>";
 element.innerHTML += "<p>Base on your current spending habits,
you will not be able to retire by " + retire + " years old.</
p>";
 element.innerHTML += "<p>You need to make another " +
shortChange + " dollars before you retire inorder to acheive our
goal</p>";
 element.innerHTML += "<p>You either have to increase your
income or decrease your spending.</p>";
 }
 else{
 // able to retire but....
 alert("retiring == true");
 element.innerHTML += "<p>Hi " + name + ",</p>";
 element.innerHTML += "<p>We've processed your information and
are pleased to announce that you will be able to retire on time.</p>";
 element.innerHTML += "<p>Base on your current spending habits,
you will be able to retire by " + retire + "years old.
</p>";
 element.innerHTML += "<p>Also, you'll have' " + shortChange
+ " amount of excess cash when you retire.</p>";
 element.innerHTML += "<p>Congrats!<p>";
 }
}

To this:

function buildFinalResponse(name, retiring, yearsNeeded, retire,
shortChange) {
 debuggingMessages(buildFinalResponse", -1, "no messages"); buildFinalResponse", -1, "no messages");", -1, "no messages");
 var element = document.getElementById("finalResponse");
 if (retiring === false) {
 element.innerHTML += "<p>Hi " + name + "<\/b>��<\/p>";
 element.innerHTML += "<p>We've processed your information and
we have noticed a problem.<\/p>";
 element.innerHTML += "<p>Base on your current spending habits��
you will not be able to retire by " + retire + " <\/b> years
old.<\/p>";
 element.innerHTML += "<p>You need to make another " +
short�hange + "<\/b> dollars before you retire inorder to achieve our
goal<\/p>";

Chapter 3

[10�]

 element.innerHTML += "<p>You either have to increase your
income or decrease your spending.<\/p>";
 }
 else {
 // able to retire but....
 //alertMessage("retiring === true");
 element.innerHTML += "<p>Hi " + name + "<\/b>��<\/p>";
 element.innerHTML += "<p>We've processed your information and
are pleased to announce that you will be able to retire on time.<\/
p>";
 element.innerHTML += "<p>Base on your current spending habits��
you will be able to retire by " + retire + "<\/b>years old.<\/p>";
 element.innerHTML += "<p>Also�� you'll have' " + short�hange
+ "<\/b> amount of excess cash when you retire.<\/p>";
 element.innerHTML += "<p>�ongrats�<\/p>";
 }
}

Note that the highlighted lines are where we have changed from /> to \/>.

After fixing the previous error, we moved on to an error that is conceptually more difficult to
understand, but easy to solve. That is, "expected === instead of saw ==". According to JSLint,
using === is stricter and more secure as compared to using ==. Therefore, we needed to
change all == to ===.

The next error, "Alert is not defined", is conceptually similar to the "Too many var
statement" error. What we need to do is to refactor allall alert() statements to call the
alertMessage() function that accepts a parameter messageObject. This allows us to use
only one alert() for almost the whole JavaScript program. Whenever we need to use an
alert box, all we need to do is to pass an argument into the alertMessage() function.

Finally, we moved on to fix one of the toughest validation errors: "Avoiding HTML event
handlers". Due to the complexities involved with event listeners, we engaged the help of
JQuery, a popular JavaScript library, and wrote some JQuery code. Firstly, we removed all of
the HTML event handlers from our HTML form. Our HTML form changed from this:

<form name="testForm" >
 <input type="text" name="enterText" id="nameOfPerson" onblur="submi
tValues(this)" size="50" value="Enter your name"/>

 <input type="text" name="enterNumber" id="age" onblur="submitValues
(this)" size="50" maxlength="2" value="Enter your age"/>

 <input type="text" name="enterText" id="birth" onblur="submitValues
(this)" size="50" value="Enter your place of birth"/>

 <input type="text" name="enterNumber" id="spending" onblur="submitV
alues(this)" size="50" value="Enter your spending per month"/>

Syntax Validation

[110]

 <input type="text" name="enterNumber" id="salary" onblur="submitVal
ues(this)" size="50" value="Enter your salary per month"/>

 <input type="text" name="enterNumber" id="retire" onblur="submitVal
ues(this)" size="50" maxlength="3" value="Enter your the age you wish
to retire at" />

 <input type="text" name="enterNumber" id="retirementMoney" onblur
="submitValues(this)" size="50" value="Enter the amount of money you
wish to have for retirement"/>

</form>

To this:

<form name="testForm" >

 <input type="text" name="enterText" id="nameOfPerson" size="50"
value="Enter your name"/>

 <input type="text" name="enterText" id="birth" size="50"
value="Enter your place of birth"/>

 <input type="text" name="enterNumber" id="age" size="50"
maxlength="2" value="Enter your age"/>

 <input type="text" name="enterNumber" id="spending" size="50"
value="Enter your spending per month"/>

 <input type="text" name="enterNumber" id="salary" size="50"
value="Enter your salary per month"/>

 <input type="text" name="enterNumber" id="retire" size="50"
maxlength="3" value="Enter your the age you wish to retire at" />

 <input type="text" name="enterNumber" id="retirementMoney" size="50"
value="Enter the amount of money you wish to have for retirement"/
>

</form>

In order to support the new HTML form, we linked in the JQuery library, and added some
code to listen for the HTML form events, like this:

<script type="text/javascript"> src="http://ajax.googleapis.com/ajax/
libs/jquery/1.4.2/jquery.js"></script>
<script type="text/javascript">
/* some code omitted */

jQuery(document).ready(function () {

Chapter 3

[111]

 jQuery('#nameOfPerson').blur(function () {
 submitValues(this);
 });
 jQuery('#birth').blur(function () {
 submitValues(this);
 });
 jQuery('#age').blur(function () {
 submitValues(this);
 });
 jQuery('#spending').blur(function () {
 submitValues(this);
 });
 jQuery('#salary').blur(function () {
 submitValues(this);
 });
 jQuery('#retire').blur(function () {
 submitValues(this);
 });
 jQuery('#retirementMoney').blur(function () {
 submitValues(this);
 });

 jQuery('#formSubmit').submit(function () {
 checkForm(this);
 return false;
 });
});
</script>

The completed code can be found in the source code folder for Chapter 3, with a file
name of perfect-code-for-JSLint.html. You can compare this with your edited code
to see if you have understood what we were trying to do. Now, you may want to copy and
paste the code into JSLint and see how it goes. You will only see errors pertaining to the use
of Jquery, one validation error that complains about the use of alert(), and another error
about using too many var statements.

What just happened?
We have corrected the bulk of the validation errors, from an insanely large number of
validation errors to less than ten validation errors, out of which only two or three of the
validation errors are related to our code.

Syntax Validation

[112]

You may have noticed the jQuery not defined error. Although JSLint has
captured the JQuery library that was externally linked, it does not explicitly read
the code, thus resulting in the jQuery not defined error.

Now that we have fixed the validation errors, let us now move on to another free validation
tool, the JavaScript Lint.

JavaScript Lint–a tool you can download
JavaScript Lint can be downloaded at http://www.javascriptlint.com, and it works in and it works innd it works in
a manner similar to JSLint. The key difference is that JavaScript Lint is a downloadable tool,
whereas JSLint works as a web-based tool.

Like JSLint, JavaScript Lint is capable of spotting the following common errors:

Missing semicolons at the end of a line

Curly braces without an if, for, and while

Statements that do not do anything

Case statements in a switch that turn decimal points into a number

You can read more about its functionality by visiting its home page at
http://www.javascriptlint.com.

To learn about how to use JavaScript Lint, you may follow the tutorials found at the website.

If you are using Windows, you may need to read the set-up instructions found
at http://www.javascriptlint.com/docs/running_from_windows_
explorer.htm

If you are using Linux based operating systems, you can check out the instructions
found at http://www.javascriptlint.com/docs/running_from_the_
command_line.htm

Finally, if you wish to integrate JavaScript Lint into your IDE such as Visual
Studio, you can read more about how to do this by visiting http://www.
javascriptlint.com/docs/running_from_your_ide.htm

We will not be discussing "how to fix validation errors spotted by JavaScript Lint" because
the principles are similar to JSLint. However, we challenge you to fix the remaining errors
(apart from those caused by JQuery)

Chapter 3

[113]

Challenge yourself–fix the remaining errors spotted by JSLint
Ok, this is the first challenge that I will I present to you. Fix the remaining errors spotted by
JSLint, which are as follows:

alert is not defined": This is found in the alertMessage() function

too many var statements": This error is found in the submitValues() function

Here are some ideas for you to get started:

In our JavaScript application, is there any way that we can avoid the alert()? How
can we display messages that can capture the attention of our audience but at the
same time be valid?

For the error found at the submitValues() function, how can we refactor the
code such that there is only one var statement in the function? Can we refactorstatement in the function? Can we refactor
the var statement into a function and have it return a Boolean value?

OK, now you might want to give it a go, but be careful, because the solutions that you
propose or intend to use may cause other validation errors. So you might want to think
about your solutions before implementing them.

Summary
We've finally reached the end of this chapter. I'll first start off by summarizing some of the
strategies and tips we have used to write valid code, and follow this with a summary of the
rest of the chapter.

Some of the strategies that we have used to write valid code (according to JSLint) are
as follows:

Properly space your code, especially after mathematical signs, if, else, (),
and so on

Use only one var statement per function

Consider the flow of your program; code in such a way that the required data or
functions come at the top of the program

Use the alert() function sparingly. Instead, consolidate your alert() functions
into one function

Use === instead of ==; this makes sure that your comparison statements are
more accurate

Avoid HTML event handlers by using listeners. Alternatively, you may engage the
help of JavaScript libraries such as JQuery in order to provide event listeners
to your code.

Syntax Validation

[114]

Finally, we covered the following topics:

The difference between testing and validating

How validation helps us to write good code

What issues may occur if we do not validate our code—if we do not validate our
code, it might not be scalable, less readable, and result in unexpected errors

How we can use JSLint and JavaScript Lint to validate our code

Now that we have learned how we can test JavaScript by validation tools, you might want
to think about the strategy that we can adopt when we intend to test our code. As shown
in the example in this chapter, writing valid code (or correcting invalid code) is an extremely
tedious process. More importantly, there are some validation warnings or errors that do not
affect our program in its entirety. In such a situation, do you think that it is worth the effort
to validate our code? Or do you think we should be a perfectionist and write perfect code?
This will very much depend on our testing plan, which will dictate the scope of testing, the
things to test, and many other things. These topics will be covered in next chapter, Chapter 4,
Planning to Test. So I'll end off this chapter, and see you in the next chapter.

4
Planning to Test

Welcome to the fourth chapter. Before we move into a more formal testing
process, we must first understand what testing is about. In this chapter, we
will learn how to make a plan for testing your JavaScript program. We will
learn about the various testing concepts that you should know, after which
I will present to you a brief guideline which will be used as a basis for the
next chapter..

Before we move into the various testing concepts, we will first need to establish a brief
understanding of the following issues:

Do we really need a test plan in order to carry out testing?

When should we develop the test plan for our code?

How much testing do we need for our program?

After covering the above issues, we will learn about the following testing concepts and ideas:

Black box testing, white box testing, and related concepts

Boundary conditions

Unit testing

Web page functional testing functional testing testing

Integration testing

Non-functional testing, such as performance testingfunctional testing, such as performance testingunctional testing, such as performance testing testing, such as performance testing such as performance testing

Usability testing

Testing order—which of the above tests do we perform first?

Regression testing—which is typically done when we make changes to the code

Planning to Test

[116]

In order to get a better overview of when and where testing plays its part, we will first start
with a very brief introduction to the software lifecycle.

A very brief introduction to the software lifecycle
Understanding the software lifecycle will help you to develop a deeper insight into the
software development process and, more importantly, when and where testing will play
its part.

In general, the software lifecycle has the following stages:

1. Analysis

2. Design

3. Implementation

4. Testing

5. Deployment

6. Maintenance

In the first stage, we generally perform an analysis to understand what the needs of the
stakeholders are. For instance, if you are carrying out a customized project for a customer,
you will need to understand the user requirements, system requirements, and the business
goals. Once you have understood the needs, you will need to design the software. Things to
do in this stage include drawing data flow diagrams, designing the database, and so on. The
next stage is the implementation stage. We can see this as the actual coding process.

Next comes testing, which is the main focus of this book. In this chapter, we will learn how
to plan our test based on various testing concepts. After the testing stage, we will deploy the
project, and finally we maintain the project. Because this is a cycle, we theoretically move
back to the analysis stage during or after the maintenance stage. This is because a software
or program is evolutionary; as needs and requirements change, so does our software.

Although the terminologies and number of stages may be slightly different from what you
see in other related content, the process is generally the same. The main takeaway here is
that testing typically comes after implementation.

The agile method
You may have heard about the agile methodology, which includes the agile softwarethe agile software agile software
development methodologies, and of course, agile testing methods.methodologies, and of course, agile testing methods. and of course, agile testing methods.

In general, agile software development and testing methods typically happen with thethe
end users or customers in mind. There is often little documentation, and a focus on short users or customers in mind. There is often little documentation, and a focus on shortusers or customers in mind. There is often little documentation, and a focus on shortThere is often little documentation, and a focus on shorthere is often little documentation, and a focus on short
software development cycles, which typically last for one to four weeks.development cycles, which typically last for one to four weeks. cycles, which typically last for one to four weeks.typically last for one to four weeks. last for one to four weeks.one to four weeks. to four weeks.four weeks. weeks.

Chapter 4

[117]

So how does this relate to the software development cycle that you have read about indevelopment cycle that you have read about in cycle that you have read about in
the previous section? In general, testing is not an individual phase by itself, but rather is
closely integrated with the development process, with code being tested from the customer
perspective, as early as possible, when code becomes stable enough to perform testing. when code becomes stable enough to perform testing. code becomes stable enough to perform testing.enough to perform testing. to perform testing.

The agile method and the software cycle in action agile method and the software cycle in action
It might be difficult for you to visualize how the previous theories come into place. Thet might be difficult for you to visualize how the previous theories come into place. Theprevious theories come into place. The theories come into place. TheThehe
process of creating the sample code for this book closely mimics the software lifecycle and
agile methodology. So I thought I'll very briefly share with you my experience when I wasmethodology. So I thought I'll very briefly share with you my experience when I was I thought I'll very briefly share with you my experience when I wasI thought I'll very briefly share with you my experience when I was thought I'll very briefly share with you my experience when I wasI'll very briefly share with you my experience when I wasll very briefly share with you my experience when I wasbriefly share with you my experience when I was share with you my experience when I wasexperience when I was when I wasI was was
creating the code samples for this book, based on the theories that we have learnt about.the theories that we have learnt about. theories that we have learnt about.

Analysis and designdesignesign
Technically speaking, the analysis and design stage took place when I was thinking aboutechnically speaking, the analysis and design stage took place when I was thinking about
what kind of code samples would meet the objectives of the book. I thought that thethe book. I thought that the book. I thought that theI thought that the thought that the
code should be simple enough to follow, and most importantly should demonstrate theenough to follow, and most importantly should demonstrate the to follow, and most importantly should demonstrate thethehe
various features of JavaScript. The code should set up the stage for code testing in theThe code should set up the stage for code testing in thehe code should set up the stage for code testing in thethe stage for code testing in the stage for code testing in thethe
later chapters.

Implementation and testing
The implementation stage occurred when I was writing the code samples. As I createdoccurred when I was writing the code samples. As I created when I was writing the code samples. As I createdI was writing the code samples. As I created was writing the code samples. As I createdI created created
functions for snippets of code, I tested whenever I could, and asked myself if the codefor snippets of code, I tested whenever I could, and asked myself if the codesnippets of code, I tested whenever I could, and asked myself if the codeI tested whenever I could, and asked myself if the code tested whenever I could, and asked myself if the codeI could, and asked myself if the code could, and asked myself if the code, and asked myself if the code and asked myself if the code
could demonstrate the use of JavaScript and facilitate testing purposes later on.the use of JavaScript and facilitate testing purposes later on. use of JavaScript and facilitate testing purposes later on.

So, what happened here is that I used some form of agile testing as I tested as often as I could., what happened here is that I used some form of agile testing as I tested as often as I could. what happened here is that I used some form of agile testing as I tested as often as I could.I used some form of agile testing as I tested as often as I could. used some form of agile testing as I tested as often as I could.

Deployment
Deployment of the code in the business world typically occurs after the code has beenthe business world typically occurs after the code has been business world typically occurs after the code has beenbusiness world typically occurs after the code has been world typically occurs after the code has been
transferred to the end user. However, in my case, deployment involved sending my code, in my case, deployment involved sending my code in my case, deployment involved sending my code case, deployment involved sending my codecase, deployment involved sending my code
samples to the editors.the editors. editors.

Maintenance
The maintenance stage occurred when I fixed bugs discovered by the editors after the code stage occurred when I fixed bugs discovered by the editors after the codeoccurred when I fixed bugs discovered by the editors after the codewhen I fixed bugs discovered by the editors after the codefixed bugs discovered by the editors after the code bugs discovered by the editors after the codethe editors after the code editors after the codethe code code
was submitted. Despite the best of of intentions, code is not always error-free.is not always error-free.error-free.

Do you need a test plan to be able to test?
You will most likely require a test plan in order to carry out testing. This is because a plan
helps you keep a clear objective on what to test. It also helps you to figure out what kind of
tests you want to perform on your program.

Planning to Test

[11�]

Most importantly, as you will realize, in order to carry out a thorough test you will need to
implement various tests, including testing concepts based on white box testing and black box
testing, web page testing, unit testing, integration testing, and so on. A test plan also serves
as a record of your test data, bugs, test results, and possible solutions for your bugs. This
means that in order to ensure that you do not miss anything, it is good to have a solid plan
as to what to test, when to test, and how to test your program.

When to develop the test plan
In theory, if you look at the software development cycle, you will see that testing comes afterf you look at the software development cycle, you will see that testing comes after
implementation. Development of the test plan should take place after you have completed
implementation (the actual coding process) of the program. This is because it is only at this
point that you have confirmed what features, methods, and modules you have; planning
what to test based on what you have already done makes good business sense, because
you know what to focus on.

However, in practice, it is advisable to start planning before the implementation process.owever, in practice, it is advisable to start planning before the implementation process., in practice, it is advisable to start planning before the implementation process. in practice, it is advisable to start planning before the implementation process.ce, it is advisable to start planning before the implementation process.e, it is advisable to start planning before the implementation process.
Depending on your situation, it is certainly possible that you can develop a High Level Test
Plan (HLTP) or High Level Test Case (HLTC). An HLTP is required if you are developing a largen HLTP is required if you are developing a large HLTP is required if you are developing a large
and complex system, and is meant to address the overall requirements. Other supporting. Other supporting supporting
test plans are used to address the details of the system. An HLTC is somewhat similar to ann HLTC is somewhat similar to an HLTC is somewhat similar to ann
HLTP, except that it covers test cases of the main functionalities that are directly related toexcept that it covers test cases of the main functionalities that are directly related to that it covers test cases of the main functionalities that are directly related tof the main functionalities that are directly related to the main functionalities that are directly related to
the overall requirements of the system.requirements of the system. of the system.

Another point that you should take note of is that, in practice, the test plan can be broadly
categorized into system test and user acceptance test. System test covers all forms of
functional testing and non-functional testing (which you learn about later), whereas user-functional testing (which you learn about later), whereas user testing (which you learn about later), whereas user
acceptance testing is a phase where testing is carried out by end users prior to transferring prior to transferringprior to transferring to transferring transferring
ownership to them.

How much testing is required?
You might be anxious to determine what you need to test and what you do not. Although
there are many different arguments as to how much testing is required, I personally believe
the aspects of your program listed in the following sections should define the scope of your
test plan.

Chapter 4

[11�]

What is the code intended to do?
Firstly, you need to understand what the code is intended to do. For instance, the business For instance, the business
requirements for our code in the previous chapters is to calculate whether the user can
retire on time, based on his inputs, such as his current age, the age at which he wants to age, the age at which he wants to the age at which he wants to
retire, his current spending, current salary, and so on. Therefore, we created code that, and so on. Therefore, we created code that and so on. Therefore, we created code that, we created code that we created code that
meets the business needs. Once we know what our code is intended to do, we can testOnce we know what our code is intended to do, we can test
whether the code satisfies our business needs.satisfies our business needs..

Testing whether the code satisfies our needs
By testing the code to see if it satisfies our business needs, we mean that for each input, wesatisfies our business needs, we mean that for each input, we, we mean that for each input, we
need to get the correct output. Going back to our example in Chapter 2, Ad hoc Testing and
Debugging in JavaScript and Chapter 3, Syntax Validation, I would need to ensure that if the
total left-over income is less than the amount of money that is needed for retirement, the
output would be "unable to retire", at least in a pseudo sense. What we need to do from
a testing point of view is to make sure that whenever the mentioned condition is true, the
output would be "unable to retire".

This can be achieved through a concept called white box testing, where testing is carried
based on the assumption that the tester knows what the code is about. I'll cover the specific
details of white box testing and other testing concepts in the following chapters. To give youTo give you
a heads up, some of the testing concepts that you will encounter will include unit testing,,
where you test codes in small units, and boundary values testing, where you test for theand boundary values testing, where you test for theboundary values testing, where you test for the, where you test for thewhere you test for the
maximum or minimum acceptable values of your code.minimum acceptable values of your code. acceptable values of your code.

The next thing that we will need to consider is how to test for or detect invalid actions
by users.

Testing for invalid actions by users
"Never trust users" is a phrase which we most commonly hear when developing for the
Web. This is because there may be malicious users who attempt to "break" your applications
by giving invalid input. Using the example from previous chapters, the input fields for the
name can only accept characters and spaces, and the input fields for the age and salary can
only accept numbers, and not characters. However, if someone were to attempt to enter
characters into the age or salary field, this would be an invalid action.

Our program will have to be robust enough to test or check for invalid actions; incorrect
input will result in incorrect output.

Planning to Test

[120]

A short summary of the above issues
By knowing what your code is intended for and what it is supposed to do, and understanding
the need to detect invalid actions by users, you have already defined the scope of your test
plan. Your tests should revolve around these criteria.

We can now move on to the various testing concepts that you will be using for various
aspects of your test, and the building blocks of a test plan—major testing concepts—major testing conceptsmajor testing concepts
and strategies.

Major testing concepts and strategies
In this section, we will cover different types of testing concepts and strategies. I will not
attempt to go into too much detail with regards to each concept, but rather I need you to get
the gist of it and see where each of these concepts is coming from. After you have gained
familiarity with these concepts, we will move on to creating the actual test plan. As a start, IAs a start, I
will begin with the business strategies that developers follow (whether you are performingbegin with the business strategies that developers follow (whether you are performing with the business strategies that developers follow (whether you are performingfollow (whether you are performing(whether you are performing
a project for an external or an internal client), so that you can gain a high-level idea of how, so that you can gain a high-level idea of how so that you can gain a high-level idea of how-level idea of howlevel idea of how
testing is conducted. In general, no matter what testing concepts, methodology, or ideologytesting concepts, methodology, or ideologyg concepts, methodology, or ideologymethodology, or ideology or ideology
you subscribe to, you will face the following test cases:

Functional requirement testingunctional requirement testingrequirement testing testing

Non-functional requirement testingon-functional requirement testing-functional requirement testingfunctional requirement testing

Acceptance testing

Functional requirement testing
Functional requirement testing is meant to test the code, a function, or a module of a, or a module of a or a module of a
software system. For instance, going back to the code that we wrote for the previoussystem. For instance, going back to the code that we wrote for the previous. For instance, going back to the code that we wrote for the previous
chapters, the functional requirements consists of the following:functional requirements consists of the following: requirements consists of the following:

1. Check user's input for validity.

2. If the input from step 1 is valid, a new input box will appear on the right-hand sideis valid, a new input box will appear on the right-hand sides valid, a new input box will appear on the right-hand side
of the current input box, after the users mouse moves on to the next input box.s on to the next input box. on to the next input box..

3. Provide the correct calculation output based on the users input. For example, if thecalculation output based on the users input. For example, if the output based on the users input. For example, if the
user requires 1,000,000 dollars for retirement, and he only has 500,000 dollars by
the time he retires, then he will not be able to retire.en he will not be able to retire.n he will not be able to retire.

Examples of functional requirement testing that are covered in this chapter are as follows:functional requirement testing that are covered in this chapter are as follows: requirement testing that are covered in this chapter are as follows: as follows::

Web pageeb page tests

Boundary testing

Equivalencequivalence partitioning

Chapter 4

[121]

Non-functional requirement testing
Non-functional requirement testing refers to testing requirements that are not relatedrequirements that are not related that are not related
to the functionality or specific behaviour of the software. Rather, it is a requirement thatbehaviour of the software. Rather, it is a requirement that of the software. Rather, it is a requirement thatthe software. Rather, it is a requirement that software. Rather, it is a requirement that, it is a requirement that it is a requirement thatrequirement that that
specifies criteria that can be used to judge the operation of a software.operation of a software. of a software.

For example, a functional requirement would be that our software should be able torequirement would be that our software should be able to would be that our software should be able to
store the values that our users have entered, and a non functional requirement is thats have entered, and a non functional requirement is that have entered, and a non functional requirement is thatrequirement is that is that
the database should be updated in real-time.real-time..

Another example that is related to our sample code in previous chapters is that a functionalfunctional
requirement would be a software, which is able to calculate whether our user is able to
retire on time, and a non-functional requirement would be one in which our user interfacerequirement would be one in which our user interface would be one in which our user interfacebe one in which our user interface one in which our user interface
should be intuitive. Do you see the difference between non functional requirements and Do you see the difference between non functional requirements and see the difference between non functional requirements andsee the difference between non functional requirements andee the difference between non functional requirements and
functional requirements, now?requirements, now? now?

Examples of non functional requirement testing that are covered in this chapter arefunctional requirement testing that are covered in this chapter are requirement testing that are covered in this chapter are
as follows::

Performance testing

Usability testing

Integration testing

Other non-functional requirements that you are likely to encounter throughout your career
as a software developer are as follows: as follows::

Fast loading of pagesast loading of pages

Search engine optimized web pagesearch engine optimized web pages

Documentation of the software that you have createdocumentation of the software that you have createdhave created created

Efficiency of the system of the system

Reliability of the software of the software

Interoperability of the software code that you have produced. For instance, you can
code JavaScript across major browsers

Acceptance testing
Acceptance testing is usually the final phase of the entire testing process. This is oftenThis is often is often
done prior to the final acceptance of the software by the customer. Acceptance testingAcceptance testingcceptance testing
can be further divided into two parts. The software vendor performs the acceptance testingtwo parts. The software vendor performs the acceptance testing parts. The software vendor performs the acceptance testing The software vendor performs the acceptance testingsoftware vendor performs the acceptance testing
first, and then acceptance testing by the end users (known as user acceptance testing)en acceptance testing by the end users (known as user acceptance testing)n acceptance testing by the end users (known as user acceptance testing)
is performed.

Planning to Test

[122]

Acceptance testing is the time where your customer (or the end-user) will perform actualcustomer (or the end-user) will perform actual (or the end-user) will perform actual
testing (similar to actual usage of the system) on the software that you have created. Aactual usage of the system) on the software that you have created. A usage of the system) on the software that you have created. A
typical process will include the creation of test cases by the end users that reflect businessthe creation of test cases by the end users that reflect business creation of test cases by the end users that reflect business
use of the software.

If you are using agile testing methods, such test cases are often referred to as stories.
It depends on how the customer will use them in a business setting. And after the user how the customer will use them in a business setting. And after the user
acceptance tests, you will transfer ownership of the product to your customers.ownership of the product to your customers. of the product to your customers.customers..

With the most common testing scenarios covered, we will move on to the specifics of thethe most common testing scenarios covered, we will move on to the specifics of the most common testing scenarios covered, we will move on to the specifics of the we will move on to the specifics of themove on to the specifics of the
testing concepts. We will start with one of the most commonly-heard testing concepts, thestart with one of the most commonly-heard testing concepts, the
black box testing concept.

Black box testing
Black box testing belongs to the "box approach", where a piece of software is regarded as
a box and the box contains various functions, methods, classes, and so on. Metaphorically,
a "black box" typically means that we cannot see what is inside the box. This means that
we implement the test without knowing the internal structure of our program; we take an
external perspective of the program, using valid and invalid inputs in order to determine ifif
the output is correct. output is correct.is correct..

Because we have no knowledge about the internal structure and code of the program,
we can only test the program from a user's point of view. In this case, we might try to
determine what the major functions are, and then attempt to implement our test
based on these functions.

The main advantage of black box testing is that the test results are often unaffiliated,
because the tester has no knowledge of the code. However, the disadvantage is that because
the tester has no idea of what the code is about, the tester may create tests or perform tests
that may be repetitive, or tests that fail to test the most important aspects of the software.
Or worse, the tester may miss out an entire function or method.

That is why, in the real world, test cases are prepared in the early phases of the development, in the real world, test cases are prepared in the early phases of the development in the real world, test cases are prepared in the early phases of the developmentthe early phases of the development early phases of the development
cycle, so that we will not miss out on certain requirements. The advantage is that testers willThe advantage is that testers will advantage is that testers willadvantage is that testers will is that testers will
have access to the required test cases, but at the same time, the testers need not have full
knowledge of the code.

Some examples of black box testing include usability testing, boundary testing, and
beta testing.

Chapter 4

[123]

Usability tests
In simple terms, usability testing typically involves testing from the user's point of view, to
see if the program we have created is easy to use. The key objective here is to observe users
using our program, to discover errors or areas of improvement. Usability testing generally
includes the following aspects:

Performance: especially in terms of the number of clicks (or actions) that a user hasespecially in terms of the number of clicks (or actions) that a user has that a user has a user hass
to take in orders to complete a particular task, such as signing up as a member, ors to complete a particular task, such as signing up as a member, or to complete a particular task, such as signing up as a member, or
purchasing a product form a website, and so on., and so on. and so on.

Recall: can users remember how to use the program after not using it for acan users remember how to use the program after not using it for a not using it for a for afor a
certain period? period?

Accuracy: does our program design result in mistakes by the end users?does our program design result in mistakes by the end users?result in mistakes by the end users? in mistakes by the end users? users?users??

Feedback: feedback is certainly one of the most important AJAX-related application is certainly one of the most important AJAX-related applicationcertainly one of the most important AJAX-related application one of the most important AJAX-related application-related applicationrelated application
issues. For instance, after submitting an AJAX form, a user will typically wait for
some form of feedback, (in the form of visual feedback, such as a success message). a success message).).
But imagine this—if there is no form of visual feedback or success message, how will—if there is no form of visual feedback or success message, how willif there is no form of visual feedback or success message, how will
the user know if he has submitted the form successfully or unsuccessfully?

Boundary testing
Boundary testing is a form of testing method where the maximum and minimum values are
tested. Boundary testing sometimes includes the testing of error values and typical values.

For instance, in the program in the previous chapters, the maximum number of characters
we allow for the entry of names are 20 characters.

Equivalence partitioning
Equivalence partition testing is a technique that divides a range of data into partitions from partition testing is a technique that divides a range of data into partitions fromdivides a range of data into partitions from a range of data into partitions from
which test cases can be derived. For instance, for input boxes accepting a users' age, itFor instance, for input boxes accepting a users' age, itor instance, for input boxes accepting a users' age, it
should exhibit the following partition:partition::

Note that only positive values are accepted for our example to read in a users' age,to read in a users' age,
as a person's age should technically be positive. Therefore, any negative values are, any negative values are any negative values are
unacceptable values. values.

For the range that is less than -2231 and larger than 231-1, it is asssumed that the integers can
only hold values between -231 and 231-1 due to hardware and EMCA operator requirements.

Planning to Test

[124]

Beta testing
Beta testing has been popularized by the current popular Web 2.0 companies, such as
Google, where web applications are often released to a limited audience other than the core
programing team. Beta testing occurs after alpha testing, where most of the bugs and faults
have been detected and fixed. Beta testing is often used as a way to gain feedback from
prospective users.

Such a process is commonly seen in open source projects, such as Ubuntu (an open source(an open sourcean open source
operating system based on Linux), jQuery (a JavaScript library), and Django (a Python-based system based on Linux), jQuery (a JavaScript library), and Django (a Python-based), jQuery (a JavaScript library), and Django (a Python-based, jQuery (a JavaScript library), and Django (a Python-basedjQuery (a JavaScript library), and Django (a Python-basedQuery (a JavaScript library), and Django (a Python-based(a JavaScript library), and Django (a Python-baseda JavaScript library), and Django (a Python-based), and Django (a Python-based and Django (a Python-based(a Python-baseda Python-based-basedbased
web framework). Such open source projects or software typically have a series of alpha and). Such open source projects or software typically have a series of alpha and. Such open source projects or software typically have a series of alpha andrce projects or software typically have a series of alpha andce projects or software typically have a series of alpha andve a series of alpha and a series of alpha andseries of alpha and
beta releases. They also typically have release candidates prior to releasing a major version
of the software or project.

White box testing
White box testing is also known as clear box testing, glass box testing, or transparent testing.
White box testing can be seen as the opposite of black box testing; we test the program with
knowledge of the internal structure of our program. We take an internal perspective of the
program, and use this perspective when we implement our test plan.

White box testing typically occurs when the test has access to the internal code and data
structures of the program. Because we take an internal perspective of our program and
with knowledge of our source code, we design the test plan based on our code.

We might find ourselves tracing the path of how our code is executed and work out what are
the input and output values for various functions or methods of our program.

Some examples of white box testing include Branch testing, and Pareto testing.ranch testing, and Pareto testing.areto testing.

Branch testingtestingesting
Branch testing is a concept where each branch of the code should be tested at least once.
This means that all functions or code that has been written should be tested. In softwarehis means that all functions or code that has been written should be tested. In software
testing, there is a measure known as code coverage, which refers to how much source code, which refers to how much source code which refers to how much source codewhich refers to how much source code refers to how much source code
of a program has been tested. Some of the more important types of branch testing coveragebranch testing coverage testing coverage
includes the following: the following::

Functional coverage: where we make sure that each function of the code has beenunctional coverage: where we make sure that each function of the code has been: where we make sure that each function of the code has been where we make sure that each function of the code has been
called (tested)

Decision coverage: where each of the thethe if else statements has been tested. Therestatements has been tested. There has been tested. There. There There
might be cases where the if part of the code works but not the else part of the
code, and vice versa., and vice versa. and vice versa.

Chapter 4

[125]

Pareto testing
Pareto testing is what I personally call "real world" testing, and is conducted under strict
time and money constraints. This is because Pareto testing only focuses on the most used
functions; the most frequently used functions are what matter the most and hence we
should focus our time and effort on testing these functions. Alternatively, we may see
Pareto testing such that most bugs come from a small handful of functions of our programs;
therefore, by spotting these functions, we can test our program much more effectively.

Pareto testing is derived from an idea called "Pareto Principle" or perhaps
better known as the "80-20 principle". What the Pareto Principle suggests is
that roughly 80% of the effects come from 20% of the causes. For instance,
80% of the sales revenue may come from 20% of the sales team or customers.
Or another example would be 80% of the world wealth is control by 20% of the
world's population. Applied in our case here, we can say that 80% of the bugs
or program errors come from 20% of our code, and therefore we should focus
testing on that particular 20% of the code. Alternatively, we can say that 80%
of the program's usage activity comes from 20% of our code. Similarly, we can
focus testing on that particular 20% of the code. Just for the record, pareto Just for the record, paretoJust for the record, paretost for the record, paretothe record, pareto record, pareto
testing can be regarded as a general testing principle, and not just a form ofgeneral testing principle, and not just a form of testing principle, and not just a form of and not just a form of not just a form of
white box testing.

Unit tests
Unit testing breaks up code into logical chunks for testing, and generally focuses on
one method at a time. A unit can be seen as the smallest possible chunk of code, such
as a function or method. This means that in the ideal situation, each unit should be
independent from all other units.

When we are performing unit testing, we attempt to test each function or method as we
complete it, thus making sure that whatever code we have works before we move on to, thus making sure that whatever code we have works before we move on to
the next function or method.

This helps to reduce errors, and you may have noticed that we have somehow applied the
idea of unit testing when developing the JavaScript program in the previous chapters. As we
create each function, we try to test it whenever possible.

Some of the benefits of unit testing includes minimization of errors, and allowing ease of
change, because each function or method is tested individually in isolation and, to a good
extent, simplifies integration.

The main benefit, in my opinion, is that unit tests are flexible and allow ease ofhe main benefit, in my opinion, is that unit tests are flexible and allow ease of in my opinion, is that unit tests are flexible and allow ease of, is that unit tests are flexible and allow ease of is that unit tests are flexible and allow ease of unit tests are flexible and allow ease ofunit tests are flexible and allow ease of flexible and allow ease ofle and allow ease of and allow ease ofallow ease ofease of
documentation. This is because as we write and test new functions, we can easily take note
of what the problems are, and whether the code can work correctly. In effect, we are doing
incremental documentation—documenting the results as we test.—documenting the results as we test.documenting the results as we test.

Planning to Test

[126]

Unit testing is also an integral part of integrated testing, especially in the bottom-up
approach, as we test our program from the smallest possible unit before moving on to larger
units. For example, as I was creating the code for For example, as I was creating the code for Chapter 2hapter 22, Ad Hoc Testing and Debugging
in Javascript, I essentially carried out unit testing informally. I carried out unit testing byI essentially carried out unit testing informally. I carried out unit testing by essentially carried out unit testing informally. I carried out unit testing bycarried out unit testing by out unit testing by
treating each of the functions as individual units, and tested each JavaScript function withed each JavaScript function with each JavaScript function with
the related HTML input field, in order to make sure that the correct output was achieved. HTML input field, in order to make sure that the correct output was achieved.
This technique can be seen as part of performing continuous integration
as new code is being written.

Continuous integration is a process where developers integrate their code frequently, inontinuous integration is a process where developers integrate their code frequently, indevelopers integrate their code frequently, in integrate their code frequently, in
order to prevent integration errors. This is often done with the help of automated buildsThis is often done with the help of automated buildshis is often done with the help of automated buildsthe help of automated builds help of automated builds
of the code (and includes tests) to detect integration testing. As we create new code, it isAs we create new code, it iss we create new code, it is, it is it is
important that we integrate with the existing code to make sure that no compatibility issues
or new bugs (or even old bugs) are introduced. Continuous integration is becoming popular
as it integrates unit tests, revision control, and build systems.t integrates unit tests, revision control, and build systems. integrates unit tests, revision control, and build systems., and build systems. and build systems.

Web page tests
As mentioned previously, web page testing is a form of functional testing, and typically refersfunctional testing, and typically refers testing, and typically referstypically refers
to the testing of the user interface, from the user's point of view. For our purposes here, we
would test our JavaScript program in conjunction with HTML and CSS.

Web page testing also includes testing for correctness in terms of different browsers and
platforms. We should at least focus on the major web browsers such as Internet Explorer and
Firefox, and see if the presentation and JavaScript program works under different browsers.

To have a brief idea regarding the usage of browsers, you might want to head down toregarding the usage of browsers, you might want to head down tothe usage of browsers, you might want to head down tobrowsers, you might want to head down to, you might want to head down to
http://www.w3schools.com/browsers/browsers_stats.asp to see which browsersich browsers browsers
are popular, in decline, or on the rise.decline, or on the rise. or on the rise.the rise. rise..

It appears that Google Chrome is gaining a lot of momentum, and it has a goodt appears that Google Chrome is gaining a lot of momentum, and it has a goodChrome is gaining a lot of momentum, and it has a good gaining a lot of momentum, and it has a good
chance of becoming a popular web browser; in less than two years, Google
Chrome has increased its market share from 3.15 percent to 14.5 percent, based percent to 14.5 percent, based to 14.5 percent, based percent, basedbased
on the statistics provided by w3schools. This increase in popularity is in part duethe statistics provided by w3schools. This increase in popularity is in part due statistics provided by w3schools. This increase in popularity is in part due
to its JavaScript engine performance.performance..

The other main focus of web page tests also includes checking for the most frequently-used
user behaviors, such as illegal and legal values, login, logout, erroneous behavior of the
users, SQL, HTML injection, checking of HTML links, images, the possibility of robot attacks,, HTML injection, checking of HTML links, images, the possibility of robot attacks,
and so on.

As SQL, HTML injection, and robot attacks are out of the scope of this book, we will focus on
the other issues, such as making sure that the web page will work under different browsers,
testing for illegal and legal values, erroneous behavior, and frequent behaviors.

Chapter 4

[127]

Performance tests
Performance tests have a wide range of genres such as load testing, stress testing,s such as load testing, stress testing, such as load testing, stress testing,
endurance testing, isolation testing, spike testing, and so on. I will not attempt to bog youtesting, spike testing, and so on. I will not attempt to bog you testing, and so on. I will not attempt to bog you, and so on. I will not attempt to bog you and so on. I will not attempt to bog youattempt to bog you to bog you
down with the details. Instead, I will focus on two of the more common issues that you willthe details. Instead, I will focus on two of the more common issues that you will details. Instead, I will focus on two of the more common issues that you will, I will focus on two of the more common issues that you will I will focus on two of the more common issues that you willI will focus on two of the more common issues that you will will focus on two of the more common issues that you willthat you will you will
face as a JavaScript programer.

Firstly, performance can refer to the amount of time required for the client to download adownload a a
piece of JavaScript. You may argue that download time depends on the Internet connection..
But there is one simple thing that you can do to reduce the size of your JavaScript withoutut there is one simple thing that you can do to reduce the size of your JavaScript withoutthe size of your JavaScript without size of your JavaScript without
refactoring or rewriting it, and that is compressing your JavaScript code. A good example of, and that is compressing your JavaScript code. A good example of and that is compressing your JavaScript code. A good example ofand that is compressing your JavaScript code. A good example ofnd that is compressing your JavaScript code. A good example ofis compressing your JavaScript code. A good example ofcompressing your JavaScript code. A good example of
this would be the JQuery library, which we introduced in, which we introduced in which we introduced in Chapter 3hapter 33, Syntax Validation. If you
visit the JQuery home page at page atpage at http://jquery.com, you may have noticed that JQuery
comes in two forms—a production version and a development version. The production—a production version and a development version. The productionproduction version and a development version. The productionThe productionhe production
version is minified, and the file size is 24KB, whereas the development version is 155KB. minified, and the file size is 24KB, whereas the development version is 155KB. and the file size is 24KB, whereas the development version is 155KB.
Obviously, the production version is smaller in file size and hence improves performancebviously, the production version is smaller in file size and hence improves performancethe production version is smaller in file size and hence improves performance production version is smaller in file size and hence improves performance
in terms of downloading the JavaScript.downloading the JavaScript. the JavaScript.

Compressing your code—or minifying your code—refers to an act where your minifying your code—refers to an act where you minifying your code—refers to an act where youyour code—refers to an act where you code—refers to an act where you
remove all unnecessary white spaces and lines from your code in order tounnecessary white spaces and lines from your code in order to white spaces and lines from your code in order to
reduce file size. Some code minifiers automatically remove comments, replaceminifiers automatically remove comments, replacers automatically remove comments, replaces automatically remove comments, replace automatically remove comments, replace
functions, variables, and even encode in different codings., and even encode in different codings. and even encode in different codings.

Secondly, performance can also refer to the speed at which a particular piece of codeperformance can also refer to the speed at which a particular piece of code also refer to the speed at which a particular piece of codeparticular piece of code piece of code
executes for any given amount of input. In general, we need to use external libraries or toolsIn general, we need to use external libraries or toolsn general, we need to use external libraries or tools
to help us find out which parts of our code are performing relatively slower than the others,are performing relatively slower than the others, performing relatively slower than the others,
or where the bottlenecks are. Related tools, and how we can apply performance testing, willperformance testing, will testing, will
be covered in Chapter 6, Testing more complex code.

Integration testing
Integrated testing is among the last steps of the testing process prior to acceptance testing. among the last steps of the testing process prior to acceptance testing. of the testing process prior to acceptance testing. prior to acceptance testing. to acceptance testing. acceptance testing..
Because we have made sure that the basic building blocks of the program work correctly as
an individual unit, we will now need to make sure if they can work together.

Integration testing refers to the testing of all of the different components of our program.
The different components can refer to the various units that we have talked about so far.
The main objective of integration testing is to ensure that the functional, performance, and
reliability requirements are met. We also test the different units together and see if they can
work; we'll need to check for any irregularities when combining the units together.

Integration testing can take different forms, such as top-down and bottom-up approach.

Planning to Test

[12�]

In the top-down approach, we start with the highest-level integrated module, followed
by the sub-modules or functions of each module. On the other hand, bottom-up testing
starts from the lowest level components before moving on to the upper-level components.

Based on the sample code that we have seen so far, it would be difficult to understand how
integrated testing works. In general, if we view the HTML code as a unit, CSS as a unit, and
each individual JavaScript function as a unit, we can see that integrated testing would include
testing all three together and making sure that it is correct.

In the bottom-up approach, we begin testing from the basic units of code. As we test the basic
units of code, we move up to test larger units of code. This process is similar to unit testing.

Regression testing–repeating prior testing after making changes
Regression testing focuses on uncovering errors in a program when a program is
being modified or upgraded. In real-life situations, we tend to make changes to a
program— whether this is upgrading it, adding new features, and so on. The key point
is that as we make changes to a program, we need to test the new components to see
if they work in conjunction with the old components.

We need to perform regression testing because research and experience have shown
that as a program is being modified, new or old errors may appear. For instance, an old,
previously-fixed bug may be re-introduced into the program when a new feature is being
added, or the new feature itself may contain a bug that affects the existing features. This
is where regression testing comes in: we perform previous tests to make sure that the old
components are still running and that no old faults have re-emerged. We test the new
features with the old components to ensure that the entire system is working. Sometimes,
in order to save time and resources, we may only perform testing on the new features
in conjunction with the old components. At this point, we can apply impact analysis toAt this point, we can apply impact analysis to
determine the impact area of the application, by adding or modifying code.

Regression testing is as real as it gets. This is because as a program grows, the chances
are that you will make changes to your code. As you make changes to your code there is a there is a
likelihood that bugs or incompatibilities may be introduced to your program, and regression that bugs or incompatibilities may be introduced to your program, and regression, and regression regression
testing helps you to spot such mistakes.

Testing order
We have now covered the required background knowledge, so it is time to understand
what kind of tests we should start with. The order in which we carry out the tests depends
on whether we want to implement bottom-up testing or top-down testing. There is nothing
wrong with either order of testing, but I personally prefer bottom-up testing: I'll typically
start with unit testing first, followed by other types of tests (depending on what the program
is like), and finish off with integration testing.

Chapter 4

[12�]

The main reason for taking this approach is that unit testing allows us to find errors in
the code much earlier; this prevents bugs or errors from piling up. In addition, it provides
flexibility in how you choose to document the test results.

However, if you prefer the top-down approach, you can always start by testing the program
as if you were an end user.

In the real world, especially in terms of testing web applications, it can be difficult to
differentiate (at least conceptually) between bottom-up testing and top-down testing. This is
because although the user-interface and programing logic are separated, we really need tod, we really need to, we really need to
test both at the same time in order to understand if it works the way that we want it to.

Nonetheless, the testing order should finish with user acceptance testing, because the end
users are the ones who will be using our code eventually.

In the next section, we will show you how to document your test plan. You will notice that
we will be performing tests from the users' point of view. Now, it is time to document ourill be performing tests from the users' point of view. Now, it is time to document ourperforming tests from the users' point of view. Now, it is time to document ouring tests from the users' point of view. Now, it is time to document our tests from the users' point of view. Now, it is time to document our. Now, it is time to document ourNow, it is time to document our
test plan.

Documenting your test plan
Now that we have covered the required testing concepts, it is time to learn how we can
create the test plan. At the same time, we will document our test plan; this will serve as a
basis for the next part of this chapter, where we will apply the test.

The test plan
Our test plan will consist of some of the concepts we have covered earlier, such as web page
testing, boundary testing, integration testing, and others. Because we are applying the testion testing, and others. Because we are applying the test testing, and others. Because we are applying the test
on the code we have used in Chapter 2, Ad Hoc Testing and Debugging in Javascript, we have
the advantage of knowing what the code is about. Therefore, we can design our test process
in such a way that it can incorporate ideas from both black box testing and white box testing.

You might want to go to the source code folder and open the sample_test_plan.doc
file, which is our sample test plan. This is a very simple and informal test plan, which contains which is our sample test plan. This is a very simple and informal test plan, which contains
only the bare minimum of the required components. If you are writing documentation for
your own reference, you can save on time and effort by using a simple document. However,
if you are preparing a test plan for a client, you will need a more elaborate document. For
simplicity sake, we'll use the sample document provided in the source code folder to help
you understand the planning process quickly. I will briefly run through the components of
our test plan and at the same time, I will introduce to you the main components of our
test plan.

Planning to Test

[130]

Versioning
In the first component, you will notice that there is a version table, which documents the
changes in the test plan. In the real world, plans change and therefore, it is a good habit to
keep track of the things that have changed.

Another way to keep versioning easy and maintainable is to use version
control software such as Git or BitBucket. Such versioning tools keep a log of
the changes that you have made in your code; this will enable to trace what
changes you have made, and this makes creating tests plans a lot easier.
You can visit http://git-scm.com/ to learn more about Git, andit, andand
http://bitbucket.org/ to learn more about BitBucket.

Test strategy
The next important component that you should notice is the test strategy. The test strategy
represents the main thoughts and ideas that we will be using for our test plan. You will see
that we are employing both white box and black box testing, along with unit testing and
integration testing. Because our JavaScript program is web-based, we are implicitly carrying
out a form of web page testing, although this is not mentioned in the subsequent parts of
the chapter. For each phase of the test, we will decide on the test values required. Also, if
you look at the sample_test_plan.doc, you will see that I have added, in the form of a
brief description of the expected values, the result or response for each part of the test.

Testing expected and acceptable values by using white box testing
The first thing that we will be doing is white box testing by using unit testing. Because we
have a strong understanding of the code and user interface (the HTML and CSS code), weg understanding of the code and user interface (the HTML and CSS code), we understanding of the code and user interface (the HTML and CSS code), we
will apply the test at the user-interface level. This means that we will test the program by
entering the various test values that we have decided upon.

In this case, we will use the program as we have already used in Chapter 2, Ad Hoc Testing and
Debugging in Javascript, and Chapter3, Syntax Validation, and see if the program works the
way that we intended it to. We will be using values that are expected and acceptable here.

The input will be what the program requires us to enter—for input fields that require us to
enter down our name, place of birth, and so on, we will enter characters into it. Input fields
that require numbers as inputs, such as age, the age at which we would like to retire, salary,
expenses, and so on, we will enter numbers.

Chapter 4

[131]

The details of the input are as follows (the input values are for demonstrationdetails of the input are as follows (the input values are for demonstration as follows (the input values are for demonstration
purposes only):

Input fields Input value (case 1) Input Value (case 2)

Name Johnny Boy Billy Boy

Place of birth San Franciscoan Francisco San Franciscoan Francisco

Age 25 25

Spending per month 1000 1000

Salary per month 100000 2000

Age at which you wish to retire 55 55

Amount of money I want byI want by want by
retirement age

1000000 1000000

For each of the input values, we would expect a corresponding input field to be created
dynamically in the middle of the screen, under the header Response, and at the same time,
the original input field would be disabled. This is known as the expected output, result,
or response for the test. This goes on for the rest of the input fields for the first form. An
example of the dynamically-created field is shown in the following screenshot:

Notice that in the middle of the screenshot, under the headerthe header header Response, there are two input there are two inputare two input two inputtwo input input
fields. These input fields are created dynamically.These input fields are created dynamically.hese input fields are created dynamically.

Planning to Test

[132]

Testing expected and unacceptable values by using black box testing
The second thing that we will be doing is to perform black box testing by employing
boundary value testing. There are two parts to this test: we will first test the boundary values
of the program to see if the output is correct. The inputs are similar to what we have used
for white box testing, except that we will use unusually large numbers, or unusually large
number of characters, for each input. We will also use single number and single characters as
part of our inputs. The output for each of the inputs should be similar to what we have seen
in white box testing.

To be more specific, we will be using the following test values (note that the test values areo be more specific, we will be using the following test values (note that the test values are
purely for demonstration purposes only; when you are creating your program you have to
decide what suitable boundary values should be used):

Input fields Minimum Value Common Value Maximum value Comments

Name A single
character, such
as 'a'

Eugene An extremely
long string, nott
more than 255than 255255
characters..

Range of values (X):

Single character 1 <= X1 <= X<= X
<= 255 characters

Place of birth A single
character, such
as a

New York City An extremely
long string, nott
more than 255
characters..

Range of values (X):

Single character 1 <= X1 <= X<= X
<= 255 characters

Age 1 25 No more thano more than
200 years old

Range of values (X):

1 <= X <= 200

Spending per
month

1 2000 1000000000 Range of values (X):

1 <= X <= 10000000001000000000

Salary peralary per
month

2 5000 1000000000 Notice that that we are
assuming that our user that our user
earns more than he
spends.

Range of values (X):
1 <= X <= 1000000000

Age at which
you wish to
retire

This age should
be greater than
the present age

This age should
be greater than
the present age

This age should
be greater than
the present age

Range of values (X):
1 <= X <= 200

Amount of
money I wantI want want
by retirement
age

We will be using
1 here

A suitable
number, such
as 1000000

No more than ao more than a
trillion dollars

Range of values (X):
1 <= X <= 1000000000

Chapter 4

[133]

If you refer to the sample test document, you will realize that I have provided a sample
range of values for each of the input fields.

Remember that we've touched on equivalence partitioning in the earlier
sections? In practice, given a boundary value, we would test three values
relating to the given test value. For example, if we want to test a boundary
value of '50', then we will test on 49, 50, and 51. However for simplicity's
sake, we will be testing on the intended value only. This is because in the
next chapter we will be carrying out the actual test for the given values; it
can get repetitive and tedious. I just want you to know what the real world
practices are.

The second part of this test is that we will test for expected illegal values. In the first values. In the first. In the first In the first
scenario, we will be using values that are both accepted and unaccepted. The input wille will be using values that are both accepted and unaccepted. The input will
be similar to what we have used for the white box testing phase, except that we will use will useuse
characters as inputs for input fields that require numbers, and vice versa. The expected
output each time that we enter an unaccepted value is that there will be an alert box telling
us that we have entered a wrong value.

For details, check the following table:

Input fields Input Value Input Value
Case 1ase 1

Input Value
Case 2

Input Value
Case 3

Name Digits or empty values 1 ~!@#$%^&*()" Testingesting

Place of birth Digits or empty values 1 ~!@#$%^&*()" testing

Age Characters and emptyharacters and empty
values

a ~!@#$%^&*()" -1

Spending per month Characters and emptyharacters and empty
values

a ~!@#$%^&*()" -1

Salary per monthalary per month Characters and emptyharacters and empty
values

a ~!@#$%^&*()" -1

Age at which you wish
to retire at

Characters and emptyharacters and empty
values

a ~!@#$%^&*()" -1

Amount of money II
want by retirement age

Characters and emptyharacters and empty
values

a ~!@#$%^&*()" -1

In general, for each of the expected illegal values, we should expect our program to alert us
with an alert box, telling us that we have entered the wrong type of values.

Planning to Test

[134]

In the second test scenario, we will attempt to enter non-alphanumeric values, such asnon-alphanumeric values, such as, such as
exclamation marks, asterisk signs, and so on..

In the third test scenario, we will test for negative values for input fields that requirerequire
numbers. The input values for the third test scenario are as follows:We are using -1 to The input values for the third test scenario are as follows:We are using -1 tohe input values for the third test scenario are as follows:We are using -1 tothird test scenario are as follows:We are using -1 to test scenario are as follows:We are using -1 toscenario are as follows:We are using -1 to are as follows:We are using -1 toWe are using -1 to
save some typing; so negative values such as -100000 don't make any difference.

Testing the program logic
For this part of the test plan, we will attempt to test the program logic. Part of ensuringor this part of the test plan, we will attempt to test the program logic. Part of ensuringPart of ensuringart of ensuring
program logic is to ensure that the inputs are what we need and want. However, certain
aspects of the program logic cannot be guaranteed simply by validating the input values alone.y validating the input values alone.validating the input values alone.

For instance, an implicit assumption that we have about the user is that we assume the
user will enter a retirement age that is bigger than his present age. While this assumptionretirement age that is bigger than his present age. While this assumption age that is bigger than his present age. While this assumption
is logically sound, users may or may not enter the value according to conventional
assumptions. Therefore, we need to guarantee the logic of the program is correct by, we need to guarantee the logic of the program is correct by we need to guarantee the logic of the program is correct byis correct byby
ensuring that the retirement age is greater than the present age.

The inputs for this test are as follows:he inputs for this test are as follows:inputs for this test are as follows: as follows:

Input fields Input value of first form

Name Johnny Boy

Place of birth San Franciscoan Francisco

Age 30

Spending per month 1000

Salary per monthalary per month 2000

Age at which you wish to retire 25

Amount of money I want byI want by want by
retirement age

1000000

The key thing to note here is that the value for "age at which you wish to retire " is smaller
than "age".

We should expect our program to spot this logical error; if it does not, we will need to fix
our program.

Integrated testing and testing unexpected values
The final phase is integrated testing, where we test the entire program and see if it works
together, which includes the first form, the second form which is derived from the first form,
and so on.

Chapter 4

[135]

In the first test scenario, we begin slow and steady by testing expected and acceptable
values. The input values for the first test scenario are as follows (the input values are for (the input values are for(the input values are for
demonstration purposes only):

Input fields Input ValueValuealue
(case 1)

Input Value
(case 2)

Input Value
(case 3)

Input Value
(case 4)

Name Johnny Boy Johnny Boy Johnny Boy Johnny boy

Place of birth San Franciscoan Francisco San Franciscoan Francisco San Francisco San Francisco

Age 25 25 25 25

Spending per month 1000 1000 1000 1000

Salary per monthalary per month 100000 2000 2000 100000

Age at which you wish
to retire

55 55 28 28

Amount of money II
want by retirement age

2000000 2000000 1000000 100000

Take note of the input values that are underlined. These input values are designed to
determine if we will get the correct response based on the input. For example, after entering
all of the values and submitting the dynamically-generated second form, the input values for
case 1 and case 3 will result in an output stating that the user will not be able to retire on
time, whereas the input values for case 2 and 4 will result in an output stating that the user
will retire on time.

Here's a screenshot that shows what the output looks like if the user can retire on time:

www.allitebooks.com

http://www.allitebooks.org

Planning to Test

[136]

The next screenshot shows the output if the user cannot retire on time:

Take note of the differences in text for the two different cases.different cases. cases.

For the full details of the results of the test case, open thethe full details of the results of the test case, open the full details of the results of the test case, open the sample_test_plan.doc file,
which can be found in the the source code folder of this chapter..

Now it's time for the second test scenario. In the second test scenario, we first finish fillingIn the second test scenario, we first finish fillingscenario, we first finish filling, we first finish filling
up the values in the first form. Before we submit the second form, which was created, which was created which was created
dynamically, we will attempt to change the values. The input values will include, we will attempt to change the values. The input values will include the values
that we have used for both white box testing and black box testing. The input values for thehave used for both white box testing and black box testing. The input values for the used for both white box testing and black box testing. The input values for the
first test scenario are as follows:

Input fields Input value of first form Input Value the second form
(random values)

Name Johnny Boy 25

Place of birth San Franciscoan Francisco 100

Age 25 Johnny Boy Boy

Spending per month 1000 Some characters

Salary per monthalary per month 100000 More charactersore characters

Age at which you wish to
retire at

20 Even more charactersven more characters

Amount of money I wantI want want
by retirement age

1000000 1000000

The main objective of this phase of the test is to test the robustness of the second form,
which we have not verified up to this point of time. If the second form fails, we will need to
change our code to enhance the robustness of our program.

We'll now move on to the next component of our test plan—errors or bugs found.

Chapter 4

[137]

Bug form
The last component helps us to record the bugs that we have found. This area allows us tocomponent helps us to record the bugs that we have found. This area allows us tohelps us to record the bugs that we have found. This area allows us to. This area allows us to
take note of what the errors are, what caused them, and the function or feature in whichthem, and the function or feature in which, and the function or feature in whichthe function or feature in whichfunction or feature in whichin whichwhich
these errors occurred. In general, whenever we spot an error, we need to take note of theese errors occurred. In general, whenever we spot an error, we need to take note of the errors occurred. In general, whenever we spot an error, we need to take note of thes occurred. In general, whenever we spot an error, we need to take note of the occurred. In general, whenever we spot an error, we need to take note of the In general, whenever we spot an error, we need to take note of the
exact function that resulted in the error, and comment on what the possible solutions may be.

Summary of our test plan
The components introduced above are some of the most important components of a test
plan. In general, for each phase of the test, we have stated our test data and our expected
output. Note that we are using this documentation as an informal way of reminding
ourselves of what tests needs to be done, the required inputs, expected outputs, and
more importantly the bugs that we have found. One thing not mentioned in this sample
documentation is the action to be performed for those bugs that are discovered; this will
be covered in the next chapter.

Summary
We effectively carried out the planning process for our test plan. Although our test plan isplanning process for our test plan. Although our test plan is process for our test plan. Although our test plan is
informal, we have seen how we can apply various testing concepts, coupled with different
test data values to test our program that we have created in previous chapters. that we have created in previous chapters. we have created in previous chapters.

Specifically, we covered the following topics:

We first started off with a brief introduction to the key aspects of software
engineering. We've learned that testing takes place after the implementation
(coding) stage.

We've learned to define the scope of our test by asking what our code is suppose to
do, making sure that it does what it is supposed to do, and finally testing for invalidd to do, and finally testing for invalid to do, and finally testing for invalid, and finally testing for invalid and finally testing for invalid
actions by users.

Next we covered various testing concepts such as white box testing, black box
testing, unit testing, web page testing, performance testing, integrated testing, page testing, performance testing, integrated testing,page testing, performance testing, integrated testing,, integrated testing, testing,,
and regression testing.

We also learnt that we need to test our program from different aspects, thust that we need to test our program from different aspects, thus that we need to test our program from different aspects, thus
enhancing the robustness of the program.

Although the testing concepts introduced in this chapter may be different in certaincertain
aspects, we can group them as: testing expected but acceptable values, expected
but unacceptable values, and unexpected values in general. We've also learnt to, and unexpected values in general. We've also learnt to and unexpected values in general. We've also learnt tot to to
test for logical errors based on our understanding of the code that we have written.errors based on our understanding of the code that we have written. based on our understanding of the code that we have written.

Planning to Test

[13�]

Finally we planned and documented our test plan, which includes the test process
description, test values, expected output and other important components, such as
versioning and a bug form.

Although testing methodologies can be substantially different depending on organization testing methodologies can be substantially different depending on organizationmethodologies can be substantially different depending on organization can be substantially different depending on organization
types and types of applications, the methods that are listed here are generally more suitableapplications, the methods that are listed here are generally more suitable, the methods that are listed here are generally more suitablethe methods that are listed here are generally more suitable methods that are listed here are generally more suitable
for lightweight web applications. However, the concepts also form the building blocks of. However, the concepts also form the building blocks of However, the concepts also form the building blocks ofHowever, the concepts also form the building blocks of the concepts also form the building blocks ofthe building blocks of building blocks of
large-scale, complex web applications.-scale, complex web applications.scale, complex web applications.

This chapter marks the end of planning for your test. Now brace yourself as we move on tohis chapter marks the end of planning for your test. Now brace yourself as we move on to
the next chapter, where we will carry out the test plan., where we will carry out the test plan. where we will carry out the test plan.

5
Putting the Test Plan Into Action

Welcome to the fifth chapter. This chapter is pre��y straightforward; wefifth chapter. This chapter is pre��y straightforward; we chapter. This chapter is pre��y straightforward; weis chapter is pre��y straightforward; weforward; we we
basically put the plan discussed in Chapter �, Planning to Test, into action. put the plan discussed in Chapter �, Planning to Test, into action.iscussed in Chapter �, Planning to Test, into action. in Chapter �, Planning to Test, into action.Chapter �, Planning to Test, into action.hapter �, Planning to Test, into action.�, Planning to Test, into action. into action.

Heres how we are going to implement our test plan. Well first start by testingeres how we are going to implement our test plan. Well first start by testing. Well first start by testingell first start by testingtesting
the expected and acceptable values, and follow this by testing the expected
but unacceptable values. Next, well test the logic of our program. Lastly, we'llLastly, we'llastly, we'll
perform integrated testing and testing of unexpected values or actions.

Apart from performing the above tests, here's what we will also cover in this chapter:

Regression testing in action—youll learn how to perform regression testing by fixing—youll learn how to perform regression testing by fixingyoull learn how to perform regression testing by fixing
bugs and then testing your program againen testing your program againn testing your program again

The differences between client-side testing and server-side testinghe differences between client-side testing and server-side testing

How using Ajax may make a difference to testing

What to do when a test returns a wrong result

What happens if your visitor turns off JavaScript

How to enhance performance by compressing your JavaScript codeow to enhance performance by compressing your JavaScript code

So let us get our hands dirty, and start testing right away.

Putting the Test Plan Into Action

[140]

Applying the test plan: running your tests in order
In this section, we'll simply apply the test plan to our program. For simplicity's sake, we will sake, we will we will
record any bugs or errors in the Bug Report Form found in the sample test plan from the
previous section. In addition to that, at the end of each test, we will record a Pass or Fail textsection. In addition to that, at the end of each test, we will record a Pass or Fail text. In addition to that, at the end of each test, we will record a Pass or Fail text
in the sample_text_plan.doc, which we created in the previous chapter. However, take which we created in the previous chapter. However, takethe previous chapter. However, take previous chapter. However, take
note that in the real world (especially if you are working on a custom project for your client),especially if you are working on a custom project for your client), if you are working on a custom project for your client),
it is extremely important that you document the results, even if your tests are correct. This isr tests are correct. This is tests are correct. This isThis ishis is
because, very often, producing the correct test results is part and parcel of handing over the
code to your client.

Just a reminder—the test plan that we are going to use was created in the previous
chapter. You can find the test plan in the source code folder of Chapter 4, entitled
sample_test_plan.doc. If you are in a hurry and would like to see the entire completed
test plan where all tests have been carried out already, head to the source code folder of
Chapter 5 and open up sample-testplan-bug-form-filled.doc.

In case you do not wish to flip the pages or open up your computer just to see the list of the
tests, the list of tests are as follows:

Test Case 1

Test Case 1a: White Box Testing

Test Case 1b: Black Box Testing

Test Case 1bi: Boundary Value Testing

Test Case 1bii: Testing for illegal values

Test Case 2: Testing Program's logic

Test Case 3: Integration Testing

Test Case 3a: Testing the entire program with expected values

Test Case 3b: Testing the robustness of the second form.

With this in mind, let us proceed to the first test.

Test Case 1: Testing expected and acceptable values
Testing expected and acceptable values refers to the white box test phase. We will now
execute the test as per our plan (this is First test scenario).

Chapter 5

[141]

Time for action – Test Case 1a: testing expected and acceptable
values by using white box testing

In this section, we will start our test by using values that we have predetermined during
the planning phase. The source code that you are using for this part of the chapter is
perfect-code-for-jslint.html, which can be found in the source code folder of
Chapter 3. What we will do here is enter the expected and acceptable values. We will start
testing by using the input values for input value case 1 as per our sample test document.

1. Open the source code in your favorite web browser.

2. When you open your program in your web browser, the focus should be on the first
input field. Enter the name Johnny Boy as per our plan. After you have entered
Johnny Boy in the first input field, go on to the next field.

As you change your focus to the next field, you will see a new input field appearing
on the right-hand side of the original input field that contains the value you have
entered. If this happens, then you have received a correct and expected output
for the first input. If you do not understand what this means, feel free to refer If you do not understand what this means, feel free to refer
back to Chapter 4hapter 44, Planning to Test, and look at the screenshot given for the and look at the screenshot given for thethe screenshot given for the screenshot given for theshot given for thehot given for the
expected output.

3. For the second input, we are required to enter a place of birth. Enter San Francisco,
as per the plan. Click on (or tab to) the next field.

Similarly to the first input field, after you move to the next field you will see a new
input field containing your input value. This means that you have the correct output
at this point.

4. This step is similar to the above step, except that the input value is now a number.
Enter your age as 25. Then move on to the next field. You should also see a new
input field on the right.

5. Now repeat the previous steps for the remaining fields for the form on the left.
Repeat this action until you see a Submit button appearing in the middle ofbutton appearing in the middle of
the screen.

If a new input field is dynamically created for each of your input, and each of the, and each of the and each of the
new input fields created dynamically contains the exact same input that you have
entered, then you have received the correct output. If not, the test has failed.en you have received the correct output. If not, the test has failed.n you have received the correct output. If not, the test has failed.
However, based on our tests, we have received the correct output.

Putting the Test Plan Into Action

[142]

6. Now, refresh the page in your browser, and repeat the test for the input valuesthe page in your browser, and repeat the test for the input valuesin your browser, and repeat the test for the input values
found in input value Case 2. You should also receive the correct output.

Assuming that both test cases produce the correct output, then congratulations, the correct output, then congratulations,the correct output, then congratulations,en congratulations,n congratulations,
there are no bugs or errors found in this phase of the test. There isn't anythingare no bugs or errors found in this phase of the test. There isn't anything no bugs or errors found in this phase of the test. There isn't anythingThere isn't anything
special or tedious in this part of the test because we already knew that we would
receive the expected output based on our input. Now, we will move to something
more exciting—testing expected but unacceptable values.

Test Case 1b: Testing expected but unacceptable values using
black box testing
In this section, you will continue to execute our test plan. As you continue with the tests, you
will see that our program is not robust enough and has some inherent errors in it. You will
learn that you will be required to take note of these; the information will be used later when
we debug the program (this is second test scenario). (this is second test scenario).(this is second test scenario).this is second test scenario).second test scenario). test scenario).).

Time for action – Test case 1bi: testing expected but
unacceptable values using boundary value testing

For this part of the test, we will continue to use the same source code as we have used in the
previous section. We'll start by performing boundary values testing. Therefore, we will begin section. We'll start by performing boundary values testing. Therefore, we will beginWe'll start by performing boundary values testing. Therefore, we will beginTherefore, we will beginherefore, we will begine will begin
the test by using the "minimum values", followed by "maximum values". We will skip thes", followed by "maximum values". We will skip the", followed by "maximum values". We will skip the. We will skip the
common values test case as that was similar to what we did in the previous test.

1. Once again, refresh the page in your web browser.the page in your web browser.

2. We'll first enter a single character'll first enter a single characterl first enter a single character a for the input field of name. After you have
entered the value, use your mouse to click on the next input field. You should see an
input field dynamically created on the right-hand side of the first input field, as for, as for as foras for
the previous test.

The output for this test is similar to what you have seen and experienced in thehe output for this test is similar to what you have seen and experienced in the
previous test. What we are trying to test for is whether the program accepts a
minimum value. For this phase of the test, we naïvely chose to accept a single
character as an acceptable input. Because this is acceptable, we should see an input
field that contains the value of a dynamically generated on the right-hand side of
the original input field. If you see that, you have the correct output., you have the correct output. you have the correct output.the correct output. correct output.

3. Similarly, we will enter a single character a for the input field for place of birth.
After you have entered the value, use your mouse to click on the next input field.
You will see an input field dynamically created on the right-hand side of the first
input field, as seen in the previous test.

Chapter 5

[143]

You should also receive the correct output for this input value. Now let us move oncorrect output for this input value. Now let us move on output for this input value. Now let us move on for this input value. Now let us move on this input value. Now let us move on
to the next input value.

4. We'll now enter the number 1 as planned for the input field age. Similarly, after youenter the number 1 as planned for the input field age. Similarly, after you the number 1 as planned for the input field age. Similarly, after you Similarly, after youimilarly, after you
have entered the value, move the focus to the next input field.

5. We'll repeat the test by entering the values as planned.

In general, we should not receive any errors at this point of the test. Similar to theshould not receive any errors at this point of the test. Similar to the not receive any errors at this point of the test. Similar to the
first test which we have performed earlier, we should see familiar output for each
of the inputs. However, I would like to point out an important point for this phase ofthe inputs. However, I would like to point out an important point for this phase of inputs. However, I would like to point out an important point for this phase of
the test:

We have naïvely chosen a minimum value that might not be practical. Consider
the various input fields that accept a single character value. To a large extent, our
original program logic doesn't seem to suit the real world cases. In general, we
should expect to have at least two or three characters for input fields that accept
character values. Therefore, we will take this as a bug in our program and we'll take
note of this on our "Bug Report Form". You may open the sample-testplan-bug-
form-filled.doc document and see how we can take note of this flaw.

Now that we have cleared the minimum values test case, it is time to move to theminimum values test case, it is time to move to the values test case, it is time to move to the
next test case—maximum values.—maximum values.maximum values.

6. As usual, refresh your web browser to clear all of the values that were previously
entered. We'll now begin by entering an extremely long string, of more than
255 characters.

As explained earlier, we should also receive a similar output—as explained earlier, we should also receive a similar output—a explained earlier, we should also receive a similar output—a—aa
dynamically-generated input field that contains our input value.

7. Similarly, enter the values for the remaining input fields using long strings or large
values. You should not face any errors.

While we do not have any obvious errors, you may have noticed that we have ad that we have a that we have a
similar problem to the one we experienced earlier on. Our program does not haveto the one we experienced earlier on. Our program does not have we experienced earlier on. Our program does not have
a boundary value for maximum values as well. It appears that if you try to enter if you try to enter
values that are larger than your maximum values, the program will still accept
them, as long as the values are not illegal. Similarly, if you try to enter a string that is
more than 200 characters, the program will still accept it because it is a legal value.
This means that our program does not limit the maximum number of characters
that a user can enter. This can be regarded as a bug. We'll also take note of this. This can be regarded as a bug. We'll also take note of this We'll also take note of this
programing error in our Bug Report Form. You might want to pop over to have a
look on how we recorded this error. Now that we have completed the first phase of Now that we have completed the first phase ofNow that we have completed the first phase of
our test for expected and unacceptable values, it is time to move on to the second
phase of this test—testing for expected illegal values.

Putting the Test Plan Into Action

[144]

Time for action – Test case 1bii: testing expected butTest case 1bii: testing expected but: testing expected but
unacceptable values using illegal values using illegal values

There are three input cases for this phase of the test. What we will do in the first case of the What we will do in the first case of the
test is enter numeric values for input fields that require character inputs and vice versa.

Input Case 1:
1. We'll once again refresh our browser to clear out the old values. Next we'll begin to

enter the expected illegal values. For the "name" input field, we'll enter a digit. This
can be any number, such as "1". Go on and test it. After you have entered the digit,
try to move your mouse cursor to the next input field.

As you attempt to shift the focus to the next input field, you should see an alert box
telling you that you have entered an incorrect type of value. If you see the alert box
as per our test plan, then there is no error at this point.en there is no error at this point.n there is no error at this point.error at this point.

2. In order to test the next field, we will need to enter a correct value for the first field
before we can move on to the next field. Alternatively, we can refresh the browser
and go directly to the second field. Assuming that you are using the first method,the second field. Assuming that you are using the first method, second field. Assuming that you are using the first method,that you are using the first method,you are using the first method,
let us enter a hypothetical name, Steve Jobs, and move on to the next input field.
Similarly, well try to enter a digit for the place of birth. After you have entered a
digit for the input field, try to move to the next field.

Once again, you will see an alert box telling you that you have entered an invalidwill see an alert box telling you that you have entered an invalid see an alert box telling you that you have entered an invalid
input and that you need to enter a text input. So far so good; there are no errors ortext input. So far so good; there are no errors orSo far so good; there are no errors orare no errors or or
bugs, and we can continue to the next field.

3. Well need to either refresh the browser and go directly to the third field, or wethe third field, or we third field, or we
will need to enter valid values for the name and place of birth fields before we
can move on to the third field. Regardless of the method used, we'll try to enterRegardless of the method used, we'll try to enter of the method used, we'll try to enter
a string for the age field. Once you have done that, attempt to move on to thehave done that, attempt to move on to the done that, attempt to move on to the
next input field.

You will get an alert box again, telling you that you have entered an input of
the wrong type. This is as per the plan, and is expected. Therefore, no errorsthe plan, and is expected. Therefore, no errorsplan, and is expected. Therefore, no errorsn, and is expected. Therefore, no errors and is expected. Therefore, no errors, no errors no errors
or bugs yet.

4. Repeat the previous steps for the remaining fields, and attempt to move on to the
next field as you enter the expected but illegal values.

For all of the remaining fields, you should receive alert boxes telling you thatreceive alert boxes telling you that alert boxes telling you that
you have entered an input of the wrong type, which is what we expect and
have planned for.

Chapter 5

[145]

Input Case 2:Case 2:
Now that we have completed the first test scenario, it is time to move on to the second test
scenario, where we try to enter non-alphanumeric values., where we try to enter non-alphanumeric values. where we try to enter non-alphanumeric values.

1. The testing process is fairly similar to the first test. We will first refresh theThe testing process is fairly similar to the first test. We will first refresh thehe testing process is fairly similar to the first test. We will first refresh the
browser, and then immediately enter the non-alphanumeric values for the firsten immediately enter the non-alphanumeric values for the firstn immediately enter the non-alphanumeric values for the firstalphanumeric values for the first values for the first
input field—the—the name input field. As per our plan, we will enterour plan, we will enterplan, we will enter ~!@#$%^&*() as
the input, and then attempt to move on to the next input field. input, and then attempt to move on to the next input field.

For the first input field, which requires a character input, you should see an alertor the first input field, which requires a character input, you should see an alert
box telling that only text input is allowed. If you see that, then our program worksonly text input is allowed. If you see that, then our program works text input is allowed. If you see that, then our program worksen our program worksn our program works
as planned. Now let us move to the next step.

2. For the next input field, we'll repeat the previous step and we should expect theand we should expect thend we should expect the
same output as well.

3. Now for the third input field, we proceed to enter the same non-alphanumeric inputthe same non-alphanumeric input same non-alphanumeric input
values. The only difference we should expect for this step is that the alert, which, which whichwhich
informs us that we have entered a wrong input, will tell us that we need to enter, will tell us that we need to enter will tell us that we need to enter
digits and not text.

4. We repeat the previous steps for the remaining fields, and in general we shouldprevious steps for the remaining fields, and in general we should steps for the remaining fields, and in general we should
expect to see an alert box informing us that we need to either enter text or enter
digits, depending on which input field it is. If this is the case, then all is well; there, depending on which input field it is. If this is the case, then all is well; there depending on which input field it is. If this is the case, then all is well; thereen all is well; theren all is well; there
are no related errors or bugs for this test scenario. no related errors or bugs for this test scenario.

Input Case 3:
Now it is time to perform the third test scenario, where we enter negative values for inputthe third test scenario, where we enter negative values for input third test scenario, where we enter negative values for input, where we enter negative values for input where we enter negative values for input
fields that require numerical inputs.

1. Once again, we'll refresh the browser to clear the old values. We'll proceed to enter
the values as planned for the first two input fields. We will enter Johnny Boy and
San Francisco for the input fields of name and place of birth, respectively.

2. Once you have performed the previous step, enterprevious step, enter step, enter -11 for the remaining input fields.
As you enter -1 for these fields, you should see that our program does not detect
negative values. Instead, it gives an incorrect response telling us that we should
enter digits.

In reality, our program should be robust enough to spot negative values. However,
as shown in the previous tests, our program appears to have the incorrect responseprevious tests, our program appears to have the incorrect response tests, our program appears to have the incorrect response
to an illegal value. Our program does spot the error, but it returns an incorrect. Our program does spot the error, but it returns an incorrect Our program does spot the error, but it returns an incorrectOur program does spot the error, but it returns an incorrectur program does spot the error, but it returns an incorrect
response. The response given is an alert box, telling you that the input must be a
digit. This is technically incorrect, because our input is a digit, albeit a negative one.This is technically incorrect, because our input is a digit, albeit a negative one.his is technically incorrect, because our input is a digit, albeit a negative one.albeit a negative one. a negative one.

Putting the Test Plan Into Action

[146]

This means that our program does spot negative values, but it returns an incorrect
response. This means that we have a serious bug here. We need to take note of this
bug in our sample documentation by documenting this error on the "Bug Report
Form". You may make a look at how I have documented this in the sample test
plan document.

Whew! This subsection is kind of long and tedious. That's right, testing can be
tedious, and by now you should see that a good program design will incorporate the
issues that we tested in this section. You will notice that, at least for our purposes
here, checking of the input values to make sure that the input is what we need is
fundamental to our program's success; if the input values are wrong, there is no
point in testing the remaining program, as we are almost certain to receive a
wrong output for a wrong input.

Test Case 2: Testing the program logic
In this subsection, we will attempt to test the robustness of the program in terms of the
program logic. Although we have somewhat tested the program logic by ensuring that theAlthough we have somewhat tested the program logic by ensuring that thelthough we have somewhat tested the program logic by ensuring that the
input is correct, there is one more aspect that we need to test according to our test plan, to test according to our test plan, test according to our test plan,
and that is the present age and the retirement age.

Time for action – testing the program logicthe program logic
In general, we will attempt to enter a retirement age that is less than the current age. Now
let us test the robustness of the program:

1. Let us refresh the browser, and then we'll enter the values as per our plan. Well firstLet us refresh the browser, and then we'll enter the values as per our plan. Well firstet us refresh the browser, and then we'll enter the values as per our plan. Well firsten we'll enter the values as per our plan. Well firstn we'll enter the values as per our plan. Well first
enter Johnny Boy and thenenn San Francisco for the input fields of name andand place of
birth, respectively.

2. Now, take note of this step: we will now enter 30 for age and continue with theand continue with thend continue with thethe
other fields.

3. When you reach the input fieldthe input field input field age at which you wish to retire, you will want to
enter a value that is less than the age field. As per our test plan, we will enter 25.
After this, we will attempt to move on to the next field.this, we will attempt to move on to the next field., we will attempt to move on to the next field.

Because we were able to successfully move on to the next field, this means thatthis means thatmeans that
our program is not robust enough. Our program should not accept a retirement
age value that is less than the present age value. Therefore, even if our program
does produce a final outcome, we can be sure that the output is not what we want,,
because the logic is already incorrect.

As such, we will need to take note of the logical error found in this phase of the test.
Well take note of this on the Bug Report Form once again. Now we will move on to
the final stage of our test.

Chapter 5

[147]

Test Case 3: Integration testing and testing unexpected values
We have reached the final phase of our test. In this subsection, we will move on to In this subsection, we will move on to, we will move on to we will move on to
integrated testing by first testing the whole program by using expected and acceptable
values, followed by breaking the flow of form submission by changing the values of the
second form.

Time for action –Test Case 3a: testing the entire program withTest Case 3a: testing the entire program with: testing the entire program with the entire program with
expected values

There are four sets of test values for the first test. In general, we will enter all values, and
then submit the form to see if we are getting the response that we are expecting: the input
values for input Case 1 and input Case 3 will result in an output stating that the user is not
able to retire on time, and the input values for input Case 2 and input Case 4 will result in an
output stating that the user will be able to retire on time. With that in mind, let us start with
the first set of input values:

1. Going back to your web browser, refresh your program, or re-open the source codeoing back to your web browser, refresh your program, or re-open the source code
if you have closed the program. We'll enter the values as planned:We'll enter the values as planned:e'll enter the values as planned: Johnny Boy andand
San Francisco forfor name and place of birth.

2. Next, we'll enter 25 for age and thenenn 1000 forfor spending per month. Well repeat
these steps for the remaining values, until we see the, until we see the until we see the Submit button that isbutton that is
dynamically generated on the second form.

3. Once you see the Submit button, click on the button to submit the values. You
should see some text being generated in the Final Response box. If you see that the
output contains the name, retirement age, the correct output value for the required
amount of money we need to retire, and more importantly the response you will be
able to retire by 55 years old, as shown in the following screenshot, then there areas shown in the following screenshot, then there areshown in the following screenshot, then there arein the following screenshot, then there areen there aren there areare
no bugs in the program.

Putting the Test Plan Into Action

[14�]

4. Now let us move on to entering the values for Case 2. Similarly, well refresh the
browsers, and then begin to enter all of the values as planned.en begin to enter all of the values as planned.n begin to enter all of the values as planned.

5. When you see the Submit button that is created dynamically, click on the button tot is created dynamically, click on the button to is created dynamically, click on the button to
submit the form. In this test case, you will see that the user will not {kind of crucialthis test case, you will see that the user will not {kind of crucial test case, you will see that the user will not {kind of crucialwill see that the user will not {kind of crucial see that the user will not {kind of crucialsee that the user will not {kind of crucial the user will not {kind of crucial
difference!} be able to retire on time, as shown in the following screenshot:shown in the following screenshot:in the following screenshot:

If you receive the output as shown in the previous screenshot, then there are noshown in the previous screenshot, then there are noin the previous screenshot, then there are noprevious screenshot, then there are no screenshot, then there are noen there are non there are noare no no
errors up to this point. So let's move on to the input values for the third case.third case. case.

6. Refresh your browser again, and then start entering the values as planned. The
values to take note of include the salary per month and age at which you wish to
retire. In general, we have set the values in order to test if we can create the output
to either be able to retire on time or be unable to retire on time.

7. Continue entering values until you see the Submit button that is dynamically
generated. Click on the Submit button to submit the form. You will see the
output as shown in the next screenshot:

Chapter 5

[14�]

If you received the previous output, then there are no errors or bugs.previous output, then there are no errors or bugs. output, then there are no errors or bugs.en there are no errors or bugs. there are no errors or bugs.are no errors or bugs. no errors or bugs.

8. Now, let us move on to the final case—case 4. We'll basically repeat the steps
as done previously. I just need you to take note of the input values of salary per
month. Notice that the input value is 100000, and that the retirement age did not
change. We are trying to simulate a situation where the user will be able to retire
on time.

9. Continue to enter the values until you see thethe values until you see the values until you see the Submit button that is dynamicallybutton that is dynamicallydynamically
generated. Click on thethe Submit button to submit the form. You will see the outputbutton to submit the form. You will see the output to submit the form. You will see the output will see the output
as shown in the next screenshot::

Once again, if you received the output shown in the previous screenshot, then younce again, if you received the output shown in the previous screenshot, then you shown in the previous screenshot, then you, then you
have received the correct output. And with this, we have completed the first part of
this test phase.

In general, we have tested the whole program to see if we are getting the expected
output. We used different values to generate the two possible outputs of being ablethe two possible outputs of being able two possible outputs of being ables of being able of being able
to retire on time or being unable to retire on time. Not only have we have received have we have received we have received
the correct output, we have also tested the robustness of our functions in terms of
calculating the outcome.

With the previous factors in mind, it is time to move on to the second phase of thethe previous factors in mind, it is time to move on to the second phase of the previous factors in mind, it is time to move on to the second phase of theprevious factors in mind, it is time to move on to the second phase of thein mind, it is time to move on to the second phase of the
test—testing the robustness of the second form.—testing the robustness of the second form.testing the robustness of the second form.

Putting the Test Plan Into Action

[150]

Time for action – Test Case 3b: testing robustness of the
second form

If you have been following me right from the first chapter, you may have noticed that wewe
have have only disabled the input fields for the form on the left, and not the input fields have only disabled the input fields for the form on the left, and not the input fields
on the right. Apart from doing it deliberately, to show you different aspects of JavaScriptApart from doing it deliberately, to show you different aspects of JavaScriptpart from doing it deliberately, to show you different aspects of JavaScript, to show you different aspects of JavaScript to show you different aspects of JavaScript
coding, we have set it up such that we can demonstrate to you other aspects of integratedwe have set it up such that we can demonstrate to you other aspects of integrated set it up such that we can demonstrate to you other aspects of integratedwe can demonstrate to you other aspects of integrated can demonstrate to you other aspects of integrated
testing. So now, well attempt to change the values of the dynamically-generated form anddynamically-generated form and-generated form and
see what happens.

1. Well first refresh the browser, and then begin entering the input values according tothe browser, and then begin entering the input values according to browser, and then begin entering the input values according toen begin entering the input values according ton begin entering the input values according to
the plan. After you have finished entering all of the values, change the values in theplan. After you have finished entering all of the values, change the values in thethe values in the values in the
second form as per the test plan. per the test plan. the test plan.

2. Now, submit the form, and you will see the output as displayed in thewill see the output as displayed in the see the output as displayed in thesee the output as displayed in the the output as displayed in the output as displayed in the
next screenshot::

Oops! Apparently, there is a fatal flaw in our program. There is no checking
mechanism or whatsoever for our second form. The second form is present in casepresent in case in case
our users may want to change the values. Right from the start, we naïvely chosethe values. Right from the start, we naïvely chose values. Right from the start, we naïvely chose. Right from the start, we naïvely chose Right from the start, we naïvely choseRight from the start, we naïvely choseight from the start, we naïvely chosethe start, we naïvely chose start, we naïvely chose
to believe that the user will enter legal and acceptable values on the second form,and acceptable values on the second form, acceptable values on the second form,
should they choose to change their input. Now that we know this might not be the
case, we'll make a note of this on our Bug Report Form".".

What just happened?
In general, we have executed the entire test plan. Along the way, we have uncovered bugs
and errors that we will be fixing later. You may find the steps repetitive; that is true—testing
can be repetitive sometimes. But, luckily, our program is quite small and hence testing
it is manageable.

Chapter 5

[151]

Now that we have completed the test, it is time to think about what we can do about those
errors. We'll start talking about this in the next section.ing about this in the next section. about this in the next section.this in the next section. in the next section.the next section. next section..

What to do when a test returns an unexpected result
In general, when a test returns an unexpected or incorrect result, it means that there is a bug
or error in our program. Based on our tests, you must certainly have noticed that there are
weak points in our program. The weak points or errors that resulted in a test returning an
unexpected result are as follows:

Our program does not support negative values

The code that we have written does not support boundary values (both maximum (both maximum
and minimum values)

The second form does not check for correctness in the input values; if we make any
changes to the values in the second form, the program fails

These points mean that our code is not robust enough and we need to fix it; we will do this
right away in the next section.

Regression testing in action
In this section, we will get our hands dirty by performing regression testing. We will attempt
to simulate a situation that warrants regression testing by writing code that fixes the errors
found when we initially applied our test plan. After writing the code, we will first test the
code that we have written, after which we will test the entire application to see if it works
in coherence.

Time for action – fixing the bugs and performing regressionfixing the bugs and performing regressioning regression regression
testing

We'll fix each of the bugs that we've uncovered, one by one. We'll start by writing a function
that allows our program to support boundary values. The completed source code, where all
of the errors have been corrected, is found in Chapter 5 of the source code folder, and is
entitled perfect-code-for-JSLInt-enhanced.html.

Before we move on to the actual coding process for the first bug, let us think about what we
can do to support boundary values.

Firstly, if we go back to our sample test plan, you will notice that in our "Bug Report Form",
we have documented that we can try to change the function that checks for form input such
that it can check for minimum and maximum values. For simplicity's sake, we will enable
boundary values by checking the length of the input. For example "Neo" would mean that
there are three input characters and "1000" would have four input digits.

Putting the Test Plan Into Action

[152]

Secondly, because the checking of the input of the first form is done at submitValues(),
we'll attempt to add in the required checking mechanism of this function. With that in mind,
we can start the coding process:

1. Open the original source code that we wrote in Chapter 3, Syntax Validation, in your
favorite source code editor, and look for the function submitValues(). Next, add
the following code after the debuggingMessages() function:

 // this is the solution for checking the length of the input
 // this will allow us to enable boundary values
 // starting with minimum values: we will accept character
 // length of more than or equal than 3
 // and less than 100 characters
 if (elementObj.name === 'enterText') {
 if (elementObj.value.length <= 3) {
 alertMessage("Input must be more than 3 characters!");
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus(); jQuery(element).focus();jQuery(element).focus();

 return true;
 }
 if (elementObj.value.length >= 100) {
 alertMessage("Input must be less than 100 characters!");

 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();

 return true;;
 }
 }

 // now for checking the maximum value of digits
 // upper boundary is set at 10 digits
 if (elementObj.name === 'enterNumber') {
 if (elementObj.value.length >= 10) {
 alertMessage("Input must be less than 10 digits!");
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();
 return true;
 }
 }

Chapter 5

[153]

What happened in the previous code is that we have added in a few if statements.
These statements check for the type of input via the .name property, and then
check to see if it is more than the minimum input or less than the maximum output.
We have set a minimum input length of three characters and a maximum input
characters of less than 100 length for text inputs. For input that requires numerical
inputs, we have set a maximum input length of 10 digits. We did not set a minimum
input length since it is possible that the user may not have any income.

2. Save your file and test the program. Try entering less than three characters or more
than 100 characters. You should receive an alert box showing that you have too
large or too small inputs. Similarly, test the input fields that require numerical inputs
and see if the program detects an input length of more than 10 digits. If you have
received the correct alert boxes for each of the different cases, then you have fixed
the error.

Now that we have fixed the issue regarding boundary values, it is time to move on
to the next error that we have documented on our "Bug Report Form", which is the
third error (bug number 3 in our sample-testplan-bug-form-filled.doc-testplan-bug-form-filled.doc)
that we uncovered, which relates to negative values. we uncovered, which relates to negative values.uncovered, which relates to negative values., which relates to negative values.

The error is that our program sees a negative input as a non-digit value and
produces a wrong output message of input must be digit. Therefore, in this case
we would need to fix this error by tracing back to the source of the problem—the the source of the problem—the source of the problem—the—thethe
functions that are responsible for checking the input.

Take note that the function that checks the input is submitValues().Now, let us
move to the actual coding process:

3. Go back to your source code and start with the submitValues() function. We'll
need to have a mechanism that checks for negative input, and this will have tomechanism that checks for negative input, and this will have to that checks for negative input, and this will have to
return the correct output, which says that input must be positive. So here's what
we can do:

 // this is the solution for checking negative values
 // this only applies to input fields that requires numeric
inputs
 if (elementObj.name === 'enterNumber') {
 if (elementObj.value < 0) {
 alertMessage("("Input must be positive!");
 var element = document.getElementById(elementObj.id); var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);;
 jQuery(element).focus(); jQuery(element).focus();
 return true;true;;
 }
 }

Putting the Test Plan Into Action

[154]

By adding the above code, you will be able to check for negative values. The above
code should be placed within the submitValues() function, and before the if
statement which checks for the length of the input.

4. Save your program and test it. Upon encountering fields that require numericSave your program and test it. Upon encountering fields that require numericave your program and test it. Upon encountering fields that require numericit. Upon encountering fields that require numeric Upon encountering fields that require numericfields that require numericthat require numeric
inputs, try entering a negative value, say -1. If you receive an alert box stating
that input must be positive, then we have done it right.en we have done it right.n we have done it right.

The code for submitValues() should include the following lines shown below:

function submitValues(elementObj) {

// code above omitted
 // this is the solution for checking negative values
 // this only applies to input fields that requires numeric
inputs
 if (elementObj.name === 'enterNumber') {
 if (elementObj.value < 0) {
 alertMessage("Input must be positive!");
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();
 return false;
 }
 }
 // code below is omitted

}

The lines in the previous snippet are those lines that we added in this subsection.
Because we have made sure that we are on the same frequency, we can move on
to the fourth error (bug number 4 in our sample_test_plan.doc), which is
regarding the program logic.

At the start of this chapter, we found out that our program does not detect that
the retirement age can be smaller than the user's present age. This can be fatal for
our program. Therefore, we need to add a mechanism that makes sure that the
retirement age is greater than the user's present age.

Because the issue lies with the checking of inputs, we will need to turn our attention
to submitValues().

Chapter 5

[155]

5. Let us go back to the source code, and add the following code to submitValues():

 // this is to make sure that the retirement age is larger than
present age
 if (elementObj.id === 'retire') {
 if (elementObj.value < document.getElementById('age').
value) {
 alertMessage('Retirement age must be higher thanhigher than than
age');
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();

 return false;
 }
 }

You should enter this code prior to the code done up in the previous subsection. code prior to the code done up in the previous subsection.code prior to the code done up in the previous subsection.

Now, go ahead and test your code. Try entering a retirement age that is less than
the current age. You should receive an alert message that says retirement age must
be larger than age.

If you received this alert, then congratulations, you have got it right! Once again,
to quickly sum up this section and to make sure that we are on the same page,
submitValues() should include the lines of code as shown next:

function submitValues(elementObj) {

// code above omitted

 // this is to make sure that the retirement age is larger than
present age
 if (elementObj.id === 'retire') {
 if (elementObj.value < document.getElementById('age').
value){
 alertMessage('retirement age must be larger than
age');
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();

 return true;true;;
 }
 }
 // code below omitted

}

Putting the Test Plan Into Action

[156]

Now let us move on to the last error (bug number 5 in our sample-testplan-
bug-form-filled.doc) that we have uncovered by checking the second form.

We have created our JavaScript program such that as we enter the values for each
input field, a new input field is created dynamically. This means that after all of the
input fields have been completed, a new form will be created. In case you didn't
notice, the new input fields that are created allow users to change their values.

The issue here is that the user may change the input values in the new form, which
can result in fatal errors as we have no checking mechanisms in place to check the
values in the second form. So, we naïvely chose to believe that the user will act
accordingly, and only enter valid values. But obviously, we were wrong.

Therefore, in order to check the second form, we would most likely have to create a
new function that checks the second form.

Although the second form is generated dynamically, we can still get the values
within those fields through the methods that we have learned so far. Remember
that because JavaScript has created the fields in the second form, these fields
technically exist in memory and are therefore still accessible.

With that in mind, we'll need to create a function that works on these fields.

6. Open the source code, and scroll to the last function, which uses jQuery statements.Open the source code, and scroll to the last function, which uses jQuery statements.pen the source code, and scroll to the last function, which uses jQuery statements.jQuery statements.Query statements.
Before this function, create the following function:function, create the following function: create the following function:

function checkSecondForm(elementObj) {
 // some code going here// some code going here
}

7. Well first start by checking for empty values. Therefore here's what we can do to
check for empty values:

if(document.testFormResponse.nameOfPerson.value === "") {
 alertMessage("fields must be filled!");
 return false;
 }
 if(document.testFormResponse.birth.value === "") {
 alertMessage("fields must be filled!");
 return false;
 }
 if(document.testFormResponse.age.value === "") {

Chapter 5

[157]

 alertMessage("fields must be filled!");
 return false;
 }
 if(document.testFormResponse.spending.value === "") {
 alertMessage("fields must be filled!");
 return false;
 }
 if(document.testFormResponse.salary.value === "") {
 alertMessage("fields must be filled!");
 return false;
 }
 if(document.testFormResponse.retire.value === "") {
 alertMessage("fields must be filled!");
 return false;
 }
 if(document.testFormResponse.retirementMoney.value === "") {
 alertMessage("fields must be filled!");
 return false;
 }

In general, we apply what we have learned in the third chapter by using === instead
of == when checking for empty values. We basically check the values that are found
in the dynamically-generated fields, and check to see if they are empty. fields, and check to see if they are empty.

Now that we have the code that checks to see if the fields are empty, it is time to
write code that checks for the correct type of input.

8. We can apply the techniques learned in Chapter 3hapter 3 3, Syntax Validation, to check for to check for
the correctness of the input. In general, we are using regular expression, as we did
in the previous chapters, to check for the input's type. Heres what we can do:previous chapters, to check for the input's type. Heres what we can do: chapters, to check for the input's type. Heres what we can do:

 var charactersForName = /^[a-zA-Z\s]*$/.test(document.
testFormResponse.nameOfPerson.value);
 var charactersForPlaceOfBirth = /^[a-zA-Z\s]*$/.
test(document.testFormResponse.birth.value);
 var digitsForAge = /^\d+$/.test(document.testFormResponse.age.
value);
 var digitsForSpending = /^\d+$/.test(document.
testFormResponse.spending.value);
 var digitsForSalary = /^\d+$/.test(document.testFormResponse.
salary.value);
 var digitsForRetire = /^\d+$/.test(document.testFormResponse.
retire.value);
 var digitsForRetirementMoney = /^\d+$/.test(document.
testFormResponse.retirementMoney.value);

Putting the Test Plan Into Action

[15�]

 // input is not relevant; we need a digit for input elements
with name "enterNumber"
 if (charactersForName === false || charactersForPlaceOfBirth
=== false) {
 alertMessage("the input must be characters only!");
 debuggingMessages(checkSecondForm", elementObj, "wrong checkSecondForm", elementObj, "wrong", elementObj, "wrong
input");
 return false;
 }

 else if (digitsForAge === false || digitsForSpending === false
|| digitsForSalary === false || digitsForRetire === false ||
digitsForRetirementMoney === false){
 alertMessage("the input must be digits only!");
 debuggingMessages(checkSecondForm", elementObj, "wrong checkSecondForm", elementObj, "wrong", elementObj, "wrong
input");
 return false;
 }
 // theinput seems to have no problem, so we'll process the
input
 else {
 checkForm(elementObj);
 alert("all is fine");
 return false;
 }

For a complete version of the previous code, please check the source code folder
of Chapter 5, and refer to the file perfect-code-for-JSLInt-enhanced.html.

However, remember that in the earlier debugging sessions we have created new
checking mechanisms in order to support boundary values, prevent negative values,support boundary values, prevent negative values, boundary values, prevent negative values,,
and to make sure that the retirement age is greater than the user's current age..

Because the second form may be changed, the previous errors can occur in the
second form as well. Therefore, we'll need to add those checking mechanisms as
well. To see if you have done it correctly, check the checkSecondCode() function
in the source code folder for the file entitled perfect-code-for-JSLInt-
enhanced.html. Here's a code snippet of checkSecondCode():

// above code omitted
 if (elementObj.id === 'retire') {
 if (elementObj.value < document.getElementById('age').
value) {
 alertMessage('retirement age must be larger than age');
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();

Chapter 5

[15�]

 return true;true;;
 }
 }

 // this is the solution for checking negative values
 // this only applies to input fields that requires numeric
inputs
 if (elementObj.name === 'enterNumber') {
 if (elementObj.value < 0) {
 alertMessage("Input must be positive!");
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();

 return true;true;;
 }
 }

 if (elementObj.name === 'enterText') {
 if (elementObj.value.length <= 3) {
 alertMessage("Input must be more than 3 characters!");
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();

 return true;
 }
 if (elementObj.value.length >= 100) {
 alertMessage("Input must be less than 100
characters!");
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();

 return true;
 }
 }
 if (elementObj.name === 'enterNumber') {
 if (elementObj.value.length >= 10) {
 alertMessage("Input must be less than 10 digits!");
 var element = document.getElementById(elementObj.id);document.getElementById(elementObj.id);
 jQuery(element).focus(); jQuery(element).focus();
 return true;
 }
 }

 // remaining code omitted

}

Putting the Test Plan Into Action

[160]

What just happened?
We have now finished executing the entire test plan, including regression testing.e have now finished executing the entire test plan, including regression testing.
Notice that at each phase of the coding process we carried out small tests to make sureurere
that our solution works correctly; we have used unit testing once again in our regression; we have used unit testing once again in our regression
testing process.

Also note that we tested the program incrementally; we tested each new function or codelso note that we tested the program incrementally; we tested each new function or codewe tested the program incrementally; we tested each new function or codely; we tested each new function or codey; we tested each new function or code
that we created and made sure that it worked correctly, before we moved on to fixing the before we moved on to fixing theing the the
next error.

By going through this process, we will have a much better chance of creating good programsy going through this process, we will have a much better chance of creating good programs going through this process, we will have a much better chance of creating good programsprocess, we will have a much better chance of creating good programs, we will have a much better chance of creating good programsgood programs programs
and will avoid introducing new errors into our code.ing new errors into our code. new errors into our code.

Apart from performing regression testing as a part of an ongoing process as our programpart from performing regression testing as a part of an ongoing process as our program
changes, there are other important issues regarding the testing of our program. Let usprogram. Let us. Let us
move to the first important issue—performance issues.—performance issues.performance issues..

Performance issues—compressing your code to make it load
faster
As I mentioned inI mentioned in mentioned in Chapter 4hapter 44, Planning to Test, the performance of the code that we write is the performance of the code that we write is
dependent on various factors. Performance in general refers to the speed of the executionthe speed of the execution speed of the executionthe executionexecution
of your code; this is dependent on the algorithms you use for your code. Because algorithm
issues are beyond the scope of this book, let us focus on something that is much easier to
achieve, like enhancing the programs performance by compressing your code., like enhancing the programs performance by compressing your code. like enhancing the programs performance by compressing your code.the programs performance by compressing your code. programs performance by compressing your code.performance by compressing your code.compressing your code.

In general, after compressing your code, the file size of your code will be smaller and hence
lowers disk usage in the cache that is required to store the code before execution. It alsothe cache that is required to store the code before execution. It also cache that is required to store the code before execution. It alsocache that is required to store the code before execution. It also that is required to store the code before execution. It alsorequired to store the code before execution. It also to store the code before execution. It alsoexecution. It alsoIt also
reduces the amount of bandwidth required to transfer your JavaScript file from the webthe amount of bandwidth required to transfer your JavaScript file from the web amount of bandwidth required to transfer your JavaScript file from the web
server to the client. So now, let us see how we can compress our JavaScript code.

There are two ways in which we can go about doing this:

1. We can compress our entire program, which means that we will compress our CSS,ire program, which means that we will compress our CSS, program, which means that we will compress our CSS,,
HTML, and JavaScript together., and JavaScript together. and JavaScript together.together..

2. We can remove all of the local JavaScript and place it in an external file, and then,,
compress only the external JavaScript. To keep things simple, I'll start by using theI'll start by using thell start by using theing the the
first method.

Firstly, I want you to visitI want you to visit want you to visit http://jscompress.com/ and copy and paste our source codend copy and paste our source code
into the input box. Theres an option called "Minify (JSMin)". This option will compress HTML, "Minify (JSMin)". This option will compress HTML,Minify (JSMin)". This option will compress HTML,
CSS, and JavaScript all together. Once you have copied the code into the input box, click onhave copied the code into the input box, click on copied the code into the input box, click on
Compress JavaScript.

Chapter 5

[161]

You will then see the page refresh and the minified code will be displayed within the input box.en see the page refresh and the minified code will be displayed within the input box.n see the page refresh and the minified code will be displayed within the input box.
Copy and paste that code into a new file, and then save it asthat code into a new file, and then save it as into a new file, and then save it as testing-compressed.html.

If you go to thego to the the source code folder, you will notice that I have already done thefolder, you will notice that I have already done theI have already done the have already done the
compression process for you. Check the size of the file for testing-compressed.html
and the code that we wrote earlier. Based on the source code that we have, the compressed that we have, the compressed we have, the compressed
version is 12KB, whereas the original version is 18KB., whereas the original version is 18KB. whereas the original version is 18KB.

Now let us try the second method—placing all of the JavaScript in an external JavaScript file—placing all of the JavaScript in an external JavaScript fileplacing all of the JavaScript in an external JavaScript file
and compressing that. Heres what we will do:ing that. Heres what we will do: that. Heres what we will do:

1. Cut all of the JavaScript found between the <head> and </head> tags, and paste it
into a new document called external.js.

2. Save external.js, and also save your changes to the HTML document.

3. Go back to your HTML document, go to thedocument, go to the, go to the <head> and </head> tags and insertags and insertgs and insert
the following: following: <script type="text/javascript" src="external.js">
between them. Then save the file.. Then save the file. save the file.the file. file.

So there you have it! We have compressed your code so that your code gets loaded fasterWe have compressed your code so that your code gets loaded fastere have compressed your code so that your code gets loaded faster
from the web server to the client side.the web server to the client side. web server to the client side.

It seems that we have managed to reduce the file size by compressing the code. Of course,reduce the file size by compressing the code. Of course, the file size by compressing the code. Of course,the code. Of course, code. Of course, Of course,Of course,
the difference is not that obvious because our code isn't much. However, in reality code canous because our code isn't much. However, in reality code canour code isn't much. However, in reality code cann't much. However, in reality code can much. However, in reality code can
go up to thousands or even tens of thousands of lines of code, we have seen with the jQuerys of thousands of lines of code, we have seen with the jQuery of thousands of lines of code, we have seen with the jQueryjQueryQuery
library. In such cases, code compression will help to enhance performance.to enhance performance. performance.performance.

If you are a developer who is working under the terms of an Non-Disclosure
Agreement (NDA), there is a likelihood that you are not allowed to use any
of the external services that I have previously mentioned. If this is the case,
you might want to consider using Yahoo's YUI Compressor, which allows
you to work directly from the command line. For more information, visit
http://developer.yahoo.com/yui/compressor/#using.

Does using Ajax make a difference?
Let me start by briefly explaining what happens when you are using Ajax. JavaScript is part of
the Ajax equation; the execution of JavaScript is responsible for sending information to and; the execution of JavaScript is responsible for sending information to and the execution of JavaScript is responsible for sending information to andhe execution of JavaScript is responsible for sending information to andresponsible for sending information to and for sending information to and
loading information from the server. This is achieved by usingachieved by using by using using XMLHttpRequest object.

When the sending and loading of data to and from the server is done using Ajax, the testing
responsibilities are different; you will not only have to test for the various errors that we have
covered in the previous chapters, but you will also have to test if each error has resulted in
the successful sending and loading of information and the correct visual response to the user.

Putting the Test Plan Into Action

[162]

However, because you are sending and receiving requests to and from the server, you might
have to perform some form of server-side testing. This brings us to the next part of the
topic— the difference between JavaScript testing and server-side testing.

Difference from server-side testing
As mentioned in the previous section, when you are performing tests for Ajax, you might
have to perform server-side testing. In general, the concepts that you have picked up to this
point in the book can also be applied to server-side testing. Therefore, conceptually, there
should be little difference between JavaScript testing and server-side testing.

However, do take note that server-side testing typically includes serve-side code and most
probably includes databases such as MySQL, PostgreSQL, and others. This means that the
complexities involving server-side testing can take a different form when compared to
JavaScript testing.

Nonetheless, you will be expected to have a good understanding of the server-side language
used, the database used, and so on. This is the bare minimum for you to get started with
planning your tests.

If you are performing server-side testing as a part of Ajax testing, you will-side testing as a part of Ajax testing, you willside testing as a part of Ajax testing, you will
most certainly want to know about Hypertext Transfer Protocol response
status codes. These status codes are a way to determine whether yourare a way to determine whether your a way to determine whether yourwhether youryour
request was successful or not. They even tell you what kind of errors
occurred, should any occur. For more information, visit:, should any occur. For more information, visit: should any occur. For more information, visit:occur. For more information, visit:. For more information, visit:: http://www.
w3.org/Protocols/rfc2616/rfc2616-sec10.html.

What happens if you visitor turns off JavaScript
We have briefly covered the issues of whether we should write applications that supportbriefly covered the issues of whether we should write applications that support covered the issues of whether we should write applications that supportcovered the issues of whether we should write applications that support the issues of whether we should write applications that supportthe issues of whether we should write applications that support issues of whether we should write applications that support
users who have had their JavaScript turned off. Although there are different points of view
on whether or not we should support such users, one of the best ways, in my humblesupport such users, one of the best ways, in my humble such users, one of the best ways, in my humble
opinion, is that we should at least inform our users that their browser does not support
JavaScript (or that JavaScript is turned off) and they might be missing out on something.
In order to achieve this, we can use the following code snippet:achieve this, we can use the following code snippet: this, we can use the following code snippet:

<html>
<body>
<script type="text/javascript">
document.write("Your browser supports JavaScript, continue asYour browser supports JavaScript, continue as
usual!");!");;
// do some other code as usual since JavaScript is supported
</script>
<noscript>

Chapter 5

[163]

Sorry, your browser does not support JavaScript! You will need to You will need to
enable JavaScript in order to enjoy the full functionality and JavaScript in order to enjoy the full functionality and
benefits of the application
</noscript>
</body>
</html>

Note that we used the <noscript> tag, which is a way to show user's alternative
content when JavaScript is turned off or is not supported.

Now that we have almost reached the end of this chapter, you must be gettingthis chapter, you must be getting you must be getting
the hang of it. Let us see if you can improve upon your skills by trying out the
following assignment.assignment..

Have a go hero – enhance the usability of our programenhance the usability of our program
Now that you have come this far, you might want to take a shot at this task—enhance the
usability of this program by doing the following: by doing the following:by doing the following:doing the following:

Make sure that the user enters the required information, starting from the first field
to the last field.

The other issue that we might have with our program is that the user might click onhe other issue that we might have with our program is that the user might click onother issue that we might have with our program is that the user might click onissue that we might have with our program is that the user might click on
any input field other than the first one and begin entering the information. Although
this may not directly affect the correctness of our program, there might be a chancea chancechance
that the result is not what we expect.

With regards to the second form, is there any way that you can inform yourthe second form, is there any way that you can inform your second form, is there any way that you can inform your
user which input fields have the wrong input? Can your user change an inputve the wrong input? Can your user change an inputthe wrong input? Can your user change an inputhe wrong input? Can your user change an input wrong input? Can your user change an inputCan your user change an input your user change an input
that is incorrect?

When we are fixing the bug related to the second form, we only created to the second form, we only createdto the second form, we only created the second form, we only createdthe second form, we only created
mechanisms to detect the correctness of the input in the second form. However,the correctness of the input in the second form. However, correctness of the input in the second form. However,the input in the second form. However, input in the second form. However,
should the user enter an incorrect value in the second form, the user might notuser enter an incorrect value in the second form, the user might not enter an incorrect value in the second form, the user might notthe second form, the user might not second form, the user might notsecond form, the user might not form, the user might not
know immediately which fields were entered incorrectly.

Here are some tips to help you get started with this exercise:

Right from the start, you can disable all of the input fields apart from the first one.
Then as the first field gets the correct input, you can enable the second input field.en as the first field gets the correct input, you can enable the second input field.n as the first field gets the correct input, you can enable the second input field.
Similarly, when the second input field is completed correctly, the third input field
gets enabled, and so on and so forth.

Putting the Test Plan Into Action

[164]

For the second issue, you might want to take a look at our code and see if
you can edit the conditions found in the if else statements for the functionstatements for the function
checkSecondForm(). What I have done is to lump all of the possibilities into aI have done is to lump all of the possibilities into a have done is to lump all of the possibilities into apossibilities into a into a
single if oror else if statement, thus making it impossible to detect which fieldstatement, thus making it impossible to detect which fieldus making it impossible to detect which fields making it impossible to detect which field
has gone wrong. You can try to split up the conditions such that each of theof the if
and else if statements contain only a single condition. That way, well be able tostatements contain only a single condition. That way, well be able tos contain only a single condition. That way, well be able to
create a custom response for each individual input field in the second form, shouldthe second form, should second form, should, should should
anything go wrong.

Summary
Wow, we have covered a lot in this chapter. We have executed the test plan and have
uncovered bugs. Next we successfully fixed the bugs that we uncovered. After fixing each
bug, we performed regression testing in order to make sure that the original functionality
was retained and that no new bugs were introduced into the program.

Specifically, we covered the following topics:

How to execute a test plan and how to document bugs that we uncoveredthat we uncoveredwe uncovered

How to perform regression testing after fixing each bugow to perform regression testing after fixing each bug

How to compress the code in order to enhance performance

Testing differences if we use Ajax

Differences between client-side testing and server-side testing

The previous learning points may seem small, but now that you have gone through this
chapter, you should know that carrying out a test plan and subsequently fixing the
bugs can be tedious.

Now that we have covered the execution of test plan, its time to move on to somethingthat we have covered the execution of test plan, its time to move on to something
slightly more difficult—testing more complex code. Notice that we have been dealing with—testing more complex code. Notice that we have been dealing withtesting more complex code. Notice that we have been dealing with
JavaScript in a one-dimensional manner: we placed all of our JavaScript in our HTML file, along-dimensional manner: we placed all of our JavaScript in our HTML file, alongdimensional manner: we placed all of our JavaScript in our HTML file, alongalong
with CSS. We have been developing JavaScript code as this was the only piece of JavaScript
code that we were using. But, in reality, it is usual to see web applications using more than oneing. But, in reality, it is usual to see web applications using more than one. But, in reality, it is usual to see web applications using more than oneusing more than onethan one
piece of JavaScript code; this additional code is usually attached via an external JavaScript file.

More importantly, this is not going to be the only issue that we will face in the real world.ore importantly, this is not going to be the only issue that we will face in the real world.the real world. real world.
As our code gets more complex, we will need to use more sophisticated testing methods,s more complex, we will need to use more sophisticated testing methods, more complex, we will need to use more sophisticated testing methods,more complex, we will need to use more sophisticated testing methods, complex, we will need to use more sophisticated testing methods,sophisticated testing methods, testing methods,
or even use tools such as built-in consoles, to help us test more efficiently and effectively., to help us test more efficiently and effectively. to help us test more efficiently and effectively.

We will cover the previously-mentioned issues in the next chapter,previously-mentioned issues in the next chapter, issues in the next chapter, Chapter 6, Testing more
complex code. See you there!

6
Testing More Complex Code

Welcome to the sixth chapter. In this chapter, we will learn more about
JavaScript testing. More specifically, we'll learn how to test more complex code,
where there will be more interactions between entities. Until now, we have
been performing tests on relatively simple code, using fairly straightforward
techniques.

More specifically, we'll cover the following:

Types of errors that can occur when combining scripts

How we can deal with the errors that occur when combining the scripts together

Various JavaScript libraries available on the Internet right now, and the issues that
we need to consider when testing them

How to test the GUI, widgets add-ons for libraries, and other considerations

How to use the console log

Performing exception handling by using JavaScript built-in objects

Testing an application by using JavaScript built-in objects

Let us get started with the basic concepts by covering the kinds of errors that can occur
when combining scripts.

Testing More Complex Code

[166]

Issues with combining scripts
So far, we have been focused on writing and testing only one JavaScript code within our
HTML document. Consider the real-life situation where we typically use external JavaScript;
what happens if we use more than one JavaScript file? What kind of issues can we expect
if we use more than one external JavaScript file? We'll cover all of this in the subsections
below. We'll start with the first issue—combining event handlers.

Combining event handlers
You may or may not have realized this, but we have been dealing with event handlers since
Chapter 3, Syntax Validation. In fact, we actually mentioned events in Chapter 1, What is
JavaScript Testing. JavaScript helps to bring life to our web page by adding interactivity.
Event handlers are the heartbeat of interactivity. For example, we click on a button and
a pop-up window appears, or we move our cursor over an HTML div element and the
element changes color to provide visual feedback.

To see how we can combine event handlers, consider the following example, which is
found in the source code folder in the files combine-event-handlers.html and
combine-event-handlers.js as shown in the following code:

In combine-event-handlers.html, we have:

<html>
 <head>
 <title>Event handlers</title>
 <script type="text/javascript" src="combine-event-
 handlers.js"></script>
 </head>
 <body>
 <div id="one" onclick="changeOne(this);"><p>Testing One</p></div>
 <div id="two" onclick="changeTwo(this);"><p>Testing Two</p></div>
 <div id="three" onclick="changeThree(this);"><p>Testing
 Three</p></div>
 </body>
</html>

Notice that each of the div elements is handled by different functions, namely,
changeOne(), changeTwo(), and changeThree() respectively. The event
handlers are found in combine-event-handlers.js:

function changeOne(element) {
 var id = element.id;
 var obj = document.getElementById(id);
 obj.innerHTML = "";

Chapter 6

[167]

 obj.innerHTML = "<h1>One is changed!</h1>";
 return true;
}

function changeTwo(element) {
 var id = element.id;
 var obj = document.getElementById(id);
 obj.innerHTML = "";
 obj.innerHTML = "<h1>Two is changed!</h1>";
 return true;
}
function changeThree(element) {
 var id = element.id;
 var obj = document.getElementById(id);
 obj.innerHTML = "";
 obj.innerHTML = "<h1>Three is changed!</h1>";
 return true;
}

You might want to go ahead and test the program. As you click on the text, the content
changes based on what is defined in the functions.

However, we can rewrite the code such that all of the events are handled by one function.
We can rewrite combine-event-handlers.js as follows:

function combine(element) {
 var id = element.id;
 var obj = document.getElementById(id);
 if(id == "one"){
 obj.innerHTML = "";
 obj.innerHTML = "<h1>One is changed!</h1>";
 return true;
 }
 else if(id == "two"){
 obj.innerHTML = "";
 obj.innerHTML = "<h1>Two is changed!</h1>";
 return true;
 }
 else if(id == "three"){
 obj.innerHTML = "";
 obj.innerHTML = "<h1>Three is changed!</h1>";
 return true;
 }
 else{
 ; // do nothing
 }
}

Testing More Complex Code

[16�]

When we use if else statements to check the id of the div elements that we are working
on, and change the HTML contents accordingly, we will save quite a few lines of code. Take
note that we have renamed the function to combine().

Because we have made some changes to the JavaScript code, we'll need to make the
corresponding changes to our HTML. So combine-event-handlers.html will be
rewritten as follows:

<html>
 <head>
 <title>Event handlers</title>
 <script type="text/javascript" src="combine-event-
 handlers.js"></script>
 </head>
 <body>
 <div id="one" onclick="combine(this);"><p>Testing One</p></div>
 <div id="two" onclick="combine(this);"><p>Testing Two</p></div>
 <div id="three" onclick="combine(this);"><p>Testing
 Three</p></div>
 </body>
</html>

Notice that the div elements are now handled by the same function, combine(). These
rewritten examples can be found in combine-event-handlers-combined.html and
combine-event-handlers-combined.js.

Naming clashes
Removing name clashes is the next issue that we need to deal with. Similar to the issue of
combining event handlers, naming clashes occur when two or more variables, functions,
events, or other objects have the same name. Although these variables or objects can be
contained in different files, these name clashes do not allow our JavaScript program to run
properly. Consider the following code snippets:

In nameclash.html, we have the following code:

<html>
 <head>
 <title>testing</title>
 <script type="text/javascript" src="nameclash1.js"></script>
 </head>
 <body>
 <div id="test" onclick="change(this);"><p>Testing</p></div>
 </body>
</html>

Chapter 6

[16�]

In nameclash1.js, we have the following code:

function change(element) {
 var id = element.id;
 var obj = document.getElementById(id);
 obj.innerHTML = "";
 obj.innerHTML = "<h1>This is changed!</h1>";
 return true;
}

If you run this code by opening the file in your browser and clicking on the text Testing, the
HTML contents will be changed as expected. However, if we add <script type="text/
javascript" src="nameclash2.js"></script> after the <title></title> tag,
and if the content of nameclash2.js is as follows:

function change(element) {
 alert("so what?!");
}

Then we will not be able to execute the code properly. We will see the alert box instead of
the HTML contents being changed. If we switch the arrangement of the external JavaScript,
then the HTML contents of the div elements will be changed and we will not be able to see
the alert box.

With such naming clashes, our program becomes unpredictable; the solution to this is to use
unique names in your functions, classes, or events. If you have a relatively large program,
it would be advisable to use namespaces, which is a common strategy in several JavaScript
libraries such as YUI and jQuery.

Using JavaScript libraries
There are many JavaScript libraries available right now. Some of the most commonly-used
ones are as follows:

JQuery (http://jquery.com)

YUI (Yahoo! User Interface JavaScript library) (http://developer.yahoo.com/
yui/)

Dojo (http://dojotoolkit.org/)

Prototype (http://www.prototypejs.org/)

Mootools (http://mootools.net/)

Script.aculo.us (http://script.aculo.us/)

Testing More Complex Code

[170]

There are many more JavaScript libraries out there. For a complete list, feel free to visit
http://en.wikipedia.org/wiki/List_of_JavaScript_libraries.

If you have considered using JavaScript libraries, you may be aware of the benefits of using
a JavaScript library. Issues such as event handling, and the much dreaded cross-browser
issues make it necessary to consider using a JavaScript library. But you might want to know
what you should look out for when selecting a JavaScript library as a beginner JavaScript
programmer. So here is a list of things to consider:

The level of available support, in terms of documentation.

Whether tutorials are available, and whether they are free or paid for. This helps you
to speed up the programing process.

The availability of plugins and add-ons.

Does the library have a built-in testing suite? This is very important, especially for
our purposes here.

Do you need to test a library that someone else has written?
Firstly, while we are learning about JavaScript testing, I would say that for a beginner learning
JavaScript programing, it might not be advisable to test JavaScript libraries that someone
else wrote. This is because we need to understand the code in order to perform accurate
tests. People who are able to conduct objective (and accurate) tests are JavaScript experts,
and although you are on your way to becoming one, you are probably not there yet.

Secondly, from a practical standpoint, many such tests have already been done for us. All you
need to do is search for them on the Internet.

But for learning purposes, let us have a brief look at what tests are usually run against
library code.

What sort of tests to run against library code
In general, as a user of various JavaScript libraries, we would most commonly perform
performance testing and profiling testing.

Performance testing
Performance testing, as the name suggests, is about testing the performance of your code.
This includes testing how fast your code runs (on various browsers) in a manual way, or by
using certain tools such as Firebug or others (more such tools are covered in Chapter 8).

Chapter 6

[171]

In general, in order to generate accurate results for performance testing, it is important for
you to test your code (most preferably by using tools and test suites) against all popular
platforms. For example, a common way to performance test JavaScript code id to install
Firebug in Firefox and test your code using that. But to think of it from a practical standpoint,
Firefox users only make up approximately a quarter (or a third at the most) of the total
number of Internet users. You will have to test your code against other platforms such as
Internet Explorer in order to make sure that your code is up to the mark. We'll cover more
of this in Chapter 8.

Profiling testing
Profiling testing is similar to performance testing, except that it focuses on bottlenecks in
your code rather than the overall performance. Bottlenecks are, in general, the main culprits
for inefficient code. Fixing bottlenecks is (almost) a sure way to enhance the performance of
your code.

GUI and widget add-ons to libraries and considerations on how
to test them
If you have checked the list of various JavaScript libraries that I pointed you to, you may have
noticed that some of the JavaScript libraries provide user interface or widget add-ons as well.
These are meant to enhance your application's user interface, and most importantly will help
you to save time and effort by implementing commonly-used user interface components,
such as dialog boxes, color selectors, and so on.

But that's where the problem starts—how do we test such user interface and widget add-
ons? There are many ways in which we can go about doing that, but the simplest way (and
perhaps the most cumbersome) would be to test visually and manually. For example, if we
are expecting a dialog box to appear at the top left-hand side of the screen with a certain
color, width, and height, and it does not appear the way we want, then something is wrong.

Similarly, if we see something that we expect to see, then we can say that it is correct—at
least in a visual sense.

However, more vigorous testing is required. Testing user interfaces can be a daunting task,
and hence I would suggest that you use testing tools such as Sahi, which allows us to write
automated web application UI tests in any programing language. Tools such as Sahi are
out of scope for this chapter. We will cover Sahi in detail in Chapter 8. Meanwhile, if you
are eager to check out Sahi, feel free to visit their website at http://sahi.co.in.

Testing More Complex Code

[172]

Deliberately throwing your own JavaScript errors
In this section, we will learn how to throw our own JavaScript errors and exceptions.
We will briefly cover the syntax of the error functions and commands. It may be a little
incomprehensible at this stage to just give you the syntax, but this is necessary. Once you
understand how to make use of these commands and reserved words, you will see how you
can make use of them to give yourself more specific information (and hence more control)
over the types of errors that you can catch and create in the next section. So let us get
started with the first reserved word—throw.

The throw statements
throw is a statement that allows you to create an exception or error. It is a bit like the break
statement, but throw allows you to break out of any scope. In general, this is what we
usually use to literally throw an error. The syntax is as follows:

throw(exception);

We can use throw(exception) in the following ways:

throw "This is an error";

or:

throw new Error("this is an error");

Error is a built-in object that is commonly used in conjunction with the throw statement;
we will cover Error later. The important thing to understand now is the syntax, and the fact
that throw is also often used with try, catch, and finally, which will help you to control
the program flow and create accurate error messages. Now let us move on to catch.

The try, catch, and finally statement
The try, catch, and finally statement are JavaScript's exception handling mechanism,
which, as mentioned previously, helps you control the program flow, while catching your
errors. The syntax of the try, catch, and finally statements is as follows:

try {
 // exceptions are handled here
}
catch (e) {
 // code within the catch block is executed if any exceptions are
caught in the try block
}
finally {
 // code here is executed no matter what happens in the try block
}

Chapter 6

[173]

Notice that try is followed by catch, and then finally can be used optionally. In
general, the catch statement catches the exceptions that occur in the try statement.
An exception is an error. The finally statement is executed as long as the try or
catch statement terminates.

Now that we have covered the basic commands and reserved words for deliberately
throwing JavaScript errors, let us take a look at an example of how try, catch, and
finally can be used together. The following code can be found in the source code folder
of Chapter 6, in the HTML document named try-catch-finally-correct-version.
html. Check out the following code:

<html>
 <head>
 <script>
 function factorial(x) {
 if(x == 0) {
 return 1;
 }
 else {
 return x * factorial(x-1);
 }

}

try {

 var a = prompt("Enter a positive integer", "");

 var f = factorial(a);

 alert(a + "! = " + f);
}
catch (error) {
 // alert user of the error
 alert(error);
 alert(error.message);
}
finally {
 alert("ok, all is done!");
}

 </script>
 </head>
 <body>
 </body>
</html>

Testing More Complex Code

[174]

You can copy and paste the code above into your favorite text editor, save it, and run it in your
browser. Or you can run the sample file try-catch-finally-correct-version.html.

You will see a prompt window asking you to enter a positive integer. Go ahead and enter a
positive integer, say 3 for instance, and you will receive an alert window telling you 3! = 6.
After that, you should receive another alert window, which contains the message ok, all is
done!, as the finally block will be executed after try or catch terminates.

Now, enter a negative number, say -1. If you are using Firefox, you will receive an alert
window that says that you have too much recursion. If you are using Internet Explorer, you
will receive an [object Error] message.

After the first pop-up window, you will receive a second pop-up window. If you are using
Firefox, you will see an InternalError: Too much recursion message. If you are using Internet
Explorer, you will receive an Out of stack space message.

Lastly, you should receive a final alert window, which contains the message ok, all is done!,
as the finally block will be executed after try or catch terminates. While it is true that
we have an error, the error message is not exactly what we need, as it does not tell us that
we have entered an illegal value.

This is where throw comes in. throw can be used to control the program flow and give
us the correct response for each type of error. Check out the following code, which
can also be found in the source code folder, in the file try-catch-finally-throw-
correct-version.html.

<html>
<head>
<script>
function factorial(x) {
 if(x == 0) {
 return 1;
 }
 else {
 return x * factorial(x-1);
 }

}

try {

 var a = prompt("Please enter a positive integer", "");
 if(a < 0){
 throw "negative-error";
 }
 else if(isNaN(a)){

Chapter 6

[175]

 throw "not-a-number";
 }
 var f = factorial(a);

 alert(a + "! = " + f);
}
catch (error) {
 if(error == "negative-error") {
 alert("value cannot be negative");
 }
 else if(error == "not-a-number") {
 alert("value must be a number");
 }
 else
 throw error;
}
finally {
 alert("ok, all is done!");
}

</script>
</head>
<body>
</body>
</html>

Now go ahead and execute the program, and enter correct values, negative values, and
non-alphanumeric values. You should receive the correct error messages depending on
your input.

Notice the previous lines of code where we used the throw statement to control the types
of error messages, which will be shown to the user in the catch block. This is one way in
which throw statements can be used. Note that the string that is defined after throw is
used to create program logic to decide what error messages should be called.

In case you are wondering what other capabilities this exception handling mechanism has,
remove the factorial function from try-catch-finally-correct-version.html.
Alternatively, you can open the file try-catch-finally-wrong-version.html and run
the program. Then try entering any value. You should receive an alert message telling you
that the factorial function is not defined, and after that you will receive another alert box
saying ok, all is done!. Notice that, in this case, there is no need for us to write any form of
message; catch is powerful enough to tell us what went wrong.

Testing More Complex Code

[176]

One thing to note, though, is that the JavaScript runtime may catch an exception if you do
not write an exception handler.

Now that we have covered the basics of the exception handling mechanism, let us move on
to the specifics—built-in objects for handling errors.

Trapping errors by using built-in objects
In this section, we'll briefly describe what each type of built-in object is, along with its syntax,
before we show some examples of how each of the built-in objects work. Do take note that
the alert messages, which we will be using sparingly in the examples, are based on the Firefox
browser. If you try the code on Internet Explorer, you might see different error messages.

The Error object
An Error is a generic exception, and it accepts an optional message that provides details of
the exception. We can use the Error object by using the following syntax:

new Error(message); // message can be a string or an integer

Here's an example that shows the Error object in action. The source code for this example
can be found in the file error-object.html.

<html>
<head>
<script type="text/javascript">
function factorial(x) {
 if(x == 0) {
 return 1;
 }
 else {
 return x * factorial(x-1);
 }

}
try {
 var a = prompt("Please enter a positive integer", "");
 if(a < 0){
 var error = new Error(1);
 alert(error.message);
 alert(error.name);
 throw error;
 }
 else if(isNaN(a)){

Chapter 6

[177]

 var error = new Error("it must be a number");
 alert(error.message);
 alert(error.name);
 throw error;
 }
 var f = factorial(a);

 alert(a + "! = " + f);
}
catch (error) {
 if(error.message == 1) {
 alert("value cannot be negative");
 }
 else if(error.message == "it must be a number") {
 alert("value must be a number");
 }
 else
 throw error;
}
finally {
 alert("ok, all is done!");
}
</script>
</head>
<body>
</body>
</html>

You may have noticed that the structure of this code is similar to the previous examples, in
which we demonstrated try, catch, finally, and throw. In this example, we have made
use of what we have learned, and instead of throwing the error directly, we have used the
Error object.

I need you to focus on the code given above. Notice that we have used an integer and
a string as the message argument for var error, namely new Error(1) and new
Error("it must be a number"). Take note that we can make use of alert() to
create a pop-up window to inform the user of the error that has occurred and the name
of the error, which is Error, as it is an Error object. Similarly, we can make use of the
message property to create program logic for the appropriate error message.

It is important to see how the Error object works, as the following built-in objects, which
we are going to learn about, work similarly to how we have seen for the Error object.
(We might be able to show how we can use these errors in the console log.)

Testing More Complex Code

[17�]

The RangeError object
A RangeError occurs when a number is out of its appropriate range. The syntax is similar to
what we have seen for the Error object. Here's the syntax for RangeError:

new RangeError(message);

message can either be a string or an integer.

We'll start with a simple example to show how this works. Check out the following code that
can be found in the source code folder, in the file rangeerror.html:

<html>
<head>
<script type="text/javascript">
try {
 var anArray = new Array(-1);
 // an array length must be positive
}
catch (error) {
 alert(error.message);
 alert(error.name);
}
finally {
 alert("ok, all is done!");
}
</script>
</head>
<body>
</body>
</html>

When you run this example, you should see an alert window informing you that the array is
of an invalid length. After this alert window, you should receive another alert window telling
you that The error is RangeError, as this is a RangeError object. If you look at the code
carefully, you will see that I have deliberately created this error by giving a negative value
to the array's length (array's length must be positive).

The ReferenceError object
A ReferenceError occurs when a variable, object, function, or array that you have
referenced does not exist. The syntax is similar to what you have seen so far and it
is as follows:

new ReferenceError(message);

message can either be a string or an integer.

Chapter 6

[17�]

As this is pretty straightforward, I'll dive right into the next example. The code for the following
example can be found in the source code folder, in the file referenceerror.html.

<html>
<head>
<script type="text/javascript">
try {
 x = y;
 // notice that y is not defined
 // an array length must be positive
}
catch (error) {
 alert(error);
 alert(error.message);
 alert(error.name);
}
finally {
 alert("ok, all is done!");
}
</script>
</head>
<body>
</body>
</html>

Take note that y is not defined, and we are expecting to catch this error in the catch block.
Now try the previous example in your Firefox browser. You should receive four alert windows
regarding the errors, with each window giving you a different message. The messages are
as follows:

ReferenceError: y is not defined

y is not defined

ReferenceError

ok, all is done

If you are using Internet Explorer, you will receive slightly different messages. You will see the
following messages:

[object Error] message

y is undefined

TypeError

ok, all is done

Testing More Complex Code

[1�0]

The TypeError object
A TypeError is thrown when we try to access a value that is of the wrong type. The syntax
is as follows:

new TypeError(message); // message can be a string or an integer and
it is optional

An example of TypeError is as follows:

<html>
<head>
<script type="text/javascript">
try {
 y = 1
 var test = function weird() {
 var foo = "weird string";
 }
 y = test.foo(); // foo is not a function

}
catch (error) {
 alert(error);
 alert(error.message);
 alert(error.name);
}
finally {
 alert("ok, all is done!");
}
</script>
</head>
<body>
</body>
</html>

If you try running this code in Firefox, you should receive an alert box stating that it is a
TypeError. This is because test.foo() is not a function, and this results in a TypeError.
JavaScript is capable of finding out what kind of error has been caught. Similarly, you can use
the traditional method of throwing your own TypeError(), by uncommenting the code.

The following built-in objects are less used, so we'll just move through quickly with the
syntax of the built-in objects.

Chapter 6

[1�1]

The SyntaxError object
A SyntaxError occurs when there is an error in syntax. The syntax for SyntaxError is
as follows:

new SyntaxError([message,[,,[,filename[, lineNumber]]]); // message
can be a string or an integer and it is optional

Take note that the filename and lineNumber parameters are non-standard, and they
should be avoided if possible.

The URIError object
A URIError occurs when a malformed URI is encountered. The syntax is as follows:

new URIError([message,[,filename[, lineNumber]]]);

Similar to SyntaxError, take note that the filename and lineNumber parameters are
non-standard, and they should be avoided if possible.

The EvalError object
An EvalError occurs when an eval statement is used incorrectly or contains an error
other than a syntax error.

new EvalError([message,[,filename[, lineNumber]]]);// message can be a
string or an integer and it is optional

Similar to SyntaxError and URIError, take note that the filename and lineNumber
parameters are non-standard, and they should be avoided if possible.

Using the error console log
Firefox's console log is a tool that is powerful enough for you to log your JavaScript
messages. You can log error messages from the built-in objects, or you can write your
own messages.

Error messages
What we see in this section are error messages generated that are logged in Firefox's error
console log. Before we do that, I need you to open up your Firefox browser, go to Tools on
the menu bar, and select Error Console. Make sure that you do not open any other tabs.

Testing More Complex Code

[1�2]

Now, open your code editor, and enter the following code into a new document:

<html>
<head>
<script type="text/javascript">

try {
 var anArray = new Array(-1););
}
catch (error) {
 throw error;
}
finally {
 alert("ok, all is done!");
}
</script>
</head>
<body>
</body>
</html>

Save the document as a .html file, and then run the file on your Firefox browser.
Alternatively, you can use the source code found in the source code folder with the
HTML document entitled: error-message-console.html. If you now take a look at your
console, you should receive the following error message: invalid array length. This is because
we have defined an array that is of negative length, which is shown in the code above.

The trick here is to use the throw statement to throw error messages. Take note that
Firefox's error console does not show the name of the error.

Now we will take a look at how to create custom error messages.

Writing your own messages
Let us move on to creating our own error messages. The completed code is found in the
source code folder, in the file test-custom.html.

Once again, open your code editor, create a new document, and enter the following code
into it:

<html>
<head>
<script type="text/javascript">
function factorial(x) {
 if(x == 0) {
 return 1;

Chapter 6

[1�3]

 }
 else {
 return x * factorial(x-1);
 }
}
try {
 var a = prompt("Please enter a positive integer", "");
 if(a < 0){
 throw new Error("Number must be bigger than zero");
 }
 else if(isNaN(a)){
 throw new Error("You must enter a number");
 }
 var f = factorial(a);

 alert(a + "! = " + f);
}
catch (error) {
 throw error;
}
</script>
</head>
<body>
</body>
</html>

What we have done here is that within the try block we have thrown two new Error
objects, each with a custom message, and then in the catch block, we throw the Error
object again. In the try block, we are creating a custom Error object, and in the catch
block, we are throwing the message into the Error Console.

Take note of the highlighted lines. We have defined our own messages in the Error object.
Save the file, and then open up your Firefox browser. Go to Tools | Error Console. In the
Error Console, make sure you are in either the All tab or the Errors tab. Now run your code
in your Firefox browser. You will receive the message You must enter a number in your error
console if you enter a non-numeric input. If you enter a number that is less than zero, you
will receive the message Number must be bigger than zero. The key here is to make use of
the provided methods and properties to throw your own error messages.

Testing More Complex Code

[1�4]

Modifying scripts and testing
Now that we have covered the basic building blocks of throwing and catching errors using
built-in objects, and using the console to throw error messages, it is time to learn how we
can apply what we have learnt to a simple application.

Time for action – coding, modifying, throwing, and catching
errors

I need you to focus and pay attention in this section because we will be applying all that we
have learnt previously when we first created an application. After that, we will attempt to
generate our own errors and throw various error messages as a part of our testing process.

What we will create is a mock movie booking system. I'm not sure about you, but I've
noticed that the folks at the service counter use some form of a movie booking system that
has a GUI to facilitate their booking process. Not only will we be creating that, but we will
also add more features, such as purchasing food and drinks to go with the movie tickets.

Here are the details of the movie tickets booking system: as you click on each seat, you
are executing a booking action. If the seat is booked, a click on it will execute a remove
booking action.

Other important design rules are as follows: you cannot buy more meals than the number
of tickets that you have booked. For example, if you have booked four tickets, you can only
purchase up to four meals, be it a hotdog meal or a popcorn meal. Similarly, for every meal
that you have purchased, you can purchase one Sky Walker. This means that if you have
purchased three meals, you can only purchase up to three Sky Walkers. Next, you can only
pay in hundred dollar notes. This means that you can only enter figures in hundreds for the
Please pay in $100 notes input field.

In case you are wondering about the pricing of the various merchandise, the tickets are
priced at $10 each. The hotdog meal costs $6 while the popcorn meal costs $4. Sky Walker
costs $10 each.

Chapter 6

[1�5]

Clear about the rules? If you are clear about the rules, we'll first start by creating this
application. After that, we will apply the exception catching mechanism as the final
step. By the way, the completed code for this example can be found in the folder
cinema-incomplete of Chapter 6.

1. Open up code editor and create a new file. Enter the following code into your file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>JavaScript Cinema</title>
</head>
<body>
</body>
</html>

This will form the backbone of our program. Right now, it will not do anything, nor
will it show any design on your webpage. Therefore, we will start by creating the
layout of our application.

2. Enter the following code within the <body> tag of your HTML document.

<div id="container">
 <div id="side-a">
 <h1>Welcome to JavaScript Cinema </h1>
 <div class="screen">
 <p> Screen is located here. </p>
 </div>
 <div class="wrapper" id="tickets">
 <p>You have booked 0 tickets</p>
 </div>
 <div class="wrapper">
 <p>Click on the seats above to make your booking.</p>
 </div>
 </div>
 <div id="side-b">
 <div class="menuRight">
 <h4>Meal Pricing</h4>
 <p>Hotdog Meal : $6
Popcorn Meal : $4</</p>
 <form name="foodForm" onsubmit="return checkForm()">
 <!-- total number of meals cannot exceed total
number of tickets purchased -->
 # of Hotdog Meal ($6/meal): <input type="text"
name="hotdogQty" length="3" size="3px"/>

Testing More Complex Code

[1�6]

 # of Popcorn Meal ($4/meal): <input type="text"
name="popcornQty" length="3" size="3px" />
 <p class="smalltext">Total # of meals cannot
exceed total number of tickets purchases</p>

 <!-- here's some specials to go with -->
 <p>Here's the special deal of the day:</p>
 Sky Walker($10):<input type="text" name="skywalker"
length="3" size="3px"/>
 <p class="smalltext">You can only buy 1 Sky Walker
for every meal you've purchased.</p>

 <!-- show total price here -->
 Please pay in $100 notes
 <input type="text" name="hundred" length="3"
size="3px" />

 <input type="submit" value="Order Now">
 </form>
 </div>
 <div id="orderResults"> </div>
 </div>
</div>

This code forms the basic control of our movie ticket booking application. You may
have noticed that there are various div elements with the class wrapper. These
elements will be used to create a grid-like user interface that represents the seats
in a cinema. So now we will start to create the grid that will be used to represent
the seats.

3. We will first build the first row of the grid. For a start, type the following code within
the first div element with a wrapper class:

<div class="left1" id="a1" name="seats" onclick="checkBooking(this
);">
<p>Available</p>
</div>
<div class="left2" id="a2" name="seats" onclick="checkBooking(this
);">
<p>Available</p>
</div>

<div class="left8" id="a8" name="seats" onclick="checkBooking(this
);">
 <p>Available</p>

Chapter 6

[1�7]

</div>
<div class="left9" id="a9" name="seats" onclick="checkBooking(this
);">
 <p>Available</p>
</div>

Notice that each of the <div> elements that you have typed within the first div
element with a wrapper class has a class and id property. In general, the first div
will have a class of left1, and an ID of a1. The next div element will have a class of
left2 and an ID of a2, and so on. This is the way that we will be designing our grid.
Now, let us proceed to the next step.

4. Similar to step 3, we will build the next row of our grid. Enter the following code into
the second div element with a wrapper class:

<div class="left1" id="b1" name="seats" onclick="checkBooking(this
);">
 <p>Available</p>
</div>

<div class="left2" id="b2" name="seats" onclick="checkBooking(this
);">
 <p>Available</p>
</div>

<div class="left8" id="b8" name="seats" onclick="checkBooking(this
);">
 <p>Available</p>
</div>

<div class="left9" id="b9" name="seats" onclick="checkBooking(this
);">
 <p>Available</p>
</div>

Notice that the div elements that form the second row of the grid have an ID
starting with a "b" as opposed to an "a" as is the case in the first row of the grid. This
will be the way that we will name and continue to build the grid as we go along. This
means that the next row will have an ID beginning with "c", the fourth row will have
an ID beginning with "d", and so on.

In all, we will be creating five rows. This means that we have three more rows to go.

Testing More Complex Code

[1��]

5. Now we will build the next three rows of the grid. Type the code given in the
previous step into the remaining div elements, but remember to change the id
of each element to suit the row number. At the same time, remember to include
the onclick="checkBooking(this)", as this will be used for executing our
JavaScript functions.

Once you are done with the HTML, it's time for us to add the CSS in order to create
the proper design and layout for our application.

6. For this example, we will be using an external CSS. Therefore, insert the following
code after the <title> </title> tags.

<link rel="stylesheet" type="text/css" href="cinema.css" />

7. Now we will create a CSS file. Open up a new document and save it as cinema.css,
as this is what we referred to in step 6. Next, enter the following code into
cinema.css:

body{
 border-width: 0px;
 padding: 0px;
 padding-left: 20px;
 margin: 0px;
 font-size: 90%;
}
#container {
 text-align: left;
 margin: 0px auto;
 padding: 0px;
 border:0;
 width: 1040px;
}

#side-a {
 float: left;
 width: 840px;
}

#side-b {
 margin: 0;
 float: left;
 margin-top:100px;
 width: 200px;
 height: 600px;
 background-color: #cccc00;
}

Chapter 6

[1��]

This is the code for the CSS classes and ID selectors that are used to build the
scaffold of our application. You might want to refresh yourself by going back to
Chapter 1,What is JavaScript Testing, if you have forgotten how CSS works.

Now, we will decide on the size of the seats on the grid, and other
important properties.

8. We will define the width, height, background color, and text color of the seats.
Append the following code to cinema.css:

#a1,#a2,#a3,#a4,#a5,#a6,#a7,#a8,#a9,
#b1,#b2,#b3,#b4,#b5,#b6,#b7,#b8,#b9,
#c1,#c2,#c3,#c4,#c5,#c6,#c7,#c8,#c9,
#d1,#d2,#d3,#d4,#d5,#d6,#d7,#d8,#d9,
#e1,#e2,#e3,#e4,#e5,#e6,#e7,#e8,#e9
{
 background:#e5791e;
 color:#000000;
 width: 71px;
 height: 71px;
}

The previous code defines the size, color, and background for all of the "seats" in
our cinema. Now we are down to the final step in creating the layout and design of
our application.

9. We will now define the layout and colors of our grid, which contains our
seats. The completed CSS code can be found in the source code folder
cinema-incomplete, in the file cinema.css. Append the following code
to cinema.css:

.wrapper{
 position: relative;
 float: left;
 left: 0px;
 width: 840px;
 margin-bottom: 20px;
 background-color: #cccccc
}
…
.left1{
 position: relative;
 float: left;
 left: 10px;
 z-index:0;
}
.left2{

Testing More Complex Code

[1�0]

 position: relative;
 float: left;
 left: 30px;
 width: 71px;
 height: 71px;
}

… …

.left8{
 position: relative;
 float: left;
 left: 150px;

}
.left9{
 position: relative;
 float: left;
 left: 170px;
}

This CSS code basically defines each column of the grid. Once you are done with
this, save it as cinema.css and cinema.html. Make sure that these files are in
the same folder. Open up cinema.html in your web browser, and you should see
something similar to the following screenshot:

Chapter 6

[1�1]

If you see something amiss, you might want to compare your code to the example
source code found in the folder cinema-incomplete.

Now that we are done with the design and layout of our application, it is time for
us to add in the behaviors of the application. The completed code example for the
following section can be found in the folder cinema-complete of Chapter 6.

10. We will be using an external JavaScript file. So let us add the following code snippet
before the </head> tag:

<script type="text/javascript" src="cinema.js"></script>

11. Now let us create a new file, and name it cinema.js. We will focus on creating the
ticket booking mechanism. Because we will be booking tickets by clicking on the
seats, we need some mechanism to handle the click event. Because we have already
included the onclick="checkBooking(this)" in the HTML code, what we need
to do now is create a function that handles the click event. Add the following code
into cinema.js:

function checkBooking(element) {
 var id = element.id;
 var status = document.getElementById(id).innerHTML;

 // "<P>Available</P>" is for an IE quirks
 if(status === "<p>Available</p>" || status === "<P>Available</
P>")
 addBooking(id);
 else
 removeBooking(id);
 //alert(id);
 return true;
}

Notice that the previous code checks for the innerHTML of the div element and
checks to see if it is <p>Available</p>. If it is, this means that the seat is available
and we can proceed with booking the seat. If not, the seat is booked and a click on
the div element will result in removing the booking of the seat.

With that in mind, we need two more functions that will help us with the booking
and removal of the booking of the seats.

Testing More Complex Code

[1�2]

12. We will now create two more functions, to book or to remove booking of the seats.
Prepend the following code to cinema.js:

var counterNumReservations = 0;
function addBooking(id) {
 // add 1 to counterNumReservations when a user clicks on the
seating
 // alert("addBooking");
 document.getElementById(id).style.backgroundColor = "#000000";
 document.getElementById(id).style.color = "#ffffff";
 document.getElementById(id).innerHTML = "<p>Booked!</p>";
 counterNumReservations = counterNumReservations + 1;
 document.getElementById("tickets").innerHTML = "<p>You have
booked " + counterNumReservations + " tickets</p>">";
 return true;
}
function removeBooking(id) {
 // minus 1 from counterNumReservations when a user clicks on a
seating that is already booked
 // alert("removeBooking");
 document.getElementById(id).style.backgroundColor = "#e5791e";
 document.getElementById(id).style.color = "#000000";

 document.getElementById(id).innerHTML = "<p>Available</p>";
 counterNumReservations = counterNumReservations - 1;
 document.getElementById("tickets").innerHTML = "<p>You
have booked " + counterNumReservations + " tickets</p>">";
 return true;
}

We have used a global variable to keep track of the number of tickets or seats
booked. What the previous functions are doing is that they will increase or decrease
(as appropriate) counterNumReservations and, at the same time, change the
HTML contents of the div elements to reflect the status of the booking process. In
this case, the seat that is booked will be black in color.

Now, save your file and click on the seats. You should be able to receive visual
feedback on the booking process.

We will move on to the form handling mechanism.

Chapter 6

[1�3]

13. The form handling mechanism basically handles the following: calculating total
spending, the total meal quantity, the amount of money that the user has paid,
the change (if any), and also other possible errors or conditions, such as whether
enough money is paid, if the money has been paid in hundreds, and so on. With
that in mind, we will create the following function:

function checkForm(){
 var mealPrice;
 var special;
 var hundred;
 var change;
 var ticketPrice
 if(calculateMealQty() == 1 && checkHundred() == 1 &&
checkSpecial() == 1 && checkMoney() == 1) {
 alert("passed! for checkForm");
 mealPrice = calculateMealPrice();
 special = specialOffer();
 ticketPrice = calculateTicketPrice();
 change = parseInt(amountReceived()) - parseInt((mealPrice
+ special + ticketPrice));
 alert(change);
 success(change);
 }
 else
 alert("there was something wrong with your order.");

 return false;
}

In order to create code that is modular, we have split the functionality down into
separate functions. For instance, success() and failure() are used to create
the HTML contents, which will show the status of the booking process.

Similarly, notice that we will need to create other functions for calculating meal
quantity, checking total money spent, and so on. These functions are created based
on what we have learnt from Chapter 1 to Chapter 5, so I'll go on quickly. So now, let
us create these functions.

Testing More Complex Code

[1�4]

14. We will now create various functions for calculating the meal quantity, the total
meal price, the total ticket price, and so on. We'll start with calculating the
meal quantity:

function calculateMealQty() {
 var total = parseInt(document.foodForm.hotdogQty.value) +
parseInt(document.foodForm.popcornQty.value);
 alert("you have ordered " + total + " meals");
 if(total > counterNumReservations) {
 alert("you have ordered too many meals!");
 failure("you have ordered too many meals!");
 return 0;
 }
 else {
 alert("ok proceed!");
 return 1;
 }
}

Now, we'll write the function for calculating the meal price:

function calculateMealPrice() {
 // add up total price
 var price = 6*parseInt(document.foodForm.hotdogQty.value) +
(4*parseInt(document.foodForm.popcornQty.value));
 alert("meal price is " + price);
 return price;
}

Next is the function for calculating the ticket price:

function calculateTicketPrice() {
 var price = counterNumReservations * 10;
 alert("ticket price is " + price);
 return price;
}

We'll now write the function for calculating how much was spent on Sky Walker by
the user:

function specialOffer() {
 // for more ordering offers
 var skywalker = 10 * parseInt(document.foodForm.skywalker.
value);
 alert("skywalker price is " + skywalker);
 return skywalker;
}

Chapter 6

[1�5]

Once this has been done, we'll write a small function that checks how much money
has been received:

function amountReceived() {
 var amount = parseInt(document.foodForm.hundred.value);
 alert("I received "+ amount);
 return amount;
}

Now that we are done with the functions that do the bulk of the calculations, it's
time to write functions to check if the user has ordered too much Sky Walker:

function checkSpecial() {
 if(parseInt(document.foodForm.skywalker.value) >
(parseInt(document.foodForm.hotdogQty.value) + parseInt(document.
foodForm.popcornQty.value))){
 alert("you have ordered too many sky walker");
 failure("you have ordered too many sky walker");
 return 0;
 }
 else {
 return 1;
 }
}

Once we are done with the previous step, it's time to check if the user paid too
little money:

function checkMoney() {
 var mealPrice = calculateMealPrice();
 var special = specialOffer();
 var ticketPrice = calculateTicketPrice();
 var change = amountReceived() - (mealPrice + special +
ticketPrice);

 alert("checkMoney :" + change);
 if(change < 0) {
 alert("you have paid too little money!");
 failure("you have paid too little money!");
 return 0;
 }
 else
 return 1;
}

Testing More Complex Code

[1�6]

As stipulated at the beginning, we will also need to check to see if the user paid in
hundred dollar notes. This is done as follows:

function checkHundred() {
 // see if notes are in hundreds
 var figure = parseInt(document.foodForm.hundred.value);
 if((figure%100) != 0) {
 alert("You did not pay in hundreds!");
 failure("You did not pay in hundreds!");
 return 0;
 }
 // can use error checking here as well
 else {
 alert("checkHundred proceed");
 return 1;
 }
}

Finally, the functions for creating the HTML content that reflects the booking status
are as follows:

function failure(errorMessage) {

 document.getElementById("orderResults").innerHTML =
errorMessage;
}

function success(change) {
 document.getElementById("orderResults").innerHTML = "Your
order was successful.";
 document.getElementById("orderResults").innerHTML +=
"Your change is " + change + " and you have purchased " +
counterNumReservations + " tickets.";
}

Phew! That was quite a bit of coding! You might want to save your files and test your
application in your browser. You should have a full working application, assuming
that you have entered the code correctly. The completed code up to this stage can
be found in the cinema-complete folder.

Although we have just been through a tedious process, it was a necessary process.
You might ask why you are coding first instead of testing immediately. My answer
is that firstly, in the real business world, it is very likely that we need to write code
and then test the code that we have written. Secondly, if I were to create a tutorial
and ask you to test the code without knowing what the code is, it might leave you
hanging on the cliff, as you might not know what to test for. Most importantly,
the approach that we have taken allows you to practice your coding skills and
understand what the code is about.

Chapter 6

[1�7]

This will help you to understand how to apply the try, catch, and other built-in
exceptions object in your code; we will be doing this right now.

15. We will now create a function that will be used to throw and catch our errors by
using built-in objects. Now, open cinema.js and prepend the following code
at the top of the document:

function catchError(elementObj) {
 try {
 // some code here
 }
 catch (error) {
 if(error instanceof TypeError){
 alert(error.name);
 alert(error.message);
 return 0;
 }
 else if(error instanceof ReferenceError){
 alert(error.name);
 alert(error.message);
 return 0;
 }
… …
 else if(error instanceof EvalError){
 alert(error.name);
 alert(error.message);
 return 0;
 }
 else {
 alert(error);
 return 0;
 }
 }
 finally {
 alert("ok, all is done!");
 }
}

The previous code will form the scaffold of our catchError() function. Basically,
what this function does is to catch the error (or potential error) and test to see
what type of error it is. We will be seeing two sample usages of this function in
this example.

Testing More Complex Code

[1��]

The first example is a simple example to show how we can use catchError()
in other functions so that we can catch any real or potential errors. In the second
example, we will throw and catch a TypeError by using catchError().

The completed code for this stage can be found in the folder cinema-error-
catching. Take note that the bulk of the code did not change, except for
the addition of the catchError() and some minor additions to the
addBooking() function.

16. We will now try to catch a ReferenceError (or TypeError, if you are using
Internet Explorer) by adding the following code snippet within the try block:

 x = elementObj;

Next, add the following code at the top of the function addBooking():

 var test = catchError((counterNumReservations);
 if(test == 0)
 return 0; // stop execution if an error is catched;

What we are trying to do here is to stop execution of our JavaScript code if we find any
errors. In the above code snippet, we pass a variable, counterNumReservations,
into catchError() as an example.

Now, save the file and test the program. The program should be working normally.
However, if you now change the code in the try block to:

 var x = testing;

where testing is not defined, you will receive a ReferenceError (if you are using
Firefox browser) or TypeError (if you are using Internet Explorer) when you
execute your application.

The previous simple example shows that you can pass variables into the
catchError() function to check if it's what you want.

Now, let us move on to something more difficult.

17. We will now try to throw and catch a TypeError. Let us first remove the changes
that we made in the previous example. Now what we are doing here is checking
to see if the object passed into the addBooking() function is the nodeType
that we want. We can achieve this by adding the following code at the top of the
addBooking() function:

 var test = document.getElementById(id);
 // alert(test.nodeName); // this returns a DIV -> we use
nodeName as it has more functionality as compared to tagName
 var test = catchError(test.nodeType);
// nodeType should return a 1
 if(test == 0)
 return 0; // stop execution if an error is catched;

Chapter 6

[1��]

Take note of the above lines in the code. What we have done is that we are getting the
nodeType of the id element. The result of this will be used as an argument for the
catchError() function. For some basic details about nodeType, please visit
http://www.w3schools.com/htmldom/dom_nodes_info.asp.

Now, remove whatever changes you have done to catchError(), and add the following
code to the try block:

 var y = elementObj;
 // var correct is the type of element we need.
 var correct = document.getElementById("a1").nodeType;
 alert("Correct nodeType is: " + correct);

 var wrong = 9; // 9 represents type Document

 if(y != correct){
 throw new TypeError("This is wrong!");

 }

Notice that we are testing for the nodeType by checking the resulting integer. Anything
that is not correct (the correct variable is 1) will result in an error, as shown in the if
statement block.

Save the file, and then run your example. You should first receive an alert box telling you
that the Correct nodeType is 1, followed by the message TypeError. Next, you will see the
message This is wrong (which is a personalized message) and finally the message ok, all is
done indicating the end of the catchError() function.

What we have done is that we have thrown our own errors in response to different error
types. In our case here, we wanted to make sure that we are passing the correct nodeType.
If not, it is an error and we can throw our own error.

With that, we'll end this example.

Have a go hero – using catchError function to check input
Now that you have covered quite a bit of code and gained new knowledge, you might want
to try this out: use the catchError() function to check the user's input for correctness.
How would you go about doing that? Here are some ideas to help you get going:

You might want to make sure that the input values go through catchError()
before passing them to some other function.

Will you implement catchError() within other functions? Or are the values passed
to catchError() immediately upon input and then passed to other functions?

Testing More Complex Code

[200]

Summary
We have covered quite a few concepts in this chapter. The most important is using
JavaScript's exception handling mechanisms through the built-in objects, and using these
objects together with try, catch, and finally statements. We then tried to apply these
concepts into the cinema ticket booking application that we created.

We also learnt the following topics:

Issues that occur when using scripts together, such as name clashing and combining
event handlers to make the code more compact

Why we need to use JavaScript libraries, and the issues to consider, such as the
availability of documentation, tutorials, plugins, and a testing suite

How we can make use of tools such as Selenium to test GUI and widgets add-ons for
libraries (these will be covered in more detail in Chapter 8)

How we can write error messages, or our own messages, to the console log

How to perform exception handling by using JavaScript built-in objects and using
these together with the try, catch, and finally statements

How to use JavaScript's exception handling mechanisms in a sample application

Up to this chapter, we have been using manual ways to test our code, albeit now using more
advanced testing methods. In the next chapter, we will learn how to use different debugging
tools to make debugging, which is a part of testing, easier. This will include using tools
such as the IE8 Developer Tools, the Firebug extension for Firefox, the Google Chrome Web
Browser Inspector, and the JavaScript debugger.

What makes such tools powerful is that they allow us to test in a less obtrusive manner; for
instance, there's no need for us to use alert(), as we can, in general, write error messages
to the built-in consoles of these tools. This is a real time-saver and will make our testing
process a lot smoother. We will learn about these different debugging tools in the next
chapter. See you there!

7
Debugging Tools

In this chapter, we shall learn about debugging tools that can make our lives, we shall learn about debugging tools that can make our lives we shall learn about debugging tools that can make our liveslives
easier. We will be using debugging tools provided by major browsers in the
market such as Internet Explorer, Firefox, Google Chrome, and Safari.

I understand that there is informative documentation on the Internet, thereforeis informative documentation on the Internet, therefore informative documentation on the Internet, therefore
what you can expect in this chapter is that I'll very brie��y talk about the'll very brie��y talk about thell very brie��y talk about the
features, and then walk through a simple example as to how you can makeen walk through a simple example as to how you can maken walk through a simple example as to how you can make
use of the debugging features to make your life easier.r life easier. life easier.

In general, you will learn about each of the following topics for the above-mentioned, you will learn about each of the following topics for the above-mentioned you will learn about each of the following topics for the above-mentionedthe following topics for the above-mentioned following topics for the above-mentioned topics for the above-mentioned for the above-mentioned
debugging tools for each browser:

Where and how to get the debugging tools

How to use the tools to debug HTML, CSS, and JavaScript

Advanced debugging, such as setting breakpoints and watching variablesdvanced debugging, such as setting breakpoints and watching variablesbreakpoints and watching variables and watching variables

How to perform profiling by using the debugging toolsprofiling by using the debugging tools by using the debugging tools

So let's get started.'s get started.s get started.

Debugging Tools

[202]

IE � Developer Tools (and the developer toolbar plugin
for IE6 and 7)
In this section we will focus on Internet Explorer 8's developer toolbar.'s developer toolbar.s developer toolbar.

In case you are using Internet Explorer 6 or 7, here's how you can install the
developer toolbar for Internet Explorer 6 or 7.

You will need to visit http://www.microsoft.com/downloads/
details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db
91038&displaylang=en and download the developer toolbar. In case you
are reading a paper version of this book and cannot copy and paste the above
URL, Google "developer toolbar for IE6 or IE7", and you should land on the
download page you need.

Note that the toolbar from the above webpage is not compatible with Internet
Explorer 8.

If you do not wish to install the developer tool separately, I'd recommend that you installthe developer tool separately, I'd recommend that you install developer tool separately, I'd recommend that you installseparately, I'd recommend that you install, I'd recommend that you install'd recommend that you installd recommend that you install
Internet Explorer 8; IE8 comes pre-packaged with their developer tool and it is more handypre-packaged with their developer tool and it is more handy with their developer tool and it is more handy
when compared to installing developer tools for IE6 or IE7 separately.developer tools for IE6 or IE7 separately. tools for IE6 or IE7 separately.separately..

From this point onwards, I'll be covering the developer tool using the built-in tool in Internet'll be covering the developer tool using the built-in tool in Internetll be covering the developer tool using the built-in tool in Internet
Explorer 8.

Using IE developer tools
Now that we have obtained the plugin, it's time to go through an example to get an idea's time to go through an example to get an ideas time to go through an example to get an idea
of how it works. I have prepared a sample code in the source code folder of this chapter;
go to the folder and open the document called IE-sample.html in you browser. Basically
what this example does is that it requires you to enter two numbers, and then it will performtwo numbers, and then it will perform numbers, and then it will perform
addition, subtraction, multiplication, and division on the two numbers. The result will be, and division on the two numbers. The result will be and division on the two numbers. The result will be
shown on a box which is found on the right-hand side of the form.the right-hand side of the form. right-hand side of the form.-hand side of the form. side of the form.

Now give it a test, and once you are done with it, we will start to learn how we can debug
this web page using IE8's debugging tool.'s debugging tool.s debugging tool.

Open
I assume that the file is still open in your browser. If not, open IE-sample.html in your
browser (using Internet Explorer, of course). Once the example is opened, you will needOnce the example is opened, you will neednce the example is opened, you will need the example is opened, you will need, you will need
to open the debugging tool. You can navigate to. You can navigate toYou can navigate to Tools, and then click on Developer Tools.
Alternatively, you can access the debugging tool by pressing Shift + F12 on your keyboard.

Chapter 7

[203]

A brief introduction to the user interfaceintroduction to the user interfacentroduction to the user interfaceuser interfaceser interfaceinterfacenterface
Before we move into the actual debugging process, I'll briefly focus on the key features of'll briefly focus on the key features ofll briefly focus on the key features ofbriefly focus on the key features of focus on the key features offocus on the key features of on the key features of
the IE debugging tool.

1. HHTML: TheThehe HTML tab shows the source code for the script or web page that you arethe source code for the script or web page that you are source code for the script or web page that you are
currently viewing. When you click on this tab, you will get the related tabs on theviewing. When you click on this tab, you will get the related tabs on theWhen you click on this tab, you will get the related tabs on thethe related tabs on the related tabs on the
right-hand side, as shown in the previous screenshot.-hand side, as shown in the previous screenshot. previous screenshot.previous screenshot. screenshot.

2. CSS: TheCSS: TheThehe CSS tab shows you the CSS stylesheet used by the current webpage thatthe current webpage that current webpage that that
you are viewing.

3. Script: TheScript: TheThehe Script tab is where you will be performing your JavaScript debugging
tasks. When you click on this tab, you will get a list of features related to the
debugging tasks, such as Console, Breakpoints, Locals, and Watch.

4. Profiler: TheProfiler: Ther: The: TheThehe Profiler tab shows the profiling data for the web page, should you youyou
choose to perform profiling.

Debugging basics of the IE debugging tool basics of the IE debugging toolbasics of the IE debugging toolasics of the IE debugging tooldebugging toolebugging tooltoolool
In general, we can use IE's debugging tool in two ways:'s debugging tool in two ways:s debugging tool in two ways:debugging tool in two ways: tool in two ways:

In a separate window

Docking it Docked within the browser

Debugging Tools

[204]

You can dock the debugging tool within the browser by going to the upper right-hand cornerupper right-hand corner right-hand corner-hand cornerhand corner cornercorner
of the debugging window and clicking on the pin icon. In my case, I prefer to dock it in myIn my case, I prefer to dock it in myn my case, I prefer to dock it in myI prefer to dock it in my prefer to dock it in my
browser so that I have more viewing space on my screen. Moreover, because the example
code is fairly small, docking it on your browser should suffice.

In general, the left-hand side of the debugging panel is what the IE team calls thethe debugging panel is what the IE team calls the debugging panel is what the IE team calls the Primary
Content pane. This panel displays the web page's Document Object Model; this is the panelpane. This panel displays the web page's Document Object Model; this is the panelane. This panel displays the web page's Document Object Model; this is the panell displays the web page's Document Object Model; this is the panel displays the web page's Document Object Model; this is the panel's Document Object Model; this is the panels Document Object Model; this is the panel
that gives us a programmatic overview of the source code of the web page.

Here are some of the basics of debugging when using IE's debugging tool.'s debugging tool.s debugging tool.

Time for action – debugging HTML by using the IE� developer tool
1.	 To inspect HTML elements of the webpage, click on theelements of the webpage, click on the of the webpage, click on the HTML tab found in the

Primary Content Panel. We can click on the + icon located on the first line of thethe first line of the first line of the
Primary Content Panel.

2.	 Once you have clicked on the + icon, you should see <head> and <body> appearing
as soon as the <html> tag is expanded; clicking on them again will show the other
elements contained within the <head> and <body> tags. For example, let us click
on the div element with the id wrap.

3.	 On clicking then clicking theclicking the div element, you can immediately see the various properties you can immediately see the various properties
associated with wrap, such as its parent element, its inherited HTML and CSS,
and the CSS properties that belong toproperties that belong to to wrap.

We can perform further inspection by clicking on the various commands found
on the Properties pane:pane:ane:

Style: The: TheThe Style command improves CSS debugging by providing a list
of all of the rules that apply to the selected element. The rules are
displayed in precedence order; so those that apply last appear at the
bottom, and any property overridden by another is struck through,
allowing you to quickly understand how CSS rules affect the current
element without manually matching selectors. You may quickly turn
a CSS rule on or off by toggling the checkbox next to the rule, and the
action will take effect immediately on your page. In our case, you will In our case, you will
see two inheritances for ourtwo inheritances for our inheritances for ours for our for our #wrap element: body and HTML. You can
change the color property to, say, #eee, by clicking on the property
value and typingand typing typing #eee. Once you are done, press Enter and you canand you can
see changes immediately.

Chapter 7

[205]

Trace Styles: This command contains the same information as Styles: This command contains the same information asStyles: This command contains the same information as: This command contains the same information as Style
except it groups styles by property. If you are looking for information
about a specific property, switch to the Trace Styles command. Simply
find the property that interests you, click the plus (+) icon, and see a list
of all rules that set that property—again in precedence order.

Layout: The: TheThe Layout command provides box model information, such
as the element's offset, height, and padding. Use this command when
debugging an element's positioning.

Attributes: The: TheThe Attributes command allows you to inspect all of
the defined attributes of the selected element. This command
also allows you to edit, add, or remove the selected element's
attributes.

Time for action – debugging CSS by using the IE� developer toolime for action – debugging CSS by using the IE� developer toolaction – debugging CSS by using the IE� developer toolction – debugging CSS by using the IE� developer tool – debugging CSS by using the IE� developer tooldebugging CSS by using the IE� developer tool by using the IE� developer toolusing the IE� developer tooldeveloper tooleveloper tooltoolool
Now let use shift our attention back to the Primary Content Panel.

1.	 Click on the CSS tab so that we have access to all of the CSS (external or internal)(external or internal) or internal)internal)
files. Once you have done that, you will see an identical CSS that is used byhave done that, you will see an identical CSS that is used by done that, you will see an identical CSS that is used by
our webpage.

2.	 Now I want you to click on a style property, say color, found in BODY, and change it
to #ccc. You will immediately see changes to the color of the text in our web page.

What just happened?
We have just performed the basics of debugging, which has provided us with the required
knowledge before we move into debugging JavaScript by using IE's debugging tool.'s debugging tool.s debugging tool.

The simple examples that we have carried out above are what we call editing sourcescarried out above are what we call editing sources above are what we call editing sourcesditing sourcessourcesources
on-the-fly; we can edit any HTML or CSS properties without going back to our sourcen-the-fly; we can edit any HTML or CSS properties without going back to our sourcethe-fly; we can edit any HTML or CSS properties without going back to our sourcehe-fly; we can edit any HTML or CSS properties without going back to our sourcefly; we can edit any HTML or CSS properties without going back to our sourcely; we can edit any HTML or CSS properties without going back to our source we can edit any HTML or CSS properties without going back to our source
code, changing it, saving it, and than reloading the file in our browser. In my opinion,In my opinion,n my opinion,
such features are some of the key reasons why we should use debugging tools.

However, take note that the changes that you have made only exist in Internet Explorer'sexist in Internet Explorer's
internal representation of the site. This means that refreshing the page or navigating awayhis means that refreshing the page or navigating away refreshing the page or navigating away
brings back the original site.

However, there will be cases where you may want to save the changes, and in order to do to save the changes, and in order to do, and in order to do
that, you can click the click the Save button to save the current HTML or CSS to a file. This is done inThis is done in
order to prevent the accidental overwriting of your original source code.the accidental overwriting of your original source code. overwriting of your original source code. of your original source code. your original source code.original source code. source code. code..

Let us move on to JavaScript.et us move on to JavaScript.

Debugging Tools

[206]

Debugging JavaScript
Now its time to learn how we can debug JavaScript by using IE's developer tool.w its time to learn how we can debug JavaScript by using IE's developer tool.'s developer tool.s developer tool.

Time for action – more Debugging JavaScript by using the IE�
developer tool

Here are the steps to start debugging:

1.	 Click on the Script tab found in the Primary Content Panel.

2.	 Next, click on the button that says, click on the button that saysthe button that says button that says Start Debugging.

3.	 After clicking on Start Debugging, you will have all of the functionality of a
proper debugger.

If you wish to stop debugging at any point in the debugging process, click on
Stop debugging.

Now let us see what we can do with the various functionalities of the debugging
tools. Let us start with the first one: setting breakpoints.

We usually set breakpoints in order to control execution. In the previous set breakpoints in order to control execution. In the previousIn the previousn the previous
chapters, we have typically relied on alert() or other functions in order to
control program execution.program execution.

However, by using IE's debugging tool, you can control program execution by's debugging tool, you can control program execution bys debugging tool, you can control program execution bycontrol program execution byby
simply setting breakpoints; you can save quite a lot of alert(), or other
self-defined functions, along the way.

Now, let us control execution by using breakpoints.

4.	 You can set a breakpoint by right-clicking on a line number and selectingselecting
Insert Breakpoint. In our case, let us go to the line that contains
buildContent(answerB, "minus"); right-click on it, and then-click on it, and thenclick on it, and then on it, and then and then
select Insert Breakpoint.

5.	 Now try running the example by entering some values into the input fields in
your browser. You will see that the dynamic content will not be created on the
black square on the right-hand side. This is because the code execution stops at-hand side. This is because the code execution stops at. This is because the code execution stops at
buildContent(answerB, "minus");.

Chapter 7

[207]

We usually use breakpoints to inspect variables; we need to know if our code
is executing the way in which we want it to, in order to make sure that it isthe way in which we want it to, in order to make sure that it is way in which we want it to, in order to make sure that it is
correct. So now, let us see how we can set breakpoints and inspect variables.

We inspect variables by using the watch functionality. Continuing from thewatch functionality. Continuing from the functionality. Continuing from thethe
previous example, we can use the watch functionality by clicking on theexample, we can use the watch functionality by clicking on thewatch functionality by clicking on the functionality by clicking on the
Watch pane. Alternatively, you can click on. Alternatively, you can click on Locals, which provides a similar
functionality and allows us to see a set of variables. This can be done to monitor monitor
a custom list of variables, and also to inspect the current state of variables. and also to inspect the current state of variables.

To do what we have just described, we need to perform the following steps:o do what we have just described, we need to perform the following steps: to perform the following steps: perform the following steps:the following steps: following steps:

6.	 Click on Start Debugging and set breakpoints for the lines that contain var
answerA = add(numberA, number); and buildContent(answerA,
"add");

7.	 Now, run the example, and type inow, run the example, and type inw, run the example, and type inrun the example, and type inthe example, and type in 5 and 3 respectively for the input fields.
Then click on Submit.

8.	 Now go to your Debugger panel, and click on Locals. You will see the output aswill see the output as asas
shown in the following screenshot:the following screenshot: screenshot::

What this panel shows is a list of local variables that are local to the function
where breakpoints are set

Notice that answerA, answerB, answerC, and and answerD are currently undefined
as we have not performed any calculation for them, because we have set the
breakpoint at var answerA = add(numberA, number);.

Debugging Tools

[20�]

9.	 Next, click on Watch. You can now add the variables that you want to inspect..
You can achieve this by typing in the name of the variables. Type inachieve this by typing in the name of the variables. Type in this by typing in the name of the variables. Type inthe name of the variables. Type in name of the variables. Type in answerA
and numberB, and then press Enter. You will see a screen similar to the examplewill see a screen similar to the example see a screen similar to the example
shown in the following screenshot: screenshot::

As explained previously, answerA is not defined yet as it has not beennot been been
calculated by our program. Also, because we enter the values forby our program. Also, because we enter the values for our program. Also, because we enter the values for numberA
and numberB, numberB is naturally defined.

Did you notice that we have the incorrect types for our input?
This is because we have used the .value method to access
the values of the input fields. As a good JavaScript programmer,
we should be converting the values to floating-point numbers
by using parseFloat().

We can continue to execute the code (in debugging mode) by performinge the code (in debugging mode) by performing the code (in debugging mode) by performing
Continue, Step In, Step Over, and Step Out operations in the debuggingontinue, Step In, Step Over, and Step Out operations in the debuggingStep In, Step Over, and Step Out operations in the debuggingtep In, Step Over, and Step Out operations in the debuggingIn, Step Over, and Step Out operations in the debuggingn, Step Over, and Step Out operations in the debuggingStep Over, and Step Out operations in the debuggingtep Over, and Step Out operations in the debuggingOver, and Step Out operations in the debuggingver, and Step Out operations in the debugging and Step Out operations in the debugging Step Out operations in the debuggingStep Out operations in the debuggingtep Out operations in the debuggingOut operations in the debuggingut operations in the debuggingthe debugging debugging
window.

We will move quickly into the example to see how Continue, Step In, Step OverContinue, Step In, Step Overontinue, Step In, Step OverStep In, Step Overtep In, Step OverIn, Step Overn, Step Over, Step Overver
and Step Out work. Continuing from the above example:ut work. Continuing from the above example:the above example: above example:

10.	Click on the Continue button, which is green and looks like a "play" button.which is green and looks like a "play" button. is green and looks like a "play" button."play" button.play" button." button. button.
Immediately, you will see that the code will execute until the next breakpoint.will see that the code will execute until the next breakpoint. see that the code will execute until the next breakpoint.
This means that the variables that were previously undefined will now bere previously undefined will now be previously undefined will now be
defined. If you click on Locals, you will see output similar to the examplewill see output similar to the examplesee output similar to the exampleoutput similar to the example
shown in the next screenshot::

Chapter 7

[20�]

11.	Click on Watch, and you will see a screen similar to the example displayed in the and you will see a screen similar to the example displayed in the you will see a screen similar to the example displayed in thewill see a screen similar to the example displayed in the see a screen similar to the example displayed in the a screen similar to the example displayed in the
next screenshot::

This means that the effect of Continue is that it will execute the code from one
breakpoint to the next breakpoint. If there is no second breakpoint, the codethe next breakpoint. If there is no second breakpoint, the code next breakpoint. If there is no second breakpoint, the code If there is no second breakpoint, the codeIf there is no second breakpoint, the code
will execute up to the end.

You might want to experiment with Step In, Step Over, and Step Out.with Step In, Step Over, and Step Out. Step In, Step Over, and Step Out.Step Over, and Step Out.Over, and Step Out.Step Out.Out.

In general, this is what they do:

Step In: This traces the code as the code executes. For instance, you: This traces the code as the code executes. For instance, you This traces the code as the code executes. For instance, you traces the code as the code executes. For instance, you
can perform the steps shown in the above example except that youthe steps shown in the above example except that you steps shown in the above example except that youthe above example except that you above example except that youabove example except that you example except that you
click on Step In instead of Continue. You will notice that you are You will notice that you areYou will notice that you areou will notice that you are
effectively tracing the code. Next, you can check on theNext, you can check on the, you can check on the Locals and
Watch window and you will notice that the previously-undefined and you will notice that the previously-undefined you will notice that the previously-undefined
variables will be defined as the code progresses.defined as the code progresses. as the code progresses.the code progresses. code progresses.progresses..

Step Over: This simply moves to the next line of code without jumping This simply moves to the next line of code without jumping simply moves to the next line of code without jumping
into other functions as with what happened in Step In.

Step Out: This simply "steps out" of the current breakpoint until the: This simply "steps out" of the current breakpoint until the simply "steps out" of the current breakpoint until the"steps out" of the current breakpoint until thesteps out" of the current breakpoint until thes out" of the current breakpoint until the out" of the current breakpoint until the" of the current breakpoint until the of the current breakpoint until the
next breakpoint. It is similar to Continue. If you use Step Out after Step
In, it will continue to the next breakpoint (if any).

Now let us move on to the next useful feature, stopping your code when anfeature, stopping your code when an, stopping your code when an
error is encountered. is encountered.

To enable this feature, you will need to click on the Break on Error button,
or you can simply press Cntrl + Shift + E. This feature should be automaticallyThis feature should be automaticallyhis feature should be automatically
enabled once you start debugging.

What this feature does is stop executing the code should any
error be discovered. For example, uncomment the line that says:For example, uncomment the line that says:or example, uncomment the line that says:
buildContent(noSuchThing, "add"); and run the code inand run the code in
debugging mode. You will see the following screenshot in thewill see the following screenshot in the see the following screenshot in the screenshot in the in the Console,
in your debugging window:

Debugging Tools

[210]

This is one of the cool things about using a debugger; it helps you to spot errors
during run time, so that you can quickly identify the errors that you have made..

Now that we have a basic knowledge and understanding of some of the more
advanced features of IE's debugging tool, it's time to be concerned about the features of IE's debugging tool, it's time to be concerned about the's debugging tool, it's time to be concerned about thes debugging tool, it's time to be concerned about the's time to be concerned about thes time to be concerned about the
performance of our JavaScript program.program..

The Internet Explorer debugging tool comes with a built-in profiler called the
JavaScript Profiler, which helps to take your site to the next level by improvingtake your site to the next level by improving
its performance.

In general, the profiler gives you data on the amount of time spent in each ofprofiler gives you data on the amount of time spent in each ofrofiler gives you data on the amount of time spent in each ofgives you data on the amount of time spent in each of
your site's JavaScript methods and even built-in JavaScript functions. Here's howavaScript methods and even built-in JavaScript functions. Here's howript methods and even built-in JavaScript functions. Here's how. Here's how's hows how
you can use this feature.

12.	Using the sample example source code in your browser, open the Develop tool and
click on the Profile tab. Then click on on Start Profiling, to begin a session.

13.	Go to your browser, and enter some sample values. For instance, I enteredI entered entered 5 and 3.
Once you have entered the sample values, go to your debugging window and click
on Stop Profiling. A screen similar to the one shown in the following screenshot will screenshot will willwill
be displayed:

Notice that the Jscript Profiler includes the time spent on each of the functionsthe Jscript Profiler includes the time spent on each of the functions Jscript Profiler includes the time spent on each of the functionsscript Profiler includes the time spent on each of the functionscript Profiler includes the time spent on each of the functions
(the name of each function is also given). The number of times that eachis also given). The number of times that each also given). The number of times that eachThe number of times that eachhe number of times that each
function is being used is also given, as shown in theis also given, as shown in thegiven, as shown in the Count column. You maycolumn. You may. You mayou mayu may
have noticed that the time taken for each of our functions istime taken for each of our functions is 0.00; this is this is
because our example program is relatively small, so the time required istime required is
close to zero. zero.

Chapter 7

[211]

What just happened?
We have just covered Internet Explorer's developer tool, which helps us to performjust covered Internet Explorer's developer tool, which helps us to perform covered Internet Explorer's developer tool, which helps us to perform's developer tool, which helps us to performs developer tool, which helps us to perform
debugging tasks in a much streamlined manner.

In case want to know what the difference between debugging manually and using awant to know what the difference between debugging manually and using awhat the difference between debugging manually and using athe difference between debugging manually and using aand using a
debugging tool is, I can safely tell you from experience that the amount of time saved by is, I can safely tell you from experience that the amount of time saved by, I can safely tell you from experience that the amount of time saved byI can safely tell you from experience that the amount of time saved by can safely tell you from experience that the amount of time saved by that the amount of time saved bythat the amount of time saved bysaved by by
using a debugging tool alone is a good enough reason for us to use debugging tools.enough reason for us to use debugging tools. reason for us to use debugging tools.

You may understand that there are various quirks involved when developing for Internet
Explorer; using its built-in debugging tools will help you to figure out these quirks in a more to figure out these quirks in a more figure out these quirks in a more
efficient manner. manner.

With that in mind, let us move on to the next tool.

Safari or Google Chrome Web Inspector and JavaScript
Debugger
In this section, we will learn about the JavaScript debugger used in Safari and Google
Chrome. Both browsers have similar code base, but have subtle differences, so let us
start by learning about the differences between Safari and Google Chrome.

Differences between Safari and Google Chrome
If you are an Apple fan, you will no doubt feel that Safari is perhaps the best browser on
planet Earth. Nonetheless, both Google Chrome and Safari have their roots in an open
source project called WebKit.

Safari and Google Chrome use a different JavaScript Engine. Since Safari 4.0, Safari has used. Since Safari 4.0, Safari has used Since Safari 4.0, Safari has usedSince Safari 4.0, Safari has usedince Safari 4.0, Safari has usedSafari has usedhas used
a new JavaScript engine called SquirrelFish. Google Chrome uses the V8 JavaScript Engine.

However, in terms of JavaScript debugging, the two are almost identical when we are using
the built-in debugger provided by Google Chrome and Safari; even the interface is similar. Chrome and Safari; even the interface is similar.

In the following sections, I'll be using Chrome to explain the examples.

Debugging Tools

[212]

Debugging using Chrome
For Google Chrome, there is no need to download any external tools in order for us to
perform debugging tasks. The debugging tools are delivered right out the box with theThe debugging tools are delivered right out the box with thehe debugging tools are delivered right out the box with thethe
browser itself. So now, we will see how we can start our debugging session, using
sample.html.

Opening and Enabling: We'll start by opening and enabling debugging in Chrome. There are
basically two tools in Google Chrome that you can use to help you to perform debugging
tasks for your web applications: the web inspector and the javascript debugger.

Web Inspector: Google Chrome's Web Inspector's predomGoogle Chrome's Web Inspector's predom's Web Inspector's predoms Web Inspector's predomWeb Inspector's predomeb Inspector's predomInspector's predomnspector's predominant use is for inspecting your
HTML and CSS elements. To use Web Inspector, right-click on any component on a web pageInspector, right-click on any component on a web page, right-click on any component on a web pageight-click on any component on a web page
to launch the Web Inspector. You'll be able to see the elements and resources associated
with the component on which you clicked, including a hierarchy view of the DOM and a
JavaScript console. To use the Web Inspector, open To use the Web Inspector, openWeb Inspector, openeb Inspector, openInspector, opennspector, open example.html in Google Chrome.
Move your mouse to the side bar column that says Column 2. Right-click on-click onclick on on Column 2 and
you will see a pop-up menu. Select Inspect Element. A new window is opened. This is theed. This is the. This is the
Web Inspector.nspector.spector.

Now we'll move on to the JavaScript debugger.'ll move on to the JavaScript debugger.ll move on to the JavaScript debugger.

JavaScript Debugger:: To use Chrome's JavaScript Debugger, select theo use Chrome's JavaScript Debugger, select the's JavaScript Debugger, select thes JavaScript Debugger, select theelect the Page menu icon,
which can be found on the right-hand side of thefound on the right-hand side of the on the right-hand side of theon the right-hand side of the the right-hand side of the-hand side of the of the URL input field, and then go to, and then go to Developer
| Debug JavaScript Console. You can also press You can also press Ctrl + Shift + J to launch JavaScript Debugger.launch JavaScript Debugger. JavaScript Debugger.
If you are using Safari, you will have to first enable the developer menu by clicking on theSafari, you will have to first enable the developer menu by clicking on theafari, you will have to first enable the developer menu by clicking on the
Display Settings icon that is found on the right-hand side of the Page icon, select Preference,
and then go to Advanced. On this screen, enable the option Show Develop menu in menu
bar. Then you can access this menu bar by clicking on theen you can access this menu bar by clicking on then you can access this menu bar by clicking on the Page icon and going to Develop
and selecting Start Debugging JavaScript. The interface is almost identical as to what we see
in Google Chrome.

Notice that by opening the JavaScript Debugger, you will be opening up the same window
that you saw in the Web Inspector. However, the default tab is nowWeb Inspector. However, the default tab is noweb Inspector. However, the default tab is nowInspector. However, the default tab is nownspector. However, the default tab is now Scripts. In this tab, you
can to view the source code of our example mentioned in the previous subsection.the previous subsection. previous subsection.previous subsection. subsection.

This is the main screen that we will be using to perform our debugging tasks. In the following
sessions, we will start to get our hands a little dirty by doing some basic debugging.

Most of the tasks and actions that you are going in order to perform should be conceptually
similar if you have gone through our debugging session on using the Internet Explorergone through our debugging session on using the Internet Explorer through our debugging session on using the Internet Explorer
developer tools.

We have just explored the basic actions of opening and starting the Web Inspector and theWeb Inspector and theeb Inspector and theInspector and thenspector and the
JavaScript Debugger. Let us now go through a brief introduction to the user interface, inDebugger. Let us now go through a brief introduction to the user interface, inebugger. Let us now go through a brief introduction to the user interface, inthrough a brief introduction to the user interface, in a brief introduction to the user interface, in
order to get you up to speed..

Chapter 7

[213]

A brief introduction to the user interface
Here's a brief explanation of where you can find the key features in Google Chrome's
debugging tool as shown in the following screenshot:

1. Elements: TheThehe Elements tab shows you the source code for the script or web page the source code for the script or web page source code for the script or web page
that you are currently displaying. When you click on the Elements icon, you will get
the related tabs (as shown on the right-hand side of the previous screenshot), such related tabs (as shown on the right-hand side of the previous screenshot), such(as shown on the right-hand side of the previous screenshot), suchshown on the right-hand side of the previous screenshot), such-hand side of the previous screenshot), such of the previous screenshot), suchprevious screenshot), such screenshot), such), such such
as Computed Style.

2. SScripts: Thes: The: TheThehe Scripts tab is where you will perform your JavaScript debugging
tasks. When you click on the Scripts icon, you will get a list of related features for
debugging, such as Watch Expressions, Call Stack, Scope Variables and Break.

3. Profiles: The Profiles tab shows the profiling data of your web page, should you
choose to perform profiling.

Time for action – debugging with Chromeaction – debugging with Chromection – debugging with Chrome – debugging with Chromedebugging with Chrome
1. We'll now learn how to use the console and make use of breakpoints in order to'll now learn how to use the console and make use of breakpoints in order toll now learn how to use the console and make use of breakpoints in order to

simplify our debugging session. We'll start with the console.'ll start with the console.ll start with the console.

2.	 The console basically shows what you have done within a debugging session. Wehave done within a debugging session. We done within a debugging session. We
first see how we can access the console.

3. Start off by opening the file sample.html in your Google Chrome browser, if you
have not done so already. Once you have done that, perform the following steps inhave done that, perform the following steps in done that, perform the following steps in that, perform the following steps in, perform the following steps in
order to show the console:

Debugging Tools

[214]

4.	 Open your JavaScript debugger by selecting thepen your JavaScript debugger by selecting theen your JavaScript debugger by selecting theelecting theing the the Page menu icon which can
be found on the right-hand side of thefound on the right-hand side of the on the right-hand side of theon the right-hand side of the the right-hand side of the-hand side of the of the URL input field, and then go to, and then go to Developer |
Debug JavaScript. You can also press You can also press Ctrl + Shift + J to launch JavaScript Debugger.launch JavaScript Debugger. JavaScript Debugger.

5.	 Once you have completed step 4, click on the console icon, which can be found atn, which can be found at, which can be found at which can be found atich can be found atbe found at found atat
the bottom of the JavaScript debugger. Once you are done, you will see a screenOnce you are done, you will see a screennce you are done, you will see a screenwill see a screen see a screen
similar to the example shown in the following screenshot: screenshot::

Now that we have opened the console, we move on to the mostow that we have opened the console, we move on to the most
commonly-used features of the debugger. Along the way, you willthe debugger. Along the way, you will debugger. Along the way, you will
also see how the console logs our actions.

We'll now move on to breakpoints by learning how to set them.'ll now move on to breakpoints by learning how to set them.ll now move on to breakpoints by learning how to set them.

As noted earlier, setting breakpoints is an important part of the debuggingthe debugging debugging
process. So we will start off our actual debugging process by setting aSo we will start off our actual debugging process by setting ao we will start off our actual debugging process by setting a
breakpoint.

6.	 With sample.html opened in Google Chrome, start your debugger and makeopened in Google Chrome, start your debugger and make in Google Chrome, start your debugger and make
sure that you are in the Scripts tab. You can set a breakpoint by clicking on the line
number at which we want to set our breakpoint. Let use try going to the line that
contains buildContent(answerB, "minus"); and click on the line number.
You will see a screen similar to the example shown in the following screenshot:will see a screen similar to the example shown in the following screenshot: see a screen similar to the example shown in the following screenshot: screenshot::

Chapter 7

[215]

Notice that line 130 now has a blue arrow (highlighted line), and over to the(highlighted line), and over to the, and over to the
right of the source code panel, you will see the Breakpoint panel. This now This now
contains the breakpoint, which we have just set, within it..

7.	 Run the example and enter some values into the input fields in your browser.
I want you to enter want you to enter to enter 4 in the first input field and 3 in the second input field.the second input field. second input field.
Then click on Submit. You will see that the dynamic content will not be created
in the black square on the right. This is because the code has stopped at
buildContent(answerB, "minus");.

8.	 Now go back to your debugger, and you will see the next screenshot on thewill see the next screenshot on thesee the next screenshot on thenext screenshot on theon the
right-hand side of your source code, similar to the example shown below:-hand side of your source code, similar to the example shown below: of your source code, similar to the example shown below:

You will see that Call Stack, and and Scope variables are now being populated
with values, while Watch Expressions is not. We will cover these in detail in
the next few paragraphs. But for now, we first start off withoff with Call Stack and
Scope Variables.

As shown in the previous screenshot,previous screenshot, screenshot, Call Stack and Scope Variables are
now populated with values when we execute the program. In general, Call
Stack contains the sequence of functions that are being executed, and Scope
Variables shows the values of the variables that are available until a breakpoint the values of the variables that are available until a breakpointntil a breakpointtil a breakpoint
or end of execution.

Debugging Tools

[216]

Here's what happens when we click on the's what happens when we click on thes what happens when we click on theon thethe Submit button: the first function
that is executed is formSubmit(), and within this function, var answerA answerAanswerA,
var answerB, var answerC, and var answerD are calculated. This is how the
Scope Variables get populated with our values.

In general, that is how Call Stack and Scope Variables work in Google Chrome.
Now, let us focus on a feature that has been lingering in our minds,focus on a feature that has been lingering in our minds, on a feature that has been lingering in our minds, Watch
Expression.

Before we explain what Watch Expression is, it is best that we see it in action,
first. Going back to the previous screenshot, you will notice that Going back to the previous screenshot, you will notice thatGoing back to the previous screenshot, you will notice thatprevious screenshot, you will notice thatscreenshot, you will notice thatwill notice that notice that Watch
Expression is not populated at this point of time. We'll now try to populate'll now try to populatell now try to populate
Watch Expression by performing the following steps:the following steps: following steps:

9.	 Refresh your browser and go back to your debugger.

10.	 In the Watch Expression panel, click on on Add, and enter the following: document.
sampleform.firstnumber.value andand document.getElementById("dynami
c").

11.	Go back to your browser and enter 4 and 3 for the input values. Click on on Submit.
Assuming that you have not removed the breakpoint that we set in the previous
subsection, you will see the information shown in the next screenshot in thewill see the information shown in the next screenshot in the see the information shown in the next screenshot in thenext screenshot in the in the Watch
Expression panel:

Watch Expression is now populated. document.sampleform.firstnumber.
value andand document.getElementById("dynamic") are lines of code
copied from our JavaScript program. If you were to trace the code, you would
notice that document.sampleform.firstnumber.value is used to deriveis used to derive
the value of the first input field, and document.getElementById("dynamic
") is used to refer to thethe div element.

Up to this point, you will have understood thatwill have understood that understood thatood thatd that Watch Expression is useful for
checking out expressions. All you have to do is add the expression that you
want to see, and, after executing the program, you will see what that expressionexecuting the program, you will see what that expression the program, you will see what that expression
means, refers to, or what current values it has. This allows you to watch thes, refers to, or what current values it has. This allows you to watch the, refers to, or what current values it has. This allows you to watch thes to, or what current values it has. This allows you to watch the to, or what current values it has. This allows you to watch the. This allows you to watch theThis allows you to watch the
expressions update as the program executes. You do not have to complete the update as the program executes. You do not have to complete theexecutes. You do not have to complete the You do not have to complete theYou do not have to complete theou do not have to complete the
program to see the value of the variables.

Chapter 7

[217]

Now it's time to move on to the Continue, Step In, Step Over, and Step Out's time to move on to the Continue, Step In, Step Over, and Step Outs time to move on to the Continue, Step In, Step Over, and Step OutContinue, Step In, Step Over, and Step Outontinue, Step In, Step Over, and Step OutStep In, Step Over, and Step Outtep In, Step Over, and Step OutIn, Step Over, and Step Outn, Step Over, and Step OutStep Over, and Step Outtep Over, and Step OutOver, and Step Outver, and Step Out and Step Out Step OutStep Outtep OutOutut
operations in the debugging window.the debugging window. debugging window.

The concepts here are pretty similar to what we have seen in Internet Explorer
developer tools. In case you are wondering where the buttons are for executing
these operations, you can find them above theoperations, you can find them above the, you can find them above thethe Watch Expression panel. HereHereere
are the related concepts for each of the operation:the operation: operation:

Step In: This traces the code as the code executes. Assuming that This traces the code as the code executes. Assuming that traces the code as the code executes. Assuming that
you are still at our example, you can click on the icon with an arrow
pointing downwards. You will see that you are effectively tracing the
code. As you continue to click on Step In, you will see the values in
Scope Variables and Call Stack change. This is because at differentdifferent
points of the code there will be different values for various variables
or expressions..

Step Out: This simply moves to the next line of code without jumping This simply moves to the next line of code without jumping simply moves to the next line of code without jumping
into other functions, similarly to how Step In works. to how Step In works.how Step In works.

Step Over: This simply moves to the next line of code. This simply moves to the next line of code. simply moves to the next line of code.

In this last subsection, we will focus on how we can pause on exceptions.focus on how we can pause on exceptions. on how we can pause on exceptions.on exceptions.exceptions.
In general what this means is that the program will halt at the line where aprogram will halt at the line where a will halt at the line where athe line where a line where a
problem is encountered. Here's what we will do to see it in action:'s what we will do to see it in action:s what we will do to see it in action:

12.	Openpen sample.html in your editor. Search for the line that saysthat says says buildContent
(noSuchThing, "add"); and uncomment it. Save the file and open it in
Google Chrome.

13.	Open the debugger. Click on the button with a Pause signdebugger. Click on the button with a Pause sign on the button with a Pause sign , which can be found to
the right of the of theof the Show Console button. This will cause the debugger to halt execution
when errors are encountered..

14.	As usual, enter some values for the input fields. Click onusual, enter some values for the input fields. Click on, enter some values for the input fields. Click on Submit. Once you have
done so, go back to your debugger, and you will see the information shown in thewill see the information shown in the see the information shown in the
following screenshot: screenshot::

In general, this is the kind of visual message that you can get if you enable the
pause on exception feature.

Debugging Tools

[21�]

What just happened?
We have covered the basics of using Google Chrome. If you have followed the previousprevious
tutorial, you will have learned how to use the Console, setting, stepping in, stepping outConsole, setting, stepping in, stepping outonsole, setting, stepping in, stepping out stepping out out
and over a breakpoint, pausing on exceptions, and watching the variables.a breakpoint, pausing on exceptions, and watching the variables. breakpoint, pausing on exceptions, and watching the variables.

By using a mix of the above features, you will be able to quickly sniff out and spot unintendedf the above features, you will be able to quickly sniff out and spot unintended the above features, you will be able to quickly sniff out and spot unintended
JavaScript errors. You can even trace how your JavaScript code is working as it executes.

Over the next few sections, you will begin to notice that most of the tools have very similar
features, although some may have different terms for the same feature.

Now it's time to move on to the other tool, the Opera JavaScript Debugger.'s time to move on to the other tool, the Opera JavaScript Debugger.s time to move on to the other tool, the Opera JavaScript Debugger.

Opera JavaScript Debugger (Dragonfly)
Opera's'ss JavaScript Debugger is called Dragonfly. In order to use it, all you need to do Debugger is called Dragonfly. In order to use it, all you need to dofly. In order to use it, all you need to doly. In order to use it, all you need to do
is download the latest version of Opera; Dragonfly is included in the latest version offly is included in the latest version ofly is included in the latest version of
Opera already.

Now that you have installed the necessary software, it is time for us to performnecessary software, it is time for us to perform software, it is time for us to perform it is time for us to perform is time for us to perform
debugging tasks.

Using Dragonfly
We'll fi'll fill first start with our example.html file. Open this file in Opera browser. Now we willbrowser. Now we willrowser. Now we willwill
see how we can start Dragonfly.fly.ly.

Starting Dragonfly
To access Dragonfly, go to menu option menu option Tools. SelectSelect Advanced, and then click onand then click on Developer
Tools. Once you have done that, Dragonfly will appear. As usual, we'll start with a brieffly will appear. As usual, we'll start with a briefly will appear. As usual, we'll start with a brief'll start with a briefll start with a briefbrief
introduction to the user interface of the tool..

Brief Introduction to the User Interface
Here's a's as a brief overview of the most important functions that we will be using, as shown in as shown in
the next screenshot::

Chapter 7

[21�]

1. DOM: This tab is used for checking the HTML and CSS elements This tab is used for checking the HTML and CSS elements is used for checking the HTML and CSS elements

2. Scripts: This tab is used when we are debugging JavaScript is used when we are debugging JavaScript

3. Error Console: This tab shows the various error messages when we are debugging shows the various error messages when we are debugging
JavaScript.

We'll no'll noll now start with debugging example.html.

Time for action – debugging with Opera Dragonfly
1. In this section, we'll learn how to use the debugging facilities of the Dragonfly. We'll'll learn how to use the debugging facilities of the Dragonfly. We'llll learn how to use the debugging facilities of the Dragonfly. We'llthe Dragonfly. We'll Dragonfly. We'llfly. We'llly. We'll'llll

start by setting breakpoints.

Here's h's hs how we can set a breakpoint in Dragonfly:fly:ly::

2.	 With sample.html opened in Opera, start Dragonfly and click on theopened in Opera, start Dragonfly and click on the in Opera, start Dragonfly and click on thefly and click on thely and click on the Scripts
tabbed page. You can set a breakpoint by clicking on the line number at
which we want to set our breakpoint. Let us try going to the line that contains
buildContent(answerB, "minus"); and then clicking on the line number.

3.	 Go to your browser and execute example.html. Enter 5 and 3 as the inputs. Clickickk
on Submit. As usual, you will not see any content being created dynamically. Thewill not see any content being created dynamically. The not see any content being created dynamically. Thee any content being created dynamically. The any content being created dynamically. Thedynamically. The TheThehe
program's breakpoint is at contains's breakpoint is at containss breakpoint is at contains buildContent(answerB, "minus");.

4.	 Now go back to Dragonfly, and you will notice that the panels forwill notice that the panels for notice that the panels for Call Stack and
Inspection are now populated. You should see similar values to those shown inshown in
the next screenshot if you enter the same values as I did:next screenshot if you enter the same values as I did: screenshot if you enter the same values as I did:

Debugging Tools

[220]

The values shown in Inspection and Call Stack are the values and functions that
have been calculated and executed up to the breakpoint.ve been calculated and executed up to the breakpoint. been calculated and executed up to the breakpoint.

What just happened?hat just happened?
We have just used Dragonfly to set a breakpoint, and as we executed our JavaScriptexecuted our JavaScript our JavaScript
program, we have seen how Dragonfly's various fields get populated. We'll now go's various fields get populated. We'll now gos various fields get populated. We'll now go'll now goll now go
into detail with regards to each field.

Inspection and Call Stack
As shown in the previous screenshot,previous screenshot, screenshot, Call Stack and Inspection are populated with values
when we execute the program. In general, Call Stack shows the nature of the runtimeshows the nature of the runtime
environment at the time of a specific function call–what has been called, and in what order. has been called, and in what order.has been called, and in what order.
The inspection panel lists all of the property values and others for the current call. Stack inspection panel lists all of the property values and others for the current call. Stack
frames are specific parts of the Call Stack. Inspection is conceptually similar to the the Scope
Variables seen in Google Chrome.

Thread Log
The Thread Log panel shows the details of the different threads running through the scriptshows the details of the different threads running through the script the details of the different threads running through the script
that you are currently debugging.debugging..

We'll now move on into greater details about the functionalities of Dragonfly.'ll now move on into greater details about the functionalities of Dragonfly.ll now move on into greater details about the functionalities of Dragonfly.

Continue, Step Into, Step Over, Step Out, and Stop at Error
We can also perform the usual Continue, Step Into, Step Over, and Step Out tasksContinue, Step Into, Step Over, and Step Out tasksontinue, Step Into, Step Over, and Step Out tasks, Step Into, Step Over, and Step Out taskstep Into, Step Over, and Step Out tasksInto, Step Over, and Step Out tasksnto, Step Over, and Step Out tasks, Step Over, and Step Out taskstep Over, and Step Out tasksOver, and Step Out tasksver, and Step Out tasks, and Step Out tasks Step Out tasksStep Out taskstep Out tasksOut tasksut tasks
while debugging our code. Here's a screenshot that shows us where to find the's a screenshot that shows us where to find thes a screenshot that shows us where to find thethat shows us where to find the
previously-mentioned functions:functions:

Chapter 7

[221]

1. Continue: This continues the currently-selected script after it has stopped at a
breakpoint. This will continue to the next breakpoint, if any, or it will continue
to the end of the script.

2. Step Into: This allows you to step into the next function in the stack, after theInto: This allows you to step into the next function in the stack, after thento: This allows you to step into the next function in the stack, after the
current function within which the breakpoint is contained. It effectively traces the It effectively traces the
code as the code executes. Assuming that you are still at our example, you can click
on the Step Into icon with an arrow pointing downwards. You will see that you are
effectively tracing the code. As you continue to click on Step In, you will see the
values in Inspection and Call Stack change. This is because at different points ofdifferent points of points of
the code there will be different values for various variables or expressions..

3. Step over: This allows you to step to the next line after the line on which the: This allows you to step to the next line after the line on which theThis allows you to step to the next line after the line on which the
breakpoint is set—you can use this multiple times to follow the execution path
of the script.

4. Step out: This causes you to step out of the function.

5. Stop at error: This allows you to stop executing your script at the point wherer script at the point where script at the point where
an error is encountered. To see this in action, open the file example.html in
your editor, and search for the line that saysearch for the line that says buildContent(noSuchThing,
"add"); and uncomment it. Save the file and then open it again, using Opera. Goopen it again, using Opera. Go
to Dragonfly and click on the icon. Now execute your program in Opera and enter
some sample values. Once you are done, you will see the following screenshotwill see the following screenshot see the following screenshot screenshot
in Dragonfly:

Notice that at line 46 there is a black arrow pointing to the right. This means that there is an
error in this line of code.

Before we end of the section on DragonFly, we'll take a look at one more important feature
the settings feature.

Debugging Tools

[222]

Settings
Opera's Dragonfly has a nifty feature that allows us to create different settings for our
debugging tasks. There is a whole list of these settings, so I will not go through all of them.
But I will focus on those that are useful for your debugging sessions.

Scripts: In this panel, enabling reload documents automatically when selecting: In this panel, enabling reload documents automatically when selecting In this panel, enabling reload documents automatically when selectingreload documents automatically when selectingeload documents automatically when selectingautomatically when selecting when selecting
window is a huge time saver when you have multiple JavaScript files to debug,
because it will help you to automatically reload the documents. you to automatically reload the documents.you to automatically reload the documents. to automatically reload the documents. automatically reload the documents.automatically reload the documents. reload the documents.

Console: This panel allows you to control what information you wish to see during: This panel allows you to control what information you wish to see during This panel allows you to control what information you wish to see duringThis panel allows you to control what information you wish to see duringhis panel allows you to control what information you wish to see during
your debugging session. From XML to HTML, you can enable or disable messages in, you can enable or disable messages in you can enable or disable messages inenable or disable messages in or disable messages inor disable messages in disable messages in
order to see the most important information.

With that, we'll end the section on Dragonfly and move on to Firefox and the
Venkman Extension.

Firefox and the Venkman extension
We know that Firefox has many plugins and tools, some of which are made for web
development purposes. In this section, we will learn about the Venkman extension,
which is Mozilla's JavaScript Debugger.

Using Firefox's Venkman extension's Venkman extensions Venkman extensionextensionxtension
We'll start off by obtaining the extension; we will assume that you have Firefox installed. In
my case, I am using Firefox 3.6.3.

Obtaining the Venkman JavaScript Debugger extension
To obtain the Venkman JavaScript Debugger extension, go to https://addons.mozilla.
org/en-US/Firefox/addon/216/ and click onand click on on Add To Firefox. Once it is installed,
Firefox will prompt you to restart Firefox for the changes to take effect.the changes to take effect. changes to take effect.changes to take effect. to take effect.

Opening Venkman
To start debugging, let us open the file example.html in Firefox. Here, we can now start
Venkman. Go to. Go to Go toGo too to Tools and select JavaScript Debugger. If you are using older versions of
Firefox, you can access it by going to Tools || Web Development | JavaScript Debugger menu.

Now we'll start with a brief introduction to Venkman's user interface. to Venkman's user interface. Venkman's user interface.'s user interface.s user interface..

Chapter 7

[223]

A brief introduction to the user interface
The next screenshot shows the user interface of the Venkman extension:

1. Loaded Scripts: TheThehe Loaded Scripts panel shows a list of scripts that you may
load for debugging. After you have loaded a script, you will see it in the
Source Code panel.

2. Local Variables and Watches: TheThehe Local Variables panel shows the local variables
that are available when you are performing debugging tasks. If you click on theperforming debugging tasks. If you click on the debugging tasks. If you click on theIf you click on thef you click on the
Watches tab, you will see the Watches panel. You will be using this to enter the
expressions that you want to watch.

3. Breakpoint and Call Stack: TheThehe Breakpoint panel allows you to add a list of
breakpoints, and the, and the and theand the the Call Stack panel shows a list of functions or variables thatvariables that that
are executed, in order.executed, in order. in order.

4. Source Code: TheThehe Source Code panel shows the source code that you are
currently debugging.

5. Interactive Session: TheThehe Interactive Session panel is the console for this debugger.the console for this debugger. console for this debugger.

Debugging Tools

[224]

We'll now start debugging using the Venkman extension:'ll now start debugging using the Venkman extension:ll now start debugging using the Venkman extension:

Time for action – debugging using Firefox's Venkman extensionime for action – debugging using Firefox's Venkman extensionaction – debugging using Firefox's Venkman extensionction – debugging using Firefox's Venkman extension – debugging using Firefox's Venkman extensiondebugging using Firefox's Venkman extension's Venkman extensions Venkman extension extension
We'll start off by setting breakpoints, before we go into greater details:'ll start off by setting breakpoints, before we go into greater details:ll start off by setting breakpoints, before we go into greater details:

As with all debuggers, we can set a breakpoint by performing the following steps:s, we can set a breakpoint by performing the following steps:, we can set a breakpoint by performing the following steps:

1.	 Start by opening the file example.html, in Firefox.

2.	 Open the JavaScript debugger, and the debugger window will be shown. and the debugger window will be shown. the debugger window will be shown.

3.	 When your see the debugger window, go to the Load Scripts panel and you will see
the file example.html in it. Click on it and you will see the code being loaded in
the Source Code panel.

4.	 To set a breakpoint, click on the line at which you want the breakpoint
to be set. For instance, I have set it on lineinstance, I have set it on line, I have set it on lineI have set it on line have set it on line 130, which contains the code:
buildContent(answer, "minus");. You should see something like the
following screenshot:

Chapter 7

[225]

What just happened?
The first thing to note is that there is a white B within a red rectangle, as shown in thered rectangle, as shown in the rectangle, as shown in therectangle, as shown in the as shown in the
previous screenshot. This indicates that a breakpoint has been set. screenshot. This indicates that a breakpoint has been set.indicates that a breakpoint has been set.that a breakpoint has been set.

In Venkman, there are times where you will see a white F within a yellow box; this meansyellow box; this means box; this meansbox; this means; this meansthis means
that Venkman could only set a Future Breakpoint. This happens when the line you select has
no source code, or if the line of code has already been unloaded by the JavaScript engine
(top level code is sometimes unloaded shortly after it completes execution).

A Future Breakpoint means that Venkman was unable to set a hard breakpoint now, but if
the file is loaded later, and it has executable code at the selected line number, Venkman will
automatically set a hard breakpoint.

The second thing to note is the Breakpoints panel. This contains a list of all of thethe
breakpoints that we have set in this debugging session. debugging session.debugging session.

Now, before we move on to the following subsections, I need you to enter some input forsubsections, I need you to enter some input for, I need you to enter some input for
our example application by going to your browser. In my case I have entered 5 and 3 for thethe
first and second input fields respectively. Once you have done that, click on on Submit.

Again, you will notice that the panels that were originally empty are now populated with
values. We will cover this in the following subsections.

Breakpoints or Call Stack
We have briefly covered breakpoints in the previous subsection. If you look at thebriefly covered breakpoints in the previous subsection. If you look at thecovered breakpoints in the previous subsection. If you look at thebreakpoints in the previous subsection. If you look at theIf you look at thethe
Breakpoints panel, you will notice that in that panel, there is another tab, to the
right-hand side of the-hand side of the of thethe Breakpoint panel, called called Call Stack.

Click on Call Stack and you should see some data in this new panel. Assuming that you
have entered the same input and the same breakpoint, you will see a screen similar to the will see a screen similar to the see a screen similar to the
example shown in the next screenshot:next screenshot::

Debugging Tools

[226]

In general, Call Stack shows the nature of the runtime environment at the time of a specific
function call–what has been called, and in what order. In Venkman, it shows the name of the
function, filename, line number and pc (program counter).

Local Variables and Watches
Let us now focus on Local Variables and Watches. The panels forpanels for for Local Variables and
Watches are located above the Breakpoints and Call Stack panels. And if you have been
following my instructions up to this point with the exact same input, you should see the my instructions up to this point with the exact same input, you should see the up to this point with the exact same input, you should see the
following in thethe Local Variables panel:

The Local Variables panel simply shows the values of the variables that have values (due topanel simply shows the values of the variables that have values (due to
code execution) up to a breakpoint, or to the end of the program, according to the order in, or to the end of the program, according to the order in
which they are created or calculated.d or calculated. or calculated.

Thhe next panel that we want to talk about is the Watches panel. The Watches panel does the
same thing as watch expressions, as we have done previously for other browsers. However,
because we have not added anything for the Watches panel yet, let us take some action to
see how thethe Watches panel works:

Chapter 7

[227]

Time for action – more debugging with the Venkman extension
In this section, we'll cover more debugging features such as the Watch, Stop, Continue,
Step Into, Step Over, Step Out, edge triggers and throw triggers. But first, let us perform
the following steps, in order to see the Watch panel in action:

1.	 Click on the Watches tab.

2.	 Right-click within the Watches panel, right-click and select-click and selectclick and select Add Watch.

3.	 Enter document.sampleform.firstnumber.value.

4.	 Repeat steps 2 and 3, and this time enter
document.getElementById("dynamic").

Once you are done, you will see the output shown in the following screenshot:will see the output shown in the following screenshot: see the output shown in the following screenshot: screenshot::

What the Watches panel does is allow us to add a list of expressions that we us to add a list of expressions that we add a list of expressions that we
want to keep track of, and also shows us the value of the expression.also shows us the value of the expression. shows us the value of the expression.s us the value of the expression. us the value of the expression.

Now let's move on to the Stop and Continue features.

Venkman provides some useful functionality, which includes Stop and Continue.
Stop basically stops at the next JavaScript statement, and Continue continues
the code execution.

You can make Venkman stop at the next JavaScript statement.statement..

5.	 Click on the large redthe large red large red X on the toolbar, or you can go to the menu and select Debug
and then choosethen choosechoose Stop.

There are times when no JavaScript is being executed. If this is the case, youn no JavaScript is being executed. If this is the case, you. If this is the case, youyou
will see an ellipsis (...) appear over the X in the toolbar, and the menu item will
be checked. When the next line of JavaScript is encountered, the debugger will
stop. You can cancel this by clicking on X or selecting Stop again.

Debugging Tools

[22�]

In addition to Stop and Continue, Venkman also provides the standard Step In,
Step Over, and Step Out features.and Step Out features.Step Out features.

Step In: This e This executes a single line of JavaScript, and then stops. You. You
can try this by clicking on the icon that says Step Intoto. If you click on it
multiple times, you will notice that the local variables change and you
will get to see that the code is being executed as if you are tracingthat the code is being executed as if you are tracingthe code is being executed as if you are tracing
the code.

Step Over: This i This is used to step over an impending function call, and used to step over an impending function call, andused to step over an impending function call, andn impending function call, and impending function call, and
return control to the debugger when the call returns. If you click on. If you click on on
Step Over, you will see that new content is being created in your
browser. For the file example.html, assuming that you click onthat you click on you click on on Step
Over from the breakpoint, you will see content being created from
buildContent(answer, "minus");.

Step Out: This e: This e This e eexecutes until the current function call exits.

We'll now see how we can make use of Error triggers and Throw triggers.'ll now see how we can make use of Error triggers and Throw triggers.ll now see how we can make use of Error triggers and Throw triggers.Error triggers and Throw triggers.rror triggers and Throw triggers.Throw triggers. triggers.

Error triggers is used to make Venkman stop at the next error, and Throws is used to make Venkman stop at the next error, and Throw is used to make Venkman stop at the next error, and Throwthe next error, and Throw next error, and Throw
Triggers is used to make Venkman stop when the next exception is thrown.the next exception is thrown. next exception is thrown.exception is thrown. is thrown.

To see it in action, we'll perform the following actions:o see it in action, we'll perform the following actions:'ll perform the following actions:ll perform the following actions:the following actions: following actions:

6.	 Open the file example.html in your editor and, once again, search for the line thatearch for the line that
says buildContent(noSuchThing, "add"); and uncomment it. Save the file
and open it again, using Firefox.open it again, using Firefox.fox.ox.

7.	 After you have opened the file in Firefox, open Venkman.

8.	 Once you have opened up Venkman, go to Debug || Error Trigger and select
Stop for Errors. Then, once again, go back toen, once again, go back ton, once again, go back to Debug || Throw Trigger and select
Stop for Errors.

9.	 Go to your browser and enter any two numbers for the input fields—saytwo numbers for the input fields—say numbers for the input fields—say 5 and 3
respectively. Click on on Submit.

10.	Return to Venkman and you will see that the line with buildContent(noSuchTh
ing, "add"); is highlighted, and within the Interactive Session (or console) panel,is highlighted, and within the Interactive Session (or console) panel,highlighted, and within the Interactive Session (or console) panel, and within the Interactive Session (or console) panel,
you will see an error message that says X Error. noSuchThing not defined.

Now that we have seen how Venkman can be used to stop our program whenour program when program when
errors are encountered, let us move on to its profiling feature.

As we have mentioned in the previous chapters, profiling is used to measurethe previous chapters, profiling is used to measure previous chapters, profiling is used to measuremeasure
execution times for your scripts. To enable profiling::

11.	Click on thelick on the Profile button in the toolbar. When profiling is enabled, you will see aWhen profiling is enabled, you will see aprofiling is enabled, you will see arofiling is enabled, you will see a
green check mark on the toolbar button.

Chapter 7

[22�]

12.	Once you have Profiling enabled, go to your browser and enter some sample values.go to your browser and enter some sample values.
I'll stick to'll stick toll stick to 5 and 3 again. Then click on. Then click on Then click onen click onn click on on Submit.

13.	Go back to Venkman, go to File, and select Save Profile Data As. I have included an
example as to what we have just done, and saved it todone, and saved it to and saved it to data.txt file. You can openou can openu can open
the file and see the contents of the profiling session. You can find the profiling datacontents of the profiling session. You can find the profiling data of the profiling session. You can find the profiling data
for the file sample.html by searching for example.html in the file data.txt.

14.	When you are done, click on Profile again to stop collecting the data.

While profiling is enabled, Venkman will collect call count, maximum, Venkman will collect call count, maximum
call duration, minimum call duration, and total call duration, for every
function called.

You can also clear the profile data for the selected scripts by using the the Clear
Profile Data menu item.

What just happened?
We have gone through the various features of the Venkman extensions. Features like Stop,the various features of the Venkman extensions. Features like Stop, various features of the Venkman extensions. Features like Stop,Stop,top,
Continue, Step In, Step Out and Over of breakpoints shouldn't be unfamiliar to you by thisontinue, Step In, Step Out and Over of breakpoints shouldn't be unfamiliar to you by thisStep In, Step Out and Over of breakpoints shouldn't be unfamiliar to you by thistep In, Step Out and Over of breakpoints shouldn't be unfamiliar to you by thisIn, Step Out and Over of breakpoints shouldn't be unfamiliar to you by thisn, Step Out and Over of breakpoints shouldn't be unfamiliar to you by this Step Out and Over of breakpoints shouldn't be unfamiliar to you by this Out and Over of breakpoints shouldn't be unfamiliar to you by thisOut and Over of breakpoints shouldn't be unfamiliar to you by thisut and Over of breakpoints shouldn't be unfamiliar to you by thisOver of breakpoints shouldn't be unfamiliar to you by thisver of breakpoints shouldn't be unfamiliar to you by this't be unfamiliar to you by thist be unfamiliar to you by thisby this this
stage, as they are conceptually similar to the tools that we introduced earlier., as they are conceptually similar to the tools that we introduced earlier.

So let us now move to the last and final tool, the Firebug extension.

Firefox and the Firebug extension
I personally think that the Firebug extension needs no further introduction. It is probablyextension needs no further introduction. It is probablyxtension needs no further introduction. It is probablyintroduction. It is probably. It is probably
one of the most (if not most) popular debugging tools for Firefox in the market right now.fox in the market right now.ox in the market right now.
Firebug is free and open source.bug is free and open source.ug is free and open source.

It has the following features:

Inspection and editing HTML by pointing and clicking on your web page

Debugging and profiling JavaScriptebugging and profiling JavaScriptging and profiling JavaScript and profiling JavaScripting JavaScript JavaScript

Quickly spotting JavaScript errorsting JavaScript errors JavaScript errors

Logging JavaScript

Executing JavaScript on the fly

Debugging Tools

[230]

Firebug is perhaps one of the best documented debugging tools on the Internet. So we'll'llll
have a look at the URLs that you can visit in order to take advantage of this free, openURLs that you can visit in order to take advantage of this free, opens that you can visit in order to take advantage of this free, open
source, and powerful debugging tool:, and powerful debugging tool: and powerful debugging tool:

To install Firebug, visit:: http://getFirebug.com

To see a complete list of FAQ, visit: http://getFirebug.com/wiki/index.
php/FAQ

To see a full list of tutorials, visit: http://getFirebug.com/wiki/index.php/
Main_Page. If you wish to learn more about each specific feature, look for Panel on
the left-hand side of the web page.-hand side of the web page. of the web page.

Summary
We have finally reached the end of this chapter. We have covered specific tools for variousfinally reached the end of this chapter. We have covered specific tools for various reached the end of this chapter. We have covered specific tools for variousreached the end of this chapter. We have covered specific tools for various the end of this chapter. We have covered specific tools for various
browsers that can be used for our debugging tasks.

Specifically, we have covered the following topics:

The Developer tool for Internet Explorer

JavaScript Debugger and Web Inspector for Google Chrome and Safari

Dragonfly for Opera

The Venkman extension for Firefoxextension for Firefoxxtension for Firefox

Resources for Firebug

In case you need more information about each specific tool, you can Google it by appendingGoogle it by appending it by appending
the keyword "tutorial" to each of the tools and features' mentioned in this chapter."tutorial" to each of the tools and features' mentioned in this chapter.tutorial" to each of the tools and features' mentioned in this chapter." to each of the tools and features' mentioned in this chapter. to each of the tools and features' mentioned in this chapter.the tools and features' mentioned in this chapter. tools and features' mentioned in this chapter.' mentioned in this chapter. mentioned in this chapter.

We have covered the most important features of the tools that can help you get started of the tools that can help you get started that can help you get started
with debugging your JavaScript application. In our final chapter, we will focus on the variousIn our final chapter, we will focus on the variousn our final chapter, we will focus on the variousfocus on the various on the various
testing tools that you can use when your testing requirements cannot be met manually.requirements cannot be met manually. cannot be met manually.cannot be met manually.met manually.

�
Testing Tools

In the final chapter, we will cover some advanced tools that you can use for
testing your JavaScript. We will be covering tools that can help you further to We will be covering tools that can help you further to to
automate your testing and debugging tasks and, at the same time, show youthe same time, show you same time, show you
how you can test your user interface.

I understand that you are spoilt for choice as there are many tools out theremany tools out theretools out there
for you to choose from when carrying out testing tasks. But what I will focus
on are tools that are generally free, cross-browser and cross-platform; whether
you are a fan of Safari, IE, Chrome or other browsers doesn't really ma��er..
Based onased on http://w3schools.com/browsers/browsers_stats.asp,
approximately 30% of web browsers use Internet Explorer, �6% use the Firefoxe Internet Explorer, �6% use the Firefox Internet Explorer, �6% use the Firefox, �6% use the Firefox�6% use the Firefoxe the Firefo�� the Firefo��fo��o��
browser, and the remainder of them use Chrome, Safari, or �pera. This meansthe remainder of them use Chrome, Safari, or �pera. This means remainder of them use Chrome, Safari, or �pera. This means, or �pera. This means or �pera. This meansor �pera. This means �pera. This means
that the tools that you use will cater to these statistics. Although there areuse will cater to these statistics. Although there are will cater to these statistics. Although there arewill cater to these statistics. Although there are cater to these statistics. Although there are Although there areAlthough there are
applications that were developed specifically for only one browser, it is a good a good good
practice and learning experience for us to learn how to write code for use ince and learning experience for us to learn how to write code for use ine and learning experience for us to learn how to write code for use in
different browsers.

More importantly, the tools that I am going to cover in great detail are thosere importantly, the tools that I am going to cover in great detail are those importantly, the tools that I am going to cover in great detail are thosethat I am going to cover in great detail are thoseI am going to cover in great detail are thoseam going to cover in great detail are those cover in great detail are those
that I personally feel are easier to get started with; and this will help you to getare easier to get started with; and this will help you to get easier to get started with; and this will help you to get and this will help you to get this will help you to get to get get
a feel of the testing tools in general.the testing tools in general.testing tools in general.

The following tools will be covered in detail:he following tools will be covered in detail: following tools will be covered in detail: will be covered in detail: in detail::

Sahi, a cross-browser automated testing tool. We'll use this to perform UI testing.

QUnit, a JavaScript testing suite, which can be used to test just about any JavaScript
code. We'll use this to perform automated testing of JavaScript code.

JSLitmus, a lightweight tool for creating ad hoc JavaScript benchmark tests. We'llSLitmus, a lightweight tool for creating ad hoc JavaScript benchmark tests. We'llLitmus, a lightweight tool for creating ad hoc JavaScript benchmark tests. We'll hoc JavaScript benchmark tests. We'llhoc JavaScript benchmark tests. We'll'llll
use this to perform some benchmarking tests.

Testing Tools

[232]

Apart from the previously-mentioned tools, I'll also cover a list of important testing tools,the previously-mentioned tools, I'll also cover a list of important testing tools, previously-mentioned tools, I'll also cover a list of important testing tools,previously-mentioned tools, I'll also cover a list of important testing tools, I'll also cover a list of important testing tools,I'll also cover a list of important testing tools,ll also cover a list of important testing tools,important testing tools, testing tools,,
that I believe are useful for your daily debugging and testing tasks. So, be sure to check outbelieve are useful for your daily debugging and testing tasks. So, be sure to check out are useful for your daily debugging and testing tasks. So, be sure to check out, be sure to check out be sure to check out out
this section. section.

Sahi
We briefly discussed about the issue of testing user interface widgets provided bye briefly discussed about the issue of testing user interface widgets provided bybriefly discussed about the issue of testing user interface widgets provided byabout the issue of testing user interface widgets provided byinterface widgets provided by widgets provided by
JavaScript libraries. In this section, we'll get started with testing a user interface that waslibraries. In this section, we'll get started with testing a user interface that was. In this section, we'll get started with testing a user interface that was, we'll get started with testing a user interface that was we'll get started with testing a user interface that was'll get started with testing a user interface that wasll get started with testing a user interface that was
built by using the JavaScript libraries widget. The same technique can be used for testing the JavaScript libraries widget. The same technique can be used for testingJavaScript libraries widget. The same technique can be used for testing. The same technique can be used for testing same technique can be used for testingtechnique can be used for testing can be used for testing
custom user interfaces.interfaces..

Sahi is a browser-independent, automated testing tool that uses Java and JavaScript. We will-independent, automated testing tool that uses Java and JavaScript. We willindependent, automated testing tool that uses Java and JavaScript. We will, automated testing tool that uses Java and JavaScript. We will automated testing tool that uses Java and JavaScript. We will
focus on this as it is browser-independent, and we cannot always ignore IE users.as it is browser-independent, and we cannot always ignore IE users.it is browser-independent, and we cannot always ignore IE users.-independent, and we cannot always ignore IE users.independent, and we cannot always ignore IE users. and we cannot always ignore IE users. we cannot always ignore IE users. always ignore IE users. ignore IE users.

Sahi can be used to perform various testing tasks, but the one feature that I would like to the one feature that I would like to one feature that I would like to
emphasize is its ability to record the testing process and play it back in the browser. is its ability to record the testing process and play it back in the browser. the testing process and play it back in the browser. testing process and play it back in the browser.the browser.browser..

You will see how useful it is to use Sahi to perform user interface testing in this section.

Time for action – user Interface testing using Sahi
We will demonstrate to you the recording and play back feature of Sahi, and see how it can
be used to test user interface widgets provided by JavaScript libraries such as jQuery.d to test user interface widgets provided by JavaScript libraries such as jQuery. to test user interface widgets provided by JavaScript libraries such as jQuery.interface widgets provided by JavaScript libraries such as jQuery. widgets provided by JavaScript libraries such as jQuery.jQuery..

1. We'll start by installing Sahi. Go to to http://sahi.co.in and download the latest
version. The latest version at this point of writing is V3 2010-04-30. Once you have
downloaded it, extract it to theit to theto the the C: drive.

2. Open Internet Explorer (I am using IE8 for this demonstration) and go to (I am using IE8 for this demonstration) and go toI am using IE8 for this demonstration) and go toam using IE8 for this demonstration) and go to
http://jqueryui.com/themeroller/. We will be using the user interface We will be using the user interface
for our demonstration purposes.

3. In order to use Sahi, we need to first navigate toIn order to use Sahi, we need to first navigate to C:\sahi_20100430\sahi\bin
and look for sahi.bat. Click on it so that we can start Sahi.

4. Now, it's time to set up your browser so that it can be used with Sahi. Open yourNow, it's time to set up your browser so that it can be used with Sahi. Open your's time to set up your browser so that it can be used with Sahi. Open yours time to set up your browser so that it can be used with Sahi. Open youro that it can be used with Sahi. Open your that it can be used with Sahi. Open your Open your
browser, and go to, and go toand go to Tools || Internet Options || Connections and click on LAN
Settings. Click on Proxy Server and enter the information that you see in thethe
following screenshot:

Chapter 8

[233]

Once you are done, close this window and all other windows related to Tools.

5. AAfter you have completed the previous step, let us return to our browser. In order
to use Sahi within the browser, you need to press Sahi within the browser, you need to press Ctrl ++ Alt and, at the samethe same same
time, double-click on any element on the web page (double-click on any element on the web page (click on any element on the web page (http://jqueryui.com/
themeroller/). You should see a new window that appears as shown in theappears as shown in the
next screenshot::

Testing Tools

[234]

6. If you see the window shown above, then you have set up and started Sahi
correctly. Now, let us check out its automated testing feature, recording, and
playback capabilities.

7. Enter jquery_testing in the Script Name input field, and the click on Record in the
window that is shown in the previous screenshot. This starts the recording process.

8. Now, let us click on a few of the user interface elements. In my case, I clicked on
Section 2, Section 3, Open Dialog, and Font Settings. This can be found at the menu
on the left-hand side.

9. Navigate to C:\sahi_20100430\sahi\userdata\scripts and you will see a
file named jquery_testing.sah. Open this file in WordPad and you will see the
list of actions that we have just created, recorded in this file.

10. Go to the Sahi window and click on Stop. Now, we have stopped the
recording process.

11. Open jquery_testing.sah in WordPad and change the code so that it appears
like this:

function jquery_testing() {
_click(_link("Section 2"));
_click(_link("Section 2"));
_click(_link("Section 3"));
_click(_link("Section 3"));
_click(_link("Open Dialog"));
_click(_link("Font Settings"));
}
jquery_testing();

I have defined a function called jquery_testing() to contain the list
of actions that we have created. Then, I appendedhave created. Then, I appended. Then, I appended, I appended I appended jquery_testing()
to the end of the file. This line is to call the function when we activate thethe end of the file. This line is to call the function when we activate the end of the file. This line is to call the function when we activate theThis line is to call the function when we activate thehis line is to call the function when we activate the
playback feature.

Chapter 8

[235]

12. Now let us go to the Sahi window and click on Playback. Then, enter the information
as shown in the next screenshot:

Click onlick on Set and wait for the page to refresh.

13. OncOnce the page has been refreshed, click on Play. Within the browser, we willwe will willwill
see that the actions that we have performed are being repeated as per the steps that the actions that we have performed are being repeated as per the steps the actions that we have performed are being repeated as per the steps the steps
mentioned previously. You will also receive a. You will also receive a SUCCESS message in the Statements
panel, which means that our testing process was successful., which means that our testing process was successful. which means that our testing process was successful.which means that our testing process was successful. means that our testing process was successful.

What just happened?
We have just performed a simple user interface testing process by using Sahi. Sahi's playbacke have just performed a simple user interface testing process by using Sahi. Sahi's playbackSahi's playbackahi's playback's playbacks playback
process and recording features make it easy for us to perform testing on user interfaces.recording features make it easy for us to perform testing on user interfaces. features make it easy for us to perform testing on user interfaces.

Notice that Sahi allows us to perform testing in a visual manner. Apart from defining aotice that Sahi allows us to perform testing in a visual manner. Apart from defining a. Apart from defining a Apart from defining aApart from defining apart from defining a
function for the playback feature, there isn't much coding involved as compared to the for the playback feature, there isn't much coding involved as compared to the't much coding involved as compared to thet much coding involved as compared to thethe
other manual testing methods that we have seen in the previous chapters. manual testing methods that we have seen in the previous chapters.that we have seen in the previous chapters. we have seen in the previous chapters.

Now, let us focus on other important and relevant topics related to Sahi.et us focus on other important and relevant topics related to Sahi.focus on other important and relevant topics related to Sahi. on other important and relevant topics related to Sahi.ed to Sahi. to Sahi..

More complex testing with Sahi
As mentioned previously at the start of this section, Sahi can be used with any browser to
perform a wide variety of tasks. It can even be used to perform assertion tests.

Check out http://sahi.co.in/static/sahi_tutorial.html to see how assertionto see how assertion see how assertion
can be used in your testing processes.

After you are done with this section, make sure that you go back to, make sure that you go back tomake sure that you go back to you go back toyou go back to go back to Tools ||
Internet Options || Connections, click on LAN settings and uncheck Proxy Server,
so that your browser can work as usual..

Testing Tools

[236]

QUnit
Qunit is a jQuery testing suite, but it can be used to test the JavaScript code that we have
written. This means that the code does not have to depend on jQuery. In general, QUnit
can be used to perform assertion tests and asynchronous testing. Also, assertion testing
helps in predicting the returning result of your code. If the prediction is false, it is likely that
something in your code is wrong. Asynchronous testing simply refers to testing Ajax calls or
functions that are happening at the same time.

Let us act immediately to see how it works.

Time for action – testing JavaScript with QUnitesting JavaScript with QUnit
In this section, we'll learn more about QUnit, by writing a bit of code, and the also learn
about various tests that QUnit supports. We will write tests that are correct and tests that
are and wrong, in order to see how it works. The source code for this section can be found in
the source code folder qunit.

1. Open your editor and save the file as example.html. Enter the following code in it:

<!DOCTYPE html>
<html>
<head>
 <title>QUnit Example</title>
 <link rel="stylesheet" href="http://github.com/�query/qunit/raw/
master/qunit/qunit.css" type="text/css" media="screen">
 <script type="text/�avascript" src="http://github.com/�query/
qunit/raw/master/qunit/qunit.�s"></script>
 <script type="text/javascript" src="codeToBeTested.js"></script>
 <script type="text/javascript" src="testCases.js"></script>
</head>
<body>
 <h1 id="qunit-header">QUnit Test Results</h1>
 <h2 id="qunit-banner"></h2>
 <div id="qunit-testrunner-toolbar"></div>
 <h2 id="qunit-userAgent"></h2>
 <ol id="qunit-tests">
</body>
</html>

What the previous code does is that it simply sets up the code for testing.previous code does is that it simply sets up the code for testing. code does is that it simply sets up the code for testing.the code for testing. code for testing.
Take note of the highlighted lines. The first two highlighted lines simply. The first two highlighted lines simply The first two highlighted lines simplyThe first two highlighted lines simplyhe first two highlighted lines simplyhighlighted lines simply lines simply
point to the hosted version of the QUnit testing suite (both CSS and
JavaScript), and the last two lines are where your JavaScript code and
test cases reside.

Chapter 8

[237]

codeToBeTested.js simply refers to the JavaScript code that you havesimply refers to the JavaScript code that you have
written, while, while testCases.js is the place where you write your test
cases. In the following steps, you will see how these two JavaScripttwo JavaScript JavaScript
files work together.

2. We'll start by writing code in codeToBeTested.js. Create a JavaScript file and
name it as codeToBeTested.js. For a start, we'll write a simple function that tests'll write a simple function that testsll write a simple function that testsfunction that tests that tests
whether a number entered is odd or not. With that in mind, enter the following a number entered is odd or not. With that in mind, enter the followingenter the followingthe following
code into:

 codeToBeTest.js:

function isOdd(value){
 return value % 2 != 0;
}

isOdd() takes in an argument value and checks if it is odd. If it is, thisn argument value and checks if it is odd. If it is, this argument value and checks if it is odd. If it is, thisf it is, this
function will return 1.

Let us now write a piece of code for out test case.et us now write a piece of code for out test case.

3. Create a new JavaScript file and name itreate a new JavaScript file and name it testCases.js. Now, enter the followingenter the followingthe following
code into it:

test('isOdd()', function() {
 ok(isOdd(1), 'One is an odd number');
 ok(isOdd(7), 'Seven is an odd number');
 ok(isOdd(-7), 'Negative seven is an odd number');
})

Take note of the way that we write the test case using QUnit's provided's provideds provided
methods. First, we define a function call test(), which constructs the
test case. Because we are going to test the function isOdd(), the first
parameter is a string that will be displayed in the result. The second
parameter is a call-back function that contains our assertions. is a call-back function that contains our assertions.call-back function that contains our assertions. function that contains our assertions.

We use the assertion statement by using thestatement by using thetement by using thement by using thet by using the ok() function. This is a
Boolean assertion, and it expects its first parameter to be true. If it is assertion, and it expects its first parameter to be true. If it is
true, the test passes, if not, it fails., it fails. it fails.

Testing Tools

[23�]

4. Now save all of your files and runNow save all of your files and run example.html in any browser you like. You willwill
receive a screenshot similar to the following example, depending on your machine: a screenshot similar to the following example, depending on your machine:

You can see the details of the test by clicking on isOdd() and will also
see the results of it. The output is as shown in the previous screenshot.e previous screenshot.screenshot.

Now let us simulate some fail tests.

5. Go bGo back to testCases.js, and append the following code to the last line ofthe last line of last line of
test():

// tests that fail
 ok(isOdd(2), 'So is two');
 ok(isOdd(-4), 'So is negative four');
 ok(isOdd(0), 'Zero is an even number');

Chapter 8

[23�]

Save the file and refresh your browser. You will now see a screenshotwill now see a screenshot now see a screenshot
similar to the following example in your browser:

Now you can see that tests 4, 5, and and 6 have failed and they are in red.they are in red.in red.

At this point you should see that the good thing about QUnit is that it largely automates the
testing process for us without us having to perform testing by clicking on buttons, submitting
forms, or using alert(). It will certainly save us a tremendous amount of time and effort
when using such automated tests.

Testing Tools

[240]

What just happened?
We have just employed QUnit in performing automated testing of self-defined JavaScript
functions. It was a simple example, but enough to get you started.

Applying QUnit in real-life situations
You might wonder how you will make use of such tests on your code in real-life situations.
I would say that it is very likely that you will use ok() to test your code. For instance, you
can test for the truth values, if the user input is alphanumeric, or if the user has entered
invalid values.

More assertion tests for various situations
Another thing that you can take note of is that ok() is not the only assertion test that you
can perform. You can also perform other tests, such as comparison assertion and identical
assertion. Let us see another short example on comparison.

We'll learn to use another assertion statement, equals(), in this section.

1. Open your editor and open testCases.js. Comment out the code that you havethat you have you have
written previously, and enter the following code into the file:enter the following code into the file: following code into the file:

test('assertions', function(){
 equals(5,5, 'five equals to five');
 equals(3,5, 'three is not equals to five');
})

This code takes the same structure as the code that you have commentedhis code takes the same structure as the code that you have commentedis code takes the same structure as the code that you have commentedcode takes the same structure as the code that you have commented that you have commented you have commented
out. But notice that we have used thethe equals() function instead of ok().
The parameters ofhe parameters of equals() are as follows:

The first parameter is the actual value

The second parameter is the expected value

The third parameter is a self-defined message

We have used twotwo equals() functions, of which the first will pass the test,s, of which the first will pass the test,, of which the first will pass the test,
but the second will not as three and five are not equal. the second will not as three and five are not equal.as three and five are not equal. three and five are not equal.three and five are not equal. and five are not equal.five are not equal. are not equal.are not equal. not equal.

Chapter 8

[241]

2. Save the file and open example.html in your browser. You will see the
following screenshot:

JSLitmus
According to JSLitmus's homepage, JSLitmus is a lightweight tool for creating ad hocSLitmus's homepage, JSLitmus is a lightweight tool for creating ad hocLitmus's homepage, JSLitmus is a lightweight tool for creating ad hoc's homepage, JSLitmus is a lightweight tool for creating ad hocs homepage, JSLitmus is a lightweight tool for creating ad hocSLitmus is a lightweight tool for creating ad hocLitmus is a lightweight tool for creating ad hoc hochoc
JavaScript benchmark tests. In my opinion, it is definitely true. Using JSLitmus is quite aUsing JSLitmus is quite asing JSLitmus is quite aSLitmus is quite aLitmus is quite a
breeze, especially when it supports all popular browsers, such as Internet Explorer, Firefox,especially when it supports all popular browsers, such as Internet Explorer, Firefox, when it supports all popular browsers, such as Internet Explorer, Firefox,such as Internet Explorer, Firefox, Internet Explorer, Firefox,fox,ox,
Google Chrome, Safari, and others. At the same time, it is entirely free with the products, and others. At the same time, it is entirely free with the products and others. At the same time, it is entirely free with the productsothers. At the same time, it is entirely free with the products. At the same time, it is entirely free with the productsAt the same time, it is entirely free with the productst the same time, it is entirely free with the products
that we mentioned here. mentioned here.mentioned here..

In this section, we will focus on a quick example of how we are going to create ad hoc
JavaScript benchmark tests.

Time for action – creating ad hoc JavaScript benchmark tests
Now we will see how easy it is to create ad hoc JavaScript benchmark tests by using hoc JavaScript benchmark tests by usinghoc JavaScript benchmark tests by using
JSLitmus. But first, let us install JSLitmus. By the way, all of the source code for this sectionthe source code for this section source code for this sectionsource code for this section code for this sectionsection
can be found in thethe source code folder for this chapter, under thethis chapter, under the, under the jslitmus folder.

1. Visit http://www.broofa.com/Tools/JSLitmus/ and download
JSlitmus.js.

2. Open your editor, create a new HTML file within the same directory as
JSLitmus.js and name it jslitmus_test.html.

Testing Tools

[242]

3. Enter the following code into jslitmus_test.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en">
 <head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=utf-8" />
 <title>JsLitmus Testing Example</title>

 <script type="text/javascript" src="JSLitmus.js"></script>
 <script type="text/javascript">
 function testingLoop(){
 var i = 0;
 while(i<100)
 ++i;

 return 0;
 }

 JSLitmus.test('testing testingLoop()',testingLoop);

 </script>
 </head>

 <body>
 <p>Doing a simple test using JsLitmus.</p>
 <div id="test_element" style="overflow:hidden; width: 1px;
 height:1px;"></div>
 </body>
</html>

I've actually taken this code from the official example found on the JSLitmus've actually taken this code from the official example found on the JSLitmusve actually taken this code from the official example found on the JSLitmustaken this code from the official example found on the JSLitmus this code from the official example found on the JSLitmusis code from the official example found on the JSLitmus code from the official example found on the JSLitmusfrom the official example found on the JSLitmus the official example found on the JSLitmus
website. I will conduct the test in a slightly different manner to the official will conduct the test in a slightly different manner to the officialconduct the test in a slightly different manner to the officialdifferent manner to the official manner to the officialthe official official
example, but nonetheless, it still demonstrates the syntax of how we cannonetheless, it still demonstrates the syntax of how we can it still demonstrates the syntax of how we canthe syntax of how we can syntax of how we can
use JSLitmus.

The previous code snippet contains the user-defined functionthe user-defined function user-defined function
testingLoop(), while the JSLItmus.test('testing
testingLoop()', testingLoop); is the line of JavaScript code
written to test testingLoop() by using JSlitmus's syntax.'s syntax.s syntax.

Let me explain the syntax. Generally, this is how we use JSLitmus:explain the syntax. Generally, this is how we use JSLitmus: the syntax. Generally, this is how we use JSLitmus:. Generally, this is how we use JSLitmus:, this is how we use JSLitmus:

JSlitmus.test('some string in here', nameOfFunctionTested);

Chapter 8

[243]

The first argument is some string that you can type in, and the second
argument is the name of the function that you intend to test. Just make
sure that this line of code is located in a place after your function is defined.

4. Now thNow that we have set up our test, it's time to run it and see how it goes. Save's time to run it and see how it goes. Saves time to run it and see how it goes. Save
jslitmus_test.html and open this file in your browser. This is what you shouldThis is what you shouldhis is what you should
see in your browser:

Notice that under theotice that under the Test column, it shows the text that we have typed inolumn, it shows the text that we have typed in
as our first argument for JSLItmus.test().

5. Click on the button Run Tests. You should receive the following result infollowing result in result in
your browser:

Testing Tools

[244]

It basically shows the amount of time taken to execute the code, and other
relevant information. You can even check out the performance in chart form
by visiting the URL that is created dynamically. If you received something
similar to the previous screenshot, then you have just done an ad hoc
benchmarking test..

If you are running this test on Internet Explorer and you happen to receive the
following (or similar) message: Script is taking too long to execute, then you
will need to tweak your Windows registry, in order to allow the test to run. Visit
http://support.microsoft.com/default.aspx?scid=kb;en-
us;175500 for details on how to tweak your windows registry settings.

What just happened?
We just used JSLitmus to create an ad hoc benchmarking test. Notice how easy it is for you
to perform ad hoc benchmarking test using JSLitmus. The cool thing about JSLitmus is the
simplicity of it; no additional tools, no windows to open, and so on. All you need to do is to
write JSLItmus.test() and type in the message and name of the function you want
to test.

More complex testing with JSLitmus
The previous example is a really simple example to help you to get started.he previous example is a really simple example to help you to get started.previous example is a really simple example to help you to get started. example is a really simple example to help you to get started.
If you are interested in performing more complex tests, feel free to check outinterested in performing more complex tests, feel free to check out in performing more complex tests, feel free to check out
http://www.broofa.com/Tools/JSLitmus/demo_test.html and view itsand view its
source code. You will see different style of writing test by using JSLitmus in its
well-commented source code.

Now that we have covered the tools that are browser-independent, it is time to quickly
cover other similar testing tools that can help you to debug JavaScript. to debug JavaScript. debug JavaScript.

More testing tools that you should check out
Now that we are approaching the end of the chapter, I'll leave you with a simple list of
testing tools that you can check out for testing purposes:

Selenium: Selenium is an automated testing tool that can record only on
Firefox and may time out when trying to playback in other browsers. There
are also other versions of Selenium that can help you to conduct tests in
multiple browsers and platforms. Selenium uses Java and Ruby. To get more
information, visit http://seleniumhq.org. To see a simple introduction,
visit http://seleniumhq.org/movies/intro.mov.

Chapter 8

[245]

Selenium Server: Also known as Selenium Remote Control, Selenium Server is a test
tool that allows you to write automated web-application UI tests in any programing
language, against any HTTP website, using any mainstream JavaScript-enabled
browser. You can visit http://seleniumhq.org/projects/remote-control/.

Watir: Watir is an automated testing tool available as a Ruby gem.
There is detailed documentation on Watir, which can be found at
http://wiki.openqa.org/display/WTR/Project+Home.

Assertion Unit Framework: The Assertion Unit Framework is a unit
testing framework based on assertions. At the point of writing,
documentation appears to be limited. But you can learn how to use it at
http://jsassertunit.sourceforge.net/docs/tutorial.html. You can
visit http://jsassertunit.sourceforge.net/docs/index.html for other
relevant information.

JsUnit: JsUnit is a unit testing framework ported from the most popular Java unit
testing framework known as JUnit. JsUnit includes a platform for automating the
execution of tests on multiple browsers and multiple machines using different
operating systems. You can get JsUnit at http://www.jsunit.net/.

FireUnit: FireUnit is a unit testing framework designed to run in Firebug on Firefox.
It is also a popular debugging tool for Firefox and there are numerous tutorials
for it and documentation on it, on the Internet. You can get FireUnit at
http://fireunit.org/.

JSpec: JSpec is a JavaScript testing framework that utilizes its own custom grammar
and pre-processor. It can also be used in variety of ways, such as via a terminal,
via browsers using DOM or Console formatters, and so on. You can get JSpec at
http://visionmedia.github.com/jspec/.

TestSwarm: TestSwarm provides distributed, continuous integration testing for
JavaScript. It was originally developed by John Resig to support the jQuery project and,
has now become an official Mozilla Labs project. Take note that it is still under heavy
testing. You can get more information at http://testswarm.com/.

Testing Tools

[246]

Summary
We have finally reached the end of this chapter. We have covered specific tools for various
browsers that can be used for our debugging tasks.

Specifically, we covered the following topics:

Sahi: A browser-independent automated testing tool that uses Java and JavaScript: A browser-independent automated testing tool that uses Java and JavaScript browser-independent automated testing tool that uses Java and JavaScript-independent automated testing tool that uses Java and JavaScriptindependent automated testing tool that uses Java and JavaScript

QUnit: A jQuery testing suite that can be used to test JavaScript codeUnit: A jQuery testing suite that can be used to test JavaScript codenit: A jQuery testing suite that can be used to test JavaScript code: A jQuery testing suite that can be used to test JavaScript code jQuery testing suite that can be used to test JavaScript codejQuery testing suite that can be used to test JavaScript codeQuery testing suite that can be used to test JavaScript code

JsLitmus: A lightweight tool for creating ad hoc JavaScript benchmark tests: A lightweight tool for creating ad hoc JavaScript benchmark tests lightweight tool for creating ad hoc JavaScript benchmark tests hoc JavaScript benchmark testshoc JavaScript benchmark tests

A list of tools that you can check out list of tools that you can check out

Finally, we have reached the end of the book. I hope that you have learnt a lot from this
book about JavaScript testing. I want to thank you for your time and effort in reading this
book, and would also like to thank Packt Publishing for it's support.

Index
Symbols
.hasFeature() method

about 48
using 48

.innerHTML method 74

A
acceptance testing 121
addResponseElement() function 61, 76, 94
ad hoc JavaScript benchmark tests

creating, JSLitmus used 241-244
ad hoc testing

advantge 44
limitations 78
purpose 44

agile methodology
about 116, 117
analysis and design stage 117
deployment stage 117
implementation stage 117
maintenance stage 117
testing stage 117

alertMessage() function 113
alert method

used, for code testing 66-71
alert not defined error

about 102
fixing 103

aSimpleFunction() function 78
assertion tests

performing, Sahi used 235
Assertion Unit Framework 245

B
beta testing 124
black box testing

about 122
advantages 122
beta testing 124
boundary testing 123
equivalence partition testing 123
examples 122
usability testing 123

black box test phase, test plan
boundary value testing, using 142, 143
expected but unacceptable values, testing

142, 143
illegal values, using 144

boundary testing 123
branch testing 124
browser differences

about 45
testing, via capability testing 47-50

browsers
built-in features 45

browser sniffing
performing, navigator object used 47

buildFinalResponse() function 63, 77, 101
built-in objects

about 176
Error object 176
EvalError object 181
RangeError object 178
ReferenceError object 178
SyntaxError object 181
TypeError object 180
URIError object 181

[��8]

C
capability testing 47
Cascading Style Sheet. See CSS
catchError function

using 199
catch statement 172
changeOne() function 166
changeProperties() function 26
changeThree() function 166
changeTwo() function 166
checkForm () function 63
checking process

simplifying 76
checkSecondForm() function 164
checkValues() function 53
Chrome debugging tool

features 213
Chrome JavaScript Debugger 212
class attribute 12
class selectors 19
code quality

about 83
HTML and CSS, validating 84

code testing
alert method, used 66, 67
less obtrusive manner 71-74
visual inspection 66

code validation
about 87
code, debugging 86
importance 85
simplified testing 85, 86
using 87

color coding editors 87, 88
commenting out parts, of script 75
common validation errors, JavaScript 89
CSS

about 7, 12, 13
attributes 20
class selectors 19
debugging, IE8 developer tool used 205
HTML document, styling 14
id selectors 19
referenced HTML document, styling 18, 19
used, for styling HTML document 14-16

CSS attributes
reference link 20

D
debugging, with Chrome

about 213
accessing 212
console, accessing 213, 214
debugging process, simplifying 214-217
enabling 212

debugging basics, IE debugging tool 203-205
debugging function

writing 71
debuggingMessages() function 74
different parts, of web page

accessing, getElementById used 55-64
document.getElementById() method 26
document.getElementById() property 27
document.getElementsByName() method 27
Dojo

URL 169
Dragonfly

about 218
accessing 218
call stack 220
debugging with 219, 220
features 218, 219
inspection 220
settings 222
thread log 220
using 218

Dragonfly, functions
continue 220
step into 220
step out 221
step over 221
stop at error 221

Dreamweaver 41

E
Eclipse 41
equivalence partition testing 123
error console log

error messages 181, 182

[��9]

own error messages, writing 182, 183
using 181

Error object
about 176
example 176
working 176, 177

errors, JavaScript. See JavaScript errors
errors, spotted by JSLint

about 93
alert is not defined 102
expected === instead of == 102
expecting <\/ instead of <\ 100, 102
functions not defined 96
HTML event handlers, avoiding 103
list 93, 94
too many var statements 97
unexpected use of ++ 94
use strict error 94

EvalError object 181
examples, functional requirement testing

boundary testing 120
equivalence partitioning 120
web page tests 120

examples, nonfunctional requirement testing
integration testing 121
performance testing 121
usability testing 121

exception handling mechanisms
applying, on sample application 184-199

expectation of <\/ instead of </ error
about 100
fixing 101

expectation of === instead of == error
about 102
fixing 102

expected and acceptable values
testing, white box testing used 141

expected but unacceptable values
black box testing used 142
boundary value testing used 142, 143
illegal values used 144

expected result 65
expected result, of script

checking 65

F
finally statement 172
final phase, test plan

entire program, testing with expected values
147-149

executing 147
robustness, testing 150

Firebug extension
about 229
downloading 230
features 229, 230
installing 230

Firefox Venkman extension
about 222
accessing 222
breakpoints 225
call stack 225
debugging features 227-229
debugging with 224, 225
downloading 222
features 223
local variables 226
using 222
watches 226

Firefox Venkman extension, functions
step in 228
step out 228
step over 228

FireUnit 245
form values

accessing, name attribute used 54, 55
accessing, onsubmit event used 51-54

functional requirement testing
about 120
examples 120

functions not defined error
about 96
fixing 96, 97

G
Google Chrome

about 211
debugging 212

Google Chrome Web Inspector 212

[��0]

H
HTML

about 7, 8
debugging, IE8 developer tool used 204, 205
elements 8

HTML document
creating 9-11
JavaScript, applying 20-23
styling, CSS used 14-16
styling, stylistic attributes used 18

HTML DOM availability
checking 77

HTML elements
<a> 8
<body> </body> 8
<h1> </h1> 8
<head> </head> 8
<p> </p> 8
<title> </title> 8
class name, specifying 12
id, specifying 12
styling, attributes used 11, 12

HTML event handlers
avoiding 103-106

Hyper Text Markup Language. See HTML

I
id attribute 12
id selectors 19
IE 8 developer tools 202
IE debugging tool

accessing 202
CSS, debugging 205
debugging basics 203, 204
features 203
HTML, debugging 204
JavaScript, debugging 206-210

IE developer toolbar
installing 202

IE developer tools
about 202
IE debugging tool, accessing 202
using 202

illegal values phase, test plan
test cases 144, 145

using 144
innerHTML() method 29
insertContent() function 28
integrated testing 127, 128
invalidated code

consequences 85

J
JavaScript

about 7, 20
and server side languages, differences 29
applying, to HTML document 20-23
debugging, IE8 developer tool used 206-210
elements, searching in document 26, 27
error, encountering by browser 44
exception handling mechanisms, applying

184-199
features 41
interacting, with HTML elements 28
testing, QUnit used 236-239
usability, enhancing 163

JavaScript code
testing 82
validating 82

JavaScript errors
about 32, 172
catch statement 172-175
finally statement 172-175
loading errors, types 33
logic errors, types 37
runtime errors, types 36
throw statement 172
trapping, built-in objects used 176
try statement 172-175
types 32

JavaScript events 26
JavaScript libraries

about 169
considerations 170
Dojo 169
GUI 171
JQuery 169
link 170
Mootools 169
performance testing 170
profiling testing 171

[��1]

Prototype 169
Script.aculo.us 169
testing 170
widget add-ons 171
YUI 169

JavaScript syntax 24-26
JavaScript testing

Ajax, using 161
difference from server-side testing 162

JQuery
about 104
URL 169

JSLint
about 90
features 90
functionality 112
URL 90, 112
using 112
using, for spotting validation errors 91, 92

JSLitmus
about 241
ad hoc JavaScript benchmark tests, creating

241-244
features 241

JSpec 245
JsUnit 245

L
less obtrusive manner, code testing 71
loading errors

about 33
common causes 33
in partially correct JavaScript 35

logic errors
about 37
common causes 38

M
messageObject parameter 103
Mootools

URL 169

N
name attribute 54
navigator object

about 46
browser sniffing, performing 47

nonfunctional requirement testing
about 121
examples 121
non-functional requirements 121

O
onblur event 59
onsubmit event 51
Opera JavaScript Debugger 218

P
Pareto Principle 125
pareto testing 125
performance issues, regression testing 160, 161
performance testing 127, 170
profiling testing 171
program logic, test plan

testing 146
Prototype

URL 169

Q
Qunit

about 236
assertion tests 240
features 236
JavaScript, testing 236-239
working 236

R
RangeError object

about 178
example 178
working 178

ReferenceError object
about 178
example 179
working 179

regression testing
about 128
bug, fixing 151-159
implementing 151

[���]

performance issues 160, 161
performing 151-159

right values, web page
getting, at right places 55-64

runtime errors
about 36
common causes 36

S
Safari 211
Sahi

about 232
assertion tests, performing 235
features 232
user interface widgets, testing 232-235

sample application
exception handling mechanisms, applying

184-199
scope, for test plan

defining 118, 119
Script.aculo.us

URL 169
scripts combining, issues

about 166
event handlers, combining 166-168
name clashes, removing 168, 169

Selenium 244
Selenium Server 245
server side languages

and JavaScript, differences 29
ASP.NET 29
Perl 29
PHP 29
Python 29

simple-to-use method 48
software lifecycle

about 116
analysis stage 116
deployment stage 116
design stage 116
implementation stage 116
maintenance stage 116
stages 116
testing stage 116

style attribute 12

submitValues() function 59, 113
SyntaxError object 181

T
techniques, for code testing

about 66
alert method, using 66, 67
less obtrusive manner 71
visual inspection 66

test cases
acceptance testing 121
black box testing 122
functional requirement testing 120
integrated testing 127, 128
non functional requirement testing 121
performance testing 127
regression testing 128
unit testing 125
web page testing 126
white box testing 124

testFormResponse function 62
testing

about 31
need for 31

testing and validating
differences 82

testing order 128, 129
testing tools

Assertion Unit Framework 245
FireUnit 245
JSLitmus 241
JSpec 245
JsUnit 245
QUnit 236
Sahi 232
Selenium 244
TestSwarm 245
Watir 245

test plan
about 129
applying 140
bug form 137
developing 118
documenting 129
errors 151

[���]

implementing 139
need for 117
scope, defining 118, 120
summary 137
test strategy 130
versioning 130

test plan implementation
black box test phase 142
integrated testing 147
program logic, testing 146
unexpected values, testing 147
white box test phase 140

test strategy
about 130
black box testing 132-134
integrated testing 134-136
program logic, testing 134
unexpected values, testing 134-136
white box testing 130, 131

TestSwarm 245
throw statement 172
tips, for error free JavaScript 40
too many var statements error

about 97
fixing 98-100

try statement 172
TypeError object

about 180
example 180
working 180

typeOfBrowser variable 47

U
unexpected use of ++ error

about 94
fixing 95

unit testing 125
URIError object 181
usability testing

about 123
aspects 123

user interface widgets
testing, Sahi used 232-235

use strict error
about 94
fixing 94

use strict statement 94

V
validation errors

fixing 93
spotting, JSLint used 91

valid code constructs, producing validation
warnings

consequences 93
fixing 92

Venkman extension. See Firefox Venkman
extension

visual inspection, code testing
about 66
pre-conditions 66
tips 66

W
Watir 245
web page testing 126
white box testing

about 124
branch testing 124
examples 124
pareto testing 125

white box test phase, test plan
expected and acceptable values, testing

140, 141

X
XMLHttpRequest object 161

Y
YUI

URL 169

Thank you for buying
JavaScript Testing Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our unique
business model allows us to bring you more focused information, giving you more of what you need to
know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information, please
visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it
first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

jQuery 1.4 Reference Guide
ISBN: 978-1-849510-04-2 Paperback: 336 pages

A comprehensive exploration of the popular
JavaScript library

1. Quickly look up features of the jQuery library

2. Step through each function, method, and selector
expression in the jQuery library with an easy-to-
follow approach

3. Understand the anatomy of a jQuery script

4. Write your own plug-ins using jQuery’s powerful
plug-in architecture

Learning Ext JS
ISBN: 978-1-847195-14-2 Paperback: 324 pages

Build dynamic, desktop-style user interfaces for your
data-driven web applications

1. Learn to build consistent, attractive web interfaces
with the framework components

2. Integrate your existing data and web services with
Ext JS data support

3. Enhance your JavaScript skills by using Ext's DOM
and AJAX helpers

4. Extend Ext JS through custom components

Please check www.PacktPub.com for information on our titles

ICEfaces 1.�: Next Generation Enterprise
Web Development
ISBN: 978-1-847197-24-5 Paperback: 292 pages

Build Web 2.0 Applications using AJAX Push, JSF, Facelets,
Spring and JPA

1. Develop a full-blown Web application using ICEfaces

2. Design and use self-developed components using
Facelets technology

3. Integrate AJAX into a JEE stack for Web 2.0
developers using JSF, Facelets, Spring, JPA

YUI 2.�: Learning the Library
ISBN: 978-1-849510-70-7 Paperback: 404 pages

Develop your next-generation web applications with the
YUI JavaScript development library

1. Improve your coding and productivity with the
YUI Library

2. Gain a thorough understanding of the YUI tools

3. Learn from detailed examples for common tasks

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: What is JavaScript Testing?
	Where does JavaScript fit into the web page?
	HTML Content

	Time for action – building a HTML document
	Styling HTML elements using its attributes
	Specifying id and class name for an HTML element

	Cascading Style Sheet

	Time for action – styling your HTML document using CSS
	Referring to an HTML element by its id or class name and styling it
	Differences between a class selector and an id selector
	Other uses for class selectors and id selectors
	Complete list of CSS attributes

	JavaScript providing behavior to a web page

	Time for action – giving behaviour to your HTML document
	JavaScript Syntax
	JavaScript events
	Finding elements in a document
	Putting all together

	The difference between JavaScript and server-side languages
	Why pages need to work without JavaScript
	What is testing?
	Why do you need to test?
	Types of errors
	Loading errors

	Time for action – loading errors in action
	Partially correct JavaScript

	Time for action – loading errors in action
	Runtime errors

	Time for action – runtime errors in action
	Logic Errors

	Time for action – logic errors in action
	Some advice for writing error free-JavaScript
	Always check for proper names of objects, variables, and functions
	Check for proper syntax
	Plan before you code
	Check for correctness as you code
	Preventing errors by choosing a suitable text editor

	Summary

	Chapter 2: Ad Hoc Testing and Debugging in JavaScript
	Purpose of ad hoc testing–getting the script to run
	What happens when the browser encounters an error in JavaScript
	Browser differences and the need to test in multiple browsers
	Time for action – checking for features and sniffing browsers
	in browsers
	Testing browser differences via capability testing

	Time for action – capability testing for different browsers
	Are you getting the output and putting values in the correct places?
	Accessing the values on a form

	Time for action – accessing values from a form
	Another technique for accessing form values
	Accessing other parts of the web page

	Time for action – getting the correct values at the correct places
	Does the script give the expected result?
	What to do if the script doesn't run?
	Visually inspecting the code
	Using alert() to see what the code is running
	Using alert() to see what values are being used

	Time for action – using alert to inspect your code
	A less obtrusive way to check what code is running and the values used

	Time for action – checking what values are used unobtrusively
	Commenting out parts of the script to simplify testing
	Time for action – simplifying the checking process
	Timing differences–making sure HTML is there before interacting with it
	Why ad hoc testing is never enough
	Summary

	Chapter 3: Syntax Validation
	The difference between validating and testing
	Code that is valid but wrong–validation doesn't find all the errors
	Code that is invalid but right
	Code that is invalid and wrong–validation finds some errors that might be difficult to spot any other way

	Code quality
	HTML and CSS needs to be valid before you start on JavaScript
	What happens if you don't validate your code

	Color coding editors–how your editor can help you to spot validation errors

	Common errors in JavaScript that will be picked up by validation
	JSLint–an online validator
	Time for action – using JSLint to spot validation errors
	Valid code constructs that produce validation warnings
	Should you fix valid code constructs that produce validation warnings?
	What happens if you don't fix them

	How to fix validation errors
	Error—missing "use strict" statement

	Time for action – fixing "use strict" error
	Error—unexpected use of ++

	Time for action – fixing the error of "Unexpected use of ++"
	Error—functions not defined

	Time for action – fixing the error of "Functions not defined"
	Too many var statements

	Time for action – fixing the error of using too many var
	statements
	Expecting <\/ instead of <\

	Time for action – fixing the expectation of '<\/' instead of '</'
	Expected '===' but found '=='

	Time for action – changing == to ===
	Alert is not defined

	Time for action – fixing "Alert is not defined"
	Avoiding HTML event handlers

	Time for action – avoiding HTML event handlers
	Summary of the corrections we have done

	JavaScript Lint–one tool you can download
	Challenge yourself–fix the remaining errors spotted by JSLint

	Summary

	Chapter 4: Planning to Test
	A very brief introduction to the software lifecycle
	The agile method
	The agile method and software cycle in action
	Analysis and design
	Implementation and testing
	Deployment
	Maintenance

	Do you need a test plan to be able to test?
	When to develop the test plan
	How much testing is required?
	What is the code intended to do?
	Testing whether the code satisfies our needs
	Testing for invalid actions by users
	A short summary of the above issues

	Major testing concepts and strategies
	Functional requirement testing
	Non-functional requirement testing
	Acceptance testing
	Black box testing
	Usability tests
	Boundary testing
	Equivalence partitioning
	Beta testing

	White box testing
	Branch testing
	Pareto testing

	Unit tests
	Web page tests
	Performance tests
	Integration testing
	Regression testing–repeated prior testing after making changes

	Testing order
	Documenting your test plan
	The test plan
	Versioning
	Test strategy
	Bug form

	Summary of our test plan

	Summary

	Chapter 5: Putting the test plan into action
	Applying the test plan: running your tests in order
	Test Case 1: Testing expected and acceptable values

	Time for action – Test Case 1a: testing expected and acceptable
	values by using white box testing
	Test Case 1b: Testing expected but unacceptable values using black box testing

	Time for action – Test case 1bi: testing expected but
	unacceptable values using boundary value testing
	Time for action – Test case 1bii: testing expected but
	unacceptable values using illegal values
	Test Case 2: Testing the program logic

	Time for action – testing the program logic
	Test Case 3: Integrated testing and testing unexpected values

	Time for action –Test Case 3a: testing the entire program with
	expected values
	Time for action – Test Case 3b: testing robustness of the
	second form
	What to do when a test returns an unexpected result

	Regression testing in action
	Time for action – fixing the bugs and performing regression
	testing
	Performance issues—compressing your code to make it load faster
	Does using Ajax make a difference?
	Difference from server-side testing
	What happens if you visitor turns off JavaScript

	Summary

	Chapter 6: Testing More Complex Code
	Issues when combining scripts
	Combining event handlers
	Naming clashes

	Using JavaScript libraries
	Do you need to test a library that someone else wrote?
	What sort of tests to run against library code?
	Performance testing
	Profiling testing

	GUI and widget add-ons to libraries and considerations on how to test them

	Deliberately throwing your own JavaScript errors
	The throw statement
	The try, catch, and finally statement

	Trapping errors by using built-in objects
	The Error object
	The RangeError object
	The ReferenceError object
	The TypeError object
	The SyntaxError object
	The URIError object
	The EvalError object

	Using the error console log
	Error messages
	Writing your own messages

	Modifying scripts and testing
	Time for action – coding, modifying, throwing, and catching
	errors
	Summary

	Chapter 7: Debugging Tools
	IE 8 Developer Tools (and the developer toolbar plugin for IE6 and 7)
	Using IE developer tools
	Open
	Brief introduction to the user interface
	Debugging basics of the IE debugging tool

	Time for action – Debugging HTML by using the IE8 developer tool
	Time for action – Debugging CSS by using the IE8 developer tool
	Debugging JavaScript

	Time for action – More Debugging JavaScript by using the IE8
	developer tool
	Safari or Google Chrome Web Inspector and JavaScript Debugger
	Differences between Safari and Google Chrome
	Debugging using Chrome
	A brief introduction to the user interface

	Time for action – Debugging with Chrome
	Opera JavaScript Debugger (Dragonfly)
	Using Dragonfly
	Starting Dragonfly

	Time for action – Debugging with Opera Dragonfly
	Inspection and Call Stack
	Thread Log
	Continue, Step Into, Step Over, Step Out, and Stop at Error
	Settings

	Firefox and the Venkman extension
	Using Firefox's Venkman extension
	Obtaining the Venkman JavaScript Debugger extension
	Opening Venkman
	A brief introduction to the user interface

	Time for action – Debugging using Firefox's Venkman extension
	Breakpoints or Call Stack
	Local Variables and Watches

	Time for action – more debugging with the Venkman extension
	Firefox and the Firebug extension
	Summary

	Chapter 8: Testing Tools
	Sahi
	Time for action – user Interface testing using Sahi
	More complex testing with Sahi

	QUnit
	Time for action – testing JavaScript with QUnit
	Applying in real-life situations
	More assertion tests for various situations

	JSLitmus
	Time for action – creating ad hoc JavaScript benchmark tests
	More complex testing with JSLitmus

	More testing tools that you should check out
	Summary

	Index

