
www.allitebooks.com

http://www.allitebooks.org

JBoss AS 5 Development

Develop, deploy, and secure Java applications on this
robust, open source application server

Francesco Marchioni

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

JBoss AS 5 Development

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2009

Production Reference: 1091209

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847196-82-8

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Francesco Marchioni

Reviewers
Edem Morny

Peter Johnson

Acquisition Editor
Sarah Cullington

Development Editor
Amey Kanse

Technical Editors
Gaurav Datar

Smita Solanki

Indexer
Hemangini Bari

Editorial Team Leader
Abhijeet Deobhakta

Project Team Leader
Lata Basantani

Project Coordinator
Joel Goveya

Proofreader
Chris Smith

Graphics
Nilesh R. Mohite

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Francesco Marchioni is a Sun Certified Enterprise architect employed by an
Italian company based in Rome. He started learning Java in 1997 and since then he
has followed the path to the newest application program interfaces released by Sun.
He joined the JBoss community in 2000, when the application server was running
release 2.X.

He has spent many years as a software consultant, where he has envisioned many
successful software migrations from vendor platforms to open source products
such as JBoss AS, fulfilling the tight budget requirements of current times.

In the past five years, he has authored technical articles for O'Reilly Media and is
running an IT portal focused on JBoss products (http://www.mastertheboss.com).

I'd like to thank Packt Publishing for giving me this unique
opportunity to write a book about a great product like JBoss. All the
staff I have worked with has been very cooperative at giving their
time in the arduous publishing process. I'd also like to thank the
external reviewers Peter Johnson and Edem Morny who have offered
their professional expertise for many parts of this book. And last
but not the least, I want to pay my tribute to my family, my father in
particular who has transmitted me the virus of programming when
I was just a boy, my wife Linda who was so patient with my late
nights and with my missing housework, and my 2 years old baby
Alessandro who hasn't actually helped in writing this book but has
been the inspiration of it.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Edem Morny has been involved in Enterprise Java technologies since he got
introduced to Java in 2005, using tools and technologies encompassing both the
standard Java EE stack and non-standard ones such as Hibernate and Spring.
His experience with JBoss AS has also included porting clustered, fault-tolerant
deployments of applications, from proprietary application servers to the open
source alternative.

He has been an active promoter of Java EE, speaking at workshops and seminars
on a national scale in Ghana. He is the cofounder of Ghana's first Java User Group,
JAccra (http://groups.google.com/group/jaccra).

He is a senior developer at the application development center in Accra, Ghana, of
an international biometric security solutions company, leading the development of
Biocryptic Identity Management Systems for the global market.

Edem was a technical reviewer of JBoss Tools 3 Developer Guide, published
by Packt Publishing in the year 2009. You'll find him blogging at
http://edemmorny.wordpress.com.

Peter Johnson started his computer career in August, 1980, working for Burroughs,
programming mainframes in COBOL and ALGOL. He started working with Java
in 1998, and was a lead designer on projects such as a JDBC driver for the DMSII
database that runs on Unisys mainframes.

For the past several years, he has been the chief architect of a team that does
performance analysis of Java applications on large scale Intel-based machines
(8 to 32 CPUs), and evaluates various open source software for Enterprise readiness.

In addition, Peter is a JBoss committer and is the coauthor of the book JBoss In Action,
published by Manning. Peter often speaks on Java performance and various open
source topics at industry conferences such as JBoss World and the annual Computer
Measurement Group International Conference.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Installing Core Components	 7

Prologue	 7
What you will get in this book	 8
JBoss big bang	 9

Introduction	 9
Installing the Java environment	 9
Installing JBoss AS 5	 12

Starting up JBoss AS	 13
Stopping JBoss	 15

Stopping JBoss on a remote machine	 15
Installing Eclipse	 16
Plugins: The heart of Eclipse	 17

Installing JBoss Tools plugins	 17
Installing JBoss Tools plugins manually	 19

Connecting Eclipse with JBoss	 20
Summary	 22

Chapter 2: What's New in JBoss AS 5?	 23
Application server features	 24

The core modules of JBoss AS 5	 25
Cutting edge EJB container	 25
The new messaging provider	 25
Rock solid transaction manager	 26
Enhanced web container	 26
JBoss Web Services 3.0	 26
Improved clustering support	 26

The application server structure	 26
The next generation application server	 28

From JMX to the Microcontainer	 29
The new library configuration	 29

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

JBoss AS 5 server configurations	 31
The "standard" configuration	 31

The "web" configuration	 33
The former server configurations	 33

Creating a custom server configuration	 34
The starting point: JBoss AS service map	 35
Custom configuration sample: Adding JMS to the web configuration	 36
JBoss virtual file system	 38

Summary	 40
Chapter 3: Customizing JBoss AS Services	 41

How to monitor JBoss AS services	 41
The JMX console	 42

An example: Using the JMX console to display the JNDI tree	 44
The admin console	 45
The twiddle utility	 46

JBoss AS thread pool	 47
Application server thread pool anatomy	 48
How many threads for your applications?	 50

Analyze what your threads are doing	 50
Configuring logging services	 52

Appenders	 52
Console file appender	 53
File appenders	 54
Other appenders	 55

Layout of logs	 56
Logging categories	 56

Configuring your own logger	 57
Managing logs through JMX agents	 58

Configuring the connection to the database	 59
Configuring a datasource in JBoss AS	 60

Additional datasource properties	 62
Setting up a new datasource	 63

Gathering connection pool statistics	 64
Deploying datasources at application level	 68
High availability datasources	 69
Connecting from a remote client	 70

Configuring the transaction service	 71
Preserving data integrity	 72
Global and local transactions	 73
Configuring JBoss transactions	 74

Monitoring transactions	 76
Summary	 77

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 4: Developing EJB 3 Session Beans	 79
Java EE made easier	 79
Developing Enterprise JavaBeans	 80

Developing Session Beans	 81
Stateless Session Beans	 81
Stateful Session Beans	 96

Configuring the EJB container	 100
Configuring Stateless Session Bean pool size	 101

Specializing the configuration	 103
Configuring the Stateful Session Bean cache	 104

How to disable Stateful Bean passivation	 107
Summary	 108

Chapter 5: Developing JPA Entities	 109
Data persistence meets a standard	 109

Working with JPA	 110
Creating a sample application	 111
Setting up the database	 111

Rolling the EJB project	 112
Creating a Session Bean client	 124
Creating a test client for our AppStore	 130

Summary	 131
Chapter 6: Creating a Web Application	 133

Developing web layout	 133
Installing JSF on JBoss AS	 134
Setting up navigation rules	 137
Adding a JSF managed bean	 139
Setting up the view	 142
Assembling and deploying the application	 145

Running the store	 148
Configuring JBoss Web Server	 149

Customizing connectors	 151
The new Apache Portable Runtime connector	 152
Installing the APR connector	 153

Configuring contexts	 154
Configuring virtual hosts	 155
Configuring HTTP logs	 156
Tuning advice	 158

Disable DNS lookup	 158
Choose the right HTTP connector	 158
Set the correct size for your thread pool	 159
Monitoring your thread pool	 160

Summary	 161

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 7: Developing Applications with JBoss Messaging
Service	 163

Short introduction to JMS	 164
The building blocks of JMS	 165

The new JBoss Messaging system	 167
Configuring connection factories	 168
Configuring JMS destinations	 170

Inspecting destination attributes	 170
Advanced message configuration	 171

Developing JMS applications	 174
Message-driven beans	 174

Configuring message-driven beans	 175
Creating a sample application	 175
Message-driven POJOs	 182

Advanced JBoss Messaging	 186
JBoss Messaging bridge	 186

Adding a remote JMS provider	 187
Configuring the persistence service	 189
Securing destinations	 190

MDB access control	 193
Summary	 193

Chapter 8: Developing Applications with JBoss and Hibernate	 195
Introducing Hibernate	 195

Creating a Hibernate application	 196
Setting up the database schema	 197
A new Eclipse project	 198
Reversing your schema into Java classes	 202
Adding Hibernate configuration to your project	 206
Adding a web client to your project	 207
Packaging and deploying the application	 212
Using the wizard to generate EJB 3	 215
Hibernate and EJB: Friends or opponents?	 216
Using Hibernate with EJB	 217

Summary	 220
Chapter 9: Managing JBoss AS	 221

Introducing Java Management Extension	 221
Developing MBeans	 223

A simple MBean	 223
Testing your MBean from the JMX console	 227
Testing your application programmatically	 228

MBeans dependency	 230

Table of Contents

[�]

Sending MBeans notifications	 233
Receiving heartbeat notifications	 235
Sending your own notifications	 236

Service POJOs	 237
Creating a web test client	 239
Exposing your service as an EJB	 241
Service POJO dependency	 242

JBoss AS Administration Console	 242
Managing applications	 242
Deploying/undeploying applications	 243

Updating an application	 244
Starting/stopping/restarting an application	 245

Administering resources	 245
Adding a new resource	 246
Managing resources	 247

Metrics	 248
Summary	 249

Chapter 10: Developing Applications with JBoss Web Services	 251
Web Service concepts	 252

Strategies for building up Web Services	 253
JBoss Web Services stack	 253

A brief look at the JAX WS architecture	 254
Coding Web Services with JBossWS	 255

Developing a POJO Web Service	 255
Inspecting the Web Service from the console	 259
Using JBossWS tools	 261
External Web Service clients	 267

Exposing EJB as Web Services	 268
Handling exceptions in Web Services	 271
Generating a test client	 272
Injecting Web Services	 274
Web Service Handler chains	 275

Summary	 280
Chapter 11: Clustering JBoss AS	 281

Cluster basics	 281
Introducing JBoss AS cluster	 282

JBoss AS clustering architecture	 283
Smart proxies	 284
External load balancer	 285

JBoss AS 5 cluster configuration	 285
Starting JBoss AS in cluster mode	 286

Running cluster nodes on separate machines	 286
Running cluster nodes on the same machine	 287

Table of Contents

[vi]

JBoss AS clustered services	 289
JBoss Cache (JBC)	 290

Cache modes	 290
Cache configuration	 291
Configuring HTTP cache management	 293
Configuring EJB 3.0 Stateful Session Bean cache	 294
Configuring entity caching	 294
JBoss cache and concurrency	 296

The HAPartition service	 297
Exploring HA singletons	 298

The HA-JNDI service	 299
Accessing HA-JNDI	 300
HA-JNDI configuration	 301

Clustering web applications	 302
Configuring HTTP replication 	 302
HttpSession passivation/activation	 305
Configuring load balancing 	 306

JMS clustering	 309
Summary	 310

Chapter 12: Developing a Clustered Application	 311
Clustering Stateless Session Beans	 312
Clustering Stateful Session Beans	 313

Deploying a clustered SFSB	 315
Testing the clustered SFSB	 318

Programmatic replication of the session	 319
Clustering entities	 320

Revisiting the AppStore example	 320
Inside the second-level cache	 322

Clustering web applications	 327
Testing HTTP session replication	 328

Summary	 330
Chapter 13: JBoss AS Security	 331

Approaching Java Security API	 331
The JAAS security model	 333

Introducing JBossSX	 334
Securing the JMX console	 336

Dynamic login configuration	 339
Stacked login configuration 	 341
Logging and auditing	 342
Securing the transport layer	 344
Enabling the Secure Socket Layer on JBoss AS	 347

Summary	 354

Table of Contents

[vii]

Chapter 14: Securing JBoss AS Applications	 355
Securing the AppStore application	 355

HTTP role authentication	 356
Encrypting passwords	 359

EJB role authorization	 361
Java EE programmatic security	 363

Writing secure Java SE clients	 364
Securing applications at transport level	 367

Running the AppStore with HTTPS	 367
Securing the RMI-IIOP transport: SSL BlackJack	 368

Securing Web Services	 370
Web Services authorization	 371
Web Services encryption	 374

Client and server configuration files	 376
Encrypting the POJOWebService	 378

Securing the Web Service	 378
Securing the client	 379
Running the example	 380
Signing SOAP messages	 381

Debugging SOAP messages	 382
Summary	 384

Index	 385

Preface
The JBoss Application Server is a Java EE-certified platform for developing and
deploying Java Enterprise applications. JBoss Application Server provides the
full range of J2EE 1.5 features as well as extended Enterprise services including
clustering, caching, and persistence. This book will show Java EE developers how
to develop their applications using the JBoss Application Server. It covers topics
such as:

Setting up a development environment
Customization
Java EE programming modules
Clustering
Security

All these features will be explored by developing sample and intuitive applications
built using the friendly interface of Eclipse and JBoss Tools.

What this book covers
Chapter 1: Installing Core Components covers the installation of the key components
that will be needed throughout the rest of the book. The installation process will
be completed by using intuitive wizards that will lead even inexperienced users
through it.

Chapter 2: What's New in JBoss AS 5.0 introduces the reader to the most significant
changes brought by release 5.0 of the application server. The new server directory
tree is analyzed in detail and possible variants in the server configuration are
discussed in the latter part of this chapter.

•
•
•
•
•

Preface

[�]

Chapter 3: Customizing JBoss Services discusses the core configuration of the
application server. The highlights of it include an introduction to JBoss AS monitoring
services, the inner details about JBoss thread pool, how to configure logging services,
and a detailed description of the transaction and Datasource service.

Chapter 4: Developing EJB 3 Session Bean introduces the reader to some concrete
Java EE programming examples developed on JBoss AS 5. The focus of this
chapter is on EJB 3 session Beans, including a section about their configuration
for optimal results.

Chapter 5: Developing JPA Entities covers the development of an example based on
the Java Persistence API (JPA). Here, we introduce an enterprise application named
the Appstore, which will be a central theme of this book.

Chapter 6: Creating a Web Application is about developing and configuring web
applications on JBoss AS 5.0 using the JSF cutting-edge technology. In the first part
of this chapter we will enhance the Appstore Enterpirse application by adding a web
layer to it. In the latter part, we explain in detail how to properly configure JBoss
Web Server.

Chapter 7: Developing Applications with JBoss Messaging Service discusses JBoss
Messaging provider by giving a short introduction to the new messaging system.
The chapter then helps us set up some proof of concept programming examples.

Chapter 8: Developing Applications with JBoss and Hibernate covers the de facto standard
object relational mapping tool, Hibernate, showing how to quickly set up a Hibernate
project using the facilities provided by the JBoss tools interface.

Chapter 9: Managing JBoss AS covers the Java Management Extension (JMX), which
still plays a vital role in the application server infrastructure. The chapter includes
many examples that show how to write traditional MBeans services and the new
POJO Services.

Chapter 10: Developing Applications with JBoss Web Services focuses on the JBoss Web
Service implementation, JBossWS, showing how to create, deploy, and test Web
Services on JBoss AS along with some advanced concepts such as Handler chains
and SOAP debugging.

Chapter 11: Clustering JBoss AS covers the facts about JBoss AS clustering
configuration, moving from cluster basics to detailed configuration of the
individual services of the application server.

Chapter 12: Developing a Clustered Application continues the journey in the clustering
arena by adding some concrete examples based on the abstract concepts covered in
the earlier chapter.

Preface

[�]

Chapter 13: JBoss AS Security provides a systematic guide to JBoss security framework
and the cryptographic interfaces available in the Java EE framework. This supplies the
basis for concrete examples, which are delivered in the next chapter.

Chapter 14: Securing JBoss AS Applications continues the in-depth exploration of the
JBoss security framework, adding concrete programming examples applied on the
EJB and Web Services technologies.

Who this book is for
If you are a Java architect or developer who wants to get the most out of the latest
release of the JBoss application server or a JBoss administrator who wants a clear and
simple reference for JBoss services, this book is for you. You are not expected to have
accumulated experience on the application server though you must know the basic
concepts of Java EE.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Since release 5.1.0 of the application
server, the admin console is bundled as a web application in the deploy folder
of JBoss AS."

A block of code will be set as follows:

<mbean code="org.jboss.util.threadpool.BasicThreadPool"
 name="jboss.system:service=ThreadPool">
 <attribute name="Name">JBoss System Threads</attribute>
 <attribute name="ThreadGroupName">System Threads</attribute>
 <attribute name="KeepAliveTime">60000</attribute>
 <attribute name="MaximumPoolSize">10</attribute>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be shown in bold sometimes with numbers in square
brackets referring to notes in the text:

<attribute name="Log4jQuietMode">true</attribute>
 <attribute name="RefreshPeriod">60</attribute> [1]
 <attribute
 name="DefaultJBossServerLogThreshold">DEBUG</attribute>
 </mbean>

Preface

[�]

Any command-line input or output is written as follows:

twiddle -s localhost invoke "jboss.system:type=ServerInfo"
 listThreadCpuUtilization > threadCpu.txt

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "In the
left frame expand the Resources | Datasources leaf and choose the suitable
transaction option."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[�]

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/6828_Code.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to any list of existing errata. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

Installing Core Components

Prologue
From: Acme Head Offices

To: Francesco Marchioni

Hi Francesco,

Can you meet at 4 PM in the boardroom? We are going to interview a few guys for the new
JBoss Enterprise project.

Regards,

Monty Burns

JBoss Application Server has been around since the beginning of the new millennium
and, in personal resumes, it is common to find people who have acquired some
experience on it.

Before every job interview, I have the expectation that high caliber Java/Java EE
candidates surely know the core concepts of JBoss AS. Often, companies don't
consider hiring just the best techie guy, but a well-rounded profile with a
"situation-action-result" mind.

One thing I personally like to ask to identify smart developers is: Why have you chosen
to learn JBoss and not XYZ? How does it differentiate from the competitors? The most
habitual answer is: JBoss is free, so I chose to learn Java EE on this platform. Although
there is some truth in this answer, I think it's a partial truth and the concept needs
to be elaborated.

Installing Core Components

[�]

First, let's define what is free. Today there's a common misconception of open source
products being like "free lunch". They can be so for a student who's learning these
technologies, but for the real world, open source means you don't pay a license fee
to develop/roll in production certain software.

This obviously doesn't mean that the software hasn't got a cost. Moreover, if
you don't want to risk breaking your service level agreement, you usually sign a
contract with the owner of the open source software so that it guarantees quick
and decisive support.

From the financial point of view, this is the first important difference with a
commercial product. If you start a project, running a product such as JBoss AS, you
don't have an immediate entrance fee. You can even dispense with commercial
assistance if you are confident that your technicians will be able to solve any issue.
Whatever you choose, this policy is much more flexible than a commercial contract,
which requires an immediate financial commitment.

That's better than simply saying: I like JBoss because it's free.

The second and, in my opinion, the most important reason is the worldwide spread
of the product. Today JBoss is the most used application server and it has been not
only built with the collaborative efforts of many developers around the world, but
also with simple contributions of users who request new features. This boils down to
the actual nature of the success of JBoss. The real driving force of this product is its
community of users, while vendor products are usually designed around commercial
or marketing schemas.

As an example of this, you can see that JBoss Application Server is a Java EE
compatible server, but you can freely add or remove modules from the application
server, thus creating a customized product for your specific needs. It is the flexibility
and willingness to adapt that has brought JBoss AS this far, and it will be this trait
that will drive the application server full speed into the future.

What you will get in this book
This book is an intense guide to creating professional Java EE applications with JBoss
AS 5.0. Packed with example code and written in a friendly, earthy style, this book
will act as a handy guide to take you from the basics to the skills that will make you
a JBoss developer to be reckoned with.

We think that studying good code samples is one of the best ways to learn, so we
included as many as we could. We also wanted this book to be a quick reference to
solve most common issues—a book you can have on your desk and turn to when
you have a doubt.

Chapter 1

[�]

JBoss big bang
JBoss AS is an open source Java EE-based application server. The project's first
milestone dates back to early 1999, when Marc Fleury developed an open source
product named JBoss that was a simple EJB 1.0 container. Since then, the project
has been incorporated in a company named JBoss Group. In April 2006 the company
was acquired by Red Hat Inc., which started providing professional services to
the product. As a matter of fact, you now have two main references for JBoss
products—http://www.jboss.org, which is the community of developers where
you can freely download products and join forums, and the commercial site
http://www.jboss.com, which is targeted at commercial support for the product.

Introduction
This is where our journey begins. In this chapter, we'll learn how to set up our
environment for developing applications on JBoss AS correctly. Installation of the
components is not particularly tricky, but it needs a few steps to be performed and
quite a lot of Kbytes to be downloaded.

This is our checklist:

Install the appropriate Java Development Kit (JDK) for running JBoss AS
Install JBoss AS 5.0
Install the Eclipse development environment
Install the JBoss Tools plugins needed for developing applications

The products listed in this chapter are the latest versions at the time of writing and
we diligently updated it at every new release. Don't worry if a new stable release of
these products is released in the next months; all you have to do is adapt the chapter
instructions to the newest file names.

Installing the Java environment
JBoss is a pure Java application server, so as you might imagine it needs a virtual
machine for the Java Platform to run on.

At the time of writing, JBoss AS 5 is distributed in two flavors, one that is suited for
Java 1.5 and another version that has been specifically designed for Java 1.6.

•

•

•

•

Installing Core Components

[10]

The choice of Java Virtual Machine (JVM) is yours otherwise, but we do recommend
considering the Java 1.6, that has just undergone the 16th update at the time of
writing. Most benchmarks available on the Internet exhibit a roughly 40 percent
performance improvement by upgrading from Java 1.5 to Java 1.6. Additionally,
Java SE 5.0 reached its End of Service Life (EOSL) on November 3, 2009, which
is the date of the final publicly available update of version 5.0. So you are highly
encouraged to design your applications with Java 1.6.

Java 1.6 has enhanced performance in many areas of the platform.
Improvements include synchronization, performance optimizations,
compiler performance optimizations, the new Parallel Compaction
Collector, better ergonomics for the Concurrent Low Pause Collector,
and application startup performance.
(http://java.sun.com/performance/reference/
whitepapers/6_performance.html)

So let's move on to the Sun download page: http://java.sun.com/javase/
downloads/index.jsp.

Choose to download the latest JDK/JRE, which is for JDK 1.6 Update 16.

Is JRE enough ?
Yes! JBoss 5 ships with a set of libraries called Eclipse Java
development tools (JDT) that allow dynamic compilation of classes
at runtime. However, we still suggest you to download the full JDK
installation, in case you need to compile your classes with plain javac
anywhere else.

Once the download is complete, run the executable file to start the installation.

jdk-6-windows-i586.exe # Windows

sh jdk-6u12-linux-i586.bin # Linux

Chapter 1

[11]

If you are installing on a Linux/Unix box, you can safely accept all the defaults
given to you by the setup wizard. Windows users should stay away from the default
C:\Program Files that leads to some issues when you are referencing the core
libraries. An installation path such as C:\Software\Java or simply C:\Java is a
better alternative.

When the installation is complete, we need to update a couple of settings on the
computer so that it can interact with Java.

The most important setting is JAVA_HOME that is directly referenced by
JBoss startup script.

Windows XP/2000 users should right-click on My Computer and select Properties
from the context menu. On the Advanced tab, click the Environment Variables
button. Then, in the System variables box click New. Give the new variable a
name of JAVA_HOME, and a value of the path to your JDK installation, probably
something like C:\Java\jdk1.6.0_16.

Installing Core Components

[12]

For Windows Vista users
Because of increased security in Windows Vista, standard users must
have User Account Control (UAC) turned on to change environment
variables and the change must be completed through User Accounts. In
the User Accounts window, under Tasks, select Change my environment
variables. Use the New, Edit, or Delete buttons to add, change, or delete
environment variables.

Now it's the turn of the Path variable. Double-click on the Path system variable.
In the box that pops up, navigate to the end of the Variable value line, add a
semicolon to the end, then add the path to your JDK. This will be something
like %JAVA_HOME% \bin.

Unix/Linux users can add the following commands in the user's profile scripts:

export JAVA_HOME=/installDir/jdk1.6.0_16

export PATH=$JAVA_HOME/bin:$PATH

As a final note, you should consider setting the JBOSS_HOME environment variable,
which points to the root of the application server. (In our case, it would be
C:\jboss-5.0.0.GA for Windows users.)

If you don't set this variable, the startup script simply guesses the location of JBoss
AS by climbing one step up from the bin folder.

Installing JBoss AS 5
JBoss Application Server can be freely downloaded from the community site:
http://www.jboss.org/jbossas/downloads/.

Then, you'll soon be redirected to the SourceForge site where the project is hosted.

JBoss 5 is released in two different versions: jboss-5.0.0.GA.zip and jboss-5.0.0-jdk6.
zip. The former version is the appropriate distribution if you are using JDK 1.5; the
latter is the targeted release for JDK 1.6. Choose the appropriate distribution and
start downloading.

At the time of writing, the newer stable release 5.1.0 of JBoss AS is
available. The most important changes introduced by the new release
include a new web administration console and the reactivation of the
cluster farming option. For the purpose of running the examples of this
book, you can safely use both the releases 5.0.0 and 5.1.0.

Chapter 1

[13]

The installation of JBoss is simply a matter of extracting the compressed archive.
Windows users can simply use any uncompressed utility, such as WinZip or
WinRAR, taking care to choose a folder which doesn't contain empty spaces.
Unix/Linux should use the unzip shell command to explode the archive:

$ unzip jboss5.0.0.GA-jdk6.zip

Security warning:
Unix/Linux users should be aware that JBoss AS does not require root
privileges, as none of the default ports used by JBoss are below the 1024
privileged port range. To reduce the risk of users gaining root privileges
through the JBoss AS, install and run JBoss as a non-root user.

Starting up JBoss AS
After you have installed JBoss, it is wise to perform a simple startup test to validate
that there are no major problems with your Java VM/operating system combination.
To test your installation, move to the bin directory of your JBOSS_HOME directory.
Once there, issue the following command:

run.bat # Windows users

$ run.sh # Linux/Unix users

Here's a sample JBoss AS 5 startup console:

Installing Core Components

[14]

The previous command starts up JBoss AS and binds the application server to the
localhost network interface. This means JBoss cannot be accessed from another
machine in your network. The first thing you should learn is how to bind JBoss to
the IP address of your machine; this can be achieved with the -b option as follows:

run.bat -b 192.168.10.1 # Windows Users

run.sh -b 192.168.10.1 # Unix/linux Users

Here the server is bound to the IP address 192.168.10.1.

Using the IP address of the machine will also exclude the "localhost"
network interface, which will no longer be accessible. If you want to bind
your server to all available network interfaces, you can use –b 0.0.0.0.

You can verify that the server is reachable from the network by simply pointing the
browser to http://192.168.10.1:8080.

Chapter 1

[15]

Introducing the twiddle utility
One useful command-line utility that ships with JBoss is twiddle. This is
a needful shell command located inside the JBOSS_HOME/bin folder. It
can be used if you don't have a graphical terminal where you can manage
JBoss, or if you want to control JBoss with shell scripts.
The syntax of twiddle is basically built into 3 pieces:
twiddle [options] <command> [command_arguments]

Here's an example command line for checking JBoss status:
twiddle -s 192.168.0.1 get "jboss.system:type=Server"
Started

Stopping JBoss
Probably the easiest way to stop JBoss is sending an interrupt signal with
the Ctrl + C key combination.

However, if your JBoss process was launched in the background or is running on
another machine (see the next section), then you have to use the shutdown command
from the bin folder:

shutdown -S # Windows Users

./shutdown.sh -S # Unix/Linux Users

Stopping JBoss on a remote machine
The shutdown script can also be used to shut down a remote JBoss server, contacting
the JBoss naming provider on the remote host.

./shutdown.sh -s jnp://remoteHost:1099

Shutdown message has been posted to the server.

Server shutdown may take a while - check logfiles for completion

Unexpected shutdown?
Unix users sometimes reported unexpected shutdown of JBoss server.
For those who are not familiar with the Unix environment, when the
terminal hangs up (drops the connection) the operating system sends a
SIGHUP signal to all the programs that are launched from that terminal.
As Sun JVM monitors for SIGHUP signal, it can be interpreted as a signal
to shut down. The workaround is to add the -Xrs option when launching
JBoss. This is an option of the JVM, which reduces the use of operating
system signals by the Java Virtual Machine.

www.allitebooks.com

http://www.allitebooks.org

Installing Core Components

[16]

Installing Eclipse
Eclipse is the most popular environment for developing Java Enterprise applications.
You can explore the Eclipse universe at www.eclipse.org.

The download area is reachable at http://www.eclipse.org/downloads/.

As you can see, there are several distributions available—what we suggest for your
best programming experience is the Eclipse IDE for Java EE Developers. This will
cost your hard disk a bit more in terms of space, but your productivity will benefit
a lot from it.

Now choose the distribution that's appropriate for your OS. Once the download is
complete, Windows users can simply unzip the eclipse-jee-galileo-win32.zip,
while Linux users can use the tar command to uncompress the .tar.gz archive.

tar -zxvf eclipse-jee-galileo-linux-gtk.tar.gz

Unzipping the archive will create a root directory named eclipse. In that folder,
you will find the Eclipse application (a big blue dot). We recommend that you create
a shortcut on the desktop to simplify the launching of Eclipse.

Running Eclipse is simply a matter of executing the following command:

eclipse

This command is executed from the root directory of Eclipse.

When you launch Eclipse, you'll be prompted to enter your workspace location.
That's the repository where your projects are stored. If you check the option Use this
as the default and do not ask again, Eclipse will not bother asking you about your
workspace location every time you launch Eclipse. However, you can change it from
the menu at anytime, by going to File | Switch Workspace | Other.

Chapter 1

[17]

How much memory should I give to Eclipse?
By default, Eclipse will allocate up to 256 megabytes of Java heap
memory. This should be enough for most development tasks. However,
depending on the JRE that you are running, the number of additional
plugins you are using, and the number of files you will be working with,
you could conceivably have to customize Eclipse settings.
Open the eclipse.ini file located under the Eclipse home directory,
and add the following lines before starting Eclipse:
-vmargs -Xms512m -Xmx512m -XX:PermSize=128m -XX:
MaxPermSize=128m

The above configuration is suggested for a machine running 1024 MB
of memory. As performance boost, you should consider also turning off
some inessential options such as:

Uncheck the Enable Capture option in Window | Preferences |
Usage Data Collector.
Still under Eclipse Preferences, in the Validation menu, turn on
the Suspend all validators option.
Ignore the spell checking features by checking out the Enable spell
checking option in Window | Preferences | General | Editors |
Text Editors | Spelling.

•

•

•

Plugins: The heart of Eclipse
The most important architectural characteristics of Eclipse is the plugin architecture.
A plugin in Eclipse is a component that provides a certain type of service within
the context of the Eclipse workbench. The Eclipse IDE itself is built with a number
of plugins, which are dependent on each other, so that you can customize your
development environment exactly for your needs.

Installing JBoss Tools plugins
JBoss plugins for Eclipse are part of the JBoss suite. You can find them in the JBoss
Tools project, which is an umbrella project for all the JBoss developer plugins. JBoss
Tools plugins can be downloaded from:

http://www.jboss.org/tools

The installation of the JBoss tools can be performed in two ways—one is directly
from your Eclipse IDE, the other choice (covered in the next section) is the manual
installation of single plugin files.

Installing Core Components

[18]

So, once you have started Eclipse, move onto the last menu option Help, and
select Install New Software (former releases of Eclipse name this menu option
Software Updates). In the upper combo box, you need to select the repository
for your Eclipse plugins. JBoss Tools is not installed by default, so you need to
add a link to JBoss Tools trunk. The list of available update sites can be found at
http://www.jboss.org/tools/download.

Once there, select the release that matches with your Eclipse distribution. For
example, if you have downloaded the Eclipse 3.5 (Galileo) release, there's a
development update available at http://download.jboss.org/jbosstools/
updates/development/.

For learning, it is appropriate to use a development update. However,
consider sticking to a stable release of JBoss Tools for your cutting-edge
software projects.

Once added, expand the JBoss Tools update site and you'll see the list of available
plugins. For the purpose of this book, all you need is the JBoss AS plugin, the
Hibernate plugin, and JBoss Tools RichFaces plugin.

Chapter 1

[19]

Check them and click on the Next button, which will confirm your selections.
Finish and wait for the time necessary to download the tools. Once the download
is completed you will be prompted to restart Eclipse.

Installing JBoss Tools plugins manually
You can mimic the behavior of the Update Manager by installing the JBoss Tools
plugins manually into your Eclipse installation.

The list of JBoss Tools plugins is available at http://www.jboss.org/tools/
download.

Download the single JBoss AS plugin and Hibernate plugin zip files.

The structure of the single plugin's archive resembles the same structure of your
Eclipse installation:

eclipse/

 features/

 plugins/

Once the download completes, you simply need to extract the plugins into the
Eclipse installation directory.

For example, if you are using the command line and your Eclipse installation
directory is named eclipse, navigate to the directory above your Eclipse
installation and extract the archive using the unzip command.

 unzip JBossTools-2.1.2.GA-ALL-linux-gtk.zip

Automatic versus manual installation
Automatic installation is the easiest solution because the wizard takes
care to place all the necessary files in the right place, so we recommend it
for developers who are approaching Eclipse with JBoss. However, manual
setup is the preferred choice if you have to perform lots of installations for
your developers because you can easily create a script that simply extracts
the required files on multiple partitions. Manual installation is also the
preferred choice when you need to change the plugin versions because
switching from one release to another merely requires a file substitution.
If you are not too confident with shell commands, you might consider a
third alternative of downloading the .zip files containing the plugins,
and pointing to the archive from the Software Updates menu as New
Local Site.

Installing Core Components

[20]

Connecting Eclipse with JBoss
We're almost done with the configuration. The last piece of the puzzle is connecting
Eclipse with our installation of JBoss. Eclipse enterprise provides some out of the box
facets to manage most application servers. However, we'll use the features of JBoss
Perspective, which offers a richer set of options.

What is an Eclipse perspective?
A perspective is a visual container for a set of views and editors. These
components are specific to that perspective and are not shared with other
perspectives. You can think about it like a page within a photo book.

Therefore, the JBoss Perspective is a special view designed specifically for JBoss AS.

You can reach it from the menu. Select Window, then Open Perspective and Other.
Select JBoss AS from the next menu.

Now a tiny little panel will appear in left-corner section of the screen. This panel
holds the JBoss Server View. Right-click on it and select New | Server.

Chapter 1

[21]

You'll be guided by an intuitive wizard that will at first ask you to select the Server's
host name, the JBoss Community AS release, and the Runtime Environment.

Deploy-only servers
Notice that among the available servers there's a Deploy-Only option
that will simply point to the deploy directory. You can use this
option if you don't need to start/stop/debug your AS, but simply
deploy applications.

In the next window, you will have to complete your server configuration by adding
a JBoss Runtime.

What is a Runtime Environment ? Put it simply, it is a pointer to the JBoss server
installation. It provides to Eclipse all classpath information that is required for each
kind of project. It also communicates to the server’s components, all the necessary
information to start and stop the server.

Installing Core Components

[22]

Basically, we need to choose a Name for our environment, point to the Home
Directory where JBoss AS has been unpacked, and finally select the location
where JDK/JRE has been installed.

More is better
It is a good idea to create several runtime environments if you are going
to test your project across different configurations. Remember to give a
meaningful description to your runtime environment. For example, it's
better to have a "JBoss Development" and "JBoss Production" rather than
"JBoss Runtime 1" and "JBoss Runtime 2"

Once you have completed the selections, click Finish and your new runtime will be
added to the list and can now be targeted by a JBoss server. Right-click on your new
server icon and verify that the application server starts correctly.

Summary
In this chapter, we've completed all the required steps to set up our environment.
Most of the installation process was completed using intuitive wizards and so
should be accessible to inexperienced users.

Your initial configuration will be suited for an initial tour of JBoss. However, in
real-world projects you may benefit from proper customization of the application
server. In the next chapter, we will dissect JBoss Application Server structure.

What's New in JBoss AS 5?
Smooth seas do not make skillful sailors—an African saying

Java Enterprise middleware has matured a lot in the last few years. The current
release (1.5) of the Enterprise Specification signifies the end of Java's era of Enterprise
arrogance—"We are complex because we are powerful"—and the beginning of a new
era based on simplicity. This has created new opportunities for some open source
products that provide state-of-the-art technology but at a lower cost.

JBoss AS is the leader of the open source application servers and, according to a
recent survey, the most used application server by the community of developers.
What is the reason for this success? First of all, JBoss AS makes it easy for developers
to leverage Enterprise features without undue complexity by focusing on
"transparent middleware". This means providing services such as JBoss Clustering,
which requires no changes or design-time modifications to the code in order to
benefit from.

The second important reason is that JBoss AS is widely recognized for supporting
the latest standards. Actually, it is the first open source application server to achieve
J2EE 1.4 certification with JBoss AS version 4.0. This demonstrates the strength and
speed of its Professional Open Source development model.

Increasingly, JBoss is not only setting the pace in implementing standards, but is also
becoming a leader in setting industry standards. JBoss was recently elected to the
executive committee of the Java Community Process (JCP). In the latest years, JBoss
has been driving the development of Java Enterprise including voting on all Java
Specification Requests (JSRs). Indeed, JBoss sits on the expert group for Enterprise
Java Beans (EJB) version 3.0 and was one of the first application servers to release
a compliant EJB 3.0 release.

What’s New in JBoss AS 5?

[24]

The current stable release of JBoss is 5.1.0 (at the time of writing), but we will refer to
5.0.0, which was released on December 5, 2008, after a three year long marathon. The
new application server was long awaited by the community of developers and, as
with all major refactorings, its release took a bit longer than expected. However, the
effort needed to release the new version was justified by the number of innovations.
Changing the internal architecture and replacing the guts of the application server,
while maintaining backward compatibility with the majority of the existing services,
was a cumbersome task.

The application server kernel has been rewritten completely based on the JBoss
Microcontainer project. JBoss Microcontainer is a refactoring of the earlier JBoss Java
Management Extension (JMX) kernel and delivers something that the competitors
tried to produce for a long time—a completely modular and scalable POJO-based
foundation. Support for JMX in JBoss AS 5 remains strong, and MBean services
written against the old Microkernel are expected to work.

The Microcontainer integrates with JBoss AOP—a programming paradigm that
increases modularity by allowing the separation of concerns. In fact, JBoss AS 5 is
one of the first application servers that intensively uses AOP. The new deployment
layer of the application server is heavily influenced by AOP too.

As a matter of fact, JBoss AS 5 is designed around the advanced concept of a
Virtual Deployment Framework (VDF), which applies aspect-oriented design
to the deployment layer.

Aspect-oriented deployers operate in a chain over a virtual file system (VFS),
analyze deployments, and produce metadata to be used by the JBoss Microcontainer,
which in turn instantiates and wires together the various pieces of a deployment,
controlling their life cycle and dependencies. This helps you to have have full control
over the deployment cycle of your application. For example, you can customize
the structure of your application so that a non-standard Java EE application can
be deployed on JBoss. We'll see this later.

Application server features
We'll divide our journey into the new features of JBoss in a few steps. First, we'll
inspect the core modules, which are the foundation of the application server. Then
we shall analyze the directory structure of the application server. At this point we
will have enough elements to draw some conclusions.

Chapter 2

[25]

The core modules of JBoss AS 5
JBoss AS 5 is a combination of stable technologies. Some of these have been adopted
by earlier 4.x releases such as the EJB 3.0 technology, others are a substitute like the
new messaging system that replaces the older JBoss MQ.

JBoss AS 5 puts in your hands the lastest generation of Java Enterprise frameworks
without the need to install additional libraries. In the next chapters, you'll learn
how this can greatly improve things from a productivity standpoint—developing
Java Enterprise applications has never been easier!

Cutting edge EJB container
JBoss AS was one of the first application servers to adopt EJB 3.0 specifications.
The EJB 3.0 model simplifies development by removing the requirements for home
interfaces, deployment descriptors, and callback methods, and by adopting regular
Java classes and business interfaces as EJBs.

JBoss EJB 3.0 framework uses, behind the scenes, Hibernate 3.x. as persistence
engine. Hibernate's Entity Manager implements the programming interfaces and
life cycle rules as defined by the EJB 3.0 persistence specification. You may use a
combination of EJB 3 interfaces or even pure native Hibernate, depending on the
business and technical needs of your project. You can, at all times, fall back even
to native JDBC while adopting the EJB 3 paradigm.

In the third quarter of 2009, an EJB 3.1-compliant release of the JBoss
EJB stack is planned, which will add many new features such as
asynchronous session beans, optional session bean interfaces, singleton
EJBs, and much more. For more details, check out the EJB 3 project
home page at: http://www.jboss.org/ejb3.

The new messaging provider
JBoss Messaging is the new high-performance JMS provider included with JBoss
AS 5 as the default messaging provider. It replaces the old JBossMQ, which was
shipped with JBoss AS 4.x series. JBM supports clustered queues and topics out of
the box, along with transparent fail-over and intelligent message redistribution.
Messages can be replicated in memory across nodes avoiding disk I/O, or be
persisted to any popular relational database using paging techniques with support
for very large messages. You will hardly find any other Java open source messaging
implementation that can beat that level of functionality and performance.

What’s New in JBoss AS 5?

[26]

Rock solid transaction manager
JBoss AS 5 ships with JBossTS (the transaction manager purchased from Arjuna).
This transaction engine is rock solid with more than 20 years of expertise in
transaction management. It was the first JTA (Java Transaction API) and the first
JTS (Java Transaction Service) transaction management implementation on the
market, and its implementation fully supports recovery and logging. So, it's an
amazing expertise there.

Enhanced web container
JBoss Web is the web container in JBoss AS 5, which is based on the Apache Tomcat
6.0 project and includes the Apache Portable Runtime (APR) and Tomcat native
technologies to achieve scalability and performance characteristics that match and
exceed the Apache HTTP server. The "web" configuration is now also one out of the
box server configurations that ships with the application server. It aims at providing
a lightweight JBoss HTTP Container, along with additional features such as Java
Persistence API (JPA), and JTA or J2EE Connector Architecture (JCA).

JBoss Web Services 3.0
JBoss AS comes with JBossWS 3.0, which fully supports JAX-WS/JAX-RPC
standards, attachments with XOP and SwA. JBossWS has been designed as a
pluggable architecture, which allows the replacement of the underlying Web
Services stack that had several compatibility issues, so you can swap JBossWS Native
with Sun Metro or Apache CXF. Thus, you should be able to use the web services
stack best suited to the problem at hand.

Improved clustering support
One big improvement in the clustering area is the use of the new Hibernate/JBoss
Cache integration for second-level caching that was introduced in Hibernate 3.3.
Used along with JBoss AS 5's new CacheManager service, this combination provides
a flexible framework that allows use of separate caches for entities (invalidation
cache) and queries (replication cache).

The application server structure
The structure of the application server has changed quite a lot from the 4.x release.
Let's first have a look at the new server directory tree and the corresponding JBoss
system properties:

Chapter 2

[27]

Impressed by all stuff we've got here? If you are not familiar with the JBoss
Application Server, you might feel a bit disoriented. However, the following tables
will be your initial reference to the application server. The first table scratches the
surface of the root directory structure, giving a short description of the content of
the individual folders:

Directory Description
bin This directory contains the scripts necessary to manage the startup and

shutdown of the server. Along with these scripts, there are a few utilities
for Web Services and server management.

client This directory contains the client libraries needed to run client
applications (such as EJB clients and Web Service clients).

common This directory hosts the lib folder, which is the new repository for the
common libraries used by all application server configurations.

docs In spite of its name, this folder doesn't contain JBoss documentation. It
hosts the XML schemas used by the various XML configuration files and
useful JMS, JTA, and DataSource configuration examples that can be used
as templates.

lib This is the repository for all JBoss bootstrap libraries. Here is the new
Microcontainer along with the earlier JMX kernel.

server This directory is the home of all server configurations. Here you can
find the built-in server configurations (minimal, default, standard, web,
and all). Each server configuration contains the set of directories that are
mentioned in the next table.

What’s New in JBoss AS 5?

[28]

Drilling down further into each server configuration, we see yet another common
hierarchy below. The directory server contains all the code and configuration
information regarding the services provided by the particular configuration.
The following table resumes the content and description of the directory:

Directory Description
conf This is the configuration directory of the single server configurations.

Configuration files will be discussed in detail in the chapter Customizing
JBoss AS Services.

data The data directory is a location available for use by services that want to
store content in the filesystem.

deploy The deploy directory is the default location for deployment of
JBoss services.

deployers The deployers directory contains all of the JBoss AS services that are
used to recognize and deploy different application and archive types.

lib This folder contains the common libraries of all applications. You can still
use this directory for storing configuration-specific libraries. For example,
in the "all" configuration this folder contains some clustering-specific
libraries such as JGroups and JBoss Cache.

log The log directory is the default directory into which the bootstrap logging
service places its logs.

tmp The tmp directory is the location to which deployments are copied for
local use.

work Used by JBoss Web Server (the web container that comes prepackaged with
JBoss AS) to store compiled JSP files and other temporary data.

The next generation application server
The major innovations in the AS 5.0 converge into the following four areas:

The introduction of the new Microcontainer kernel
The new library configuration
The addition of new server configurations
The introduction of the virtual file system and the deployers folder

Let's see them all in detail.

•
•
•
•

Chapter 2

[29]

From JMX to the Microcontainer
Change is the law of life. And those who look only to the past or present are certain
to miss the future.—J.F.Kennedy.

Before the 5.0 release, the backbone of the JBoss AS was the JMX API, which
provided a modular way to integrate components, containers, and plugins. In
order to provide a new service, you had to declare the service as an MBean service,
provide some configuration, and then load it into JBoss. The JMX components might
subsequently be administered using the JMX API or some utilities such as twiddle or
a web application named jmx-console.

This approach was an important milestone in the JBoss project; however, it suffers
from a major drawback: actually services deployed to the JMX kernel are tightly
coupled with the application server and can hardly be tested outside of the container.

The answer to this issue is in the JBoss Microcontainer kernel that allows the services
to be created using Plain Old Java Objects (POJOs), which can be deployed into
a Java Platform, Standard Edition (Java SE) runtime environment in a controlled
manner to create a customized environment for your applications. These services,
as well as MBean services, are fully managed to ensure that new services cannot
be deployed until the services they depend on have first been deployed. Also,
undeploying a service causes all dependent services to be undeployed first in
order to maintain the integrity of the system.

One great advantage of the Microcontainer approach is that you can build every Java
service on top of it (and of course remove the unwanted services). These services,
being POJO, can be moved onto any other environment such as Tomcat or Glassfish
without hassle.

In common with other lightweight containers, JBoss Microcontainer uses
dependency injection to wire individual POJOs together to create services.
Configuration is performed using either annotations or XML, depending on where
the information is best located. Finally, unit testing is made extremely simple, thanks
to a helper class that extends JUnit to set up the test environment, allowing you to
access POJOs and services from your test methods using just a few lines of code.

The new library configuration
The release 5.0 of the application server introduces some important changes in
the location of the client and server libraries. Starting from the client libraries, the
jbossall-client.jar library that used to bundle the core JBoss client libraries is
now an empty archive that references the client libraries through the Class-Path
entry in the manifest file. This allows swapping included libraries (for example,
jboss-javaee.jar) without having to repackage jbossall-client.jar.

What’s New in JBoss AS 5?

[30]

The downside of this new configuration is that most IDEs don't scan the libraries
indicated in the manifest entry, so you have to manually insert all the JARs needed.

Which are the libraries used by my project?
This issue has been a headache for most developers, and it is
generally solved empirically by adding the required libraries to
your project at every ClassNotFoundException. If you want
to save time and health, then consider downloading the JBoss
Tattletale tool (http://www.jboss.org/tattletale), which
is a simple web application that identifies dependencies of any
application along with many other features.

However, the most important change to the application server structure is the
introduction of a common repository for the server configuration. This repository
is located in the common/lib folder of your JBOSS_HOME directory.

Copying a library into the common/lib folder will make it available to all server
configurations (except for the "minimal" configuration). This prevents your JBoss
AS installation from inflating your hard disk with duplicate libraries for each
server configuration.

The earlier location of libraries, server/xxx/lib, can still be used, but it is advised
to use it only for libraries that are specific for a server configuration.

Moving to the JBOSS_HOME/lib folder, which hosts the bootstrap classes, we notice
some changes here. This directory contains the classes needed to start the new
kernel of JBoss with the introduction of the Microcontainer. As you can see from
the libraries in this folder, JBoss AS 5 relies heavily on the AOP model. Along with
the new kernel, the common libraries used by the kernel have also swapped from
jboss-common.jar to jboss-common-core.jar.

The following screenshot summarizes the new library configuration:

Chapter 2

[31]

JBoss AS 5 server configurations
JBoss AS 5 contains five different out of the box server configurations: minimal,
default, all, standard, and web. Out of these, the standard and web configurations
have been introduced with the new release of the application server, so we
will first have a look at them and then we will briefly recap the preexisting
server configurations.

The "standard" configuration
The standard folder hosts the configuration that has been tested for Java EE 5.0
compliance. The major differences with the other server configurations is that call
by value and deployment isolation are enabled by default, along with support for
RMI-IIOP and jUDDI.

What’s New in JBoss AS 5?

[32]

If you feel confused by all these weird words, here's a quick drill:
Call by value: It is a requirement of the EJB specification that parameters
passed during the method call be passed by value, so that the EJB
receives a copy of any object parameters (and the caller receives a copy of
the return object, if applicable).
The use of call by value, however, is very inefficient. With call by value,
each method invocation is marshalled—the parameters are turned into
ObjectStream. Once the invocation reaches the EJB container, the result is
unmarshalled and the return value is turned back into ObjectStream.
In terms of percentage, it typically means that method invocations take 10
times more cpu than call by reference.
RMI-IIOP: This is a protocol developed by Sun and IBM to deliver
CORBA distributed computing to the Java platform. The middleware
that promotes communication between systems by transforming data
structures from and to byte sequences is called an object request broker
(ORB). JBoss AS ships with a free implementation of CORBA standard
named JacORB.
jUDDI: This is an XML-based registry for publishing and discovering
services or software applications over the Internet. A web application
is built-in with the standard configuration for testing, publishing, and
inquiring of Web Services. You can have a look at it by pointing your
browser to: http://localhost:8080/juddi.

The changes related to RMI-IIOP and jUDDI support are reflected in the
following files:

conf/jndi.properties

In the default server configuration this file references the NamingContext-
Factory, which is a factory implementation for connecting to the JNDI
service. When using Sun's CORBA services it is necessary to set the global
context factory to org.jboss.iiop.naming.ORBInitialContextFactory,
which sets the ORB to JBoss's ORB.
conf/jacorb.properties

This file contains the JacORB configuration file.
lib/jacorb.jar

These are the libraries needed for JacORB applications.
deploy/iiop-service.xml

This service provides IIOP invocation support.
lib/avalon-framework.jar

These Avalon libraries are a required dependency, so they are added in the
lib folder.

•

•

•

•

•

Chapter 2

[33]

The "web" configuration
The web configuration is a new experimental lightweight configuration created
around JBoss Web that will follow the developments of the Java EE 6 web profile.
Besides being a servlet/JSP container (and this is the most relevant difference with
a pure Tomcat Web Server), it provides support for JPA and JTA/JCA.

Therefore, with this configuration you are now able to deploy your persistence layer
and access it from the web container.

The major limitation of this configuration is that its applications can be accessed
only through the HTTP channel. Bear in mind that this configuration is not Java EE
certified and will most likely change in the following releases.

The former server configurations
The other configurations were introduced in the early releases of JBoss, so they
should be known to majority of developers. Let's again take a glimpse at the
server directory:

As shown in the screenshot, the pre-existing server configurations are as follows:

minimal: This is the minimal configuration—the bare minimum services
required to start JBoss. It starts the logging service, a JNDI server, and a URL
deployment scanner to find new deployments. This is what you would use if
you want to use JBoss to start your own services without any other Java EE
technologies. This is just the bare server. There is no web container, no EJB
or JMS support. This is not a Java EE-compatible configuration.

•

What’s New in JBoss AS 5?

[34]

default: This is the basic JBoss configuration containing a default set of
services. It has the most frequently used services required to deploy a Java
EE application. It does not include the Java API for XML Registries (JAXR)
service, the Internet Inter-ORB Protocol (IIOP) service, or any of the
clustering services.
all: This configuration is a full Java EE server profile with Enterprise
extensions, such as clustering and RMI-IIOP.

Creating a custom server configuration
JBoss AS 5.0 offers a wide choice of server configurations. However, you are not
limited to the existing built-in configurations. You can create your own custom
configuration that suits your needs best.

You have two choices. You can either add an empty directory under
JBOSS_HOME\server and create all the infrastructure beneath, or preferably
(as we suggest) start from the existing configuration that is closest to your
needs and then add/remove the services.

The following table summarizes the modules installed in the single server
configurations, so you can decide which configuration is closest to the one
you have in mind:

Module minimal web default standard all
Microcontainer X X X X X
Naming service X X X X X
Log4j X X X X X
Deployment scanner X X X X X
JPA X X X X
EJB container X X X
JCA support X X X X
JMS X X X
Mail service X X X
HSQL DB X X X X
JBoss WS X X X
XA transactions X X X X
Monitoring services X X X
Quartz service X X X
Clustering support X
RMI-IIOP and jUDDI X X

•

•

Chapter 2

[35]

The name of the new directory you created matches the name of the server
configuration. You will need to pass the server configuration name to instruct JBoss
to use the new configuration. For example, if your new configuration directory is
named performance then you would need to start JBoss using:

run -c performance # Windows users

$./run.sh -c performance # Unix users

The starting point: JBoss AS service map
If you need to customize your server configuration, the first step is identifying
which are the libraries and configuration needed to start a specific service. This
serves different purposes, such as adding new services to your JBoss AS or simply
skimming your configuration by reducing unwanted services.

Here you have a comprehensive list of core JBoss AS services and the
corresponding libraries:

Service server/<node>/deploy server/<node>/deployers/
EJB 3 ejb3-connectors-jboss-beans.

xmlejb3-container-jboss-beans.
xml ejb3-interceptors-aop.xml
ejb3-timerservice-jboss-beans.
xmlprofile-service-secured.jar
(JBoss 5.1.0)

jboss-ejb3-
endpoint-deployer.
jar

EJB 2 ejb2-container-jboss-beans.xml

ejb2-timerservice.xml

JBoss WS jbossws.sar [D] jbossws.deployer [D]
Messaging messaging [D]

jms-ra.rar

messaging-
definitions-jboss-
beans.xml (JBoss 5.1.0)

jUDDI juddi-service.sar

Key Generator uuid-key-generator.sar

JBoss Mail mail-service.xml

mail-ra.rar

Scheduling scheduler-manager-service.xml

scheduler-service.xml quartz-
ra.rar

Hypersonic DB hsqldb-ds.xml

Bsh deployer bsh.deployer

Hot
deployment

hdscanner-jboss-beans.xml

www.allitebooks.com

http://www.allitebooks.org

What’s New in JBoss AS 5?

[36]

How do you read this table? In the first column (Service) you can find the list of JBoss
AS core services. The next two columns describe the files and folders (marked with
"D") that need to be added or removed in order to activate or deactivate the service.
We have split the file list into two columns, so that the reader can immediately find
the right folder location.

Custom configuration sample: Adding JMS to
the web configuration
The web configuration is an interesting configuration option. It enables you to run
web applications that use the Java Persistence API and Java Transaction API. Let's
say it's like a Tomcat + JPA configuration. One thing that could be added with little
effort is the JMS server.

Adding the JMS server is not a complicated matter. Let's start from a web
configuration: we'll duplicate the web directory structure as follows:

$ cd $JBOSS_HOME/server

$ cp –R web webAndJMS

Windows users simply need to cut and paste the folder web and rename it
to webAndJMS

Chapter 2

[37]

Looking back at our service map, we discover that we need to add the following files
to the deploy folder:

messaging (folder)
jms-ra.rar

We add the files as follows:

$ cp –r $JBOSS_HOME/server/default/deploy/messaging $JBOSS_HOME/server/
webAndJMS/deploy

$ cp $JBOSS_HOME/server/default/deploy/jms-ra.rar $JBOSS_HOME/server/
webAndJMS/deploy

If you were to use JBoss AS 5.1.0, it would also be required to copy
messaging-definitions-jboss-beans.xml, which contains the
messaging profile definitions, into the server/xxx/deployers folder.

So now your deploy folder should look like this:

That's all. You now are able to add JMS capabilities to your web applications.

Start the server with the –c option:

$ cd $JBOSS_HOME/bin

$ run.sh –c webAndJMS

•

•

What’s New in JBoss AS 5?

[38]

This configuration enables your web application to send/receive JMS
messages configured on the application server. However, you cannot
deploy MDB components as you don't have the EJB container. If you need
to further expand this server configuration adding EJB support, then it's
likely easier to start from the "default" configuration and maybe remove
the services you don't require.

JBoss virtual file system
Deploying an application can be imagined as being similar to when you drop a coin
in your office coffee machine—lots of sounds clatter in the room but what you see is
only the cup of coffee coming out.

What happens when you deploy an application to JBoss ? Well, a few checks need
to be done, a first check being on the structure of the deployment. This means finding
out if it contains any deployment descriptors and/or classes, and if so where they
are located.

Once the structure of a deployment has been determined, then a DeploymentContext
is built for handling information such as the location of the classes, references to other
components, and the location of deployment descriptors.

At this point the actual process of deployment starts. This activity goes through
several steps:

PARSE: Deployment descriptors are parsed into deployment metadata
DESCRIBE: Dependencies on other deployments or runtime components
are determined
CLASSLOADER: A classloader for the deployment is created
POST_CLASSLOADER: Any action to be performed after
classloader creation
REAL: Components are deployed into runtime

Once the REAL phase is completed successfully, the application is fully deployed to
JBoss. Knowing a bit of theory will help you to understand how the deployment can
be tuned to your needs. The actual deployment configuration is located in the new
server/xxx/deployers folder.

•
•

•
•

•

Chapter 2

[39]

You'll notice this folder is populated with many *-deployer-beans.xml files. These
files make up the application deployers, which are used to deploy a specific type of
application. For example, the ear-deployer-jboss-beans.xml file contains all the
deployment logic for EAR applications.

On the other hand, the .deployer folders contain the actual POJO, which are in
charge of managing the deployment process for the specific needs of your server.

Besides this, the .deployer folders can hold some special metadata files in the
META-INF folder. What are these metadata files? They are some configuration files
that can help customize your server configuration. For example, the jboss-scanning.
xml file can be used to customize the scanning path of the application server, and
the jboss-structure.xml file allows you to deploy applications with a different
filesystem structure. For example, it can be used to deploy on JBoss applications that
don't have a standard Java EE structure. If you are interested in some inner details
about the new deployer metadata files, you can have a look at http://www.jboss.
org/community/wiki/JBoss5custommetadatafiles.

What’s New in JBoss AS 5?

[40]

Summary
This chapter was an introduction to new JBoss AS 5 functionalities. JBoss AS 5.0 has
a completely new architecture based on the Microcontainer with POJOs and AOP,
which support dynamic loading and unloading of services on the top of it.

The structure of the application server also had some significant changes with the
introduction of the new common/lib repository for the application classes and the
add on of the deployers directory, which is the foundation for the new deployment
framework, designed around the concept of a virtual file system.

JBoss AS 5.0.0.GA introduces two new configurations—the standard and the web
configuration. The standard configuration is the configuration that has been tested
for Java EE compliance. The web configuration is a new experimental lightweight
configuration created around JBoss Web that provides support for servlet/JSP
container, as well as JTA/JCA and JPA.

In the next chapter, we're going to install the components needed to develop an
application with JBoss AS 5. Setting up your environment doesn't require particular
sysadmin skills; however, it will require about half an hour (depending on how
fast your network is) to complete all the necessary steps.

Customizing JBoss
AS Services

Try not to become a man of success, but rather try to become a man of value – A. Einstein

What do you want to write on your next resume? JBoss developer? Dare to write
JBoss specialist! In today's highly competitive workplace, you need outstanding
skills. Being a developer is only part of your duty. What makes you different from
the queue of competitors is the ability to solve critical situations. Mastering JBoss
services requires time and devotion. You don't have the coolest widgets in the
market; most of the time you have to edit the configuration files, either manually
or by using a raw web interface. However, in this chapter we'll try to make your
journey through JBoss services as pleasant as can be. This chapter discusses the
following topics:

An introduction to JBoss AS monitoring services
All about JBoss thread pool
How to configure logging services
Configuring connections to the database
Configuring the transaction service

How to monitor JBoss AS services
JBoss has several options for monitoring your services, spanning from web interfaces
to command-line tools. Most developers are familiar with the JMX console web
application. It provides a raw view of the microkernel of the JBoss Application
Server by listing all active registered services (MBeans).

Another available option is the Web console. This is quite similar to the JMX
console, except that it contains an interactive applet that can be used to capture
system metrics.

•
•
•
•
•

Customizing JBoss AS Services

[42]

The Web console is not covered in this book as it has not been upgraded since a long
time and so de facto is going to be deprecated. Rather, we would like to encourage
the reader to learn about the newer web-based admin console that is an offshoot of
the Jopr project. This project aims at producing administrative, monitoring, alerting,
and operational control on JBoss AS and related projects. Since release 5.1.0 of the
application server, the admin console is bundled as a web application in the deploy
folder of JBoss AS.

The last monitoring option that we will discuss is the twiddle command execution
tool that provides access to registered services using a command line.

The JMX console
The JMX console is the most widely used tool for inspecting JBoss MBeans
components. It requires nothing but a standard web browser. The default URL
for the console is http://localhost:8080/jmx-console/.

What are MBeans?
MBeans are single, manageable components that are plugged into
JBoss by registering on a central server (MBean server). MBeans
were the foundation of JBoss Kernel in pre 5.0 releases.

The console is divided into two frames—the left frame contains the list of domains of
the JBoss Server, while the right frame is called the agent view and exhibits the list of
all MBeans that are registered for the selected domain (at start up it just contains all
MBeans registered grouped for every domain). In the top-right corner, you can filter
on domains and agents.

Chapter 3

[43]

By domain, we just mean a logical group of components (MBeans) that
are related to a certain service. So, we have a domain jboss.system that
handles the system parameters such as jboss.jdbc, which is about
datasource configuration, and so on.

When you select one of the MBeans, you will be taken to the JMX MBean View.
In this panel, you can view and edit the MBean's attributes, as well as invoke
operations on it.

Security warning
The JMX console doesn't require any authentication to log on. This might
expose your system to severe vulnerability. Check out how to secure the
JMX console in Chapter 13, JBoss AS Security Architecture.

Customizing JBoss AS Services

[44]

An example: Using the JMX console to display the
JNDI tree
Here is a typical scenario where the JMX console is really required. Somehow it
happened that you failed to retrieve one object from the JNDI tree. Chances are that
the object was registered in the wrong namespace; however, don't panic, the first aid
is a JNDI tree dump.

Navigate to the jboss domain and in the next view select service=JNDIView
MBean. Follow the link and you'll be taken to the MBean view. Once there, scroll
down to the list operation.

By clicking Invoke, you should be able to see a page dump of your JNDI tree:

java: Namespace
+- securityManagement (class:
 org.jboss.security.integration.JNDIBasedSecurityManagement)
+- comp (class: javax.namingMain.Context)
+- XAConnectionFactory (class:
 org.jboss.jms.client.JBossConnectionFactory)
+- TaskListEar (class: org.jnp.interfaces.NamingContext)
| +- TaskListSessionBean (class: org.jnp.interfaces.NamingContext)
| | +- remote (class: Proxy for:
 sample.ejb.manager.TaskListSession)
| | +- remote-sample.ejb.manager.TaskListSession (class: Proxy
 for: sample.ejb.manager.TaskListSession)
Global JNDI Namespace
+- UserTransactionSessionFactory (proxy: $Proxy150 implements
 interface org.jboss.tm.usertx.interfaces.
 UserTransactionSessionFactory)
+- UUIDKeyGeneratorFactory (class:
 org.jboss.ejb.plugins.keygenerator.uuid.UUIDKeyGeneratorFactory)
+- HiLoKeyGeneratorFactory (class:
 org.jboss.ejb.plugins.keygenerator.hilo.HiLoKeyGeneratorFactory)
+- XAConnectionFactory (class:
 org.jboss.jms.client.JBossConnectionFactory)
+- topic (class: org.jnp.interfaces.NamingContext)
+- ClusteredConnectionFactory (class:
 org.jboss.jms.client.JBossConnectionFactory)
+- ProfileService (class: AOPProxy$0)

Chapter 3

[45]

The JNDI tree is divided into several sections, each one gathering information for a
specific namespace. If you cannot look up an object from the JNDI tree, it is likely
that it is an issue with namespaces. For example, if you look at the JNDI tree, you can
see a component TaskListSessionBean registered in the java: JNDI namespace.
Registering a component in the java: namespace is perfectly valid; however, bear in
mind that the component will not be accessible outside the JBoss server JVM. If your
objects need to be looked up from remote clients too, then you should rather register
them in the global namespace.

The admin console
The newer admin console ships with JBoss AS, since the release of 5.1.0. If you
are running an earlier version of JBoss AS, then you should check and install a
compatible release of the the Embedded Jopr project. The downloads available are
listed at http://www.jboss.org/community/wiki/EmbeddedJoprDownloads.

If your JBoss AS is bound at localhost, then you can access the admin console at the
following URL: http://localhost:8080/admin-console. You can log in with the
default administrator credentials: admin/admin.

These credentials come from the jmx-console security domain, which
by default is configured through JBOSS_HOME/server/xxx/conf/
props/jmx-console-users.properties. Security domains are
discussed in detail later in Chapter 13, JBoss AS Security Architecture.

The web application is basically divided into two frames—the left frame provides
the navigation between the resources available on the application server, while the
central frame is your Control Panel where you can manage the single resource.

Customizing JBoss AS Services

[46]

The Control Panel is composed of the following options:

Summary: This option summarizes the general properties of the resource
(for example, JNDI name) along with the most relevant metrics.
Configuration: This option allows editing or creation of new resources. For
example, it can be used to add a new service without the need to edit the
configuration file.
Metrics: As the name implies, this option displays the available metrics
collected for the resource.
Control: If this option is enabled, you can use some special actions that are
related to the resource. For example, in a connection pool, you might want
to flush the connections from the pool.

We will see some of these options in more detail as we approach the configuration of
AS resources.

The twiddle utility
JBoss provides a simple command-line tool called twiddle (for twiddling bits using
JMX) that allows interaction with a local or remote JMX server instance. This tool
is located in the bin directory of the distribution. It can be executed using either
twiddle.sh (Unix/Linux) or twiddle (Windows). Passing a -h (--help) argument
provides the basic syntax, and the --help command shows what you can do with
the tool.

This is the basic syntax of twiddle:

$./twiddle.sh -h

A JMX client to 'twiddle' with a remote JBoss server.

usage: twiddle.sh [options] <command> [command_arguments]

The list of available commands that can be passed to twiddle is presented in the
following table:

Command Description
jsr77 Print out JSR77 related information
xmbean Print out MBean metadata as an XMBean descriptor
info Get the metadata for an MBean
get Get the values of one or more MBean attributes
invoke Invoke an operation on an MBean

•

•

•

•

Chapter 3

[47]

Command Description
create Create an MBean
setattrs Set the values of one or more MBean attributes
unregister Unregister one or more MBeans
query Query the server for a list of matching MBeans
set Set the value of one MBean attribute
serverinfo Get information about the MBean server

So, for example, the equivalent twiddle command to dump the JNDI tree can be
written as follows:

./twiddle.sh invoke jboss:service=JNDIView list true

If you want to contact a remote JBoss server, you have to use the –s option
as follows:

./twiddle.sh –s 192.168.0.1 invoke jboss:service=JNDIView list true

JBoss AS thread pool
The Java platform is designed from the ground to support concurrent programming,
with basic concurrency support in the Java programming language and the Java class
libraries. Application servers, however, maintain a pool of worker threads available,
rather than creating a thread for every request. This improves performance because
thread creation (as well as destruction) does have a significant overhead that is better
avoided, especially if your application creates many short-lived threads.

A second advantage of maintaining threads in a pool is that you can control (and
possibly limit) the number of threads in your application. Without a centralized pool
manager, your system will be heavily dependent on the client requests. Suppose you
are running a heavy-duty EJB application that manages about 5,000 requests at the
same time. If the number of requests goes up to 10,000, then your system will not be
prepared to handle so much load and therefore is likely to crash.

Using a centralized pool manager in this scenario causes the server response to
degrade (for example, by queuing requests) and maintains the maximum number
of threads optimal for the server system.

Customizing JBoss AS Services

[48]

Application server thread pool anatomy
The JBoss thread pool is defined in JBOSS_HOME/server/xxx/conf/jboss-
service.xml (you need to replace xxx with your server configuration). This is the
core section of it:

 <mbean code="org.jboss.util.threadpool.BasicThreadPool"
 name="jboss.system:service=ThreadPool">
 <attribute name="Name">JBoss System Threads</attribute>
 <attribute name="ThreadGroupName">System Threads</attribute>
 <attribute name="KeepAliveTime">60000</attribute>
 <attribute name="MaximumPoolSize">10</attribute>
 <attribute name="MaximumQueueSize">1000</attribute>
 <attribute name="BlockingMode">run</attribute>
 </mbean>

Each of these parameters is described as follows:
MinimumPoolSize: The minimum number of threads that can be active. By
default it is 0.
MaximumPoolSize: The maximum number of threads that can be active. By
default it is 100.
KeepAliveTime: How long to keep threads alive, when there is nothing
to do. Time is expressed in milliseconds. By default it is 60000 (which equals
1 minute).
MaximumQueueSize: The maximum number of requests that are waiting to be
executed. By default it is 1024.
Blocking Mode: If all your threads are busy and the waiting queue has also
reached the MaximumQueueSize, then this parameter lets you configure the
behavior of JBoss thread pool in this circumstance.

Abort Run

Wait

Wait

Discard

D
is

ca
rd

Task Queue

Ex
ce

pt
io

n

Thread Pool

Task completed

Task Queue

Thread Pool

Task completed

Task Queue

Thread Pool

Task completed

Task Queue

Thread Pool

Task completed

•

•

•

•

•

Chapter 3

[49]

The last diagram shows the different behaviors of the Blocking Mode parameter.

Setting Blocking Mode to abort will determine a RuntimeException, when a new
request attempts to enter the busy thread queue. On the contrary, the default run
will give priority to the calling thread, which will be able to execute the task. Setting
the parameter to wait will force the calling thread to wait until the thread queue has
room, while the option discard will simply discard the calling thread. There is a last
option discardOldest that does a scan of the thread pool to see if a thread is about
to complete and tries to enqueue the newest thread wherever possible.

For simple applications, the default settings of the thread pool will work well.
However, if your server has to handle lots of requests (usually the playground of
web applications), then you should check your thread pool carefully. You have
several monitoring options, the simplest of which is by means of the JMX console.

Open the JMX console and look for the object name jboss.system. Click on
the link and the inner frame of the console will display all the MBeans that are
registered under that domain. The information we look for is in the MBean
jboss.system:service=ThreadPool.

This object contains all the attributes and operations relative to the thread pool. You
can set new attributes for your pool, as well as check the current size of the queue,
which is displayed as QueueSize.

Customizing JBoss AS Services

[50]

Is QueueSize the tip of the iceberg?
QueueSize is a fundamental parameter and it should be on the top of
your checklist if your application yields poor response time. If you have
a steady (or worse, an increasing) QueueSize on your server, then you
should consider raising the MaximumPoolSize pool size attribute.
However, simply incrementing the queue size might not be enough to
solve your problems—analyze at first where your application is slowing
down. For example, a very common scenario is that your threads are busy
because they are handling slow or stuck JDBC connections. Here, merely
increasing the MaximumPoolSize would only move the bottleneck
into another area. In this scenario, you should first tune your queries or
increase the JDBC connection pool.

How many threads for your applications?
We have just learned that setting an insufficient value for the MaximumPoolSize
can cause severe performance degradation of the application; however, a grossly
exaggerated value can be a problem as well.

Why? Because of the mechanics of thread switching, an application with a growing
number of threads will tend to saturate the CPU. Switching from one thread to
another involves suspending the current thread, saving its state into registers, and
then restoring the state of the thread that is being switched to. All these operations
are CPU intensive and must be considered while setting the minimum/maximum
pool size.

Therefore, there is no magic number of threads that will be appropriate for all
applications. We suggest you to start with the default values and then monitor
the QueueSize. If you discover that there's a waiting queue, then you can just
increase the MaximumPoolSize to that amount plus a little extra just to handle
peaks of requests. Let's say you have configured a pool of 50 threads and you have
a QueueSize of 5, then the next optimal amount of threads in the pool might be
around 60.

Analyze what your threads are doing
Tweaking the pool parameters can be a quick winning strategy. However, it is really
important that you understand where your application consumes most of the time.
As we'll see in the next chapters, with Eclipse IDE it's relatively easy to debug a
server application.

Chapter 3

[51]

However, if you do not have a chance to debug your application step-by-step, you
can still find useful information from a simple server thread dump. JBoss JMX console
will again be our first choice here. Navigate to the jboss.system:type=ServerInfo
MBean, where you'll find a button with an action listThreadDump.

Clicking on the button will produce a full thread dump of the application server.
Here is a small excerpt from it:

Total Threads: 89
Total Thread Groups: 10
Timestamp: 20090311100332
Thread Group: system : max priority:10, demon:false
Thread: Reference Handler : priority:10, demon:true, threadId:2,
 threadState:WAITING
Thread: WorkerThread#0[127.0.0.1:1704] : priority:5,
 demon:false, threadId:193, threadState:TIMED_WAITING
 java.lang.Thread.sleep(NativeMethod)test.SleeperBean.
 doSomething(SleeperBean.java:9)sun.reflect.
 NativeMethodAccessorImpl.invoke0(Native Method)
Thread: WorkerThread#1[127.0.0.1:1703] : priority:5,
 demon:false, threadId:195, threadState:RUNNABLE test.
 RunnerBean.getConnection(RunnerBean.java:16)sun.reflect.
 NativeMethodAccessorImpl.invoke0(Native Method)

We have created and deployed a couple of remote components, namely Enterprise
Java Beans (EJB) that are performing some time-consuming operations. As you can
see from the output, the first EJB (SleeperBean) is in a TIMED_WAITING state, as
we have intentionally added some Thread.sleep in its doSomething method. The
second EJB (RunnerBean) is also suspended, but in this case it's in a RUNNABLE state.
So, it's likely to be waiting for a response from an external system.

The same information can be obtained with the twiddle command-line utility:

twiddle -s localhost invoke "jboss.system:type=ServerInfo"
 listThreadDump > threadDump.txt

This shell command redirects the thread dump to the file threadDump.txt
(Unix/Linux users only have to substitute twiddle with twiddle.sh).

Customizing JBoss AS Services

[52]

Another useful option available on the same page of the console is the
listThreadCpuUtilization action.

Clicking on the Invoke button shows the breakdown of the CPU usage on the
machine by individual threads, as follows:

Thread Name CPU (milliseconds)
HDScanner 921
WorkerThread#0 546
WorkerThread#1 343
DestroyJavaVM 140
Finalizer 125
Reference Handler 62
Total 2154

Again the equivalent operation with twiddle is:

twiddle -s localhost invoke "jboss.system:type=ServerInfo"
 listThreadCpuUtilization > threadCpu.txt

Configuring logging services
Logging messages is a common requirement in all server applications. Many
developers interact during the creation of applications, and it is likely that every user
will approach logging in their own style. There is also the burden of adding/removing
logging information when you shift from early stage development to production.

Log4j is a reliable, fast, and extensible framework for handling log messages.
The configuration file of log4j is located at JBOSS_HOME/server/xxx/conf/
jboss-log4j.xml.

The three main components of log4j infrastructure are appenders, layouts, and
categories. Let's see them in detail.

Appenders
An appender is an output destination of log messages. In your configuration file, you
register all the available appenders to your application. In the default configuration
file, you have two appenders enabled—the console file appender that outputs
information to the AS command window (or wherever you have redirected the
stout stream), and the server file appender that writes a more verbose log to the
log/server.log file.

Chapter 3

[53]

Console file appender
This is the definition of the console file appender:

 <appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">
 <errorHandler class="org.jboss.logging.util.
 OnlyOnceErrorHandler"/>
 <param name="Target" value="System.out"/>
 <param name="Threshold" value="INFO"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d{ABSOLUTE} %-5p
 [%c{1}] %m%n"/>
 </layout>
 </appender>

As you can see, this appender is targeted on System.out, so it's equivalent to plain
System.out statements. By changing the Threshold parameter, you can set a
different level of verbosity for your logs. The set of possible log levels is (in order
of gravity): TRACE, DEBUG, INFO, WARN, ERROR, and FATAL.

For example, when you're setting up JBoss for production, it is advised to increase
the log level:

 <param name="Threshold" value="WARN"/>

This will evict all log messages from the console that are concerned with the
debugging, initialization, and deployment of components.

Changing the configuration at runtime
What happens if you change this file when the server is running? JBoss checks
the log4j configuration every 60 seconds by default, so you can modify your
configuration at runtime. You can also set the time between checks by changing the
RefreshPeriod of the MBean org.jboss.logging.Log4jService. This attribute
can be set in the conf/jboss-service.xml configuration file, as highlighted in the
following code:

 <mbean code="org.jboss.logging.Log4jService"
 name="jboss.system:type=Log4jService,service=Logging"
 xmbean-dd="resource:xmdesc/Log4jService-xmbean.xml">
 <attribute name="ConfigurationURL">resource:jboss-
 log4j.xml</attribute>
 <attribute name="Log4jQuietMode">true</attribute>
 <attribute name="RefreshPeriod">60</attribute>
 <attribute
 name="DefaultJBossServerLogThreshold">DEBUG</attribute>
 </mbean>

Customizing JBoss AS Services

[54]

File appenders
Next section is the rolling file appender, which is controlled by the org.jboss.
logging.appender.DailyRollingFileAppender class. A working sample of this
appender can be found at the top of the jboss-log4j.xml configuration file:

 <appender name="FILE"
 class="org.jboss.logging.appender.DailyRollingFileAppender">
 <errorHandler
 class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File" value="${jboss.server.log.dir}/server.log"/>
 <param name="Append" value="false"/>
 <param name="Threshold" value="${jboss.server.log.threshold}"/>
 <param name="DatePattern" value="'.'yyyy-MM-dd"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p [%c] (%t)
 %m%n"/>
 </layout>
 </appender>

The rolling schedule is specified by the DatePattern option. This parameter enables
date-based rollover at these intervals—monthly, weekly, daily, twice a day at
midnight and noon, and at the start of every hour and every minute. For example,
the following pattern switches log once a week:

'.'yyyy-ww

This pattern switches log twice a day (at noon and midnight):

'.'yyyy-MM-dd-a

This pattern switches log every hour:

'.'yyyy-MM-dd-HH

You may have noticed, in the appender configuration, the use of
JBoss system properties to change the log level (jboss.server.
log.threshold), as well as the directory where the file is written
(jboss.server.log.dir).
You can override these properties at startup using -D option, as
follows:
 run –Djboss.server.log.dir=C:/Documents/log

Chapter 3

[55]

Rolling the file by size
If you want to schedule file rolling using the size criterion, then you can replace the
DailyRollingFileAppender with the RollingFileAppender. A template for the
RollingFileAppender is located just a few lines thereafter:

 <appender name="FILE"
 class="org.jboss.logging.appender.RollingFileAppender">
 <errorHandler
 class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File"
 value="${jboss.server.home.dir}/log/server.log"/>
 <param name="Append" value="false"/>
 <param name="MaxFileSize" value="500KB"/>
 <param name="MaxBackupIndex" value="10"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p [%c]
 %m%n"/>
 </layout>
 </appender>

This will create up to 10 server.log files and each one of them has a maximum
file size of 500KB. When the MaxBackupIndex is reached, log4j will start erasing
older files.

Other appenders
You are not limited to file and console loggers. In the log4j.xml configuration
file, you can find some useful appenders for other protocols such as JMS, SMNP,
SYSLOG, or JMX. By default, these appenders are commented. Therefore, if you
want to enable them, all you have to do is remove the comment markers and provide
the resource that is in charge of handling the logs. For example, if you want your
ERROR logs published to a JMS topic, you have to create topic/MyErrorsTopic and
add the following snippet to your log4j configuration:

 <appender name="JMS" class="org.apache.log4j.net.JMSAppender">
 <errorHandler
 class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="Threshold" value="ERROR"/>
 <param name="TopicConnectionFactoryBindingName"
 value="java:/ConnectionFactory"/>
 <param name="TopicBindingName" value="topic/MyErrorsTopic"/>
 </appender>

Customizing JBoss AS Services

[56]

Layout of logs
Have you noticed the PatternLayout class and its parameter ConversionPattern?
The goal of this parameter is to format a logging event and return the results as a
string. The patterns are made up of a sequence of characters that can be used to
retrieve information about the application, the server, or the calling client.

For example, if you want to enhance the log output with the client host information
(useful in web applications), you can simply add the %X{host} option as follows:

 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d{ABSOLUTE} %-5p
 [%c{1},%X{host}] %m%n"/>
 </layout>

Another interesting add-on could be the thread name that produced the log
message. The pattern layout option for the thread name is %t. The relative
ConversionPattern could be like:

 <param name="ConversionPattern" value="%d{ABSOLUTE} %-5p [%c{1}]
 (%t) %m%n"/>

For a full reference to the PatternLayout string, consult the log4j official
documentation at http://logging.apache.org/log4j/1.2/apidocs/org/
apache/log4j/PatternLayout.html.

Logging categories
The amount of logging is controlled by categories. Categories are named entities,
which follow a hierarchical naming rule similar to Java packages. For example, the
category named com.sample is a parent of the category named com.sample.Test.
Similarly, java is a parent of java.util and an ancestor of java.util.Vector.

Let's see some samples of categories:

 <category name="org.apache">
 <priority value="INFO"/>
 </category>
 <category name="org.jgroups">
 <priority value="WARN"/>
 </category>

The first element limits the verbosity of org.apache packages to INFO, which means
that this category will capture all logs in the priority—INFO, WARN, ERROR, and
FATAL, but not TRACE and DEBUG levels.

Chapter 3

[57]

The second one, WARN, is concerned with org.jgroups packages and starts capturing
WARN, ERROR, and FATAL messages.

As we said, categories are hierarchical, so a category inherits its configuration from
parent categories (unless it defines its own configuration). Similar to Java classes,
which are extensions of the object class, all categories inherit from the root logger
that resides at the top of the logger hierarchy.

Category Object

name=" "com.sample.Alfa

inherits

inherits

Category Object
name=" "com.sample.Beta

Root Category

priority

Appender

Priority.DEBUG

Console Appender

prints on the Console
using PatternLayout

This is the default root category configuration:

<root>
 <appender-ref ref="CONSOLE" />
 <appender-ref ref="FILE" />
</root>

The appender-ref elements tell the category which appenders will be used to
send the log messages. By default, JBoss is configured to capture the CONSOLE
and FILE appenders.

Configuring your own logger
Keeping your application logs separated from the server log is a requirement
for every application. As we have learned, the configuration of a new logger is a
two-step process. First you need to create a new appender that points to a
destination; the next step is setting up a category that collects the logs. For example,
if you want to send your application logs to the file application.log, then this
might be a good template:

 <appender name="APPLICATION"
 class="org.jboss.logging.appender.DailyRollingFileAppender">
 <errorHandler
 class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File"
 value="${jboss.server.home.dir}/log/application.log"/>
 <param name="Append" value="false"/>

Customizing JBoss AS Services

[58]

 <param name="DatePattern" value="'.'yyyy-MM-dd"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p [%c] %m%n"/>
 </layout>
 </appender>

If you want to generate logs, you just need to add a category that gathers data from
this appender:

 <category name="packtpub.sample">
 <priority value="INFO" />
 <appender-ref ref="APPLICATION"/>
 </category>

The element appender-ref instructs log4j to send messages for that category to the
appender named APPLICATION.

Managing logs through JMX agents
If you don't have access to your configuration files, you can use the JMX console to
get/set the logging parameters.

JBoss logging service is managed by Log4jService (service=Logging,
type=Log4jService) in the jboss.system domain. Open up the JMX agent view
pointing to Log4jService.

Besides changing the ConfigurationURL (that is where log4j.xml is placed) a
useful parameter is the DefaultJBossServerLogThreshold, which lets you define
a default log threshold for your applications.

Chapter 3

[59]

As you can see in the previous screenshot, by default this level is set to DEBUG. In
the Operation view, you can manage your loggers through the following actions:

For example, suppose you want to retrieve the logger level for the category
org.apache, simply insert the category in the textbox for the operation
getLoggerLevel. You can also modify logger limits by inserting both the category
and the log level in the setLoggerLevel textboxes. You can also perform multiple
variations with the setLoggerLevels, specifying the list of loggers and levels
separated by a comma.

Configuring the connection to the
database
The Java Connector Architecture (JCA), part of Java Platform, Enterprise Edition
(Java EE), specifies a standard architecture for accessing resources in diverse
Enterprise Information Systems (EIS).

Customizing JBoss AS Services

[60]

The connector architecture is implemented both in the application server and in an
EIS-specific resource adapter.

What is a resource adapter?
Put it simply, a resource adapter is a system library specific to an
EIS that provides connectivity to the EIS. You can imagine it like
a JDBC driver. The following diagram depicts the Java Connector
Architecture's main components:

Container
Contracts

System
Contracts

JEE Application Server

Connection
Pool

Tx
Management

Security

Enterprise
Information

System

Resource
Adapter

Application
Component

Application
Contract

Eis
Specific
Interface

As you can see, the JCA API is based on the following contracts:

System-level contracts between the resource adapter and the
application server
The Common Client Interface (CCI) that provides Java applications and
development tools to a client API so as to access the resource adapter
A standard packaging and deployment facility for resource adapters

Connection management is a system-level contract that allows the application
server to pool resource connections. The purpose of the pool management is to
achieve scalability. Resource connections are typically expensive objects to create,
and pooling them allows for more effective reuse and management. From the
developer point of view, this mechanism is transparent, as applications only need to
pick up connections from a datasource registered on the Java Naming and Directory
(JNDI) API.

Configuring a datasource in JBoss AS
You don't need to know low-level details of the resource adapter to configure JBoss
connectivity—configuring a datasource in JBoss simply requires creating a file with
the *-ds.xml extension in the deploy folder of your JBoss server configuration.

•

•

•

Chapter 3

[61]

The configuration file for the datasource can contain the following elements:

no-tx-datasource: This datasource uses the NoTxConnectionManager
service. Such a transaction manager does not take part in JTA transactions.
It can be used safely, for example, in a scenario where your application has
a read-only view of the data.
local-tx-datasource: This element uses the LocalTxConnectionManager,
which supports JTA transactions but does not support two-phase commit.
You can use this datasource if your transactions do not span across
multiple RDBMSs.
xa-datasource: This element uses the XATxConnectionManager, which
supports two-phase commit.
mbean: This element can be contained multiple times, and it states the MBean
that can be used to configure services used by the datasources.

JBoss comes bundled with an embeddable open source database called Hypersonic
SQL. When JBoss starts up, the Hypersonic database MBeans initialize the
in-memory database reading the following configuration file hsqldb-ds.xml.

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
 <local-tx-datasource>
 <jndi-name>DefaultDS</jndi-name>
 <connection-url>jdbc:hsqldb:${jboss.server.data.dir}$
 {/}hypersonic${/}localDB</connection-url>
 <driver-class>org.hsqldb.jdbcDriver</driver-class>
 <user-name>sa</user-name>
 <password></password>
 <min-pool-size>5</min-pool-size>
 <max-pool-size>20</max-pool-size>
 <idle-timeout-minutes>0</idle-timeout-minutes>
 <track-statements/>
 <security-domain>HsqlDbRealm</security-domain>
 <prepared-statement-cache-size>32</prepared-statement-cache-
 size>
 <metadata>
 <type-mapping>Hypersonic SQL</type-mapping>
 </metadata>
 <depends>jboss:service=Hypersonic,database=localDB</depends>
 </local-tx-datasource>
 <mbean code="org.jboss.jdbc.HypersonicDatabase"
 name="jboss:service=Hypersonic,database=localDB">
 <attribute name="Database">localDB</attribute>
 <attribute name="InProcessMode">true</attribute>
 </mbean>
</datasources>

•

•

•

•

Customizing JBoss AS Services

[62]

The jndi-name property sets the JNDI name of the datasource. In our example
it is registered into the global namespace with the name DefaultDS. The
connection-url and driver-class are the same arguments that you used
in plain JDBC connections.

The initial size and the maximum size of the connection pool can be configured with
min-pool-size and max-pool-size.

With idle-timeout-minutes you can indicate the maximum time a connection may
be idle before being closed and returned to the pool. If not specified it is 15 minutes
by default.

track-statements is an important debugging feature. It checks that all statements
are closed when the connection is returned to the pool—remember to disable it in
the production environment.

security-domain indicates that connections in the pool should be characterized
by Java Authentication and Authorization Service (JAAS) subject-based
information. The content of the security-domain is the name of the JAAS security
manager, which will handle authentication. This name corresponds to the JAAS
login-config.xml descriptor application-policy name attribute.

prepared-statement-cache-size is the number of prepared statements per
connection to be kept open and reused in subsequent requests. They are stored
in an LRU cache. The default is 0 (zero), meaning no cache.

The depends element specifies the JMX service that the connection manager services
depend on. The connection manager service will not be started until the dependent
services have been started.

Additional datasource properties
Besides the standard properties just covered, a number of additional properties are
available. We will explore a few handy ones:

transaction-isolation: The presence of this element specifies the
java.sql.Connection transaction isolation level to be used. The constants
defined in the connection interface are the possible element content values
and include the following:

TRANSACTION_READ_UNCOMMITTED

TRANSACTION_READ_COMMITTED

TRANSACTION_REPEATABLE_READ

TRANSACTION_SERIALIZABLE

TRANSACTION_NONE

•

°

°

°

°

°

Chapter 3

[63]

For a detailed explanation about transaction isolation levels, check the
Configuring the transaction service section later.
no-tx-separate-pools: Setting this element to false indicates that
JBoss will create two separate connections pools—one to be used with a
JTA transaction and one for a non-JTA transaction. The pools are lazily
constructed on first use. This attribute has been added because Oracle's XA
(and possibly other vendors') datasource cannot reuse a connection outside
a transaction, once enlisted in a global transaction and vice versa.

The following three properties are available only in the XAdatasource context:

xa-datasource-class: This is the fully qualified name of the
javax.sql.XADataSource implementation class (for example,
com.informix.jdbcx.IfxXADataSource).
xa-datasource-property: This element allows specification of custom
properties to assign to the XADataSource implementation class. Each
property is identified by the name attribute, and the property value is
given by the xa-datasource-property element content. This element
is fundamental if you need to switch on specific vendor properties. For
example, the following property activates an Oracle database feature,
which is used to control whether a statement will auto-bind in memory:
<xa-datasource-property name="CURSOR_SHARING">FORCE</xa-
 datasource-property>

isSameRM-override-value: This Boolean flag allows you to override the
behavior of javax.transaction.xa.XAResource.isSameRM(XAResource
xaRes). It is suggested to leave the default false.

Setting up a new datasource
Setting up a new datasource is a two-step process. First, because you don't want to
write the configuration file from scratch, you need a template. This is a pretty simple
task—the JBOSS_HOME/docs/example/jca directory contains sample files for a wide
selection of databases and it is a good idea to use one of these as a starting point.
Second, you need a JDBC driver so that the ConnectionFactory is able to instantiate
new connections. The JDBC drivers can be downloaded from your database site;
however, you can find a useful gateway on Sun network for downloading the
appropriate driver:

http://developers.sun.com/product/jdbc/drivers.

•

•

•

•

Customizing JBoss AS Services

[64]

Here, you can query the driver archive choosing from among many different search
criteria. Once you have downloaded the driver .jar file, it's time to copy it into the
common/lib of JBoss. As application libraries are loaded at bootstrap, you need to
restart JBoss in order to make the classes available to the ConnectionFactory.

Here's for example, an XA MySQL datasource file:

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
 <xa-datasource>
 <jndi-name>jdbc/MySQLDS</jndi-name>
 <xa-datasource-class>com.mysql.jdbc.jdbc2.optional.
 MysqlXADataSource</xa-datasource-class>
 <xa-datasource-property
 name="URL">jdbc:mysql://localhost/jbpm</xa-datasource-property>
 <user-name>admin</user-name>
 <password>admin</password>
 <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-
 isolation>
 <no-tx-separate-pools />
 <track-connection-by-tx />
 <exception-sorter-class-name>
 com.mysql.jdbc.integration.jboss.ExtendedMysqlExceptionSorter
 </exception-sorter-class-name>
 <valid-connection-checker-class-name>
 com.mysql.jdbc.integration.jboss.MysqlValidConnectionChecker
 </valid-connection-checker-class-name>
 <metadata>
 <type-mapping>mySQL</type-mapping>
 </metadata>
 </xa-datasource>

</datasources>

The highlighted section shows some differences between an xa-datasource
and local-tx-datasource. Apart from the different root element (which is now
xa-datasource), the element xa-datasource-class replaces driver-class.
The former connection-url is now coded as xa-datasource-property.

Gathering connection pool statistics
All the datasource-related objects can be inspected through the jboss.jca domain.
You can find them by searching through the JMX console page, or by using
jboss.jca:* as the query filter.

Chapter 3

[65]

Suppose you want to monitor your jdbc/MySQLDS datasource from the previous
example. You could use a more specific filter, such as jboss.jca:name=jdbc/
MySQLDS,*, to see only the MySQLDS entries. In either case, the following four
MBeans will result from your query:

name=jdbc/MySQLDS,service=DataSourceBinding
name=jdbc/MySQLDS,service=ManagedConnectionFactory
name=jdbc/MySQLDS,service=ManagedConnectionPool
name=jdbc/MySQLDS,service=XATxCM

While each plays a critical role in providing the datasource functionality in JBoss,
you are most likely to need to interact with the ManagedConnectionPool. Click
the ManagedConnectionPool MBean to expose its management attributes
and operations.

Changing connection pool settings
From the JMX console, you can specify new settings for the connection
pool. However, these changes will persist only in memory. To change the
configuration permanently, you need to update the datasource file or use
the new admin console, as we will see in a minute.
If you want to change some pool attributes as part of a script, then you
can use the twiddle command-line utility. All you need to know is
which MBean controls the connection pool and the attribute we want to
change. In our case, we will operate on the ManagedConnectionPool
MBean, if we want to change the pool MaxSize:

twiddle -s hostAddress set "jboss.jca:name=MySQLDS,serv
ice=ManagedConnectionPool" MaxSize 50

The ConnectionCount attribute shows how many connections are currently open
to the database. However, open connections are not necessarily in use by the
application code. If you want to inspect how many connections are being used by your
application, then check the InUseConnectionCount attribute. Another key attribute is
AvailableConnectionCount, which shows how much room is left in the pool.

Customizing JBoss AS Services

[66]

If you need to track connection pool usage in its lifetime, you would probably
inspect the ConnectionCreatedCount and Connection-DestroyedCount that keep
counting the total number of connections created and destroyed by the pool. Setting
the attribute IdleTimeout with a value greater than zero will cause your connections
to eventually time out, be destroyed, and be replaced by fresh connections.

Be aware that setting a time-out for your connections will cause the created and
destroyed counts to rise constantly. The MaxConnectionsInUseCount attribute
keeps track of the highest number of connections in use at a time.

The MBean exhibits a flush operation that can be used to reset the connection
pool statistics. This will cause a new connection pool to be created, abandoning
the previous connections.

Managing datasources from the admin console
Setting up a new datasource and managing the existing configurations can be
performed in the admin console as well. This can be particularly useful if you
need to add a persistent resource from a remote location.

In the left frame expand the Resources | Datasources leaf and choose the suitable
transaction option. In the main frame, you can operate on your selection:

Chapter 3

[67]

As you can see from the last screenshot, you can add or delete a resource by choosing
the appropriate button. Clicking on a datasource in the list will enable the upper
tab list, with a wider set of choices. Here for example is a snapshot of the Metrics
for DefaultDS:

Using statistics to tune the connection pool
Choosing the right pool size depends entirely on your application and the
hardware you are running on. An optimal pool size is when the connection
pool is just large enough to service requests without waits. If you need an easy
starting point to determine the maximum number of connections, simply run
a load test and measure the largest number of concurrently used connections
(MaxConnectionsInUseCount). You can then work backwards from there to
determine what values of minimum and maximum pooled connections give
the best performance for your particular application.

Another key parameter in tuning your connection pool is the <prepared-statement-
cache-size>. By using prepared statements, you are asking the database to parse the
query only once, so that if the same query is executed again with different parameters,
it saves the CPU resource to directly execute the queries without parsing. You are
highly encouraged to use a <prepared-statement-cache-size> even if you need to
know that prepared statements are cached per connection. The more connections you
have, the more prepared statements you get (even when they are the same query). So,
there's obviously a trade-off between performance and memory.

Customizing JBoss AS Services

[68]

Be aware that statements in cache may reserve database cursors
When JBoss caches a prepared or callable statement, the statement may
open a cursor in the database. If you allow JBoss to cache too many
statements, you may end up exceeding the limit of open cursors for a
connection. Carefully monitor the number of cursors in your database
when you turn on this option, and when necessary, you can change
the limit in your database management system or you can reduce the
statement cache size for the datasource.

Deploying datasources at application level
When you drop a datasource file in the deploy folder, you will make it available to
all your applications. This is a pretty simple job; however, it can be unpractical if
the application server configuration is handled by a different group of people. Here,
you need to pass the datasource file along with the application. This is not a big deal;
however, in such a scenario it could be simpler to deploy the datasource along with
the application.

All you need to do is add an extra configuration file named jboss-app.xml, which
provides JBoss-specific deployment configuration.

<!DOCTYPE jboss-app PUBLIC "-//JBoss//DTD J2EE Application 1.4//EN"
"http://www.jboss.org/j2ee/dtd/jboss-app_5_0.dtd">
<jboss-app>
<module>
 <service>ApplicationDS-ds.xml</service>
</module>
</jboss-app>

This file needs to be placed in the META-INF folder of your application archive. On
the other hand, your datasource file should be positioned at the root of your archive.
This is how your EAR application should look like:

Chapter 3

[69]

High availability datasources
A high availability (HA) datasource is an abstraction around a group of data sources
that provides failover processing between a list of redundant resources. When you
configure an HA datasource you have to provide a list of connection URLs, so that
when the connection you are using is not available anymore, the connection factory
will transparently choose another database connection URL.

The HA datasource configuration also requires that you indicate which
delimiter is used to separate the list of connection URLs. Here's a high availability
local-tx example:

<datasources>
<local-tx-datasource>
 <jndi-name>jdbc/HADatasource</jndi-name>
 <connection-url>
 jdbc:oracle:thin:@oraclehost:1521:SID|jdbc:oracle:
 thin:@oraclehost:1521:SID2
 </connection-url>
 <url-delimiter>|</url-delimiter>
 <driver-class>oracle.jdbc.driver.OracleDriver</driver-class>
 <user-name>user</user-name>
 <password>password</password>
 <check-valid-connection-sql>select count(*) from testable</check-
 valid-connection-sql>
</ha-local-tx-datasource>
</datasources>

HA datasources in earlier releases of JBoss
In earlier releases of JBoss, HA datasources used a different top level
element. HA local datasources were nested in the <ha-local-tx-
datasource>, while HA XA datasources were contained in
<ha-xa-tx-datasource>. If you are porting your HA datasource
files to JBoss 5, then you need to remove these elements.

Clustered RDBMS
Some database vendors (mainly Oracle and MySQL) provide built-in fault tolerance
solutions that can guarantee high availability to your Enterprise tier. This is
implemented by means of a clusterable database such as Oracle Real Application
Clusters (RAC) or MySQL Cluster solution. In such scenarios, the only difference
with a standalone database connection is the connection URL, which should contain
the list of cluster members.

Customizing JBoss AS Services

[70]

For example, if you need to configure a datasource connection to an Oracle RAC
made up of host1 and host2, you should configure your datasource file with the
following property:

<xa-datasource>
 <xa-datasource-property name="URL">
 jdbc:oracle:thin:@(DESCRIPTION=(ENABLE=BROKEN)(ADDRESS_LIST=
 (ADDRESS = (PROTOCOL = TCP)(HOST = host1)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = host2)(PORT = 1521))
 (FAILOVER=on)(LOAD_BALANCE=off))(CONNECT_DATA=
 (SERVER=DEDICATED)(SERVICE_NAME=ORACLESERV)))
 </xa-datasource-property>
</xa-datasource>

The URL property contains a database-specific string for describing the Oracle RAC.
We advise you to consult an expert database administrator for adapting the above
statement to your RAC configuration. Anyway, you will need to focus on the key
attributes, which are FAILOVER and LOAD_BALANCE. In this example LOAD_BALANCE is
off due to the fact that pinging live nodes is a major bottleneck of the RAC.

Additional information about Oracle RAC can be found at http://www.oracle.
com/technology/products/database/clustering/index.html.

On the other hand, if you were to use an open source cluster solution such as MySQL
cluster, the connection string would be:

<xa-datasource>
 <xa-datasource-property name="URL">
 jdbc:mysql:loadbalance://host1,host2/database?
 loadBalanceBlacklistTimeout=5000
 </xa-datasource-property>
</xa-datasource>

Should you need further details about the MySQL Cluster option, here's the
recommended link: http://www.mysql.com/products/database/cluster/.

Connecting from a remote client
Technically speaking, a datasource can also be accessed and used from a remote
client, for example, a Swing GUI that displays tabular data the same way a JSP does.
The only obstacle to using a datasource from a remote client is that it needs to be
registered in the global JNDI namespace.

Chapter 3

[71]

We will repeat it again—if a component is registered in the global namespace, it
can be accessed from both the local and remote client, while components registered
into the java namespace can only be looked up from the same JVM. In order
to make your datasource available in the global namespace, you have to set
use-java-context to false in your datasource *-ds.xml configuration file:

<datasources>
 <local-tx-datasource>
 <jndi-name>remoteDS</jndi-name>
 <use-java-context>false</use-java-context>
 </local-tx-datasource>
</datasource>

Configuring the transaction service
Transaction management is a JCA system contract between an application server
and a resource adapter (and its underlying resource manager). The transaction
management contract extends the connection management contract, which we
just discussed. It provides support for the management of transactions.

What is a transaction? The authoritative definition of a transaction is a unit of
work containing one or more operations involving one or more shared resources.
Transactions are described in terms of ACID properties, which are as follows:

Atomicity refers to the ability to guarantee that either all or none of the tasks
of a transaction are performed.
Consistency refers to the fact that when a transaction is completed, the
system must be in a stable and consistent condition.
Isolation refers to the requirement that other operations cannot access or see
the data in an intermediate state during a transaction.
Durability refers to the guarantee that once the user has been notified of
success, the transaction will persist, and not be undone. This means it will
survive system failure.

A transaction can be terminated in two ways—committed or aborted (rolled back).
When a transaction is committed, all changes made within it are made durable
(forced on to stable storage, for example, disk). When a transaction is aborted,
all of the changes are undone. Atomic actions can also be nested; the effects of a
nested action are provisional upon the commit/abort of the outermost (top-level)
atomic action.

•

•

•

•

Customizing JBoss AS Services

[72]

The ANSI/ISO SQL standard defines four levels of transaction isolation,
which are as follows:
READ UNCOMMITTED: This isolation level allows dirty reads, that is,
you're permitted to read uncommitted or dirty data. You can achieve
this effect—for example, you could open an OS file that someone else
is writing, and read whatever data exists in that file. Data integrity is
compromised, foreign keys are violated, and unique constraints are
ignored.
READ COMMITTED: This is the default isolation level in many RDBMS.
When a transaction runs on this isolation level, a SELECT query sees only
data committed before the query began. There are no dirty reads (reads of
uncommitted data). There may be non-repeatable reads (that is, rereads
of the same row may return a different answer in the same transaction)
and phantom reads (that is, newly inserted and committed rows become
visible to a query that were not visible earlier in the transaction).
REPEATABLE READ: The goal of REPEATABLE READ is to provide an
isolation level that gives consistent and correct answers, and prevents lost
updates. If you have REPEATABLE READ isolation, the results from a
given query must be consistent with respect to some point in time.
SERIALIZABLE: This level provides the highest transaction isolation.
It is called so because it emulates serial transaction execution, as if
transactions had been executed one after another serially, rather than
concurrently. However, applications using this level must be prepared to
retry transactions in the event of serialization failures. When a transaction
is on the serializable level, a SELECT query sees only data committed
before the transaction began. It does not see uncommitted data nor does
it see changes committed during transaction execution by concurrent
transactions.

Preserving data integrity
Isolation is a strong requirement for transactions. In order to implement it, it is
necessary to lock the portion of the database that is involved in a transaction.
Locking can be implemented using two strategies—pessimistic locking and
optimistic locking.

Chapter 3

[73]

Pessimistic Locking Optimistic Locking

Read and
Row

Lock

Modify
Row

Commit Commit

Read the Row

Retry
if modified

Modify Row

otherwise raise error

if
unchanged

Pessimistic locking assumes that another transaction might change the data between
the read and the update. In order to prevent that change and the data inconsistency
that would result, the read statement locks the data to prevent any other transaction
from changing it.

A pessimistic lock assumes a record will be held for an extended period of time; as in
the case of, let's say, a news article being edited. In the case of the news article, you
would need to apply a read-only lock.

Optimistic locking does not lock records when they are read, and proceeds on the
assumption that the data being updated has not changed since the read. As no locks
are taken out during the read, it doesn't matter if the user goes to lunch after starting
a transaction, and all deadlocks are eliminated so that users never have to wait on
each other's locks. An optimistic lock assumes that an update will be made soon after
a record has been selected, as in the case of having to enter only a customer code.

One common strategy to implement optimistic locking is tagging each record with a
version (that is, timestamp). If the record is updated, the timestamp is also updated.
When a record is selected, the timestamp on the client will be compared to the
timestamp on the server.

Global and local transactions
Whenever your application connects to a database using JDBC or any SQL
interpreter, you are de facto creating a transaction. However, when the transaction
involves only a single database, and all updates made to the database are committed
at the end of these changes, we have a local transaction.

Customizing JBoss AS Services

[74]

A global transaction involves a set of management objects. These global
transaction objects (TransactionManager and Transaction) track all objects and
resources involved in the global transaction. At the end of the transaction, the
TransactionManager and Transaction objects ensure that all database changes
are atomically committed at the same time.

One of the primary advantages for a global transaction is the number of objects
and database resources managed as a single unit within the transaction. If your
global transaction involves more than one database resource, you must specify a
two-phase commit engine. The two-phase commit engine is responsible for ensuring
that when the transaction ends, changes made to all of the databases are either totally
committed or fully rolled back.

On the other hand, if your global transaction has multiple server objects, but only a
single database resource, you don't need to specify a two-phase commit engine. The
two-phase commit engine is required only to synchronize the changes for multiple
databases. If you have only a single database, single-phase commit can be performed
by the transaction manager.

Configuring JBoss transactions
JBoss implements the Java Transaction API (JTA), which provides distributed
transaction services for the Java EE platform. A distributed transaction involves a
transaction manager and one or more resource managers. A resource manager is any
kind of persistent datastore. The transaction manager is responsible for coordinating
communication between all transaction participants.

JTA transactions are more powerful than JDBC transactions. While a JDBC
transaction is limited to a single database connection, a JTA transaction can
have multiple participants.

Java EE-compatible containers make the UserTransaction interface
available through JNDI and then use it to demarcate transactions.
Calling UserTransaction.begin() associates the calling thread
with a new transaction context. Subsequent accesses of transactional
resources implicitly enlist those resources into the transaction. A call to
UserTransaction.commit() commits the transaction, transparently
engaging the two-phase commit protocol, if necessary, while
UserTransaction.rollback() aborts the transaction and rolls back
all data updates.

Chapter 3

[75]

By default, transactions live until they are terminated by the application that created
them or if a failure occurs. However, it is possible to set a time-out (in seconds) on
a per transaction basis, such that if the transaction has not terminated before the
time-out expires, then it will be rolled back automatically.

The transaction time-out can be configured in the file transaction-jboss-beans.
xml, which is located in the deploy folder of your server configuration:

<bean name="TransactionManager"
 class="com.arjuna.ats.jbossatx.jta.TransactionManagerService">
 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.
 JMX(name="jboss:service=TransactionManager",
 exposedInterface=com.arjuna.ats.jbossatx.jta.
 TransactionManagerServiceMBean.class, registerDirectly=true)
 </annotation>
 <property name="transactionTimeout">300</property>
</bean>

By default, the TransactionManager is configured to time out after 300 seconds.
However, if this value is not appropriate for your application, then you can change
this parameter. You can even set it to 0, which means that transactions will be
allowed to run indefinitely.

JBossTS uses a separate thread reaper that monitors all locally created transactions,
and forces them to roll back if their time-outs elapse. To prevent this thread from
consuming the application time, it runs only periodically. The default checking
period is 120 seconds, but can be overridden by setting the com.arjuna.ats.
arjuna.coordinator.txReaperTimeout property variable to another valid value,
in microseconds.

Alternatively, if the com.arjuna.ats.arjuna.coordinator.txReaperMode is
changed from the default (NORMAL) to DYNAMIC, the transaction reaper will
wake whenever a transaction times out. This has the advantage of terminating
transactions early, but may suffer from continually rescheduling the reaper thread.

The configuration file for the reaper thread is jbossjta-properties.xml, which is
located in the conf folder of your JBoss AS.

<transaction-service>
 <properties depends="common" name="arjuna">
 <property
 name="com.arjuna.ats.arjuna.coordinator.txReaperTimeout"
 value="120000"/>
 <property
 name="com.arjuna.ats.arjuna.coordinator.txReaperMode"
 value="DYNAMIC"/>
 </properties>
</transaction-service>

www.allitebooks.com

http://www.allitebooks.org

Customizing JBoss AS Services

[76]

Setting transaction time-out programmatically
A transaction time-out can also be set programmatically using the
UserTransaction Object. For example:

UserTransaction ut = (UserTransaction)ctx.lookup("java:
comp/UserTransaction");
ut.setTransactionTimeout(100);
ut.begin();
ut.commit();

If you prefer, you can alternatively set the Transaction at class/
method level using the annotation @org.jboss.ejb3.annotation.
TransactionTimeout.

Monitoring transactions
The status of your transactions can be inspected from the JMX console. This
information is contained in the jboss domain. From the agent view choose
service=TransactionManager.

One handy attribute is the RunningTransactionCount that exhibits the number of
transactions being executed, while the TransactionCount returns the total number
of transactions started over the lifetime of the server.

The self-explanatory attribute CommitCount returns the number of committed
transactions, while RollbackCount returns the number of rolled back transactions.

Chapter 3

[77]

If you want to know more details about the cause of rollback, you can check the
following two attributes:

ApplicationRollbackCount: Returns the number of transactions that have
been rolled back by application request.
ResourceRollbackCount: Returns the number of transactions that rolled
back due to resource failure.

If you want to know the transactions that completed with a heuristic outcome, you
need to check the HeuristicCount attribute.

Heuristic decisions
A heuristic decision occurs when a resource makes a unilateral decision
during the completion stage of a distributed transaction to commit or
rollback updates. This can leave distributed data in an indeterminate
state. Network failures or resource time-outs are possible causes for
heuristic completion.

Summary
In this chapter, we have completed our journey through the configuration of
JBoss AS. We have logically separated the abstract container configuration from
the EJB container and HTTP Connector configuration, which will be covered
in the corresponding development chapter. We chose to do this mainly for two
reasons—firstly, we didn't want to overwhelm the reader with too much information
all at once, and secondly because it makes it easier for the reader to reach certain
information if topics are not split in too many parts of the book.

However, once you have read through this chapter, you should have a sound
knowledge of what it takes to get a customized JBoss environment based on our
experience in the trenches. In the next chapter, we'll start designing Enterprise
applications using Eclipse and JBoss plugins.

•

•

Developing EJB 3
Session Beans

The future has already arrived. It is just not evenly distributed
yet – William Gibson.

In this chapter, we will introduce the reader to some concrete examples of Java
Enterprise Programming developed on JBoss 5 application server. The sample code
will be built using the Eclipse IDE and JBoss Tools that we have already installed,
in order to meet the requirements of all developers.

In this chapter we will introduce the following topics:

How to build business logic with Session Beans
How to handle Session State with Stateful Session Beans
How to configure the JBoss EJB container for optimal resource management

Java EE made easier
Developing a distributed, transactional, and secure application has traditionally
been a complex task. If you have embraced the Java Enterprise platform before the
new millennium, you should know that building even simple components required
a certain amount of time. The Java EE 5 platform introduced a new simplified
programming model. XML deployment descriptors are now optional. Instead, a
developer can add the information as an annotation directly into a Java source file,
and the Java EE server will configure the component at deployment and runtime.

•

•

•

Developing EJB 3 Session Beans

[80]

Another useful innovation, borrowed from POJO frameworks, is Dependency
Injection. This can be applied to all resources that a component needs, effectively
hiding the creation and lookup of resources from application code. Dependency
Injection can be used in EJB containers, web containers, and application clients, thus
allowing the developer to easily insert references to other required components or
resources with annotations.

What is Dependency Injection?
The term Dependency Injection has been coined by M. Fowler to
describe the process of supplying an external dependency to a
software component. Without Dependency Injection, an object that
needs access to a particular service has to take the responsibility
to access that service. In contrast, with Dependency Injection, an
object simply provides a property that can hold a reference to that
type of service; later, when the object is created, a reference to an
implementation of that type of service will automatically be injected
into that property by an external mechanism.

Developing Enterprise JavaBeans
Java EE applications are usually considered to be three-tiered applications, as they
are distributed over three layers.

Presentation
Tier

Servlets, JSP
J2SE Clients POJO, EJB

Business
Ter RDBMS

Legacy
Systems

This diagram depicts a view of the three-layer architecture with the associated
components. Here's a synthetic explanation:

Presentation Tier: Built with dynamic pages and application clients, this
layer is able to generate the user interface of the application.
Business Tier: Also known as the middle tier, this layer contains the business
logic of the application. All the business logic is centralized into this tier as
opposed to client/server applications where the business logic is scattered
between the frontend and the backend. The main benefit of having a
centralized business tier is that the same business logic can support different
types of clients.

•

•

Chapter 4

[81]

Data Tier: This provides the information infrastructure that is vital to the
business processes of an Enterprise. This includes Enterprise infrastructure
systems such as ERP, mainframe transactions processing, database systems,
and other related legacy systems.

These layers provide an excellent model of how EJBs fit into a Java Enterprise
system. EJBs provide both components for handling the application logic layer
and JavaBeans-like abstraction of the data layer. There are actually three kinds of
EJBs—Session Beans, Entities, and Message-driven Beans. In this chapter, we will
discuss Session Beans and Entities. Message-driven Beans will be covered in Chapter
7, Developing Applications with JBoss Messaging Service.

Developing Session Beans
Session Beans are reusable components that contain the logic for business processes.
For example, a stock trading application might have a Session Bean that contains
logic for buying/selling futures. Another Session Bean might collect the line
numbers in a telecom company. Every object that performs a relatively short-lived
task on behalf of client code is a good candidate for a Session Bean.

There are two types of Session Beans—Stateless Session Bean (SLSB) and Stateful
Session Beans (SFSB). Each is used to model a different type of conversation
between the client and the EJB.

Stateless Session Beans
A Stateless Session Bean does not maintain a conversational state for a particular
client. When a client invokes the method of a Stateless Session Bean, the bean's
instance variables may contain a state, but only for the duration of the invocation.
When the method is finished, the state is no longer retained. Therefore, except for
the duration of method invocation, all instances of a Stateless Session Bean are
equivalent, allowing the EJB container to assign an instance to any client.

Life cycle of a Stateless Session Bean
The container creates instances of a Stateless Session Bean and keeps them in a pool
of instances. When there is a method call from a client, the container checks if there is
a handy instance in the pool. If the resource is available, the Bean is associated to the
client for the duration of the call. Then it is returned to the pool.

If all Bean instances are busy, the container checks the Stateless Bean's maxSize
attribute; if maxSize is smaller than the pool size, then a new Bean instance is
created and immediately served to the client.

•

Developing EJB 3 Session Beans

[82]

If the Container is not able to create any more Beans, the last chance for our client
is that a new resource will be available before the EJB timeout. (See the section
Configuring Stateless Session Bean pool size later in the chapter.)

Stateless Session Bean Life cycle

new Instance
created by the

Container

Instance removed
by the

Container
Does not

Exist

Pool of
Ready

instances

Business method

»
»
newInstance()
dependencyInjection
@PostConstruct»

»@PreDestroy

You can perform any initialization your Bean needs by tagging a method of your
Bean with the @PostConstruct annotation.

@PostConstruct
public void init() {
 // Initialize some resources here
}

The @PreDestroy annotation can also be used to free allocated resources before the
Bean is removed.

@PreDestroy
public void destroy() {
 // Deallocate resources acquired here
}

Use @PreDestroy with caution
We have tested the behavior of @PreDestroy even in critical situations
such as a JBoss server crash. Before shutting down, JBoss 5 correctly
invokes the callback method defined by the @PreDestroy annotation.
However, this is not guaranteed to work the same in all application
servers. When possible, evicting resources from an external application
would be safer. For example, if you plan to restore a database structure
before destroying the Bean, you could consider running an external
script periodically.

Chapter 4

[83]

Setting up a simple example
It is now time to put all this theory into practice. In this section, we are going to
develop our first session Bean. First, we will walk through the Bean-creation code in
a good bit of detail, reinforcing concepts we just covered and introducing new ones.
Then we will explain how to run the example.

Launch Eclipse IDE and choose a workspace for our example. Once there, we need
to create a new EJB Project. From File, select New | Other | EJB | EJB Project.

Developing EJB 3 Session Beans

[84]

First, choose a name for this project. We will use SessionBeanExample.������������� Then select
the Target Runtime (JBoss 5). The EJB Module version is 3.0. The Configuration
used for this chapter will be the default JBoss configuration. For this example, we
don't need to create an EAR package, so we leave that flag unchecked.

Chapter 4

[85]

In the next menu, just leave the default Source Folder proposed (ejbModule).
We have decided not to use an EAR packaging, so the wizard will not generate
an EJB client JAR. The last option available is Generate deployment descriptor,
which will create EJB deployment descriptors. We don't select this option in the
following example:

When you click Finish, Eclipse will suggest you to move to the Java EE perspective.
Accept by clicking Yes. Let's have a glimpse at the Project Explorer:

Developing EJB 3 Session Beans

[86]

The folder ejbModule is the container for our EJB classes. You can see that
Eclipse has automatically added both the JRE System Library and the JBoss 5.0
Runtime libraries. These libraries are automatically picked up from the JBoss 5
runtime configuration.

The first taste of EJB will be a simple Stateless Bean named Mailer that has a
sendMail method for sending an e-mail.

Go to File | New | Other. Select the EJB 3 Session Bean option from the EJB folder.
The New Session Bean wizard will appear. Choose com.packtpub.ejb.example1 as
the Bean Package and Mailer as the Bean Name.

This image is slimmer than the actual wizard window; it has been intentionally
resized to skim unused options from the page.

Leave the other options unchanged and click Finish.

You will see that the wizard has created a bare bones EJB with a remote interface
named Mailer and an implementation class MailerBean. We are now going to add
a method sendMail in the remote interface, which will be used to send an e-mail.

package com.packtpub.ejb.example1;

import javax.ejb.Remote;

@Remote
public interface Mailer {

Chapter 4

[87]

	 public void sendMail(String aToEmailAddr,
 String aSubject, String aBody);
 }
}

Notice the @Remote annotation; it indicates that the interface Mailer is exposed as a
remote service. If you would like to expose your EJB to local clients only, you would
need the @Local annotation.

Most EJB 3 annotations are optional
If you don't specify the type of your interface, it's assumed that your EJB
interface is a local interface. Actually, the EJB 3 specification mandates the
use of a large set of default values for common EJB attributes.

Following is the concrete Bean implementation for the remote interface:

package com.packtpub.ejb.example1;

import javax.annotation.Resource;
import javax.ejb.*;
import javax.mail.*;

import com.packtpub.ejb.Mailer;

@Stateless [1]
@RemoteBinding(jndiBinding=»remote/MailerEJB»)

public class MailerBean implements Mailer {

...����������������������������������@Resource(mappedName="java:/Mail")

...����������������������������������� private javax.mail.Session session;

...

...public void sendMail(String aToEmailAddr,

......... String aSubject, String aBody)

...... {

............

...... MimeMessage message = new MimeMessage(session);

...... try {

......

...... message.addRecipient(

...... Message.RecipientType.TO, new
 InternetAddress(aToEmailAddr)
......);
...... message.setSubject(aSubject);
...... message.setText(aBody);
...... Transport.send(message);
...... }

Developing EJB 3 Session Beans

[88]

...... catch (MessagingException ex){

...... throw new EJBException(«Cannot send email. « + ex);

...... }

......}

...
}

Here the @Stateless [1] annotation declares the EJB as a Stateless Session Bean. This
is the only mandatory annotation for creating an SLSB.

Annotation shortcut
Fortunately, you don't have to remember all the annotations. Eclipse
has a built-in shortcut key to display all annotations. Start typing "@"
and press Ctrl + Space to browse between the available annotations.
You can also use the same shortcut (Ctrl + Space) to retrieve the
parameters of an individual annotation.

The annotation @RemoteBinding is used here to assign a custom JNDI binding to
your Bean. If we don't use this annotation, a default JNDI binding will be assigned
to your Bean (in our case it would be MailerBean/remote).

Default JNDI bindings
The default JNDI for your EJBs is determined by the archive name and the
Bean name.

If you deploy your Bean in a JAR file, the JNDI name is EJB-CLASS-
NAME/local for local interfaces and EJB-CLASS-NAME/remote for
remote ones.
If the application is deployed in an EAR archive, the default JNDI name
is the EAR-FILE-BASE-NAME/EJB-CLASS-NAME/local for the stub of
the local interface. For the remote interface, it is EAR-FILE-BASE-NAME/
EJB-CLASS-NAME/remote.

In this sample we are "injecting" the mail session as an @Resource in our EJB.
The support for resource injection makes accessing resources significantly easier,
avoiding the need to look up the resource, cast it, and handle exceptions.

Chapter 4

[89]

Deploying your application
The last step is deploying your client and testing it. The quickest way to deploy an
application to JBoss is copying the archive file (.jar , .war, .ear, and so on.) into
the deploy folder of your configured server. Now we will see how to deploy your
application from within the Eclipse environment.

Switch to the JBoss Server View, which can be reached from Window | Open
Perspective | Other. Right-click on your JBoss Server label and select Add and
Remove Projects. A little wizard will let you move your applications in or out
of your JBoss server. Add the SessionBeanExample project and click Finish.

Developing EJB 3 Session Beans

[90]

Now expand your JBoss label. It should contain your new deployment unit
SessionBeanExample; right-click on it and select Full Publish.

Now it's time to start JBoss AS, if you haven't already. Right-click on the JBoss 5.0
Server and choose Start.��� JBoss will start to throttle, your CPU will peak as well;
however, don't panic but check on the console to see if your EJB has been
deployed correctly.

Chapter 4

[91]

Creating a test client
Creating the EJB wasn't a big deal; let's see how to set up a remote client for testing
it. Add another Java class to the project by selecting File | New | Class. Choose a
convenient name and package. Following is our sample client:

package com.packtpub.example1.client;

import javax.naming.InitialContext;
import com.packtpub.ejb.Mailer;

public class MailClient {
	 public static void main(String[] args) throws Exception
	 {
	 InitialContext ctx = new InitialContext();
	 Mailer mailer = (Mailer) ctx.lookup(«remote/MailerEJB»);
 mailer.sendMail("address@domain.com","subject","text");

	 }

}

The InitialContext constructor is used to look up resources on the network.
When you are getting an initial context from outside of the EJB container, you
must specify the properties for the initial context. These properties include the
InitialContextFactory class, the URL of the server, and possibly authentication
parameters. These properties can either be created programatically using a
java.util.Properties object, or can be loaded at runtime from the
jndi.properties file that can be found in the classpath.

In order to get acquainted with the Eclipse build path, we will show how to
provide these properties with a jndi.properties file. Create a new folder
named client-config somewhere in your project. Add a new file named
jndi.properties in it.

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jnp.interfaces

Developing EJB 3 Session Beans

[92]

Eclipse is a sensible tool and recognizes this file as being a configuration file. You can
view or edit it either from a graphical interface or from a plain text editor.

Now we are going to tell Eclipse to append this folder to the classpath. Right-click on
your project and select Properties. There, select the Java Build Path option.

Chapter 4

[93]

Click on the Add Class Folder… button and select the newly created client-config
directory in the Class Folder Selection window.

Now your client is instructed to hunt for classes/files in the client-config folder.
Running your application is just a matter of right-clicking on your class and selecting
Run As | Java Application.

Configure your Java mail provider to get it actually working
In order to test this sample EJB, you would need to configure a Java
SMTP gateway server. This can be done by setting the mail.smtp.host
property from your deploy/mail-service.xml configuration file.

Adding interceptors to your Bean
EJB 3.0 allows you to define interceptor methods that are called around the business
methods and life cycle events of the Bean instances. An interceptor method will
always be executed before any of the Bean's business methods are invoked. The
great benefit of interceptors is that they are a seamless way to add aspect-oriented
programming to your business methods.

Developing EJB 3 Session Beans

[94]

Interceptors can be bound to your EJB in three different ways:

Default interceptors: These interceptors need to be declared in your
ejb-jar.xml and are valid across all your EJB deployed.
<assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>com.packtpub.DefaultInterceptor
 </interceptor-class>
 </interceptor-binding>
 ...
</assembly-descriptor>
 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>sample.interceptor.
 MyDefaultInterceptor</interceptor-class>
 </interceptor-binding>
 ...
 </assembly-descriptor>

Class-level interceptors: This kind of interceptor wraps calls to every
method of the enclosing EJB.
@Stateless
 @Interceptors(value= com.packtpub.SampleInterceptor.class)
 public class StatelessBean { }

Method-level interceptors: The method level interceptor intercepts only
calls to a single method.
 @Interceptors(value=com.packtpub.MethodInterceptor.class)
 public void doSomething() { ... }

In our example, we will apply an interceptor at method level, which can be used to
validate the parameters of the sendMail method.

public class MailerBean implements Mailer {

 @Interceptors(value=�� com.packtpub.ejb�����������������������.MailInterceptor.class)
 public void sendMail(String aToEmailAddr,
			 String aSubject, String aBody) { }
}	

•

•

•

Chapter 4

[95]

This is the interceptor implementation, which can be added as a new class to
your application.

package �����������������com.packtpub.ejb�;

import javax.ejb.EJBException;
import javax.interceptor.*;

public class MailInterceptor {

 @AroundInvoke [1]
 public Object checkMail(InvocationContext ctx) throws Exception
 {
 System.out.println("*** Entering MailInterceptor method " +
 ctx.getMethod().getName());

 String mailAddress = (String)ctx.getParameters()[0];
 if (mailAddress.indexOf("@")== -1 ||
 mailAddress.indexOf(".") == -1) {
 throw new EJBException("Invalid mail address");
 }

 try
 {
 return ctx.proceed(); [2]
 }
 catch(Exception e)
 {
 throw e;
 }
 finally
 {
 System.out.println("*** Leaving MailInterceptor");
 }
 }
}

As you can see, EJB 3.0 interceptors take the form of methods annotated with the
@javax.ejb.AroundInvoke [1] annotation. Our checkMail method validates the
email address and then, if successful, invokes the method ctx.proceed() [2]. This
method is used to invoke the next interceptor in the chain (if you had defined any)
and finally the business method.

Interceptors are particularly useful if you need to perform fine-grained activities
such as logging, performance measuring, parameters validation, or any other
functionality in your business methods, without modifying the methods' code.

Developing EJB 3 Session Beans

[96]

Stateful Session Beans
Stateful Session Beans are called stateful because they maintain a conversational
state with the client. In other words, they have instance fields that can be initialized
and changed by the client with each method invocation. The Bean can use the
conversational state as it processes business methods invoked by the client.

Stateful Session Beans are usually developed to act as agents for the client, managing
the interaction of other Beans and performing work on behalf of the client application.

Stateful Bean life cycle
Whenever a new client session is started, the default constructor of the SFSB is
invoked, resources are injected (if any), and the @PostConstruct callback takes
place. At this stage, the newly created Bean is stored in a cache and executes the
requested business method invoked through the business interface by the client.

If the client remains idle for a certain amount of time, the container passivates the bean
instance. Passivating a Stateful bean means moving it from the active cache, serializing,
and storing it in temporary storage. If the client happens to invoke a passivated bean, it
is then reactivated (brought back into memory from temporary storage).

If the client does not invoke a passivated bean instance for a period of time, it
is destroyed. The Bean can also be destroyed on demand, by means of the
"remove" method.

Stateful Session Bean Life cycle

new Session
started by
the Client Client

remove()
or timeout()

Does not
Exist

Ready
in

Cache

»
»
newInstance()
dependencyInjection
@PostConstruct»

»@PreDestroy

»@
Pr

eD
es

tr
oy

Passive

Client invoked a method
on a Passive instance

»@PrePassivate

»@PostActivate
Business method

timeout

In addition to the @PostConstruct and @PreDestroy life cycle callback methods,
SFSB also has the @PrePassivate and @PostActivate callback methods. A
@PrePassivate method is invoked before a Stateful Bean instance is passivated.
This can be used to release resources that cannot be serialized such as database
connections or sockets. If needed, you might save some "pointers" to your
connections into serializable fields.

Chapter 4

[97]

The @PostActivate callback is invoked after a bean instance is brought back into
the memory and is method ready. This callback can be used accordingly to restore
the Bean's functionalities such as dropped connections.

Another annotation, which is specific to SFSB, is the @Remove annotation. When a
method marked with the @Remove annotation is called, the container will remove
the Bean instance from the cache after the method is executed. For example, the
following removeBean() method, which has the @Remove annotation, can be used
to evict the Bean from memory.

@Remove
public void removeBean()
 {
 // The method body can be empty.
 System.out.println("Session terminated");
 }

Developing a simple Stateful Session Bean
Do you like gambling? To make this reading lighter, we will dissect Stateful Beans
with a tiny game application. Add a new EJB 3 Session Bean named BlackJack to
your project. From the File Menu select New | Other | EJB | EJB3 Session Bean.

Developing EJB 3 Session Beans

[98]

Here is the implememtation class:

package com.packtpub.ejb.example2;

import javax.ejb.Remote;

@Remote
public interface BlackJack {
 ������������������ public int deal();
 ������������������ public int quit();
}

As you can see, it is a pretty simple class. Black Jack fans might be disappointed
that we did not consider all aspects of the game; however, this will give you an
immediate perception of how an SFSB works.

package com.packtpub.ejb.example2;

import java.util.Random;

import javax.ejb.*;
import com.packtpub.ejb.BlackJack;

@Stateful [1]

public class BlackJackBean implements BlackJack {
 ���������� int score;

 public int deal() { [2]
 �������������������������������������� Random randomGenerator = new Random();
 �� int randomInt = (randomGenerator.nextInt(13)) + 1;

 �� if (randomInt > 10) randomInt = 10; // Q – J - K

 �����������������score+=randomInt;

 ���������������� if (score > 21){
 ���������� score = 0;
 �� throw new BustedException("You Busted!");
 �}
 ������������� return score;
 �}
 �������@Remove
 public int quit() { [3]
 ������������� return score;
 �}

}

Chapter 4

[99]

The bean, declared as Stateful [1], contains only two methods. The deal method
[2], used for extracting a random number that is added to the score, and the quit
method [3] that destroys the Bean instance when the game ends. In this class, we
use a BustedException class that simply extends the EJBException.

package com.packtpub.ejb.example2;

import javax.ejb.EJBException;

public class BustedException extends EJBException {

 ��������������������������������������� public BustedException(String string) {
 ��������������super(string);
 �}

}

The client application is a plain Java client, which requests the player to deal or quit.
package com.packtpub.client.example2;

import java.util.Scanner;
import javax.naming.*;
import com.packtpub.ejb.example2.BlackJack;

public class BlackJackClient {

	 public static void main(String[] args) throws Exception
	 {
		 Context ctx = new InitialContext();
		 BlackJack b = (BlackJack) ctx.lookup
 ("BlackJackBean/remote");

		 Scanner keyIn = new Scanner(System.in);
		 while (true) {
			 System.out.print("\nEnter 'd' to deal
 and 'q' to quit");
			 String key = keyIn.next();
			 if (key.startsWith("d")) {
				 System.out.println("You have got "+b.deal());
			 }
			 else if (key.startsWith("q")) {
				 System.out.println("You quit with "+b.quit());
				 break;
			 }
			 else { System.out.print("\nUnrecognized character");
			 }	

		 }

	 }

}

Developing EJB 3 Session Beans

[100]

Run your application by right-clicking on the class and selecting Run as | Java
Application. If you want to send keyboard input to an Eclipse application, you
need to select the Console window, thus making it the active window.

Configuring the EJB container
An EJB container manages the Enterprise Beans contained within it. For each
Enterprise Bean, the container is responsible for registering the object, creating and
destroying object instances, checking security for the object, managing its active
state, and coordinating distributed transactions.

The configuration of the EJB container in earlier releases of JBoss was made
through the conf/standardjboss.xml file. This file is still present in the 5.0
distribution for backward compatibility with EJB 1.x – 2.x specifications. However,
if you are focusing on the EJB 3.x release your new configuration file is
ejb3-interceptors-aop.xml, located in the deploy folder of your server.

This file contains a lot of information, but don't be scared. The configuration file is
divided into domains; so you have a domain for each EJB component.

domain name="Stateless Bean"

domain name="Stateful Bean"

domain name="Message Driven Bean"

. .

Structure of ejb3 interceptors aop.xml

Interceptors

Interceptors

Interceptors

Inside each domain, you have a sequence of actions, which are called interceptors.
An interceptor stack is a set of components in which every call proceeds through
the stack from first to last, until finally the target is called. After the target method
is executed, the call unwinds through the stack in reverse order.

Chapter 4

[101]

In order to give the maximum flexibility to interceptors, they have been designed
as stateless components so they do not save state information. The information
about the state of the call is carried on, instead, by means of the context of the
calling thread.

Source TargetInterceptor Interceptor Interceptor Interceptor

Thread
context

It is very unlikely that you need to replace the interceptor stack with your
own implementations; however, this gives you the idea of how interceptors
are structured.

Configuring Stateless Session Bean pool size
The EJB container maintains a pool of Stateless Session Beans to avoid creating
and destroying instances. You can configure the size of the EJB pool by setting the
appropriate value in the relative domain—for example, assume we want to increase
the stateless pool size from the default (which is 30) to a higher value.

Open deploy/ejb3-interceptors-aop.xml and look for the domain "Stateless
Bean". Here's an excerpt from it:

 <domain name="Stateless Bean" extends="Intercepted Bean"
inheritBindings="true">
 <annotation expr="!class(@org.jboss.ejb3.annotation.Pool)">
 @org.jboss.ejb3.annotation.Pool (value="ThreadlocalPool",
 maxSize=30, timeout=10000)
 </annotation>
 </domain>

The maxSize attribute determines the upper limit of your SLSB pool. Suppose the
default 30 is not enough for you; change the attribute with a consistent value and
restart JBoss.

The timeout attribute is the time in milliseconds, for which you want to block when
waiting for an instance to be ready. This attribute will thus come into play if your
requests are overflowing the pool size.

Developing EJB 3 Session Beans

[102]

The value attribute is concerned with the pooling mechanism. The basic configuration
of JBoss uses a Thread Local Pool (org.jboss.ejb3.ThreadLocalPool) to
avoid the burden of Java synchronization. You can conversely configure JBoss to
use an alternative pooling mechanism. For example, JBoss has a strict pool size
implementation that will allow only a fixed number of concurrent requests to run at
one time. If there are more requests running than the pool's strict size, those requests
will block until an instance becomes available.

 <annotation expr="!class(@org.jboss.annotation.ejb.PoolClass)">
 @org.jboss.annotation.ejb.PoolClass (value=org.jboss.ejb3.
 StrictMaxPool.class, maxSize=5, timeout=10000)
 </annotation>

Your pool configuration can be, at any time, inspected from the JMX console. Select
the jboss.j2ee domain from the left frame and, once you are in the agent view,
select the EJB 3 service you want to scan.

Here is a dump of attributes for the Stateless Session Beans, which we have been
customized to reach the maximum size of 100 units.

AvailableCount: This is a critical runtime attribute that reveals how many
EJB instances are available in the pool to service your requests.
InvokeStats: This attribute should also be closely monitored, as it informs
you about the number of concurrently executing calls, the elapsed minutes,
and the maximum time for single method calls.

•

•

Chapter 4

[103]

For example, if you have the following output in your stats:
InvocationStatistics concurrentCalls='2'
method name='doSomething' count='5' minTime='4594' maxTime='24594'
totalTime='89594'
Then you know that your EJB has serviced requests with the doSomething
method, has a minimum response time of 4.5 seconds, and a maximum
response time of 24.5 seconds. The total time spent calling this method was
about 89 seconds for 5 total requests (2 of which were issued concurrently).

How to set the MininumSize of the EJB pool?
The MinimumSize element appears in the conf/standardjboss.
xml file. It should determine the minimum number of instances to keep
in the pool, although JBoss does not currently seed an InstancePool to the
MinimumSize value. If you really need to initialize some EJB at startup
(supposing you have a costly start-up for your EJB), you need a bit of
coding. If you plan to include a web application along with your EJB, then
just create a Startup Servlet that will initialize some EJBs in its init()
method.

<servlet>
	 <servlet-name>EJBInitializationServlet</servlet-
name>
	 <servlet-class>sample.EJB.InitializationServlet</
servlet-class>
	 <load-on-startup>-1</load-on-startup>
</servlet>

Specializing the configuration
The configuration discussed earlier affects every stateless EJB deployed in your
container. You can, however, restrict the customization to a single component of
your application.

The simplest way to configure the pool for a single EJB is applying a @PoolClass
annotation at class level:

 @Stateless
 @PoolClass (value=org.jboss.ejb3.StrictMaxPool.class,
 maxSize=5, timeout=10000)
 public class CustomSessionBean implements CustomSession
 {
 ...
 }

Developing EJB 3 Session Beans

[104]

If you don't want to embed the configuration in your EJB class, you have got another
(not so immediate) option that needs a couple of steps. Firstly, define a new domain
in your ejb3-interceptors-aop.xml configuration file:

<domain name="Custom Pooled Stateless Bean" extends="Stateless Bean"
inheritBindings="true">
 <annotation expr="!class(@org.jboss.annotation.ejb.PoolClass)">
 @org.jboss.annotation.ejb.PoolClass (value=org.jboss.ejb3.
StrictMaxPool.class, maxSize=5, timeout=10000)
 </annotation>
</domain>

The next thing you have to do is apply the domain to your EJB within the jboss.xml
file deployed along with your application.

<?xml version="1.0"?>
<jboss
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://www.jboss.org/j2ee/schema/
 jboss_5_0.xsd"
 version="3.0">
 <enterprise-beans>
 <session>
 <ejb-name>CustomSessionBean</ejb-name>
 <aop-domain-name>Custom Pooled Stateless Bean
 </aop-domain-name>
 </session>
 </enterprise-beans>
</jboss

This file needs to be placed in the META-INF folder of your deployed archive.

Configuring the Stateful Session Bean cache
A Stateful Session Bean has to maintain state (instance variables' values) across the
methods for a client. Once created, an SFSB is stored in a cache. This area of memory
stores active EJB instances so that they are immediately available for client requests.
So, Stateful Session Beans in cache are bound to a determinate client.

Chapter 4

[105]

You can configure ��� Stateful Session beans through the domain "Stateful Bean" in
the file ejb3-interceptors-aop.xml. There you can see the configuration is split
in two parts:

The Non-clustered cache configuration that will be used for single
node applications
The Clustered cache configuration that will affect applications deployed
in a cluster of JBoss instances

 <domain name="Stateful Bean" extends="Base Stateful Bean"
 inheritBindings="true">
 <!-- NON Clustered cache configuration -->

 @org.jboss.ejb3.annotation.CacheConfig (maxSize=100000,
 idleTimeoutSeconds=300, removalTimeoutSeconds=0)
 </annotation>

 <!-- Clustered cache configuration -->

 @org.jboss.ejb3.annotation.CacheConfig (name="sfsb-cache",
 maxSize=100000, idleTimeoutSeconds=300,
 removalTimeoutSeconds=0)
 </annotation>
 </domain>

The maxSize parameter is the upper limit to the cache size.

idleTimeoutSeconds defines the maximum length of time a Stateful Session EJB
should remain in cache. After this time has elapsed, JBoss removes the bean instance
from the cache and starts to passivate it.

removalTimeoutSeconds defines how long the Bean remains active before it is
completely removed. The default 0 represents infinity, so by default SFSB are not
removed from the container.

You can reach the SFSB information from the JMX console by digging into the
jboss.j2ee domain and then, from the JMX agent view, selecting your Stateful
Session Bean service.

•

•

Developing EJB 3 Session Beans

[106]

In the MBean view, you'll be presented with the following list of attributes:

The CacheSize attribute indicates the current size of the Stateful cache.
When a Stateful Bean is passivated, the CacheSize is decremented, whereas
PassivatedCount is increased.

The CurrentSize attribute needs a bit more explanation. Each thread local pool holds
a pool of active thread instances, just in case the instance will be used again. So,
CurrentSize indicates how many thread instances have been created. If each thread
uses only one instance of Stateful Bean, the CurrentSize should match CreateCount.

Warning!
At the time of writing SFSB pooling statistics, when using
ThreadLocalPool, do not properly collect data for a few attributes such
as MaxSize and AvailableCount. Check in the JBoss bug parade for
JIRA EJBTHREE-1703.

Chapter 4

[107]

How to disable Stateful Bean passivation
Passivation of a Stateful Bean is a trade off between memory and performance. In
most cases, it is preferred to swap resources that have been idle for a long time onto
a persistent storage; however, there are some situations where you can opt for a
different approach. For example, if you have plenty of memory available, maybe
you would like to avoid the costly marshalling/unmarshalling of a complex list of
objects. You may also find passivation cumbersome, if you have lots of transient
fields (such as external resources) that somehow need to be re-acquired when the
SFSB is restored.

You have got a few options to avoid passivation. The simplest is to set a
removal timeout smaller (but greater then zero) then the idle timeout in
the file deploy/ejb3-interceptors-aop.xml.

 <domain name="Stateful Bean" extends="Base Stateful Bean"
 inheritBindings="true">
.
 <annotation expr="!class(@org.jboss.ejb3.annotation.CacheConfig)
AND !class(@org.jboss.ejb3.annotation.Clustered)">
 @org.jboss.ejb3.annotation.CacheConfig (maxSize=100000,
 idleTimeoutSeconds=300, removalTimeoutSeconds=50)
 </annotation>
.
 </domain>

This way the Bean is going to be removed before it has even got a chance to be
passivated. This approach is a bit aggressive even if it ensures that memory
consumption problems are less likely to occur.

Another possible solution is switching from the default SFSB cache passivation
implementation to a no-passivation cache implementation. Here's how to do it:
Pick up the deploy/ejb3-interceptors-aop.xml file and locate the following line:

<domain name="Stateful Bean" extends="Base Stateful Bean"
inheritBindings="true">
<annotation expr="!class(@org.jboss.ejb3.annotation.Cache) AND
!class(@org.jboss.ejb3.annotation.Clustered)">
 @org.jboss.ejb3.annotation.Cache ("SimpleStatefulCache")
</annotation>)

Replace the hightlighted line with the following text:

 @org.jboss.ejb3.annotation.Cache(org.jboss.ejb3.cache.
NoPassivationCache.class)

Developing EJB 3 Session Beans

[108]

Using this approach you are guaranteed that your SFSB will not passivate because
they will use a separate cache that doesn't persist objects after an idleTimeout.

Setting NoPassivationCache for a single EJB
You can also set the NoPassivationCache strategy at single EJB level
by adding the @Cache(org.jboss.ejb3.cache.NoPassivationCache.class)
annotation at Class level.

Which approach is the most viable? If your application creates many short-living
sessions that are not invalidated by the client, then you can choose the first option
(removal timeout smaller then idle timeout), which is more aggressive but keeps
memory consumption low.

If, on the other hand, your EJB Client fully controls how long the conversation lasts,
then choose the NoPassivationCache option, which guarantees that your SFSB will
not be removed until the client issues a remove().

Summary
We have covered a great deal of topics in this chapter. Let's just recall what we have
been doing. First we entered the world of Session Beans, dissecting the two different
components that can be used for handling the business logic—Stateless and Stateful
Session Beans.

Initially we learned a whole lot of things about EJB development, so in the latter part
of this chapter we stopped the "production" wheel for a moment, and illustrated how
we can possibly configure the EJB container for best results.

In the next chapter, we will introduce the new Java EE Persistence API (JPA),
showing how it greatly simplify the previous EJB Entity Beans' model.

Developing JPA Entities
Ambition is the path to success. Persistence is the vehicle you arrive in. – Bill Bradley
(a politician).

The EJB 3.0 specification includes a persistence specification called the Java
Persistence API (JPA). It is an API for creating, removing, and querying Java objects
called entities that can be used within both, a compliant EJB 3.0 container and a
standard Java SE 5 environment.

In this chapter, we introduce the AppStore application, which will be a central theme
of this book. The application includes a persistence layer designed around JPA,
a session bean facade, and a frontend delivered with JavaServer Faces (JSF) web
framework (we will see this in the next chapter).

In this chapter, we will discuss the following topics in more detail:

The key elements of JPA
How to create entities starting from database tables
How to manipulate the entities with a session bean
Delivering a standalone client for testing the application

Data persistence meets a standard
The arrival of an Enterprise Java Persistence standard, based on a "POJO"
development model, fills a substantial gap in the Java EE platform. The previous
attempt of EJB 2.x specification missed the mark and created the stereotype of EJB
entity beans as awkward to develop and too heavy for many applications. Therefore,
it never reached the level of widespread adoption or general approval in many
sectors of the industry.

•

•

•

•

Developing JPA Entities

[110]

Software developers knew what they wanted, but many could not find it in
the existing standards, so they decided to look elsewhere. What they found
was proprietary persistence frameworks, both in the commercial and open
source domains.

In contrast to EJB 2.x entity beans, the EJB 3.0 Java Persistence API is a
metadata-driven POJO technology. That is, to save data held in Java objects into
a database, our objects are not required to implement an interface, extend a class,
or fit into a framework pattern.

Another key feature of JPA is the query language, called the Java Persistence Query
Language (JPQL) that gives you a way to specify the semantics of queries in a
portable way, independent of the particular database you are using in an enterprise
environment. JPA queries resemble SQL queries in syntax, but operate against entity
objects rather than directly with database tables.

Working with JPA
Inspired by object-relational mapping (ORM) frameworks, such as Hibernate, JPA
uses annotations to map objects to a relational database. JPA entities are POJOs
that neither extend a class nor implement an interface. You don't even need XML
descriptors for your mapping. Actually, the Java Persistence API is made up of
annotations and only a few classes and interfaces. For example, we would mark
the class Company as entity, as follows:

@Entity
public class Company {
public Company () { }
@Id
String companyName;
}

The last code snippet shows the minimal requirements for a class to be persistent,
which are:

It must be identified as an entity using the @javax.persistence.Entity
annotation
It must have an identifier attribute with the @javax.persistence.Id
annotation
It must have a no-argument constructor

I guess you would learn better from an example, so in the next section we will show
how to create and deploy a sample JPA application on JBoss 5.

•

•

•

Chapter 5

[111]

Creating a sample application
Our sample application will be a small store application, which tracks orders from a
list of customers. The application will be developed using MySQL database, which is
freely downloadable from http://dev.mysql.com/downloads/.

We suggest that you download MySQL 5.x, as well as MySQL Connector/J, which
is used for Java Database Connectivity (JDBC). Once the download is complete,
extract the file mysql-connector-java.jar and place it in the JBOSS_HOME/common/
lib, thus making it available to all your server configurations.

Setting up the database
We will create a database named appstore, and then we will add a user named
jboss assigning it all privileges on the schemas, as shown in the following
code snippet:

CREATE DATABASE appstore;
USE appstore;
CREATE USER 'jboss'@'localhost' IDENTIFIED BY 'jboss';
GRANT ALL PRIVILEGES ON appstore.* TO 'jboss'@'localhost' WITH GRANT
 OPTION;

Our simple schema will be made up of two tables—the Customer table that contains
the list of all customers and the Item table that holds the list of all orders. The
two tables are in a 1-n relationship and the Item table hosts a Foreign key
(customer_id) that relates to the id of the Customer table.

Item
1-*

Customer
id
name
country

Foreign key
customer_id

id
product
price
quantity
customer_id

CREATE TABLE appstore.customer (
 `ID` int(10) unsigned NOT NULL auto_increment,
 `NAME` varchar(45) NOT NULL,
 `COUNTRY` varchar(45) NOT NULL,
 PRIMARY KEY (`ID`)

Developing JPA Entities

[112]

) ENGINE=InnoDB;
CREATE TABLE appstore.item (
 `ID` int(10) unsigned NOT NULL auto_increment,
 `PRODUCT` varchar(45) default NULL,
 `PRICE` int(11) default NULL,
 `QUANTITY` int(11) default NULL,
 `CUSTOMER_ID` int(10) unsigned NOT NULL,
 PRIMARY KEY (`ID`),
 KEY `FK_orders` (`CUSTOMER_ID`),
 CONSTRAINT `FK_orders` FOREIGN KEY (`CUSTOMER_ID`) REFERENCES
 `customer` (`ID`) ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB;

Rolling the EJB project
Once we are done with the data layer, we will create our entities. A preamble is
necessary before we begin. Depending on the release of your Eclipse and JBoss
Tools, you can model your project in several ways. In this example, we will create
our entities using a wizard, so you will not need to write mapping classes manually.
However, if you don't have the latest JBoss Tools installation, you still have other
options available. For example, you can use Hibernate Tools to automatically
generate mapping classes (this will be covered in Chapter 8, Developing Applications
with JBoss and Hibernate).

Here we go. This project will contain both session beans and entities. Therefore, the
simplest way to start is by creating a new EJB project and adding a JPA nature to it.

From the File menu, select New | Other | EJB | EJB Project, and name it
AppStore—an application for handling a store. (I have to admit sometimes
IT guys don't have much imagination!)

Now we will add JPA capabilities to our project. Right-click on the project and
select Properties. The property we are interested in is Project Facets, which is the
collection of capabilities added to our project. Select Java Persistence, as indicated
in the following screenshot, and click OK.

Chapter 5

[113]

Now your AppStore has got some new interesting options. Let's see where you can
find them. Move to the root of your project and right-click on AppStore. Select New
| Entities From Tables (see the following screenshot):

The JPA wizard will start. The process of reverse engineering the database into Java
entities can be roughly divided into two steps as follows:

1.	 Configuring the database connection: This step involves the definition of
a database connection that needs to be performed just the first time you use
the JPA wizard.

2.	 Generating entities: This second step is the actual process of
reverse engineering.

These steps are discussed in more detail as follows:

Developing JPA Entities

[114]

Configuring the database connection
As we don't have any configured connection, you have to create a new one by
clicking on the shiny little button at the top-right corner of your wizard, which
is shown in the following screenshot:

In the next window, you have to select the database that contains your planned
entities. Select MySQL (or whichever database you are using) from the next
wizard and choose an appropriate label for our connection; here we select
MySQL Connection.

Chapter 5

[115]

Hit Next. A new window will let you specify a driver and connection details. As we
do not have any JDBC driver configured yet, you should first click on the little icon
(+) in the top-right corner.

The New Driver Definition dialog appears. First, select the driver template from the
list of available options; in our case select MySQL 5.0. Then in the Jar List tab, point
to the MySQL connector, which we downloaded earlier.

Developing JPA Entities

[116]

Okay, we are almost done. The last thing you need to select is the JDBC Driver
properties in the New Connection Profile, which should match with your
appstore database.

Before clicking Finish, we suggest you verify the connection with the Test
Connection button. If for some reason the test fails, verify the General Properties
and, of course, that the database is up and running.

Chapter 5

[117]

Generating entities
Once the connection configuration is complete, it's time to roll your entities. You will
be taken back to the first JPA wizard window, where you can now select the Schema
as appstore and the Tables as customer and item:

Selecting Synchronize classes listed in persistence.xml will insert the entity
definition in the main JPA configuration file—persistence.xml. This is not
a mandatory step; however, Eclipse will complain later if the entities are not
synchronized with the configuration file.

Click Next. In the subsequent wizard you have to deal with Table Associations. As
you can see in the following screenshot, the JPA facet correctly recognizes the 1-n
association between customer and item. In terms of entities, this will mean that the
Customer entity will contain a list of Item entities ordered and the Item class will
contain a reference to the Customer.

Developing JPA Entities

[118]

Click on the association diagram and choose names for the entity fields that will
describe the relation.

In the last screenshot, customerFK will be a reference to the Customer (in the Item
class) and items will hold the list of items ordered by a single customer. You are just
one step away from finishing. Click Next. In the next wizard, you have to customize
your entities.

Chapter 5

[119]

The options that override the defaults are framed in the following screenshot:

First, we want our entities to use an Eager fetching strategy. What does this mean?
By default, when we have an association between two entities, the referenced objects
are lazy loaded, that is, fetching and loading the data from the persistent storage is
done only when it is needed. In contrast to lazy loading, eager loading loads the full
object tree at once. Lazy loading contributes a lot to improving the performance of an
application, by limiting the number of objects that will be needed. However, if you
need to traverse the tree of objects from the client side (as in our example), you will
need to use the eager fetching strategy.

Then, select the class java.util.List as Collection properties type, which will be just
fine for returning a vector of items and customers.

Lastly, choose the target package for the entities, that is, com.packtpub.jpa.
example3. If you want to preview the entities that are going to be generated, have a
look at the next windows. Otherwise, you can complete the JPA wizard by clicking
on the Finish button.

Developing JPA Entities

[120]

Reverse engineering aftermath
From the Project Explorer window, let's explore what the wizard has created
for you:

If you have successfully completed all the wizard steps, your entities will be correctly
packaged in the com.packtpub.jpa.example3 folder.

Let's have a look at the Customer entity:

package com.packtpub.jpa.example3;
import java.io.Serializable;
import javax.persistence.*;
import java.util.List;
import static javax.persistence.FetchType.EAGER;
@Entity [1]
@Table(name="customer") [2]
public class Customer implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id [3]
 @GeneratedValue(strategy=GenerationType.AUTO)
 @Column(name="ID") [4]
 private int id;
 @Column(name="COUNTRY")
 private String country;
 @Column(name="NAME")
 private String name;
 //bi-directional many-to-one association to Item

Chapter 5

[121]

 @OneToMany(mappedBy="customerFK", fetch = EAGER) [5]
 private List<Item> items;
 public Customer() {
 }
 public int getId() {
 return this.id;
 }
 public void setId(int id) {
 this.id = id;
 }
 public String getCountry() {
 return this.country;
 }
 public void setCountry(String country) {
 this.country = country;
 }
 public String getName() {
 return this.name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public List<Item> getItems() {
 return this.items;
 }
 public void setItems(List<Item> items) {
 this.items = items;
 }
}

The first meaningful annotation is @Entity [1] that declares the class as an entity.
The @Table [2] annotation is used to map the bean class with a database table.

The @Id annotation [3] is mandatory; it describes the primary key of the table. Along
with @Id, there's the @GeneratedValue annotation. This is used to declare that the
database is in charge of generating the value.

Moving along, the @Column [4] annotation is used to map the Java field with the
corresponding database column. You can leave out this annotation, if the two
elements are equal.

The @OneToMany annotation [5] defines an association with one-to-many multiplicity.
Actually, the Customer class has many orders. The corresponding orders are
contained in a List collection.

Developing JPA Entities

[122]

In the JPA wizard, we have chosen the EAGER attribute to the @OneToMany annotation
so that all orders are populated at the same time when we issue a query on the
Customer entity.

At this point we have inspected the Customer entity. Let's have a look at the
Item entity:

package com.packtpub.jpa.example3;
import java.io.Serializable;
import javax.persistence.*;
@Entity
@Table(name="item")
public class Item implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 @Column(name="ID")
 private int id;
 @Column(name="PRICE")
 private int price;
 @Column(name="PRODUCT")
 private String product;
 @Column(name="QUANTITY")
 private int quantity;
 //bi-directional many-to-one association to Customer
 @ManyToOne [1]
 @JoinColumn(name="CUSTOMER_ID") [2]
 private Customer customerFK;
 public Item() {
 }
 public int getId() {
 return this.id;
 }
 public void setId(int id) {
 this.id = id;
 }
 public int getPrice() {
 return this.price;
 }
 public void setPrice(int price) {
 this.price = price;
 }
 public String getProduct() {
 return this.product;
 }

Chapter 5

[123]

 public void setProduct(String product) {
 this.product = product;
 }
 public int getQuantity() {
 return this.quantity;
 }
 public void setQuantity(int quantity) {
 this.quantity = quantity;
 }
 public Customer getCustomerFK() {
 return this.customerFK;
 }
 public void setCustomerFK(Customer customerFK) {
 this.customerFK = customerFK;
 }
}

As you can see, the Item entity has the corresponding @ManyToOne [1] annotation,
which naturally complements the @OneToMany relationship. The @JoinColumn [2],
which has the same syntax of the @Column annotation, notifies the JPA engine that the
customerFK field is mapped through the foreign key of the database customer_id.

Configuring persistence
The entity API looks great and very intuitive, but how does the server know which
database is supposed to store/query the entity objects? The persistence.xml file
(located in the META-INF folder of your project) is the standard JPA configuration
file. Believe it, this is a huge leap towards application server compatibility. By
configuring this file, you can easily switch from one persistence provider to
another and thus, also from one application server to another.

At the beginning, the persistence.xml file contains just the mapped entities
we created. We have to specify the persistence provider and the underlying
datasource used.

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/
persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://
java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
 <persistence-unit name="AppStore" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:/MySqlDS</jta-data-source>
 <class>com.packtpub.jpa.example3.Customer</class>
 <class>com.packtpub.jpa.example3.Item</class>
 <properties>

Developing JPA Entities

[124]

 <property name="hibernate.dialect"
 value="org.hibernate.dialect.MySQLDialect"/>
 </properties>
 </persistence-unit>
</persistence>

The highlighted attributes need to be added to persistence.xml. The attribute
name is a mandatory element, which will be used to reference the persistence unit
from our Enterprise JavaBeans. Then, we have specified the provider factory, which
will be used (in our case, it's HibernatePersistence). Another key attribute is the
jta-data-source that needs to point to a datasource component. The last property,
hibernate.dialect, will specify the O/R dialect class.

The only thing we have missed out is adding a datasource to the JBoss configuration.
Beginning with the templates in docs\examples\jca folder of JBoss, we will create
a MySQL datasource, which points to our appstore schema:

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
 <local-tx-datasource>
 <jndi-name>MySqlDS</jndi-name>
 <connection-url>jdbc:mysql://localhost:3306/
 appstore</connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <user-name>jboss</user-name>
 <password>jboss</password>
 <exception-sorter-class-name>org.jboss.resource.adapter.
 jdbc.vendor.MySQLExceptionSorter
 </exception-sorter-class-name>
 <metadata>
 <type-mapping>mySQL</type-mapping>
 </metadata>
 </local-tx-datasource>
</datasources>

Save this file as mysql-ds.xml in the deploy folder of your JBoss configuration.

Creating a Session Bean client
With the classes that we just saw, we have completed the entity layer but we have
not finished with the EJB project. Actually, if you allow client applications to directly
access the entity, then the client requires knowledge of the entity implementation that
goes beyond what clients should have. For instance, manipulating an entity requires
knowledge of the entity relationships (such as associations and inheritance) that are
involved, inappropriately exposing the client to all of the details of the business model.

Chapter 5

[125]

The best practice advocated by Java EE architects is to provide a business interface to
the entity subsystem; the standard interfaces for the persistence entities are Stateless
Session Beans.

In our example, we are going to create two interfaces for our EJB clients—one
for remote clients and another for local clients. Java SE clients will connect to our
session beans through the remote interface, whereas web clients (described in the
next chapter) will conveniently use the local interface.

At this stage you should be comfortable with stateless bean. Create a new session
EJB 3 from the File menu: New | Other | EJB | EJB 3 Session Bean. The suggested
name for this example is com.packtpub.ejb.example3.StoreManager. This will
also create the implementing class com.packtpub.ejb.StoreManagerBean. Here is
its interface contract:

package com.packtpub.ejb.example3;

import java.util.List;

import javax.ejb.Local;

import com.packtpub.jpa.example3.Customer;
import com.packtpub.jpa.example3.Item;

public interface StoreManager {

	 public void createCustomer(String country,String name);
	 public List<Customer> findAllCustomers();
	 public Customer findCustomerByName(String name);
	 public Customer findCustomerById(int id);

	 public void saveOrder(int idCustomer, int price,
 int quantity,String product);
	 public List<Item> findAllItems(int customerId);

}

We have defined one method createCustomer that will be used to add new customers
to our store. Then we have added some finder methods: findAllCustomers,
findAllCustomerByName, and findCustomerById that can be used to retrieve
the single Customer or the whole list.

Items ordered can be persisted by means of the saveOrder method and queried with
the findAllItems method.

Developing JPA Entities

[126]

The interface we just saw will be extended by the StoreManagerLocal and
StoreManagerRemote interfaces, which will provide respectively the local
and remote view of the EJB:

package com.packtpub.ejb.example3;
import javax.ejb.Local;
@Local
public interface StoreManagerLocal
extends StoreManager {
}

And here's the StoreManagerRemote interface:

package com.packtpub.ejb.example3;
import javax.ejb.Remote;
@Remote
public interface StoreManagerRemote
extends StoreManager{
}

The concrete implementation class is contained in the StoreManagerBean class:

package com.packtpub.ejb.example3;

import java.util.List;

import javax.ejb.Stateless;
import javax.persistence.*;

import org.jboss.ejb3.annotation.LocalBinding;
import org.jboss.ejb3.annotation.RemoteBinding;

import com.packtpub.jpa.example3.*;

@Stateless

@RemoteBinding(jndiBinding="AppStoreEJB/remote")
@LocalBinding(jndiBinding="AppStoreEJB/local")

public class StoreManagerBean implements StoreManagerLocal,
 StoreManagerRemote {
	 @PersistenceContext(unitName="AppStore")
	 private EntityManager em;

	 public void createCustomer(String country,String name) {
		 Customer customer = new Customer();
		 customer.setCountry(country);
		 customer.setName(name);
		 em.persist(customer);
	 }
	 public void saveOrder(int idCustomer, int price,

Chapter 5

[127]

			 int quantity, String product) {

		 Customer customer = findCustomerById(idCustomer);

		 Item order = new Item();
		 order.setCustomerFK(customer);
		 order.setPrice(price);
		 order.setQuantity(quantity);
		 order.setProduct(product);
		 em.persist(order);
	 }

	 public List<Item> findAllItems(int customerId)
	 {

		 Query query = em.createQuery("FROM Customer where id=:id");
		 query.setParameter("id", customerId);
		 Customer customer = (Customer)query.getSingleResult();

		 List <Item>customerOrders = customer.getItems();

		 return customerOrders; 	

	 }
	 public Customer findCustomerByName(String customerName)
	 {

		 Query query = em.createQuery("FROM Customer
 where name=:name");
		 query.setParameter("name", customerName);
		 Customer customer = (Customer)query.getSingleResult();

		 return customer; 	

	 }

	 public Customer findCustomerById(int id)
	 {

		 Query query = em.createQuery("FROM Customer where id=:id");
		 query.setParameter("id", id);
		 Customer customer = (Customer)query.getSingleResult();

		 return customer; 	

	 }
	 public List<Customer> findAllCustomers() {
		 Query query = em.createQuery("FROM Customer");
		 List<Customer> customerList = query.getResultList();

		 return customerList; 	
	 }

}

Developing JPA Entities

[128]

The @PersistenceContext [1] annotation added to the EntityManager field, injects
a container-managed persistence context. You might think of this as an object-oriented
connection to the RDBMS. The following diagram illustrates the whole sequence:

StoreManagerBean.java

@PersistenceContext(unitName="AppStore"
private EntityManager em;

persistence.xml

JPA configuration file

JBoss datasource file

MySQL Database

3

<persistence-unit
name=" ">AppStore

<jta-data-source>

</jta-data-source>
java:/MySqlDS

<jndi-name>

</jndi-name>
MySqlDS

mySQL-ds.xml 2

1

As you can see, the injected resource AppStore references the persistence unit
defined in persistence.xml. This in turn points to the jta datasource named
MySqlDS. The datasource (defined in the mySQL-ds.xml configuration file)
contains the connection details of the MySQL appstore schema.

The first method, createCustomer, illustrates how you can perform the equivalent
of a CREATE SQL statement using JPA. As you can see, it's all about creating object
instances [2]. Until you persist [3] your objects, however, all changes are held
in memory.

The method saveOrder works quite the same. Moving to the finder methods, we
meet the findAllItems method. If you have already worked with Hibernate, this
should sound very familiar to you. In fact, JPA also uses a database-independent
language, Java Persistence Query Language, to issues queries. It is a rich language
that allows you to query any complex object's model (associations, inheritance,
abstract classes, and so on) using common built-in database functions. There are
functions that deal with strings (LOWER, UPPER, TRIM, CONCAT, LENGTH, and SUBSTR),
numbers (ABS, SQRT, and MOD), or collections (COUNT, MIN, MAX, and SUM). Like SQL,
you can also sort the results (ORDER BY) or group them (GROUP BY).

Chapter 5

[129]

In our sample method, we issue a query [4], which is filtered by the id parameter
[5]. The use of parameters here is quite similar to plain PreparedStatements
bound variables. The EJB contains additional finder methods (findCustomerById,
findCustomerByName, and findAllCustomers) that are modeled using the same
steps as in findAllItems.

At this point, our EJB layer is completed. Here's a screenshot of the Project Explorer
that depicts the complete AppStore project:

It's now time to deploy the EJB project to our application server. Follow the same
steps described in the session bean examples, that is, from the JBoss AS perspective
right-click on the server node and choose Add and remove Project; then in the same
window choose Full Publish in order to deploy the project. Verify from the server
console that your EJB has bound correctly in the JNDI tree:

 AppStoreEJB/remote - EJB3.x Default Remote Business Interface
 AppStoreEJB/local - EJB3.x Default Local Business Interface

The next section is about creating the client interface for this application.

Developing JPA Entities

[130]

Creating a test client for our AppStore
Clients for session beans can be simple J2SE classes or server-side components such
as JSP-servlets. We will now create a very simple Java class for interacting with
the session remote interface. Add a new Java class to the project from File | New
| Class and choose a name for it. Here's the com.packtpub.client.example3.
TestAppStore class:

package com.packtpub.client.example3;

import java.util.*;

import javax.naming.*;

import com.packtpub.ejb.example3.*;
import com.packtpub.jpa.example3.*;

public class TestAppStore {

	 public static void main(String[] args) throws Exception {
		 Hashtable hash = new Hashtable();
		 hash.put("java.naming.factory.initial","
 org.jnp.interfaces.NamingContextFactory");
		 hash.put("java.naming.provider.url","jnp://localhost:1099");
		 hash.put("java.naming.factory.url.pkgs","
 org.jnp.interfaces");

		 Context ctx = new InitialContext(hash);

		 StoreManager storeManager = (StoreManager)ctx.
 lookup("AppStoreEJB/remote");

		 // Create a Customer [1]
		 storeManager.createCustomer("Usa","Clint Eastwood");

		 // Retrieve the Customer [2]
		 Customer customer = storeManager.findCustomerByName
 ("Clint Eastwood");

		 // Save an order for an Item
		 storeManager.saveOrder(customer.getId(), 1000,5, "Bycycle");

		 // Find all Items ordered by the Customer [3]
		 List<Item> items = storeManager.findAllItems
 (customer.getId());

		 System.out.println("Listing orders for "
 +customer.getName());
		 Iterator <Item> iter = items.iterator();
		 while (iter.hasNext()) {
			 Item item = iter.next();

Chapter 5

[131]

			 System.out.println("----------------");
			 System.out.println("id #" +item.getId());
			 System.out.println("product #" +item.getProduct());
			 System.out.println("qty #" +item.getQuantity());
			 System.out.println("$ #" +item.getPrice());
		 }

	 }

}

The Java class should be self-explanatory at this stage. We have created a customer
from Usa [1] who places an order for an item [2]. The list of pending items ordered
is queried by the findCustomerByName method [3]. That's all folks!

Summary
The aim of the new Java Persistence API is to simplify the development of persistent
entities. It meets this objective through a simple POJO-based persistence model that
reduces the number of required classes and interfaces.

Mapping database tables with Java objects can be cumbersome, so we have first
shown here a quick reverse engineering solution, which is available in the Eclipse
development environment. In the latter part of this chapter, we have added a
session bean facade to our entities and tested it with a Java standalone client.

In the next chapter, we will further enhance our example application by introducing
a web project that controls user interaction.

Creating a Web Application
Wonder what was the first message sent through Internet? At 22:30 hours on October 29,
1969, a message was transmitted using ARPANET (the predecessor of the global Internet)
on a host-to-host connection. It was meant to transmit "login". However, it transmitted just
"lo" and crashed.

This chapter is about developing and configuring web applications using JBoss
web container. Most developers have surely gained some experience with web
applications. Therefore, we will not cover the basics of web applications; we
will rather disclose how easy it can be to create a consistent web layer for your
applications, using just the right tools and, of course, the right technique.

We will cover the following topics in more detail:

What is JSF and how to install it on JBoss AS
How to create a JSF facade for our pasture application
How to configure JBoss Web Server

Developing web layout
The basic component of any Java web application is the servlet. Born in the middle
of the 90s, servlets quickly gained success against their competitors, the CGI scripts.
This was because of some innovative features, especially the ability to execute
requests concurrently, without the overhead of creating a new process for each
request. However, a few things were missing, for example, the servlet API did not
address any APIs specifically for creating the client GUI. This resulted in multiple
ways of creating the presentation tier, generally with tag libraries that differed from
job to job and from individual developers.

•

•

•

Creating a Web Application

[134]

The second thing that was missing in the servlet specification was a clear distinction
between the �� presentation tier and the backend������������������������������� . A plethora of web frameworks
tried to fill this gap; particularly the Struts framework effectively realized a clean
separation of the model (application logic that interacts with a database) from the
view (HTML pages presented to the client) and the controller (instance that passes
information between view and model).

However, the limitation of these frameworks was that even if they realized
a complete modular abstraction, they still failed as they always exposed the
HttpServletRequest and HttpServletSession objects to their action(s). Their
actions, in turn, needed to accept the interface contracts such as ActionForm,
ActionMapping, and so on.

The JavaServer Faces that emerged on the stage a few years later pursued a different
approach. Unlike request-driven Model–View–Controller (MVC) web frameworks,
JSF chose a component-based approach that ties the user interface component to a
well-defined request processing life cycle. This greatly simplifies the development
of web applications.

The JSF specification allows you to have presentation components be POJOs. This
creates a cleaner separation from the servlet layer and makes it easier to do testing
by not requiring the POJOs to be dependent on the servlet classes.

In the following sections, we will describe how to create a web layout for our
application store using the JSF technology. For an exhaustive explanation of the JSF
framework, we suggest you to surf the JSF homepage at http://java.sun.com/
javaee/javaserverfaces/.

Installing JSF on JBoss AS
JBoss AS already ships with the JSF libraries, so the good news is that you don't
need to download or install them in the application server. There are different
implementations of the JSF libraries. Earlier JBoss releases adopted the Apache
MyFaces library. JBoss AS 4.2 and 5.x ship with the Common Development and
Distribution License (CDDL) implementation (now called "Project Mojarra") of
the JSF 1.2 specification that is available from the java.net open source community.

Chapter 6

[135]

Switching to another JSF implementation is anyway possible. All you
have to do is package your JSF libraries with your web application and
configure your web.xml to ignore the JBoss built-in implementation:

<context-param>
 <param-name>org.jboss.jbossfaces.WAR_BUNDLES_JSF_
IMPL</param-name>
 <param-value>true</param-value>
</context-param>

We will start by creating a new JSF project. From the File menu, select New |
Other | JBoss���������������������������������� ��������������������������������� Tools���������������������������� ��������������������������� Web������������������������ | ��������������������� JSF������������������ | ��������������� JSF������������ ����������� Web�������� �������project. The JSF applet wizard will
display, requesting the Project Name, the JSF Environment, and the default
starting Template.

www.allitebooks.com

http://www.allitebooks.org

Creating a Web Application

[136]

Choose AppStoreWeb as the project name, and check that the JSF Environment
used is JSF 1.2. You can leave all other options to the defaults and click Finish.
Eclipse will now suggest that you switch to the Web Projects view that logically
assembles all JSF components. (It seems that the current release of the plugin doesn't
understand your choice, so you have to manually click on the Web Projects tab.)

The key configuration file of a JSF application is faces-config.xml contained in
the Configuration folder. Here you declare all navigation rules of the application
and the JSF managed beans. Managed beans are simple POJOs that provide the logic
for initializing and controlling JSF components, and for managing data across page
requests, user sessions, or the application as a whole.

Adding JSF functionalities also requires adding some information to your web.xml
file so that all requests ending with a certain suffix are intercepted by the
Faces Servlet. Let's have a look at the web.xml configuration file:

<?xml version="1.0"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <display-name>AppStoreWeb</display-name>
 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
 </context-param>
 <context-param> [1]
 <param-name>com.sun.faces.
 enableRestoreView11Compatibility</param-name>
 <param-value>true</param-value>
 </context-param>
 <listener>

Chapter 6

[137]

 <listener-class>com.sun.faces.config.
 ConfigureListener</listener-class>
 </listener>
 <!-- Faces Servlet -->
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <!-- Faces Servlet Mapping -->
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.jsf</url-pattern>
 </servlet-mapping>
 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>
</web-app>

The context-param pointed out here [1] is not added by default
when you create a JSF application. However, it needs to be added, else
you'll stumble into an annoying ViewExpiredException when your
session expires (JSF 1.2).

Setting up navigation rules
In the first step, we will define the navigation rules for our AppStore. A minimalist
approach would require a homepage that displays the orders, along with two
additional pages for inserting new customers and new orders respectively.

Let's add the following navigation rule to the faces-config.xml:

<faces-config>
<navigation-rule>
 <from-view-id>/home.jsp</from-view-id> [1]
 <navigation-case>
 <from-outcome>newCustomer</from-outcome> [2]
 <to-view-id>/newCustomer.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>newOrder</from-outcome> [3]
 <to-view-id>/newOrder.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>

Creating a Web Application

[138]

 <navigation-rule>
 <from-view-id></from-view-id> [4]
 <navigation-case>
 <from-outcome>home</from-outcome>
 <to-view-id>/home.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>
</faces-config>

In a navigation rule, you can have one from-view-id that is the (optional)
starting page, and one or more landing pages that are tagged as to-view-id. The
from-outcome determines the navigation flow. Think about this parameter as a
Struts forward,�� that is, instead of embedding the landing page in the JSP/servlet,
you'll simply declare a virtual path in your JSF beans.

Therefore, our starting page will be home.jsp [1] that has two possible links—the
newCustomer.jsp form [2] and the newOrder.jsp form [3]. At the bottom, there is
a navigation rule that is valid across all pages [4]. Every page requesting the home
outcome will be redirected to the homepage of the application.

The above JSP will be created in a minute, so don't worry if Eclipse validator
complains about the missing pages. This configuration can also be examined
from the Diagram tab of your faces-config.xml:

/newCustomer.jsp

/newOrder.jsp

/index.jsp

newCustomer
newOrder

home

[any]

JSP

?

JSP

JSP

The next piece of code that we will add to the configuration is the ����������������� JSF managed bean
declaration.�� You need to declare each bean here that will be referenced by JSF pages.
Add the following code snippet at the top of your faces-config.xml (just before
navigation rules):

 <managed-bean>
 <managed-bean-name>manager</managed-bean-name> ���[1]
 <managed-bean-class>
 com.packpub.web.StoreManagerJSFBean

Chapter 6

[139]

 </managed-bean-class> ���[2]
 <managed-bean-scope>request</managed-bean-scope> ���[3]
 </managed-bean>

The <managed-bean-name> [1] element will be used by your JSF page to reference
your beans. The <managed-bean-class> [2] is obviously the corresponding class.
The managed beans can then be stored within the request, session, or application
scopes, depending on the value of the <managed-bean-scope> element [3].

Adding a JSF managed bean
The StoreManagerJSFBean class follows the JavaBean patterns, providing get
and set methods for its properties (to make the code more maintainable, we have
skipped the getter/setter methods that simply wrap the fields of the class). We
have declared the bean as request bound, so for each user of the application, JSF
creates a StoreManagerJSFBean instance, which is stored within the request scope.

Add to your project a new Java class and name it com.packtpub.web.
StoreManagerJSFBean:

package com.packpub.web;
// skipping imports
public class StoreManagerJSFBean {
 @EJB(mappedName = "AppStoreEJB/local") ���[1]
 private StoreManager storeManager;
 private int customerId;
 private int orderQuantity;
 private int orderPrice;
 private String customerName;
 private String customerCountry;
 private String orderProduct;
 List<Order> listOrders;
 List <SelectItem> listCustomers;
 public List<SelectItem> getListCustomers() {
 if (listCustomers == null) {
 listCustomers= new ArrayList();
 findAllCustomers();
 }
 return listCustomers;
 }
 /*
 other getter/setter methods omitted for brevity
 */
 public StoreManagerJSFBean() { }

Creating a Web Application

[140]

 public void findOrders() { [2]
 listOrders = storeManager.findAllItems(this.customerId);
 }
public void findAllCustomers() {
	 List<Customer> listCustomersEJB =
	 storeManager.findAllCustomers();

	 for(Customer customer:listCustomersEJB) {
	 listCustomers.add(new
	 SelectItem(customer.getId(),customer.getName()));
	 }
 }
}
 public void saveOrder() {
 storeManager.saveOrder(customerId,this.orderPrice,
 this.orderQuantity,this.orderProduct);
 FacesMessage fm = new FacesMessage("Saved order for
 "+this.orderQuantity+ " of "+this.orderProduct);
 FacesContext.getCurrentInstance().addMessage("Message", fm);
 this.orderPrice=0;
 this.orderQuantity=0;
 this.orderProduct=null;
 }
 public void insertCustomer() {
 storeManager.createCustomer(this.customerCountry,
 this.customerName);
 FacesMessage fm = new FacesMessage(«Created Customer
 «+this.customerName+ « fromf «+this.customerCountry);
 FacesContext.getCurrentInstance().addMessage("Message", fm);
 this.customerName=null;
 this.customerCountry=null;
 // Forces customer reloading
 this.listCustomers=null;
 }
 /* Navigation rules */
 public String home() { [4]
 return "home";
 }
 public String newOrder() {
 return "newOrder";
 }
 public String newCustomer() {
 return "newCustomer";
 }
}

Chapter 6

[141]

As you can see, the StoreManagerJSFBean references the session bean we have
created previously (StoreManager). Therefore, we must tell the compiler how to
solve this dependency. This can be easily solved by choosing Properties on the
current project, and then choosing Projects from the Java Build Path option. Add
the project AppStore to your build path, as shown here:

Having fixed the compilation issues, we can now concentrate on the JSF bean.
The first thing we want to capture your attention to is how the StoreManager
EJB is injected [1] in the class, skipping completely the lookup/casting/exception
handling part.

The findOrders() method [2] retrieves the list of orders from the StoreManager
EJB. They will be displayed later in the dataTable component.

The findAllCustomers() [3]� is slightly different. It��������������������������� recalls our entity bean's
corresponding findAllCustomers() method and then populates a SelectItem
object with the list of customers. SelectItem is a JSF object used to render a
combobox programmatically. In our case, we will populate it with the customerId
(as value) and customerName (as label).

The remaining EJB wrapper methods��,� saveOrder() and� insertCustomer(), ����are
quite intuitive; their job is to persist data for Orders and Customers.

The final piece of code is ����������������������� about navigation rules� [4] that are coded as simple Java
methods returning the outcome view as a string. For example, in order to return
to the homepage from any other page, we will add the following button:

 <h:commandButton action="#{manager.home}" value="Back" />

Creating a Web Application

[142]

Setting up the view
JSF pages are just behind-the-scenes JSP pages that are engineered by the JSF servlet.
Therefore, in order to create your views, add the following pages to your web
application: home.jsp, newCustomer.jsp and newOrder.jsp. A new JSP page can
be added from the Web Projects menu by right-clicking on the WebContent folder,
then choosing New | File | JSP Page and naming it home.jsp.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%> ���[1]
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<html>
<body>
<f:view> ���[2]
 <style type="text/css"> ���[3]
 @import url("css/appstore.css");
 </style>
 <h:panelGrid columns="1" border="1" styleClass="spring"> ���[4]
 <f:facet name="header">
 <h:outputText value="Order List"/>
 </f:facet>
 <h:form id="listOrdersForm"> ���[5]
 <h:outputText value="Select Customer:" /> ���[6]
 <h:selectOneMenu id="selectCustomer"
 value="#{manager.customerId}" styleClass="buttons"> ���[7]
 <f:selectItems
 value="#{manager.listCustomers}" />
 </h:selectOneMenu>
 <h:commandButton action="#{manager.findOrders}"
 value="ListOrders" styleClass="buttons"/> ���[8]
 <h:dataTable value="#{manager.listOrders}" var="orders"
 border="1" rowClasses="row1, row2" headerClass="header"> ���[9]
 <h:column>
 <f:facet name="header">
 <h:outputText value="Product" />
 </f:facet>
 <h:outputText value="#{orders.product}" />
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Price" />
 </f:facet>
 <h:outputText value="#{orders.price}" />
 </h:column>
 <h:column>

Chapter 6

[143]

 <f:facet name="header">
 <h:outputText value="Quantity" />
 </f:facet>
 <h:outputText value="#{orders.quantity}" />
 </h:column>
 </h:dataTable>
 <h:commandButton action="#{manager.newCustomer}"
 value="Insert Customer" styleClass="buttons" /> ����[10]
 <h:commandButton action="#{manager.newOrder}"
 value="Insert Order" styleClass="buttons" /> ����[11]
 </h:form>
 </h:panelGrid>
</f:view>
</body>
</html>

JSF contains two tag libraries [1] called JSF core and HTML Basic. The former
provides a few general tags and some other tags that let you register validators and
event listeners to UI components. The latter contains JSP tags that render HTML UI
components such as buttons, text fields, checkboxes, lists, and so on. The standard
prefixes of these two tag libraries are h and f, and they are declared at the beginning
of home.jsp.

The view tag [2] is the container for all JavaServer Faces component tags used on a
page. Stylesheets [3] are used here to decorate the UI components. The panelGrid
[4] component simplifies the task of constructing a layout table, to hold form fields,
labels, and buttons. In this case, it will contain the main input form.

The form element [5] manages an HTML form just the same way as standard form
HTML. Rendering simple text on the page can be achieved with an outputText tag
[6]. Here, you can use value-binding expressions from your JSF beans.

The selectOneMenu element [7] is used to display an HTML combobox that is
bound to a bean collection. Review the findAllCustomers() method of your
StoreManagerJSFBean, where the combobox is built dynamically.

The commandButton [8] is applied to render an HTML button. In our case, we have
bound the button to the findOrders() method of our JSF bean.

A core JSF tag is the dataTable tag [9] that can be used to render an HTML table
using a collection from the backing bean. This component is generally used to
display tabular data and it offers a vast choice of built-in options for customizing
its header and footer, and for paginating the table.

Creating a Web Application

[144]

The last two buttons, [10] and [11], plot the route to the newCustomer and
newOrder forms.

The form for inserting a new customer is as follows:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<html>
<body>
<f:view>
 <style type="text/css">
 @import url("css/appstore.css");
 </style>
 <h:form id="newCustomer">
 <h:panelGrid columns="2" border="1" styleClass="spring">
 <f:facet name="header">
 <h:outputText value="Insert new Customer" />
 </f:facet>
 <h:outputText value="Name" />
 <h:inputText value="#{manager.customerName}" /> ���[1]
 <h:outputText value="Country" />
 <h:inputText value="#{manager.customerCountry}" />
 <h:commandButton action="#{manager.insertCustomer}" ���[2]
 value="Insert Customer" />
 <h:commandButton action="#{manager.home}" value="Back" />
 </h:panelGrid>
 <h:messages />
 </h:form>
</f:view>
</body>
</html>

The inputText fields [1] are used to populate the individual managed bean properties.
With the commandButton [2], the insertCustomer() action is recalled, thus inserting a
new customer. This is the last JSP needed for our example newOrder.jsp:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<html>
<body>
<f:view>
 <style type="text/css">
 @import url("css/appstore.css");
 </style>

Chapter 6

[145]

 ����������������������� <h:form id="newOrder">
 <h:panelGrid columns="2" border="1" styleClass="spring">
 <f:facet name="header">
 <h:outputText value="Insert new Order" />
 </f:facet>
 <h:outputText value="Product" />
 <h:inputText value="#{manager.orderProduct}" />
 <h:outputText value="Quantity" />
 <h:inputText value="#{manager.orderQuantity}" />
 <h:outputText value="Price" />
 <h:inputText value="#{manager.orderPrice}" />
 <h:outputText value="Customer" />
 <h:selectOneMenu id="selectCustomerforOrder"
 value="#{manager.customer}">
 <f:selectItems value="#{manager.listCustomers}" />
 </h:selectOneMenu>
 <h:commandButton action="#{manager.saveOrder}"
 value="Save Order" />
 <h:commandButton action="#{manager.home}" value="Back" />
 </h:panelGrid>
 <h:messages />
 </h:form>
</f:view>
</body>
</html>

Assembling and deploying the application
So far, you have got two standalone projects, one EJB project and one web project.
While you could technically deploy them separately, it is worth combining them
in an Enterprise ARchive (EAR). The most obvious reason for deploying the
application as an Enterprise ARchive is that the web application will be loaded by
a ClassLoader in the same hierarchy as the EJB classloader. In short, you don't
need to provide the EJB interfaces to the web application, as you would for a
standalone application.

Creating a Web Application

[146]

Packaging the application can be done entirely by Eclipse, without messing
with archive files. From the menu, select New | Other | Java EE | Enterprise
Application project. The next facet will request the Project name and a few details
about the configuration. Your archive name will be, by default, the project name
plus the extension .ear. Verify that both Target Runtime and the Configuration
point correctly to the JBoss 5.0 environment.

Click Next. On the window that follows, you can select the components of your
archive application, that is, the AppStore application and the AppStoreWeb
component. Check the option Generate Deployment Descriptor.

Chapter 6

[147]

Verify that META-INF/application.xml deployment descriptors contain both the
modules enlisted below:

<application>
 <display-name>EnterpriseStore</display-name>
 <module>
 <web>
 <web-uri>AppStoreWeb.war</web-uri>
 <context-root>AppStoreWeb</context-root>
 </web>
 </module>
 <module>
 <ejb>AppStore.jar</ejb>
 </module>
</application>

Okay, now you need only a few more laps to complete the race. Let's deploy
the process to JBoss by switching on the JBoss Server View. Right-click on the
JBoss server and select Add and remove projects. Add the EnterpriseStore to
the configured projects.

Now deploy the application in the usual way. Right-click on the EnterpriseStore
and select Full Publish (at the time of writing, JBoss 5 doesn't support partial
deployment of this component).

Verify from the console that the application has been deployed correctly.

Creating a Web Application

[148]

Running the store
The application gateway will be home.jsf page. Point the browser to the location
http://localhost:8080/AppStoreWeb/home.jsf.

Testing the application is quite simple. First add some customers and then link some
orders to the customers. In the home.jsf page, check that the orders are correctly
listed from the datagrid.

A last trick
Usually web applications ship with a welcome file list so that you don't
have to remember anything else besides the web context. If you have
already tried to add home.jsf to the welcome file list (in web.xml),
you would have noticed that it doesn't work. Actually, Tomcat is a bit
stubborn and requires a trick to set a JSF page as a welcome file. First,
add the following to your web.xml:

<welcome-file-list>
 <welcome-file>home.jsf</welcome-file>
</welcome-file-list>

Then create an empty home.jsf page in your web context root. This
will trick Tomcat to detect home.jsf as the welcome file and will load
home.jsp instead.

Chapter 6

[149]

Configuring JBoss Web Server
Apache Tomcat provides the core functionality of JBoss Web Server. Its embedded
engine allows seamless integration with JBoss components, by using the underlying
Microkernel system. JBoss Web Server currently uses the Apache Tomcat 6.0 release
and it ������������ is ships as service archive (SAR) application in the deploy folder. The location
of the embedded web server has changed at almost every new release of JBoss. The
following table could be a useful reference if you are using different versions of JBoss:

JBoss release Location of Tomcat
5.0.0 GA deploy/jbossweb.sar

4.2.2 GA deploy/jboss-web.deployer

4.0.5 GA deploy/jbossweb-tomcat55.sar

3.2.X deploy/jbossweb-tomcat50.sar

The main configuration file is server.xml which, by default, has the following
minimal configuration:

<Server>
 <Listener className="org.apache.catalina.core.AprLifecycleListener"
 SSLEngine="on" />
 �� <Listener className="org.apache.catalina.core.JasperListener" />
 �������������������������� <Service name="jboss.web">
 <Connector protocol="HTTP/1.1" port="8080"
 address="${jboss.bind.address}"
 connectionTimeout="20000" redirectPort="8443" />
 <Connector protocol="AJP/1.3" port="8009"
 address="${jboss.bind.address}"
 redirectPort="8443" />
 <Engine name="jboss.web" defaultHost="localhost">
 <Realm className="org.jboss.web.tomcat.security.JBossWebRealm"
 certificatePrincipal="org.jboss.security.
 auth.certs.SubjectDNMapping" allRolesMode="authOnly" />
 <Host name="localhost">
 <Valve className="org.jboss.web.tomcat.service.
 jca.CachedConnectionValve"
 cachedConnectionManagerObjectName="jboss.
 jca:service=CachedConnectionManager"
 transactionManagerObjectName="jboss:
 service=TransactionManager" />
 </Host>
 </Engine>
 </Service>
</Server>

Creating a Web Application

[150]

Following is a short description for the key elements of the configuration:

Element Description
Server The Server is Tomcat itself, that is, an instance of the web application

server and is a top-level component.
Service An Engine is a request-processing component that represents the

Catalina servlet engine. It examines the HTTP headers to determine
the virtual host or context to which requests should be passed.

Connector This is the gateway to Tomcat Engine. It ensures that requests are
received from clients and are assigned to the Engine.

Engine Engine handles all requests. It examines the HTTP headers to determine
the virtual host or context to which requests should be passed.

Host One virtual host. Each virtual host is differentiated by a fully qualified
hostname.

Valve A component that will be inserted into the request processing pipeline
for the associated Catalina container. Each Valve has distinct processing
capabilities.

Realm This contains a set of users and roles.

As you can see, all the elements are organized in a hierarchical structure where the
Server element acts as top-level container:

Server

Service

Connector

Engine

Host Host

The lowest elements in the configuration are Valve and Realm, which can be nested
into Engine or Host elements to provide unique processing capabilities and
role management.

Chapter 6

[151]

Customizing connectors
Most of the time when you want to customize your web container, you will have to
change some properties of the connector.

<Connector protocol="HTTP/1.1" port="8080"
 address="${jboss.bind.address}"
 connectionTimeout="20000" redirectPort="8443" />

A complete list of the connector properties can be found on the Jakarta Tomcat
site (http://tomcat.apache.org/). Here, we'll discuss the most useful
connector properties:

port:� The TCP port number on which thi��������������������������������� s connector will ���������������� create a server
socket and await incoming connections. Your operating system will allow
only one server application to listen to a particular port number on a
particular IP address.
acceptCount:� The maximum queue length for incoming connection requests,
when all possible request processing threads are in use. Any requests
received when the queue is full will be refused. The default value is 10.
connectionTimeout:� The number of milliseconds ������������������������ the connector will wait�
after accepting a connection for the request URI line to be presented. The
default value is 60000 (that is, 60 seconds).
address: For servers with more than one IP address, this attribute specifies
which address will be used for listening on the specified port. By default, this
port will be used on all IP addresses associated with the server.
enableLookups:� Set to true if you want to perform DNS lookups in order to
return the actual hostname of the remote client and to false in order��������� to skip
the DNS lookup and return the IP address in string form instead (thereby
improving performance). By default, DNS lookups are enabled.
maxHttpHeaderSize:� The maximum size of the request and response HTTP
header, specified in bytes. If not specified, th����������������������� i���������������������� s attribute is set to 4096 (4 KB).
maxPostSize: The maximum size in bytes of the POST,����������������������� which will be handled
by the container FORM URL��� parameter parsing. The limit can be disabled by
setting this attribute to a value less than or equal to zero. If not specified,
this attribute is set to 2097152 (2 megabytes).
maxThreads: The maximum number of request processing threads to be
created by this connector, which therefore determines the maximum number
of simultaneous requests that can be handled. If not specified, this attribute is
set to 200.

•

•

•

•

•

•

•

•

Creating a Web Application

[152]

The new Apache Portable Runtime connector
Apache Portable Runtime (APR) is a core Apache 2.x library designed to
provide superior scalability, performance, and better int��������������������� egration with native
server technologies.

The mission of the Apache Portable Runtime (APR) project is to create and
maintain software libraries that provide a predictable and consistent interface to
underlying platform-specific implementations. The primary goal is to provide an
API to which software developers may code and be assured of predictable if not
identical behaviour regardless of the platform on which their software is built,
relieving them of the need to code special-case conditions to work around or take
advantage of platform-specific deficiencies or features.

The high-level performance of the new APR connector is made possible by the
introduction of socket pollers for persistent connections (keepalive). This increases
the scalability of the server, and by using sendfile system calls, static content is
delivered faster and with lower CPU utilization.

Once you have set up the APR connector, you are allowed to use the following
additional properties in your connector:

keepAliveTimeout: The �� number of milliseconds ����������������������� the APR connector������ will
wait for another HTTP request, before closing the connection. If not set, this
attribute will use the default value set for the connectionTimeout attribute.
pollTime:� The duration of a poll call; by default it is 2000 (5 ms). If you try
to decrease this value, the connector will issue more poll calls, thus reducing
latency of the connections. Be aware that this will put slightly more load on
the CPU as well.
pollerSize: The number��� of sockets that the poller kept alive connections
can hold at a given time. The default value is 768, corresponding to 768
keepalive connections.
useSendfile: E�������������������� nables using kernel sendfile for sending certain static files.
The default value is true.
sendfileSize: The number�� of sockets that the poller thread dispatches for
sending static files asynchronously. The default value is 1024.

If you want to consult the full documentation of APR, you can visit
http://apr.apache.org/.

•

•

•

•

•

Chapter 6

[153]

Installing the APR connector
In order to install the APR connector, you need to add some native libraries to
your JBoss server. The native libraries can be found at http://www.jboss.org/
jbossweb/downloads/jboss-native/.

Download the version that is appropriate for your OS. Once you are ready, you need
to simply unzip the content of the archive into your JBOSS_HOME directory.

As an example, Unix users (such as HP users) would need to perform the
following steps:

cd jboss-5.0.0.GA

tar tvfz jboss-native-2.0.6-hpux-parisc2-ssl.tar.gz

Creating a Web Application

[154]

Now, restart JBoss and, from the console, verify that the connector is bound
to Http11AprProtocol.

A word of caution!
At the time of writing, the APR library still has some open issues that
prevent it from loading correctly on some platforms, particularly on
the 32-bit Windows.
Please consult the JBoss Issue Tracker (https://jira.jboss.org/
jira/secure/IssueNavigator.jspa?) to verify that there are no
open issues for your platform.

Configuring contexts
Every request issued to a web server can basically be split into three sections.
The first one is made up of the hostname and logical port where the web server
is running. By default, the embedded web server is started on port 8080.

The second piece of information is the web context. This is a virtual path to a web
application and by default corresponds to the name of the web application archive
deployed. So, for example, if you have deployed your application with the name
webapp.war, then your default web context will be webapp.

Chapter 6

[155]

The last element is the individual resource that we are trying to access such as a
JavaServer Page, a servlet, or an HTML page.

Host name Resource
name

Web Context

http://localhost:8080/webapp/login

However, the default web context provided by Tomcat can be overridden. In
standalone Tomcat installations, you can customize the context configuration
by nesting its element inside the Engine configuration. However, in JBoss-embedded
Tomcat, you need to use a JBoss-specific configuration file descriptor named
jboss-web.xml. This file is located in the WEB-INF folder of your web application
and can be used to add JBoss-specific information. Consider, for example, if you
place the following jboss-web.xml file under the WEB-INF
folder of your webapp.war:

<jboss-web>
 <context-root>/newWebContext</context-root>
</jboss-web>

Then the new location for your resource will be
http://localhost/newWebContext/home.jsp.

Configuring virtual hosts
By default, web applications are accessible through the localhost hostname.
However, it is sometimes������������������ desirable to add virtual hosts to the basic configuration.
What are virtual hosts? Simply put, virtual hosts refers to the practice of maintaining
more than one server on a machine, as differentiated by their apparent hostname or
IP address.

Many businesses utilize virtual hosts for internal purposes, where there is a technology
or administrative reason to keep several separate websites, such as a customer extranet
website, employee extranet, and intranets for different departments.

If you want to add a virtual host to your configuration, you first have to declare your
virtual host in a Host section, as shown in the following code snippet:

<Host name="myvirtualhost" autoDeploy="false"
 deployOnStartup="false" deployXML="false" />

Creating a Web Application

[156]

The name element defines your virtual host. The other attributes are set to false, so
as to avoid conflicts between the Tomcat deployer and the JBoss deployer.

The second step needs to be performed in the deployment stage, adding the virtual
host information into the JBoss-specific deployment descriptor, jboss-web.xml.

<jboss-web>
 <virtual-host>myvirtualhost</virtual-host>
</jboss-web>

If you have deployed an application named webapp.war that is targeted on the host
myvirtualhost, then you can invoke it like this:

http://myvirtualhost:8080/webapp.

You can further expand your virtual host configuration by adding Alias for each
virtual host, as follows:

<Host name="myvirtualhost1" autoDeploy="false"
 deployOnStartup="false" deployXML="false">
 <Alias>myvirtualhost2</Alias>
</Host>

Alias can be quite useful if you need to define multiple domain names for a single
virtual host.

When creating a virtual host, it's assumed that your network
administrator has registered the virtual host domain name on the DNS. If
you want to perform a quick and dirty test, simply add an entry for your
virtual host in the hosts filename of your OS.

127.0.0.1	myvirtualhost

On a Windows machine, the hosts file is located at Windows\
system32\drivers\etc, on a Unix/Linux box it's in filesystem /etc.

Configuring HTTP logs
JBoss Web Server, as it ships, doesn't track incoming requests. However, if you
want to enable detailed logs of the requests, you can uncomment two valves
that are present in the main configuration file, server.xml. The first one is the
AccessLogValve that is responsible for tracking all incoming requests.

<Valve className="org.apache.catalina.valves.AccessLogValve"
 �� prefix="localhost_access_log." suffix=".log"
 ��� pattern=»common» directory=»${jboss.server.log.dir}»
 resolveHosts="false" />

Chapter 6

[157]

The prefix parameter defines the prefix added to the start of each log file's name
(by default it is localhost_access_log). The suffix parameter is clearly the
suffix added to the end of each log file's name. The pattern is the formatting layout
identifying the various information fields from the request and response to be
logged. Finally, resolveHosts is set to true, if you want to convert the IP address
of the remote host into the corresponding hostname through a DNS lookup. Here,
it is set to false to skip this lookup and report the remote IP address instead.
Values for the pattern attribute are made up of literal text strings and pattern
identifiers. These patterns are introduced by the % character and cause replacement
of the variable with the corresponding value. Here are a few useful patterns. For
an exhaustive description of all code take a look at http://tomcat.apache.org/
tomcat-5.5-doc/config/valve.html.

Useful patterns for logging
%a—remote IP address
%A—local IP address
%b—bytes sent, excluding HTTP headers, or '-' if zero
%q—query string (prepended with a '?' if it exists)
%r—first line of the request (method and request URI)
%s—HTTP status code of the response
%S—user session ID
%t—date and time, in Common Log Format
%u—remote user that was authenticated (if any), else '-'
%U—requested URL path
%D—time taken to process the request, in milliseconds
%T—time taken to process the request, in seconds
%I—current request thread name (can compare later with stacktraces)

The second valve is the RequestDumperValve that performs a dump of the request,
both on the console appender and on the file appender of JBoss.

<Valve className="org.apache.catalina.valves.RequestDumperValve" />

By default, this valve is commented. Uncommenting it will produce a dump of the
HTTP request, for every request:

==
REQUEST URI=/jmx-console/filterView.jsp
authType=null
characterEncoding=null

Creating a Web Application

[158]

contentLength=-1
contentType=null
contextPath=/jmx-console
header=referer=http://10.2.20.245:8080/jmx-console/
header=user-agent=Mozilla/4.0
header=host=10.2.20.245:8080
header=connection=Keep-Alive
header=cookie=JSESSIONID=736DBB892CCB331E2E972BA9E4711396
method=GET
remoteAddr=10.2.20.245
remoteHost=10.2.20.245
remoteUser=null
requestedSessionId=736DBB892CCB331E2E972BA9E4711396
serverName=10.2.20.245
serverPort=8080
servletPath=/filterView.jsp
isSecure=false
--

Tuning advice
If you want to tune your configuration, then the connector parameters we have
described are the right place to investigate. Let's see a few useful tips to improve
the performance of your web server.

Disable DNS lookup
Setting enableLookups to true forces the web engine to retrieve the ���������������� fully qualified
hostname of every HTTP client that connects to your site. This adds latency to
every request, as performing a DNS lookup on every request is an expensive
operation. It's always recommended to turn off DNS lookups on production
sites. Remember that you can always look up the names later with any network
software/command-line utility.

Choose the right HTTP connector
As we have seen in the previous section, you have three different options about
the protocol of the connector. There is no clear winner; all of them have some
advantages. The new APR is the most advanced tuning solution, and it is clearly the
best solution when your configuration is using the Keep-Alive extension that allows
persistent connections causing multiple long-lived HTTP session requests to be sent
over the same TCP connection.

Chapter 6

[159]

APR is also a perfect choice if your application needs to be secured using SSL—APR
uses the fast OpenSSL libraries. On the other hand, the earlier HTTP connector has
the advantage of major stability, which could be a good match if your web container
doesn't expect a high volume of requests.

The Java non-blocking I/O (NIO) protocol is a compromise between the two
solutions, having better performances than the older HTTP connector, but not as
good as the APR. On the other hand, this connector has the advantage of being a
pure Java solution.

The following table presents these statements in a matrix:

Requirement Preference order
High traffic—KeepAlive on APR NIO HTTP 1.1
High traffic—KeepAlive off HTTP 1.1 APR NIO
Low traffic HTTP 1.1 APR NIO
Stability HTTP 1.1 APR NIO
Secure connections APR NIO HTTP 1.1

Set the correct size for your thread pool
Setting an appropriate value for the thread pool plays an essential role in the web
server's processing throughput capacity. Every single request directed into JBoss
Web Server goes through the web thread pool.

If this pool has very few active request-processing objects and if the traffic increases
dramatically, then a delay in request processing results due to pool component
instantiation. If the pool is too large (that is, the number of ready threads is too high),
then the CPU cycles and memory may become overused.

You can control the number of threads allocated through the maxThreads attribute
that, by default, allows a maximum of 200 threads.

This setting can be optimal for medium-load web servers. However, when your
servers are performing heavy-duty work, let's say 1000 requests per second, then
you need to increase the maxThreads value. A good starting point for high-volume
sites could be around 400 maxThreads. However, the best criterion to set this to the
optimal value is to try many different settings, and then test them with simulated
traffic loads while watching response times and memory utilization.

Creating a Web Application

[160]

Monitoring your thread pool
The JMX console is an indispensable tool for monitoring your thread. The thread
pool information can be reached from the jboss.web domain. From the agent view,
select the MBean name=http-localhost-8080,type=ThreadPool (or whatever
your hostname is). The most interesting attributes are located in the lower part of
the screen.

The currentThreadsBusy attribute accounts for the total number of threads that
are handling HTTP requests. The attribute currentThreadCount states how many
worker threads have been created up to that moment.

On the other hand, if you need low-level information about the request such as bytes
sent/received, processing time, error count, max time, and request count, then you
need to switch to the MBean name=http-localhost-8080,type=GlobalRequestPr
ocessor that is available in the same jboss.web domain.

Chapter 6

[161]

Summary
In this chapter, we have completed our Enterprise application (AppStore) by adding
a web layer designed using JSF.

JavaServer Faces has gained a lot of popularity in the last few years and, as you have
learned here, it does not require any extra effort to deploy a JSF-based application
on JBoss AS. If you are interested in improving the collaboration between EJB
applications and JSF views, we strongly suggest you to have a look at the JBoss Seam
project (http://www.jboss.com/products/seam/), which is a key component of
the JBoss Enterprise application platform.

In the next chapter, we will cover the JBoss Messaging system, thus completing the
EJB picture with message-driven bean components.

Developing Applications with
JBoss Messaging Service

The medium is the message. – Marshall McLuhan

Messaging is a method of communication between software components or
applications. The Java Message Service (JMS) is a Java API designed by Sun
that allows applications to create, send, receive, and read messages (refer to
http://java.sun.com/products/jms/docs.html).

Messaging differs from other standard protocols, such as Remote Method
Invocation (RMI) and Hypertext Transfer Protocol (HTTP), in two ways.
Firstly, the conversation is mediated by a messaging server, so it's not a two-way
conversation between peers. Secondly, the sender and receiver need to know only
the message format and the destination to be used. This is in contrast to tightly
coupled technologies such as RMI, which requires an application to know a remote
application's methods.

In this chapter, we will cover:

A brief introduction to message-oriented systems
The new JBoss Messaging system that replaces the earlier JBossMQ
Setting up some proof-of-concept programming examples

•

•

•

Developing Applications with JBoss Messaging Service

[164]

Short introduction to JMS
JMS defines a vendor-neutral (but Java-specific) set of programming interfaces for
interacting with asynchronous messaging systems. Messaging enables distributed
communication, which is loosely coupled. A component sends a message to a
destination, which in turn is retrieved by the recipient with the mediation of the
JMS server. In JMS, there are two types of destinations, topics and queues, and
they have different semantics.

In the point-to-point model, messages are sent from producers to consumers
through queues. A given queue may have multiple receivers, but only one receiver
may consume each message. The first receiver to fetch the message will get it, while
everyone else will not.

JMS Server

Queue
Producer

Producer

Producer

Consumer

On the other hand, a message sent to a topic may be received by multiple parties.
Messages published on a specific topic are sent to all message consumers who
have registered (subscribed) to receive messages on that topic. A subscription
can be durable or non-durable. A non-durable subscriber can receive only those
messages that are published while it is active. Also, non-durable subscription does
not guarantee the delivery of the message or may deliver the same message more
than once. On the other hand, a durable subscription guarantees that the consumer
receives the message only once.

JMS Server

Topic
Publisher

Publisher

Publisher
Subscriber

Subscriber

Chapter 7

[165]

Even though JMS is inherently asynchronous, the JMS specification allows messages
to be consumed in either of the following two ways:

Synchronous: A subscriber or a receiver explicitly fetches the message from
the destination by calling the receive() method of any MessageConsumer
instance. The receive() method can block until a message arrives, or can
time-out if a message does not arrive within a specified time limit.
Asynchronous: With the asynchronous mode, the client must implement
the javax.jms.MessageListener interface and overwrite the method
onMessage(). Whenever a message arrives at the destination, the JMS
provider delivers the message by calling the listener's onMessage()
method that acts on the contents of the message.

A JMS message consists of a header, properties, and a body. The message headers
provide a fixed set of metadata fields describing the message, using information
such as where the message is going and when it was received. The properties are a
set of key-value pairs used for application-specific purposes, usually to help filter
messages quickly when they have been received. Finally, the body contains the data
that is being sent in the message.

The JMS API supports two delivery modes for messages. If the JMS provider fails,
these modes specify whether the messages are lost. The two modes are as described:

PERSISTENT: This is the default mode. It instructs the JMS provider to
take extra care, to ensure that a message is not lost in transit in case of a JMS
provider failure. A message sent with this delivery mode is logged to stable
storage when it is sent.
NON_PERSISTENT: This delivery mode does not require the JMS provider
to store the message or guarantee that it is not lost if the provider fails.

The building blocks of JMS
The basic building blocks of any JMS application are as follows:

Administered objects (connection factories and destinations):
A ConnectionFactory object encapsulates a set of connection configuration
parameters that have been defined by an administrator. A client uses it to
create a connection with a JMS provider. A ConnectionFactory object hides
provider-specific details from JMS clients and abstracts administrative
information into objects in the Java programming language.

•

•

•

•

•

Developing Applications with JBoss Messaging Service

[166]

A destination is the component that a client uses to specify the target
of messages it produces and the source of messages it consumes. In the
point-to-point (PTP) messaging domain, destinations are called queues,
whereas in the publish/subscribe messaging domain, destinations are
called topics.
Connections:
A connection encapsulates a virtual connection with a JMS provider. A
connection could represent an open TCP/IP socket between a client and
a service provider. A connection is used to create one or more sessions.
Sessions:
A session is a single-threaded context for producing and consuming
messages. Sessions are used to create message producers, message
consumers, and messages. Sessions serialize the execution of message
listeners and provide a transactional context to group a set of sent and
received messages into an atomic unit of work.
Message producers:
A message producer is an object created by a session and is used for sending
messages to a destination. The PTP form of a message producer implements
the QueueSender interface. The publish/subscribe form implements the
TopicPublisher interface.
Message consumers:
A message consumer is an object created by a session and is used for
receiving messages sent to a destination. A message consumer allows a
JMS client to register interest in a destination with a JMS provider. The
JMS provider manages the delivery of messages from a destination to the
registered consumers of the destination. The PTP form of message consumer
implements the QueueReceiver interface, whereas the publish/subscribe
form implements the TopicSubscriber interface.
Messages:
The Message is an object that contains the data being transferred between
JMS clients. In developer terms, it is defined as an interface that defines the
message header and the acknowledge method used for all messages.

•

•

•

•

•

Chapter 7

[167]

The new JBoss Messaging system
JBoss Messaging is the new Enterprise messaging system from JBoss. It is a
complete rewrite of JBossMQ, the earlier legacy JMS provider, which is currently
in bug-fix mode only. JBoss Messaging implements a high performance and robust
messaging core, which is designed to support the largest and most heavily utilized
service-oriented architectures (SOAs), enterprise service buses (ESBs), and other
integration needs ranging from the simplest to the highest-demand networks.

Compared to JBossMQ, JBoss Messaging offers improved performance in both,
single node and clustered environments. To whet your appetite, we have set up
a raw benchmark for comparing JMS Messaging against the earlier JBossMQ
implementation. The benchmark was executed on a Pentium 4 Dual Core
(Windows XP) running JDK 1.6.

In this benchmark, we are sending 5,000 progressively larger text messages. The
consumer of the queue is a message-driven bean with default configuration. The
database persistence model is the default HSQLDB.

As you can see from the graph, the Jboss MQ implementation has a throughput
of around 1200 messages/second with small payloads, while Jboss Messaging
goes up to 1600 messages/second. As the payload increases, both providers drop
the messages/second throughput progressively.

This benchmark does not have any official value because it is limited to a single
typology of messages (queues) with minimal hardware configuration. However,
we believe that the performance improvement achieved by switching to JBoss
Messaging can be estimated around 30 to 40 percent.

Developing Applications with JBoss Messaging Service

[168]

Configuring connection factories
New JMS connections are created by ConnectionFactory that encapsulates the
connections parameters. A ConnectionFactory is bound in the JNDI naming service
and can be looked up by both local and remote clients, provided they supply the
correct environment parameters.

The configuration for connection factories is located in the file deploy\messaging\
connection-factories-service.xml. JBoss ships with both, non-clusterable and
clusterable connection factories. The non-clusterable connection factories are bound
to the following JNDI contexts: /ConnectionFactory, /XAConnectionFactory,
java:/ConnectionFactory, and java:/XAConnectionFactory. You can use
this implementation if you don't need load balancing or failover of messages. On
the other hand, clusterable factories are available at the following JNDI contexts:
/ClusteredConnectionFactory, /ClusteredXAConnectionFactory, java:/
ClusteredConnectionFactory, and java:/ClusteredXAConnectionFactory.

Why do we have a redundant list of factories?
The answer is that the factories bound in the java: namespace are
reserved for local JMS clients (running in the same JVM of the server),
whereas the factories bound in the global namespace can be accessed
remotely too.

However, you are not restricted to default factories. If you need to customize the JMS
connections, you can set up your own connection factory. Here's an example of it:

<mbean
 code="org.jboss.jms.server.connectionfactory.ConnectionFactory"
 name="jboss.messaging.connectionfactory:
 service=MyConnectionFactory"
 xmbean-dd="xmdesc/ConnectionFactory-xmbean.xml">
 <constructor>
 <arg type="java.lang.String" value="MyClientID"/> [1]
 </constructor>
 <depends optional-attribute-
 name="ServerPeer">jboss.messaging:service=ServerPeer</depends>
 <depends optional-attribute-
 name="Connector">jboss.messaging:service=Connector,
 transport=bisocket</depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="PrefetchSize">150</attribute> [2]
 <attribute name="DupsOKBatchSize">5000</attribute> [3]
 <attribute name="SupportsFailover">false</attribute> [4]
 <attribute name="SupportsLoadBalancing">false</attribute>

Chapter 7

[169]

 <attribute name="SlowConsumers">false</attribute> [5]
 <attribute name="JNDIBindings"> [6]
 ����������<bindings>
 <binding>/packpub/CF</binding>
 �����������������������������������<binding>java:/packpub/CF</binding>
 </bindings>
 </attribute>
</mbean>

The above example would create a connection factory with preconfigured client
ID MyClientID [1], bound to the JNDI context in two places: /packpub/CF and
java:/packpub/CF [6].

The connection factory overrides the default value for PrefetchSize [2]. What is the
meaning of this attribute? You should know that each message consumer maintains a
local buffer of messages from which it consumes messages. The server typically sends
messages as fast as it can to the consumer and, when the consumer is full, it sends a
"stop" message to the server to indicate it is full. When it clears enough space, it sends
a "start" message to the server to continue sending messages. The PrefetchSize
parameter determines the size of this buffer; larger values give better throughput.

The setting DupsOKBatchSize [3] works with the JMS acknowledge mode of
DUPS_OK_ACKNOWLEDGE. It determines how many acknowledgments it will
buffer locally before sending.

We have set failover and load balancing attributes [4] to false, so we don't plan to
use this factory in a clustered environment. The attribute SlowConsumers [5] can
be used if some of your consumers are slow at consuming messages. By setting
this property to true, you can make sure that the connection will not buffer any
messages. This can prevent faster consumers from "capturing" all messages, thus
distributing the load of messages equally.

Save the above configuration file using the xxx-service.xml name pattern
(for example, myconnection-service.xml) in the deploy/messaging folder
of your server configuration.

08:58:57,879 INFO [ConnectionFactory] Connector bisocket://localhost has
 leasing enabled, lease period 10000 milliseconds
08:58:57,879 INFO [ConnectionFactory] org.jboss.jms.server.connectionfactory.Co
nnectionFactory@1ac281e started

Developing Applications with JBoss Messaging Service

[170]

Configuring JMS destinations
JBoss Messaging system configuration can be found in the deploy/messaging folder.
By default, JBoss ships with a default set of preconfigured destinations, which will be
deployed during the server startup. The file that contains the configuration for these
destinations is destinations-service.xml.

You can create new destinations at any time, so let's see a few basic examples. The
following sample-destinations-service.xml can be used to set up a queue named
exampleQueue and a topic exampleTopic in the jboss.messaging.destination
domain.

<server>
 <mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:
 service=Queue,name=exampleQueue»
 xmbean-dd=»xmdesc/Queue-xmbean.xml»>
 ���������������������������� <depends optional-attribute-
 name=»ServerPeer»>jboss.messaging:service=ServerPeer</depends>
 ��������</mbean>
 <mbean code="org.jboss.jms.server.destination.TopicService"
 ����������������������������������name=»jboss.messaging.destination:
 service=Topic,name=exampleTopic"
 xmbean-dd="xmdesc/Topic-xmbean.xml">
 <depends optional-attribute-
 name="ServerPeer">jboss.messaging:service=ServerPeer</depends>
 </mbean>
</server>

Deploy the JMS destinations by copying the sample-destinations-service.xml
in the deploy folder of your JBoss server. You don't need to restart the server, as
your topics and queues will be immediately available.

Inspecting destination attributes
In the previous example, we have shown how to set up two JMS destinations using
a minimal configuration. However, JMS destinations have many other configurable
parameters that can be modified or inspected from the JMX console.

Chapter 7

[171]

Launch the JMX console and point to the domain (jboss.messaging.destination)
where we have just added the two destinations.

Advanced message configuration
The previous queue and topic contain the minimal set of attributes for configuring a
JMS destination. If you are eager to learn all possible configuration elements, here's
a more complex example:

<mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:service=Queue,name=exampleQueue2"
 xmbean-dd="xmdesc/Queue-xmbean.xml">
 <depends optional-attribute-
 name="ServerPeer">jboss.messaging:service=ServerPeer</depends>
 <attribute name="DLQ">
 jboss.messaging.destination:service=Queue,name=PrivateDLQ
 </attribute>
 <attribute name="ExpiryQueue">
 jboss.messaging.destination:service=Queue,name=PrivateExpiryQueue
 </attribute>
 <attribute name="RedeliveryDelay">1500</attribute>
 <attribute name="MaxDeliveryAttempts">5</attribute>
 <attribute name="FullSize">50000</attribute>

Developing Applications with JBoss Messaging Service

[172]

 <attribute name="PageSize">5000</attribute>
 <attribute name="DownCacheSize">2500</attribute>
 <attribute name="MaxSize">75000</attribute>
 <attribute name="SecurityConfig">
 <security>
 <role name="guest" read="true" write="true"/>
 <role name="publisher" read="true" write="true"
 create="false"/>
 </security>
 </attribute>
</mbean>

An explanation for the individual attributes is summarized in the following table.
Please consult the JBoss Messaging documentation (http://www.jboss.org/
jbossmessaging/docs/index.html) for a detailed description of these parameters.

Attribute Description

name The name of the queue.

JNDIName The JNDI name where the queue is bound.

DLQ The dead letter queue used for this queue. This is a special
destination where messages are sent when the server has
attempted to deliver them unsuccessfully more than a certain
number of times.

ExpiryQueue The expiry queue used for this queue. An expiry queue is a
special destination where messages are sent when they have
expired.

RedeliveryDelay The redelivery delay to be used for this queue.

MaxDeliveryAttempts The maximum number of times delivery of a message will be
attempted before sending the message to the DLQ, if configured.
If set to -1 (the default), the value from the ServerPeer config
is used.

SecurityConfig Allows you to determine which roles are allowed to read, write,
and create on the destination.

FullSize This is the maximum number of messages held by the queue
or topic subscriptions in memory at any given time. The actual
queue or subscription can hold many more messages than this,
but these are paged to and from storage as necessary, when
messages are added or consumed.

Chapter 7

[173]

Attribute Description

PageSize When loading messages from the queue or subscription, this is
the maximum number of messages to preload in one operation.

DownCacheSize When paging messages to storage from the queue, they first go
into a down cache before being written to storage. This enables
the write to occur as a single operation, thus aiding performance.
This setting determines the maximum number of messages that
the down cache will hold before they are flushed to storage.

MaxSize A maximum size (in number of messages) can be specified for
a queue. Any messages that arrive beyond this point will be
dropped. The default is -1, which is unbounded.

Configuring JBM for heavy duty
Pageable channels is a new feature available in JBoss Messaging. It
performs automatic paging of messages to storage and allows the use
of very large queues (too large to fit in memory at once).
JBoss Messaging will keep in memory as many messages as the
FullSize parameter (default 75,000). When the number of messages
to be delivered exceeds the FullSize value, the messages are moved
to a temporary destination named DownCache. The DownCache is
not persisted at every new message, but as a single batch when the
DownCacheSize attribute value is reached (default 2,000). This avoids
the burden of continuous input/output operations.

Scheduled delivery
Scheduled delivery is a useful feature of JBoss Messaging that allows you to
configure the delivery of the message to a future date. Scheduling the delivery can be
done programmatically by setting the property JMS_JBOSS_SCHEDULED_DELIVERY_
PROP_NAME to a consistent value (in milliseconds). A message can be scheduled in
one hour from now as follows:

long now = System.currentTimeMillis();
Message msg = sess.createMessage();
msg.setLongProperty(JBossMessage.JMS_JBOSS_SCHEDULED_DELIVERY_PROP_NA
 ME, now + 1000 * 60 * 60 * 1);
prod.send(msg);

Developing Applications with JBoss Messaging Service

[174]

Developing JMS applications
In the following sections, we will introduce the core components used in the
Enterprise to leverage JMS programming. Our first round will be with message-
driven beans that are part of the Java EE specification. Next, we will add a
JBoss-specific component named message-driven POJO to our list of deliverables.

Message-driven beans
Message-driven beans (MDBs) are stateless, server-side, transaction-aware
components, for processing asynchronous JMS messages.

One of the most important aspects of message-driven beans is that they can consume
and process �� messages concurrently��� . This capability provides a significant advantage
over traditional JMS clients, which must be custom-built to manage resources,
transactions, and security in a multi-threaded environment. The message-driven
bean containers manage concurrency automatically so that the bean developer
can focus on the business logic of processing the messages. The MDB can receive
hundreds of JMS messages from various applications and process all of them at
the same time, as numerous instances of the MDB can execute concurrently in
the container.

A message-driven bean is classified as an Enterprise bean, just like a session or an
entity bean, but there are some important differences. First, the message-driven bean
does not have component interfaces. This is because the message-driven bean is not
accessible through the Java RMI API and responds only to asynchronous messages.

Just as the entity and session beans have well-defined life cycles, so does the MDB
bean. The MDB instance's life cycle has two states: Does not Exist and Method
ready Pool.

Message Driven Bean Life Cycle

Method
ready
Pool

Does not
Exist

onMessage()

»newinstance()
»dependencyInjection
»@PostConstruct

»@PreDestroy

Chapter 7

[175]

When a message is received, the EJB container checks to see if any MDB instance is
available in the pool. If a bean is available in the free pool, JBoss uses that instance.
After an MDB instance's onMessage() method returns, the request is complete and
the instance is placed back in the free pool. This results in the best response time, as
the request is served without waiting for a new instance to be created.

If no bean instances are handy, the container checks if there is room for more MDBs
in the pool, by comparing the MDB's MaxSize attribute with the pool size.

If MaxSize value has still not been reached, a new MDB is initialized. The creation
sequence, as pointed out in the previous diagram, is just the same as stateless bean.
On the other hand, failure to create a new instance will imply that the request will
be blocked until an active MDB completes a method call or the transaction times out.

Configuring message-driven beans
You can control the pool size of MDBs from the deploy\ejb3-interceptors-aop.
xml file, in a similar manner to that explained for session beans. Locate the domain
Message Driven Bean:

<domain name="Message Driven Bean" extends="Intercepted Bean"
 inheritBindings="true">
 <annotation expr="!class(@org.jboss.ejb3.annotation.Pool)">
 @org.jboss.ejb3.annotation.Pool (value="StrictMaxPool",
 maxSize=15, timeout=10000)
 </annotation>
</domain>

By default, message-driven beans use the StrictMaxPool strategy, allowing for a
maxSize of 15 elements in the pool.

Creating a sample application
We will now create a sample application that sends messages over a queue. Have
you deployed the sample destinations (sample-destinations-service.xml) that
we illustrated before? If not, it's now time to do it.

The consumer of this queue will be a message-driven bean written using EJB
3.0 specifications. Let's first create a new EJB project. From the File menu,
select New | Other | EJB | EJB project. Choose a name for your project (for
example, JMSExample) and make sure you have selected the JBoss 5 runtime and
configuration. Also the EJB module version needs to be 3.0.

Developing Applications with JBoss Messaging Service

[176]

Once your project is ready, let's add a new message-driven bean from the same
path: New | Other | EJB | EJB 3 Message Driven Bean. The job of this component
will be invoking a stored procedure on an external system; we will call it
com.packtpub.jms.MDBProcessor.

Click Finish. Eclipse will create the MDBProcessor class, bearing the annotation
@MessageDriven. The core properties of the MDB will be nested into the
@MessageDriven annotation marked as @ActivationConfigProperty.

@MessageDriven(name = "MessageMDBSample", activationConfig = {
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue"), [1]
 @ActivationConfigProperty(propertyName = "destination",
 propertyValue = "queue/exampleQueue}) [2]

Here we have connected the bean to a queue destination [1], whose JNDI name is
queue/exampleQueue [2]. Let's have a look at the complete code:

package com.packtpub.jms;
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.SQLException;

Chapter 7

[177]

import javax.annotation.Resource;
import javax.ejb.MessageDriven;
import javax.ejb.ActivationConfigProperty;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;
import javax.sql.DataSource;
import java.sql.Types;

@MessageDriven(activationConfig =
{
 @ActivationConfigProperty(propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(propertyName="destination",
 propertyValue="queue/exampleQueue")
})
public class MDBProcessor implements MessageListener {
 @Resource(mappedName = «java:/MySqlDS») [1]
 private DataSource datasource;
 public void onMessage(Message msg) [2]
 �{
 Connection connection = null;
 TextMessage text = (TextMessage)msg;
 try {
 connection = datasource.getConnection();
 String sql = "{ ? = call hello (?) }";
 CallableStatement cs = connection.prepareCall(sql);
 cs.registerOutParameter(1, Types.VARCHAR);
 cs.setString(2,text.getText());
 cs.execute();
 String retMess = cs.getString(1);
 System.out.println(retMess);
 }
 catch (Exception e1) {
 e1.printStackTrace();
 }
 finally {
 try {
 connection.close();
 }
 catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 }
}

Developing Applications with JBoss Messaging Service

[178]

In our MDB, we inject a datasource as a resource [1] that will be necessary for setting
up a database connection with MySQL. The datasource has already been defined in
Chapter 5, Developing JPA Entities, so you should not need any further configuration.

Warning:
As per Java EE specification, a resource is accessible through JNDI, using
the name parameter. However, JBoss requires the mappedName element.

Once a new message is posted to exampleQueue, the container recalls the
onMessage() method [2] of our MDB. The job of the onMessage() method will be
recalling a stored procedure named hello on the MySQL database. This procedure
actually returns a greeting message built with the parameter, which is passed to
the procedure.

Here is a sample MySQL stored procedure that can be used for testing this example
(just add this DDL from your MySQL client):

CREATE FUNCTION hello (s CHAR(20))
RETURNS CHAR(50) DETERMINISTIC
RETURN CONCAT('Hello, ',s,'!');

Why not just output System.out.println from the MDB?
The last example does not produce anything more than a System.out,
so you may wonder why we are adding extra steps to yield the same
result. Although the reader can easily turn the example into a Hello
World one, we do believe that with a small effort the reader can enjoy
projects that are closer to real-world programming.
For example, the MDB processor that gets injected into a datasource can
be used as a template if you need to manage your storage with plain
JDBC from your Enterprise Java Bean.

The MDB is complete. You can deploy it just like other projects. Right-click on the
label JBoss 5.0 Server in the JBoss Server View. Select Add and remove projects.
Once your project is added, you can deploy it by clicking on the project label and
selecting Full publish.

Chapter 7

[179]

Deployment should take just a minute. If you take a look at the deploy folder of
your JBoss server, you should notice a file named JMSExample.jar that contains
the compiled MDB processor.

Now we need to create a message producer. A standard Java class is what you need.
Add a new class from the menu and name it com.packtpub.jms.QueueSender.

package com.packtpub.jms;
import java.util.Properties;
import javax.jms.*;
import javax.naming.*;
public class QueueSender {
 public static void main(String[] args) throws Exception {
 new QueueSender().example();
 }
 public void example() throws Exception
 �{
 String destinationName = "queue/exampleQueue";
 Context ic = null;
 ���������������������������� ConnectionFactory cf = null;
 Connection connection = null;
 try {
 ic = getInitialContext(); [1]
 cf = (ConnectionFactory)ic.lookup("/ConnectionFactory"); [2]
 �� Queue queue = (Queue)ic.lookup(destinationName);
 ����������������������������������� connection = cf.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE); [3]
 MessageProducer sender = session.createProducer(queue);

Developing Applications with JBoss Messaging Service

[180]

 TextMessage message = session.createTextMessage("Frank");
 sender.send(message); [4]

 System.out.println("The message was successfully sent to the "
 + queue.getQueueName() + " queue");
 }
 catch(Exception ne){
 ne.printStackTrace();
 }
 finally{
 if(ic != null) {
 try {
 ic.close();
 }
 catch(Exception ignore){ }
 }
 closeConnection(connection);
 }
 }
 public static Context getInitialContext()
 throws javax.naming.NamingException {
 Properties p = new Properties();
 p.put(Context.INITIAL_CONTEXT_FACTORY,
 "org.jnp.interfaces.NamingContextFactory");
 p.put(Context.URL_PKG_PREFIXES,
 " org.jboss.naming:org.jnp.interfaces");
 p.put(Context.PROVIDER_URL, "jnp://localhost:1099");
 return new javax.naming.InitialContext(p);
 }
 private void closeConnection(Connection con){
 try {
 if (con != null) {
 con.close();
 }
 }
 catch(JMSException jmse) {
 System.out.println("Could not close connection " + con +"
 exception was " +jmse);
 }
 }
}

Chapter 7

[181]

We will not detail the steps in the client, which is a standard JMS queue sender. Just
recap all that you need to provide. First, you need to provide the environment details
of your JMS server [1]. In this case, we are creating the InitialContext with a set
of properties, just to show you an alternative to placing the file jndi.properties in
the classpath. The ConnectionFactory will then be looked up in the JNDI tree [2].
The Factory is used to set up a javax.jms.Connection object and this one in turn
is used to start a new JMS session [3]. A MessageProducer is then created to actually
send [4] a TextMessage to the queue.

I guess you are impatient to test your latest creation. Reach the option Run As |
Java Application, either from the Package Explorer or the Editor, and test your
messaging application. Successful output should produce the following:

You surely have noticed some boring EJB 3 warnings that appear in
the server logs. This message is related to EJB life cycle callbacks and
can be issued by the container under some circumstances related to
the EJB 3 interceptor's running mode (AOP and container managed
interception). This stuff is generally useless for the bean developer and
you can get rid of it by adding the @SuppressWarning annotation
before the onMessage() method:

@SuppressWarnings(value={"all"})
public void onMessage(Message msg) {}

Developing Applications with JBoss Messaging Service

[182]

Creating MDB singletons
Sometimes it is appropriate to have exactly one instance of a class; this is called a
singleton. Making an MDB singleton with EJB 3.0 is trivial; you can just add the
maxSession property to your annotations. In the container's language, maxSession
is intended as the maximum number of instances to be created.

@ActivationConfigProperty(propertyName = "maxSession",
 propertyValue = "1")

If you want this behavior across all your MDBs, then you have to modify the
deploy\ejb3-interceptors-aop.xml file by adding the following property
to your MDB domain:

<annotation
 expr="!class(@org.jboss.annotation.ejb.DefaultActivationSpecs)">
 @org.jboss.annotation.ejb.DefaultActivationSpecs
 ({@javax.ejb.ActivationConfigProperty(propertyName =
 "maxSession", propertyValue = "1")})
</annotation>

Message-driven POJOs
Message-driven POJOs are not part of Java EE specification, but rather a specific
element of the JBoss suite. The term message-driven POJO is not new in the Java
Enterprise system. You can find some queries about it in the Spring context.
However, JBoss MDP is different from Spring implementation because it is a
plain POJO implementation and is not constrained by any framework contract.

You can think about JBoss MDP as a half-blood relative of ������������������ session beans����� and
message-driven beans.��� They are semantically similar to session beans because they
expose the business contract of the POJO, so ������������������������������������� they are a typed component����������� . In spite
of this, they also have some peculiarities of MDBs ����������������������������� because they are driven by a
JMS transport (�� queue or topic). Therefore, they inherit all the characteristics of
JMS messaging.

MDB or message-driven POJOs?
Choosing the right interface for your JMS-driven application depends on
the characteristics of your project. For example, if your priority is to have
loosely coupled and portable interfaces, then you should stick to MDB.
On the other hand, if you need to expose a business contract to your JMS
client, then message-driven POJOs are a safe bet. Message-driven POJOs
also carry another advantage versus MDB—they are just POJOs. You just
define Java methods, expose them through a producer interface, and your
invocations are turned into JMS messages underneath.

Chapter 7

[183]

As a practical example, we will rebuild our MDB processor using a message-driven
POJO. Message-driven POJOs are unknown to Eclipse IDE, so you have to resort
again to a simple Java class. Go to New | Class and name it com.packpub.jms.
POJOProcessor. The implementation of the MDP follows here:

package com.packtpub.jms;
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.SQLException;
import org.jboss.ejb3.annotation.Consumer;
import org.jboss.ejb3.annotation.CurrentMessage;
import javax.annotation.Resource;
import javax.ejb.*;
import javax.jms.*;
import javax.sql.DataSource;
import java.sql.Types;
@Consumer(activationConfig = { [1]
 @ActivationConfigProperty(
 propertyName = «destinationType»,
 propertyValue = «javax.jms.Queue»),
 @ActivationConfigProperty(
 propertyName = "destination",
 propertyValue = "queue/pojoQueue") }) [2]
public class POJOProcessor implements POJOProcessorItf { [3]
 @Resource(mappedName = "java:/MySqlDS")
 private DataSource datasource;
 public void callProcedure(String param) {
 Connection connection = null;
 try {
 connection = datasource.getConnection();
 String sql = "{ ? = call hello (?) }";
 CallableStatement cs = connection.prepareCall(sql);
 cs.registerOutParameter(1, Types.VARCHAR);
 cs.setString(2,param);
 cs.execute();
 String retMess = cs.getString(1);
 System.out.println(retMess);
 }
 catch (Exception e1) {
 e1.printStackTrace();
 }
 finally {
 try {
 connection.close();

Developing Applications with JBoss Messaging Service

[184]

 }
 catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 }
}

The first difference with a plain MDB is that a POJO message bean is tagged by an
@Consumer [1] annotation. Actually, the MDP class will consume the messages that
are produced by the business interface [3]. The bean is targeted at a destination
named pojoQueue [2] (you have to provide this destination by adding a new entry
in the destinations-service.xml file).

The implemented interface, named com.packtpub.jms.POJOProcessorItf follows�:

package com.packtpub.jms;
import org.jboss.ejb3.annotation.Producer;
@Producer [1]
public interface POJOProcessorItf {
 public void callProcedure(String param);
}

As we just said, the @Producer annotation [1] acts as a producer of messages that
will be consumed by the implementation classes. A message-driven POJO doesn't
require anything else. Just pack your compiled bean class and the interface in an
archive, and deploy it to JBoss:

JMSExample.jar
+---com
¦ +---packtpub
¦ +---jms
| +---POJOProcessor.class
| +---POJOProcessorItf.class
+---META-INF

Now the only missing thing is a client invoking our callProcedure method. For this
purpose, add another Java class named com.packtpub.jms.POJOClient.

import java.util.Properties;
import javax.naming.Context;
import org.jboss.ejb3.mdb.ProducerConfig;
import org.jboss.ejb3.mdb.ProducerManager;
import org.jboss.ejb3.mdb.ProducerObject;
import com.packtpub.jms.POJOProcessorItf;

Chapter 7

[185]

public class POJOClient {
 public static void main(String[] args) throws Exception
 {
 Context ctx = getInitialContext();
 POJOProcessorItf proc =
 (POJOProcessorItf)
 ctx.lookup(POJOProcessorItf.class.getName()); [1]
 ProducerManager manager = ((ProducerObject)
 proc).getProducerManager(); [2]
 manager.connect(); [3]
 try
 {
 proc.callProcedure("John"); [4]
 }
 catch (Exception exc)
 {
 exc.printStackTrace();
 }
 finally {
 ProducerConfig.close(proc); [5]
 }
 }
}

When you deploy an MDP, a proxy object named with the producer's classname [1]
will be bound in the JNDI context. However, we don't directly deal with the proxy,
but with the class org.jboss.ejb3.mdb.ProducerManager that manages the JMS
connection for this proxy [2]. The ProducerManager starts a JMS connection with the
proxy [3] and, through the typed interface, invokes the method callProcedure [4].
When all operations are complete, the connection with the proxy is closed [5].

In the MDP business interface, you expose the business contract just like
a session bean. However, the transport protocol will be JMS and not RMI.
Sometimes you might need to recover the message properties, as you
may need the message ID or any other property of the message. In this
case, you can simply inject the message with the @CurrentMessage
annotation. Your message details will also be available in the MDP
implementation class.

public class POJOProcessor implements POJOProcessorItf
{
 @CurrentMessage
 private Message currentMessage;
}

Developing Applications with JBoss Messaging Service

[186]

Advanced JBoss Messaging
If you have read up to this point, you should have a clear picture about the basic
concepts of JBoss Messaging. In the next section, we will raise the bar by moving
on to more cutting-edge concepts, such as JBoss Messaging bridge, the persistence
service, and securing JMS destinations.

JBoss Messaging bridge
JBM bridge is an advanced feature for routing messages from one destination
(queue or topic) to another. Typically, JBM bridge is used for sending messages across
different message servers. For example, you could post a queue message on server X,
which is routed to server Y, where it is consumed by a message-driven bean.

JMS Server X JMS Server Y

JBM Bridge

Source
Destination

Target
Destination

The source and target servers do not have to be in the same cluster.
This makes bridging suitable for reliably sending messages from
one cluster to another—for instance, across a WAN and where the
connection may be unreliable. Clustering is discussed in detail in
Chapter 11, Clustering JBoss AS.

Configuring the messaging bridge requires a configuration file in the form of an
MBean service. In the first example, we will provide a simple bridge configuration
that routes messages from one queue to another, using the default JMS provider.

<mbean code="org.jboss.jms.server.bridge.BridgeService"
 name="jboss.messaging:service=Bridge,name=BridgeExample"
 xmbean-dd="xmdesc/Bridge-xmbean.xml">
 <depends optional-attribute-name="SourceProviderLoader">
 jboss.messaging:service=JMSProviderLoader,
 name=JMSProvider</depends>
 <depends optional-attribute-name="TargetProviderLoader">

Chapter 7

[187]

 jboss.messaging:service=JMSProviderLoader,
 name=JMSProvider</depends>
 <attribute [1]
 name="SourceDestinationLookup">/queue/exampleQueue</attribute>
 <attribute [2]
 name="TargetDestinationLookup">/queue/exampleQueue2</attribute>
 <attribute name="MaxBatchSize">5</attribute> [3]

 <attribute name="MaxBatchTime">-1</attribute> [4]
</mbean>

The source [1] and target [2] destination attributes specify that all messages sent
to the exampleQueue will be routed to the remoteQueue, which is located at
the TargetProvider.

You must also provide a consistent value for MaxBatchSize [3], that is, the number
of messages to batch before sending them. The messaging server can be instructed to
send messages after an elapsed time, defined by MaxBatchTime [4]. Setting this value
to -1 forces waiting until MaxBatchSize has been reached.

Save the above bridge configuration file as jbm-bridge-service.xml in the
deploy/messaging. In the console log, you should read the following message:

12:14:02,950 INFO [BridgeService] Stopped bridge BridgeService
12:14:03,200 INFO [BridgeService] Started bridge BridgeService. Source: /queue/
exampleQueue Target: /queue/exampleQueue2

Adding a remote JMS provider
The sample bridge is a good starting point for learning; however, its real usefulness
appears when you use it for communicating between remote JMS providers.

The JMS provider is also defined as an MBean and uses the same file naming
convention. So, let's add the following jbm-remote-service.xml to your
messaging folder:

<mbean code="org.jboss.jms.jndi.JMSProviderLoader"
 name="jboss.messaging:service=JMSProviderLoader,
 name=MyRemoteJMSProvider,server=localhost">
 <attribute name="ProviderName">
 RemoteXAConnectionFactory</attribute> [1]
 <attribute name="ProviderAdapterClass">
 org.jboss.jms.jndi.JNDIProviderAdapter</attribute>
 <attribute name="FactoryRef">XAConnectionFactory</attribute>
 <attribute name="QueueFactoryRef">XAConnectionFactory</attribute>
 <attribute name="TopicFactoryRef">XAConnectionFactory</attribute>
 <attribute name="Properties"> [2]

Developing Applications with JBoss Messaging Service

[188]

 java.naming.factory.initial=org.jnp.interfaces.
 NamingContextFactory
 java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
 java.naming.provider.url=remoteserver:1099
 </attribute>
</mbean>

Basically, in the JMS provider configuration file, you have to provide all relevant
information to reach the JMS server. The upper part of the file [1] contains the
Factory configuration of the remote server. The attribute named Properties [2]
handles the NamingContext details of the remote server. You have to substitute the
sample IP address remoteserver with the IP address of your remote server.

Now, you have to adapt the bridge configuration so that the new remote provider
is used. For example, if the remote provider will route messages to the local JMS
provider, all you have to change in your jbm-bridge-service.xml is highlighted
as follows:

<mbean code="org.jboss.jms.server.bridge.BridgeService"
 name="jboss.messaging:service=Bridge,name=BridgeExample"
 xmbean-dd="xmdesc/Bridge-xmbean.xml">
 <depends optional-attribute-name="SourceProviderLoader">
 jboss.messaging:service=JMSProviderLoader,
 name=MyRemoteJMSProvider,server=remoteserver</depends>
 <depends optional-attribute-name="TargetProviderLoader">
 jboss.messaging:service=JMSProviderLoader,
 name=JMSProvider</depends>
</mbean>

Connecting your MDB to a remote provider
Message-driven beans by default consume messages from the built-in JMS
provider. However, you can consume messages from any provider that
has been deployed. For example, if you want to use the newly defined
provider RemoteJMSProvider, all you have to do is adding a couple of
ActivationConfigProperty items to your MDB.

@MessageDriven(activationConfig =
{
 @ActivationConfigProperty(propertyName="destinationTy
 pe", propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(propertyName=»destination»,
 propertyValue=»queue/remoteQueue»),
 @ActivationConfigProperty(propertyName=»providerAdapt
 erJNDI», propertyValue=»java:/MyRemoteJMSProvider «)
})

Chapter 7

[189]

Configuring the persistence service
The persistence manager handles all details about JMS storage. By default, the
persistence service is configured to run on Hypersonic database and its datasource
(identified by the naming context DefaultDS). The configuration of "persistent"
services is grouped in a xxx-persistence-service.xml file, where xxx corresponds
to the database name. We will show how to change the default database to MySQL.

The first thing we will need is a datasource and a database schema, where JBM tables
will be created. In order to avoid extra hops, we will use the MySQL datasource that
we have used previously in our examples. In a production environment, we strongly
advise you to use a dedicated resource for the messaging store.

The next thing we need is a mysql-persistence-service.xml file template. JMS
templates are stored in the docs\examples\jms folder of your JBoss server. There
you will find a list of persistence configuration file for most common databases.

Copy the file mysql-persistence.xml in the folder deploy\messaging of your
server and, at the same time, take care to delete the file hsqldb-persistence.xml.
Now open the MySQL persistence file and configure it to use MySQL datasource.
Here is a reduced version of it:

<mbean
 code="org.jboss.messaging.core.jmx.JDBCPersistenceManagerService"
 name="jboss.messaging:service=PersistenceManager" xmbean-
 dd="xmdesc/JDBCPersistenceManager-xmbean.xml">
 <depends>jboss.jca:service=DataSourceBinding,name=MySqlDS</depends>
 <depends optional-attribute-name="TransactionManager">
 jboss:service=TransactionManager</depends>
 <attribute name="DataSource">java:/MySqlDS</attribute>
</mbean>
<mbean code="org.jboss.messaging.core.jmx.MessagingPostOfficeService"
 name="jboss.messaging:service=PostOffice" xmbean-
 dd="xmdesc/MessagingPostOffice-xmbean.xml">
 <depends optional-attribute-
 name="ServerPeer">jboss.messaging:service=ServerPeer</depends>
 <depends>jboss.jca:service=DataSourceBinding,name=MySqlDS</depends>
 <depends optional-attribute-name="TransactionManager">
 jboss:service=TransactionManager</depends>
 <attribute name="PostOfficeName">JMS post office</attribute>
 <attribute name="DataSource">java:/MySqlDS</attribute>
 <attribute name="Clustered">false</attribute> [1]
 <attribute name="GroupName">
 ${jboss.messaging.groupname:MessagingPostOffice}</attribute>
 <attribute name="FailoverOnNodeLeave">false</attribute>
 <!-- [2] COMMENT OUT THIS

Developing Applications with JBoss Messaging Service

[190]

 <depends optional-attribute-name="ChannelFactoryName">
 jboss.jgroups:service=ChannelFactory</depends>
 <attribute name="ControlChannelName">jbm-control</attribute>
 <attribute name="DataChannelName">jbm-data</attribute>
 <attribute name="ChannelPartitionName">
 ${jboss.partition.name:DefaultPartition}-JMS</attribute>
 -->
</mbean>
<mbean code="org.jboss.jms.server.plugin.JDBCJMSUserManagerService"
 name="jboss.messaging:service=JMSUserManager" xmbean-
 dd="xmdesc/JMSUserManager-xmbean.xml">
 <depends>jboss.jca:service=DataSourceBinding,name=MySqlDS</depends>
 <depends optional-attribute-name="TransactionManager">
 jboss:service=TransactionManager</depends>
 <attribute name="DataSource">java:/MySqlDS</attribute>
</mbean>

Apart from configuring the datasource name, if you are not running a clusterable
solution, make sure that the attribute Clustered is set to false [1]. You should also
comment dependencies on the ChannelFactory service [2], which is not available in
a single node environment.

Securing destinations
By default, every message that is sent can be accessed by all message consumers
connected to the destination. You can restrict access to the JMS destination by
configuring the JMSUserManager component and then plugging JBM users
into JBoss security framework (JBossSX).

By default, the JMSUserManager is set up to run with Hypersonic database and
its configuration file deploy\messaging\hsqldb-persistence-service.xml,
should be already familiar to you.

In the previous section, we have shown how to migrate the persistence service
to another database provider, namely MySQL database. Therefore, by now, your
database should contain all the tables necessary for storing users and role credentials,
along with some sample data.

In order to secure your messages, you need to plug your configuration into ������JBoss
security framework�� so that you can use it to authenticate message senders/
consumers. The configuration of JBoss security framework is discussed in detail in
Chapter 13, JBoss AS Security. In short,�� you need to declare a new security domain in
the conf/login-config.xml file. This file contains all security policies for accessing
JBoss components. Add an application policy named JMSRealm to the login-
config.xml file�.

Chapter 7

[191]

<application-policy name="JMSRealm">
 <authentication>
 <login-module
 code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
 flag="required">
 <module-option name="dsJndiName">java:/MySqlDS</module-option>
 <module-option name="principalsQuery">
 SELECT passwd from jbm_user WHERE user_id=?
 </module-option>
 <module-option name="rolesQuery">
 SELECT role_id,'Roles' FROM jbm_role WHERE user_id=?
 </module-option>
 </login-module>
 </authentication>
<application-policy>

Okay, the configuration is almost complete. The last step is to add the JMSRealm to
the configuration of JBM security store that can be found in the deploy\messaging\
messaging-jboss-beans.xml file. There, you should add a property named
securityDomain [1] with the value JMSRealm.

<bean name="SecurityStore"
 class="org.jboss.jms.server.jbosssx.JBossASSecurityMetadataStore">
 <property name="defaultSecurityConfig">
 <![CDATA[
 <security>
 <role name="guest" read="true" write="true" create="true"/>
 </security>
]]>
 </property>
 <property name="securityDomain">JMSRealm</property> [1]
</bean>

Well done. In order to test the JMS authentication, we will create a topic that is
secured against the role publisher.

<mbean code="org.jboss.jms.server.destination.TopicService"
 name=»jboss.messaging.destination:service=Topic,name=secureTopic
 xmbean-dd="xmdesc/Topic-xmbean.xml">
 <depends optional-attribute-
 name="ServerPeer">jboss.messaging:service=ServerPeer</depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="SecurityConfig">
 <security>
 <role name="publisher" read="true" write="true"/>
 </security>
 </attribute>
</mbean>

Developing Applications with JBoss Messaging Service

[192]

This role is added by the persistence service at table creation. It has a user named
dynsub associated:

INSERT INTO JBM_USER (USER_ID, PASSWD) VALUES ('dynsub', 'dynsub');
INSERT INTO JBM_ROLE (ROLE_ID, USER_ID) VALUES
 ('publisher','dynsub');

What are the "read" and "write" properties?
The read access property specifies that the user with role publisher
is able to consume messages from the destination. The corresponding
write property assigns rights to send messages to that topic. There is
one more property, create, that is configurable and is specific to topic
destinations and can grant the rights to establish a durable subscription.

In the following code excerpt, we create a topic publisher and a subscriber to the
topic secureTopic:

public void example() throws Exception
{
 String destinationName = "topic/secureTopic";
 Context ic = null;
 ConnectionFactory cf = null;
 Connection connection = null;
 try
 {
 ic = getInitialContext();
 cf = (ConnectionFactory)ic.lookup("/ConnectionFactory");
 Topic topic = (Topic)ic.lookup(destinationName);
 connection = cf.createConnection("dynsub","dynsub"); [1]
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 MessageProducer publisher = session.createProducer(topic);
 MessageConsumer subscriber = session.createConsumer(topic);
 subscriber.setMessageListener(this);
 /* Need to implement MessageListener and the
 onMessage method
 */
 connection.start();
 TextMessage message = session.createTextMessage("Hello!");
 publisher.send(message);
 }
}

Chapter 7

[193]

As you can see, accessing a secured destination requires using a constructor with
the correct credentials [1]. We will not dwell upon the rest of the code that takes care
to create a MessageProducer and a MessageConsumer for this topic and eventually
send a JMS text message through this channel.

MDB access control
Message-driven beans can also be configured to authenticate a destination by adding
the additional user and password properties to your MDB annotation.

@MessageDriven(activationConfig =
{
 @ActivationConfigProperty(propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(propertyName="destination",
 propertyValue="queue/secureTopic"),
 @ActivationConfigProperty
 (propertyName=»user», propertyValue=»dynsub»),
 @ActivationConfigProperty
 (propertyName="password", propertyValue="dynsub")
})
public class MessageConsumerBean implements MessageListener {
}

Just be careful to use the property user (and not username). This is a common
pitfall that leads to a JMSSecurityException because the username will be
considered null.

Summary
We have completed our journey through JBoss Messaging. The new JMS provider is
designed to provide a high performance, robust messaging core for the Enterprise.

We have learned how to configure the building blocks of JBoss Messaging system
and we have used this environment to develop some components, such as
message-driven beans and message-driven POJOs.

Moving on, we have discussed some advanced features, such as the bridge system,
the persistence service, and the JMS user manager. You have just learned a good deal
about JBoss Messaging, so pat yourself on the back!

Our next chapter will be devoted to the Hibernate framework, which is the default
persistence engine of JBoss AS.

Developing Applications with
JBoss and Hibernate

Hibernation is a state of regulated hypothermia undergone by some animals to
conserve energy during the winter. – Wikipedia

In this chapter, we will introduce Hibernate, which is the de facto standard
object-relational mapping framework for Java applications. The Hibernate galaxy
is quite large and needs a book of its own to be fully explored. Our mission will be
to take over one sector of this galaxy, especially where Hibernate applications are
managed by JBoss AS.

In this chapter, we will cover the following topics:

A short introduction to Hibernate
Setting up our proof of concept for the Hibernate project
Reverse engineering a database schema into Hibernate POJOs and
mapping files
Deploying the application to JBoss AS
Comparing the Hibernate technology with EJB 3 persistence (JPA)

Introducing Hibernate
Hibernate provides a bridge between the database and the application by persisting
application objects in the database, rather than requiring the developer
to write and maintain lots of code to store and retrieve objects.

•

•

•

•

•

Developing Applications with JBoss and Hibernate

[196]

The main configuration file, hibernate.cfg.xml, specifies how Hibernate obtains
database connections, either from a JNDI DataSource or from a JDBC connection
pool. Additionally, the configuration file defines the persistent classes, which are
backed by mapping definition files.

This is a sample hibernate.cfg.xml configuration file that is used to handle
connections to a MySQL database, mapping the com.sample.MySample class.

<hibernate-configuration>
 <session-factory>
 <property name="connection.username">user</property>
 <property name="connection.password">password</property>
 <property name="connection.url">
 jdbc:mysql://localhost/database
 </property>
 <property name="connection.driver_class">
 com.mysql.jdbc.Driver
 </property>
 <property name="dialect">
 org.hibernate.dialect.MySQLDialect
 </property>
 <mapping resource="com/sample/MyClass.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

From our point of view, it is important to know that Hibernate applications can
coexist in both the managed environment and the non-managed environment. An
application server is a typical example of a managed environment that provides
services to hosting applications, such as connection pooling and transaction.

On the other hand, a non-managed application refers to standalone applications,
such as Swing Java clients that typically lack any built-in service.

In this chapter, we will focus on managed environment applications, installed on
JBoss Application Server. You will not need to download any library to your JBoss
installation. As a matter of fact, JBoss persistence layer is designed around Hibernate
API, so it already contains all the core libraries.

Creating a Hibernate application
You can choose different strategies for building a Hibernate application. For example,
you could start building Java classes and map files from scratch, and then let Hibernate
generate the database schema accordingly. You can also start from a database schema
and reverse engineer it into Java classes and Hibernate mapping files. We will choose
the latter option, which is also the fastest. Here's an overview of our application.

Chapter 8

[197]

In this example, we will design an employee agenda divided into departments. The
persistence model will be developed with Hibernate, using the reverse engineering
facet of JBoss tools. We will then need an interface for recording our employees and
departments, and to query them as well.

The web interface will be developed using a simple Model-View-Controller (MVC)
pattern and basic JSP 2.0 and servlet features.

The overall architecture of this system resembles the AppStore application that has
been used to introduce JPA. As a matter of fact, this example can be used to compare
the two persistence models and to decide which option best suits your project needs.
We have added a short section at the end of this example to stress a few important
points about this choice.

Setting up the database schema
As our first step, we are going to create the necessary tables for our example. Launch
a MySQL client and issue the following DDL:

CREATE schema hibernate;
GRANT ALL PRIVILEGES ON hibernate.* TO 'jboss'@'localhost' WITH GRANT
OPTION;
CREATE TABLE `hibernate`.`department` (
 `department_id` INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 `department_name` VARCHAR(45) NOT NULL,
 PRIMARY KEY (`department_id`)
)
ENGINE = InnoDB;
CREATE TABLE `hibernate`.`employee` (
 `employee_id` INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
 `employee_name` VARCHAR(45) NOT NULL,
 `employee_salary` INTEGER UNSIGNED NOT NULL,
 `employee_department_id` INTEGER UNSIGNED NOT NULL,
 PRIMARY KEY (`employee_id`),
 CONSTRAINT `FK_employee_1` FOREIGN KEY `FK_employee_1` (`employee_
department_id`)
 REFERENCES `department` (`department_id`)
 ON DELETE CASCADE
 ON UPDATE CASCADE
)
ENGINE = InnoDB;

Developing Applications with JBoss and Hibernate

[198]

With the first Data Definition Language (DDL) command, we have created a
schema named Hibernate that will be used to store our tables. Then, we have
assigned the necessary privileges on the Hibernate schema to the user jboss
(created in Chapter 5, Developing JPA Entities).

Finally, we created a table named department that contains the list of company
units, and another table named employee that contains the list of workers. The
employee table references the department with a foreign key constraint.

A new Eclipse project
Now start Eclipse. You don't have a specific project for Hibernate applications,
so a utility project (that simply packs the classes in an archive) will be enough.
You can reach this option from the menu by going to New | Other | Java EE |
Utility Project.

Chapter 8

[199]

Name the project HibernateProject and target it to JBoss AS 5.0 Runtime. You can
leave the default JBoss AS configuration and hit Finish.

Now, we are going to unleash the full potential of Hibernate tools. Select from the
menu New | Other | Hibernate | Hibernate Configuration File. The Hibernate
configuration contains all of the details for wiring your application to the database.
You will be asked for the name and the parent folder of the configuration file. Accept
the default hibernate.cfg.xml at the root of your project.

Next, insert the details of your Hibernate configuration. Choose a name for your
session factory, which will contain your MySQL connection facets. Remember to
check the flag Create a console configuration, so that the wizard will complete the
console configuration as the next step.

Developing Applications with JBoss and Hibernate

[200]

A console configuration describes how the Hibernate plugin should interact with
Hibernate and what configuration files (including the classpath) are needed to load
the POJOs, JDBC drivers, and so on. This step is required to make use of query
prototyping, reverse engineering, and code generation.

The console wizard will look at the current selection in the IDE and will try to
autodetect the settings, which you can approve or modify to suit your needs. For
example, you don't need to enter the Configuration file or the Property file if you
have just one in your project; Eclipse will select it automatically.

One important selection is the Type option that lets you choose between the Core
hibernate configuration (Java classes backed by mapping files), Annotations, or even
JPA annotations. We will leave the selected Core option.

Chapter 8

[201]

Before clicking Finish, select MySQL (InnoDB) as Database dialect in the Options
tab. No other changes are required.

Now verify that you have successfully linked to Hibernate by switching to Hibernate
Configuration. This view will be composed by a tree of three objects: Configuration,
Session Factory, and Database. Choose Database and verify that it expands
correctly to show the database tables of your schema.

If you fail to browse the database schema, check that you have correctly set up your
Hibernate configuration.

Developing Applications with JBoss and Hibernate

[202]

Reversing your schema into Java classes
The next move will be reversing our database schema into Java classes and mapping
files. This powerful feature is available from the menu: File | New | Hibernate |
Hibernate Reverse Engineering file. You can place this file in a convenient
location for your project and choose a name for it. The default name proposed is
hibernate.reveng.xml, which looks rather the tile of another fiction movie
from G. Lucas.

On the next page, select your Console configuration and choose the tables that will
be included in your reverse engineering process. (Hint: You have to hit Refresh first
to show the database schema and then click Include....)

Chapter 8

[203]

What Eclipse has just created for you is a file named hibernate.reveng.xml that
should resemble the following code snippet:

<hibernate-reverse-engineering>
 <table-filter match-catalog="hibernate" match-name="department"/>
 <table-filter match-catalog="hibernate" match-name="employee"/>
</hibernate-reverse-engineering>

If you are smart at noticing variations, you might have discovered a new icon in
your toolbar. This is your gateway to the reverse engineering process. (Notice:
this icon is visible only in the Hibernate Perspective, you will not be able to find
it anywhere else.)

Click on Hibernate's down arrow icon and select Hibernate Code Generation
Configurations. In the next dialog, you will first have to create a new Hibernate
Code Generation Configuration that will contain all the details of your reverse
engineering process. Click on the New button located in the left corner of the wizard.

Now, select your brand new configuration and carefully choose the following
options. First, wire the Console configuration to your project (HibernateProject).
Then, choose an output directory for your generated files. We would suggest you
to point to your src folder. (Be aware that existing files will be overwritten, that's
why I just said you have to be careful!)

Developing Applications with JBoss and Hibernate

[204]

Just below, you will find the checkbox Reverse engineer from JDBC Connection. If
enabled, the tools will reverse engineer the available database using the connection
information in the selected Hibernate Console configuration. Check this option and
enter the package name for the generated classes, which will be com.packtpub.
hibernate. Leave the other text fields to the defaults and move to the tab Exporters.

The Exporters tab menu is used to specify which type of code should be generated.
Each selection represents an Exporter that is responsible for generating the code,
hence the name.

Chapter 8

[205]

In the upper area of the dialog, you will notice an interesting checkbox named
Generate EJB 3 annotations. We will return to this useful option later. At the moment,
what we need is just to check the Domain code and Hibernate XML Mappings
options, which will generate the Java POJOs and mapping files respectively.

It took a bit of time to complete all of these steps; however, now your Java classes
and configuration files are handy and waiting to be packaged.

Developing Applications with JBoss and Hibernate

[206]

Adding Hibernate configuration to your project
The advantage of embedding the Hibernate application in JBoss AS is that you
can expose Hibernate SessionFactory through a JNDI tree and modify its
configuration at runtime.

This is indeed a great configuration advantage; before the new release of JBoss
AS, you had to delegate to an MBean the creation of the Hibernate SessionFactory
and its exposure through JNDI.

For example, if you wanted to configure a SessionFactory at the naming context
hibernate/SessionFactory, you would have to package your Hibernate
application with a file named xxx-service.xml in the META-INF folder. Here's a
sample of it:

<server>
 <mbean code="org.jboss.hibernate.jmx.Hibernate"
 name="jboss.har:service=Hibernate">
 <attribute name="DatasourceName">java:/ MySqlDS</attribute>
 <attribute name="Dialect">
 org.hibernate.dialect.MySQLDialect
 </attribute>
 <attribute name="SessionFactoryName">
 java:/hibernate/SessionFactory
 </attribute>
 <attribute name="CacheProviderClass">
 org.hibernate.cache.HashtableCacheProvider
 </attribute>
 </mbean>
</server>

This configuration is still valid for pre 5.0 releases of JBoss AS. With the introduction
of the new Virtual Deployment Framework (VDF), you now have to provide your
SessionFactory configuration using the Hibernate XML schema. For example, if you
want to link your SessionFactory to your MySQL database, you have to add the
following service-hibernate.xml. (Be aware, the suffix is -hibernate.xml and
not –service.xml.)

<hibernate-configuration xmlns="urn:jboss:hibernate-deployer:1.0">
 <session-factory name="java:/hibernate/SessionFactory"
 bean="jboss.test.har:service=Hibernate,
 testcase=TimersUnitTestCase">
 <property name="datasourceName">java:/MySqlDS</property>
 <property name="dialect">
 org.hibernate.dialect.MySQLDialect

Chapter 8

[207]

 </property>
 <depends>jboss:service=Naming</depends>
 <depends>jboss:service=TransactionManager</depends>
 </session-factory>
</hibernate-configuration>

The preceding configuration file needs to be stored in the META-INF folder of your
Hibernate archive (HAR) file. The structure of the updated project from the
Package Explorer is as shown in the following snapshot:

Adding a web client to your project
There are several ways to test our Hibernate application. The simplest of all is adding
a web application, which is packaged in an Enterprise application along with the
Hibernate application. Create a new dynamic web project named HibernateWeb.

Developing Applications with JBoss and Hibernate

[208]

The first step, before adding servlets and JSPs is linking the HibernateProject libraries
to your web application, otherwise, you will not be able to reference the Hibernate
POJOs. Right-click on your project and select Properties. Reach the Java Build Path
option and select the tab Projects. From there add HibernateProject.

Let's move on. This project will contain a main servlet that acts as a controller, and a
few JPSs for the client view. We will start by adding com.packtpub.hibernateWeb.
HibernateServlet to our project.

In the following snippet, you can see the core section of the servlet. Here, we will
not detail the Controller logic, which is straightforward if you have some rudiments
of the MVC pattern; rather we want to highlight the most interesting part of it, which
is how to query and persist Hibernate objects.

public class HibernateServlet extends HttpServlet {
 private SessionFactory getSessionFactory() {
 return (SessionFactory)getServletContext().
 getAttribute("sessionFactory");
 }
 public void init() { [1]
 if (getSessionFactory() != null) {
 return;
 }
 InitialContext ctx;
 try {
 ctx = new InitialContext();
 factory = (SessionFactory)ctx.
 lookup("java:/hibernate/SessionFactory");
 getServletContext().setAttribute("sessionFactory", factory);
 }

Chapter 8

[209]

 catch (NamingException e) {
 e.printStackTrace();
 }
 }
 private String saveEmployee(HttpServletRequest request) {
 Session hsession=null;
 String name=request.getParameter("name");
 String salary=request.getParameter("salary");
 String departmentId=request.getParameter("departmentId");
 try {
 hsession = getSessionFactory().openSession();
 hsession.beginTransaction();
 Query query = hsession.createQuery("from Department d where
 d.departmentId = :departmentId"); [2]
 query.setInteger("departmentId", new Integer(departmentId));
 Department dep = (Department) query.uniqueResult();
 Employee emp = new Employee();
 emp.setDepartment(dep);
 emp.setEmployeeName(name);
 emp.setEmployeeSalary(Integer.parseInt(salary));
 hsession.save(emp); [3]
 hsession.getTransaction().commit();
 }
 catch (Exception e) {
 // TODO Auto-generated catch block e.printStackTrace();
 hsession.getTransaction().rollback();
 }
 finally {
 if (hsession.isOpen())
 hsession.close();
 }
 return employeeList(request);
 }
private String employeeList(HttpServletRequest request) {
 Session hsession=null;
 Department dep;
 try {
 hsession = getSessionFactory().openSession();
 Query query = hsession.createQuery("select p from Employee p
 join fetch p.department c"); [4]
 List <Employee>list = query.list();
 request.setAttribute("employee", list);
 }
 catch (Exception e) {
 e.printStackTrace();

Developing Applications with JBoss and Hibernate

[210]

 }
 finally {
 if (hsession.isOpen())
 hsession.close();
 }
 return "/listEmployees.jsp";
 }
 private String saveDepartment(HttpServletRequest request) {
 String depName=request.getParameter("depName");
 Session hsession=null;
 Department dep;
 try {
 hsession = getSessionFactory().openSession();
 hsession.beginTransaction();
 dep = new Department();
 dep.setDepartmentName(depName);
 hsession.save(dep); [5]
 hsession.getTransaction().commit();
 }
 catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 hsession.getTransaction().rollback();
 }
 finally {
 if (hsession.isOpen())
 hsession.close();
 }
 return employeeList(request);
 }
}

As you can see from the preceding code, we recover the SessionFactory from the
JNDI tree in the init() [1] method of the servlet. Instances of SessionFactory
are thread-safe and typically shared throughout an application, so we store it in
the ServletContext and share it among all servlet instances.

The SessionFactory is subsequently used to start a Hibernate session, which is
not thread-safe and should only be used for a single transaction or unit of work
in an application.

In order to store our Employee, in the saveEmployee method, we first retrieve the
corresponding Department from our schema [2], and finally the Employee is saved
[3] and the transaction is committed.

Chapter 8

[211]

The list of employees is fetched by the employeeList method. Notice we are using
a join fetch statement to retrieve all the employees [4], which will be routed to the
listEmployees.jsp view. Why? The answer is that with the default fetch mode
(Lazy), once the Hibernate session is closed, the client will not be able to navigate
through the department field of the Employee. The common solution to this issue
is switching to the EAGER fetch mode that reads the related fields (in our case
department) in memory, as soon as we query the Employee table.

You have more than one option to achieve this. One possible solution, if you don't
want to change the default fetch mode for the Employee table, is to build an
ad hoc query that forces Hibernate to read also those fields that are in relation
with the Employee table.

"select p from Employee p join fetch p.department c"

If you prefer to use the XML class files to configure the fetch mode, you can also
change the lazy="true" attribute in the employee-department relationship.

The last method, saveDepartment [5] takes care to persist a new Department
in the corresponding table. We complete our excursus on the web tier with the
listEmployees.jsp that is used to display a tabular view of the employees:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<html>
<script language="JavaScript">
function doSubmit(url) {
 document.module.action = url;
 document.module.submit();
}
</script>
<body>
<table border="1">
 <tr>
 <th>Name</th>
 <th>Salary</th> <TH>department</th>
 </tr>
 <c:forEach items="${employee}" var="emp">
 <tr>
 <td> <c:out value="${emp.employeeName}"/> </td>
 <td> <c:out value="${emp.employeeSalary}"/></td>
 <td> <c:out value="${emp.department.departmentName}"/></td>
 </tr>
 </c:forEach>
</table>
<form name="module" method="POST">

Developing Applications with JBoss and Hibernate

[212]

 <input type="button" value ="New Employee"
 onClick="doSubmit('actionServlet?op=newEmployee')">
 <input type="button" value ="New Department"
 onClick="doSubmit('actionServlet?op=newDepartment')">
</form>
</body>
</html>

This page uses JSP 2.0 Expression Language (EL) to iterate through the list of
employees, as highlighted in the last code snippet. We have also highlighted the
taglib directive, at the beginning of the page. This directive will be used to resolve
the JSTL core set of libraries that ships with JBoss AS in the server/xxx/deploy/
jbossweb.sar/jstl.jar library. (Eclipse does not contain references to this library
when you create a web project; you have to add jstl.jar to your build path,
otherwise Eclipse will mark it as an error. However, that's only a visual annoyance
because the JBoss web container has got everything it needs to run JSTL.)

The complete web application is available on the Packtpub website
(http://www.packtpub.com) and includes two additional JSPs for entering the
employee (newEmployee.jsp) and department (newDepartment.jsp) data, plus
one placeholder index.jsp that merely forwards to the HibernateServlet.

newDepartment.jsp

index.jsp HibernateServlet listEmployees.jsp

newEmployee.jsp

Packaging and deploying the application
Your enterprise application is complete. We need to package it in an EAR archive
so that the web application will be able to interact with the Hibernate POJOs.
Create a new Enterprise Application project from the Java EE folder. You will be
prompted to select the projects that will be included as modules. Select both the
HibernateProject and the web application HibernateWeb.

Chapter 8

[213]

If you have ever worked with JBoss AS and Hibernate, then you might argue that
right now something is missing. You're indeed right. Before release 5.0 of the JBoss
Application Server, Hibernate classes and mapping files had to be packaged in a
JBoss AS custom .har archive. The suffix was determinant, as JBoss AS was able to
classify the package as a Hibernate resource.

As HAR archives are not Java EE standard components, you have to declare it in a
JBoss AS-specific configuration file named jboss-app.xml that sits in the META-INF
folder of our EAR.

<!DOCTYPE jboss-app PUBLIC "-//JBoss//DTD J2EE Application 1.5//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-app_5_0.dtd">
<jboss-app>
 <module>
 <har>HibernateApplication.har</har>
 </module>
</jboss-app>

Developing Applications with JBoss and Hibernate

[214]

While this approach is still advisable if you want to grant backward compatibility to
your applications, with release 5.0 of the Application Server you now have a handy
quicker solution. As the new VFS of JBoss AS is able to detect the nature of your
application by scanning deployment descriptors, it's enough to pack your Hibernate
application in a plain Java ARchive (JAR). JBoss AS will discover the .hbm.xml
mapping files and look for the corresponding Java classes. If successful, the package
will be deployed as a Hibernate application straightaway.

The corollary of this theorem is that you can leave out, as well, the JBoss AS
configuration file jboss-app.xml, which is not necessary any more. The only update
required is to your application.xml, where your Hibernate application is declared
as a Java module in order to make it available to other enterprise modules.

<application>
 <module>
 <web>
 <web-uri>HibernateWeb.war</web-uri>
 <context-root>HibernateWeb</context-root>
 </web>
 </module>
 <module>
 <java>HibernateProject.jar</java>
 </module>
</application>

This is how your Enterprise ARchive should look like before deploying it:

Now deploy your application in the usual way, by adding the project to JBoss AS
projects and then choosing Full Publish. The application server will then produce
a few log pages; if the binding of classes is successful, you will find the following
among your logs:

Chapter 8

[215]

16:46:18,949 INFO [HbmBinder] Mapping class: com.packtpub.hibernate.
Employee ->employee

16:46:19,261 INFO [HbmBinder] Mapping class: com.packtpub.hibernate.
Department -> department

16:46:19,277 INFO [HbmBinder] Mapping collection: com.packtpub.hibernate.
Departm

ent.employees -> employee

In order to test your application, simply recall your JSP default page, using the
HibernateWeb context. In our example:

http://localhost:8080/HibernateWeb/

Using the wizard to generate EJB 3
Hibernate tool capabilities are not limited to Hibernate programming. By using
the reverse engineering option, you can also generate EJB 3.0 classes in a matter
of seconds. Recall the Reverse Engineering Configuration:

Developing Applications with JBoss and Hibernate

[216]

If you Check the Generate EJB 3 annotations checkbox along with Domain code,
then the outcome of your reverse engineering process would be simple Java classes
with entity annotations. That's a huge saving of time, especially if your database
schema is rather complex. You can still adjust your entity beans to your needs once
they are generated.

Hibernate and EJB: Friends or opponents?
In Chapter 4, we introduced the EJB programming model, so at this stage, you might
wonder when it's more appropriate to use EJB from your projects and when it's
better to stay on the Hibernate framework.

The premise of this debate is that EJB and Hibernate are not fully comparable
because they are semantically different. EJBs live in a container, which provides
services, such as transactions, concurrent access control, security, instance pooling,
and others. On the other hand, Hibernate is classified as an object-relational
mapping tool and it is independent from a server container.

So, if comparing EJB and Hibernate is technically a mistake, you can actually
compare the Java Persistence API and Hibernate, which are, in some ways, two
antagonist technologies. The most important factor, which is in favor of JPA, is
that it is a standard. Using industry-standard components allows the business
comparatively more flexibility when it's necessary to change its business model,
to reorchestrate itself, and to collaborate dynamically.

Technically speaking, it is also important to stress that an EJB-centric approach is the
appropriate implementation technology for two types of applications:

Applications that use distributed transactions initiated by remote clients
Applications that are heavily message-oriented and need
message-driven beans

On the other hand, Hibernate framework has reached a vast community of
developers and it offers the benefit of peacefully coexisting in various deployment
environments, from application servers to standalone applications.

At the end of the day, the choice between the two technologies might be to preserve
your well-tested applications backed by Hibernate Persistence and to definitely
consider switching to JPA when you are designing a new project from the ground
up. What about using them together instead?

•

•

Chapter 8

[217]

Using Hibernate with EJB
A plausible scenario is that some time ago, you designed the persistence layer of
your application with Hibernate. Now you need to expose some functionalities of
your application through RMI or Web Services.

The good news is that persistent classes that are mapped using Hibernate *.hbm.
xml files are supported by JBoss AS EJB 3 implementation. The EJB 3 deployer
will search the archive for any .hbm.xml files and add them to the definition of the
underlying Hibernate SessionFactory. Let's see how you can leverage Hibernate
objects from the EJB environment.

Injecting key Hibernate objects
If you have been through the Hibernate web application carefully, you might
advocate that it is not a pure MVC application, as we are accessing the persistence
layer from within the servlet.

This approach can be useful for a learner who wants an easy-to-catch example
of Hibernate. However, you can create a clean separation of roles between the
controller and the model tier, also by introducing an EJB as intermediary.

From inside your Hibernate project, add another Stateless Session Bean named
com.packtpub.hibernate.HibernateDAOBean implementing a local interface
com.packtpub.hibernate.HibernateDAOLocal.

Following is a code snippet of the bean implementing the saveEmployee method:

@Stateless
@LocalBinding(jndiBinding="HibernateDAO/local")
public class HibernateDAOBean implements HibernateDAO {
 @PersistenceUnit(unitName="hibernateUnit") [1]
 SessionFactory factory;
 public void saveEmployee(String name,String salary,String
 departmentId) {
 Session hsession=null;
 try {
 hsession = factory.openSession();
 Query query = hsession.createQuery("from Department d where
 d.departmentId = :departmentId");
 query.setInteger("departmentId", new Integer(departmentId));
 Department dep = (Department) query.uniqueResult();
 Employee emp = new Employee();
 emp.setDepartment(dep);
 emp.setEmployeeName(name);
 emp.setEmployeeSalary(Integer.parseInt(salary));

Developing Applications with JBoss and Hibernate

[218]

 hsession.save(emp);
 }
 catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 throw new EJBException(e.getMessage());
 }
 finally {
 if (hsession.isOpen())
 hsession.close();
 }
 }

The most interesting point in this example is that you have injected the
Hibernate SessionFactory in your bean by means of the persistence unit
named hibernateUnit. Therefore, you have to equip your application with
a JPA persistence.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/
persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://
java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
 <persistence-unit name="hibernateUnit" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:/MySqlDS</jta-data-source>
 <properties>
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.MySQLDialect"/>
 </properties>
 </persistence-unit>
</persistence>

We leave as exercise to the reader to complete the EJB with all other methods. On
the web tier, you will do a clear cut of all the persistence stuff, just taking care to
invoke the EJB with the parameters collected from the request. Look how simple
and effective your servlet method saveEmployee has become:

@EJB(mappedName = "HibernateDAO/local")
HibernateDAO hibernateDAO;
 private String saveEmployee(HttpServletRequest request) {
 Session hsession=null;
 String name=request.getParameter("name");
 String salary=request.getParameter("salary");
 String departmentId=request.getParameter("departmentId");
 try {

Chapter 8

[219]

 hibernateDAO.saveEmployee(name,salary,departmentId);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return employeeList(request);
 }

A snapshot of the complete Hibernate EJB-driven project follows here:

As you can see, using Hibernate API works much the same way as the
EntityManager interface. This example reveals another difference with our former
web application. Here the EJB must not attempt to manage the life cycle of the
Hibernate session; this is done internally by the EJB container, which is in charge
of committing or rolling back the transaction, following the EJB container's policies.

Developing Applications with JBoss and Hibernate

[220]

Summary
Hibernate is a flexible framework that can be used in any Java application
environment. In our excursus, we have showed how to develop a sample application
that is geared toward a managed environment. In the last two sections of the chapter,
we have compared the Hibernate framework with the JPA persistence standard,
showing how the two technologies can be coupled in a single application.

In the next chapter, we will learn JBoss AS JMX infrastructure, which was the
backbone of earlier releases of JBoss. Even if it's not the main kernel component
anymore, the JMX API is still the glue around many JBoss AS services.

Managing JBoss AS
"Hic sunt leones" (Translation: Here live lions).

Formerly used in ancient Roman age maps to denote dangerous or unexplored
territories, where wild beasts lived.

At the beginning of this book, we discussed the kernel structure of the application
server that has been designed around the Microcontainer project. However, Java
Management Extension (JMX) still plays a vital role in the application server
infrastructure and as proof of it, some key services such as the naming service and
Java Message Service (JMS) are still built on top of the Java Management Extension.

In this chapter, we will dive headlong into the vast and varied JMX ocean,
highlighting the following topics:

An introduction to the JMX framework
Some detailed examples of standard resources used to manage JMX and how
they can complement standard Java EE applications
The new service POJO
Monitoring MBeans components

Introducing Java Management Extension
JMX is a standard for managing and monitoring all varieties of software and
hardware components from Java. Further, JMX aims to provide integration with the
large number of existing management standards. Those resources are represented by
objects called MBeans (managed beans) that are the management interfaces to the
services registered with the JBoss AS.

•

•

•

•

Managing JBoss AS

[222]

JMX is based on a three-level architecture:

The distributed services level is the mechanism by which administration
applications interact with agents and their managed objects. The interaction
can happen through connectors or adapters. A connector provides full
remote access to the MBeanServer API using various communication
protocols, such as RMI, IIOP, or JMS. On the other hand, the adaptor adapts
the API to another protocol, such as SNMP or to a web-based interface.
The agent level, or MBeanServer, is the core of JMX. It is an intermediary
between the MBean and the applications.
The probe level contains the probes (called MBeans) instrumenting the
resources. These resources are Java classes that can be dynamically loaded
and instantiated.

Proprietary
Management
Application

JMX
Management
Application

Web
Application

Connector Adapter

Mbean Server

Mbean 1 Mbean 2 Mbean 3

Pr
ob
e
Le
ve
l

Ag
en
t L
ev
el

Di
st
rib
ut
ed

Le
ve
l

As a developer, you are mostly interested in learning about the probe level
(also called the instrumentation level), where MBeans live.

JMX defines four types of MBeans to support different instrumentation needs. They
are as follows:

Standard MBeans: These use a simple JavaBean style naming convention
and a statically defined management interface. This is currently the most
common type of MBean used by JBoss.
Dynamic MBeans: These must implement the javax.management.
DynamicMBean interface, and they expose their management interface at
runtime when the component is instantiated for the greatest flexibility. JBoss
makes use of dynamic MBeans in circumstances where the components to be
managed are not known until runtime.

•

•

•

•

•

Chapter 9

[223]

Open MBeans: These are an extension of dynamic MBeans. Open MBeans
rely on basic data types for universal manageability and are self-describing
for user friendliness.
Model MBeans: These are also an extension of dynamic MBeans. Model
MBeans must implement the javax.management.modelmbean.ModelMBean
interface. Model MBeans simplify the instrumentation of resources by
providing default behavior. JBoss XMBeans are an implementation of
model MBeans.

In this chapter, we will cover the standard MBeans as they are the common
service implementation for most JBoss JMX services, as well as the preferred
solution adopted by the community of developers. We will start with a basic
example to let you familiarize yourself with this technology at once, and then we
will illustrate some advanced features of MBeans such as service dependency,
notifications, and monitoring.

Developing MBeans
As we have mentioned, MBeans ������������������������������������ are typed components���������������� composed by an
implementation class and a management interface that is exposed to external
applications. As per JMX specifications, standard MBeans do not require implementing
any server-specific interface. However, if you want to fully use the JBoss MBeans
capabilities, you are strongly encouraged to write MBeans using JBoss service pattern.

Writing JBoss-style MBeans requires implementing the ServiceMBean interface
and extending the ServiceMBeanSupport base class that provides a set of life cycle
operations. The notifications inform an MBean service when it can create, start, stop,
and destroy itself.

For example, if you are writing an MBean that needs a JNDI naming service using
JBoss service pattern, it's sufficient to establish a dependency between the two
services. When the JNDI life cycle interface signals that the service is started, you
can safely start up your service too. The same procedure ranges from difficult
to impossible to do with vanilla JMX MBeans, if the only life cycle event is the
MBean constructor.

A simple MBean
The first example will be a standard MBean that collects a key-value attribute pair
and stores them in the AS system properties.

For packaging our MBeans, we will keep using the Java EE utility project, which is
just what we need to settle our classes in an archive.

•

•

Managing JBoss AS

[224]

Some of you might have noticed the option JBoss Tools | New MBeans
stubs. Honestly speaking, choosing this option doesn't add any great
value to your project as it only lets you define the class name and its
interface through a wizard. However, I think it is worth informing you
about this choice as some new options will be added to the future releases
of JBoss Tools.

Create a new utility project MBeanExample and add acom.packtpub.jmx.
example1.SimpleServiceMBean interface. This will be our JMX contract that
implements the ServiceMBean interface:

package com.packtpub.jmx.example1;
import org.jboss.system.ServiceMBean;
public interface SimpleServiceMBean extends ServiceMBean {
 public String getProperty(String property);
 public void setProperty(String key, String value);
}

Make sure that the MBean interface adheres to the naming standard
where the word "MBean" is appended at the end of any service name.

The interface simply exposes getter and setter methods for storing and retrieving
a system property, where com.packtpub.jmx.example1.SimpleService is the
implementing class�:

package com.packtpub.jmx.example1;
import org.jboss.system.ServiceMBeanSupport;
public class SimpleService extends ServiceMBeanSupport
 implements SimpleServiceMBean {
 protected void startService() [1]
 {
 log.info("MBean SimpleService started ");
 }
 protected void stopService() throws Exception [2]
 {
 log.info("MBean SimpleService stopped ");
 }
 public String getProperty(String property) {
 String value = System.getProperty(property);
 log.info("MBean SimpleService returning: "+value);
 return value;
 }
 public void setProperty(String key, String value) {
 System.setProperty(key, value);
 }
}

Chapter 9

[225]

This class extends ServiceMBeanSupport, which is an abstract base class. JBoss
services can extend it to write JBoss-compliant services. This class overrides the
startService [1] and stopService [2] called by the application server when the
SimpleService is started (startService) or when it's stopped (stopService). The
getProperty and setProperty methods are conceivably used to store and read a
system property.

Be aware that this example is only for the purpose of learning MBeans, in
a production environment, you would not expose the server properties, at
least not without an appropriate security authorization!

Before packaging our MBean, we need to add an MBean configuration file. This is a
standalone XML descriptor with a naming pattern that matches *-service.xml. In
the last section of this chapter, we will illustrate how we can skip this step by using
POJO MBeans that can be configured entirely through annotations. Anyway, writing
an MBeans configuration file allows your components backward compatibility with
earlier releases of JBoss too.

In our example, we will add the following simple-service.xml under the
META-INF folder of your project:

<server>
 <mbean code="com.packtpub.jmx.example1.SimpleService"
 name="com.packtpub.jmx.example1:service=SimpleService">
 </mbean>
</server>

The MBean element specifies that you are declaring an MBean service. The code
attribute gives the fully qualified name of the MBean implementation class. The
required name attribute provides the JMX ObjectName of the MBean.

The latter attribute is composed of a mandatory element, the domain name, followed
by a list a properties as depicted by the following diagram:

jboss. system: service= Logging , type=Log4jService

domain Property Property

Managing JBoss AS

[226]

The following is a screenshot of the Project Explorer before deploying the
application to JBoss:

Add the project to JBoss 5 and select Full Publish from JBoss Perspective. The
outcome of this action will be a file named MBeanExample.jar in the deploy
folder of JBoss.

What happened to SAR extension?
As you can see, your MBeans are flawlessly deployed on JBoss 5 as JAR
archives. Using earlier releases of JBoss, you had to package the archive
in an SAR file, otherwise the JMX deployer would not recognize the
application as an MBean.
If you are curious to know some inner details, the magic trick is
performed by the new JBoss 5 Virtual Deployment Framework
(VDF). The deployment recognition phase is now split into two rounds.
The first one, which is based on the structure of the deployment unit,
recognizes the MBeans deployment descriptors in the META-INF folder
and proceeds immediately to the second round, which is about parsing
the files, class loading, and installation. That being said, using SAR
archives is still worthwhile if you need backward compatibility of your
MBean applications.

Chapter 9

[227]

Testing your MBean from the JMX console
The JMX console has been already introduced to you in Chapter 3, so you should
already know that it is a web application used to inspect MBeans' attributes and
invoke service operations. Launch it the usual way:

http://localhost:8080/jmx-console

Now look for the domain com.packtpub.jmx.example1. In the Agent View, you will
find a single service available:

Follow the link that will take you to the MBean View. This is your playground for
testing the MBean. Find the setProperty operation, which should be located in the
lower area of your view and enter one dummy property name and value:

Then you can check the value of your property by clicking getProperty, which
accepts as input the key property:

Managing JBoss AS

[228]

Testing your application programmatically
The same test can be performed using the JMX API. This approach will teach you
to create your JMX interfaces for interacting with the agents and their managed
components. Just add a web project to your workspace named JMX Web Client. Take
care (as usual) to include the libraries from the MBean project in the build path for
your web project so that your servlets will compile correctly from Eclipse.

The following servlet needs to be added to your web project:

package com.packtpub.jmxweb.example1
import java.io.*;
import javax.management.MBeanServer;
import javax.servlet.ServletExcep�����tion;
import javax.servlet.http.*;
import org.jboss.mx.util.MBeanProxyExt;
import org.jboss.mx.util.MBeanServerLocator;
import com.packtpub.jmx.example1.SimpleServiceMBean;
public class TestJMXServlet extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 response.setContentType(«text/html»);
 PrintWriter out = response.getWriter();
 SimpleServiceMBean service = null;
 String property= request.getParameter(«property»);
 String value= request.getParameter(«value»);
 try {
 MBeanServer server = MBeanServerLocator.locate();

Chapter 9

[229]

 service = (SimpleServiceMBean) MBeanProxyExt.
 create(SimpleServiceMBean.class,"com.packtpub.jmx.
 example1:service=SimpleService",server);
 service.setProperty(property,value);
 out.println("Set property "+property + "=" + value);
 }
 catch (Exception e) {
 e.printStackTrace ();
 }
 }
}

In this sample code, we are creating an instance of the service through the
MBeanProxyExt class that is a factory for producing MBeans proxies. The factory
returns an instance of the SimpleServiceMBean that exposes the setProperty
and getProperty methods in its interface.

What if you need a standalone client? JBoss AS supplies an RMI interface for
connecting to the JMX MBeanServer. This interface is org.jboss.jmx.adaptor.
rmi.RMIAdaptor. The RMIAdaptor interface is bound to JNDI in the default location
of jmx/invoker/RMIAdaptor, as well as jmx/rmi/RMIAdaptor for backwards
compatibility with older clients.

In the following example, you can see a standalone JMX client that uses the
RMIAdaptor to query the MBeanInfo for the SimpleServiceMBean. As it is a plain
Java class that uses reflection to invoke the MBeans operations, you can place it
anywhere in any project or in a Java project of its own:

package com.packtpub.jmxclient.example1;
import java.util.Hashtable;
import javax.management.ObjectName;
import javax.naming.Context;
import javax.naming.InitialContext;
import org.jboss.jmx.adaptor.rmi.RMIAdaptor;
public class SimpleServiceTest {
 public static void main(String args[]) {
 try {
 Hashtable hash = new Hashtable();
 hash.put(«java.naming.factory.initial»,
 «org.jnp.interfaces.NamingContextFactory»);
 hash.put(«java.naming.provider.url»,
 «jnp://localhost:1099»);
 hash.put(«java.naming.factory.url.pkgs»,
 «org.jnp.interfaces»);
 Context ic = new InitialContext(hash);

Managing JBoss AS

[230]

 RMIAdaptor server = (RMIAdaptor)
 ic.lookup(«jmx/rmi/RMIAdaptor»);
 // Get the InitialValues attribute
 ObjectName name = new ObjectName(«com.packtpub.jmx.
 example1:service=SimpleService»);
 // Invoke the setProperty(string1,string2) op
 String[] sig = {«java.lang.String»,»java.lang.String»};
 Object[] opArgs = {«name»,»frank»};
 Object result = server.invoke(name, «setProperty»,
 opArgs, sig);
 }
 catch (Exception e) {
 e.printStackTrace ();
 }
 }
}

As you can see, this client doesn't use any JBoss-specific class to access the MBean
and can be considered a valid alternative if you need to write a portable solution
for accessing your Mbeans.

MBeans dependency
Our second example will serve two different purposes. First, we will illustrate how
you can define an MBean as dependent on other services. This MBean will invoke
a stored procedure defined on our database, so the dependency will be on the
DataSourceBinding service that is responsible for binding a DataSource in the
JNDI tree.

The second purpose of this example is to show how you can configure your
MBean to run as a startup class. Add a new interface to your project, and name it
com.packtpub.jmx.example2.StartupServiceMBean. The interface will contain
the methods for getting and setting the JNDI value of the DataSource and another
method clearSessions that can be used to launch the stored procedure on
demand too.

package com.packtpub.jmx.example2;
import org.jboss.system.ServiceMBean;
public interface StartupServiceMBean extends ServiceMBean {
 public String getJndi();	
 public void setJndi(String jndi);
 public void clearSessions();
}

Chapter 9

[231]

The implementation class, com.packtpub.jmx.example2.StartupService, is
as follows:

package com.packtpub.jmx.example2;
import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.SQLException;
import javax.naming.InitialContext;
import javax.sql.DataSource;
import org.jboss.system.ServiceMBeanSupport;
public class StartupService extends ServiceMBeanSupport
implements
StartupServiceMBean {
 public StartupService() { }
 private String jndi = null;
 @Override
 protected void startService() [1]
 {
 log.info("[StartupService] MBean Startup started ");
 clearSessions();
 log.info("[StartupService] MBean Session Cleaning complete");
 }
 @Override
 protected void stopService() throws Exception
 {
 log.info("[StartupService] Stopping Startup Mbean");
 }
 @Override
 public String getJndi() {
 return jndi;
 }
 @Override
 public void setJndi(String jndi) {
 this.jndi = jndi;
 }
 public void clearSessions() {
 Connection conn = null;
 CallableStatement cs1 = null;
 try {
 InitialContext ctx = new InitialContext();
 DataSource ds = (DataSource)ctx.lookup(jndi);
 conn = ds.getConnection();
 cs1 = conn.prepareCall("{call ClearSessions}");
 cs1.execute();

Managing JBoss AS

[232]

 }
 catch (Exception exc) {
 exc.printStackTrace();
 }
 finally {
 try {
 cs1.close();
 conn.close();
 }
 catch (SQLException e) {
 e.printStackTrace();
 }
 }
 }
}

As you can see, turning your MBean into a startup class is only a matter of
overriding the startService [1] method and inserting your logic there. In our
example, the MBean will issue a CallableStatement that does some database
cleanup. This can be useful if you persist your session data on a table and you
need to start your application with a clean state.

As you might guess, the getter and setter methods will be used to inject the JNDI
attribute into the class that corresponds to the DataSource JNDI.

Now, let's register our example in the -service.xml descriptor, specifying a
dependency of the component with the DataSourceBinding service for the
DataSource bound in the JNDI tree as MySqlDS. (For further information on how
to configure and install this DataSource, refer Chapter 5, Developing JPA Entities.)

<mbean code="com.packtpub.jmx.example2.StartupService"
 name="com.packtpub.jmx.example2:service=StartupService">
 <attribute name="Jndi">java:/MySqlDS</attribute>
 <depends>jboss.jca:name=MySqlDS,
 service=DataSourceBinding</depends>
</mbean>

Your second example is completed. To get it working, you need a stored procedure
in your database named ClearSessions—this is a sample procedure that deletes
all data found in the table SESSION_DATA:

CREATE TABLE 'hibernate`.`SESSION_DATA` (
 `SESSION_ID` INTEGER UNSIGNED,
 PRIMARY KEY (`SESSION_ID`)
)
ENGINE = InnoDB;

Chapter 9

[233]

And here's the ClearSessions procedure definition:
DELIMITER $$
CREATE PROCEDURE `ClearSessions`()
BEGIN
DELETE FROM SESSION_DATA;
COMMIT;
END $$

You can insert some proof-of-concept data in this table to make sure that your
example worked correctly. Redeploy your JMX project. In your console, you
should immediately notice the MBean-started logs.

09:08:03,299 [StartupService] MBean Startup started
09:08:03,694 [StartupService] MBean Session Cleaning complete

Sending MBeans notifications
In general, MBeans have attributes/operations and they can optionally emit and
consume notifications. Notifications provide a convenient way for an MBean to
be informed about various events that occur inside the MBeanServer and its
registered MBeans.

For example, an MBean can be dedicated to monitoring the system memory and emit
notifications when the level falls below a certain threshold.

JBoss provides a built-in helper class, org.jboss.system.ServiceMBeanSupport
that can be subclassed to implement services that conform to the ServiceMBean
interface. This class provides an excellent base for writing standard MBeans that
act as notification broadcasters.

However, if you need to specify at runtime the set of MBeans/notifications that the
service wants to subscribe/receive, you'll find it indispensable to extend the abstract
class org.jboss.system.ListenerServiceMBeanSupport that acts as JBoss service
and in addition, as notification listener.

org.jboss.system

Service MBean Support

handleNotification ()

handleNotification2()

ListenerService Mbean Support

Managing JBoss AS

[234]

Let's see a concrete example. Create a new class named com.packtpub.
jmx.example3.SampleNotificationListener. This class will extend the
ListenerServiceMBeanSupport class and implement its MBean interface,
SampleNotificationListenerMBean.

package com.packtpub.jmx.example3;
import EDU.oswego.cs.dl.util.concurrent.SynchronizedLong;
import javax.management.Notification;
import javax.management.ObjectName;
import org.jboss.logging.DynamicLogger;
import org.jboss.logging.Logger;
import org.jboss.system.ListenerServiceMBeanSupport;
public class SampleNotificationListener extends
 ListenerServiceMBeanSupport
 implements SampleNotificationListenerMBean
{
 public SampleNotificationListener() { }
 public void startService()
 throws Exception
 {
 super.subscribe(true); [1]
 �}
 public void stopService()
 throws Exception
 {
 super.unsubscribe(); [2]
 }
 public void handleNotification2(Notification notification,
 Object handback)
 {
 log.info("Got notification: " + notification + ", handback: " +
 handback); [3]
 }
}

The MBean interface doesn't expose any method but needs to extend the
ListenerServiceMBean contract that contains the JMX subscription list.

package com.packtpub.jmx.example3;
import javax.management.ObjectName;
import org.jboss.system.ListenerServiceMBean;
public interface SampleNotificationListenerMBean
 extends ListenerServiceMBean { }

Chapter 9

[235]

As you can see, turning an MBean into a notification listener only requires
activating subscriptions in the startService method [1] and switching them off
in the corresponding stopService [2].��� Your notifications will be handled in the
handleNotification2() method [3] as soon as they are emitted.

Be aware that your implementation class is also able to override the
handleNotification() method. Be careful, don't override this method, which
is the implementation provided by the JBossNotificationBroadcasterSupport
class to handle the notification synchronously.

Receiving heartbeat notifications
Before deploying your SampleNotificationListener, you need to specify what
kind of notification you're interested to receive. For impatient readers, note that
JBoss has already got some services emitting notifications. For example, the useful
TimerService can be used to send notifications at predetermined time intervals.
As this MBean is already bundled in JBoss, you simply need to add the following
MBean descriptor in your project in order to activate it. (You can also deploy it as
a standalone –service.xml file.)

<server>
 <mbean code="org.jboss.monitor.services.TimerService"
 name="jboss.monitor:name=Heartbeat,type=TimerService">
 <attribute
 name="NotificationType">jboss.monitor.heartbeat</attribute>
 <attribute name="NotificationMessage">JBoss is alive!</attribute>
 <attribute name="TimerPeriod">5sec</attribute>
 <depends optional-attribute-name="TimerMBean">
 <mbean code="javax.management.timer.Timer"
 name=»jboss.monitor:name=Heartbeat,type=Timer»></mbean>
 </depends>
 </mbean>
</server>

This descriptor will trigger a notification every five seconds to all subscribers of
the TimerService. All we need now is to subscribe to our TimerService from our
SampleNotificationListener:

<mbean code="com.packtpub.jmx.example3.SampleNotificationListener"
 name="com.packtpub.jmx.example3:service=NotificationListener">
 <attribute name="SubscriptionList">
 <subscription-list>
 <mbean
 name="jboss.monitor:name=Heartbeat,type=Timer"></mbean>
 </subscription-list>
 </attribute>
</mbean>

Managing JBoss AS

[236]

Now redeploy your JMX project and watch on the JBoss console to see if every step
was executed correctly. You should see the JBoss is alive! ���������������������� message popping up on
the console.

Sending your own notifications
In the previous example, we were listening passively for notifications coming from
an external channel. However, you can be in charge of sending notifications from
your own MBeans as well.

This will not be a big effort for us. Recall our SimpleServiceExample where we set
a system property. Let's add a notification that warns us about a system property
being changed:

 public void setProperty(String key, String value) {
 System.setProperty(key, value);

 Notification notification = new Notification("SimpleService",
 this, getNextNotificationSequenceNumber(), "Warning: Changed
 system property: "+key);
 sendNotification(notification);
 }

Now update your subscription list so that the SampleNotificationListener will be
tuned in to the SimpleService MBean:

 <mbean code="com.packtpub.jmx.example3.SampleNotificationListener"
 name="com.packtpub.jmx.example3:service=NotificationListener">
 <attribute name="SubscriptionList">
 <subscription-list>
 <mbean
 name="com.packtpub.jmx.example1:service=SimpleService">
 </mbean>
 </subscription-list>
 </attribute>
 </mbean>

Redeploy your MBean application and try setting some properties from your
SimpleService. You should be able to intercept the notification emitted in the
handleNotification2 method.

Got Notification: Warning: Changed system property: myproperty

Chapter 9

[237]

Service POJOs
Service POJOs are the new generation of JBoss services. While you can keep
programming MBeans in the standard way (building an MBean interface, an
implementation class, and XML descriptors), you can simplify the process of
developing MBeans with service POJOs. Actually, service POJOs are plain Java
classes with some annotations that denote the special nature of the component.

The way you define them is very similar to defining Stateless or Stateful Session
Beans. One very important difference is that there will only be one instance of the
service bean, that is, it is not pooled—the bean instance is a singleton. The singleton
bean contains shared state, so data set by one client is accessible by other clients.

Let's see a concrete example. We will create a CurrencyConverter service that
converts a sum of money from Euros into other currencies. A service like this is an
ideal example of a singleton service that can be shared across other components of
your applications.

Add an interface named com.packtpub.jmx.example4.CurrencyConverter to
your project.

This interface will contain the life cycle methods of your servicePOJO, the
getter/setter methods, and the management methods:

package com.packtpub.jmx.example4;
public interface CurrencyConverter {
 public String getCurrency();
 public void setCurrency(String currency);
 // The management method
 public double convert (double amount);
 // Life cycle method
 public void create () throws Exception;
 public void destroy () throws Exception;
}

The implementation class follows here:

package com.packtpub.jmx.example4;
import java.util.HashMap;
import javax.ejb.Local;
import org.jboss.ejb3.annotation.LocalBinding;
import org.jboss.ejb3.annotation.Service;
import org.jboss.ejb3.annotation.Management;
@Service(objectName = "servicePOJO:service=CurrencyConverter")
@Management(CurrencyConverter.class)

Managing JBoss AS

[238]

public class CurrencyConverterService implements CurrencyConverter {
 private String currency;
 private HashMap<String, Double> mapCurrency = new HashMap();
 public double convert(double amount) {
 double currVal = new Double(mapCurrency.get(currency));
 return (currVal * amount);
 }
 // Lifecycle methods
 public void create() throws Exception {
 System.out.println("CurrencyConverterMBean - Creating");
 mapCurrency.put("USD", new Double(1.40));
 mapCurrency.put("YEN", new Double(135));
 mapCurrency.put("GBG", new Double(0.85));
 }
 public String getCurrency() {
 return currency;
 }
 public void setCurrency(String currency) {
 this.currency = currency;
 }
 public void destroy() {
 System.out.println("CurrencyConverterMBean - Destroying");
 }
}

Like standard MBeans, POJO services need to define an ObjectName—the @Service
annotation is used for this purpose. It defines the object name for this MBean using
the same pattern we have already learned: domain:property=value.

The other mandatory annotation is @Management. When JBoss finds this annotation,
it will look for the corresponding interface in order to set up an MBean with the
defined attributes and operations.

For the sake of simplicity, the list of currencies is stored in a HashMap, which is
loaded in the create() life cycle method. Implementing life cycle methods is
not mandatory, you can just choose among the following ones that are needed
by your service:

create(): Called by the server when the service is created, as well as when
all dependent services are created. Here the service is registered among
services yet not fully functional.
start(): Called by the server after create(), when all the initialization
process is completed. At this point, the service is ready to serve requests
(and so are all the services it depends on).

•

•

Chapter 9

[239]

stop(): Called by the server when the service is stopped. At this point the
service (and all the services that depend on it) is no longer fully operational.
destroy(): Called by the server when the service is removed from the
MBean server.

Your ServicePOJO is now ready to be deployed. As you can see in the following
screenshot, the structure of a service POJO is not different from a plain Java library:

That being said, deploy your ServicePOJO as standalone JAR archive or as part
of the MBean project and verify from your JMX console that your service has
been correctly registered under the ServicePOJO domain:

Creating a web test client
A sample scenario for your service POJO is an Enterprise application that
requires a currency conversion for international orders. Again we will use our
JMX Web Client project that we have set up for the SimpleService MBean.

Now add a simple JavaServer Pages (JSP) technology�������������������������������� to your project, which will be
in charge of contacting the CurrencyPOJO service and invoke the convert() method:

<%@ page
 import="javax.management.*,com.packtpub.jmx.example4.*,
 org.jboss.mx.util.*"%>
<%
 CurrencyConverter cal = null;
 try {
 int amount = 250;
 MBeanServer server = MBeanServerLocator.locate();
 cal = (CurrencyConverter) MBeanProxyExt.create(
 CurrencyConverter.class,
 "servicePOJO:service=CurrencyConverter", server);

•

•

Managing JBoss AS

[240]

 cal.setCurrency("USD");
 out.println(amount + " EURO equal to " + cal.convert(amount) + "
 " + cal.getCurrency());
 }
 catch (Exception e) {
 e.printStackTrace();
 }
%>

The code is self-explanatory—we are creating a proxy for CurrencyConverter using
the MBeanProxyExt factory. Then the convert method is recalled to exchange some
USD amount into Euros.

Before testing, pack your web application and the MBean project in an Enterprise
ARchive (EAR). The following screenshot is a view of your application from the
Project Explorer:

Packaging your application requires a little patch to your META-INF/application.
xml. �� As a matter of fact, Eclipse by itself doesn't mention Java libraries in this
configuration file, so you have do add the MBeanExample.jar archive manually:

<application>
 <module>
 <web>
 <web-uri>JMXWebClient.war</web-uri>
 <context-root>JMXWebClient</context-root>
 </web>
 ���������</module>
 <module>
 <java>MBeanExample.jar</java>
 ���������</module>
</application>

Chapter 9

[241]

Exposing your service as an EJB
Sometimes you might find it useful to expose your service POJO with a local or
remote interface. Using this approach you don't deal with the MBeanProxyExt
interface from your client anymore, rather you can inject your service reference into
your Enterprise components, just the same way you would do with an ordinary EJB.

Morphing your service into an EJB requires just two small additions to your service.
Depending on whether you need a local or remote interface (or both of them), you
need to add the @Local or @Remote annotation:

import javax.ejb.Local;
import org.jboss.ejb3.annotation.LocalBinding;
import org.jboss.ejb3.annotation.Service;
import org.jboss.ejb3.annotation.Management;
@Service(objectName = "sampleJMX:service=CurrencyConverter")
@Management(CurrencyConverter.class)
@Local(CurrencyConverter.class) [1]
@LocalBinding(jndiBinding = «service/CurrencyConverter») [2]
public class CurrencyConverterService implements CurrencyConverter {
}

Here we are exposing the service through the CurrencyConverter interface that
has been marked as local interface [1] and bound to the JNDI naming context
service/CurrencyConverter [2] (the same annotations you would normally
use in an EJB 3 session bean).

You can safely inject your POJO service into either a web component or another
EJB. As we have already set up a web application, the simplest test would be to
add a servlet that interacts without POJO service:

public class ServletConverter extends HttpServlet {
 @EJB(mappedName="service/CurrencyConverter")
 CurrencyConverter currLocal;
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 int amount = 300;
 currLocal.setCurrency("GBG");
 out.println(amount +" EURO equal to " +currLocal.convert(250)+
 " " +currLocal.getCurrency());
 }
}

This should produce the same output as your JSP. The concrete difference is that our
web application is now dealing with a singleton EJB.

Managing JBoss AS

[242]

Service POJO dependency
MBean dependency can be applied to a service POJO in much the same way as we
have shown with standard MBeans. The annotation used to specify a dependency is
@Depends. Here we are stating that our CurrencyConverterService will not start
until our DataSourceBinding service is available.

@Depends ("jboss.jca:name=MySqlDS,service=DataSourceBinding")
public class CurrencyConverterService implements CurrencyConverter
{
}

This annotation can also be used for injecting a service in our POJO:
@Depends ("servicePOJO:service=AnotherService")
public AnotherService service;

This way, our POJO service will wait for AnotherService to be available. When this
service is started, it is injected into the instance field service and thus it is accessible
to our service.

JBoss AS Administration Console
The most significant change introduced by release 5.1.0 of the application server is
the new administration console that is also known as Embedded Jopr project. For
those who are new to the Jopr project, this is a sophisticated management platform
for the JBoss middleware stack and is based on project RHQ.

Embedded Jopr is based on the same set of libraries as the Jopr project. However,
there's a clear distinction between them; Jopr is a distributed management solution
with agents on the managed resources and a central server. On the other hand,
Embedded Jopr is supposed to run within a JBoss AS instance and thus it is
intended to replace the JMX console.

In Chapter 3, Customizing JBoss AS Services, we had a bird's eye view of the new
administration console. So by now you should already have some rudiments of it.
The following section will be a useful administration reference for the most common
management tasks.

Managing applications
A very common need of every software administrator is the management of
deployed applications. If we are running the application server locally, this task is
generally easy and can also be carried out by the Eclipse IDE. However, handling
remotely deployed applications can be awkward if the only instrument available is
the JMX console.

Chapter 9

[243]

The administration manages Java EE applications in the following squared section:

Deploying/undeploying applications
In order to deploy or undeploy an application, first choose the appropriate
application type you need to manage, for example, a web application, and then
focus on the central frame. There you can see the list of deployed applications
for your selected type.

Managing JBoss AS

[244]

If you need to undeploy an application, just hit the Delete Actions button.
Conversely, if you need to deploy a new application, click the Add a new resource
button. The deployment of a new resource merely requires browsing the filesystem
to locate the application and choosing whether to deploy it in the exploded format
or not.

Updating an application
If your application has already been deployed and you just need to update it, there's
an appropriate form that is reachable by clicking on the application name (in the
application list) and then selecting the Content tab.

Again you just have to browse the filesystem to specify a local path for the
application to be uploaded.

Chapter 9

[245]

Starting/stopping/restarting an application
The next operation will be changing the application status. You need to reach the
tabbed panel menu by clicking on the application name and selecting the Control tab.

From there, you can intuitively select the available control operation by choosing the
appropriate action button.

Administering resources
The administration console takes care managing application server resources in the
lower part of the left frame.

Managing JBoss AS

[246]

Adding a new resource
Start by expanding the type of resource you want to include. For example, if you
want to add a new local-tx-datasource, expand the Datasources element, and
click on the Local tx Datasources link. In the tabbed panel window, choose the Add
a new resource button.

The administration console will then prompt you to choose a template, if one exists,
for the resource (for example, a template for Oracle datasource) and finally will take
you to a form for inserting the Connection Properties:

Chapter 9

[247]

The previous connection schema will result in a new datasource definition, which
will be persisted in the server/default/deploy directory in a file bearing the JNDI
name and the –ds.xml extension.

Managing resources
Administering resources includes a set of operations that are specific for each
resource. For example, a connection pool would require to list pool statistics and
flush the connection pool. A JMS resource would need to display messages, or
stopping and restarting message delivering, and so on.

Resources can be managed by clicking on an individual resource in the central frame,
and then selecting the Control tab option. From there you can choose among the list
of available control operations.

In the same tab panel, you can manage the resource configuration by selecting
the Configuration tab. From there on, you can alter the resource configuration
and persist the changes.

Managing JBoss AS

[248]

Metrics
Both applications and resources have a list of metrics associated, which can be
examined by choosing the option Metrics in the tabbed panel. For example, the
following screenshot shows the Metrics for MySqlDS:

If you are curious to know where metrics configurations are stored, you need to
dig a bit into the administration console structure. Precisely, you have to unzip
the file rhq-plugin.xml that is located in the file server/default/deploy/admin-
console.war/pluginsjopr-jboss-as-5-plugin-2.3.0.EmbJopr.1.2.0-1.jar.

For example, here's the metric for the Available Connection Count element:

<metric property="availableConnectionCount" measurementType="dynamic"
 displayType="summary" displayName="Available Connection Count"
 description="Number of available connections." defaultOn="true"
 defaultInterval="60000" dataType="measurement"
 category="performance"/>
 <metric property="availableConnectionCount"
 measurementType="dynamic" displayType="summary"
 displayName="Available Connection Count" description="Number of
 available connections." defaultOn="true" defaultInterval="60000"
 dataType="measurement" category="performance"/>

If you want to expand your knowledge on plugins and metrics, we suggest you read
this in-depth paper from Red Hat website:

http://www.redhat.com/f/pdf/Write_A_Plugin_WP_web.pdf

Chapter 9

[249]

Summary
Hopefully this chapter has given you a deep immersion into the world of MBeans.
As should be obvious from the examples provided, there are far more variations
than we can hope to cover in this chapter.

We have provided some concrete examples of standard MBeans, illustrating their
features with step-by-step examples. The good news is that JBoss 5 makes it much
easier to handle services with POJO MBeans, which can be seen as an effective
complementary partner of Enterprise JavaBeans.

In the latter section of this chapter, we have included a set of quick drills for the
administrator who wants to approach the new JBossAS Administration Console,
available as built-in application since JBoss AS 5.1.0.

In the next chapter, we are going to discuss interoperability between different
technologies. As you might guess we are going to discuss Web Services.

Developing Applications with
JBoss Web Services

Any program is only as good as it is useful. – Linus Torvalds

Web Services are defined by W3C as a software system designed to support interoperable
machine-to-machine interaction over a network.

What makes Web Services different from other forms of distributed computing is
that information is exchanged using only simple and non-proprietary protocols.
This means the services can communicate with each other regardless of location,
platform, or programming language. Essentially, the Web Services protocols provide
a platform-independent way to perform Remote Procedure Calls (RPCs).

The focus of this chapter will be on JBossWS, a Web Service framework developed
as part of the JBoss Application Server, based on JSR 224 (Java API for XML-based
web services 2.0).

You will get your hands on the following topics:

A short introduction to Web Services
How to create, deploy, and test Web Services using the JBoss WS and Eclipse
Some advanced concepts about Web Services (Handler Chains,
SOAP debugging)

•

•

•

Developing Applications with JBoss Web Services

[252]

Web Service concepts
As stated at the beginning of this chapter, Web Services are based on the exchange
of messages using non-proprietary protocol messages. The messages themselves are
not sufficient to define the Web Service platform. We actually need a list of standard
components, including the following:

A language used to define the interfaces provided by a Web Service, in a
manner that is not dependent on the platform on which it is running or the
programming language used to implement it
A common standard format for exchanging messages between Web Service
Producers and Web Service Consumers
A registry within which the service definitions can be placed

The Web Service Description Language , that is, WSDL (http://www.w3.org/TR/
wsdl) is the de facto standard for providing a description of the Web Service contract
exposed to clients. In particular, a WSDL document describes a Web Service in terms
of the operations that it provides and the data types that each operation requires as
inputs and can return in the form of results.

The communication between the service provider and service consumer happens by
means of XML messages, which rely on the SOAP protocol specification.

A basic SOAP message consists of an Envelope that may contain any number of
headers and a body. These parts are delimited by XML elements called Envelope,
Header, and Body, which belong to a namespace defined by the SOAP specification.

SOAP Envelope

SOAP Header

optional

SOAP BODY

XML Content
or SOAP FAULT

required

Structure of a
SOAP Message

Once you have determined that your business needs to find a provider for a
specific service, how do you find the businesses that offer that service, evaluate
their offerings, and, if appropriate, fetch the WSDL definition for the service itself?
The answer lies in the XML-based registries that are accessible through the Internet
and contain the necessary information that allows businesses to discover and
make use of the Web Services.

•

•

•

Chapter 10

[253]

Strategies for building up Web Services
As we have just learned, the service description is provided by a commonly agreed
document interface named the Web Service Description Language that exposes
services as a collection of networks, endpoints, and ports, using the XML format.

You may logically be inclined to think that it is necessary to state at the beginning the
contract of the service, and then produce the corresponding programming interfaces.
Actually, you can follow two approaches for developing your web services:

Top-down: This development strategy involves creating a Web Service from
a WSDL file. The top-down approach is likely to be used when creating
Web Services from scratch. It is the preferred choice of "purist" Web Service
engineers because it's business-driven, that is, the contract is defined by
business people and so the software is designed to fit the Web Service
contract.
Bottom-up: This approach requires generating the WSDL file from the
programming interfaces. It is likely to be used when we have existing
applications that we want to expose as Web Services. As it doesn't require
a deep knowledge of the WSDL syntax, it's the easiest choice if you want
to turn your Java classes or EJB into Web Services.

As the audience of this book is composed mainly of Java developers with little or
no knowledge at all of WSDL basics, we will focus primarily on the bottom-up
approach. However, in the following sections, we will teach the reader how to use
JBoss Web Service tools to reverse the process of creation of Web Services, starting
from a WSDL contract.

Designing top-down Web Services will require that you integrate the basic Web
Services notions provided with this chapter with a comprehensive awareness of
the WSDL standard.

JBoss Web Services stack
If you surf on the JBossWS project page http://www.jboss.org/jbossws/, you will
see that three main options are available to deploy Web Services on JBoss.

JBossWS native
Glassfish Metro
Apache CXF

•

•

•

•

•

Developing Applications with JBoss Web Services

[254]

Each of these stacks has its own specific features and you are free to develop on JBoss
AS choosing the one that is closest to your needs. In this book we will use JBoss WS
Native, which is a Web Service framework developed to be part of JBoss AS' Java
EE5 offering. JBoss WS native stack is based on the new Web Service specification
called JAX WS, and is a follow-on release of the former JAX-RPC specification
delivered by Sun in early 2002.

JAX-WS simplifies the task of developing Web Services by supporting Java JEE
annotations for declaring Web Services. This API also addresses some of the issues
of JAX-RPC, providing support for multiple protocols such as SOAP 1.1, SOAP 1.2,
and XML, and by providing a facility for supporting additional protocols along
with HTTP.

In the next section, we will deliver a high-level picture of the JAX WS Runtime
architecture from the server point of view, showing the components that are
involved for processing Web Services requests and responses.

A brief look at the JAX WS architecture
When a SOAP message sent by the client enters the Web Service runtime
environment, it is captured by a component named Server endpoint listener, which
in turn uses the Dispatcher module to deliver the SOAP message to that Service.

At this point, the HTTP request is converted internally into a SOAP Message. The
message context is extracted from the transport protocol and it is processed through
the handler chain configured for the Web Service.

SOAP message handlers are used to intercept the SOAP messages
as they make their way from the client to the endpoint service and
vice versa. These handlers intercept the SOAP message for both the
request and response of the Web Service. You will find this concept
similar to EJB interceptors, which we have discussed in Chapter 4.

The next step is unmarshalling the SOAP message into Java objects. This process
is governed by WSDL to Java mapping and XML to Java Mapping. The former is
performed by the JAX-WS engine and determines which endpoint to invoke from the
SOAP Message. The latter, performed by the JAXB libraries, deserializes the SOAP
message so that it is ready to invoke the endpoint method.

Finally, the deserialized SOAP message reaches the actual Web Service
implementation and the method is invoked.

Chapter 10

[255]

Once the call is completed, the process is reversed. The return value from the Web
Service method is marshalled into a SOAP response message using JAX-WS WSDL
to Java mapping and the JAXB 2.0 XML to Java mapping.

Then the outbound message is processed by handlers before returning it to the
Dispatcher and the endpoint listener, which will transmit the message as an
HTTP response.

The following diagram describes how data flows from a Web Service client to a Web
Service endpoint and back:

SOAP
Request

Web Service
Client

SOAP
Response

1
8

7

2

3

6

5

4

Listener and
Dispatcher

SOAP Protocol
Binding

JAX WS and
JAXB Data Binding

Web Service

Coding Web Services with JBossWS
In the first deliverable, we will show how easily you can turn a plain Java class into
a Web Service. The newly created service will be then tested using both Java and
non-Java clients. The second part of this chapter will draw your attention to how
EJB can be exposed as Web Service endpoints.

Developing a POJO Web Service
We will approach Web Services with a simple Java class, which will be used as
endpoint for our Web Service. If you browse across the Eclipse menus, you will find
that the Enterprise release of this IDE ships with a Wizard for Web Service creation.
You can find it the New | Other | Web Services menu.

Developing Applications with JBoss Web Services

[256]

However, we will not use this wizard for creating our bottom-up Web Services and
we encourage you to do the same. As you'll see in a while, all your effort will be
adding some annotations to your classes; furthermore, using a Web Service Wizard
locks you to a development environment, making it difficult for you to switch to
another IDE that hasn't got the same features.

That being said, a good compromise will be starting a new dynamic web project;
name the project as WebServiceProject. Now add to it a Java class named
com.packtpub.webservice.example1.POJOWebService. This class has a
method calculatePower that returns the power of an argument, as shown
in the following highlighted code:

public class POJOWebService
{
	

	 public double calculatePower(double argument,
			 double power)
 {
	 return Math.pow(argument,power);
	 }
	

}

Now we will turn this simple class into a Web Service by adding the mandatory
@WebService annotation.

package com.packtpub.webservice.example1;
	

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
	

@WebService(targetNamespace = "http://www.packtpub.com/",
 serviceName = "CalculatePowerService")
@SOAPBinding(style = SOAPBinding.Style.RPC)
	

public class POJOWebService
{
	 @WebMethod
	 @WebResult(name="result") [1]
	 �� public double calculatePower(@WebParam(name="base")��� [2]
			 double base,
			 @WebParam(name="exponent")
			 ��������������� double exponent
	 {
	 return Math.pow(base,exponent);
	 }
	

}

Chapter 10

[257]

Inside the @WebService annotation, you can specify additional elements such as the
targetNamespace element that declares the namespace used for the WSDL elements
generated by the Web Service. If you don't specify this element, the Web Service
container will use the Java package name to generate a default XML namespace.

You can also use the serviceName element to specify the service name. The name
specified using serviceName is used for generating the name attribute in the service
element in the WSDL. If you don't specify the serviceName element, the server will
generate it using the default, which is the bean class name appended
with Service.

In the next row, we have stated that the Web Service is of the type Remote Procedure
Call, by using the @javax.jws.SOAPBinding annotation. Possible values are
DOCUMENT and RCP, the first one being the default value.

Attaching the @WebMethod attribute to a public method indicates that you want the
method exposed as part of the Web Service.

The @WebParam [2] annotation is used to specify the parameter's name to exhibit
in the WSDL. You should always consider using a WebParam annotation, especially
using multiple parameters, else the WSDL will use the default argument parameter
(in this case arg0), which is meaningless for the Web Service consumers.

The @WebResult annotation [1] is quite similar to @WebParam in that it can be used to
specify the name of the value returned by the WSDL.

What are the defaults for Web Services?
JAX WS specification mandates only a minimal set of annotations to be
added to your Web Service (actually only @WebService is mandatory).
If you don't provide a target namespace, your Web Service will expose
the Java class package name as target namespace in reverse order (in our
example, http://example1.webservice.packtpub.com/).
The serviceName, if not included, will be defaulted to the
class name with "Service" appended (in the example it would be
POJOWebServiceService).
Finally, if parameter names are not specified, the default is "argN", where
N is replaced with the zero-based argument index. Therefore, in our
example, the list of arguments would turn into "arg0" and "arg1".

Developing Applications with JBoss Web Services

[258]

Your Web Service is now completed. In order to register it on the JBossWS directory,
you have to add it to your web.xml and declare it as a servlet:

<servlet>
 <servlet-name>POJOService</servlet-name>
 <servlet-class>com.packtpub.webservice.example1.POJOWebService</
servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>POJOService</servlet-name>
 ���<url-pattern>/pojoService</url-pattern>
</servlet-mapping>

Now deploy your web application in the usual way, that is, first add the project to
your server. Then choose Full Publish from the JBoss AS Server View.

JBoss AS will provide a minimal output on the console, which informs you that the
Web Service project has been deployed and the WSDL file generated.

16:36:57,224 INFO [DefaultEndpointRegistry] register: jboss.ws:context=WebServi

ceProject,endpoint=POJOService

16:36:58,068 INFO [TomcatDeployment] deploy, ctxPath=/WebServiceProject

16:37:01,427 INFO [WSDLFilePublisher] WSDL published to: file:/C:/jboss-5.0.0.G

A-1.6/server/default/data/wsdl/WebServiceProject.war/HelloWorldPOJOService.
Wsdl

From this short log, you can pick up some useful information. For example, the
first line states that the Web Service has been bound in the endpoint registry as
"POJOService". Next is the information about the web context path, which by default
has the same name as your project, that is, "WebServiceProject". The last piece of
information is about the generated WSDL, which is placed in the server/default/
data/wsdl/WebServiceProject.war folder.

The data directory contains a versioned list of all generated WSDL. So, you might find
all the history of your Web Service tagged as CalculatePowerServiceXXX.wsdl.

Chapter 10

[259]

Inspecting the Web Service from the console
JBossWS ships with a Web Service console, which gathers some useful information
about the services deployed. In fact, its most useful option is the list of endpoint
contracts available, which is needed when developing our clients.

You can access the console using the URL http://localhost:8080/jbossws.�
(Of course replace localhost with the actual host name when accessing from
a remote browser.)

Follow the link View a list of deployed services, which will take you to the list of
available Web Services.

Apart from some statistics information, we have got here the Web Service
endpoint address, which is http://127.0.0.1:8080/WebServiceProject/
pojoService?wsdl.

Developing Applications with JBoss Web Services

[260]

If you click on the WSDL link, you will see in the browser the contract published for
the Web Service.

In the screenshot, you can see how the required (and optional) annotations mix and
match into the WSDL contract. In particular, you can appreciate the usefulness of
the @WebParam annotation, which enriches the WSDL with information about the
parameter, which would be otherwise named with meaningless default values.

Chapter 10

[261]

Using JBossWS tools
If you look at the JBOSS_HOME/bin folder, you will find a few handy tools for Web
Service development. Let's have a look at them:

Command Action
wsprovide Generates JAX-WS portable artifacts, and provides the abstract contract.

Used for bottom-u�p development�.
wsconsume Consumes the abstract contract (WSDL and schema files), and produces

artifacts for both a server and client. Used for top-down and clien�t
development. �

wsrunclient Executes a Java client (has a main method) using the JBossWS classpath�.

The reason for using these tools resides in the JAX-WS specification, which requires
that a Web Service stack provides some offline tools for generating Web Service
wrapper classes. When you deployed your Web Service, the application server
created these Wrapper classes along with the WSDL contract; however, if you need
to port your Web Service to another environment, you will need to generate these
artifacts offline.

For example, if you want to produce the abstract contract starting from your Java
classes, you could use the wsprovide command, which has the following syntax:

usage: WSProvide [options] <endpoint class name>

For a detailed explanation of all wsprovide's options, we suggest you to consult the
JBossWS documentation. In our example, we will instruct the tool to generate the
WSDL (-w option) and to output the file (-o option) in a folder of our project.

Let's first set the path to your project in a shell variable:

set PATH_TO_PROJECT=C:\chap08\WebServiceProject #Windows

$PATH_TO_PROJECT=/usr/eclipse/WebServiceProject #Unix

Then you have to launch the wsprovide shell to generate the WSDL. Again we will
illustrate both the Windows version and the Unix one:

wsprovide -w -o %PATH_TO_PROJECT%\wsdl --classpath %PATH_TO_PROJECT%\
build\classes com.packtpub.webservice.example1.POJOWebService #Win

wsprovide.sh -w -o $PATH_TO_PROJECT/wsdl --classpath $PATH_TO_PROJECT/
build/classes com.packtpub.webservice.example1.POJOWebService
#Unix

Developing Applications with JBoss Web Services

[262]

This wsprovide shell script is placed in the JBOSS_HOME/bin folder in the two
varieties—wsprovide.cmd (in the case of Windows) and wsprovide.sh (in the case of
Unix/Linux). As you might guess, you can either issue this command from this folder
or you can opt for adding the JBOSS_HOME/bin folder in your system PATH.
The output of wsprovide will be as follows:
Generating WSDL:
HelloWorldPOJOService.wsdl

If you need to generate your Web Service client, you may find the wsconsume
tool quite useful. This tool is useful because it consumes the WSDL contract and
generates portable artifacts for both client and server development.

We highly recommend you to use this approach for client development because
it helps you to design loosely coupled clients that are not tied to any particular
environment, location, or even programming language. After all that's why we are
using Web Services to cleanly decouple the client from the server, otherwise we
would have stuck to RPC technologies that are tightly coupled but obviously faster.

If you are not too comfortable with shell scripts, then you can configure Eclipse to
execute them directly from the IDE and even associate an icon in the toolbar to the
command. Go to the option Run | External Tools | External Tool Configurations.
The External Tools wizard is quite intuitive. You have to specify your command line
tool (In the Location field), then you have to provide arguments just as you would
do with the command line.

Chapter 10

[263]

We have added a few more parameters to our script. The –k option specifies to
generate Java sources. The –p parameter is used to specify the package name of our
artifacts. Finally, the –o option is the output destination of our classes. Notice the use
of Eclipse variables that let you use a path relative to the workspace (for a full list of
all the available Eclipse variables, click on the Variables button).

The last argument of wsconsume is the WSDL document of our POJOWebService,
which must be available on the server when you issue Run command.

Now refresh your Project Explorer view and take a look at the generated classes:

As you can see, wsconsume has generated two source files—POJOWebService.
java and CalculatePowerService.java. The first one is merely the service
interface for our Web Service as it's obtained from the WSDL. The other file,
CalculatorPowerService.java, is the client artifact. Let's have a look at it:

@WebServiceClient(name = "CalculatePowerService", targetNamespace =
"http://www.packtpub.com/", wsdlLocation = "http://127.0.0.1:8080/
WebServiceProject/pojoService?wsdl") [1]

public class CalculatePowerService
 extends Service
{

 private final static URL CALCULATEPOWERSERVICE_WSDL_LOCATION;

 static {
 URL url = null;
 try {

Developing Applications with JBoss Web Services

[264]

 url = new URL("http://127.0.0.1:8080/
 WebServiceProject/pojoService?wsdl");
 } catch (MalformedURLException e) {
 e.printStackTrace();
 }
 CALCULATEPOWERSERVICE_WSDL_LOCATION = url;
 }

 public CalculatePowerService(URL wsdlLocation, QName serviceName)
{
 super(wsdlLocation, serviceName);
 }

 public CalculatePowerService() {
 super(CALCULATEPOWERSERVICE_WSDL_LOCATION,
 new QName("http://www.packtpub.com/",
 "CalculatePowerService"));
 }

 @WebEndpoint(name = "POJOWebServicePort") [2]
 public POJOWebService getPOJOWebServicePort() {
 return (POJOWebService)super.getPort(
 new QName("http://www.packtpub.com/",
 "POJOWebServicePort"), POJOWebService.class);
 }

}

The generated class extends the javax.xml.ws.Service and is tagged with the
@WebServiceClient annotation [1]. This annotation provides a client view
of the Web Service, which is uniquely identified by the wsdlLocation and
targetNamespace elements.

Performance tip
When you are running your Web Service clients in a production
environment, it's advised to refer to a local copy of your WSDL. This will
avoid the burden of network latency, each time you have to retrieve the
WSDL from a remote location.

The other relevant annotation is @WebEndpoint [2], which is used to specify the
port name of the Web Service. By definition, a Web Service port is an abstract set of
operations supported by one or more endpoints. Its name attribute provides a unique
name among all port types defined within in the enclosing WSDL document. In our
case, the name attribute (obtained from the WSDL) is POJOWebServicePort.

Chapter 10

[265]

Invoking our Web Service is just a matter of requesting the Web Service port and
issuing the operations, which are listed in the exposed interface. For this purpose,
add a class to your project and name it com.packtpub.webserviceclient.
example1.Client.

package com.packtpub.webserviceclient.example1;

public class Client {

	 public static void main(String[] args) {
	 if (args.length != 2) {
	��� System.err.println("usage: Client <arg> <power>");
	 ���������������System.exit(1);
 }

 double arg = Double.parseDouble(args[0]);
 double power = Double.parseDouble(args[1]);

 CalculatePowerService pojo = new CalculatePowerService();
 POJOWebService pojoService = pojo.getPOJOWebServicePort();

 System.out.println("Result is " +pojoService.calculatePower(arg,
power));
	 }

}

As you can see, the client is not aware of the Web Service location, nor does it know
any details about the OS or the Web Service language.

You can execute it either from the Eclipse environment or from the wsrunclient shell,
which is a handy tool for Web Service clients located in the JBOSS_HOME/bin folder.
(Actually, it builds up for you the correct Web Service classpath for client execution.)

wsrunclient --classpath %PATH_TO_PROJECT%\build\classes com.packtpub.
webservice.example1.Client 2 4 #Win

wsrunclient.sh --classpath $PATH_TO_PROJECT/build/classes com.
packtpub.webservice.example1.Client 2 4 #Unix

Developing Applications with JBoss Web Services

[266]

The expected output of wsrunclient should be:

Result: 16.0

The Black art of Web Services
If you have been working with Web Services before, you have probably
drawn the conclusion that they are intrinsically difficult, much more
then it seems at first glance. Writing a Web Service in Java itself is not
hard at all, what's difficult is to connect all the standards such as SOAP,
WSDL, XML, and Java EE container services.
To make things harder we must account for a few issues with Eclipse
environment and also with XML parsers library which are anyway
solved in the newer JBoss 5.1.0 release.
To make your journey through Web Services as pleasant as it can be,
here's a checklist of fixes you should know before diving into JBossWS.
When you add a new JBoss server runtime to your Eclipse Java EE
project, a system library is created and placed in the project build
path. This includes two jar files (jaxws-rt.jar, jaxws-tools.
jar) that might cause a standalone client error as the JAX-WS provider
is accessed by a jar service loader. Depending on which jar is in the
classpath, it either loads the JBossWS one or the Sun RI one. In the latter
case, a weird java.lang.UnsupportedOperationException is
thrown to the client.
So as a general rule, use the wsclient utility to run client Web Services
instead of running them through Eclipse. If you feel uncomfortable
with shells, you can still mimic the behavior of the wsclient utility by
having a look at its content and adding the right libraries to the Eclipse
build path. A quick fix that we have tested on our examples is replacing
Eclipse's JBoss Runtime libraries with JBossWS native libraries
(http://www.jboss.org/jbossws) and then adding the single
libraries required for the project.
Another advice you should consider, is switching to release 5.1.0 of the
application server, which fixes some issues relative to the XML parses
libraries that are now overridden in the JBOSS_HOME/lib/endorsed
lib (see this interesting thread http://www.jboss.org/index.
html?module=bb&op=viewtopic&t=158265).
Finally, if you still cannot run your Web Service clients, check that the
JBoss variant release matches with the JDK release, for example, verify
that you use the JDK 1.6 variant for running the JBoss 5.1.0.

Chapter 10

[267]

External Web Service clients
JBoss Web Services can be consumed by a variety of external applications; you can
easily find on the Web, examples of .NET or PHP Web Service clients.

If you don't have installed the required client environment on your PC, it will take
a while to complete a full Web Service example. We suggest you to try the versatile
Flex platform. Flex is a free, open source framework for building highly interactive,
expressive web applications that deploy consistently on all major browsers,
desktops, and operating systems. All you need is the Adobe Flex Builder 3 software,
which is a highly productive, Eclipse-based IDE. You can download a trial copy of it
at http://www.adobe.com/cfusion/entitlement/index.cfm?e=flex3email.

Flex uses a declarative language, MXML, that has many built-in functions. For our
purpose we'll use the <mx:WebService> tag. It requires mainly knowing
the WSDL address of the Web Service and the operation to invoke.

	 public var o:Object;
		

		 private function callWS():void
		 {
			 webService.calculatePower.send();
		 }
		

		 private function displayfault(evt:FaultEvent):void
 {ta.text+="FAULT";}
		

		 private function getMyJobMng(evt:ResultEvent):void {
		

			 o=evt.result;
			 ta.text = "Result from operation : " + o ;
		

		 }
		

]]>
	 </mx:Script>
		
		

	 <mx:WebService id="webService"
 wsdl="http://127.0.0.1:8080/WebServiceProject/
 pojoService?wsdl"
 useProxy="false">
 <mx:operation name="calculatePower"
 		 resultFormat="object"
 result="getMyJobMng(event);"
 fault="displayfault(event);">
 <mx:request xmlns="" >
 <argument>{argument.text}</argument>
 <power>{power.text}</power>
 </mx:request>
 </mx:operation>
 </mx:WebService>

Developing Applications with JBoss Web Services

[268]

Running the example will invoke the calculatePower service that is hosted by the
POJO service.

Exposing EJB as Web Services
So far we have seen how you can promote your Java classes to Web Services
by merely adding some annotations at the class level; however, the JAX-WS
specification also allows exposing a Stateless Session Bean as Web Services
by deploying it as a JAR file in an EJB container.

For this purpose, we will create a quintessential Account Manager that registers user
deposits and withdrawals from their accounts. In this example, we will exhibit only
the Session Bean façade, which is our main concern. In the book source code, you can
find the complete example including the entity classes for persisting the accounts.

Start by creating a new EJB Project WebServiceEJBProject and add a new Stateless
Session Bean named com.packtpub.webservice.example2.AccountManager.
The EJB Wizard will create the interface EJBWebService for you along with its
implementation class EJBWebServiceBean.

In our interface, we will add three basic methods for managing the accounts plus
a generic method for querying data.

package com.packtpub.webservice.example2;

import java.util.List;
import javax.ejb.Remote;
@Remote

public interface AccountManager {

	 public void createAccount(String name);

	 public void withdraw(String name, Double amount) throws
 AccountException;

	 public void deposit(String name, Double amount);

	 public List<Account> findAccounts();
}

Chapter 10

[269]

The implementation class follows here:

package com.packtpub.webservice.example2;

import java.util.List;
import javax.ejb.*;
import javax.jws.*;
import javax.persistence.*;
import org.jboss.ejb3.annotation.*;

@Stateless
@RemoteBinding(jndiBinding="AccountManagerEJB/remote")
@WebService(targetNamespace = «http://www.packtpub.com/»,
		 serviceName = «AccountManagerService») [1]

public class AccountManagerBean implements AccountManager {

	 @PersistenceContext(unitName="AppStore")
	 private EntityManager em; [2]

	 @WebMethod
	 public void createAccount(@WebParam(name="name")
			 String name) { [3]
		 Account account = new Account();
		 account.setName(name);
		 account.setAmount(0d);
		 em.persist(account);

	 }

	 @WebMethod
	 public void withdraw(@WebParam(name="name")
			 String name,
			 @WebParam(name=»amount»)
			 Double amount) [4]
 throws AccountException
	 {

		 Query query = em.createQuery("FROM Account
 WHERE name= :name");
		 query.setParameter("name", name);
		 Account account = (Account)query.getSingleResult();
		 double currentAmount = account.getAmount().doubleValue();
		 double newAmount = currentAmount - (amount.doubleValue());
		 if (newAmount < 0) {
			 throw new AccountException("Unsufficient
 funds for account
 "+ account.getAccountId());
		 }

Developing Applications with JBoss Web Services

[270]

		 account.setAmount(newAmount);
		 em.persist(account);
	 }

	 @WebMethod
	 public void deposit(@WebParam(name="name")
			 String name,
			 @WebParam(name=»amount»)
			 Double amount) [5]
	 {

		 Query query = em.createQuery("FROM Account
 WHERE name= :name");
		 query.setParameter("name", name);
		 Account account = (Account)query.getSingleResult();
		 double currentAmount = account.getAmount().doubleValue();
		 account.setAmount(currentAmount + (amount.doubleValue()));
		 em.persist(account);
	 }

	 @WebMethod
	 public List<Account> findAccounts() [6]
	 {
		 Query query = em.createQuery("FROM Account");
		 List <Account>items = query.getResultList();
		 return items; 	
	 }

}

The AccountManager is declared as @Web Service [1] as using the namespace
www.packtpub.com and the service name AccountManagerService.

This EJB will use a PersistenceContext, which is injected [2] to provide JPA
connectivity. In our sample, we are recycling the AppStore's persistence.xml,
which we created in the Chapter 5, Developing JPA Entities.

The method createAccount [3] allows our client to create a new account with a
starting empty account. The methods withdraw [4] and deposit [5] are conceptually
used to add/remove money from the account. Finally, the method findAccounts [6]
returns the list of accounts created.

Chapter 10

[271]

Exposing all EJB methods as Web Service
In this example, we are exposing all EJB methods to Web Service clients
by adding the @WebMethod annotation before each method. A shortcut to
perform the same thing is by adding the @WebService annotation on the
EJB interface, which automatically exposes all EJB methods.

Your EJB endpoint doesn't need any extra configuration like the POJO Web Service.
Add the project to your server and deploy it to JBoss AS.

In the Web Service console, verify that your AccountManagerService has been
added to the available services.

Handling exceptions in Web Services
If you have kept an eye on the Web Service contract, you surely have noticed that the
method withdraw raises a runtime exception named AccountException.

When implementing a Web Service using Java and JAX-WS, you might want to
code your exceptions using Java natural style, that is, throwing an exception from
your service operation. In terms on Web Services, this would require the runtime
translation of the exception into a SOAP fault that is received on the client. For
example, here's how the AccountException is translated into the WSDL:

<operation name="withdraw" parameterOrder="withdraw">
 <input message="tns:AccountManagerBean_withdraw" />
 <output message="tns:AccountManagerBean_withdrawResponse" />
 <fault message="tns:AccountException" name="AccountException" />
</operation>

Developing Applications with JBoss Web Services

[272]

If you don't want to rely on JAX WS default mapping of exceptions, then you can use
the @WebFault annotation:

@WebFault(name = "AccountExceptionFault",
		 targetNamespace = "http://www.packtpub.com/")
public class AccountException extends RuntimeException implements
Serializable{

	 public AccountException(String error) {
		 super(error);
	 }
	 public AccountException() {
		 super();
	 }
}

The fault message, as a consequence of the @WebFault annotation, would become:

<operation name="withdraw" parameterOrder="withdraw">
 <input message="tns:AccountManagerBean_withdraw" />
 <output message="tns:AccountManagerBean_withdrawResponse" />
 <fault message="tns:AccountExceptionFault" name="AccountExceptionFa
ult" />
</operation>

Generating a test client
If you have not skipped the first Web Service example, creating a client for our EJB
Web Service should be a matter of seconds.

We will again use wsconsume to generate the client artifacts and wrapper classes.
Go to Run | External tools | External tools Configuration and add the following
configuration for the wsconsume tool.

-k -p com.packtpub.webserviceclient.example2 -o ${workspace_
loc:/WebServiceEJBProject/ejbModule} http://127.0.0.1:8080/
WebServiceEJBProject/AccountManagerBean?wsdl

Chapter 10

[273]

Running the tool will generate a quite a lot of classes as shown from the Project
Explorer view:

As you can see, wsconsume has generated both the service artifacts and the JAX WS
client for the Web Service. The class AccountManagerService is the JAX-WS Client,
which we will use to interact with the Web Service.

The class AccountManageBean contains the ServiceEndpoint interface with all
exposed service methods. In this interface, each service method is wrapped by a
Request/Response wrapper. For example, the createAccount method declares
a wrapper Bean for the request named CreateAccount, along with a response
wrapper Bean named CreateAccountResponse.

 @WebMethod

 @RequestWrapper(localName = "createAccount", targetNamespace
= "http://www.packtpub.com/", className = "com.packtpub.
webserviceclient.example2.CreateAccount")

 @ResponseWrapper(localName = "createAccountResponse",
targetNamespace = "http://www.packtpub.com/", className = "com.
packtpub.webserviceclient.example2.CreateAccountResponse")
 public void createAccount(String name);

Developing Applications with JBoss Web Services

[274]

For testing our example, we will set up a minimal client class that creates an account,
performs some operations on it, and then invokes the findAccounts method that
rolls out the list of accounts with their balance.

package com.packtpub.webserviceclient.example2;

public class Client {

	 public static void main(String[] args) {
			 AccountManagerService accountService = new
 AccountManagerService();
	 AccountManagerBean ejb =
 accountService.getAccountManagerBeanPort();

	 ejb.createAccount("John Nash");
	 ejb.deposit("John Nash", 1000d);
	 ejb.withdraw("John Nash", 500d);

	 List <Account> list = ejb.findAccounts();

	 for (int ii=0;ii<list.size();ii++) {
		 Account acc = list.get(ii);
		 System.out.println(acc.getName());
		 System.out.println(acc.getAmount());
	 }

	 }
}

Running the test client will return the balance for the single account, registered in the
name of professor John Nash.

Injecting Web Services
In the above example, we are creating a Service stub in the client code in order to
access the Web Service. However, this is a costly operation and you might consider
using the @WebServiceRef annotation, which is used to declare a reference to a
Web Service.

This annotation follows the Resource pattern exemplified by the javax.annotation.
Resource annotation in JSR-250. However, JBossWS provides some additional
properties that extend the JSR specification; these include:

Definition of the port that should be used to resolve a container-managed port
Definition of the stub property settings for stub objects
Definition of the URL of a final WSDL document to be used

•

•

•

Chapter 10

[275]

For example, in the following EJB, we are declaring a reference to our
AccountManagerService and injecting a service stub into the accountService field:

@Stateless
public class EJBWebServiceClientBean implements EJBWebServiceClient
{

 @WebServiceRef(name = "EJBWebService",wsdlLocation =
"http://127.0.0.1:8080/WebServiceEJBProject/AccountManagerBean?wsdl")

 public AccountManagerService accountService;	

}

You can then safely use the accountService reference in your EJB to invoke the
Web Service operations defined in AccountManagerService.

Web Service Handler chains
Web Services are all about messaging. A message enters the server and another is
returned after the Web Service is invoked. A Handler is simply a class that pre-
processes the message before it reaches the endpoint and also post-processes the
message before it is returned to the client.

The Handler class can be used to perform core operations on the SOAP message
like validations on the SOAP request message, to encrypt or decrypt the message
for security reasons, or to perform logging at various points while the SOAP request
is served.

We will present here a sample Handler, which performs some basic operations on
the messages targeted at the AccountManagerService. The first step we need to do
is declaring the Handler Chain in our EJB:

import javax.jws.HandlerChain;

@HandlerChain(file = "META-INF/jaxws-handlers-server.xml")

public class AccountManagerBean implements AccountManager {
...
}

The annotation HandlerChain associates the Web Service with an externally defined
handler chain. The chain of Web Service can be reached both from a virtual path
(http://yourhost:8080/jaxws-handlers-servers.xml) and from a physical
path (as in our case).

Developing Applications with JBoss Web Services

[276]

The next step is adding a file named jaxws-handlers-server.xml into the META-INF
folder of your application. This file will contain the list of declared Handler Chains:

<handler-chains xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
javaee_web_services_1_2.xsd">

 <handler-chain>
 <protocol-bindings>##SOAP11_HTTP</protocol-bindings>
 <handler>
 <handler-name>DebugHandler</handler-name>
 <handler-class>com.packtpub.webservice.example2.
DebugHandler</handler-class>
 </handler>
 </handler-chain>
</handler-chains>

Here, we have declared a single Handler named DebugHandler, which is mapped by
the class com.packtpub.webservice.example2.DebugHandler.

The first thing you have to know, when coding your Handler, is that you have to
extend the class GenericSOAPHandler.

public class DebugHandler extends GenericSOAPHandler
{
…
}

Once inside your Handler, you can override the two main methods—handleInbound
and handleOutbound. These methods are intuitively called for pre-processing and
post-processing the message.

In this example, we will use the handleInBound processor to modify the SOAP
message. Starting from the MessageContext, we will extract the SOAP message, its
header (using a safe method named getFailsafeSOAPHeader) and body. Inside the
body, we trace the parameter name [1], which is subsequently uppercased [2].

	 protected boolean handleInbound(MessageContext msgContext)
	 {

		 try
		 {
			 SOAPMessage soapMessage =
 ((SOAPMessageContext)msgContext).getMessage();
			 SOAPHeader soapHeader = getFailsafeSOAPHeader(soapMes
sage);

Chapter 10

[277]

			 SOAPBody soapBody = soapMessage.getSOAPBody();
			 log.debug("[handleInbound]");

			 SOAPBodyElement soapBodyElement =
 (SOAPBodyElement)soapBody.getChildElements().next();
			 Iterator iter = soapBodyElement.getChildElements(new
 QName("name")); [1]

			 while (iter.hasNext()) {
				 SOAPElement nameElement =
 (SOAPElement)iter.next();
				 nameElement.setValue(nameElement.getValue().
 toUpperCase()); [2]
			 }

 }

		 catch (SOAPException e)
		 {
			 throw new WebServiceException(e);
		 }

		 return true;
	 }
 private SOAPHeader getFailsafeSOAPHeader(SOAPMessage soapMessage)
 throws SOAPException
	 {
		 SOAPHeader soapHeader = soapMessage.getSOAPHeader();
		 if (soapHeader == null)
		 {
			 soapHeader =
 soapMessage.getSOAPPart().getEnvelope().addHeader();
		 }
		 return soapHeader;
	 }
		 catch (SOAPException e)
		 {
			 throw new WebServiceException(e);
		 }
		 return true;
	 }
 private SOAPHeader getFailsafeSOAPHeader(SOAPMessage
 soapMessage) throws SOAPException
	 {
		 SOAPHeader soapHeader = soapMessage.getSOAPHeader();
		 if (soapHeader == null)

Developing Applications with JBoss Web Services

[278]

		 {
			 soapHeader =
 soapMessage.getSOAPPart().getEnvelope().addHeader();
		 }
		 return soapHeader;
	 }

Here's the dump of the SOAP packet before and after processing the inbound message:

This operation is intentionally simple (and maybe a bit silly); however, once you
have digested the concept of SOAP handlers, it will take little time to improve this
example with an Enterprise solution.

The outbound callback also demonstrates how you can add extra payload to your
message by attaching another element in the header, containing the hostname of the
host that delivered the response.

protected boolean handleOutbound(MessageContext msgContext)
	 {
		 try
		 {
			 SOAPMessage soapMessage = ((SOAPMessageContext)msgCon
text).getMessage();

Chapter 10

[279]

			 SOAPHeader soapHeader = getFailsafeSOAPHeader
 (soapMessage);
			 SOAPBody soapBody = soapMessage.getSOAPBody();

			 SOAPFactory soapFactory = SOAPFactory.newInstance();
			 javax.xml.soap.Name headerName =
 soapFactory.createName("DeliveredBy",
 "ns1","http://www.packtpub.com");
			 SOAPHeaderElement she =
 soapHeader.addHeaderElement(headerName);
			 InetAddress localMachine =
 InetAddress.getLocalHost();
			 she.setValue(localMachine.getHostName());

	 }
 catch (SOAPException exc2)
	 {
			 throw new WebServiceException(exc2);
	 }

		 return true;
}

Here is the SOAP message before and after processing:

Developing Applications with JBoss Web Services

[280]

SOAP debugging
If you are curious to know how you can get a dump of the SOAP
message, it's obtained by wiring the SOAP message (collected in the
inbound/outbound methods) into an output stream.

ByteArrayOutputStream baos = new
ByteArrayOutputStream();
soapMessage.writeTo(baos);
System.out.println(baos.toString());

Another option that allows debugging of��������������������������������� �������������������������������� SOAP messages is creating a new
category f���������������������������������� or the SOAP message class in your conf/jboss-log4j.xml.
All you have to do is add the following XML fragment in your category
section:

<category name="jbossws.SOAPMessage">
 <priority value="DEBUG" />
</category>

Summary
Web Services are quickly becoming a significant technology in the evolution of the
Web and distributed computing.

The main advantage that Web Services offer is data independence, by virtue of which
data types and structures are not bound to the core implementations of the services.
Previously, data types and structures for distributed computing were defined within
individual programming languages or middleware description languages.

JBossWS uses the JBoss application server as its target container, and delivers the
full JAX WS implementation, making easier even for inexperienced developers to
create their Web Services.

At the end of this chapter, we have explored the full range of development topics
for the standalone application server. Now it's about time to move to the clustered
environment, where critical applications are deployed.

Clustering JBoss AS
Virtus unita fortior. Virtue united is stronger.— a Latin saying

JBoss clustering is not the product of a single library or specification, but rather a blend
of technologies. On the basis of this concept, we decided to split the discussion about
clustering into two sessions. In this chapter, we will introduce the rationale behind
clustered programming. Here is a preview of what you will learn from this unit:

What clustering is and how JBoss AS implements it
The configuration of JBoss AS clustered services
How to set up additional components required for clustering
web applications

Cluster basics
A cluster of application servers consists of multiple server instances (cluster nodes)
running simultaneously and working together to provide increased scalability and
reliability. The nodes that make up the cluster can be either located on the same
machine or on different machines. From the client's point of view, this is irrelevant
because the cluster appears as a single server instance.

Introducing clustering in your applications will produce the following benefits:

Scalability: Adding a new node to a cluster should allow the overall
system to service a higher client load than that provided by the simple
basic configuration. Ideally, it should be possible to service any given load,
simply by adding the appropriate number of servers or machines.
Load balancing: In a clustered environment, the individual nodes
composing the cluster should each process a fair share of the overall client
load. This can be achieved by distributing client requests across multiple
servers, also known as load balancing.

•

•

•

•

•

Clustering JBoss AS

[282]

High availability: Applications running in a cluster can continue when a
server instance fails. This is achieved because applications are deployed
on multiple nodes of the cluster, and so if a server instance fails, another
server instance on which that component is deployed can continue
application processing.

Introducing JBoss AS cluster
JBoss AS ships with built-in clustering support, located in the "all" server
configuration. To be part of a cluster, JBoss instance nodes have to be grouped
together in partitions. The members of a cluster can be located either on the same
machine or on different machines. What actually required is that they are assigned
different IP address for each node.

In the following figure, you can see (on the left side) a cluster composed of two nodes
running in the same partition (DefaultPartition), each one with its assigned
IP address.

Node 2
192.168.10.2

Node 1
192.168.10.1

Node 2
192.168.10.2

Node 1
192.168.10.1

Node 2
192.100.0.2

Node 1
192.100.0.1

Single Cluster Two Clusters on the same network

Multicast Address
239.255.255.100

Default Partition Partition 1 Partition 2

Multicast Address
239.255.255.110

You can also have multiple cluster partitions running on the same network. In order
to differentiate them, each cluster must have an individual name and multicast
address/port. If you look at the right portion of the picture, we have a slightly more
complex scenario with two partitions, namely Partition1 and Partition2, each one
with two cluster members and a distinct multicast address.

•

Chapter 11

[283]

Multicast is a protocol where data is transmitted simultaneously to a
group of hosts that have joined the appropriate multicast group. You
can think about multicast as radio or television streaming where only
those tuned to a particular frequency receive the streaming.

Unicast Multicast BroadCast AnyCast

Routing Schemas

However, JBoss cluster does not deal with such low-level schemas directly; rather the
communication between cluster nodes is handled by a library called JGroups that is
a toolkit for reliable multicast communication. The basic building block of JGroups is
the Channel, which is quite similar to a standard socket. Essentially Channels are the
means by which applications connect to a cluster and send messages to each other.

At server startup, the JGroups library launches a set of Channels that have the ability
to discover each other dynamically through the exchange of multicast packets. Nodes
that join the cluster at a later time have their state automatically initialized and
synchronized by the rest of the group.

All messages sent and received over the Channel have to pass through the protocol
stack, which is the second main element of the JGroups framework.

The protocol stack is made up of a list of protocol layers in a bi-directional list.
Outgoing requests go down the JGroups stack, and incoming requests climb up in
the stack. For example, you might have in your protocol stack a fragmentation layer
that might break up a message into several smaller messages, adding a header with
an ID to each fragment, and re-assembling the fragments on the receiver's side.

Knowledge of the protocol stack is not required anyway, unless you need to tweak
the default values and configure you own protocol stack.

JBoss AS clustering architecture
In the previous section, we have introduced some basic administrative concepts
about JBoss AS clustering; as a developer, you are probably more interested to know
the interaction between your client and the clustered application.

Clustering JBoss AS

[284]

Basically, JBoss AS cluster solutions fall between two kinds of architectures—Smart
Proxy Architecture and External Load Balancer. To summarize the boundary between
the two architectures, we can state that the external load balancer is used by clustered
web applications, while smart proxies are used for all other clusterable components.

Smart proxies
When using JBoss AS services such as JNDI, EJB, RMI, and JBoss remoting, the
communication between the client and the server component is not a peer-to-peer
communication. For example, when a client invokes an EJB, an object named smart
proxy is looked up and downloaded locally. In a single node environment, the
smart proxy must only pursue the job of routing the call from the client to the server,
taking care of marshalling parameters and unmarshalling the return value of the EJB.

In a clustered environment, the smart proxy object includes an interceptor that
understands how to route calls to multiple nodes in the cluster. The smart proxy is
constantly aware of the clustering topology—for example, if one node of the cluster
fails, the proxy stub is updated to reflect the latest changes in the cluster.

The following screenshot depicts (left side) how dynamic proxies enable switching
from one node to another in case of failure.

Node 1

Node 2

Client

Dynamic Proxy

Client JVM

Load Balancer

BrowserClient

A
A

Class
Downloading

C
CB

Node 1

Node 2 Session Migration

Smart Proxy Architecture External Load Balancer

B

Chapter 11

[285]

External load balancer
The HTTP service does not require downloading any component to run in a cluster.
As a matter of fact, clustering the HTTP application needs configuring an external
component that contains the logic to route the requests to the nodes hosting the web
application. This component can either be hardware or software; however, they
perform conceptually the same function—spreading the requests across the nodes,
taking care of cluster configuration as well as failover policies. The section Clustering
web applications contains the necessary information for setting up a software load
balancer, namely Apache Tomcat Connection (mod_jk).

JBoss AS 5 cluster configuration
In earlier JBoss AS releases, the cluster configuration file was spread across the
server deploy directory. Since JBoss AS 5, the configuration has been centralized
in the new deploy/cluster directory.

Also, the configuration files have been ported from the older JMX configuration
to the new POJO MicroContainer. This is evident from the view of the cluster
directory that shows it doesn't contain any MBean's *-service.xml file.

Clustering JBoss AS

[286]

This is a short description of the configuration files. We will examine the most
interesting files in more detail in the appropriate sections.

File / directory Description
jboss-cache-manager-jboss-beans.xml JBoss Cache configuration file. Used for HTTP

and SFSB replication and for Entity cache
replication.

jboss-cache-configs.xml Additional JBoss Cache configurations using
the standard JBC 3.x config format can be
stored here.

jgroups-channelfactory-jboss-beans.xml JGroups JChannelFactory configuration.
jgroups-channelfactory-stacks.xml Standard JGroups protocol stacks definitions,

used by the JChannelFactory bean.
deploy-hasingleton-jboss-beans.xml HA Singleton configuration.
hajndi-jboss-beans.xml HA-JNDI Configuration.
ha-legacy-jboss-beans.xml HA Legacy services configuration.
hapartition-jboss-beans.xml HA Partition configuration.

Starting JBoss AS in cluster mode
JBoss AS has a built-in cluster configuration named all. So, in order to start the AS in
cluster mode, it's roughly enough to reference this server configuration. Depending
on your network requirements, you can either start a JBoss AS cluster distributing
the nodes on different hosts or you can have multiple nodes on a single machine.
You can run multiple clusters on the same network. We shall now analyze each of
these options.

Running cluster nodes on separate machines
This is the most common scenario for running a cluster and can be easily carried out
with a minimal networking background.

By using the following command line, you will start a JBoss AS cluster node in the
DefaultPartition, bound at the IP Address 192.168.10.1:

run -c all –b 192.168.10.1 -Djboss.messaging.ServerPeerID=1 #Windows

run.sh -c all –b 192.168.10.1 -Djboss.messaging.ServerPeerID=1 #Unix

Chapter 11

[287]

Notice we have added a system property named jboss.messaging.
ServerPeerID with a unique value as required by clustered JMS Server.
More about this topic will be discussed in the JMS clustering section, at the
end of this chapter.

When the startup sequence has completed, group membership will be outputted on
the JBoss AS console:

INFO [GroupMember] I am (192.168.10.1:1235)

INFO [GroupMember] New Members : 1 ([192.168.10.1:1235])

INFO [GroupMember] All Members : 1 ([192.168.10.1:1235])

In order to join the cluster on the DefaultPartition you can start additional JBoss AS
instances from another host, using the IP Address 192.168.10.2:

run -c all –b 192.168.10.2 -Djboss.messaging.ServerPeerID=2
#Windows

run.sh -c all –b 192.168.10.2 -Djboss.messaging.ServerPeerID=2 #Unix

If you have correctly configured your Ethernet interfaces, the console will expose the
new cluster membership.

INFO [GroupMember] I am (192.168.10.2:1248)

INFO [GroupMember] New Members : 2 ([192.168.10.1:1235, 192.168.10.2:1248])

INFO [GroupMember] All Members : 2 ([192.168.10.1:1235, 192.168.10.2:1248])

Running cluster nodes on the same machine
A cluster can be run on both, separate machines or on the same machine, provided
that you have configured multiple IP address on it. This kind of configuration is
usually adopted on the development stage and, as far as JBoss AS is concerned,
your only requirement is to create a server configuration for each node. (See the
following resources for more details about configuring multiple nodes on the
same machine http://support.microsoft.com/kb/157025/en-us and
https://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/ref-
guide/s1-networkscripts-interfaces.html)

Clustering JBoss AS

[288]

Navigate to the JBOSS_HOME/server directory and replicate the folder all once
for each node required. In this sample, we have created a cluster with nodeA
and nodeB:

Now start each cluster passing the appropriate server configuration to
the –c parameter:

run.sh -c nodeA –b 192.168.10.1 -Djboss.messaging.ServerPeerID=1

run.sh -c nodeB –b 192.168.10.2 -Djboss.messaging.ServerPeerID=2

(Replace run.sh with run for Windows users.)

From the configuration point of view, nothing will change about what you will
learn here; however, consider that a single machine dedicated to the cluster will
introduce a point of failure in your architecture. If this can impact your service
level agreements, consider splitting the cluster onto multiple machines.

Running multiple clusters on the same network
You can have multiple cluster partitions on the same network. In order to do so, you
need to isolate the JGroups channels by changing the multicast group name and port
so that each channel has its own set of values.

In this example, we are starting a cluster named ClusterA (parameter -g), bound
at the IP Address 192.168.20.1, which uses the multicast address (parameter –u)
239.255.100.100 for communication between members.
run.sh -c all -g ClusterA -u 239.255.100.100 -b 192.168.20.1 -Djboss.
messaging.ServerPeerID=1

Chapter 11

[289]

Now, in order to join the ClusterA partition, we will issue the following command
line, which starts up a new node bound at the IP Address 192.168.20.2:
run.sh -c all -g ClusterB -u 239.255.100.110 -b 192.168.20.2 -Djboss.
messaging.ServerPeerID=2

Running these scripts on the same network as your earlier cluster partition will
produce two distinct cluster partitions running peacefully on the same network.

Since the release of JBoss AS 5.0.1, you are not required to change
multicast ports. Actually, simply starting each cluster with a different
value passed to -u (as described earlier) should be sufficient. Even setting
different partition names via -g is not mandatory. (Although it's simple
to do and still recommended.)

JBoss AS clustered services
As we just mentioned, the cornerstone of JBoss AS clustering architecture is the
JGroups library upon which two main services are built—the first one is JBoss
Cache (JBC) library and the second one is the HA Partition service. JBoss Cache is
a distributed cache framework used by many clustered services, while HA Partition
provides support for RPC calls among cluster members.

Jboss Cache

Client proxies

HTTP Session

HA Singleton

EJB 3 SFSB

EJB 3 Entity

HA Jndi

EJB 2

HA Partition

Jboss Messaging

J Groups

Clustering JBoss AS

[290]

As you can see from the previous screenshot, the HTTP Session, EJB 3 SFSB, and
EJB 3 Entity Bean services rely upon JBoss Cache architecture. On the other hand,
the HA Singleton, Client proxies architecture, and former EJB 2 are built upon HA
Partition service. The distributed naming service (HA-JNDI) relies on both JBoss
Cache and HA Partition. The only service that deals directly with JGroups protocol,
is JBoss Messaging. We will now examine the two main JBoss AS clustering services,
along with their dependent services.

JBoss Cache (JBC)
Caching is widely used for optimizing Enterprise applications. A cache is designed
to reduce traffic between your application and the Enterprise Information System
(EIS) by storing data fetched in a physical location or in memory.

JBoss Cache provides fully transactional features as well as a highly configurable set
of options to deal with concurrent data access in the most efficient manner possible
for your application. In addition, it is a clustered cache that replicates contents to
other cache instances running on separate JVMs, servers, or even entire networks,
using optimized and highly configurable replication modes.

This makes any state stored in JBoss Cache unaffected by server crashes or restarts,
thus achieving high availability. Before digging into the JBoss Cache, we will
explore the possible cache replication modes so that you will better understand
the difference between the various cache configurations.

Cache modes
One of the prerequisites of a distributed cache is the consistency of data across
nodes. This can be achieved by replicating data constantly across the nodes of the
cluster. You can choose between the following three cache replication modes:

Asynchronous: This is the default for many services such as SFSB replication
and web session replication. A node that performs an asynchronous
replication sends a message to other cluster members and returns immediately
without waiting for acknowledgement of the receipt. This replication mode
provides a fast data replication; however, it doesn't guarantee data consistency
in case of node failure. This can happen if the node that fails hasn't completed
the data replication to the remaining nodes. For this reason, it's not the
default replication mode of Entity Caches.
Synchronous: This is the least efficient mode as each node will wait for
message acknowledgement from all cluster members. However, synchronous
mode is needed when all the nodes in the cluster may access the cached data,
resulting in a high need for consistency, for example in Entity Caches.

•

•

Chapter 11

[291]

Local: This cache mode is used for services that don't need to keep consistent
data across the cluster, so cluster members don't send any messages around.

When we are looking at data content, another possible distinction is between data
replication and data invalidation.

Replication: When using data replication, each node issues messages
containing a snapshot of the current state. This is a costly operation,
especially if the data contains a large graph of objects; however, it is the
only viable option in some scenarios such as HTTP data replication.
Invalidation: A node that issues invalidating messages doesn't include the
state information in the message, so the amount of data across the network
is much smaller. The only information transmitted is that the session cache
has gone stale, so data from the cache needs to be evicted. This is the default
option for Entity Caches.

By combining these two options, you can obtain five distinct cache modes that can be
used in your service configuration:

Cache mode USED BY
REPL_SYNC HAPartitionCache
REPL_ASYNC Web Session cache, EJB 3 SFSB cache,

Replicated Query cache,���������������� ���������������TimestampsCache
INVALIDATION_SYNC Entity and Collection caches
INVALIDATION_ASYNC None
LOCAL Local Query cache

Cache configuration
As we have just learned, many of the standard clustered services in JBoss
Application Server use JBoss Cache to maintain consistent state across the cluster.
In AS 4, each cache service was shipped separately in the deploy/ directory, which
ended up in creating expensive JGroups channels also for unwanted cache services.

Since JBoss AS 5, the main configuration file for JBoss Cache services is the deploy/
cluster/jboss-cache-manager.sar/META-INF/jboss-cache-manager-jboss-
beans.xml file.

•

•

•

Clustering JBoss AS

[292]

The configuration file is about 70 KB, so obviously we cannot display it here; anyway,
we include the list of available configurations and their common usage:

Configuration name Usage
standard-session-cache Standard cache used for web sessions.
field-granularity-
session-cache

Standard cache used for FIELD granularity web sessions.

sfsb-cache Standard cache used for EJB3.0 SFSB caching.
ha-partition Used by ClusteredSingleSignOn, HA-JNDI, Distributed

State.
mvcc-entity A config appropriate for JPA/Hibernate entity/collection

caching that uses JBC's MVCC locking and READ_
COMMITTED isolation level.

optimistic-entity A configuration appropriate for JPA/Hibernate entity/
collection caching that uses JBC's optimistic locking.

pessimistic-entity A configuration appropriate for JPA/Hibernate entity/
collection caching that uses JBC's pessimistic locking.

mvcc-entity-repeatable Same as mvcc-entity but uses REPEATABLE_READ
isolation level.

pessimistic-entity-
repeatable

Same as "pessimistic-entity" but uses REPEATABLE_READ
isolation level.

local-query A configuration appropriate for JPA/Hibernate query
result caching. Does not replicate query results.

replicated-query A configuration appropriate for JPA/Hibernate query
result caching. Replicates query results.

timestamps-cache A configuration appropriate for the timestamp data
cached as part of JPA/Hibernate query result caching.

In the previously described file, you will find additional configurations
namely mvcc-shared, optimistic-shared, pessimistic-shared,
and pessimistic-shared-repeatable. These configurations are
maintained for backward compatibility with JBoss AS 4 release, but you
are not advised to use them because they require cache mode REPL_SYNC,
which is the least efficient mode, and a full state transfer at startup can be
expensive. Use the newer JBC's MVCC/optimistic/pessimistic locking.

As you can see in the previous table, the cache configuration basically impacts the
HTTP Session Cache, Entity Caches, and Stateful Session Bean Cache. You might
wonder why Stateless Session Beans and Message Driven Beans are excluded from
this list. The answer lies in the fact that SLSB and MDB do not hold a cache of data,
as their session lifetime spans the execution thread invoked by the client.

Chapter 11

[293]

Now let's see in more detail a few JBoss Cache built-in configurations.

Configuring HTTP cache management
The configuration named standard-session-cache is used by JBC for caching
web session data. The Bean that contains the main configuration attributes is
briefly introduced here:

<entry><key>standard-session-cache</key>
<value>
 <bean name="StandardSessionCacheConfig"
 class="org.jboss.cache.config.Configuration">

 </bean>

The list of attributes of this Bean is quite verbose, but the following are likely to be of
interest to you:

CacheMode: This attribute determines how web session data is replicated.
By default, it is replicated asynchronously across nodes. You can opt for a
synchronous replication of the web session data by changing the attribute to
REPL_SYNC if you need the least efficient, but safer synchronous replication.
SyncReplTimeout: This is the number of milliseconds to wait until all
responses for a synchronous call have been received. As the major bottleneck
of synchronous replication is caused by waiting for replication ACKs from
all nodes in the cluster, by changing this parameter you can greatly affect the
performance of your cluster. The value of this parameter needs to be more
than the lockAcquisitionTimeout parameter.
LockAcquisitionTimeout: This property specifies the maximum number of
milliseconds to wait for a synchronous lock acquisition. If a lock cannot be
acquired by that time, an exception will be thrown.
BuddyReplicationConfig: By default this is set to false. Buddy replication
allows data replication to a limited number of nodes in a cluster rather
than the entire cluster. This helps a cluster to scale by not affecting network
replication traffic, or node memory usage, as more nodes are added. When
set to true, you can configure the number of backup nodes to which a copy
of the session should be replicated with the property numBuddies.

Additional information about HTTP session replication is contained in the section
Clustering web applications.

•

•

•

•

Clustering JBoss AS

[294]

Configuring EJB 3.0 Stateful Session Bean cache
The cache configuration for a clustered EJB 3.0 Stateful Session Bean is enclosed in
the sfsb-cache cache descriptors. The tunable parameters of the SFSB Cache are
the same as we have examined for the standard-session-cache; additionally, you
can change the configuration of an individual SFSB by adding the name attribute on
the @org.jboss.ejb3.annotation.CacheConfig annotation:

@Stateful
@Clustered
@CacheConfig(name="new-sfsb-cache")
@Remote(StatefulRemote.class)

In this example, we have created a Stateful Bean with a custom cache configuration
named new-sfsb-cache. (Take care to add the custom configuration in deploy/
cluster/jboss-cache-manager.sar/META-INF/jboss-cache-manager-jboss-
beans.xml.)

Configuring entity caching
In EJB 3.0, entities primarily serve as a persistence data model. They do not provide
remote services. Therefore, the entity clustering service in EJB 3.0 primarily deals
with distributed caching and replication, instead of load balancing.

Using a distributed cache is fundamental to avoid needless round trips to the
database and increase cluster performance. As you know from earlier chapters,
JBoss persistence layer is implemented by means of the Hibernate framework,
which has a support for an advanced cache system.

Basically, Hibernate uses two different caches for objects—the first-level cache that
is associated with the Session object, and the second-level cache that is associated
with the Session Factory object.

In short, the first-level cache is used at Session level to reduce the number of SQL
statements within the same transaction. The second-level cache, on the other hand,
keeps loaded objects at the Session Factory level between transactions. These
objects are available to the whole application, not just to the user running the query.
This way, each time a query returns an object that is already loaded in the cache,
potentially one or more database transactions are avoided.

Chapter 11

[295]

Entities are cached in memory areas called regions that can be used for caching
collections, queries, and timestamps. The configuration of the second-level cache
is done via your EJB 3.0 deployment's persistence.xml.

<properties>
<property name="hibernate.cache.use_second_level_cache" value="true"/>
<property name="hibernate.cache.use_query_cache" value="true"/>
<property name="hibernate.cache.region.factory_class"
value="org.hibernate.cache.jbc2.
JndiMultiplexedJBossCacheRegionFactory"/>
<property name="hibernate.cache.region.jbc2.cachefactory" value="java:
CacheManager"/>
<property name="hibernate.cache.region.jbc2.cfg.entity" value="mvcc-
entity"/>
<property name="hibernate.cache.region.jbc2.cfg.collection"
value="mvcc-entity"/>
</properties>

This configuration enables JBoss AS to use Hibernate second-level cache; however we
need to specify which entities to cache. The default is not to cache anything, even with
the settings shown previously. We use the @org.hibernate.annotations.Cache
annotation at entity bean level to tag each entity that needs to be cached.

import javax.persistence.*;
import org.hibernate.annotations.*;

@Entity
@Cache (usage=CacheConcurrencyStrategy.TRANSACTIONAL)
@NamedQueries({
 @NamedQuery(name="calculateAccounts",
 query="select sum(users) from Account as account",
 hints={@QueryHint(name="org.hibernate.cacheRegion",
 value="AccountRegion"),
 @QueryHint(name="org.hibernate.cacheable",
 value="true")})
})
public class Account implements Serializable {
}

In this sample, setting the attribute org.hibernate.cacheable in the @QueryHint
annotation to true tells Hibernate to cache the results of executing this query.

Clustering JBoss AS

[296]

Additionally, we can specify to store the query result in a distinct cache
area—AccountRegion in the case of our sample. This query hint is optional; if it
is not specified Hibernate will create a synthetic region based on the name of the
deployment and the Bean's type. The advantage of specifying a region is that you
can group queries declared in multiple beans in the same region, making it easier
to manage memory usage in the cache.

There's a lot of power in the clustered second-level caching in AS 5/Hibernate, far
more than can adequately be discussed here. For complete details, see the Using JBoss
Cache as a Hibernate Second Level Cache reference manual (http://www.jboss.org/
community/wiki/ClusteredJPAHibernateSecondLevelCachinginJBossAS5.pdf).

JBoss cache and concurrency
One potential problem of cache systems is concurrent access to shared data. JBoss
Cache is by default thread safe using advanced concurrency algorithms that are
configurable. The two main parameters that can be tuned in JBoss Cache are the
NodeLockingScheme and the IsolationLevel.

In the NodeLockingScheme, there are three main options that can be applied to
JBoss Cache: MVCC, Optimistic, and Pessimistic Locking.

MVCC (Multi-versioned concurrency control): This is the default locking
schema for JPA/Hibernate entity caching. MVCC ensures a high level of
performance, especially for applications that mostly read data, as reader
threads are completely free of locks and synchronized blocks. MVCC also uses
custom, highly performing lock implementations for writer threads, which
are tuned to multi-core CPU architectures.
Pessimistic locking:� This locking mode requires acquiring locks on nodes
before reading and writing. As a matter fact, this locking mode carries more
overhead, allowing less concurrency.
Optimistic locking:� This locking mode eliminates locks by using an area
of memory called workspace, where data is temporarily copied between
ongoing transactions.

Optimistic and pessimistic locking schemes are deprecated locking schemas that
are kept for backward compatibility. You are strongly encouraged to use the default
MVCC locking schema.

In case of the IsolationLevel, you can apply two possible values (READ_COMMITTED
and REPEATABLE_READ) that correspond in semantic to the equivalent database
isolation levels.

•

•

•

Chapter 11

[297]

REPEATABLE_READ is the default isolation level used by JBoss Cache. Using this
isolation lock, the transaction acquires read locks on all retrieved data, though
phantom reads can potentially occur.

READ_COMMITTED provides a significant performance gain over REPEATABLE_READ,
but data records retrieved by a query are not prevented from modification by some
other transaction.

The HAPartition service
HAPartition is a general purpose service used for a variety of tasks in AS clustering.
At its core, it is an abstraction built on top of JGroups Channel that provides support
for making/receiving RPC invocations on/from one or more cluster members.

HAPartition also supports a distributed registry named
DistributedReplicantManager that holds information about which clustering
services are running and on which member. It also provides notifications to
interested listeners when the cluster membership changes or the clustered
service registry changes.

The HAPartition service is configured via the deploy/cluster/hapartition-
jboss-beans.xml file. Following is the list of properties of the ClusterPartition
Bean that is used to configure HAPartition Service:

Proprerty Description
cacheHandler References the injected cache used for state management.
partitionName Name of the partition being built.
nodeAddress The address used to determine the node name.
stateTransferTimeout Maximum time (in ms) to wait for state transfer to

complete. Increase for large states.
methodCallTimeout Maximum time (in ms) to wait for RPC calls to complete.
threadPool Optionally provide a thread source to allow async connect

of our channel.
distributedStateImpl References the bean that manages distributed state across

the cluster.

You can view the current cluster information by pointing your browser to
the JMX console of any application server instance in the cluster (that is
http://hostname:8080/jmx-console/) and then clicking on the
jboss:service=HAPartition,partition=DefaultPartition Mbean.

Clustering JBoss AS

[298]

The DistributedReplicantManager (DRM) service is a distributed registry that
allows HAPartition users to register objects under a given key, making available
to callers the set of objects registered under that key by the various members of the
cluster. The DRM also provides a notification mechanism, so interested listeners can
be notified when the content of the registry changes.

The DistributedReplicantManager is used mainly for two purposes in JBoss
AS—for letting clustered smart proxies communicate with other nodes and for HA
singletons. We have discussed the clustered smart proxies earlier, we will now
introduce HA singletons.

Exploring HA singletons
The singleton is a design pattern that allows only one instance of a class. In a
clustered environment, this leads to several issues, mainly because each JVM will
hold a copy of the singleton and the resource needs to be correctly synchronized
across cluster members.

JBoss AS supports the concept of a singleton resource in a cluster by adding a
special service called the HASingleton service. Since JBoss AS 5, the configuration
of the HASingleton service has been moved from deploy/deploy-hasingleton-
service.xml to deploy/cluster/deploy-hasingleton-jboss-beans.xml.

The simplest and most commonly used strategy for deploying an HA singleton is to
take an ordinary *.jar deployment unit and copy it in the $JBOSS_HOME/server/
all/deploy-hasingleton directory instead of in deploy.

The node running the singleton is called the Master Node. If the Master Node fails,
the remaining nodes elect a new Master Node that keeps running the singleton
service. As you can see in the next screenshot, the service is kept running on just
one node.

HA Singleton

Cluster Partition

Stand by
Node

Master
Node

Master
Node

Chapter 11

[299]

Using the deploy-hasingleton directory is a very straightforward
approach, but it has a few drawbacks:

First, services deployed in the folder deploy-hasingleton cannot
take advantage of the hot-deployment feature, so each time you
redeploy the service, a server restart is required.
Next, each time a master node fails, the singleton service needs to go
through the whole deployment process before being available. This
can be quite expensive if your application contains many modules.
Alternatively, if your service is implemented as an MBean, you can
deploy it along with a service called HASingletonController in order
to turn it into an HA singleton. This will solve the issues specified
above. Consult JBoss clustering documentation for further information.

•

•

•

The HA-JNDI service
JNDI is a key component of JBoss AS server architecture. By means of the JNDI tree,
client applications can look up their proxies and use them to interact with remote
applications. The HA-JNDI module spices up the traditional JNDI services, by adding
transparent failover and load balancing of naming operations. Furthermore, the
HA-JNDI tree allows automatic client discovery of HA-JNDI servers (using multicast).

Each object bound into the HA-JNDI service will be replicated around the cluster,
and a copy of that object will be available in VM on each node in the cluster. This
allows a unified view of the JNDI tree.

On the server side, the HA-JNDI service maintains a cluster-wide context tree. Each
node in the cluster retains its own local JNDI context tree. An application can bind
its objects to the tree, although in practice most objects are bound into the local JNDI
context tree. So what is the concrete advantage of binding a component in the HA-JNDI
tree? The advantage is quite evident in a situation where the required components are
not deployed on all cluster nodes (also called a heterogeneous cluster).

LOCAL JNDI

HA JNDI

LOCAL JNDI

HA JNDI

LOCAL JNDI

HA JNDI!
!

Lookup Miss
2

Lookup Miss
1

Heterogeneous ClusterHomogeneous Cluster

LOCAL JNDI

HA JNDI

!
Lookup Miss

3

Clustering JBoss AS

[300]

In the left side of the previous figure, a component (supposing an EJB) is deployed on
the Local JNDI tree of all nodes of the cluster. When a remote client tries to look up the
EJB through HA-JNDI, the HA-JNDI is not aware of the component and will delegate
to the Local JNDI tree that will return the object to the client.

On the other hand, if the EJB is deployed only on one Local JNDI tree, (right side of
the previous figure) a Lookup Miss will result in both the HA-JNDI tree and in the
Local JNDI tree of Node A. The search for the object will continue on the remaining
cluster nodes, using the same order—first inspecting the HA-JNDI tree and then the
local tree.

If no local JNDI service owns such a binding, a NameNotFoundException is finally
raised. In our example, the second node will return a copy of the object from the
Local tree but the lookup process was quite expensive. Using HA-JNDI for storing
the object would avoid delegating the lookup query to the local JNDI service—on
the server node and, if not available, to all local JNDI services of the cluster.

Accessing HA-JNDI
If you want to perform JNDI lookups on the HA-JNDI tree, you must configure your
InitalContext differently from the Local JNDI lookups. The following code shows
how you can initialize NamingContext bound to HA-JNDI from a local client:

Properties p = new Properties();

p.put(Context.INITIAL_CONTEXT_FACTORY, "org.jnp.interfaces.
NamingContextFactory");

p.put(Context.URL_PKG_PREFIXES, "jboss.naming:org.jnp.interfaces");

String bindAddress = System.getProperty("jboss.bind.address",
"localhost");

p.put(Context.PROVIDER_URL, bindAddress + ":110�����0");
return new InitialContext(p);

On a multihomed cluster environment, it is safer to specify the partition
name instead of the provider URL—for example:
p.put("jnp.partitionName","DefaultPartition");

For clients running outside the application server, you can pass a comma-separated
list of JNDI servers (that is the nodes in the HA-JNDI cluster) to the java.naming.
provider.url property in the jndi.properties file.

java.naming.provider.url=server1:1100,server2:1100,server3:1100,serve
r4:1100

Chapter 11

[301]

When performing lookups, the JNP client code will try to get in touch with each
server node from the list, one after the other, stopping as soon as one server has been
reached. It will then download the HA-JNDI stub from this node.

HA-JNDI configuration
The configuration of HA-JNDI is located in the deploy/cluster/hajndi-jboss-
beans.xml file.

The following table summarizes the configurable parameters of the
HANamingServiceBean:

Parameter Description
bindAddress The address to which the HA-JNDI server will bind to

listen for naming proxy download requests from JNP
clients. (Default jboss.bind.address property.)

port Specifies the port to which the HA-JNDI server will
bind to listen for naming proxy download requests
from JNP clients. (Default 1100.)

backlog The maximum queue length for incoming connection
indications for the TCP server socket on which the
service listens for naming proxy download requests
from JNP clients (default 50).

rmiBindAddress Specifies the address to which the HA-JNDI server
will bind to listen for RMI requests (for example
JNDI lookups) from naming proxies. Default value is
jboss.bind.address system property.

rmiPort Specifies the port to which the server will bind to
communicate with the downloaded stub. Default
value is 1101.

discoveryDisabled A Boolean flag that disables configuration of the auto
discovery multicast listener. Default is false.

autoDiscoveryAddress Specifies the multicast address to listen to for JNDI
automatic discovery. Default value is the jboss.
partition.udpGroup system property, or 230.0.0.4
if that is not set.

autoDiscoveryGroup Specifies the port to listen on for multicast JNDI
automatic discovery packets. Default value is 1102.

autoDiscoveryBindAddress Sets the interface on which HA-JNDI should listen
for auto-discovery request packets. If this attribute
is not specified and a bindAddress is specified, the
bindAddress will be used.

Clustering JBoss AS

[302]

Parameter Description
autoDiscoveryTTL Specifies the TTL (time-to-live) for autodiscovery IP

multicast packets.
loadBalancePolicy Specifies the class name of the

LoadBalancePolicyimplementation that should
be included in the client proxy.

clientSocketFactory An optional attribute that specifies the fully
qualified classname of the java.rmi.server.
RMIClientSocketFactory that should be used to
create client sockets. Default is null.

serverSocketFactory An optional attribute that specifies the fully
qualified classname of the java.rmi.server.
RMIServerSocketFactory that should be used to
create server sockets. Default value is null.

Clustering web applications
The configuration of a clusterable web application is slightly more complex than
other components, so it deserves a section on its own. In order to achieve a scalable
and consistent state for a web application across the cluster, two distinct functions
are required:

Session state replication
Load-balancing of incoming invocations

Session state replication occurs when we replicate the information (that is session
attributes) stored in your HttpSession across the nodes of the cluster. Load
balancing, on the other hand, is not directly handled by JBoss AS and requires an
external load balancer, either hardware or software. The following section explains
how you can configure and possibly override the default web container parameters.

Configuring HTTP replication
Configuring HTTP session replication on a web application has a mandatory
requirement as per JEE specification, that is, adding the <distributable /> tag
in your application's web.xml.

<web-app>

 <distributable />
</web-app>

•

•

Chapter 11

[303]

Next, you can apply JBoss AS-specific configuration both at server level and
at application level. The server-wide configuration is located at server\all\
deployers\jbossweb.deployer\META-INF\war-deployers-jboss-beans.xml.

It is a good practice to configure your HTTP session on a web application basis,
by adding to your web archive, a JBoss AS specific deployment descriptor,
jboss-web.xml.

<!DOCTYPE jboss-web PUBLIC
 -//JBoss//DTD Web Application 5.0//EN
 http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd>
<jboss-web>
 <replication-config>
 <cache-name>custom-web-cache</cache-name>
 <replication-trigger>SET</replication-trigger>
 <replication-granularity>ATTRIBUTE</replication-granularity>
 <max-unreplicated-interval>30</max-unreplicated-interval>
 <snapshot-mode>instant</snapshot-mode>
 <snapshot-interval>1000</snapshot-interval>
 </replication-config>
</jboss-web>

In the previous example, we have configured our application to use the
custom-web-cache that can be defined in the file deploy/cluster/jboss-cache-
manager.sar/META-INF/jboss-cache-manager-jboss-beans.xml.

Additionally, we have set a few custom attributes for the HTTP Session Replication:

replication-trigger: Determines when the HTTP session is considered
eligible for replication (also known as "dirty"). The following table depicts
the three possible values for this field:

Attribute Description Speed

SET
This is the best option for performance. The session is
replicated only if an attribute is explicitly modified with the
setAttribute method.

good

SET_AND_GET
With this option any attribute that is get/set is marked as
dirty even if it's not written back to the session. ����������� This leads
to a significant performance degradation.

slow

SET_AND_NON_
PRIMITIVE_GET

This is the default option. It works the same as SET_AND_
GET except for primitive system types (String, Integer,
Long). Since they are immutable objects they are not
replicated when a get is issued.

average

•

Clustering JBoss AS

[304]

In practice, the default option (SET_AND_NON_PRIMITIVE_GET)
considers the session "dirty" when a session.setAttribute() is issued on
an object or when a session.getAttribute() is issued on an object that is
mutable. The following table summarizes the effect on session invalidation
of the replication-trigger attribute using an immutable Object (String) or a
mutable Object (MyPOJO)

Command SET SET_AND_NP_GET SET_AND_GET
HttpSession session; NO NO NO
String s = (String)session.
getAttribute("x"); NO NO YES

MyPOJO p = (MyPOJO)session.
getAttribute("p"); NO YES YES

MyPOJO p = (MyPOJO)session.
getAttribute("p");
session.setAttribute(p);

YES YES YES

replication granularity: Determines which part of the stored objects
needs to be replicated. Supported values are:

ATTRIBUTE: Replication is only for the dirty attributes in
the session plus some session data such as the last-accessed
timestamp.
SESSION: The entire session object is replicated if any attribute
is dirty. The entire session is serialized in one unit, so shared
object references are maintained on remote nodes. This is the
default setting.
FIELD: Replication is only for individual changed data fields
inside session attribute objects. Shared object references will be
preserved across the cluster.

If your sessions are generally small, SESSION is the better policy. If your
session is larger and some parts are infrequently accessed, ATTRIBUTE
replication will be more effective. If your application has very big data
objects in session attributes and only fields in those objects are frequently
modified, the FIELD policy would be the best.
max-unreplicated-interval: Specifies the maximum interval between
requests (in seconds) after which the session's timestamp will be written.
Such replication ensures that other nodes in the cluster are aware of the most
recent value for the session's timestamp and will not incorrectly expire an
unreplicated session upon failover.

•

•

°

°

°

•

Chapter 11

[305]

If you need session metadata to be written whenever the session
is accessed, you can set this parameter to 0. A value of -1 means the
metadata will be replicated only if some attributes have been modified
during the request.
snapshot-mode: Defines the way sessions are replicated to the other nodes.
Possible values are:

instant (the default): The default value "instant" replicates
changes to the other nodes synchronously, that is, at the end
of requests. Using this option, the "snapshot-interval" property
is ignored.
interval: Using the "interval" mode, a background task takes
care of checking for modified sessions and then triggering
replication.

Snapshot-interval: If you are using the interval snapshot mode, this
parameter specifies how often (in milliseconds) the interval background
task kicks in.

HttpSession passivation/activation
Session passivation is the process of controlling memory usage by removing
relatively unused sessions from memory, while storing them in persistent storage.
Until now, the only component that could benefit from session passivation was
the Stateful Session Bean. Beginning with JBoss AS 5, an analogous mechanism is
available also for the HTTP Session.

In the same way as SFSB, a web session can be temporarily passivated and, when
requested by a client, it can be "activated" back into memory and removed from the
persistent store. Support for session passivation is available for a web application
whose web.xml includes the <distributable/> tag.

In order to be passivated, one of the following conditions must evaluate to true:

The session has been idle for a period of time (in seconds) greater than a
configurable maximum idle time (passivation-max-idle-time).
The number of active sessions exceeds the max-active-session parameter
and the session has been idle for a period (in seconds) greater than a
configurable minimum idle time (passivation-min-idle-time).

•

°

°

•

•

•

Clustering JBoss AS

[306]

The configuration is applied on the file jboss-web.xml at application level.

 <max-active-sessions>20</max-active-sessions>
 <passivation-config>
 <use-session-passivation>true</use-session-passivation>
 <passivation-min-idle-time>60</passivation-min-idle-time>
 <passivation-max-idle-time>600</passivation-max-idle-time>
 ����������������������</passivation-config>

Whatever event triggers the session passivation, single sessions are passivated on a
Least Recently Used (LRU) basis.

Configuring load balancing
A load balancer tracks the HTTP requests and, depending on the session to which
the request is linked, dispatches it to the appropriate node. In the following excerpt,
we will briefly illustrate how to set up the popular mod_jk balancer. A complete
description of mod_jk can be found at the Tomcat website: http://tomcat.apache.
org/connectors-doc/.

In the following section, we assume that a stable Apache Web Server 2.X has been
installed on your host. The next step in the checklist is downloading the latest stable
release of Tomcat mod_jk, available at http://www.apache.org/dist/tomcat/
tomcat-connectors/jk/binaries/.

At the time of writing, the latest release is 1.2.28 that mainly fixes a few bugs found
in the earlier 1.2.27. Once downloaded, the module mod_jk.so should be copied
in your Apache module directory (usually located in the APACHE_ROOT/modules
directory). Check your Apache documentation if you cannot locate it.

Windows users are encouraged to rename the binary file to mod_jk.dll if the
downloaded Windows module bears the .so extension. This way you will not
confuse this library with a compiled library for Unix.

The configuration of mod_jk can be included into the Apache httpd.conf file or held
in an external file, which is a good practice:

 # Load mod_jk module
 LoadModule jk_module modulesc/mod_jk.so # UNIX
 # LoadModule jk_module modules/mod_jk.dll # WINDOWS

 # Where to find workers.properties
 JkWorkersFile /etc/httpd/conf/workers.properties

 # Where to put jk shared memory
 JkShmFile /var/log/httpd/mod_jk.shm

Chapter 11

[307]

 # Where to put jk logs
 JkLogFile /var/log/httpd/mod_jk.log

 # Set the jk log level [debug/error/info]
 JkLogLevel info

 # Select the timestamp log format
 JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "

 # Send everything for context /jbossApplication to mod_jk
loadbalancer
 JkMount /jbossApplication/* loadbalancer

The module is loaded in memory by the LoadModule directive; the configuration of
the single nodes is contained in a separate file named workers.properties, which
will be examined in a moment.

The JkMount directive tells Apache which URLs it should forward to the mod_jk
module. Supposing we have deployed on JBoss AS a web application reachable at
the web context jbossApplication, with the above JKMount directive all requests with
URL path /jbossApplication/* are sent to the mod_jk load balancer. This way,
you actually split the requests either on Apache directly (static contents) or on the
load balancer for Java applications.

If you want your web application served directly by JBoss Web Server
you would need to point the browser to this location:
http://localhost:8080/jbossApplication

The same web context, proxied by Apache Web server can be reached at:
http://localhost/jbossApplication

Additionally, you can use the JkMountFile directive that allows dynamic updates
of mount points at runtime. When the mount file is changed, mod_jk will reload
its content.

Load mount points
JkMountFile conf/uriworkermap.properties

The format of the file is /url=worker_name. To get things started, paste the
following example into the file you created:

Mount the Servlet context to the ajp13 worker
/jmx-console=loadbalancer
/jmx-console/*=loadbalancer
/jbossApplication=loadbalancer
/jbossApplication/*=loadbalancer

Clustering JBoss AS

[308]

This will configure mod_jk to forward requests to /jmx-console and
/jbossApplication to JBoss web container.

Next, you need to configure the workers file conf/workers.properties. A
worker is a process that defines a communication link between Apache and
the Tomcat container.

This file specifies where the different nodes are located and how to balance the calls
between the hosts. The configuration file is made up of global directives (that are
generic for all nodes) and the individual worker's configuration. This is a sample
two-node configuration:

Define list of workers that will be used
worker.list=loadbalancer,status
Define Node1
worker.node1.port=8009
worker.node1.host=jbossNode1
worker.node1.type=ajp13
worker.node1.lbfactor=1
worker.node1.cachesize=10
Define Node2
worker.node2.port=8009
worker.node2.host= jBossNode2
worker.node2.type=ajp13
worker.node2.lbfactor=1
worker.node2.cachesize=10
Load-balancing behaviour
worker.loadbalancer.type=lb
worker.loadbalancer.balance_workers=node1,node2
worker.loadbalancer.sticky_session=1
Status worker for managing load balancer
worker.status.type=status

In this file, each node is defined using the worker.XXX naming convention where
XXX represents an arbitrary name you choose for each of the target servlet
containers. For each worker, you must specify the host name (or IP address)
and the port number of the AJP13 connector running in the servlet container.

balance_workers is a comma-separated list of workers that the load balancer
need to manage.

sticky_session specifies whether requests with SESSION IDs should be routed
back to the same Tomcat worker. If sticky_session is set to true or 1, sessions
are sticky, otherwise sticky_session is set to false. (The default is true.)

Chapter 11

[309]

Finally, we must configure the JBoss Web instances on all clustered nodes so
that they can expect requests forwarded from the mod_jk load balancer. Edit the
JBOSS_HOME/server/all/deploy/jboss-web.deployer/server.xml file by
locating the <Engine> element and adding an attribute jvmRoute:

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="node1">
... ...
</Engine>

The same attribute is required on node2:

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="node2">
... ...
</Engine>

You also need to be sure the AJP Connector definition is uncommented. By default,
it is enabled.

<!-- Define an AJP 1.3 Connector on port 8009 -->
<Connector port="8009" address="${jboss.bind.address}"
protocol="AJP/1.3"
emptySessionPath="true" enableLookups="false" redirectPort="8443" />

Since JBoss AS 5, there is no longer a need to configure a UseJK property
on the JBoss HTTP service configuration to enable failover handling
when AJP is used. By default, the session manager treats the presence
of a jvmRoute attribute on the Engine element of server.xml as an
indication that the specialized handling is needed.

Now test your installation by requesting the JMX Console using Apache port
(instead of JBoss AS's default 8080), for example:

http://jbossNode1/jmx-console

http://jbossNode2/jmx-console

JMS clustering
JBoss Messaging has built-in support for clustering so that you can smoothly
move your single-node applications to a clustered solution. The only crucial step
is assigning at server startup an unique peer that should remain consistent across
server restarts. A simple naming scheme is just fine (for example, 1, 2, 3 and so on).

run.sh -c node1 -g PartitionA -u 239.255.100.100 -b 192.168.10.1
-Djboss.messaging.ServerPeerID=1

Clustering JBoss AS

[310]

JBoss Messaging clusters JMS queues and topics transparently across the cluster.
Messages sent to a distributed queue or topic on one node are consumable on
other nodes. To designate that a particular destination is clustered, simply set the
Clustered attribute in the destination deployment descriptor to true:

<mbean code="org.jboss.jms.server.destination.QueueService"
 name="jboss.messaging.destination:service=Queue,name=clusteredQ
ueue"
 xmbean-dd="xmdesc/Queue-xmbean.xml">
 <depends optional-attribute-name="ServerPeer">
 jboss.messaging:service=ServerPeer
 </depends>
 <depends>jboss.messaging:service=PostOffice</depends>
 <attribute name="Clustered">true</attribute>
</mbean>

Summary
JBoss clustering is an advanced cluster solution for Java Enterprise Applications.
In spite of the vast number of features available, it is designed to run out of the
box with minimal (or no) additional configuration.

JBoss AS 5 introduced cutting-edge clustering features such as simplified cluster
isolation, improved Hibernate JPA/Hibernate caching, Web session passivation,
and a better-organized configuration repository of services.

In the next chapter, we will show how you can smoothly turn your single node
application to a clustered environment.

Developing a Clustered
Application

Don't worry. As long as you hit that wire with the connecting hook at
precisely 88 mph the instant the lightning strikes the tower... everything
will be fine. – Dr. Emmett Brown, Back to the Future

Clustering an application with JBoss AS is much easier than driving an old
DeLorean across time! Speaking in a general context, if your application has minimal
requirements, it might just be a matter of adding a few tags to your components
and/or some deployment descriptors. If you're an impatient reader and have
already jumped ahead here for the code, feel free to do it. However, we have a
recommendation for you—when your application is going to be rolled out, it is
essential that you have acquired a rock-solid background of JBoss clustering theory;
otherwise, with the default values provided, it's not guaranteed that your application
will benefit from clustering.

In this chapter, we will build some concrete examples of clustering based on the
abstract concepts disclosed in the earlier chapter. Specifically we will address the
following topics:

How to cluster session beans
How to apply caching strategies to entities beans
How to cluster a web application

•

•

•

Developing a Clustered Application

[312]

Clustering Stateless Session Beans
In Chapter 4, we introduced the Stateless Session Bean (SLSB), while talking about
Enterprise Java Beans. By now, you should be aware that they do not hold state
between client invocations, so the main benefit of clustering an SLSB is to balance
the load between an array of servers. Consequently, the clustering policies are pretty
simple. The following is a bare-bones clustered SLSB:

@Stateless
@Clustered
public class ClusteredBean implements ClusteredInt
{
 public void doSomething()
 {
 // Do something
 }
}

The @Clustered annotation needs to be added before the class declaration level.
That's all you need to make a clustered Stateless Session Bean.

If you don't want to stick to clustering defaults, you can configure some additional
elements. Here's the same ClusteredBean with customized clustering parameters:

@Stateless
@Clustered(loadBalancePolicy="FirstAvailable",partition="ClusterA")
public class ClusteredBean implements ClusteredInt
{
 public void doSomething()
 {
 // Do something
 }
}

Following is a detailed explanation about the annotation elements:

loadBalancePolicy: This element allows you to choose the load balance
policy to be applied to your bean. Possible alternatives are shown in the
following table:

Load balance policy Description
RoundRobin Default load balance policy. The smart

proxy cycles through a list of JBoss
Server instances in a fixed order.

RandomRobin Each request is redirected by the smart
proxy to a random node in the cluster.

•

Chapter 12

[313]

Load balance policy Description
FirstAvailable Implies a random selection of the node,

but subsequent calls will stick to that
node until the node fails. The next node
will again be selected randomly.

FirstAvailableIdenticalAllProxies Same as FirstAvailable, except that
the random node selection will then be
shared by all dynamic proxies.

partition: This element allows you to choose the cluster name where the
SLSB will be exposed. If not specified, the DefaultPartition will be used.

The @Clustered annotation can also be applied by means of a jboss.xml
deployment descriptor, located in the META-INF folder of your application. The only
variation is the configuration parameter names, which use the XML element style.
Therefore, loadBalancePolicy will be load-balance-policy and partition will
be partition-name.

<jboss>
 <enterprise-beans>
 <session>
 <ejb-name>ClusteredBean</ejb-name>
 <clustered>true</clustered>
 <cluster-config>
 <partition-name>MyPartition</partition-name>
 <load-balance-policy>org.jboss.ha.framework.interfaces.
 RandomRobin</load-balancepolicy>
 </cluster-config>
 </session>
 </enterprise-beans>
</jboss>

Clustering Stateful Session Beans
Stateful Session Beans (SFSBs) deserve a bit more attention than their SLSB
counterparts, as this component is able to retain client state between calls. In order
to build a concrete example, we will use our BlackJackBean example that we
introduced in Chapter 4.

Create a new EJB project named ClusteredSFSB and add a new Stateful Session
Bean in it named com.packtpub.clustering.example1.BlackJack. This will
include the BlackJack interface and the BlackJackBean implementation class in
your project.

•

Developing a Clustered Application

[314]

Don't rewrite it from scratch!
You can simply copy the sources from Chapter 4 into the source
folder of your new project. Then simply refactor the sources, by
moving them from the package com.packtpub.ejb.example2
to com.packtpub.clustering.example1.

Now, before the class declaration, add the @Clustered annotation as in the SLSB
counterpart, as follows:

@Stateful
@Clustered
public class BlackJackBean implements BlackJack {
 // code stays the same
}

The only difference between specifying the @Clustered annotation on an SFSB
rather than on an SLSB is that you can't use a load balancing policy other than
FirstAvailable with Stateful Session Beans. This value is set by default, so you
don't need to specify the load balancing policy.

You can further customize your SFSB caching behavior by adding the
@org.jboss.ejb3.annotation.CacheConfig annotation.

@Stateful
@Clustered
@CacheConfig(idleTimeoutSeconds=6000,removalTimeoutSeconds=18000)
public class BlackJackBean implements BlackJack {
 // code stays the same
}

The @CacheConfig parameter controls the replication and passivation policy of the
SFSB. You might wonder how these two operations are connected. Actually SFSB
replication involves serialization of the bean. Therefore, by default, replication of
the bean will trigger its passivation through @PrePassivate and @PostActivate
callback methods respectively. This default policy can be changed by setting the
element replicationIsPassivation to false.

The idleTimeoutSeconds element specifies that the SFSB will be passivated if it is
idle for over 6000 seconds. If you don't want to passivate your SFSB on the basis of
time, but rather on the basis of size of the cache, then you can alternatively set the
maxSize element. You can even use both of them, but you must be aware that the
idleTimeoutSeconds will prevail over the maxSize attribute.

The removalTimeoutSeconds specifies the maximum period of time a bean can be
unused before it is removed from the cache.

Chapter 12

[315]

As discussed in the earlier chapter, you can reference a custom cache configuration
by adding the name element to the @CacheConfig annotation.

@Stateful
@Clustered
@CacheConfig(name="new-sfsb-cache")

The configuration needs to be registered in the CacheManager bean in the file
deploy/cluster/jboss-cache-manager.sar/META-INF/jboss-cache-manager-
jboss-beans.xml.

As an example, we include a cache configuration, which exhibits a fairly small
synchReplTimeout (number of milliseconds to wait until all responses for a
synchronous call have been received) and lockAcquisitionTimeout (number
of milliseconds to wait for a synchronous lock acquisition).

<entry><key>new-sfsb-cache</key>
 <value>
 <bean name="StandardSFSBCacheConfig"
 class="org.jboss.cache.config.Configuration">
 <property name="clusterName">${jboss.partition.name:
 DefaultPartition}-SFSBCache</property>
 <property name="multiplexerStack">${jboss.default.jgroups.
 stack:udp}</property>
 <property name="fetchInMemoryState">true</property>
 <property name="nodeLockingScheme">PESSIMISTIC</property>
 <property name="isolationLevel">REPEATABLE_READ</property>
 <property name="useLockStriping">false</property>
 <property name="cacheMode">REPL_ASYNC</property>
 <property name="syncReplTimeout">7500</property>
 <property name="lockAcquisitionTimeout">10000</property>
 <property name="stateRetrievalTimeout">60000</property>
 </bean>
 </value>
</entry>

Deploying a clustered SFSB
Java EE application servers are usually equipped with a component named farming
service that is used to deploy and undeploy applications cluster-wide. JBoss
AS farming service is quite easy to manage, as all you have to do is copy your
deployments in the JBOSS_HOME\server\all\farm folder and the application
will immediately be distributed to the cluster and deployed on each node.

Developing a Clustered Application

[316]

In release 5.0.0 of the AS, the farming service is not available.
Therefore, you need to either copy the archived applications manually
in the deploy folder or have a script doing it for you. The reason
for this incompatibility lies in the new JBoss 5.0.0 AS profile service
implementation. In short, a profile represents a named collection of
deployments on a server and the 5.0.0 release of the AS allows just one
global profile managing deployments.
Since the release 5.1.0 CR1 of the AS, the farming service has been
restored with a few nice add-ons, such as the capability to deploy your
applications as exploded archives in the farm directory. (In the 4.X
release, only packaged archives could be copied in the farm directory.)

So, if you are running JBoss AS 5.1.0 release, you can safely copy your deployment
units in the JBOSS_HOME\server\all\farm folder and your application will be spread
to all cluster nodes. Alternatively, we will show how you can deploy your SFSB from
inside the Eclipse environment, using a very simple and intuitive approach.

First, you have to define your clustered environment as described in the previous
chapter. Start with a simple two-node configuration by replicating the all
configuration in the nodeA and nodeB directories.

Then add two new servers from the JBoss Server View (or alternatively from the
menu: New | Other | Server). For each server, configure the runtime environment.

Chapter 12

[317]

In the next window, select Edit on the standard configuration and, in the subsequent
applet, point to nodeA for the first server and nodeB for the second one.

Your new server configuration should look like this:

Now, start the cluster using the available IP addresses. In this sample, we are
binding the two nodes respectively on the IP addresses 192.168.10.1 and 192.168.10.2.
(Windows XP is used for this demonstration; change run to run.sh for
Unix machines.)

run -c nodeA –b 192.168.10.1 -Djboss.messaging.ServerPeerID=1

run -c nodeB –b 192.168.10.2 -Djboss.messaging.ServerPeerID=2

Developing a Clustered Application

[318]

You might as well start JBoss AS nodes from inside the Eclipse
environment. However, we do recommend starting the server nodes
with a separate shell. This can avoid crashing the servers if Eclipse
gets locked and will also keep the development environment lighter
and more responsive.

When the cluster is up and running, deploy your clustered application by first
choosing Add and Remove Projects on the individual servers. Then publish the
application by selecting Full Publish on the SFSB clustered application for each node.

Testing the clustered SFSB
Here, we will again recycle some code from Chapter 4. Add a new class named
com.packtpub.clustering.example1.BlackJackClient to your project. This is
identical to the equivalent BlackJackClient class of Chapter 4. However, it needs
to use a different JNDI lookup policy.

As this application is deployed on a cluster of servers, the JNDI lookup includes the
extended node list, rather than the single server address/port. Create a new folder
named client-config for your project and include the following jndi.properties
in it:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://192.168.10.1:1100,192.168.10.2:1100
java.naming.factory.url.pkgs=org.jnp.interfaces

Now, add the folder client-config to the classpath (refer to Chapter 4 if you don't
remember how to do it). Add a little debug information in the deal() method; this
will be helpful to know your game score and the server handling the game.

public int deal() {
 Random randomGenerator = new Random();
 int randomInt = (randomGenerator.nextInt(13)) + 1;
 if (randomInt > 10) randomInt = 10; // Q – J - K
 score+=randomInt;
 if (score > 21){
 score = 0;
 throw new BustedException("You Busted!");
 }
 System.out.println("Current score: "+score);
 return score;
}

Your client is ready to run.

Chapter 12

[319]

Launch the BlackJackClient and observe the output on both—the Eclipse client
console and the server console.

You will notice the message Player score: xx on the server, which we have added
for debugging purposes in the deal() method. This message indicates which server
has been hit by the smart proxy. The subsequent calls will stick to that server as a
result of the FirstAvailable load balancing policy. Now crash this server using
your preferred shutdown hook (Ctrl + C, shutdown script, or kill -9). At this point
continue your Black Jack game by requesting another deal.

If you have carefully followed our instructions, the remaining node will retain the
player score and continue the game. Session replication ensured that the Black Jack
deck could be continued.

Programmatic replication of the session
So far we have shown how the session can be replicated on a configuration basis.
It is also possible to override the cache strategy by implementing the
org.jboss.ejb3.cache.Optimized interface. The optimized interface contains a
method isModified() that can spell the final word about replication. If this method
returns true, then session replication can be carried on, otherwise it will not occur.

In practice, you can define a class-level Boolean variable, which will be checked in
the isModified() method:

@Stateful
@Clustered
public class BlackJackBean implements BlackJack {
 // all prior code
 boolean replicateSession;
 public boolean isModified() {
 if (replicateSession)
 return true;
 else
 return false;
 }
}

Developing a Clustered Application

[320]

As you can see in the last code snippet, by using the isModified() method, you can
programmatically decide whether your session data needs to be replicated or not.

Clustering entities
Entities do not provide remote services like session beans, so they are not concerned
with the load balancing logic or session replication. JBoss EJB 3.0 persistence layer
is based on the Hibernate framework and, as we have learned, this framework has
a complex cache mechanism, which is implemented both at Session level and at
SessionFactory level.

The latter mechanism is called second-level caching. The key characteristic of the
second-level cache is that it can be used across sessions. This differentiates it from
the session cache, which only (as the name says) has session scope.

Hibernate provides a flexible way to define cache providers, using the property
hibernate.cache.provider_class, when dealing with a clustered solution.
However, we need a provider that is able to keep the set of data synchronized
across the cluster. So which provider is fit for this purpose? Well, the answer is
JBoss Cache.

The configuration of the second-level cache is broken into two steps. First, you have
to declare the use of the second-level cache in the persistence.xml file of your
application. Then, at bean level, you have to declare that the bean will use the
cache for storing entities, queries, or timestamps.

Revisiting the AppStore example
Our AppStore described in Chapter 5 was able to load and persist some entities,
chiefly Customers and Items. Here, we will show how you can cache some of this
data using the second-level cache feature.

Create a new JPA project named ClusteredAppStore and copy the source files from
Chapter 5 into the project.

The first change we do is updating the persistence.xml file, located in the
META-INF folder of your ClusteredAppStore project.

<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/
persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://
java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
 <persistence-unit name="AppStore" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:/MySqlDS</jta-data-source>

Chapter 12

[321]

 <properties>
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.MySQLDialect"/>
 <property name="hibernate.cache.use_second_level_cache"
 value="true"/>
 <property name="hibernate.cache.use_query_cache" value="true"/>
 <property name="hibernate.cache.region.factory_class"
 value="org.hibernate.cache.jbc2.
 JndiMultiplexedJBossCacheRegionFactory"/>
 <property name="hibernate.cache.region.jbc2.cachefactory"
 value="java:CacheManager"/>
 <property name="hibernate.cache.region.jbc2.cfg.entity"
 value="mvcc-entity"/>
 <property name="hibernate.cache.region.jbc2.cfg.collection"
 value="mvcc-entity"/>
 </properties>
 </persistence-unit>
</persistence>

By setting the property hibernate.cache.use_second_level_cache to true we are
turning on the second-level cache mechanism. The cache, by default, is activated only
for entities, so we also need to explicitly set hibernate.cache.use_query_cache to
true if we want to cache queries as well.

The second-level cache can be implemented using several different schemas—open
source and commercial. In the next property, hibernate.cache.region.factory_
class, we are telling Hibernate to use JBoss Cache as the second-level
cache implementation.

The next parameter, hibernate.cache.region.jbc2.cachefactory, is specific
to the JBoss Cache implementation. It specifies the JNDI name under which the
CacheManager to be used is bound. There is no default value, thus the user must
specify the property.

The hibernate.cache.region.jbc2.cfg.collection property is also specific
to JBoss Cache and details the name of the configuration that should be used for
collection caches (in our configuration, mvcc-entity). Refer to the previous chapter
for additional information about MVCC policy.

Having uncovered the configuration details, it's now time to learn how to tell
Hibernate which entities or queries we are going to cache. Suppose we want to
test caching the customer objects.

import org.hibernate.annotations.Cache;

@Entity
@Table(schema=”appstore”, name=”CUSTOMER”)
@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL, region =
"customers") [1]

Developing a Clustered Application

[322]

@NamedQueries(
{
 @NamedQuery(
 name = "listCustomers",
 query = "FROM Customer c WHERE c.name = :name",
 hints = { @QueryHint(name = "org.hibernate.cacheable", value =
 "true") } [2]
)
})
public class Customer implements Serializable {
 // Entity code stays the same
}

As you can see, we have chosen to cache customer data [1] assigning a caching
region named customers. If you do not specify a cache region for an entity class,
all instances of this class will be cached in the /_default region.

Next, we decided to cache the parameterized query called listCustomers, by using
the property org.hibernate.cacheable inside the @QueryHint annotation [2].

Hibernate is now able to cache customer data and one query across different
sessions. Let's see what happens under the hood when we start querying
the Customer table.

Inside the second-level cache
We are confident that the above changes will produce remarkable performance
gains to our application. However, we need some kind of instruments to inspect
the content of the cache. Luckily, Hibernate ships with a complete statistics and
metrics API that allows you to figure out everything that is happening under the
covers. In order to retrieve statistics, you have to enable them at first. This can
be done by means of configuration, by adding the following property to your
persistence.xml file:

<property name="hibernate.generate_statistics">true</property>

Alternatively, the statistics can be enabled programmatically by setting the
setStatisticsEnabled() method of the class org.hibernate.stat.Statistics
to true.

SessionFactory factory;
Statistics stats = factory.getStatistics();
stats.setStatisticsEnabled(true);

Chapter 12

[323]

As you can see from the last code snippet, the statistics are retrieved from the
SessionFactory class. In our AppStore example, the persistence layer is handled
by the StoreManagerBean façade, so we will first make the factory available
through injection.

public class StoreManagerBean implements StoreManager {
 @PersistenceUnit(unitName="AppStore")
 SessionFactory factory;
}

We will then add some utility methods to display the second-level cache statistics. In
order to retrieve statistics, you have to request the cache region you are interested in.
The cache region name is made up of a set of elements, including the persistence unit
name and also the custom region name that we have chosen for our entities (if we
chose any). We will include the following utility method in our StoreManagerBean
that will actually display the list of region names on the console:

public void displayRegions() {
 Statistics stats = factory.getStatistics();
 stats.setStatisticsEnabled(true);
 String regions[] = stats.getSecondLevelCacheRegionNames();
 for (String s: regions) {
 System.out.println(s);
 }
}

The following is taken from the standard output displayed on the console:

The former region, ClusteredAppStore.customers, is where the data copied from
Customer entity (and not the entity itself) will be cached.

Developing a Clustered Application

[324]

The StandardQueryCache, which is not on by default, stores the result of the set of
queries issued to the database.

The UpdateTimestampsCache keeps track of database changes, by updating a
timestamp each time a table is modified.

In order to collect statistics, we will add a generic method to our StoreManagerBean
that will output some information on the console.

public void displayMemoryStats(String regionName) {
 Statistics stats = factory.getStatistics();
 SecondLevelCacheStatistics cacheStats =
 stats.getSecondLevelCacheStatistics(regionName);
 System.out.println("Objects cached:"
 +cacheStats.getElementCountInMemory());
}

The SecondLevelCacheStatistics object is the key to our statistics. It contains
plenty of useful methods for inspecting the cache. For our purpose, it's sufficient
to retrieve the count of elements cached in the memory. Consult the Hibernate
documentation for further information about all the methods available.

The ClusteredAppStore application can now be redeployed across the cluster. Follow
the same procedure as explained for the SFSB and check that the application server
has deployed all components correctly.

We will add a standalone client to the project, deferring the job of clustering the Web
tier to the last section of this chapter.

public class Client {
 static String CUSTOMER_REGION="persistence.unit:
 unitName=AppStoreEnterprise.ear/AppStore.jar#AppStore.customers";
 static String QUERY_REGION="persistence.unit:
 unitName=AppStoreEnterprise.ear/AppStore.
 jar#AppStore.org.hibernate.cache.StandardQueryCache";
 public static void main(String args[])throws Exception {
 Context ctx = new InitialContext();
 StoreManager store =
 (StoreManager)ctx.lookup("AppStoreEJB/remote");
 List <Customer> list = store.findAllCustomers();
 store.displayMemoryStats(CUSTOMER_REGION);
 store.displayMemoryStats(QUERY_REGION);
 List <Customer> list2 = store.findCustomerByName("Acme ltd");
 store.displayMemoryStats(CUSTOMER_REGION);
 store.displayMemoryStats(QUERY_REGION);
 }
}

Chapter 12

[325]

The following diagram depicts what happens in the cache when you run this client:

Custo Custom Custo Custo Customer

customers Cache

customers Cache

Custo Custom Custo Custom
Customer

XYZ

StandardQueryCache

StandardQueryCache

Customer

XYZ

findCustomerByName(”XYZ”)

findAllCustomers()

The first query, findAllCustomers, loads the list of customers into the customers
cache, as specified by the @Cache directive. The query cache is empty as we haven't
specified any directive to cache the result of this query.

The second query, findCustomerByName, returns a single customer (XYZ),
which is already loaded into the customer cache. As this query has been tagged
as cacheable with the @QueryHint directive, an entry will also be inserted into
the StandardQueryCache.

In between the two queries, we are issuing two calls for displayMemoryStats
(one for the customer region and the other for the query region) to get our statistics
on the console.

What's in the QueryCache?
What is actually inserted into the QueryCache is not the object data
but rather a map object. The key of the map contains the query string
itself (and bind parameters if any). The value consists of the primary key
identifiers for all the entities returned by the query. When a query hits
the query cache, the entities are retrieved through the first or second-level
caches using the primary key stored.

The above example is fairly trivial; however, it should give a clear perspective of
how Hibernate stores the individual entities in the different cache regions. This is
quite important to understand, especially if we plan to manage the eviction of objects
programmatically, as shown in the next section.

Developing a Clustered Application

[326]

Evicting entities from the cache
The cache of data stored by Hibernate doesn't reside in memory forever. The cache is
continuously updated if there are too many/less used entries around, as specified in
the jboss-cache-manager-jboss-beans.xml configuration file.

You can also evict data from the cache programmatically, if you want to fine tune
your application to suit your needs. Removing an entry from the cache is quite
simple; you only need to reference the entity by its primary key, as in the following
code snippet:

 public void evictCustomer(Integer key) {
 factory.evict(com.packtpub.jpa.example3.Customer.class,key);
 }

You can also evict the content of data contained in the QueryCache:

 public void evictQueries() {
 factory.evictQueries();
}

General guidelines for a good cache
Generally speaking, the use of cache should not be applied before an accurate
analysis of your objects. Therefore, first, you should examine the class diagram
of your objects and their dependencies before applying any cache strategy.

The basic rule of thumb is that any data that is frequently read but seldom updated
is an ideal candidate for caching.

The second rule is to turn on the second-level cache only for one entity at a time—for
instance, in the previous example, we have activated it only for the Customer object.
Then measure the performance; if it is satisfying, you are on the right road and
you can move on to other entities.

The third important advice is to use the QueryCache with caution because it might
have a bad impact on your application if used blindly. First of all the QueryCache
will increase the memory requirements, if your queries (stored as key in the
QueryCache's map) are made up of hundreds of characters.

Another important reason is that the result of the QueryCache is constantly
invalidated, each time there's a change in the underlying database. This will lead to
a very poor hit ratio of the QueryCache, if entities are constantly modified. Therefore,
it is advisable to, turn on the QueryCache only when you have a read application.

Chapter 12

[327]

If there are chances that your application data is read but never modified, you can
apply an extreme CacheConcurrencyStrategy that does not evict data from the
cache (unless performed programmatically).

@Entity
@Table(name="Customer")
@Cache(usage=CacheConcurrencyStrategy.READ_ONLY)

Clustering web applications
The configuration of a clustered web application is broken into two steps:

The load balancer configuration
The session replication configuration

Here, we suppose that you have correctly installed Apache Web Server and mod_jk
as described in the previous chapter. Therefore, we will just highlight what is needed
to adapt the configuration to our specific example, the AppStore.

First, specify the mount point that will be passed to mod_jk:

JkMount /ClusteredAppStoreWeb/* loadbalancer

Then, in the workers.properties, detail the list of nodes:

Define nodeA
worker.nodeA.port=8009
worker.nodeA.host=192.168.10.1
worker.nodeA.type=ajp13
worker.nodeA.lbfactor=1
Define nodeB
worker.nodeB.port=8009
worker.nodeB.host=192.168.10.2
worker.nodeB.type=ajp13
worker.nodeB.lbfactor=1
Load-balancing behaviour
worker.loadbalancer.type=lb
worker.loadbalancer.balance_workers=nodeA,nodeB
worker.loadbalancer.sticky_session=1
Status worker for managing load balancer
worker.status.type=status

•

•

Developing a Clustered Application

[328]

Then, you should set the jvmRoute property for the Engine attribute. In the
JBOSS_HOME/server/node[A-b]/deploy/jboss-web.deployer/server.xml
file, locate the Engine element and add the attribute jvmRoute:

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="nodeA">
</Engine>

And for nodeB add the equivalent:

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="nodeB">
</Engine>

The last step needs to be performed at application level, by adding the
<distributable/> tag to the web.xml file:

<web-app>
 <distributable />
</web-app>

At this stage, the AppStore application is ready to be deployed cluster-wide. Restart
Apache Web Server, and then from the JBoss Server View choose to redeploy the
application on both nodes. If you have completed all the above steps, the application
will be served correctly through Tomcat's mod_JK plugin: http://apache.host.
name/ClusteredAppStoreWeb.

Testing HTTP session replication
The AppStore web application doesn't store any information in the HttpSession at
the moment. We can enrich the StoreManagerJSFBean with a simple method that
dumps the SessionId of the current session.

public void dumpSession() {
 FacesContext ctx = FacesContext.getCurrentInstance();
 HttpSession session =
 (HttpSession)ctx.getExternalContext().getSession(true);
 String serverName = System.getProperty("jboss.server.name");
 FacesMessage fm =
 new FacesMessage("Running Session "+session.getId()+ " on
 server "+serverName);
 FacesContext.getCurrentInstance().addMessage("Message", fm);
 }

Chapter 12

[329]

The dumpSession() will be triggered in the home.jsp page, by means of
a commandButton.

<h:commandButton action="#{manager.dumpSession}" value="DumpSession"
 styleClass="buttons" />

Again redeploy your application on both nodes and request the homepage. Suppose
that the load balancer redirected the request to nodeA. Click on the DumpSession
button and take a look at the session ID. A message will inform you about the node
where the session is stuck. Now shut down this node (in our example nodeA) and
reload the page.

If the homepage displays correctly, then we just need a final check. Hit the
DumpSession button again. The session ID should stay the same, meaning
that the session has successfully migrated.

Developing a Clustered Application

[330]

Sticky sessions or not sticky sessions ?
By configuring the parameter sticky_sessions=1 in your workers.
properties, you have instructed the load balancer to continue serving
the request with the same host where the session started. However, it is
possible to turn off sticky sessions, by setting this property to 0. We really
don't advise this practice—why? Let's see an example. In the following
code snippet, executed by a web application, we write some text using the
response.getWriter() method:

PrintWriter out = response.getWriter();
out.print(header);
out.flush(); //flush the header

When the web application calls flush() (or close()) on the
PrintWriter stream, the response is considered committed. The JBoss
Web Server then sends all request headers to the browser before sending
the Writer/OutputStream content.
That's the real critical path. If you switch to another node before the
replication completes, this will lead to a request that is handled partially
by two nodes. That's a violation of the Servlet 2.4 specification, section
7.7.2.7, which states: Within an application marked as distributable, all requests
that are part of a session must be handled by one Java Virtual Machine (JVM) at
a time.
Additionally, if you chose to disable a sticky session when using a cache
replication mode ASYNC (default), you'll get an even higher chance of
retrieving stale data because of the asynchronous nature of the replication.

Summary
This chapter concludes our journey through the world of clustered applications.
Here, we have shown the robust clustering features of JBoss AS applied to some
basic examples, and ultimately to the Enterprise application introduced in Chapter 5.

The number of topics related to clustering might be expanded to cover a full book of
its own; however, we decided to stress some features. In particular, we have learned
about JBoss Cache—a key component of clustering in JBoss AS 5. This topic was
further expanded to analyze Hibernate/JBoss Cache integration for
second-level caching, which is one of the big improvements in the clustering area
of JBoss AS 5.

In the next chapter, we will add the last piece of the puzzle that's missing in our
Enterprise applications, JBossSX, the security framework.

JBoss AS Security
The prince who relies upon their words, without having otherwise provided for his
security, is ruined – Niccoló Machiavelli (The Prince).

Today, networks provide a potential avenue of attack to any computer hooked to
them and thus, security is a fundamental part of any Enterprise application. The Java
platform was designed from the ground up with a strong emphasis on security. Its
security APIs span a wide range of areas—interfaces for performing authentication
and access control that protect applications against unauthorized access to protected
resources, and cryptographic infrastructures that supply the underlying basis for
developing secure applications.

A necessary preamble of this chapter will be an introduction to the Java Security API
and how these interfaces are implemented in JBoss Security Extension (JBossSX).
Then, in the core section of the chapter, we will deliver:

A systematic guide for configuring JBoss security domains that can be used
for providing standard authentication and authorization
The cryptographic interfaces and tools available in the Java SE to secure the
communication between users and the application server

Approaching Java Security API
Java EE security services provide a robust and easily configured security mechanism
for authenticating users and authorizing access to application functions and
associated data.

Authentication is the process by which the user of an application (any type of Java
program, including EJB, servlets, and so forth) is verified.

•

•

JBoss AS Security

[332]

Authorization is about managing access to protected system resources based
on the rights of a user or class of users. Authorization, therefore, assumes that
authentication has occurred; otherwise it would be impossible to grant any
access control if you don't know who the user is.

In Java EE, the component containers are responsible for providing application
security. A container, basically, provides two types of security— declarative and
programmatic. Let's see them:

Declarative security: This expresses an application component's security
requirements by means of deployment descriptors, whose information is
contained in an external file, and can be changed without the need to modify
the source code.
For example, Enterprise JavaBeans components use an EJB deployment
descriptor that must be named ejb-jar.xml and placed in the META-INF
folder of the EJB JAR file.
Web components use a web application deployment descriptor named
web.xml located in the WEB-INF directory.
Web Services components use a jaxrpc-mapping-info.xml deployment
descriptor defined in JSR 109. This deployment descriptor provides
deployment time mapping functionality between Java and WSDL and
needs to be placed in the META-INF folder of your JAR file.

Since Java EE 1.5 you can apply declarative security by means of
annotations. Annotations are specified within a class file and, when the
application is deployed, this information is translated internally by the
Application Server.
By using annotations, you are exempted from writing boilerplate useless
code, as this can be generated by external tools from the source code. This
leads to a declarative programming style, where the programmer says
what should be done and tools emit the code to do it. It also eliminates the
need for maintaining side files that must be kept up-to-date with changes
in source files. Instead, the information is maintained in the source file.

Programmatic security: This is embedded in an application and is used to
make security decisions. It can be used when declarative security alone is
not sufficient to express the security model of an application. The Java EE
security API allows the developer to test whether the current user has
access to a specific role using these calls:

isUserInRole() for servlets, JSPs
isCallerInRole() for EJBs

•

•

°

°

Chapter 13

[333]

Additionally, there are other API calls that provide access to the
user's identity:

getUserPrincipal() for Servlets, JSPs
getCallerPrincipal() for EJBs

Using these APIs, you can develop arbitrarily complex authorization models.
Annotation security encompasses both the declarative and programmatic
security concepts.

The JAAS security model
The framework that provides an API for the authentication and authorization of
users is called Java Authentication and Authorization Service (JAAS).

JAAS uses a service provider approach for its authentication features, meaning
that it is possible to configure different login modules for an application
without changing any code. The application remains unaware of the underlying
authentication logic. It's even possible for an application to contain multiple login
modules, somewhat like a stack of authentication procedures.

The Login Module is the key element of JAAS authentication, which is based
on information provided through CallbackHandler. Custom login modules must
implement the methods defined by the javax.security.auth.spi.LoginModule
interface.

Clients interact with JAAS through a LoginContext object that provides a way to
develop applications independent of the underlying authentication technology. The
LoginContext class describes the methods used to authenticate subjects. A Subject
is an identity in a system that you want to authenticate and assign access rights to.

Set Subject
Set CallBackHandler

Shared state
Options

Initialize

Call CallBackHandler
Commit

Login

Add Principals
Clean internal state

Commit

Login Module

LoginContext(Subject)

Kerberos
Login Module

Database
Login Module

LDAP
Login Module

JAAS
Configuration

CallBackHandler

handle()

°

°

•

JBoss AS Security

[334]

In the following example, a LoginContext is created by using the login module
name as the first argument of the constructor and the callback handler as the
second argument for passing login information to the Login Module.

Each CallbackHandler implements a handle method that transfers the required
information to the Login Module. The login method in the LoginContext is used
to start the login process. Following is a sample servlet that challenges the JAAS
authentication process:

public class LoginServlet extends HttpServlet {
 public void doGet (HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
 {
 PrintWriter out = res.getWriter();
 LoginContext ctx = null;
 try {
 ctx = new LoginContext("SampleLogin", new MyCallbackHandler());
 } catch(LoginException le) {
 throw new RuntimeException("Login failed!");
 }
 try {
 ctx.login();
 } catch(LoginException le) {
 throw new RuntimeException("Authentication failed!");
 }
 out.println("Authentication succeeded.");

 }

After its successful completion, LoginModules add instances of java.security.
Principal to the Subject, and the application can retrieve the Subject from the
LoginContext using the getSubject() method.

Introducing JBossSX
JBossSX uses JAAS as the underlying security infrastructure. The central point of
JBossSX is the SecurityDomain that acts a bit like a customs office for foreigners.
Before the request crosses JBoss AS borders, the SecurityDomain performs all the
required authorization and authentication checks and eventually notifies the
caller if he/she can proceed.

Chapter 13

[335]

Security domains are generally configured at server startup and subsequently bound
into the JNDI tree under the key java:/jaas/. The security service configuration is
declared in the server/xxx/deploy/security/security-jboss-beans.xml file.
This is the most relevant portion of it:

<bean name="XMLLoginConfig" class="org.jboss.security.auth.login.
XMLLoginConfig">
 <property name="configResource">login-config.xml</property>
</bean>

<bean name="SecurityConfig" class="org.jboss.security.plugins.
SecurityConfig">
 <property name="mbeanServer"><inject bean="JMXKernel" property="
mbeanServer"/></property>
 <property name="defaultLoginConfig"><inject
bean="XMLLoginConfig"/></property>
</bean>

The org.jboss.security.plugins.SecurityConfig bean handles the
security service configuration, delegating the job of loading security policies to
XMLLoginConfig. The property configResource of the XMLLoginConfig service
contains a pointer to the configuration file for security policies, which is by default in
server/xxx/conf/login-config.xml.

Instead of listing the whole login configuration file, we will summarize the default
available login policies in the following table:

Application policy Description
client-login Used by clients within the application server VM such as MBeans

and servlets that access EJBs
HsqlDbRealm Security domains for testing the new JCA framework using the

DefaultDS Factory name
JmsXARealm Security domains for testing the new JCA framework using the

JmsXA Factory name
jmx-console Security domain for the JMX console
web-console Security domain for the web console application
JBossWS Security domain for the JBossWS framework
JMSRealm Security domain for JMS
other Login configuration used by any security domain that does not

have an application-policy entry with a matching name

JBoss AS Security

[336]

Securing the JMX console
The jmx-console security policy is a good starting point to learn about login
modules. Seek for "jmx-console" in the login-config.xml:

 <application-policy name = "jmx-console">
 <authentication>
 <login-module code="org.jboss.security.auth.spi.
UsersRolesLoginModule"
 flag = "required">
 <module-option name="usersProperties">props/jmx-console-
users.properties</module-option>
 <module-option name="rolesProperties">props/jmx-console-
roles.properties</module-option>
 </login-module>
 </authentication>
 </application-policy>

As you can see, each security policy is made up of three main elements:

name: This is the unique policy name for the security domain and it is directly
referenced by applications that want to use the security domain.
code: This is the login module class that will be used by the domain. Most
security domains default to the UsersRolesLoginModule that verifies
authentication against a simple property file.
module-options: Depending on the login module selected in the code
attribute, a list of options will be available to configure the security domain.

In order to switch on this security domain in the JMX console application you
have to activate security constraints both on the standard web.xml file and on
the JBoss-specific deployment descriptor (jboss-web.xml).

•

•

•

Chapter 13

[337]

In server\xxx\deploy\jmx-console.war\WEB-INF\web.xml, uncomment the
security-constraint block that restricts access to users with the role JBossAdmin:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>HtmlAdaptor</web-resource-name>
 <description>An example security config that only allows users
with the
 role JBossAdmin to access the HTML JMX console web
application
 </description>
 <url-pattern>/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>JBossAdmin</role-name>
 </auth-constraint>
 </security-constraint>

Then, in the same folder, modify the jboss-web.xml file by uncommenting the
security-domain block.

 <jboss-web>
 <security-domain>java:/jaas/jmx-console</security-domain>
</jboss-web>

The security domain value maps the application-policy name in the login-config.
xml JAAS configuration file that defines how authentication and authorization
are done.

As this security domain uses the UsersRolesLoginModule, you have to provide
the users and roles allowed in two separate configuration files. As specified in the
login module options, they are located in server/default/conf/props/jmx-
console-users.properties and server/default/conf/props/jmx-console-
roles.properties.

JBoss AS Security

[338]

For example, if you want to set the combination of username/password to john/
smith, granting him the JBossAdmin role, here's the corresponding configuration:

users.properties file for use with the UsersRolesLoginModule
john=smith

A sample roles.properties file for use with the
UsersRolesLoginModule
john=JBossAdmin

With this configuration, your JMX console will prompt for username and password,
which will be checked against the users and roles files.

The UserRolesLoginModule can be used for applications that don't have strict
security requirements; in real-world scenarios you would rather use a more
robust login module class. The following list, taken from JBoss AS documentation
(http://www.jboss.org/community/wiki/LoginModule), contains all the available
login modules, which can be assigned to your login policies:

Login module Description
UsersRolesLoginModule Loads user/role information from properties files.
DatabaseServerLoginModule Loads user/role information from a database.
SimpleServerLoginModule A testing login module that allows any role with a

null password to authenticate.
IdentityLoginModule A testing login module that causes all users to

authenticate with the same credentials.
LdapLoginModule Loads user/role information from an LDAP server.
LdapExtLoginModule Loads user/role information from a hierarchical

structure in an LDAP server.
BaseCertLoginModule Authenticates client certificates; must be stacked with

another login module that does authorization.
CertRolesLoginModule An extension of BaseCertLoginModule that

authenticates against client certificates and authorizes
against properties files.

DatabaseCertLoginModule An extension of BaseCertLoginModule that
authenticates against client certificates and authorizes
against a database.

RunAsLoginModule Can be stacked with other login modules to define
the <run-as>; status that they use while they are
authenticating. Useful if you need to call a secured
EJB that is responsible for authenticating users.

Chapter 13

[339]

Login module Description
SRPCacheLoginModule Used to authenticate users using the Secure Remote

Password (SRP) protocol.
SRPLoginModule Used by standalone clients that want to authenticate

using the SRP protocol.
ClientLoginModule Used by standalone clients that want to login to a

secure server (use with another LoginModule to
perform client-side authentication).

An exhaustive explanation of all the individual login modules is beyond the scope of
this book; however, in the next chapter we will show in detail how you can apply
a DatabaseServerLoginModule to secure access to our AppStore application.

Dynamic login configuration
The JAAS login configuration introduced in the earlier section is static and needs
a server restart each time you modify login-config.xml. You can pack a login
module along with your application so that you will not need to modify any JBoss
AS configuration file.

The traditional way to perform a dynamic login configuration is by means of the
org.jboss.security.auth.login.DynamicLoginConfig MBean that loads the
XML configuration at service startup and unloads it when the service is stopped.
(See http://www.jboss.org/community/wiki/DynamicLoginConfig for a detailed
explanation about this component.)

Since JBoss AS 5, a simpler solution is available that can be accessed using
a Microcontainer configuration file. As an example, add the following
jmxconsole-jboss-beans.xml to the \jmx-console.war\WEB-INF folder.

This file defines an alternative security policy (named "jmx-dynamic") for the
JMX console:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

 <application-policy xmlns="urn:jboss:security-beans:1.0" name="jmx-
dynamic">
 <authentication>
 <login-module code = "org.jboss.security.auth.spi.
UsersRolesLoginModule"
flag = "required">

JBoss AS Security

[340]

 <module-option name = "unauthenticatedIdentity">anonymous</
module-option>
 <module-option name="usersProperties">u.properties</module-
option>
 <module-option name="rolesProperties">g.properties</module-
option>
 </login-module>
 </authentication>
</application-policy>

</deployment>

Now place the u.properties and g.properties configuration files at the
same level as that of the configuration file (or anywhere reachable by the web
application classpath).

You don't need a server restart; just update your jboss-web.xml configuration file
so that it points to the new dynamic security domain:

<jboss-web>
 <security-domain>java:/jaas/jmx-dynamic</security-domain>
</jboss-web>

The previously mentioned jmxconsole-jboss-beans.xml can be
added into the deploy folder of JBoss, thus making it available to all
applications requesting that security domain.

Finally, using dynamic login configuration you can add users and roles to
your security domain at any time and they will be picked up immediately from
the application server without server restart.

Chapter 13

[341]

Stacked login configuration
If your authentication repository is not centralized into a single database, the
previous configuration procedure might not be sufficient. For example, suppose that
your username and password are stored in an LDAP server and the corresponding
application roles are maintained into a relational database; how
do you link the two things?

In this scenario, you have to configure which module allows authentication and
which one needs to provide the supplemental roles.

Here's an example of a login module that uses LDAP as authentication repository
and a database as role repository:

 <application-policy name="stackedLogin">
 <authentication>
 <login-module code="org.jboss.security.auth.spi.
 LdapLoginModule"
 flag="required">
 <module-option name="password-stacking">
 useFirstPass</module-option>
 <module-option name="java.naming.factory.initial">
 com.sun.jndi.ldap.LdapCtxFactory </module-option>
 <module-option name="java.naming.provider.url">
 ldap://localhost/
 </module-option>
 <module-option name="java.naming.security.
 authentication">
 simple
 </module-option>
 <module-option name="principalDNPrefix">
 uid=
 </module-option>
 <module-option name="principalDNSuffix">
 ,ou=People,o=jbossAsBook
 </module-option>
 </login-module>
 <login-module code="org.jboss.security.auth.spi.
 DatabaseServerLoginModule"
 flag="required">
 <module-option name="password-stacking">useFirstPass
 </module-option>
 <module-option name="dsJndiName">java:/MySQLDS
 </module-option>
 <module-option name="rolesQuery">

JBoss AS Security

[342]

 select role, 'Roles' from USER_ROL���������������� ES where login=?
 </module-option>
 </login-module>
 </authentication>
 </application-policy>

The magic trick here is done by the password-stacking option that is set to
useFirstPass. In practice, it will first require authentication on the LDAP
server and defer role querying to the next login module.

A possible alternative scenario can be depicted if both repositories can issue a
complete authentication and role management. Imagine, for example, an application
that can be executed both in the development environment and in the production
environment, using a different relational database for storing credentials.

In this case, it is enough that just one of the two repositories completes the
authentication process. What are the changes in our login module? You just have
to skip the password-stacking option and mark each login module with the
sufficient flag:

<!—Development environment
<login-module code=" org.jboss.security.auth.spi.
DatabaseServerLoginModule"
 flag��="sufficient">
<!—Production environment
<login-module code="org.jboss.security.auth.spi.
DatabaseServerLoginModule"
 flag="sufficient">

Logging and auditing
The routine analysis and review of security logs benefits organizations by identifying
fraudulent activity, operational problems, policy violations, and security incidents,
as well as providing the necessary information to help resolve these problems. Logs
can also be useful for establishing baseline activity, exposing long-term problems,
performing auditing, and tracking operation trends.

By default, JBoss Application Server's log4j file (located in server/xxx/conf/
jboss-log4j.xml) dumps some basic information about the JaasSecurityManager
in the server.log file:

<category name="org.jboss.security.plugins.JaasSecurityManager.
jbossmq">
 <priority value="TRACE" class="org.jboss.logging.XLevel"></
priority>
</category>

Chapter 13

[343]

You can further enrich the server.log by switching on Tomcat security logs:

<category name="org.jboss.web.tomcat.security">
 <priority value="TRACE" class="org.jboss.logging.XLevel"/>
</category>

<category name="org.apache.catalina">
 <priority value="DEBUG"/>
</category>

Auditing is a little different from the above logging categories because it covers a
larger set of data; besides tracing successful/failed invocation of secured methods,
it includes a great deal of information related to the context of your application. For
example, if you are in the context of a web application, you might request a dump of
objects such as cookies, headers, requests, and parameters.

In order to activate auditing, you first have at to uncomment the log4j
Audit appender:

 <appender name="AUDIT" class="org.jboss.logging.appender.
DailyRollingFileAppender">
. . . .
 </appender>

and then its corresponding Category:

 <category name="org.jboss.security.audit.providers.
LogAuditProvider" additivity="false">
 <priority value="TRACE"/>
 <appender-ref ref="AUDIT"/>
 </category>

The previous configuration will enable auditing for all EJB invocations. If you need
to inspect the web tier, a few additional steps are required. First, add the attribute
enableAudit=true in the JBossWebRealm, defined in the deploy/jbossweb.sar/
server.xml file:

<Realm className="org.jboss.web.tomcat.security.JBossWebRealm"
certificatePrincipal="org.jboss.security.auth.certs.SubjectDNMapping"
allRolesMode="authOnly" enableAudit="true" />

Then, add in your JBoss startup script an argument that includes the objects we want
to dump in the audit log file:

set JAVA_OPTS=%JAVA_OPTS% -Dorg.jboss.security.web.
audit=headers,cookies

JBoss AS Security

[344]

Accepted parameters are:

Parameter Description
off Turn it off
headers Audit the headers
cookies Audit the cookie
parameters Audit the parameters
attributes Audit the attributes

Securing the transport layer
If you were to create a mission-critical application with just the bare concepts
we have learned until now, you would not be guaranteed to be shielded from all
security threats. For example, if you need to design a payment gateway, where the
credit card information is transmitted by means of an EJB or Servlet, using just the
Authorization and Authentication stack is really not enough.

In order to prevent disclosure of critical information to unauthorized individuals
or systems, you have to use a protocol that provides encryption of the information.
Encryption is the conversion of data into a form that cannot be understood by
unauthorized people. Conversely, decryption is the process of converting encrypted
data back into its original form, so it can be understood.

The protocols that are used to secure the communication are SSL and TLS, the latter
being considered a replacement for the older SSL.

The differences between the two protocols are minor and very
technical. In short, TLS uses stronger encryption algorithms and has the
ability to work on different ports. For the rest of our chapter we will
refer to SSL for both protocols.

There are two basic techniques for encrypting information: symmetric encryption
(also called secret key encryption) and asymmetric encryption (also called public
key encryption.)

Symmetric encryption is the oldest and best-known technique. It is based on a secret
key that is applied to the text of a message to change the content in a particular way.
As long as both sender and recipient know the secret key, they can encrypt and
decrypt all messages that use this key. These encryption algorithms typically work
fast and are well suited for encrypting blocks of messages at once.

Chapter 13

[345]

One significant issue with symmetric algorithms is the requirement of a safe
administrative organization to distribute keys to users. This generally results in
more overhead from the administrative aspect while the keys remain vulnerable
to unauthorized disclosure and potential abuse.

For this reason, a mission-critical enterprise system usually relies on the asymmetric
encryption algorithms, which tend to be easier to employ, manage, and ultimately
more secure.

Asymmetric cryptography, also known as public key cryptography, is based on the
concept that the key used to encrypt is not the same used to decrypt the message.
In practice, each user holds a couple of keys— the public key that is distributed to
other parties and the private key that is kept secret. Each message is encrypted with
the Recipient's Public Key and can only be decrypted by the recipient with his/her
private key (Recipient's Private Key).

Plaintext

Sender

Ciphertext Plaintext

Recipient

Recipient’s

Public

Key

Recipient’s

Private

Key

Different keys are used to

encrypt and decrypt message

Encrypt Decrypt

Using asymmetric encryption you can be sure that your message cannot be disclosed
by a third party, however you still have one vulnerability.

Suppose you want to exchange some valuable information with a business partner
and so you are requesting his public key by telephone or by e-mail. A fraudulent
user intercepts your e-mail or simply listens to your conversation and quickly sends
you a fake mail with his public key. Now, even if your data transmission is secured,
it will be directed to the wrong person!

JBoss AS Security

[346]

In order to solve this issue we need a document that verifies whether the public key
belongs to an individual. This document is called a Digital Certificate or public key
certificate. A digital certificate consists of a formatted block of data that contains the
name of the certificate holder (which may be either a user or a system name) and the
holder's public key, as well as the digital signature of a Certification Authority (CA)
for authentication. The Certification authority attests that the sender's name is the
one associated with the public key in the document.

UserItem 1
Item 2

Extension 1
Extension 2

1 f P o j 2 3 a n f a

...

...
Certificate
attributes

Public key of
certificate holder

Encrypted hash of
certificate

Certification
authority

Digital
Certificate

Public key certificates are commonly used for secure interaction with websites.
By default, the web browser ships with a set of predefined CAs; they are used to
verify that the public certificate served to your browser when you enter a secure site
has been actually issued by the owner of the website. In short, if you connect your
browser to https://www.abc.com and your browser doesn't give any certificate
warning, then you can be sure to interact with the entity in charge of the site
(unless the site or your browser has been hacked, but this is another story).

Simple authentication and client authentication
In the previous example, we have depicted a simple authentication (also
called server authentication). In this scenario, the only party that needs to
prove its identity is the server.

SSL, however, is able to perform a mutual authentication (also called
client or two way authentication) where the server requests a client
certificate during the SSL handshake over the network.

Client authentication requires a client certificate in X.509 format from a
CA. The X.509 format is an industry-standard format for SSL certificates.
In the next section we will explore which are the available tools to generate
digital certificates and how to have your certificates signed by a CA.

Chapter 13

[347]

Enabling the Secure Socket Layer on JBoss AS
JBoss AS uses the Java Secure Socket Extension (JSSE) which is bundled in the J2SE
to leverage the SSL/TLS communication.

An Enterprise application can be secured at two different locations—at HTTP
level and RMI level. HTTP communication is handled, as we have learned, by the
embedded Tomcat web container so the configuration changes are restricted to
the Tomcat's server.xml file.

Securing the RMI transport is, on the other hand, not always a compelling
requirement of your applications: Actually, in most production environments,
JBoss AS is placed behind a Firewall. As you can see in the following screenshot;
this implies that your EJBs are not directly exposed to untrusted networks, which
usually connect through the Web Server placed in a demilitarized zone.

remote
client Firewall

JBOSS AS

EJB ContainerWeb Server
Engine

However, if your application grants access to Java SE clients or to any application
that directly connects to JBoss AS through RMI, then you need to enable your RMI
socket factories to support SSL.

In order to get started with JBoss AS and SSL we need, first of all, a tool that
generates a public key/private key pair in the form of an X.509 certificate for
use by the SSL server sockets.

Certificate management tools
One tool that can be used to set up a digital certificate is keytool, a key and certificate
management utility that ships with the Java SE. It enables users to administer their
own public/private key pairs and associated certificates for use in self-authentication
(where the user authenticates himself or herself to other users or services) or data
integrity and authentication services, using digital signatures. It also allows users
to cache the public keys (in the form of certificates) of their communicating peers.

JBoss AS Security

[348]

The keytool stores the keys and certificates in a file termed a keystore, a repository
of certificates used for identifying a client or a server. Typically, a keystore contains
one client or one server's identity, which is protected by using a password. Let's see
an example of keystore generation:

keytool -genkey -keystore jboss.keystore -storepass mypassword
-keypass mypassword -keyalg RSA -validity 180 -alias jbossbook
-dname "cn=Francesco Marchioni,o=PacktPub,c=GB"

This command creates the keystore named jboss.keystore in the working
directory, and assigns it the password mypassword. It generates a public/private key
pair for the entity whose "distinguished name" has a common name of Francesco
Marchioni, organization of "PacktPub" and two-letter country code of GB.

The aftermath of this action will be a self-signed certificate (using the RSA signature
algorithm) that includes the public key and the distinguished name information.
This certificate will be valid for 180 days, and is associated with the private key
in a keystore entry referred to by the alias jbossbook.

A self-signed certificate is a certificate that has not been not verified
by a CA and thus leaves you vulnerable to the classic man-in-the-
middle attack. A self-signed certificate is only suitable for in-house use
or for testing while you wait for your real one to arrive

Securing the HTTP communication with a self-signed
certificate
Now let's see how you can use this keystore file to secure your JBoss web channel.
Open the server.xml file located in server\xxxx\deploy\jbossweb.sar.

Uncomment the following section and update the keystoreFile and keyStorePass
information with data from your certificate.

 <Connector protocol="HTTP/1.1" SSLEnabled="true"
 port="8443" address="${jboss.bind.address}"
 secure="true" clientAuth="false"
 keystoreFile="${jboss.server.home.dir}/conf/jboss.
keystore"
 keystorePass="mypassword" keyAlias="jbossbook"
 sslProtocol="TLS" />

You have to restart JBoss AS to activate changes. You should see at the bottom of
your console the following log that informs you about the new HTTPS channel
running on port 8443:

13:21:49,915 INFO [Http11Protocol] Starting Coyote HTTP/1.1 on http-127.0.0.1-
8443

Chapter 13

[349]

The following screen is what will be displayed by the Internet Explorer browser if
you try to access any web application on the secured channel:

https://localhost:8443/jmx-console

Now that you have established a secure connection with the Web Server, the server
certificate has been sent to the browser. As the certificate has not been signed by any
recognized CA, the browser security sandbox warns the user about the potential
security threat.

This is an in-house test so we can safely proceed to JBoss AS JMX console by
choosing Continue to this website. That's all you need to do in order to activate
the Secure Socket Layer with a self-signed certificate.

Securing the HTTP communication with a certificate signed
by a CA
Having your certificate signed requires issuing a Certificate Signing Request (CSR)
to a CA that will return a signed certificate to be installed on your server. This implies
a cost for your organization, which depends on how many certificates you are
requesting, the encryption strength and other factors (at the time of writing the cost
ranges from a minimum of around $200 to a maximum of $1300 per certificate).

JBoss AS Security

[350]

So, first generate a CSR using the newly create keystore and keyentry:

keytool -certreq -keystore jboss.keystore -alias jbossbook -storepass
mypassword -keypass mypassword -keyalg RSA -file certreq.csr

This will create a new certificate request named certreq.csr, bearing the format:

-----BEGIN NEW CERTIFICATE REQUEST-----
.
-----END NEW CERTIFICATE REQUEST-----

The preceding certificate needs to be transmitted to the CA. For example supposing
you have chosen Verisign as CA:

At the end of the enrollment phase, the CA will return a signed certificate that
needs to be imported into your keychain. Supposing that you have saved your CA
certificate in a file named signed_ca.txt:

keytool -import -keystore jboss.keystore -alias testkey1 -storepass
mypassword -keypass mypassword -file signed_ca.txt

Chapter 13

[351]

Now your web browser will recognize your new certificate as being signed by a CA,
so it won't complain that it cannot validate the certificate.

The command interface for keytool changed in Java SE 6.
Some commands have simply been renamed, and other commands
deemed obsolete are no longer listed in Java SE documentation. The
obsolete commands are, however, still supported in this release and will
continue to be supported in future releases. The following summarizes all
of the changes made to the keytool command interface:
Renamed commands:
-export, renamed to -exportcert
-genkey, renamed to -genkeypair
-import, renamed to -importcert

Securing the RMI transport
Remote Method Invocation (RMI) is the basis for EJB transport. With JSSE working
and a keystore with the certificate you will use for the JBoss application server, you
are ready to configure JBoss AS to use SSL for EJB access.

The first step to secure the RMI transport is creating an SSL-aware security
domain. For this purpose, we need to use org.jboss.security.plugins.
JaasSecurityDomain, an extension of the JaasSecurityManager, which
adds the notion of a keystore, along with JSSE KeyManagerFactory and
TrustManagerFactory for supporting SSL and other cryptographic use cases.

The following MBean definition creates a domain named SSLDomain that points to
the keystore we created earlier. (The keystore file is searched for through the server
classpath, with the conf folder being the first directory scanned.)

<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
 name="jboss.security:service=JaasSecurityDomain,domain=SSLDo
main">
 <constructor>
 <arg type="java.lang.String" value="SSLDomain"/>
 </constructor>
 <attribute name="KeyStoreURL">jboss.keystore</attribute>
 <attribute name="KeyStorePass">mypassword</attribute>
 </mbean>

The preceding file needs to be placed in the deploy folder of your server, using the
xxx-service.xml filename pattern.

JBoss AS Security

[352]

The next step will be performed on the protocol transport, which is handled by the
JBoss Remoting framework. JBoss Remoting is a standalone project that enables you
to very easily design, implement, and deploy services that can be remotely invoked
by clients using several different transport mechanisms transparently. In practice,
every different protocol is wrapped by an interface named Invoker that is used
by the Remoting framework to build the full stack required to send and receive
remote invocations.

By default EJB uses a standard socket-based invoker as defined in
ejb3-connectors-jboss-beans.xml.

<bean name="org.jboss.ejb3.RemotingConnector"
 class="org.jboss.remoting.transport.Connector">
. . . .
 <parameter>socket://${jboss.bind.address}:${port}</
parameter>

 </bean>

All you need to do is add another transport invoker that will be used for secured
EJB communication:

<mbean code="org.jboss.remoting.transport.Connector"
 name="jboss.remoting:type=Connector,transport=sslsocket3843,
handler=ejb3">
 <attribute name="InvokerLocator">sslsocket://${jboss.bind.
address}:3843</attribute>
 <attribute name="Configuration">
 <config>
 <handlers>
 <handler subsystem="AOP">org.jboss.aspects.remoting.
AOPRemotingInvocationHandler</handler>
 </handlers>
 </config>
 </attribute>
</mbean>

The preceding MBean definition adds a new Remoting connector using
the sslsocket protocol. You can merge this MBean definition with the
JaasSecurityDomain MBean into a single deploy/ssl-service.xml.

The server configuration is almost completed. We need to set up just a couple of
server properties that contain a reference to the server keystore and password.
Open the startup script and add the following properties to your "JAVA_OPTS":

-Djavax.net.ssl.keyStore=../server/default/conf/jboss.keystore -
Djavax.net.ssl.keyStorePassword=mypassword

Chapter 13

[353]

Adding a client truststore
Now the server is configured to communicate through a secure channel. However,
as it is, the SSL handshake will not complete successfully. This is because of the fact
that as soon the server replies using its certificate (containing the server's public key),
the client will fail to authenticate as the certificate wasn't verified against a list of
known CAs.

You have two available options to solve this issue:

Import the server certificate into the client's JDK bundle of certificates.
Create a new repository of certificates trusted by the client (truststore).

Whatever your choice is, you first have to export your server keystore into a
truststore that will be used by the client. This can be achieved using the export
option of the keytool command:

keytool -export -alias jbossbook -file rmissl.cer -keystore jboss.
keystore -storepass mypassword

What is the difference between a keystore and a truststore?

JSSE differentiates between regular keystores and truststores. A
keystore consists of a database containing a private key and an
associated certificate, or an associated certificate chain. The certificate
chain consists of the client certificate and one or more Certification
Authority (CA) certificates.

A truststore contains only the certificates trusted by the client (a "trust"
store). These certificates are CA root certificates, that is, self-signed
certificates.

Adjust the path of the JDK with the one used by your Java environment. (Notice, the
default password of JDK keystore is "changeit".)

keytool -import -alias myserver -file rmissl.cer –keystore C:/jdk1.6.0_
10/jre/lib/security/cacerts

Otherwise, if you want to import the certificate into a newly created truststore, just
substitute the cacerts destination with your client truststore (that will be created):

keytool -import -alias jbossbook -file rmissl.cer -keystore jboss.
truststore -storepass mypassword

Owner: CN=Francesco Marchioni, O=PackPub, C=UK

Issuer: CN=Francesco Marchioni, O=PackPub, C=UK

 Serial number: 4a93f927

•

•

JBoss AS Security

[354]

 Valid from: Tue Aug 25 16:18:29 CEST 2009 until: Sun Feb 21 15:18:29
CET 2010

 Certificate fingerprints:

 MD5: 10:80:BF:7D:2B:18:85:60:B5:31:01:59:AC:A9:CA:72

 SHA1: B0:A3:19:12:57:D7:4D:DF:A2:AF:56:2F:78:ED:FB:F0:B6:6E:6B:AC

 Trust this certificate? [no]: yes

 Certificate was added to keystore

A last note—if you choose the latter option, you need to add to your client's JDK
arguments the following properties, which will override the default JDK truststore:

java -Djavax.net.ssl.trustStore=<truststorefile>

 -Djavax.net.ssl.trustStorePassword=<password>

Summary
This chapter has introduced you to the Java Security framework and its JBossSX
implementation. Security is a broad topic and it demands more than a single chapter
for a detailed description. This chapter answered the most common questions related
to the server configuration by explaining how to create login modules, self-signed
and CA certificates as well as other core security topics.

In the next chapter, we will again look at security, but from the perspective of the
developer; specifically, we will be learning how to secure the HTTP and EJB layer
of our AppStore application and, as well, a Web Service application.

Securing JBoss AS
Applications

The problem with designing something completely foolproof is to underestimate the
ingenuity of a complete fool. – D. Adams, The Hitchhiker's Guide to the Galaxy.

One of the most striking claims of Java is the secure programming language that
it provides. However, few people understand how to write secure applications
correctly. This is because it requires a comprehensive and technical background. In
this chapter, we will continue our in-depth exploration, providing concrete examples
of secure programming, which can be an excellent resource for developers as well as
system administrators who are interested in mastering JBoss security framework.

In this chapter, we will cover how to:

Apply authentication policies to web applications and EJB middle tier
Encrypt their HTTP and RMI data transmission
Secure Web Services

Securing the AppStore application
We initially designed our AppStore application as a single node Enterprise. Later in
Chapter 12, we upgraded it as a clustered application. The only thing missing now is
an adequate security infrastructure for it.

Before planning security, you have to analyze what exactly needs to be secured. For
example, the AppStore application was made up of a JSF frontend layer and an EJB
middle tier that consisted of a session bean and two entity beans.

•

•

•

Securing JBoss AS Applications

[356]

In such a scenario, if you don't plan to directly expose the EJB layer to your clients,
then it's usually enough to apply security only on the HTTP layer, which is the only
point reachable by untrusted entities. On the other hand, if chances are that your
middle tier will be available straight to your clients, then you have to apply security
at this level too. Let's start by creating an access control list to the AppStore web
layer; later we will analyze how to secure EJB access.

HTTP role authentication
In the last chapter, we learned that user authentication can be configured by adding
a login module in your server\default\conf\login-config.xml file.

Let's assume that our company's security policy expects to store the user's
credentials on a relational database. So, we will add the following module
to the login-config.xml file.

 <application-policy name="mysqlLogin">
 <authentication>
 <login-module
 code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
 flag="required">
 <module-option name="dsJndiName">java:/MySqlDS
 </module-option>
 <module-option name="principalsQuery">
 select passwd from USERS where login=?
 </module-option>
 <module-option name="rolesQuery">
 select role, 'Roles' from USER_ROLES where login=?
 </module-option>
 </login-module>
 </authentication>
 </application-policy>

This module uses the org.jboss.security.auth.spi.DatabaseServerLoginModule
that is configured here to store users in the USERS table and roles in the
USER_ROLES table.

The module relies on the datasource named MySqlDS , which we have configured
earlier. To get working with this configuration, you have to first create the required
tables and insert some sample data into them.

CREATE TABLE USERS(login VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64))
CREATE TABLE USER_ROLES(login VARCHAR(64), role VARCHAR(32))
INSERT into USERS values('admin', 'admin')
INSERT into USER_ROLES values('admin', 'TheBoss')

Chapter 14

[357]

Here we have defined just one user account as admin/admin, which maps to the role
name TheBoss. The server configuration is complete. Restart JBoss AS and check
that the new login module has been correctly registered in the JNDI tree under the
java:/jaas context.

Let's move on to the application configuration. Open the web application
configuration (web.xml) and add the following <security-constraints> block:

<web-app>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>HtmlAdaptor</web-resource-name>
 <description>AppStore security constraints
 </description>
 <url-pattern>/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>TheBoss</role-name>
 </auth-constraint>
</security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>AppStore Realm</realm-name>
 </login-config>
 <security-role>
 <role-name>TheBoss</role-name>
 </security-role>
</web-app>

Security constraints are a declarative way to define the protection of web content.
A security constraint is used to define access privileges to a collection of resources
using their URL mapping.

As shown in the previous example, a security constraint is composed of
several elements.

web-resource-collection: A web resource collection is a list of URL
patterns and HTTP operations describing a set of resources to be protected.
In our example, we are restricting access to all resources using GET and POST
HTTP methods.

•

Securing JBoss AS Applications

[358]

auth-constraint: An authorization constraint establishes a requirement for
authentication and names the roles authorized to access the URL patterns
and HTTP methods declared by this security constraint. In our example,
the only role authorized to access the URL patterns is the TheBoss role. The
wildcard character (*) can be used here as well to specify all role names
defined in the deployment descriptor.
login-config: This element specifies the authorization method to be used
by the web application. It can contain the following methods:

Basic authentication: Relies on the web server for
authentication to protected areas. The username and password
combination is then encoded (base 64) and passed in an
unencrypted form to the web server. The web server compares
the encoded value against values stored in a flat file, a database,
or a directory server.
Form-based authentication: Allows you to control the look
and feel of the login page. Form-based authentication works
like basic authentication, except that you specify a login page
that is displayed, instead of a dialog, and an error page that's
displayed if login fails.
Digest authentication: Indicates that the web server expects
digest authentication. A digest authentication requires
computing a hash value of the user's password. However, this
requires a repository in clear text where passwords are stored.
This is rarely the case in most Enterprise environments, so this
has not been widely adopted.

security-role: The last element lists all of the security roles used in the
application. In our example, there's only one role named TheBoss.

We're done with web.xml. The last configuration tweak needs to be performed
on the JBoss web deployment descriptor: WEB-INF/jboss-web.xml. There you
need to declare the security domain that will be used to authenticate the users.
The security-domain name matches the application-policy name attribute,
mysqlLogin, defined in the login-config.xml file. Provide the full JNDI name
of the resource, as in the following example:

<jboss-web>
 <security-domain>java:/jaas/mysqlLogin</security-domain>
</jboss-web>

•

•

°

°

°

•

Chapter 14

[359]

The following diagram summarizes the relation between server configuration files
and web deployment descriptors:

jboss web.xml

.....

<jboss web>

<security domain>

java:/jaas/mysqlLogin

</security domain>

</jboss web>

.....

<auth constraint>

<role name>

TheBoss

</ role name>

</auth constraint>

web.xml USER_ROLES

login role

admin TheBoss

login config.xml

<application policy

name=”mysqlLogin”>

.....

</application policy>

JBoss AS

WebApplication.war

Now redeploy your application and surf on the initial page:
http://localhost:8080/AppStoreWeb. The outcome of this action should be a
blocking pop up, requesting user authentication.

Logging in with admin/admin will grant access to the application.

Encrypting passwords
Storing passwords in the database as clear text strings is not considered a good
practice. As a matter of fact, a database has even more potential security holes than
a regular file system—for example, a database administrator who added a public
synonym for some tables, forgetting that one of those tables was holding sensitive
information like application passwords! You therefore need to be sure that no potential
attackers will ever be able to deliver the result shown in the following screenshot:

Securing JBoss AS Applications

[360]

Fortunately, securing application passwords is relatively easy. You can add a
few extra options to your login module, specifying that the stored passwords are
encrypted using a message digest algorithm. For example, in the mysqlLogin
module, you should add the following options at the bottom:

<application-policy name="mysqlLogin ">
 <authentication>
 <login-module
 code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
 flag="required">
 <module-option name="hashAlgorithm">MD5</module-option>
 <module-option name="hashEncoding">BASE64</module-option>
 </login-module>
 </authentication>
</application-policy>

Here we have specified that the password will be hashed against a Message-Digest
algorithm 5 (MD5), which is a widely used cryptographic hash function with a
128-bit hash value. You can alternatively use any other algorithm such as Secure
Hash Algorithm (SHA) allowed by your JCA provider.

For the sake of completeness, we include a small application here, which uses the
java.security.MessageDigest to provide the functionality of a message digest
algorithm and the org.jboss.security.Base64Util class to generate the base-64
hashed password to be inserted in the database.

public class Hash {
 public static void main(String[] args) {
 String password = args[0];
 MessageDigest md = null;
 try
 {
 md = MessageDigest.getInstance("MD5");
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 byte[] passwordBytes = password.getBytes();
 byte[] hash = md.digest(passwordBytes);
 String passwordHash = org.jboss.security.Base64Utils.tob64(hash);
 System.out.println("password hash: "+passwordHash);
 }
}

Chapter 14

[361]

So, here's what the attacker would display if he or she gained access to our database:

EJB role authorization
In the previous example, we have secured our AppStore application by restricting
access to authenticated users by means of a login form. This is a good starting point
and may be all that you need for simple applications; nevertheless you can further
refine your security policies by selecting which methods are restricted and which
are not.

One vast area of improvement in EJB 3.0 concerns the declarative security. You can
check if the authenticated principal is authorized to execute a single method by
simply adding an annotation on top of it. There are five annotations available, which
are as follows:

@org.jboss.ejb3.annotation.SecurityDomain: Specifies the security
domain that is associated with the class/method.
@javax.annotation.security.RolesAllowed: Specifies the list of roles
permitted to access method(s) in an application.
@javax.annotation.security.RunAs: Assigns a role dynamically to the
EJB during the invocation of the method. Can be used in cases such as if we
need to allow a temporary permission to access certain methods.
@javax.annotation.security.PermitAll: Specifies that an EJB can be
invoked by any client. The purpose of this annotation is to widen security
access to some methods, in situations where you don't know what role will
access the EJB. (Imagine that some modules have been developed by a third
party and they access your EJB with some not well-identified roles.)
@javax.annotation.security.DenyAll: Specifies that an EJB cannot be
invoked by external clients. The same considerations apply as for @PermitAll.

So, if we want to restrict access to all StoreManagerBean's methods to the authorized
role TheBoss, it can be done as follows:

@Stateless
@SecurityDomain("mysqlLogin")
@RolesAllowed({ "TheBoss" })
public class StoreManagerBean implements StoreManager {
}

•

•

•

•

•

Securing JBoss AS Applications

[362]

Be careful! There is a more than one SecurityDomain class in Java EE
packages. As just mentioned in the list, you have to include org.jboss.
ejb3.annotation.SecurityDomain.

As we have granted this role in the login stage, we should not have any problem
executing the EJB methods from the web application. If you are not satisfied with
this approach, you can apply the annotations individually before each method. For
example, if we need a special role named SuperUser for inserting a new customer,
then we will tag the method as follows:

@RolesAllowed({ "SuperUser" })
public void createCustomer(String country,String name) {
 Customer customer = new Customer();
 customer.setCountry(country);
 customer.setName(name);
 em.persist(customer);
}

You should update the database by adding the entries for the new SuperUser role:

INSERT into USERS values('guru', 'guru')
INSERT into USER_ROLES values('guru', 'SuperUser')

After adding the additional role SuperUser, your web.xml file appears as follows:

<web-app>
 <security-constraint>
 <web-resource-collection>
 </web-resource-collection>
 <auth-constraint>
 <role-name>TheBoss</role-name>
 </auth-constraint>
 <auth-constraint>
 <role-name>SuperUser</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>.
 </login-config>
 <security-role>
 <role-name>TheBoss</role-name>
 </security-role>
 <security-role>
 <role-name>SuperUser</role-name>
 </security-role>
</web-app>

Chapter 14

[363]

What if you don't want to use annotations for establishing security roles? Suppose
you have a security role that is used crosswise by all your EJB, and perhaps it
is simpler to use plain old XML configuration instead of tagging all EJB with
annotations. In this scenario, you have to first declare the security constraints
in the generic META-INF/ejb-jar.xml file.

<method-permission>
 <role-name>TheBoss</role-name>
 <method>
 <ejb-name>*</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

Then, inside the META_INF/jboss.xml configuration file, just add a reference to your
security domain, as follows:

<jboss>
 <security-domain>mysqlLogin</security-domain>

</jboss>

Here's a snapshot summarizing the EJB role configuration:

Jboss.xml

.....

<jboss>

<security domain>

mysqlLogin

</security domain>

</jboss>

.....

<method permission>

<role name>

TheBoss

</ role name>

</method permission>

ejb jar.xml USER_ROLES

login role

admin TheBoss

login config.xml

<application policy

name=”mysqlLogin”>

.....

</application policy>

JBoss AS

EJBApplication.jar

Java EE programmatic security
With the configuration just discussed, we have secured our application without
writing a single line of code. If your security policy is quite complex and cannot be
fully expressed with a declarative approach, then you can switch to programmatic
security. Java EE programmatic security will not be discussed in detail here, as it's
not a JBoss-specific topic; however, we will give some useful advice about it.

Securing JBoss AS Applications

[364]

In short, using programmatic security, you exploit EJB context variables to
check dynamically whether a user is authorized to execute a method. If you don't
want to mix the security constraints with business rules, then a good place to
add programmatic security is inside EJB interceptors. We have already used the
MailInterceptor earlier in Chapter 4; a secure version of it would verify in the
checkMail method whether the user is granted the role to send a mail.

public class MailInterceptor {
 @Resource SessionContext context;
 @AroundInvoke
 public Object checkMail(InvocationContext ctx) throws Exception
 {
 if (!context isCallerInRole("admin")) {
 throw new SecurityException("Unauthorized user!");
 try
 {
 return ctx.proceed();
 }
 catch(Exception e)
 {
 throw e;
 }
 }
}

Notice that in the first highlighted line, we are injecting a reference to the
SessionContext by means of the Resource annotation. The SessionContext is
used to provide access to several container services such as transaction or security.
In our example, we are using its isCallerInRole method to check for a specific role
in the running thread.

As you can see, adding programmatic security to individual resources gives you the
finest-grained control over access to those resources. It can be extended to the web
tier as well, by using the following methods of the HttpRequest object:

request.isUserInRole("admin");

request.getUserPrincipal();

Writing secure Java SE clients
Java EE authentication and authorization can be performed at any tier. Until now,
we have shielded our application with an HTTP login module that grants application
roles. What about Java SE clients? Standard Java clients can exploit plain Java
Authentication and Authorization Service standard API or they can use a JBoss
custom solution.

•

•

Chapter 14

[365]

Using JAAS is recommended for ensuring portable applications. However, JAAS is
rather invasive to implement, as it requires the creation of a CallbackHandler class
and lots of boilerplate code in your client. Actually, JBoss AS provides a proprietary
solution based on the org.jboss.security.client.SecurityClient class and the
associated SecurityClientFactory.

In the simplest form, the SecurityClient once created invokes the setSimple
method passing the user credentials, which are stored as ThreadLocal variables
when you invoke the login method:

SecurityClient client = SecurityClientFactory.getSecurityClient();
client.setSimple("admin", "admin");

client.login();

As we don't reference any JBoss AS security policy using this strategy, the EJB client
will switch to the other login policy, which is used as a last option security domain.
So all we have to do is provide an other security definition that uses an appropriate
client login module:

other {
 org.jboss.security.ClientLoginModule required;
};

The org.jboss.security.ClientLoginModule is an implementation of a
LoginModule used by JBoss clients for the establishment of the caller identity and
credentials. The above configuration needs to be stored in an auth.conf file whose
directory is included into the client classpath.

Jboss.xml

.....

<jboss>

<security domain>

mysqlLogin

</security domain>

</jboss>

.....

<method permission>

<role name>

TheBoss

</ role name>

</method permission>

ejb jar.xml USER_ROLES

login role

admin TheBoss

login config.xml

<application policy

name=”mysqlLogin”>

.....

</application policy>

<application policy

name=”ClientLoginModule”>

.....

</application policy>

JBoss AS

EJBApplication.jar

ClientApplication.jar

auth.conf

other {

org.jboss.security.ClientLoginModule required;

};

Securing JBoss AS Applications

[366]

Note that this login module does not perform any authentication. It
merely copies the login information provided to it into the JBoss server
EJB invocation layer for subsequent authentication on the server. If you
need to perform client-side authentication of users, you would need to
configure another login module in addition to the ClientLoginModule.

The SecurityClient class can also be configured to use JAAS with the
SecurityClient. As we said, this approach requires creating a CallBackHandler
class that is used to retrieve authentication information (such as usernames,
passwords, and so on) interactively.

SecurityClient client = SecurityClientFactory.getSecurityClient();
client.setJAAS("security-policy", new JAASCallBackHandler("admin","ad
min"));
client.login();

In this case, we are checking the user credentials against the security domain
security-policy. The policy will also be declared in an auth.conf file.

security-policy {
 org.jboss.security.ClientLoginModule required;
};

The above example needs a CallBackHandler class that implements the handle
method as shown in the following code snippet:

import java.io.IOException;
import javax.security.auth.callback.*;
public class JAASCallBackHandler implements CallbackHandler {
 private String user,pass;
 public JAASCallBackHandler(String user, String pass) {
 this.user = user;
 this.pass = pass;
 }
 public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException {
 int len = callbacks.length;
 Callback cb;
 for(int i=0;i<len;i++) {
 cb = callbacks[i];
 if(cb instanceof NameCallback) {
 NameCallback ncb = (NameCallback)cb;
 ncb.setName(user);
 }

Chapter 14

[367]

 else
 if (cb instanceof PasswordCallback) {
 PasswordCallback pcb = (PasswordCallback)cb;
 pcb.setPassword(pass.toCharArray());
 }
 else {
 throw new UnsupportedCallbackException(cb, "Don't know what
 to do with this!!");
 }
 }
 }

}

Securing applications at transport level
Authentication and authorization is only one aspect of security. Any application
that communicates through a clear text channel with its customers is potentially
unsafe. For example, it's not only possible to capture a session cookie reading the
HTTP header, but also possible to change a financial transaction by hacking the
application context.

In the following sections, we will describe how to secure an application at transport
level, starting from the HTTP protocol and then moving to the RMI transport layer.

Running the AppStore with HTTPS
Your AppStore application communicates with its client through clear text HTTP
protocol. In order to take advantage of secure connections, you have to configure
your JBoss Web Server with an associated certificate for each external interface (IP
address) that accepts secure connections. The certificate states which company the
site is associated with, along with some basic contact information about the site
owner or administrator.

A self-signed certificate can be created with the keytool command utility; we will
briefly summarize here what we have learned in the previous chapter:

keytool -genkey -keystore jboss.keystore -storepass mypassword -
keypass mypassword -keyalg RSA -validity 180 -alias jbossbook -dname
"cn=Francesco Marchioni,o=PackPub,c=GB"

Here we have created a new public/private key pair and wrapped the keys
into a keystore named jboss.keystore using the alias jbossbook and the key
algorithm RSA.

Securing JBoss AS Applications

[368]

Then update your server\xxx\deploy\jbossweb.sar\server.xml with the
information about the keystore just created:

<Connector protocol="HTTP/1.1" SSLEnabled="true"
 port="8443" address="${jboss.bind.address}"
 secure="true" clientAuth="false"
 keystoreFile="${jboss.server.home.dir}/conf/jboss.keystore"
 keystorePass="mypassword" keyAlias="jbossbook" sslProtocol="TLS" />

With this configuration, your web connection will take place over a secure channel,
even if by means of a self-signed certificate. Here's a trace of the HTTP and HTTPS
data transmission:

If you want to get rid of the certificate warning, you have to install a certificate on
your server signed by a recognized CA. Please refer to the previous chapter for a
detailed explanation about it.

Securing the RMI-IIOP transport: SSL
BlackJack
EJB clients interact with the Enterpirse EJB tier using the RMI-IIOP protocol. The
RMI-IIOP protocol has been developed by Sun to combine the RMI programming
model with the IIOP underlying transport.

Securing the EJB transport is required for applications that are accessible by Java SE
clients. Earlier in this book we illustrated a sample BlackJack SFSB that is reachable
by a Java client. Assuming that your SFSB is the core component of a virtual casino,
you wouldn't be safe with a clear text transmission. Let's make it rock-solid safe.

Chapter 14

[369]

Your server checklist requires you to deploy the ssl-service.xml that contains the
JaasSecurityDomain MBean definition along with an SSL transport invoker that
will be used for secured EJB communication.

You can place this file either in the deploy folder of your JBoss AS or in the
META-INF directory of your application, as shown in the following screenshot:

Then, at application level, you can reference your SSL transport by adding the
element clientBindURL to your JNDI binding annotation.

@Stateful
@RemoteBindings(
 {
 @RemoteBinding(jndiBinding="BlackJack/remote"),
 @RemoteBinding(clientBindUrl="sslsocket://127.0.0.1:3843",
 jndiBinding="BlackJackSSL/remote")
 }
)
public class BlackJackBean implements BlackJack {
}

As you can see, the BlackJackBean now contains an array of bindings; the first one
allows plain RMI-IIOP communication, while the second element references the SSL
transport through the clientBindUrl property.

Securing JBoss AS Applications

[370]

At the client level, you would need to reference the BlackJackSSL/remote binding
to carry on a secure RMI-IIOP transmission:

Context ctx = new InitialContext();
BlackJack b = (BlackJack) ctx.lookup("BlackJackSSL/remote");

This is all that is needed to secure your EJB communication. Remember that your
client needs to be started with either of the following properties:

java -Djavax.net.ssl.trustStore=<truststorefile>
 -Djavax.net.ssl.trustStorePassword=<password>

Or, if you prefer, by importing the server certificate into the client repository of
certificates (also known as CAcert):

keytool -import -alias myserver -file rmissl.cer –keystore
 C:/jdk1.6.0_10/jre/lib/security/cacerts

Securing Web Services
Security is a key element of every Enterprise application, but in the recent years it
has become even more important for Web Services. The reasons for all this hype
on the Web Service security is due to the fact that the exposure of Web Services
is rapidly moving from secure intranets to the insecure Internet. In addition,
the kind of business around these services is often engaged without any prior
human relationship, leaving all security issues to be addressed by the underlying
technology.

Released by the OASIS consortium in 2004, the Web Services Security
(WS-Security) specification (http://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=wss) provides a set of mechanisms to help developers of Web
Services to secure Simple Object Access Protocol (SOAP) message exchanges.
Specifically, WS-Security describes enhancements to the existing SOAP messaging to
provide quality of protection through the application of message integrity, message
confidentiality, and single message authentication to SOAP messages. These basic
mechanisms can be combined in various ways to accommodate a wide variety of
security models using a variety of cryptographic technologies.

In the following section, we will first describe how JAAS authentication can be
applied to POJO and EJB Web Services. We will then illustrate how the SOAP
messages can be encrypted and eventually signed using the WS-Security API.

Chapter 14

[371]

Web Services authorization
Web Services authorization can basically be carried out in two ways, depending on
whether we are dealing with a POJO-based Web Service or an EJB that exposes some
of its methods as Web Services.

Changes to POJO Web Services are quite intuitive. You have to provide the required
roles in the web.xml configuration file. For example, in the CalculatePowerService
demonstrated in Chapter 10, add the following security block to the WEB-INF/web.
xml file, just after the <servlet-mapping> section:

<web-app>
 <!—SERVLET MAPPING HERE -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>HtmlAdaptor</web-resource-name>
 <description>My security constraints
 </description>
 <url-pattern>/pojoService</url-pattern>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>TheBoss</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Calculator Realm</realm-name>
 </login-config>
 <security-role>
 <role-name>TheBoss</role-name>
 </security-role>
</web-app>

Here, we are authorizing the Web Service access using the same TheBoss role
described earlier. Notice we are specifying a security constraint only on the POST
HTTP method, as we want to make the Web Services Description Language
(WSDL) contract available (through a GET request) to any user requesting it.

The security role is checked in the WEB-INF/jboss-web.xml descriptor.

<jboss-web>
 <security-domain>java:/jaas/mysqlLogin</security-domain>
</jboss-web>

Securing JBoss AS Applications

[372]

The Web Service is now usable only by users authorized on the mysqlLogin module.
Republish the application by selecting the Full publish option from inside the
JBoss Server View.

The remaining changes are only in the client, which needs to use a Java API for XML
Web Services (JAX-WS) interface, namely the javax.xml.ws.BindingProvider
interface, to provide the associated credentials by means of context objects.

public class AuthorizedClient {
 public static void main(String[] args) {
 if (args.length != 2) {
 System.err.println("usage: EchoClient <message>");
 System.exit(1);
 }
 double arg = Double.parseDouble(args[0]);
 double power = Double.parseDouble(args[1]);
 CalculatePowerService pojo = new CalculatePowerService();
 POJOWebService pojoService = pojo.getPOJOWebServicePort();
 BindingProvider bp = (BindingProvider)pojoService;
 Map<String, Object> rc = bp.getRequestContext();
 rc.put(BindingProvider.USERNAME_PROPERTY, "admin");
 rc.put(BindingProvider.PASSWORD_PROPERTY, "admin");
 System.out.println("Result is " +pojoService.
 calculatePower(arg,power));
 }
}

If you have completed the entire configuration correctly, the Web Service will return
the java.lang.Math's power for the chosen arguments.

The recommended way to run the sample is by means of the wsrunclient utility
that is located in the JBOSS_HOME/bin folder. The advantage of using this command
tool is that it automatically configures for you the client library PATH of JBoss WS.
You just have to feed the classpath of the application class files to wsrunclient, as
shown in the following code snippet:

wsrunclient -classpath %PATH_TO_CLASSES%
 com.packtpub.webserviceclient.example1.AuthorizedClient 2 4

On a Unix/Linux machine it would be:

Wsrunclient.sh -classpath $PATH_TO_CLASSES
 com.packtpub.webserviceclient.example1.AuthorizedClient 2 4

Chapter 14

[373]

Here's the expected output on the console:

Notice that we are executing the AuthorizedClient by means of the wsrunclient
utility introduced in Chapter 10, which requires just pointing to the correct
application classpath. Alternatively, you can run this sample from within the Eclipse
environment like any other Java class.

What about EJB-based Web Services? The configuration is slightly different; as the
security domain is not specified in web descriptors, we have to provide it by
means of annotations.

@Stateless
@RemoteBinding(jndiBinding="AppStoreEJB/remote")
@WebService(targetNamespace = "http://www.packtpub.com/",
 serviceName = "AccountManagerService")
@WebContext(authMethod = "BASIC",
 secureWSDLAccess = false)
@SecurityDomain(value = "mysqlLogin")
public class AccountManagerBean implements AccountManager {
}

As you can see, the @WebContext annotation basically reflects the same configuration
options as POJO-based Web Services, with BASIC authentication and unrestricted
WSDL access.

The @SecurityDomain annotation should be familiar to you, as we introduced
it at the beginning of this chapter to illustrate how to secure an EJB. As you can
see, it's a replacement for the information contained in the jboss-web.xml file,
except that the security domain is referenced directly by mysqlLogin instead of
java:/jaas/mysqlLogin.

The above security configuration can also be specified by means of the
META-INF/ejb-jar.xml and META-INF/jboss.xml files, if you
prefer using standard configuration files. Have a look at the EJB role
authorization section, to see how to set up the files correctly.

Securing JBoss AS Applications

[374]

Web Services encryption
The Web Services technology is based on the exchange of messages between a
service consumer and a service provider using a commonly agreed protocol such as
HTTP. From this definition, it's clear that Web Services encryption can be performed
at two different levels:

Security at the transport level: This level uses the in-built security features of
transport technologies such as HTTPS. Using this option requires configuring
the web server for HTTPS and specifying the use of a CONFIDENTIAL
transport in the web.xml file.
Security at the SOAP or messaging level: This level is independent of the
transport level and involves use of digital signatures, certificates, and so on at
the XML document level. In practice, instead of encrypting the client-server
communication, we just cipher the SOAP message content.

You might wonder which approach is better for securing Web Services. Generally,
when you are dealing with point-to-point Web Services, where clients communicate
directly with the endpoint, the transport level is sufficient.

On the other hand, if there are multiple SOAP intermediaries and the SOAP
message needs to cross several hops before reaching the endpoint, then securing
at the message level is the preferred approach.

In this section, we will focus on the message-level encryption that has been
implemented in JBossWS, based on the WS-Security specifications.

The process of encrypting SOAP messages requires both parties to generate their
keystores (containing public keys and their signed certificate) and truststores
(holding the public keys of the other subjects).

Web Service Request

Web Service Response

Body encrypted with Public Key of SP
Body signed with Private Key of SC

Body encrypted with Public Key of SC
Body signed with Private Key of SP

Service
Consumer

(SC)

Service
Provider

(SP)

keystorekeystore

•

•

Chapter 14

[375]

As you can see, the sender uses the receiver's public key (stored in the keystore) to
encrypt the message. The receiver uses its certificate that contains both its public and
private keys to decrypt the message.

In order to accomplish this, we will first generate a key pair (a public key and
associated private key) for the service producer [1] and the service consumer [2].

keytool -genkey -alias serverkeys -keyalg RSA -keystore
 server.keystore -storepass mypassword -keypass mypassword -dname
 "CN=localhost, OU=MYOU, O=MYORG, L=MYCITY, ST=MYSTATE, C=MY" [1]

keytool -genkey -alias clientkeys -keyalg RSA -keystore
 client.keystore -storepass mypassword -keypass mypassword -dname
 "CN=localhost, OU=MYOU, O=MYORG, L=MYCITY, S=MYSTATE, C=MY" [2]

The keystores are then exported into a X.509 certificate [3], [4]. This is the certificate
that authenticates the server's and client's public key.

keytool -export -alias serverkeys -keystore server.keystore -
 storepass mypassword -file server.cer [3]

keytool -export -alias clientkeys -keystore client.keystore -
 storepass mypassword -file client.cer [4]

As the next step, each profile needs to import the other's public key in the local
keystore. Therefore, the client will import the server's public key into its keystore [6]
and use this key to encrypt the message. The server will also import the client public
key into its keystore [5] and will use this key to decrypt the message.

keytool -import -alias serverkeys -keystore client.keystore -
 storepass mypassword -keypass mypassword -file server.cer [5]

keytool -import -alias clientkeys -keystore server.keystore -
 storepass mypassword -keypass mypassword -file client.cer [6]

At this point, the configuration is almost complete. As you are using self-signed
certificates, each party needs to import its own certificate into the truststore [7], [8]:

keytool -import -alias clientkeys -keystore client.truststore -
 storepass mypassword -keypass mypassword -file client.cer [7]

keytool -import -alias serverkeys -keystore server.truststore -
 storepass mypassword -keypass mypassword -file server.cer [8]

Securing JBoss AS Applications

[376]

The following diagram depicts the configuration built so far:

server.keystore

Server Public key

Server Private key

Client Public key

Server Public key

server.truststore

client.keystore

Client Public key

Client Private key

Server Public key

Client Public key

client.truststore

Client and server configuration files
So far, we have generated keystores and truststores for both the service producer
and the service consumer. In order to enable Web Services encryption, we need to
add two deployment descriptors that contain a reference to the client and server
keystore and truststore:

jboss-wsse-server.xml: The security configuration used on the
server side. This contains a reference to the server keystore and truststore
and applies to all incoming requests to a Web Service endpoint, as well as
the outgoing responses sent by the Web Service endpoint.
Here's a dump of it:
<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.jboss.com/ws-security/config

 http://www.jboss.com/ws-security/schema/jboss-ws-
 security_1_0.xsd">

 <key-store-file>WEB-INF/server.keystore</key-store-file>
 <key-store-password>mypassword</key-store-password>

 <trust-store-file>WEB-INF/server.truststore</trust-store-file>
 <trust-store-password>mypassword</trust-store-password>

 <key-passwords>

 <key-password alias="server" password="mypassword" />

 </key-passwords>

 <config>

 <encrypt type="x509v3" alias="clientkeys" />

 <requires>

•

Chapter 14

[377]

 <encryption />

 </requires>

 </config>

</jboss-ws-security>

jboss-wsse-client.xml: The security configuration used on the client-side.
This contains a reference to the client keystore and truststore and applies to
all outgoing requests sent by a client, as well the response messages that are
received by the client.
<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.jboss.com/ws-security/config

 http://www.jboss.com/ws-security/schema/jboss-ws-
 security_1_0.xsd">

 <key-store-file>META-INF/client.keystore</key-store-file>
 <key-store-password>mypassword</key-store-password>

 <trust-store-file>META-INF/client.truststore</trust-store-
 file>
 <trust-store-password>mypassword</trust-store-password>

 <key-passwords>

 <key-password alias="clientkeys" password="mypassword" />

 </key-passwords>

 <config>

 <encrypt type="x509v3" alias="serverkeys" />

 <requires>

 <encryption />

 </requires>

 </config>

</jboss-ws-security>

The correct location for the above WS deployment descriptors varies depending
on the type of application. The following table describes the correct location where
descriptors need to be placed, depending on the type of application where Web
Services are implemented:

Application type Location
Web application archive
(WAR)

Place jboss-wsse-server.xml in the WEB-INF folder.

EJB archive Place jboss-wsse-server.xml in the folder META-INF.
Java EE application
client

Place jboss-wsse-client.xml in the META-INF folder.

•

Securing JBoss AS Applications

[378]

Encrypting the POJOWebService
In Chapter 10, Developing Applications with JBoss Web Services, we have coded two
simple Web Services. The first one, POJO Web Service, was in charge of simply
calculating a math power of an argument.

In this section, we will encrypt the SOAP communication between the client and
the server. A prerequisite to this example is that you should have successfully
created client and server certificates and also the jboss-wsse-server.xml and
jboss-wsse-client.xml configuration files.

Securing the Web Service
Let's first start with the server. You just have to state that the Web Service will use
a handler that is able to encrypt the content of the message. (For additional details
about Web Services handlers, please refer to the Web Service handler chains section in
Chapter 10.)

The list of available chain handlers resides in the server/xxx/deployers/jbossws.
deployer/META-INF/standard-jaxws-endpoint-config.xml file. The handler we
are interested in is Standard WSSecurity Endpoint. We will reference this handler
by means of the org.jboss.ws.annotation.EndpointConfig annotation that needs
to be placed at class level.

@WebService(targetNamespace = "http://www.packtpub.com/", serviceName
 = "CalculatePowerService")
@SOAPBinding(style = SOAPBinding.Style.RPC)
@EndpointConfig(configName = "Standard WSSecurity Endpoint")
public class POJOWebService {
}

Having completed the coding, let's see how our project looks like from the Project
Explorer window. The following is the server configuration:

Chapter 14

[379]

As you can see, the Web Service expects to find the jboss-wsee-server.xml file
into the WEB-INF folder. This file also contains references to the server keystore and
truststore, which are placed in the same folder.

Notice that along with the source code of this example, we have also
added two batch scripts to generate the keystores and truststores and to
execute the client.

Securing the client
The client class does not require any change, so you can use the same
CalculatePowerService class to access to the Web Service port and invoke the
calculatePower method.

public static void main(String[] args) {
 if (args.length != 2) {
	 System.err.println("usage: EchoClient <message>");
	 System.exit(1);
 }
 double arg = 5;//Double.parseDouble(args[0]);
 double power = 2;//Double.parseDouble(args[1]);

 CalculatePowerService pojo = new CalculatePowerService();

 POJOWebService pojoService = pojo.getPOJOWebServicePort();

 System.out.println("Result is " +pojoService.calculatePower(arg,
power));

}

You might wonder how the client knows that this Web Service expects to run on a
secure channel ? The answer is in the META-INF folder, which, if found in the client
classpath, shapes up the Web Service for secure socket transmission. Here the client
will look for the jboss-wsse-client.xml and standard-jaxws-client-config.
xml files containing the secure configuration.

The file standard-jaxws-client-config.xml can be copied from the server/
xxx/deployers/jbossws.deployer/META-INF directory. This file contains the list
of available Web Services client configuration. The configuration you are interested
in is "Standard WSSecurity Client" so take care to remove all other available
configurations except this one.

Securing JBoss AS Applications

[380]

Here's a snapshot of the client configuration:

As you can see, we have placed the client keystore and trustore as well into the
META-INF folder. However, this is not mandatory, you can place it in any location
you like; remember to update this information in the jboss-wsse-client.xml.

Running the example
Your example is complete. The recommended way to run the sample is by means
of the wsrunclient command utility that requires simply the location of the
application classes and the configuration files on a Windows box.

wsrunclient -classpath %PATH_TO_CLASSES_AND_META_INF% com.packtpub.
webserviceclient.example1.Client

On a Unix/Linux machine it would be:

Wsrunclient.sh -classpath $PATH_TO_CLASSES_AND_META_INF. com.packtpub.
webserviceclient.example1.Client

In our example %PATH_TO_CLASSES_AND_META_INF% resolves to the path WEB-INF/
classes, so this is the expected output:

Chapter 14

[381]

Signing SOAP messages
XML encryption is certainly important as it guarantees the confidentiality of the
message. However, in network environments, there may be unreliable or malicious
computers; the creator of a message is not always the same as the sender of the
message. A digital signature applied on the message guarantees that the message
has been actually sent from the subject we expect.

Technically speaking, if we want to digitally sign the SOAP message, we need to add
the other party's public key in the truststore. Therefore, the client will import the
server public key into its truststore [9] and the server will import the client public
key as well, into its trustore [10].

keytool -import -alias server -keystore client.truststore -file
 server.cert [9]
keytool -import -alias client -keystore server.truststore -file
 client.cert [10]

server.keystore

Server Public key

Server Private key

Client Public key

client.keystore

Client Public key

Client Private key

Server Public key

Client Public key

client.truststore

Server Public key

server.truststore

Client Public key Server Public key

In addition, we have to configure the XML descriptors to sign messages using the
other party's public key. We need to update the jboss-wsse-server.xml by adding
the following <config> section at the bottom of the file.

<jboss-ws-security>
 <config>
 <sign type="x509v3" alias="serverkeys" />
 <encrypt type="x509v3" alias="clientkeys" />
 <requires>
 <signature />
 <encryption />
 </requires>
 </config>
</jboss-ws-security>

Securing JBoss AS Applications

[382]

As highlighted in the last code snippet, we have specified to sign the message using
an X.509 certificate. The certificate needs to be signed by a trusted entity, and so we
have imported the other party's public key into the truststore.

Analogously, the jboss-wsse-client.xml client needs to be updated by adding a
<config> element containing the <sign> and <signature> element relative to client
and server keys.

<jboss-ws-security>
 <config>
 <sign type="x509v3" alias="clientkeys" />
 <encrypt type="x509v3" alias="serverkeys" />
 <requires>
 <signature />
 <encryption />
 </requires>
 </config>
</jboss-ws-security>

A digitally signed SOAP message will bear some additional elements, namely the
<ds:Signature> and <ds:SignedInfo>, containing the digest algorithm used to
sign the message and the signature along with the digest value.

<SOAP-ENV:Envelope >
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</ds:DigestValue>
 </ds:SignedInfo>
 <ds:SignatureValue>MC0CFFrVLtRlk=...</ds:SignatureValue>
</SOAP-ENV:Envelope>

Debugging SOAP messages
SOAP messages can be verified by turning on logs for the appender (see Chapter 3
for more information about it). However, if you need a valuable tool for debugging
and testing Web Services, we suggest you to download a copy of Apache's TCPMon
utility at http://ws.apache.org/commons/tcpmon/download.cgi.

Chapter 14

[383]

Configure it to listen on an available TCP port and choose Tomcat's HTTP port
(default 8080) as the destination.

Now, in the client stub, modify the endpoint destination so that it points
to the TCPMon listening port—for example, http://127.0.0.1:8090/
WebServiceProject/pojoService?wsdl.

In the TCPMon main window, you can debug SOAP messages that have been sent to
the Web Service and their response.

Securing JBoss AS Applications

[384]

Summary
This chapter has covered a number of different topics related to the core idea of
creating secure applications. We went through our examples and applied security at
different layers. However, the application exposed just the web layer to the clients,
so we have added an access control list to it and encrypted its HTTP traffic.

In the next section, we illustrated how to protect middle-tier components, such as
EJB and Web Services, applying authentication and authorization techniques, as well
as encryption of the RMI/HTTP data transmission.

We have finished learning JBoss. If you are serious about learning JBoss AS (and sure
that you have completed all the chapters!) you will reap big dividends in the years to
come. As a proof of it, the number of people joining the community of developers is
steadily growing and also the opportunities for expert developers and architects.

I hope that this book has given you the right instruments to improve your
knowledge of the application server, whether you are a learner or you are
an expert Java EE technician.

Today, businesses are consumed with making their operations as efficient as
possible, so most of the effort put in this book was devoted to improving your
productivity, taking your assets to an outstanding level. I personally feel that being
a smart developer, who's able to meet programming deadlines at every stage, is the
best insurance for your working career.

May your career be rewarding, successful, and abundant, rich in opportunities for
you to absorb the best of all your circumstances.

Index
Symbols
@CacheConfig annotation 315
@CacheConfig parameter 314
@Clustered annotation 312
@Entity annotation 121
@GeneratedValue annotation 121
@Id annotation 121
@JoinColumn annotation 123
@ManyToOne annotation 123
@OneToMany annotation 121, 123
@PostActivate method 314
@PreDestroy annotation 82
@PrePassivate method 314
@Table annotation 121

A
ACID properties

about 71
atomicity 71
consistency 71
durability 71
isolation 71

additional properties, datasource
isSameRM-override-value 63
no-tx-separate-pools 63
transaction-isolation 62
xa-datasource-class 63
xa-datasource-property 63

admin console
about 45
control panel options 46

administered objects, JMS 165
agent level, JMX architecture 222
agent view 42

Apache MyFaces library 134
Apache Portable Runtime connector. See

APR connector
appenders

about 52
console file appender 53
server file appender 52

ApplicationRollbackCount attribute 77
applications, at transport level

AppStore, running with HTTPs 367
RMI-IIOP transport, securing 368, 370
securing 367

application server structure, JBoss AS
about 26
directory structure 27
directory tree 26
JBoss system properties 26

appstore application
about 109
creating 111
database, setting up 111
securing 355

AppStore application security
about 355
EJB role authorization 361
HTTP role authentication 356, 357
secure Java SE clients, writing 364-366

APR 26
APR connector

about 152
installing 153

asymmetric cryptography 345
auditing

about 343
activating 343
attributes 344

[386]

cookies parameter 344
headers parameter 344
off parameter 344
parameters 344

AvailableCount attribute 102

B
Blocking Mode parameter

about 48
behaviors 49

building blocks, JMS
connections 166
message consumers 166
message producers 166
administered objects 165
sessions 166

building strategies, Web Services
about 253
bottom-up approach 253
top-down approach 253

C
cache configuration, JBC

about 291
field-granularity-session-cache 292
ha-partition 292
local-query 292
mvcc-entity 292
mvcc-entity-repeatable 292
optimistic-entity 292
pessimistic-entity 292
pessimistic-entity-repeatable 292
replicated-query 292
sfsb-cache 292
standard-session-cache 292
timestamps-cache 292

CacheManager service 26
cache modes, JBC

about 290
asynchronous 290
data invalidation 291
data replication 291
local 291
synchronous 290

CacheSize attribute 106
call-by-value 32
certificate management tools

keytool 347
class-level interceptors 94
clusterable web application

configuring 302
HTTP replication, configuring 302-304
HttpSession passivation/activation 305
load balancing, configuring 306, 307

cluster basics 281
clustered application

developing 311
ClusteredAppStore project

about 320, 321
entities, evicting from cache 326
guidelines, for cache 326
second-level cache 322-324

clustered entity beans
AppStore example 320-322

clustered RDBMS 69
clustered SFSB

deploying 315-318
programmatic replication 319
testing 318, 319

cluster farming option 12
clustering

benefits 281
introducing 281

clustering support
improving 26

commands, twiddle
create 47
ge 46
info 46
invoke 46
jsr77 46
query 47
serverinfo 47
set 47
setattrs 47
unregister 47
xmbean 46

component containers, Java EE
annotation security 333
declarative security 332
programmatic security 332

[387]

components, log4j
appenders 52
categories 52, 56
layouts 52, 56

configuration file, datasource
elements 61
local-tx-datasource 61
mbean 61
no-tx-datasource 61
xa-datasource 61

ConnectionCount attribute 65
connection factories, JBoss Messaging

system
configuring 168, 169

connection management 60
connection pool settings

changing 65
connection pool statistics

connection pool, tuning 67
datasources, managing from admin

console 66, 67
gathering 64

connections, JMS 166
connector element 150
connector properties, JBoss Web Server

acceptCount 151
address 151
connectionTimeout 151
enableLookups 151
keepAliveTimeout 152
maxHttpHeaderSize 151
maxPostSize 151
maxThreads 151
pollerSize 152
pollTime 152
port 151
sendfileSize 152
useSendfile 152

connectors, JBoss Web Server
Apache Portable Runtime connector 152
customizing 151

console file appender
about 53
configuration, modifying at runtime 53

contexts, JBoss Web Server
configuring 154, 155

core modules, JBoss AS 5
about 25
clustering support 26
EJB container 25
JBoss Web Services 3.0 26
messaging provider 25
rock solid transaction manager 26
web container 26

CurrentSize attribute 106
custom configuration sample

about 36
JMS, adding to web configuration 36, 37

custom server configurations, JBoss AS 5.0
creating 34
JBoss AS service map 35, 36
JBoss virtual file system 38, 39
JMS, adding to web configuration 36, 37
modules, installed 34

D
database, appstore application

EJB project, rolling 112
setting up 111
test client, creating 130

Data Definition Language. See DDL
datasource

additional properties 62
configuring, in JBoss 60
standard properties 60

DDL 198
default interceptors 94
Dependency Injection 80
depends element 62
destination, JMS 166
directory structure, JBoss AS

bin 27
client 27
common 27
conf 28
data 28
deploy 28
deployers 28
docs 27
lib 27, 28
log 28

[388]

server 27
tmp 28
work 28

DistributedReplicantManager. See DRM
distributed services level, JMX

architecture 222
domain 42
DRM service 298
dynamic MBeans 222

E
Eclipse

installing 16
plugin architecture 17

Eclipse installation
about 16
configuring 17
Eclipse IDE for Java EE developers,

downloading 16
Eclipse IDE for Java EE developers,

running 16
Eclipse project 198
EIS 59
EJB 23
EJB, as Web Services

exceptions, handling 271, 272
exposing 268-271
test client, generating 272-274
Web Service Handler chains 275-279
Web Services, injecting 274, 275

EJB 3
generating, wizard used 215, 216

EJB 3.0 model 25
EJB3 stateful session bean cache

configuring 294
EJB container

configuring 100
interceptors 100
Stateful Session Bean cache,

configuring 104
Stateless Session Bean pool size,

configuring 101
EJB interceptors 364
EJB pool

MininumSize, setting 103

EJB project
customer entity 120, 121
database connection, configuring 114-116
entities, generating 117-119
item entity 122
persistence, configuring 123
rolling 112

EJB role authorization, AppStore
application security

about 361
annotations 361
Java EE programmatic security 363

elements, security constraint
authorization constraint 358
login-config 358
security-role 358
web resource collection 357

Embedded Jopr project 45
engine element 150
Enterprise Information Systems. See EIS
Enterprise Java Beans. See EJB

developing 80
Message-driven Beans 81
Session Beans 81
Session Beans, developing 81
three-tiered applications 80

entities 109
entity bean caching

configuring 294, 295
entity beans

clustering 320

F
file appenders

about 3, 53, 54
rolling file appender 54

findAllCustomers() method 141
findAllItems method 125
findOrders() method 141
foreign key 111
form element 143
former server configurations,

JBoss AS 5.0 33
fragmentation layer 283

[389]

G
global transaction 74

H
HA-JNDI service

about 299
accessing 300
configurable parameters 301
configuration 301

HA datasources. See High availability
datasources

HAPartition service
about 297
DRM service 298
HA singletons, exploring 298
properties 297

HASingleton service 298
Hibernate

about 195, 196
Session Factory object 294
Session object 294
using, with EJB 217

Hibernate, with EJB
about 216
key Hibernate objects, injecting 217-219

Hibernate application
console configuration, Eclipse project 200
creating 196
database schema, creating 197
database schema, reversing into Java

classes 202-204
deploying 212-214
Eclipse project 198-201
EJB 3, generating 215, 216
Hibernate configuration, adding to

project 206
packaging 212-214
web client, adding to project 207-212

Hibernate SessionFactory 206
high availability datasources

about 69
clustered RDBMS 69
configuration 69

host element 150

HTTP 163
HTTP cache management

BuddyReplicationConfig attribute 293
CacheMode attribute 293
configuring 293
LockAcquisitionTimeout attribute 293
SyncReplTimeout attribute 293

HTTP communication
securing, with certificate signed by a CA

349, 350
securing, with self-signed certificate 348,

349
HTTP role authentication, AppStore

application security
about 356
passwords, encrypting 359-361

HttpSession passivation/activation 305
HTTP session replication

attributes 303
configuring, on web applications 302
testing 328-330

Hypersonic SQL 61
Hypertext Transfer Protocol. See HTTP

I
idleTimeoutSeconds element 314
insertCustomer() method 141
installation

Eclipse 16
Java environment 9
JBoss AS 5.0 12

interceptor methods 93
interceptors

about 100
class-level interceptors 94
default interceptors 94
method-level interceptors 94

interceptor stack 101
InvokeStats attribute 102
IsolationLevel 296

J
J2EE Connector Architecture

about 26
JBoss Tools plugins 17

[390]

JAAS 62
JaasSecurityManager 342
JAAS security model

about 333, 334
login module 333

Java Authentication and Authorization
Service. See JAAS

Java Community Process. See JCP
Java Connector Architecture. See JCA
Java EE programmatic security 363
Java Enterprise Edition. See JEE
Java environment

installing 9-12
Java Management Extension. See JMX
Java Message Service. See JMS
Java non-blocking I/O(NIO) protocol 159
Java Persistence API. See JPA
Java Security API

about 331
authentication 331
authorization 332

Java Transaction API. See JTA
Java Virtual Machine. See JVM
JAX WS 254
JAX WS architecture

about 254, 255
dispatcher module 254

JBC
about 290
cache configuration 291
cache modes 290
concurrency 296
EJB3 stateful session bean cache,

configuring 294
entity bean caching, configuring 294
HTTP cache management, configuring 293
issues 296

JBM security store 191
JBoss

JSF, installing 134
versions 149

jboss.system 43
JBoss AS

about 9, 23
features 24

JBoss AS, features
application server structure 26
core modules 25

JBoss AS 5.0
installing 12
JBoss Microcontainer kernel 29
new library configuration 29
server configurations 31

JBoss AS 5.0 installation
about 12
JBoss, starting up 13, 14
JBoss, stopping 15
JBoss, stopping on remote machine 15

JBoss AS 5.0 server configurations
about 31
former server configurations 33
standard configuration 31
web configuration 33

JBoss AS 5 cluster configuration
about 285
cluster nodes, running on same machines

287, 288
cluster nodes, running on separate

machines 286, 287
configuration files 286
JBoss AS, starting in cluster mode 286
multiple clusters, running on same

network 288
JBoss AS Administration Console

about 242
applications, deploying/undeploying 243,

244
applications, managing 242
applications, restarting 245
applications, starting 245
applications, stopping 245
applications, updating 244
metrics 248
new resource, adding 246, 247
resources, administering 245
resources, managing 247

JBoss AS Applications
securing 355

JBoss AS cluster
architecture 283
introducing 282

[391]

JBoss AS clustered services
about 289
HA-JNDI service 299
HAPartition service 297
JBC 290

JBoss AS clustering architecture
about 283
external load balancer 285
smart proxies 284

JBoss AS service map 35
JBoss AS services

about 35
Bsh deployer 35
EJB 2 35
EJB 3 35
Hot deployment 35
Hypersonic DB 35
JBoss Mail 35
JBoss WS 35
jUDDI 35
key generator 35
messaging 35
scheduling 35

JBoss Cache. See JBC
JBoss Clustering 23
JBoss EJB 3.0 framework 25
JBoss Messaging

about 25
basic concepts 186
cutting-edge concepts 186

JBoss Messaging bridge
about 186
configuring 186
remote JMS provider, adding 187, 188

JBoss Messaging system
about 167
connection factories, configuring 168, 169
DLQ attribute 172
DownCacheSize attribute 173
ExpiryQueue attribute 172
FullSize attribute 172
JMS destinations, configuring 170
JNDIName attribute 172
MaxDeliveryAttempts attribute 172
MaxSize attribute 173
name attribute 172

pageable channels 173
PageSize attribute 173
RedeliveryDelay attribute 172
scheduled delivery 173
SecurityConfig attribute 172

JBoss Microcontainer kernel
about 29
features 29

JBoss Microcontainer project 24
JBoss Perspective 20
JBoss security framework 190
JBoss Server View 20
JBoss services

monitoring 41
JBossSX

about 334, 335
jmx-console security policy 336
login policies 335

JBoss thread pool
about 47
advantages 47
analyzing 50, 51
anatomy 48

JBoss Tools plugins
Eclipse, connecting with JBoss 20-22
installing 17
manual installation 19

JBoss Transaction
about 74
configuring 74
JTA, implementing 74
monitoring 76

JBossTS 26
JBoss virtual file system 38, 39
JBoss Web 26
JBoss Web Server

advices, tuning 158
configuring 149, 150
connectors, customizing 151
context, configuring 154, 155
HTTP logs, configuring 156, 157
virtual hosts, configuring 155, 156

JBoss Web Service. See JBossWS
JBoss Web Services stack

about 253
JBoss WS native 254

[392]

JBoss Web Service tools
bottom-up 253

JBossWS 251
JBossWS tools

about 261
wsconsume 261
wsprovide 261
wsrunclient 261

JCA
about 59
components 60
datasource, configuring 60, 61
diagrammatic representation 60
new datasource, setting up 63, 64

JCP 23
JEE 59
JGroups 283
JkMount 307
JkMountFile directive 307
JMS

about 163
asynchronous mode 165
building blocks 165
durable subscription 164
introducing 164
non-durable subscriber 164
point-to-point model 164
queues 164
synchronous mode 165
topics 164

JMS API
non-persistent mode 165
persistent mode 165

JMS applications
developing 174
MDBs 174
MDP 182
sample application, creating 175

JMS clustering 309
JMS destinations

advanced message configuration 171
configuring 170
destination attributes, inspecting 170
MDB access control 193
securing 190-192

JMX
about 221
architecture 222
JMXabout 24
MBeans 221

jmx-console 29
jmx-console security policy

about 336
code 336
dynamic login configuration 339, 340
module-options 336
name element 336
stacked login configuration 341, 342

JMX architecture
about 222
agent level 222
distributed services level 222
probe level 222

JMX Console
auditing 343
dynamic login configuration 339
logging 342
securing 336
stacked login configuration 341
transport layer, securing 344-346

JMX console
about 42
agent view 42
domains 42
example 44
inner frame 42
JNDI tree, displaying 44, 45
left frame 42

JNDI tree
displaying, JMX console used 44

JPA
about 109
appstore application, creating 111
database, setting up 111
Enterprise Java Persistence standard 109
JPAabout 26
JPQL 110
working with 110

JSF
installing, on JBoss 134-136

[393]

JSF managed bean
adding 139-141

JSRs 23
JTA 74
JTA transactions 74
jUDDI 32
JVM

about 9
installing 9

K
KeepAliveTime parameter 48
keytool 348

L
layouts 56
library configuration, JBoss AS 5.0

about 29, 30
client libraries 29, 30

load balance policy, SLSB 312
FirstAvailable 313
FirstAvailableIdenticalAllProxies 313
RandomRobin 312
RoundRobin 312

load balancing 306
local transaction 73
log4j

about 52
components 52

logging categories
about 56
logger, configuring 57

logging services
configuring 52
managing, via JMX agents 58, 59

login-config element
about 358
basic authentication 358
digest authentication 358
form-basic authentication 358

login modules
BaseCertLoginModule 338
CertRolesLoginModule 338

ClientLoginModule 339
DatabaseCertLoginModule 338
DatabaseServerLoginModule 338
IdentityLoginModule 338
LdapExtLoginModule 338
LdapLoginModule 338
RunAsLoginModule 338
SimpleServerLoginModule 338
SRPCacheLoginModule 339
SRPLoginModule 339
UsersRolesLoginModule 338

login policies, JBossSX
client-login 335
HsqlDbRealm 335
JBossWS 335
JMSRealm 335
JmsXARealm 335
jmx-console 335
web-console 335

LRU cache 62

M
max-unreplicated-interval attribute 304
MaxConnectionsInUseCount attribute 66
MaximumPoolSize parameter 48
MaximumQueueSize parameter 48
maxSize attribute 101
maxSize parameter 105
MBeans

about 42
application, testing programmatically 228-

230
developing 223
testing, from JMX Console 227

MBeans, JMX
about 221
dynamic MBeans 222
model MBeans 223
open MBeans 223
standard MBeans 222
types 222

MBeans development
about 223
JBoss service pattern, used 223

[394]

MBeanExample, creating 224-226
MBeans dependency 230, 232
simple Mbean example 223

MBeans notifications
custom notifications, sending 236
heartbeat notifications, receiving 235, 236
sending 233, 234

MBean view 43
MDBs

about 174
configuring 175
life cycle 175

MDB singletons
creating 182

MDP
about 182-185
using 183

message-driven beans. See MDBs
message-driven POJOs. See MDP
message consumers, JMS 166
message producers, JMS 166
messaging 163
method-level interceptors 94
MinimumPoolSize parameter 48
model MBeans 223
monitoring options, JBoss services

admin console 42
JMX console 41-45
twiddle 46
twiddle command execution tool 42
Web console 41

multicast 283
multiple cluster partitions 282
MVC framework 134
MySQL Cluster solution 69

N
new datasource, setting up

about 63, 64
connection pool statistics, gathering 64
datasources, deploying at application

level 68
high availability datasources 69
remote client, connecting from 70
XA MySQL datasource file example 64

NodeLockingScheme
about 296
MVCC 296
optimistic locking 296
pessimistic locking 296

O
objectstream 32
open MBeans 223
OpenSSL libraries 159
optimistic locking 73
Oracle RAC 70

P
pageable channels 173
parameters, HA-JNDI service

autoDiscoveryAddress 301
autoDiscoveryBindAddress 301
autoDiscoveryGroup 301
autoDiscoveryTTL 302
backlog 301
bindAddress 301
clientSocketFactory 302
discoveryDisabled 301
loadBalancePolicy 302
port 301
rmiBindAddress 301
rmiPort 301
serverSocketFactory 302

PatternLayout class 56
performance tips

DNS lookup, disabling 158
HTTP connector, selecting 158
thread pool size, setting 159

persistence service
about 189
configuring 189, 190

pessimistic locking 73
plugin, Eclipse 17
POJO Web Service, developing

about 255
external Web Service clients 267
JBossWS tools, using 261-265
Web Service, inspecting 259, 260

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[395]

POJOWebService encryption
about 378
SOAP messages, signing 381

Prepared Statement cache size parameter 67
probe level, JMX architecture 222

Q
QueryCache 325
QueueSize parameter 50

R
realm element 150
Remote Method Invocation. See RMI
removalTimeoutSeconds 314
replication-trigger attribute 303
replication granularity attribute 304
resource adapter 60
ResourceRollbackCount attribute 77
RMI 163
RMI-IIOP 32
RMI transport

about 351
client truststore, adding 353, 354
securing 351, 352

rolling file appender
about 54
file, rolling by size 55

root category configuration 57
runtime environment 21

S
sample application, JMS

creating 175-181
MDB singletons, creating 182

SAR extension 226
saveOrder() method 141
scheduled delivery 173
secure Java SE clients

about 364
writing 364, 366

Secure Socket Layer, JBoss AS
certificate management tools 347
enabling 347

HTTP communication, securing with
certificate signed by a CA 349, 350

HTTP communication, securing with
self-signed certificate 348, 349

RMI transport, securing 351, 352
security-domain 62
SecurityClient class

writing 366
security constraint

about 357
elements 357

selectOneMenu element 143
self-signed certificate 348
server element 150
server thread dump 51
service element 150
Service POJOs

about 237, 238
dependency 242
service, exposing 241
web test client, creating 239, 240

servlet API 133
session bean client

creating 124-129
Session Beans

about 81
developing 81
SFSB 81
SLSB 81
types 81

sessions, JMS 166
SFSB

about 81, 96
clustering 313, 314
developing 97-100
diagrammatic representation 96
life cycle 96

singleton 182
SLSB

about 81
application, deploying 89, 90
clustering 312
diagrammatic representation 82
interceptors, adding 93-95
life cycle 81

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[396]

load balance policy 312
SessionBeanExample, setting up 83-87
test client, creating 91-93

snapshot-interval attribute 305
snapshot mode attribute 305
SOAP Envelope 252
SOAP message handlers 254
SOAP messages

debugging 382, 383
encrypting process 374, 375
signing 381, 382

SOAP protocol 252
socket pollers 152
SSL BlackJack 368
standard configuration, JBoss AS 5.0 31
standard MBeans 222
Stateful Bean passivation

about 107
disabling 107

Stateful Session Bean cache
clustered cache configuration 105
configuring 104, 105
non-clustered cache configuration 105
Stateful Bean passivation, disabling 107,

108
Stateful Session Beans. See SFSB
Stateless Session Bean pool size

configuration, specializing 103, 104
configuring 101, 103

Stateless Session Beans. See SLSB
Struts framework 134
symmetric encryption 344

T
test client

creating 130
Thread Local Pool 102
thread pool

monitoring 160
thread reaper 75
three-layer architecture

business tier 80
data tier 81

presentation tier 80
timeout attribute 101
track-statements 62
transaction

about 71
ACID properties 71
terminating ways 71

transaction isolation
about 72
levels 72

transaction isolation levels
read committed 72
read uncommitted 72
repeatable read 72
serializable 72

transaction management 71
transaction service

configuring 71
data integrity, preserving 72
global transaction 73
JBoss Transaction, configuring 74
local transaction 73
optimistic locking 72, 73
pessimistic locking 72, 73

transient fields 107
twiddle 29

about 46
commands 46

U
URL deployment scanner 33
UserTransactionSessionFactory 44
UUIDKeyGeneratorFactory 44

V
value attribute 102
valve element 150
VDF 24
VFS 24
view tag 143
Virtual Deployment Framework. See VDF
virtual file system. See VFS

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

[397]

W
web application

assembling 145
clustering 327, 328
deploying 146, 147
store, running 148

web configuration, JBoss AS 5.0
about 33
limitations 33

web layout
developing 133
JSF managed bean, adding 139, 141
navigation rules, setting up 137, 138
view, setting up 142-144

weblog. See blog
Web Service concepts

about 252
building strategies 253
JBoss Web Services stack 253

Web Service Handler chains 275
WebServiceProject 256
Web Services

securing 370
Web Services, coding with JBossWS

about 255
EJB, exposing 268
POJO Web Service, developing 255-258

Web Services authorization 371-373
Web Services encryption

about 374
jboss-wsse-client.xml 377
jboss-wsse-server.xml 376
levels 374
security, at messaging level 374
security, at transport level 374

Web Services security
about 370
Web Services authorization 371, 373
Web Services encryption 374

wsconsume tool
about 262
arguments 263
CalculatePowerService.java file 263
POJOWebService.java file 263

WSDL 252
wsprovide tool 262

X
XML-based registries 252

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Thank you for buying
JBoss AS 5 Development

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing JBoss AS 5 Development, Packt will have given some of the
money received to the JBoss Application Server project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Drools JBoss Rules 5.0
Developer’s Guide
ISBN: 978-1-847195-64-7 Paperback: 320 pages

Develop rules-based business logic using the Drools
platform

1.	 Discover the power of Drools as a platform for
developing business rules

2.	 Build a custom engine to provide real-time
capability and reduce the complexity in
implementing rules

3.	 Explore Drools modules such as Drools Expert,
Drools Fusion, and Drools Flow, which adds
event processing capabilities to the platform

4.	 Execute intelligent business logic with ease
using JBoss/Drools, a stronger business-rules
solution

JBoss Tools 3 Developer's Guide
ISBN: 978-1-847196-14-9 Paperback: 408 pages

Develop JSF, Struts, Seam, Hibernate, jBPM, ESB,
web services, and portal applications faster than
ever using JBoss Tools for Eclipse and the JBoss
Application Server

1.	 Develop complete JSF, Struts, Seam,
Hibernate, jBPM, ESB, web service, and portlet
applications using JBoss Tools

2.	 Tools covered in separate chapters so you can
dive into the one you want to learn

3.	 Manage JBoss Application Server through JBoss
AS Tools

4.	 Explore Hibernate Tools including reverse
engineering and code generation techniques

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

Business Process Management
with JBoss jBPM
ISBN: 978-1-847192-36-3 Paperback: 300 pages

Develop business process models for implementation
in a business process management system.

1.	 Map your business processes in an efficient,
standards-friendly way

2.	 Use the jBPM toolset to work with business
process maps, create a customizable user
interface for users to interact with the process,
collect process execution data, and integrate
with existing systems.

3.	 Use the SeeWhy business intelligence toolset
as a Business Activity Monitoring solution,
to analyze process execution data, provide
real-time alerts regarding the operation of the
process, and for ongoing process improvement

JBoss Portal Server Development
ISBN: 978-1-847194-10-7 Paperback: 257 pages

Create dynamic, feature-rich, and robust enterprise
portal applications

1.	 Complete guide with examples for building
enterprise portal applications using the free,
open-source standards-based JBoss portal
server

2.	 Quickly build portal applications such as B2B
web sites or corporate intranets

3.	 Practical approach to understanding concepts
such as personalization, single sign-on,
integration with web technologies, and
content management

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by ALESSANDRO CAROLLO on 18th December 2009

6393 south jamaica court, , englewood, , 80111

	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Installing Core Components
	Prologue
	What you will get in this book
	JBoss big bang

	Introduction
	Installing the Java environment
	Installing JBoss AS 5
	Starting up JBoss AS
	Stopping JBoss
	Stopping JBoss on a remote machine

	Installing Eclipse
	Plugins: The heart of Eclipse
	Installing JBoss Tools plugins
	Installing JBoss Tools plugins manually
	Connecting Eclipse with JBoss

	Summary

	Chapter 2: What's New in JBoss AS 5?
	Application server features
	The core modules of JBoss AS 5
	Cutting edge EJB container
	The new messaging provider
	Rock solid transaction manager
	Enhanced web container
	JBoss Web Services 3.0
	Improved clustering support

	The application server structure

	The next generation application server
	From JMX to the Microcontainer
	The new library configuration

	JBoss AS 5 server configurations
	The "standard" configuration
	The "web" configuration
	The former server configurations

	Creating a custom server configuration
	The starting point: JBoss AS service map
	Custom configuration sample: Adding JMS to the web configuration
	JBoss virtual file system

	Summary

	Chapter 3: Customizing JBoss AS Services
	How to monitor JBoss AS services
	The JMX console
	An example: Using the JMX console to display the JNDI tree

	The admin console
	The twiddle utility

	JBoss AS thread pool
	Application server thread pool anatomy
	How many threads for your applications?
	Analyze what your threads are doing

	Configuring logging services
	Appenders
	Console file appender
	File appenders
	Other appenders

	Layout of logs
	Logging categories
	Configuring your own logger

	Managing logs through JMX agents

	Configuring the connection to the database
	Configuring a datasource in JBoss AS
	Additional datasource properties

	Setting up a new datasource
	Gathering connection pool statistics
	Deploying datasources at application level
	High availability datasources
	Connecting from a remote client

	Configuring the transaction service
	Preserving data integrity
	Global and local transactions
	Configuring JBoss transactions
	Monitoring transactions

	Summary

	Chapter 4: Developing EJB 3 Session Beans
	Java EE made easier
	Developing Enterprise JavaBeans
	Developing Session Beans
	Stateless Session Beans
	Stateful Session Beans

	Configuring the EJB container
	Configuring Stateless Session Bean pool size
	Specializing the configuration

	Configuring the Stateful Session Bean cache
	How to disable Stateful Bean passivation

	Summary

	Chapter 5: Developing JPA Entities
	Data persistence meets a standard
	Working with JPA
	Creating a sample application
	Setting up the database
	Rolling the EJB project
	Creating a Session Bean client
	Creating a test client for our AppStore

	Summary

	Chapter 6: Creating a Web Application
	Developing web layout
	Installing JSF on JBoss AS
	Setting up navigation rules
	Adding a JSF managed bean
	Setting up the view
	Assembling and deploying the application
	Running the store

	Configuring JBoss Web Server
	Customizing connectors
	The new Apache Portable Runtime connector
	Installing the APR connector

	Configuring contexts
	Configuring virtual hosts
	Configuring HTTP logs
	Tuning advice
	Disable DNS lookup
	Choose the right HTTP connector
	Set the correct size for your thread pool
	Monitoring your thread pool

	Summary

	Chapter 7: Developing Applications with JBoss Messaging Service
	Short introduction to JMS
	The building blocks of JMS

	The new JBoss Messaging system
	Configuring connection factories
	Configuring JMS destinations
	Inspecting destination attributes
	Advanced message configuration

	Developing JMS applications
	Message-driven beans
	Configuring message-driven beans

	Creating a sample application
	Message-driven POJOs

	Advanced JBoss Messaging
	JBoss Messaging bridge
	Adding a remote JMS provider

	Configuring the persistence service
	Securing destinations
	MDB access control

	Summary

	Chapter 8: Developing Applications with JBoss and Hibernate
	Introducing Hibernate
	Creating a Hibernate application
	Setting up the database schema
	A new Eclipse project
	Reversing your schema into Java classes
	Adding Hibernate configuration to your project
	Adding a web client to your project
	Packaging and deploying the application
	Using the wizard to generate EJB 3
	Hibernate and EJB: Friends or opponents?
	Using Hibernate with EJB

	Summary

	Chapter 9: Managing JBoss AS
	Introducing Java Management Extension
	Developing MBeans
	A simple MBean
	Testing your MBean from the JMX console
	Testing your application programmatically

	MBeans dependency
	Sending MBeans notifications
	Receiving heartbeat notifications
	Sending your own notifications

	Service POJOs
	Creating a web test client
	Exposing your service as an EJB
	Service POJO dependency

	JBoss AS Administration Console
	Managing applications
	Deploying/undeploying applications
	Updating an application
	Starting/stopping/restarting an application

	Administering resources
	Adding a new resource
	Managing resources

	Metrics

	Summary

	Chapter 10: Developing Applications with JBoss Web Services
	Web Service concepts
	Strategies for building up Web Services
	JBoss Web Services stack
	A brief look at the JAX WS architecture

	Coding Web Services with JBossWS
	Developing a POJO Web Service
	Inspecting the Web Service from the console
	Using JBossWS tools
	External Web Service clients

	Exposing EJB as Web Services
	Handling exceptions in Web Services
	Generating a test client
	Injecting Web Services
	Web Service Handler chains

	Summary

	Chapter 11: Clustering JBoss AS
	Cluster basics
	Introducing JBoss AS cluster
	JBoss AS clustering architecture
	Smart proxies
	External load balancer

	JBoss AS 5 cluster configuration
	Starting JBoss AS in cluster mode
	Running cluster nodes on separate machines
	Running cluster nodes on the same machine

	JBoss AS clustered services
	JBoss Cache (JBC)
	Cache modes
	Cache configuration
	Configuring HTTP cache management
	Configuring EJB 3.0 Stateful Session Bean cache
	Configuring entity caching
	JBoss cache and concurrency

	The HAPartition service
	Exploring HA singletons

	The HA-JNDI service
	Accessing HA-JNDI
	HA-JNDI configuration

	Clustering web applications
	Configuring HTTP replication
	HttpSession passivation/activation
	Configuring load balancing

	JMS clustering
	Summary

	Chapter 12: Developing a Clustered Application
	Clustering Stateless Session Beans
	Clustering Stateful Session Beans
	Deploying a clustered SFSB
	Testing the clustered SFSB
	Programmatic replication of the session

	Clustering entities
	Revisiting the AppStore example
	Inside the second-level cache

	Clustering web applications
	Testing HTTP session replication

	Summary

	Chapter 13: JBoss AS Security
	Approaching Java Security API
	The JAAS security model

	Introducing JBossSX
	Securing the JMX console
	Dynamic login configuration
	Stacked login configuration
	Logging and auditing
	Securing the transport layer
	Enabling the Secure Socket Layer on JBoss AS

	Summary

	Chapter 14: Securing JBoss AS Applications
	Securing the AppStore application
	HTTP role authentication
	Encrypting passwords

	EJB role authorization
	Java EE programmatic security

	Writing secure Java SE clients

	Securing applications at transport level
	Running the AppStore with HTTPS
	Securing the RMI-IIOP transport: SSL BlackJack

	Securing Web Services
	Web Services authorization
	Web Services encryption
	Client and server configuration files

	Encrypting the POJOWebService
	Securing the Web Service
	Securing the client
	Running the example
	Signing SOAP messages
	Debugging SOAP messages

	Summary

	Index

