
9 781484 217955

52999
ISBN 978-1-4842-1795-5

US $29.99

Shelve in:
WebDevelopment/General

User level:
Beginning

SOURCE CODE ONLINE

www.apress.com

Shenoy

Introducing Zurb Foundation 6

Introducing Zurb
Foundation 6

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S®

Introducing Zurb Foundation 6

This book is your easy-to-digest brief introduction to this exciting technology for
building responsive and mobile-� rst websites. Introducing Zurb Foundation 6,
you’ll understand the basics of the latest iteration which comes with new and
exciting features. You will understand how to incorporate Foundation into your
HTML � le and the various options you have, including typography, utility classes,
media, forms, buttons and much more.

Introducing Zurb Foundation 6 will jumpstart your knowledge with an easy-to-
follow approach so you can come to grips with the latest version of the framework.
A downloadable code bundle is also included for you to play with, and therefore
understand, the subtle nuances of the latest version.

—
Aravind Shenoy

www.allitebooks.com

http://www.allitebooks.org

Introducing Zurb
Foundation 6

Aravind Shenoy

www.allitebooks.com

http://www.allitebooks.org

Introducing Zurb Foundation 6

Copyright © 2016 by Aravind Shenoy

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher's location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1795-5

ISBN-13 (electronic): 978-1-4842-1796-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Louise Corrigan
Development Editor: Jim Markham
Technical Reviewer: Ian Devlin
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Michelle Lowman,
James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: April Rondeau
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

First and foremost, I would like to thank my mother Vatsala for standing
beside me throughout my career and while writing this book. She has been my

inspiration and motivation. She is my rock, and I dedicate this book to her.

 

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author��� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

Introduction�� xvii

■■Chapter 1: Quick Start with Foundation�� 1

■■Chapter 2: Grid System and Utility Classes������������������������������������� 9

■■Chapter 3: Typography, Navigation, and Media Attributes������������ 29

■■Chapter 4: CSS Components�� 49

■■Chapter 5: JavaScript Components��� 83

■■Chapter 6: Intro to Foundation with Sass������������������������������������ 107

■■Chapter 7: Foundation Hub�� 119

Index��� 127

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author��� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

Introduction�� xvii

■■Chapter 1: Quick Start with Foundation�� 1

Responsive Web Design and CSS Frameworks�� 1

Getting Started with Foundation 6��� 2

Summary�� 7

■■Chapter 2: Grid System and Utility Classes������������������������������������� 9

Set the Base Correctly with Foundation��� 10

Understanding the Grid Layout��� 11

Responsiveness in Foundation�� 12

Adding Custom Width for the Small and
Large Screen Resolutions�� 15

Nested Columns�� 16

Offsets��� 17

Block Grids�� 18

Visibility Classes�� 20

Utility Classes�� 22

Summary�� 27

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

■■Chapter 3: Typography, Navigation, and Media Attributes������������ 29

Typography��� 29

Navigation�� 30

Menu Component�� 31

Dropdown Menu�� 34

Top Bar�� 36

Breadcrumbs��� 39

Media Components�� 40

Slick Carousel�� 40

Thumbnail�� 44

Flex–Video��� 45

Labels�� 46

Badges��� 47

Summary�� 48

■■Chapter 4: CSS Components�� 49

Buttons��� 49

Button with contextual colors�� 50

Buttons with Hollow style�� 51

Button Sizes��� 52

Button Groups�� 53

Tables��� 59

Progress bars��� 62

Callout Panels��� 63

Range Sliders��� 66

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

ix

Switches��� 68

Checkbox switches�� 68

Radio Switches�� 70

Forms��� 72

Summary�� 81

■■Chapter 5: JavaScript Components��� 83

Tabs�� 84

Accordions��� 87

Dropdowns��� 90

Data-Interchange��� 92

Equalizers��� 94

Modals�� 98

ToolTips�� 102

Data-Toggler��� 104

Summary�� 105

■■Chapter 6: Intro to Foundation with Sass������������������������������������ 107

Getting started with Foundation with SaaS�� 107

Summary�� 118

■■Chapter 7: Foundation Hub�� 119

Foundation HTML Templates and Themes�� 119

Building Blocks��� 120

Resources�� 124

Panini��� 124

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

Motion UI�� 125

Foundation Forums and Support�� 125

Foundation for Apps��� 125

Envoi��� 125

Index��� 127

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Aravid Shenoy is a senior technical writer by profession.
Aravind’s core interests are technical and content
writing, content development, web design, and business
analysis. An engineering graduate from the Manipal
Institute of Technology and an author of several books,
he is a keen learner and believes that there is always a
steep learning curve as life is all about learning.
He was born and raised in Mumbai and resides there.
A music buff - he loves listening to Rock n’ Roll and
Rap. Oasis, R.E.M, The Doors, Dire Straits, Coldplay,
Jimi Hendrix and Michael Jackson rule his playlists. He is
a firm believer in the quote “Do one thing and do it very
well indeed” and in his own words “The most important
thing is to be happy.”

www.allitebooks.com

http://www.allitebooks.org

xiii

About the Technical
Reviewer

Ian Devlin is interested in all things web, and currently works as a frontend engineer for
trivago, in Düsseldorf, Germany. He is an HTML5 Doctor and a founding contributor to
Intel’s HTML5 Hub and has written articles for a number of online developer zones such
as Mozilla, Opera, Intel, and Adobe, and for net magazine. He has also written a book on
HTML5 Multimedia and has been technical reviewer for a number of Apress books.

xv

Acknowledgments

In addition to my mother, I also thank my father Gopalkrishna Shenoy, uncle Satish Rao,
my aunt Godavari, and my sister Aruna for always making me smile in any situation.
I would also like to thank my niece Ajnya who is the echo of my heart and my cousin
Ashwin who has always been a pillar of support.

xvii

Introduction

As the title suggests this is an introduction to Zurb written for Foundation 6. Zurb has
become a useful technology for building fast, responsive websites. Foundation 6 is a
powerful CSS framework for developing scalable front-end code fast. Foundation adheres
to the mobile-first paradigm and comes with built-in HTML, CSS, and JavaScript plug-ins
for creating responsive websites. As the world turns more and more to the use of cell
phones as the primary device for browsing the web, it is critical that all sites enable the
responsive technologies that make mobile the first priority. The beauty of Zurb is that it
saves you the pain of having to develop all of the tools you need to create a responsive
website. This book is meant to introduce you to the basic technologies so that you can
utilize Zurb, saving you and the end users time and aggravation.

This book provides the basics you need to use Zurb effectively. These include tips
on installation, how to use Foundation’s new grid system, its layout, content and other
features. The book shows you how to include features like typography, utility classes,
media, forms, and buttons. There are two chapters dedicated to using the built-in CSS
and JavaScript components. For those looking to take the site a bit further from the
mainstream CSS results, there is a chapter devoted to Foundation with Sass. This chapter
walks you through an example illustrating how to use this CSS pre-processor to make
your site a bit more unique. In all, we hope that you will find this a useful and quick read
that will get you started with creating responsive and efficient web sites.

Programming Code
The programming code for the examples in this book are located in a zip file that may be
updated from time to time. This file may be found in the Source Code/Errata tab on the
book’s page at Apress.com/9781484217955.

www.Apress.com/9781484217955

1

Chapter 1

Quick Start with Foundation

Foundation is a powerful and intuitive CSS framework created by the folks at Zurb for use
in developing front-end code in a quick and efficient manner. Foundation adheres to the
mobile-first paradigm and comes with built-in HTML, CSS, and JavaScript plug-ins for
creating responsive websites.

Backed by a vibrant community, Foundation is a robust toolkit that helps you create
feature-rich websites in a jiffy. Before we delve into it, however, let’s first understand why
responsive web design is important and what the benefits are of using a CSS framework in
web design.

Responsive Web Design and CSS Frameworks
Responsive web design is now the norm, given the reach of smartphones and tablets in
this digital era. Studies suggest that with the advent of e-commerce, consumers would
prefer to purchase from their mobile phones rather than from conventional desktops.
Consumers want mobile websites that are fully functional rather than a watered-down
version of their bulky desktop counterparts.

Responsive web design adopts a one-site-fits-all approach wherein your website is
not limited to a certain device type or screen size. It means that your website will have the
same URL and a single code base on all devices, thereby eliminating the need to create
separate websites for the mobile and desktop versions. This device-agnostic strategy
also results in easy code handling and maintenance. Google recommends responsive
web design as an industry-wide best practice. The most important aspect of responsive
web design is creating an optimal user experience, as users will have access to the same
content irrespective of the device. You do not have to worry about future scalability,
because responsive websites are fluid in nature.

Writing HTML, CSS, and JavaScript code from scratch for a responsive website can
be quite tedious. Add cross-browser compatibility to it and you have an enormous task
at hand. Deadlines for the completion of work and the need to maintain consistency
in coding among the team of designers make it even more difficult. It can be quite an
arduous task indeed to construct the layout and then write loads of JavaScript code to
develop a fancy website.

Chapter 1 ■ Quick Start with Foundation

2

To counter these issues, it is important to have a toolkit that takes into consideration
all the constraints involved when designing a feature-rich website. In short, a CSS
framework helps you streamline your web-design process and helps you develop a
website in an easier and faster way. CSS frameworks come with pre-defined sets of code
and utilities that you can use, eliminating worries about the presentation code and
freeing you to focus on the imperative tasks in your projects.

A CSS framework not only speeds up development but also takes care of concerns
such as cross-browser compatibility and responsiveness. In addition to not writing the
code from scratch, you can also reuse the code several times in your projects. A CSS
framework supports the Dry principle that states that “every piece of knowledge must
have a single, unambiguous, authoritative representation within a system." It means that
instead of copy-pasting code at various places in your file, you can create components
that can be used wherever necessary.

Enter Foundation: an easy-to-use, potent, and advanced CSS framework that helps
you create clean and symmetrical grid-based layouts, thus taking the guesswork out and
saving you huge chunks of development time while at the same time ensuring that your
website scales effectively over devices of any make or screen size.

Getting Started with Foundation 6
Foundation’s usability and semantics-prone pattern makes it the go-to-framework for
your web-design projects. In this section, we will look at the process of setting up the
Foundation files, which can be downloaded from the main website. You need to go
to http://foundation.zurb.com/, where you can see the Foundation homepage, as
displayed in Figure 1-1.

Figure 1-1.  Foundation 6 homepage

http://foundation.zurb.com/

Chapter 1 ■ Quick Start with Foundation

3

We have used Google Chrome as the browser for code examples in this book;
alternatively, you can use Firefox or any compatible browser of your choice. Just make
sure that you use the latest version of your browser, as older versions may not support all
features.

Refer to the following link to be in sync with information related to browser
compatibility:

http://foundation.zurb.com/sites/docs/compatibility.html

In the preceding screenshot, you can see the Zurb Foundation homepage. If you
decrease the browser size or minimize it, you will see that the site is responsive, meaning
it adjusts the layout on screen according to the size of the browser.

See Figure 1-2.

Figure 1-2.  Foundation homepage on a small screen

http://foundation.zurb.com/sites/docs/compatibility.html

Chapter 1 ■ Quick Start with Foundation

4

From the preceding screenshot, you can see that the Foundation site is itself
responsive.

If you click on the Navicon (also known as the Hamburger icon), you can view
the same menu items as are displayed in the top menu bar on both large and medium
screens.

On clicking the Download item, you see the four download options available in
Foundation, namely Complete, Essential, Custom, and Sass (see Figure 1-3).

Figure 1-3.  Download options in Foundation 6

•	 The Complete version contains all the components and utilities
available in Foundation 6.

•	 The Essentials version is a stripped-down version containing the
minimum required components, such as Typography, Grid, and
buttons without the bloat or clutter.

•	 The Custom version includes only those utilities that you need.
You can choose which features you want for your web design
and omit the unnecessary ones, thereby reducing the file size
considerably.

•	 The fourth is the Sass version, which is used if you want to set
your variables and mixins in SCSS.

You need to choose the appropriate version as per your requirements. However,
remember that you will have to include all the missing JavaScript and CSS files (along
with having to recompile Sass files to CSS if you are using Sass) if you upgrade from a
Custom or Essentials download to the comprehensive Complete bundled package.

In our case, we will download the Complete build (i.e., Foundation 6 for Sites).
The advantage of using the Complete version is that you have all the components

you could possibly need, meaning you need not include separate files for individual
functionality. In real-time scenarios, you can use a custom build, as it will be lightweight
and therefore will ensure optimal page-load times. For example, if you only want to use
the grid-layout functionality in Foundation, there is no need to include the JavaScript
plug-ins. This results in less bloat and clutter in your web design.

Downloading the Complete build will result in a Foundation ZIP file that you can
extract and store in the root directory of your useful web projects.

Upon extraction, you will see the following folders and files, as displayed in Figure 1-4.

Chapter 1 ■ Quick Start with Foundation

5

The CSS folder (css) contains all the CSS styles used in Foundation 6. As you can
see, you can either use the minified version (foundation.min.css) or the uncompressed
version (foundation.css). Also, all your custom stylesheets should be placed in this
folder, as it is systematic and helps you avoid confusion (though it is not mandatory).

Figure 1-4.  File structure of Foundation 6

■■ Note A ccording to semantics, Markup should be separate from Presentation. Hence, it
is recommended to not use inline CSS. It is preferable that you keep a separate stylesheet
for your presentation. Hence, you are implementing best practices if you keep your
stylesheet separately. Similarly, custom stylesheets in Foundation need to be stored in the
CSS folder. You can store them anywhere, but keeping all your stylesheets in the CSS folder
results in easy code handling and maintenance.

The js folder contains all the pre-defined JavaScript files. You can also place your
external JavaScript files in this folder.

The img folder is where you place all the images for your web project.

Chapter 1 ■ Quick Start with Foundation

6

Finally, we come to the index.html file. If you open this file in a browser, you will see
the output depicted in Figure 1-5.

Figure 1-5.  Foundation’s index.html page

Another way to include Foundation in your web projects is by using the CDN
(Content Delivery Network).

For starters, a CDN holds copies of your file in several locations across multiple
servers. The files can be images, fonts, scripts, and videos.

The advantages of using a CDN for your projects are as follows:

•	 More servers and easy maintenance

•	 More bandwidth

•	 High performance

•	 Redundancy for fail-safe protection

•	 Optimized caching settings

•	 Parallelized downloads

For Foundation, you can find the CDN links on the following webpage (see Figure 1-6):

http://cdnjs.com/libraries/foundation

http://cdnjs.com/libraries/foundation

Chapter 1 ■ Quick Start with Foundation

7

Instead of using a comprehensive foundation.js CDN, you can opt for a minified
version. Similarly, you can use the minified CSS CDN link instead of the regular one. You
can also use the jQuery CDN link. We will be discussing the basic markup in Chapter 2.

Remember that you should always be connected to the Internet for CDN, as it is
hosted over the web.

We will be using the CDN version links for our code examples throughout the
entire book.

■■ Note  Foundation 6 is a complete overhaul of its earlier versions (you need not know
about the earlier versions of this book, however) and helps you go from prototyping
to production with simpler and more lightweight CSS styles, as well as with greater
accessibility.

Summary
In this chapter, we took a look at an overview of the Foundation framework. We also
gained an understanding of the need for responsive web design and the importance of
a CSS framework for web-design projects. We moved on to understanding the different
download options for Foundation, where you can choose the build type based on your
requirements. In the next chapter, we will look at the symmetrical and clean grid layout
that Foundation provides, along with the built-in utility classes.

Figure 1-6.  Various CDN links for Foundation

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1796-2_2
http://www.allitebooks.org

9

Chapter 2

Grid System and
Utility Classes

Foundation is one of the frameworks that adheres to the mobile-first approach. In the
earlier days, designers used the traditional approach wherein you built a website for
desktops or larger screens initially and then worked them into a watered-down version
for mobile devices. Such an approach was tedious—even more so when you tried to
create an intuitive and feature-rich website. Add code readability and maintenance to it,
and you had a big task on your hands.

However, the mobile-first paradigm advocates designing for smaller screens and
then adding content and additional features for the desktop platform. Moreover, with
e-commerce, exponentially-increasing bandwidth, and awesome processing power,
the mobile revolution has come a long way, as mobile has become the primary avenue
for Internet use. Mobile-first design also results in better semantics and advocates
an enhanced user experience. Studies have suggested that optimal user experience
combined with responsive and adaptive design boosts the SEO rankings for the site
significantly.

With Foundation, we have a 12-column grid with the option of adhering to a fixed
layout. There is also a new feature called Flexbox grid, which is essentially a float grid with
attributes such as automatic sizing, responsive adjustments, alignment, and new source
ordering, which is quite handy when it comes to developing intricate websites. Flexbox is
available only with Sass; there is no CSS version of it as of now.

In this chapter, you will learn about Foundation’s basic markup as well as its grid
layout and other attributes, such as centering, offsets, and the nesting of columns. We will
also take a look at the various Utility classes.

We will be using Notepad++ for all the examples in this book. Also, we will be using
CDN links instead of local CSS, JavaScript, and jQuery files (present in the Foundation
package) for examples in this book so as to simulate a real-time scenario.

Chapter 2 ■ Grid System and Utility Classes

10

Set the Base Correctly with Foundation
The HTML markup for a Foundation page is shown in Listing 2-1.

Listing 2-1.

<!doctype html>
<html class="no-js" lang="en">
 <head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>Foundation | Interchange</title>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/
foundation/6.0.1/css/foundation.min.css">
 
<script src="https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/
vendor/jquery.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/
foundation.min.js"></script>
 
 </head>
 <body >
 �<script src="https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/
vendor/what-input.min.js"></script>
 <script>
 $(document).foundation();
 </script>
  
 </body>
</html>

In Listing 2-1, you can see various tags in the <head> and <body> sections.
Let’s look at the <head> section first. In the <head> section, the charset meta tag

is used to define an HTML document’s character set. The viewport meta tag helps
designers control the viewport, which is the portion of the web page visible to the user.
While width=device-width sets the width of the page as per the device screen, initial-
scale=1.0 instructs the device to display the page without any zooming. Then, we
introduce the CDN links. The Foundation CDN links can be found on the following site:

https://cdnjs.com/libraries/foundation

We define the foundation.min.css CDN link in the <link> tag, and this is
used for the default CSS file. The jquery.min.js and foundation.min.js links are
defined in separate <script> tags. The jquery.min.js link has to be inserted before
the foundation.min.js link, as Foundation’s JavaScript plug-ins and attributes are
dependent on jQuery.

https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/css/foundation.min.css
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/css/foundation.min.css
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/jquery.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/jquery.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/foundation.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/foundation.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/what-input.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/what-input.min.js
https://cdnjs.com/libraries/foundation

Chapter 2 ■ Grid System and Utility Classes

11

Just before we call the Foundation function, we need to include the what-input.
min.js CDN link. This file is used to track the current input method, whether it be a
mouse, keyboard, or touchscreen. It helps during scripting interactions, where it exposes
a simple API and improves track focus by adding data attributes to the body instead of
cluttering the DOM with classes on the elements that can be interacted with.

For more info on what-input, check the following link:

https://github.com/ten1seven/what-input

Just before closing <body> tag, we call the Foundation function to initialize
Foundation’s built-in JavaScript plug-ins on your page.

This basic structure will be followed for most of the code samples in this book.

Understanding the Grid Layout
A grid layout helps you achieve good readability, high flexibility, and page cohesiveness.
By default, you can create powerful and potent layouts with a 12-column Foundation
grid. Moreover, you can use attributes such as nesting within the columns, offsets, push-
and-pull attributes, and the centering of the grid columns to build aesthetically pleasing
websites. The 12-column grid helps you lay out your content in an organized manner.

Before we venture into understanding the grid-layout functionality in Foundation 6,
let’s look at some common terminology:

row - a horizontal container that spans the width of the web
page (or the container width, if it is a nested row)

column - vertical columns within a row; you can specify their
width using classes

small – classes meant for small screens (screens less than
640px in width). For example, if you assign a .small-7 class
to an element, that element will span across 7 virtual columns
on your mobile screen.

medium – classes meant for medium-sized screens such as
tablets (to be precise, for screens more than 640px and less
than 1024px in width). If you assign a .medium-7 class to an
element, that element will span across 7 columns on your
tablet screen.

large – classes meant for large screens such as desktops
and laptops (to be precise, for screens more than 1024 px
in width). If you assign a .large-7 class to an element, that
element will span across 7 columns on your desktop or laptop
screen.

By default, if you specify the small class only and do not mention the medium
or large classes, then the larger devices will inherit the styles from the small class. On
the other hand, if you just mention the large class and no other responsive size, all the
elements will stack on top of each other on a small-screen device.

https://github.com/ten1seven/what-input

Chapter 2 ■ Grid System and Utility Classes

12

You can use the small, medium, and large classes together in conjunction if you want
to specify the custom width for an element on small-, medium-, and large-screen devices
respectively. In the following sections, we will learn about each attribute related to the
grid system in Foundation.

Responsiveness in Foundation
You do not have to write separate code for responsiveness when you are using
Foundation. Let’s understand it by means of an example.

The first thing to be done is to create a row:

<div class="row">
 </div>

We use the .large classes for larger devices such as desktops and laptops. As
mentioned earlier, if we do not use any other responsive class other than the large class,
all the columns will stack on top of each other when we reduce the browser size to
simulate a mobile screen. The Foundation grid contains 12 columns, and therefore if you
want your element to span across the first four columns on a large screen, you need to
use the .large-4 class. (But remember, if you define a .small class only, then the larger
devices will inherit those styles.)

The code snippet would be as follows:

<div class="large-4 columns">
 <h1>Welcome to Foundation</h1>
 </div>

If you see the code, you can observe that we have used the word columns next to the
.large-4 class. It is important to understand that the .columns class is compulsory, as
you are defining the span of your element across the 12 virtual columns. You can also use
the .column class instead of .columns, as the protocol is the same whether you use the
singular or plural verbiage.

We will be using code snippets for the example in the book. For the entire code, you
can refer to the code bundle.

In the code examples in this book, we have used sample text from the following link:

http://www.catipsum.com/

This text is used as sample text and therefore, in the examples, we will use the first
three words—i.e., Cat Ipsum dolor...—instead of the entire sample text. However, in the
code bundle, you can see the entire text used for that example.

http://www.catipsum.com/

Chapter 2 ■ Grid System and Utility Classes

13

The code snippet shown in Listing 2-2 sheds more light on the grid layout:

Listing 2-2.

<div class="row">
 <div class="large-4 columns" style="background: #00FF00;">
 Cat ipsum dolor...
 </div>
 <div class="large-6 columns" style="background: #D2B48C;">
 Cat ipsum dolor...
 </div>
 <div class="large-2 columns" style="background: #FFFF00;">
 Cat ipsum dolor...
 </div>
</div>

The output of the code is shown in Figure 2-1.

In the code, we used .large-4, .large-6, and .large-2 classes for the <div>
elements with the same text content, and we applied lime, tan, and yellow backgrounds
to them respectively. Figure 2-1 shows the way the output looks on a large screen. If you
reduce the browser size, the columns will stack on top of each other, as displayed in
Figure 2-2.

Figure 2-1.  Grid functionality

Chapter 2 ■ Grid System and Utility Classes

14

From the preceding screenshot (Figure 2-2), you can see that the content was
adjusted dynamically. When we reduced the browser size, the content was displayed
differently without your having to write separate code. Therefore, there is a change in
the layout of the web page depending on the user’s screen size without your specifically
writing custom code for that purpose; responsiveness is baked into the framework.

Figure 2-2.  Responsiveness using Foundation

Chapter 2 ■ Grid System and Utility Classes

15

Adding Custom Width for the Small and
Large Screen Resolutions
Foundation was one of the first frameworks to adopt a mobile-first approach. Hence, you
can code for small screens and then customize the column size for large screens.

Let’s make some changes to the first <div> element in Listing 2-2 by adding a
.small-6 class in conjunction with the existing .large-4 class. Do not add the .small-6
class to the remaining <div> elements so that you can see the difference on a small
screen.

<div class="small-6 large-4 columns" style="background: #00FF00;">
 Cat ipsum text...
 </div>

The output of this code is displayed in Figure 2-3.

Figure 2-3.  Grid layout after adding custom width for smaller screens

Chapter 2 ■ Grid System and Utility Classes

16

As seen in the preceding screenshot, the content spans across six columns on a
smaller screen, as we had used the .small-6 class in conjunction with the .large-4
class. Therefore, on a small screen, the content will be spread across six virtual columns,
whereas on the large screen, it will span across four virtual columns.

Remember, if you use only the .small class and do not define any other responsive
class (i.e., large or medium), then those styles would be adapted for the larger devices. For
example, if we had used .small-6 as the only defined class, then the default class for the
.large and .medium classes would automatically be .large-6 and .medium-6 respectively.

Nested Columns
Nesting grids is incredibly easy to do in Foundation 6. You can create columns within a
defined column by introducing a row inside that defined column.

Let’s understand this using a code sample. Create two elements than span across 8 and
4 columns on the 12-column grid respectively (they should contain the text Parent Column 1
and Parent Column 2). Introduce a row inside the element defined by the .small-8 class.
We will create two columns (Nested 1 and Nested 2) with widths spanning 8 columns and
4 columns respectively. Then we will introduce a row inside the Nested 1 column and create
two columns (with the text Sub-Child1 and Sub-Child 2) using the .small-6 class.

We have used the border CSS property for more clarity in the output. The code
snippet used in the example is as displayed in Listing 2-3.

Listing 2-3.

<div class="row">
 <div class="small-8 columns" style="border: 5px solid #FF0000">Parent Column l
 <div class="row">
 <div class="small-8 columns"style="border: 5px solid #7CFC00;">Nested 1
 <div class="row">
 �<div class="small-6 columns" style="border: 5px solid

#0000CD;">Sub Child 1</div>
 �<div class="small-6 columns" style="border: 5px solid

#FF00FF;">Sub Child 2</div>
 </div>
 </div>
 �<div class="small-4 columns" style="border: 5px solid #000000;">

Nested 2</div>
 </div>
 </div>
 <div class="small-4 columns"style="border: 5px solid #228B22;"> Parent Column 2</div>
</div>
 </div>

The output of the code would be as displayed in Figure 2-4.

Chapter 2 ■ Grid System and Utility Classes

17

The columns (Nested 1 and Nested 2) that were nested inside Parent Column 1 do not
occupy the entire grid, but only span the width of the parent column, even though they
have been assigned the .small-8 and .small-4 classes. Similarly, the two child columns
(Sub Child 1 and Sub Child 2) occupy and fit themselves within their parent column (i.e.,
Nested 1). Therefore, the child columns occupy the space of their parent columns only
and not the entire grid.

Offsets
Offsets in Foundation help you move the columns to the right, meaning you can push
columns over for more spacing. Let’s understand this using a simple code example. We
will create an element spanning two columns on the grid. The next element, spanning
four columns across the grid, must be placed to the extreme right.

In order to do so, we will use the .small-2 class for the first column element and
.small-4 small-offset-6 class for the second element. The first column element will
then occupy the width of two grid columns, and the second column element will occupy
four grid columns but will be shifted six columns to the right, as the .offset class shifts
the element to the right, as defined in the code.

You also have the .small-centered class, which is used for positioning the column
element appropriately in the middle of the screen irrespective of its width across grid
columns. In this example, we will use the .small-centered class for positioning the
heading inside the header <h1> tags. We have used the inline CSS border property for
better illustration.

The code snippet for the Offset property is displayed in Listing 2-4.

Listing 2-4.

<body>
 �<h1 class="small-2 small-centered columns" style="border: 5px solid
#228B22;"> Foundation <h1/>
 <div class="row">
 <div class="small-2 columns" style="border: 5px solid #FF0000"> Typical </div>
 �<div class="small-4 small-offset-6 columns" style="border: 5px solid
#FF00FF"> Offset example </div>

</div>

Figure 2-4.  Nested grids

Chapter 2 ■ Grid System and Utility Classes

18

 <script>
 $(document).foundation();
 </script>
 </body>

The output of the code is displayed in Figure 2-5.

You can see how offsets and centering work in Foundation 6.

Block Grids
Block grids are a handy feature in Foundation, as they help you evenly split the contents
of a list within the grid. You can further customize it for medium or large screens, thereby
enhancing the user experience significantly.

The code snippet for the block-grid functionality is displayed in Listing 2-5.

Listing 2-5.

<div class="row small-up-3 medium-up-4 large-up-5">
 <div class="column">
 �<img src="http://lorempixel.com/image_output/animals-q-c-640-480-8.jpg"

alt="Animal">
 </div>
 <div class="column">
 �<img src="http://lorempixel.com/image_output/nature-q-c-640-480-2.jpg"

alt="Nature">
 </div>
 <div class="column">
 �<img src="http://lorempixel.com/image_output/transport-q-c-640-480-6.

jpg" alt="Train">
 </div>
 <div class="column">
 �<img src="http://lorempixel.com/image_output/city-q-c-640-480-4.jpg"

alt="City">
 </div>
 <div class="column">
 �<img src="http://lorempixel.com/image_output/technics-q-c-640-480-5.jpg"

alt="Ear Phones">
 </div>
 </div>

Figure 2-5.  Offsets and centered class

www.allitebooks.com

http://lorempixel.com/image_output/animals-q-c-640-480-8.jpg
http://lorempixel.com/image_output/nature-q-c-640-480-2.jpg
http://lorempixel.com/image_output/transport-q-c-640-480-6.jpg
http://lorempixel.com/image_output/transport-q-c-640-480-6.jpg
http://lorempixel.com/image_output/city-q-c-640-480-4.jpg
http://lorempixel.com/image_output/technics-q-c-640-480-5.jpg
http://www.allitebooks.org

Chapter 2 ■ Grid System and Utility Classes

19

The output of the code is displayed in Figure 2-6.
In the code snippet in Listing 2-5, we used the following line of code, which explains

how the output will be displayed on the large, medium, and small screens:

<div class="row small-up-3 medium-up-4 large-up-5">

On a large screen, the block grid will contain five images in a single row. On a
medium-sized screen, the block grid will contain four images, whereas on a small-screen
device, the block grid will contain a maximum of three images in a single row.

Refer to Figure 2-6 to see the output on a large screen.

Figure 2-6.  Block grid on large screen

Figure 2-7.  Block grid on a medium screen

Refer to Figure 2-7 to see the output on a medium screen.

Chapter 2 ■ Grid System and Utility Classes

20

Refer to Figure 2-8 to see the output on a small screen.

Figure 2-8.  Block grid on a small screen

You can see the large screen contains five images in a single row while the medium
screen will display up to four images in a single row; the small screen will display up to
three images in a single row.

For the images, we have used the Lorem-Pixel placeholder facility, which is quite
handy, especially when you need images for demonstrating mock-ups. More information
about this image and text placeholding website can be found at http://lorempixel.com/.

Visibility Classes
Visibility classes are used to hide or show elements based on your device’s display size.
Let’s look at the code snippet displayed in Listing 2-6 to understand them better.

Listing 2-6.

<p class="show-for-small-only"> Web Design </p>
<p class="show-for-medium-only"> Servers </p>
<p class="show-for-large"> Networks </p>

The .show-for-small-only class is used when the content needs to be visible only
on the small screen, meaning you will not be able to see the content on medium or large
screens. The .show-for-medium-only class is used when the content needs to be visible
on medium screens only. If you want to show content on both medium screens and
screens above that size, use the . show-for-medium class without the word only. Similarly,
in the code snippet we have used the .show-for-large class, which means the content
will be visible on large and extra-large screens.

The output of the code on a large screen will be as displayed in Figure 2-9.

http://lorempixel.com/

Chapter 2 ■ Grid System and Utility Classes

21

In Figure 2-9, you can see that the content can be seen on large screens and above.
Refer to Figure 2-10 to view the content as seen on medium screens.

Figure 2-9.  Content on large and extra-large screens

Figure 2-10.  Content on medium screens

Figure 2-11.  Content on small screens only

You can see the content only on the medium screen, as we used the .show-for-
medium-only class.

Refer to Figure 2-11 to view the content as seen on a small screen.

Chapter 2 ■ Grid System and Utility Classes

22

We can see the content on small screens only, as we used the .show-for-small-
only class.

You can also use .show-for-landscape or .show-for-portrait, depending on
whether it is in landscape or portrait orientation.

You can also control what content should disappear depending on device resolution
using the .hide visibility classes. Refer to the code bundle to see the code example using
the .hide classes.

Utility Classes
Utility classes are helpers that impact the styling of elements in the markup without using
the CSS style sheets. Since utility classes are directly involved with the markup, they speed
up your work significantly. They can be reused, and they maintain consistency in your
code. Let's look at some types of utility classes.

Float Classes
Float classes help you define the float behavior of elements by adding either the .float-
left or .float-right class to the elements. You can clear the floats by using the
.clearfix class. This class is generally utilized for stacking elements horizontally.

Let’s create a callout panel and define the size as well as the float classes along with
using the .clearfix class, as displayed in Listing 2-7.

Listing 2-7.

<div class="small-10 columns">
 <div class="callout primary clearfix">
 Warning
 Eureka
</div>
</div>

In Listing 2-7, we have used the .clearfix class for the callout and then created two
buttons: a button with an alert class, resulting in a red button, and a button with the
.success class, resulting in a green button (Figure 2-12).

Figure 2-12.  Float classes

Chapter 2 ■ Grid System and Utility Classes

23

In Figure 2-12, you can see the floating behavior using the classes as defined in
the code.

Text-Align Classes
You can align the text to the right or left using the text-align classes. You can add more
flexibility by adding the size and media query (only). At the basic level, you use the
.text-left, .text-right, .text-center, and .text-justify classes. However, you can
specify the alignment of the text based on the screen size or device orientation by using
breakpoints.

Let’s look at Listing 2-8.

Listing 2-8.

<div class="callout">
 �<p class="large-text-right">Cat ipsum dolor sit amet, tempora and error
explicabo. Aliqua quia ipsam yet rem. </p>
<p class="large-text-center">Cat ipsum dolor sit amet, tempora and error
explicabo. Aliqua quia ipsam yet rem.</p>
<p class="large-text-justify">Cat ipsum dolor sit amet, tempora and error
explicabo. Aliqua quia ipsam yet rem. </p>
</div>

What we have done is create a callout and three paragraphs and used .large-text-
right, .large-text-center, and .large-text-justify for the first, second, and third
paragraphs respectively.

The output of the code upon execution on a small or medium screen is displayed in
Figure 2-13:

Figure 2-13.  Content on small and medium screens

Chapter 2 ■ Grid System and Utility Classes

24

In Figure 2-13, you can see the content aligned in the usual way, as we did not use
the alignment classes for the small and medium screens. However, since we used the
.large class in conjunction with the text-alignment classes, the output on a large screen
will display the alignment as defined in the code.

Refer to Figure 2-14 to understand it better.

Figure 2-14.  Text alignment on a large screen

In Figure 2-14, you can see the text is aligned to the right, center, and in justified
position as per the alignment classes used in the code sample.

To display code examples on an HTML page, Foundation 6 brings in the <code> tag,
which will result in output that looks like a code snippet on the webpage.

In Listing 2-9, you can see that we have defined the part that should be displayed as
code within the <code> tags. Also, to display the opening and closing tags, we use the <
and > Unicode variants.

Listing 2-9.

<div class="row">
 �<div class="small-10 columns"> <code><div></code>Hey you, Music's
over, Turn off the lights<code></div></code> </div>

 </div>

Therefore, the output seen in Figure 2-15 displays the code defined between the
<code> tags in a highlighted manner.

Right-to-Left Support
Foundation 6 allows you the flexibility to work with languages that are read from right to
left, such as Hebrew, Arabic, and Japanese, to mention a few.

Consider the Listing 2-10 code snippet in English, which is in the usual left-to-right
direction:

Figure 2-15.  Code tags

Chapter 2 ■ Grid System and Utility Classes

25

Listing 2-10.

<div class="callout secondary">
  
<p>Cat ipsum dolor sit amet, tempora and error explicabo. Aliqua quia ipsam
yet rem. Doloremque rem. Inventore. Corporis eius. Totam illo aspernatur yet
amet. Eaque quaerat pariatur. Ipsam ex so pariatur yet laudantium but ipsa
but aute lorem. Deserunt eaque adipisci. Aut nisi yet nostrum quia illo ad.
Ullam ullamco. Minim magna exercitationem for consectetur. </p>
 
<p>Cat ipsum dolor sit amet, tempora and error explicabo. Aliqua quia ipsam
yet rem. Doloremque rem. Inventore. Corporis eius. Totam illo aspernatur yet
amet. Eaque quaerat pariatur. Ipsam ex so pariatur yet laudantium but ipsa
but aute lorem. Deserunt eaque adipisci. Aut nisi yet nostrum quia illo ad.
Ullam ullamco. Minim magna exercitationem for consectetur. </p>
 
<p>Cat ipsum dolor sit amet, tempora and error explicabo. Aliqua quia ipsam
yet rem. Doloremque rem. Inventore. Corporis eius. Totam illo aspernatur yet
amet. Eaque quaerat pariatur. Ipsam ex so pariatur yet laudantium but ipsa
but aute lorem. Deserunt eaque adipisci. Aut nisi yet nostrum quia illo ad.
Ullam ullamco. Minim magna exercitationem for consectetur. </p>
 
</div>

Suppose we were to use the right-to-left direction; all you need to do is add the
direction for the RTL feature tag, as defined in the <html> tag:

<html class="no-js" dir="rtl">

Upon execution of the code, you will see that the content is shifted to the right of the
screen, as shown in Figure 2-16, which depicts the right-to-left placement.

Figure 2-16.  RTL direction

You can also use the language attribute specific to the language being used on the
web page. In the <html> tag, you need to use the lang attribute and give it the value as
defined for that language in Foundation.

Chapter 2 ■ Grid System and Utility Classes

26

Suppose we were to use the Japanese language. You can define it in the lang
attribute, as displayed in the following <html> tag:

<html class="no-js" lang="ja" dir="rtl">

As you can see, we have assigned the ja value to the lang attribute, meaning we are
using the Japanese language. Let’s review the concept using the following code example,
displayed in Listing 2-11.

Disclaimer: We have used sample Japanese text for demonstration. This example is
meant for educational purposes only. Any resemblance to real persons, living or dead,
is purely coincidental. Also, In Listing 2-11, we have just used “...... Sample Japanese text
here......” for illustrative purposes. For actual Japanese text used in this example, refer to
the code bundle that comes along with the book.

Listing 2-11.

 <!doctype html>
<html class="no-js" lang="ja" dir="rtl">
 <head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>Foundation </title>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/
foundation/6.0.1/css/foundation.min.css">
<script src="https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/
vendor/jquery.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/
foundation.min.js"></script>
 </head>
 <body style="padding: 20px 20px;">
 <div class="callout secondary">
 <p>
...... Sample Japanese text here......
 </p>
 
</div>
  
  
 �<script src="https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/
vendor/what-input.min.js"></script>

<script>
 $(document).foundation();
 </script>
 </body>
</html>

https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/css/foundation.min.css
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/css/foundation.min.css
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/jquery.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/jquery.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/foundation.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/foundation.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/what-input.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/what-input.min.js

Chapter 2 ■ Grid System and Utility Classes

27

The output of the code will be as displayed in Figure 2-17.

Figure 2-17.  RTL Japanese demo

In Figure 2-17, you can see how we implement RTL in Foundation 6.

Summary
In this chapter, we took a look at the grid layout and other grid attributes. We also
reviewed the concepts of visibility and utility classes. The positioning of columns by
nesting, offsetting, and centering was explained concisely, thereby helping you build a
solid foundation. These are the very basic fundamentals you should know if you are a web
designer using Foundation 6 for your projects. In the next chapter, we will take a look at
the typography, navigation, and media attributes as we delve deeper into core concepts.

29

Chapter 3

Typography, Navigation, and
Media Attributes

This chapter examines Foundation’s typography, navigation, and media attributes.
Foundation’s typography elements help you create websites which have a high level of
consistency and utilize proper formatting of written information. The default typography
styles help create readable and coherent webpages with maximum impact. Foundation’s
intuitive and easy-to-use navigation components enable access to content and
commercial functionality such as checkout areas. The media attributes of Foundation
enable sophisticated web design.

Typography
Foundation’s typography delivers pleasing web design and clean coding with minimalist
site structures designed for easy readability. For the entire list of typography styles, visit
the Docs area on the Foundation website at http://foundation.zurb.com/sites/docs/
typography-base.html.

To sample the default styles in Foundation, let’s look at the blockquotes and
abbreviation elements. Blockquotes are used to emphasize, isolate, or highlight portions
of text on a website. Abbreviations annotate short forms of = terms with brief comments
or explanations brought to view by hovering over the terms.

Listing 3-1 illustrates the functionality of blockquotes and abbreviations:

Listing 3-1.

<div>
<blockquote>Far far away, behind the word mountains, far from the countries
Vokalia and Consonantia, there live the blind texts. Separated they live in
Bookmarksgrove right at the coast of the Semantics, a large language ocean.
 <cite> Anonymous </cite></blockquote>
</div>
<hr>

<p> The United States is often called <abbr title="United States of
America">U.S.A</abbr></p>

http://foundation.zurb.com/sites/docs/typography-base.html
http://foundation.zurb.com/sites/docs/typography-base.html

Chapter 3 ■ Typography, Navigation, and Media Attributes

30

In the preceding code, sample text including <cite> tags is placed between the
<blockquote>tags. The <cite> tags are used as a reference that includes the title of the
work. Listing 3-1 also exemplifies abbreviation with the term “U.S.A.”. Figure 3-1 displays
the output of the code for blockquotes and abbreviations. Hovering your cursor over
"U.S.A." produces the spelled out term.

Navigation
Foundation provides website navigation that is intuitive and easy-to-use. Streamlining
the navigation is very important for usability purposes and is a hallmark of efficient
web design. Your website users should be able to find their content easily and quickly.
Foundation has many navigation components that help in organizing content on your
website. In Foundation 6, a new component called Menu has been introduced and it will
be necessary to implement it in most of the navigation components.

This chapter covers the following navigation components, in all of which Menu
Component is an integral part:

Menu Components

Menu

Menu Align Right

Expanded Menu

Vertical Menu Nesting

Dropdown menu

Breadcrumbs

Top Bar

Figure 3-1.  Blockquotes and abbreviation

Chapter 3 ■ Typography, Navigation, and Media Attributes

31

Menu Component
The Menu component is used for most of the various navigation components in
Foundation 6. We will learn about the basic options using such Menu features as the
right alignment of the menu, expanded option, and vertical menu nesting and the other
utilities associated with it.

Menu
The .menu class is omnipresent in most of the navigation facets In Foundation 6. All you
need to do is add a .menu class to the tag in the code. It is a major overhaul from the
previous versions and is quite easy to implement as the ul > li> a pattern is followed in all
the menu options. Although it is quite easy to get to grips with it, you need to adhere to
the pattern in which you define the tag followed by the definition of the list with the
 tags, which in turn is followed by the anchor <a> tag, as shown in Listing 3-2.

Listing 3-2.

<ul class="menu">
 Home
 Profile
 Inbox
 Notifications

In Listing 3-2, the .menu class is assigned to the tag, followed by the definition
of the list using the tags. Figure 3-2 shows the output of menu items lying horizontally
next to each other on the webpage.

Figure 3-2.  Menu component

Chapter 3 ■ Typography, Navigation, and Media Attributes

32

Menu Align Right
In the example in the preceding section, the menu items align to the left. To align the
menu to the right, use the .align-right class in conjunction with the .menu class, as in
Listing 3-3.

Listing 3-3.

<ul class="menu align-right">
 Home
 Profile
 Inbox
 Notifications

The right-aligned output of this code on execution is displayed in Figure 3-3.

Expanded Menu
The menu-e feature of Foundation 6 spreads out items such that they consume an equal
amount of space. You do not have to write custom code to adjust the position of the items
because they divide the space evenly between them. Listing 3-4 gives the code snippet for
the menu-expanded.

Listing 3-4.

<ul class="menu expanded">
<li style="border: 5px solid #FF0000;">Home
<li style="border: 5px solid #7CFC00;">Profile

<ul class="menu expanded">
<li style="border: 5px solid #FF0000;">Home
<li style="border: 5px solid #7CFC00;">Profile
<li style="border: 5px solid #000000;">Inbox

<ul class="menu expanded">
<li style="border: 5px solid #FF0000;">Home
<li style="border: 5px solid #7CFC00;">Profile
<li style="border: 5px solid #000000;">Inbox
<li style="border: 5px solid #228B22;">Notifications

Figure 3-3.  Right-alignment for the menu class

Chapter 3 ■ Typography, Navigation, and Media Attributes

33

Listing 3-4 adds the .expanded class to the .menu class.
We have to define the list of items. We have assigned inline borders to the items to

demonstrate the expanded feature. The sample code creates three lists, to each of which
is added an extra menu Item. The output of the code is displayed in Figure 3-4, in which
each successive list has an added item and the items are spread out evenly.

Figure 3-4.  Expanded menu feature

Vertical Menu Nesting
The preceding examples exhibit horizontal orientation of items when we use the .menu
class. If you want instead to create a vertical menu, simply add the .vertical class to the
.menu class. In addition, you can nest the items within a parent item to create a nested
menu, as shown in Listing 3-5.

Listing 3-5.

<ul class="menu vertical">
 Home
 Profile
 Messages
 <ul class="nested vertical menu">
Inbox
Outbox
Spam
Trash

 Notifications

Listing 3-5 uses the .vertical class in tandem with the .menu class to create items:
Home, Profile, Messages, and Notifications. It also creates a nested menu inside the
Messages menu item. The Nested menu inside the Messages list item contains the Inbox,
Outbox, Spam, and Trash items. Note that the nested tag starts immediately after the
anchor <a> tag.

The output of the Listing 3-5 code is displayed in Figure 3-5, in which the nested
menu has padding by default on the inside.

Chapter 3 ■ Typography, Navigation, and Media Attributes

34

From the examples in this chapter so far, you can see the versatility of the Menu
component. You can also remove the default padding from a menu by adding the .simple
class in conjunction with the .menu class.

Dropdown Menu
Creating a dropdown menu in Foundation is quite easy: simply add the .dropdown class
to the .menu class and use the data-dropdown-menu attribute to initialize the dropdown.
You can also have a nested menu in the dropdown component. However, the nested
submenus are always vertical, irrespective of whether the main menu is horizontally or
vertically oriented, as shown in Listing 3-6.

Listing 3-6.

<ul class="dropdown menu" data-dropdown-menu style="max-width: 200px;">
Home
Profile

Messages
<ul class="menu">
Inbox

Figure 3-5.  Nested vertical menu

Chapter 3 ■ Typography, Navigation, and Media Attributes

35

Outbox
 Spam

Notifications

Listing 3-6 shows the .dropdown class used in conjunction with the .menu class
and the data-dropdown-menu attribute assigned to the same container. Further down
in the code snippet, a submenu is created within the Messages item and the .menu
class is assigned to the container for the nested menu. You need to introduce the
container tag for the submenu immediately after the anchor tag for the tag for the
Messages item.

The output of the code displays the four items. Clicking on the dropdown caret icon
associated with the Messages item reveals the dropdown menu, as displayed in Figure 3-6.

Figure 3-6.  Dropdown menu

Chapter 3 ■ Typography, Navigation, and Media Attributes

36

Top Bar
The Top Bar navigation component is an excellent way of organizing content, as shown in
Listing 3-7.

Listing 3-7.

<div class="top-bar">
<div class="top-bar-left">
<ul class="dropdown vertical medium-horizontal menu" data-dropdown-menu>
<li class="menu-text">NoSQL
<li class="has-submenu">
Document Store
<ul class="submenu menu vertical" data-submenu>
RethinkDB
MongoDB
CouchDB

Hadoop
<li class="has-submenu">
Scientific Databases
<ul class="submenu menu vertical" data-submenu>
BayesDB
GPUdb

</div>

Listing 3-7 initially creates a <div> element and assigns the .top-bar class to it. Inside
that <div>, we create another <div> and assign the .top-bar-left class to it. We move on to
creating a list and define the .dropdown and .menu classes to the container tag. In
conjunction with these two classes, we use the .vertical and .medium-horizontal classes.
The .medium-horizontal class is used because the menu items should be in a horizontal
orientation on medium and large screens. The .vertical class is used so that the items
stack vertically on top of each other, as appropriate on a small screen. You need to add the
data-dropdown-menu attribute to the same tag. Then we create a title for the Top
Bar by assigning the .menu-text class to the tag. We thereby define the list of menu
items that will be positioned next to each other on the Top Bar.

We have defined three items—Document Store, Hadoop, and Scientific Databases—
as the values for the menu items. The first item, Document Store, has three submenu
items. Therefore, we assign the .has-submenu class with the tag for the Document
Store item and define the dropdown submenu for it. Note that the container tag for
the submenu comes immediately after the <a> tag. We define the .submenu and .vertical
classes in conjunction with the .menu class for the tag defining the Dropdown list
in addition to adding the data-submenu attribute to it. After defining the list of items, we
proceed to the remaining items for the Top Bar. We also create a dropdown for the last
item similar to the one we created for Document Store.

Chapter 3 ■ Typography, Navigation, and Media Attributes

37

Earlier we applied the .top-bar-left class to the <div> element, as a result of which the
items aligned to the left of the Top Bar. We now use the .top-bar-right class with the <div>
tag and create a Search textbox, as defined in the following code snippet:

<div class="top-bar-right">
<ul class="menu">
<input type="search" placeholder="Search">

</div>

The output of this code on execution is displayed in Figure 3-7.

Foundation’s baked-in tab bar component helps you create a menu toggle on small
screens such as mobiles. To implement that toggle functionality, you need to assign a
unique id to the menu. In this example, we are using "sample" as the id for the menu.
Utilize the tab bar property by creating a <div> and assigning the .title-bar class and the
data-responsive-toggle attribute to it. The value for the data-responsive-toggle attribute
should be the id of the menu that you are going to toggle—in this case, "sample".

You see how simple it is to implement the tab bar functionality. The tab bar can be
seen on the smaller screens, but it disappears on the medium and large screens.

You can also set a breakpoint to hide the data on medium-size screens using the
data-hide-for attribute. You need to assign the “medium” if you want to set a breakpoint
as defined in the Listing 3-8, which shows the entire code snippet for the Top bar
component.

Listing 3-8.

<div class="title-bar" data-responsive-toggle="sample" data-hide-
for="medium">
<button class="menu-icon" type="button" data-toggle></button>
<div class="title-bar-title">Menu</div>
</div>
 
<div class="top-bar" id="sample">
<div class="top-bar-left">
<ul class="dropdown vertical medium-horizontal menu" data-dropdown-menu>
<li class="menu-text">NoSQL
<li class="has-submenu">
Document Store
<ul class="submenu menu vertical" data-submenu>
RethinkDB
MongoDB

Figure 3-7.  Top bar on medium and large screens

Chapter 3 ■ Typography, Navigation, and Media Attributes

38

CouchDB

Hadoop
<li class="has-submenu">
Scientific Databases
<ul class="submenu menu vertical" data-submenu>
BayesDB
GPUdb

 

</div>
<div class="top-bar-right">
<ul class="menu">
<input type="search" placeholder="Search">

</div>
</div>

Listing 3-8 shows that if you decrease the browser size to simulate the output on
a small screen device, you can see the Menu Navicon. If you click on the Navicon (also
called the hamburger icon), you can see the menu items stacked vertically on top of each
other. Figure 3-8 shows the output of the Top bar component on smaller screens. Clicking
on the Document Store or Scientific Databases menu items reveals the vertical submenu.

Chapter 3 ■ Typography, Navigation, and Media Attributes

39

Breadcrumbs
Breadcrumbs is a Foundation utility that directs users to the content flow and
indicates locations on a website. It significantly enhances navigation, especially if
there are lots of pages.

The code sample in Listing 3-9 shows how a breadcrumb is defined. Initially, we use
the <nav> tags. Then we define the tag and add the .breadcrumbs class to it. Then we
define the list items and use the .disabled class to mark disabled items.

Figure 3-8.  Navicon and the menu items on a smaller screen

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Typography, Navigation, and Media Attributes

40

Listing 3-9.

<nav>
<ul class="breadcrumbs">
Home
Profile
Messages
 <li class="disabled">Trash

</nav>

Listing 3-9 uses four list items and assigns the .disabled class to the last one, as
displayed in Foundation 6 (Figure 3-9).

Breadcrumbs is popular in E-commerce sites because it reduces the actions website
users need to take to get to a higher-level page.

Media Components
Foundation’s media components such as Flex-Video and Thumbnails are used to handle
media of various types. For example, Flex-Video ensures that the embedded videos make
up the width of their containing block. The Thumbnail component enables you to create
a thumbnail of an image easily.

We will nonetheless make an exception in one of the Media components. Instead
of using the built-in Orbit Slide for Carousels, we will use a third-party utility called Slick
Carousel to implement the carousels. (A carousel helps you dynamically present content
by cycling through several items within a small space on the web pages.)

Slick Carousel
Slick Carousel is an advanced slider that is fully responsive, scales with its container
block, utilizes CSS3 wherever it is available (as the carousel will load faster, even on slow
connections), and has touch and swipe support—along with the other usual features such
as autoplay and arrow key navigation.

Figure 3-9.  BreadCrumbs

Chapter 3 ■ Typography, Navigation, and Media Attributes

41

The best way to incorporate Slick Carousel in your code is by using Slick’s CDN
with the CSS links in the <head> section and the JavaScript CDN link at the end of the
<body> tag.

The CSS and js CDN links are as follows:

<link rel="stylesheet" type="text/css" href="http://cdn.jsdelivr.net/jquery.
slick/1.5.8/slick.css"/>
<link rel="stylesheet" type="text/css" href="http://cdn.jsdelivr.net/jquery.
slick/1.5.8/slick-theme.css"/>
<script type="text/javascript" src="http://cdn.jsdelivr.net/jquery.
slick/1.5.8/slick.min.js"></script>

Make sure that the above js link is placed after the jQuery CDN link, because Slick is
dependent on jQuery.

We set up the HTML Markup as follows.
Initially we create a <div>and assign a class to it.

<div class="single" >
</div>

Inside the <div>, we create the <div>s and assign the .image class to it and include
the image tag () to define the images, as follows:

<div class="image"><img src="http://lorempixel.com/image_output/animals-
q-c-640-480-8.jpg" alt="Animal"></div>
 <div class="image"><img src="http://lorempixel.com/image_output/
nature-q-c-640-480-2.jpg" alt="Nature"></div>
 <div class="image"><img src="http://lorempixel.com/image_output/
transport-q-c-640-480-6.jpg" alt="Train"></div>
 <div class="image"><img src="http://lorempixel.com/image_output/
city-q-c-640-480-4.jpg" alt="City"></div>
 <div class="image"><img src="http://lorempixel.com/image_output/
technics-q-c-640-480-5.jpg" alt="Ear Phones"></div>

In the <body> section, you have to initialize the slider in an inline script tag.
Alternatively, you can initialize the slider in your script file, that is, an external
JavaScript file.

$(document).ready(function(){
 $('.single').slick({
 infinite: true,
 slidesToShow: 2,
 slidesToScroll: 1,
 });
 });

http://cdn.jsdelivr.net/jquery.slick/1.5.8/slick.css
http://cdn.jsdelivr.net/jquery.slick/1.5.8/slick.css
http://cdn.jsdelivr.net/jquery.slick/1.5.8/slick-theme.css
http://cdn.jsdelivr.net/jquery.slick/1.5.8/slick-theme.css
http://cdn.jsdelivr.net/jquery.slick/1.5.8/slick.min.js
http://cdn.jsdelivr.net/jquery.slick/1.5.8/slick.min.js
http://lorempixel.com/image_output/animals-q-c-640-480-8.jpg
http://lorempixel.com/image_output/animals-q-c-640-480-8.jpg
http://lorempixel.com/image_output/nature-q-c-640-480-2.jpg
http://lorempixel.com/image_output/nature-q-c-640-480-2.jpg
http://lorempixel.com/image_output/transport-q-c-640-480-6.jpg
http://lorempixel.com/image_output/transport-q-c-640-480-6.jpg
http://lorempixel.com/image_output/city-q-c-640-480-4.jpg
http://lorempixel.com/image_output/city-q-c-640-480-4.jpg
http://lorempixel.com/image_output/technics-q-c-640-480-5.jpg
http://lorempixel.com/image_output/technics-q-c-640-480-5.jpg

Chapter 3 ■ Typography, Navigation, and Media Attributes

42

The preceding script assigns the values of 2 to the slidesToShow and 1 to
slidesToScroll to ensure that those two images will be displayed on the screen out of the
five defined images and only one image would scroll at a given point of time.

You can use the data-slick attribute and define conditions for it such as autoplay (For
the various data attributes for Slick Carousel, go to http://kenwheeler.github.io/slick/.)

However, you still have to call $(element).slick () to initialize the slick on the element.
In Listing 3-10 assign the value true to autoplay—as a speed of 2000.

Listing 3-10.

<body style="padding: 50px 50px 50px 50px;">
<div class="single" data-slick='{"autoplay": true, "autoplaySpeed": 2000}'>
<div class="image"><img src="http://lorempixel.com/image_output/animals-
q-c-640-480-8.jpg" alt="Animal"></div>
 �<div class="image"><img src="http://lorempixel.com/image_output/

nature-q-c-640-480-2.jpg" alt="Nature"></div>
 �<div class="image"><img src="http://lorempixel.com/image_output/

transport-q-c-640-480-6.jpg" alt="Train"></div>
 �<div class="image"><img src="http://lorempixel.com/image_output/

city-q-c-640-480-4.jpg" alt="City"></div>
 �<div class="image"><img src="http://lorempixel.com/image_output/

technics-q-c-640-480-5.jpg" alt="Ear Phones"></div>
</div>
 
<script src="https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/
vendor/jquery.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/
foundation.min.js"></script>
<script type="text/javascript" src="http://cdn.jsdelivr.net/jquery.
slick/1.5.8/slick.min.js"></script>
<script type="text/javascript">
 $(document).ready(function(){
 $('.single').slick({
 infinite: true,
 slidesToShow: 2,
 slidesToScroll: 1,
 });
 });
 </script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/
foundation/6.0.1/js/vendor/what-input.min.js"></script>
<script>
 $(document).foundation();
</script>
 
</body>

The output of this Slick Carousel code is displayed in Figure 3-10.

http://kenwheeler.github.io/slick/
http://lorempixel.com/image_output/animals-q-c-640-480-8.jpg
http://lorempixel.com/image_output/animals-q-c-640-480-8.jpg
http://lorempixel.com/image_output/nature-q-c-640-480-2.jpg
http://lorempixel.com/image_output/nature-q-c-640-480-2.jpg
http://lorempixel.com/image_output/transport-q-c-640-480-6.jpg
http://lorempixel.com/image_output/transport-q-c-640-480-6.jpg
http://lorempixel.com/image_output/city-q-c-640-480-4.jpg
http://lorempixel.com/image_output/city-q-c-640-480-4.jpg
http://lorempixel.com/image_output/technics-q-c-640-480-5.jpg
http://lorempixel.com/image_output/technics-q-c-640-480-5.jpg
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/jquery.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/jquery.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/foundation.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/foundation.min.js
http://cdn.jsdelivr.net/jquery.slick/1.5.8/slick.min.js
http://cdn.jsdelivr.net/jquery.slick/1.5.8/slick.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/what-input.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/what-input.min.js

Chapter 3 ■ Typography, Navigation, and Media Attributes

43

Since we have used autoplay, the images will slide automatically. If you leave out
the autoplay feature, you can slide it manually. Carousel is responsive; the output on a
smaller screen is displayed in Figure 3-11.

Figure 3-10.  Slick Carousel

Figure 3-11.  Slick Carousel on a small screen

Chapter 3 ■ Typography, Navigation, and Media Attributes

44

Thumbnail
Foundation’s Thumbnail component can be implemented using minimalistic markup, as
shown in Listing 3-11.

Initially, create an anchor tag <a> and assign the .thumbnail class to it. Assign the
link to the regular image using the href attribute. Create an tag within the anchor
tag and assign the thumbnail image to the source (src) attribute. Also, use the Alt Property
and assign the name of the image to it.

Remember the Regular image and the Thumbnail image are not the same. While
the original image is assigned to the href attribute for the anchor <a> tag, the thumbnail
image is assigned to the tag’s src attribute.

Listing 3-11.

<a class="thumbnail" href="http://lorempixel.com/image_output/animals-
q-c-640-480-1.jpg">
<img src="http://lorempixel.com/image_output/animals-q-c-133-103-1.jpg"
alt="Rhino Photo."/>

The output of the Listing 3-11 code on execution is displayed in Figure 3-12.

Figure 3-12.  Thumbnail displayed on the screen

http://lorempixel.com/image_output/animals-q-c-640-480-1.jpg
http://lorempixel.com/image_output/animals-q-c-640-480-1.jpg
http://lorempixel.com/image_output/animals-q-c-133-103-1.jpg

Chapter 3 ■ Typography, Navigation, and Media Attributes

45

If you click on the Thumbnail, then it will direct you to the original picture whose
dimensions are specified in the code, as displayed in Figure 3-13.

Figure 3-13.  Original image producedby clicking the thumbnail

As you can see, it is easy to implement the Thumbnail feature in Foundation 6.

Flex–Video
The Flex-Video facet is extremely useful because it ensures that embedded videos take
up the width of their containing block. You need to remember that the responsive nature
works only when the container block is responsive, as in Listing 3-12. If the container
block has a fixed width, then the responsive nature will not be functional.

Listing 3-12.

<div class="small-7 small-centered columns" style="margin-top: 30px;
border: 3px solid #0000FF;border-radius: 7px;">
<div class="flex-video widescreen">
<iframe width="420" height="315" src="https://www.youtube.com/embed/
j4cN_q3NX9c" frameborder="0" allowfullscreen></iframe>
</div>
</div>

https://www.youtube.com/embed/j4cN_q3NX9c
https://www.youtube.com/embed/j4cN_q3NX9c

Chapter 3 ■ Typography, Navigation, and Media Attributes

46

Listing 3-12 creates a <div> element and assigns the responsive size for it by using
the .small-7 class. We also assign a .small-centered class to position the video at the
center of the page.

The most important part of the code is where we create a <div> element and
assign the .flex-video class to it. We also include the .widescreen class to make it look
rectangular. Then we inserted the video link between the <iframe> tags. That’s all you
need to make your video work in a responsive manner.

The output of the code on execution is shown in Figure 3-11.

Figure 3-14.  Flex-video implementation

Foundation also has built-in support for Vimeo videos when you assign the .vimeo
class along with the .flex-video class.

Labels
Labels are used to indicate useful information such as relevant and necessary comments,
warnings, updates, and metadata information. You can also use contextual classes such
as .success, .alert, and .warning, depending on the kind of information you want to
convey, as illustrated in Listing 3-13, which uses the .alert, .success, and .warning classes
in conjunction with the .label class.

Chapter 3 ■ Typography, Navigation, and Media Attributes

47

Listing 3-13.

<p class=" success label"> Voila: You made it </p>

<hr>
<p class="alert label">Do not Delete the passwords</p>

<hr>
<p class="warning label">System Settings can be changed by Administrators
only</p>

The output of the Listing 3-13 code on execution is displayed in Figure 3-15.

Badges
Inline Badges are used extensively in social media and e-mail clients to indicate a count
of items, such as the number of unread messages, a notification count, or some useful
information related to a specific item, as illustrated in Listing 3-14.

Listing 3-14.

<div class="row">
<ul class="menu">
Home
 Profile
 Inbox
 <li aria-describedby="messageCount">Notifications <span
class=" alert badge" id="messageCount">33

</div>

Figure 3-15.  Labels

Chapter 3 ■ Typography, Navigation, and Media Attributes

48

Listing 3-14 creates a list of items—namely, Home, Profile, Inbox, and Notifications.
For the Notifications item, we define an inline badge using the .badge class within a
 element. We also define the alert contextual color by using the .alert class in
conjunction with the .badge class. We assign33 as the count to be displayed for the
Notifications item. All this is done within the tags for the Notifications item. Because
the badge is for the Notifications item, we assign an id (messageCount in this example) to
the badge and link that id to the tag using the aria-described by attribute.

The output of the Listing 3-14 code on execution is displayed in Figure 3-16, which
shows the notification count next to the Notifications item.

Summary
This chapter looked at the typography, navigation, and media components of
Foundation. The next chapter will look at other components such as forms, buttons,
dropdowns, progress bars, callouts, and prompts. Mastery of the various utilities in the
Foundation toolkit will enable you to create sophisticated web pages easily and quickly.

Figure 3-16.  Badges in Foundation

49

Chapter 4

CSS Components

The very reason for using a CSS framework is to use its built-in user-interface
components. With its fantastic grid system and components, it is fairly easy to develop
intricate websites. In this chapter, we will take a look at various CSS Components of
Foundation. We will learn about the following components:

•	 Buttons and Button Types

•	 Tables

•	 Progress Bars

•	 Callout Panels

•	 Range Sliders

•	 Switches

•	 Forms

Buttons
Foundation is batteries-included and consists of various kinds of buttons, button
groups, and chained button types. All you need to do is assign a .button class to anchor
tags to create a button; you can alternatively use the <button> tag for creating a button.
According to semantics, if the button links to another page or is a link to an anchor, then
we use the <a> tags. However, if you want to alter something on the current page, then it
is preferable to use the <button> tag.

Let’s look at Listing 4-1 to see the code snippet used for buttons:

Listing 4-1.

Google
Facebook
Twitter

https://www.google.co.in/
https://www.facebook.com/
https://twitter.com/

Chapter 4 ■ CSS Components

50

In the code, you can see that we have added the .button class to the anchor tags for
the buttons and used the href attribute which is essential for URLs for Google, Facebook,
and Twitter respectively.

On executing the code, you will see the three buttons as Google, Facebook, and
Twitter.

If you click on the Google button, it will take you to the Google website as it has been
anchored in the code snippet in Listing 4-1.

The output of the code on execution is displayed in Figure 4-1.

Figure 4-1.  Buttons

If you click on the Facebook button, you will be directed to the Facebook home page.
Therefore, you can see how we have used the anchor <a> tag to describe buttons.

Button with contextual colors
You can add contextual colors to the buttons using the .success, .alert, .warning,
.secondary, and .disabled classes in tandem with the .button class.

Let’s understand the feature using the code snippet in Listing 4-2:

Listing 4-2.

<button type="button" class="success button">Eureka</button>
<button type="button" class="alert button">Delete </button>
<button type="button" class="warning button">Be careful</button>
<button type="button" class="secondary button">Information</button>
<button type="button" class="disabled button">Trash</button>

Chapter 4 ■ CSS Components

51

In Listing 4-2, we have used all the contextual color classes to the buttons in
conjunction with the .button class. One point to note here is that instead of <a> tags, we
have used the <button> tags to define the buttons. We have also used the type attribute
and assigned button as the value of type. As a result, on executing the code, you can see
the buttons with their respective colors as displayed in Listing 4-2.

Figure 4-2.  Buttons with contextual colors

From Figure 4-2, we can see the various buttons with different colors as defined in
the code.

Buttons with Hollow style
You can define Hollow styling for your buttons by using the .hollow class in conjunction
with the .button class. Let’s understand this by referring to the code snippet defined in
Listing 4-3:

Listing 4-3.

<button type="button" class="success hollow button">Eureka</button>
<button type="button" class="alert hollow button">Delete </button>
<button type="button" class="warning hollow button">Be careful</button>
<button type="button" class="secondary hollow button">Information</button>
<button type="button" class="disabled hollow button">Trash</button>

Chapter 4 ■ CSS Components

52

From Figure 4-3, you can see the hollow styling and colors of the buttons as defined
in the code.

Button Sizes
Button sizes can be defined using the .tiny, .small, .large, and .expanded classes in
tandem with the .button class. Let’s understand this using the code snippet displayed in
Listing 4-4:

Listing 4-4.

<button type="button" class=" tiny button">Eureka</button>
<button type="button" class=" small alert button">Delete </button>
<button type="button" class="large warning button">Be careful</button>
<button type="button" class=" secondary expanded button">Information</button>

In Listing 4-4, we have used the .tiny, .small, .large, and .expanded classes along with
the contextual color classes in conjunction with the .button class. On execution of the
code, you can see the output as displayed in Figure 4-4.

Figure 4-3.  Hollow-styled buttons

Here along with the contextual color classes, we have used the .hollow class in
tandem with the .button class. On executing the code, you can see the hollow-style
buttons as displayed in Figure 4-3:

Chapter 4 ■ CSS Components

53

As you can see, the buttons are in different sizes and are colored in accordance with
the size classes and colors defined in the code. The Expanded functionality helps you
create a button that will take up the width of the parent container whereas the tiny, small,
and large buttons are styled using the size classes defined in the code.

One important point to remember is that the size classes have nothing to do with the
screen size. It is only used to define the size of the buttons irrespective of the screen-size.

Button Groups
Button Groups are a handy utility in web design. They are used extensively in websites
wherein you group several buttons in a single bar to perform a group of actions. For
example, you may want to group a list of actions such as Create, Update, Delete, and View
in a single bar. In such scenarios, button groups are quite useful.

Listing 4-5.

<div class="button-group">
 <button type="button" class=" button">Create</button>
<button type="button" class=" alert button">View </button>
<button type="button" class="warning button">Update</button>
<button type="button" class=" secondary button">Delete</button>
</div>

Figure 4-4.  Buttons of different sizes

Chapter 4 ■ CSS Components

54

In Listing 4-5, we have created a <div> element and assigned the .button-group class
to it. Within that <div>, we have defined 4 buttons, namely- Create, View, Update, and
Delete using the .button class within the <button> tags. We have also used the contextual
color classes along with the .button class.

On execution, the output will be as displayed in Figure 4-5.

Figure 4-5.  Button Group

As you can see, we grouped a list of actions depicted by the four buttons in a single
bar using the Button group utility.

Uniform-colored and uniform-sized Button group
You can allocate the same color which will be uniform across the button group by using
a contextual color in tandem with the .button-group class. You can also define the size
of the buttons in the group by assigning size classes to the button group. Therefore, you
need not allocate a color to each button nor do you have to assign a size for each button
in the group as it is defined at the group level. Let’s understand this by use of an example
as in Listing 4-6:

Listing 4-6.

<div class="large secondary button-group">
 <button type="button" class=" button">Eureka</button>
<button type="button" class=" button">Delete </button>
<button type="button" class=" button">Be careful</button>
<button type="button" class=" button">Information</button>
</div>

In Listing 4-6, you can see that we have assigned the .secondary class in conjunction
with the .button-group class. We have also defined the .large class with the same .button-
group class.

On execution of the code, you can see the output as displayed in Figure 4-6.

Chapter 4 ■ CSS Components

55

As you can see from Figure 4-6, the size and color of all the buttons is the same as
defined in the code.

Suppose you use the .expanded class as the size at the button group level. In such a
scenario, the expanded property ensures that the button group is spread over the entire
row width or the parent container in which it is defined. The buttons in that group will
be spaced evenly in the row dynamically without writing separate code for adjustment
purposes.

Let’s understand this by means of a code snippet as defined in Listing 4-7:

Listing 4-7.

<div class="expanded secondary button-group">
 <button type="button" class=" button">Eureka</button>
<button type="button" class=" button">Delete </button>
<button type="button" class=" button">Be careful</button>
<button type="button" class=" button">Information</button>
</div>

You can see that the .expanded class is used in conjunction with the .secondary and
.button-group classes. While the .secondary class adds the contextual gray color to the
buttons, the .expanded class will ensure that the button group spans across the row for
the parent container.

Refer to Figure 4-7 to understand it better.

Figure 4-6.  Uniformly colored-and-sized button group

Chapter 4 ■ CSS Components

56

Stacked-for-small Button group
Suppose you want the button group to be stacked horizontally (by default, it is horizontal)
on a large screen but stack up on top of each other on a small screen. In such a case, we
need to use the .stacked-for-small class along with the .button-group class.

Let’s understand this by means of an example as displayed in Listing 4-8:

Listing 4-8.

<div class="stacked-for-small success button-group">
 <button type="button" class=" button" style= "border: 2px solid
black;">Eureka</button>
<button type="button" class=" button" style= "border: 2px solid
black;">Delete </button>
<button type="button" class=" button" style= "border: 2px solid black;">Be
careful</button>
<button type="button" class=" button" style= "border: 2px solid
black;">Information</button>
</div>

In Listing 4-8, we assigned the .stacked-for-small class with the .button-group class.
We have also used the .success contextual color to allocate a green color to all the buttons.
As you can also see, in each button in the <button> tag, we have allocated a black border
for each button, using the inline border property for more clarity.

On execution of the code, the output is displayed in Figure 4-8.

Figure 4-7.  Expanded button group functionality

Chapter 4 ■ CSS Components

57

As you can see, the button group is positioned horizontally on medium screens.
However, if you reduce the size of the browser to simulate the output on a small screen
device, you will see the buttons stacked on top of each other as displayed in Figure 4-9.

Figure 4-8.  Button group on a medium screen

Figure 4-9.  Buttons stacked on the small screen

Chapter 4 ■ CSS Components

58

Therefore, by using the responsive .stacked-for-small class, the button group objects
can be stacked on top of each other on a small screen.

Split Buttons
Split buttons help the users see the dropdown menu on clicking the button. For a Split
button, you need to create a button group with two buttons. The first button defines
the button name, whereas the arrow which, on clicking, displays the dropdown, is the
second button.

Let’s understand this by means of a code example as displayed in Listing 4-9:

Listing 4-9.

<div class="secondary button-group">
 Click For Info

 �Click the button to see the

dropdown menu

</div>

 
<div class=" success button-group">
 Eureka

 �Click the button to see the

dropdown menu

</div>

 
<div class=" alert button-group">
 Beware

 �Click the button to see the

dropdown menu

</div>

From Listing 4-9, you can see the three button groups. In the first button group, we
assign the .secondary contextual color class at the group level. Thereon, we create the first
button using an anchor tag along with assigning a .button class to it. We name the button
as Click For Info. Then we define the dropdown arrow which is the other part of the split
button by using an anchor tag and assigning a .dropdown button arrow-only class to it.
While the .dropdown class indicates the dropdown functionality, the .arrow-only class
will create a downward caret which is the second button of the Split button. However, a
label must be added for this button without which the screen readers will not be able to

Chapter 4 ■ CSS Components

59

come to grips with the dropdown functionality. Therefore, we create a element
within the same anchor tag and assign the .show-for-sr class to it. Remember that the
 tag must be enclosed within the second <a> tag which defines the arrow button.

Similarly, we create two more button groups using the same procedure. But we will
assign the .success and .alert contextual color classes to them respectively.

Refer to Figure 4-10 to see the output of the executed code.

As you can see, we have created three Split buttons in the button group each with a
different uniform color across each split button.

Tables
Tables are used to present data or information in rows and columns on a webpage.
In Foundation, you just need to define the HTML markup and assign the width of the
columns of the table. Foundation’s built-in batteries take care of the styling resulting in
an aesthetic look for the tables. Let’s look at the code snippet for the table component as
displayed in Listing 4-10:

Listing 4-10.

<table class="hover stack">
 <thead>
 <tr style="background-color: #00BFFF;">
 <th width="200">Company</th>
 <th width="400"> Name of the Representative </th>
 <th width="150">City</th>
 </tr>
 </thead>
 <tbody>
 <tr>

Figure 4-10.  Split buttons

Chapter 4 ■ CSS Components

60

 <td>Fox Affiliates</td>
 <td>Mark Williams</td>
 <td>New York</td>
 </tr>
  
 <!--more rows-->
  
 <tr>
 <td>Hudson Arena Org </td>
 <td>John Miller</td>
 <td>Los Angeles</td>
 </tr>
  
 <tr>
 <td>James & Jimi Corp</td>
 <td>Mike Jordan</td>
 <td>Chicago</td>
 </tr>
 
 <tr>
 <td> Jack Daniels & Co</td>
 <td> Wilbur Klose</td>
 <td>Dallas</td>
 </tr>
 
 <tr>
 <td>Net Connections</td>
 <td>Al Burke</td>
 <td>San Jose</td>
 </tr>
 </tbody>
</table>

In Listing 4-10, we have defined the entire code listing within the <table> tags. We
then used the <thead> tags inside which we define the headers using the <th> tags.
Then we defined the body section within the <tbody> tags. The contents of the table are
defined using the <td> tags. This is similar to how you create tables in HTML. However,
if you observe the opening <table> tag, we have used the .hover and .stack classes. The
.hover class results in slightly darkened state whenever you hover over the table rows or
columns. The .stack class results in the content stacking up on top of each other on small
screens.

We have defined the blue color for the headers. We have also allocated the width
to the headers using the .width attribute which will define the column width of the
tables. On execution of the code, you can see the table on the webpage as displayed in
Figure 4-11.

Chapter 4 ■ CSS Components

61

Since you have used the .stack class in the <table> tag, on a small screen, the content
will stack on top of each other as displayed in Figure 4-12.

Figure 4-11.  Tables on a large screen

Figure 4-12.  Table stack on small screens

Chapter 4 ■ CSS Components

62

Progress bars
Progress Bars are an excellent way of showing the progress of any action. Foundation has
a simplistic .progress class which can be assigned to an element. Furthermore, to show
the level of progress, we use the .progress-meter class. Along with the .progress-meter
class, you need to define the width in percentages. You can also use the contextual color
classes such as .success, .alert, .warning and .secondary to make it look jazzy.

If you want to show the percentage of progress on the progress bar, you can do so
using the .progress-meter-text class within the element for the progress meter.
Let’s understand this by means of a code snippet as shown in Listing 4-11:

Listing 4-11.

<div class=" success progress">
 <div class="progress-meter" style="width: 30%"></div>
</div>

<div class=" alert progress">
 <div class="progress-meter" style="width: 50%"></div>
</div>
<div class="progress">

 <p class="progress-meter-text">75%</p>

</div>

In Listing 4-11, in the first part of the code snippet, you can see that we have created
a <div> element and assigned the .progress class to it. We also used the contextual
.success class in conjunction with the .progress class. Then we defined another <div>
inside that <div> and assigned the .progress-meter class to it. Moving forward, we defined
the width (as 30%) using the inline <style> property.

After closing the <div>, we created another progress bar but this time, we have
defined the .alert class in conjunction with the .progress class. We then use the same
procedure as in the earlier <div> but here we define a width of 50%.

In the third part of the code snippet, we will learn how to display the percentage in
text on the progress bar. Initially, we create a <div> and assign the .progress class to it.
Here, instead of <div>, we use the element and assign the .progress-meter class,
along with defining a width of 75% to it. Then in the same tag, we create a <p>
(read paragraph) element and assign the .progress-meter-text class to it. We then enter
the text as 75% between the two <p> elements. Then we proceed to close the tag
and subsequently the <div> for it.

The output of the code on execution is displayed in Figure 4-13.

Chapter 4 ■ CSS Components

63

From Figure 4-13, we can see the progress bars and in the third progress bar, you can
see the 75% text displayed explicitly on the progress bar.

Callout Panels
Callout panels help you organize your content within the defined boundaries. They
also emphasize the content within those boundaries. In Foundation, callout panels are
defined using the .callout class. Foundation callout panels occupy the width of the grid
columns they are enclosed in.

Let’s look at example to see how callouts work in Foundation. Refer to Listing 4-12 to
understand it better:

Listing 4-12.

<div class="row">
 <div class = "small-8 small-centered columns">
 <div class="callout">
 <h5>Example of a Callout panel</h5>
<p>Far far away, behind the word mountains, far from the countries Vokalia
and Consonantia, there live the blind texts. Separated they live in
Bookmarksgrove right at the coast of the Semantics, a large language ocean.
</p>
  
</div>
</div>
</div>

Figure 4-13.  Progress Bars

Chapter 4 ■ CSS Components

64

In Listing 4-12, we created a row and then created a <div> and a .small-8 small-
centered columns class for it. We have thus defined the container width that will be
centered and will span across 8 virtual columns. Inside that <div>, we have created
another <div> and assigned the .callout class to it. Inside that <div>, we have used the
<h5> and <p> tags which enclose the sample content. Then we close the <div>s.

On executing the code, you will see the output as displayed in Figure 4-14.

You can also use contextual color classes in the callout panel. We will also look at the
Close button in this example displayed in Listing 4-13.

Listing 4-13.

<div class="row">
 <div class = "small-8 small-centered columns">
  
<div class=" success callout">
 <h5>Contextual Color Callout (Success) </h5>
 <p>Far far away, behind the word mountains, far from the countries
Vokalia and Consonantia, there live the blind texts. Separated they live in
Bookmarksgrove right at the coast of the Semantics, a large language ocean.
</p>
 <button class="close-button" aria-label="Dismiss alert" type="button">
 ×
 </button>
</div>
 
 <div class=" warning callout">
 <h5>Contextual Color Callout (Warning) </h5>
 �<p>Far far away, behind the word mountains, far from the countries
Vokalia and Consonantia, there live the blind texts. Separated they live
in Bookmarksgrove right at the coast of the Semantics, a large language
ocean. </p>

Figure 4-14.  Callout panel

Chapter 4 ■ CSS Components

65

 <button class="close-button" aria-label="Dismiss alert" type="button">
 ×
 </button>
</div>
</div>
</div>

In Listing 4-13, you can see that we have first defined the container by using the
.small-8 small-centered columns after creating a row. Then we created two callouts
using the .success and .warning classes. In the <div> containing the .success and .callout
classes, we have introduced the following snippet:

<button class="close-button" aria-label="Dismiss alert" type="button">
 ×

This is the way to define the Close button. We use the <button> and assign the .close-
button class to it and assign the type as button. Then we use the × Unicode which
results in X icon.

Let’s look at the output of the code as displayed in Figure 4-15.

Thus, in Figure 4-15, you can see the callout panels which are colored as defined in
the code. You can also see the X sign which represents the Close button.

Figure 4-15.  Contextual Colored Callout Panels with the Close buttons

Chapter 4 ■ CSS Components

66

Range Sliders
Range sliders are a useful utility which can be used to define the range across a slider bar.

Let’s understand this component by means of a code sample.
Initially, you need to define a row with the <div> element. Then you define the

position and size of the slider which spans 6 virtual columns across the row.

<div class="row">
<div class = "small-6 small-centered columns">
</div>
</div>

Using the preceding code, the slider will be in the center of the page and will span 6
columns evenly.

Moving forward, you can create another <div> element and nest it between the
previous <div> element and assign the .small-10 class to it. We are going to define the
slider in this <div>. Create another <div> element and assign the .slider class to it. We also
assign the data-slider attribute in conjunction with the .slider class. We proceed further
by defining the starting point of the pointer slider using the data-initial-start attribute. We
have assigned the value 30 to the data-initial-start attribute, then we define the limit to
which the slider can slide using the data-end attribute and assign a value 200 to it. What
we have done is define the slider in the range of 1-200 and the pointer will start at 30. We
create a element and in that element, we then create the slider handle by using
the .slider-handle class and then use the data-slider-handle in tandem with the .slider-
handle class. Another is created next to the previous element and we
assign the .slider-fill class to it and in tandem, use the data-slider-fill attribute with it. That
takes care of the active fill.

The code at this stage would look as displayed below:

<div class="row">
<div class = "small-6 small-centered columns">
<div class="small-10 columns">
 <div class="slider" data-slider data-initial-start="30" data-end="200">
 �<span class="slider-handle" data-slider-handle tabindex="1" aria-

controls="range1">

 </div>
</div>
</div>
</div>

After closing the first nested <div> (spanning across 10 columns within a parent
container which spans across 6 virtual columns on the grid), we create another <div>
which is the second nested <div> and assign the .small-2 columns class to it. This <div>
is used for visible input which can be seen in a minute rectangular box. We define the
input type as number and move on to assigning the id to it. The id assigned should be
referenced to the aria-controls attribute in the first element (where we created a
slider handle).

Chapter 4 ■ CSS Components

67

The entire code snippet for the Range slider is displayed in Listing 4-14:

Listing 4-14.

<div class="row">
<div class = "small-6 small-centered columns">
 <div class="small-10 columns">
 <div class="slider" data-slider data-initial-start="30" data-end="200">
 �<span class="slider-handle" data-slider-handle tabindex="1" aria-

controls="range1">

 </div>
</div>
<div class="small-2 columns">
 <input type="number" id="range1">
</div>
</div>
</div>

The output of the code on execution is displayed in Figure 4-16.

In Figure 4-16, if you move the pointer in the slider, the value in the box changes
accordingly. Vice-versa, if you change the value in the box, the pointer of the slider moves
depending on the value.

You can also create a vertical slider by assigning the .vertical class with the .slider
class. In order to disable a slider, all you need to do is use the .disabled class with the
.slider class.

Figure 4-16.  Slider with Input box

Chapter 4 ■ CSS Components

68

Switches
Foundation’s Switch component can be used to create On and Off switches mainly to
toggle inputs.

There are two types of switches, namely – Checkbox switch and Radio switches.

Checkbox switches
We will learn how to create a Checkbox switch using a code sample. Initially, we create
a container in which we will place the switch. For that, we create a <div> element and
assign the .small-4 columns class to it to define the container that will span across 4
virtual columns. Then we create another <div> inside the previous <div> and assign the
.switch class to it. You can also define the size of the switch. In this example, we will use
the .large class in conjunction with the .switch class so that the size will be bigger than
the default size. We define an input type as checkbox, and assign the .switch-input class
to the input. Then we define the label and add a .switch-paddle class to it. Then we assign
the for attribute and assign a value to it; which is basically the id of the input property. For
screen readers, we can use the .show-for-sr class which masks the switch label text (which
is related to screen readers only).

The code snippet for the same is defined in Listing 4-15:

Listing 4-15.

<h5> Checkbox Switches</h5>
<div class ="small-4 columns">
 <div class="switch large">
 �<input class="switch-input" id="checkbox-switch" type="checkbox"
name="exampleSwitch">

 <label class="switch-paddle" for="checkbox-switch">
 Click here
 </label>
</div>

On execution of the code, the output is displayed as in Figure 4-17.

Chapter 4 ■ CSS Components

69

In Figure 4-17, you can see the Checkbox Switch.
Suppose you want to use a label for the switch wherein one piece of text is displayed

when the switch is active and another when the switch is inactive. In such a scenario, we
need to add the .switch-active and .switch-inactive classes for the active and inactive text
respectively.

Also add the aria-hidden attribute with it and assign the value “true” to it. What it
does is tell the screen readers to ignore that element as well all its child elements.

The code snippet for the same is displayed in Listing 4-16:

Listing 4-16.

<h5> Checkbox Switches</h5>
<div class ="small-4 columns">
 <div class="switch large">
 �<input class="switch-input" id="Label-switch" type="checkbox"

name="exampleSwitch">
 <label class="switch-paddle" for="Label-switch">
 Just answer my question
 Yes
 No
 </label>
</div>
</div>

Figure 4-17.  CheckBox Switch

Chapter 4 ■ CSS Components

70

On executing this code, you can see the output as displayed in Figure 4-18.

In Figure 4-18, the switch has two states:

•	 Yes (depicting the active state)

•	 No (depicting the inactive state)

Radio Switches
The functionality of Radio switches is similar to that of Radio buttons. If one switch is
active, the other switch would be inactive. In this section, we will create two switches and
demonstrate how it works.

The code for Radio switches is very similar compared to Checkbox switches except
for two things, namely:

•	 The input type is radio

•	 The active switch input type will have the checked preceding the
name attribute instead of just the name in Checkbox switches.
The other Radio switch will have the name (the checked attribute
is assigned to the switch which is active). What it does is that the
one with the checked name is the one which is active by default
on executing the code.

Figure 4-18.  Labeled text switch

Chapter 4 ■ CSS Components

71

Let’s understand this using a code snippet as displayed in Listing 4-17:

Listing 4-17.

<h5> Radio Switches</h5>
<div class="switch small">
 <input class="switch-input" id="radio1" type="radio" checked name="testGroup">
 <label class="switch-paddle" for="radio1">
 Switch 1
 </label>
</div>
<div class="switch small">
 <input class="switch-input" id="radio2" type="radio" name="testGroup">
 <label class="switch-paddle" for="radio2">
 Switch2
 </label>
</div>

You can see from the preceding code that the code is quite similar to that of
Checkbox switches except that here we are using switches and the input type is radio.
Also, you can see that the first Radio switch has the checked name attribute and the
second radio switch has the name attribute (meaning the first switch is the active one).

We have also used the .small class in tandem with the .switch class resulting in the
size being small compared to the default one.

The output of the code on execution is displayed in Figure 4-19.

Chapter 4 ■ CSS Components

72

From Figure 4-19, you can see that the first switch is active, whereas the other one is
off. If you turn off the first switch, then the second one would become active.

Forms
Forms are a useful resource to allow users to enter data and to enable this collected
data to be sent to servers for processing purposes. Foundation’s Forms components are
versatile and easy-to-code. You can use the built-in grid layout and define the responsive
classes such as .large-7 or .small-9 to determine the size of fields on devices of different
sizes. With the concept of displaying email addresses on the website becoming outdated
due to phishing or spam bulk mails, contacts forms are trendy. We will understand the
procedure of building forms in an easy-to-follow step-by-step method so that you get the
concepts right.

Figure 4-19.  Radio Switches

Chapter 4 ■ CSS Components

73

Everything in the form must be included between the <form> tags. We first create a
<form> opening and closing tag. Then, we create a <div> with the .row class and within
that <div>, we create another <div> and assign the .small-6 columns class to it so that it
spans across 6 virtual columns. We then create a <label> and then assign the input type as
email. The code is displayed as follows:

<form>
 <div class="row">
 <div class="small-6 columns">
 <label>Email
 <input type="email" id="inputEmail" placeholder="Email">
 </label>
 </div>
 </div>
 </form>

Similarly, we create the Password section using the following code snippet:

<div class="row">
 <div class="small-6 columns">
 <label for="inputPassword">Password
 <input type="password" id="inputPassword" placeholder="Password">
 </label>
 </div>

Here the code is almost similar to the Email one, but the input type used for the
Password textbox is password. Remember all the code has to be included between the
<form> tags.

We move on to create a button and here the button type would be submit which is
the norm if you are creating a button inside a form.

<div class="row">
 <div class= "small-2 columns">
 <button class="button" type="submit">Login</button>
</div>
</div>

As you can see, we have assigned the button type as submit and assigned the button
name as Login.

Chapter 4 ■ CSS Components

74

The entire code snippet is displayed in Listing 4-18:

Listing 4-18.

<form>
 <div class="row">
 <div class="small-6 columns">
 <label>Email
 <input type="email" id="inputEmail" placeholder="Email">
 </label>
 </div>
 </div>
 <div class="row">
 <div class="small-6 columns">
 <label for="inputPassword">Password
 <input type="password" id="inputPassword" placeholder="Password">
 </label>
 </div>
 </div>
 <div class="row">
 <div class= "small-2 columns">
 <button class="button" type="submit">Login</button>
 </div>
 </div>
 </form>

The output of this code on execution is displayed in Figure 4-20.

Figure 4-20.  Login Form

Chapter 4 ■ CSS Components

75

One important thing to note is that Foundation supports a bunch of input types,
namely- url, password, email, search, time, week, and month to mention a few.

Next, in the same form, we create a Search textbox. First create the row, as
mentioned earlier, using the .row class. Create a <div> element within it and assign the
.small-5 columns class to it. Then we create a <div> element and assign the .input-group
class to it. The .input-group class is used when you want to combine text or allocate
controls to the left or right of an input field. Basically, it is used as a wrapper. Then, we
define the .input-group-field class to the input and assign the type as search. Then we
create another <div> below the input tag and assign the .input-group-button class to it
and define the button input type as submit and assign the value as Search.

After adding this inline input group to the existing code, the code snippet will look as
displayed in Listing 4-19.

Listing 4-19.

<form>
 <div class="row">
 <div class="small-6 columns">
 <label>Email
 <input type="email" id="inputEmail" placeholder="Email">
 </label>
 </div>
 </div>
 <div class="row">
 <div class="small-6 columns">
 <label for="inputPassword">Password
 <input type="password" id="inputPassword" placeholder="Password">
 </label>
 </div>
 </div>
 <div class="row">
 <div class= "small-2 columns">
 <button class="button" type="submit">Login</button>
 </div>
 </div>
 <div class="row">
 <div class="small-5 columns">
 <div class="input-group">
 <input class="input-group-field" type="search">
 <div class="input-group-button">
 <input type="submit" class="button" value="Search">
 </div>
 </div>
 </div>
 </div>
 </form>

The output of the code will be as displayed in Figure 4-21.

Chapter 4 ■ CSS Components

76

Next, we will take a look at the Fieldset attribute. Fieldsets are used to group similar
or related elements in a form. They account for clean coding and enhance the degree
of clarity of the form significantly. So, we will first create a row for the fieldset. Then we
will use the fieldset tag and assign the .large-6 columns class to define the virtual span of
the container. To the same .large-6 columns class, we will add a .fieldset class which will
define the fieldset styles. Then we create a <label> and use two inputs and assign the text
and placeholders. Then we create another <label> and using the <select> and <option>
to create a dropdown list. We then close the label and define a button with the type as
submit. Then we close the <fieldset> tag.

The code snippet for the entire page is displayed in Listing 4-20:

Listing 4-20.

<form>
 <div class="row">
 <div class="small-6 columns">
 <label>Email
 <input type="email" id="inputEmail" placeholder="Email">
 </label>
 </div>
 </div>
 <div class="row">
 <div class="small-6 columns">
 <label for="inputPassword">Password
 <input type="password" id="inputPassword" placeholder="Password">
 </label>

Figure 4-21.  Adding the Search textbox

Chapter 4 ■ CSS Components

77

 </div>
 </div>
 <div class="row">
 <div class= "small-2 columns">
 <button class="button" type="submit">Login</button>
 </div>
 </div>
 <div class="row">
 <div class="small-5 columns">
 <div class="input-group">
 <input class="input-group-field" type="search">
 <div class="input-group-button">
 <input type="submit" class="button" value="Search">
 </div>
 </div>
 </div>
 </div>
 <div class="row">
 <fieldset class="large-6 columns fieldset">
 <legend>Personal Info</legend>
 <label> Enter Details Below
 <input type="text" placeholder="Enter Name">
 <input type="text" placeholder="Enter Address">
 <label> State
 <select>
 <option value="us1">New York</option>
 <option value="us2">California</option>
 <option value="us3">Florida</option>
 <option value="us4">Arizona</option>
 <option value="us5">Texas</option>
 <option value="us6">Maine</option>
 <option value="us7">Ohio</option>
 </select>
 </label>

 <button class="button" type="submit">Submit</button>
 </label>
 </fieldset>
 </form>

The output of the code on execution is displayed in Figure 4-22.

Chapter 4 ■ CSS Components

78

Now suppose you want the labels for a field to the left of the input meaning it should
be inline. It is very much possible in Foundation 6. Let’s understand this by taking a look
at the following code example. Refer to Listing 4-21 to see the code snippet.

Initially, we create a row and then create a <div> inside it and assign the .small
3 columns class to it. Then we create the label and assign the .text-right class to it. For
alignment, we use the .middle class in conjunction with the .text-right class. Then we
create another <div> and assign the .small-9 columns class to it. In that div, we assign
email as the input type and enter a placeholder for it. Then we assign an id to the input
tag and this id will be referenced with the for attribute of the <label>.

Remember, all this code for creating an inline label must be within that row.
Create another row after the previous row and paste the code. However, we will

change the input type as password and the label name as Password in addition to
changing the id for the second snippet.

Figure 4-22.  Form with the Fieldset

Chapter 4 ■ CSS Components

79

If you have not already done so, refer to Listing 4-21 to see the code snippet for the
explanation of inline labels:

Listing 4-21.

<form>
 <div class="row">
 <div class="small-3 columns">
 <label for="middle-label" class="text-right middle">Email</label>
 </div>
 <div class="small-9 columns">
 <input type="email" id="middle-label" placeholder="Enter Email address">
 </div>
 </div>
 <div class="row">
 <div class="small-3 columns">
 <label for="middle-label2" class="text-right middle">Password</label>
 </div>
 <div class="small-9 columns">
 <input type="password" id="middle-label2" placeholder="Enter password here">
 <p class="help-text">Your password must have special characters </p>
 </div>
 </div>
</form>

In Listing 4-21, you will see that we have added a <p> tag below the input for the
password type and assigned a .help-text class to it. The .help-text class is used to give
relevant and important information below the textbox. The output of the code will be as
displayed in Figure 4-23.

Figure 4-23.  Inline Labels

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ CSS Components

80

Thereon, to add to the existing code, we add the Checkboxes and Radio buttons
(as you do in normal HTML code). Then we create a button with the type as submit using
the .button class.

Refer to Listing 4-22 to see the entire code snippet:

Listing 4-22.

<form>
 <div class="row">
 <div class="small-3 columns">
 <label for="middle-label" class="text-right middle">Email</label>
 </div>
 <div class="small-9 columns">
 �<input type="email" id="middle-label" placeholder="Enter Email address">
 </div>
 </div>
 <form>
 <div class="row">
 <div class="small-3 columns">
 <label for="middle-label" class="text-right middle">Password</label>
 </div>
 <div class="small-9 columns">
 �<input type="password" id="middle-label" placeholder=

"Enter password here">
 �<p class="help-text" id="passwordHelpText">Your password must have

special characters </p>
 </div>
 </div>

 <div class="row">
 <div class="small-6 columns">
 <label> Select Delivery Method </label>
 �<input type="radio" name="deliver" value="deliverdine"

id="Dine" required><label for="Dine">Dine</label>
 �<input type="radio" name="deliver" value="delivercarryout"

id="Carryout"><label for="Carryout">Carryout</label>
 �<input type="radio" name="deliver" value="deliverhome"

id="Delivery"><label for="Delivery">Delivery</label>
 </div>
 <div class="small-6 columns">
 <label> Product </label>
 �<input id="pizza" type="checkbox"><label for=

"pizza">Pizza</label>
 �<input id="burger" type="checkbox"><label

for="burger">Burger</label>
 �<input id="fish" type="checkbox"><label for="fish">Fish &

Chips</label>
 </div>

Chapter 4 ■ CSS Components

81

 </div>

 <div class="row">
 <div class= "small-5 small-centered columns">
 <button class="button large success" type="submit">Order</button>
 </div>
 </div>
</form>

The output of the code on execution is displayed in Figure 4-24.
Therefore, we now know how to create basic forms in Foundation 6.

Summary
In this chapter, we learned the various CSS utilities that you can implement while
developing complex websites. Foundation’s CSS Components make your web designing
tasks much easier as you do not have to write code from scratch. Foundation adheres to
the DRY (Don’t Repeat Yourself) principle as you do not have to rewrite code each time
you work on a different web designing project. The common design elements are broken
into components that you can reuse multiple times for different projects thereby resulting
in clean and systematic coding. In the next chapter, we will take an in-depth look at the
JavaScript utilities of Foundation such as Modals, ToolTips, Dropdowns, Accordion and
Alerts which you can implement while developing interactive websites.

Figure 4-24.  Inline Form with Checkboxes and Radio Buttons

83

Chapter 5

JavaScript Components

Foundation comes bundled with JavaScript components to add intricate functionality.
The JavaScript components can be incorporated into your projects thereby making your
front-end development faster and easier.

We will learn about the following JavaScript components in this chapter:

•	 Tabs

•	 Accordions

•	 Dropdowns

•	 Data-Interchange

•	 Equalizers

•	 Modals

•	 Tooltips

•	 Data Toggler

You can pass the settings to the plug-ins through the mark-up using data-options.
If you check the mark-up of all the coding examples so far in this book, you can see

the following lines of code:

<script src="https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/
vendor/jquery.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/
foundation.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/
vendor/what-input.min.js"></script>

You can see that the Foundation JavaScript components depend on jQuery and
therefore, the jQuery CDN link must be placed before the Foundation JavaScript CDN link.

https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/jquery.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/jquery.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/foundation.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/foundation.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/what-input.min.js
https://cdnjs.cloudflare.com/ajax/libs/foundation/6.0.1/js/vendor/what-input.min.js

Chapter 5 ■ JavaScript Components

84

You can also see the following code in at the bottom of the markup-- just above the
<body> section:

<script>
 $(document).foundation();
 </script>

The preceding code is used to initialize all the JavaScript components on your page.

Tabs
Tabs are increasingly being used in web design as you can present your content in a
compact way. It allows you to keep multiple documents in a single window. You can use
tabs as a navigation widget to switch between content resulting in a systematic and clean
layout. Foundation’s baked-in Tab Component helps you do just that by just adding a few
lines of code.

Initially, you need to create a list using the and elements. In the unordered
list, you need to assign the .tabs class to the tag along with assigning the data-tabs to
it. Then we define an id for the tag. To each list item, you need to assign the .tabs-
title class to define the tab headings. To make one of the tabs active, you need to use the
.is-active class in conjunction with the .tabs-title class for that specific tab as is displayed
in the second element (Section 2 tab) in the following code snippet:

<ul class="tabs" data-tabs id="tab_component">
 <li class="tabs-title">Section 1
 <li class="tabs-title is-active">Section 2
 <li class="tabs-title">Section 3
 <li class="tabs-title">Section 4

Next, we define the contents of those tabs. For that, we create a <div> element
and assign the .tabs-content class to it. Then we use the data-tabs-content attribute in
conjunction with the .tabs-content class and assign the value to it. The value assigned
must be the id assigned to the tag which defined the tab headings earlier. Then, we
create the content section by creating <div> elements within the parent <div>. We assign
the .tabs-panel for each child <div>. The id assigned to the <div> containing the contents
must be the value of the <href> attribute in the tags where we defined the tab
headings for each item. You can also use the .is-active class to the <div> whose content
would be active on executing the code.

Chapter 5 ■ JavaScript Components

85

The entire code snippet is shown in Listing 5-1:

Listing 5-1.

<ul class="tabs" data-tabs id="tab_component">
 <li class="tabs-title">Section 1
 <li class="tabs-title is-active">Section 2
 <li class="tabs-title">Section 3
 <li class="tabs-title">Section 4

<div class="tabs-content" data-tabs-content="tab_component">
 <div class="tabs-panel" id="pub1">
 �<p>Far far away, behind the word mountains, far from the countries

Vokalia and Consonantia, there live the blind texts.</p>
 </div>
 <div class="tabs-panel is-active" id="pub2">
 �<p> Separated they live in Bookmarksgrove right at the coast of the

Semantics, a large language ocean. </p>
 </div>
 <div class="tabs-panel" id="pub3">
 �<p>A small river named Duden flows by their place and supplies it with

the necessary regelialia.</p>
 </div>
 <div class="tabs-panel" id="pub4">
 �<p>It is a paradisematic country, in which roasted parts of sentences

fly into your mouth. </p>
 </div>
</div>

The output of the code on execution is displayed in Figure 5-1.

Figure 5-1.  Tabs component

Suppose you want the tabs to be vertical instead of the default horizontal alignment.
Apart from just aligning them vertically, we can also place the tab headings and tab
content next to each other.

Initially, we create a <div> element and assign the .row and .collapse classes to it. All
the relevant code for the tabs component must be within the main <divs> which we created.

Then we create container <div> element in which we will create an unordered list
as in the previous example. We assign the .small-4 columns class to that <div> which
encloses the unordered list. The code for the headings is the same as the one for a
Horizontal tab with one exception, we will add the .vertical class in conjunction with the
.tabs class.

Chapter 5 ■ JavaScript Components

86

Refer to the following code snippet to understand it better:

<div class="row collapse">
 <div class="small-4 columns">
 <ul class="tabs vertical" data-tabs id="tab_component">
 <li class="tabs-title">Section 1
 <li class="tabs-title is-active">Section 2
 <li class="tabs-title">Section 3
 <li class="tabs-title">Section 4

</div>
</div>

Then, we create the container for the content section. (Remember the last <div> is
for the top main <div> with the .row and .collapse classes within which the entire code
should be enclosed). For the content section, initially, we create a <div> and assign the
.small-8 columns class to it. Then within that container, we use the same code as in the
Horizontal tabs examples with one exception. We use the .vertical class in conjunction
with the .tabs-content class. The entire code snippet is shown in Listing 5-2.

Listing 5-2.

<div class="row collapse">
 <div class="small-4 columns">
 <ul class="tabs vertical" data-tabs id="tab_component">
 <li class="tabs-title">Section 1
 <li class="tabs-title is-active">Section 2
 <li class="tabs-title">Section 3
 <li class="tabs-title">Section 4

</div>
<div class="small-8 columns">
<div class="tabs-content vertical" data-tabs-content="tab_component">
 <div class="tabs-panel" id="pub1">
 �<p>Far far away, behind the word mountains, far from the countries ,

there live the blind texts. </p>
 </div>
 <div class="tabs-panel is-active" id="pub2">
 �<p>Separated they live in Bookmarksgrove right at the coast of the

Semantics, a language ocean.</p>
 </div>
 <div class="tabs-panel" id="pub3">
 �<p> A small river named Duden flows by their place and supplies it with

the necessary products. </p>
 </div>

Chapter 5 ■ JavaScript Components

87

 <div class="tabs-panel" id="pub4">
 �<p> It is an awesome country, in which roasted parts of sentences fly

into your mouth. </p>
 </div>
</div>
 </div>
 </div>

On executing the code, the output is displayed in Figure 5-2.

Accordions
Foundation’s Accordion helps you encapsulate large amount of content in a compact
area. They are similar to the Tabs plug-in where the menu-items collapse when you click
on a new panel. The Accordions are styled like a stack of collapsible panels and act like a
multi-level menu.

Let’s understand the process of implementing the Accordion feature in Foundation.
Initially we define the container grid for the Accordion using the .row and responsive
classes:

<div class="row">
<div class = "small-8 small-centered columns">
</div>
</div>

Then we create a list and assign the .accordion class to tag. We also use the
data-accordion and role attributes in tandem with the .accordion class. Thereon, we
assign the tablist value to the role attribute.

Now we will create the headings and content for the first Accordion item. All the
list items must be enclosed within the tags. We assign the .accordion-item class
to the first tag. Since we want this as the current active item, we assign an is-active
class to it. Then, we define the name of the panel within the anchor <a> tags. We use the
role attribute in the <a> tag and assign the tab value to it. We also define the title of that
Accordion item using .the accordion-title class. Then we create a <div> element and
assign an id to it which is incidentally the value of the href attribute for the preceding

Figure 5-2.  Vertical Tabs

Chapter 5 ■ JavaScript Components

88

anchor <a> tags. For the <div> element, we also allocate the .accordion-content class and
the role attribute in addition to assigning the tabpanel value to the role attribute. Finally,
we add the data-tab-content attribute to the <div> element for that list item.

We create two more list items as explained earlier and the entire code snippet is
shown in Listing 5-3.

Listing 5-3.  <div class=“row”>

 <div class = "small-8 small-centered columns">
 <ul class="accordion" data-accordion role="tablist">
 <li class="accordion-item is-active">
 About Apress Media LLC
 �<div id="section1" class="accordion-content"role="tabpanel"

data-tab-content>
 �Apress Media LLC provides high-quality content building a

pathway to career success.
 </div>

 <li class="accordion-item">
 Apress News
 �<div id="section2" class="accordion-content"role="tabpanel"

data-tab-content>
 �Apress Media LLC is a technical publisher devoted to meeting

the needs of IT professionals.
 </div>

 <li class="accordion-item">
 �Apress

Sales and Distribution
 �<div id="section3" class="accordion-content"role="tabpanel"

data-tab-content>
 �Apress titles are available to purchase just about everywhere

in the World.
 </div>

 </div>
 </div>

The output of the code on execution is displayed in Figure 5-3.

Chapter 5 ■ JavaScript Components

89

Figure 5-3 displays the Accordion functionality and you can see the active panel
displaying the content. If we click on any other panel, the default active panel is closed
and the clicked panel will display the content.

However, if you want the content of multiple panels to be displayed without
closing the panels which displayed their content, then we need to use the
data-multi-expand=“true” property with it. The data-multi-expand property allows
multiple panels to be open with the content displayed provided you assign the value
“true” to it.

The tag on adding the data-multi-expand property will look as follows:

<ul class="accordion" data-accordion role="tablist" data-multi-expand="true">

The output of the code in execution will display the panel and the content which is
active and current. However, when you click on the second panel, the first panel is not
closed.

Refer to Figure 5-4 to understand it better.

Figure 5-3.  Accordion Component

Figure 5-4.  Multi-expanded Accordion panels

Chapter 5 ■ JavaScript Components

90

Dropdowns
Dropdown Panes in Foundation are a handy utility for displaying information on clicking
or hovering over the element. In the following section, we will understand the procedure
to create a Dropdown pane.

Initially, we will create a button using the <button> tag and assigning the .button
class and type to it. We then use the data-toggle attribute in the same <button> tag.
Then, we create a <div> element and assign the .dropdown-pane class to it. We use the id
attribute and this assigned id will be referenced and linked as the value of the data-toggle
attribute in the preceding <button> tag. We also the data-dropdown attribute and set the
data-auto-focus attribute to true next to the id attribute in the same <div> element.

The code snippet for the earlier explanation for Dropdowns will be as follows:

<button class="button" type="button" data-toggle="example-dropdown">
Social Media</button>
<div class="dropdown-pane" id="example-dropdown" data-dropdown
data-auto-focus="true">
</div>

Then we define an unordered list between the <div> tags. In the unordered list, we
use an inline style as list-style-type: none for the tag; the styling used will remove the
bullets from the unordered list. We then create three list items between the tags. To
the list items, we will use different background colors for more clarity.

The entire code snippet is shown in Listing 5-4:

Listing 5-4.

<button class="button" type="button" data-toggle="example-dropdown">Social
Media</button>
<div class="dropdown-pane" id="example-dropdown" data-dropdown data-auto-
focus="true">
<ul style="list-style-type:none">
 �<li style="background: #00BFFF;">
Facebook
 �<li style="background: #F08080;">
Google
 �<li style="background: #D3D3D3;">
LinkedIn

</div>

On execution of the code, you can see the Social Media button as defined in the
code. Click on the button to see the three links, namely- Facebook, Google, and LinkedIn
each with a different background color. Refer to Figure 5-5 to understand it better.

https://www.facebook.com/
https://www.google.co.in
https://in.linkedin.com/

Chapter 5 ■ JavaScript Components

91

Suppose you want the Dropdown pane to be aligned to the right of the button
instead of below the button. In that case, you can use the .right class in conjunction with
the .dropdown-pane class in the <div> element which follows the <button> tag.

Also, if you want the dropdown list or content to be displayed on hovering over the
element, you remove the data-auto-focus=“true” property in the <div> and replace it with
the data-hover=“true”, meaning you use the data-hover attribute and add the true value to it.

To show an example of the hover functionality and the alignment of the Dropdown
pane to the right, we will create a button using the .button class assigned inside the
<button> tag. Then we use the data-toggle attribute in the <button> element. Next, we
define a <div> element with the .dropdown-pane class and use the .right class along with
it in addition to the data-dropdown attribute. The .right class results in positioning the
dropdown pane to the right.

Along with it, we use the data-hover attribute and assign the “true” value to it. As a
result, you will see the dropdown pane if you just hover over the button. Then we define a
callout panel with the .success class for a <div> within the earlier <div>.

Refer to Listing 5-5 to see the entire code snippet:

Listing 5-5.

<button class="button" type="button" data-toggle="example2"> Right Pane </
button>
<div class="dropdown-pane right" id="example2" data-dropdown data-
hover="true">
<div class=" success callout">
 <h5>You wanna know something! </h5>
 <p> Yeah! Crazy Jay bought many exquisite opal jewels.</p>
 </button>
</div>
</div>

Figure 5-5.  Dropdown pane

Chapter 5 ■ JavaScript Components

92

On executing the code, you will see the Right Pane button as defined in the code.
If you hover over the button, you will see the callout to the right of the button. Refer to
Figure 5-6 to see how it works.

Data-Interchange
Foundation’s Data-Interchange plug-in is quite handy when it comes to images. Basically,
this utility helps you load different content depending on the screen size. You can use
light-weight content on mobile devices and robust heavy-duty content on medium-and-
large-screen devices.

Let’s understand this using an example. We create a <div> element and use the
image tag within it. We use the data-interchange attribute in the image tag
and define the image depending on the screen-size. Refer to Listing 5-6 to understand it
better:

Listing 5-6.

<div>
 �<img data-interchange="[http://placehold.it/220x200, small],
[http://placehold.it/770x350, large]">
</div>

In Listing 5-6, we have defined the image placeholder for the small screen with a
width of 220 and height of 200 for the small screen. For the large screen, we have used
the image placeholder with dimensions of 770 as the width, and 350 as the height. (Note:
We have use the http://placehold.it/ service for displaying the data-interchange
attribute).

Figure 5-6.  Right aligned Dropdown pane on Hover

http://placehold.it/220x200
http://placehold.it/770x350
http://placehold.it/

Chapter 5 ■ JavaScript Components

93

On execution of the code on a large screen, you will see the image placeholder with
dimensions of 770*350 as displayed in Figure 5-7.

On smaller screens, you can see the image with reduced dimensions of 220*200 as
displayed in Figure 5-8 (you can also decrease the browser size to simulate a smaller
screen).

Figure 5-7.  Image on large screen

Chapter 5 ■ JavaScript Components

94

Therefore, you can see how handy this utility is when you want to load light-weight
content on smaller screens and massive content on larger screens.

Equalizers
The size of panels differ depending on the content inside them. Foundation’s Equalizer
attribute helps maintain uniform height for different panels. You need to assign the data-
equalizer attribute to the main container. Then apply the data-equalizer-watch attribute
to the concerned panels resulting in equal height for all those panels. The data-equalizer-
watch attribute helps inheriting the height of the tallest element.

Let’s understand this using a code example. We will create three callout panels and
define minimal amount of content for the first panel, increase the content in the second
panel and end up using maximum content for the third panel. We create a row initially
and assign the data-equalizer attribute in conjunction with the .row class.

Figure 5-8.  Image on small screens

Chapter 5 ■ JavaScript Components

95

We move on to defining the three callout panels. First we assign the responsive
classes by assigning the .large-4 columns class for each panel and then create the three
panels using the .callout class. We also assign the .warning class for more emphasis. We
use the data-equalizer-watch attribute in conjunction with each .callout class.

Refer to Listing 5-7 to see the entire code snippet:

Listing 5-7.

<div class="row" data-equalizer>
 <div class="large-4 columns">
 <div class="callout warning" data-equalizer-watch>
 �A small river named Duden flows by their place and supplies

it with the necessary regalia.
 </div>
 </div>
 <div class="large-4 columns">
 <div class="callout warning" data-equalizer-watch>
 �<p>A small river named Duden flows by their place and supplies

it with the necessary regalia. The Big Oxmox advised her not to do so,
because there were thousands of bad Commas, wild Question Marks and
devious Semikoli, but the Little Blind Text didn’t listen.</p>

 </div>
 </div>
 <div class="large-4 columns">
 <div class="callout warning" data-equalizer-watch>
 �A small river named Duden flows by their place and supplies it with

the necessary regalia. The Big Oxmox advised her not to do so, because
there were thousands of bad Commas, wild Question Marks and devious
Semikoli, but the Little Blind Text didn’t listen. Even the all-
powerful Pointing has no control about the blind texts it is an almost
unorthographic life. One day however a small line of blind text by the
name of Lorem Ipsum decided to leave for the far World of Grammar.

 </div>
 </div>
</div>

Chapter 5 ■ JavaScript Components

96

On executing the code, three panels with varying amount of content have equal
height and are spaced evenly across the row. Refer to Figure 5-9 to see the output.

Nesting is also possible in Data Equalizers. You can nest equalized elements within
the parent container. In the following example, initially we create a <div> with the row
class along with the data-equalizer attribute. We assign the value pub1 to the data-
equalizer attribute. Then we create three callout panels each spanning a width of four
columns across the row in addition to using the .success class to it. We have inherited the
same value “pub1” for each of those callouts.

The code snippet for the explanation above is as follows:

<div class="row" data-equalizer="pub1">
 <div class="large-4 columns">
 <div class="callout success" data-equalizer-watch="pub1">
 <h3>Main Panel</h3>
 <p> It wasn't a dream </p>
 </div>
 </div>
 
<div class="large-4 columns">
 <div class="callout success" data-equalizer-watch="pub1">
 <h3>Main Panel</h3>
 <p> It wasn't a dream </p>
 </div>
 </div>
<div class="large-4 columns">
 <div class="callout success" data-equalizer-watch="pub1">
 <h3>Main Panel</h3>
 <p> It wasn't a dream </p>
 </div>
 </div>
</div>
</div>

Figure 5-9.  Equalizer functionality

Chapter 5 ■ JavaScript Components

97

On executing the code, you will see the three callout panels evenly spread across the
row. Refer to Figure 5-10 to understand it better.

Following this, we now nest three callout panels in the first Callout panel. Initially
after the first paragraph element in the first callout, we create a row and assign the value
"publish" for the data-equalizer attribute. Then we create three nested callouts each and
assign the warning contextual class along for them. Then, we assign the data-equalizer-
watch attribute in conjunction with the .callout class for each callout panel and assign the
value “publish” to the data-equalizer-watch attributes. The complete code snippet for the
code example is shown in Listing 5-8:

Listing 5-8.

<div class="row" data-equalizer="pub1">
 <div class="large-4 columns">
 <div class=" callout success" data-equalizer-watch="pub1">
 <h3>Main Panel </h3>
 <p>It wasn't a dream</p>
 <div class="row" data-equalizer="publish">
 <div class="callout warning" data-equalizer-watch="publish">
 <h5>Nested Panel 1</h5>
 <p> Travelling day in and day out. </p>
 </div>
 <div class="callout warning" data-equalizer-watch="publish">
 <h5>Nested Panel 2 </h5>
 <p> Travelling day in and day out.. </p>
 </div>
 <div class="callout warning" data-equalizer-watch="publish">
 <h5>Nested Panel 3</h5>
 <p> Travelling day in and day out. </p>
 </div>
 </div>
 </div>
 </div>

Figure 5-10.  Main panels evenly spread across the row

Chapter 5 ■ JavaScript Components

98

 <div class="large-4 columns">
 <div class="callout success" data-equalizer-watch="pub1">
 <h3>Main Panel</h3>
 <p> It wasn't a dream </p>
 </div>
 </div>
<div class="large-4 columns">
 <div class="callout success" data-equalizer-watch="pub1">
 <h3>Main Panel</h3>
 <p> It wasn't a dream </p>
 </div>
 </div>
</div>

On executing the code, we will see the output where three nested callout panels are
enclosed in the first callout panel. Also the second and third main callout panels have
automatically inherited the enhanced heights of the first main callout Panel containing those
three nested callout panels. Refer to Figure 5-11 to see the output of the executed code.

Modals
Modals help you overlay an element over your website. A modal is generally used as an
alternative to conventional pop-ups. You can literally see the information without leaving
the page you are viewing. It also counts for awesome aesthetics and is a resourceful
utility that significantly enhances usability. In Foundation, you can design modals with
minimalistic amount of markup.

Figure 5-11.  Nested Equalizers

Chapter 5 ■ JavaScript Components

99

Let’s understand the procedure to create a basic Modal. Create an anchor <a> tag
and assign a .button class to it. Then next to the .button class, add a data-open attribute
and assign a value to it. The data-open attribute is the one that fires the modal.

 Modal button

Next, create a container element, in this case a <div>. Create an id for the <div>.
The id created must be the same one that is referenced by the data-open attribute in the
anchor tag defined earlier. To the same <div>, add the .reveal class and the data-reveal
attribute. Add the content that is to be displayed in the pop-up. Then we move on to
create a Close button. The Close button is created by using a <button> tag to which we
assign the .close-button class. We assign the type as button and also use the data-close
attribute in the same <button> tag. We then add the aria-label attribute and assign the
“Close reveal value” to it. Then we create an inline element and use the ×
unicode and then close the tag followed by closing the <button> tag. The entire
code snippet for the Modal feature is shown in Listing 5-9:

Listing 5-9.

 Modal button
 <div id="pub1" class="reveal" data-reveal>
 <h3>Hey You</h3>
 <p> Is there anybody out there </p>
 <p> Goodness! It is eerie when there is absolute silence </p>
 <button class="close-button" aria-label="Close reveal" type="button">
 ×
 </button>
 </div>

On executing the code, you can see the button called Modal Button as defined in
the code. On clicking it, the modal will pop-up on top of the page. Refer to Figure 5-12 to
understand it better:

Chapter 5 ■ JavaScript Components

100

You can nest a Modal within another Modal. Let’s understand the procedure to
create a nested modal in the following code example. Initially, we create a button using
the .button class in an anchor <a> tag. Use the data-toggle attribute and assign a value
to it, which is the same as the id assigned to the container <div> element that follows the
<a> tag. Assign the .reveal class to the container <div> element. Add the content you will
be using in the first modal.

The code snippet so far looks as follows:

Wall
<!-- Reveal Modals begin -->
<div id="pub1" class="reveal" data-reveal>
 <h3 id="pub1Title"> Hey You.</h3>
 <p>Is there anybody out there</p>

After this, we immediately create the button for the second modal. We assign the
.success class in conjunction with the .button class and assign a value to the data-toggle
attribute used alongside it. Then we create a close button similar to the code used in the
basic modal example. We close the <div> and then we proceed to create the content for
the second modal.

Figure 5-12.  Basic Modal example

Chapter 5 ■ JavaScript Components

101

Create another <div> element to which we assign the reveal class and then use
similar code to create the content of the second modal. The id for the <div> element will
be the referenced by the data-toggle attribute for the button created earlier for the second
modal. We move on to add the content and then create a close button for the second
modal.

The entire code snippet is shown in Listing 5-10:

Listing 5-10.

Wall
<!-- Reveal Modals begin -->
<div id="pub1" class="reveal" data-reveal>
 <h3 id="pub1Title"> Hey You.</h3>
 <p>Is there anybody out there</p>
 <p>Echoes</p>
 <button class="close-button" data-close aria-label="Close reveal" type="button">
 ×
 </button>
</div>
 
<div id="pub2" class="reveal" data-reveal>
 <h3 id="pub2Title"> Dream On </h3>
 <p>Hey Joe, in the end, it doesn't matter which side you are on</p>
 <p>In the end, it is just the end. Music's over, Turn off the lights! <p>
 <button class="close-button" data-close aria-label="Close reveal" type="button">
 ×
 </button>
</div>

The output of the code will result in a button called Wall as defined in the code as
shown if Figure 5-13.

Figure 5-13.  Button for the first modal

Chapter 5 ■ JavaScript Components

102

Click on this button and the first modal appears on top of the page. On clicking the
Echoes button, the second modal is fired replacing the first modal. We have shown the
procedure using Figure 5-14 where we have taken close-ups snaps of the output.

ToolTips
Tooltips are labels that are displayed on hovering over an element.

Let’s understand by means of a simple example. Create a row and define the
responsive class and the width and position of the container.

Moving forward, create an element and assign a .has-tip class to it. Apply the
data-tooltip attribute in conjunction with the .has-tip class. Enter the title which will be
displayed as the tool tip upon hovering over the content. Also use the data-disable-hover
attribute and assign the value “false” to it.

Refer to the code snippet for the tool-tip as defined in Listing 5-11.

Figure 5-14.  Modal inside a modal

Chapter 5 ■ JavaScript Components

103

Listing 5-11.

<div class="row">
 <div class = "small-8 small-centered columns">
 <div data-tooltip class="has-tip" data-disable-hover='false' title="
Foundation"> Mobile-First Framework </div>
</div>

Refer to Figure 5-15 to see the output of the executed code.

On hover, you can see the tool-tip as displayed in Figure 5-15.
You can also change the alignment of the tooltip to the top, right or left by using the

.top, .right and .left classes respectively in conjunction with the .has-tip class.
We will look at the following code snippet in Listing 5-12 to understand the

procedure of aligning the tooltip to the left.

Listing 5-12.

<div class="row">
 <div class = "small-8 small-centered columns">
 �<div data-tooltip class="has-tip left" data-disable-hover='false'

title="Foundation - To the left">Awesome Framework </div>
 </div>
</div>

Figure 5-15.  Basic Tooltip

Chapter 5 ■ JavaScript Components

104

The output of the code will result in a tooltip aligned to the left as displayed in
Figure 5-16.

Data-Toggler
The Data-Toggler attribute helps you toggle CSS or animate an element just by a click. We
will take a look at a code example to see how it works at a basic level. Initially, we create
a list of items using the tag. Refer to Listing 5-13 to see the code for the Data-Toggler
feature:

Listing 5-13.

<ul class="menu" id="pub" data-toggler=".expanded">
 John
 Jack
 Jill
 Janet
 Jonas

<button class="button" type="button" data-toggle="pub">Click to Expand</button>

Figure 5-16.  Left aligned Tooltip

Chapter 5 ■ JavaScript Components

105

Initially, we create a list of items using the and its nested tags. To the
tag, we assign an id and the data-toggler attribute. We assign the .expanded class to
the data-toggler attribute. In this example, we want to toggle the .expanded class. (You
need to assign the class you want to toggle to the data-toggler attribute). We move on to
defining a button which on clicking will toggle the .expanded class. Create a button using
the <button> tag and use the data-toggle attribute to it. To the data-toggle attribute, we
assign the value of the id of the tag.

The output on executing the code is shown in Figure 5-17.

Now if you click on the Click to Expand button on the screen, the names in the
output (as defined in the list items in the code) will expand and extend evenly on the
same row.

Refer to Figure 5-18 to see the expanded action on clicking the button.

Summary
In this chapter, we explored most of the JavaScript add-ons and plug-ins in Foundation.
The functionalities and features were explained using just the data attributes--
minimizing the use of writing vanilla JavaScript code. The jQuery components adhere
to the Write Less and Do More paradigm resulting in clean and lean coding. In the next
chapter, we will take a look at Foundation with Sass at a very basic level to understand
how it works.

Figure 5-18.  Expanded Toggle functionality

Figure 5-17.  Initial Code output for the Data Toggle feature

107

Chapter 6

Intro to Foundation
with Sass

Foundation’s CSS and JavaScript components make web designing a breeze. However,
there are times when the bloat and bulk of the CSS file is huge due to the complexity of
the project. Also, there are times when the websites developed using Foundation or any
other CSS framework look similar due to the common features used. Add to it the time
and effort that you would need to deliver as per the deadlines.

Enter Sass: a CSS pre-processor with a whole bunch of goodies such as nesting rules,
variables, and mixins to mention a few. Foundation with Sass helps you create intricate
projects in half the time without the normal clutter. In this chapter, we will discuss the
installation procedure of Sass and a simple example of how it can change the way you
code in Foundation.

Getting started with Foundation with SaaS
We will now install the Sass version of Foundation on the Windows operating system. The
easiest way to do so is by using the Command Line interface or what you call Command
Prompt in Windows.

Well there are pre-requisites prior to installation, namely –

Git
Node.js

Git, a distributed version control system can be downloaded from the following
website:

http://git-scm.com/

Since we are using Windows, you need to download the relevant file (compatible
with your versions of Windows, be it 32-bit or 64-bit) on the website.

http://git-scm.com/

Chapter 6 ■ Intro to Foundation with Sass

108

A couple of points are important if you are installing Git on Windows. As you click on
the installer, you will come across the following window after a few steps (Refer Figure 6-1).

Make sure that you are using the Windows Command Prompt option which is
highlighted in a red box in the preceding screenshot.

Complete the Git installation by choosing the appropriate options in the setup.
Ensure that the path of the Environment Variables as well as the System variables have
been configured correctly.

Next, you need to set up Node.js and install it. Node.js is power packed with Build
tools and helps you run JavaScript outside the browser.

You can download Node from the following link:

https://nodejs.org/en/

Click on the downloaded Node installer and ensure that the path of the Environment
and System Variables are configured correctly. This is essential as you will not be able to
use Foundation Sass if it is not configured correctly.

Now that we have installed the pre-requisites, we can move on to the Command
Prompt.

Figure 6-1.  Windows Command Prompt while installing Git

https://nodejs.org/en/

Chapter 6 ■ Intro to Foundation with Sass

109

Go to the command prompt and type in the following command.

npm install --global foundation-cli

Refer to Figure 6-2 to understand it better.

Once you run the command, the Foundation CLI will be installed.
Once CLI is installed, let’s create a project.
The following command should be run in the Command Prompt window:

foundation new

On running the command, you will be prompted to choose one among the three
options as displayed in Figure 6-3.

From the preceding screenshot, you can see the Foundation for Sites selected as the
default option. As you can see, Foundation for Apps and Foundation for Emails are the
other two options.

We will choose the default Foundation for Sites from the list. Press Enter and you will
be prompted for the project name. We will enter Venus as the project name (you can use
any project name, in this example, we are creating a project called Venus).

Figure 6-2.  Installing Foundation CLI

Figure 6-3.  Choosing Foundation for Sites option

Chapter 6 ■ Intro to Foundation with Sass

110

Once you enter the project name and Press Enter, you will need to choose from the
following two options:

Basic Template

ZURB Template

Refer to Figure 6-5 to understand it better.

From the preceding screenshot, you can see that the Basic Template is chosen by
default. The Basic template has a fixed directory file structure and only compiles only
Sass whereas the Zurb template comes along with a bunch of goodies such as Processing
JavaScript, Handlebars templating, Browser Syncing and Image compression.

We will choose the Basic Template in this example. On choosing the basic template,
it will download the project template along with installing all the dependencies. Then
it will ask you to go to the project folder and run the following command as shown in
Figure 6-6.

Figure 6-5.  Choosing the Basic Template

Figure 6-4.  Creating a project

Chapter 6 ■ Intro to Foundation with Sass

111

Go to the Project folder (in this case, Venus). Type in the following command:

foundation watch

Figure 6-6.  Screen post installation

Figure 6-7.  Running Foundation watch to compile Sass for the first time

Chapter 6 ■ Intro to Foundation with Sass

112

After you run the command, you can see that the project template is created.
Foundation uses the Gulp build tool for compiling the Sass files. (In the Zurb template,
It also helps in tasks such as compressing the Sass and js files, copying modified files
to the output directory, and refreshing the browser on the go to mention a few). On
compilation, you can go to the Venus Project folder using Windows explorer and you can
see the following file structure:

Let’s shed some light over some of these files, namely - the app.js file in the js folder,
_settings.scss and app.scss file in the scss folder and app.css in the stylesheets folder.

app.js

This is where we initialize the JavaScript add-ons and plug-ins. You can also add
custom JavaScript in this file to enhance the functionality.

_settings.scss

Figure 6-8.  File structure of the Project

Chapter 6 ■ Intro to Foundation with Sass

113

This file contains Foundation’s Sass variables and you have the facility of modifying
this file to customize your Foundation version. The _settings.scss file is a child of the
app.scss file listed below.

app.scss

In this file, all the Foundation components and styles are imported. However, you
can be selective by importing only those utilities that are required by deactivating the
components you do not need and selecting the ones which are essential. You can also
write or import custom Sass here.

app.css

On compiling the SCSS files, the output CSS files are saved here. Remember that if
you make any changes in this file, and then compile the SCSS files, then the mix-up will
override the CSS files here. Therefore, you can include the custom CSS styles in the SCSS
files itself so that it will be compiled to files here.

The basic HTML markup for a new file (when you are creating a new HTML file and
not the default one) is as displayed in Listing 6-1.

Listing 6-1.  Basic Markup

<!doctype html>
<html class="no-js" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="x-ua-compatible" content="ie=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Foundation for Sites</title>
<link rel="stylesheet" href="css/app.css">
</head>
<body>
 
<script src="bower_components/jquery/dist/jquery.js"></script>
<script src="bower_components/what-input/what-input.js"></script>
<script src="bower_components/foundation-sites/dist/foundation.js"></script>
<script src="js/app.js"></script>
</body>
</html>

Chapter 6 ■ Intro to Foundation with Sass

114

Let’s create a callout and assign the secondary color to it. The code will look as
defined in Listing 6-2.

Listing 6-2.  Adding a callout

<!doctype html>
<html class="no-js" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="x-ua-compatible" content="ie=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Foundation for Sites</title>
<link rel="stylesheet" href="css/app.css">
</head>
<body>
<div class="row">
 <div class="small-8 small-centered columns">
 �<h3>This is a secondary panel</h3>
<div class="callout secondary">
 �Far far away, behind the word mountains, far from the countries Vokalia

and Consonantia, there live the blind texts. Separated they live in
Bookmarksgrove right at the coast of the Semantics, a large language
ocean.

<div>
 </div>
 </div>
<script src="bower_components/jquery/dist/jquery.js"></script>
<script src="bower_components/what-input/what-input.js"></script>
<script src="bower_components/foundation-sites/dist/foundation.js"></script>
<script src="js/app.js"></script>
</body>
</html>

The output of the code on execution will be as displayed in Figure 6-9.

Figure 6-9.  Secondary callout

Chapter 6 ■ Intro to Foundation with Sass

115

The next step is to make changes in the SCSS files. Remember that custom CSS and
SCSS must be a part of the app.scss file. If you want to make changes in your Foundation
version, then you can change it in the _settings.scss file which in turn is a child of the app.
scss file. What it means is that things you cannot do or implement in the _settings.scss file
can be done in the app.scss file. As explained earlier, you can be selective and only choose
those components that you require in the app.scss file.

The global value for secondary-color is defined as #777 as defined in Figure 6-10.

Figure 6-10.  Default secondary color

Chapter 6 ■ Intro to Foundation with Sass

116

But in this example, we will be changing the secondary-color to lime. Open the
_settings.scss file using Notepad++ or any text editor. In the Global section, change the
secondary contextual color to lime. Refer Figure 6-11 to understand it better.

The Gulp Task runner will compile it automatically as displayed in Figure 6-12.

Figure 6-11.  Uncommenting and changing the primary color and font size

Chapter 6 ■ Intro to Foundation with Sass

117

Therefore, if you reload the webpage, you can see that the callout panel color
changes to lime as changed in the Sass file. Refer the figure 6-13 to understand it better.

This is just the tip of the iceberg. Sass is an interesting pre-processor and is an ocean
in itself. The more you learn, you will find that there is much more you can do.

For more info on just Sass, you can delve deep into many varied concepts and
examples on the following link:

http://thesassway.com/

As for Gulp, you can always refer to the following link to understand it better:

http://gulpjs.com/

Figure 6-12.  Automatic Compilation by Gulp

Figure 6-13.  Callout color changes to lime

http://thesassway.com/
http://gulpjs.com/

Chapter 6 ■ Intro to Foundation with Sass

118

Summary
In this chapter, we have seen the resourcefulness of Sass which allows budding and
experienced designers to abstract complex functions in to a single variable which
otherwise would be quite cumbersome using CSS only. Therefore, with Foundation
Sass, you can get your project up and running in a quicker and easier way. In the
next chapter, we will take a look at the Foundation Hub where we learn about several
community-related enhancements and built-in utilities in addition to the roadmap of this
immersive and responsive framework.

119

Chapter 7

Foundation Hub

Foundation is a framework that is logically built with baked-in components that
streamline the web-designing experience. The preceding chapters of this book were
focused on Foundation for Sites. The present chapter touches on Foundation for Email,
Foundation for Apps, and the extensive Foundation library of HTML templates and
themes for incorporation in projects. The Foundation website contains a Building Blocks
section featuring a pattern library of tailored HTML, CSS, and JavaScript snippets for use
in Foundation web-designing projects. The present chapter shows you how to optimize
your web design and leverage the benefits of using the ready-made Foundation resources
at your disposal.

Foundation HTML Templates and Themes
The Foundation website contains an HTML Templates section where you can view
several responsive templates tailor-made for different purposes. All of them are based
on the Foundation Grid and cater to varied functionalities. For example, you have the
Product Page, Agency, Blog w/sidebar, Blog Single Column, Ecommerce HomePage, and
Portfolio templates (Figure 7-1).

Figure 7-1.  HTML Templates.png

Chapter 7 ■ Foundation Hub

120

Simply click on the Download button below the templates to download the webpage.
You can also click the Demo button to display a preview of that webpage. You can find
these templates at http://foundation.zurb.com/templates.html.

Building Blocks
Building Blocks are a pattern library for front-end components where you can find
tailored code snippets to include in your Foundation Code. The Building Blocks can be
found at http://foundation.zurb.com/develop/building-blocks.html(Figure 7-2).

Figure 7-2.  Building Blocks.png

http://foundation.zurb.com/templates.html
http://foundation.zurb.com/develop/building-blocks.html

Chapter 7 ■ Foundation Hub

121

You can check out all the Building Blocks at http://zurb.com/building-blocks
(Figure 7-3).

It is so flexible that you can search the required pattern by clicking the Type link to
view the different tags tailored for you to incorporate in your projects (Figure 7-4).

Figure 7-3.  Sample Building Blocks

Figure 7-4.  Building Blocks filtered by Type

http://zurb.com/building-blocks

Chapter 7 ■ Foundation Hub

122

Let’s now look at the procedure to use the Social Login Split buttons building block
(Figure 7-5).

Click on the block and you will be directed to the corresponding code snippets.
The HTML, CSS, JavaScript, and SCSS code are all maintained separately in their panels
(Figure 7-6).

Figure 7-5.  Social media Buttons building block

Chapter 7 ■ Foundation Hub

123

Copy the code from their panels and paste it in your coding files. You can also
change the content or customize the content or look according to your requirements.

Figure 7-6.  Social Media Code Snippets

Chapter 7 ■ Foundation Hub

124

Resources
You can find a library of add-ons and plug-ins at http://foundation.zurb.com/sites/
resources.html. Figure 7-7 shows a portion of the Resources page.

In addition to many customizable toolkits and utilities, blocks for use in conjunction
with frameworks such as Angular or Django are available here. Foundation Themes are
not only tailor-made for content management systems (CMS) such as WordPress and
Joomla, but also server-side systems such as .NET, Meteor, Python, and PHP.

Panini
The development team at Zurb created Panini to optimize prototype development.
Inclusive of Handlebars and with Libsass baked-in, Panini encourages the use of
templates, pages, and partials to speed up the prototyping process. It adheres to the DRY
principle of “write once, use everywhere.”Panini is a Gulp-powered build compiler tool
that compiles Sass to CSS, helping you create HTML pages and reusable partials in flat files.
You can also use it in conjunction with UnCSS to erase CSS classes and compress CSS,
JavaScript, and Images.

Figure 7-7.  Toolkits and Plug-ins.png

http://foundation.zurb.com/sites/resources.html
http://foundation.zurb.com/sites/resources.html

Chapter 7 ■ Foundation Hub

125

Motion UI
Initially used in Foundation for Apps, Motion UI is available in Foundation for Sites in the
Foundation 6.0 version. The Motion UI library aids in flexible transitions and animations
for the UI. You can also create custom transitions other than the built-in CSS classes.
Motion UI is versatile and flexible and may be used with any JavaScript animation utility.

Foundation Forums and Support
Foundation has lively community support and you can post queries on the Foundation
Forums. You can also post your queries by email and on GitHub and Stack Overflow.

Zurb offers Foundation for Business as a premium support level for companies
in development along with web-based and onsite training. The hosted code feature,
Notable, allows s of project zip files to enable prototype presentations, prior to live
implementation.

Foundation for Apps
Foundation for Apps is a power-packed framework that helps you build single-page
web apps quickly. It can be used for developing apps for varied purposes such as email,
chat, or travel portals. Combined with the power of AngularJS and Motion UI, you can
create immersive apps with complex features quite easily. Since it utilizes AngularJS for
implementing a MVC structure and UI Routing, the developers need not know AngularJS
or JavaScript. For details, go to http://foundation.zurb.com/apps.html.

Foundation for Email enables device- and client-agnostic creation of responsive
emails in conjunction with boilerplate templates and support for email clients
such as Microsoft Outlook, Mozilla Thunderbird or Yahoo Mail. For details, go to
http://foundation.zurb.com/emails.html.

Envoi
Coding gets better with practice. Play with the source code in the digital annex of this
book, modifying it freely to gain a practical understanding of Foundation from the
variations in output. The deeper you delve into the intricacies of Foundation, the greater
will be your appreciation of its power. For ongoing updates and information, follow the
Foundation blog at http://foundation.zurb.com/learn/blog.html and sign up for the
Stay Connected Insider facility at http://foundation.zurb.com/learn/foundation-
insider.html.

http://foundation.zurb.com/apps.html
http://foundation.zurb.com/emails.html
http://foundation.zurb.com/emails.html
http://foundation.zurb.com/learn/blog.html
http://foundation.zurb.com/learn/foundation-insider.html
http://foundation.zurb.com/learn/foundation-insider.html

127

�       � A
Accordions, 87
app.css file, 113
app.js file, 112
app.scss file, 113

�       � B
Button groups

.button class, 54

.expanded class, 55
output, 54
split buttons, 58
.stacked-for-small class, 56, 58
uniformly color-and-size, 54–55

Buttons
code implementation, 49
hollow style, 51–52
output, 50
sizes, 52–53
with contextual colors, 50–51

�       � C
Callout panels, 63
Checkbox switches, 68
CSS components

buttons
code implementation, 49
groups (see Button groups)
hollow style, 51–52
output, 50
sizes, 52–53
with contextual colors, 50–51

callout panels, 63

forms
.button class, 80
Fieldset attribute, 76–78
<form> tags, 73
inline form, 81
inline labels, 79
.input-group-button class, 75
.input-group class, 75
.input-group-field class, 75
login, 73–74
password, 73
Search textbox, 75–76

progress bars, 62
range sliders, 66
switches

Checkbox, 68
Radio, 70

tables
code implementation, 59
large screen, 61
<table> tags, 60
<tbody> tags, 60
small screen, 61
.width attribute, 60

Content Delivery
Network (CDN), 6–7, 9–11, 41, 83

�       � D
Data-Interchange, 92
Data-Toggler, 104
Dropdown Panes, 90

�       � E
Equalizers, 94–98

Index

■ index

128

�       � F
Forms

.button class, 80
Fieldset attribute, 76–78
<form> tags, 73
inline form, 81
inline labels, 79
.input-group-button class, 75
.input-group class, 75
.input-group-field class, 75
login, 73–74
password, 73
Search textbox, 75–76

Foundation
advantages, 6
CDN links, 6–7
Complete version, 4
CSS framework, 2
Custom version, 4
Essentials version, 4
file structure, 5
homepage, 2–3
index.html file, 6
responsive web design, 1
Sass version, 4

Foundation Hub
building blocks

building blocks.png, 120
by Type, 121
sample, 121
Social Login Split buttons, 122
Social Media Code Snippets, 123

email, chat, or travel portals, 125
Envoi, 125
Forums and Support, 125
HTML Templates.png, 119
Motion UI library, 125
Panini, 124
resources, 124

�       � G, H, I
Grid layout

block grids
code implementation, 18
large screen, 19
Lorem-Pixel

placeholder facility, 20

medium screen, 19
small screen, 20

charset meta tag, 10
code snippet, 12–13
columns class, 12
foundation.min.css CDN link, 10
functionality, 13
HTML markup, 10
jquery.min.js link, 10
large classes, 12
nested columns, 16
offsets, 17–18
responsiveness, 13–14
small and large screen resolutions, 15
terminology, 11
utility classes

float, 22
right-to-left support, 24
text-align, 23

viewport meta tag, 10
visibility classes, 20

�       � J, K, L
JavaScript components

Accordions, 87
code implementation, 83
Data-Interchange, 92
Data-Toggler, 104
Dropdown Panes, 90
Equalizers

callout panels, 94
code implementation, 95
data-equalizer attribute, 96
data-equalizer-watch

attributes, 97
functions, 96
Main panels, 97
nested callout pannels, 98

Modals
aria-label attribute, 99
data-close attribute, 99
data-open attribute, 99
data-toggle attribute, 101
Echoes button, 102
Modal Button, 99
Wall button, 101

Tabs, 84
Tooltips, 102

■ Index

129

�       � M
Media components

Badges, 47–48
Flex–Video, 45
labels, 46–47
Slick Carousel, 40
Thumbnail component, 44

Modals, 99–101

�       � N, O
Navigation

Breadcrumbs, 39–40
dropdown menu, 34–35
menu component

expanded class, 33
menu class, 31
right-alignment, 32
vertical menu nesting, 33

top bar, 36

�       � P, Q
Progress bars, 62

�       � R
Radio switches, 70
Range sliders, 66

�       � S
Sass

adding callout, 114
app.css, 113
app.js, 112

app.scss, 113
Basic Template, 110
callout panel

color changes, 117
CLI installation, 109
creating project, 110
default secondary color, 115
environment and

system variables, 108
file structure, 112
Gulp build tool, 112
Gulp Task runner, 116
HTML markup, 113
Notepad++/text editor, 116
screen post installation, 111
secondary callout, 114
_settings.scss, 112
sites option, 109
Windows Command

Prompt, 107–108
Zurb template, 110

_settings.scss file, 112
Split buttons, 58

�       � T, U, V, W, X, Y, Z
Tables

large screen, 61
<table> tags, 60
<tbody> tags, 60
small screen, 61
width attribute, 60

Tabs, 84
Tooltips, 102
Typography

blockquotes, 29–30
abbreviations, 29–30

www.allitebooks.com

http://www.allitebooks.org

	Contents at a Glance
	Contents
	About the Author
	About the Technical
Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Quick Start with Foundation
	 Responsive Web Design and CSS Frameworks
	 Getting Started with Foundation 6
	 Summary

	Chapter 2: Grid System and Utility Classes
	 Set the Base Correctly with Foundation
	 Understanding the Grid Layout
	 Responsiveness in Foundation
	 Adding Custom Width for the Small and Large Screen Resolutions
	 Nested Columns
	 Offsets
	 Block Grids
	 Visibility Classes
	 Utility Classes
	Float Classes
	 Text-Align Classes
	 Right-to-Left Support

	 Summary

	Chapter 3: Typography, Navigation, and Media Attributes
	 Typography
	 Navigation
	 Menu Component
	Menu
	Menu Align Right
	 Expanded Menu
	 Vertical Menu Nesting

	 Dropdown Menu
	 Top Bar
	 Breadcrumbs

	 Media Components
	 Slick Carousel
	 Thumbnail
	 Flex–Video
	 Labels
	 Badges

	 Summary

	Chapter 4: CSS Components
	 Buttons
	 Button with contextual colors
	 Buttons with Hollow style
	 Button Sizes
	 Button Groups
	Uniform-colored and uniform- sized Button group
	Stacked-for-small Button group
	 Split Buttons

	 Tables
	 Progress bars
	 Callout Panels
	 Range Sliders
	 Switches
	 Checkbox switches
	 Radio Switches

	 Forms
	 Summary

	Chapter 5: JavaScript Components
	 Tabs
	 Accordions
	 Dropdowns
	 Data-Interchange
	 Equalizers
	 Modals
	 ToolTips
	 Data-Toggler
	 Summary

	Chapter 6: Intro to Foundation with Sass
	 Getting started with Foundation with SaaS
	 Summary

	Chapter 7: Foundation Hub
	 Foundation HTML Templates and Themes
	 Building Blocks
	 Resources
	 Panini
	 Motion UI
	 Foundation Forums and Support
	 Foundation for Apps
	 Envoi

	Index

