
RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Varanasi
Belida

www.apress.com

Introducing Gradle
Introducing Gradle is a quick start-up primer on the Gradle build automation
tool. You will learn about Gradle and how to set it up to use. You will learn
the basics of Groovy, the language used for creating Gradle build fi les.
Also, you will learn about tasks, plugins and build lifecycle. Furthermore,
you will learn how to create and use a custom plugin.

After reading and using Introducing Gradle, you will have an
understanding of Gradle’s dependency management and how to single
and multi-projects are structured and confi gured. You will learn how to
use Gradle for publishing artifacts to local and Nexus remote repository.
Finally, you will learn Jenkins support for Gradle.

You will learn:

• What Gradle is and how it compares with Ant, Maven and more
• How to set up and test Gradle
• What tasks and projects are
• How to use out of the box plugins
• How to create a custom plugin
• Gradle’s support for dependency management
• How to publish artifacts to local and remote repos
• How to confi gure Jenkins to work with Gradle
• How multi-projects are organized
• Basic Groovy language features

Shelve in:
Programming Languages/Java

User level:
Beginning

SOURCE CODE ONLINE 9 781484 210321

52999
ISBN 978-1-4842-1032-1

www.allitebooks.com

http://www.allitebooks.org

Introducing Gradle

Balaji Varanasi

Sudha Belida

www.allitebooks.com

http://www.allitebooks.org

Introducing Gradle

Copyright © 2015 by Balaji Varanasi and Sudha Belida

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1032-1

ISBN-13 (electronic): 978-1-4842-1031-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Manuel Jordan Elera
Editorial Board: Steve Anglin, Mark Beckner, Louise Corrigan, Jonathan Gennick,

Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484210321. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484210321
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Authors ��� xi

About the Technical Reviewer �� xiii

Acknowledgments ��� xv

Introduction ��� xvii

 ■Chapter 1: Getting Started �� 1

 ■Chapter 2: Setting Up Gradle �� 7

 ■Chapter 3: Groovy Language Primer ��� 17

 ■Chapter 4: Understanding Gradle Builds �������������������������������������� 27

 ■Chapter 5: Projects and Plugins ��� 41

 ■Chapter 6: Dependency Management ��� 67

 ■Chapter 7: Multi-Project Builds �� 87

 ■Chapter 8: Publishing Artifacts �� 99

 ■Chapter 9: Continuous Integration �� 111

Index �� 129

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Authors ��� xi

About the Technical Reviewer �� xiii

Acknowledgments ��� xv

Introduction ��� xvii

 ■Chapter 1: Getting Started �� 1

Declarative Dependency Management �� 1

Declarative Builds ��� 2

Build by Convention ��� 2

Incremental Builds �� 2

Gradle Wrapper�� 2

Plugins��� 3

Open Source �� 3

Gradle Alternatives �� 3

Ant + Ivy ��� 3

Maven ��� 4

Summary ��� 5

 ■Chapter 2: Setting Up Gradle �� 7

Installation Prerequisites ��� 7

Setting Up Java ��� 7

Downloading Gradle ��� 7

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

Installing Gradle �� 8

Installing on Windows ��� 8

Testing the Installation ��� 11

Installing on Mac OS X �� 11

Setting Gradle’s JVM Options ��� 12

Gradle Distribution �� 13

Hello World Gradle Script �� 13

Getting Help ��� 14

Gradle GUI�� 15

IDE Support ��� 15

Summary ��� 16

 ■Chapter 3: Groovy Language Primer ��� 17

Installing Groovy �� 17

Running Groovy ��� 18

Basic Groovy Language Features �� 19

Groovy Syntax ��� 19

Comments �� 20

Data Types �� 20

Closures �� 24

Summary ��� 25

 ■Chapter 4: Understanding Gradle Builds �������������������������������������� 27

Projects ��� 27

Tasks ��� 29

Creating Tasks �� 29

Task Dependencies ��� 31

Skipping Tasks �� 35

Gradle Task Types ��� 36

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

vii

Build Lifecycle ��� 37

Summary ��� 39

 ■Chapter 5: Projects and Plugins ��� 41

Introducing Plugins ��� 41

Java Projects ��� 42

Using the Java Plugin ��� 42

Jar Task �� 45

Generating Javadoc �� 46

Configuring the Default Layout ��� 48

Creating Web Projects �� 49

War Task ��� 51

Writing a Custom Plugin �� 52

Creating a Java Plugin �� 52

Creating a Groovy Plugin �� 55

Creating a Stand-Alone Project Plugin ��� 57

Summary ��� 66

 ■Chapter 6: Dependency Management ��� 67

Declarative Dependency Management �� 67

Dependency Configuration �� 70

Working with Dependencies ��� 71

External Module Dependencies �� 72

File Dependencies �� 75

Project Dependencies ��� 77

Resolving Dependency Conflicts ��� 78

Repositories �� 80

Uber JAR Creation ��� 82

Summary ��� 85

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

 ■Chapter 7: Multi-Project Builds �� 87

Multi-Project Structure �� 87

Sample Project ��� 88

Flat Layout ��� 90

Multi-Project vs� Single-Project Builds ��� 92

Project Configuration �� 93

Project Dependencies ��� 95

Subproject Build Files ��� 96

Summary ��� 97

 ■Chapter 8: Publishing Artifacts �� 99

Publishing to a Local Repository ��� 99

Publishing to a Maven Repository ��� 100

Installing Nexus �� 100

The Build Configuration �� 101

Dealing with Additional Artifacts ��� 104

Installing to a Gradle Cache �� 106

Use a File Repository �� 107

Use a Local Maven Repository�� 107

Use a Central Repository �� 108

Summary ��� 109

 ■Chapter 9: Continuous Integration �� 111

Continuous Integration Flow ��� 111

Sample Project �� 112

Installing Jenkins �� 113

Configuring Jenkins �� 114

Creating the Build Job �� 116

Running the Build Job �� 122

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

ix

Archiving Artifacts ��� 124

Publishing Test Results ��� 126

Summary ��� 128

Index �� 129

www.allitebooks.com

http://www.allitebooks.org

xi

About the Authors

Balaji Varanasi is a software development manager,
author, speaker, and technology entrepreneur. He
has over 14 years of experience architecting and
developing high-performance, scalable Java and .NET
mobile applications. During this period, he has worked
in the areas of security, web accessibility, search,
and enterprise portals. He has a master’s degree in
computer science from Utah State University and
serves as adjunct faculty at the University of Phoenix,
teaching programming and information system
courses. He shares his insights and experiments at
http://blog.inflinx.com.

Sudha Belida is a senior software engineer and
technology enthusiast. She has more than seven years
of experience working with Java and JEE technologies
and frameworks, such as Spring, Hibernate, Struts,
and AngularJS. Her interests lie in entrepreneurship
and agile methodologies for software design
and development. She has a master’s degree in
computational science from the University of Utah. In
her free time, she likes to travel and enjoy the outdoor
environment that Utah has to offer.

www.allitebooks.com

http://blog.inflinx.com
http://www.allitebooks.org

xiii

About the Technical
Reviewer

Manuel Jordan Elera is an autodidactic developer and
researcher who enjoys learning new technologies for
his own experiments and creating new integrations.
Manuel won the 2010 Springy Award—Community
Champion and Spring Champion 2013. In his little
free time, he reads the Bible and composes music on
his guitar. Manuel is known as dr_pompeii. He has
tech reviewed numerous books for Apress, including
Pro Spring, 4th Edition (2014), Practical Spring LDAP
(2013), Pro JPA 2, Second Edition (2013), and Pro
Spring Security (2013).

Read his 13 detailed tutorials about many Spring
technologies, contact him through his blog at
http://www.manueljordanelera.blogspot.com, and
follow him on his Twitter account @dr_pompeii.

http://www.manueljordanelera.blogspot.com

xv

Acknowledgments

This book would not have been possible without the support of several people, and we
would like to take this opportunity to sincerely thank them.

Thanks to the amazing folks at Apress; without you, this book would not have seen
the light of day. Thanks to Mark Powers for being patient and keeping us focused. Thanks
to our development editor Chris Nelson for his insights and suggestions in making this
book better. Thanks to Steve Anglin for his constant support and the rest of the Apress
team involved in this project.

Huge thanks to our technical reviewer Manuel Jordan Elera for his efforts and
attention to detail. His valuable feedback has led to many improvements in the book.

Finally, we would like to thank our friends and family for their constant support and
encouragement.

xvii

Introduction

Introducing Gradle is a quick start-up primer on the Gradle build automation tool. The
book starts by explaining the fundamentals behind Gradle and showing you how to set
up and test Gradle on your local machine. It explains the basics of Groovy, the language
for creating Gradle build scripts. It then delves deeply into concepts such as dependency
management, projects, tasks, lifecycle phases, and plugins. It also discusses Gradle’s
support for multi-projects and publishing artifacts to local and remote repositories. Finally,
it concludes with a discussion of continuous integration (CI) and a review of Jenkins
support for Gradle.

How This Book Is Structured
Chapter 1 starts with a gentle introduction to Gradle. It discusses reasons for adopting
Gradle, and it provides an overview of its two alternatives: Ant and Maven.

Chapter 2 focuses on setting up Gradle on your machine and testing the installation.
It also provides an overview of different files/folders that come as part of the Gradle
distribution, and it shows a simple Gradle build script.

Chapter 3 delves into Groovy language basics and reviews its language features
needed to build Gradle scripts.

Chapter 4 discusses Gradle’s two building blocks—project and tasks. You will learn
how to create tasks and declare dependencies between those tasks. You will also review
the lifecycle of a Gradle build.

Chapter 5 delves deep into Gradle’s support for Java projects. You will learn about the
Java and War plugins and use them to build and deploy Java and web applications. The
chapter also provides in-depth coverage of Gradle plugins. You will also look at building a
custom plugin.

Chapter 6 provides a detailed coverage of dependency management. You will
learn about principles behind dependency management and look at Gradle’s support
for managing those dependencies. You will also learn about the different types of
dependencies and how to resolve dependency conflicts.

Chapter 7 reviews the intricacies of Gradle’s multi-project builds. You look at the two
types of project structures—hierarchical and flat. You also learn how to declare common
and project specific behavior in root and subproject build files.

Chapter 8 discusses Gradle’s support for publishing artifacts. You learn about
archives configuration for declaring artifacts produced by a project. You then install
Nexus Maven repository manager and publish artifacts to the repository. You also learn
about the configuration needed to deal with additional artifacts.

Chapter 9 reviews continuous integration (CI) flow and explores Jenkins, a popular
open source CI server. You look at installing Jenkins and configuring the necessary
plugins to run a sample project located on the GitHub repository.

http://dx.doi.org/10.1007/978-1-4842-1031-4_1
http://dx.doi.org/10.1007/978-1-4842-1031-4_2
http://dx.doi.org/10.1007/978-1-4842-1031-4_3
http://dx.doi.org/10.1007/978-1-4842-1031-4_4
http://dx.doi.org/10.1007/978-1-4842-1031-4_5
http://dx.doi.org/10.1007/978-1-4842-1031-4_6
http://dx.doi.org/10.1007/978-1-4842-1031-4_7
http://dx.doi.org/10.1007/978-1-4842-1031-4_8
http://dx.doi.org/10.1007/978-1-4842-1031-4_9

■ IntroduCtIon

xviii

Target Audience
Introducing Gradle is intended for developers and automation engineers who want to
get started quickly with Gradle. This book assumes basic knowledge of Java. No prior
experience with Gradle is required.

Downloading the Source Code
The source code for the examples in this book can be downloaded from
www.apress.com/9781484210321. The source code is also available on GitHub at
https://github.com/bava/intro-gradle.

Once downloaded, unzip the code and place the contents in the intro-gradle
folder. The source code is organized by individual chapters. Each folder contains build
scripts and project files corresponding to that chapter.

Questions
We welcome reader feedback. If you have any questions or suggestions, you can contact
the authors at Balaji@inflinx.com or Sudha@inflinx.com.

www.apress.com/9781484210321
https://github.com/bava/intro-gradle
http://Balaji@inflinx.com
http://Sudha@inflinx.com

1

Chapter 1

Getting Started

Traditional software development typically involves writing code, compiling code,
running tests, and assembling an archive that finally gets deployed or distributed. As
software projects became more complex, additional steps such as running static code
analysis, conditional inclusions of resources, and running security scans have become
part of the mainstream build and deployment process. Build automation tools allow you
to automate these steps, which helps make builds repeatable and predictable. In this
book, we will discuss and explore the features of Gradle, a popular build automation tool.

Gradle (http://gradle.org/) is the newest addition to the Java build project
automation tool family. It is open sourced under Apache License 2.0 and its first version
(0.7) was released in 2009, followed by version 2.0 in 2014. At the time of writing this
book, version 2.7 is the current version of Gradle. Gradle has been gaining a lot of
adoption as it draws on lessons learned from other existing build tools such as Ant and
Maven. Several high-profile projects such as Android, Spring Framework, and Hibernate
have migrated their build systems to use Gradle. Let’s look at some reasons for Gradle’s
popularity.

Declarative Dependency Management
Most Java projects rely on other projects and open source frameworks to function
properly. It can be cumbersome to download these dependencies manually and
keep track of their versions as you use them in your projects. To make things more
complicated, these dependencies might have their own dependencies (referred to as
transitive dependencies) that need to be resolved and downloaded.

Gradle provides a convenient way to declare your project dependencies. It then
automatically downloads those dependencies (along with transitive dependencies) and
allows you to use them in your projects. This simplifies project dependency management
greatly. It is important to note that you only tell Gradle the what and not the how.

http://gradle.org/

Chapter 1 ■ GettinG Started

2

Declarative Builds
Gradle uses a Groovy (http://groovy-lang.org/) based domain specific language
(DSL—see https://docs.gradle.org/current/dsl/) for declaring builds. The DSL
provides a set of language elements that can be easily assembled to create build scripts
that are simple and clearly express their intent.

Build by Convention
Gradle provides sensible defaults and conventions for Java, Groovy, web, Scala, Android,
and OSGi projects. For example, Gradle recommends that all the production source
code for a Java project reside under the folder src\main\java. In the same way, it has
recommendations for where the test code and resources should go. Additionally, default
tasks get configured automatically for a Java project that would compile the code, and
then run, test, and generate a JAR artifact.

Adhering to these conventions would make the build scripts very concise. However,
you are not limited to follow these conventions. Since the Gradle’s DSL is based on
Groovy, it is easy to write Groovy code to tweak and deviate from these conventions.

Incremental Builds
Complex projects often run into slow build times as the build tool tries to “clean” and
rebuild everything. Gradle addresses this problem by providing incremental builds
that skip the execution of a task if neither the inputs nor the outputs have changed. For
example, the JavaCompile task takes a set of Java source files as input and generates a set
of class files. Gradle uses this information to check if the source files have changed and if
no changes are detected, the task gets skipped.

Gradle Wrapper
Gradle Wrapper is simply a batch file (gradlew.bat) in the Windows environment and
a shell script for Linux/Mac environments. When it runs, the wrapper script downloads
and installs a fresh copy of Gradle runtime on the machine and executes a Gradle build.
Gradle Wrapper makes it easy to spin up new continuous integration (CI) servers that
can run builds without any additional configuration. The wrapper also makes it easy to
distribute code and collaborate with others, as the recipients can easily build it.

http://groovy-lang.org/
https://docs.gradle.org/current/dsl/

Chapter 1 ■ GettinG Started

3

Plugins
Gradle makes it easy to augment and customize its functionality through plugins. Plugins
are distributable components that encapsulate reusable build and task logic. Using
plugins, it is possible to support additional languages, create new tasks, or modify existing
task functionality and extend build language by adding new keywords. With Gradle, you
can easily create your own plugins, thereby enabling you to integrate tasks and workflows
that are specific to your organization.

Open Source
Gradle is open source and costs nothing to download and use. It comes with rich online
documentation and the support of an active community. Additionally, Gradle Inc. offers
consulting and commercial support for the Gradle ecosystem.

Gradle Alternatives
Before you dig deep in to Gradle, take a look at couple of its alternatives—Ant + Ivy and
Apache Maven.

Ant + Ivy
Apache Ant (http://ant.apache.org) is a popular open source tool for scripting builds.
Released in 2000, it was the first among the “modern” build tools for the Java ecosystem.
The framework is Java based and uses extensible markup language (XML) for its
configuration. The default configuration file for Ant is the build.xml file.

Using Ant typically involves defining tasks and targets. As the name suggests, an
Ant task is a unit of work that needs to be completed. Typical tasks involve creating a
directory, running a test, compiling source code, building a web application archive
(WAR) file, and so forth. A target is simply a set of tasks. It is possible for a target to
depend on other targets. This dependency lets you sequence target execution. Listing 1-1
demonstrates a simple build.xml file with one target, called compile. The compile target
has two echo tasks and one javac task.

Listing 1-1. Sample Ant build.xml File

<project name="Sample Build File" default="compile" basedir=".">
 <target name="compile" description="Compile Source Code">
 <echo message="Starting Code Compilation"/>
 <javac srcdir="src" destdir="dist"/>
 <echo message="Completed Code Compilation"/>
 </target>
</project>

http://ant.apache.org/

Chapter 1 ■ GettinG Started

4

Ant doesn’t impose any conventions or restrictions on your project and it is known
to be extremely flexible. This flexibility has sometimes resulted in complex, hard-to-
understand and maintain build.xml files.

Apache Ivy (http://ant.apache.org/ivy/) provides automated dependency
management, making Ant more joyful to use. With Ivy, you declare the dependencies
in an XML file called ivy.xml, as shown in Listing 1-2. Integrating Ivy with Ant involves
declaring new targets in the build.xml file to retrieve and resolve dependencies.

Listing 1-2. Sample Ivy Listing

<ivy-module version="2.0">
 <info organisation="com.apress" module="gswm-ivy" />
 <dependencies>
 <dependency org="org.apache.logging.log4j" name="log4j-api"
rev="2.0.2" />
 </dependencies>
</ivy-module>

Maven
Apache Maven is currently the most popular build automation/project management tool
in the Java ecosystem. Released in 2004, Maven attempted to address many problems
faced by Ant users. It adheres heavily to convention over configuration and introduced
standard directory structure to projects. It also introduced declarative dependency
management and automatically downloaded needed dependencies from external
repositories.

Maven uses XML for providing project, dependency metadata, and build
configuration. This information is provided in a pom.xml file defined at the root of the
project. Listing 1-3 shows an example pom.xml file for a Java project.

Listing 1-3. Sample pom.xml File

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.apress</groupId>
 <artifactId>test-service</artifactId>
 <version>1.0.0-SNAPSHOT</version>

http://ant.apache.org/ivy/
http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://maven.apache.org/xsd/maven-4.0.0.xsd

Chapter 1 ■ GettinG Started

5

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

</project>

In this pom.xml file, the groupId, artifactId and version elements provide
information about the project being built. The dependencies element indicates the
artifact (JUnit in this case) on which the project depends.

Maven’s convention over configuration, though helpful, can sometimes be too
rigid and it’s difficult to deviate from the conventions. Maven’s use of XML is not very
expressive and can become too restrictive for declaring complex build logic.

 ■ Note to learn more about Maven, refer to Introducing Maven
(http://www.apress.com/9781484208427) by Balaji Varanasi and Sudha Belida (apress 2014).

Summary
Gradle greatly simplifies the build process and automates build management. This
chapter provided a gentle introduction to Gradle and described the main reasons for
adopting it. You also looked at Gradle’s close peers—Ant + Ivy and Maven.

In the next chapter, you will learn about the set up required to get up and running
with Gradle.

http://www.apress.com/9781484208427

7

Chapter 2

Setting Up Gradle

Gradle installation is an easy and straightforward process. This chapter explains how
to install and set up Gradle using the Windows 7 and Mac operating systems. You can
follow similar procedure with other operating systems. In addition to the basic Gradle
installation and setup, this chapter includes installation prerequisites, an initial example
script, and information about Gradle Help and IDE support

Installation Prerequisites
Before you get started with the Gradle installation, you need to make sure you have Java
installed and configured correctly and then download the current version of Gradle.

Setting Up Java
To install Java, download the JDK (not just Java Runtime Environment [JRE]) from
www.oracle.com/technetwork/java/javase/downloads/index.html and follow the
installation instructions specified on that web page. Gradle requires version 6.0 or higher
version of JDK. This book uses JDK 7. (The instructions work with Java 8, as well.)

Once the JDK is installed on your machine, point the JAVA_HOME environment
variable to the JDK installation. For example, if you have the JDK installed under
c:\java\jdk1.7, the JAVA_HOME value should be set to c:\java\jdk1.7. Then modify the
PATH environment variable and append %JAVA_HOME%\bin to its end.

Without the JAVA_HOME variable, you’ll see the "JAVA_HOME not found in your
environment" build error.

Downloading Gradle
Before you begin the installation process, download the latest version of Gradle from the
Gradle web site (https://gradle.org/gradle-download/). At the time of this writing,
 the latest version was 2.7. Download the Gradle 2.7 “Complete Distribution” file
(gradle-2.7-all.zip) shown in Figure 2-1.

www.allitebooks.com

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://gradle.org/gradle-download/
http://www.allitebooks.org

Chapter 2 ■ Setting Up gradle

8

Installing Gradle
This section covers installing and testing Gradle on Windows and Mac OS X. The section
also includes Gradle's JVM options and an overview of the distribution’s file set.

Installing on Windows
Unzip the downloaded distribution to a local directory on your computer. It will create a
folder named gradle-2.7-all. This book assumes that you have placed the contents of
the gradle-2.7 folder in the c:\tools\gradle-2.7 directory, as shown in Figure 2-2.

Figure 2-1. Gradle download options

Figure 2-2. Gradle install location

Chapter 2 ■ Setting Up gradle

9

The next step in the installation process is to add the GRADLE_HOME environment
variable pointing to the Gradle installation directory—in our case that’s c:\tools\
gradle-2.7. Launch the Start menu and right-click the Computer option. Next, select
System Properties followed by the Advanced System Settings. This will launch the
window shown in Figure 2-3.

Figure 2-3. The System Properties window

Chapter 2 ■ Setting Up gradle

10

Click the Environment Variables button, and then click New under System Variables.
Enter the values shown in Figure 2-4 and then click OK.

The final step in the process is to modify the Path environment variable so that you
can run Gradle commands from the command line. Select the Path variable and click
Edit. Add %GRADLE_HOME%\bin at the beginning of the Path value, as shown in Figure 2-5.
Click OK. This completes the Gradle installation. If you have any open command-line
windows, close them and reopen a new command-line window. When environment
variables are added or modified, new values are not propagated to open command-line
windows automatically.

Figure 2-4. Gradle Home system variable

Figure 2-5. Adding Gradle home location to the path variable

Chapter 2 ■ Setting Up gradle

11

Testing the Installation
Now that Gradle is installed, it’s time to test and verify the installation. Open a command
prompt and run the following command:

gradle -v

This command should output information similar to that shown in Figure 2-6.

The –v command-line option tells the path where Gradle is installed and what
versions of Java, Ant, and Groovy it is using. You get the same results by running the
expanded command gradle --version.

Installing on Mac OS X
Unpack the downloaded distribution and move the contents of the gradle-2.7-all
folder under /Users/<<your_user_name>/tools, as shown in Figure 2-7.

Figure 2-6. Gradle version command

Chapter 2 ■ Setting Up gradle

12

Launch a terminal to edit the initialization script .profile located in your home
directory using this command:

nano ~/.profile

In the .profile file, add the following lines:

export GRADLE_HOME = /Users/<<your_user_name>/tools/gradle-2.7
export PATH=$PATH:$GRADLE_HOME/bin

Save the changes by pressing CTRL+O. Then exit the file by pressing CTRL+X. Run
the gradle -v command to verify that the installation was successful.

Setting Gradle’s JVM Options
Like every other Java application, Gradle shares the same JVM options set by the
environment variable JAVA_OPTS. Especially in a complex project, chances are that you
will run into OutOfMemory errors. This may happen, for example, when you are running
a large number of JUnit tests or when you are generating a large number of reports.
To address this error, increase the heap size of the Java virtual machine (JVM) used by
Gradle. This is done globally by creating a new environment variable called GRADLE_OPTS.
To begin, we recommend using the value -Xmx512m or -Xmx1024m.

Figure 2-7. Gradle installation location on Mac

Chapter 2 ■ Setting Up gradle

13

Gradle Distribution
Gradle distribution contains several files and folders, as you saw in Figure 2-2 (see
“Installing on Windows”). Table 2-1 provides a brief summary of those and their
purposes.

Table 2-1. Gradle Distribution Files and Folders

Folder Description

bin Contains Gradle executables

docs Contains user guide (HTML/PDF), Javadoc, Groovydoc and Gradle DSL
references

init.d Contains any scripts that needs to be run for each build

lib Contains dependencies (JARs, plugins) that are needed for Gradle to run

media Contains Gradle icons and logos

samples Contains templates and examples of complex builds and integration with
tools

src Contains the source code for Gradle

Hello World Gradle Script
Now that you have successfully installed Gradle, you can create your first Gradle script
that does nothing but simply outputs the text Hello world!!. When executing a build,
Gradle by default looks for a build script named build.gradle. You begin by creating a
folder called hello-world. Inside the folder, you create build.gradle file and then copy
the code from Listing 2-1.

Listing 2-1. Hello World Task

task helloWorld << {
 println 'Hello world!!'
}

Open a command prompt and navigate to the hello-world directory. Then execute
the helloWorld task using the command gradle helloWorld. You should see the Hello
world!! output as shown here:

C:\apress\chapter2\hello-world>gradle helloWorld
:helloWorld
Hello world!!

BUILD SUCCESSFUL

Total time: 3.594 secs

http://dx.doi.org/10.1007/978-1-4842-1031-4_2

Chapter 2 ■ Setting Up gradle

14

Listing 2-1 uses Gradle’s DSL to define the helloWorld task and add an action to
print Hello world!! to the console. You can accomplish this using a closure (code inside
curly braces {}) and Groovy’s println method, which is similar to Java's System.out.
println method. As you will explore in Chapter 4, Gradle tasks can contain multiple
actions. The << is a shortcut operator that indicates the last action (in this case, printing to
the console) to be executed for a task.

The build output includes the name of the task run and the execution time. It is
possible to run the same build that just outputs the task’s output. This is accomplished
using the -q flag as shown here:

C:\apress\chapter2\hello-world>gradle -q helloWorld
Hello world!!

Getting Help
You can get a list of Gradle command-line options by using the –h or -help options.
Running the following command will produce output similar to that shown in Figure 2-8.

gradle -help

Figure 2-8. Gradle help command

http://dx.doi.org/10.1007/978-1-4842-1031-4_4
http://dx.doi.org/10.1007/978-1-4842-1031-4_2

Chapter 2 ■ Setting Up gradle

15

Gradle GUI
In addition to providing a powerful command-line interface, Gradle comes with a
graphical user interface for working with builds. Gradle’s GUI can be launched using the
--gui option. Figure 2-9 shows the Gradle GUI launched from the hello-world folder:

\chapter2\hello-world>gradle –gui

Figure 2-9. Gradle GUI

The Task Tree tab displays all the available tasks in the build.gradle file. You can
execute a task in the Task Tree by simply double-clicking on a task name. The Favorites
tab allows you to store frequently used Gradle commands. The Command Line tab, as
the name suggests, allows you to type and run any Gradle commands that you would
run using the command-line interface. The Setup tab allows you to change configuration
options such as the project directory and log levels.

IDE Support
This book uses the command line to create and build sample applications. If you are
interested in using an IDE, the good news is that all modern IDEs come with full Gradle
integration.

http://dx.doi.org/10.1007/978-1-4842-1031-4_2

Chapter 2 ■ Setting Up gradle

16

Summary
This chapter walked you through the setup of Gradle on your local computer. You also
learned the different files/folders that come as part of the Gradle distribution and looked
at a simple Gradle build script.

In the next chapter, you’ll learn fundamentals of the Groovy language.

17

Chapter 3

Groovy Language Primer

Gradle build scripts are written using Groovy. This chapter covers the basics of the
Groovy programming language.

Groovy is a dynamic programming language that runs on the JVM. Groovy language
is designed from the ground up to be source- and binary-compatible with Java. This
compatibility allows Groovy classes to extend Java classes or leverage the vast array of
Java frameworks and libraries. The 1.0 version of Groovy was released in January of 2007.
The next major release—Groovy 2.0—was in July 2012. At the time of writing this book,
the latest version of Groovy was 2.4. Groovy is open source and is distributed under the
Apache 2.0 License.

Installing Groovy
Gradle comes with its own Groovy library and any existing Groovy installations will be
ignored. In order to learn and tinker with Groovy, you need to install Groovy first. An
external Groovy installation would allow you to get familiar with the language without
messing up the Gradle installation. Follow these steps for installing Groovy:

 1. Download Groovy binaries from www.groovy-lang.org/
download.html.

 2. Extract the ZIP file and place the contents on your hard drive.
For example,C:\tools\groovy-2.4.5.

 3. Create a new environment variable called GROOVY_HOME,
pointing to the extracted location.

 4. Add GROOVY_HOME\bin to the PATH environment variable. For
example, on a Windows machine, you would add
%GROOVY_HOME%\bin.

 5. Once Groovy is successfully installed, run the groovy -v or
groovy -version command on a command line to verify
the installation. Figure 3-1 shows the output of a successful
installation.

www.allitebooks.com

http:////172.24.161.56/Indexing/31_Springer_Apress/2015/Varanasi_10321/02_IndexforQC/Batch%201%20(Except%20ch%205%20&%206)/www.groovy-lang.org/download.html
http:////172.24.161.56/Indexing/31_Springer_Apress/2015/Varanasi_10321/02_IndexforQC/Batch%201%20(Except%20ch%205%20&%206)/www.groovy-lang.org/download.html
http://www.allitebooks.org

Chapter 3 ■ Groovy LanGuaGe primer

18

Running Groovy
Groovy provides a command-line tool called Groovy Shell or groovysh. It allows you to
easily and quickly experiment with the language. To launch groovysh, open a command
prompt/terminal and type groovysh. Once the shell finishes launching, you can start
typing Groovy code and see it in action, as shown here:

C:\apress\intro-gradle>groovysh
Groovy Shell (2.4.5, JVM: 1.7.0_67)
Type ':help' or ':h' for help.
--
groovy:000> println 'Hello World'
Hello World
===> null
groovy:000>

You can exit the Groovy shell by running the command :exit or :quit. You can also
run the :help command to list available shell commands or get details on an individual
command.

Groovy also provides GroovyConsole—a GUI-based tool for executing Groovy code.
To launch the GroovyConsole, simply double-click the groovyConsole.bat (for Windows)
under the GROOVY_HOME\bin directory. Figure 3-2 shows GroovyConsole with an input
area and an output area. The input area is where you enter Groovy code (such as println
'Hello World' shown in Figure 3-2). The Groovy code can be compiled and executed
using the Script ➤ Run menu item or by choosing Run from the Action menu. The output
of the execution is shown in the output area.

Figure 3-1. Groovy version command

Chapter 3 ■ Groovy LanGuaGe primer

19

Basic Groovy Language Features
This section covers Groovy syntax, data types (simple and collections), and closures. If
you are interested in learning more about Groovy’s language features, refer to the online
documentation at www.groovy-lang.org/single-page-documentation.html.

Groovy Syntax
Groovy absorbs much of its syntax from Java and has added simplifications that make it
an easy to use. One such simplification is dropping the semicolon requirement at the end
of a line when the line contains only one statement. Similarly, methods with at least one
parameter can be invoked without parentheses. The following two statements are valid in
Groovy:

println ("Hello World");
println "Hello World"

Here are few more notable differences from Java:

•	 Methods and classes in Groovy are public by default.

•	 The return statement is optional in methods. If Groovy doesn’t
find a return statement, it returns the last evaluated expression.

Figure 3-2. GroovyConsole example

http://www.groovy-lang.org/single-page-documentation.html

Chapter 3 ■ Groovy LanGuaGe primer

20

•	 Checked exceptions need not be caught or declared. Groovy
automatically wraps those exceptions as a RuntimeException.

•	 By default, the following packages are imported—java.lang.*,
java.util.*, java.util.regex.*, java.net.*, java.io.*,
groovy.lang.*, groovy.util.*, java.math.BigDecimal, and
java.math.BigInteger.

Comments
Groovy comments have the same syntax as that of Java. Single-line comments start with
// and multi-line comments start with /* and end with */. Groovydoc comments are
similar to Javadoc comments and begin with /** and end with */.

Data Types
The Groovy language offers several data types such as numbers, strings, and complex
data types such as lists and maps.

Strings
Groovy supports two types of strings—regular Java strings that are instances of java.
lang.String and GStrings, which are instances of groovy.lang.GString. Regular Groovy
strings are declared by surrounding sequences of characters with single, double, or triple
quotes. Here are a few examples of String declarations:

String message = 'Hello World'
String processor = "Intel"
String multiLine = '''This text is on line one
 line 2 and
 line 3'''
String escapedExample = 'Bob\'s Burgers'

Triple quotes syntax allows you to place the text across line boundaries without
having to split and concatenate it on each line. Groovy preserves the whitespace in a
multi-line text declared using triple quotes. For example, the variable multiLine shown
above will hold text containing whitespaces and newline characters. If you were to save
that text in a database, it would be saved as shown:

This text is on line one
 line 2 and
 line 3

Chapter 3 ■ Groovy LanGuaGe primer

21

 ■ Note Like Java, Strings in Groovy are immutable. if the contents of a string need to be
changed, then it is recommended you use StringBuilder or StringBuffer.

GStrings are strings that are escaped using double quotes (or slashes //) and contain
Groovy expressions with the ${...} syntax. When a GString is accessed, Groovy evaluates
the expression and replaces the expression text with its value. An example of a GString is
shown here:

String name = 'Luke'
String message = "Hello ${name}"
println message// This will print Hello Luke

When expressions are simple references to variables, the curly braces {} can be
omitted. Hence, the message in the previous code can be rewritten as follows:

String message = "Hello $name"

 ■ Note Languages such as ruby and perl have the concept of string interpolation, which
is the ability to replace an expression in a string with its value. hence, GStrings are often
referred to as interpolated strings.

Groovy allows method calls, statements, and variable names inside the ${...}
Groovy expressions. Using GStrings, you can easily create templates without needing
an external templating engine. Here is an example that invokes the length() and
toLowerCase() methods inside expressions:

String name = 'Luke'
String count = "${name.length()}"
println count
println "${name.toLowerCase()}"

Numbers
Groovy supports both integers and floating-point numbers. Unlike Java, Groovy doesn’t
offer primitive data types. Instead everything in Groovy is an object. This allows you to
invoke methods on what looks like primitives as shown here:

8.toString()
4.times {
 // Run a task
}
7.next()

Chapter 3 ■ Groovy LanGuaGe primer

22

By default, integers in Groovy are instances of java.lang.Integer, java.lang.
Long, or java.math.BigInteger. Groovy will automatically pick the smallest class to
accommodate the integer’s value. Here is an example:

println 90.class // Prints class java.lang.Integer
println 9999999999999999999.class //Prints class java.math.BigInteger

Floating-point numbers by default are instances of java.math.BigDecimal:

println 9.0.class //Prints class java.math.BigDecimal

It is always possible to override the default behavior by explicitly associating a type or
using suffixes as shown here:

println 90l.class // Prints class java.lang.Long
float foo = 9.0
println foo.class // Prints class java.lang.Float

If Groovy doesn’t support primitive types, then you might be wondering how basic
arithmetic such as 2 + 3 or 10/2 using operators is possible. Groovy has overloaded the
operators and the operators are actually method calls in Groovy. For example, 2 + 3 is
equivalent to 2.plus(3). Since the operators are methods, if one of the operands is a null,
then executing the operation would result in a NullPointerException.

 ■ Note unlike Java, Groovy performs floating-point division by default. For example, the
operation 2/4 would result in 0.5. in Java, the same operation would result in 0 since Java
detects both operands as integers and an integer division would be performed.

Declaring Variables
So far you have looked at declaring variables using data types. Groovy also provides the
def keyword, which can be used for variable declaration when you are not sure or don’t
care about the variable data type. For example

def obj = 'a'
println obj.class // Prints class java.lang.String
obj = 1.4
println obj.class // Prints class java.math.BigDecimal

Chapter 3 ■ Groovy LanGuaGe primer

23

It is possible to omit the def keyword during variable declaration. Here is the
previous code with def omitted:

obj = 'a'
println obj.class // Prints class java.lang.String
obj = 1.4
println obj.class // Prints class java.math.BigDecimal

Lists
Lists in Groovy are an ordered collection of items. By default, Groovy lists are instances of
java.util.ArrayList and have the following declaration syntax:

list = [1, 2, 3, 4]
listWithDiffItems = [1, 3, 'String Item', 3.4]

As in Java, items in a list can be accessed using the get method. Groovy also provides
a getAt method that, among other things, allows you to use negative indexes to access
items starting at the end:

println list.get(1) // Prints 2
println list.getAt(-1) // Prints 4, the first element from last

Items can be added or removed using the add and remove methods. The each
method can be used to iterate over the list items:

list.add 5
list.remove 0 // 0 is the index of the element to be removed
list.each { println it }

Note that he each method took a closure as its parameter. You will learn more about
closures later in the chapter.

Maps
Maps in Groovy contain key/value pairs. By default Groovy maps are instances of java.
util.LinkedHashMap and have the following syntax:

[key1 : value1, key2 : value2]

Here is an example of a map defined in Groovy:

map = ["red" : 1 , "yellow" : 2, "green" : 3]

Chapter 3 ■ Groovy LanGuaGe primer

24

Elements in a map can be accessed in several ways. The most common approach is
to use the "." notation. Here are some examples:

println map.red //Prints 1
println map["yellow"] // Prints 2
println map.get("green") // Prints 3

You can add new values to a map using the put method and iterate over values using
the each method:

map.put "blue", 4
map.each { println "Key: ${it.key} and Value: ${it.value}" }

Notice the use of the ${} expressions in the each() method. Groovy evaluates these
expressions and prints the key/value pairs.

Range
Groovy provides a range operator (..) to create a range of objects. For example, the
following code defines a range of integers from 0 to 9:

def intRange = 0..9
println intRange.size() // Prints 10
intRange.each {print it} // Prints 0123456789

Closures
To put simply, a closure is a block of executable code. Closures in Groovy are instances
of groovy.lang.Closure. Since closures are objects, they can be assigned to variables
or passed around as parameters to methods. Since they contain code, closures can be
executed. Closures are often referred to as anonymous functions.

Closures in Groovy can accept parameters and return values. The syntax for
declaring closures is as follows:

{ list of arguments -> closure body }

Closures are enclosed by curly braces {}. The list of arguments are separated by
commas (,) and the closure body contains one or more statements. The symbol ->
separates the argument list from the body. If the closure doesn’t have a return statement,
the output of the last statement is returned. Here is an example of a closure that accepts
one parameter of type String:

def greet = {String name -> "Hello ${name}" }

Chapter 3 ■ Groovy LanGuaGe primer

25

This closure can be invoked using the reference variable greet as shown here:

greet "Joe"
greet.call "Joe"

If a closure doesn’t take any arguments, the list of arguments and the -> symbol can
be omitted. Here is a very simple example without any arguments:

def greet = {"Hello"}

In the scenario when no arguments are declared, an untyped argument called it will
be implicitly available to the closure body. Consider the following example, which makes
use of the it argument:

def greet = {"Hello $it"}

When the greet closure is invoked with a parameter, such as "World", it would print
Hello World. If the greet is invoked without a parameter, a null is passed.

def greet = {"Hello $it"}
greet "World" // Prints Hello World
greet() // Prints Hello null

Here are few more examples of closure definitions:

{ -> } // Empty Closure
{ a, b -> a + b } // Closure with two untyped arguments
{int a, int b -> a + b} // Closure with two arguments of type int

Closures can be passed as parameters to methods. In fact, the "List" and "Map"
sections of this chapter showed how to pass the closure {print it} to the list or map’s
each method. The each method takes in a parameter of type groovy.lang.Closure
and executes it for each item in a list or map. The closure accesses the item through the
implicit it parameter.

Closures may access the variables declared within their scope. For example, if a
closure is defined inside a method, it can access all the variables that the method has
access to (parameters, local variables, class variables, etc.).

Summary
Groovy is the language of choice when working with Gradle. This chapter covered
installing Groovy and using the Groovy shell and GroovyConsole. It reviewed the basics
of Groovy and its supported data types. You learned that Groovy’s GStrings allows you to
include expressions, thereby making them suitable for templating. Finally, you learned
about closures—blocks of code/functionality that can be passed around.

In the next chapters, you will take a deep dive into Gradle’s tasks and start
developing Gradle build scripts.

27

Chapter 4

Understanding Gradle Builds

Central to Gradle are two basic building blocks—projects and tasks. A Gradle build is
made up of one or more projects and each project contains one or more tasks. This
chapter reviews those two building blocks. You will review these building blocks and
learn about the lifecycle phases associated with builds.

Projects
A project in Gradle is an abstract concept that represents an artifact that needs to be built.
For example, a Gradle project could be a Java application that gets assembled into a JAR
file. A Gradle project can also represent a piece of work that needs to be accomplished.
For example, a Gradle project can be used to deploy an application.

For each project in the build, Gradle creates an instance of org.gradle.api.Project
and associates it with the build script. This allows the build scripts to use Project’s API to
access properties and customize build behavior at runtime (for example, by creating new
tasks or skipping existing tasks). Table 4-1 lists some of the commonly used properties
and methods in the Project API.

Table 4-1. Commonly Used Project API Properties and Methods

Property/Method Description

name Name of the project and can be changed using the settings.gradle
file. By default, the project directory name.

description Description of the project. Typically set in the build.gradle file.

version Project’s version.

parent Returns the parent project (if exists).

group User-defined identifier indicating group or organization responsible
for the project. For example, org.hibernate or org.springframework.

task Overloaded method to create a new task.

dependencies Configures dependencies for a project.

repositories Configures repositories for a project.

defaultTasks Configures the names of the default tasks to run for a project.

Chapter 4 ■ Understanding gradle BUilds

28

To access Project API’s properties/methods, you can use the implicit variable
project that Gradle associates with the build file. Listing 4-1 shows a Gradle build file
named project-explicit.gradle located in the chapter4 folder. The build file contains
code that sets Project’s description and prints it on the console. Gradle will use the name
chapter4 for the project object it creates for this build.

Listing 4-1. The project-explicit.gradle Example

project.description = "Hello World Project"
println "Project Description ${project.description}"

Notice that the code doesn’t use the name build.gradle for this new build file.
Gradle by default looks for a build.gradle file to run a build. It is possible to create build
files with different names. In order to trigger builds using those files, you need to use the
command line option -b or --build-file, followed by the file name. In this chapter,
you will be working with a lot of examples and will be creating separate build files and
running them using the -b option. Running the project-explicit.gradle build file
would result in the following output.

chapter4>gradle -b project-explicit.gradle
Project Description Hello World Project

Gradle also allows you to leave out the project variable name when accessing Project
API methods or properties:

description = "Hello World Project"
println "Project Description ${description}"

It is possible to define additional project-level properties using the syntax <<name>>
=<< value>> inside an ext {} closure or using the shortcut ext.<<name>>=<<value>>.
Listing 4-2 shows two additional properties—environment and outputLang—defined
inside a new build file named project-add-properties.gradle.

Listing 4-2. The project-add-properties.gradle Example

description = "Hello World Project"
println "Project Description ${description}"
ext {
 outputLang = "English"
}
ext.environment = "local"
println "Output Language: ${project.outputLang}"
println "Environment: ${environment}"

Chapter 4 ■ Understanding gradle BUilds

29

Running this script will yield the following output. Since the properties were defined
at the project level, you can access their values directly or use the project prefix.

chapter4>gradle -b project-add-properties.gradle
Project Description Hello World Project
Output Language: English
Environment: local

Tasks
Gradle projects are made up of one or more tasks that perform build steps. Tasks execute
actions such as compile Java source code and generate classes or clean target folders. It
is also possible for tasks to depend on other tasks. For example, the task that runs test
cases is dependent on the task that compiles Java code. Corresponding to each task in
the build file, Gradle creates an instance of org.gradle.api.Task. By default it would be
org.gradle.api. DefaultTask class. Table 4-2 shows some of the commonly used task-
related API properties and methods.

Table 4-2. Commonly Used Task-Related API Properties and Methods

Property/Method Description

name Name of the task.

description Description of the task

group The task group that the task belongs to. Task groups provide a way
to logically group related tasks.

enabled Decides if a task is enabled or disabled.

dependson Configures task dependencies.

doFirst Adds an action to the beginning of the task’s action list.

doLast Adds an action to the end of task’s action list.

onlyIf Runs a task only if the passed in closure returns true.

In the upcoming sections, you will be using these properties and methods to create
tasks, add actions, and declare dependencies between tasks.

Creating Tasks
At the simplest level, creating a task just requires the task name:

task displayProperties

Chapter 4 ■ Understanding gradle BUilds

30

Although this task is perfectly valid, it doesn’t actually do anything. For a task to
do something meaningful, you need to add some actions to it. Gradle provides the
doFirst and doLast methods for associating actions with a task. As the name suggests,
actions added to the doFirst method end up at the beginning of the list of actions that get
executed. Actions added to the doLast method reside at the end of the action list.
Listing 4-3 shows the updated displayProperties task with actions added.

Listing 4-3. displayProperties with Actions

description = "Sample Description for Project"
task displayProperties {
 description = "Task to display properties"

 ext {
 taskProp1 = "Prop Val"
 }

 doFirst {
 println "Project Description: $project.description"
 println "Task name $name"
 println "Task Description: $description"
 }

 doLast {
 println "Task Property 1: $taskProp1"
 }
}

Listing 4-3 updated the description property of the project object and then updated
the task’s description property inside the task’s closure. Gradle allows you to declare
additional properties at a task level using an ext closure. Properties that are shared across
tasks and other configuration elements are typically declared as project properties. For
example, the version numbers of the dependent artifacts are typically declared as project
properties (more about that in Chapter 6). Properties specific to a task are declared as
task properties. In Listing 4-3 used the ext closure to declare a task property named
taskProp1. The code also added three actions to doFirst method and one action to the
doLast method. In the doFirst method, the $project variable prints project object’s
description to the console. Since name and description are task properties, you can
access them directly to print their values.

Create a new build file named display-properties.gradle and copy the contents of
Listing 4-3. Execute the displayProperties task and you should see the following output.
As you can see, the actions inside the doFirst were executed first, followed by the actions
inside the doLast block.

http://dx.doi.org/10.1007/978-1-4842-1031-4_6

Chapter 4 ■ Understanding gradle BUilds

31

\chapter4>gradle -b display-properties.gradle displayProperties
:displayProperties
Project Description: Sample Description for Project
Task name displayProperties
Task Description: Task to display properties
Task Property 1: Prop Val

BUILD SUCCESSFUL

Total time: 4.046 secs

 ■ Tip When executing a task in the command-line, you don’t have to specify full task
name. a camelCase task name can be run by abbreviating each word. For example, the
displayProperties task can be run using the following shortcut: gradle -b
display-properties.gradle dP.

For Gradle to execute task(s), you need to pass in the name of the task(s) as part of
the Gradle command, as you saw in the previous execution. Gradle provides a way to
define one or more default tasks that can be run when no other tasks are provided using
the defaultTasks method. Listing 4-4 shows the use of defaultTasks method to define
displayProperties as the default task.

Listing 4-4. displayProperties with Default Task

description = "Sample Description for Project"

defaultTasks 'displayProperties'

task displayProperties {
 description = "Task to display properties"

 // Content removed for brevity
}

Once you have the display-properties.gradle file updated with the defaultTasks
code, you can trigger task execution using the gradle -b display-properties.gradle
command.

Task Dependencies
Nontrivial builds typically have several tasks and often a task needs another dependent
task to be finished before it can run. For example, before you can run the package task
to assemble an artifact, you must run the task to compile sources. Similarly, before
the compile task can run, it might need to run a task to clean the output folder. Gradle
provides several ways to declare such task dependencies.

Chapter 4 ■ Understanding gradle BUilds

32

Listing 4-5 shows the task-dependencies.gradle build file, which contains three
tasks—clean, compile, and package. This example takes two approaches to declaring
dependencies. The dependsOn method makes compile task dependent on the clean task.
To make package task dependent on compile, you have to use task’s dependsOn property.
In Gradle, package is a reserved word and to use it as a task name, you must pass it as a
parameter to the task method. Also, notice the use of the << operator as a shortcut for the
doLast method.

Listing 4-5. task-dependencies.gradle

task clean << {
 println 'Executing clean task'
}

task compile << {
 println 'Executing compile task'
}
compile.dependsOn 'clean'

task ("package", dependsOn : 'compile') << {
 println 'Executing package task'
}

Run the package task and you will see that the clean and compile tasks are executed
prior to running the package task:

\chapter4>gradle -b task-dependencies.gradle package
:clean
Executing clean task
:compile
Executing compile task
:package
Executing package task

BUILD SUCCESSFUL

To determine the order in which tasks need to be run, Gradle creates a Directed
Acyclic Graph or DAG. Each task to be executed becomes a node in the graph.
Dependencies between tasks are used to create edges between nodes. Figure 4-1 shows a
representation of the DAG for the tasks in Listing 4-5.

Figure 4-1. Gradle's task DAG representation

Chapter 4 ■ Understanding gradle BUilds

33

A DAG does not contain a directed cycle. In other words, it’s not possible to start at a
node, follow a sequence of edges, and come back to the same node. Hence, Gradle never
executes a task that has been executed before.

Consider the scenario in Listing 4-6, where you have both tasks A and B dependent
on a task C.

Listing 4-6. task-dependencies2.gradle

task A << { println 'In task A' }

task B << { println 'In task B' }

task C << { println 'In task C' }

A.dependsOn 'C'
B.dependsOn 'C'

Since Gradle creates a DAG for task execution, when tasks A and B run, Gradle runs
task C only. Create a task-dependencies2.gradle file with contents of Listing 4-6 and
run the following command to verify this:

\chapter4>gradle -b task-dependencies2.gradle A B
:C
In task C
:A
In task A
:B
In task B

Consider a different scenario, where task A depends on task B and task C, as shown
in Listing 4-7.

Listing 4-7. task-dependencies3.gradle

task A << { println 'In task A' }

task B << { println 'In task B' }

task C << { println 'In task C' }

A.dependsOn 'B'
A.dependsOn 'C'

Chapter 4 ■ Understanding gradle BUilds

34

When task A is run, the dependsOn ensures that B and C are run prior to executing A.
Create a task-dependencies3.gradle file with Listing 4-7 contents and execute task A.
You should see the following output:

\chapter4>gradle -b task-dependencies3.gradle A
:B
In task B
:C
In task C
:A
In task A

dependsOn doesn’t guarantee the order in which dependent tasks will run. In Listing 4-7
for example, no guarantees are made that task B will run prior to task C or vice versa.
There may be occasions where you want to ensure that B runs prior to C, for example.
To accomplish this, Gradle provides the mustRunAfter method. Listing 4-8 shows the
modified version of the previous listing with mustRunAfter added.

Listing 4-8. task-dependencies4.gradle

task A << { println 'In task A' }

task B << { println 'In task B' }

task C << { println 'In task C' }

A.dependsOn 'B'
A.dependsOn 'C'
B.mustRunAfter 'C'

Create a task-dependencies4.gradle file with Listing 4-8 contents and run task A.
You should see the tasks run in C, B, and A order, as shown here:

\chapter4>gradle -b task-dependencies4.gradle A
:C
In task C
:B
In task B
:A
In task A

Chapter 4 ■ Understanding gradle BUilds

35

Skipping Tasks
There are occasions where you want to skip the execution of a task. For example, you
want to run certain tasks only in the development environment while skipping them in
the test and production environments. To accomplish this, Gradle provides the onlyIf
method, which accepts a closure. If the closure returns false, then the execution of the
task is skipped.

Listing 4-9 shows a task that runs only in the nonproduction environment. The
onlyIf closure checks the existence of a property called env and verifies if its value
equates to Prod.

Listing 4-9. skip-task.gradle

task skipInProd {

 onlyIf {
 !project.hasProperty('env') || project.env != "Prod"
 }

 doLast {
 println 'Task execution complete'
 }

}

You can pass an external property to the Gradle build script using -Pname=value
at the command line. Copy the contents of Listing 4-9 into a skip-task.gradle file and
execute the skipInProd task with the -Penv=Prod command-line argument. You should
see the task skip execution shown here:

\chapter4>gradle -b skip-task.gradle skipInProd -Penv=Prod

:skipInProd SKIPPED

BUILD SUCCESSFUL

Total time: 2.82 secs

Gradle provides another technique for skipping tasks through task’s enabled
property. By default, the enabled property is set to true. However, it is possible to
programmatically toggle its value and thereby affect task execution. Listing 4-10 shows
the skipInProd task rewritten using the enabled property.

Chapter 4 ■ Understanding gradle BUilds

36

Listing 4-10. Skipping task Using the enabled Property

task skipInProd {

 enabled = !project.hasProperty('env') || project.env != "Prod"

 doLast {
 println 'Task execution complete'
 }

}

Gradle Task Types
Earlier in the chapter, you learned that Gradle creates an instance of org.gradle.api.Task
for each task it finds in the build file. By default, these tasks are instances of
 org.gradle.api.DefaultTask and thereby inherit DefaultTask’s properties and
methods. Gradle provides several out-of-the-box task types that your tasks can extend
and thereby receive additional functionality, such as ability to create a ZIP archive or
execute a Java program. This section reviews some of those out-of-the-box task types.

Zip
The Zip task allows you to create ZIP archives from a set of files/directories. Here’s an
example Zip task:

task archiveTask (type : Zip) {
 archiveName 'images.zip'
 from 'images'
 into "$buildDir/dist"
}

The archiveTask reads files/folders from the images directory, creates a ZIP file
named images.zip, and places it in the build/dist folder.

Copy
The Copy task allows you to copy files from one or more sources to a destination directory.
Here’s an example Copy task:

task copyTask(type : Copy) {
 from 'src/config/dev.cert'
 from 'src/db'
 into 'dist'
}

Chapter 4 ■ Understanding gradle BUilds

37

copyTask would copy a single file called dev.cert and all the files in the src/db
folder into a dist folder.

Exec
The Exec task allows you to execute a command-line process. An example is shown here:

task showWindowsVersion(type:Exec) {
 commandLine 'cmd', 'ver'
}

On a Windows machine, this task finds the Windows OS version. The commandLine
property requires the full command line, including the executable and the arguments.
However, you need to split the command string on spaces and provide split items in a
comma-delimited fashion. Hence the command cmd ver is split and provided as cmd, ver.

Delete
The Delete task allows you to delete files or folders. The following task deletes two
folders—libs and docs.

task cleanTask (type : Delete) {
 delete 'build/libs', 'build/docs'
}

Build Lifecycle
Every Gradle build goes through three distinct lifecycle phases:

 1. Initialization phase: In this phase, Gradle identifies all the
build.gradle files it needs to process. For a single project
build, only one build file is identified. For multi-project builds
(more on that in Chapter 7), Gradle tries to locate all possible
build files associated with these projects. Once Gradle
identifies the projects participating in the build, it will create
an instance of org.gradle.api.Project corresponding to
each project.

 2. Configuration phase: In this phase, the build scripts for all
identified projects are executed. It is important to remember
that no actual task execution happens during this phase.
Instead, Gradle constructs a DAG of tasks objects per project.
Gradle also executes the configuration sections of all the tasks,
including disabled tasks.

 3. Execution phase: In this section, Gradle identifies the tasks
that need to be executed and runs them in the right order.

http://dx.doi.org/10.1007/978-1-4842-1031-4_7

Chapter 4 ■ Understanding gradle BUilds

38

To better understand the build lifecycle, consider the build-phases.gradle
build script shown in Listing 4-11. The script contains two tasks—noActionTask
and withActionTask. Both tasks contain Groovy code directly in the task’s closure.
Additionally, the withActionTask has code inside the doLast method.

Listing 4-11. build-phases.gradle

task noActionTask {
 description = "A task with no actions"
 println "I am in the configuration block of $name"
}

task withActionTask {

 println "I am in the configuration block of $name"

 doLast {
 println "performing an action in $name"
 }
}

During the configuration phase, Gradle executes the code specified directly in the
task’s closure. Once the configuration phase is complete, Gradle executes the actions
inside doFirst and doLast in the execution phase. For example, running a command
to list all tasks would execute initialization and configuration phases to produce the
following output:

\chapter4>gradle -q -b build-phases.gradle tasks
I am in the configuration block of noActionTask
I am in the configuration block of withActionTask

---------------output truncated---------------------
Running the withActionTask would result in execution of both configuration blocks

as well as the action in the doLast method. Here is the resulting output:

\chapter4>gradle -q -b build-phases.gradle wAT
I am a in the configuration block of noActionTask
I am a in the configuration block of withActionTask
performing an action in withActionTask

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Understanding gradle BUilds

39

Summary
In this chapter, you learned about project and tasks, the two building blocks of Gradle
builds. You learned that a task can contain one or more actions that are defined inside
a doFirst or doLast blocks. It is possible for tasks to depend on other tasks and Gradle
creates a DAG to ensure that tasks are executed in the right order. It also ensures that
each task is executed only once. You looked at two techniques—onlyIf and enable—for
executing or skipping tasks. Finally, you reviewed the three build phases of a Gradle
build.

In the next chapter, you will use Gradle to build Java and web projects. You will also
learn about Gradle plugins and build a custom plugin.

41

Chapter 5

Projects and Plugins

Gradle provides a standardized project structure for domains such as Java, Scala, and
Groovy. It takes a build-by-convention approach and provides recommendations on
where different parts of the project should reside. For example, Gradle suggests that all
of the Java source code should be placed in the src/main/java folder and all the test
code should reside in the src/test/java folder. This standardization makes it easy for
developers to jump from one project to another. This chapter covers Gradle’s build-by-
convention features for Java projects.

Gradle follows a plugin-based architecture that makes it easy to augment and
customize its functionality. It provides several out-of-the-box plugins that make it easy to
build Java projects. Additionally, Gradle makes it easy to create custom plugins that can
be shared with other developers. This chapter reviews the Gradle plugins and shows you
how to develop a custom plugin that generates build numbers.

Introducing Plugins
Plugins in Gradle encapsulate reusable build, task, or configuration logic. Using plugins,
it is possible to add new tasks, new DSL elements, or sensible defaults and therefore
extend Gradle’s functionality.

Gradle plugins are grouped into two types—script plugins and binary plugins. Script
plugins, as the name suggests, are Gradle build scripts that can be included in other build
scripts. Script plugins provide an easy way to modularize common build logic. These
script plugins can reside on local file system or can be included from remote servers using
this syntax:

apply from: 'reusable-build.gradle'

Script plugins residing on a remote server can be imported using the following
syntax:

apply from: 'http://your_server.com/plugin_path/plugin_name'

http://your_server.com/plugin_path/plugin_name

Chapter 5 ■ projeCts and plugins

42

Binary plugins encapsulate reusable build logic in classes that implement the org.
gradle.api.Plugin<T> interface. These classes are typically bundles into JAR files but
can also reside inside a build script or inside the project under the buildSrc folder.
Binary plugins can be used inside a build script using the following syntax:

apply plugin: 'plugin_id'

The plugin_id is the unique identifier for the given plugin. Gradle-provided plugins
have the short names such as java or groovy, while the community plugins typically use
the fully qualified names such as org.hibernate.gradle.tools.

Java Projects
Gradle comes with several out-of-the-box plugins that simplify Java development. This
section reviews the java plugin used for building JAR artifacts, followed by war plugin
for developing web applications. You will also learn about the Javadoc plugin that can be
used to generate API documentation.

Using the Java Plugin
The Java plugin allows you to compile Java code, run unit tests, and assemble a JAR
artifact. To see the plugin in action, start by creating a new Java project called hello-
gradle on your machine. Create a build.gradle file and add the following code to apply
the Java plugin:

apply plugin: 'java'

As discussed in the previous section, this plugin adds a set of tasks and properties to
the build. You can look at these tasks by running the gradle tasks command. A portion
of the output is shown here:

\hello-gradle>gradle tasks
:tasks

Build tasks

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.
buildDependents - Assembles and tests this project and all projects that
depend on it.
buildNeeded - Assembles and tests this project and all projects it depends
on.

Chapter 5 ■ projeCts and plugins

43

classes - Assembles classes 'main'.
clean - Deletes the build directory.
jar - Assembles a jar archive containing the main classes.
testClasses - Assembles classes 'test'.

Documentation tasks

javadoc - Generates Javadoc API documentation for the main source code.

Verification tasks

check - Runs all checks.
test - Runs the unit tests.

 ■ Note all gradle commands are executed using a command line/terminal in the folder
containing the build.gradle file.

The output shows a number of new tasks cleanly grouped by the plugin. The tasks
such as assemble and jar under the Build tasks group are used for building and
packaging. Instead of running these tasks individually, you typically run the build task,
which compiles, tests, and assembles the code by triggering the assemble and check
tasks. The javadoc task under Documentation tasks is used to generate the Javadoc API
documentation. The tasks under the Verification tasks group run unit tests.

In addition to these tasks, the Java plugin provides some guidance on where
different parts of Java project’s code should reside. Table 5-1 shows the recommended
directories.

Table 5-1. Gradle Recommended Directory Structure for Java

Directory Assets to Put

src/main/java Java source that needs to go to production

src/main/resources Resources such as configuration files (XML) and property files
that need to go to production

src/test/java Java test source code

src/test/resources Resources used during the testing phase

 ■ Note experienced Maven users would notice that Java plugin’s directory conventions
match Maven’s recommended java project structure. it is important to remember that these
conventions are just recommendations and gradle makes it easy to change them according
to your project’s needs.

Chapter 5 ■ projeCts and plugins

44

Based on these recommendations, let’s create the src/main/java folders under the
hello-gradle folder. Create a HelloGradle.java class with the contents shown in
Listing 5-1.

Listing 5-1. HelloGradle Java Code

public class HelloGradle {

 public static void main(String[] args) {

 System.out.println("Hello Gradle!!");

 }

}

Now you are ready to build the code using the gradle build command. The output
of running the command is shown here:

\hello-gradle>gradle build
:compileJava
:processResources UP-TO-DATE
:classes
:jar
:assemble
:compileTestJava UP-TO-DATE
:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE
:test UP-TO-DATE
:check UP-TO-DATE
:build

BUILD SUCCESSFUL

Total time: 4.479 secs

Once the build is successful, open the hello-gradle folder in Windows Explorer and
you will see a build folder created with the contents shown in Figure 5-1. The classes
folder contains the compiled classes and the libs folder contains the assembled JAR file.
The tmp folder contains temporary generated files, such as a manifest file.

Chapter 5 ■ projeCts and plugins

45

The output of the gradle build command shows the text "UP-TO-DATE" next to
certain tasks. This text indicates that the particular task was skipped. Certain Gradle tasks
declare a set of inputs to the task and a set of outputs from the task. For example, the
compileJava task takes a set of Java files as input and produces a set of compiled classes
as output. If Gradle determines that the inputs and outputs of a task have not changed
since the last execution, it automatically skips the task execution. This feature is referred
to as an incremental build and can considerably reduce build times in larger projects.

Jar Task
The Jar task provided by the Java plugin is responsible for assembling the JAR archive.
The Jar task provides a number of properties that allow you to configure the generated
artifact. One such property is archiveName. By default, the generated JAR file name will
be the name of the project. In this case, the project name is hello-gradle and hence
the build/libs folder contains a hello-gradle.jar file. The following code shows the
configuration needed to change the generated JAR name to introducing-gradle.jar:

jar {
 archiveName = 'introducing-gradle.jar'
}

The Jar task also automatically adds a manifest file to the JAR file it creates. The
manifest file typically contains information about the files packaged in a JAR file. To add
new entries to the manifest file, you can use the Jar task’s manifest property. Listing 5-2
shows the modified build.gradle file with configuration to add three new entries to the
manifest file.

Figure 5-1. Gradle build directory

Chapter 5 ■ projeCts and plugins

46

Listing 5-2. The New hello-gradle build.gradle File

apply plugin: 'java'

jar {
 manifest {
 attributes (
 'Main-Class' : 'HelloGradle',
 'Implementation-Title' : project.name,
 'Developer' : 'Sudha Belida'
)
 }
}

Run the gradle build command. After successful completion of the build, open the
generated archive inside the builds/lib folder using a ZIP utility such as WinZip. The
MANIFEST.MF file under META-INF folder should show these three new entries.

 ■ Note For the build to produce an updated jar with manifest entries, you might have
to delete the existing hello-gradle.jar from the libs directory and re-run the build
command.

Generating Javadoc
Javadoc is a great tool for documenting and understanding Java code. The Java plugin
comes with the javadoc task, which can be used to automatically generate Javadocs.
Before running the command, you should update the HelloGradle.java class by
replacing its content with Listing 5-3.

Listing 5-3. HelloGradle with Javadoc

/**
* Class demonstrating Gradle Projects
* @author Sudha
*/
public class HelloGradle {

 /**
 * Displays Hello Gradle!! to console
 *
 * @param args command line arguments
 */
 public static void main(String[] args) {

Chapter 5 ■ projeCts and plugins

47

 System.out.println("Hello Gradle!!");

 }

}

Running the gradle javadoc command will yield an output as shown:

\hello-gradle>gradle javadoc
:compileJava
:processResources UP-TO-DATE
:classes
:javadoc

BUILD SUCCESSFUL

Total time: 6.39 secs

After successful command execution, the build folder will have a new docs folder
with a javadoc subfolder containing the generated HTML files. The index.html file
should look as shown in Figure 5-2.

Figure 5-2. Generated Javadoc

Chapter 5 ■ projeCts and plugins

48

Configuring the Default Layout
Gradle provides the notion of SourceSets, which represent a logical collection of source
files. By default, the Java plugin provides the main and test SourceSets. However, when
dealing with legacy projects, you might need Gradle to look for Java sources and other
resource files in different locations. Listing 5-4 shows the use of sourceSets closure to
change the default layout. The code indicates that the Java sources will be under the
source/java folder and that the Java test cases will be under source/test folder.

Listing 5-4. Changing the Default Layout

apply plugin: 'java'

sourceSets {
 main {
 java {
 srcDir 'source/java'
 }
 }

 test {
 java {
 srcDirs = ['source/test', 'source/integration']
 }
 }
}

The srcDirs element can take a single directory or a set of directories as its value.
Figure 5-3 shows an example project (hello-gradle2 in the downloaded source in the
chapter5 folder) using the directory structure mentioned in the build.gradle file. It also
shows the compiled classes in the build folder. Notice that the compiled classes are still
created in the main and test folders. You can change the location of the generated classes
using the output.classesDir config element.

http://dx.doi.org/10.1007/978-1-4842-1031-4_5

Chapter 5 ■ projeCts and plugins

49

Creating Web Projects
Gradle provides a War plugin that extends the Java plugin and supports web application
development and building WAR files. To see this plugin in action, create a folder named
web-gradle. Create a build.gradle file inside the new folder and apply the web plugin as
shown:

apply plugin: 'war'

This plugin provides the same directory conventions for storing Java classes as the
Java plugin. Additionally, the War plugin expects all the static assets such as HTML, CSS,
JS, Images, and dynamic assets such as JSP files to reside in the src/main/webapp folder.
You should create the webapp folder under the src/main folder. Then create an index.
html file and copy the contents from Listing 5-5.

Listing 5-5. The index.html File Contents

<!DOCTYPE html>
<html>
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <h1>Hello Gradle!!</h1>
 </body>
</html>

Figure 5-3. Gradle project nondefault layout

Chapter 5 ■ projeCts and plugins

50

Now let’s build the application using the gradle build command. You should see
output similar to this:

\web-gradle>gradle build
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:war
:assemble
:compileTestJava UP-TO-DATE
:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE
:test UP-TO-DATE
:check UP-TO-DATE
:build

BUILD SUCCESSFUL

Total time: 5.415 secs

Gradle also provides plugins for running web applications inside an embedded
servlet container such as Jetty and Tomcat. To configure Jetty, apply the Jetty plugin in
build.gradle file as shown:

apply plugin: 'jetty'

Now, you can run the Jetty server by running the gradle jettyRun command. You
will see this output:

\web-gradle>gradle jettyRun
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
> Building 75% > :jettyRun > Running at http://localhost:8080/web-gradle

To access the web page, launch a web browser and navigate to the URL:
http://localhost:8080/web-gradle. You will see the web page as shown in Figure 5-4.

http://localhost:8080/web-gradle
http://localhost:8080/web-gradle

Chapter 5 ■ projeCts and plugins

51

 ■ Note it is possible to use embedded tomcat for deploying web applications. refer
to the tomcat plugin’s github page at https://github.com/bmuschko/gradle-tomcat-
plugin for help with configuration.

War Task
The War task in the War plugin is responsible for assembling the WAR archive. By default,
it performs the following actions:

•	 Copies compiled Java code to the WEB-INF/classes folder.

•	 Copies the content of src/main/webapp into the root of the WAR
file.

•	 Copies dependencies in the runtime configuration to the WEB-
INF/lib folder.

The War task provides several properties and methods that can be used to customize
the generated artifact. The following code showcases some of these configuration
options:

war {
 archiveName 'new-archive.war'
 webXml file ('src/config/web.xml')
 from 'src/media/images'
}

This configuration renames the generated artifact name to new-archive.war. It
then configures the War task to use web.xml file located in the src/config folder. Finally,
the task is configured to add the contents in the src/media/images folder to the root
of the WAR file. With a War plugin, the contents of the WAR file by default are located

Figure 5-4. Index page

https://github.com/bmuschko/gradle-tomcat-plugin
https://github.com/bmuschko/gradle-tomcat-plugin

Chapter 5 ■ projeCts and plugins

52

in src/main/webapp. It is important to remember that this configuration only appends
the content from the images folder to the WAR file. If you want the War task to override
the default behavior and look for contents elsewhere, say src/WebContent, you need to
change the war plugin’s webAppDirName property:

apply plugin: 'war'
apply plugin: 'jetty'

webAppDirName = 'src/WebContent'

Writing a Custom Plugin
Gradle makes it very easy to build custom binary plugins. You simply need to create a
class that implements the org.gradle.api.Plugin<T> interface. The plugin class and its
associated code can reside in one of the following three locations:

•	 Build script: The plugin source code can be directly embedded
into the build script. This approach limits the reuse value of the
plugin as the plugin is not visible outside the build script.

•	 buildSrc project: Plugin code that resides under the buildSrc
project is automatically compiled and is made available in the
build script’s classpath. This plugin is also not visible outside the
build and hence doesn’t provide reuse outside the project.

•	 Stand-alone project: Plugin code can be bundled as a JAR file
that can then be included in the build script’s classpath. This
approach provides the highest reuse value but also requires
separate project and build infrastructure.

In the next sections, you will build a simple plugin with a single task that prints
"Hello Gradle Plugin" to the console and a more complex plugin that generates a build
number. You will take the buildSrc project approach for building the simple plugin.
Gradle plugins can be written in any language that can compile to byte code. You will
initially use Java to create the simple plugin followed by an example using Groovy. You
will be using the stand-alone project approach for building the complex plugin.

Creating a Java Plugin
You’ll begin your Hello Gradle Plugin development by creating a buildSrc folder
inside the hello-gradle folder. To house Java code, underneath buildSrc, create the
subfolders src/main/java. The directory structure should resemble the structure shown
in Figure 5-5.

Chapter 5 ■ projeCts and plugins

53

The next step is to create a task that outputs "Hello Gradle Plugin" to the
console. Create a GreetTask.java file under the buildSrc folder and copy the contents
of Listing 5-6.

Listing 5-6. GreetTask.java Contents

import org.gradle.api.DefaultTask;
import org.gradle.api.tasks.TaskAction;

public class GreetTask extends DefaultTask {

 @TaskAction
 public void greetAction() {
 System.out.println("Hello Gradle Plugin");
 }

}

The easiest way to create a custom task in Gradle is to extend org.gradle.api.
DefaultTask, which itself implements the org.gradle.api.Task interface. For the task
to perform an action, you have to create the greetAction method with the System.out.
println statement, which writes the message to the console. For Gradle to treat this
method as an action to execute, you must annotate it with @TaskAction.

The next step is to write the plugin class itself. Create the HelloPlugin.java class in
the buildSrc folder and copy the contents of Listing 5-7 into it.

Figure 5-5. The buildSrc Directory Structure

Chapter 5 ■ projeCts and plugins

54

Listing 5-7. The HelloPlugin.java Contents

import org.gradle.api.Plugin;
import org.gradle.api.Project;
import java.util.Map;
import java.util.HashMap;

public class HelloPlugin implements Plugin<Project> {
 @Override
 public void apply(Project project) {
 project.getTasks().create("greet", GreetTask.class);
 }
}

A Gradle plugin is created by implementing the org.gradle.api.Plugin<T>
interface. The Plugin interface contains one method named apply(Project) that the
plugin classes must implement. Gradle begins the plugin execution by invoking its apply
method. Hence, you register the GreetTask inside the apply method using the passed-
in Project argument. You do this using the create method to create a task and add it to
the Project task container. The create method takes the name of the task being created
along with the task class.

This concludes the plugin development. To use this plugin, add the following code to
build.gradle file:

apply plugin: HelloPlugin

Now let’s use the plugin and run the greet task using the command gradle greet.
You should see the text "Hello Gradle Plugin" in the output, as shown here:

\hello-gradle>gradle greet
:buildSrc:compileJava
:buildSrc:compileGroovy UP-TO-DATE
:buildSrc:processResources UP-TO-DATE
:buildSrc:classes
:buildSrc:jar
:buildSrc:assemble
:buildSrc:compileTestJava UP-TO-DATE
:buildSrc:compileTestGroovy UP-TO-DATE
:buildSrc:processTestResources UP-TO-DATE
:buildSrc:testClasses UP-TO-DATE
:buildSrc:test UP-TO-DATE
:buildSrc:check UP-TO-DATE
:buildSrc:build
:greet
Hello Gradle Plugin

BUILD SUCCESSFUL

Total time: 5.725 secs

Chapter 5 ■ projeCts and plugins

55

Creating a Groovy Plugin
This section recreates the Java HelloPlugin using Groovy language. To start, create a
groovy folder in the buildSrc/src/main folder. The resulting folder structure is shown in
Figure 5-6.

Figure 5-6. The Groovy Plugin Directory Structure

In the groovy folder, create the HelloPlugin2.groovy file and copy the contents of
Listing 5-8.

Listing 5-8. HelloPlugin2 Using Groovy

import org.gradle.api.Plugin;
import org.gradle.api.Project;

class HelloPlugin2 implements Plugin<Project> {
@Override
 void apply(Project project) {

 project.task('greet2') << {
 println 'Hello Gradle Plugin2'
 }

 }
}

Chapter 5 ■ projeCts and plugins

56

The HelloPlugin2 implements the Plugin interface like Java’s HelloPlugin class. In
the apply method, you use the Project instance to create a new task named greet2. You
also add an action to the task’s doLast method using the << shortcut notation. The action
closure code prints the text "Hello Gradle Plugin2" to the console.

Apply the newly created plugin using this statement:

apply plugin: HelloPlugin2

Run the gradle greet2 command to use the plugin. The output should be as
shown here:

\hello-gradle>gradle greet2
:buildSrc:compileJava UP-TO-DATE
:buildSrc:compileGroovy UP-TO-DATE
:buildSrc:processResources UP-TO-DATE
:buildSrc:classes UP-TO-DATE
:buildSrc:jar UP-TO-DATE
:buildSrc:assemble UP-TO-DATE
:buildSrc:compileTestJava UP-TO-DATE
:buildSrc:compileTestGroovy UP-TO-DATE
:buildSrc:processTestResources UP-TO-DATE
:buildSrc:testClasses UP-TO-DATE
:buildSrc:test UP-TO-DATE
:buildSrc:check UP-TO-DATE
:buildSrc:build UP-TO-DATE
:greet2
Hello Gradle Plugin2

BUILD SUCCESSFUL

Total time: 5.451 secs

It is also possible to run both greet and greet 2 tasks using the command gradle
greet greet2. You should see this output if you do so:

:buildSrc:build UP-TO-DATE
:greet
Hello Gradle Plugin
:greet2
Hello Gradle Plugin2

Chapter 5 ■ projeCts and plugins

57

Creating a Stand-Alone Project Plugin
In the previous section, you built a simple plugin with source code residing in the
buildSrc folder of the project. This approach is not very modular as the plugin can’t
be reused beyond the project where it is defined. The stand-alone project approach
allows you to create a plugin that is packaged into a JAR file and can be easily distributed
and reused by any number of projects. To better understand this plugin-development
approach, you will create a more realistic plugin.

Plugin Background
Software projects typically have version numbers that are expressed using three numbers
separated by periods:

<major-version>.<minor-version>.<patch/incremental-version>

As the naming convention suggests, the major versions are generally incremented
for major feature changes that are usually not backward compatible. Minor versions are
incremented when implementing minor features or major bug fixes. Finally, the patch/
incremental versions are incremented for minor bugs, text changes, etc. This convention
follows the “Semantic Versioning 2.0.0” guidelines described at http://semver.org/.

During development, it is possible for development teams to create multiple builds
of the same source code and deploy them for testing or sharing with other developers.
These builds will all have the same version number. In order to distinguish these builds
individually, you typically use another number called the build number. Some software
teams follow the convention of appending this build number to the version:

<major-version>.<minor-version>.<patch/incremental-version> .<build-number>

Other teams would simply add the build number to the generated JAR’s manifest or
display it on the application’s UI. Here are some example versions with build number:

1.0.0.56

3.3.9.25BLR48

6.1.0-20151123154556

Build numbers can be obtained from a variety of sources—commit numbers from
source code check-ins or build timestamps or continuous integration (CI) server-
generated numbers, and so on. In this section, you will create a Gradle plugin that
generates random build numbers.

http://semver.org/

Chapter 5 ■ projeCts and plugins

58

Plugin Configuration
To keep things manageable for the book, the build number plugin generates two types of
values—a numeric value based on the timestamp or an alphanumeric value. Listing 5-9
shows a hypothetical build.gradle configuration to use this plugin.

Listing 5-9. Build Number Plugin Example Usage

apply plugin: 'build-number-plugin'

buildNumber {
 numberType = 'alphanumeric'
 alphaNumLength = 5
}

The plugin provides a buildNumber configuration block that allows the plugin
user to set the build number type—alphanumeric or timestamp. The user can use the
alphaNumLength property to dictate the number of characters in the generated alpha
numeric string.

Once the plugin is configured, the generated build number can be accessed in the
build.gradle file using buildNumber.value.

 ■ Note there are a few open source gradle plugins available that generate build
numbers from other sources such as git/sVn and provide more bells and whistles. You can
check out one such plugin at https://github.com/GeoNet/gradle-build-version-
plugin.

Plugin Development
You’ll begin the plugin development by creating a Groovy project. Create a folder called
build-number-plugin on your file system followed by the subfolders shown in Figure 5-7.

https://github.com/GeoNet/gradle-build-version-plugin
https://github.com/GeoNet/gradle-build-version-plugin

Chapter 5 ■ projeCts and plugins

59

The next step is to populate the build.gradle file with dependencies and
configuration needed for a plugin project. Listing 5-10 shows the contents of the build.
gradle file.

Listing 5-10. The build.gradle file for the Build Number Plugin

apply plugin: 'groovy'

group = 'com.apress.gradle'
version = '1.0.0'

dependencies {
 compile gradleApi()
}

uploadArchives {
 repositories {
 flatDir { dirs "../repo" }
 }
}

Since you are dealing with a Groovy project, you must begin the build.gradle file by
applying the Groovy plugin. Gradle artifacts are identified using three coordinates (more
on this in Chapter 6):

•	 The group indicating the organization responsible for the project

•	 The name of the artifact

•	 The version of the artifact

Figure 5-7. Stand-alone project directory structure

http://dx.doi.org/10.1007/978-1-4842-1031-4_6

Chapter 5 ■ projeCts and plugins

60

In the build.gradle file, you use com.apress.gradle and 1.0.0 as group and version
values. Since you didn’t specify the name, Gradle uses the name of the project folder
as the artifact name. The dependencies section of the file is used to provide Gradle the
external libraries and frameworks the plugin project requires for compilation and testing
purposes. In this case, you use the gradleApi() to pull in Gradle API used by custom
plugin and task classes.

 ■ Note in next the chapter, you will be taking a deeper dive into dependency
management and gradle’s support for pulling in external dependencies

Finally, you use the uploadArchives method to upload or publish the generated
plugin to a repository. The flatDir method is configured to publish the packaged plugin
to a repo folder that exists at the same level as build-number-plugin (the project) on the
file system.

 ■ Note generated artifacts can be shared with other developers/teams by publishing to
central/common artifact repositories. Chapter 8 deals with artifact publishing in detail.

Plugin Extensions
The next step in developing the plugin is to make the plugin configuration in the user’s
build.gradle (Listing 5-9) available to the custom plugin. One way to achieve this is
through extension objects. Every Gradle project has an instance of org.gradle.api.
plugins.ExtensionContainer that keeps track of settings and properties passed to
plugins. To store this data and pass it back and forth, you need to register one or more
Java/Groovy beans (referred to as extension objects) to this container.

Listing 5-11 shows BuildNumberExtension.groovy class in the src/main/groovy/
com/apress/gradle folder, which will act as an extension model for the build number
plugin. It contains the numberType and alphaNumLength properties, which will hold the
inputs to plugin. It also contains the value property that allows the plugin/task to make a
build number available to the build.gradle file.

Listing 5-11. BuildNumberExtension.groovy Class

package com.apress.gradle;

class BuildNumberExtension {
 String numberType;
 int alphaNumLength;

 String value;
}

http://dx.doi.org/10.1007/978-1-4842-1031-4_8

Chapter 5 ■ projeCts and plugins

61

Plugin Task
In the “buildSrc” approach (Listing 5-8), you combined plugin code with task code.
For real-world plugins, it makes sense to cleanly separate plugin code from code that
executes actions. Hence, create the BuildNumberTask.groovy file in the src/main/
groovy/com/apress/gradle folder and copy the contents of Listing 5-12.

Listing 5-12. BuildNumberTask Code

package com.apress.gradle;

import org.gradle.api.DefaultTask
import org.gradle.api.tasks.TaskAction

class BuildNumberTask extends DefaultTask {

 @TaskAction
 def generateBuildNumber() {
 String numberType = project.buildNumber.numberType
 int alphaNumLength = project.buildNumber.alphaNumLength

 def buildNumber;

 if("alphanumeric".equals (numberType)) {
 buildNumber = getAlphaNumString(alphaNumLength)
 }
 else if ("timestamp".equals (numberType)) {
 buildNumber = System.currentTimeMillis()
 }

 project.buildNumber.value = buildNumber;
 }

 def getAlphaNumString(length) {
 String uuid = UUID.randomUUID().toString()
 uuid.take(length)
 }
}

The @TaskAction on the generateBuildNumber() method inside BuildNumberTask
indicates the method that Gradle needs to invoke to execute an action. The
generateBuildNumber() implementation reads user-configured numberType and
alphaNumLength values using buildNumber extension object. It then invokes the System.
currentTimeMillis() or getAlphaNumString() utility method to generate the actual
build number. The generated build number is then assigned to buildNumber’s value
property. This makes the build number available to the user's build.gradle file.

Chapter 5 ■ projeCts and plugins

62

Plugin Class
The final piece to the implementation is the Plugin class that ties everything together.
Listing 5-13 shows the BuildNumberPlugin class code located under the src/main/
groovy/com/apress/gradle folder. Inside the apply() method, you use the create
method to add the buildNumber extension object to the project. The create method takes
a name and the model class as its parameters. This name, buildNumber, must match
the name of the configuration closure block that the user will be using to provide inputs
(buildNumber in Listing 5-9). It must also match the name that the task class (Listing 5-12)
uses to retrieve configuration values.

Listing 5-13. BuildNumberPlugin Class

package com.apress.gradle;

import org.gradle.api.Plugin;
import org.gradle.api.Project;
import org.gradle.api.Task;

class BuildNumberPlugin implements Plugin<Project> {

 void apply(Project project) {
 project.extensions.create('buildNumber', BuildNumberExtension)
 Task buildnumberTask = project.task('buildnumbertask', type:
BuildNumberTask)
 project.tasks['jar'].dependsOn buildnumberTask
 }
}

In the apply() method, you then add a task of type BuildNumberTask. The name
buildnumbertask doesn’t carry any special significance. However, you should strive to
give a meaningful name as it gets displayed in the console and debug output. Finally, you
make the Jar task depend on the buildnumberTask so that a build number is available to
the build script before a JAR is generated.

Short Plugin Name
Plugins by default are referred to by their fully qualified class names. It is however
possible to give your plugins short, easy-to-use, names. You do this by creating a
properties file in the src/main/resources/META-INF/gradle-plugin folder. The name of
the properties file becomes the plugin’s short name.

Since this plugin deals with build numbers, you could call the plugin build-
number-plugin. To accomplish this, create a build-number-plugin.properties file
under the gradle-plugin folder. Inside the file, you simply create a property with the key
implementation-class and the fully qualified plugin class as its value:

implementation-class=com.apress.gradle.BuildNumberPlugin

Chapter 5 ■ projeCts and plugins

63

Plugin Packaging
This concludes the plugin implementation. The next step is to build an archive and
publish it to the local file repository. To achieve this, use the command line to navigate
to the build-gradle-plugin folder and run the command gradle uploadArchives. You
should see this output:

\build-number-plugin>gradle uploadArchives
:compileJava UP-TO-DATE
:compileGroovy
:processResources UP-TO-DATE
:classes
:jar
:uploadArchives

BUILD SUCCESSFUL

 ■ Note You will learn more about the uploadArchives command in Chapter 8.

Upon successful execution, you should see the build-number-plugin-1.0.0.jar file
in the repo folder. As mentioned earlier, repo should be located at the same level as the
build-gradle-plugin folder.

Consuming the Plugin
To consume the newly created plugin, create a new Gradle project named plugin-
consumer. In this project, you add the plugin’s build number to the generated JAR’s
MANIFEST.MF file.

To begin, create the plugin-consumer folder on your file system, next to the repo and
build-gradle-plugin folders.

Figure 5-8. Project directory structure

http://dx.doi.org/10.1007/978-1-4842-1031-4_8

Chapter 5 ■ projeCts and plugins

64

Then create a build.gradle file for the plugin-consumer project. Since this is a Java
project that generates a JAR artifact, apply the Java plugin. You also need to apply and
configure the build-number-plugin, as shown here:

apply plugin: 'java'
apply plugin: 'build-number-plugin'

buildNumber {
 numberType = 'alphanumeric'
 alphaNumLength = 5
}

The next step is to add the plugin JAR file to the build script’s classpath so Gradle can
find the plugin classes. You accomplish this using a buildscript block:

buildscript {
 repositories {
 flatDir {
 dirs '../repo'
 }
 }
 dependencies { classpath 'com.apress.gradle:build-number-plugin-1.0.0' }
}

Finally, you use the doFirst method on the jar task to add a new manifest entry, as
shown here:

jar.doFirst {
 manifest {
 attributes('Build-Number': project.buildNumber.value)
 }
}

You are now ready to generate the consumer plugin. Using a command line, navigate
to the plugin-consumer folder and run the gradle build command. In the output,
you should see the buildnumbertask getting triggered followed by Java plugin’s task
(compileJava, jar, etc.) execution. The output should look as follows:

\plugin-consumer>gradle build
:buildnumbertask
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:jar
:assemble
:compileTestJava UP-TO-DATE
:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE

Chapter 5 ■ projeCts and plugins

65

:test UP-TO-DATE
:check UP-TO-DATE
:build

BUILD SUCCESSFUL

Upon successful completion of the build, navigate to the plugin-consumer\build\
libs folder. Using a ZIP utility such as WinZip or WinRAR, open plugin-consumer.jar
and open the MANIFEST.MF file under META-INF. You should see a Build-Number entry
containing alphanumeric text, similar to Figure 5-9.

Figure 5-9. Build number in the MANIFEST file

To generate build numbers using a timestamp, replace the buildNumber
configuration block in build.gradle file with this code:

buildNumber {
 numberType = 'timestamp'
}

Run the command gradle clean build and it should delete the existing JAR file and
generate a new one. Upon successful build execution, you should see a timestamp-based
build number in the generated manifest file.

This concludes the stand-alone project-based plugin development. You can
publish this plugin to an internal Maven repository and make it available to rest of
the development team. You can also publish it to Gradle Plugin Portal. The Gradle
Plugin Portal at https://plugins.gradle.org/ hosts numerous open source plugins
contributed by developers across the world. The portal allows you to search for plugins
you need and displays the necessary configuration to use those plugins. You can follow the
instructions for the submission process at https://plugins.gradle.org/docs/submit.

https://plugins.gradle.org/
https://plugins.gradle.org/docs/submit

Chapter 5 ■ projeCts and plugins

66

Summary
Gradle greatly simplifies building of Java projects using plugins that provide tasks and
sensible defaults. This chapter reviewed the java plugin that compiles Java code, runs
unit tests, and assembles JAR archives. You then used the javadoc plugin to generate API
documentation. The war plugin allows you to build and package web applications.

Gradle also provides excellent support for building custom plugins. You learned that
there are three ways to package custom plugins—build scripts, use a buildSrc directory,
and create a stand-alone project. You learned the basics of creating a simple Java and
Groovy plugin using the buildSrc approach. You then built on those concepts to develop
a plugin using a stand-alone project approach.

In the next chapter, you will read all about Gradle’s support for managing
dependencies and interacting with various artifact repositories.

67

Chapter 6

Dependency Management

Software projects are rarely built in isolation. They either depend on internal projects
or other open source libraries. This chapter looks at how Gradle helps you effectively
manage these dependencies. You will learn about the different types of dependencies, as
well as learn how to group dependencies and resolve dependency conflicts. You will also
review repositories that store artifacts.

Declarative Dependency Management
Consider the scenario where you want to use Logback (http://logback.qos.ch) in your
application for logging. A straightforward approach is to download the logback.jar
file from Logback web site and add it to your project. This used to be a pretty common
behavior when using IDE or ANT for building projects. However, there are few issues with
this approach:

•	 The downloaded JAR file might depend on a few other libraries.
Such dependencies are referred to as transitive dependencies. To
make things more difficult, transitive dependencies might have
their own dependencies. You need to spend time figuring out
all those dependencies and downloading them for use in your
project.

•	 There could be version conflicts with transitive dependencies.
Let’s say your project depends on JAR A and B. Now if A depends
on 1.0.0 version of JAR C and B depends on version 2.0.0 of C, you
need to manually resolve this conflict.

•	 Downloaded JAR files must be checked into a Version Control
System or placed on a shared drive so that the project can be built
on other developer machines or on a Continuous Integration
server. Checking JAR files in to VCS is not considered a best
practice. This approach especially makes it hard when dealing
with frequently changing working copies (referred to as snapshot
versions in Maven).

http://logback.qos.ch/

Chapter 6 ■ DepenDenCy ManageMent

68

•	 Upgrades become really difficult and you have to repeat this
manual process all over again.

•	 It becomes hard to share internally developed JAR files across
teams.

To address these inherent problems with ANT, Maven came up with declarative
dependency management. With this approach, you tell the Maven what you need, typically
in an external configuration file. Maven will automatically figure out where and how to get
those dependencies and hand them over to your project. Later, Ant provided integration
with another dependency management tool called Apache Ivy. Gradle provides its own
dependency management implementation but does support the Maven and Ivy repositories.

Figure 6-1 provides a high level view of Gradle’s dependency management.
Gradle interacts with repositories to retrieve dependencies and associated metadata.
Repositories that are accessed over the web are considered remote and are typically
maintained by third parties. Gradle can also interact with repositories that exist on
the local machine as well as directories containing JAR files. Once dependencies are
obtained, Gradle stores them in a cache. By default, the cache is located at <<USER_
HOME>>/.gradle on your local machine. On Windows it would be C:\Users\<<user_
name>>\.gradle. Gradle then retrieves those dependencies during the project's building,
testing, or packaging. Having a local cache reduces the load on the remote repositories
and improves build speed.

Figure 6-1. Gradle dependency management

Chapter 6 ■ DepenDenCy ManageMent

69

 ■ Tip you can change the default gradle's home directory from .gradle by setting the
environment variable GRADLE_USER_HOME and pointing it to a new directory.

Although the architecture in Figure 6-1 works for small projects, it poses some
serious problems in an enterprise setting. Remote repositories accessed via the Internet
can go down or become unresponsive in high traffic situations, causing your builds to
slow down drastically. Licensing and intellectual property issues might prevent teams
from publishing their internal artifacts in public repositories, thereby preventing them
from being shared easily. To address those situations, most enterprises opt for the
architecture shown in Figure 6-2.

Figure 6-2. Dependency management with repo manager

The internal repository manager serves as a proxy to remote repositories and caches
artifacts. This ensures that builds are repeatable even if a remote repository were to be
down or became obsolete. The repository manager also allows you to push and share
your company’s internal artifacts. Several open source and commercial repository
managers are available such as Sonatype Nexus, Apache Archiva, and Artifactory.

Chapter 6 ■ DepenDenCy ManageMent

70

Dependency Configuration
Consider the earlier example of using Logback for logging. The source code will contain
log statements that use Logback classes and API. For the project code to be compiled,
you need the Logback JAR to be available in the classpath. Also, for the application to run
inside a container such as Tomcat, you need the Logback JAR to be bundled inside the
generated WAR artifact. Now consider the same project using JUnit for unit testing. The
JUnit JAR file is needed only when you run unit tests and does need not be bundled in the
generated WAR artifact. If the web application contains Java servlets, it would need the
Servlet API JAR during code compilation. Since containers such as Tomcat make this API
JAR available on classpath during runtime, you don’t have to bundle it inside the WAR file.

These examples indicate the need to have certain sets of dependencies available at
certain points of the build. Gradle has configurations that allow you to accomplish this
easily. A configuration is a logical group of dependencies. For example, you can have a
compile configuration that has all the dependencies needed during code compilation
time. The Java plugin out-of-the-box declares the following six configurations:

•	 compile—Contains dependencies that are added to the classpath
during code compilation. In a web project, dependencies such as
Hibernate and Spring are declared in the compile configuration.

•	 runtime—Contains dependencies that are used during the
execution of the code. For example, database drivers such as
MySQL driver are declared in the runtime configuration.

•	 testCompile—Contains dependencies that become part of
classpath during test code compilation. Test frameworks such as
JUnit and TestNG are good examples of libraries declared in this
configuration.

•	 testRuntime—Contains dependencies that are used during the
execution of test code. Embedded databases such as HSQLDB or
H2 are examples of libraries declared in this configuration.

•	 archives—Contains artifacts generated by the project. Consider
a Java project that produces additional artifacts such as a JAR file
containing source code and a ZIP file containing Javadoc API.
These artifacts are declared in this configuration. You will learn
more about archives configuration in Chapter 8.

•	 default—This configuration typically comes into picture in a
multi-project setting where a project's build depends on another
subproject's build. Consider the scenario where project A
declares project B as its dependency. By default, all the artifacts
in project B's default configuration will be included in project A.
The default configuration extends the runtime configuration and
hence contains all artifacts and dependencies declared in the
project’s runtime.

http://dx.doi.org/10.1007/978-1-4842-1031-4_8

Chapter 6 ■ DepenDenCy ManageMent

71

Dependency configurations can extend other configurations. The runtime
configuration, for example, extends the compile configuration. What this means is that all
the dependencies declared in the compile configuration will be available in the runtime
configuration. Table 6-1 shows the six Java plugin configurations and the configurations
they extend.

Table 6-1. Configurations Inheritance

Configuration Name Extends From

compile None

runtime compile

testCompile compile

testRuntime runtime, testCompile

archives None

default runtime

Working with Dependencies
Before you can start declaring and using dependencies, it’s important to understand the
different types of dependencies. Table 6-2 shows the types provided by Gradle.

Table 6-2. Gradle Dependency Types

Dependency Type Description

External module dependency Dependency on a library in a repository. A
dependency on the Logback JAR residing in Maven
Central is an example this dependency type.

Project dependency Dependency on a Gradle project.

File dependency Dependency on files on the local machine.

Client module dependency Dependency on an external module where the
module is located in an external repository but the
corresponding metadata is specified in a build file.

Gradle API dependency Dependency on Gradle API. You saw this dependency
type in Chapter 5 during plugin development.

Local Groovy dependency Dependency on the Groovy libraries that came as part
of the installed Gradle.

http://dx.doi.org/10.1007/978-1-4842-1031-4_5

Chapter 6 ■ DepenDenCy ManageMent

72

In this chapter, you look at using three dependency types—external module, file, and
project dependencies. You declare dependencies in a build file using the dependencies
closure as shown here:

dependencies {
 <dependency configuration> dependency1, dependency2....
}

External Module Dependencies
External module dependencies, as the name suggests, refer to dependencies on artifacts
external to the current project structure. Dependencies of this type are specified using the
following coordinates:

•	 group—Identifier of the group or organization responsible for
this project. Examples include org.springframework and org.
hibernate.

•	 name—The name of the artifact. Examples include spring-beans
and hibernate-core.

•	 version—The version of the artifact. Examples include 1.0.0 and 4.2.0.

•	 classifier—Additional field attached to the artifact. For
example, the same artifact can be released for 2 JDK versions and
a classifier can be used to select the right one.

These dependencies can be declared using the following format in a
build.gradle file:

group: 'GROUP_NAME, name: 'ARTIFACT_NAME', version: 'VERSION_NUMBER'

Gradle also provides the following shortcut format for declaring dependencies:

GROUP_NAME:ARTIFACT_NAME:VERSION_NUMBER

To see external module dependencies in action, create a new folder gradle_dep on
your local machine. Create a build.gradle file and copy the contents from Listing 6-1.
This example adds two dependencies for compile configuration using the shortcut
notation. Notice that multiple dependencies are separated with a comma (,). It declares
the two additional testCompile dependencies using the ArrayList notation. Also notice
the repositories block. You will be learning about repositories later in this chapter, so
for now you can ignore it.

Chapter 6 ■ DepenDenCy ManageMent

73

Listing 6-1. The build.gradle File with Dependencies

apply plugin: 'java'

dependencies {
 compile 'ch.qos.logback:logback-classic:1.1.2', 'org.apache.
commons:commons-lang3:3.4'

 testCompile (
 [group: 'junit', name: 'junit', version: '4.12'],
 [group: 'org.hsqldb', name: 'hsqldb', version: '2.3.3']
)
}
repositories {
 mavenCentral()
}

Gradle provides a built-in dependencies tasks that can be used to see the declared
dependencies and their transitive dependencies. Running the command gradle
dependencies will show output similar to this:

\chapter6\gradle-dep>gradle dependencies
.................
compile - Compile classpath for source set 'main'.
Download https://repo1.maven.org/maven2/org/apache/commons/commons-
lang3/3.4/com
mons-lang3-3.4.pom
Download https://repo1.maven.org/maven2/org/apache/commons/commons-
parent/37/com
mons-parent-37.pom
Download https://repo1.maven.org/maven2/org/apache/apache/16/apache-16.pom
Download https://repo1.maven.org/maven2/org/slf4j/slf4j-api/1.7.6/slf4j-
api-1.7.
6.pom
Download https://repo1.maven.org/maven2/org/slf4j/slf4j-parent/1.7.6/slf4j-
paren
t-1.7.6.pom
+--- ch.qos.logback:logback-classic:1.1.2
| +--- ch.qos.logback:logback-core:1.1.2
| \--- org.slf4j:slf4j-api:1.7.6
\--- org.apache.commons:commons-lang3:3.4

....................

testCompile - Compile classpath for source set 'test'.
Download https://repo1.maven.org/maven2/org/hsqldb/hsqldb/2.3.3/hsqldb-
2.3.3.pom

https://repo1.maven.org/maven2/org/apache/commons/commons-lang3/3.4/com
https://repo1.maven.org/maven2/org/apache/commons/commons-lang3/3.4/com
https://repo1.maven.org/maven2/org/apache/commons/commons-parent/37/com
https://repo1.maven.org/maven2/org/apache/commons/commons-parent/37/com
https://repo1.maven.org/maven2/org/apache/apache/16/apache-16.pom
https://repo1.maven.org/maven2/org/slf4j/slf4j-api/1.7.6/slf4j-api-1.7
https://repo1.maven.org/maven2/org/slf4j/slf4j-api/1.7.6/slf4j-api-1.7
https://repo1.maven.org/maven2/org/slf4j/slf4j-parent/1.7.6/slf4j-paren
https://repo1.maven.org/maven2/org/slf4j/slf4j-parent/1.7.6/slf4j-paren
https://repo1.maven.org/maven2/org/hsqldb/hsqldb/2.3.3/hsqldb-2.3.3.pom
https://repo1.maven.org/maven2/org/hsqldb/hsqldb/2.3.3/hsqldb-2.3.3.pom

Chapter 6 ■ DepenDenCy ManageMent

74

+--- ch.qos.logback:logback-classic:1.1.2
| +--- ch.qos.logback:logback-core:1.1.2
| \--- org.slf4j:slf4j-api:1.7.6
+--- org.apache.commons:commons-lang3:3.4
+--- junit:junit:4.12
| \--- org.hamcrest:hamcrest-core:1.3
\--- org.hsqldb:hsqldb:2.3.3
................

From the output you will notice that all compile-time dependencies are available as
runtime dependencies due to configuration inheritance. You are now ready to start using
the Java classes/API provided by these libraries in your project.

In projects that contain a lot of dependencies, it is recommended to extract
dependency versions into properties. This makes it easy to quickly identify artifact
versions or change them during upgrades. Listing 6-2 shows modified build.gradle
file with version numbers extracted to project level properties inside the ext closure.
The dependency declarations are modified to use GStrings with version expressions. At
runtime, these expressions will be replaced with the right version values.

Listing 6-2. The build.gradle File with Properties

apply plugin: 'java'

ext {
 logbackVersion = '1.1.2'
 commonsLangVersion = '3.4'
 junitVersion = '4.12'
 hsqlDbVersion = '2.3.3'
}

dependencies {
 compile "ch.qos.logback:logback-classic:$logbackVersion", "org.apache.

commons:commons-lang3:$commonsLangVersion"

 testCompile (
 [group: 'junit', name: 'junit', version:

"$junitVersion"],
 [group: 'org.hsqldb', name: 'hsqldb', version:

"$hsqlDbVersion"]
)
}

repositories {
 mavenCentral()
}

Chapter 6 ■ DepenDenCy ManageMent

75

In projects containing a lot of dependencies, you run into another common problem
where you end up repeating the same group and version numbers in multiple places. For
example, consider a Java project using the 3.0 version of Spring Framework libraries such
as spring-core, spring-aop, spring-beans, spring-jdbc, and spring-context. Listing 6-3
shows the build-common-group.gradle file demonstrating an approach to address this
duplication issue. The artifact names are grouped into a list. The code iterates through the
list, registering each dependency as a compile-time configuration. You can run the build
script using the command gradle -b build-common-group.gradle dependencies.

Listing 6-3. The build-common-group.gradle File

apply plugin: 'java'

ext { springVersion = '3.0.0.RELEASE' }

dependencies {

 ['spring-core', 'spring-aop','spring-beans', 'spring-jdbc', 'spring-

context'].each {
 compile "org.springframework:$it:$springVersion"
 }
}
repositories {
 mavenCentral()
}

File Dependencies
Most legacy projects contain dependencies inside a lib folder in their project or in
a folder on a shared drive. Gradle’s file dependency type allows you to use such files
directly in your project. This type is especially useful during legacy project migrations or
when you don’t have a private repository to host internal libraries.

To better understand file dependency type, let's create a new project named gradle-
file-dep. Create the gradle-file-dep folder on your file system and an empty build.
gradle file. Inside this folder, create a lib subfolder and populate it with a couple of JAR
files. Table 6-3 lists the JAR files you will be using along with the links to download them
from the Internet.

Chapter 6 ■ DepenDenCy ManageMent

76

Adding files as dependencies to your project involves passing in a file collection to
Gradle. As the name suggests, a file collection is simply a set of files. The easiest way to
work with a file collection is to use the Project.files() method. This method takes a
variable number of objects as parameters and attempts to convert them into sets of java.
io.File instances. Listing 6-4 shows the build.gradle file with two file dependencies
added to the compile configuration.

Listing 6-4. The build.gradle with two File Dependencies

apply plugin: 'java'
dependencies {
 compile files ("lib/logback-classic-1.1.3.jar", "lib/commons-lang3-3.4.jar")
}

Table 6-3. JAR Files Inside the lib Folder

JAR File Download URL

logback-classic-1.1.3.jar http://search.maven.org/
remotecontent?filepath=ch/qos/logback/
logback-classic/1.1.3/logback-classic-
1.1.3.jar

commons-lang3-3.4.jar http://search.maven.org/
remotecontent?filepath=org/apache/commons/
commons-lang3/3.4/commons-lang3-3.4.jar

spring-core-4.2.3.RELEASE.jar http://search.maven.org/
remotecontent?filepath=org/
springframework/spring-core/4.2.3.RELEASE/
spring-core-4.2.3.RELEASE.jar

slf4j-api-1.7.13.jar http://search.maven.org/
remotecontent?filepath=org/slf4j/slf4j-
api/1.7.13/slf4j-api-1.7.13.jar

Figure 6-3. The gradle-file-dep folder structure

At this point, the project should have the directory structure shown in Figure 6-3.

http://search.maven.org/remotecontent?filepath=ch/qos/logback/logback-classic/1.1.3/logback-classic-1.1.3.jar
http://search.maven.org/remotecontent?filepath=ch/qos/logback/logback-classic/1.1.3/logback-classic-1.1.3.jar
http://search.maven.org/remotecontent?filepath=ch/qos/logback/logback-classic/1.1.3/logback-classic-1.1.3.jar
http://search.maven.org/remotecontent?filepath=ch/qos/logback/logback-classic/1.1.3/logback-classic-1.1.3.jar
http://search.maven.org/remotecontent?filepath=org/apache/commons/commons-lang3/3.4/commons-lang3-3.4.jar
http://search.maven.org/remotecontent?filepath=org/apache/commons/commons-lang3/3.4/commons-lang3-3.4.jar
http://search.maven.org/remotecontent?filepath=org/apache/commons/commons-lang3/3.4/commons-lang3-3.4.jar
http://search.maven.org/remotecontent?filepath=org/springframework/spring-core/4.2.3.RELEASE/spring-core-4.2.3.RELEASE.jar
http://search.maven.org/remotecontent?filepath=org/springframework/spring-core/4.2.3.RELEASE/spring-core-4.2.3.RELEASE.jar
http://search.maven.org/remotecontent?filepath=org/springframework/spring-core/4.2.3.RELEASE/spring-core-4.2.3.RELEASE.jar
http://search.maven.org/remotecontent?filepath=org/springframework/spring-core/4.2.3.RELEASE/spring-core-4.2.3.RELEASE.jar
http://search.maven.org/remotecontent?filepath=org/slf4j/slf4j-api/1.7.13/slf4j-api-1.7.13.jar
http://search.maven.org/remotecontent?filepath=org/slf4j/slf4j-api/1.7.13/slf4j-api-1.7.13.jar
http://search.maven.org/remotecontent?filepath=org/slf4j/slf4j-api/1.7.13/slf4j-api-1.7.13.jar

Chapter 6 ■ DepenDenCy ManageMent

77

Instead of spelling out each file as a dependency, there are occasions where you
might want to include all or a subset of files in a folder. You can accomplish that using
project’s fileTree method. A file tree represents a hierarchy of files, such as directory.
Listing 6-5 shows the updated build.gradle file that adds all the JAR files inside the lib
directory to the compile configuration.

Listing 6-5. File Dependency Type Using File Trees

apply plugin: 'java'
dependencies {
 compile fileTree (dir : "lib", include: "*.jar")
}

File dependencies are not included in the project's dependency descriptor. Hence,
running the command gradle dependencies will not list the file dependency JARs on
the console. To see those JARs, append the displayJars task shown in Listing 6-6 to
the build.gradle file. The task uses the collect() method to iterate through all the
dependencies in the compile configuration and prints their names.

Listing 6-6. The displayJars Task

task displayJars << {
 println "${configurations.compile.collect {File f -> f.name}}"
}

Using a command prompt, run the gradle -q displayJars command inside the
project folder. You should see the following output:

\gradle-file-dep>gradle -q displayJars
[commons-lang3-3.4.jar, logback-classic-1.1.3.jar, slf4j-api-1.7.13.jar,
spring-
core-4.2.3.RELEASE.jar]

Project Dependencies
Complex enterprise projects are often split into smaller projects. For example, an online
application might be broken into three separate projects—a web project containing UI
related assets and components, a services project that contains backend services, and a
repository project that contains repository/DAO code to access a database backend. In
such scenarios, the web project depends on the service project, which in turn depends
on the repository project. Gradle provides the project dependency type to establish such
dependencies.

Project dependencies can be declared using the project’s project() method, which
takes the name of the dependent project. Listing 6-7 shows an example of a “web” project
depending on the service project. The colon (:) character denotes project hierarchy.
Hence the string ":service" indicates that the service project is one level underneath
the root.

Chapter 6 ■ DepenDenCy ManageMent

78

Listing 6-7. The Project Dependency Type

dependencies {
 compile project (":service")
}

With this project dependency, Gradle will include the generated service.jar artifact
as a dependency in the web project. Additionally the service project's dependencies and
their transitive dependencies are added as web project's dependencies. You will look at
project dependencies in more detail and with examples in Chapter 7.

Resolving Dependency Conflicts
Consider a Gradle project named transitive-dep that uses the Spring Core library
(spring-core.jar) and Apache HttpClient (httpclient.jar). Listing 6-8 shows the
project's build.gradle file with the two compile-time dependencies.

Listing 6-8. Version Conflict Example

apply plugin: 'java'

dependencies {
 compile 'org.springframework:spring-core:4.2.2.RELEASE',

'org.apache.httpcomponents:httpclient:4.0'
}
repositories {
 mavenCentral()
}

Both the Spring Core and HttpClient libraries use Apache Commons Logging as
their underlying logging framework. However, the version 4.2.2 of Spring Core uses
Commons Logging version 1.2, while version 4.0 of HttpClient uses Commons Logging
version 1.1. When such version conflicts arise, Gradle by default uses the latest version
of the transitive dependency. Output of the gradle dependencies command shows this
resolution strategy:

\chapter6\transitive-dep>gradle dependencies

compile - Compile classpath for source set 'main'.
+--- org.springframework:spring-core:4.2.2.RELEASE
| \--- commons-logging:commons-logging:1.2
\--- org.apache.httpcomponents:httpclient:4.0
 +--- org.apache.httpcomponents:httpcore:4.0.1
 +--- commons-logging:commons-logging:1.1.1 -> 1.2
 \--- commons-codec:commons-codec:1.3

http://dx.doi.org/10.1007/978-1-4842-1031-4_7

Chapter 6 ■ DepenDenCy ManageMent

79

On occasions, you might not want Gradle to pick the latest JAR file. In such scenarios,
you can change the default resolution strategy and force Gradle to include a certain
version. Listing 6-9 shows the modified build.gradle file accomplishing this. The
configurations{} block allows you to configure project’s dependency configuration
behavior. You then apply a resolutionStrategy block to all configurations. Finally,
you use the force method to force the usage of 1.1.1 version of commons-logging
dependency.

Listing 6-9. Resolution Strategy Forcing a Dependency

apply plugin: 'java'

configurations.all {
 resolutionStrategy {
 force 'commons-logging:commons-logging:1.1.1'

}
}

dependencies {
 compile 'org.springframework:spring-core:4.2.2.RELEASE',

'org.apache.httpcomponents:httpclient:4.0'
}
repositories {
 mavenCentral()
}

Running the gradle dependencies command on the modified build.gradle shows
that the 1.1.1 version is being picked up over the 1.2 version:

default - Configuration for default artifacts.
+--- org.springframework:spring-core:4.2.2.RELEASE
| \--- commons-logging:commons-logging:1.2 -> 1.1.1
\--- org.apache.httpcomponents:httpclient:4.0
 +--- org.apache.httpcomponents:httpcore:4.0.1
 +--- commons-logging:commons-logging:1.1.1
 \--- commons-codec:commons-codec:1.3

Though transitive dependencies are useful, they can cause problems and
unpredictable side effects as you might end up with wrong versions of JARs in the
project. To be proactive and troubleshoot issues when version conflicts arise, you can
make Gradle fail the builds when version conflicts are found. You can change the default
resolution strategy to fail on version conflicts using the failOnVersionConflict method.
Listing 6-10 shows the modified build.gradle file using the failOnVersionConflict()
method.

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ DepenDenCy ManageMent

80

Listing 6-10. Resolution Strategy Failing on Conflicts

apply plugin: 'java'

configurations.all {
 resolutionStrategy {
 failOnVersionConflict()
 }
}

dependencies {
 compile 'org.springframework:spring-core:4.2.2.RELEASE',

'org.apache.httpcomponents:httpclient:4.0'
}
repositories {
 mavenCentral()
}

From a command line, run the gradle dependencies command and you will see a
failed report:

FAILURE: Build failed with an exception.

* What went wrong:
Execution failed for task ':dependencies'.
> Could not resolve all dependencies for configuration ':compile'.
 > A conflict was found between the following modules:
 - commons-logging:commons-logging:1.2
 - commons-logging:commons-logging:1.1.1

Repositories
As discussed at the beginning of this chapter, repositories contain dependencies
and associated metadata. Gradle out-of-the-box can work with Maven, Ivy, and local
directory repositories. It also provides a few preconfigured repositories that make it
easy to interact with commonly used repositories. The mavenCentral() repository is
one such preconfigured repository that points to Maven’s central repository at
https://repo1.maven.org/maven2. Listing 6-11 shows the configuration needed to
interact with Maven Central. The repositories block is used to configure repositories
used in a project.

Listing 6-11. Mavan Central Repository Config

repositories {
 mavenCentral()
}

https://repo1.maven.org/maven2.%20Listing%206-11

Chapter 6 ■ DepenDenCy ManageMent

81

JCenter is another popular repository that hosts artifacts at https://bintray.com/
bintray/jcenter. Listing 6-12 shows the configuration to interact with JCenter repo.

Listing 6-12. JCenter Repository Config

repositories {
 jcenter()
}

More often than not, your company might have an internal Maven repository. Gradle
provides a maven() method that makes it easy to add and configure a Maven repository.
Listing 6-13 shows a custom Maven repository declaration. For repositories that need
authentication, the configuration allows you to provide credentials.

Listing 6-13. Custom Maven Repository

apply plugin: 'java'

repositories {
 maven {
 url "http://your_repo.url"

 credentials {
 username 'user_name'
 password 'pwd'
 }
 }
}

In certain limited cases you might need to use a local Maven repository to retrieve
dependencies. Local Maven repositories are typically located in the USER_HOME/.m2
directory. For those scenarios, Gradle provides another preconfigured repository named
mavenLocal(), as shown in Listing 6-14.

Listing 6-14. Maven Local Repository

apply plugin: 'java'

repositories {
 mavenLocal()
}

In cases where you are dealing with legacy projects, you might want to interact
with libraries located in a local directory. Gradle supports such interactions with a flat
directory repository. This shouldn’t be confused with a Maven local repository. Maven
local repositories contain artifacts and the associated metadata, such as a pom.xml file.
However, a flat directory just contains JAR files and no metadata. Listing 6-15 shows the
configuration to use JAR files from the lib folder.

https://bintray.com/bintray/jcenter
https://bintray.com/bintray/jcenter
http://your_repo.url/

Chapter 6 ■ DepenDenCy ManageMent

82

Listing 6-15. Flat Directory Repository

apply plugin: 'java'

repositories {
 flatDir {
 dirs 'lib'
 }
}

dependencies {
 compile name: 'commons-lang3', version : '3.4'
 compile name: 'logback-classic', version: '1.1.3'
}

When working with flat directory repositories, you need to declare dependencies
using the artifact's name and version attributes. Listing 6-15 declares the commons-lang3
library with the name and version attributes. During the build, Gradle will look for a JAR
file with the name commons-lang3-3.4.jar inside the lib directory. If the logback-
classic library is declared using just the name attribute, Gradle will look for a JAR named
logback-classic.jar inside the lib folder.

Unlike file dependencies discussed in an earlier section, dependencies from flat
directory repositories are included in the project’s dependency descriptor. To verify this
configuration, create a build-file-repository.gradle file inside the gradle-file-
dep project and copy the contents of Listing 6-15. Run the gradle -b build-file-
repository.gradle dependencies command in the project and it will list the following
dependencies:

compile - Compile classpath for source set 'main'.
+--- :commons-lang3:3.4
\--- :logback-classic:1.1.3

Uber JAR Creation
For Java projects, Gradle generates a JAR file that contains compiled classes and other
resources residing in the src/main/resources folder. However, there are scenarios
when you’ll want to distribute your Java application as a self-contained application that
includes all its dependent JARs. A common technique to deliver such a bundle is to create
an “uber” or “fat” JAR. In this section, you will generate an uber JAR of the gradle-dep
project you have built in this chapter.

To build an uber JAR, you will use an open source plugin named Shadow. The
plugin's page on the Gradle plugin portal at https://plugins.gradle.org/plugin/com.
github.johnrengelman.shadow provides a script snippet (shown in Listing 6-16) to use
the plugin.

https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow
https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow

Chapter 6 ■ DepenDenCy ManageMent

83

Listing 6-16. Shadow Plugin Snippet

buildscript {
 repositories {
 maven {
 url "https://plugins.gradle.org/m2/"
 }
 }
 dependencies {
 classpath "com.github.jengelman.gradle.plugins:shadow:1.2.2"
 }
}

apply plugin: "com.github.johnrengelman.shadow"

The buildscript block in Listing 6-16 allows you to use third-party plugins such
as Shadow. Inside the block, you declare the Gradle Plugin Maven repository located at
https://plugins.gradle.org/m2/. This is followed by a dependencies block, where you
add the plugin JAR to the build script’s classpath.

Append the snippet in Listing 6-16 to the bottom of gradle-dep’s build.gradle file.
Listing 6-17 shows the complete build.gradle file you will be using.

Listing 6-17. The Build Script with Shadow Plugin

apply plugin: 'java'

ext {
 logbackVersion = '1.1.2'
 commonsLangVersion = '3.4'
 junitVersion = '4.12'
 hsqlDbVersion = '2.3.3'
}

dependencies {
 compile "ch.qos.logback:logback-classic:$logbackVersion",

"org.apache.commons:commons-lang3:$commonsLangVersion"

 testCompile (
 [group: 'junit', name: 'junit', version: "$junitVersion"],
 [group: 'org.hsqldb', name: 'hsqldb',

version: "$hsqlDbVersion"]
)
}

repositories {
 mavenCentral()
}

https://plugins.gradle.org/m2/
https://plugins.gradle.org/m2/

Chapter 6 ■ DepenDenCy ManageMent

84

buildscript {
 repositories {
 maven {
 url "https://plugins.gradle.org/m2/"
 }
 }
 dependencies {
 classpath "com.github.jengelman.gradle.plugins:shadow:1.2.2"
 }
}

apply plugin: "com.github.johnrengelman.shadow"

Run the gradle shadowJar command inside the gradle-dep project and you should
see this output:

\chapter6\gradle-dep>gradle shadowJar
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:shadowJar

BUILD SUCCESSFUL

Upon successful completion of the task, navigate to the build/libs folder under the
project and you should see a gradle-dep-all.jar. The JAR file should contain classes
from the Logback and Apache Commons Lang, as shown in Figure 6-4.

https://plugins.gradle.org/m2/

Chapter 6 ■ DepenDenCy ManageMent

85

Summary
Projects typically depend on internal or third-party libraries. Gradle provides excellent
support for declaring and managing these dependencies. This chapter reviewed the
basics of declarative dependencies, and you learned how to group dependencies using
dependency configurations. You also learned about three dependency types—external
module, file, and project. External module dependencies are declared using group,
name, and version attributes, while file dependencies are declared using their names.
The chapter then reviewed how Gradle resolves dependency conflicts and how to
configure the resolution strategies. Finally, you learned about the role repositories play in
dependency management and the several repository types that Gradle supports.

The next chapter covers Gradle’s support for multi-projects.

Figure 6-4. Extracted directory structure of gradle-dep-all

87

Chapter 7

Multi-Project Builds

Complex enterprise projects are often split into several subprojects to ease development,
maintainability, and increase reuse. This chapter reviews how multi-projects are
structured and configured. You will build a sample multi-project to better understand
Gradle’s multi-project support. You will look at approaches for distributing build logic
across root and subprojects. You will also learn how to execute single project builds or a
full project build and declare dependencies between projects.

Multi-Project Structure
Gradle supports development of complex projects by allowing multiple Gradle projects
to be nested under a single root Gradle project. The root project allows you to define
common dependencies and build logic instead of spreading it across individual projects.
Instead of building each subproject individually, the root project provides one place to
perform a full build of all projects. The layout of a hierarchically structured multi-project
is shown in Figure 7-1.

Chapter 7 ■ Multi-projeCt Builds

88

The root project contains three subproject folders, a build.gradle file, and a
settings.gradle file. Each subproject can contain an optional build.gradle file. To
better understand the multi-project builds and the significance of the settings.gradle
file, you will see how to implement a sample multi-project in the next section.

Sample Project
This sample multi-project is made up of a web subproject that contains a user interface
(WAR artifact), a service project (JAR artifact) that contains a service layer code, and a
repository project (JAR artifact) that contains a persistence layer and entity code. The
UI layer code relies on the service layer code to complete the web requests. Hence,
the web subproject has a dependency over the service subproject. The service layer
code delegates all persistence operations to the repository layer. Hence, the service
subproject has a dependency over the repository subproject. Figure 7-2 provides a visual
representation of this dependency scenario.

Figure 7-1. Standard hierarchical multi-project layout

Chapter 7 ■ Multi-projeCt Builds

89

Begin the sample multi-project implementation by creating the following folder
structure on your local machine.

intro-root
 web
 service
 repository

The root project is intro-root and the subprojects are web, service, and
repository. Create an empty build.gradle file in the root project and run the gradle
projects command. The task projects is a built-in Gradle task that displays subprojects
in a hierarchical fashion. The output of the command is as follows:

\chapter7\intro-root>gradle projects
:projects

--
Root project
--

Root project 'intro-root'
No sub-projects

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :tasks

BUILD SUCCESSFUL

Figure 7-2. Sample project dependencies

Chapter 7 ■ Multi-projeCt Builds

90

From the output you can see that Gradle found the root project intro-root but
didn’t find any subprojects inside it. This is where the settings.gradle comes into
picture. In this file, you specify the subprojects that Gradle needs to include in the build.
Let's fix the build by creating a settings.gradle file inside the intro-root folder. You
then use the include method to add the three subprojects, as shown. The include
method takes the subproject directory names as its parameters.

include 'web', 'service', 'repository'

Upon running the gradle projects command, you will see that Gradle detects all
four projects (including root):

\chapter7\intro-root>gradle projects
:projects

--
Root project
--

Root project 'intro-root'
+--- Project ':repository'
+--- Project ':service'
\--- Project ':web'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :repository:tasks

BUILD SUCCESSFUL

The output also shows Gradle’s use of ":" to indicate project hierarchy. For example,
:service indicates that the service project is one level below the root (referred implicitly
without a name). If your project exists under service/soap/util, then it will be referred
to using :service:soap:util.

Flat Layout
In addition to the hierarchical project layout you saw in the previous section, Gradle
supports a “flat layout” for multi-project development. In this organization, all the
projects exist as siblings of the root project. Figure 7-3 shows the intro-root multi-
project organized using the flat layout.

Chapter 7 ■ Multi-projeCt Builds

91

To get familiar with the flat layout way of organizing projects, recreate the intro-
root sample application. Start by creating a folder named flat-layout on your local file
system. Inside this folder, create four subfolders—web, service, repository, and intro-
root. Under intro-root, create an empty build.gradle file and an empty settings.
gradle file. With flat layouts, you use the includeFlat method instead of the include
method for including projects. The includeFlat method takes the directory names of the
subprojects as its parameters. Copy these contents into settings.gradle file:

includeFlat 'web', 'service', 'repository'

Figure 7-3. intro-root in flat layout

Chapter 7 ■ Multi-projeCt Builds

92

Using command prompt, navigate to the intro-root folder and run the gradle
projects command. You should see output similar to this, with Gradle recognizing all the
projects:

\chapter7\flat-layout\intro-root>gradle projects
:projects

--
Root project
--

Root project 'intro-root'
+--- Project ':repository'
+--- Project ':service'
\--- Project ':web'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :repository:tasks

BUILD SUCCESSFUL

The choice of a hierarchical or flat layout for organizing your project is purely your
personal preference. We find the hierarchical layout much cleaner and the “hierarchical”
intro-root project is used in this chapter.

Multi-Project vs. Single-Project Builds
The root project’s build.gradle file can be used to trigger a full build of all projects.
However, it is possible for the subprojects to contain an optional build.gradle file.
Gradle allows you to execute stand-alone builds on any of these subprojects. In that
scenario, only the subproject and any dependent projects are built.

So how would Gradle know if a build is a single-project build or part of a larger multi-
project build? To make this determination, Gradle looks for the settings.gradle file
using the following algorithm:

 1. Look for the settings.gradle in the current directory.

 2. If settings.gradle is not found, look for it under a master
directory that is at the same level of nesting as the current
directory.

 3. If settings.gradle is not found, look for it under any parent
directories.

Upon finding a settings.gradle file, a check is made to determine if the current
project is defined as part of a multi-project using the include or includeFlat methods. If
the condition is met, the build is executed as a multi-project build. Otherwise, the project
is executed as a single-project build.

Chapter 7 ■ Multi-projeCt Builds

93

Project Configuration
The subprojects in a multi-project often contain common configuration, tasks, and
plugins that can be moved to the root project’s build.gradle file. For example, all
projects would share the same group and version number attributes. Gradle provides an
allprojects closure block that allows you to define such common attributes/behavior
shared by root project as well as subprojects. Listing 7-1 shows an allprojects block
with group and version attributes declared.

Listing 7-1. The allprojects Block in build.grade

allprojects {
 group = "com.apress.gradle"
 version = "1.0.0-SNAPSHOT"
}

Similarly, if all subprojects are Java projects, they would all have the java plugin
applied to them. They would also share common repositories and possibly share few
dependencies as well. To define such behavior specific to all subprojects, Gradle
provides a subprojects closure block. Listing 7-2 shows a subprojects block containing
the java plugin and the mavenCentral() repository declaration.

Listing 7-2. The subprojects Closure Block in build.gradle

subprojects {
 apply plugin: 'java'

 repositories {
 mavenCentral()
 }
}

 ■ Note the allprojects block should be used to declare attributes/configuration/tasks
that apply to all projects. ide plugins are good examples of plugins that can be declared
inside the allprojects section.

It is also possible to configure behavior specific to a single subproject in the root
project’s build.gradle file. For example, you need to apply the war plugin to the web
project. You can add this project-specific behavior using the project() method and then
pass in the project name you want to configure as its parameter. Listing 7-3 shows the
configuration to apply a war plugin to the web project.

Chapter 7 ■ Multi-projeCt Builds

94

Listing 7-3. Project-Specific Behavior

project(':web') {
 apply plugin: 'war'
}

You apply the concepts discussed so far in this section to create an intro-root’s
build.gradle file shown in Listing 7-4. It uses the allprojects block to ensure that
root and subprojects share the same group and version numbers. The code also uses
the subprojects block to ensure that all the subprojects get their dependencies from
Maven Central. The individual project blocks apply the java plugin to the service and
repository projects and apply the war plugin to the web project.

Listing 7-4. The Intro-Project’s build.gradle File

allprojects {
 group = "com.apress.gradle"
 version = "1.0.0-SNAPSHOT"
}

subprojects {
 repositories {
 mavenCentral()
 }
}

project (':service') {
 apply plugin: 'java'
}

project (':repository') {
 apply plugin: 'java'
}

project(':web') {
 apply plugin: 'war'
}

With the intro-root project’s build.gradle file updated, run the gradle build
command and you will see this output:

\chapter7\intro-root>gradle build
:repository:compileJava UP-TO-DATE
:repository:processResources UP-TO-DATE
:repository:classes UP-TO-DATE
:repository:jar

Chapter 7 ■ Multi-projeCt Builds

95

.........................
:repository:build
:service:compileJava UP-TO-DATE
:service:processResources UP-TO-DATE
:service:classes UP-TO-DATE
:service:jar
:service:assemble
........................
:web:compileJava UP-TO-DATE
:web:processResources UP-TO-DATE
:web:classes UP-TO-DATE
:web:war
:web:assemble
.........................
:web:build

BUILD SUCCESSFUL

From the output, notice that Gradle by default executes the subprojects in ascending
order of their alphanumeric names.

Project Dependencies
As you saw in Figure 7-2, the web project depends on the service project and the
service project has dependency on the repository project. Gradle provides the project
dependency type to declare such dependencies. Listing 7-5 shows the modified build.
gradle section declaring these two dependencies.

Listing 7-5. Project Dependencies in build.gradle

allprojects {
 group = "com.apress.gradle"
 version = "1.0.0-SNAPSHOT"
}

subprojects {
 repositories {
 mavenCentral()
 }
}

project (':repository') {
 apply plugin: 'java'
}

Chapter 7 ■ Multi-projeCt Builds

96

project (':service') {
 apply plugin: 'java'
 dependencies {
 compile project(':repository')
 }
}

project(':web') {
 apply plugin: 'war'
 dependencies {
 compile project(':service')
 }
}

If you were to execute gradle build now, Gradle will attempt to build the repository
project, followed by the service and then the web project. The output should resemble
Gradle’s default output. However, if you were to tweak the dependencies such that web
depends on repository and the repository depends on the service, running gradle build
would assemble the service JAR before running the repository build:

\chapter7\intro-root>gradle build
:service:compileJava UP-TO-DATE
:service:processResources UP-TO-DATE
:service:classes UP-TO-DATE
:service:jar UP-TO-DATE
:repository:compileJava UP-TO-DATE
..............................
:repository:check UP-TO-DATE
:repository:build UP-TO-DATE
:service:assemble UP-TO-DATE
...............................
:web:compileTestJava UP-TO-DATE
:web:processTestResources UP-TO-DATE
:web:testClasses UP-TO-DATE
:web:test UP-TO-DATE
:web:check UP-TO-DATE
:web:build

BUILD SUCCESSFUL

Subproject Build Files
So far you have been using the root project’s build.gradle file to declare common as well
as project-specific behavior, thereby eliminating the need for individual build.gradle
files in each subproject. For large projects, this technique would result in a complex
single build.gradle file. For ease of maintenance, you might want to limit the root
project's build.gradle file to contain only the common behavior and split the rest of the
configuration into individual subproject build files.

Chapter 7 ■ Multi-projeCt Builds

97

To see this in action, create a build.gradle file under the service project and copy
the contents shown in Listing 7-6. From the root project's build.gradle file, remove the
project(':service'){} block.

Listing 7-6. The Service Project Specific Configuration

apply plugin: 'java'

dependencies {
 compile project(':repository')
}

Using a command prompt, navigate to the service folder and run the gradle build
command. You will see that this triggers a repository JAR build followed by the service
project’s build:

\chapter7\intro-root\service>gradle build
:repository:compileJava UP-TO-DATE
:repository:processResources UP-TO-DATE
:repository:classes UP-TO-DATE
:repository:jar UP-TO-DATE
:service:compileJava UP-TO-DATE
:service:processResources UP-TO-DATE
:service:classes UP-TO-DATE
:service:jar UP-TO-DATE
:service:assemble UP-TO-DATE
:service:compileTestJava UP-TO-DATE
:service:processTestResources UP-TO-DATE
:service:testClasses UP-TO-DATE
:service:test UP-TO-DATE
:service:check UP-TO-DATE
:service:build UP-TO-DATE

BUILD SUCCESSFUL

Summary
In this chapter, you learned about the intricacies of Gradle’s multi-project builds. You
looked at the two types of project structure—hierarchical and flat. You learned about
allprojects, subprojects, and project blocks, which allow you to place build logic in the
right locations to improve maintainability. You then learned how to declare dependencies
across your projects. Finally, you reviewed how to trigger a full build and a subproject
build.

In the next chapter, you learn about Gradle’s support for publishing generated
artifacts to repositories.

99

Chapter 8

Publishing Artifacts

In order to share internally developed frameworks and libraries, developers need to
publish them to repositories. In this chapter, you will use Gradle to publish artifacts to
local file system and an repository.

Publishing to a Local Repository
The projects you work with typically generate one or more artifacts such as JAR, WAR,
or ZIP files. Gradle provides an archives configuration that can be used to declare the
artifacts produced by a project. A Java project by default produces a JAR file and hence
the Java plugin automatically associates the generated JAR to the archives configuration.
Similarly, the War plugin assigns the generated WAR to this configuration. Gradle provides
an uploadArchives task that can be used to publish these artifacts to repositories.

To better understand the publishing process, you’ll create an empty Java application
named sample-app. To do this, create a new folder called sample-app on your file system.
Then create a build.gradle file and copy the contents of Listing 8-1.

Listing 8-1. sample-app build.gradle file

apply plugin: 'java'
version = 1.0

uploadArchives {
 repositories {
 flatDir { dirs "../repo" }
 }
}

The repositories closure in the uploadArchives task allows you to configure the
location where the artifacts should be published. Listing 8-1 is asking Gradle to publish
the generated artifact to a repo folder located at the same level as sample-app folder on
the file system. To perform the publishing, run the following uploadArchives task:

\chapter8\sample-app>gradle uploadArchives

Chapter 8 ■ publishing artifaCts

100

Upon successful execution, you will see a repo folder created with contents, as
shown in Figure 8-1.

Gradle by default uses the projectname-version.type format for the generated file
names. Hence, the generated artifact is named sample-app-1.0.jar. Additionally, Gradle
generates an ivy.xml configuration file and adds it to the repo folder.

This published artifact is now ready to be accessed in other projects. As discussed
in Chapter 6, a straightforward approach is to declare this folder as a “flat directory
repository” and add sample-app as a dependency.

Publishing to a Maven Repository
In order to publish to a Maven repository, you need a pom.xml configuration file along
with the artifact. The Project Object Model or pom.xml file describes the artifact and
contains information such as dependencies and plugins. Gradle provides a Maven plugin
that simplifies deployments to Maven repositories and can automatically generate the
pom.xml file.

Before you can start publishing to a Maven repository, you need access to a
repository manager such as Artifactory (www.jfrog.com/artifactory/) or Nexus
(www.sonatype.org/nexus/go/). Repository managers manage repositories, act as
proxies of public repositories, and enable governance of artifacts used in the enterprise.
In the next section, you will look at installing Nexus, which is a popular open source
repository manager from Sonatype, on your local machine.

Installing Nexus
Nexus is distributed as an archive, and it comes bundled with a Jetty instance. Download
the Nexus distribution (.zip version for Windows) from Sonatype’s web site at
www.sonatype.org/nexus/go/. At the time of this writing, version 2.11.4-01 of Nexus is
available. Unzip the file and place the contents on your machine. The code in this book
assumes the contents to be in the C:\tools\nexus folder.

Figure 8-1. The repo folder’s contents

http://dx.doi.org/10.1007/978-1-4842-1031-4_6
http://www.jfrog.com/artifactory/
http://www.sonatype.org/nexus/go/
http://www.sonatype.org/nexus/go/

Chapter 8 ■ publishing artifaCts

101

Launch your command line in administrator mode and navigate to the bin folder
located in C:\tools\nexus\nexus-2.11.4-01. To start Nexus, run the following
command:

nexus console

By default, Nexus runs on port 8081. Launch a web browser and navigate to Nexus at
http://localhost:8081/nexus. Figure 8-2 shows the Nexus launch screen. Sign in to the
application using the Log In link in the top-right corner. The default login username and
password for Nexus are admin and admin123.

The Build Configuration
Now that you have Nexus repository manager running, the next step is to modify the
build.gradle file. Listing 8-2 shows the updated build.gradle file with configuration
needed to publish to a Maven repository.

Listing 8-2. build.gradle for Publishing to Maven Repo

apply plugin: 'java'
apply plugin: 'maven'

group = 'com.apress.gradle.intro'
archivesBaseName = 'sample-app'
version = '1.0-SNAPSHOT'

uploadArchives {
 repositories {
 mavenDeployer {
 repository (url: "http://localhost:8081/nexus/content/

repositories/releases") {

Figure 8-2. Nexus index page

Chapter 8 ■ publishing artifaCts

102

 authentication (userName: "deployment", password: "deployment123")
 }
 snapshotRepository (url: "http://localhost:8081/nexus/content/

repositories/snapshots") {
 authentication (userName: "deployment", password: "deployment123")
 }
 }
 }
}

dependencies {
 compile 'ch.qos.logback:logback-classic:1.1.2'
}
repositories {
 mavenCentral()
}

For Gradle to generate the pom.xml file, it needs three Maven coordinates—groupId,
artifactId, and version. In Listing 8-2, you use Project’s group, archivesBaseName, and
version properties to provide those values. Gradle provides the mavenDeployer method,
which allows you to configure the Maven repositories to publish artifacts. In Listing 8-2,
you configured a snapshotRepository (http://localhost:8081/nexus/content/
repositories/snapshots) to publish SNAPSHOT or development versions of artifacts and
a release repository (http://localhost:8081/nexus/content/repositories/releases)
for released artifacts. For Gradle to publish artifacts to Nexus, it needs to provide
appropriate credentials. In the build script, you are using the deployment user (password:
deployment 123) that comes by default with Nexus installation. The deployment user
has the “Nexus Deployment Role” with privileges to write to repositories. This code then
adds a logback dependency to the project followed by a repositories block pointing to
Maven Central. The mavenCentral() configuration tells Gradle to download the logback
dependency from Maven Central. Although this configuration could have used Nexus for
downloading dependencies, it provides the possibility of using separate repositories for
downloading and uploading artifacts.

With this configuration in place, run the gradle uploadArchives command and you
will see this output:

\chapter8\sample-app>gradle uploadArchives
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:jar
:uploadArchives

Chapter 8 ■ publishing artifaCts

103

Could not find metadata com.apress.gradle.intro:sample-app:1.0-SNAPSHOT/
maven-metadata.xml in remote (http://localhost:8081/nexus/content/
repositories/snapshots)
Could not find metadata com.apress.gradle.intro:sample-app/maven-metadata.
xml in remote (http://localhost:8081/nexus/content/repositories/snapshots)

BUILD SUCCESSFUL

The "Could not find metadata ..." error in this output is simply a warning
indicating that Gradle wasn’t able to find a metadata.xml file for this artifact on the Nexus
server. You would see this message when an artifact is being published for the first time.
The metadata.xml file would get created on first publish and hence you should not see
this message in future publishes.

Using your browser, navigate to the Nexus Console at http://localhost:8081/
nexus/. From the vertical navigation on the left, click the Repositories link. You will
see all user-managed repositories displayed in the right pane. Since you published a
SNAPSHOT version of the artifact, click the repository path link next to Snapshots
(http://localhost:8081/nexus/content/repositories/snapshots/). This will launch
the Snapshot repository in a new browser tab. Click through the links com->apress-
>gradle->intro->sample-app->1.0-SNAPSHOT and you will see the generated artifacts,
as shown in Figure 8-3.

Figure 8-3. Sample app artifacts on Nexus

Chapter 8 ■ publishing artifaCts

104

You can also use the URL http://localhost:8081/nexus/content/repositories/
snapshots/com/apress/gradle/intro/sample-app/1.0-SNAPSHOT/ to directly
access the generated artifacts. Notice that Nexus uses the artifact’s group name
(com.apress.gradle.intro), artifact’s name (sample-app), and artifact's version
(1.0-SNAPSHOT) to construct this URL.

Open the generated sample-app-1.0-#########.pom file and you will see that
Gradle has automatically added project’s logback dependency as a Maven dependency:

<project ".....">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.apress.gradle.intro</groupId>
 <artifactId>sample-app</artifactId>
 <version>1.0-SNAPSHOT</version>

 <dependencies>
 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>1.1.2</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>
</project>

Dealing with Additional Artifacts
Earlier in the chapter you learned that the archives configuration is used to declare
artifacts produced by a project. Plugins such as Java automatically associate the generated
JAR file with this configuration. However, if your project produces additional artifacts (for
example, a source JAR or a Javadoc JAR), you need to explicitly associate those with the
archives configuration in your build file. You achieve this by providing to the archives
configuration, the actual artifact or a task that produces the artifact.

To better understand this concept, consider the scenario where you want sample-
app to distribute the following artifacts:

•	 A properties file named app.properties located at the root of the
project.

•	 A JAR file containing the project’s source code

To follow along the rest of the code samples, create an app.properties file in the
sample-app folder and copy the following content:

licenseKey=XYFDLE
encrypt=false

Chapter 8 ■ publishing artifaCts

105

Listing 8-3 shows the portion of sample-app's build.gradle file that assigns the two
artifacts from this use case to archives configuration. You begin by declaring a reference
to the app.properties artifact. Then you create a sourceJar task that would generate a
JAR file with the source code and resource files in the src/main folder. Finally, you use
the artifacts block to add the properties artifact and source JAR task to the archives
configuration.

Listing 8-3. Associating artifact to configuration

def propertiesArtifact = file('app.properties')

task sourceJar (type : Jar) {
 classifier = 'sources'
 from sourceSets.main.allSource
}

artifacts {
 archives propertiesArtifact
 archives sourceJar
}

With this listing added to sample-app’s build.gradle file, you can run the
uploadArchives task and it will automatically deploy the two new artifacts along with
the sample-app.jar file to the Maven repository. Running the command should yield
this output:

\chapter8\sample-app>gradle uploadArchives
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:jar UP-TO-DATE
:sourceJar
:uploadArchives

BUILD SUCCESSFUL

Upon successful execution of the command, navigate to the URL
http://localhost:8081/nexus/content/repositories/snapshots/com/apress/
gradle/intro/sample-app/1.0-SNAPSHOT/ in a browser. You should see the three
artifacts shown in Figure 8-4.

Chapter 8 ■ publishing artifaCts

106

Open the sample-app-1.0-###########.properties file; it should contain the
content shown in Figure 8-5.

Installing to a Gradle Cache
In Chapter 6, you learned that Gradle maintains a cache where it stores downloaded
artifacts and metadata. This improves build performance since the number of download
requests made to external repositories is significantly reduced. By default this cache
is located in the <<USER_HOME>>/.gradle/caches folder. Figure 8-6 shows a portion of
Gradle cache located on our machine. Gradle computes a SHA1 hashcode of the artifact
contents and uses it as the folder name for housing the artifact. Gradle doesn’t guarantee
this folder structure and it is quite possible that the structure may change with new
Gradle versions.

Figure 8-5. Property file contents

Figure 8-4. Sample app's three artifacts in Maven repo

http://dx.doi.org/10.1007/978-1-4842-1031-4_6

Chapter 8 ■ publishing artifaCts

107

Consider a scenario where you want to a third-party JAR file to be added to Gradle’s
cache so that it is available for Gradle builds. There could also be a different scenario
where you have a project (called A) producing a JAR file that you want to be available
in the Gradle cache for other projects to use. Folks with a Maven background quickly
recollect the “install/install-file” goals provided by Maven (https://maven.apache.org/
guides/mini/guide-3rd-party-jars-local.html) that allow you to add files to the
Maven local cache. Gradle, on the other hand, treats its cache as a true cache and doesn’t
provide any mechanism to directly add JAR files.

To address these scenarios with Gradle, three options are discussed in the next
subsections.

Use a File Repository
Add the third-party JAR files to a directory on your file systems. You can configure projects
such as Project A in this scenario to publish generated artifacts to this directory. Projects
needing to use the JAR files can use this directory as a file repository.

Use a Local Maven Repository
Publish JAR files to your local Maven repository and configure Gradle to pull
dependencies from the Maven cache. Gradle projects using Maven can publish their
artifacts to the local Maven repository using the gradle install command. For example,
running gradle install in sample-app would make the sample-app.jar file available in
local Maven repository, as shown in Figure 8-7.

Figure 8-6. Gradle cache directory structure

https://maven.apache.org/guides/mini/guide-3rd-party-jars-local.html
https://maven.apache.org/guides/mini/guide-3rd-party-jars-local.html

Chapter 8 ■ publishing artifaCts

108

Use a Central Repository
Publish the third-party JARs to a central repository such as Nexus. For JARs produced by
projects such as project A, have a CI server build the project on a regular basis and push
it to central repository. If the contents of these JAR files were to change often, the projects
using the JAR file need to declare the dependency as changing. Here is an example of
such a declaration:

dependencies {
 compile group:"com.apress", name:"A",version:"1.0-SNAPSHOT",changing:
true
}

Gradle by default caches artifacts marked changing for 24 hours. You can force
Gradle to check for updated versions with every build by configuring its resolution
strategy. Here is an example of such a configuration:

configurations.all {
 resolutionStrategy.cacheChangingModulesFor 0, "seconds"
}

Figure 8-7. Sample app JAR in the local Maven repository

Chapter 8 ■ publishing artifaCts

109

Summary
In this chapter you reviewed Gradle’s support for publishing artifacts. You learned that
archives configuration is used to declare the artifacts produced by a project. You used
uploadArchives to publish to a local file repository. Then you looked at installing Nexus
Maven repository manager and used mavenDeployer to publish to a remote Maven
repository. You also learned the configuration needed to deal with additional artifacts.

In the next chapter, you will review the concepts of continuous integration and
explore a popular CI server, called Jenkins, and its support for Gradle.

111

Chapter 9

Continuous Integration

Continuous integration or CI is a software engineering practice where changes to
source code are integrated into a shared mainline several times a day. Each change
results in an automatic build that compiles and tests the entire code base. Any failures
are immediately reported back, resulting in early detection of integration problems.
Continuous integration also allows you to automatically monitor code quality, generate
code coverage metrics, and assess overall project health.

The continuous integration market is filled with several open source and commercial
tools such as Hudson, TeamCity, Bamboo, and Jenkins. This chapter explores Jenkins and
its support for Gradle.

Continuous Integration Flow
Continuous integration servers interact with version control systems (VCS), such as SVN
and GIT, to perform builds on a regular basis. A high-level interaction between CI and
code repository is shown in Figure 9-1.

Chapter 9 ■ Continuous integration

112

The interaction begins with a developer checking in her changes to a central source
code repository (VCS). The CI server can be configured to periodically poll for changes to
the code repository or have the VCS trigger a build. When the CI server detects changes
to code, it downloads the source code and begins a build. Upon a successful build, the CI
server can push the generated artifacts to testing/staging environments. If any failures in
the build are detected, the CI server sends out notifications to the developers.

Sample Project
To fully understand Jenkins support for Gradle, you need a sample Gradle project
residing in a VCS. In this book, you will use Git as the VCS and GitHub, a popular online
hosting service, for the Git repositories. You will be working with a sample application
named ig-app that has been uploaded to GitHub at https://github.com/bava/ig-app.
The sample project contains a simple build.gradle file and a HelloWorld.java class that
prints "Hello World" to console.

To follow along with the rest of the chapter, you need an account on GitHub. If
you are a first time user, you can sign up for a free account on GitHub’s home page at
https://github.com. Once you have an account, you need to fork or make a copy of
the ig-app repository under your own account. This allows you to configure Jenkins
to interact with your forked repository using your credentials. This also allows you to
commit changes to the repository and have Jenkin builds triggered automatically. You
can fork the ig-app repository by clicking on the Fork button next to the repository name,
as shown in Figure 9-2.

Figure 9-1. CI flow

https://github.com/bava/ig-app
https://github.com/

Chapter 9 ■ Continuous integration

113

Installing Jenkins
Jenkins is an open source, cross-platform continuous integration tool written entirely
in Java. It supports a wide variety of technologies and languages such as Java, .Net, PHP,
Ruby, and more. Before you start using Jenkins, you need to install and configure it.

 ■ Note since Jenkins needs to interact with the git repository, you need to have git
installed on your machine. You can download os-specific git installers at
http://git-scm.com/downloads.

Begin the Jenkins installation by downloading the latest version at
https://jenkins-ci.org/ (see Figure 9-3). Jenkins comes in two flavors—native
installers for major operating systems and an executable WAR file. To keep things simple,
this book takes the WAR file approach.

Figure 9-2. Forking the ig-app repository

Figure 9-3. The Jenkins download page

http://git-scm.com/downloads
https://jenkins-ci.org/

Chapter 9 ■ Continuous integration

114

Download the jenkins.war file and save it on your file system. Using a command
prompt, navigate to the downloaded directory and run the following command to start
Jenkins:

java -jar jenkins.war

Upon successful execution of the command, you should see the statement "INFO:
Jenkins is fully up and running" on the console indicating that Jenkins is up and
running. By default, Jenkins runs on port 8080. Using a browser, navigate to
http://localhost:8080 and you should see the Jenkins dashboard, as shown in Figure 9-4.

Figure 9-4. The Jenkins dashboard

Configuring Jenkins
Before you can start using Jenkins to run Gradle builds, you need to configure Jenkins
by adding and configuring the Gradle and GitHub plugins. On the Jenkins dashboard's
vertical navigation, click Manage Jenkins. Then click the Manage Plugins link. On the
ensuing screen, click the Available tab and use the filter box to search for Gradle plugin,
as shown in Figure 9-5.

Chapter 9 ■ Continuous integration

115

Select the plugin and click the Download Now and Install After Restart button.
Follow the same approach for searching and installing the GitHub plugin (see Figure 9-6).

You will notice that the GitHub plugin will trigger the installation of other plugins,
such as Git and Git Client (see Figure 9-7).

Figure 9-5. Available tab on the Manage Plugins screen

Figure 9-6. The GitHub plugin

Figure 9-7. Plugins installed with the GitHub plugin

Chapter 9 ■ Continuous integration

116

To complete the plugin installation, restart the Jenkins server. You can accomplish
this by simply killing the Jenkins process at the command line (Ctrl+C on Windows) and
rerunning the java -jar jenkins.war command.

Finally, you need to configure the Gradle plugin to use the local Gradle installation.
To do this, click on the Manage Jenkins link on the dashboard and then click on the
Configure System link. Navigate to the Gradle section on the page and click the Add
Gradle button. This opens a section to configure Gradle installation. Enter Local Gradle
as Gradle name. Then enter the Gradle installation directory under GRADLE_HOME and
uncheck the Install Automatically option, as shown in Figure 9-8.

Figure 9-8. The Gradle plugin configuration

Save the changes by clicking the Save button at the bottom of the page. This
concludes the plugin configuration and you can now move forward and create a Jenkins
build job.

Creating the Build Job
Jobs in Jenkins represent tasks or steps in the build process. A build job for example can
download source code and compile and execute tests. In this section, you will create a
build job that executes the sample app’s Gradle build script. To create a new job, follow
these steps:

 1. Navigate to the Jenkins dashboard at http://localhost:8080
and click the New Item link. On the New Item screen, enter
the name intro-gradle-app and select Freestyle Project, as
shown in Figure 9-9. We chose the Freestyle Project option as
it provides a lot of flexibility and can work with any SCM and
build system. Click the OK button.

Chapter 9 ■ Continuous integration

117

 2. On the next screen, enter the URL to your GitHub repository
that contains the forked sample project (see Figure 9-10).

Figure 9-9. New job screen

Figure 9-10. GitHub project URL

Chapter 9 ■ Continuous integration

118

 3. Under the Source Code Management section, select the Git
option. Under the Repository URL, enter the HTTPS URL to
clone the GitHub repository, as shown in Figure 9-11.

 4. You can obtain the clone URL to be entered on the GitHub
repository page's vertical navigation (see Figure 9-12). Make
sure that the HTTPS option is selected before copying the
URL.

Figure 9-12. Clone URL to GitHub

Figure 9-11. Source Repository configuration

Chapter 9 ■ Continuous integration

119

 5. Click the Add button next to the credentials. In the Add
Credentials dialog box, enter your GitHub account’s
username and password, as shown in Figure 9-13. Click Add.

Figure 9-13. GitHub Repo credentials

Chapter 9 ■ Continuous integration

120

 6. In the Build Triggers section, select the Poll SCM option.
The schedule field takes a UNIX cron expression value. In
Figure 9-14, H/15 * * * * has been entered, indicating that
VCS should be polled every 15 minutes.

Figure 9-14. The Build Triggers configuration

Figure 9-15. Adding the build step

 7. Under the Build section, click the Add Build Step drop-down
and choose Invoke Gradle Script (see Figure 9-15).

Chapter 9 ■ Continuous integration

121

 8. Under the Invoke Gradle script section, select Invoke Gradle
and, from the drop-down, select the Local Gradle option you
configured in the preceding section (refer to Figure 9-8). Enter
clean build in the Tasks textbox (see Figure 9-16).

Figure 9-16. Invoke the Gradle script configuration

Chapter 9 ■ Continuous integration

122

 9. Click Save and you will be taken to the intro-gradle-app
project page shown in Figure 9-17. From this page, you can
trigger manual builds or change the job configuration.

Figure 9-17. The intro-gradle-app project page

Running the Build Job
The build job you configured in the previous section polls the repository for changes every
15 minutes. Additionally, you can use the project’s page to trigger a manual build anytime.
From Jenkins dashboard, click the intro-gradle-app project link (see Figure 9-18).

Figure 9-18. Project list on dashboard

Chapter 9 ■ Continuous integration

123

On the ensuing project page, click the Build Now link on the left vertical navigation.
This schedules a new build. Click on the build number and then click on Console Output,
as shown in Figure 9-19.

Figure 9-19. Viewing the console output

Chapter 9 ■ Continuous integration

124

You should see the output of the execution, similar to Figure 9-20.

Archiving Artifacts
In the previous section, you ran a Jenkins build job to build the project and the generate
ig-app.jar file. In this section, you will configure Jenkins to store those generated
artifacts for later use.

From the Jenkins dashboard, navigate to the intro-gradle-app project page
and click the Configure link on the left vertical navigation. Scroll to the bottom of the
Configure page, click the Add post-build-action drop-down, and select the Archive the
Artifacts option (see Figure 9-21).

Figure 9-20. Job execution output

Chapter 9 ■ Continuous integration

125

In the Files to Archive textbox, enter the value build/**/*.jar to archive all
generated JAR files (see Figure 9-22).

Figure 9-21. Archive the artifacts post-build action

Figure 9-22. Files to archive configuration

Chapter 9 ■ Continuous integration

126

Save the configuration changes and trigger a manual build by clicking the Build Now
button. Once the build is complete, the generated artifact should be available on the
project dashboard, as shown in Figure 9-23.

Publishing Test Results
The Java plugin’s test task runs unit tests and generates reports in HTML, XML, and
binary formats. These reports display the number of tests run and helps you drill down to
identify failed tests. By default the HTML reports are stored in the build/reports folder,
while the XML/binary results are stored in the build/test-results folder.

The ig-app contains a JUnit test named HelloWorldTest in src/test/java. This unit
test tests the functionality of the simple HelloWorld Java code. In this section, you will
configure Jenkins to surface the generated reports on the project home page.

Figure 9-23. ig-app.jar artifact on project dashboard

Chapter 9 ■ Continuous integration

127

Figure 9-25. XML test report location config

Figure 9-24. Test result post-build action

JUnit results in Jenkins are published through a post-build action. Navigate to the
intro-gradle-app’s configure page and select Publish JUnit Test Result Report (see
Figure 9-24).

Enter the value build/test-results/*.xml in the Test Report XMLs textbox
(Figure 9-25) and click Save button to save your changes.

Chapter 9 ■ Continuous integration

128

Trigger a new build. Upon successful completion, you should see the Latest Test
Results link on the projects home page, as shown in Figure 9-26. Click the link and you
should see test run details.

Summary
In this chapter, you learned about continuous integration flow and explored Jenkins,
which is a popular open source CI server. You looked at installing Jenkins and configuring
the necessary plugins to run your sample project located on a GitHub repository.

This discussion brings you to the end of the journey. Throughout the book, you
have learned the key concepts behind Gradle. We hope you will use your newly found
Gradle knowledge to automate and improve your existing build and project management
processes.

Figure 9-26. Test results on the project home page

129

��������� A, B
Build number, 57

��������� C
Clean task, 32
Compile task, 32
Configurations inheritance, 71
Continuous integration (CI)

archiving artifacts, 124
build job creation, 116–117
Build Triggers, 120
clean build, 121
Clone URL, 118
console output, 122
flow, 112
GitHub repository, 117
ig-app repository, 113
intro-gradle-app project, 122
Jenkins configuration, 114
Jenkins installation, 113–114
Source Code

Management, 118
test report, 126

��������� D, E, F
Directed Acyclic Graph (DAG), 32

��������� G, H, I
GitHub plugin, 115
Gradle build

lifecycle phases
configuration, 37
execution, 37
initialization, 37

project's API, 27

tasks
creation, 29
dependency, 31
properties and methods, 29
skipping, 35
types (see Task types)

Gradle dependency
approaches, 67
artifacts, 72
build-common-group.gradle File, 75
build.gradle File, 73
buildscript block, 83
compile-time dependency, 74
configurations, 70
dependency management, 68–69
displayJars Task, 77
file collection, 76
File Trees, 77
JAR creation, 82
JAR file, 76
Logback website, 67
mavenCentral() repository, 80
properties level, 74
resolution strategy, 78
TheProjectDependency Type, 78
twoFile dependency, 76
types, 71, 75

Gradle installation
download options, 7–8
files and folders, 13
GUI option, 15
hellow world script, 13
help command, 14
JDK download, 7
JVM options, 12
Mac OS X, 11
testing, 11
using IDE, 15
Windows, 8

Index

■ index

130

Gradle multi-project
configuration, 93
flat layout, 90
Gradle task, 89
hierarchical structure, 88
project dependency, 95–96
subproject build file, 96–97
UI layer code, 88
vs larger multi-project, 92

Gradle plugins
binary, 41
script, 41

Gradle publish artifacts
declare artifacts, 104
Gradle cache

central repository, 108
installation, 106
JAR files, 107
local Maven repository, 107

local repository, 99–100
Maven repository, 100

artifactId, 102
update build.gradle file, 101
gradle uploadArchives

command, 102
groupId, 102
metadata.xml file, 103
Nexus index page, 101
sample app artifacts, 103
version, 102

Gradle system
Ant + Ivy, 3
Groovy, 2
incremental builds, 2
Maven use, 4
open source, 3
Plugins, 3
project dependency, 1
Wrapper scripts, 2

Groovy language
closures, 24
comments, 20
data types

declaring variables, 22
lists, 23
maps, 23
numbers, 21
range, 24
strings, 20

installation steps, 17
running command, 18
syntax, 19

��������� J, K, L, M, N, O
Java Plugin

build.gradle file, 42, 45
build number, 57
custom binary

plugins, 52
default layout, 48
directory, 43
greet task, 54
GreetTask.java file, 53
Groovy language, 55
HelloPlugin.javaclass, 53
Jartask, 45
javadoc task, 46
Plugin class, 62
Plugin configuration, 58
Plugin consumer

project, 64–65
Plugin development, 58
Plugin extension, 60
Plugin Name, 62
Plugin package, 63
Plugin task, 61
SourceSets, 48
subfolder creation, 52
Wartask, 51
web application development, 49

��������� P, Q, R, S
Package task, 32
Plugin class, 62
Plugin configuration, 58
Plugin consumer project, 64–65
Plugin development, 58
Plugin extension, 60
Plugin Name, 62
Plugin package, 63
Plugin task, 61

��������� T, U
Task types

copy, 36
delete, 37
Exec, 37
Zip, 36

��������� V, W, X, Y, Z
Version control systems (VCS), 111

www.allitebooks.com

http://www.allitebooks.org

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	 Declarative Dependency Management
	 Declarative Builds
	 Build by Convention
	 Incremental Builds
	 Gradle Wrapper
	 Plugins
	 Open Source
	 Gradle Alternatives
	 Ant + Ivy
	 Maven

	 Summary

	Chapter 2: Setting Up Gradle
	 Installation Prerequisites
	 Setting Up Java
	 Downloading Gradle

	 Installing Gradle
	 Installing on Windows
	 Testing the Installation
	 Installing on Mac OS X
	 Setting Gradle’s JVM Options
	 Gradle Distribution

	 Hello World Gradle Script
	 Getting Help
	 Gradle GUI
	 IDE Support
	 Summary

	Chapter 3: Groovy Language Primer
	 Installing Groovy
	 Running Groovy
	 Basic Groovy Language Features
	 Groovy Syntax
	 Comments
	 Data Types
	 Strings
	 Numbers
	Declaring Variables
	Lists
	Maps
	 Range

	 Closures

	 Summary

	Chapter 4: Understanding Gradle Builds
	 Projects
	 Tasks
	 Creating Tasks
	 Task Dependencies
	 Skipping Tasks
	 Gradle Task Types
	Zip
	Copy
	Exec
	Delete

	 Build Lifecycle
	 Summary

	Chapter 5: Projects and Plugins
	 Introducing Plugins
	 Java Projects
	 Using the Java Plugin
	 Jar Task
	 Generating Javadoc
	 Configuring the Default Layout
	 Creating Web Projects
	 War Task

	 Writing a Custom Plugin
	 Creating a Java Plugin
	 Creating a Groovy Plugin
	 Creating a Stand-Alone Project Plugin
	Plugin Background
	Plugin Configuration
	Plugin Development
	Plugin Extensions
	Plugin Task
	Plugin Class
	Short Plugin Name
	Plugin Packaging
	Consuming the Plugin

	 Summary

	Chapter 6: Dependency Management
	 Declarative Dependency Management
	 Dependency Configuration
	 Working with Dependencies
	 External Module Dependencies
	 File Dependencies
	 Project Dependencies

	 Resolving Dependency Conflicts
	 Repositories
	 Uber JAR Creation
	 Summary

	Chapter 7: Multi-Project Builds
	 Multi-Project Structure
	 Sample Project
	 Flat Layout
	 Multi-Project vs. Single-Project Builds

	 Project Configuration
	 Project Dependencies
	 Subproject Build Files
	 Summary

	Chapter 8: Publishing Artifacts
	 Publishing to a Local Repository
	 Publishing to a Maven Repository
	 Installing Nexus
	 The Build Configuration

	 Dealing with Additional Artifacts
	 Installing to a Gradle Cache
	 Use a File Repository
	 Use a Local Maven Repository
	 Use a Central Repository

	 Summary

	Chapter 9: Continuous Integration
	 Continuous Integration Flow
	 Sample Project
	 Installing Jenkins
	 Configuring Jenkins
	 Creating the Build Job
	 Running the Build Job

	 Archiving Artifacts
	 Publishing Test Results
	 Summary

	Index

